Intelligent Context-Aware and Adaptive Interface for Mobile LBS
Liu, Yanhong
2015-01-01
Context-aware user interface plays an important role in many human-computer Interaction tasks of location based services. Although spatial models for context-aware systems have been studied extensively, how to locate specific spatial information for users is still not well resolved, which is important in the mobile environment where location based services users are impeded by device limitations. Better context-aware human-computer interaction models of mobile location based services are needed not just to predict performance outcomes, such as whether people will be able to find the information needed to complete a human-computer interaction task, but to understand human processes that interact in spatial query, which will in turn inform the detailed design of better user interfaces in mobile location based services. In this study, a context-aware adaptive model for mobile location based services interface is proposed, which contains three major sections: purpose, adjustment, and adaptation. Based on this model we try to describe the process of user operation and interface adaptation clearly through the dynamic interaction between users and the interface. Then we show how the model applies users' demands in a complicated environment and suggested the feasibility by the experimental results. PMID:26457077
NASA Astrophysics Data System (ADS)
Cheok, Adrian David
This chapter details the Human Pacman system to illuminate entertainment computing which ventures to embed the natural physical world seamlessly with a fantasy virtual playground by capitalizing on infrastructure provided by mobile computing, wireless LAN, and ubiquitous computing. With Human Pacman, we have a physical role-playing computer fantasy together with real human-social and mobile-gaming that emphasizes on collaboration and competition between players in a wide outdoor physical area that allows natural wide-area human-physical movements. Pacmen and Ghosts are now real human players in the real world experiencing mixed computer graphics fantasy-reality provided by using the wearable computers on them. Virtual cookies and actual tangible physical objects are incorporated into the game play to provide novel experiences of seamless transitions between the real and virtual worlds. This is an example of a new form of gaming that anchors on physicality, mobility, social interaction, and ubiquitous computing.
Design Science in Human-Computer Interaction: A Model and Three Examples
ERIC Educational Resources Information Center
Prestopnik, Nathan R.
2013-01-01
Humanity has entered an era where computing technology is virtually ubiquitous. From websites and mobile devices to computers embedded in appliances on our kitchen counters and automobiles parked in our driveways, information and communication technologies (ICTs) and IT artifacts are fundamentally changing the ways we interact with our world.…
ERIC Educational Resources Information Center
Faiola, Anthony; Matei, Sorin Adam
2010-01-01
The evolution of human-computer interaction design (HCID) over the last 20 years suggests that there is a growing need for educational scholars to consider new and more applicable theoretical models of interactive product design. The authors suggest that such paradigms would call for an approach that would equip HCID students with a better…
Brain Computer Interfaces for Enhanced Interaction with Mobile Robot Agents
2016-07-27
synergistic and complementary way. This project focused on acquiring a mobile robotic agent platform that can be used to explore these interfaces...providing a test environment where the human control of a robot agent can be experimentally validated in 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...Distribution Unlimited UU UU UU UU 27-07-2016 17-Sep-2013 16-Sep-2014 Final Report: Brain Computer Interfaces for Enhanced Interactions with Mobile Robot
Scenarios of Use for Sociable Mobile TV
NASA Astrophysics Data System (ADS)
Chorianopoulos, Konstantinos
Mobile TVs have been available for many years, without ever becoming very popular. Moreover, the first wave of research has been mostly concerned with technology and standards, which are necessary to ensure interoperability and market acceptance. Although, there has been a significant body of computer-supported co-operative work (CSCW) and mobile human-computer interaction (HCI) research findings, there is limited investigation in the context of leisure activities, such as TV. In this article, we propose three concepts that drive the main paths for research and practice in mobile and social TV: (1) Mobile TV as a content format, (2) Mobile TV as user behavior, and (3) Mobile TV as interaction terminal. Finally, we provide particular directions to be considered in further research in social and mobile TV.
Real-time multiple human perception with color-depth cameras on a mobile robot.
Zhang, Hao; Reardon, Christopher; Parker, Lynne E
2013-10-01
The ability to perceive humans is an essential requirement for safe and efficient human-robot interaction. In real-world applications, the need for a robot to interact in real time with multiple humans in a dynamic, 3-D environment presents a significant challenge. The recent availability of commercial color-depth cameras allow for the creation of a system that makes use of the depth dimension, thus enabling a robot to observe its environment and perceive in the 3-D space. Here we present a system for 3-D multiple human perception in real time from a moving robot equipped with a color-depth camera and a consumer-grade computer. Our approach reduces computation time to achieve real-time performance through a unique combination of new ideas and established techniques. We remove the ground and ceiling planes from the 3-D point cloud input to separate candidate point clusters. We introduce the novel information concept, depth of interest, which we use to identify candidates for detection, and that avoids the computationally expensive scanning-window methods of other approaches. We utilize a cascade of detectors to distinguish humans from objects, in which we make intelligent reuse of intermediary features in successive detectors to improve computation. Because of the high computational cost of some methods, we represent our candidate tracking algorithm with a decision directed acyclic graph, which allows us to use the most computationally intense techniques only where necessary. We detail the successful implementation of our novel approach on a mobile robot and examine its performance in scenarios with real-world challenges, including occlusion, robot motion, nonupright humans, humans leaving and reentering the field of view (i.e., the reidentification challenge), human-object and human-human interaction. We conclude with the observation that the incorporation of the depth information, together with the use of modern techniques in new ways, we are able to create an accurate system for real-time 3-D perception of humans by a mobile robot.
ERIC Educational Resources Information Center
Landa-Jiménez, M. A.; González-Gaspar, P.; Pérez-Estudillo, C.; López-Meraz, M. L.; Morgado-Valle, C.; Beltran-Parrazal, L.
2016-01-01
A Muscle-Computer Interface (muCI) is a human-machine system that uses electromyographic (EMG) signals to communicate with a computer. Surface EMG (sEMG) signals are currently used to command robotic devices, such as robotic arms and hands, and mobile robots, such as wheelchairs. These signals reflect the motor intention of a user before the…
NASA Astrophysics Data System (ADS)
Zou, Jie; Gattani, Abhishek
2005-01-01
When completely automated systems don't yield acceptable accuracy, many practical pattern recognition systems involve the human either at the beginning (pre-processing) or towards the end (handling rejects). We believe that it may be more useful to involve the human throughout the recognition process rather than just at the beginning or end. We describe a methodology of interactive visual recognition for human-centered low-throughput applications, Computer Assisted Visual InterActive Recognition (CAVIAR), and discuss the prospects of implementing CAVIAR over the Internet. The novelty of CAVIAR is image-based interaction through a domain-specific parameterized geometrical model, which reduces the semantic gap between humans and computers. The user may interact with the computer anytime that she considers its response unsatisfactory. The interaction improves the accuracy of the classification features by improving the fit of the computer-proposed model. The computer makes subsequent use of the parameters of the improved model to refine not only its own statistical model-fitting process, but also its internal classifier. The CAVIAR methodology was applied to implement a flower recognition system. The principal conclusions from the evaluation of the system include: 1) the average recognition time of the CAVIAR system is significantly shorter than that of the unaided human; 2) its accuracy is significantly higher than that of the unaided machine; 3) it can be initialized with as few as one training sample per class and still achieve high accuracy; and 4) it demonstrates a self-learning ability. We have also implemented a Mobile CAVIAR system, where a pocket PC, as a client, connects to a server through wireless communication. The motivation behind a mobile platform for CAVIAR is to apply the methodology in a human-centered pervasive environment, where the user can seamlessly interact with the system for classifying field-data. Deploying CAVIAR to a networked mobile platform poses the challenge of classifying field images and programming under constraints of display size, network bandwidth, processor speed, and memory size. Editing of the computer-proposed model is performed on the handheld while statistical model fitting and classification take place on the server. The possibility that the user can easily take several photos of the object poses an interesting information fusion problem. The advantage of the Internet is that the patterns identified by different users can be pooled together to benefit all peer users. When users identify patterns with CAVIAR in a networked setting, they also collect training samples and provide opportunities for machine learning from their intervention. CAVIAR implemented over the Internet provides a perfect test bed for, and extends, the concept of Open Mind Initiative proposed by David Stork. Our experimental evaluation focuses on human time, machine and human accuracy, and machine learning. We devoted much effort to evaluating the use of our image-based user interface and on developing principles for the evaluation of interactive pattern recognition system. The Internet architecture and Mobile CAVIAR methodology have many applications. We are exploring in the directions of teledermatology, face recognition, and education.
Hands in space: gesture interaction with augmented-reality interfaces.
Billinghurst, Mark; Piumsomboon, Tham; Huidong Bai
2014-01-01
Researchers at the Human Interface Technology Laboratory New Zealand (HIT Lab NZ) are investigating free-hand gestures for natural interaction with augmented-reality interfaces. They've applied the results to systems for desktop computers and mobile devices.
Krehl, Claudia; Sharples, Sarah
2012-01-01
The paper investigates the requirements for multimodal interaction on mobile devices in an end-to-end journey context. Traditional interfaces are deemed cumbersome and inefficient for exchanging information with the user. Multimodal interaction provides a different user-centred approach allowing for more natural and intuitive interaction between humans and computers. It is especially suitable for mobile interaction as it can overcome additional constraints including small screens, awkward keypads, and continuously changing settings - an inherent property of mobility. This paper is based on end-to-end journeys where users encounter several contexts during their journeys. Interviews and focus groups explore the requirements for multimodal interaction design for mobile devices by examining journey stages and identifying the users' information needs and sources. Findings suggest that multimodal communication is crucial when users multitask. Choosing suitable modalities depend on user context, characteristics and tasks.
The Structure of Borders in a Small World
Thiemann, Christian; Theis, Fabian; Grady, Daniel; Brune, Rafael; Brockmann, Dirk
2010-01-01
Territorial subdivisions and geographic borders are essential for understanding phenomena in sociology, political science, history, and economics. They influence the interregional flow of information and cross-border trade and affect the diffusion of innovation and technology. However, it is unclear if existing administrative subdivisions that typically evolved decades ago still reflect the most plausible organizational structure of today. The complexity of modern human communication, the ease of long-distance movement, and increased interaction across political borders complicate the operational definition and assessment of geographic borders that optimally reflect the multi-scale nature of today's human connectivity patterns. What border structures emerge directly from the interplay of scales in human interactions is an open question. Based on a massive proxy dataset, we analyze a multi-scale human mobility network and compute effective geographic borders inherent to human mobility patterns in the United States. We propose two computational techniques for extracting these borders and for quantifying their strength. We find that effective borders only partially overlap with existing administrative borders, and show that some of the strongest mobility borders exist in unexpected regions. We show that the observed structures cannot be generated by gravity models for human traffic. Finally, we introduce the concept of link significance that clarifies the observed structure of effective borders. Our approach represents a novel type of quantitative, comparative analysis framework for spatially embedded multi-scale interaction networks in general and may yield important insight into a multitude of spatiotemporal phenomena generated by human activity. PMID:21124970
The structure of borders in a small world.
Thiemann, Christian; Theis, Fabian; Grady, Daniel; Brune, Rafael; Brockmann, Dirk
2010-11-18
Territorial subdivisions and geographic borders are essential for understanding phenomena in sociology, political science, history, and economics. They influence the interregional flow of information and cross-border trade and affect the diffusion of innovation and technology. However, it is unclear if existing administrative subdivisions that typically evolved decades ago still reflect the most plausible organizational structure of today. The complexity of modern human communication, the ease of long-distance movement, and increased interaction across political borders complicate the operational definition and assessment of geographic borders that optimally reflect the multi-scale nature of today's human connectivity patterns. What border structures emerge directly from the interplay of scales in human interactions is an open question. Based on a massive proxy dataset, we analyze a multi-scale human mobility network and compute effective geographic borders inherent to human mobility patterns in the United States. We propose two computational techniques for extracting these borders and for quantifying their strength. We find that effective borders only partially overlap with existing administrative borders, and show that some of the strongest mobility borders exist in unexpected regions. We show that the observed structures cannot be generated by gravity models for human traffic. Finally, we introduce the concept of link significance that clarifies the observed structure of effective borders. Our approach represents a novel type of quantitative, comparative analysis framework for spatially embedded multi-scale interaction networks in general and may yield important insight into a multitude of spatiotemporal phenomena generated by human activity.
The development of the Canadian Mobile Servicing System Kinematic Simulation Facility
NASA Technical Reports Server (NTRS)
Beyer, G.; Diebold, B.; Brimley, W.; Kleinberg, H.
1989-01-01
Canada will develop a Mobile Servicing System (MSS) as its contribution to the U.S./International Space Station Freedom. Components of the MSS will include a remote manipulator (SSRMS), a Special Purpose Dexterous Manipulator (SPDM), and a mobile base (MRS). In order to support requirements analysis and the evaluation of operational concepts related to the use of the MSS, a graphics based kinematic simulation/human-computer interface facility has been created. The facility consists of the following elements: (1) A two-dimensional graphics editor allowing the rapid development of virtual control stations; (2) Kinematic simulations of the space station remote manipulators (SSRMS and SPDM), and mobile base; and (3) A three-dimensional graphics model of the space station, MSS, orbiter, and payloads. These software elements combined with state of the art computer graphics hardware provide the capability to prototype MSS workstations, evaluate MSS operational capabilities, and investigate the human-computer interface in an interactive simulation environment. The graphics technology involved in the development and use of this facility is described.
Zhao, Yu; Liu, Yide; Lai, Ivan K W; Zhang, Hongfeng; Zhang, Yi
2016-03-18
As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human-computer interaction (HCI) issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users' compound attitudes (i.e., affective attitudes, cognitive attitude), engagement and electronic word of mouth (eWOM) behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user's compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user-product (brand) relationships.
Cognition in action: imaging brain/body dynamics in mobile humans.
Gramann, Klaus; Gwin, Joseph T; Ferris, Daniel P; Oie, Kelvin; Jung, Tzyy-Ping; Lin, Chin-Teng; Liao, Lun-De; Makeig, Scott
2011-01-01
We have recently developed a mobile brain imaging method (MoBI), that allows for simultaneous recording of brain and body dynamics of humans actively behaving in and interacting with their environment. A mobile imaging approach was needed to study cognitive processes that are inherently based on the use of human physical structure to obtain behavioral goals. This review gives examples of the tight coupling between human physical structure with cognitive processing and the role of supraspinal activity during control of human stance and locomotion. Existing brain imaging methods for actively behaving participants are described and new sensor technology allowing for mobile recordings of different behavioral states in humans is introduced. Finally, we review recent work demonstrating the feasibility of a MoBI system that was developed at the Swartz Center for Computational Neuroscience at the University of California, San Diego, demonstrating the range of behavior that can be investigated with this method.
Usability and Utility of a Mobile Application for Marksmanship Training
2015-01-01
Right of Canada, as represented by the Minister of National Defence, 2015 © Sa Majesté la Reine (en droit du Canada), telle que représentée par le...Empirical Evaluation of the System Usability Scale. International Journal of Human-Computer Interaction, 24(6), 574-594. BenMoussa, C. (2003). Workers on...Behavioral and Social Sciences. Jumisko-Pyykko, S., & Vainio, T. (2011). Framing the Context of Use for Mobile HCI. International Journal of Mobile
Su, Kuo-Wei; Liu, Cheng-Li
2012-06-01
A conventional Nursing Information System (NIS), which supports the role of nurse in some areas, is typically deployed as an immobile system. However, the traditional information system can't response to patients' conditions in real-time, causing delays on the availability of this information. With the advances of information technology, mobile devices are increasingly being used to extend the human mind's limited capacity to recall and process large numbers of relevant variables and to support information management, general administration, and clinical practice. Unfortunately, there have been few studies about the combination of a well-designed small-screen interface with a personal digital assistant (PDA) in clinical nursing. Some researchers found that user interface design is an important factor in determining the usability and potential use of a mobile system. Therefore, this study proposed a systematic approach to the development of a mobile nursing information system (MNIS) based on Mobile Human-Computer Interaction (M-HCI) for use in clinical nursing. The system combines principles of small-screen interface design with user-specified requirements. In addition, the iconic functions were designed with metaphor concept that will help users learn the system more quickly with less working-memory. An experiment involving learnability testing, thinking aloud and a questionnaire investigation was conducted for evaluating the effect of MNIS on PDA. The results show that the proposed MNIS is good on learning and higher satisfaction on symbol investigation, terminology and system information.
Rapid Human-Computer Interactive Conceptual Design of Mobile and Manipulative Robot Systems
2015-05-19
algorithm based on Age-Fitness Pareto Optimization (AFPO) ([9]) with an additional user prefer- ence objective and a neural network-based user model, we...greater than 40, which is about 5 times further than any robot traveled in our experiments. 6 3.3 Methods The algorithm uses a client -server computational...architecture. The client here is an interactive pro- gram which takes a pair of controllers as input, simulates4 two copies of the robot with
ERIC Educational Resources Information Center
Crearie, Linda
2016-01-01
Technological advances over the last decade have had a significant impact on the teaching and learning experiences students encounter today. We now take technologies such as Web 2.0, mobile devices, cloud computing, podcasts, social networking, super-fast broadband, and connectedness for granted. So what about the student use of these types of…
NASA Astrophysics Data System (ADS)
Hori, Masahiro; Kato, Takashi
While focusing on the human-computer interaction side of the Web content delivery, this article discusses problems and prospects of the mobile Web and Web accessibility in terms of what lessons and experiences we have gained from Web accessibility and what they can say about the mobile Web. One aim is to draw particular attention to the importance of explicitly distinguishing between perceptual and cognitive aspects of the users’ interactions with the Web. Another is to emphasize the increased importance of scenario-based evaluation and remote testing for the mobile Web where the limited screen space and a variety of environmental factors of mobile use are critical design issues. A newly devised inspection type of evaluation method that focuses on the perceptual-cognitive distinction of accessibility and usability issues is presented as a viable means of scenario-based, remote testing for the Web.
Human mobility in an emerging epidemic: a key aspect for response planning
NASA Astrophysics Data System (ADS)
Poletto, Chiara; Bajardi, Paolo; Colizza, Vittoria; Ramasco, Jose J.; Tizzoni, Michele; Vespignani, Alessandro
2010-03-01
Human mobility and interactions represent key ingredients in the spreading dynamics of an infectious disease. The flows of traveling people form a network characterized by complex features, such as strong topological and traffic heterogeneities, that unfolds at different temporal and spatial scales, from short ranges to the global scale. Computational models can be developed that integrate detailed network structures based on demographic and mobility data, in order to simulate the spatial evolution of an epidemic. Focusing on the recent A(H1N1) influenza pandemic as a paradigmatic example, these approaches allow the assessment of the interplay between individual mobility and epidemic dynamics, quantifying the effects of travel restrictions in delaying the epidemic spread and the role of mobility as an additional source of information for the understanding of the early outbreak.
Eye Tracking Based Control System for Natural Human-Computer Interaction
Lin, Shu-Fan
2017-01-01
Eye movement can be regarded as a pivotal real-time input medium for human-computer communication, which is especially important for people with physical disability. In order to improve the reliability, mobility, and usability of eye tracking technique in user-computer dialogue, a novel eye control system with integrating both mouse and keyboard functions is proposed in this paper. The proposed system focuses on providing a simple and convenient interactive mode by only using user's eye. The usage flow of the proposed system is designed to perfectly follow human natural habits. Additionally, a magnifier module is proposed to allow the accurate operation. In the experiment, two interactive tasks with different difficulty (searching article and browsing multimedia web) were done to compare the proposed eye control tool with an existing system. The Technology Acceptance Model (TAM) measures are used to evaluate the perceived effectiveness of our system. It is demonstrated that the proposed system is very effective with regard to usability and interface design. PMID:29403528
Eye Tracking Based Control System for Natural Human-Computer Interaction.
Zhang, Xuebai; Liu, Xiaolong; Yuan, Shyan-Ming; Lin, Shu-Fan
2017-01-01
Eye movement can be regarded as a pivotal real-time input medium for human-computer communication, which is especially important for people with physical disability. In order to improve the reliability, mobility, and usability of eye tracking technique in user-computer dialogue, a novel eye control system with integrating both mouse and keyboard functions is proposed in this paper. The proposed system focuses on providing a simple and convenient interactive mode by only using user's eye. The usage flow of the proposed system is designed to perfectly follow human natural habits. Additionally, a magnifier module is proposed to allow the accurate operation. In the experiment, two interactive tasks with different difficulty (searching article and browsing multimedia web) were done to compare the proposed eye control tool with an existing system. The Technology Acceptance Model (TAM) measures are used to evaluate the perceived effectiveness of our system. It is demonstrated that the proposed system is very effective with regard to usability and interface design.
Interactive Computer-Assisted Instruction in Acid-Base Physiology for Mobile Computer Platforms
ERIC Educational Resources Information Center
Longmuir, Kenneth J.
2014-01-01
In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ~20 screens of information, on the subjects…
A Mobile, Map-Based Tasking Interface for Human-Robot Interaction
2010-12-01
A MOBILE, MAP-BASED TASKING INTERFACE FOR HUMAN-ROBOT INTERACTION By Eli R. Hooten Thesis Submitted to the Faculty of the Graduate School of...SUBTITLE A Mobile, Map-Based Tasking Interface for Human-Robot Interaction 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...3 II.1 Interactive Modalities and Multi-Touch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 II.2
Brown, William; Liu, Connie; John, Rita Marie; Ford, Phoebe
2014-01-01
Developing gross and fine motor skills and expressing complex emotion is critical for child development. We introduce "StorySense", an eBook-integrated mobile app prototype that can sense face and sound topologies and identify movement and expression to promote children's motor skills and emotional developmental. Currently, most interactive eBooks on mobile devices only leverage "low-motor" interaction (i.e. tapping or swiping). Our app senses a greater breath of motion (e.g. clapping, snapping, and face tracking), and dynamically alters the storyline according to physical responses in ways that encourage the performance of predetermined motor skills ideal for a child's gross and fine motor development. In addition, our app can capture changes in facial topology, which can later be mapped using the Facial Action Coding System (FACS) for later interpretation of emotion. StorySense expands the human computer interaction vocabulary for mobile devices. Potential clinical applications include child development, physical therapy, and autism.
2015-01-01
Objectives This study aimed to determine the effect of mobile-based discussion versus computer-based discussion on self-directed learning readiness, academic motivation, learner-interface interaction, and flow state. Methods This randomized controlled trial was conducted at one university. Eighty-six nursing students who were able to use a computer, had home Internet access, and used a mobile phone were recruited. Participants were randomly assigned to either the mobile phone app-based discussion group (n = 45) or a computer web-based discussion group (n = 41). The effect was measured at before and after an online discussion via self-reported surveys that addressed academic motivation, self-directed learning readiness, time distortion, learner-learner interaction, learner-interface interaction, and flow state. Results The change in extrinsic motivation on identified regulation in the academic motivation (p = 0.011) as well as independence and ability to use basic study (p = 0.047) and positive orientation to the future in self-directed learning readiness (p = 0.021) from pre-intervention to post-intervention was significantly more positive in the mobile phone app-based group compared to the computer web-based discussion group. Interaction between learner and interface (p = 0.002), having clear goals (p = 0.012), and giving and receiving unambiguous feedback (p = 0.049) in flow state was significantly higher in the mobile phone app-based discussion group than it was in the computer web-based discussion group at post-test. Conclusions The mobile phone might offer more valuable learning opportunities for discussion teaching and learning methods in terms of self-directed learning readiness, academic motivation, learner-interface interaction, and the flow state of the learning process compared to the computer. PMID:25995965
Vollmer Dahlke, Deborah; Fair, Kayla; Hong, Y Alicia; Beaudoin, Christopher E; Pulczinski, Jairus; Ory, Marcia G
2015-03-27
Thousands of mobile health apps are now available for use on mobile phones for a variety of uses and conditions, including cancer survivorship. Many of these apps appear to deliver health behavior interventions but may fail to consider design considerations based in human computer interface and health behavior change theories. This study is designed to assess the presence of and manner in which health behavior change and health communication theories are applied in mobile phone cancer survivorship apps. The research team selected a set of criteria-based health apps for mobile phones and assessed each app using qualitative coding methods to assess the application of health behavior change and communication theories. Each app was assessed using a coding derived from the taxonomy of 26 health behavior change techniques by Abraham and Michie with a few important changes based on the characteristics of mHealth apps that are specific to information processing and human computer interaction such as control theory and feedback systems. A total of 68 mobile phone apps and games built on the iOS and Android platforms were coded, with 65 being unique. Using a Cohen's kappa analysis statistic, the inter-rater reliability for the iOS apps was 86.1 (P<.001) and for the Android apps, 77.4 (P<.001). For the most part, the scores for inclusion of theory-based health behavior change characteristics in the iOS platform cancer survivorship apps were consistently higher than those of the Android platform apps. For personalization and tailoring, 67% of the iOS apps (24/36) had these elements as compared to 38% of the Android apps (12/32). In the area of prompting for intention formation, 67% of the iOS apps (34/36) indicated these elements as compared to 16% (5/32) of the Android apps. Mobile apps are rapidly emerging as a way to deliver health behavior change interventions that can be tailored or personalized for individuals. As these apps and games continue to evolve and include interactive and adaptive sensors and other forms of dynamic feedback, their content and interventional elements need to be grounded in human computer interface design and health behavior and communication theory and practice.
Fair, Kayla; Hong, Y Alicia; Beaudoin, Christopher E; Pulczinski, Jairus; Ory, Marcia G
2015-01-01
Background Thousands of mobile health apps are now available for use on mobile phones for a variety of uses and conditions, including cancer survivorship. Many of these apps appear to deliver health behavior interventions but may fail to consider design considerations based in human computer interface and health behavior change theories. Objective This study is designed to assess the presence of and manner in which health behavior change and health communication theories are applied in mobile phone cancer survivorship apps. Methods The research team selected a set of criteria-based health apps for mobile phones and assessed each app using qualitative coding methods to assess the application of health behavior change and communication theories. Each app was assessed using a coding derived from the taxonomy of 26 health behavior change techniques by Abraham and Michie with a few important changes based on the characteristics of mHealth apps that are specific to information processing and human computer interaction such as control theory and feedback systems. Results A total of 68 mobile phone apps and games built on the iOS and Android platforms were coded, with 65 being unique. Using a Cohen’s kappa analysis statistic, the inter-rater reliability for the iOS apps was 86.1 (P<.001) and for the Android apps, 77.4 (P<.001). For the most part, the scores for inclusion of theory-based health behavior change characteristics in the iOS platform cancer survivorship apps were consistently higher than those of the Android platform apps. For personalization and tailoring, 67% of the iOS apps (24/36) had these elements as compared to 38% of the Android apps (12/32). In the area of prompting for intention formation, 67% of the iOS apps (34/36) indicated these elements as compared to 16% (5/32) of the Android apps. Conclusions Mobile apps are rapidly emerging as a way to deliver health behavior change interventions that can be tailored or personalized for individuals. As these apps and games continue to evolve and include interactive and adaptive sensors and other forms of dynamic feedback, their content and interventional elements need to be grounded in human computer interface design and health behavior and communication theory and practice. PMID:25830810
Brown, William; Liu, Connie; John, Rita Marie; Ford, Phoebe
2014-01-01
Developing gross and fine motor skills and expressing complex emotion is critical for child development. We introduce “StorySense”, an eBook-integrated mobile app prototype that can sense face and sound topologies and identify movement and expression to promote children’s motor skills and emotional developmental. Currently, most interactive eBooks on mobile devices only leverage “low-motor” interaction (i.e. tapping or swiping). Our app senses a greater breath of motion (e.g. clapping, snapping, and face tracking), and dynamically alters the storyline according to physical responses in ways that encourage the performance of predetermined motor skills ideal for a child’s gross and fine motor development. In addition, our app can capture changes in facial topology, which can later be mapped using the Facial Action Coding System (FACS) for later interpretation of emotion. StorySense expands the human computer interaction vocabulary for mobile devices. Potential clinical applications include child development, physical therapy, and autism. PMID:25954336
Multimodal user interfaces to improve social integration of elderly and mobility impaired.
Dias, Miguel Sales; Pires, Carlos Galinho; Pinto, Fernando Miguel; Teixeira, Vítor Duarte; Freitas, João
2012-01-01
Technologies for Human-Computer Interaction (HCI) and Communication have evolved tremendously over the past decades. However, citizens such as mobility impaired or elderly or others, still face many difficulties interacting with communication services, either due to HCI issues or intrinsic design problems with the services. In this paper we start by presenting the results of two user studies, the first one conducted with a group of mobility impaired users, comprising paraplegic and quadriplegic individuals; and the second one with elderly. The study participants carried out a set of tasks with a multimodal (speech, touch, gesture, keyboard and mouse) and multi-platform (mobile, desktop) system, offering an integrated access to communication and entertainment services, such as email, agenda, conferencing, instant messaging and social media, referred to as LHC - Living Home Center. The system was designed to take into account the requirements captured from these users, with the objective of evaluating if the adoption of multimodal interfaces for audio-visual communication and social media services, could improve the interaction with such services. Our study revealed that a multimodal prototype system, offering natural interaction modalities, especially supporting speech and touch, can in fact improve access to the presented services, contributing to the reduction of social isolation of mobility impaired, as well as elderly, and improving their digital inclusion.
The design of mobile robot control system for the aged and the disabled
NASA Astrophysics Data System (ADS)
Qiang, Wang; Lei, Shi; Xiang, Gao; Jin, Zhang
2017-01-01
This paper designs a control system of mobile robot for the aged and the disabled, which consists of two main parts: human-computer interaction and drive control module. The data of the two parts is transferred via universal asynchronous receiver/transmitter. In the former part, the speed and direction information of the mobile robot is obtained by hall joystick. In the latter part, the electronic differential algorithm is developed to implement the robot mobile function by driving two-wheel motors. In order to improve the comfort of the robot when speed or direction is changed, the least squares algorithm is used to optimize the speed characteristic curves of the two motors. Experimental results have verified the effectiveness of the designed system.
ERIC Educational Resources Information Center
Hoffman, Blaine
2013-01-01
This work focuses on the impact of mobile computing on individuals' perspectives of places within their community. A technological intervention is designed and deployed to augment the user experience of visiting different locations around town, physically exploring them while also interacting with an online tool. The tool-supported activity serves…
Human interaction with wearable computer systems: a look at glasses-mounted displays
NASA Astrophysics Data System (ADS)
Revels, Allen R.; Quill, Laurie L.; Kancler, David E.; Masquelier, Barbara L.
1998-09-01
With the advancement of technology and the information explosion, integration of the two into performance aiding systems can have a significant impact on operational and maintenance environments. The Department of Defense and commercial industry have made great strides in digitizing and automating technical manuals and data to be presented on performance aiding systems. These performance aides are computerized interactive systems that provide procedures on how to operate and maintain fielded systems. The idea is to provide the end-user a system which is compatible with their work environment. The purpose of this paper is to show, historically, the progression of wearable computer aiding systems for maintenance environments, and then highlight the work accomplished in the design and development of glasses- mounted displays (GMD). The paper reviews work performed over the last seven years, then highlights, through review of a usability study, the advances made with GMDs. The use of portable computing systems, such as laptop and notebook, computers, does not necessarily increase the accessibility of the displayed information while accomplishing a given task in a hands-busy, mobile work environment. The use of a GMD increases accessibility of the information by placing it in eye sight of the user without obstructing the surrounding environment. Although the potential utility for this type of display is great, hardware and human integration must be refined. Results from the usability study show the usefulness and usability of the GMD in a mobile, hands-free environment.
Ensmenger, Nathan
2015-01-01
Over the course of the 1960s and 1970s, male computer experts were able to successfully transform the "routine and mechanical" (and therefore feminized) activity of computer programming into a highly valued, well-paying, and professionally respectable discipline. They did so by constructing for themselves a distinctively masculine identity in which individual artistic genius, personal eccentricity, anti-authoritarian behavior, and a characteristic "dislike of activities involving human interaction" were mobilized as sources of personal and professional authority. This article explores the history of masculine culture and practices in computer programming, with a particular focus on the role of university computer centers as key sites of cultural formation and dissemination.
ERIC Educational Resources Information Center
Preusse-Burr, Beatrix
2011-01-01
Many classrooms have interactive whiteboards and several computers and many schools are equipped with a computer lab and mobile labs. However, there typically are not enough computers for every student in each classroom; mobile labs are often shared between several members of a team and time in the computer labs needs to be scheduled in advance.…
Web-Based Seamless Migration for Task-Oriented Mobile Distance Learning
ERIC Educational Resources Information Center
Zhang, Degan; Li, Yuan-chao; Zhang, Huaiyu; Zhang, Xinshang; Zeng, Guangping
2006-01-01
As a new kind of computing paradigm, pervasive computing will meet the requirements of human being that anybody maybe obtain services in anywhere and at anytime, task-oriented seamless migration is one of its applications. Apparently, the function of seamless mobility is suitable for mobile services, such as mobile Web-based learning. In this…
The development of a virtual camera system for astronaut-rover planetary exploration.
Platt, Donald W; Boy, Guy A
2012-01-01
A virtual assistant is being developed for use by astronauts as they use rovers to explore the surface of other planets. This interactive database, called the Virtual Camera (VC), is an interactive database that allows the user to have better situational awareness for exploration. It can be used for training, data analysis and augmentation of actual surface exploration. This paper describes the development efforts and Human-Computer Interaction considerations for implementing a first-generation VC on a tablet mobile computer device. Scenarios for use will be presented. Evaluation and success criteria such as efficiency in terms of processing time and precision situational awareness, learnability, usability, and robustness will also be presented. Initial testing and the impact of HCI design considerations of manipulation and improvement in situational awareness using a prototype VC will be discussed.
Complex Mobile Learning That Adapts to Learners' Cognitive Load
ERIC Educational Resources Information Center
Deegan, Robin
2015-01-01
Mobile learning is cognitively demanding and frequently the ubiquitous nature of mobile computing means that mobile devices are used in cognitively demanding environments. This paper examines the use of mobile devices from a Learning, Usability and Cognitive Load Theory perspective. It suggests scenarios where these fields interact and presents an…
Mobile Technologies for the Discovery, Analysis, and Engineering of the Global Microbiome.
Ballard, Zachary S; Brown, Calvin; Ozcan, Aydogan
2018-04-24
The microbiome has been heralded as a gauge of and contributor to both human health and environmental conditions. Current challenges in probing, engineering, and harnessing the microbiome stem from its microscopic and nanoscopic nature, diversity and complexity of interactions among its members and hosts, as well as the spatiotemporal sampling and in situ measurement limitations induced by the restricted capabilities and norm of existing technologies, leaving some of the constituents of the microbiome unknown. To facilitate significant progress in the microbiome field, deeper understanding of the constituents' individual behavior, interactions with others, and biodiversity are needed. Also crucial is the generation of multimodal data from a variety of subjects and environments over time. Mobile imaging and sensing technologies, particularly through smartphone-based platforms, can potentially meet some of these needs in field-portable, cost-effective, and massively scalable manners by circumventing the need for bulky, expensive instrumentation. In this Perspective, we outline how mobile sensing and imaging technologies could lead the way to unprecedented insight into the microbiome, potentially shedding light on various microbiome-related mysteries of today, including the composition and function of human, animal, plant, and environmental microbiomes. Finally, we conclude with a look at the future, propose a computational microbiome engineering and optimization framework, and discuss its potential impact and applications.
Visualization and Interaction in Research, Teaching, and Scientific Communication
NASA Astrophysics Data System (ADS)
Ammon, C. J.
2017-12-01
Modern computing provides many tools for exploring observations, numerical calculations, and theoretical relationships. The number of options is, in fact, almost overwhelming. But the choices provide those with modest programming skills opportunities to create unique views of scientific information and to develop deeper insights into their data, their computations, and the underlying theoretical data-model relationships. I present simple examples of using animation and human-computer interaction to explore scientific data and scientific-analysis approaches. I illustrate how valuable a little programming ability can free scientists from the constraints of existing tools and can facilitate the development of deeper appreciation data and models. I present examples from a suite of programming languages ranging from C to JavaScript including the Wolfram Language. JavaScript is valuable for sharing tools and insight (hopefully) with others because it is integrated into one of the most powerful communication tools in human history, the web browser. Although too much of that power is often spent on distracting advertisements, the underlying computation and graphics engines are efficient, flexible, and almost universally available in desktop and mobile computing platforms. Many are working to fulfill the browser's potential to become the most effective tool for interactive study. Open-source frameworks for visualizing everything from algorithms to data are available, but advance rapidly. One strategy for dealing with swiftly changing tools is to adopt common, open data formats that are easily adapted (often by framework or tool developers). I illustrate the use of animation and interaction in research and teaching with examples from earthquake seismology.
Costa, Nuno; Domingues, Patricio; Fdez-Riverola, Florentino; Pereira, António
2014-01-01
Ambient Intelligence promises to transform current spaces into electronic environments that are responsive, assistive and sensitive to human presence. Those electronic environments will be fully populated with dozens, hundreds or even thousands of connected devices that share information and thus become intelligent. That massive wave of electronic devices will also invade everyday objects, turning them into smart entities, keeping their native features and characteristics while seamlessly promoting them to a new class of thinking and reasoning everyday objects. Although there are strong expectations that most of the users' needs can be fulfilled without their intervention, there are still situations where interaction is required. This paper presents work being done in the field of human-computer interaction, focusing on smart home environments, while being a part of a larger project called Aging Inside a Smart Home. This initiative arose as a way to deal with a large scourge of our country, where lots of elderly persons live alone in their homes, often with limited or no physical mobility. The project relies on the mobile agent computing paradigm in order to create a Virtual Butler that provides the interface between the elderly and the smart home infrastructure. The Virtual Butler is receptive to user questions, answering them according to the context and knowledge of the AISH. It is also capable of interacting with the user whenever it senses that something has gone wrong, notifying next of kin and/or medical services, etc. The Virtual Butler is aware of the user location and moves to the computing device which is closest to the user, in order to be always present. Its avatar can also run in handheld devices keeping its main functionality in order to track user when s/he goes out. According to the evaluation carried out, the Virtual Butler is assessed as a very interesting and loved digital friend, filling the gap between the user and the smart home. The evaluation also showed that the Virtual Butler concept can be easily ported to other types of possible smart and assistive environments like airports, hospitals, shopping malls, offices, etc. PMID:25102342
Costa, Nuno; Domingues, Patricio; Fdez-Riverola, Florentino; Pereira, António
2014-08-06
Ambient Intelligence promises to transform current spaces into electronic environments that are responsive, assistive and sensitive to human presence. Those electronic environments will be fully populated with dozens, hundreds or even thousands of connected devices that share information and thus become intelligent. That massive wave of electronic devices will also invade everyday objects, turning them into smart entities, keeping their native features and characteristics while seamlessly promoting them to a new class of thinking and reasoning everyday objects. Although there are strong expectations that most of the users' needs can be fulfilled without their intervention, there are still situations where interaction is required. This paper presents work being done in the field of human-computer interaction, focusing on smart home environments, while being a part of a larger project called Aging Inside a Smart Home. This initiative arose as a way to deal with a large scourge of our country, where lots of elderly persons live alone in their homes, often with limited or no physical mobility. The project relies on the mobile agent computing paradigm in order to create a Virtual Butler that provides the interface between the elderly and the smart home infrastructure. The Virtual Butler is receptive to user questions, answering them according to the context and knowledge of the AISH. It is also capable of interacting with the user whenever it senses that something has gone wrong, notifying next of kin and/or medical services, etc. The Virtual Butler is aware of the user location and moves to the computing device which is closest to the user, in order to be always present. Its avatar can also run in handheld devices keeping its main functionality in order to track user when s/he goes out. According to the evaluation carried out, the Virtual Butler is assessed as a very interesting and loved digital friend, filling the gap between the user and the smart home. The evaluation also showed that the Virtual Butler concept can be easily ported to other types of possible smart and assistive environments like airports, hospitals, shopping malls, offices, etc.
Personal mobility and manipulation using robotics, artificial intelligence and advanced control.
Cooper, Rory A; Ding, Dan; Grindle, Garrett G; Wang, Hongwu
2007-01-01
Recent advancements of technologies, including computation, robotics, machine learning, communication, and miniaturization technologies, bring us closer to futuristic visions of compassionate intelligent devices. The missing element is a basic understanding of how to relate human functions (physiological, physical, and cognitive) to the design of intelligent devices and systems that aid and interact with people. Our stakeholder and clinician consultants identified a number of mobility barriers that have been intransigent to traditional approaches. The most important physical obstacles are stairs, steps, curbs, doorways (doors), rough/uneven surfaces, weather hazards (snow, ice), crowded/cluttered spaces, and confined spaces. Focus group participants suggested a number of ways to make interaction simpler, including natural language interfaces such as the ability to say "I want a drink", a library of high level commands (open a door, park the wheelchair, ...), and a touchscreen interface with images so the user could point and use other gestures.
iHand: an interactive bare-hand-based augmented reality interface on commercial mobile phones
NASA Astrophysics Data System (ADS)
Choi, Junyeong; Park, Jungsik; Park, Hanhoon; Park, Jong-Il
2013-02-01
The performance of mobile phones has rapidly improved, and they are emerging as a powerful platform. In many vision-based applications, human hands play a key role in natural interaction. However, relatively little attention has been paid to the interaction between human hands and the mobile phone. Thus, we propose a vision- and hand gesture-based interface in which the user holds a mobile phone in one hand but sees the other hand's palm through a built-in camera. The virtual contents are faithfully rendered on the user's palm through palm pose estimation, and reaction with hand and finger movements is achieved that is recognized by hand shape recognition. Since the proposed interface is based on hand gestures familiar to humans and does not require any additional sensors or markers, the user can freely interact with virtual contents anytime and anywhere without any training. We demonstrate that the proposed interface works at over 15 fps on a commercial mobile phone with a 1.2-GHz dual core processor and 1 GB RAM.
Multiuser Collaboration with Networked Mobile Devices
NASA Technical Reports Server (NTRS)
Tso, Kam S.; Tai, Ann T.; Deng, Yong M.; Becks, Paul G.
2006-01-01
In this paper we describe a multiuser collaboration infrastructure that enables multiple mission scientists to remotely and collaboratively interact with visualization and planning software, using wireless networked personal digital assistants(PDAs) and other mobile devices. During ground operations of planetary rover and lander missions, scientists need to meet daily to review downlinked data and plan science activities. For example, scientists use the Science Activity Planner (SAP) in the Mars Exploration Rover (MER) mission to visualize downlinked data and plan rover activities during the science meetings [1]. Computer displays are projected onto large screens in the meeting room to enable the scientists to view and discuss downlinked images and data displayed by SAP and other software applications. However, only one person can interact with the software applications because input to the computer is limited to a single mouse and keyboard. As a result, the scientists have to verbally express their intentions, such as selecting a target at a particular location on the Mars terrain image, to that person in order to interact with the applications. This constrains communication and limits the returns of science planning. Furthermore, ground operations for Mars missions are fundamentally constrained by the short turnaround time for science and engineering teams to process and analyze data, plan the next uplink, generate command sequences, and transmit the uplink to the vehicle [2]. Therefore, improving ground operations is crucial to the success of Mars missions. The multiuser collaboration infrastructure enables users to control software applications remotely and collaboratively using mobile devices. The infrastructure includes (1) human-computer interaction techniques to provide natural, fast, and accurate inputs, (2) a communications protocol to ensure reliable and efficient coordination of the input devices and host computers, (3) an application-independent middleware that maintains the states, sessions, and interactions of individual users of the software applications, (4) an application programming interface to enable tight integration of applications and the middleware. The infrastructure is able to support any software applications running under the Windows or Unix platforms. The resulting technologies not only are applicable to NASA mission operations, but also useful in other situations such as design reviews, brainstorming sessions, and business meetings, as they can benefit from having the participants concurrently interact with the software applications (e.g., presentation applications and CAD design tools) to illustrate their ideas and provide inputs.
A Mobile Decision Aid for Determining Detection Probabilities for Acoustic Targets
2002-08-01
propagation mobile application . Personal Computer Memory Card International Association, an organization of some 500 companies that has developed a...SENSOR: lHuman and possible outputs, it was felt that for a mobile application , the interface and number of output parameters should be kept simple...value could be computed on the server and transmitted back to the mobile application for display. FUTURE CAPABILITIES 2-D/3-D Displays The full ABFA
Mobile Tablet Use among Academic Physicians and Trainees
Sclafani, Joseph; Tirrell, Timothy F.
2014-01-01
The rapid adoption rate and integration of mobile technology (tablet computing devices and smartphones) by physicians is reshaping the current clinical landscape. These devices have sparked an evolution in a variety of arenas, including educational media dissemination, remote patient data access and point of care applications. Quantifying usage patterns of clinical applications of mobile technology is of interest to understand how these technologies are shaping current clinical care. A digital survey examining mobile tablet and associated application usage was administered via email to all ACGME training programs. Data regarding respondent specialty, level of training, and habits of tablet usage were collected and analyzed. 40 % of respondents used a tablet, of which the iPad was the most popular. Nearly half of the tablet owners reported using the tablet in clinical settings; the most commonly used application types were point of care and electronic medical record access. Increased level of training was associated with decreased support for mobile computing improving physician capabilities and patient interactions. There was strong and consistent desire for institutional support of mobile computing and integration of mobile computing technology into medical education. While many physicians are currently purchasing mobile devices, often without institutional support, successful integration of these devices into the clinical setting is still developing. Potential reasons behind the low adoption rate may include interference of technology in doctor-patient interactions or the lack of appropriate applications available for download. However, the results convincingly demonstrate that physicians recognize a potential utility in mobile computing, indicated by their desire for institutional support and integration of mobile technology into medical education. It is likely that the use of tablet computers in clinical practice will expand in the future. Thus, we believe medical institutions, providers, educators, and developers should collaborate in ways that enhance the efficacy, reliability, and safety of integrating these devices into daily medical practice. PMID:23321961
Zhao, Yu; Liu, Yide; Lai, Ivan K. W.; Zhang, Hongfeng; Zhang, Yi
2016-01-01
As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human–computer interaction (HCI) issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users’ compound attitudes (i.e., affective attitudes, cognitive attitude), engagement and electronic word of mouth (eWOM) behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user’s compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user—product (brand) relationships. PMID:26999155
Majeed, Raphael W; Stöhr, Mark R; Röhrig, Rainer
2012-01-01
Notifications and alerts play an important role in clinical daily routine. Rising prevalence of clinical decision support systems and electronic health records also result in increasing demands on notification systems. Failure adequately to communicate a critical value is a potential cause of adverse events. Critical laboratory values and changing vital data depend on timely notifications of medical staff. Vital monitors and medical devices rely on acoustic signals for alerting which are prone to "alert fatigue" and require medical staff to be present within audible range. Personal computers are unsuitable to display time critical notification messages, since the targeted medical staff are not always operating or watching the computer. On the other hand, mobile phones and smart devices enjoy increasing popularity. Previous notification systems sending text messages to mobile phones depend on asynchronous confirmations. By utilizing an automated telephony server, we provide a method to deliver notifications quickly and independently of the recipients' whereabouts while allowing immediate feedback and confirmations. Evaluation results suggest the feasibility of the proposed notification system for real-time notifications.
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1993-01-01
This chapter examines a class of human-computer interaction applications, specifically the design of human-computer interaction for the operators of complex systems. Such systems include space systems (e.g., manned systems such as the Shuttle or space station, and unmanned systems such as NASA scientific satellites), aviation systems (e.g., the flight deck of 'glass cockpit' airplanes or air traffic control) and industrial systems (e.g., power plants, telephone networks, and sophisticated, e.g., 'lights out,' manufacturing facilities). The main body of human-computer interaction (HCI) research complements but does not directly address the primary issues involved in human-computer interaction design for operators of complex systems. Interfaces to complex systems are somewhat special. The 'user' in such systems - i.e., the human operator responsible for safe and effective system operation - is highly skilled, someone who in human-machine systems engineering is sometimes characterized as 'well trained, well motivated'. The 'job' or task context is paramount and, thus, human-computer interaction is subordinate to human job interaction. The design of human interaction with complex systems, i.e., the design of human job interaction, is sometimes called cognitive engineering.
ERIC Educational Resources Information Center
Weller, Herman G.; Hartson, H. Rex
1992-01-01
Describes human-computer interface needs for empowering environments in computer usage in which the machine handles the routine mechanics of problem solving while the user concentrates on its higher order meanings. A closed-loop model of interaction is described, interface as illusion is discussed, and metaphors for human-computer interaction are…
Effects of human dynamics on epidemic spreading in Côte d'Ivoire
NASA Astrophysics Data System (ADS)
Li, Ruiqi; Wang, Wenxu; Di, Zengru
2017-02-01
Understanding and predicting outbreaks of contagious diseases are crucial to the development of society and public health, especially for underdeveloped countries. However, challenging problems are encountered because of complex epidemic spreading dynamics influenced by spatial structure and human dynamics (including both human mobility and human interaction intensity). We propose a systematical model to depict nationwide epidemic spreading in Côte d'Ivoire, which integrates multiple factors, such as human mobility, human interaction intensity, and demographic features. We provide insights to aid in modeling and predicting the epidemic spreading process by data-driven simulation and theoretical analysis, which is otherwise beyond the scope of local evaluation and geometrical views. We show that the requirement that the average local basic reproductive number to be greater than unity is not necessary for outbreaks of epidemics. The observed spreading phenomenon can be roughly explained as a heterogeneous diffusion-reaction process by redefining mobility distance according to the human mobility volume between nodes, which is beyond the geometrical viewpoint. However, the heterogeneity of human dynamics still poses challenges to precise prediction.
Huang, Shuo; Liu, Jing
2010-05-01
Application of clinical digital medical imaging has raised many tough issues to tackle, such as data storage, management, and information sharing. Here we investigated a mobile phone based medical image management system which is capable of achieving personal medical imaging information storage, management and comprehensive health information analysis. The technologies related to the management system spanning the wireless transmission technology, the technical capabilities of phone in mobile health care and management of mobile medical database were discussed. Taking medical infrared images transmission between phone and computer as an example, the working principle of the present system was demonstrated.
Is Human-Computer Interaction Social or Parasocial?
ERIC Educational Resources Information Center
Sundar, S. Shyam
Conducted in the attribution-research paradigm of social psychology, a study examined whether human-computer interaction is fundamentally social (as in human-human interaction) or parasocial (as in human-television interaction). All 30 subjects (drawn from an undergraduate class on communication) were exposed to an identical interaction with…
Scaling identity connects human mobility and social interactions.
Deville, Pierre; Song, Chaoming; Eagle, Nathan; Blondel, Vincent D; Barabási, Albert-László; Wang, Dashun
2016-06-28
Massive datasets that capture human movements and social interactions have catalyzed rapid advances in our quantitative understanding of human behavior during the past years. One important aspect affecting both areas is the critical role space plays. Indeed, growing evidence suggests both our movements and communication patterns are associated with spatial costs that follow reproducible scaling laws, each characterized by its specific critical exponents. Although human mobility and social networks develop concomitantly as two prolific yet largely separated fields, we lack any known relationships between the critical exponents explored by them, despite the fact that they often study the same datasets. Here, by exploiting three different mobile phone datasets that capture simultaneously these two aspects, we discovered a new scaling relationship, mediated by a universal flux distribution, which links the critical exponents characterizing the spatial dependencies in human mobility and social networks. Therefore, the widely studied scaling laws uncovered in these two areas are not independent but connected through a deeper underlying reality.
Scaling identity connects human mobility and social interactions
Deville, Pierre; Song, Chaoming; Eagle, Nathan; Blondel, Vincent D.; Barabási, Albert-László; Wang, Dashun
2016-01-01
Massive datasets that capture human movements and social interactions have catalyzed rapid advances in our quantitative understanding of human behavior during the past years. One important aspect affecting both areas is the critical role space plays. Indeed, growing evidence suggests both our movements and communication patterns are associated with spatial costs that follow reproducible scaling laws, each characterized by its specific critical exponents. Although human mobility and social networks develop concomitantly as two prolific yet largely separated fields, we lack any known relationships between the critical exponents explored by them, despite the fact that they often study the same datasets. Here, by exploiting three different mobile phone datasets that capture simultaneously these two aspects, we discovered a new scaling relationship, mediated by a universal flux distribution, which links the critical exponents characterizing the spatial dependencies in human mobility and social networks. Therefore, the widely studied scaling laws uncovered in these two areas are not independent but connected through a deeper underlying reality. PMID:27274050
NASA Astrophysics Data System (ADS)
Su, Yu; Swan, James W.; Zia, Roseanna N.
2017-03-01
Accurate modeling of particle interactions arising from hydrodynamic, entropic, and other microscopic forces is essential to understanding and predicting particle motion and suspension behavior in complex and biological fluids. The long-range nature of hydrodynamic interactions can be particularly challenging to capture. In dilute dispersions, pair-level interactions are sufficient and can be modeled in detail by analytical relations derived by Jeffrey and Onishi [J. Fluid Mech. 139, 261-290 (1984)] and Jeffrey [Phys. Fluids A 4, 16-29 (1992)]. In more concentrated dispersions, analytical modeling of many-body hydrodynamic interactions quickly becomes intractable, leading to the development of simplified models. These include mean-field approaches that smear out particle-scale structure and essentially assume that long-range hydrodynamic interactions are screened by crowding, as particle mobility decays at high concentrations. Toward the development of an accurate and simplified model for the hydrodynamic interactions in concentrated suspensions, we recently computed a set of effective pair of hydrodynamic functions coupling particle motion to a hydrodynamic force and torque at volume fractions up to 50% utilizing accelerated Stokesian dynamics and a fast stochastic sampling technique [Zia et al., J. Chem. Phys. 143, 224901 (2015)]. We showed that the hydrodynamic mobility in suspensions of colloidal spheres is not screened, and the power law decay of the hydrodynamic functions persists at all concentrations studied. In the present work, we extend these mobility functions to include the couplings of particle motion and straining flow to the hydrodynamic stresslet. The couplings computed in these two articles constitute a set of orthogonal coupling functions that can be utilized to compute equilibrium properties in suspensions at arbitrary concentration and are readily applied to solve many-body hydrodynamic interactions analytically.
ERIC Educational Resources Information Center
da Silva, André Constantino; Freire, Fernanda Maria Pereira; de Arruda, Alan Victor Pereira; da Rocha, Heloísa Vieira
2013-01-01
e-Learning environments offer content, such text, audio, video, animations, using the Web infrastructure and they are designed to users interacting with keyboard, mouse and a medium-sized screen. Mobile devices, such as smartphones and tablets, have enough computation power to render Web pages, allowing browsing the Internet and access e-Learning…
User clustering in smartphone applications.
Schaefers, Klaus; Ribeiro, David
2012-01-01
In the context of mobile health applications usability is a crucial factor to achieve user acceptance. The successful user interface (UI) design requires a deep understanding of the needs and requirements of the targeted audience. This paper explores the application of the K-Means algorithm on smartphone usage data in order to offer Human Computer Interaction (HCI) specialists a better insight into their user group. Two different feature space representations are introduced and used to identify persona like stereotypes in a real world data set, which was obtained from a public available smartphone application.
On the Rhetorical Contract in Human-Computer Interaction.
ERIC Educational Resources Information Center
Wenger, Michael J.
1991-01-01
An exploration of the rhetorical contract--i.e., the expectations for appropriate interaction--as it develops in human-computer interaction revealed that direct manipulation interfaces were more likely to establish social expectations. Study results suggest that the social nature of human-computer interactions can be examined with reference to the…
Beard, Brian B; Kainz, Wolfgang; Onishi, Teruo; Iyama, Takahiro; Watanabe, Soichi; Fujiwara, Osamu; Wang, Jianqing; Bit-Babik, Giorgi; Faraone, Antonio; Wiart, Joe; Christ, Andreas; Kuster, Niels; Lee, Ae-Kyoung; Kroeze, Hugo; Siegbahn, Martin; Keshvari, Jafar; Abrishamkar, Houman; Simon, Winfried; Manteuffel, Dirk; Nikoloski, Neviana
2006-06-05
The specific absorption rates (SAR) determined computationally in the specific anthropomorphic mannequin (SAM) and anatomically correct models of the human head when exposed to a mobile phone model are compared as part of a study organized by IEEE Standards Coordinating Committee 34, SubCommittee 2, and Working Group 2, and carried out by an international task force comprising 14 government, academic, and industrial research institutions. The detailed study protocol defined the computational head and mobile phone models. The participants used different finite-difference time-domain software and independently positioned the mobile phone and head models in accordance with the protocol. The results show that when the pinna SAR is calculated separately from the head SAR, SAM produced a higher SAR in the head than the anatomically correct head models. Also the larger (adult) head produced a statistically significant higher peak SAR for both the 1- and 10-g averages than did the smaller (child) head for all conditions of frequency and position.
NASA Astrophysics Data System (ADS)
Hand, J. W.
2008-08-01
Numerical modelling of the interaction between electromagnetic fields (EMFs) and the dielectrically inhomogeneous human body provides a unique way of assessing the resulting spatial distributions of internal electric fields, currents and rate of energy deposition. Knowledge of these parameters is of importance in understanding such interactions and is a prerequisite when assessing EMF exposure or when assessing or optimizing therapeutic or diagnostic medical applications that employ EMFs. In this review, computational methods that provide this information through full time-dependent solutions of Maxwell's equations are summarized briefly. This is followed by an overview of safety- and medical-related applications where modelling has contributed significantly to development and understanding of the techniques involved. In particular, applications in the areas of mobile communications, magnetic resonance imaging, hyperthermal therapy and microwave radiometry are highlighted. Finally, examples of modelling the potentially new medical applications of recent technologies such as ultra-wideband microwaves are discussed.
Occupational stress in human computer interaction.
Smith, M J; Conway, F T; Karsh, B T
1999-04-01
There have been a variety of research approaches that have examined the stress issues related to human computer interaction including laboratory studies, cross-sectional surveys, longitudinal case studies and intervention studies. A critical review of these studies indicates that there are important physiological, biochemical, somatic and psychological indicators of stress that are related to work activities where human computer interaction occurs. Many of the stressors of human computer interaction at work are similar to those stressors that have historically been observed in other automated jobs. These include high workload, high work pressure, diminished job control, inadequate employee training to use new technology, monotonous tasks, por supervisory relations, and fear for job security. New stressors have emerged that can be tied primarily to human computer interaction. These include technology breakdowns, technology slowdowns, and electronic performance monitoring. The effects of the stress of human computer interaction in the workplace are increased physiological arousal; somatic complaints, especially of the musculoskeletal system; mood disturbances, particularly anxiety, fear and anger; and diminished quality of working life, such as reduced job satisfaction. Interventions to reduce the stress of computer technology have included improved technology implementation approaches and increased employee participation in implementation. Recommendations for ways to reduce the stress of human computer interaction at work are presented. These include proper ergonomic conditions, increased organizational support, improved job content, proper workload to decrease work pressure, and enhanced opportunities for social support. A model approach to the design of human computer interaction at work that focuses on the system "balance" is proposed.
ERIC Educational Resources Information Center
Lee, Eun-Ju; Nass, Clifford
2002-01-01
Presents two experiments to address the questions of if and how normative social influence operates in anonymous computer-mediated communication and human-computer interaction. Finds that the perception of interaction partner (human vs. computer) moderated the group conformity effect such that the undergraduate student subjects expressed greater…
Vassallo, Christian; Olivier, Anne-Hélène; Souères, Philippe; Crétual, Armel; Stasse, Olivier; Pettré, Julien
2018-02-01
Previous studies showed the existence of implicit interaction rules shared by human walkers when crossing each other. Especially, each walker contributes to the collision avoidance task and the crossing order, as set at the beginning, is preserved along the interaction. This order determines the adaptation strategy: the first arrived increases his/her advance by slightly accelerating and changing his/her heading, whereas the second one slows down and moves in the opposite direction. In this study, we analyzed the behavior of human walkers crossing the trajectory of a mobile robot that was programmed to reproduce this human avoidance strategy. In contrast with a previous study, which showed that humans mostly prefer to give the way to a non-reactive robot, we observed similar behaviors between human-human avoidance and human-robot avoidance when the robot replicates the human interaction rules. We discuss this result in relation with the importance of controlling robots in a human-like way in order to ease their cohabitation with humans. Copyright © 2017 Elsevier B.V. All rights reserved.
AMP and adenosine are both ligands for adenosine 2B receptor signaling.
Holien, Jessica K; Seibt, Benjamin; Roberts, Veena; Salvaris, Evelyn; Parker, Michael W; Cowan, Peter J; Dwyer, Karen M
2018-01-15
Adenosine is considered the canonical ligand for the adenosine 2B receptor (A 2B R). A 2B R is upregulated following kidney ischemia augmenting post ischemic blood flow and limiting tubular injury. In this context the beneficial effect of A 2B R signaling has been attributed to an increase in the pericellular concentration of adenosine. However, following renal ischemia both kidney adenosine monophosphate (AMP) and adenosine levels are substantially increased. Using computational modeling and calcium mobilization assays, we investigated whether AMP could also be a ligand for A 2B R. The computational modeling suggested that AMP interacts with more favorable energy to A 2B R compared with adenosine. Furthermore, AMPαS, a non-hydrolyzable form of AMP, increased calcium uptake by Chinese hamster ovary (CHO) cells expressing the human A 2B R, indicating preferential signaling via the G q pathway. Therefore, a putative AMP-A 2B R interaction is supported by the computational modeling data and the biological results suggest this interaction involves preferential G q activation. These data provide further insights into the role of purinergic signaling in the pathophysiology of renal IRI. Copyright © 2017 Elsevier Ltd. All rights reserved.
2013-01-01
Background Bacteria and archaea develop immunity against invading genomes by incorporating pieces of the invaders' sequences, called spacers, into a clustered regularly interspaced short palindromic repeats (CRISPR) locus between repeats, forming arrays of repeat-spacer units. When spacers are expressed, they direct CRISPR-associated (Cas) proteins to silence complementary invading DNA. In order to characterize the invaders of human microbiomes, we use spacers from CRISPR arrays that we had previously assembled from shotgun metagenomic datasets, and identify contigs that contain these spacers' targets. Results We discover 95,000 contigs that are putative invasive mobile genetic elements, some targeted by hundreds of CRISPR spacers. We find that oral sites in healthy human populations have a much greater variety of mobile genetic elements than stool samples. Mobile genetic elements carry genes encoding diverse functions: only 7% of the mobile genetic elements are similar to known phages or plasmids, although a much greater proportion contain phage- or plasmid-related genes. A small number of contigs share similarity with known integrative and conjugative elements, providing the first examples of CRISPR defenses against this class of element. We provide detailed analyses of a few large mobile genetic elements of various types, and a relative abundance analysis of mobile genetic elements and putative hosts, exploring the dynamic activities of mobile genetic elements in human microbiomes. A joint analysis of mobile genetic elements and CRISPRs shows that protospacer-adjacent motifs drive their interaction network; however, some CRISPR-Cas systems target mobile genetic elements lacking motifs. Conclusions We identify a large collection of invasive mobile genetic elements in human microbiomes, an important resource for further study of the interaction between the CRISPR-Cas immune system and invaders. PMID:23628424
Evaluating Spatial Interaction Models for Regional Mobility in Sub-Saharan Africa
Wesolowski, Amy; O’Meara, Wendy Prudhomme; Eagle, Nathan; Tatem, Andrew J.; Buckee, Caroline O.
2015-01-01
Simple spatial interaction models of human mobility based on physical laws have been used extensively in the social, biological, and physical sciences, and in the study of the human dynamics underlying the spread of disease. Recent analyses of commuting patterns and travel behavior in high-income countries have led to the suggestion that these models are highly generalizable, and as a result, gravity and radiation models have become standard tools for describing population mobility dynamics for infectious disease epidemiology. Communities in Sub-Saharan Africa may not conform to these models, however; physical accessibility, availability of transport, and cost of travel between locations may be variable and severely constrained compared to high-income settings, informal labor movements rather than regular commuting patterns are often the norm, and the rise of mega-cities across the continent has important implications for travel between rural and urban areas. Here, we first review how infectious disease frameworks incorporate human mobility on different spatial scales and use anonymous mobile phone data from nearly 15 million individuals to analyze the spatiotemporal dynamics of the Kenyan population. We find that gravity and radiation models fail in systematic ways to capture human mobility measured by mobile phones; both severely overestimate the spatial spread of travel and perform poorly in rural areas, but each exhibits different characteristic patterns of failure with respect to routes and volumes of travel. Thus, infectious disease frameworks that rely on spatial interaction models are likely to misrepresent population dynamics important for the spread of disease in many African populations. PMID:26158274
Human-computer interaction in multitask situations
NASA Technical Reports Server (NTRS)
Rouse, W. B.
1977-01-01
Human-computer interaction in multitask decisionmaking situations is considered, and it is proposed that humans and computers have overlapping responsibilities. Queueing theory is employed to model this dynamic approach to the allocation of responsibility between human and computer. Results of simulation experiments are used to illustrate the effects of several system variables including number of tasks, mean time between arrivals of action-evoking events, human-computer speed mismatch, probability of computer error, probability of human error, and the level of feedback between human and computer. Current experimental efforts are discussed and the practical issues involved in designing human-computer systems for multitask situations are considered.
Motion-sensor fusion-based gesture recognition and its VLSI architecture design for mobile devices
NASA Astrophysics Data System (ADS)
Zhu, Wenping; Liu, Leibo; Yin, Shouyi; Hu, Siqi; Tang, Eugene Y.; Wei, Shaojun
2014-05-01
With the rapid proliferation of smartphones and tablets, various embedded sensors are incorporated into these platforms to enable multimodal human-computer interfaces. Gesture recognition, as an intuitive interaction approach, has been extensively explored in the mobile computing community. However, most gesture recognition implementations by now are all user-dependent and only rely on accelerometer. In order to achieve competitive accuracy, users are required to hold the devices in predefined manner during the operation. In this paper, a high-accuracy human gesture recognition system is proposed based on multiple motion sensor fusion. Furthermore, to reduce the energy overhead resulted from frequent sensor sampling and data processing, a high energy-efficient VLSI architecture implemented on a Xilinx Virtex-5 FPGA board is also proposed. Compared with the pure software implementation, approximately 45 times speed-up is achieved while operating at 20 MHz. The experiments show that the average accuracy for 10 gestures achieves 93.98% for user-independent case and 96.14% for user-dependent case when subjects hold the device randomly during completing the specified gestures. Although a few percent lower than the conventional best result, it still provides competitive accuracy acceptable for practical usage. Most importantly, the proposed system allows users to hold the device randomly during operating the predefined gestures, which substantially enhances the user experience.
Modeling Human-Computer Decision Making with Covariance Structure Analysis.
ERIC Educational Resources Information Center
Coovert, Michael D.; And Others
Arguing that sufficient theory exists about the interplay between human information processing, computer systems, and the demands of various tasks to construct useful theories of human-computer interaction, this study presents a structural model of human-computer interaction and reports the results of various statistical analyses of this model.…
Enhancing Learning through Human Computer Interaction
ERIC Educational Resources Information Center
McKay, Elspeth, Ed.
2007-01-01
Enhancing Learning Through Human Computer Interaction is an excellent reference source for human computer interaction (HCI) applications and designs. This "Premier Reference Source" provides a complete analysis of online business training programs and e-learning in the higher education sector. It describes a range of positive outcomes for linking…
Energy-Aware Computation Offloading of IoT Sensors in Cloudlet-Based Mobile Edge Computing.
Ma, Xiao; Lin, Chuang; Zhang, Han; Liu, Jianwei
2018-06-15
Mobile edge computing is proposed as a promising computing paradigm to relieve the excessive burden of data centers and mobile networks, which is induced by the rapid growth of Internet of Things (IoT). This work introduces the cloud-assisted multi-cloudlet framework to provision scalable services in cloudlet-based mobile edge computing. Due to the constrained computation resources of cloudlets and limited communication resources of wireless access points (APs), IoT sensors with identical computation offloading decisions interact with each other. To optimize the processing delay and energy consumption of computation tasks, theoretic analysis of the computation offloading decision problem of IoT sensors is presented in this paper. In more detail, the computation offloading decision problem of IoT sensors is formulated as a computation offloading game and the condition of Nash equilibrium is derived by introducing the tool of a potential game. By exploiting the finite improvement property of the game, the Computation Offloading Decision (COD) algorithm is designed to provide decentralized computation offloading strategies for IoT sensors. Simulation results demonstrate that the COD algorithm can significantly reduce the system cost compared with the random-selection algorithm and the cloud-first algorithm. Furthermore, the COD algorithm can scale well with increasing IoT sensors.
The design guidelines of mobile augmented reality for tourism in Malaysia
NASA Astrophysics Data System (ADS)
Shukri, Saidatul A'isyah Ahmad; Arshad, Haslina; Abidin, Rimaniza Zainal
2017-10-01
Recent data shows that one in every five people in the world owns a Smartphone and spends most of their time on the phone using apps. Visitors prefer this type of portable, convenient, practical and simple technology when travelling, especially geo location-enabled applications such as the GPS. The aim of this paper is to develop design guidelines for Mobile Augmented Reality (MAR) for tourism. From the analysis of existing design guidelines of Mobile Augmented Reality (MAR) for tourism, an application design guidelines are proposed based on Human-computer interaction principle and usability design that would fulfils the user's requirement in a better way. Six design principles were examined in this analysis. The analysis identified eleven suggestions for design principles. These recommendations are offered towards designing principles and developing prototype app for tourist in Malaysia. This paper identifies design principles to reduce cognitive overhead of tourist, learn ability and suitable context for providing content whiles their travel in Malaysia.
Generic Module for Collecting Data in Smart Cities
NASA Astrophysics Data System (ADS)
Martinez, A.; Ramirez, F.; Estrada, H.; Torres, L. A.
2017-09-01
The Future Internet brings new technologies to the common life of people, such as Internet of Things, Cloud Computing or Big Data. All this technologies have change the way people communicate and also the way the devices interact with the context, giving rise to new paradigms, as the case of smart cities. Currently, the mobile devices represent one of main sources of information for new applications that take into account the user context, such as apps for mobility, health, of security. Several platforms have been proposed that consider the development of Future Internet applications, however, no generic modules can be found that implement the collection of context data from smartphones. In this research work we present a generic module to collect data from different sensors of the mobile devices and also to send, in a standard manner, this data to the Open FIWARE Cloud to be stored or analyzed by software tools. The proposed module enables the human-as-a-sensor approach for FIWARE Platform.
Fundamentals of soft robot locomotion.
Calisti, M; Picardi, G; Laschi, C
2017-05-01
Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human-robot interaction and locomotion. Although field applications have emerged for soft manipulation and human-robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. © 2017 The Author(s).
Rohmer, Kai; Buschel, Wolfgang; Dachselt, Raimund; Grosch, Thorsten
2015-12-01
At present, photorealistic augmentation is not yet possible since the computational power of mobile devices is insufficient. Even streaming solutions from stationary PCs cause a latency that affects user interactions considerably. Therefore, we introduce a differential rendering method that allows for a consistent illumination of the inserted virtual objects on mobile devices, avoiding delays. The computation effort is shared between a stationary PC and the mobile devices to make use of the capacities available on both sides. The method is designed such that only a minimum amount of data has to be transferred asynchronously between the participants. This allows for an interactive illumination of virtual objects with a consistent appearance under both temporally and spatially varying real illumination conditions. To describe the complex near-field illumination in an indoor scenario, HDR video cameras are used to capture the illumination from multiple directions. In this way, sources of illumination can be considered that are not directly visible to the mobile device because of occlusions and the limited field of view. While our method focuses on Lambertian materials, we also provide some initial approaches to approximate non-diffuse virtual objects and thereby allow for a wider field of application at nearly the same cost.
Effect of deposition rate and NNN interactions on adatoms mobility in epitaxial growth
NASA Astrophysics Data System (ADS)
Hamouda, Ajmi B. H.; Mahjoub, B.; Blel, S.
2017-07-01
This paper provides a detailed analysis of the surface diffusion problem during epitaxial step-flow growth using a simple theoretical model for the diffusion equation of adatoms concentration. Within this framework, an analytical expression for the adatom mobility as a function of the deposition rate and the Next-Nearest-Neighbor (NNN) interactions is derived and compared with the effective mobility computed from kinetic Monte Carlo (kMC) simulations. As far as the 'small' step velocity or relatively weak deposition rate commonly used for copper growth is concerned, an excellent quantitative agreement with the theoretical prediction is found. The effective adatoms mobility is shown to exhibit an exponential decrease with NNN interactions strength and increases in roughly linear behavior versus deposition rate F. The effective step stiffness and the adatoms mobility are also shown to be closely related to the concentration of kinks.
Ludwig, Simone A; Kong, Jun
2017-12-01
Innovative methods and new technologies have significantly improved the quality of our daily life. However, disabled people, for example those that cannot use their arms and legs anymore, often cannot benefit from these developments, since they cannot use their hands to interact with traditional interaction methods (such as mouse or keyboard) to communicate with a computer system. A brain-computer interface (BCI) system allows such a disabled person to control an external device via brain waves. Past research mostly dealt with static interfaces, which limit users to a stationary location. However, since we are living in a world that is highly mobile, this paper evaluates a speller interface on a mobile phone used in a moving condition. The spelling experiments were conducted with 14 able-bodied subjects using visual flashes as the stimulus to spell 47 alphanumeric characters (38 letters and 9 numbers). This data was then used for the classification experiments. In par- ticular, two research directions are pursued. The first investigates the impact of different classification algorithms, and the second direction looks at the channel configuration, i.e., which channels are most beneficial in terms of achieving the highest classification accuracy. The evaluation results indicate that the Bayesian Linear Discriminant Analysis algorithm achieves the best accuracy. Also, the findings of the investigation on the channel configuration, which can potentially reduce the amount of data processing on a mobile device with limited computing capacity, is especially useful in mobile BCIs.
Human-like object tracking and gaze estimation with PKD android
Wijayasinghe, Indika B.; Miller, Haylie L.; Das, Sumit K; Bugnariu, Nicoleta L.; Popa, Dan O.
2018-01-01
As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold : to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans. PMID:29416193
Human-like object tracking and gaze estimation with PKD android
NASA Astrophysics Data System (ADS)
Wijayasinghe, Indika B.; Miller, Haylie L.; Das, Sumit K.; Bugnariu, Nicoleta L.; Popa, Dan O.
2016-05-01
As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold: to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans.
Beard, Brian B.; Kainz, Wolfgang; Onishi, Teruo; Iyama, Takahiro; Watanabe, Soichi; Fujiwara, Osamu; Wang, Jianqing; Bit-Babik, Giorgi; Faraone, Antonio; Wiart, Joe; Christ, Andreas; Kuster, Niels; Lee, Ae-Kyoung; Kroeze, Hugo; Siegbahn, Martin; Keshvari, Jafar; Abrishamkar, Houman; Simon, Winfried; Manteuffel, Dirk; Nikoloski, Neviana
2018-01-01
The specific absorption rates (SAR) determined computationally in the specific anthropomorphic mannequin (SAM) and anatomically correct models of the human head when exposed to a mobile phone model are compared as part of a study organized by IEEE Standards Coordinating Committee 34, SubCommittee 2, and Working Group 2, and carried out by an international task force comprising 14 government, academic, and industrial research institutions. The detailed study protocol defined the computational head and mobile phone models. The participants used different finite-difference time-domain software and independently positioned the mobile phone and head models in accordance with the protocol. The results show that when the pinna SAR is calculated separately from the head SAR, SAM produced a higher SAR in the head than the anatomically correct head models. Also the larger (adult) head produced a statistically significant higher peak SAR for both the 1- and 10-g averages than did the smaller (child) head for all conditions of frequency and position. PMID:29515260
Muon Trigger for Mobile Phones
NASA Astrophysics Data System (ADS)
Borisyak, M.; Usvyatsov, M.; Mulhearn, M.; Shimmin, C.; Ustyuzhanin, A.
2017-10-01
The CRAYFIS experiment proposes to use privately owned mobile phones as a ground detector array for Ultra High Energy Cosmic Rays. Upon interacting with Earth’s atmosphere, these events produce extensive particle showers which can be detected by cameras on mobile phones. A typical shower contains minimally-ionizing particles such as muons. As these particles interact with CMOS image sensors, they may leave tracks of faintly-activated pixels that are sometimes hard to distinguish from random detector noise. Triggers that rely on the presence of very bright pixels within an image frame are not efficient in this case. We present a trigger algorithm based on Convolutional Neural Networks which selects images containing such tracks and are evaluated in a lazy manner: the response of each successive layer is computed only if activation of the current layer satisfies a continuation criterion. Usage of neural networks increases the sensitivity considerably comparable with image thresholding, while the lazy evaluation allows for execution of the trigger under the limited computational power of mobile phones.
Can Robots and Humans Get Along?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholtz, Jean
2007-06-01
Now that robots have moved into the mainstream—as vacuum cleaners, lawn mowers, autonomous vehicles, tour guides, and even pets—it is important to consider how everyday people will interact with them. A robot is really just a computer, but many researchers are beginning to understand that human-robot interactions are much different than human-computer interactions. So while the metrics used to evaluate the human-computer interaction (usability of the software interface in terms of time, accuracy, and user satisfaction) may also be appropriate for human-robot interactions, we need to determine whether there are additional metrics that should be considered.
The Dimensionality and Correlates of Flow in Human-Computer Interactions.
ERIC Educational Resources Information Center
Webster, Jane; And Others
1993-01-01
Defines playfulness in human-computer interactions in terms of flow theory and explores the dimensionality of the flow concept. Two studies are reported that investigated the factor structure and correlates of flow in human-computer interactions: one examined MBA students using Lotus 1-2-3 spreadsheet software, and one examined employees using…
Real-time scalable visual analysis on mobile devices
NASA Astrophysics Data System (ADS)
Pattath, Avin; Ebert, David S.; May, Richard A.; Collins, Timothy F.; Pike, William
2008-02-01
Interactive visual presentation of information can help an analyst gain faster and better insight from data. When combined with situational or context information, visualization on mobile devices is invaluable to in-field responders and investigators. However, several challenges are posed by the form-factor of mobile devices in developing such systems. In this paper, we classify these challenges into two broad categories - issues in general mobile computing and issues specific to visual analysis on mobile devices. Using NetworkVis and Infostar as example systems, we illustrate some of the techniques that we employed to overcome many of the identified challenges. NetworkVis is an OpenVG-based real-time network monitoring and visualization system developed for Windows Mobile devices. Infostar is a flash-based interactive, real-time visualization application intended to provide attendees access to conference information. Linked time-synchronous visualization, stylus/button-based interactivity, vector graphics, overview-context techniques, details-on-demand and statistical information display are some of the highlights of these applications.
Context-awareness in ubiquitous computing and the mobile devices
NASA Astrophysics Data System (ADS)
Akçit, Nuhcan; Tomur, Emrah; Karslıoǧlu, Mahmut Onur
2015-06-01
Mobile device use has vastly increased in the last few years. Many people use many mobile devices in their daily lives. Context-aware computing is the main feature of pervasive and ubiquitous computing. Context awareness is also an important topic that becomes more available with ubiquitous computing. As the sensors increase, the data collected via mobile device sensors and sensor networks do not have much value because of the difficulty in analysis and understanding the data. Context-aware computing helps us store contextual information and use or search it by mobile devices when we want to see or analyze it. Contextual data can be made more meaningful by context-aware processing. There are different types of data and context information that must be considered. By combining spatial and contextual data, we obtain more meaningful data based on the entities. Contextual data is any information that can be used to characterize the situation of the entity. The entity is a person, place, or object considered relevant to the interaction between the user and an application, including the users and the applications. Using contextual data and good integration to mobile devices adds great value to this data, and combining these with our other data sets will allow us to obtain more useful information and analysis.
Real-Time, Wide Area Dispatch of Mobil Tank Trucks
1987-01-01
human dispatchers it assists. Using CAD, Mobil has substantially re- duced costs and staff while improving customer service. I n the spring of 1985, a...process by establishing the Mobil order response center (MORC). To use MORC, the customer dials a toll-free number, available 24 hours a day, seven...MATS Figwe 3: Mobil light products order and dispatch information flow. Customers call an audio re- sponse computer system named MORC ( Mobil order
Intelligence for Human-Assistant Planetary Surface Robots
NASA Technical Reports Server (NTRS)
Hirsh, Robert; Graham, Jeffrey; Tyree, Kimberly; Sierhuis, Maarten; Clancey, William J.
2006-01-01
The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area.
Identifying and modeling the structural discontinuities of human interactions
NASA Astrophysics Data System (ADS)
Grauwin, Sebastian; Szell, Michael; Sobolevsky, Stanislav; Hövel, Philipp; Simini, Filippo; Vanhoof, Maarten; Smoreda, Zbigniew; Barabási, Albert-László; Ratti, Carlo
2017-04-01
The idea of a hierarchical spatial organization of society lies at the core of seminal theories in human geography that have strongly influenced our understanding of social organization. Along the same line, the recent availability of large-scale human mobility and communication data has offered novel quantitative insights hinting at a strong geographical confinement of human interactions within neighboring regions, extending to local levels within countries. However, models of human interaction largely ignore this effect. Here, we analyze several country-wide networks of telephone calls - both, mobile and landline - and in either case uncover a systematic decrease of communication induced by borders which we identify as the missing variable in state-of-the-art models. Using this empirical evidence, we propose an alternative modeling framework that naturally stylizes the damping effect of borders. We show that this new notion substantially improves the predictive power of widely used interaction models. This increases our ability to understand, model and predict social activities and to plan the development of infrastructures across multiple scales.
Identifying and modeling the structural discontinuities of human interactions
Grauwin, Sebastian; Szell, Michael; Sobolevsky, Stanislav; Hövel, Philipp; Simini, Filippo; Vanhoof, Maarten; Smoreda, Zbigniew; Barabási, Albert-László; Ratti, Carlo
2017-01-01
The idea of a hierarchical spatial organization of society lies at the core of seminal theories in human geography that have strongly influenced our understanding of social organization. Along the same line, the recent availability of large-scale human mobility and communication data has offered novel quantitative insights hinting at a strong geographical confinement of human interactions within neighboring regions, extending to local levels within countries. However, models of human interaction largely ignore this effect. Here, we analyze several country-wide networks of telephone calls - both, mobile and landline - and in either case uncover a systematic decrease of communication induced by borders which we identify as the missing variable in state-of-the-art models. Using this empirical evidence, we propose an alternative modeling framework that naturally stylizes the damping effect of borders. We show that this new notion substantially improves the predictive power of widely used interaction models. This increases our ability to understand, model and predict social activities and to plan the development of infrastructures across multiple scales. PMID:28443647
Identifying and modeling the structural discontinuities of human interactions.
Grauwin, Sebastian; Szell, Michael; Sobolevsky, Stanislav; Hövel, Philipp; Simini, Filippo; Vanhoof, Maarten; Smoreda, Zbigniew; Barabási, Albert-László; Ratti, Carlo
2017-04-26
The idea of a hierarchical spatial organization of society lies at the core of seminal theories in human geography that have strongly influenced our understanding of social organization. Along the same line, the recent availability of large-scale human mobility and communication data has offered novel quantitative insights hinting at a strong geographical confinement of human interactions within neighboring regions, extending to local levels within countries. However, models of human interaction largely ignore this effect. Here, we analyze several country-wide networks of telephone calls - both, mobile and landline - and in either case uncover a systematic decrease of communication induced by borders which we identify as the missing variable in state-of-the-art models. Using this empirical evidence, we propose an alternative modeling framework that naturally stylizes the damping effect of borders. We show that this new notion substantially improves the predictive power of widely used interaction models. This increases our ability to understand, model and predict social activities and to plan the development of infrastructures across multiple scales.
Balcan, Duygu; Gonçalves, Bruno; Hu, Hao; Ramasco, José J.; Colizza, Vittoria
2010-01-01
Here we present the Global Epidemic and Mobility (GLEaM) model that integrates sociodemographic and population mobility data in a spatially structured stochastic disease approach to simulate the spread of epidemics at the worldwide scale. We discuss the flexible structure of the model that is open to the inclusion of different disease structures and local intervention policies. This makes GLEaM suitable for the computational modeling and anticipation of the spatio-temporal patterns of global epidemic spreading, the understanding of historical epidemics, the assessment of the role of human mobility in shaping global epidemics, and the analysis of mitigation and containment scenarios. PMID:21415939
Returners and explorers dichotomy in human mobility
Pappalardo, Luca; Simini, Filippo; Rinzivillo, Salvatore; Pedreschi, Dino; Giannotti, Fosca; Barabási, Albert-László
2015-01-01
The availability of massive digital traces of human whereabouts has offered a series of novel insights on the quantitative patterns characterizing human mobility. In particular, numerous recent studies have lead to an unexpected consensus: the considerable variability in the characteristic travelled distance of individuals coexists with a high degree of predictability of their future locations. Here we shed light on this surprising coexistence by systematically investigating the impact of recurrent mobility on the characteristic distance travelled by individuals. Using both mobile phone and GPS data, we discover the existence of two distinct classes of individuals: returners and explorers. As existing models of human mobility cannot explain the existence of these two classes, we develop more realistic models able to capture the empirical findings. Finally, we show that returners and explorers play a distinct quantifiable role in spreading phenomena and that a correlation exists between their mobility patterns and social interactions. PMID:26349016
NASA Astrophysics Data System (ADS)
See, Swee Lan; Tan, Mitchell; Looi, Qin En
This paper presents findings from a descriptive research on social gaming. A video-enhanced diary method was used to understand the user experience in social gaming. From this experiment, we found that natural human behavior and gamer’s decision making process can be elicited and speculated during human computer interaction. These are new information that we should consider as they can help us build better human computer interfaces and human robotic interfaces in future.
Simulation tools for robotics research and assessment
NASA Astrophysics Data System (ADS)
Fields, MaryAnne; Brewer, Ralph; Edge, Harris L.; Pusey, Jason L.; Weller, Ed; Patel, Dilip G.; DiBerardino, Charles A.
2016-05-01
The Robotics Collaborative Technology Alliance (RCTA) program focuses on four overlapping technology areas: Perception, Intelligence, Human-Robot Interaction (HRI), and Dexterous Manipulation and Unique Mobility (DMUM). In addition, the RCTA program has a requirement to assess progress of this research in standalone as well as integrated form. Since the research is evolving and the robotic platforms with unique mobility and dexterous manipulation are in the early development stage and very expensive, an alternate approach is needed for efficient assessment. Simulation of robotic systems, platforms, sensors, and algorithms, is an attractive alternative to expensive field-based testing. Simulation can provide insight during development and debugging unavailable by many other means. This paper explores the maturity of robotic simulation systems for applications to real-world problems in robotic systems research. Open source (such as Gazebo and Moby), commercial (Simulink, Actin, LMS), government (ANVEL/VANE), and the RCTA-developed RIVET simulation environments are examined with respect to their application in the robotic research domains of Perception, Intelligence, HRI, and DMUM. Tradeoffs for applications to representative problems from each domain are presented, along with known deficiencies and disadvantages. In particular, no single robotic simulation environment adequately covers the needs of the robotic researcher in all of the domains. Simulation for DMUM poses unique constraints on the development of physics-based computational models of the robot, the environment and objects within the environment, and the interactions between them. Most current robot simulations focus on quasi-static systems, but dynamic robotic motion places an increased emphasis on the accuracy of the computational models. In order to understand the interaction of dynamic multi-body systems, such as limbed robots, with the environment, it may be necessary to build component-level computational models to provide the necessary simulation fidelity for accuracy. However, the Perception domain remains the most problematic for adequate simulation performance due to the often cartoon nature of computer rendering and the inability to model realistic electromagnetic radiation effects, such as multiple reflections, in real-time.
Mallick, Zulquernain
2007-01-01
The last 20 years have seen a tremendous growth in mobile computing and wireless communications and services. An experimental study was conducted to explore the effect of text/background color on a laptop computing system along with variable environmental vibration on operators' data entry task performance in moving automobiles. The operators' performance was measured in terms of the number of characters entered per minute without spaces (NCEPMWS) on a laptop computing system. The subjects were divided into 3 categories, namely, Novices, Intermediates and Experts. Findings suggest a re-evaluation of existing laptop designs taking ergonomics into consideration. It appears that proper selection of text/background color on the laptop coupled with controlled vehicular speed could result in a better quality of interaction between human and laptops and it could also resolve the problem of poor data entry task performance.
Integration of the social environment in a mobility ontology for people with motor disabilities.
Gharebaghi, Amin; Mostafavi, Mir-Abolfazl; Edwards, Geoffrey; Fougeyrollas, Patrick; Gamache, Stéphanie; Grenier, Yan
2017-07-07
Our contemporary understanding of disability is rooted in the idea that disability is the product of human-environment interaction processes. People may be functionally limited, but this becomes a disability only when they engage with their immediate social and physical environments. Any attempt to address issues of mobility in relation to people with disabilities should be grounded in an ontology that encompasses this understanding. The objective of this study is to provide a methodology to integrate the social and physical environments in the development of a mobility ontology for people with motor disabilities (PWMD). We propose to create subclasses of concepts based on a Nature-Development distinction rather than creating separate social and physical subclasses. This allows the relationships between social and physical elements to be modelled in a more compact and efficient way by specifying them locally within each entity, and better accommodates the complexities of the human-environment interaction as well. Based on this approach, an ontology for mobility of PWMD considering four main elements - the social and physical environmental factors, human factors, life habits related to mobility and possible goals of mobility - is presented. We demonstrate that employing the Nature-Development perspective facilitates the process of developing useful ontologies, especially for defining the relationships between the social and physical parts of the environment. This is a fundamental issue for modelling the interaction between humans and their social and physical environments for a broad range of applications, including the development of geospatial assistive technologies for navigation of PWMD. Implications for rehabilitation The proposed perspective may actually have much broader interests beyond the issue of disability - much of the interesting dynamics in city development arises from the interaction between human-developed components - the built environment and its associated entities - and natural or organic components. The proposed approach facilitates the process of developing useful ontologies, especially for defining the relationships between the social and physical parts of the environment. This is a fundamental issue for modeling the interaction between human -specially people with disabilities -and his social and physical environments in a broad range of domains and applications, such as Geographic Information Systems and the development of geospatial assistive technologies for navigation of people with disabilities, respectively.
Design and development of a mobile system for supporting emergency triage.
Michalowski, W; Slowinski, R; Wilk, S; Farion, K J; Pike, J; Rubin, S
2005-01-01
Our objective was to design and develop a mobile clinical decision support system for emergency triage of different acute pain presentations. The system should interact with existing hospital information systems, run on mobile computing devices (handheld computers) and be suitable for operation in weak-connectivity conditions (with unstable connections between mobile clients and a server). The MET (Mobile Emergency Triage) system was designed following an extended client-server architecture. The client component, responsible for triage decision support, is built as a knowledge-based system, with domain ontology separated from generic problem solving methods and used for the automatic creation of a user interface. The MET system is well suited for operation in the Emergency Department of a hospital. The system's external interactions are managed by the server, while the MET clients, running on handheld computers are used by clinicians for collecting clinical data and supporting triage at the bedside. The functionality of the MET client is distributed into specialized modules, responsible for triaging specific types of acute pain presentations. The modules are stored on the server, and on request they can be transferred and executed on the mobile clients. The modular design provides for easy extension of the system's functionality. A clinical trial of the MET system validated the appropriateness of the system's design, and proved the usefulness and acceptance of the system in clinical practice. The MET system captures the necessary hospital data, allows for entry of patient information, and provides triage support. By operating on handheld computers, it fits into the regular emergency department workflow without introducing any hindrances or disruptions. It supports triage anytime and anywhere, directly at the point of care, and also can be used as an electronic patient chart, facilitating structured data collection.
Framework for emotional mobile computation for creating entertainment experience
NASA Astrophysics Data System (ADS)
Lugmayr, Artur R.
2007-02-01
Ambient media are media, which are manifesting in the natural environment of the consumer. The perceivable borders between the media and the context, where the media is used are getting more and more blurred. The consumer is moving through a digital space of services throughout his daily life. As we are developing towards an experience society, the central point in the development of services is the creation of a consumer experience. This paper reviews possibilities and potentials of the creation of entertainment experiences with mobile phone platforms. It reviews sensor network capable of acquiring consumer behavior data, interactivity strategies, psychological models for emotional computation on mobile phones, and lays the foundations of a nomadic experience society. The paper rounds up with a presentation of several different possible service scenarios in the field of entertainment and leisure computation on mobiles. The goal of this paper is to present a framework and evaluation of possibilities of applying sensor technology on mobile platforms to create an increasing consumer entertainment experience.
Language evolution and human-computer interaction
NASA Technical Reports Server (NTRS)
Grudin, Jonathan; Norman, Donald A.
1991-01-01
Many of the issues that confront designers of interactive computer systems also appear in natural language evolution. Natural languages and human-computer interfaces share as their primary mission the support of extended 'dialogues' between responsive entities. Because in each case one participant is a human being, some of the pressures operating on natural languages, causing them to evolve in order to better support such dialogue, also operate on human-computer 'languages' or interfaces. This does not necessarily push interfaces in the direction of natural language - since one entity in this dialogue is not a human, this is not to be expected. Nonetheless, by discerning where the pressures that guide natural language evolution also appear in human-computer interaction, we can contribute to the design of computer systems and obtain a new perspective on natural languages.
Using advanced computer vision algorithms on small mobile robots
NASA Astrophysics Data System (ADS)
Kogut, G.; Birchmore, F.; Biagtan Pacis, E.; Everett, H. R.
2006-05-01
The Technology Transfer project employs a spiral development process to enhance the functionality and autonomy of mobile robot systems in the Joint Robotics Program (JRP) Robotic Systems Pool by converging existing component technologies onto a transition platform for optimization. An example of this approach is the implementation of advanced computer vision algorithms on small mobile robots. We demonstrate the implementation and testing of the following two algorithms useful on mobile robots: 1) object classification using a boosted Cascade of classifiers trained with the Adaboost training algorithm, and 2) human presence detection from a moving platform. Object classification is performed with an Adaboost training system developed at the University of California, San Diego (UCSD) Computer Vision Lab. This classification algorithm has been used to successfully detect the license plates of automobiles in motion in real-time. While working towards a solution to increase the robustness of this system to perform generic object recognition, this paper demonstrates an extension to this application by detecting soda cans in a cluttered indoor environment. The human presence detection from a moving platform system uses a data fusion algorithm which combines results from a scanning laser and a thermal imager. The system is able to detect the presence of humans while both the humans and the robot are moving simultaneously. In both systems, the two aforementioned algorithms were implemented on embedded hardware and optimized for use in real-time. Test results are shown for a variety of environments.
Mishra, Varsha; Puthucheri, Smitha; Singh, Dharmendra
2018-05-07
As a preventive measure against the electromagnetic (EM) wave exposure to human body, EM radiation regulatory authorities such as ICNIRP and FCC defined the value of specific absorption rate (SAR) for the human head during EM wave exposure from mobile phone. SAR quantifies the absorption of EM waves in the human body and it mainly depends on the dielectric properties (ε', σ) of the corresponding tissues. The head part of the human body is more susceptible to EM wave exposure due to the usage of mobile phones. The human head is a complex structure made up of multiple tissues with intermixing of many layers; thus, the accurate measurement of permittivity (ε') and conductivity (σ) of the tissues of the human head is still a challenge. For computing the SAR, researchers are using multilayer model, which has some challenges for defining the boundary for layers. Therefore, in this paper, an attempt has been made to propose a method to compute effective complex permittivity of the human head in the range of 0.3 to 3.0 GHz by applying De-Loor mixing model. Similarly, for defining the thermal effect in the tissue, thermal properties of the human head have also been computed using the De-Loor mixing method. The effective dielectric and thermal properties of equivalent human head model are compared with the IEEE Std. 1528. Graphical abstract ᅟ.
Wearable computer for mobile augmented-reality-based controlling of an intelligent robot
NASA Astrophysics Data System (ADS)
Turunen, Tuukka; Roening, Juha; Ahola, Sami; Pyssysalo, Tino
2000-10-01
An intelligent robot can be utilized to perform tasks that are either hazardous or unpleasant for humans. Such tasks include working in disaster areas or conditions that are, for example, too hot. An intelligent robot can work on its own to some extent, but in some cases the aid of humans will be needed. This requires means for controlling the robot from somewhere else, i.e. teleoperation. Mobile augmented reality can be utilized as a user interface to the environment, as it enhances the user's perception of the situation compared to other interfacing methods and allows the user to perform other tasks while controlling the intelligent robot. Augmented reality is a method that combines virtual objects into the user's perception of the real world. As computer technology evolves, it is possible to build very small devices that have sufficient capabilities for augmented reality applications. We have evaluated the existing wearable computers and mobile augmented reality systems to build a prototype of a future mobile terminal- the CyPhone. A wearable computer with sufficient system resources for applications, wireless communication media with sufficient throughput and enough interfaces for peripherals has been built at the University of Oulu. It is self-sustained in energy, with enough operating time for the applications to be useful, and uses accurate positioning systems.
Universities and Libraries Move to the Mobile Web
ERIC Educational Resources Information Center
Aldrich, Alan W.
2010-01-01
The convergence of web-enabled smartphones, the applications designed for smartphone interfaces, and cloud computing is rapidly changing how people interact with each other and with their environments. The commercial sector has taken the lead in creating mobile websites that leverage the capacities of smartphones, and the academic community has…
The Study of Surface Computer Supported Cooperative Work and Its Design, Efficiency, and Challenges
ERIC Educational Resources Information Center
Hwang, Wu-Yuin; Su, Jia-Han
2012-01-01
In this study, a Surface Computer Supported Cooperative Work paradigm is proposed. Recently, multitouch technology has become widely available for human-computer interaction. We found it has great potential to facilitate more awareness of human-to-human interaction than personal computers (PCs) in colocated collaborative work. However, other…
On Trust Evaluation in Mobile Ad Hoc Networks
NASA Astrophysics Data System (ADS)
Nguyen, Dang Quan; Lamont, Louise; Mason, Peter C.
Trust has been considered as a social relationship between two individuals in human society. But, as computer science and networking have succeeded in using computers to automate many tasks, the concept of trust can be generalized to cover the reliability and relationships of non-human interaction, such as, for example, information gathering and data routing. This paper investigates the evaluation of trust in the context of ad hoc networks. Nodes evaluate each other’s behaviour based on observables. A node then decides whether to trust another node to have certain innate abilities. We show how accurate such an evaluation could be. We also provide the minimum number of observations required to obtain an accurate evaluation, a result that indicates that observation-based trust in ad hoc networks will remain a challenging problem. The impact of making networking decisions using trust evaluation on the network connectivity is also examined. In this manner, quantitative decisions can be made concerning trust-based routing with the knowledge of the potential impact on connectivity.
Supporting Place Sensemaking with Multidimensional Information Representation on Mobile Devices
ERIC Educational Resources Information Center
Wu, Anna
2012-01-01
Knowing the living environments is an intrinsic part of human development for building self-confidence and meeting social requirements. Proliferation of mobile devices has greatly changed our interaction with the physical environments. The problem for existing mobile navigation tools is that it only emphasizes the spatial factor by offering…
Real-time skin feature identification in a time-sequential video stream
NASA Astrophysics Data System (ADS)
Kramberger, Iztok
2005-04-01
Skin color can be an important feature when tracking skin-colored objects. Particularly this is the case for computer-vision-based human-computer interfaces (HCI). Humans have a highly developed feeling of space and, therefore, it is reasonable to support this within intelligent HCI, where the importance of augmented reality can be foreseen. Joining human-like interaction techniques within multimodal HCI could, or will, gain a feature for modern mobile telecommunication devices. On the other hand, real-time processing plays an important role in achieving more natural and physically intuitive ways of human-machine interaction. The main scope of this work is the development of a stereoscopic computer-vision hardware-accelerated framework for real-time skin feature identification in the sense of a single-pass image segmentation process. The hardware-accelerated preprocessing stage is presented with the purpose of color and spatial filtering, where the skin color model within the hue-saturation-value (HSV) color space is given with a polyhedron of threshold values representing the basis of the filter model. An adaptive filter management unit is suggested to achieve better segmentation results. This enables the adoption of filter parameters to the current scene conditions in an adaptive way. Implementation of the suggested hardware structure is given at the level of filed programmable system level integrated circuit (FPSLIC) devices using an embedded microcontroller as their main feature. A stereoscopic clue is achieved using a time-sequential video stream, but this shows no difference for real-time processing requirements in terms of hardware complexity. The experimental results for the hardware-accelerated preprocessing stage are given by efficiency estimation of the presented hardware structure using a simple motion-detection algorithm based on a binary function.
Human eye haptics-based multimedia.
Velandia, David; Uribe-Quevedo, Alvaro; Perez-Gutierrez, Byron
2014-01-01
Immersive and interactive multimedia applications offer complementary study tools in anatomy as users can explore 3D models while obtaining information about the organ, tissue or part being explored. Haptics increases the sense of interaction with virtual objects improving user experience in a more realistic manner. Common eye studying tools are books, illustrations, assembly models, and more recently these are being complemented with mobile apps whose 3D capabilities, computing power and customers are increasing. The goal of this project is to develop a complementary eye anatomy and pathology study tool using deformable models within a multimedia application, offering the students the opportunity for exploring the eye from up close and within with relevant information. Validation of the tool provided feedback on the potential of the development, along with suggestions on improving haptic feedback and navigation.
How do walkers avoid a mobile robot crossing their way?
Vassallo, Christian; Olivier, Anne-Hélène; Souères, Philippe; Crétual, Armel; Stasse, Olivier; Pettré, Julien
2017-01-01
Robots and Humans have to share the same environment more and more often. In the aim of steering robots in a safe and convenient manner among humans it is required to understand how humans interact with them. This work focuses on collision avoidance between a human and a robot during locomotion. Having in mind previous results on human obstacle avoidance, as well as the description of the main principles which guide collision avoidance strategies, we observe how humans adapt a goal-directed locomotion task when they have to interfere with a mobile robot. Our results show differences in the strategy set by humans to avoid a robot in comparison with avoiding another human. Humans prefer to give the way to the robot even when they are likely to pass first at the beginning of the interaction. Copyright © 2016 Elsevier B.V. All rights reserved.
A mobile tool about causes and distribution of dramatic natural phenomena
NASA Astrophysics Data System (ADS)
Boppidi, Ravikanth Reddy
Most Research suggests that tablet computers could aid the study of many scientific concepts that are difficult to grasp, such as places, time and statistics. These occur especially in the study of geology, chemistry, biology and so on. Tapping the technology will soon become critical career training for future generations. Teaching through mobile is more interactive and helps students to grasp quickly. In this thesis an interactive mobile tool is developed which explains about the causes and distribution of natural disasters like Earthquakes, Tsunami, Tropical Cyclones, Volcanic Eruptions and Tornadoes. The application shows the places of disasters on an interactive map and it also contains YouTube embedded videos, which explain the disasters visually. The advantage of this tool is, it can be deployed onto major mobile operating systems like Android and IOS. The application's user interface (UI) is made very responsive using D3 JavaScript, JQuery, Java Script, HTML, CSS so that it can adapt to mobiles, tablets, and desktop screens.
Interaction dynamics of multiple mobile robots with simple navigation strategies
NASA Technical Reports Server (NTRS)
Wang, P. K. C.
1989-01-01
The global dynamic behavior of multiple interacting autonomous mobile robots with simple navigation strategies is studied. Here, the effective spatial domain of each robot is taken to be a closed ball about its mass center. It is assumed that each robot has a specified cone of visibility such that interaction with other robots takes place only when they enter its visibility cone. Based on a particle model for the robots, various simple homing and collision-avoidance navigation strategies are derived. Then, an analysis of the dynamical behavior of the interacting robots in unbounded spatial domains is made. The article concludes with the results of computer simulations studies of two or more interacting robots.
Rong, Y; Padron, A V; Hagerty, K J; Nelson, N; Chi, S; Keyhani, N O; Katz, J; Datta, S P A; Gomes, C; McLamore, E S
2018-04-30
Impedimetric biosensors for measuring small molecules based on weak/transient interactions between bioreceptors and target analytes are a challenge for detection electronics, particularly in field studies or in the analysis of complex matrices. Protein-ligand binding sensors have enormous potential for biosensing, but achieving accuracy in complex solutions is a major challenge. There is a need for simple post hoc analytical tools that are not computationally expensive, yet provide near real time feedback on data derived from impedance spectra. Here, we show the use of a simple, open source support vector machine learning algorithm for analyzing impedimetric data in lieu of using equivalent circuit analysis. We demonstrate two different protein-based biosensors to show that the tool can be used for various applications. We conclude with a mobile phone-based demonstration focused on the measurement of acetone, an important biomarker related to the onset of diabetic ketoacidosis. In all conditions tested, the open source classifier was capable of performing as well as, or better, than the equivalent circuit analysis for characterizing weak/transient interactions between a model ligand (acetone) and a small chemosensory protein derived from the tsetse fly. In addition, the tool has a low computational requirement, facilitating use for mobile acquisition systems such as mobile phones. The protocol is deployed through Jupyter notebook (an open source computing environment available for mobile phone, tablet or computer use) and the code was written in Python. For each of the applications, we provide step-by-step instructions in English, Spanish, Mandarin and Portuguese to facilitate widespread use. All codes were based on scikit-learn, an open source software machine learning library in the Python language, and were processed in Jupyter notebook, an open-source web application for Python. The tool can easily be integrated with the mobile biosensor equipment for rapid detection, facilitating use by a broad range of impedimetric biosensor users. This post hoc analysis tool can serve as a launchpad for the convergence of nanobiosensors in planetary health monitoring applications based on mobile phone hardware.
ERIC Educational Resources Information Center
Oren, Michael Anthony
2011-01-01
The juxtaposition of classic sociological theory and the, relatively, young discipline of human-computer interaction (HCI) serves as a powerful mechanism for both exploring the theoretical impacts of technology on human interactions as well as the application of technological systems to moderate interactions. It is the intent of this dissertation…
Epidemic spread on interconnected metapopulation networks
NASA Astrophysics Data System (ADS)
Wang, Bing; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki
2014-09-01
Numerous real-world networks have been observed to interact with each other, resulting in interconnected networks that exhibit diverse, nontrivial behavior with dynamical processes. Here we investigate epidemic spreading on interconnected networks at the level of metapopulation. Through a mean-field approximation for a metapopulation model, we find that both the interaction network topology and the mobility probabilities between subnetworks jointly influence the epidemic spread. Depending on the interaction between subnetworks, proper controls of mobility can efficiently mitigate epidemics, whereas an extremely biased mobility to one subnetwork will typically cause a severe outbreak and promote the epidemic spreading. Our analysis provides a basic framework for better understanding of epidemic behavior in related transportation systems as well as for better control of epidemics by guiding human mobility patterns.
From Sci-Fi to Reality--Mobile Robots Get the Job Done
ERIC Educational Resources Information Center
Roman, Harry T.
2006-01-01
Robots are simply computers that can interact with their environment. Some are fixed in place in industrial assembly plants for cars, appliances, micro electronic circuitry, and pharmaceuticals. Another important category of robots is the mobiles, machines that can be driven to the workplace, often designed for hazardous duty operation or…
Dinh, Thanh; Kim, Younghan; Lee, Hyukjoon
2017-03-01
This paper presents a location-based interactive model of Internet of Things (IoT) and cloud integration (IoT-cloud) for mobile cloud computing applications, in comparison with the periodic sensing model. In the latter, sensing collections are performed without awareness of sensing demands. Sensors are required to report their sensing data periodically regardless of whether or not there are demands for their sensing services. This leads to unnecessary energy loss due to redundant transmission. In the proposed model, IoT-cloud provides sensing services on demand based on interest and location of mobile users. By taking advantages of the cloud as a coordinator, sensing scheduling of sensors is controlled by the cloud, which knows when and where mobile users request for sensing services. Therefore, when there is no demand, sensors are put into an inactive mode to save energy. Through extensive analysis and experimental results, we show that the location-based model achieves a significant improvement in terms of network lifetime compared to the periodic model.
Dinh, Thanh; Kim, Younghan; Lee, Hyukjoon
2017-01-01
This paper presents a location-based interactive model of Internet of Things (IoT) and cloud integration (IoT-cloud) for mobile cloud computing applications, in comparison with the periodic sensing model. In the latter, sensing collections are performed without awareness of sensing demands. Sensors are required to report their sensing data periodically regardless of whether or not there are demands for their sensing services. This leads to unnecessary energy loss due to redundant transmission. In the proposed model, IoT-cloud provides sensing services on demand based on interest and location of mobile users. By taking advantages of the cloud as a coordinator, sensing scheduling of sensors is controlled by the cloud, which knows when and where mobile users request for sensing services. Therefore, when there is no demand, sensors are put into an inactive mode to save energy. Through extensive analysis and experimental results, we show that the location-based model achieves a significant improvement in terms of network lifetime compared to the periodic model. PMID:28257067
Spatiotemporal Patterns of Urban Human Mobility
NASA Astrophysics Data System (ADS)
Hasan, Samiul; Schneider, Christian M.; Ukkusuri, Satish V.; González, Marta C.
2013-04-01
The modeling of human mobility is adopting new directions due to the increasing availability of big data sources from human activity. These sources enclose digital information about daily visited locations of a large number of individuals. Examples of these data include: mobile phone calls, credit card transactions, bank notes dispersal, check-ins in internet applications, among several others. In this study, we consider the data obtained from smart subway fare card transactions to characterize and model urban mobility patterns. We present a simple mobility model for predicting peoples' visited locations using the popularity of places in the city as an interaction parameter between different individuals. This ingredient is sufficient to reproduce several characteristics of the observed travel behavior such as: the number of trips between different locations in the city, the exploration of new places and the frequency of individual visits of a particular location. Moreover, we indicate the limitations of the proposed model and discuss open questions in the current state of the art statistical models of human mobility.
Human-Computer Interaction and Virtual Environments
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler)
1995-01-01
The proceedings of the Workshop on Human-Computer Interaction and Virtual Environments are presented along with a list of attendees. The objectives of the workshop were to assess the state-of-technology and level of maturity of several areas in human-computer interaction and to provide guidelines for focused future research leading to effective use of these facilities in the design/fabrication and operation of future high-performance engineering systems.
Overview of Human-Centric Space Situational Awareness (SSA) Science and Technology (S&T)
NASA Astrophysics Data System (ADS)
Ianni, J.; Aleva, D.; Ellis, S.
2012-09-01
A number of organizations, within the government, industry, and academia, are researching ways to help humans understand and react to events in space. The problem is both helped and complicated by the fact that there are numerous data sources that need to be planned (i.e., tasked), collected, processed, analyzed, and disseminated. A large part of the research is in support of the Joint Space Operational Center (JSpOC), National Air and Space Intelligence Center (NASIC), and similar organizations. Much recent research has been specifically targeting the JSpOC Mission System (JMS) which has provided a unifying software architecture. This paper will first outline areas of science and technology (S&T) related to human-centric space situational awareness (SSA) and space command and control (C2) including: 1. Object visualization - especially data fused from disparate sources. Also satellite catalog visualizations that convey the physical relationships between space objects. 2. Data visualization - improve data trend analysis as in visual analytics and interactive visualization; e.g., satellite anomaly trends over time, space weather visualization, dynamic visualizations 3. Workflow support - human-computer interfaces that encapsulate multiple computer services (i.e., algorithms, programs, applications) into a 4. Command and control - e.g., tools that support course of action (COA) development and selection, tasking for satellites and sensors, etc. 5. Collaboration - improve individuals or teams ability to work with others; e.g., video teleconferencing, shared virtual spaces, file sharing, virtual white-boards, chat, and knowledge search. 6. Hardware/facilities - e.g., optimal layouts for operations centers, ergonomic workstations, immersive displays, interaction technologies, and mobile computing. Secondly we will provide a survey of organizations working these areas and suggest where more attention may be needed. Although no detailed master plan exists for human-centric SSA and C2, we see little redundancy among the groups supporting SSA human factors at this point.
Interactive computer-assisted instruction in acid-base physiology for mobile computer platforms.
Longmuir, Kenneth J
2014-03-01
In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ∼20 screens of information, on the subjects of the CO2-bicarbonate buffer system, other body buffer systems, and acid-base disorders. Five clinical case modules were also developed. For the learning modules, the interactive, active learning activities were primarily step-by-step learner control of explanations of complex physiological concepts, usually presented graphically. For the clinical cases, the active learning activities were primarily question-and-answer exercises that related clinical findings to the relevant basic science concepts. The student response was remarkably positive, with the interactive, active learning aspect of the instruction cited as the most important feature. Also, students cited the self-paced instruction, extensive use of interactive graphics, and side-by-side presentation of text and graphics as positive features. Most students reported that it took less time to study the subject matter with this online instruction compared with subject matter presented in the lecture hall. However, the approach to learning was highly examination driven, with most students delaying the study of the subject matter until a few days before the scheduled examination. Wider implementation of active learning computer-assisted instruction will require that instructors present subject matter interactively, that students fully embrace the responsibilities of independent learning, and that institutional administrations measure instructional effort by criteria other than scheduled hours of instruction.
Regularity and predictability of human mobility in personal space.
Austin, Daniel; Cross, Robin M; Hayes, Tamara; Kaye, Jeffrey
2014-01-01
Fundamental laws governing human mobility have many important applications such as forecasting and controlling epidemics or optimizing transportation systems. These mobility patterns, studied in the context of out of home activity during travel or social interactions with observations recorded from cell phone use or diffusion of money, suggest that in extra-personal space humans follow a high degree of temporal and spatial regularity - most often in the form of time-independent universal scaling laws. Here we show that mobility patterns of older individuals in their home also show a high degree of predictability and regularity, although in a different way than has been reported for out-of-home mobility. Studying a data set of almost 15 million observations from 19 adults spanning up to 5 years of unobtrusive longitudinal home activity monitoring, we find that in-home mobility is not well represented by a universal scaling law, but that significant structure (predictability and regularity) is uncovered when explicitly accounting for contextual data in a model of in-home mobility. These results suggest that human mobility in personal space is highly stereotyped, and that monitoring discontinuities in routine room-level mobility patterns may provide an opportunity to predict individual human health and functional status or detect adverse events and trends.
A DGS Gesture Dictionary for Modelling on Mobile Devices
ERIC Educational Resources Information Center
Isotani, Seiji; Reis, Helena M.; Alvares, Danilo; Brandão, Anarosa A. F.; Brandão, Leônidas O.
2018-01-01
Interactive or Dynamic Geometry System (DGS) is a tool that help to teach and learn geometry using a computer-based interactive environment. Traditionally, the interaction with DGS is based on keyboard and mouse events where the functionalities are accessed using a menu of icons. Nevertheless, recent findings suggest that such a traditional model…
Multimodal approaches for emotion recognition: a survey
NASA Astrophysics Data System (ADS)
Sebe, Nicu; Cohen, Ira; Gevers, Theo; Huang, Thomas S.
2004-12-01
Recent technological advances have enabled human users to interact with computers in ways previously unimaginable. Beyond the confines of the keyboard and mouse, new modalities for human-computer interaction such as voice, gesture, and force-feedback are emerging. Despite important advances, one necessary ingredient for natural interaction is still missing-emotions. Emotions play an important role in human-to-human communication and interaction, allowing people to express themselves beyond the verbal domain. The ability to understand human emotions is desirable for the computer in several applications. This paper explores new ways of human-computer interaction that enable the computer to be more aware of the user's emotional and attentional expressions. We present the basic research in the field and the recent advances into the emotion recognition from facial, voice, and physiological signals, where the different modalities are treated independently. We then describe the challenging problem of multimodal emotion recognition and we advocate the use of probabilistic graphical models when fusing the different modalities. We also discuss the difficult issues of obtaining reliable affective data, obtaining ground truth for emotion recognition, and the use of unlabeled data.
Multimodal approaches for emotion recognition: a survey
NASA Astrophysics Data System (ADS)
Sebe, Nicu; Cohen, Ira; Gevers, Theo; Huang, Thomas S.
2005-01-01
Recent technological advances have enabled human users to interact with computers in ways previously unimaginable. Beyond the confines of the keyboard and mouse, new modalities for human-computer interaction such as voice, gesture, and force-feedback are emerging. Despite important advances, one necessary ingredient for natural interaction is still missing-emotions. Emotions play an important role in human-to-human communication and interaction, allowing people to express themselves beyond the verbal domain. The ability to understand human emotions is desirable for the computer in several applications. This paper explores new ways of human-computer interaction that enable the computer to be more aware of the user's emotional and attentional expressions. We present the basic research in the field and the recent advances into the emotion recognition from facial, voice, and physiological signals, where the different modalities are treated independently. We then describe the challenging problem of multimodal emotion recognition and we advocate the use of probabilistic graphical models when fusing the different modalities. We also discuss the difficult issues of obtaining reliable affective data, obtaining ground truth for emotion recognition, and the use of unlabeled data.
A biomechanical and physiological study of office seat and tablet device interaction.
Weston, Eric; Le, Peter; Marras, William S
2017-07-01
Twenty subjects performed typing tasks on a desktop computer and touch-screen tablet in two chairs for an hour each, and the effects of chair, device, and their interactions on each dependent measure were recorded. Biomechanical measures of muscle force, spinal load, and posture were examined, while discomfort was measured via heart rate variability (HRV) and subjective reports. HRV was sensitive enough to differentiate between chair and device interactions. Biomechanically, a lack of seat back mobility forced individuals to maintain an upright seating posture with increased extensor muscle forces and increased spinal compression. Effects were exacerbated by forward flexion upon interaction with a tablet device or by slouching. Office chairs should be designed with both the human and workplace task in mind and allow for reclined postures to off-load the spine. The degree of recline should be limited, however, to prevent decreased lumbar lordosis resulting from posterior hip rotation in highly reclined postures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Human Factors Considerations in System Design
NASA Technical Reports Server (NTRS)
Mitchell, C. M. (Editor); Vanbalen, P. M. (Editor); Moe, K. L. (Editor)
1983-01-01
Human factors considerations in systems design was examined. Human factors in automated command and control, in the efficiency of the human computer interface and system effectiveness are outlined. The following topics are discussed: human factors aspects of control room design; design of interactive systems; human computer dialogue, interaction tasks and techniques; guidelines on ergonomic aspects of control rooms and highly automated environments; system engineering for control by humans; conceptual models of information processing; information display and interaction in real time environments.
Explicit Content Caching at Mobile Edge Networks with Cross-Layer Sensing
Chen, Lingyu; Su, Youxing; Luo, Wenbin; Hong, Xuemin; Shi, Jianghong
2018-01-01
The deployment density and computational power of small base stations (BSs) are expected to increase significantly in the next generation mobile communication networks. These BSs form the mobile edge network, which is a pervasive and distributed infrastructure that can empower a variety of edge/fog computing applications. This paper proposes a novel edge-computing application called explicit caching, which stores selective contents at BSs and exposes such contents to local users for interactive browsing and download. We formulate the explicit caching problem as a joint content recommendation, caching, and delivery problem, which aims to maximize the expected user quality-of-experience (QoE) with varying degrees of cross-layer sensing capability. Optimal and effective heuristic algorithms are presented to solve the problem. The theoretical performance bounds of the explicit caching system are derived in simplified scenarios. The impacts of cache storage space, BS backhaul capacity, cross-layer information, and user mobility on the system performance are simulated and discussed in realistic scenarios. Results suggest that, compared with conventional implicit caching schemes, explicit caching can better exploit the mobile edge network infrastructure for personalized content dissemination. PMID:29565313
Explicit Content Caching at Mobile Edge Networks with Cross-Layer Sensing.
Chen, Lingyu; Su, Youxing; Luo, Wenbin; Hong, Xuemin; Shi, Jianghong
2018-03-22
The deployment density and computational power of small base stations (BSs) are expected to increase significantly in the next generation mobile communication networks. These BSs form the mobile edge network, which is a pervasive and distributed infrastructure that can empower a variety of edge/fog computing applications. This paper proposes a novel edge-computing application called explicit caching, which stores selective contents at BSs and exposes such contents to local users for interactive browsing and download. We formulate the explicit caching problem as a joint content recommendation, caching, and delivery problem, which aims to maximize the expected user quality-of-experience (QoE) with varying degrees of cross-layer sensing capability. Optimal and effective heuristic algorithms are presented to solve the problem. The theoretical performance bounds of the explicit caching system are derived in simplified scenarios. The impacts of cache storage space, BS backhaul capacity, cross-layer information, and user mobility on the system performance are simulated and discussed in realistic scenarios. Results suggest that, compared with conventional implicit caching schemes, explicit caching can better exploit the mobile edge network infrastructure for personalized content dissemination.
2010-12-01
Base ( CFB ) Kingston. The computer simulation developed in this project is intended to be used for future research and as a possible training platform...DRDC Toronto No. CR 2010-055 Development of an E-Prime based computer simulation of an interactive Human Rights Violation negotiation script...Abstract This report describes the method of developing an E-Prime computer simulation of an interactive Human Rights Violation (HRV) negotiation. An
An augmented reality tool for learning spatial anatomy on mobile devices.
Jain, Nishant; Youngblood, Patricia; Hasel, Matthew; Srivastava, Sakti
2017-09-01
Augmented Realty (AR) offers a novel method of blending virtual and real anatomy for intuitive spatial learning. Our first aim in the study was to create a prototype AR tool for mobile devices. Our second aim was to complete a technical evaluation of our prototype AR tool focused on measuring the system's ability to accurately render digital content in the real world. We imported Computed Tomography (CT) data derived virtual surface models into a 3D Unity engine environment and implemented an AR algorithm to display these on mobile devices. We investigated the accuracy of the virtual renderings by comparing a physical cube with an identical virtual cube for dimensional accuracy. Our comparative study confirms that our AR tool renders 3D virtual objects with a high level of accuracy as evidenced by the degree of similarity between measurements of the dimensions of a virtual object (a cube) and the corresponding physical object. We developed an inexpensive and user-friendly prototype AR tool for mobile devices that creates highly accurate renderings. This prototype demonstrates an intuitive, portable, and integrated interface for spatial interaction with virtual anatomical specimens. Integrating this AR tool with a library of CT derived surface models provides a platform for spatial learning in the anatomy curriculum. The segmentation methodology implemented to optimize human CT data for mobile viewing can be extended to include anatomical variations and pathologies. The ability of this inexpensive educational platform to deliver a library of interactive, 3D models to students worldwide demonstrates its utility as a supplemental teaching tool that could greatly benefit anatomical instruction. Clin. Anat. 30:736-741, 2017. © 2017Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Human-Computer Interaction: A Review of the Research on Its Affective and Social Aspects.
ERIC Educational Resources Information Center
Deaudelin, Colette; Dussault, Marc; Brodeur, Monique
2003-01-01
Discusses a review of 34 qualitative and non-qualitative studies related to affective and social aspects of student-computer interactions. Highlights include the nature of the human-computer interaction (HCI); the interface, comparing graphic and text types; and the relation between variables linked to HCI, mainly trust, locus of control,…
Wang, Qi; Taylor, John E.
2016-01-01
Natural disasters pose serious threats to large urban areas, therefore understanding and predicting human movements is critical for evaluating a population’s vulnerability and resilience and developing plans for disaster evacuation, response and relief. However, only limited research has been conducted into the effect of natural disasters on human mobility. This study examines how natural disasters influence human mobility patterns in urban populations using individuals’ movement data collected from Twitter. We selected fifteen destructive cases across five types of natural disaster and analyzed the human movement data before, during, and after each event, comparing the perturbed and steady state movement data. The results suggest that the power-law can describe human mobility in most cases and that human mobility patterns observed in steady states are often correlated with those in perturbed states, highlighting their inherent resilience. However, the quantitative analysis shows that this resilience has its limits and can fail in more powerful natural disasters. The findings from this study will deepen our understanding of the interaction between urban dwellers and civil infrastructure, improve our ability to predict human movement patterns during natural disasters, and facilitate contingency planning by policymakers. PMID:26820404
Wang, Qi; Taylor, John E
2016-01-01
Natural disasters pose serious threats to large urban areas, therefore understanding and predicting human movements is critical for evaluating a population's vulnerability and resilience and developing plans for disaster evacuation, response and relief. However, only limited research has been conducted into the effect of natural disasters on human mobility. This study examines how natural disasters influence human mobility patterns in urban populations using individuals' movement data collected from Twitter. We selected fifteen destructive cases across five types of natural disaster and analyzed the human movement data before, during, and after each event, comparing the perturbed and steady state movement data. The results suggest that the power-law can describe human mobility in most cases and that human mobility patterns observed in steady states are often correlated with those in perturbed states, highlighting their inherent resilience. However, the quantitative analysis shows that this resilience has its limits and can fail in more powerful natural disasters. The findings from this study will deepen our understanding of the interaction between urban dwellers and civil infrastructure, improve our ability to predict human movement patterns during natural disasters, and facilitate contingency planning by policymakers.
A Catalog of Architectural Tactics for Cyber-Foraging
2015-01-06
Grid Access for Mobile Devices. PhD thesis, University of Southampton, 2008. [12] S.-H. Hung, J.-P. Shieh, and C.-P. Lee. Migrating android applications...computing. International Journal of Interactive Multimedia and Artificial Intelligence, 1(7):6–15, 2012. [17] K. Kumar and Y.-H. Lu. Cloud computing
Primary School Pupils' Attitudes toward Learning Programming through Visual Interactive Environments
ERIC Educational Resources Information Center
Asad, Khaled; Tibi, Moanis; Raiyn, Jamal
2016-01-01
New generations are using and playing with mobile and computer applications extensively. These applications are the outcomes of programming work that involves skills, such as computational and algorithmic thinking. Learning programming is not easy for students children. In recent years, academic institutions like the Massachusetts Institute of…
Human-Robot Teams for Unknown and Uncertain Environments
NASA Technical Reports Server (NTRS)
Fong, Terry
2015-01-01
Man-robot interaction is the study of interactions between humans and robots. It is often referred as HRI by researchers. Human-robot interaction is a multidisciplinary field with contributions from human-computer interaction, artificial intelligence.
NASA Astrophysics Data System (ADS)
Resdiansyah; O. K Rahmat, R. A.; Ismail, A.
2018-03-01
Green transportation refers to a sustainable transport that gives the least impact in terms of social and environmental but at the same time is able to supply energy sources globally that includes non-motorized transport strategies deployment to promote healthy lifestyles, also known as Mobility Management Scheme (MMS). As construction of road infrastructure cannot help solve the problem of congestion, past research has shown that MMS is an effective measure to mitigate congestion and to achieve green transportation. MMS consists of different strategies and policies that subdivided into categories according to how they are able to influence travel behaviour. Appropriate selection of mobility strategies will ensure its effectiveness in mitigating congestion problems. Nevertheless, determining appropriate strategies requires human expert and depends on a number of success factors. This research has successfully developed a computer clone system based on human expert, called E-MMS. The process of knowledge acquisition for MMS strategies and the next following process to selection of strategy has been encode in a knowledge-based system using a shell expert system. The newly developed computer cloning system was successfully verified, validated and evaluated (VV&E) by comparing the result output with the real transportation expert recommendation in which the findings suggested Introduction
NASA Technical Reports Server (NTRS)
Clancey, William J.
2003-01-01
A human-centered approach to computer systems design involves reframing analysis in terms of people interacting with each other, not only human-machine interaction. The primary concern is not how people can interact with computers, but how shall we design computers to help people work together? An analysis of astronaut interactions with CapCom on Earth during one traverse of Apollo 17 shows what kind of information was conveyed and what might be automated today. A variety of agent and robotic technologies are proposed that deal with recurrent problems in communication and coordination during the analyzed traverse.
Cheng, Chihwen; Stokes, Todd H.; Hang, Sovandy; Wang, May D.
2016-01-01
Doctors need fast and convenient access to medical data. This motivates the use of mobile devices for knowledge retrieval and sharing. We have developed TissueWikiMobile on the Apple iPhone and iPad to seamlessly access TissueWiki, an enormous repository of medical histology images. TissueWiki is a three terabyte database of antibody information and histology images from the Human Protein Atlas (HPA). Using TissueWikiMobile, users are capable of extracting knowledge from protein expression, adding annotations to highlight regions of interest on images, and sharing their professional insight. By providing an intuitive human computer interface, users can efficiently operate TissueWikiMobile to access important biomedical data without losing mobility. TissueWikiMobile furnishes the health community a ubiquitous way to collaborate and share their expert opinions not only on the performance of various antibodies stains but also on histology image annotation. PMID:27532057
Robonaut Mobile Autonomy: Initial Experiments
NASA Technical Reports Server (NTRS)
Diftler, M. A.; Ambrose, R. O.; Goza, S. M.; Tyree, K. S.; Huber, E. L.
2006-01-01
A mobile version of the NASA/DARPA Robonaut humanoid recently completed initial autonomy trials working directly with humans in cluttered environments. This compact robot combines the upper body of the Robonaut system with a Segway Robotic Mobility Platform yielding a dexterous, maneuverable humanoid ideal for interacting with human co-workers in a range of environments. This system uses stereovision to locate human teammates and tools and a navigation system that uses laser range and vision data to follow humans while avoiding obstacles. Tactile sensors provide information to grasping algorithms for efficient tool exchanges. The autonomous architecture utilizes these pre-programmed skills to form complex behaviors. The initial behavior demonstrates a robust capability to assist a human by acquiring a tool from a remotely located individual and then following the human in a cluttered environment with the tool for future use.
Robot map building based on fuzzy-extending DSmT
NASA Astrophysics Data System (ADS)
Li, Xinde; Huang, Xinhan; Wu, Zuyu; Peng, Gang; Wang, Min; Xiong, Youlun
2007-11-01
With the extensive application of mobile robots in many different fields, map building in unknown environments has been one of the principal issues in the field of intelligent mobile robot. However, Information acquired in map building presents characteristics of uncertainty, imprecision and even high conflict, especially in the course of building grid map using sonar sensors. In this paper, we extended DSmT with Fuzzy theory by considering the different fuzzy T-norm operators (such as Algebraic Product operator, Bounded Product operator, Einstein Product operator and Default minimum operator), in order to develop a more general and flexible combinational rule for more extensive application. At the same time, we apply fuzzy-extended DSmT to mobile robot map building with the help of new self-localization method based on neighboring field appearance matching( -NFAM), to make the new tool more robust in very complex environment. An experiment is conducted to reconstruct the map with the new tool in indoor environment, in order to compare their performances in map building with four T-norm operators, when Pioneer II mobile robot runs along the same trace. Finally, a conclusion is reached that this study develops a new idea to extend DSmT, also provides a new approach for autonomous navigation of mobile robot, and provides a human-computer interactive interface to manage and manipulate the robot remotely.
ERIC Educational Resources Information Center
Mellati, Morteza; Khademi, Marzieh
2015-01-01
The expansion of technological applications such as computers and mobile phones in the past three decades has impacted our life from different perspectives. Language teaching is no exception and like other fields of study, language teaching has also influenced by new language teaching sources and software. More recently, there has been a…
Implementations of the CC'01 Human-Computer Interaction Guidelines Using Bloom's Taxonomy
ERIC Educational Resources Information Center
Manaris, Bill; Wainer, Michael; Kirkpatrick, Arthur E.; Stalvey, RoxAnn H.; Shannon, Christine; Leventhal, Laura; Barnes, Julie; Wright, John; Schafer, J. Ben; Sanders, Dean
2007-01-01
In today's technology-laden society human-computer interaction (HCI) is an important knowledge area for computer scientists and software engineers. This paper surveys existing approaches to incorporate HCI into computer science (CS) and such related issues as the perceived gap between the interests of the HCI community and the needs of CS…
Computer Human Interaction for Image Information Systems.
ERIC Educational Resources Information Center
Beard, David Volk
1991-01-01
Presents an approach to developing viable image computer-human interactions (CHI) involving user metaphors for comprehending image data and methods for locating, accessing, and displaying computer images. A medical-image radiology workstation application is used as an example, and feedback and evaluation methods are discussed. (41 references) (LRW)
From Autonomous Robots to Artificial Ecosystems
NASA Astrophysics Data System (ADS)
Mastrogiovanni, Fulvio; Sgorbissa, Antonio; Zaccaria, Renato
During the past few years, starting from the two mainstream fields of Ambient Intelligence [2] and Robotics [17], several authors recognized the benefits of the socalled Ubiquitous Robotics paradigm. According to this perspective, mobile robots are no longer autonomous, physically situated and embodied entities adapting themselves to a world taliored for humans: on the contrary, they are able to interact with devices distributed throughout the environment and get across heterogeneous information by means of communication technologies. Information exchange, coupled with simple actuation capabilities, is meant to replace physical interaction between robots and their environment. Two benefits are evident: (i) smart environments overcome inherent limitations of mobile platforms, whereas (ii) mobile robots offer a mobility dimension unknown to smart environments.
Mobility, Emotion, and Universality in Future Collaboration
NASA Astrophysics Data System (ADS)
Chignell, Mark; Hosono, Naotsune; Fels, Deborah; Lottridge, Danielle; Waterworth, John
The Graphical user interface has traditionally supported personal productivity, efficiency, and usability. With computer supported cooperative work, the focus has been on typical people, doing typical work in a highly rational model of interaction. Recent trends towards mobility, and emotional and universal design are extending the user interface paradigm beyond the routine. As computing moves into the hand and away from the desktop, there is a greater need for dealing with emotions and distractions. Busy and distracted people represent a new kind of disability, but one that will be increasingly prevalent. In this panel we examine the current state of the art, and prospects for future collaboration in non-normative computing requirements. This panel draws together researchers who are studying the problems of mobility, emotion and universality. The goal of the panel is to discuss how progress in these areas will change the nature of future collaboration.
Prosodic alignment in human-computer interaction
NASA Astrophysics Data System (ADS)
Suzuki, N.; Katagiri, Y.
2007-06-01
Androids that replicate humans in form also need to replicate them in behaviour to achieve a high level of believability or lifelikeness. We explore the minimal social cues that can induce in people the human tendency for social acceptance, or ethopoeia, toward artifacts, including androids. It has been observed that people exhibit a strong tendency to adjust to each other, through a number of speech and language features in human-human conversational interactions, to obtain communication efficiency and emotional engagement. We investigate in this paper the phenomena related to prosodic alignment in human-computer interactions, with particular focus on human-computer alignment of speech characteristics. We found that people exhibit unidirectional and spontaneous short-term alignment of loudness and response latency in their speech in response to computer-generated speech. We believe this phenomenon of prosodic alignment provides one of the key components for building social acceptance of androids.
A hardware/software environment to support R D in intelligent machines and mobile robotic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, R.C.
1990-01-01
The Center for Engineering Systems Advanced Research (CESAR) serves as a focal point at the Oak Ridge National Laboratory (ORNL) for basic and applied research in intelligent machines. R D at CESAR addresses issues related to autonomous systems, unstructured (i.e. incompletely known) operational environments, and multiple performing agents. Two mobile robot prototypes (HERMIES-IIB and HERMIES-III) are being used to test new developments in several robot component technologies. This paper briefly introduces the computing environment at CESAR which includes three hypercube concurrent computers (two on-board the mobile robots), a graphics workstation, VAX, and multiple VME-based systems (several on-board the mobile robots).more » The current software environment at CESAR is intended to satisfy several goals, e.g.: code portability, re-usability in different experimental scenarios, modularity, concurrent computer hardware transparent to applications programmer, future support for multiple mobile robots, support human-machine interface modules, and support for integration of software from other, geographically disparate laboratories with different hardware set-ups. 6 refs., 1 fig.« less
ERIC Educational Resources Information Center
Chung, C-W.; Lee, C-C.; Liu, C-C.
2013-01-01
Mobile computers are now increasingly applied to facilitate face-to-face collaborative learning. However, the factors affecting face-to-face peer interactions are complex as they involve rich communication media. In particular, non-verbal interactions are necessary to convey critical communication messages in face-to-face communication. Through…
Conceptualizing, Designing, and Investigating Locative Media Use in Urban Space
NASA Astrophysics Data System (ADS)
Diamantaki, Katerina; Rizopoulos, Charalampos; Charitos, Dimitris; Kaimakamis, Nikos
This chapter investigates the social implications of locative media (LM) use and attempts to outline a theoretical framework that may support the design and implementation of location-based applications. Furthermore, it stresses the significance of physical space and location awareness as important factors that influence both human-computer interaction and computer-mediated communication. The chapter documents part of the theoretical aspect of the research undertaken as part of LOcation-based Communication Urban NETwork (LOCUNET), a project that aims to investigate the way users interact with one another (human-computer-human interaction aspect) and with the location-based system itself (human-computer interaction aspect). A number of relevant theoretical approaches are discussed in an attempt to provide a holistic theoretical background for LM use. Additionally, the actual implementation of the LOCUNET system is described and some of the findings are discussed.
The Study on Human-Computer Interaction Design Based on the Users’ Subconscious Behavior
NASA Astrophysics Data System (ADS)
Li, Lingyuan
2017-09-01
Human-computer interaction is human-centered. An excellent interaction design should focus on the study of user experience, which greatly comes from the consistence between design and human behavioral habit. However, users’ behavioral habits often result from subconsciousness. Therefore, it is smart to utilize users’ subconscious behavior to achieve design's intention and maximize the value of products’ functions, which gradually becomes a new trend in this field.
Oubbati, Mohamed; Kord, Bahram; Koprinkova-Hristova, Petia; Palm, Günther
2014-04-01
The new tendency of artificial intelligence suggests that intelligence must be seen as a result of the interaction between brains, bodies and environments. This view implies that designing sophisticated behaviour requires a primary focus on how agents are functionally coupled to their environments. Under this perspective, we present early results with the application of reservoir computing as an efficient tool to understand how behaviour emerges from interaction. Specifically, we present reservoir computing models, that are inspired by imitation learning designs, to extract the essential components of behaviour that results from agent-environment interaction dynamics. Experimental results using a mobile robot are reported to validate the learning architectures.
NASA Astrophysics Data System (ADS)
Oubbati, Mohamed; Kord, Bahram; Koprinkova-Hristova, Petia; Palm, Günther
2014-04-01
The new tendency of artificial intelligence suggests that intelligence must be seen as a result of the interaction between brains, bodies and environments. This view implies that designing sophisticated behaviour requires a primary focus on how agents are functionally coupled to their environments. Under this perspective, we present early results with the application of reservoir computing as an efficient tool to understand how behaviour emerges from interaction. Specifically, we present reservoir computing models, that are inspired by imitation learning designs, to extract the essential components of behaviour that results from agent-environment interaction dynamics. Experimental results using a mobile robot are reported to validate the learning architectures.
Robust mobility in human-populated environments
NASA Astrophysics Data System (ADS)
Gonzalez, Juan Pablo; Phillips, Mike; Neuman, Brad; Likhachev, Max
2012-06-01
Creating robots that can help humans in a variety of tasks requires robust mobility and the ability to safely navigate among moving obstacles. This paper presents an overview of recent research in the Robotics Collaborative Technology Alliance (RCTA) that addresses many of the core requirements for robust mobility in human-populated environments. Safe Interval Path Planning (SIPP) allows for very fast planning in dynamic environments when planning timeminimal trajectories. Generalized Safe Interval Path Planning extends this concept to trajectories that minimize arbitrary cost functions. Finally, generalized PPCP algorithm is used to generate plans that reason about the uncertainty in the predicted trajectories of moving obstacles and try to actively disambiguate the intentions of humans whenever necessary. We show how these approaches consider moving obstacles and temporal constraints and produce high-fidelity paths. Experiments in simulated environments show the performance of the algorithms under different controlled conditions, and experiments on physical mobile robots interacting with humans show how the algorithms perform under the uncertainties of the real world.
The Promise of Interactive Video: An Affective Search.
ERIC Educational Resources Information Center
Hon, David
1983-01-01
Argues that factors that create a feeling of interactivity in the human situation--response time, spontaneity, lack of distractors--should be included as prime elements in the design of human/machine systems, e.g., computer assisted instruction and interactive video. A computer/videodisc learning system for cardio-pulmonary resuscitation and its…
The Human-Computer Interaction of Cross-Cultural Gaming Strategy
ERIC Educational Resources Information Center
Chakraborty, Joyram; Norcio, Anthony F.; Van Der Veer, Jacob J.; Andre, Charles F.; Miller, Zachary; Regelsberger, Alexander
2015-01-01
This article explores the cultural dimensions of the human-computer interaction that underlies gaming strategies. The article is a desktop study of existing literature and is organized into five sections. The first examines the cultural aspects of knowledge processing. The social constructs technology interaction is discussed. Following this, the…
Evaluation of an eye-pointer interaction device for human-computer interaction.
Cáceres, Enrique; Carrasco, Miguel; Ríos, Sebastián
2018-03-01
Advances in eye-tracking technology have led to better human-computer interaction, and involve controlling a computer without any kind of physical contact. This research describes the transformation of a commercial eye-tracker for use as an alternative peripheral device in human-computer interactions, implementing a pointer that only needs the eye movements of a user facing a computer screen, thus replacing the need to control the software by hand movements. The experiment was performed with 30 test individuals who used the prototype with a set of educational videogames. The results show that, although most of the test subjects would prefer a mouse to control the pointer, the prototype tested has an empirical precision similar to that of the mouse, either when trying to control its movements or when attempting to click on a point of the screen.
Toward a practical mobile robotic aid system for people with severe physical disabilities.
Regalbuto, M A; Krouskop, T A; Cheatham, J B
1992-01-01
A simple, relatively inexpensive robotic system that can aid severely disabled persons by providing pick-and-place manipulative abilities to augment the functions of human or trained animal assistants is under development at Rice University and the Baylor College of Medicine. A stand-alone software application program runs on a Macintosh personal computer and provides the user with a selection of interactive windows for commanding the mobile robot via cursor action. A HERO 2000 robot has been modified such that its workspace extends from the floor to tabletop heights, and the robot is interfaced to a Macintosh SE via a wireless communications link for untethered operation. Integrated into the system are hardware and software which allow the user to control household appliances in addition to the robot. A separate Machine Control Interface device converts breath action and head or other three-dimensional motion inputs into cursor signals. Preliminary in-home and laboratory testing has demonstrated the utility of the system to perform useful navigational and manipulative tasks.
Cyberpsychology: a human-interaction perspective based on cognitive modeling.
Emond, Bruno; West, Robert L
2003-10-01
This paper argues for the relevance of cognitive modeling and cognitive architectures to cyberpsychology. From a human-computer interaction point of view, cognitive modeling can have benefits both for theory and model building, and for the design and evaluation of sociotechnical systems usability. Cognitive modeling research applied to human-computer interaction has two complimentary objectives: (1) to develop theories and computational models of human interactive behavior with information and collaborative technologies, and (2) to use the computational models as building blocks for the design, implementation, and evaluation of interactive technologies. From the perspective of building theories and models, cognitive modeling offers the possibility to anchor cyberpsychology theories and models into cognitive architectures. From the perspective of the design and evaluation of socio-technical systems, cognitive models can provide the basis for simulated users, which can play an important role in usability testing. As an example of application of cognitive modeling to technology design, the paper presents a simulation of interactive behavior with five different adaptive menu algorithms: random, fixed, stacked, frequency based, and activation based. Results of the simulation indicate that fixed menu positions seem to offer the best support for classification like tasks such as filing e-mails. This research is part of the Human-Computer Interaction, and the Broadband Visual Communication research programs at the National Research Council of Canada, in collaboration with the Carleton Cognitive Modeling Lab at Carleton University.
Robot vs. Human Teacher: Instruction in the Digital Age for ESL Learners
ERIC Educational Resources Information Center
Kwok, Virginia H. Y.
2015-01-01
Living in the twenty-first century, life unplugged seems impossible without the Internet, mobile phones, i-products or other types of electronic gadgets for long. While language educators are overwhelmingly occupied with investigating the impact of computers and mobile learning, here is a call to address the value of face-to-face instruction in…
ERIC Educational Resources Information Center
Tung, Ting-Chun; Chen, Hung-Yuan
2017-01-01
With the advance of mobile computing and wireless technology, a user's intent to interact with the interface of a mobile device is motivated not only by its intuitional operation, but also by the emotional perception induced by its aesthetic appeal. A graphical interface employing icons with suitable visual effect based on the users' emotional…
Models, Entropy and Information of Temporal Social Networks
NASA Astrophysics Data System (ADS)
Zhao, Kun; Karsai, Márton; Bianconi, Ginestra
Temporal social networks are characterized by heterogeneous duration of contacts, which can either follow a power-law distribution, such as in face-to-face interactions, or a Weibull distribution, such as in mobile-phone communication. Here we model the dynamics of face-to-face interaction and mobile phone communication by a reinforcement dynamics, which explains the data observed in these different types of social interactions. We quantify the information encoded in the dynamics of these networks by the entropy of temporal networks. Finally, we show evidence that human dynamics is able to modulate the information present in social network dynamics when it follows circadian rhythms and when it is interfacing with a new technology such as the mobile-phone communication technology.
A Conceptual Framework Based on Activity Theory for Mobile CSCL
ERIC Educational Resources Information Center
Zurita, Gustavo; Nussbaum, Miguel
2007-01-01
There is a need for collaborative group activities that promote student social interaction in the classroom. Handheld computers interconnected by a wireless network allow people who work on a common task to interact face to face while maintaining the mediation afforded by a technology-based system. Wirelessly interconnected handhelds open up new…
GPU-based Parallel Application Design for Emerging Mobile Devices
NASA Astrophysics Data System (ADS)
Gupta, Kshitij
A revolution is underway in the computing world that is causing a fundamental paradigm shift in device capabilities and form-factor, with a move from well-established legacy desktop/laptop computers to mobile devices in varying sizes and shapes. Amongst all the tasks these devices must support, graphics has emerged as the 'killer app' for providing a fluid user interface and high-fidelity game rendering, effectively making the graphics processor (GPU) one of the key components in (present and future) mobile systems. By utilizing the GPU as a general-purpose parallel processor, this dissertation explores the GPU computing design space from an applications standpoint, in the mobile context, by focusing on key challenges presented by these devices---limited compute, memory bandwidth, and stringent power consumption requirements---while improving the overall application efficiency of the increasingly important speech recognition workload for mobile user interaction. We broadly partition trends in GPU computing into four major categories. We analyze hardware and programming model limitations in current-generation GPUs and detail an alternate programming style called Persistent Threads, identify four use case patterns, and propose minimal modifications that would be required for extending native support. We show how by manually extracting data locality and altering the speech recognition pipeline, we are able to achieve significant savings in memory bandwidth while simultaneously reducing the compute burden on GPU-like parallel processors. As we foresee GPU computing to evolve from its current 'co-processor' model into an independent 'applications processor' that is capable of executing complex work independently, we create an alternate application framework that enables the GPU to handle all control-flow dependencies autonomously at run-time while minimizing host involvement to just issuing commands, that facilitates an efficient application implementation. Finally, as compute and communication capabilities of mobile devices improve, we analyze energy implications of processing speech recognition locally (on-chip) and offloading it to servers (in-cloud).
The role of voice input for human-machine communication.
Cohen, P R; Oviatt, S L
1995-01-01
Optimism is growing that the near future will witness rapid growth in human-computer interaction using voice. System prototypes have recently been built that demonstrate speaker-independent real-time speech recognition, and understanding of naturally spoken utterances with vocabularies of 1000 to 2000 words, and larger. Already, computer manufacturers are building speech recognition subsystems into their new product lines. However, before this technology can be broadly useful, a substantial knowledge base is needed about human spoken language and performance during computer-based spoken interaction. This paper reviews application areas in which spoken interaction can play a significant role, assesses potential benefits of spoken interaction with machines, and compares voice with other modalities of human-computer interaction. It also discusses information that will be needed to build a firm empirical foundation for the design of future spoken and multimodal interfaces. Finally, it argues for a more systematic and scientific approach to investigating spoken input and performance with future language technology. PMID:7479803
Williams, Kent E; Voigt, Jeffrey R
2004-01-01
The research reported herein presents the results of an empirical evaluation that focused on the accuracy and reliability of cognitive models created using a computerized tool: the cognitive analysis tool for human-computer interaction (CAT-HCI). A sample of participants, expert in interacting with a newly developed tactical display for the U.S. Army's Bradley Fighting Vehicle, individually modeled their knowledge of 4 specific tasks employing the CAT-HCI tool. Measures of the accuracy and consistency of task models created by these task domain experts using the tool were compared with task models created by a double expert. The findings indicated a high degree of consistency and accuracy between the different "single experts" in the task domain in terms of the resultant models generated using the tool. Actual or potential applications of this research include assessing human-computer interaction complexity, determining the productivity of human-computer interfaces, and analyzing an interface design to determine whether methods can be automated.
Nitrogen oxides (NOX) are important components of ambient and indoor air pollution and are emitted from a range of combustion sources, including on-road mobile sources, electric power generators, and non-road mobile sources. While anthropogenic sources dominate, NOX is also forme...
Dedicated mobile volumetric cone-beam computed tomography for human brain imaging: A phantom study.
Ryu, Jong-Hyun; Kim, Tae-Hoon; Jeong, Chang-Won; Jun, Hong-Young; Heo, Dong-Woon; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha
2015-01-01
Mobile computed tomography (CT) with a cone-beam source is increasingly used in the clinical field. Mobile cone-beam CT (CBCT) has great merits; however, its clinical utility for brain imaging has been limited due to problems including scan time and image quality. The aim of this study was to develop a dedicated mobile volumetric CBCT for obtaining brain images, and to optimize the imaging protocol using a brain phantom. The mobile volumetric CBCT system was evaluated with regards to scan time and image quality, measured as signal-to-noise-ratio (SNR), contrast-to-noise-ratio (CNR), spatial resolution (10% MTF), and effective dose. Brain images were obtained using a CT phantom. The CT scan took 5.14 s at 360 projection views. SNR and CNR were 5.67 and 14.5 at 120 kV/10 mA. SNR and CNR values showed slight improvement as the x-ray voltage and current increased (p < 0.001). Effective dose and 10% MTF were 0.92 mSv and 360 μ m at 120 kV/10 mA. Various intracranial structures were clearly visible in the brain phantom images. Using this CBCT under optimal imaging acquisition conditions, it is possible to obtain human brain images with low radiation dose, reproducible image quality, and fast scan time.
Pedagogical Agents as Learning Companions: The Impact of Agent Emotion and Gender
ERIC Educational Resources Information Center
Kim, Yanghee; Baylor, A. L.; Shen, E.
2007-01-01
The potential of emotional interaction between human and computer has recently interested researchers in human-computer interaction. The instructional impact of this interaction in learning environments has not been established, however. This study examined the impact of emotion and gender of a pedagogical agent as a learning companion (PAL) on…
Residential Mobility, Technology and Social Ties
ERIC Educational Resources Information Center
Shklovski, Irina A.
2007-01-01
Humans are fundamentally social creatures and our social relationships depend on communication to survive. It is not surprising that communication is the most popular use of the Internet. Researchers have examined computer-mediated communication since the early 1980's, yet, the precise role of computer-mediated communication in growth,…
Switching Adaptability in Human-Inspired Sidesteps: A Minimal Model.
Fujii, Keisuke; Yoshihara, Yuki; Tanabe, Hiroko; Yamamoto, Yuji
2017-01-01
Humans can adapt to abruptly changing situations by coordinating redundant components, even in bipedality. Conventional adaptability has been reproduced by various computational approaches, such as optimal control, neural oscillator, and reinforcement learning; however, the adaptability in bipedal locomotion necessary for biological and social activities, such as unpredicted direction change in chase-and-escape, is unknown due to the dynamically unstable multi-link closed-loop system. Here we propose a switching adaptation model for performing bipedal locomotion by improving autonomous distributed control, where autonomous actuators interact without central control and switch the roles for propulsion, balancing, and leg swing. Our switching mobility model achieved direction change at any time using only three actuators, although it showed higher motor costs than comparable models without direction change. Our method of evaluating such adaptation at any time should be utilized as a prerequisite for understanding universal motor control. The proposed algorithm may simply explain and predict the adaptation mechanism in human bipedality to coordinate the actuator functions within and between limbs.
Adaptive Tracking Control for Robots With an Interneural Computing Scheme.
Tsai, Feng-Sheng; Hsu, Sheng-Yi; Shih, Mau-Hsiang
2018-04-01
Adaptive tracking control of mobile robots requires the ability to follow a trajectory generated by a moving target. The conventional analysis of adaptive tracking uses energy minimization to study the convergence and robustness of the tracking error when the mobile robot follows a desired trajectory. However, in the case that the moving target generates trajectories with uncertainties, a common Lyapunov-like function for energy minimization may be extremely difficult to determine. Here, to solve the adaptive tracking problem with uncertainties, we wish to implement an interneural computing scheme in the design of a mobile robot for behavior-based navigation. The behavior-based navigation adopts an adaptive plan of behavior patterns learning from the uncertainties of the environment. The characteristic feature of the interneural computing scheme is the use of neural path pruning with rewards and punishment interacting with the environment. On this basis, the mobile robot can be exploited to change its coupling weights in paths of neural connections systematically, which can then inhibit or enhance the effect of flow elimination in the dynamics of the evolutionary neural network. Such dynamical flow translation ultimately leads to robust sensory-to-motor transformations adapting to the uncertainties of the environment. A simulation result shows that the mobile robot with the interneural computing scheme can perform fault-tolerant behavior of tracking by maintaining suitable behavior patterns at high frequency levels.
ERIC Educational Resources Information Center
Shen, Ruimin; Wang, Minjuan; Gao, Wanping; Novak, D.; Tang, Lin
2009-01-01
The computer science classes in China's institutions of higher education often have large numbers of students. In addition, many institutions offer "blended" classes that include both on-campus and online students. These large blended classrooms have long suffered from a lack of interactivity. Many online classes simply provide recorded…
Potential of Cognitive Computing and Cognitive Systems
NASA Astrophysics Data System (ADS)
Noor, Ahmed K.
2015-01-01
Cognitive computing and cognitive technologies are game changers for future engineering systems, as well as for engineering practice and training. They are major drivers for knowledge automation work, and the creation of cognitive products with higher levels of intelligence than current smart products. This paper gives a brief review of cognitive computing and some of the cognitive engineering systems activities. The potential of cognitive technologies is outlined, along with a brief description of future cognitive environments, incorporating cognitive assistants - specialized proactive intelligent software agents designed to follow and interact with humans and other cognitive assistants across the environments. The cognitive assistants engage, individually or collectively, with humans through a combination of adaptive multimodal interfaces, and advanced visualization and navigation techniques. The realization of future cognitive environments requires the development of a cognitive innovation ecosystem for the engineering workforce. The continuously expanding major components of the ecosystem include integrated knowledge discovery and exploitation facilities (incorporating predictive and prescriptive big data analytics); novel cognitive modeling and visual simulation facilities; cognitive multimodal interfaces; and cognitive mobile and wearable devices. The ecosystem will provide timely, engaging, personalized / collaborative, learning and effective decision making. It will stimulate creativity and innovation, and prepare the participants to work in future cognitive enterprises and develop new cognitive products of increasing complexity. http://www.aee.odu.edu/cognitivecomp
Mobile Network Data for Public Health: Opportunities and Challenges
Oliver, Nuria; Matic, Aleksandar; Frias-Martinez, Enrique
2015-01-01
The ubiquity of mobile phones worldwide is generating an unprecedented amount of human behavioral data both at an individual and aggregated levels. The study of this data as a rich source of information about human behavior emerged almost a decade ago. Since then, it has grown into a fertile area of research named computational social sciences with a wide variety of applications in different fields such as social networks, urban and transport planning, economic development, emergency relief, and, recently, public health. In this paper, we briefly describe the state of the art on using mobile phone data for public health, and present the opportunities and challenges that this kind of data presents for public health. PMID:26301211
Some foundational aspects of quantum computers and quantum robots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, P.; Physics
1998-01-01
This paper addresses foundational issues related to quantum computing. The need for a universally valid theory such as quantum mechanics to describe to some extent its own validation is noted. This includes quantum mechanical descriptions of systems that do theoretical calculations (i.e. quantum computers) and systems that perform experiments. Quantum robots interacting with an environment are a small first step in this direction. Quantum robots are described here as mobile quantum systems with on-board quantum computers that interact with environments. Included are discussions on the carrying out of tasks and the division of tasks into computation and action phases. Specificmore » models based on quantum Turing machines are described. Differences and similarities between quantum robots plus environments and quantum computers are discussed.« less
Online mentalising investigated with functional MRI.
Kircher, Tilo; Blümel, Isabelle; Marjoram, Dominic; Lataster, Tineke; Krabbendam, Lydia; Weber, Jochen; van Os, Jim; Krach, Sören
2009-05-01
For successful interpersonal communication, inferring intentions, goals or desires of others is highly advantageous. Increasingly, humans also interact with computers or robots. In this study, we sought to determine to what degree an interactive task, which involves receiving feedback from social partners that can be used to infer intent, engaged the medial prefrontal cortex, a region previously associated with Theory of Mind processes among others. Participants were scanned using fMRI as they played an adapted version of the Prisoner's Dilemma Game with alleged human and computer partners who were outside the scanner. The medial frontal cortex was activated when both human and computer partner were played, while the direct contrast revealed significantly stronger signal change during the human-human interaction. The results suggest a link between activity in the medial prefrontal cortex and the partner played in a mentalising task. This signal change was also present for to the computers partner. Implying agency or a will to non-human actors might be an innate human resource that could lead to an evolutionary advantage.
Gillham, Michael; Howells, Gareth; Spurgeon, Sarah; McElroy, Ben
2013-01-01
Assistive robotic applications require systems capable of interaction in the human world, a workspace which is highly dynamic and not always predictable. Mobile assistive devices face the additional and complex problem of when and if intervention should occur; therefore before any trajectory assistance is given, the robotic device must know where it is in real-time, without unnecessary disruption or delay to the user requirements. In this paper, we demonstrate a novel robust method for determining room identification from floor features in a real-time computational frame for autonomous and assistive robotics in the human environment. We utilize two inexpensive sensors: an optical mouse sensor for straightforward and rapid, texture or pattern sampling, and a four color photodiode light sensor for fast color determination. We show how data relating floor texture and color obtained from typical dynamic human environments, using these two sensors, compares favorably with data obtained from a standard webcam. We show that suitable data can be extracted from these two sensors at a rate 16 times faster than a standard webcam, and that these data are in a form which can be rapidly processed using readily available classification techniques, suitable for real-time system application. We achieved a 95% correct classification accuracy identifying 133 rooms' flooring from 35 classes, suitable for fast coarse global room localization application, boundary crossing detection, and additionally some degree of surface type identification. PMID:24351647
Gillham, Michael; Howells, Gareth; Spurgeon, Sarah; McElroy, Ben
2013-12-17
Assistive robotic applications require systems capable of interaction in the human world, a workspace which is highly dynamic and not always predictable. Mobile assistive devices face the additional and complex problem of when and if intervention should occur; therefore before any trajectory assistance is given, the robotic device must know where it is in real-time, without unnecessary disruption or delay to the user requirements. In this paper, we demonstrate a novel robust method for determining room identification from floor features in a real-time computational frame for autonomous and assistive robotics in the human environment. We utilize two inexpensive sensors: an optical mouse sensor for straightforward and rapid, texture or pattern sampling, and a four color photodiode light sensor for fast color determination. We show how data relating floor texture and color obtained from typical dynamic human environments, using these two sensors, compares favorably with data obtained from a standard webcam. We show that suitable data can be extracted from these two sensors at a rate 16 times faster than a standard webcam, and that these data are in a form which can be rapidly processed using readily available classification techniques, suitable for real-time system application. We achieved a 95% correct classification accuracy identifying 133 rooms' flooring from 35 classes, suitable for fast coarse global room localization application, boundary crossing detection, and additionally some degree of surface type identification.
p53 genes function to restrain mobile elements
Wylie, Annika; Jones, Amanda E.; D'Brot, Alejandro; Lu, Wan-Jin; Kurtz, Paula; Moran, John V.; Rakheja, Dinesh; Chen, Kenneth S.; Hammer, Robert E.; Comerford, Sarah A.; Amatruda, James F.; Abrams, John M.
2016-01-01
Throughout the animal kingdom, p53 genes govern stress response networks by specifying adaptive transcriptional responses. The human member of this gene family is mutated in most cancers, but precisely how p53 functions to mediate tumor suppression is not well understood. Using Drosophila and zebrafish models, we show that p53 restricts retrotransposon activity and genetically interacts with components of the piRNA (piwi-interacting RNA) pathway. Furthermore, transposon eruptions occurring in the p53− germline were incited by meiotic recombination, and transcripts produced from these mobile elements accumulated in the germ plasm. In gene complementation studies, normal human p53 alleles suppressed transposons, but mutant p53 alleles from cancer patients could not. Consistent with these observations, we also found patterns of unrestrained retrotransposons in p53-driven mouse and human cancers. Furthermore, p53 status correlated with repressive chromatin marks in the 5′ sequence of a synthetic LINE-1 element. Together, these observations indicate that ancestral functions of p53 operate through conserved mechanisms to contain retrotransposons. Since human p53 mutants are disabled for this activity, our findings raise the possibility that p53 mitigates oncogenic disease in part by restricting transposon mobility. PMID:26701264
Computer modeling and simulation of human movement. Applications in sport and rehabilitation.
Neptune, R R
2000-05-01
Computer modeling and simulation of human movement plays an increasingly important role in sport and rehabilitation, with applications ranging from sport equipment design to understanding pathologic gait. The complex dynamic interactions within the musculoskeletal and neuromuscular systems make analyzing human movement with existing experimental techniques difficult but computer modeling and simulation allows for the identification of these complex interactions and causal relationships between input and output variables. This article provides an overview of computer modeling and simulation and presents an example application in the field of rehabilitation.
The Human-Computer Interface and Information Literacy: Some Basics and Beyond.
ERIC Educational Resources Information Center
Church, Gary M.
1999-01-01
Discusses human/computer interaction research, human/computer interface, and their relationships to information literacy. Highlights include communication models; cognitive perspectives; task analysis; theory of action; problem solving; instructional design considerations; and a suggestion that human/information interface may be a more appropriate…
ERIC Educational Resources Information Center
Brown, Abbie; Sugar, William
2004-01-01
A report on the efforts made to describe the range of human-computer interaction skills necessary to complete a program of study in Instructional Design Technology. Educators responsible for instructional media production courses have not yet articulated which among the wide range of possible interactions students must master for instructional…
ERIC Educational Resources Information Center
Liu, Chen-Chung; Kao, L.-C.
2007-01-01
One-to-one computing environments change and improve classroom dynamics as individual students can bring handheld devices fitted with wireless communication capabilities into the classrooms. However, the screens of handheld devices, being designed for individual-user mobile application, limit promotion of interaction among groups of learners. This…
ERIC Educational Resources Information Center
Gong, Yu
2017-01-01
This study investigates how students can use "interactive example models" in inquiry activities to develop their conceptual knowledge about an engineering phenomenon like electromagnetic fields and waves. An interactive model, for example a computational model, could be used to develop and teach principles of dynamic complex systems, and…
An interactive visualization tool for mobile objects
NASA Astrophysics Data System (ADS)
Kobayashi, Tetsuo
Recent advancements in mobile devices---such as Global Positioning System (GPS), cellular phones, car navigation system, and radio-frequency identification (RFID)---have greatly influenced the nature and volume of data about individual-based movement in space and time. Due to the prevalence of mobile devices, vast amounts of mobile objects data are being produced and stored in databases, overwhelming the capacity of traditional spatial analytical methods. There is a growing need for discovering unexpected patterns, trends, and relationships that are hidden in the massive mobile objects data. Geographic visualization (GVis) and knowledge discovery in databases (KDD) are two major research fields that are associated with knowledge discovery and construction. Their major research challenges are the integration of GVis and KDD, enhancing the ability to handle large volume mobile objects data, and high interactivity between the computer and users of GVis and KDD tools. This dissertation proposes a visualization toolkit to enable highly interactive visual data exploration for mobile objects datasets. Vector algebraic representation and online analytical processing (OLAP) are utilized for managing and querying the mobile object data to accomplish high interactivity of the visualization tool. In addition, reconstructing trajectories at user-defined levels of temporal granularity with time aggregation methods allows exploration of the individual objects at different levels of movement generality. At a given level of generality, individual paths can be combined into synthetic summary paths based on three similarity measures, namely, locational similarity, directional similarity, and geometric similarity functions. A visualization toolkit based on the space-time cube concept exploits these functionalities to create a user-interactive environment for exploring mobile objects data. Furthermore, the characteristics of visualized trajectories are exported to be utilized for data mining, which leads to the integration of GVis and KDD. Case studies using three movement datasets (personal travel data survey in Lexington, Kentucky, wild chicken movement data in Thailand, and self-tracking data in Utah) demonstrate the potential of the system to extract meaningful patterns from the otherwise difficult to comprehend collections of space-time trajectories.
Pfeiffer, Ulrich J; Schilbach, Leonhard; Timmermans, Bert; Kuzmanovic, Bojana; Georgescu, Alexandra L; Bente, Gary; Vogeley, Kai
2014-11-01
There is ample evidence that human primates strive for social contact and experience interactions with conspecifics as intrinsically rewarding. Focusing on gaze behavior as a crucial means of human interaction, this study employed a unique combination of neuroimaging, eye-tracking, and computer-animated virtual agents to assess the neural mechanisms underlying this component of behavior. In the interaction task, participants believed that during each interaction the agent's gaze behavior could either be controlled by another participant or by a computer program. Their task was to indicate whether they experienced a given interaction as an interaction with another human participant or the computer program based on the agent's reaction. Unbeknownst to them, the agent was always controlled by a computer to enable a systematic manipulation of gaze reactions by varying the degree to which the agent engaged in joint attention. This allowed creating a tool to distinguish neural activity underlying the subjective experience of being engaged in social and non-social interaction. In contrast to previous research, this allows measuring neural activity while participants experience active engagement in real-time social interactions. Results demonstrate that gaze-based interactions with a perceived human partner are associated with activity in the ventral striatum, a core component of reward-related neurocircuitry. In contrast, interactions with a computer-driven agent activate attention networks. Comparisons of neural activity during interaction with behaviorally naïve and explicitly cooperative partners demonstrate different temporal dynamics of the reward system and indicate that the mere experience of engagement in social interaction is sufficient to recruit this system. Copyright © 2014 Elsevier Inc. All rights reserved.
Common Problems of Mobile Applications for Foreign Language Testing
ERIC Educational Resources Information Center
Garcia Laborda, Jesus; Magal-Royo, Teresa; Lopez, Jose Luis Gimenez
2011-01-01
As the use of mobile learning educational applications has become more common anywhere in the world, new concerns have appeared in the classroom, human interaction in software engineering and ergonomics. new tests of foreign languages for a number of purposes have become more and more common recently. However, studies interrelating language tests…
Security policies and trust in ubiquitous computing.
Joshi, Anupam; Finin, Tim; Kagal, Lalana; Parker, Jim; Patwardhan, Anand
2008-10-28
Ubiquitous environments comprise resource-constrained mobile and wearable devices and computational elements embedded in everyday artefacts. These are connected to each other using both infrastructure-based as well as short-range ad hoc networks. Limited Internet connectivity limits the use of conventional security mechanisms such as public key infrastructures and other forms of server-centric authentication. Under these circumstances, peer-to-peer interactions are well suited for not just information interchange, but also managing security and privacy. However, practical solutions for protecting mobile devices, preserving privacy, evaluating trust and determining the reliability and accuracy of peer-provided data in such interactions are still in their infancy. Our research is directed towards providing stronger assurances of the reliability and trustworthiness of information and services, and the use of declarative policy-driven approaches to handle the open and dynamic nature of such systems. This paper provides an overview of some of the challenges and issues, and points out directions for progress.
Language competition in a population of migrating agents.
Lipowska, Dorota; Lipowski, Adam
2017-05-01
Influencing various aspects of human activity, migration is associated also with language formation. To examine the mutual interaction of these processes, we study a Naming Game with migrating agents. The dynamics of the model leads to formation of low-mobility clusters, which turns out to break the symmetry of the model: although the Naming Game remains symmetric, low-mobility languages are favored. High-mobility languages are gradually eliminated from the system, and the dynamics of language formation considerably slows down. Our model is too simple to explain in detail language competition of migrating human communities, but it certainly shows that languages of settlers are favored over nomadic ones.
Language competition in a population of migrating agents
NASA Astrophysics Data System (ADS)
Lipowska, Dorota; Lipowski, Adam
2017-05-01
Influencing various aspects of human activity, migration is associated also with language formation. To examine the mutual interaction of these processes, we study a Naming Game with migrating agents. The dynamics of the model leads to formation of low-mobility clusters, which turns out to break the symmetry of the model: although the Naming Game remains symmetric, low-mobility languages are favored. High-mobility languages are gradually eliminated from the system, and the dynamics of language formation considerably slows down. Our model is too simple to explain in detail language competition of migrating human communities, but it certainly shows that languages of settlers are favored over nomadic ones.
Predicting commuter flows in spatial networks using a radiation model based on temporal ranges
NASA Astrophysics Data System (ADS)
Ren, Yihui; Ercsey-Ravasz, Mária; Wang, Pu; González, Marta C.; Toroczkai, Zoltán
2014-11-01
Understanding network flows such as commuter traffic in large transportation networks is an ongoing challenge due to the complex nature of the transportation infrastructure and human mobility. Here we show a first-principles based method for traffic prediction using a cost-based generalization of the radiation model for human mobility, coupled with a cost-minimizing algorithm for efficient distribution of the mobility fluxes through the network. Using US census and highway traffic data, we show that traffic can efficiently and accurately be computed from a range-limited, network betweenness type calculation. The model based on travel time costs captures the log-normal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) when compared with real traffic. Because of its principled nature, this method can inform many applications related to human mobility driven flows in spatial networks, ranging from transportation, through urban planning to mitigation of the effects of catastrophic events.
Image processing for navigation on a mobile embedded platform
NASA Astrophysics Data System (ADS)
Preuss, Thomas; Gentsch, Lars; Rambow, Mark
2006-02-01
Mobile computing devices such as PDAs or cellular phones may act as "Personal Multimedia Exchanges", but they are limited in their processing power as well as in their connectivity. Sensors as well as cellular phones and PDAs are able to gather multimedia data, e. g. images, but leak computing power to process that data on their own. Therefore, it is necessary, that these devices connect to devices with more performance, which provide e.g. image processing services. In this paper, a generic approach is presented that connects different kinds of clients with each other and allows them to interact with more powerful devices. This architecture, called BOSPORUS, represents a communication framework for dynamic peer-to-peer computing. Each peer offers and uses services in this network and communicates loosely coupled and asynchronously with the others. These features make BOSPORUS a service oriented network architecture (SONA). A mobile embedded system, which uses external services for image processing based on the BOSPORUS Framework is shown as an application of the BOSPORUS framework.
Dynamics of Entangled Polymers: Role of Attractive Interactions
NASA Astrophysics Data System (ADS)
Grest, Gary S.; Koski, Jason
The coupled dynamics of entangled polymers, which span broad time and length scales, govern their unique viscoelastic properties. Numerical simulations of highly coarse grained models are often used to follow chain mobility from the intermediate Rouse and reptation regimes to the late time diffusive regime. In these models, purely repulsive interactions between monomers are typically used because it is less computationally expensive than including attractive interactions. The effect of including the attractive interaction on the local and macroscopic properties of entangled polymer melts is explored over a wide temperature range using large scale molecular dynamics simulations. Attractive interactions are shown to have little effect on the local packing for all temperatures T and chain mobility for T higher than about twice the glass transition Tg. For lower T, the attractive interactions play a significant role, reducing the chain mobility compared to the repulsive case. As T approaches Tg breakdown of time-temperature superposition for the stress autocorrelation function is observed. Sandia National Labs is a multiprogram laboratory managed and operated by Sandia Corporation, a Lockheed-Martin Company, for the U.S. Dept of Energy under Contract No. DEAC04-94AL85000.
Mobile collaborative medical display system.
Park, Sanghun; Kim, Wontae; Ihm, Insung
2008-03-01
Because of recent advances in wireless communication technologies, the world of mobile computing is flourishing with a variety of applications. In this study, we present an integrated architecture for a personal digital assistant (PDA)-based mobile medical display system that supports collaborative work between remote users. We aim to develop a system that enables users in different regions to share a working environment for collaborative visualization with the potential for exploring huge medical datasets. Our system consists of three major components: mobile client, gateway, and parallel rendering server. The mobile client serves as a front end and enables users to choose the visualization and control parameters interactively and cooperatively. The gateway handles requests and responses between mobile clients and the rendering server for efficient communication. Through the gateway, it is possible to share working environments between users, allowing them to work together in computer supported cooperative work (CSCW) mode. Finally, the parallel rendering server is responsible for performing heavy visualization tasks. Our experience indicates that some features currently available to our mobile clients for collaborative scientific visualization are limited due to the poor performance of mobile devices and the low bandwidth of wireless connections. However, as mobile devices and wireless network systems are experiencing considerable elevation in their capabilities, we believe that our methodology will be utilized effectively in building quite responsive, useful mobile collaborative medical systems in the very near future.
Machine learning techniques for energy optimization in mobile embedded systems
NASA Astrophysics Data System (ADS)
Donohoo, Brad Kyoshi
Mobile smartphones and other portable battery operated embedded systems (PDAs, tablets) are pervasive computing devices that have emerged in recent years as essential instruments for communication, business, and social interactions. While performance, capabilities, and design are all important considerations when purchasing a mobile device, a long battery lifetime is one of the most desirable attributes. Battery technology and capacity has improved over the years, but it still cannot keep pace with the power consumption demands of today's mobile devices. This key limiter has led to a strong research emphasis on extending battery lifetime by minimizing energy consumption, primarily using software optimizations. This thesis presents two strategies that attempt to optimize mobile device energy consumption with negligible impact on user perception and quality of service (QoS). The first strategy proposes an application and user interaction aware middleware framework that takes advantage of user idle time between interaction events of the foreground application to optimize CPU and screen backlight energy consumption. The framework dynamically classifies mobile device applications based on their received interaction patterns, then invokes a number of different power management algorithms to adjust processor frequency and screen backlight levels accordingly. The second strategy proposes the usage of machine learning techniques to learn a user's mobile device usage pattern pertaining to spatiotemporal and device contexts, and then predict energy-optimal data and location interface configurations. By learning where and when a mobile device user uses certain power-hungry interfaces (3G, WiFi, and GPS), the techniques, which include variants of linear discriminant analysis, linear logistic regression, non-linear logistic regression, and k-nearest neighbor, are able to dynamically turn off unnecessary interfaces at runtime in order to save energy.
Toward Usable Interactive Analytics: Coupling Cognition and Computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander; North, Chris; Chang, Remco
Interactive analytics provide users a myriad of computational means to aid in extracting meaningful information from large and complex datasets. Much prior work focuses either on advancing the capabilities of machine-centric approaches by the data mining and machine learning communities, or human-driven methods by the visualization and CHI communities. However, these methods do not yet support a true human-machine symbiotic relationship where users and machines work together collaboratively and adapt to each other to advance an interactive analytic process. In this paper we discuss some of the inherent issues, outlining what we believe are the steps toward usable interactive analyticsmore » that will ultimately increase the effectiveness for both humans and computers to produce insights.« less
Entropic measures of individual mobility patterns
NASA Astrophysics Data System (ADS)
Gallotti, Riccardo; Bazzani, Armando; Degli Esposti, Mirko; Rambaldi, Sandro
2013-10-01
Understanding human mobility from a microscopic point of view may represent a fundamental breakthrough for the development of a statistical physics for cognitive systems and it can shed light on the applicability of macroscopic statistical laws for social systems. Even if the complexity of individual behaviors prevents a true microscopic approach, the introduction of mesoscopic models allows the study of the dynamical properties for the non-stationary states of the considered system. We propose to compute various entropy measures of the individual mobility patterns obtained from GPS data that record the movements of private vehicles in the Florence district, in order to point out new features of human mobility related to the use of time and space and to define the dynamical properties of a stochastic model that could generate similar patterns. Moreover, we can relate the predictability properties of human mobility to the distribution of time passed between two successive trips. Our analysis suggests the existence of a hierarchical structure in the mobility patterns which divides the performed activities into three different categories, according to the time cost, with different information contents. We show that a Markov process defined by using the individual mobility network is not able to reproduce this hierarchy, which seems the consequence of different strategies in the activity choice. Our results could contribute to the development of governance policies for a sustainable mobility in modern cities.
Parkinson Patients' Initial Trust in Avatars: Theory and Evidence.
Javor, Andrija; Ransmayr, Gerhard; Struhal, Walter; Riedl, René
2016-01-01
Parkinson's disease (PD) is a neurodegenerative disease that affects the motor system and cognitive and behavioral functions. Due to these impairments, PD patients also have problems in using the computer. However, using computers and the Internet could help these patients to overcome social isolation and enhance information search. Specifically, avatars (defined as virtual representations of humans) are increasingly used in online environments to enhance human-computer interaction by simulating face-to-face interaction. Our laboratory experiment investigated how PD patients behave in a trust game played with human and avatar counterparts, and we compared this behavior to the behavior of age, income, education and gender matched healthy controls. The results of our study show that PD patients trust avatar faces significantly more than human faces. Moreover, there was no significant difference between initial trust of PD patients and healthy controls in avatar faces, while PD patients trusted human faces significantly less than healthy controls. Our data suggests that PD patients' interaction with avatars may constitute an effective way of communication in situations in which trust is required (e.g., a physician recommends intake of medication). We discuss the implications of these results for several areas of human-computer interaction and neurological research.
Parkinson Patients’ Initial Trust in Avatars: Theory and Evidence
Javor, Andrija; Ransmayr, Gerhard; Struhal, Walter; Riedl, René
2016-01-01
Parkinson’s disease (PD) is a neurodegenerative disease that affects the motor system and cognitive and behavioral functions. Due to these impairments, PD patients also have problems in using the computer. However, using computers and the Internet could help these patients to overcome social isolation and enhance information search. Specifically, avatars (defined as virtual representations of humans) are increasingly used in online environments to enhance human-computer interaction by simulating face-to-face interaction. Our laboratory experiment investigated how PD patients behave in a trust game played with human and avatar counterparts, and we compared this behavior to the behavior of age, income, education and gender matched healthy controls. The results of our study show that PD patients trust avatar faces significantly more than human faces. Moreover, there was no significant difference between initial trust of PD patients and healthy controls in avatar faces, while PD patients trusted human faces significantly less than healthy controls. Our data suggests that PD patients’ interaction with avatars may constitute an effective way of communication in situations in which trust is required (e.g., a physician recommends intake of medication). We discuss the implications of these results for several areas of human-computer interaction and neurological research. PMID:27820864
Human-Computer Interaction in Smart Environments
Paravati, Gianluca; Gatteschi, Valentina
2015-01-01
Here, we provide an overview of the content of the Special Issue on “Human-computer interaction in smart environments”. The aim of this Special Issue is to highlight technologies and solutions encompassing the use of mass-market sensors in current and emerging applications for interacting with Smart Environments. Selected papers address this topic by analyzing different interaction modalities, including hand/body gestures, face recognition, gaze/eye tracking, biosignal analysis, speech and activity recognition, and related issues.
NASA Technical Reports Server (NTRS)
Talukder, Ashit; Morookian, John-Michael; Monacos, S.; Lam, R.; Lebaw, C.; Bond, A.
2004-01-01
Eyetracking is one of the latest technologies that has shown potential in several areas including human-computer interaction for people with and without disabilities, and for noninvasive monitoring, detection, and even diagnosis of physiological and neurological problems in individuals.
The experience of agency in human-computer interactions: a review
Limerick, Hannah; Coyle, David; Moore, James W.
2014-01-01
The sense of agency is the experience of controlling both one’s body and the external environment. Although the sense of agency has been studied extensively, there is a paucity of studies in applied “real-life” situations. One applied domain that seems highly relevant is human-computer-interaction (HCI), as an increasing number of our everyday agentive interactions involve technology. Indeed, HCI has long recognized the feeling of control as a key factor in how people experience interactions with technology. The aim of this review is to summarize and examine the possible links between sense of agency and understanding control in HCI. We explore the overlap between HCI and sense of agency for computer input modalities and system feedback, computer assistance, and joint actions between humans and computers. An overarching consideration is how agency research can inform HCI and vice versa. Finally, we discuss the potential ethical implications of personal responsibility in an ever-increasing society of technology users and intelligent machine interfaces. PMID:25191256
Trelease, Robert B; Nieder, Gary L
2013-01-01
Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android tablets. This article describes complementary methods for creating comparable, multiplatform VR learning objects in the new HTML5 standard format, circumventing platform-specific limitations imposed by the QuickTime VR multimedia file format. Multiple types or "dimensions" of anatomical information can be embedded in such learning objects, supporting different kinds of online learning applications, including interactive atlases, examination questions, and complex, multi-structure presentations. Such HTML5 VR learning objects are usable on new mobile devices that do not support QuickTime VR, as well as on personal computers. Furthermore, HTML5 VR learning objects can be embedded in "ebook" document files, supporting the development of new types of electronic textbooks on mobile devices that are increasingly popular and self-adopted for mobile learning. © 2012 American Association of Anatomists.
Human guidance of mobile robots in complex 3D environments using smart glasses
NASA Astrophysics Data System (ADS)
Kopinsky, Ryan; Sharma, Aneesh; Gupta, Nikhil; Ordonez, Camilo; Collins, Emmanuel; Barber, Daniel
2016-05-01
In order for humans to safely work alongside robots in the field, the human-robot (HR) interface, which enables bi-directional communication between human and robot, should be able to quickly and concisely express the robot's intentions and needs. While the robot operates mostly in autonomous mode, the human should be able to intervene to effectively guide the robot in complex, risky and/or highly uncertain scenarios. Using smart glasses such as Google Glass∗, we seek to develop an HR interface that aids in reducing interaction time and distractions during interaction with the robot.
Nowinski, Wieslaw L; Thirunavuukarasuu, Arumugam; Ananthasubramaniam, Anand; Chua, Beng Choon; Qian, Guoyu; Nowinska, Natalia G; Marchenko, Yevgen; Volkau, Ihar
2009-10-01
Preparation of tests and student's assessment by the instructor are time consuming. We address these two tasks in neuroanatomy education by employing a digital media application with a three-dimensional (3D), interactive, fully segmented, and labeled brain atlas. The anatomical and vascular models in the atlas are linked to Terminologia Anatomica. Because the cerebral models are fully segmented and labeled, our approach enables automatic and random atlas-derived generation of questions to test location and naming of cerebral structures. This is done in four steps: test individualization by the instructor, test taking by the students at their convenience, automatic student assessment by the application, and communication of the individual assessment to the instructor. A computer-based application with an interactive 3D atlas and a preliminary mobile-based application were developed to realize this approach. The application works in two test modes: instructor and student. In the instructor mode, the instructor customizes the test by setting the scope of testing and student performance criteria, which takes a few seconds. In the student mode, the student is tested and automatically assessed. Self-testing is also feasible at any time and pace. Our approach is automatic both with respect to test generation and student assessment. It is also objective, rapid, and customizable. We believe that this approach is novel from computer-based, mobile-based, and atlas-assisted standpoints.
Surgical screw segmentation for mobile C-arm CT devices
NASA Astrophysics Data System (ADS)
Görres, Joseph; Brehler, Michael; Franke, Jochen; Wolf, Ivo; Vetter, Sven Y.; Grützner, Paul A.; Meinzer, Hans-Peter; Nabers, Diana
2014-03-01
Calcaneal fractures are commonly treated by open reduction and internal fixation. An anatomical reconstruction of involved joints is mandatory to prevent cartilage damage and premature arthritis. In order to avoid intraarticular screw placements, the use of mobile C-arm CT devices is required. However, for analyzing the screw placement in detail, a time-consuming human-computer interaction is necessary to navigate through 3D images and therefore to view a single screw in detail. Established interaction procedures of repeatedly positioning and rotating sectional planes are inconvenient and impede the intraoperative assessment of the screw positioning. To simplify the interaction with 3D images, we propose an automatic screw segmentation that allows for an immediate selection of relevant sectional planes. Our algorithm consists of three major steps. At first, cylindrical characteristics are determined from local gradient structures with the help of RANSAC. In a second step, a DBScan clustering algorithm is applied to group similar cylinder characteristics. Each detected cluster represents a screw, whose determined location is then refined by a cylinder-to-image registration in a third step. Our evaluation with 309 screws in 50 images shows robust and precise results. The algorithm detected 98% (303) of the screws correctly. Thirteen clusters led to falsely identified screws. The mean distance error for the screw tip was 0.8 +/- 0.8 mm and for the screw head 1.2 +/- 1 mm. The mean orientation error was 1.4 +/- 1.2 degrees.
Cognitive Architectures and Human-Computer Interaction. Introduction to Special Issue.
ERIC Educational Resources Information Center
Gray, Wayne D.; Young, Richard M.; Kirschenbaum, Susan S.
1997-01-01
In this introduction to a special issue on cognitive architectures and human-computer interaction (HCI), editors and contributors provide a brief overview of cognitive architectures. The following four architectures represented by articles in this issue are: Soar; LICAI (linked model of comprehension-based action planning and instruction taking);…
Factors Influencing Adoption of Ubiquitous Internet amongst Students
ERIC Educational Resources Information Center
Juned, Mohammad; Adil, Mohd
2015-01-01
Weiser's (1991) conceptualisation of a world wherein human's interaction with computer technology would no longer be limited to conventional input and output devices, has now been translated into a reality with human's constant interaction with multiple interconnected computers and sensors embedded in rooms, furniture, clothes, tools, and other…
Using Interactive Computer to Communicate Scientific Information.
ERIC Educational Resources Information Center
Selnow, Gary W.
1988-01-01
Asks whether the computer is another channel of communication, if its interactive qualities make it an information source, or if it is an undefined hybrid. Concludes that computers are neither the medium nor the source but will in the future provide the possibility of a sophisticated interaction between human intelligence and artificial…
Galectin-3 alters the lateral mobility and clustering of β1-integrin receptors
Yang, Esther H.; Rode, Julia; Howlader, Md. Amran; Eckermann, Marina; Santos, Jobette T.; Hernandez Armada, Daniel; Zheng, Ruixiang; Zou, Chunxia
2017-01-01
Glycoprotein receptors are influenced by myriad intermolecular interactions at the cell surface. Specific glycan structures may interact with endogenous lectins that enforce or disrupt receptor-receptor interactions. Glycoproteins bound by multivalent lectins may form extended oligomers or lattices, altering the lateral mobility of the receptor and influencing its function through endocytosis or changes in activation. In this study, we have examined the interaction of Galectin-3 (Gal-3), a human lectin, with adhesion receptors. We measured the effect of recombinant Gal-3 added exogenously on the lateral mobility of the α5β1 integrin on HeLa cells. Using single-particle tracking (SPT) we detected increased lateral mobility of the integrin in the presence of Gal-3, while its truncated C-terminal domain (Gal-3C) showed only minor reductions in lateral mobility. Treatment of cells with Gal-3 increased β1-integrin mediated migration with no apparent changes in viability. In contrast, Gal-3C decreased both cell migration and viability. Fluorescence microscopy allowed us to confirm that exogenous Gal-3 resulted in reorganization of the integrin into larger clusters. We used a proteomics analysis to confirm that cells expressed endogenous Gal-3, and found that addition of competitive oligosaccharide ligands for the lectin altered the lateral mobility of the integrin. Together, our results are consistent with a Gal-3–integrin lattice model of binding and confirm that the lateral mobility of integrins is natively regulated, in part, by galectins. PMID:29016609
The human factors of workstation telepresence
NASA Technical Reports Server (NTRS)
Smith, Thomas J.; Smith, Karl U.
1990-01-01
The term workstation telepresence has been introduced to describe human-telerobot compliance, which enables the human operator to effectively project his/her body image and behavioral skills to control of the telerobot itself. Major human-factors considerations for establishing high fidelity workstation telepresence during human-telerobot operation are discussed. Telerobot workstation telepresence is defined by the proficiency and skill with which the operator is able to control sensory feedback from direct interaction with the workstation itself, and from workstation-mediated interaction with the telerobot. Numerous conditions influencing such control have been identified. This raises the question as to what specific factors most critically influence the realization of high fidelity workstation telepresence. The thesis advanced here is that perturbations in sensory feedback represent a major source of variability in human performance during interactive telerobot operation. Perturbed sensory feedback research over the past three decades has established that spatial transformations or temporal delays in sensory feedback engender substantial decrements in interactive task performance, which training does not completely overcome. A recently developed social cybernetic model of human-computer interaction can be used to guide this approach, based on computer-mediated tracking and control of sensory feedback. How the social cybernetic model can be employed for evaluating the various modes, patterns, and integrations of interpersonal, team, and human-computer interactions which play a central role is workstation telepresence are discussed.
Principles for Integrating Mars Analog Science, Operations, and Technology Research
NASA Technical Reports Server (NTRS)
Clancey, William J.
2003-01-01
During the Apollo program, the scientific community and NASA used terrestrial analog sites for understanding planetary features and for training astronauts to be scientists. Human factors studies (Harrison, Clearwater, & McKay 1991; Stuster 1996) have focused on the effects of isolation in extreme environments. More recently, with the advent of wireless computing, we have prototyped advanced EVA technologies for navigation, scheduling, and science data logging (Clancey 2002b; Clancey et al., in press). Combining these interests in a single expedition enables tremendous synergy and authenticity, as pioneered by Pascal Lee's Haughton-Mars Project (Lee 2001; Clancey 2000a) and the Mars Society s research stations on a crater rim on Devon Island in the High Canadian Arctic (Clancey 2000b; 2001b) and the Morrison Formation of southeast Utah (Clancey 2002a). Based on this experience, the following principles are proposed for conducting an integrated science, operations, and technology research program at analog sites: 1) Authentic work; 2) PI-based projects; 3) Unencumbered baseline studies; 4) Closed simulations; and 5) Observation and documentation. Following these principles, we have been integrating field science, operations research, and technology development at analog sites on Devon Island and in Utah over the past five years. Analytic methods include work practice simulation (Clancey 2002c; Sierhuis et a]., 2000a;b), by which the interaction of human behavior, facilities, geography, tools, and procedures are formalized in computer models. These models are then converted into the runtime EVA system we call mobile agents (Clancey 2002b; Clancey et al., in press). Furthermore, we have found that the Apollo Lunar Surface Journal (Jones, 1999) provides a vast repository or understanding astronaut and CapCom interactions, serving as a baseline for Mars operations and quickly highlighting opportunities for computer automation (Clancey, in press).
Choice of Human-Computer Interaction Mode in Stroke Rehabilitation.
Mousavi Hondori, Hossein; Khademi, Maryam; Dodakian, Lucy; McKenzie, Alison; Lopes, Cristina V; Cramer, Steven C
2016-03-01
Advances in technology are providing new forms of human-computer interaction. The current study examined one form of human-computer interaction, augmented reality (AR), whereby subjects train in the real-world workspace with virtual objects projected by the computer. Motor performances were compared with those obtained while subjects used a traditional human-computer interaction, that is, a personal computer (PC) with a mouse. Patients used goal-directed arm movements to play AR and PC versions of the Fruit Ninja video game. The 2 versions required the same arm movements to control the game but had different cognitive demands. With AR, the game was projected onto the desktop, where subjects viewed the game plus their arm movements simultaneously, in the same visual coordinate space. In the PC version, subjects used the same arm movements but viewed the game by looking up at a computer monitor. Among 18 patients with chronic hemiparesis after stroke, the AR game was associated with 21% higher game scores (P = .0001), 19% faster reaching times (P = .0001), and 15% less movement variability (P = .0068), as compared to the PC game. Correlations between game score and arm motor status were stronger with the AR version. Motor performances during the AR game were superior to those during the PC game. This result is due in part to the greater cognitive demands imposed by the PC game, a feature problematic for some patients but clinically useful for others. Mode of human-computer interface influences rehabilitation therapy demands and can be individualized for patients. © The Author(s) 2015.
Meeting the challenges--the role of medical informatics in an ageing society.
Koch, Sabine
2006-01-01
The objective of this paper is to identify trends and new technological developments that appear due to an ageing society and to relate them to current research in the field of medical informatics. A survey of the current literature reveals that recent technological advances have been made in the fields of "telecare and home-monitoring", "smart homes and robotics" and "health information systems and knowledge management". Innovative technologies such as wearable devices, bio- and environmental sensors and mobile, humanoid robots do already exist and ambient assistant living environments are being created for an ageing society. However, those technologies have to be adapted to older people's self-care processes and coping strategies, and to support new ways of healthcare delivery. Medical informatics can support this process by providing the necessary information infrastructure, contribute to standardisation, interoperability and security issues and provide modelling and simulation techniques for educational purposes. Research fields of increasing importance with regard to an ageing society are, moreover, the fields of knowledge management, ubiquitous computing and human-computer interaction.
Weissbrod, Lior; Marshall, Fiona B.; Valla, François R.; Khalaily, Hamoudi; Bar-Oz, Guy; Auffray, Jean-Christophe; Vigne, Jean-Denis; Cucchi, Thomas
2017-01-01
Reductions in hunter-gatherer mobility during the Late Pleistocene influenced settlement ecologies, altered human relations with animal communities, and played a pivotal role in domestication. The influence of variability in human mobility on selection dynamics and ecological interactions in human settlements has not been extensively explored, however. This study of mice in modern African villages and changing mice molar shapes in a 200,000-y-long sequence from the Levant demonstrates competitive advantages for commensal mice in long-term settlements. Mice from African pastoral households provide a referential model for habitat partitioning among mice taxa in settlements of varying durations. The data reveal the earliest known commensal niche for house mice in long-term forager settlements 15,000 y ago. Competitive dynamics and the presence and abundance of mice continued to fluctuate with human mobility through the terminal Pleistocene. At the Natufian site of Ain Mallaha, house mice displaced less commensal wild mice during periods of heavy occupational pressure but were outcompeted when mobility increased. Changing food webs and ecological dynamics in long-term settlements allowed house mice to establish durable commensal populations that expanded with human societies. This study demonstrates the changing magnitude of cultural niche construction with varying human mobility and the extent of environmental influence before the advent of farming. PMID:28348225
Weissbrod, Lior; Marshall, Fiona B; Valla, François R; Khalaily, Hamoudi; Bar-Oz, Guy; Auffray, Jean-Christophe; Vigne, Jean-Denis; Cucchi, Thomas
2017-04-18
Reductions in hunter-gatherer mobility during the Late Pleistocene influenced settlement ecologies, altered human relations with animal communities, and played a pivotal role in domestication. The influence of variability in human mobility on selection dynamics and ecological interactions in human settlements has not been extensively explored, however. This study of mice in modern African villages and changing mice molar shapes in a 200,000-y-long sequence from the Levant demonstrates competitive advantages for commensal mice in long-term settlements. Mice from African pastoral households provide a referential model for habitat partitioning among mice taxa in settlements of varying durations. The data reveal the earliest known commensal niche for house mice in long-term forager settlements 15,000 y ago. Competitive dynamics and the presence and abundance of mice continued to fluctuate with human mobility through the terminal Pleistocene. At the Natufian site of Ain Mallaha, house mice displaced less commensal wild mice during periods of heavy occupational pressure but were outcompeted when mobility increased. Changing food webs and ecological dynamics in long-term settlements allowed house mice to establish durable commensal populations that expanded with human societies. This study demonstrates the changing magnitude of cultural niche construction with varying human mobility and the extent of environmental influence before the advent of farming.
Anderson, Thomas G.
2004-12-21
The present invention provides a method of human-computer interfacing. Force feedback allows intuitive navigation and control near a boundary between regions in a computer-represented space. For example, the method allows a user to interact with a virtual craft, then push through the windshield of the craft to interact with the virtual world surrounding the craft. As another example, the method allows a user to feel transitions between different control domains of a computer representation of a space. The method can provide for force feedback that increases as a user's locus of interaction moves near a boundary, then perceptibly changes (e.g., abruptly drops or changes direction) when the boundary is traversed.
Human agency beliefs influence behaviour during virtual social interactions.
Caruana, Nathan; Spirou, Dean; Brock, Jon
2017-01-01
In recent years, with the emergence of relatively inexpensive and accessible virtual reality technologies, it is now possible to deliver compelling and realistic simulations of human-to-human interaction. Neuroimaging studies have shown that, when participants believe they are interacting via a virtual interface with another human agent, they show different patterns of brain activity compared to when they know that their virtual partner is computer-controlled. The suggestion is that users adopt an "intentional stance" by attributing mental states to their virtual partner. However, it remains unclear how beliefs in the agency of a virtual partner influence participants' behaviour and subjective experience of the interaction. We investigated this issue in the context of a cooperative "joint attention" game in which participants interacted via an eye tracker with a virtual onscreen partner, directing each other's eye gaze to different screen locations. Half of the participants were correctly informed that their partner was controlled by a computer algorithm ("Computer" condition). The other half were misled into believing that the virtual character was controlled by a second participant in another room ("Human" condition). Those in the "Human" condition were slower to make eye contact with their partner and more likely to try and guide their partner before they had established mutual eye contact than participants in the "Computer" condition. They also responded more rapidly when their partner was guiding them, although the same effect was also found for a control condition in which they responded to an arrow cue. Results confirm the influence of human agency beliefs on behaviour in this virtual social interaction context. They further suggest that researchers and developers attempting to simulate social interactions should consider the impact of agency beliefs on user experience in other social contexts, and their effect on the achievement of the application's goals.
Supporting Real-Time Operations and Execution through Timeline and Scheduling Aids
NASA Technical Reports Server (NTRS)
Marquez, Jessica J.; Pyrzak, Guy; Hashemi, Sam; Ahmed, Samia; McMillin, Kevin Edward; Medwid, Joseph Daniel; Chen, Diana; Hurtle, Esten
2013-01-01
Since 2003, the NASA Ames Research Center has been actively involved in researching and advancing the state-of-the-art of planning and scheduling tools for NASA mission operations. Our planning toolkit SPIFe (Scheduling and Planning Interface for Exploration) has supported a variety of missions and field tests, scheduling activities for Mars rovers as well as crew on-board International Space Station and NASA earth analogs. The scheduled plan is the integration of all the activities for the day/s. In turn, the agents (rovers, landers, spaceships, crew) execute from this schedule while the mission support team members (e.g., flight controllers) follow the schedule during execution. Over the last couple of years, our team has begun to research and validate methods that will better support users during realtime operations and execution of scheduled activities. Our team utilizes human-computer interaction principles to research user needs, identify workflow processes, prototype software aids, and user test these. This paper discusses three specific prototypes developed and user tested to support real-time operations: Score Mobile, Playbook, and Mobile Assistant for Task Execution (MATE).
Utilization of communication technology by patients enrolled in substance abuse treatment
McClure, Erin A.; Acquavita, Shauna; Harding, Emily; Stitzer, Maxine
2012-01-01
Background Technology-based applications represent a promising method for providing efficacious, widely available interventions to substance abuse treatment patients. However, limited access to communication technology (i.e., mobile phones, computers, internet, and e-mail) could significantly impact the feasibility of these efforts, and little is known regarding technology utilization in substance abusing populations. Methods A survey was conducted to characterize utilization of communication technology in 266 urban, substance abuse treatment patients enrolled at eight drug-free, psychosocial or opioid-replacement therapy clinics. Results Survey participants averaged 41 years of age and 57% had a yearly household income of less than $15,000. The vast majority reported access to a mobile phone (91%), and to SMS text messaging (79%). Keeping a consistent mobile phone number and yearly mobile contract was higher for White participants, and also for those with higher education, and enrolled in drug-free, psychosocial treatment. Internet, e-mail, and computer use was much lower (39–45%), with younger age, higher education and income predicting greater use. No such differences existed for the use of mobile phones however. Conclusions Concern regarding the digital divide for marginalized populations appears to be disappearing with respect to mobile phones, but still exists for computer, internet, and e-mail access and use. Results suggest that mobile phone and texting applications may be feasibly applied for use in program-client interactions in substance abuse treatment. Careful consideration should be given to frequent phone number changes, access to technology, and motivation to engage with communication technology for treatment purposes. PMID:23107600
Utilization of communication technology by patients enrolled in substance abuse treatment.
McClure, Erin A; Acquavita, Shauna P; Harding, Emily; Stitzer, Maxine L
2013-04-01
Technology-based applications represent a promising method for providing efficacious, widely available interventions to substance abuse treatment patients. However, limited access to communication technology (i.e., mobile phones, computers, internet, and e-mail) could significantly impact the feasibility of these efforts, and little is known regarding technology utilization in substance abusing populations. A survey was conducted to characterize utilization of communication technology in 266 urban, substance abuse treatment patients enrolled at eight drug-free, psychosocial or opioid-replacement therapy clinics. Survey participants averaged 41 years of age and 57% had a yearly household income of less than $15,000. The vast majority reported access to a mobile phone (91%), and to SMS text messaging (79%). Keeping a consistent mobile phone number and yearly mobile contract was higher for White participants, and also for those with higher education, and enrolled in drug-free, psychosocial treatment. Internet, e-mail, and computer use was much lower (39-45%), with younger age, higher education and income predicting greater use. No such differences existed for the use of mobile phones however. Concern regarding the digital divide for marginalized populations appears to be disappearing with respect to mobile phones, but still exists for computer, internet, and e-mail access and use. Results suggest that mobile phone and texting applications may be feasibly applied for use in program-client interactions in substance abuse treatment. Careful consideration should be given to frequent phone number changes, access to technology, and motivation to engage with communication technology for treatment purposes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Harnessing the Power of Interactivity for Instruction.
ERIC Educational Resources Information Center
Borsook, Terry K.
Arguing that what sets the computer apart from all other teaching devices is its potential for interactivity, this paper examines the concept of interactivity and explores ways in which its power can be harnessed and put to work. A discussion of interactivity in human-to-human communication sets a context within which to view human/computer…
Openwebglobe 2: Visualization of Complex 3D-GEODATA in the (mobile) Webbrowser
NASA Astrophysics Data System (ADS)
Christen, M.
2016-06-01
Providing worldwide high resolution data for virtual globes consists of compute and storage intense tasks for processing data. Furthermore, rendering complex 3D-Geodata, such as 3D-City models with an extremely high polygon count and a vast amount of textures at interactive framerates is still a very challenging task, especially on mobile devices. This paper presents an approach for processing, caching and serving massive geospatial data in a cloud-based environment for large scale, out-of-core, highly scalable 3D scene rendering on a web based virtual globe. Cloud computing is used for processing large amounts of geospatial data and also for providing 2D and 3D map data to a large amount of (mobile) web clients. In this paper the approach for processing, rendering and caching very large datasets in the currently developed virtual globe "OpenWebGlobe 2" is shown, which displays 3D-Geodata on nearly every device.
A Framework and Implementation of User Interface and Human-Computer Interaction Instruction
ERIC Educational Resources Information Center
Peslak, Alan
2005-01-01
Researchers have suggested that up to 50 % of the effort in development of information systems is devoted to user interface development (Douglas, Tremaine, Leventhal, Wills, & Manaris, 2002; Myers & Rosson, 1992). Yet little study has been performed on the inclusion of important interface and human-computer interaction topics into a current…
A Project-Based Learning Setting to Human-Computer Interaction for Teenagers
ERIC Educational Resources Information Center
Geyer, Cornelia; Geisler, Stefan
2012-01-01
Knowledge of fundamentals of human-computer interaction resp. usability engineering is getting more and more important in technical domains. However this interdisciplinary field of work and corresponding degree programs are not broadly known. Therefore at the Hochschule Ruhr West, University of Applied Sciences, a program was developed to give…
Feedback about Astronomical Application Developments for Mobile Devices
NASA Astrophysics Data System (ADS)
Schaaff, A.; Boch, T.; Fernique, P.; Houpin, R.; Kaestlé, V.; Royer, M.; Scheffmann, J.; Weiler, A.
2013-10-01
Within a few years, Smartphones have become the standard for mobile telephony, and we are now witnessing a rapid development of Internet tablets. These mobile devices have enough powerful hardware features to run more and more complex applications. In the field of astronomy it is not only possible to use these tools to access data via a simple browser, but also to develop native applications reusing libraries (Java for Android, Objective-C for iOS) developed for desktops. We have been working for two years on mobile application development and we now have the skills in native iOS and Android development, Web development (especially HTML5, JavaScript, CSS3) and conversion tools (PhoneGap) from Web development to native applications. The biggest change comes from human/computer interaction that is radically changed by the use of multitouch. This interaction requires a redesign of interfaces to take advantage of new features (simultaneous selections in different parts of the screen, etc.). In the case of native applications, the distribution is usually done through online stores (App Store, Google Play, etc.) which gives visibility to a wider audience. Our approach is not only to perform testing of materials and developing of prototypes, but also operational applications. The native application development is costly in development time, but the possibilities are broader because it is possible to use native hardware such as the gyroscope and the accelerometer, to point out an object in the sky. Development depends on the Web browser and the rendering and performance are often very different between different browsers. It is also possible to convert Web developments to native applications, but currently it is better to restrict this possibility to light applications in terms of functionality. Developments in HTML5 are promising but are far behind those available on desktops. HTML5 has the advantage of allowing development independent from the evolution of the mobile platforms (“write once, run everywhere”). The upcoming Windows 8 support on desktops and Internet tablets as well as a mobile version for smartphones will further expand the native systems family. This will enhance the interest of Web development.
Hydrodynamic interactions in freely suspended liquid crystal films
NASA Astrophysics Data System (ADS)
Kuriabova, Tatiana; Powers, Thomas R.; Qi, Zhiyuan; Goldfain, Aaron; Park, Cheol Soo; Glaser, Matthew A.; Maclennan, Joseph E.; Clark, Noel A.
2016-11-01
Hydrodynamic interactions play an important role in biological processes in cellular membranes, a large separation of length scales often allowing such membranes to be treated as continuous, two-dimensional (2D) fluids. We study experimentally and theoretically the hydrodynamic interaction of pairs of inclusions in two-dimensional, fluid smectic liquid crystal films suspended in air. Such smectic membranes are ideal systems for performing controlled experiments as they are mechanically stable, of highly uniform structure, and have well-defined, variable thickness, enabling experimental investigation of the crossover from 2D to 3D hydrodynamics. Our theoretical model generalizes the Levine-MacKintosh theory of point-force response functions and uses a boundary-element approach to calculate the mobility matrix for inclusions of finite extent. We describe in detail the theoretical and computational approach previously outlined in Z. Qi et al., Phys. Rev. Lett. 113, 128304 (2014), 10.1103/PhysRevLett.113.128304 and extend the method to study the mutual mobilities of inclusions with asymmetric shapes. The model predicts well the observed mutual mobilities of pairs of circular inclusions in films and the self-mobility of a circular inclusion in the vicinity of a linear boundary.
Brown, C Hendricks; Mohr, David C; Gallo, Carlos G; Mader, Christopher; Palinkas, Lawrence; Wingood, Gina; Prado, Guillermo; Kellam, Sheppard G; Pantin, Hilda; Poduska, Jeanne; Gibbons, Robert; McManus, John; Ogihara, Mitsunori; Valente, Thomas; Wulczyn, Fred; Czaja, Sara; Sutcliffe, Geoff; Villamar, Juan; Jacobs, Christopher
2013-06-01
African Americans and Hispanics in the United States have much higher rates of HIV than non-minorities. There is now strong evidence that a range of behavioral interventions are efficacious in reducing sexual risk behavior in these populations. Although a handful of these programs are just beginning to be disseminated widely, we still have not implemented effective programs to a level that would reduce the population incidence of HIV for minorities. We proposed that innovative approaches involving computational technologies be explored for their use in both developing new interventions and in supporting wide-scale implementation of effective behavioral interventions. Mobile technologies have a place in both of these activities. First, mobile technologies can be used in sensing contexts and interacting to the unique preferences and needs of individuals at times where intervention to reduce risk would be most impactful. Second, mobile technologies can be used to improve the delivery of interventions by facilitators and their agencies. Systems science methods including social network analysis, agent-based models, computational linguistics, intelligent data analysis, and systems and software engineering all have strategic roles that can bring about advances in HIV prevention in minority communities. Using an existing mobile technology for depression and 3 effective HIV prevention programs, we illustrated how 8 areas in the intervention/implementation process can use innovative computational approaches to advance intervention adoption, fidelity, and sustainability.
Mobile Devices and GPU Parallelism in Ionospheric Data Processing
NASA Astrophysics Data System (ADS)
Mascharka, D.; Pankratius, V.
2015-12-01
Scientific data acquisition in the field is often constrained by data transfer backchannels to analysis environments. Geoscientists are therefore facing practical bottlenecks with increasing sensor density and variety. Mobile devices, such as smartphones and tablets, offer promising solutions to key problems in scientific data acquisition, pre-processing, and validation by providing advanced capabilities in the field. This is due to affordable network connectivity options and the increasing mobile computational power. This contribution exemplifies a scenario faced by scientists in the field and presents the "Mahali TEC Processing App" developed in the context of the NSF-funded Mahali project. Aimed at atmospheric science and the study of ionospheric Total Electron Content (TEC), this app is able to gather data from various dual-frequency GPS receivers. It demonstrates parsing of full-day RINEX files on mobile devices and on-the-fly computation of vertical TEC values based on satellite ephemeris models that are obtained from NASA. Our experiments show how parallel computing on the mobile device GPU enables fast processing and visualization of up to 2 million datapoints in real-time using OpenGL. GPS receiver bias is estimated through minimum TEC approximations that can be interactively adjusted by scientists in the graphical user interface. Scientists can also perform approximate computations for "quickviews" to reduce CPU processing time and memory consumption. In the final stage of our mobile processing pipeline, scientists can upload data to the cloud for further processing. Acknowledgements: The Mahali project (http://mahali.mit.edu) is funded by the NSF INSPIRE grant no. AGS-1343967 (PI: V. Pankratius). We would like to acknowledge our collaborators at Boston College, Virginia Tech, Johns Hopkins University, Colorado State University, as well as the support of UNAVCO for loans of dual-frequency GPS receivers for use in this project, and Intel for loans of smartphones.
Mobile Phone Use and Human-Wildlife Conflict in Northern Tanzania
NASA Astrophysics Data System (ADS)
Lewis, Ashley L.; Baird, Timothy D.; Sorice, Michael G.
2016-07-01
Throughout the developing world, mobile phones are spreading rapidly into rural areas where subsistence livelihoods, biodiversity conservation, and human-wildlife conflict (HWC) are each common. Despite this trend, little is known about the relationship between mobile phones and HWC in conservation landscapes. This paper examines this relationship within ethnically Maasai communities in northern Tanzania on the border of Tarangire National Park. Mixed qualitative and quantitative methods of data collection and analysis are used to (1) describe how Maasai agro-pastoralists use phones to manage human-wildlife interactions; and (2) assess the relationship between phone use and measures of HWC, controlling for other factors. The findings indicate that households use phones to reduce the number and severity of HWC events and that the relationship between phones and HWC varies according to the type of HWC.
Mobile Phone Use and Human-Wildlife Conflict in Northern Tanzania.
Lewis, Ashley L; Baird, Timothy D; Sorice, Michael G
2016-07-01
Throughout the developing world, mobile phones are spreading rapidly into rural areas where subsistence livelihoods, biodiversity conservation, and human-wildlife conflict (HWC) are each common. Despite this trend, little is known about the relationship between mobile phones and HWC in conservation landscapes. This paper examines this relationship within ethnically Maasai communities in northern Tanzania on the border of Tarangire National Park. Mixed qualitative and quantitative methods of data collection and analysis are used to (1) describe how Maasai agro-pastoralists use phones to manage human-wildlife interactions; and (2) assess the relationship between phone use and measures of HWC, controlling for other factors. The findings indicate that households use phones to reduce the number and severity of HWC events and that the relationship between phones and HWC varies according to the type of HWC.
Behari, J; Nirala, Jay Prakash
2013-12-01
A specific absorption rate (SAR) measurements system has been developed for compliance testing of personal mobile phone in a brain phantom material contained in a Perspex box. The volume of the box has been chosen corresponding to the volume of a small rat and illuminated by a 3G mobile phone frequency (1718.5 MHz), and the emitted radiation directed toward brain phantom .The induced fields in the phantom material are measured. Set up to lift the plane carrying the mobile phone is run by a pulley whose motion is controlled by a stepper motor. The platform is made to move at a pre-determined rate of 2 degrees per min limited up to 20 degrees. The measured data for induced fields in various locations are used to compute corresponding SAR values and inter comparison obtained. These data are also compared with those when the mobile phone is placed horizontally with respect to the position of the animal. The SAR data is also experimentally obtained by measuring a rise in temperature due to this mobile exposures and data compared with those obtained in the previous set. To seek a comparison with the safety criteria same set of measurements are performed in 10 g phantom material contained in a cubical box. These results are higher than those obtained with the knowledge of induced field measurements. It is concluded that SAR values are sensitive to the angular position of the moving platform and are well below the safety criteria prescribed for human exposure. The data are suggestive of having a fresh look to understand the mode of electromagnetic field -bio interaction.
Hydrodynamic interaction of two particles in confined linear shear flow at finite Reynolds number
NASA Astrophysics Data System (ADS)
Yan, Yiguang; Morris, Jeffrey F.; Koplik, Joel
2007-11-01
We discuss the hydrodynamic interactions of two solid bodies placed in linear shear flow between parallel plane walls in a periodic geometry at finite Reynolds number. The computations are based on the lattice Boltzmann method for particulate flow, validated here by comparison to previous results for a single particle. Most of our results pertain to cylinders in two dimensions but some examples are given for spheres in three dimensions. Either one mobile and one fixed particle or else two mobile particles are studied. The motion of a mobile particle is qualitatively similar in both cases at early times, exhibiting either trajectory reversal or bypass, depending upon the initial vector separation of the pair. At longer times, if a mobile particle does not approach a periodic image of the second, its trajectory tends to a stable limit point on the symmetry axis. The effect of interactions with periodic images is to produce nonconstant asymptotic long-time trajectories. For one free particle interacting with a fixed second particle within the unit cell, the free particle may either move to a fixed point or take up a limit cycle. Pairs of mobile particles starting from symmetric initial conditions are shown to asymptotically reach either fixed points, or mirror image limit cycles within the unit cell, or to bypass one another (and periodic images) indefinitely on a streamwise periodic trajectory. The limit cycle possibility requires finite Reynolds number and arises as a consequence of streamwise periodicity when the system length is sufficiently short.
Computational intelligence and neuromorphic computing potential for cybersecurity applications
NASA Astrophysics Data System (ADS)
Pino, Robinson E.; Shevenell, Michael J.; Cam, Hasan; Mouallem, Pierre; Shumaker, Justin L.; Edwards, Arthur H.
2013-05-01
In today's highly mobile, networked, and interconnected internet world, the flow and volume of information is overwhelming and continuously increasing. Therefore, it is believed that the next frontier in technological evolution and development will rely in our ability to develop intelligent systems that can help us process, analyze, and make-sense of information autonomously just as a well-trained and educated human expert. In computational intelligence, neuromorphic computing promises to allow for the development of computing systems able to imitate natural neurobiological processes and form the foundation for intelligent system architectures.
Mobility as an emergent property of biological organization: Insights from experimental evolution.
Wallace, Ian J; Garland, Theodore
2016-05-06
Anthropologists accept that mobility is a critical dimension of human culture, one that links economy, technology, and social relations. Less often acknowledged is that mobility depends on complex and dynamic interactions between multiple levels of our biological organization, including anatomy, physiology, neurobiology, and genetics. Here, we describe a novel experimental approach to examining the biological foundations of mobility, using mice from a long-term artificial selection experiment for high levels of voluntary exercise on wheels. In this experiment, mice from selectively bred lines have evolved to run roughly three times as far per day as those from nonselected control lines. We consider three insights gleaned from this experiment as foundational principles for the study of mobility from the perspective of biological evolution. First, an evolutionary change in mobility will necessarily be associated with alterations in biological traits both directly and indirectly connected to mobility. Second, changing mobility will result in trade-offs and constraints among some of the affected traits. Third, multiple solutions exist to altering mobility, so that various combinations of adjustments to traits linked with mobility can achieve the same overall behavioral outcome. We suggest that anthropological knowledge of variation in human mobility might be improved by greater research attention to its biological dimensions. © 2016 Wiley Periodicals, Inc.
Reciprocity in computer-human interaction: source-based, norm-based, and affect-based explanations.
Lee, Seungcheol Austin; Liang, Yuhua Jake
2015-04-01
Individuals often apply social rules when they interact with computers, and this is known as the Computers Are Social Actors (CASA) effect. Following previous work, one approach to understand the mechanism responsible for CASA is to utilize computer agents and have the agents attempt to gain human compliance (e.g., completing a pattern recognition task). The current study focuses on three key factors frequently cited to influence traditional notions of compliance: evaluations toward the source (competence and warmth), normative influence (reciprocity), and affective influence (mood). Structural equation modeling assessed the effects of these factors on human compliance with computer request. The final model shows that norm-based influence (reciprocity) increased the likelihood of compliance, while evaluations toward the computer agent did not significantly influence compliance.
ERIC Educational Resources Information Center
Carter, Elizabeth J.; Williams, Diane L.; Hodgins, Jessica K.; Lehman, Jill F.
2014-01-01
Few direct comparisons have been made between the responsiveness of children with autism to computer-generated or animated characters and their responsiveness to humans. Twelve 4-to 8-year-old children with autism interacted with a human therapist; a human-controlled, interactive avatar in a theme park; a human actor speaking like the avatar; and…
Almost human: Anthropomorphism increases trust resilience in cognitive agents.
de Visser, Ewart J; Monfort, Samuel S; McKendrick, Ryan; Smith, Melissa A B; McKnight, Patrick E; Krueger, Frank; Parasuraman, Raja
2016-09-01
We interact daily with computers that appear and behave like humans. Some researchers propose that people apply the same social norms to computers as they do to humans, suggesting that social psychological knowledge can be applied to our interactions with computers. In contrast, theories of human–automation interaction postulate that humans respond to machines in unique and specific ways. We believe that anthropomorphism—the degree to which an agent exhibits human characteristics—is the critical variable that may resolve this apparent contradiction across the formation, violation, and repair stages of trust. Three experiments were designed to examine these opposing viewpoints by varying the appearance and behavior of automated agents. Participants received advice that deteriorated gradually in reliability from a computer, avatar, or human agent. Our results showed (a) that anthropomorphic agents were associated with greater trust resilience , a higher resistance to breakdowns in trust; (b) that these effects were magnified by greater uncertainty; and c) that incorporating human-like trust repair behavior largely erased differences between the agents. Automation anthropomorphism is therefore a critical variable that should be carefully incorporated into any general theory of human–agent trust as well as novel automation design. PsycINFO Database Record (c) 2016 APA, all rights reserved
Information visualization: Beyond traditional engineering
NASA Technical Reports Server (NTRS)
Thomas, James J.
1995-01-01
This presentation addresses a different aspect of the human-computer interface; specifically the human-information interface. This interface will be dominated by an emerging technology called Information Visualization (IV). IV goes beyond the traditional views of computer graphics, CADS, and enables new approaches for engineering. IV specifically must visualize text, documents, sound, images, and video in such a way that the human can rapidly interact with and understand the content structure of information entities. IV is the interactive visual interface between humans and their information resources.
Rotorcraft Brownout Advanced Understanding, Control, and Mitigation
2014-10-31
rotor disk loading , blade loading , number and placement of rotors, number of blades, blade twist, blade tip shape, fuselage shape, as well as...Mechanical Engineering • Ramani Duraiswami, Ph.D., Associate Professor, Department of Computer Science & Insti- tute for Advanced Computer Studies • Nail ...23, 2013. 71. Mulinti, R., Corfman, K., and Kiger, K. T., “Particle-Turbulence Interaction of Suspended Load by Forced Jet Impinging on a Mobile
Human-computer interaction: psychological aspects of the human use of computing.
Olson, Gary M; Olson, Judith S
2003-01-01
Human-computer interaction (HCI) is a multidisciplinary field in which psychology and other social sciences unite with computer science and related technical fields with the goal of making computing systems that are both useful and usable. It is a blend of applied and basic research, both drawing from psychological research and contributing new ideas to it. New technologies continuously challenge HCI researchers with new options, as do the demands of new audiences and uses. A variety of usability methods have been developed that draw upon psychological principles. HCI research has expanded beyond its roots in the cognitive processes of individual users to include social and organizational processes involved in computer usage in real environments as well as the use of computers in collaboration. HCI researchers need to be mindful of the longer-term changes brought about by the use of computing in a variety of venues.
Applications of airborne ultrasound in human-computer interaction.
Dahl, Tobias; Ealo, Joao L; Bang, Hans J; Holm, Sverre; Khuri-Yakub, Pierre
2014-09-01
Airborne ultrasound is a rapidly developing subfield within human-computer interaction (HCI). Touchless ultrasonic interfaces and pen tracking systems are part of recent trends in HCI and are gaining industry momentum. This paper aims to provide the background and overview necessary to understand the capabilities of ultrasound and its potential future in human-computer interaction. The latest developments on the ultrasound transducer side are presented, focusing on capacitive micro-machined ultrasonic transducers, or CMUTs. Their introduction is an important step toward providing real, low-cost multi-sensor array and beam-forming options. We also provide a unified mathematical framework for understanding and analyzing algorithms used for ultrasound detection and tracking for some of the most relevant applications. Copyright © 2014. Published by Elsevier B.V.
Portable tongue-supported human computer interaction system design and implementation.
Quain, Rohan; Khan, Masood Mehmood
2014-01-01
Tongue supported human-computer interaction (TSHCI) systems can help critically ill patients interact with both computers and people. These systems can be particularly useful for patients suffering injuries above C7 on their spinal vertebrae. Despite recent successes in their application, several limitations restrict performance of existing TSHCI systems and discourage their use in real life situations. This paper proposes a low-cost, less-intrusive, portable and easy to use design for implementing a TSHCI system. Two applications of the proposed system are reported. Design considerations and performance of the proposed system are also presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-29
..., Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers, and Components Thereof... certain electronic devices, including mobile phones, mobile tablets, portable music players, and computers... mobile phones, mobile tablets, portable music players, and computers, and components thereof that...
Brain-Computer Interfaces: A Neuroscience Paradigm of Social Interaction? A Matter of Perspective
Mattout, Jérémie
2012-01-01
A number of recent studies have put human subjects in true social interactions, with the aim of better identifying the psychophysiological processes underlying social cognition. Interestingly, this emerging Neuroscience of Social Interactions (NSI) field brings up challenges which resemble important ones in the field of Brain-Computer Interfaces (BCI). Importantly, these challenges go beyond common objectives such as the eventual use of BCI and NSI protocols in the clinical domain or common interests pertaining to the use of online neurophysiological techniques and algorithms. Common fundamental challenges are now apparent and one can argue that a crucial one is to develop computational models of brain processes relevant to human interactions with an adaptive agent, whether human or artificial. Coupled with neuroimaging data, such models have proved promising in revealing the neural basis and mental processes behind social interactions. Similar models could help BCI to move from well-performing but offline static machines to reliable online adaptive agents. This emphasizes a social perspective to BCI, which is not limited to a computational challenge but extends to all questions that arise when studying the brain in interaction with its environment. PMID:22675291
Rafii, Shahin; Jaspers, Janneke E.; White, Ian A.; Hooper, Andrea T.; Doevendans, Pieter A.; Verhaar, Marianne C.
2013-01-01
Background Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired –at least partly– due to dysfunction of the bone marrow stromal compartment. Methods Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1+Flk-1+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34+ hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell–endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. Results In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. Conclusion EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients. PMID:23555959
Westerweel, Peter E; Teraa, Martin; Rafii, Shahin; Jaspers, Janneke E; White, Ian A; Hooper, Andrea T; Doevendans, Pieter A; Verhaar, Marianne C
2013-01-01
Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment. Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+)Flk-1(+) EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+) hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.
Human computer confluence applied in healthcare and rehabilitation.
Viaud-Delmon, Isabelle; Gaggioli, Andrea; Ferscha, Alois; Dunne, Stephen
2012-01-01
Human computer confluence (HCC) is an ambitious research program studying how the emerging symbiotic relation between humans and computing devices can enable radically new forms of sensing, perception, interaction, and understanding. It is an interdisciplinary field, bringing together researches from horizons as various as pervasive computing, bio-signals processing, neuroscience, electronics, robotics, virtual & augmented reality, and provides an amazing potential for applications in medicine and rehabilitation.
A reconfigurable computing platform for plume tracking with mobile sensor networks
NASA Astrophysics Data System (ADS)
Kim, Byung Hwa; D'Souza, Colin; Voyles, Richard M.; Hesch, Joel; Roumeliotis, Stergios I.
2006-05-01
Much work has been undertaken recently toward the development of low-power, high-performance sensor networks. There are many static remote sensing applications for which this is appropriate. The focus of this development effort is applications that require higher performance computation, but still involve severe constraints on power and other resources. Toward that end, we are developing a reconfigurable computing platform for miniature robotic and human-deployed sensor systems composed of several mobile nodes. The system provides static and dynamic reconfigurability for both software and hardware by the combination of CPU (central processing unit) and FPGA (field-programmable gate array) allowing on-the-fly reprogrammability. Static reconfigurability of the hardware manifests itself in the form of a "morphing bus" architecture that permits the modular connection of various sensors with no bus interface logic. Dynamic hardware reconfigurability provides for the reallocation of hardware resources at run-time as the mobile, resource-constrained nodes encounter unknown environmental conditions that render various sensors ineffective. This computing platform will be described in the context of work on chemical/biological/radiological plume tracking using a distributed team of mobile sensors. The objective for a dispersed team of ground and/or aerial autonomous vehicles (or hand-carried sensors) is to acquire measurements of the concentration of the chemical agent from optimal locations and estimate its source and spread. This requires appropriate distribution, coordination and communication within the team members across a potentially unknown environment. The key problem is to determine the parameters of the distribution of the harmful agent so as to use these values for determining its source and predicting its spread. The accuracy and convergence rate of this estimation process depend not only on the number and accuracy of the sensor measurements but also on their spatial distribution over time (the sampling strategy). For the safety of a human-deployed distribution of sensors, optimized trajectories to minimize human exposure are also of importance. The systems described in this paper are currently being developed. Parts of the system are already in existence and some results from these are described.
Look and Feel: Haptic Interaction for Biomedicine
1995-10-01
algorithm that is evaluated within the topology of the model. During each time step, forces are summed for each mobile atom based on external forces...volumetric properties; (b) conserving computation power by rendering media local to the interaction point; and (c) evaluating the simulation within...alteration of the model topology. Simulation of the DSM state is accomplished by a multi-step algorithm that is evaluated within the topology of the
Augmented reality and photogrammetry: A synergy to visualize physical and virtual city environments
NASA Astrophysics Data System (ADS)
Portalés, Cristina; Lerma, José Luis; Navarro, Santiago
2010-01-01
Close-range photogrammetry is based on the acquisition of imagery to make accurate measurements and, eventually, three-dimensional (3D) photo-realistic models. These models are a photogrammetric product per se. They are usually integrated into virtual reality scenarios where additional data such as sound, text or video can be introduced, leading to multimedia virtual environments. These environments allow users both to navigate and interact on different platforms such as desktop PCs, laptops and small hand-held devices (mobile phones or PDAs). In very recent years, a new technology derived from virtual reality has emerged: Augmented Reality (AR), which is based on mixing real and virtual environments to boost human interactions and real-life navigations. The synergy of AR and photogrammetry opens up new possibilities in the field of 3D data visualization, navigation and interaction far beyond the traditional static navigation and interaction in front of a computer screen. In this paper we introduce a low-cost outdoor mobile AR application to integrate buildings of different urban spaces. High-accuracy 3D photo-models derived from close-range photogrammetry are integrated in real (physical) urban worlds. The augmented environment that is presented herein requires for visualization a see-through video head mounted display (HMD), whereas user's movement navigation is achieved in the real world with the help of an inertial navigation sensor. After introducing the basics of AR technology, the paper will deal with real-time orientation and tracking in combined physical and virtual city environments, merging close-range photogrammetry and AR. There are, however, some software and complex issues, which are discussed in the paper.
Communication: Polymer entanglement dynamics: Role of attractive interactions
Grest, Gary S.
2016-10-10
The coupled dynamics of entangled polymers, which span broad time and length scales, govern their unique viscoelastic properties. To follow chain mobility by numerical simulations from the intermediate Rouse and reptation regimes to the late time diffusive regime, highly coarse grained models with purely repulsive interactions between monomers are widely used since they are computationally the most efficient. In this paper, using large scale molecular dynamics simulations, the effect of including the attractive interaction between monomers on the dynamics of entangled polymer melts is explored for the first time over a wide temperature range. Attractive interactions have little effect onmore » the local packing for all temperatures T and on the chain mobility for T higher than about twice the glass transition T g. Finally, these results, across a broad range of molecular weight, show that to study the dynamics of entangled polymer melts, the interactions can be treated as pure repulsive, confirming a posteriori the validity of previous studies and opening the way to new large scale numerical simulations.« less
Mobility in hospital work: towards a pervasive computing hospital environment.
Morán, Elisa B; Tentori, Monica; González, Víctor M; Favela, Jesus; Martínez-Garcia, Ana I
2007-01-01
Handheld computers are increasingly being used by hospital workers. With the integration of wireless networks into hospital information systems, handheld computers can provide the basis for a pervasive computing hospital environment; to develop this designers need empirical information to understand how hospital workers interact with information while moving around. To characterise the medical phenomena we report the results of a workplace study conducted in a hospital. We found that individuals spend about half of their time at their base location, where most of their interactions occur. On average, our informants spent 23% of their time performing information management tasks, followed by coordination (17.08%), clinical case assessment (15.35%) and direct patient care (12.6%). We discuss how our results offer insights for the design of pervasive computing technology, and directions for further research and development in this field such as transferring information between heterogeneous devices and integration of the physical and digital domains.
Mapping of unknown industrial plant using ROS-based navigation mobile robot
NASA Astrophysics Data System (ADS)
Priyandoko, G.; Ming, T. Y.; Achmad, M. S. H.
2017-10-01
This research examines how humans work with teleoperated unmanned mobile robot inspection in industrial plant area resulting 2D/3D map for further critical evaluation. This experiment focuses on two parts, the way human-robot doing remote interactions using robust method and the way robot perceives the environment surround as a 2D/3D perspective map. ROS (robot operating system) as a tool was utilized in the development and implementation during the research which comes up with robust data communication method in the form of messages and topics. RGBD SLAM performs the visual mapping function to construct 2D/3D map using Kinect sensor. The results showed that the mobile robot-based teleoperated system are successful to extend human perspective in term of remote surveillance in large area of industrial plant. It was concluded that the proposed work is robust solution for large mapping within an unknown construction building.
Mobile, Collaborative Situated Knowledge Creation for Urban Planning
Zurita, Gustavo; Baloian, Nelson
2012-01-01
Geo-collaboration is an emerging research area in computer sciences studying the way spatial, geographically referenced information and communication technologies can support collaborative activities. Scenarios in which information associated to its physical location are of paramount importance are often referred as Situated Knowledge Creation scenarios. To date there are few computer systems supporting knowledge creation that explicitly incorporate physical context as part of the knowledge being managed in mobile face-to-face scenarios. This work presents a collaborative software application supporting visually-geo-referenced knowledge creation in mobile working scenarios while the users are interacting face-to-face. The system allows to manage data information associated to specific physical locations for knowledge creation processes in the field, such as urban planning, identifying specific physical locations, territorial management, etc.; using Tablet-PCs and GPS in order to geo-reference data and information. It presents a model for developing mobile applications supporting situated knowledge creation in the field, introducing the requirements for such an application and the functionalities it should have in order to fulfill them. The paper also presents the results of utility and usability evaluations. PMID:22778639
Mobile, collaborative situated knowledge creation for urban planning.
Zurita, Gustavo; Baloian, Nelson
2012-01-01
Geo-collaboration is an emerging research area in computer sciences studying the way spatial, geographically referenced information and communication technologies can support collaborative activities. Scenarios in which information associated to its physical location are of paramount importance are often referred as Situated Knowledge Creation scenarios. To date there are few computer systems supporting knowledge creation that explicitly incorporate physical context as part of the knowledge being managed in mobile face-to-face scenarios. This work presents a collaborative software application supporting visually-geo-referenced knowledge creation in mobile working scenarios while the users are interacting face-to-face. The system allows to manage data information associated to specific physical locations for knowledge creation processes in the field, such as urban planning, identifying specific physical locations, territorial management, etc.; using Tablet-PCs and GPS in order to geo-reference data and information. It presents a model for developing mobile applications supporting situated knowledge creation in the field, introducing the requirements for such an application and the functionalities it should have in order to fulfill them. The paper also presents the results of utility and usability evaluations.
Mobile Phone–based Infectious Disease Surveillance System, Sri Lanka
Sawford, Kate; Daniel, Samson L.A.; Nelson, Trisalyn A.; Stephen, Craig
2010-01-01
Because many infectious diseases are emerging in animals in low-income and middle-income countries, surveillance of animal health in these areas may be needed for forecasting disease risks to humans. We present an overview of a mobile phone–based frontline surveillance system developed and implemented in Sri Lanka. Field veterinarians reported animal health information by using mobile phones. Submissions increased steadily over 9 months, with ≈4,000 interactions between field veterinarians and reports on the animal population received by the system. Development of human resources and increased communication between local stakeholders (groups and persons whose actions are affected by emerging infectious diseases and animal health) were instrumental for successful implementation. The primary lesson learned was that mobile phone–based surveillance of animal populations is acceptable and feasible in lower-resource settings. However, any system implementation plan must consider the time needed to garner support for novel surveillance methods among users and stakeholders. PMID:20875276
Enhancing Knowledge Flow in a Health Care Context: A Mobile Computing Approach
Souza, Diego Da Silva; de Lima, Patrícia Zudio; da Silveira, Pedro C; de Souza, Jano Moreira
2014-01-01
Background Advances in mobile computing and wireless communication have allowed people to interact and exchange knowledge almost anywhere. These technologies support Medicine 2.0, where the health knowledge flows among all involved people (eg, patients, caregivers, doctors, and patients’ relatives). Objective Our paper proposes a knowledge-sharing environment that takes advantage of mobile computing and contextual information to support knowledge sharing among participants within a health care community (ie, from patients to health professionals). This software environment enables knowledge exchange using peer-to-peer (P2P) mobile networks based on users’ profiles, and it facilitates face-to-face interactions among people with similar health interests, needs, or goals. Methods First, we reviewed and analyzed relevant scientific articles and software apps to determine the current state of knowledge flow within health care. Although no proposal was capable of addressing every aspect in the Medicine 2.0 paradigm, a list of requirements was compiled. Using this requirement list and our previous works, a knowledge-sharing environment was created integrating Mobile Exchange of Knowledge (MEK) and the Easy to Deploy Indoor Positioning System (EDIPS), and a twofold qualitative evaluation was performed. Second, we analyzed the efficiency and reliability of the knowledge that the integrated MEK-EDIPS tool provided to users according to their interest topics, and then performed a proof of concept with health professionals to determine the feasibility and usefulness of using this solution in a real-world scenario. Results . Using MEK, we reached 100% precision and 80% recall in the exchange of files within the peer-to-peer network. The mechanism that facilitated face-to-face interactions was evaluated by the difference between the location indicated by the EDIPS tool and the actual location of the people involved in the knowledge exchange. The average distance error was <6.28 m for an indoor environment. The usability and usefulness of this tool was assessed by questioning a sample of 18 health professionals: 94% (17/18) agreed the integrated MEK-EDIPS tool provides greater interaction among all the participants (eg, patients, caregivers, doctors, and patients’ relatives), most considered it extremely important in the health scenario, 72% (13/18) believed it could increase the knowledge flow in a health environment, and 67% (12/18) recommend it or would like to recommend its use. Conclusions The integrated MEK-EDIPS tool can provide more services than any other software tool analyzed in this paper. The proposed integrated MEK-EDIPS tool seems to be the best alternative for supporting health knowledge flow within the Medicine 2.0 paradigm. PMID:25427923
NASA Astrophysics Data System (ADS)
Barrett, Christopher L.; Bisset, Keith; Chen, Jiangzhuo; Eubank, Stephen; Lewis, Bryan; Kumar, V. S. Anil; Marathe, Madhav V.; Mortveit, Henning S.
Human behavior, social networks, and the civil infrastructures are closely intertwined. Understanding their co-evolution is critical for designing public policies and decision support for disaster planning. For example, human behaviors and day to day activities of individuals create dense social interactions that are characteristic of modern urban societies. These dense social networks provide a perfect fabric for fast, uncontrolled disease propagation. Conversely, people’s behavior in response to public policies and their perception of how the crisis is unfolding as a result of disease outbreak can dramatically alter the normally stable social interactions. Effective planning and response strategies must take these complicated interactions into account. In this chapter, we describe a computer simulation based approach to study these issues using public health and computational epidemiology as an illustrative example. We also formulate game-theoretic and stochastic optimization problems that capture many of the problems that we study empirically.
Learning models of Human-Robot Interaction from small data
Zehfroosh, Ashkan; Kokkoni, Elena; Tanner, Herbert G.; Heinz, Jeffrey
2018-01-01
This paper offers a new approach to learning discrete models for human-robot interaction (HRI) from small data. In the motivating application, HRI is an integral part of a pediatric rehabilitation paradigm that involves a play-based, social environment aiming at improving mobility for infants with mobility impairments. Designing interfaces in this setting is challenging, because in order to harness, and eventually automate, the social interaction between children and robots, a behavioral model capturing the causality between robot actions and child reactions is needed. The paper adopts a Markov decision process (MDP) as such a model, and selects the transition probabilities through an empirical approximation procedure called smoothing. Smoothing has been successfully applied in natural language processing (NLP) and identification where, similarly to the current paradigm, learning from small data sets is crucial. The goal of this paper is two-fold: (i) to describe our application of HRI, and (ii) to provide evidence that supports the application of smoothing for small data sets. PMID:29492408
Learning models of Human-Robot Interaction from small data.
Zehfroosh, Ashkan; Kokkoni, Elena; Tanner, Herbert G; Heinz, Jeffrey
2017-07-01
This paper offers a new approach to learning discrete models for human-robot interaction (HRI) from small data. In the motivating application, HRI is an integral part of a pediatric rehabilitation paradigm that involves a play-based, social environment aiming at improving mobility for infants with mobility impairments. Designing interfaces in this setting is challenging, because in order to harness, and eventually automate, the social interaction between children and robots, a behavioral model capturing the causality between robot actions and child reactions is needed. The paper adopts a Markov decision process (MDP) as such a model, and selects the transition probabilities through an empirical approximation procedure called smoothing. Smoothing has been successfully applied in natural language processing (NLP) and identification where, similarly to the current paradigm, learning from small data sets is crucial. The goal of this paper is two-fold: (i) to describe our application of HRI, and (ii) to provide evidence that supports the application of smoothing for small data sets.
Exploring the Early Universe on Mobile Devices
NASA Astrophysics Data System (ADS)
Kocevski, Dale; McGrath, E. J.; CANDELS Collaboration
2014-01-01
The widespread adoption of smart phones and tablet computers has the potential to revolutionize the way in which educational material is shared with the general public. As part of the outreach effort for the CANDELS survey, we have developed a free interactive astronomy education application named Hubble Universe for iPad and iPhone devices. The application focuses on extragalactic science topics related to the CANDELS legacy survey, which is documenting galaxy evolution in the early universe. I will provide an overview of the application, which contains a wide range of interactive content, including 3D models of astrophysical phenomenon, informative diagrams and computer simulations. I will discuss how the application can be used to enhance classroom learning both by providing a database of interactive media and by encouraging students to explore astronomical topics away from traditional settings like the classroom or the desktop computer.
Social robots as embedded reinforcers of social behavior in children with autism.
Kim, Elizabeth S; Berkovits, Lauren D; Bernier, Emily P; Leyzberg, Dan; Shic, Frederick; Paul, Rhea; Scassellati, Brian
2013-05-01
In this study we examined the social behaviors of 4- to 12-year-old children with autism spectrum disorders (ASD; N = 24) during three tradic interactions with an adult confederate and an interaction partner, where the interaction partner varied randomly among (1) another adult human, (2) a touchscreen computer game, and (3) a social dinosaur robot. Children spoke more in general, and directed more speech to the adult confederate, when the interaction partner was a robot, as compared to a human or computer game interaction partner. Children spoke as much to the robot as to the adult interaction partner. This study provides the largest demonstration of social human-robot interaction in children with autism to date. Our findings suggest that social robots may be developed into useful tools for social skills and communication therapies, specifically by embedding social interaction into intrinsic reinforcers and motivators.
ERIC Educational Resources Information Center
Siler, Stephanie Ann; VanLehn, Kurt
2009-01-01
Face-to-face (FTF) human-human tutoring has ranked among the most effective forms of instruction. However, because computer-mediated (CM) tutoring is becoming increasingly common, it is instructive to evaluate its effectiveness relative to face-to-face tutoring. Does the lack of spoken, face-to-face interaction affect learning gains and…
ERIC Educational Resources Information Center
Tsai, Yueh-Feng; Kaufman, David
2014-01-01
Previous research by Tsai and Kaufman (2010a, 2010b) has suggested that computer-simulated virtual pet dogs can be used as a potential medium to enhance children's development of empathy and humane attitudes toward animals. To gain a deeper understanding of how and why interacting with a virtual pet dog might influence children's social and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lad, P.M.; Olson, C.V.; Grewal, I.S.
1986-03-05
Treatment of PMN's with PT causes an abolition of chemotaxis, enzyme release, superoxide generation and aggregation caused by f-met-leu-phe (FMLP),C5a and platelet activating factor (PAF). Lectin (Con-A) induced capping and receptor induced shape change are abolished, but phagocytosis is unaltered. In whole cells, calcium mobilization induced by FMLP, PAF and Con-A inhibited by PT although the FMLP-mediated effect is more susceptible to PT's effects. Treatment of PMN's with phorbol 12-myristate 13 acetate (PMA) causes an abolition of calcium mobilization by all agents in a range which also inhibits cap formation. Investigation of calcium uptake reveals PT sensitive and insensitive components.more » Reciprocal interactions between Ns and Ni proteins are also observed since pretreatment with FMLP and PAF causes a stimulation of Ns-mediated cyclic AMP enhancement while pretreatment with Ns linked receptors (PGE/sub 1/ and beta receptor agonists) inhibits calcium mobilization. Comparative peptide mapping studies indicate substantial similarity between Ni proteins in PMN's, platelets and human erythrocytes. The authors results suggest that the Ni linked calcium mobilization sensitive to PMA is important to the regulation of the human neutrophil.« less
Zhang, Zelun; Poslad, Stefan
2013-11-01
Wearable and accompanied sensors and devices are increasingly being used for user activity recognition. However, typical GPS-based and accelerometer-based (ACC) methods face three main challenges: a low recognition accuracy; a coarse recognition capability, i.e., they cannot recognise both human posture (during travelling) and transportation mode simultaneously, and a relatively high computational complexity. Here, a new GPS and Foot-Force (GPS + FF) sensor method is proposed to overcome these challenges that leverages a set of wearable FF sensors in combination with GPS, e.g., in a mobile phone. User mobility activities that can be recognised include both daily user postures and common transportation modes: sitting, standing, walking, cycling, bus passenger, car passenger (including private cars and taxis) and car driver. The novelty of this work is that our approach provides a more comprehensive recognition capability in terms of reliably recognising both human posture and transportation mode simultaneously during travel. In addition, by comparing the new GPS + FF method with both an ACC method (62% accuracy) and a GPS + ACC based method (70% accuracy) as baseline methods, it obtains a higher accuracy (95%) with less computational complexity, when tested on a dataset obtained from ten individuals.
The opportunistic transmission of wireless worms between mobile devices
NASA Astrophysics Data System (ADS)
Rhodes, C. J.; Nekovee, M.
2008-12-01
The ubiquity of portable wireless-enabled computing and communications devices has stimulated the emergence of malicious codes (wireless worms) that are capable of spreading between spatially proximal devices. The potential exists for worms to be opportunistically transmitted between devices as they move around, so human mobility patterns will have an impact on epidemic spread. The scenario we address in this paper is proximity attacks from fleetingly in-contact wireless devices with short-range communication range, such as Bluetooth-enabled smart phones. An individual-based model of mobile devices is introduced and the effect of population characteristics and device behaviour on the outbreak dynamics is investigated. The model uses straight-line motion to achieve population, though it is recognised that this is a highly simplified representation of human mobility patterns. We show that the contact rate can be derived from the underlying mobility model and, through extensive simulation, that mass-action epidemic models remain applicable to worm spreading in the low density regime studied here. The model gives useful analytical expressions against which more refined simulations of worm spread can be developed and tested.
Ubiquitous Mobile Knowledge Construction in Collaborative Learning Environments
Baloian, Nelson; Zurita, Gustavo
2012-01-01
Knowledge management is a critical activity for any organization. It has been said to be a differentiating factor and an important source of competitiveness if this knowledge is constructed and shared among its members, thus creating a learning organization. Knowledge construction is critical for any collaborative organizational learning environment. Nowadays workers must perform knowledge creation tasks while in motion, not just in static physical locations; therefore it is also required that knowledge construction activities be performed in ubiquitous scenarios, and supported by mobile and pervasive computational systems. These knowledge creation systems should help people in or outside organizations convert their tacit knowledge into explicit knowledge, thus supporting the knowledge construction process. Therefore in our understanding, we consider highly relevant that undergraduate university students learn about the knowledge construction process supported by mobile and ubiquitous computing. This has been a little explored issue in this field. This paper presents the design, implementation, and an evaluation of a system called MCKC for Mobile Collaborative Knowledge Construction, supporting collaborative face-to-face tacit knowledge construction and sharing in ubiquitous scenarios. The MCKC system can be used by undergraduate students to learn how to construct knowledge, allowing them anytime and anywhere to create, make explicit and share their knowledge with their co-learners, using visual metaphors, gestures and sketches to implement the human-computer interface of mobile devices (PDAs). PMID:22969333
Ubiquitous mobile knowledge construction in collaborative learning environments.
Baloian, Nelson; Zurita, Gustavo
2012-01-01
Knowledge management is a critical activity for any organization. It has been said to be a differentiating factor and an important source of competitiveness if this knowledge is constructed and shared among its members, thus creating a learning organization. Knowledge construction is critical for any collaborative organizational learning environment. Nowadays workers must perform knowledge creation tasks while in motion, not just in static physical locations; therefore it is also required that knowledge construction activities be performed in ubiquitous scenarios, and supported by mobile and pervasive computational systems. These knowledge creation systems should help people in or outside organizations convert their tacit knowledge into explicit knowledge, thus supporting the knowledge construction process. Therefore in our understanding, we consider highly relevant that undergraduate university students learn about the knowledge construction process supported by mobile and ubiquitous computing. This has been a little explored issue in this field. This paper presents the design, implementation, and an evaluation of a system called MCKC for Mobile Collaborative Knowledge Construction, supporting collaborative face-to-face tacit knowledge construction and sharing in ubiquitous scenarios. The MCKC system can be used by undergraduate students to learn how to construct knowledge, allowing them anytime and anywhere to create, make explicit and share their knowledge with their co-learners, using visual metaphors, gestures and sketches to implement the human-computer interface of mobile devices (PDAs).
The study of early human embryos using interactive 3-dimensional computer reconstructions.
Scarborough, J; Aiton, J F; McLachlan, J C; Smart, S D; Whiten, S C
1997-07-01
Tracings of serial histological sections from 4 human embryos at different Carnegie stages were used to create 3-dimensional (3D) computer models of the developing heart. The models were constructed using commercially available software developed for graphic design and the production of computer generated virtual reality environments. They are available as interactive objects which can be downloaded via the World Wide Web. This simple method of 3D reconstruction offers significant advantages for understanding important events in morphological sciences.
Technological choices for mobile clinical applications.
Ehrler, Frederic; Issom, David; Lovis, Christian
2011-01-01
The rise of cheaper and more powerful mobile devices make them a new and attractive platform for clinical applications. The interaction paradigm and portability of the device facilitates bedside human-machine interactions. The better accessibility to information and decision-support anywhere in the hospital improves the efficiency and the safety of care processes. In this study, we attempt to find out what are the most appropriate Operating System (OS) and Software Development Kit (SDK) to support the development of clinical applications on mobile devices. The Android platform is a Linux-based, open source platform that has many advantages. Two main SDKs are available on this platform: the native Android and the Adobe Flex SDK. Both of them have interesting features, but the latter has been preferred due its portability at comparable performance and ease of development.
From Paper to PDA: Design and Evaluation of a Clinical Ward Instruction on a Mobile Device
NASA Astrophysics Data System (ADS)
Kanstrup, Anne Marie; Stage, Jan
Mobile devices with small screens and minimal facilities for interaction are increasingly being used in complex human activities for accessing and processing information, while the user is moving. This paper presents a case study of the design and evaluation of a mobile system, which involved transformation of complex text and tables to digital format on a PDA. The application domain was an emergency medical ward, and the user group was junior registrars. We designed a PDA-based system for accessing information, focusing on the ward instruction, implemented a prototype and evaluated it for usability and utility. The evaluation results indicate significant problems in the interaction with the system as well as the extent to which the system is useful for junior registrars in their daily work.
Inferring Human Activity in Mobile Devices by Computing Multiple Contexts.
Chen, Ruizhi; Chu, Tianxing; Liu, Keqiang; Liu, Jingbin; Chen, Yuwei
2015-08-28
This paper introduces a framework for inferring human activities in mobile devices by computing spatial contexts, temporal contexts, spatiotemporal contexts, and user contexts. A spatial context is a significant location that is defined as a geofence, which can be a node associated with a circle, or a polygon; a temporal context contains time-related information that can be e.g., a local time tag, a time difference between geographical locations, or a timespan; a spatiotemporal context is defined as a dwelling length at a particular spatial context; and a user context includes user-related information that can be the user's mobility contexts, environmental contexts, psychological contexts or social contexts. Using the measurements of the built-in sensors and radio signals in mobile devices, we can snapshot a contextual tuple for every second including aforementioned contexts. Giving a contextual tuple, the framework evaluates the posteriori probability of each candidate activity in real-time using a Naïve Bayes classifier. A large dataset containing 710,436 contextual tuples has been recorded for one week from an experiment carried out at Texas A&M University Corpus Christi with three participants. The test results demonstrate that the multi-context solution significantly outperforms the spatial-context-only solution. A classification accuracy of 61.7% is achieved for the spatial-context-only solution, while 88.8% is achieved for the multi-context solution.
Cranfield, Charles G; Wieser, Heinz Gregor; Dobson, Jon
2003-09-01
The interaction of mobile phone RF emissions with biogenic magnetite in the human brain has been proposed as a potential mechanism for mobile phone bioeffects. This is of particular interest in light of the discovery of magnetite in human brain tissue. Previous experiments using magnetite-containing bacteria exposed directly to emissions from a mobile phone have indicated that these emissions might be causing greater levels of cell death in these bacterial populations when compared to sham exposures. A repeat of these experiments examining only the radio frequency (RF) global system for mobile communication (GSM) component of the mobile phone signal in a well-defined waveguide system (REFLEX), shows no significant change in cell mortality compared to sham exposures. A nonmagnetite containing bacterial cell strain (CC-26) with similar genotype and phenotype to the magnetotactic bacteria was used as a control. These also showed no significant change in cell mortality between RF and sham exposed samples. Results indicate that the RF components of mobile phone exposure do not appear to be responsible for previous findings indicating cell mortality as a result of direct mobile phone exposure. A further mobile phone emission component that should be investigated is the 2-Hz magnetic field pulse generated by battery currents during periods of discontinuous transmission.
Can Districts Keep Good Teachers in the Schools that Need Them Most?
ERIC Educational Resources Information Center
Guarino, Cassandra M.; Brown, Abigail B.; Wyse, Adam E.
2011-01-01
This study investigates how school demographics and their interactions with policies affect the mobility behaviors of public school teachers with various human capital characteristics. Using data from North Carolina from 1995 to 2006, it finds that teachers' career stage and human capital investments dominate their decisions to leave public school…
ERIC Educational Resources Information Center
Johnston, Kevin McCullough
2001-01-01
Considers the design of corporate communications for electronic business and discusses the increasing importance of corporate interaction as companies work in virtual environments. Compares sociological and psychological theories of human interaction and relationship formation with organizational interaction theories of corporate relationship…
Chen, Po-Yin; Wei, Shun-Hwa; Hsieh, Wan-Ling; Cheen, Jang-Rong; Chen, Liang-Kung; Kao, Chung-Lan
2012-01-01
Declined balance functions have adverse effects on elderly population. Lower limbs muscle power training is currently an emerging concept in rehabilitation on individuals with decreased balance and mobility. In this prospective, controlled study, we used a human-computer interactive video-game-based rehabilitation device (LLPR) for training of lower limb muscle power in the elderly. Forty (aged >65 years) individuals were recruited from the community. Twenty participants in the exercise group received 30-min training, twice a week, using the LLPR system. The LLPR system allows participants to perform fast speed sit-to-stand (STS) movements. Twenty age-matched participants in the control group performed slow speed STS movements, as well as strengthening and balance exercises, with the same frequency and duration. The results were compared after 12 sessions (6 weeks) of training. The mechanical and time parameters during STS movement were measured using the LLPR system. Modified falls efficacy scale (MFES), Tinetti Performance-Oriented Mobility Assessment (POMA), function reach test, five times sit to stand (FTSS) and Timed Up and Go (TUG) were administered to participants as clinical assessments. Results showed that in the exercise group, all the mechanical and time parameters showed significant improvement. In control group, only the maximal vertical ground reaction force (MVGRF) improved significantly. For clinical assessments (balance, mobility, and self-confidence), exercise group showed significantly better scores. The STS movements in video-game-based training mimic real life situations which may help to transfer the training effects into daily activities. The effectiveness of lower limb muscle training is worthy of further investigation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Meeting the challenges of installing a mobile robotic system
NASA Technical Reports Server (NTRS)
Decorte, Celeste
1994-01-01
The challenges of integrating a mobile robotic system into an application environment are many. Most problems inherent to installing the mobile robotic system fall into one of three categories: (1) the physical environment - location(s) where, and conditions under which, the mobile robotic system will work; (2) the technological environment - external equipment with which the mobile robotic system will interact; and (3) the human environment - personnel who will operate and interact with the mobile robotic system. The successful integration of a mobile robotic system into these three types of application environment requires more than a good pair of pliers. The tools for this job include: careful planning, accurate measurement data (as-built drawings), complete technical data of systems to be interfaced, sufficient time and attention of key personnel for training on how to operate and program the robot, on-site access during installation, and a thorough understanding and appreciation - by all concerned - of the mobile robotic system's role in the security mission at the site, as well as the machine's capabilities and limitations. Patience, luck, and a sense of humor are also useful tools to keep handy during a mobile robotic system installation. This paper will discuss some specific examples of problems in each of three categories, and explore approaches to solving these problems. The discussion will draw from the author's experience with on-site installations of mobile robotic systems in various applications. Most of the information discussed in this paper has come directly from knowledge learned during installations of Cybermotion's SR2 security robots. A large part of the discussion will apply to any vehicle with a drive system, collision avoidance, and navigation sensors, which is, of course, what makes a vehicle autonomous. And it is with these sensors and a drive system that the installer must become familiar in order to foresee potential trouble areas in the physical, technical, and human environment.
Mortazavi, S M J; Rouintan, M S; Taeb, S; Dehghan, N; Ghaffarpanah, A A; Sadeghi, Z; Ghafouri, F
2012-06-01
The worldwide dramatic increase in mobile phone use has generated great concerns about the detrimental effects of microwave radiations emitted by these communication devices. Reaction time plays a critical role in performing tasks necessary to avoid hazards. As far as we know, this study is the first survey that reports decreased reaction time after exposure to electromagnetic fields generated by a high specific absorption rate mobile phone. It is also the first study in which previous history of mobile phone use is taken into account. The aim of this study was to assess both the acute and chronic effects of electromagnetic fields emitted by mobile phones on reaction time in university students. Visual reaction time (VRT) of young university students was recorded with a simple blind computer-assisted-VRT test, before and after a 10 min real/sham exposure to electromagnetic fields of mobile phones. Participants were 160 right-handed university students aged 18-31. To assess the effect of chronic exposures, the reaction time in sham-exposed phases were compared among low level, moderate and frequent users of mobile phones. The mean ± SD reaction time after real exposure and sham exposure were 286.78 ± 31.35 ms and 295.86 ± 32.17 ms (P < 0.001), respectively. The age of students did not significantly alter the reaction time either in talk or in standby mode. The reaction time either in talk or in standby mode was shorter in male students. The students' VRT was significantly affected by exposure to electromagnetic fields emitted by a mobile phone. It can be concluded that these exposures cause decreased reaction time, which may lead to a better response to different hazards. In this light, this phenomenon might decrease the chances of human errors and fatal accidents.
Lau, A Y S; Siek, K A; Fernandez-Luque, L; Tange, H; Chhanabhai, P; Li, S Y W; Elkin, P L; Arjabi, A; Walczowski, L; Ang, C S; Eysenbach, G
2011-01-01
: To provide an overview on social media for consumers and patients in areas of health behaviours and outcomes. A directed review of recent literature. : We discuss the limitations and challenges of social media, ranging from social network sites (SNSs), computer games, mobile applications, to online videos. An overview of current users of social media (Generation Y), and potential users (such as low socioeconomic status and the chronically ill populations) is also presented. Future directions in social media research are also discussed. : We encourage the health informatics community to consider the socioeconomic class, age, culture, and literacy level of their populations, and select an appropriate medium and platform when designing social networked interventions for health. Little is known about the impact of second-hand experiences faciliated by social media, nor the quality and safety of social networks on health. Methodologies and theories from human computer interaction, human factors engineering and psychology may help guide the challenges in designing and evaluating social networked interventions for health. Further, by analysing how people search and navigate social media for health purposes, infodemiology and infoveillance are promising areas of research that should provide valuable insights on present and emergening health behaviours on a population scale.
Allen, Jacob E; Mansergh, Gordon; Mimiaga, Matthew J; Holman, Jeremy; Herbst, Jeffrey H
2017-05-01
Men who have sex with men (MSM) have a relatively high prevalence of sexually transmitted infections (STIs). This study examines the association of self-reported STIs and use of mobile phones and/or computer-based Internet to meet sexual partners among black and Hispanic/Latino MSM in the United States. Black and Hispanic/Latino MSM (N = 853) were recruited from 3 US cities (Chicago, IL; Kansas City, MO; and Fort Lauderdale, FL) via online and community outreach. Men completed a computer-assisted, self-interview assessment on demographics, use of mobile phones and computer-based Internet for sex-seeking, sexual risk behavior, and self-reported bacterial STIs in the past year. Multivariable logistic regression was used to model independent associations of STIs and use of these technologies to meet sexual partners. Twenty-three percent of the sample reported having an STI in the past year; 29% reported using a mobile phone and 28% a computer-based Internet mostly for sex-seeking; and 22% reported using both. Number of male sexual partners (past year) was associated with any STI (adjusted odds ratio, 1.03; 95% confidence interval, 1.01-1.06). Adjusting for human immunodeficiency virus status, number of male sexual partners (past year), and demographic variables, men who reported use of both mobile phones and computer-based Internet for sex-seeking had increased odds of reporting an STI (adjusted odds ratio, 2.59; 95% confidence interval, 1.75-3.83), as well as with separate reports of chlamydia, gonorrhea, and syphilis (P's < 0.05). Enhanced community education regarding STI prevention, testing, and treatment options are necessary among this subpopulation of MSM who may benefit from messaging via Internet and mobile phone application sites.
Simulation of hydrodynamically interacting particles near a no-slip boundary
NASA Astrophysics Data System (ADS)
Swan, James W.; Brady, John F.
2007-11-01
The dynamics of spherical particles near a single plane wall are computed using an extension of the Stokesian dynamics method that includes long-range many-body and pairwise lubrication interactions between the spheres and the wall in Stokes flow. Extra care is taken to ensure that the mobility and resistance tensors are symmetric, positive, and definite—something which is ineluctable for particles in low-Reynolds-number flows. We discuss why two previous simulation methods for particles near a plane wall, one using multipole expansions and the other using the Rotne-Prager tensor, fail to produce symmetric resistance and mobility tensors. Additionally, we offer some insight on how the Stokesian dynamics paradigm might be extended to study the dynamics of particles in any confining geometry.
Peer Communication through Blogging
ERIC Educational Resources Information Center
Wall, Steven D.; Anderson, Janice
2015-01-01
With the emergence of mobile technologies, students' access to computing devices is omnipresent, as is their ability to collaborate through multiple modalities. This 21st-century affordance has generated a shift in the way preservice teachers are prepared to use, understand. and interact with social media (e.g., blogs) during their academic years.…
2013-11-01
Interaction. Massachusetts Institute of Technology, Cambridge, MA, 2005. [12] C. Senatore, M. Wulfmeier, P. Jayakumar , J. Maclennan, and K. Iagnemma...D. Lamb, P. Jayakumar , M. Letherwood, et al., "Investigating the Mobility of Light Autonomous Tracked Vehicles using a High Performance Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammeschlag, S.B.; Hughes, S.; O'Reilly, G.V.
Orbital blow-out fractures were experimentally created in eight human cadavers. Each orbit underwent conventional radiographic studies, complex motion tomography, and computed tomographic examinations. A comparison of the three modalities was made. Anatomical correlation was obtained by dissecting the orbits. The significance of medial-wall fractures and enophthalmos is discussed. Limitation of inferior rectus muscle mobility is thought to be a result of muscle kinking associated with orbital fat-pad prolapse at the fracture site, rather than muscle incarceration. Blow-out fractures should be evaluated by computed tomographic computer reformations in the oblique sagittal plane.
The CDS at the Age of Multitouch Interfaces and Mobility
NASA Astrophysics Data System (ADS)
Schaaff, A.; Boch, T.; Fernique, P.; Kaestlé, V.
2012-09-01
Currently, we are witnessing a rapid evolution of new human-machine interfaces based on the widespread use of multitouch screens. This evolution is not just a replacement of the mouse-keyboard couple but requires a recast of the interfaces to take advantage of the new features (example: simultaneous selections in different parts of the screen). Traditional operating systems (mostly Windows and Linux) are also moving towards the integration of multitouch. It is possible in Windows7, also in Ubuntu (since release 10.10). The user interfaces of existing applications should be deeply impacted, as it is not just an adaptation of the existing ones: it is a transition from a selection in menus, click on button, to an intuitive based interaction. In this context the use of the semantics could help to understand what the user wants to do and to simplify the interfaces. The number of mobile devices (Smartphones based on iPhoneOS, AndroidOS and others, tablet computers (iPad, Galaxy Tab, etc.) is growing exponentially with a sustained frequency of replacement (18 months for a device). Smartphones provide an access to Web services but also to dedicated applications (available on App Store, Android Market, etc.). Investment in human resources to provide services on mobile devices could be limited in the first case (a simple adaptation of existing Web pages), but is higher in the case of dedicated applications (software development for a given operating system and the porting to other systems to achieve sufficient diffusion). Following this step, we have developed an Aladin Allsky lite application for Android, SkySurveys. This application is based on HEALPix and it was a real challenge to provide a tool with good display performances on a basic hardware device compared to a desktop or a laptop. We are now focusing the study on the use of HTML5, an emerging technology supported by recent versions of Internet browsers, which can provide rich content. HTML5 has the advantage of allowing developments independent of the mobile platform (‘write once, run everywhere’). We also expect broadening of the user of the services to new audiences and in particular to the educational community through new interface user-friendlier in terms of usability and interaction.
Uncovering urban human mobility from large scale taxi GPS data
NASA Astrophysics Data System (ADS)
Tang, Jinjun; Liu, Fang; Wang, Yinhai; Wang, Hua
2015-11-01
Taxi GPS trajectories data contain massive spatial and temporal information of urban human activity and mobility. Taking taxi as mobile sensors, the information derived from taxi trips benefits the city and transportation planning. The original data used in study are collected from more than 1100 taxi drivers in Harbin city. We firstly divide the city area into 400 different transportation districts and analyze the origin and destination distribution in urban area on weekday and weekend. The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is used to cluster pick-up and drop-off locations. Furthermore, four spatial interaction models are calibrated and compared based on trajectories in shopping center of Harbin city to study the pick-up location searching behavior. By extracting taxi trips from GPS data, travel distance, time and average speed in occupied and non-occupied status are then used to investigate human mobility. Finally, we use observed OD matrix of center area in Harbin city to model the traffic distribution patterns based on entropy-maximizing method, and the estimation performance verify its effectiveness in case study.
System for assisted mobility using eye movements based on electrooculography.
Barea, Rafael; Boquete, Luciano; Mazo, Manuel; López, Elena
2002-12-01
This paper describes an eye-control method based on electrooculography (EOG) to develop a system for assisted mobility. One of its most important features is its modularity, making it adaptable to the particular needs of each user according to the type and degree of handicap involved. An eye model based on electroculographic signal is proposed and its validity is studied. Several human-machine interfaces (HMI) based on EOG are commented, focusing our study on guiding and controlling a wheelchair for disabled people, where the control is actually effected by eye movements within the socket. Different techniques and guidance strategies are then shown with comments on the advantages and disadvantages of each one. The system consists of a standard electric wheelchair with an on-board computer, sensors and a graphic user interface run by the computer. On the other hand, this eye-control method can be applied to handle graphical interfaces, where the eye is used as a mouse computer. Results obtained show that this control technique could be useful in multiple applications, such as mobility and communication aid for handicapped persons.
Leveraging Human Insights by Combining Multi-Objective Optimization with Interactive Evolution
2015-03-26
application, a program that used human selections to guide the evolution of insect -like images. He was able to demonstrate that humans provide key insights...LEVERAGING HUMAN INSIGHTS BY COMBINING MULTI-OBJECTIVE OPTIMIZATION WITH INTERACTIVE EVOLUTION THESIS Joshua R. Christman, Second Lieutenant, USAF...COMBINING MULTI-OBJECTIVE OPTIMIZATION WITH INTERACTIVE EVOLUTION THESIS Presented to the Faculty Department of Electrical and Computer Engineering
Making Transporter Models for Drug-Drug Interaction Prediction Mobile.
Ekins, Sean; Clark, Alex M; Wright, Stephen H
2015-10-01
The past decade has seen increased numbers of studies publishing ligand-based computational models for drug transporters. Although they generally use small experimental data sets, these models can provide insights into structure-activity relationships for the transporter. In addition, such models have helped to identify new compounds as substrates or inhibitors of transporters of interest. We recently proposed that many transporters are promiscuous and may require profiling of new chemical entities against multiple substrates for a specific transporter. Furthermore, it should be noted that virtually all of the published ligand-based transporter models are only accessible to those involved in creating them and, consequently, are rarely shared effectively. One way to surmount this is to make models shareable or more accessible. The development of mobile apps that can access such models is highlighted here. These apps can be used to predict ligand interactions with transporters using Bayesian algorithms. We used recently published transporter data sets (MATE1, MATE2K, OCT2, OCTN2, ASBT, and NTCP) to build preliminary models in a commercial tool and in open software that can deliver the model in a mobile app. In addition, several transporter data sets extracted from the ChEMBL database were used to illustrate how such public data and models can be shared. Predicting drug-drug interactions for various transporters using computational models is potentially within reach of anyone with an iPhone or iPad. Such tools could help prioritize which substrates should be used for in vivo drug-drug interaction testing and enable open sharing of models. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Rethinking Visual Analytics for Streaming Data Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crouser, R. Jordan; Franklin, Lyndsey; Cook, Kris
In the age of data science, the use of interactive information visualization techniques has become increasingly ubiquitous. From online scientific journals to the New York Times graphics desk, the utility of interactive visualization for both storytelling and analysis has become ever more apparent. As these techniques have become more readily accessible, the appeal of combining interactive visualization with computational analysis continues to grow. Arising out of a need for scalable, human-driven analysis, primary objective of visual analytics systems is to capitalize on the complementary strengths of human and machine analysis, using interactive visualization as a medium for communication between themore » two. These systems leverage developments from the fields of information visualization, computer graphics, machine learning, and human-computer interaction to support insight generation in areas where purely computational analyses fall short. Over the past decade, visual analytics systems have generated remarkable advances in many historically challenging analytical contexts. These include areas such as modeling political systems [Crouser et al. 2012], detecting financial fraud [Chang et al. 2008], and cybersecurity [Harrison et al. 2012]. In each of these contexts, domain expertise and human intuition is a necessary component of the analysis. This intuition is essential to building trust in the analytical products, as well as supporting the translation of evidence into actionable insight. In addition, each of these examples also highlights the need for scalable analysis. In each case, it is infeasible for a human analyst to manually assess the raw information unaided, and the communication overhead to divide the task between a large number of analysts makes simple parallelism intractable. Regardless of the domain, visual analytics tools strive to optimize the allocation of human analytical resources, and to streamline the sensemaking process on data that is massive, complex, incomplete, and uncertain in scenarios requiring human judgment.« less
Practice and Personhood in Professional Interaction: Social Identities and Information Needs.
ERIC Educational Resources Information Center
Mokros, Hartmut B.; And Others
1995-01-01
Explores the human aspect of information retrieval by examining the behavior and pronoun use of librarians in the course of communicating with patrons during online computer search interactions. Compares two studies on the conduct of librarians as intermediaries in naturally occurring online computer search interactions. (JMV)
Patterns, Entropy, and Predictability of Human Mobility and Life
Qin, Shao-Meng; Verkasalo, Hannu; Mohtaschemi, Mikael; Hartonen, Tuomo; Alava, Mikko
2012-01-01
Cellular phones are now offering an ubiquitous means for scientists to observe life: how people act, move and respond to external influences. They can be utilized as measurement devices of individual persons and for groups of people of the social context and the related interactions. The picture of human life that emerges shows complexity, which is manifested in such data in properties of the spatiotemporal tracks of individuals. We extract from smartphone-based data for a set of persons important locations such as “home”, “work” and so forth over fixed length time-slots covering the days in the data-set (see also [1], [2]). This set of typical places is heavy-tailed, a power-law distribution with an exponent close to −1.7. To analyze the regularities and stochastic features present, the days are classified for each person into regular, personal patterns. To this are superimposed fluctuations for each day. This randomness is measured by “life” entropy, computed both before and after finding the clustering so as to subtract the contribution of a number of patterns. The main issue that we then address is how predictable individuals are in their mobility. The patterns and entropy are reflected in the predictability of the mobility of the life both individually and on average. We explore the simple approaches to guess the location from the typical behavior, and of exploiting the transition probabilities with time from location or activity A to B. The patterns allow an enhanced predictability, at least up to a few hours into the future from the current location. Such fixed habits are most clearly visible in the working-day length. PMID:23300542
Accessible microscopy workstation for students and scientists with mobility impairments.
Duerstock, Bradley S
2006-01-01
An integrated accessible microscopy workstation was designed and developed to allow persons with mobility impairments to control all aspects of light microscopy with minimal human assistance. This system, named AccessScope, is capable of performing brightfield and fluorescence microscopy, image analysis, and tissue morphometry requisite for undergraduate science courses to graduate-level research. An accessible microscope is necessary for students and scientists with mobility impairments to be able to use a microscope independently to better understand microscopical imaging concepts and cell biology. This knowledge is not always apparent by simply viewing a catalog of histological images. The ability to operate a microscope independently eliminates the need to hire an assistant or rely on a classmate and permits one to take practical laboratory examinations by oneself. Independent microscope handling is also crucial for graduate students and scientists with disabilities to perform scientific research. By making a personal computer as the user interface for controlling AccessScope functions, different upper limb mobility impairments could be accommodated by using various computer input devices and assistive technology software. Participants with a range of upper limb mobility impairments evaluated the prototype microscopy workstation. They were able to control all microscopy functions including loading different slides without assistance.
Pilot interaction with automated airborne decision making systems
NASA Technical Reports Server (NTRS)
Rouse, W. B.; Chu, Y. Y.; Greenstein, J. S.; Walden, R. S.
1976-01-01
An investigation was made of interaction between a human pilot and automated on-board decision making systems. Research was initiated on the topic of pilot problem solving in automated and semi-automated flight management systems and attempts were made to develop a model of human decision making in a multi-task situation. A study was made of allocation of responsibility between human and computer, and discussed were various pilot performance parameters with varying degrees of automation. Optimal allocation of responsibility between human and computer was considered and some theoretical results found in the literature were presented. The pilot as a problem solver was discussed. Finally the design of displays, controls, procedures, and computer aids for problem solving tasks in automated and semi-automated systems was considered.
Buijs; Hlady
1997-06-01
Interactions of recombinant human growth hormone and lysozyme with solid surfaces are studied using total internal reflection fluorescence (TIRF) and monitoring the protein's intrinsic tryptophan fluorescence. The intensity, spectra, quenching, and polarization of the fluorescence emitted by the adsorbed proteins are monitored and related to adsorption kinetics, protein conformation, and fluorophore rotational mobility. To study the influence of electrostatic and hydrophobic interactions on the adsorption process, three sorbent surfaces are used which differ in charge and hydrophobicity. The chemical surface groups are silanol, methyl, and quaternary amine. Results indicate that adsorption of hGH is dominated by hydrophobic interactions. Lysozyme adsoption is strongly affected by the ionic strength. This effect is probably caused by an ionic strength dependent conformational state in solution which, in turn, influences the affinity for adsorption. Both proteins are more strongly bound to hydrophobic surfaces and this strong interaction is accompanied by a less compact conformation. Furthermore, it was seen that regardless of the characteristics of the sorbent surface, the rotational mobility of both proteins' tryptophans is largely reduced upon adsorption.
Sievertsen, Niels; Carreira, Erick M
2018-02-01
Mobile devices such as smartphones are carried in the pockets of university students around the globe and are increasingly cheap to come by. These portable devices have evolved into powerful and interconnected handheld computers, which, among other applications, can be used as advanced learning tools and providers of targeted, curated content. Herein, we describe Apoc Social (Advanced Problems in Organic Chemistry Social), a mobile application that assists both learning and teaching college-level organic chemistry both in the classroom and on the go. With more than 750 chemistry exercises available, Apoc Social facilitates collaborative learning through discussion boards and fosters enthusiasm for complex organic chemistry.
Overview Electrotactile Feedback for Enhancing Human Computer Interface
NASA Astrophysics Data System (ADS)
Pamungkas, Daniel S.; Caesarendra, Wahyu
2018-04-01
To achieve effective interaction between a human and a computing device or machine, adequate feedback from the computing device or machine is required. Recently, haptic feedback is increasingly being utilised to improve the interactivity of the Human Computer Interface (HCI). Most existing haptic feedback enhancements aim at producing forces or vibrations to enrich the user’s interactive experience. However, these force and/or vibration actuated haptic feedback systems can be bulky and uncomfortable to wear and only capable of delivering a limited amount of information to the user which can limit both their effectiveness and the applications they can be applied to. To address this deficiency, electrotactile feedback is used. This involves delivering haptic sensations to the user by electrically stimulating nerves in the skin via electrodes placed on the surface of the skin. This paper presents a review and explores the capability of electrotactile feedback for HCI applications. In addition, a description of the sensory receptors within the skin for sensing tactile stimulus and electric currents alsoseveral factors which influenced electric signal to transmit to the brain via human skinare explained.
SnapAnatomy, a computer-based interactive tool for independent learning of human anatomy.
Yip, George W; Rajendran, Kanagasuntheram
2008-06-01
Computer-aided instruction materials are becoming increasing popular in medical education and particularly in the teaching of human anatomy. This paper describes SnapAnatomy, a new interactive program that the authors designed for independent learning of anatomy. SnapAnatomy is primarily tailored for the beginner student to encourage the learning of anatomy by developing a three-dimensional visualization of human structure that is essential to applications in clinical practice and the understanding of function. The program allows the student to take apart and to accurately put together body components in an interactive, self-paced and variable manner to achieve the learning outcome.
Human-Computer Interaction, Tourism and Cultural Heritage
NASA Astrophysics Data System (ADS)
Cipolla Ficarra, Francisco V.
We present a state of the art of the human-computer interaction aimed at tourism and cultural heritage in some cities of the European Mediterranean. In the work an analysis is made of the main problems deriving from training understood as business and which can derail the continuous growth of the HCI, the new technologies and tourism industry. Through a semiotic and epistemological study the current mistakes in the context of the interrelations of the formal and factual sciences will be detected and also the human factors that have an influence on the professionals devoted to the development of interactive systems in order to safeguard and boost cultural heritage.
What Machines Need to Learn to Support Human Problem-Solving
NASA Technical Reports Server (NTRS)
Vera, Alonso
2017-01-01
In the development of intelligent systems that interact with humans, there is often confusion between how the system functions with respect to the humans it interacts with and how it interfaces with those humans. The former is a much deeper challenge than the latter it requires a system-level understanding of evolving human roles as well as an understanding of what humans need to know (and when) in order to perform their tasks. This talk will focus on some of the challenges in getting this right as well as on the type of research and development that results in successful human-autonomy teaming. Brief Bio: Dr. Alonso Vera is Chief of the Human Systems Integration Division at NASA Ames Research Center. His expertise is in human-computer interaction, information systems, artificial intelligence, and computational human performance modeling. He has led the design, development and deployment of mission software systems across NASA robotic and human space flight missions, including Mars Exploration Rovers, Phoenix Mars Lander, ISS, Constellation, and Exploration Systems. Dr. Vera received a Bachelor of Science with First Class Honors from McGill University in 1985 and a Ph.D. from Cornell University in 1991. He went on to a Post-Doctoral Fellowship in the School of Computer Science at Carnegie Mellon University from 1990-93.
Bringing education to your virtual doorstep
NASA Astrophysics Data System (ADS)
Kaurov, Vitaliy
2013-03-01
We currently witness significant migration of academic resources towards online CMS, social networking, and high-end computerized education. This happens for traditional academic programs as well as for outreach initiatives. The talk will go over a set of innovative integrated technologies, many of which are free. These were developed by Wolfram Research in order to facilitate and enhance the learning process in mathematical and physical sciences. Topics include: cloud computing with Mathematica Online; natural language programming; interactive educational resources and web publishing at the Wolfram Demonstrations Project; the computational knowledge engine Wolfram Alpha; Computable Document Format (CDF) and self-publishing with interactive e-books; course assistant apps for mobile platforms. We will also discuss outreach programs where such technologies are extensively used, such as the Wolfram Science Summer School and the Mathematica Summer Camp.
Vega, Juan F.; Vicente-Alique, Ernesto; Núñez-Ramírez, Rafael; Wang, Yang; Martínez-Salazar, Javier
2016-01-01
The stabilization of human papillomavirus type 16 virus-like particles has been examined by means of different techniques including dynamic and static light scattering, transmission electron microscopy and electrophoretic mobility. All these techniques provide different and often complementary perspectives about the aggregation process and generation of stabilized virus-like particles after a period of time of 48 hours at a temperature of 298 K. Interestingly, static light scattering results point towards a clear colloidal instability in the initial systems, as suggested by a negative value of the second virial coefficient. This is likely related to small repulsive electrostatic interactions among the particles, and in agreement with relatively small absolute values of the electrophoretic mobility and, hence, of the net surface charges. At this initial stage the small repulsive interactions are not able to compensate binding interactions, which tend to aggregate the particles. As time proceeds, an increase of the size of the particles is accompanied by strong increases, in absolute values, of the electrophoretic mobility and net surface charge, suggesting enhanced repulsive electrostatic interactions and, consequently, a stabilized colloidal system. These results show that electrophoretic mobility is a useful methodology that can be applied to screen the stabilization factors for virus-like particles during vaccine development. PMID:26885635
Collaborative interactive visualization: exploratory concept
NASA Astrophysics Data System (ADS)
Mokhtari, Marielle; Lavigne, Valérie; Drolet, Frédéric
2015-05-01
Dealing with an ever increasing amount of data is a challenge that military intelligence analysts or team of analysts face day to day. Increased individual and collective comprehension goes through collaboration between people. Better is the collaboration, better will be the comprehension. Nowadays, various technologies support and enhance collaboration by allowing people to connect and collaborate in settings as varied as across mobile devices, over networked computers, display walls, tabletop surfaces, to name just a few. A powerful collaboration system includes traditional and multimodal visualization features to achieve effective human communication. Interactive visualization strengthens collaboration because this approach is conducive to incrementally building a mental assessment of the data meaning. The purpose of this paper is to present an overview of the envisioned collaboration architecture and the interactive visualization concepts underlying the Sensemaking Support System prototype developed to support analysts in the context of the Joint Intelligence Collection and Analysis Capability project at DRDC Valcartier. It presents the current version of the architecture, discusses future capabilities to help analyst(s) in the accomplishment of their tasks and finally recommends collaboration and visualization technologies allowing to go a step further both as individual and as a team.
NASA Astrophysics Data System (ADS)
Binboğa, Elif; Korhan, Orhan
2014-10-01
Educational ergonomics focuses on the interaction between educational performance and educational design. By improving the design or pointing out the possible problems, educational ergonomics can be utilized to have positive impacts on the student performance and thus on education process. Laptops and tablet computers are becoming widely used by school children and beginning to be used effectively for educational purposes. As the latest generation of laptops and tablet computers are mobile and lightweight compared to conventional personal computers, they support student-centred interaction-based learning. However, these technologies have been introduced into schools with minimal adaptations to furniture or attention to ergonomics. There are increasing reports of an association between increased musculoskeletal (MSK) problems in children and use of such technologies. Although children are among the users of laptops and tablet computers both in their everyday lives and at schools, the literature investigating MSK activities and possible MSK discomfort regarding children using portable technologies is limited. This study reviews the literature to identify published studies that investigated posture, MSK activities, and possible MSK discomfort among children using mobile technologies (laptops or tablet computers) for educational purposes. An electronic search of the literature published in English between January 1994 and January 2014 was performed in several databases. The literature search terms were identified and combined to search the databases. The search results that the resources investigating MSK outcomes of laptop or tablet use of children are very scarce. This review points out the research gaps in this field, and identifying areas for future studies.
Biophysical evaluation of radiofrequency electromagnetic field effects on male reproductive pattern.
Kesari, Kavindra Kumar; Kumar, Sanjay; Nirala, Jayprakash; Siddiqui, Mohd Haris; Behari, Jitendra
2013-03-01
There are possible hazardous health effects of exposure to radiofrequency electromagnetic radiations emitted from mobile phone on the human reproductive pattern. It is more effective while keeping mobile phones in pocket or near testicular organs. Present review examines the possible concern on radio frequency radiation interaction and biological effects such as enzyme induction, and toxicological effects, including genotoxicity and carcinogenicity, testicular cancer, and reproductive outcomes. Testicular infertility or testicular cancer due to mobile phone or microwave radiations suggests an increased level of reactive oxygen species (ROS). Though generation of ROS in testis has been responsible for possible toxic effects on physiology of reproduction, the reviews of last few decades have well established that these radiations are very harmful and cause mutagenic changes in reproductive pattern and leads to infertility. The debate will be focused on bio-interaction mechanism between mobile phone and testicular cancer due to ROS formation. This causes the biological damage and leads to several changes like decreased sperm count, enzymatic and hormonal changes, DNA damage, and apoptosis formation. In the present review, physics of mobile phone including future research on various aspects has been discussed.
Mishra, Dheerendra; Mukhopadhyay, Sourav; Kumari, Saru; Khan, Muhammad Khurram; Chaturvedi, Ankita
2014-05-01
Telecare medicine information systems (TMIS) present the platform to deliver clinical service door to door. The technological advances in mobile computing are enhancing the quality of healthcare and a user can access these services using its mobile device. However, user and Telecare system communicate via public channels in these online services which increase the security risk. Therefore, it is required to ensure that only authorized user is accessing the system and user is interacting with the correct system. The mutual authentication provides the way to achieve this. Although existing schemes are either vulnerable to attacks or they have higher computational cost while an scalable authentication scheme for mobile devices should be secure and efficient. Recently, Awasthi and Srivastava presented a biometric based authentication scheme for TMIS with nonce. Their scheme only requires the computation of the hash and XOR functions.pagebreak Thus, this scheme fits for TMIS. However, we observe that Awasthi and Srivastava's scheme does not achieve efficient password change phase. Moreover, their scheme does not resist off-line password guessing attack. Further, we propose an improvement of Awasthi and Srivastava's scheme with the aim to remove the drawbacks of their scheme.
Mobile Computing and Ubiquitous Networking: Concepts, Technologies and Challenges.
ERIC Educational Resources Information Center
Pierre, Samuel
2001-01-01
Analyzes concepts, technologies and challenges related to mobile computing and networking. Defines basic concepts of cellular systems. Describes the evolution of wireless technologies that constitute the foundations of mobile computing and ubiquitous networking. Presents characterization and issues of mobile computing. Analyzes economical and…
The Design of Hand Gestures for Human-Computer Interaction: Lessons from Sign Language Interpreters.
Rempel, David; Camilleri, Matt J; Lee, David L
2015-10-01
The design and selection of 3D modeled hand gestures for human-computer interaction should follow principles of natural language combined with the need to optimize gesture contrast and recognition. The selection should also consider the discomfort and fatigue associated with distinct hand postures and motions, especially for common commands. Sign language interpreters have extensive and unique experience forming hand gestures and many suffer from hand pain while gesturing. Professional sign language interpreters (N=24) rated discomfort for hand gestures associated with 47 characters and words and 33 hand postures. Clear associations of discomfort with hand postures were identified. In a nominal logistic regression model, high discomfort was associated with gestures requiring a flexed wrist, discordant adjacent fingers, or extended fingers. These and other findings should be considered in the design of hand gestures to optimize the relationship between human cognitive and physical processes and computer gesture recognition systems for human-computer input.
Micro-video display with ocular tracking and interactive voice control
NASA Technical Reports Server (NTRS)
Miller, James E.
1993-01-01
In certain space-restricted environments, many of the benefits resulting from computer technology have been foregone because of the size, weight, inconvenience, and lack of mobility associated with existing computer interface devices. Accordingly, an effort to develop a highly miniaturized and 'wearable' computer display and control interface device, referred to as the Sensory Integrated Data Interface (SIDI), is underway. The system incorporates a micro-video display that provides data display and ocular tracking on a lightweight headset. Software commands are implemented by conjunctive eye movement and voice commands of the operator. In this initial prototyping effort, various 'off-the-shelf' components have been integrated into a desktop computer and with a customized menu-tree software application to demonstrate feasibility and conceptual capabilities. When fully developed as a customized system, the interface device will allow mobile, 'hand-free' operation of portable computer equipment. It will thus allow integration of information technology applications into those restrictive environments, both military and industrial, that have not yet taken advantage of the computer revolution. This effort is Phase 1 of Small Business Innovative Research (SBIR) Topic number N90-331 sponsored by the Naval Undersea Warfare Center Division, Newport. The prime contractor is Foster-Miller, Inc. of Waltham, MA.
A service protocol for post-processing of medical images on the mobile device
NASA Astrophysics Data System (ADS)
He, Longjun; Ming, Xing; Xu, Lang; Liu, Qian
2014-03-01
With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. It is uneasy and time-consuming for transferring medical images with large data size from picture archiving and communication system to mobile client, since the wireless network is unstable and limited by bandwidth. Besides, limited by computing capability, memory and power endurance, it is hard to provide a satisfactory quality of experience for radiologists to handle some complex post-processing of medical images on the mobile device, such as real-time direct interactive three-dimensional visualization. In this work, remote rendering technology is employed to implement the post-processing of medical images instead of local rendering, and a service protocol is developed to standardize the communication between the render server and mobile client. In order to make mobile devices with different platforms be able to access post-processing of medical images, the Extensible Markup Language is taken to describe this protocol, which contains four main parts: user authentication, medical image query/ retrieval, 2D post-processing (e.g. window leveling, pixel values obtained) and 3D post-processing (e.g. maximum intensity projection, multi-planar reconstruction, curved planar reformation and direct volume rendering). And then an instance is implemented to verify the protocol. This instance can support the mobile device access post-processing of medical image services on the render server via a client application or on the web page.
Biometrics: Accessibility challenge or opportunity?
Blanco-Gonzalo, Ramon; Lunerti, Chiara; Sanchez-Reillo, Raul; Guest, Richard Michael
2018-01-01
Biometric recognition is currently implemented in several authentication contexts, most recently in mobile devices where it is expected to complement or even replace traditional authentication modalities such as PIN (Personal Identification Number) or passwords. The assumed convenience characteristics of biometrics are transparency, reliability and ease-of-use, however, the question of whether biometric recognition is as intuitive and straightforward to use is open to debate. Can biometric systems make some tasks easier for people with accessibility concerns? To investigate this question, an accessibility evaluation of a mobile app was conducted where test subjects withdraw money from a fictitious ATM (Automated Teller Machine) scenario. The biometric authentication mechanisms used include face, voice, and fingerprint. Furthermore, we employed traditional modalities of PIN and pattern in order to check if biometric recognition is indeed a real improvement. The trial test subjects within this work were people with real-life accessibility concerns. A group of people without accessibility concerns also participated, providing a baseline performance. Experimental results are presented concerning performance, HCI (Human-Computer Interaction) and accessibility, grouped according to category of accessibility concern. Our results reveal links between individual modalities and user category establishing guidelines for future accessible biometric products.
Biometrics: Accessibility challenge or opportunity?
Lunerti, Chiara; Sanchez-Reillo, Raul; Guest, Richard Michael
2018-01-01
Biometric recognition is currently implemented in several authentication contexts, most recently in mobile devices where it is expected to complement or even replace traditional authentication modalities such as PIN (Personal Identification Number) or passwords. The assumed convenience characteristics of biometrics are transparency, reliability and ease-of-use, however, the question of whether biometric recognition is as intuitive and straightforward to use is open to debate. Can biometric systems make some tasks easier for people with accessibility concerns? To investigate this question, an accessibility evaluation of a mobile app was conducted where test subjects withdraw money from a fictitious ATM (Automated Teller Machine) scenario. The biometric authentication mechanisms used include face, voice, and fingerprint. Furthermore, we employed traditional modalities of PIN and pattern in order to check if biometric recognition is indeed a real improvement. The trial test subjects within this work were people with real-life accessibility concerns. A group of people without accessibility concerns also participated, providing a baseline performance. Experimental results are presented concerning performance, HCI (Human-Computer Interaction) and accessibility, grouped according to category of accessibility concern. Our results reveal links between individual modalities and user category establishing guidelines for future accessible biometric products. PMID:29565989
ERIC Educational Resources Information Center
Klein, David C.
2014-01-01
As advancements in automation continue to alter the systemic behavior of computer systems in a wide variety of industrial applications, human-machine interactions are increasingly becoming supervisory in nature, with less hands-on human involvement. This maturing of the human role within the human-computer relationship is relegating operations…
Enhancing Tele-robotics with Immersive Virtual Reality
2017-11-03
graduate and undergraduate students within the Digital Gaming and Simulation, Computer Science, and psychology programs have actively collaborated...investigates the use of artificial intelligence and visual computing. Numerous fields across the human-computer interaction and gaming research areas...invested in digital gaming and simulation to cognitively stimulate humans by computers, forming a $10.5B industry [1]. On the other hand, cognitive
Development of the HERMIES III mobile robot research testbed at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manges, W.W.; Hamel, W.R.; Weisbin, C.R.
1988-01-01
The latest robot in the Hostile Environment Robotic Machine Intelligence Experiment Series (HERMIES) is now under development at the Center for Engineering Systems Advanced Research (CESAR) in the Oak Ridge National Laboratory. The HERMIES III robot incorporates a larger than human size 7-degree-of-freedom manipulator mounted on a 2-degree-of-freedom mobile platform including a variety of sensors and computers. The deployment of this robot represents a significant increase in research capabilities for the CESAR laboratory. The initial on-board computer capacity of the robot exceeds that of 20 Vax 11/780s. The navigation and vision algorithms under development make extensive use of the on-boardmore » NCUBE hypercube computer while the sensors are interfaced through five VME computers running the OS-9 real-time, multitasking operating system. This paper describes the motivation, key issues, and detailed design trade-offs of implementing the first phase (basic functionality) of the HERMIES III robot. 10 refs., 7 figs.« less
Four-state rock-paper-scissors games in constrained Newman-Watts networks.
Zhang, Guo-Yong; Chen, Yong; Qi, Wei-Kai; Qing, Shao-Meng
2009-06-01
We study the cyclic dominance of three species in two-dimensional constrained Newman-Watts networks with a four-state variant of the rock-paper-scissors game. By limiting the maximal connection distance Rmax in Newman-Watts networks with the long-range connection probability p , we depict more realistically the stochastic interactions among species within ecosystems. When we fix mobility and vary the value of p or Rmax, the Monte Carlo simulations show that the spiral waves grow in size, and the system becomes unstable and biodiversity is lost with increasing p or Rmax. These results are similar to recent results of Reichenbach et al. [Nature (London) 448, 1046 (2007)], in which they increase the mobility only without including long-range interactions. We compared extinctions with or without long-range connections and computed spatial correlation functions and correlation length. We conclude that long-range connections could improve the mobility of species, drastically changing their crossover to extinction and making the system more unstable.
Designing a Visual Factors-Based Screen Display Interface: The New Role of the Graphic Technologist.
ERIC Educational Resources Information Center
Faiola, Tony; DeBloois, Michael L.
1988-01-01
Discusses the role of the graphic technologist in preparing computer screen displays for interactive videodisc systems, and suggests screen design guidelines. Topics discussed include the grid system; typography; visual factors research; color; course mobility through branching and software menus; and a model of course integration. (22 references)…
Mobile Life - Innovation in the Wild
NASA Astrophysics Data System (ADS)
Höök, Kristina
After a decade of work in our research labs on mobile and ubiquitous technology, often formed by the early visions of ubiquitous computing, with the urge to move interaction from the desktop out into the wild, these technologies have now moved out into the world - into the wild. We are in the middle of a second IT-revolution, caused by the spread of mobile and ubiquitous services, in combination with a broad consumer-oriented market pull. The first ITrevolution, the introduction and deployment of Internet and the World Wide Web during the 1990’s, had a major impact on all parts of our society. As mobile, ubiquitous technology now becomes wide-spread, the design and evaluation of mobile services - i.e. information technology that can be accessed and used in virtually any setting - represents an important business arena for the IT- and telecom industry. Together we have to look for a sustainable web of work, leisure and ubiquitous technology we can call the mobile life.
Technology for the Next-Generation-Mobile User Experience
NASA Astrophysics Data System (ADS)
Delagi, Greg
The current mobile-handset market is a vital and growing one, being driven by technology advances, including increased bandwidth and processing performance, as well as reduced power consumption and improved screen technologies. The 3G/4G handsets of today are multimedia internet devices with increased screen size, HD video and gaming, interactive touch screens, HD camera and camcorders, as well as incredible social, entertainment, and productivity applications. While mobile-technology advancements to date have made us more social in many ways, new advancements over the next decade will bring us to the next level, allowing mobile users to experience new types of "virtual" social interactions with all the senses. The mobile handsets of the future will be smart autonomous-lifestyle devices with a multitude of incorporated sensors, applications and display options, all designed to make your life easier and more productive! With future display media, including 3D imaging, virtual interaction and conferencing will be possible, making every call feel like you are in the same room, providing an experience far beyond today's video conferencing technology. 3D touch-screen with integrated image-projection technologies will work in conjunction with gesturing to bring a new era of intuitive mobile device applications, interaction, and information sharing. Looking to the future, there are many challenges to be faced in delivering a smart mobile companion device that will meet the user demands. One demand will be for the availability of new and compelling services, and features on the "mobile companion". These mobile companions will be more than just Internet devices, and will function as on-the-go workstations, allowing users to function as if they were sitting in front of their computer in the office or at home. The massive amounts of data that will be transmitted through, to and from these mobile companions will require immense improvements in system performance, including specialized circuits, highly parallel architectures, and new packaging design. Another concern of the smart-mobile-companion user will be that their device is able to deliver an always-on, always-aware environment in a way that is completely seamless and transparent. These handsets will automatically determine the best and most appropriate modem link from the multiple choices on the device, including WiFi, LTE, 5G, and mmWave, based on which link will optimize performance, battery life, and network charges to deliver the best possible user experience. In the future, adaptive connectivity will require many different solutions, including the standard modem technologies of today, as well as new machine-machine interfaces and body-area-networks. All of the new and exciting applications and features of these mobile-companion devices are going to require additional energy due to added computational requirements. However, a gap in energy efficiency is quickly developing between the energy that can be delivered by today's battery technologies, and the energy needed to deliver all-day operation or 2-day always-on standby without a recharge. New innovations ranging from low-voltage digital and analog circuits, non-volatile memory, and adaptive power management, to energy harvesting, will be needed to further improve the battery life of these mobile companion devices. Increased bandwidth combined with decreased latency, higher power efficiency, energy harvesting, massive multimedia processing, and new interconnect technologies will all work together to revolutionize how we interact with our smart-companion devices. The implementation challenges in bringing these technologies to market may seem daunting and numerous at first, but with the strong collaboration in research and development from universities, government agencies, and corporations, the smart-mobile-companion devices of the future will likely become reality within 5 years!
Using satellite communications for a mobile computer network
NASA Technical Reports Server (NTRS)
Wyman, Douglas J.
1993-01-01
The topics discussed include the following: patrol car automation, mobile computer network, network requirements, network design overview, MCN mobile network software, MCN hub operation, mobile satellite software, hub satellite software, the benefits of patrol car automation, the benefits of satellite mobile computing, and national law enforcement satellite.
DOT National Transportation Integrated Search
2016-01-01
Human attention is a finite resource. When interrupted while performing a task, this : resource is split between two interactive tasks. People have to decide whether the benefits : from the interruptive interaction will be enough to offset the loss o...
Human-computer dialogue: Interaction tasks and techniques. Survey and categorization
NASA Technical Reports Server (NTRS)
Foley, J. D.
1983-01-01
Interaction techniques are described. Six basic interaction tasks, requirements for each task, requirements related to interaction techniques, and a technique's hardware prerequisites affective device selection are discussed.
Employing Textual and Facial Emotion Recognition to Design an Affective Tutoring System
ERIC Educational Resources Information Center
Lin, Hao-Chiang Koong; Wang, Cheng-Hung; Chao, Ching-Ju; Chien, Ming-Kuan
2012-01-01
Emotional expression in Artificial Intelligence has gained lots of attention in recent years, people applied its affective computing not only in enhancing and realizing the interaction between computers and human, it also makes computer more humane. In this study, emotional expressions were applied into intelligent tutoring system, where learners'…
Hydrodynamic mobility of a sphere moving on the centerline of an elastic tube
NASA Astrophysics Data System (ADS)
Daddi-Moussa-Ider, Abdallah; Lisicki, Maciej; Gekle, Stephan
2017-11-01
Elastic channels are an important component of many soft matter systems, in which hydrodynamic interactions with confining membranes determine the behavior of particles in flow. In this work, we derive analytical expressions for Green's functions associated with a point-force (Stokeslet) directed parallel or perpendicular to the axis of an elastic cylindrical channel exhibiting resistance against shear and bending. We then compute the leading order self- and pair mobility functions of particles on the cylinder axis, finding that the mobilities are primarily determined by membrane shear and that bending does not play a significant role. In the quasi-steady limit of vanishing frequency, the particle self- and pair mobilities near a no-slip hard cylinder are recovered only if the membrane possesses a non-vanishing shear rigidity. We further compute the membrane deformation, finding that deformation is generally more pronounced in the axial (radial) directions, for the motion along (perpendicular to) the cylinder centerline, respectively. Our analytical calculations for Green's functions in an elastic cylinder can serve as a fundamental building block for future studies and are verified by fully resolved boundary integral simulations where very good agreement is obtained.
Characterizing Mobility and Contact Networks in Virtual Worlds
NASA Astrophysics Data System (ADS)
Machado, Felipe; Santos, Matheus; Almeida, Virgílio; Guedes, Dorgival
Virtual worlds have recently gained wide recognition as an important field of study in Computer Science. In this work we present an analysis of the mobility and interactions among characters in World of Warcraft (WoW) and Second Life based on the contact opportunities extracted from actual user data in each of those domains. We analyze character contacts in terms of their spatial and temporal characteristics, as well as the social network derived from such contacts. Our results show that the contacts observed may be more influenced by the nature of the interactions and goals of the users in each situation than by the intrinsic structure of such worlds. In particular, observations from a city in WoW are closer to those of Second Life than to other areas in WoW itself.
Multisensor-based human detection and tracking for mobile service robots.
Bellotto, Nicola; Hu, Huosheng
2009-02-01
One of fundamental issues for service robots is human-robot interaction. In order to perform such a task and provide the desired services, these robots need to detect and track people in the surroundings. In this paper, we propose a solution for human tracking with a mobile robot that implements multisensor data fusion techniques. The system utilizes a new algorithm for laser-based leg detection using the onboard laser range finder (LRF). The approach is based on the recognition of typical leg patterns extracted from laser scans, which are shown to also be very discriminative in cluttered environments. These patterns can be used to localize both static and walking persons, even when the robot moves. Furthermore, faces are detected using the robot's camera, and the information is fused to the legs' position using a sequential implementation of unscented Kalman filter. The proposed solution is feasible for service robots with a similar device configuration and has been successfully implemented on two different mobile platforms. Several experiments illustrate the effectiveness of our approach, showing that robust human tracking can be performed within complex indoor environments.
The Next Wave: Humans, Computers, and Redefining Reality
NASA Technical Reports Server (NTRS)
Little, William
2018-01-01
The Augmented/Virtual Reality (AVR) Lab at KSC is dedicated to " exploration into the growing computer fields of Extended Reality and the Natural User Interface (it is) a proving ground for new technologies that can be integrated into future NASA projects and programs." The topics of Human Computer Interface, Human Computer Interaction, Augmented Reality, Virtual Reality, and Mixed Reality are defined; examples of work being done in these fields in the AVR Lab are given. Current new and future work in Computer Vision, Speech Recognition, and Artificial Intelligence are also outlined.
NASA Astrophysics Data System (ADS)
Surducan, Aneta; Dabala, Dana; Neamtu, Camelia; Surducan, Vasile; Surducan, Emanoil
2013-11-01
The interaction of the microwave radiation emitted by mobile phones with the user's body is analyzed from the International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommendations perspective as a correlation between the specific absorption ratio (SAR) of the mobile phone and the call duration. The relative position of the cell phone to the user's body, the dielectric properties of the exposed body parts, the SAR value and the call duration are considered in the local body temperature rise due to the microwave heating effect. The recommended local temperature rise limit in the human body is evaluated according to standards. The aim of this study is to disseminate information to young people, especially high school students, about the microwave thermal effects on the human body, to make them aware of the environmental electromagnetic pollution and to offer them a simple method of biological self protection.
He, Longjun; Ming, Xing; Liu, Qian
2014-04-01
With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. However, for direct interactive 3D visualization, which plays an important role in radiological diagnosis, the mobile device cannot provide a satisfactory quality of experience for radiologists. This paper developed a medical system that can get medical images from the picture archiving and communication system on the mobile device over the wireless network. In the proposed application, the mobile device got patient information and medical images through a proxy server connecting to the PACS server. Meanwhile, the proxy server integrated a range of 3D visualization techniques, including maximum intensity projection, multi-planar reconstruction and direct volume rendering, to providing shape, brightness, depth and location information generated from the original sectional images for radiologists. Furthermore, an algorithm that changes remote render parameters automatically to adapt to the network status was employed to improve the quality of experience. Finally, performance issues regarding the remote 3D visualization of the medical images over the wireless network of the proposed application were also discussed. The results demonstrated that this proposed medical application could provide a smooth interactive experience in the WLAN and 3G networks.
Developing and validating an instrument for measuring mobile computing self-efficacy.
Wang, Yi-Shun; Wang, Hsiu-Yuan
2008-08-01
IT-related self-efficacy has been found to have a critical influence on system use. However, traditional measures of computer self-efficacy and Internet-related self-efficacy are perceived to be inapplicable in the context of mobile computing and commerce because they are targeted primarily at either desktop computer or wire-based technology contexts. Based on previous research, this study develops and validates a multidimensional instrument for measuring mobile computing self-efficacy (MCSE). This empirically validated instrument will be useful to researchers in developing and testing the theories of mobile user behavior, and to practitioners in assessing the mobile computing self-efficacy of users and promoting the use of mobile commerce systems.
Zhang, Zelun; Poslad, Stefan
2013-01-01
Wearable and accompanied sensors and devices are increasingly being used for user activity recognition. However, typical GPS-based and accelerometer-based (ACC) methods face three main challenges: a low recognition accuracy; a coarse recognition capability, i.e., they cannot recognise both human posture (during travelling) and transportation mode simultaneously, and a relatively high computational complexity. Here, a new GPS and Foot-Force (GPS + FF) sensor method is proposed to overcome these challenges that leverages a set of wearable FF sensors in combination with GPS, e.g., in a mobile phone. User mobility activities that can be recognised include both daily user postures and common transportation modes: sitting, standing, walking, cycling, bus passenger, car passenger (including private cars and taxis) and car driver. The novelty of this work is that our approach provides a more comprehensive recognition capability in terms of reliably recognising both human posture and transportation mode simultaneously during travel. In addition, by comparing the new GPS + FF method with both an ACC method (62% accuracy) and a GPS + ACC based method (70% accuracy) as baseline methods, it obtains a higher accuracy (95%) with less computational complexity, when tested on a dataset obtained from ten individuals. PMID:24189333
Air Defense: A Computer Game for Research in Human Performance.
1981-07-01
warfare (ANW) threat analysis. M’ajor elements of the threat analysis problem \\\\,erc eoibedded in an interactive air detoense game controlled by a...The game requires sustained attention to a complex and interactive "hostile" environment, provides proper experimental control of relevant variables...AD-A102 725 NAVY PERSONNEL RESEARCH AND DEVELOPMENT CENTER SAN DETC F/6 5/10 AIR DEFENSE: A COMPUTER GAME FOR RESEARCH IN HUMAN PERFORMANCE.(U) JUL
Ensemble Manifold Rank Preserving for Acceleration-Based Human Activity Recognition.
Tao, Dapeng; Jin, Lianwen; Yuan, Yuan; Xue, Yang
2016-06-01
With the rapid development of mobile devices and pervasive computing technologies, acceleration-based human activity recognition, a difficult yet essential problem in mobile apps, has received intensive attention recently. Different acceleration signals for representing different activities or even a same activity have different attributes, which causes troubles in normalizing the signals. We thus cannot directly compare these signals with each other, because they are embedded in a nonmetric space. Therefore, we present a nonmetric scheme that retains discriminative and robust frequency domain information by developing a novel ensemble manifold rank preserving (EMRP) algorithm. EMRP simultaneously considers three aspects: 1) it encodes the local geometry using the ranking order information of intraclass samples distributed on local patches; 2) it keeps the discriminative information by maximizing the margin between samples of different classes; and 3) it finds the optimal linear combination of the alignment matrices to approximate the intrinsic manifold lied in the data. Experiments are conducted on the South China University of Technology naturalistic 3-D acceleration-based activity dataset and the naturalistic mobile-devices based human activity dataset to demonstrate the robustness and effectiveness of the new nonmetric scheme for acceleration-based human activity recognition.
[An interactive three-dimensional model of the human body].
Liem, S L
2009-01-01
Driven by advanced computer technology, it is now possible to show the human anatomy on a computer. On the internet, the Visible Body programme makes it possible to navigate in all directions through the anatomical structures of the human body, using mouse and keyboard. Visible Body is a wonderful tool to give insight in the human structures, body functions and organs.
Recent technology products from Space Human Factors research
NASA Technical Reports Server (NTRS)
Jenkins, James P.
1991-01-01
The goals of the NASA Space Human Factors program and the research carried out concerning human factors are discussed with emphasis given to the development of human performance models, data, and tools. The major products from this program are described, which include the Laser Anthropometric Mapping System; a model of the human body for evaluating the kinematics and dynamics of human motion and strength in microgravity environment; an operational experience data base for verifying and validating the data repository of manned space flights; the Operational Experience Database Taxonomy; and a human-computer interaction laboratory whose products are the display softaware and requirements and the guideline documents and standards for applications on human-computer interaction. Special attention is given to the 'Convoltron', a prototype version of a signal processor for synthesizing the head-related transfer functions.
Smartphone Analytics: Mobilizing the Lab into the Cloud for Omic-Scale Analyses.
Montenegro-Burke, J Rafael; Phommavongsay, Thiery; Aisporna, Aries E; Huan, Tao; Rinehart, Duane; Forsberg, Erica; Poole, Farris L; Thorgersen, Michael P; Adams, Michael W W; Krantz, Gregory; Fields, Matthew W; Northen, Trent R; Robbins, Paul D; Niedernhofer, Laura J; Lairson, Luke; Benton, H Paul; Siuzdak, Gary
2016-10-04
Active data screening is an integral part of many scientific activities, and mobile technologies have greatly facilitated this process by minimizing the reliance on large hardware instrumentation. In order to meet with the increasingly growing field of metabolomics and heavy workload of data processing, we designed the first remote metabolomic data screening platform for mobile devices. Two mobile applications (apps), XCMS Mobile and METLIN Mobile, facilitate access to XCMS and METLIN, which are the most important components in the computer-based XCMS Online platforms. These mobile apps allow for the visualization and analysis of metabolic data throughout the entire analytical process. Specifically, XCMS Mobile and METLIN Mobile provide the capabilities for remote monitoring of data processing, real time notifications for the data processing, visualization and interactive analysis of processed data (e.g., cloud plots, principle component analysis, box-plots, extracted ion chromatograms, and hierarchical cluster analysis), and database searching for metabolite identification. These apps, available on Apple iOS and Google Android operating systems, allow for the migration of metabolomic research onto mobile devices for better accessibility beyond direct instrument operation. The utility of XCMS Mobile and METLIN Mobile functionalities was developed and is demonstrated here through the metabolomic LC-MS analyses of stem cells, colon cancer, aging, and bacterial metabolism.
Smartphone Analytics: Mobilizing the Lab into the Cloud for Omic-Scale Analyses
2016-01-01
Active data screening is an integral part of many scientific activities, and mobile technologies have greatly facilitated this process by minimizing the reliance on large hardware instrumentation. In order to meet with the increasingly growing field of metabolomics and heavy workload of data processing, we designed the first remote metabolomic data screening platform for mobile devices. Two mobile applications (apps), XCMS Mobile and METLIN Mobile, facilitate access to XCMS and METLIN, which are the most important components in the computer-based XCMS Online platforms. These mobile apps allow for the visualization and analysis of metabolic data throughout the entire analytical process. Specifically, XCMS Mobile and METLIN Mobile provide the capabilities for remote monitoring of data processing, real time notifications for the data processing, visualization and interactive analysis of processed data (e.g., cloud plots, principle component analysis, box-plots, extracted ion chromatograms, and hierarchical cluster analysis), and database searching for metabolite identification. These apps, available on Apple iOS and Google Android operating systems, allow for the migration of metabolomic research onto mobile devices for better accessibility beyond direct instrument operation. The utility of XCMS Mobile and METLIN Mobile functionalities was developed and is demonstrated here through the metabolomic LC-MS analyses of stem cells, colon cancer, aging, and bacterial metabolism. PMID:27560777
Smartphone Analytics: Mobilizing the Lab into the Cloud for Omic-Scale Analyses
Montenegro-Burke, J. Rafael; Phommavongsay, Thiery; Aisporna, Aries E.; ...
2016-08-25
Active data screening is an integral part of many scientific activities, and mobile technologies have greatly facilitated this process by minimizing the reliance on large hardware instrumentation. In order to meet with the increasingly growing field of metabolomics and heavy workload of data processing, we designed the first remote metabolomic data screening platform for mobile devices. Two mobile applications (apps), XCMS Mobile and METLIN Mobile, facilitate access to XCMS and METLIN, which are the most important components in the computer-based XCMS Online platforms. These mobile apps allow for the visualization and analysis of metabolic data throughout the entire analytical process.more » Specifically, XCMS Mobile and METLIN Mobile provide the capabilities for remote monitoring of data processing, real time notifications for the data processing, visualization and interactive analysis of processed data (e.g., cloud plots, principle component analysis, box-plots, extracted ion chromatograms, and hierarchical cluster analysis), and database searching for metabolite identification. These apps, available on Apple iOS and Google Android operating systems, allow for the migration of metabolomic research onto mobile devices for better accessibility beyond direct instrument operation. The utility of XCMS Mobile and METLIN Mobile functionalities was developed and is demonstrated here through the metabolomic LC-MS analyses of stem cells, colon cancer, aging, and bacterial metabolism.« less
Smartphone Analytics: Mobilizing the Lab into the Cloud for Omic-Scale Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montenegro-Burke, J. Rafael; Phommavongsay, Thiery; Aisporna, Aries E.
Active data screening is an integral part of many scientific activities, and mobile technologies have greatly facilitated this process by minimizing the reliance on large hardware instrumentation. In order to meet with the increasingly growing field of metabolomics and heavy workload of data processing, we designed the first remote metabolomic data screening platform for mobile devices. Two mobile applications (apps), XCMS Mobile and METLIN Mobile, facilitate access to XCMS and METLIN, which are the most important components in the computer-based XCMS Online platforms. These mobile apps allow for the visualization and analysis of metabolic data throughout the entire analytical process.more » Specifically, XCMS Mobile and METLIN Mobile provide the capabilities for remote monitoring of data processing, real time notifications for the data processing, visualization and interactive analysis of processed data (e.g., cloud plots, principle component analysis, box-plots, extracted ion chromatograms, and hierarchical cluster analysis), and database searching for metabolite identification. These apps, available on Apple iOS and Google Android operating systems, allow for the migration of metabolomic research onto mobile devices for better accessibility beyond direct instrument operation. The utility of XCMS Mobile and METLIN Mobile functionalities was developed and is demonstrated here through the metabolomic LC-MS analyses of stem cells, colon cancer, aging, and bacterial metabolism.« less
Design, Development, and Evaluation of a Mobile Learning Application for Computing Education
ERIC Educational Resources Information Center
Oyelere, Solomon Sunday; Suhonen, Jarkko; Wajiga, Greg M.; Sutinen, Erkki
2018-01-01
The study focused on the application of the design science research approach in the course of developing a mobile learning application, MobileEdu, for computing education in the Nigerian higher education context. MobileEdu facilitates the learning of computer science courses on mobile devices. The application supports ubiquitous, collaborative,…
A Perspective on Computational Human Performance Models as Design Tools
NASA Technical Reports Server (NTRS)
Jones, Patricia M.
2010-01-01
The design of interactive systems, including levels of automation, displays, and controls, is usually based on design guidelines and iterative empirical prototyping. A complementary approach is to use computational human performance models to evaluate designs. An integrated strategy of model-based and empirical test and evaluation activities is particularly attractive as a methodology for verification and validation of human-rated systems for commercial space. This talk will review several computational human performance modeling approaches and their applicability to design of display and control requirements.
Labacher, Lukas; Mitchell, Claudia
2013-01-01
Young adults often lack access to confidential, long-lasting, and nonjudgmental interactions with sexual health professionals at brick-and-mortar clinics. To ensure that patients return for their STI test results, post-result counseling, and STI-related information, computer-mediated health intervention programming allows them to receive sexual health information through onsite computers, the Internet, and mobile phone calls and text messages. To determine whether young adults (age: M = 21 years) prefer to communicate with health professionals about the status of their sexual health through computer-mediated communication devices, 303 second-year university students (183 from an urban North American university and 120 from a periurban university in South Africa) completed a paper-based survey indicating how they prefer to communicate with doctors and nurses: talking face to face, mobile phone call, text message, Internet chat programs, Facebook, Twitter, or e-mail. Nearly all students, and female students in South Africa in particular, prefer to receive their STI test results, post-results counseling, and STI-related information by talking face to face with doctors and nurses rather than communicating through computers or mobile phones. Results are clarified in relation to gender, availability of various technologies, and prevalence of HIV in Canada and in South Africa.
Social media fingerprints of unemployment.
Llorente, Alejandro; Garcia-Herranz, Manuel; Cebrian, Manuel; Moro, Esteban
2015-01-01
Recent widespread adoption of electronic and pervasive technologies has enabled the study of human behavior at an unprecedented level, uncovering universal patterns underlying human activity, mobility, and interpersonal communication. In the present work, we investigate whether deviations from these universal patterns may reveal information about the socio-economical status of geographical regions. We quantify the extent to which deviations in diurnal rhythm, mobility patterns, and communication styles across regions relate to their unemployment incidence. For this we examine a country-scale publicly articulated social media dataset, where we quantify individual behavioral features from over 19 million geo-located messages distributed among more than 340 different Spanish economic regions, inferred by computing communities of cohesive mobility fluxes. We find that regions exhibiting more diverse mobility fluxes, earlier diurnal rhythms, and more correct grammatical styles display lower unemployment rates. As a result, we provide a simple model able to produce accurate, easily interpretable reconstruction of regional unemployment incidence from their social-media digital fingerprints alone. Our results show that cost-effective economical indicators can be built based on publicly-available social media datasets.
Social Media Fingerprints of Unemployment
Llorente, Alejandro; Garcia-Herranz, Manuel; Cebrian, Manuel; Moro, Esteban
2015-01-01
Recent widespread adoption of electronic and pervasive technologies has enabled the study of human behavior at an unprecedented level, uncovering universal patterns underlying human activity, mobility, and interpersonal communication. In the present work, we investigate whether deviations from these universal patterns may reveal information about the socio-economical status of geographical regions. We quantify the extent to which deviations in diurnal rhythm, mobility patterns, and communication styles across regions relate to their unemployment incidence. For this we examine a country-scale publicly articulated social media dataset, where we quantify individual behavioral features from over 19 million geo-located messages distributed among more than 340 different Spanish economic regions, inferred by computing communities of cohesive mobility fluxes. We find that regions exhibiting more diverse mobility fluxes, earlier diurnal rhythms, and more correct grammatical styles display lower unemployment rates. As a result, we provide a simple model able to produce accurate, easily interpretable reconstruction of regional unemployment incidence from their social-media digital fingerprints alone. Our results show that cost-effective economical indicators can be built based on publicly-available social media datasets. PMID:26020628
Technology Education and Development
ERIC Educational Resources Information Center
Lazinica, Aleksandar, Ed.; Calafate, Carlos, Ed.
2009-01-01
The widespread deployment and use of Information Technologies (IT) has paved the way for change in many fields of our societies. The Internet, mobile computing, social networks and many other advances in human communications have become essential to promote and boost education, technology and industry. On the education side, the new challenges…
An Affordance-Based Framework for Human Computation and Human-Computer Collaboration.
Crouser, R J; Chang, R
2012-12-01
Visual Analytics is "the science of analytical reasoning facilitated by visual interactive interfaces". The goal of this field is to develop tools and methodologies for approaching problems whose size and complexity render them intractable without the close coupling of both human and machine analysis. Researchers have explored this coupling in many venues: VAST, Vis, InfoVis, CHI, KDD, IUI, and more. While there have been myriad promising examples of human-computer collaboration, there exists no common language for comparing systems or describing the benefits afforded by designing for such collaboration. We argue that this area would benefit significantly from consensus about the design attributes that define and distinguish existing techniques. In this work, we have reviewed 1,271 papers from many of the top-ranking conferences in visual analytics, human-computer interaction, and visualization. From these, we have identified 49 papers that are representative of the study of human-computer collaborative problem-solving, and provide a thorough overview of the current state-of-the-art. Our analysis has uncovered key patterns of design hinging on human and machine-intelligence affordances, and also indicates unexplored avenues in the study of this area. The results of this analysis provide a common framework for understanding these seemingly disparate branches of inquiry, which we hope will motivate future work in the field.
2010-03-01
functionality and plausibility distinguishes this research from most research in computational linguistics and computational psycholinguistics . The... Psycholinguistic Theory There is extensive psycholinguistic evidence that human language processing is essentially incremental and interactive...challenges of psycholinguistic research is to explain how humans can process language effortlessly and accurately given the complexity and ambiguity that is
Assessing the Purpose and Importance University Students Attribute to Current ICT Applications
ERIC Educational Resources Information Center
DiGiuseppe, Maurice; Partosoedarso, Elita
2014-01-01
In this study we surveyed students in a mid-sized university in Ontario, Canada to explore various aspects associated with their use of computer-based applications. For the purpose of analysis, the computer applications under study were categorized according to the Human-Computer-Human Interaction (HCHI) model of Desjardins (2005) in which…
Research on phone contacts online status based on mobile cloud computing
NASA Astrophysics Data System (ADS)
Wang, Wen-jinga; Ge, Weib
2013-03-01
Because the limited ability of storage space, CPU processing on mobile phone, it is difficult to realize complex applications on mobile phones, but along with the development of cloud computing, we can place the computing and storage in the clouds, provide users with rich cloud services, helping users complete various function through the browser has become the trend for future mobile communication. This article is taking the mobile phone contacts online status as an example to analysis the development and application of mobile cloud computing.
Definition Of Touch-Sensitive Zones For Graphical Displays
NASA Technical Reports Server (NTRS)
Monroe, Burt L., III; Jones, Denise R.
1988-01-01
Touch zones defined simply by touching, while editing done automatically. Development of touch-screen interactive computing system, tedious task. Interactive Editor for Definition of Touch-Sensitive Zones computer program increases efficiency of human/machine communications by enabling user to define each zone interactively, minimizing redundancy in programming and eliminating need for manual computation of boundaries of touch areas. Information produced during editing process written to data file, to which access gained when needed by application program.
TelCoVis: Visual Exploration of Co-occurrence in Urban Human Mobility Based on Telco Data.
Wu, Wenchao; Xu, Jiayi; Zeng, Haipeng; Zheng, Yixian; Qu, Huamin; Ni, Bing; Yuan, Mingxuan; Ni, Lionel M
2016-01-01
Understanding co-occurrence in urban human mobility (i.e. people from two regions visit an urban place during the same time span) is of great value in a variety of applications, such as urban planning, business intelligence, social behavior analysis, as well as containing contagious diseases. In recent years, the widespread use of mobile phones brings an unprecedented opportunity to capture large-scale and fine-grained data to study co-occurrence in human mobility. However, due to the lack of systematic and efficient methods, it is challenging for analysts to carry out in-depth analyses and extract valuable information. In this paper, we present TelCoVis, an interactive visual analytics system, which helps analysts leverage their domain knowledge to gain insight into the co-occurrence in urban human mobility based on telco data. Our system integrates visualization techniques with new designs and combines them in a novel way to enhance analysts' perception for a comprehensive exploration. In addition, we propose to study the correlations in co-occurrence (i.e. people from multiple regions visit different places during the same time span) by means of biclustering techniques that allow analysts to better explore coordinated relationships among different regions and identify interesting patterns. The case studies based on a real-world dataset and interviews with domain experts have demonstrated the effectiveness of our system in gaining insights into co-occurrence and facilitating various analytical tasks.
Self-reported symptoms associated with exposure to electromagnetic fields: a questionnaire study.
Küçer, Nermin; Pamukçu, Tuğba
2014-01-01
Abstract In the last years, it has been discussed frequently whether there are any harmful effects of electromagnetic fields on human health. Electromagnetic fields are generated by several natural and man-made sources. Part of the electromagnetic spectrum called Radiofrequency is used in communication systems such as mobile (cellular) phone and computer. The aim of our study was to explore different self-reported symptoms that may be associated with exposure to electromagnetic fields. This survey study was conducted, using a questionnaire, on 350 people aged +9 years in Turkey. The chi-square test was used for data analysis. Self-reported symptoms were headache, vertigo/dizziness, fatigue, forgetfulness, sleep disturbance-insomnia, tension-anxiety, joint and bone pain, lacrimation of the eyes, hearing loss and tinnitus. As a result of the survey, the study has shown that users of mobile phone and computer more often complained of headache, joint and bone pain, hearing loss, vertigo/dizziness, tension-anxiety symptoms according to time of daily usage (p < 0.05). In users of mobile phone and computer, women significantly (p < 0.05) complained more often of headache, vertigo/dizziness, fatigue, forgetfulness and tension-anxiety than men.
Multiscale mobility networks and the spatial spreading of infectious diseases.
Balcan, Duygu; Colizza, Vittoria; Gonçalves, Bruno; Hu, Hao; Ramasco, José J; Vespignani, Alessandro
2009-12-22
Among the realistic ingredients to be considered in the computational modeling of infectious diseases, human mobility represents a crucial challenge both on the theoretical side and in view of the limited availability of empirical data. To study the interplay between short-scale commuting flows and long-range airline traffic in shaping the spatiotemporal pattern of a global epidemic we (i) analyze mobility data from 29 countries around the world and find a gravity model able to provide a global description of commuting patterns up to 300 kms and (ii) integrate in a worldwide-structured metapopulation epidemic model a timescale-separation technique for evaluating the force of infection due to multiscale mobility processes in the disease dynamics. Commuting flows are found, on average, to be one order of magnitude larger than airline flows. However, their introduction into the worldwide model shows that the large-scale pattern of the simulated epidemic exhibits only small variations with respect to the baseline case where only airline traffic is considered. The presence of short-range mobility increases, however, the synchronization of subpopulations in close proximity and affects the epidemic behavior at the periphery of the airline transportation infrastructure. The present approach outlines the possibility for the definition of layered computational approaches where different modeling assumptions and granularities can be used consistently in a unifying multiscale framework.
Mobile Cloud Learning for Higher Education: A Case Study of Moodle in the Cloud
ERIC Educational Resources Information Center
Wang, Minjuan; Chen, Yong; Khan, Muhammad Jahanzaib
2014-01-01
Mobile cloud learning, a combination of mobile learning and cloud computing, is a relatively new concept that holds considerable promise for future development and delivery in the education sectors. Cloud computing helps mobile learning overcome obstacles related to mobile computing. The main focus of this paper is to explore how cloud computing…
Mobile computing initiatives within pharmacy education.
Cain, Jeff; Bird, Eleanora R; Jones, Mikael
2008-08-15
To identify mobile computing initiatives within pharmacy education, including how devices are obtained, supported, and utilized within the curriculum. An 18-item questionnaire was developed and delivered to academic affairs deans (or closest equivalent) of 98 colleges and schools of pharmacy. Fifty-four colleges and schools completed the questionnaire for a 55% completion rate. Thirteen of those schools have implemented mobile computing requirements for students. Twenty schools reported they were likely to formally consider implementing a mobile computing initiative within 5 years. Numerous models of mobile computing initiatives exist in terms of device obtainment, technical support, infrastructure, and utilization within the curriculum. Responders identified flexibility in teaching and learning as the most positive aspect of the initiatives and computer-aided distraction as the most negative, Numerous factors should be taken into consideration when deciding if and how a mobile computing requirement should be implemented.
COMBAT: mobile-Cloud-based cOmpute/coMmunications infrastructure for BATtlefield applications
NASA Astrophysics Data System (ADS)
Soyata, Tolga; Muraleedharan, Rajani; Langdon, Jonathan; Funai, Colin; Ames, Scott; Kwon, Minseok; Heinzelman, Wendi
2012-05-01
The amount of data processed annually over the Internet has crossed the zetabyte boundary, yet this Big Data cannot be efficiently processed or stored using today's mobile devices. Parallel to this explosive growth in data, a substantial increase in mobile compute-capability and the advances in cloud computing have brought the state-of-the- art in mobile-cloud computing to an inflection point, where the right architecture may allow mobile devices to run applications utilizing Big Data and intensive computing. In this paper, we propose the MObile Cloud-based Hybrid Architecture (MOCHA), which formulates a solution to permit mobile-cloud computing applications such as object recognition in the battlefield by introducing a mid-stage compute- and storage-layer, called the cloudlet. MOCHA is built on the key observation that many mobile-cloud applications have the following characteristics: 1) they are compute-intensive, requiring the compute-power of a supercomputer, and 2) they use Big Data, requiring a communications link to cloud-based database sources in near-real-time. In this paper, we describe the operation of MOCHA in battlefield applications, by formulating the aforementioned mobile and cloudlet to be housed within a soldier's vest and inside a military vehicle, respectively, and enabling access to the cloud through high latency satellite links. We provide simulations using the traditional mobile-cloud approach as well as utilizing MOCHA with a mid-stage cloudlet to quantify the utility of this architecture. We show that the MOCHA platform for mobile-cloud computing promises a future for critical battlefield applications that access Big Data, which is currently not possible using existing technology.
A Focus on Students' Use of Twitter--Their Interactions with Each Other, Content and Interface
ERIC Educational Resources Information Center
Prestridge, Sarah
2014-01-01
In their advertising campaigns, universities depict students using computers, laptops, mobile phones, iPads and tablets as learning devices. Regardless of the marketing used, there is value in enlisting the advantages of any medium that can aid deep thinking and increase student engagement. This study offers new knowledge about conceptualising…
ERIC Educational Resources Information Center
Huang, Yueh-Min; Liang, Tsung-Ho; Su, Yen-Ning; Chen, Nian-Shing
2012-01-01
Today various types of tablet computers are used, including iPad and Android Tablets. These individual portable digital devices can be used as e-book readers to support mobile personalized learning. Though many studies have investigated e-books by targeting undergraduate students, yet less attention has been paid to children. Therefore, an…
Human computer interface guide, revision A
NASA Technical Reports Server (NTRS)
1993-01-01
The Human Computer Interface Guide, SSP 30540, is a reference document for the information systems within the Space Station Freedom Program (SSFP). The Human Computer Interface Guide (HCIG) provides guidelines for the design of computer software that affects human performance, specifically, the human-computer interface. This document contains an introduction and subparagraphs on SSFP computer systems, users, and tasks; guidelines for interactions between users and the SSFP computer systems; human factors evaluation and testing of the user interface system; and example specifications. The contents of this document are intended to be consistent with the tasks and products to be prepared by NASA Work Package Centers and SSFP participants as defined in SSP 30000, Space Station Program Definition and Requirements Document. The Human Computer Interface Guide shall be implemented on all new SSFP contractual and internal activities and shall be included in any existing contracts through contract changes. This document is under the control of the Space Station Control Board, and any changes or revisions will be approved by the deputy director.
SIG -- The Role of Human-Computer Interaction in Next-Generation Control Rooms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronald L. Boring; Jacques Hugo; Christian Richard
2005-04-01
The purpose of this CHI Special Interest Group (SIG) is to facilitate the convergence between human-computer interaction (HCI) and control room design. HCI researchers and practitioners actively need to infuse state-of-the-art interface technology into control rooms to meet usability, safety, and regulatory requirements. This SIG outlines potential HCI contributions to instrumentation and control (I&C) and automation in control rooms as well as to general control room design.
Interpersonal Biocybernetics: Connecting Through Social Psychophysiology
NASA Technical Reports Server (NTRS)
Pope, Alan T.; Stephens, Chad L.
2012-01-01
One embodiment of biocybernetic adaptation is a human-computer interaction system designed such that physiological signals modulate the effect that control of a task by other means, usually manual control, has on performance of the task. Such a modulation system enables a variety of human-human interactions based upon physiological self-regulation performance. These interpersonal interactions may be mixes of competition and cooperation for simulation training and/or videogame entertainment
An Empirical Study of User Experience on Touch Mice
ERIC Educational Resources Information Center
Chou, Jyh Rong
2016-01-01
The touch mouse is a new type of computer mouse that provides users with a new way of touch-based environment to interact with computers. For more than a decade, user experience (UX) has grown into a core concept of human-computer interaction (HCI), describing a user's perceptions and responses that result from the use of a product in a particular…
NASA Astrophysics Data System (ADS)
Kang, Sungil; Roh, Annah; Nam, Bodam; Hong, Hyunki
2011-12-01
This paper presents a novel vision system for people detection using an omnidirectional camera mounted on a mobile robot. In order to determine regions of interest (ROI), we compute a dense optical flow map using graphics processing units, which enable us to examine compliance with the ego-motion of the robot in a dynamic environment. Shape-based classification algorithms are employed to sort ROIs into human beings and nonhumans. The experimental results show that the proposed system detects people more precisely than previous methods.
Trends in Human-Computer Interaction to Support Future Intelligence Analysis Capabilities
2011-06-01
that allows data to be moved between different computing systems and displays. Figure 4- G-Speak gesture interaction (Oblong, 2011) 5.2 Multitouch ... Multitouch refers to a touchscreen interaction technique in which multiple simultaneous touchpoints and movements can be detected and used to...much of the style of interaction (such as rotate, pinch, zoom and flick movements) found in multitouch devices but can typically recognize more than
Getting seamless care right from the beginning - integrating computers into the human interaction.
Pearce, Christopher; Kumarpeli, Pushpa; de Lusignan, Simon
2010-01-01
The digital age is coming to the health space, behind many other fields of society. In part this is because health remains heavily reliant on human interaction. The doctor-patient relationship remains a significant factor in determining patient outcomes. Whilst there are many benefits to E-Health, there are also significant risks if computers are not adequately integrated into this interaction and accurate data are consequently not available on the patient's journey through the health system. Video analysis of routine clinical consultations in Australian and UK primary care. We analyzed 308 consultations (141+167 respectively) from these systems, with an emphasis on how the consultation starts. Australian consultations have a mean duration of 12.7 mins, UK 11.8 mins. In both countries around 7% of consultations are computer initiated. Where doctors engaged with computer use the patient observed the computer screen much more and better records were produced. However, there was suboptimal engagement and poor records and no coding in around 20% of consultations. How the computer is used at the start of the consultation can set the scene for an effective interaction or reflect disengagement from technology and creation of poor records.
A roadmap to computational social neuroscience.
Tognoli, Emmanuelle; Dumas, Guillaume; Kelso, J A Scott
2018-02-01
To complement experimental efforts toward understanding human social interactions at both neural and behavioral levels, two computational approaches are presented: (1) a fully parameterizable mathematical model of a social partner, the Human Dynamic Clamp which, by virtue of experimentally controlled interactions between Virtual Partners and real people, allows for emergent behaviors to be studied; and (2) a multiscale neurocomputational model of social coordination that enables exploration of social self-organization at all levels-from neuronal patterns to people interacting with each other. These complementary frameworks and the cross product of their analysis aim at understanding the fundamental principles governing social behavior.
Constant, Deborah; de Tolly, Katherine; Harries, Jane; Myer, Landon
2015-02-01
In-clinic follow-up to assess completion of medical abortion is no longer a requirement according to World Health Organization guidance, provided adequate counselling is given. However, timely recognition of ongoing pregnancy, complications or incomplete abortion, which require treatment, is important. As part of a larger trial, this study aimed to establish whether women having a medical abortion could self-assess whether their abortion was complete using an automated, interactive questionnaire on their mobile phones. All 469 participants received standard abortion care and all returnees filled in a self-assessment on paper at clinic follow-up 2-3 weeks later. The 234 women allocated to receive the phone messages were also asked to do a mobile phone assessment at home ten days post-misoprostol. Completion of the mobile assessment was tracked by computer and all completed assessments, paper and mobile, were compared to providers' assessments at clinic follow-up. Of the 226 women able to access the mobile phone assessment, 176 (78%) completed it; 161 of them (93%) reported it was easy to do so. Neither mobile nor paper self-assessments predicted all cases needing additional treatment at follow-up. Prediction of complete procedures was good; 71% of mobile assessments and 91% of paper assessments were accurate. We conclude that an interactive questionnaire assessing completion of medical abortion on mobile phones is feasible in the South African setting; however, it should be done later than day 10 and combined with an appropriate pregnancy test to accurately detect incomplete procedures. Copyright © 2015 Reproductive Health Matters. Published by Elsevier Ltd. All rights reserved.
Wibirama, Sunu; Nugroho, Hanung A
2017-07-01
Mobile devices addiction has been an important research topic in cognitive science, mental health, and human-machine interaction. Previous works observed mobile device addiction by logging mobile devices activity. Although immersion has been linked as a significant predictor of video game addiction, investigation on addiction factors of mobile device with behavioral measurement has never been done before. In this research, we demonstrated the usage of eye tracking to observe effect of screen size on experience of immersion. We compared subjective judgment with eye movements analysis. Non-parametric analysis on immersion score shows that screen size affects experience of immersion (p<;0.05). Furthermore, our experimental results suggest that fixational eye movements may be used as an indicator for future investigation of mobile devices addiction. Our experimental results are also useful to develop a guideline as well as intervention strategy to deal with smartphone addiction.
Schooley, Benjamin; Walczak, Steven; Hikmet, Neset; Patel, Nitin
2016-04-01
Health information technology investments continue to increase while the value derived from their implementation and use is mixed. Mobile device adoption into practice is a recent trend that has increased dramatically and formal studies are needed to investigate consequent benefits and challenges. The objective of this study is to evaluate practitioner perceptions of improvements in productivity, provider-patient communications, care provision, technology usability and other outcomes following the adoption and use of a tablet computer connected to electronic health information resources. A pilot program was initiated in June 2013 to evaluate the effect of mobile tablet computers at one health provider organization in the southeast United States. Providers were asked to volunteer for the evaluation and were each given a mobile tablet computer. A total of 42 inpatient and outpatient providers were interviewed in 2015 using a survey style questionnaire that utilized yes/no, Likert-style, and open ended questions. Each had previously used an electronic health record (EHR) system a minimum of one year outside of residency, and were regular users of personal mobile devices. Each used a mobile tablet computer in the context of their practice connected to the health system EHR. The survey results indicate that more than half of providers perceive the use of the tablet device as having a positive effect on patient communications, patient education, patient's perception of the provider, time spent interacting with patients, provider productivity, process of care, satisfaction with EHR when used together with the device, and care provision. Providers also reported feeling comfortable using the device (82.9%), would recommend the device to colleagues (69.2%), did not experience increased information security and privacy concerns (95%), and noted significant reductions in EHR login times (64.1%). Less than 25% of participants reported negative impacts on any of these areas as well as on time spent on order submission, note completion time, overall workload, patient satisfaction with care experience and patient outcomes. Gender, number of years in practice, practice type (general practitioner vs. specialist), and service type (inpatient/outpatient) were found to have a significant effect on perceptions of patient satisfaction, care process, and provider productivity. Providers found positive gains from utilizing mobile devices in overall productivity, improved communications with their patients, the process of care, and technology efficiencies when used in combination with EHR and other health information resources. Demographic and health care work environment play a role in how mobile technologies are integrated into practice by providers. Copyright © 2016. Published by Elsevier Ireland Ltd.
Pokki, Juho; Parmar, Jemish; Ergeneman, Olgaç; Torun, Hamdi; Guerrero, Miguel; Pellicer, Eva; Sort, Jordi; Pané, Salvador; Nelson, Bradley J
2015-10-07
Ophthalmic wireless microrobots are proposed for minimally invasive vitreoretinal surgery. Devices in the vitreous experience nonlinear mobility as a result of the complex mechanical properties of the vitreous and its interaction with the devices. A microdevice that will minimize its interaction with the macromolecules of the vitreous (i.e., mainly hyaluronan (HA) and collagen) can be utilized for ophthalmic surgeries. Although a few studies on the interactions between the vitreous and microdevices exist, there is no literature on the influence of coatings on these interactions. This paper presents how coatings on devices affect mobility in the vitreous. Surgical catheters in the vasculature use hydrophilic polymer coatings that reduce biomolecular absorption and enhance mobility. In this work such polymers, polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), and HA coatings were utilized, and their effects on mobility in the vitreous were characterized. Hydrophilic titanium dioxide (TiO2) coating was also developed and characterized. Collagenase and hyaluronidase enzymes were coated on probes' surfaces with a view to enhancing their mobility by enzymatic digestion of the collagen and HA of the vitreous, respectively. To model the human vitreous, ex vivo porcine vitreous and collagen were used. For studying the effects of hyaluronidase, the vitreous and HA were used. The hydrophilic and enzymatic coatings were characterized by oscillatory magnetic microrheology. The statistical significance of the mean relative displacements (i.e., mobility) of the coated probes with respect to control probes was assessed. All studied hydrophilic coatings improve mobility, except for HA which decreases mobility potentially due to bonding with vitreal macromolecules. TiO2 coating improves mobility in collagen by 28.3% and in the vitreous by 15.4%. PEG and PVP coatings improve mobility in collagen by 19.4 and by 39.6%, respectively, but their improvement in the vitreous is insignificant at a 95% confidence level (CL). HA coating affects mobility by reducing it in collagen by 35.6% (statistically significant) and in the vitreous by 16.8% (insignificant change at 95% CL). The coatings cause similar effects in collagen and in the vitreous. However, the effects are lower in the vitreous, which can be due to a lower concentration of collagen in the vitreous than in the prepared collagen samples. The coatings based on enzymatic activity increase mobility (i.e., >40% after 15 min experiments in the vitreous models) more than the hydrophilic coatings based on physicochemical interactions. However, the enzymes have time-dependent effects, and they dissolve from the probe surface with time. The presented results are useful for researchers and companies developing ophthalmic devices. They also pave the way to understanding how to adjust mobility of a microdevice in a complex fluid by choice of an appropriate coating.
The state of ergonomics for mobile computing technology.
Dennerlein, Jack T
2015-01-01
Because mobile computing technologies, such as notebook computers, smart mobile phones, and tablet computers afford users many different configurations through their intended mobility, there is concern about their effects on musculoskeletal pain and a need for usage recommendations. Therefore the main goal of this paper to determine which best practices surrounding the use of mobile computing devices can be gleaned from current field and laboratory studies of mobile computing devices. An expert review was completed. Field studies have documented various user configurations, which often include non-neutral postures, that users adopt when using mobile technology, along with some evidence suggesting that longer duration of use is associated with more discomfort. It is therefore prudent for users to take advantage of their mobility and not get stuck in any given posture for too long. The use of accessories such as appropriate cases or riser stands, as well as external keyboards and pointing devices, can also improve postures and comfort. Overall, the state of ergonomics for mobile technology is a work in progress and there are more research questions to be addressed.
Evolving technologies for Space Station Freedom computer-based workstations
NASA Technical Reports Server (NTRS)
Jensen, Dean G.; Rudisill, Marianne
1990-01-01
Viewgraphs on evolving technologies for Space Station Freedom computer-based workstations are presented. The human-computer computer software environment modules are described. The following topics are addressed: command and control workstation concept; cupola workstation concept; Japanese experiment module RMS workstation concept; remote devices controlled from workstations; orbital maneuvering vehicle free flyer; remote manipulator system; Japanese experiment module exposed facility; Japanese experiment module small fine arm; flight telerobotic servicer; human-computer interaction; and workstation/robotics related activities.
GMove: Group-Level Mobility Modeling Using Geo-Tagged Social Media.
Zhang, Chao; Zhang, Keyang; Yuan, Quan; Zhang, Luming; Hanratty, Tim; Han, Jiawei
2016-08-01
Understanding human mobility is of great importance to various applications, such as urban planning, traffic scheduling, and location prediction. While there has been fruitful research on modeling human mobility using tracking data ( e.g. , GPS traces), the recent growth of geo-tagged social media (GeoSM) brings new opportunities to this task because of its sheer size and multi-dimensional nature. Nevertheless, how to obtain quality mobility models from the highly sparse and complex GeoSM data remains a challenge that cannot be readily addressed by existing techniques. We propose GMove, a group-level mobility modeling method using GeoSM data. Our insight is that the GeoSM data usually contains multiple user groups, where the users within the same group share significant movement regularity. Meanwhile, user grouping and mobility modeling are two intertwined tasks: (1) better user grouping offers better within-group data consistency and thus leads to more reliable mobility models; and (2) better mobility models serve as useful guidance that helps infer the group a user belongs to. GMove thus alternates between user grouping and mobility modeling, and generates an ensemble of Hidden Markov Models (HMMs) to characterize group-level movement regularity. Furthermore, to reduce text sparsity of GeoSM data, GMove also features a text augmenter. The augmenter computes keyword correlations by examining their spatiotemporal distributions. With such correlations as auxiliary knowledge, it performs sampling-based augmentation to alleviate text sparsity and produce high-quality HMMs. Our extensive experiments on two real-life data sets demonstrate that GMove can effectively generate meaningful group-level mobility models. Moreover, with context-aware location prediction as an example application, we find that GMove significantly outperforms baseline mobility models in terms of prediction accuracy.
GMove: Group-Level Mobility Modeling Using Geo-Tagged Social Media
Zhang, Chao; Zhang, Keyang; Yuan, Quan; Zhang, Luming; Hanratty, Tim; Han, Jiawei
2017-01-01
Understanding human mobility is of great importance to various applications, such as urban planning, traffic scheduling, and location prediction. While there has been fruitful research on modeling human mobility using tracking data (e.g., GPS traces), the recent growth of geo-tagged social media (GeoSM) brings new opportunities to this task because of its sheer size and multi-dimensional nature. Nevertheless, how to obtain quality mobility models from the highly sparse and complex GeoSM data remains a challenge that cannot be readily addressed by existing techniques. We propose GMove, a group-level mobility modeling method using GeoSM data. Our insight is that the GeoSM data usually contains multiple user groups, where the users within the same group share significant movement regularity. Meanwhile, user grouping and mobility modeling are two intertwined tasks: (1) better user grouping offers better within-group data consistency and thus leads to more reliable mobility models; and (2) better mobility models serve as useful guidance that helps infer the group a user belongs to. GMove thus alternates between user grouping and mobility modeling, and generates an ensemble of Hidden Markov Models (HMMs) to characterize group-level movement regularity. Furthermore, to reduce text sparsity of GeoSM data, GMove also features a text augmenter. The augmenter computes keyword correlations by examining their spatiotemporal distributions. With such correlations as auxiliary knowledge, it performs sampling-based augmentation to alleviate text sparsity and produce high-quality HMMs. Our extensive experiments on two real-life data sets demonstrate that GMove can effectively generate meaningful group-level mobility models. Moreover, with context-aware location prediction as an example application, we find that GMove significantly outperforms baseline mobility models in terms of prediction accuracy. PMID:28163978
NASA Technical Reports Server (NTRS)
Shields, N., Jr.; Piccione, F.; Kirkpatrick, M., III; Malone, T. B.
1982-01-01
The combination of human and machine capabilities into an integrated engineering system which is complex and interactive interdisciplinary undertaking is discussed. Human controlled remote systems referred to as teleoperators, are reviewed. The human factors requirements for remotely manned systems are identified. The data were developed in three principal teleoperator laboratories and the visual, manipulator and mobility laboratories are described. Three major sections are identified: (1) remote system components, (2) human operator considerations; and (3) teleoperator system simulation and concept verification.
A Human Factors Framework for Payload Display Design
NASA Technical Reports Server (NTRS)
Dunn, Mariea C.; Hutchinson, Sonya L.
1998-01-01
During missions to space, one charge of the astronaut crew is to conduct research experiments. These experiments, referred to as payloads, typically are controlled by computers. Crewmembers interact with payload computers by using visual interfaces or displays. To enhance the safety, productivity, and efficiency of crewmember interaction with payload displays, particular attention must be paid to the usability of these displays. Enhancing display usability requires adoption of a design process that incorporates human factors engineering principles at each stage. This paper presents a proposed framework for incorporating human factors engineering principles into the payload display design process.
Understanding Minds in Real-World Environments: Toward a Mobile Cognition Approach.
Ladouce, Simon; Donaldson, David I; Dudchenko, Paul A; Ietswaart, Magdalena
2016-01-01
There is a growing body of evidence that important aspects of human cognition have been marginalized, or overlooked, by traditional cognitive science. In particular, the use of laboratory-based experiments in which stimuli are artificial, and response options are fixed, inevitably results in findings that are less ecologically valid in relation to real-world behavior. In the present review we highlight the opportunities provided by a range of new mobile technologies that allow traditionally lab-bound measurements to now be collected during natural interactions with the world. We begin by outlining the theoretical support that mobile approaches receive from the development of embodied accounts of cognition, and we review the widening evidence that illustrates the importance of examining cognitive processes in their context. As we acknowledge, in practice, the development of mobile approaches brings with it fresh challenges, and will undoubtedly require innovation in paradigm design and analysis. If successful, however, the mobile cognition approach will offer novel insights in a range of areas, including understanding the cognitive processes underlying navigation through space and the role of attention during natural behavior. We argue that the development of real-world mobile cognition offers both increased ecological validity, and the opportunity to examine the interactions between perception, cognition and action-rather than examining each in isolation.
Understanding Minds in Real-World Environments: Toward a Mobile Cognition Approach
Ladouce, Simon; Donaldson, David I.; Dudchenko, Paul A.; Ietswaart, Magdalena
2017-01-01
There is a growing body of evidence that important aspects of human cognition have been marginalized, or overlooked, by traditional cognitive science. In particular, the use of laboratory-based experiments in which stimuli are artificial, and response options are fixed, inevitably results in findings that are less ecologically valid in relation to real-world behavior. In the present review we highlight the opportunities provided by a range of new mobile technologies that allow traditionally lab-bound measurements to now be collected during natural interactions with the world. We begin by outlining the theoretical support that mobile approaches receive from the development of embodied accounts of cognition, and we review the widening evidence that illustrates the importance of examining cognitive processes in their context. As we acknowledge, in practice, the development of mobile approaches brings with it fresh challenges, and will undoubtedly require innovation in paradigm design and analysis. If successful, however, the mobile cognition approach will offer novel insights in a range of areas, including understanding the cognitive processes underlying navigation through space and the role of attention during natural behavior. We argue that the development of real-world mobile cognition offers both increased ecological validity, and the opportunity to examine the interactions between perception, cognition and action—rather than examining each in isolation. PMID:28127283
The Design of Hand Gestures for Human-Computer Interaction: Lessons from Sign Language Interpreters
Rempel, David; Camilleri, Matt J.; Lee, David L.
2015-01-01
The design and selection of 3D modeled hand gestures for human-computer interaction should follow principles of natural language combined with the need to optimize gesture contrast and recognition. The selection should also consider the discomfort and fatigue associated with distinct hand postures and motions, especially for common commands. Sign language interpreters have extensive and unique experience forming hand gestures and many suffer from hand pain while gesturing. Professional sign language interpreters (N=24) rated discomfort for hand gestures associated with 47 characters and words and 33 hand postures. Clear associations of discomfort with hand postures were identified. In a nominal logistic regression model, high discomfort was associated with gestures requiring a flexed wrist, discordant adjacent fingers, or extended fingers. These and other findings should be considered in the design of hand gestures to optimize the relationship between human cognitive and physical processes and computer gesture recognition systems for human-computer input. PMID:26028955
Capturing and analyzing wheelchair maneuvering patterns with mobile cloud computing.
Fu, Jicheng; Hao, Wei; White, Travis; Yan, Yuqing; Jones, Maria; Jan, Yih-Kuen
2013-01-01
Power wheelchairs have been widely used to provide independent mobility to people with disabilities. Despite great advancements in power wheelchair technology, research shows that wheelchair related accidents occur frequently. To ensure safe maneuverability, capturing wheelchair maneuvering patterns is fundamental to enable other research, such as safe robotic assistance for wheelchair users. In this study, we propose to record, store, and analyze wheelchair maneuvering data by means of mobile cloud computing. Specifically, the accelerometer and gyroscope sensors in smart phones are used to record wheelchair maneuvering data in real-time. Then, the recorded data are periodically transmitted to the cloud for storage and analysis. The analyzed results are then made available to various types of users, such as mobile phone users, traditional desktop users, etc. The combination of mobile computing and cloud computing leverages the advantages of both techniques and extends the smart phone's capabilities of computing and data storage via the Internet. We performed a case study to implement the mobile cloud computing framework using Android smart phones and Google App Engine, a popular cloud computing platform. Experimental results demonstrated the feasibility of the proposed mobile cloud computing framework.
NASA Technical Reports Server (NTRS)
Schulte, Erin
2017-01-01
As augmented and virtual reality grows in popularity, and more researchers focus on its development, other fields of technology have grown in the hopes of integrating with the up-and-coming hardware currently on the market. Namely, there has been a focus on how to make an intuitive, hands-free human-computer interaction (HCI) utilizing AR and VR that allows users to control their technology with little to no physical interaction with hardware. Computer vision, which is utilized in devices such as the Microsoft Kinect, webcams and other similar hardware has shown potential in assisting with the development of a HCI system that requires next to no human interaction with computing hardware and software. Object and facial recognition are two subsets of computer vision, both of which can be applied to HCI systems in the fields of medicine, security, industrial development and other similar areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surducan, Aneta; Dabala, Dana; Neamtu, Camelia, E-mail: emanoil.surducan@itim-cj.ro
The interaction of the microwave radiation emitted by mobile phones with the user's body is analyzed from the International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommendations perspective as a correlation between the specific absorption ratio (SAR) of the mobile phone and the call duration. The relative position of the cell phone to the user's body, the dielectric properties of the exposed body parts, the SAR value and the call duration are considered in the local body temperature rise due to the microwave heating effect. The recommended local temperature rise limit in the human body is evaluated according to standards. Themore » aim of this study is to disseminate information to young people, especially high school students, about the microwave thermal effects on the human body, to make them aware of the environmental electromagnetic pollution and to offer them a simple method of biological self protection.« less
Wireless, Web-Based Interactive Control of Optical Coherence Tomography with Mobile Devices.
Mehta, Rajvi; Nankivil, Derek; Zielinski, David J; Waterman, Gar; Keller, Brenton; Limkakeng, Alexander T; Kopper, Regis; Izatt, Joseph A; Kuo, Anthony N
2017-01-01
Optical coherence tomography (OCT) is widely used in ophthalmology clinics and has potential for more general medical settings and remote diagnostics. In anticipation of remote applications, we developed wireless interactive control of an OCT system using mobile devices. A web-based user interface (WebUI) was developed to interact with a handheld OCT system. The WebUI consisted of key OCT displays and controls ported to a webpage using HTML and JavaScript. Client-server relationships were created between the WebUI and the OCT system computer. The WebUI was accessed on a cellular phone mounted to the handheld OCT probe to wirelessly control the OCT system. Twenty subjects were imaged using the WebUI to assess the system. System latency was measured using different connection types (wireless 802.11n only, wireless to remote virtual private network [VPN], and cellular). Using a cellular phone, the WebUI was successfully used to capture posterior eye OCT images in all subjects. Simultaneous interactivity by a remote user on a laptop was also demonstrated. On average, use of the WebUI added only 58, 95, and 170 ms to the system latency using wireless only, wireless to VPN, and cellular connections, respectively. Qualitatively, operator usage was not affected. Using a WebUI, we demonstrated wireless and remote control of an OCT system with mobile devices. The web and open source software tools used in this project make it possible for any mobile device to potentially control an OCT system through a WebUI. This platform can be a basis for remote, teleophthalmology applications using OCT.
NASA Astrophysics Data System (ADS)
Pop, Florin; Dobre, Ciprian; Mocanu, Bogdan-Costel; Citoteanu, Oana-Maria; Xhafa, Fatos
2016-11-01
Managing the large dimensions of data processed in distributed systems that are formed by datacentres and mobile devices has become a challenging issue with an important impact on the end-user. Therefore, the management process of such systems can be achieved efficiently by using uniform overlay networks, interconnected through secure and efficient routing protocols. The aim of this article is to advance our previous work with a novel trust model based on a reputation metric that actively uses the social links between users and the model of interaction between them. We present and evaluate an adaptive model for the trust management in structured overlay networks, based on a Mobile Cloud architecture and considering a honeycomb overlay. Such a model can be useful for supporting advanced mobile market-share e-Commerce platforms, where users collaborate and exchange reliable information about, for example, products of interest and supporting ad-hoc business campaigns
MGRA: Motion Gesture Recognition via Accelerometer.
Hong, Feng; You, Shujuan; Wei, Meiyu; Zhang, Yongtuo; Guo, Zhongwen
2016-04-13
Accelerometers have been widely embedded in most current mobile devices, enabling easy and intuitive operations. This paper proposes a Motion Gesture Recognition system (MGRA) based on accelerometer data only, which is entirely implemented on mobile devices and can provide users with real-time interactions. A robust and unique feature set is enumerated through the time domain, the frequency domain and singular value decomposition analysis using our motion gesture set containing 11,110 traces. The best feature vector for classification is selected, taking both static and mobile scenarios into consideration. MGRA exploits support vector machine as the classifier with the best feature vector. Evaluations confirm that MGRA can accommodate a broad set of gesture variations within each class, including execution time, amplitude and non-gestural movement. Extensive evaluations confirm that MGRA achieves higher accuracy under both static and mobile scenarios and costs less computation time and energy on an LG Nexus 5 than previous methods.
NASA Technical Reports Server (NTRS)
Torosyan, David
2012-01-01
Just as important as the engineering that goes into building a robot is the method of interaction, or how human users will use the machine. As part of the Human-System Interactions group (Conductor) at JPL, I explored using a web interface to interact with ATHLETE, a prototype lunar rover. I investigated the usefulness of HTML 5 and Javascript as a telemetry viewer as well as the feasibility of having a rover communicate with a web server. To test my ideas I built a mobile-compatible website and designed primarily for an Android tablet. The website took input from ATHLETE engineers, and upon its completion I conducted a user test to assess its effectiveness.
Investigations in Computer-Aided Instruction and Computer-Aided Controls. Final Report.
ERIC Educational Resources Information Center
Rosenberg, R.C.; And Others
These research projects, designed to delve into certain relationships between humans and computers, are focused on computer-assisted instruction and on man-computer interaction. One study demonstrates that within the limits of formal engineering theory, a computer simulated laboratory (Dynamic Systems Laboratory) can be built in which freshmen…
An Infrastructure to Enable Lightweight Context-Awareness for Mobile Users
Curiel, Pablo; Lago, Ana B.
2013-01-01
Mobile phones enable us to carry out a wider range of tasks every day, and as a result they have become more ubiquitous than ever. However, they are still more limited in terms of processing power and interaction capabilities than traditional computers, and the often distracting and time-constricted scenarios in which we use them do not help in alleviating these limitations. Context-awareness is a valuable technique to address these issues, as it enables to adapt application behaviour to each situation. In this paper we present a context management infrastructure for mobile environments, aimed at controlling context information life-cycle in this kind of scenarios, with the main goal of enabling application and services to adapt their behaviour to better meet end-user needs. This infrastructure relies on semantic technologies and open standards to improve interoperability, and is based on a central element, the context manager. This element acts as a central context repository and takes most of the computational burden derived from dealing with this kind of information, thus relieving from these tasks to more resource-scarce devices in the system. PMID:23899932
Molecular Dynamics Simulations of Ion Transport and Mechanisms in Polymer Nanocomposites
NASA Astrophysics Data System (ADS)
Mogurampelly, Santosh; Ganesan, Venkat
2015-03-01
Using all atom molecular dynamics and trajectory-extending kinetic Monte Carlo simulations, we study the influence of Al2O3 nanoparticles on the transport properties of Li+ ions in polymer electrolytes consisting of polyethylene oxide (PEO) melt solvated with LiBF4 salt. We observe that the nanoparticles have a strong influence on polymer segmental dynamics which in turn correlates with the mobility of Li+ ions. Explicitly, polymer segmental relaxation times and Li+ ion residence times around polymer were found to increase with the addition of nanoparticles. We also observe that increasing short range repulsive interactions between nanoparticles and polymer membrane leads to increasing polymer dynamics and ion mobility. Overall, our simulation results suggest that nanoparticle induced changes in conformational and dynamic properties of the polymer influences the ion mobilities in polymer electrolytes and suggests possible directions for using such findings to improve the polymer matrix conductivity. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing computing resources that have contributed to the research.
Lee, S C; Lee, E T; Kingsley, R M; Wang, Y; Russell, D; Klein, R; Warn, A
2001-04-01
To investigate whether a computer vision system is comparable with humans in detecting early retinal lesions of diabetic retinopathy using color fundus photographs. A computer system has been developed using image processing and pattern recognition techniques to detect early lesions of diabetic retinopathy (hemorrhages and microaneurysms, hard exudates, and cotton-wool spots). Color fundus photographs obtained from American Indians in Oklahoma were used in developing and testing the system. A set of 369 color fundus slides were used to train the computer system using 3 diagnostic categories: lesions present, questionable, or absent (Y/Q/N). A different set of 428 slides were used to test and evaluate the system, and its diagnostic results were compared with those of 2 human experts-the grader at the University of Wisconsin Fundus Photograph Reading Center (Madison) and a general ophthalmologist. The experiments included comparisons using 3 (Y/Q/N) and 2 diagnostic categories (Y/N) (questionable cases excluded in the latter). In the training phase, the agreement rates, sensitivity, and specificity in detecting the 3 lesions between the retinal specialist and the computer system were all above 90%. The kappa statistics were high (0.75-0.97), indicating excellent agreement between the specialist and the computer system. In the testing phase, the results obtained between the computer system and human experts were consistent with those of the training phase, and they were comparable with those between the human experts. The performance of the computer vision system in diagnosing early retinal lesions was comparable with that of human experts. Therefore, this mobile, electronically easily accessible, and noninvasive computer system, could become a mass screening tool and a clinical aid in diagnosing early lesions of diabetic retinopathy.
NASA Astrophysics Data System (ADS)
Morse, P. E.; Reading, A. M.; Lueg, C.
2014-12-01
Pattern-recognition in scientific data is not only a computational problem but a human-observer problem as well. Human observation of - and interaction with - data visualization software can augment, select, interrupt and modify computational routines and facilitate processes of pattern and significant feature recognition for subsequent human analysis, machine learning, expert and artificial intelligence systems.'Tagger' is a Mac OS X interactive data visualisation tool that facilitates Human-Computer interaction for the recognition of patterns and significant structures. It is a graphical application developed using the Quartz Composer framework. 'Tagger' follows a Model-View-Controller (MVC) software architecture: the application problem domain (the model) is to facilitate novel ways of abstractly representing data to a human interlocutor, presenting these via different viewer modalities (e.g. chart representations, particle systems, parametric geometry) to the user (View) and enabling interaction with the data (Controller) via a variety of Human Interface Devices (HID). The software enables the user to create an arbitrary array of tags that may be appended to the visualised data, which are then saved into output files as forms of semantic metadata. Three fundamental problems that are not strongly supported by conventional scientific visualisation software are addressed:1] How to visually animate data over time, 2] How to rapidly deploy unconventional parametrically driven data visualisations, 3] How to construct and explore novel interaction models that capture the activity of the end-user as semantic metadata that can be used to computationally enhance subsequent interrogation. Saved tagged data files may be loaded into Tagger, so that tags may be tagged, if desired. Recursion opens up the possibility of refining or overlapping different types of tags, tagging a variety of different POIs or types of events, and of capturing different types of specialist observations of important or noticeable events. Other visualisations and modes of interaction will also be demonstrated, with the aim of discovering knowledge in large datasets in the natural, physical sciences. Fig.1 Wave height data from an oceanographic Wave Rider Buoy. Colors/radii are driven by wave height data.
Ramya, L; Gautham, N; Chaloin, Laurent; Kajava, Andrey V
2015-09-01
Significant progress has been made in the determination of the protein structures with their number today passing over a hundred thousand structures. The next challenge is the understanding and prediction of protein-protein and protein-ligand interactions. In this work we address this problem by analyzing curved solenoid proteins. Many of these proteins are considered as "hub molecules" for their high potential to interact with many different molecules and to be a scaffold for multisubunit protein machineries. Our analysis of these structures through molecular dynamics simulations reveals that the mobility of the side-chains on the concave surfaces of the solenoids is lower than on the convex ones. This result provides an explanation to the observed preferential binding of the ligands, including small and flexible ligands, to the concave surface of the curved solenoid proteins. The relationship between the landscapes and dynamic properties of the protein surfaces can be further generalized to the other types of protein structures and eventually used in the computer algorithms, allowing prediction of protein-ligand interactions by analysis of protein surfaces. © 2015 Wiley Periodicals, Inc.
Processing Diabetes Mellitus Composite Events in MAGPIE.
Brugués, Albert; Bromuri, Stefano; Barry, Michael; Del Toro, Óscar Jiménez; Mazurkiewicz, Maciej R; Kardas, Przemyslaw; Pegueroles, Josep; Schumacher, Michael
2016-02-01
The focus of this research is in the definition of programmable expert Personal Health Systems (PHS) to monitor patients affected by chronic diseases using agent oriented programming and mobile computing to represent the interactions happening amongst the components of the system. The paper also discusses issues of knowledge representation within the medical domain when dealing with temporal patterns concerning the physiological values of the patient. In the presented agent based PHS the doctors can personalize for each patient monitoring rules that can be defined in a graphical way. Furthermore, to achieve better scalability, the computations for monitoring the patients are distributed among their devices rather than being performed in a centralized server. The system is evaluated using data of 21 diabetic patients to detect temporal patterns according to a set of monitoring rules defined. The system's scalability is evaluated by comparing it with a centralized approach. The evaluation concerning the detection of temporal patterns highlights the system's ability to monitor chronic patients affected by diabetes. Regarding the scalability, the results show the fact that an approach exploiting the use of mobile computing is more scalable than a centralized approach. Therefore, more likely to satisfy the needs of next generation PHSs. PHSs are becoming an adopted technology to deal with the surge of patients affected by chronic illnesses. This paper discusses architectural choices to make an agent based PHS more scalable by using a distributed mobile computing approach. It also discusses how to model the medical knowledge in the PHS in such a way that it is modifiable at run time. The evaluation highlights the necessity of distributing the reasoning to the mobile part of the system and that modifiable rules are able to deal with the change in lifestyle of the patients affected by chronic illnesses.
Tracing the Attention of Moving Citizens
NASA Astrophysics Data System (ADS)
Wu, Lingfei; Wang, Cheng-Jun
2016-09-01
With the widespread use of mobile computing devices in contemporary society, our trajectories in the physical space and virtual world are increasingly closely connected. Using the anonymous smartphone data of 1 × 105 users in a major city of China, we study the interplay between online and offline human behaviors by constructing the mobility network (offline) and the attention network (online). Using the network renormalization technique, we find that they belong to two different classes: the mobility network is small-world, whereas the attention network is fractal. We then divide the city into different areas based on the features of the mobility network discovered under renormalization. Interestingly, this spatial division manifests the location-based online behaviors, for example shopping, dating, and taxi-requesting. Finally, we offer a geometric network model to help us understand the relationship between small-world and fractal networks.
Impact of mobility structure on optimization of small-world networks of mobile agents
NASA Astrophysics Data System (ADS)
Lee, Eun; Holme, Petter
2016-06-01
In ad hoc wireless networking, units are connected to each other rather than to a central, fixed, infrastructure. Constructing and maintaining such networks create several trade-off problems between robustness, communication speed, power consumption, etc., that bridges engineering, computer science and the physics of complex systems. In this work, we address the role of mobility patterns of the agents on the optimal tuning of a small-world type network construction method. By this method, the network is updated periodically and held static between the updates. We investigate the optimal updating times for different scenarios of the movement of agents (modeling, for example, the fat-tailed trip distances, and periodicities, of human travel). We find that these mobility patterns affect the power consumption in non-trivial ways and discuss how these effects can best be handled.
Biomechanical effects of mobile computer location in a vehicle cab.
Saginus, Kyle A; Marklin, Richard W; Seeley, Patricia; Simoneau, Guy G; Freier, Stephen
2011-10-01
The objective of this research is to determine the best location to place a conventional mobile computer supported by a commercially available mount in a light truck cab. U.S. and Canadian electric utility companies are in the process of integrating mobile computers into their fleet vehicle cabs. There are no publications on the effect of mobile computer location in a vehicle cab on biomechanical loading, performance, and subjective assessment. The authors tested four locations of mobile computers in a light truck cab in a laboratory study to determine how location affected muscle activity of the lower back and shoulders; joint angles of the shoulders, elbows, and wrist; user performance; and subjective assessment. A total of 22 participants were tested in this study. Placing the mobile computer closer to the steering wheel reduced low back and shoulder muscle activity. Joint angles of the shoulders, elbows, and wrists were also closer to neutral angle. Biomechanical modeling revealed substantially less spinal compression and trunk muscle force. In general, there were no practical differences in performance between the locations. Subjective assessment indicated that users preferred the mobile computer to be as close as possible to the steering wheel. Locating the mobile computer close to the steering wheel reduces risk of injuries, such as low back pain and shoulder tendonitis. Results from the study can guide electric utility companies in the installation of mobile computers into vehicle cabs. Results may also be generalized to other industries that use trucklike vehicles, such as construction.
HU, TING; DARABOS, CHRISTIAN; CRICCO, MARIA E.; KONG, EMILY; MOORE, JASON H.
2014-01-01
The large volume of GWAS data poses great computational challenges for analyzing genetic interactions associated with common human diseases. We propose a computational framework for characterizing epistatic interactions among large sets of genetic attributes in GWAS data. We build the human phenotype network (HPN) and focus around a disease of interest. In this study, we use the GLAUGEN glaucoma GWAS dataset and apply the HPN as a biological knowledge-based filter to prioritize genetic variants. Then, we use the statistical epistasis network (SEN) to identify a significant connected network of pairwise epistatic interactions among the prioritized SNPs. These clearly highlight the complex genetic basis of glaucoma. Furthermore, we identify key SNPs by quantifying structural network characteristics. Through functional annotation of these key SNPs using Biofilter, a software accessing multiple publicly available human genetic data sources, we find supporting biomedical evidences linking glaucoma to an array of genetic diseases, proving our concept. We conclude by suggesting hypotheses for a better understanding of the disease. PMID:25592582
The Inevitability of Ethnocentrism Revisited: Ethnocentrism Diminishes As Mobility Increases.
De, Soham; Gelfand, Michele J; Nau, Dana; Roos, Patrick
2015-12-08
Nearly all major conflicts across the globe, both current and historical, are characterized by individuals defining themselves and others by group membership. This existence of group-biased behavior (in-group favoring and out-group hostile) has been well established empirically, and has been shown to be an inevitable outcome in many evolutionary studies. Thus it is puzzling that statistics show violence and out-group conflict declining dramatically over the past few centuries of human civilization. Using evolutionary game-theoretic models, we solve this puzzle by showing for the first time that out-group hostility is dramatically reduced by mobility. Technological and societal advances over the past centuries have greatly increased the degree to which humans change physical locations, and our results show that in highly mobile societies, one's choice of action is more likely to depend on what individual one is interacting with, rather than the group to which the individual belongs. Our empirical analysis of archival data verifies that contexts with high residential mobility indeed have less out-group hostility than those with low mobility. This work suggests that, in fact, group-biased behavior that discriminates against out-groups is not inevitable after all.
The Inevitability of Ethnocentrism Revisited: Ethnocentrism Diminishes As Mobility Increases
De, Soham; Gelfand, Michele J.; Nau, Dana; Roos, Patrick
2015-01-01
Nearly all major conflicts across the globe, both current and historical, are characterized by individuals defining themselves and others by group membership. This existence of group-biased behavior (in-group favoring and out-group hostile) has been well established empirically, and has been shown to be an inevitable outcome in many evolutionary studies. Thus it is puzzling that statistics show violence and out-group conflict declining dramatically over the past few centuries of human civilization. Using evolutionary game-theoretic models, we solve this puzzle by showing for the first time that out-group hostility is dramatically reduced by mobility. Technological and societal advances over the past centuries have greatly increased the degree to which humans change physical locations, and our results show that in highly mobile societies, one’s choice of action is more likely to depend on what individual one is interacting with, rather than the group to which the individual belongs. Our empirical analysis of archival data verifies that contexts with high residential mobility indeed have less out-group hostility than those with low mobility. This work suggests that, in fact, group-biased behavior that discriminates against out-groups is not inevitable after all. PMID:26644192
NASA Astrophysics Data System (ADS)
Setscheny, Stephan
The interaction between human beings and technology builds a central aspect in human life. The most common form of this human-technology interface is the graphical user interface which is controlled through the mouse and the keyboard. In consequence of continuous miniaturization and the increasing performance of microcontrollers and sensors for the detection of human interactions, developers receive new possibilities for realising innovative interfaces. As far as this movement is concerned, the relevance of computers in the common sense and graphical user interfaces is decreasing. Especially in the area of ubiquitous computing and the interaction through tangible user interfaces a highly impact of this technical evolution can be seen. Apart from this, tangible and experience able interaction offers users the possibility of an interactive and intuitive method for controlling technical objects. The implementation of microcontrollers for control functions and sensors enables the realisation of these experience able interfaces. Besides the theories about tangible user interfaces, the consideration about sensors and the Arduino platform builds a main aspect of this work.
Solid-to-fluid DNA transition inside HSV-1 capsid close to the temperature of infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sae-Ueng, Udom; Li, Dong; Zuo, Xiaobing
2014-10-01
DNA in the human Herpes simplex virus type 1 (HSV-1) capsid is packaged to a tight density. This leads to tens of atmospheres of internal pressure responsible for the delivery of the herpes genome into the cell nucleus. In this study we show that, despite its liquid crystalline state inside the capsid, the DNA is fluid-like, which facilitates its ejection into the cell nucleus during infection. We found that the sliding friction between closely packaged DNA strands, caused by interstrand repulsive interactions, is reduced by the ionic environment of epithelial cells and neurons susceptible to herpes infection. However, variations inmore » the ionic conditions corresponding to neuronal activity can restrict DNA mobility in the capsid, making it more solid-like. This can inhibit intranuclear DNA release and interfere with viral replication. In addition, the temperature of the human host (37 °C) induces a disordering transition of the encapsidated herpes genome, which reduces interstrand interactions and provides genome mobility required for infection.« less
Corti, Kevin; Gillespie, Alex
2015-01-01
We use speech shadowing to create situations wherein people converse in person with a human whose words are determined by a conversational agent computer program. Speech shadowing involves a person (the shadower) repeating vocal stimuli originating from a separate communication source in real-time. Humans shadowing for conversational agent sources (e.g., chat bots) become hybrid agents (“echoborgs”) capable of face-to-face interlocution. We report three studies that investigated people’s experiences interacting with echoborgs and the extent to which echoborgs pass as autonomous humans. First, participants in a Turing Test spoke with a chat bot via either a text interface or an echoborg. Human shadowing did not improve the chat bot’s chance of passing but did increase interrogators’ ratings of how human-like the chat bot seemed. In our second study, participants had to decide whether their interlocutor produced words generated by a chat bot or simply pretended to be one. Compared to those who engaged a text interface, participants who engaged an echoborg were more likely to perceive their interlocutor as pretending to be a chat bot. In our third study, participants were naïve to the fact that their interlocutor produced words generated by a chat bot. Unlike those who engaged a text interface, the vast majority of participants who engaged an echoborg did not sense a robotic interaction. These findings have implications for android science, the Turing Test paradigm, and human–computer interaction. The human body, as the delivery mechanism of communication, fundamentally alters the social psychological dynamics of interactions with machine intelligence. PMID:26042066
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-14
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-771] In the Matter of Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers, and Components... certain mobile phones, mobile tablets, portable music players, and computers. 76 FR 24051 (Apr. 29, 2011...
feature extraction, human-computer interaction, and physics-based modeling. Professional Experience 2009 ., computer science, University of Colorado at Boulder M.S., computer science, University of Colorado at Boulder B.S., computer science, New Mexico Institute of Mining and Technology
Butson, Christopher R.; Tamm, Georg; Jain, Sanket; Fogal, Thomas; Krüger, Jens
2012-01-01
In recent years there has been significant growth in the use of patient-specific models to predict the effects of neuromodulation therapies such as deep brain stimulation (DBS). However, translating these models from a research environment to the everyday clinical workflow has been a challenge, primarily due to the complexity of the models and the expertise required in specialized visualization software. In this paper, we deploy the interactive visualization system ImageVis3D Mobile, which has been designed for mobile computing devices such as the iPhone or iPad, in an evaluation environment to visualize models of Parkinson’s disease patients who received DBS therapy. Selection of DBS settings is a significant clinical challenge that requires repeated revisions to achieve optimal therapeutic response, and is often performed without any visual representation of the stimulation system in the patient. We used ImageVis3D Mobile to provide models to movement disorders clinicians and asked them to use the software to determine: 1) which of the four DBS electrode contacts they would select for therapy; and 2) what stimulation settings they would choose. We compared the stimulation protocol chosen from the software versus the stimulation protocol that was chosen via clinical practice (independently of the study). Lastly, we compared the amount of time required to reach these settings using the software versus the time required through standard practice. We found that the stimulation settings chosen using ImageVis3D Mobile were similar to those used in standard of care, but were selected in drastically less time. We show how our visualization system, available directly at the point of care on a device familiar to the clinician, can be used to guide clinical decision making for selection of DBS settings. In our view, the positive impact of the system could also translate to areas other than DBS. PMID:22450824
Can Machines Think? Interaction and Perspective Taking with Robots Investigated via fMRI
Krach, Sören; Hegel, Frank; Wrede, Britta; Sagerer, Gerhard; Binkofski, Ferdinand; Kircher, Tilo
2008-01-01
Background When our PC goes on strike again we tend to curse it as if it were a human being. Why and under which circumstances do we attribute human-like properties to machines? Although humans increasingly interact directly with machines it remains unclear whether humans implicitly attribute intentions to them and, if so, whether such interactions resemble human-human interactions on a neural level. In social cognitive neuroscience the ability to attribute intentions and desires to others is being referred to as having a Theory of Mind (ToM). With the present study we investigated whether an increase of human-likeness of interaction partners modulates the participants' ToM associated cortical activity. Methodology/Principal Findings By means of functional magnetic resonance imaging (subjects n = 20) we investigated cortical activity modulation during highly interactive human-robot game. Increasing degrees of human-likeness for the game partner were introduced by means of a computer partner, a functional robot, an anthropomorphic robot and a human partner. The classical iterated prisoner's dilemma game was applied as experimental task which allowed for an implicit detection of ToM associated cortical activity. During the experiment participants always played against a random sequence unknowingly to them. Irrespective of the surmised interaction partners' responses participants indicated having experienced more fun and competition in the interaction with increasing human-like features of their partners. Parametric modulation of the functional imaging data revealed a highly significant linear increase of cortical activity in the medial frontal cortex as well as in the right temporo-parietal junction in correspondence with the increase of human-likeness of the interaction partner (computer
Can machines think? Interaction and perspective taking with robots investigated via fMRI.
Krach, Sören; Hegel, Frank; Wrede, Britta; Sagerer, Gerhard; Binkofski, Ferdinand; Kircher, Tilo
2008-07-09
When our PC goes on strike again we tend to curse it as if it were a human being. Why and under which circumstances do we attribute human-like properties to machines? Although humans increasingly interact directly with machines it remains unclear whether humans implicitly attribute intentions to them and, if so, whether such interactions resemble human-human interactions on a neural level. In social cognitive neuroscience the ability to attribute intentions and desires to others is being referred to as having a Theory of Mind (ToM). With the present study we investigated whether an increase of human-likeness of interaction partners modulates the participants' ToM associated cortical activity. By means of functional magnetic resonance imaging (subjects n = 20) we investigated cortical activity modulation during highly interactive human-robot game. Increasing degrees of human-likeness for the game partner were introduced by means of a computer partner, a functional robot, an anthropomorphic robot and a human partner. The classical iterated prisoner's dilemma game was applied as experimental task which allowed for an implicit detection of ToM associated cortical activity. During the experiment participants always played against a random sequence unknowingly to them. Irrespective of the surmised interaction partners' responses participants indicated having experienced more fun and competition in the interaction with increasing human-like features of their partners. Parametric modulation of the functional imaging data revealed a highly significant linear increase of cortical activity in the medial frontal cortex as well as in the right temporo-parietal junction in correspondence with the increase of human-likeness of the interaction partner (computer
Free-zone electrophoresis of animal cells. 1: Experiments on cell-cell interactions
NASA Technical Reports Server (NTRS)
Todd, P. W.; Hjerten, S.
1985-01-01
The electrophoretically migrating zones wasa monitored. The absence of fluid flows in the direction of migration permits direct measurement of electrophoretic velocities of any material. Sedimentation is orthogonal to electrokinetic motion and the effects of particle-particle interaction on electrophoretic mobility is studied by free zone electrophoresis. Fixed erythrocytes at high concentrations, mixtures of fixed erythrocytes from different animal species, and mixtures of cultured human cells were studied in low ionic strength buffers. The electrophoretic velocity of fixed erythrocytes was not altered by increasing cell concentration or by the mixing of erythrocytes from different species. When zones containing cultured human glial cells and neuroblastoma cells are permitted to interact during electrophoresis, altered migration patterns occur. It is found that cell-cell interactions depends upon cell type.
Toogood, Helen S; van Thiel, Adam; Basran, Jaswir; Sutcliffe, Mike J; Scrutton, Nigel S; Leys, David
2004-07-30
The crystal structure of the human electron transferring flavoprotein (ETF).medium chain acyl-CoA dehydrogenase (MCAD) complex reveals a dual mode of protein-protein interaction, imparting both specificity and promiscuity in the interaction of ETF with a range of structurally distinct primary dehydrogenases. ETF partitions the functions of partner binding and electron transfer between (i) the recognition loop, which acts as a static anchor at the ETF.MCAD interface, and (ii) the highly mobile redox active FAD domain. Together, these enable the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. Disorders in amino acid or fatty acid catabolism can be attributed to mutations at the protein-protein interface. Crucially, complex formation triggers mobility of the FAD domain, an induced disorder that contrasts with general models of protein-protein interaction by induced fit mechanisms. The subsequent interfacial motion in the MCAD.ETF complex is the basis for the interaction of ETF with structurally diverse protein partners. Solution studies using ETF and MCAD with mutations at the protein-protein interface support this dynamic model and indicate ionic interactions between MCAD Glu(212) and ETF Arg alpha(249) are likely to transiently stabilize productive conformations of the FAD domain leading to enhanced electron transfer rates between both partners.
ERIC Educational Resources Information Center
Nowinski, Wieslaw L.; Thirunavuukarasuu, Arumugam; Ananthasubramaniam, Anand; Chua, Beng Choon; Qian, Guoyu; Nowinska, Natalia G.; Marchenko, Yevgen; Volkau, Ihar
2009-01-01
Preparation of tests and student's assessment by the instructor are time consuming. We address these two tasks in neuroanatomy education by employing a digital media application with a three-dimensional (3D), interactive, fully segmented, and labeled brain atlas. The anatomical and vascular models in the atlas are linked to "Terminologia…
Implicit prosody mining based on the human eye image capture technology
NASA Astrophysics Data System (ADS)
Gao, Pei-pei; Liu, Feng
2013-08-01
The technology of eye tracker has become the main methods of analyzing the recognition issues in human-computer interaction. Human eye image capture is the key problem of the eye tracking. Based on further research, a new human-computer interaction method introduced to enrich the form of speech synthetic. We propose a method of Implicit Prosody mining based on the human eye image capture technology to extract the parameters from the image of human eyes when reading, control and drive prosody generation in speech synthesis, and establish prosodic model with high simulation accuracy. Duration model is key issues for prosody generation. For the duration model, this paper put forward a new idea for obtaining gaze duration of eyes when reading based on the eye image capture technology, and synchronous controlling this duration and pronunciation duration in speech synthesis. The movement of human eyes during reading is a comprehensive multi-factor interactive process, such as gaze, twitching and backsight. Therefore, how to extract the appropriate information from the image of human eyes need to be considered and the gaze regularity of eyes need to be obtained as references of modeling. Based on the analysis of current three kinds of eye movement control model and the characteristics of the Implicit Prosody reading, relative independence between speech processing system of text and eye movement control system was discussed. It was proved that under the same text familiarity condition, gaze duration of eyes when reading and internal voice pronunciation duration are synchronous. The eye gaze duration model based on the Chinese language level prosodic structure was presented to change previous methods of machine learning and probability forecasting, obtain readers' real internal reading rhythm and to synthesize voice with personalized rhythm. This research will enrich human-computer interactive form, and will be practical significance and application prospect in terms of disabled assisted speech interaction. Experiments show that Implicit Prosody mining based on the human eye image capture technology makes the synthesized speech has more flexible expressions.
Making intelligent systems team players: Additional case studies
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Schreckenghost, Debra L.; Rhoads, Ron W.
1993-01-01
Observations from a case study of intelligent systems are reported as part of a multi-year interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. A series of studies were conducted to investigate issues in designing intelligent fault management systems in aerospace applications for effective human-computer interaction. The results of the initial study are documented in two NASA technical memoranda: TM 104738 Making Intelligent Systems Team Players: Case Studies and Design Issues, Volumes 1 and 2; and TM 104751, Making Intelligent Systems Team Players: Overview for Designers. The objective of this additional study was to broaden the investigation of human-computer interaction design issues beyond the focus on monitoring and fault detection in the initial study. The results of this second study are documented which is intended as a supplement to the original design guidance documents. These results should be of interest to designers of intelligent systems for use in real-time operations, and to researchers in the areas of human-computer interaction and artificial intelligence.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... Communications and Computer Devices and Components Thereof; Notice of Investigation AGENCY: U.S. International... States after importation of certain mobile communications and computer devices and components thereof by... importation of certain mobile communications or computer devices or components thereof that infringe one or...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-04
...--Intersection of Cloud Computing and Mobility Forum and Workshop AGENCY: National Institute of Standards and.../intersection-of-cloud-and-mobility.cfm . SUPPLEMENTARY INFORMATION: NIST hosted six prior Cloud Computing Forum... interoperability, portability, and security, discuss the Federal Government's experience with cloud computing...
Human/computer control of undersea teleoperators
NASA Technical Reports Server (NTRS)
Sheridan, T. B.; Verplank, W. L.; Brooks, T. L.
1978-01-01
The potential of supervisory controlled teleoperators for accomplishment of manipulation and sensory tasks in deep ocean environments is discussed. Teleoperators and supervisory control are defined, the current problems of human divers are reviewed, and some assertions are made about why supervisory control has potential use to replace and extend human diver capabilities. The relative roles of man and computer and the variables involved in man-computer interaction are next discussed. Finally, a detailed description of a supervisory controlled teleoperator system, SUPERMAN, is presented.
An Overview of Computer-Based Natural Language Processing.
ERIC Educational Resources Information Center
Gevarter, William B.
Computer-based Natural Language Processing (NLP) is the key to enabling humans and their computer-based creations to interact with machines using natural languages (English, Japanese, German, etc.) rather than formal computer languages. NLP is a major research area in the fields of artificial intelligence and computational linguistics. Commercial…
Introduction to This Special Issue on Context-Aware Computing.
ERIC Educational Resources Information Center
Moran, Thomas P.; Dourish, Paul
2001-01-01
Discusses pervasive, or ubiquitous, computing; explains the notion of context; and defines context-aware computing as the key to disperse and enmesh computation into our lives. Considers context awareness in human-computer interaction and describes the broad topic areas of the essays included in this special issue. (LRW)
Hansen, Thomas Riisgaard; Bardram, Jakob E
2007-01-01
Collaboration, coordination, and communication are crucial in maintaining an efficient and smooth flow of work in an operating ward. This coordination, however, often comes at a high price in terms of unsuccessfully trying to get hold of people, disturbing telephone calls, looking for people, and unnecessary stress. To accommodate this situation and to increase the quality of work in operating wards, we have designed a set of pervasive computer systems which supports what we call context-mediated communication and awareness. These systems use large interactive displays, video streaming from key locations, tracking systems, and mobile devices to support social awareness and different types of communication modalities relevant to the current context. In this paper we report qualitative data from a one-year deployment of the system in a local hospital. Overall, this study shows that 75% of the participants strongly agreed that these systems had made their work easier.
Developing the human-computer interface for Space Station Freedom
NASA Technical Reports Server (NTRS)
Holden, Kritina L.
1991-01-01
For the past two years, the Human-Computer Interaction Laboratory (HCIL) at the Johnson Space Center has been involved in prototyping and prototype reviews of in support of the definition phase of the Space Station Freedom program. On the Space Station, crew members will be interacting with multi-monitor workstations where interaction with several displays at one time will be common. The HCIL has conducted several experiments to begin to address design issues for this complex system. Experiments have dealt with design of ON/OFF indicators, the movement of the cursor across multiple monitors, and the importance of various windowing capabilities for users performing multiple tasks simultaneously.
Novel 3-D Computer Model Can Help Predict Pathogens’ Roles in Cancer | Poster
To understand how bacterial and viral infections contribute to human cancers, four NCI at Frederick scientists turned not to the lab bench, but to a computer. The team has created the world’s first—and currently, only—3-D computational approach for studying interactions between pathogen proteins and human proteins based on a molecular adaptation known as interface mimicry.
The mechanical design of a humanoid robot with flexible skin sensor for use in psychiatric therapy
NASA Astrophysics Data System (ADS)
Burns, Alec; Tadesse, Yonas
2014-03-01
In this paper, a humanoid robot is presented for ultimate use in the rehabilitation of children with mental disorders, such as autism. Creating affordable and efficient humanoids could assist the therapy in psychiatric disability by offering multimodal communication between the humanoid and humans. Yet, the humanoid development needs a seamless integration of artificial muscles, sensors, controllers and structures. We have designed a human-like robot that has 15 DOF, 580 mm tall and 925 mm arm span using a rapid prototyping system. The robot has a human-like appearance and movement. Flexible sensors around the arm and hands for safe human-robot interactions, and a two-wheel mobile platform for maneuverability are incorporated in the design. The robot has facial features for illustrating human-friendly behavior. The mechanical design of the robot and the characterization of the flexible sensors are presented. Comprehensive study on the upper body design, mobile base, actuators selection, electronics, and performance evaluation are included in this paper.
ERIC Educational Resources Information Center
Tardif-Williams, Christine Y.; Owen, Frances; Feldman, Maurice; Tarulli, Donato; Griffiths, Dorothy; Sales, Carol; McQueen-Fuentes, Glenys; Stoner, Karen
2007-01-01
We tested the effectiveness of an interactive, video CD-ROM in teaching persons with intellectual disabilities (ID) about their human rights. Thirty-nine participants with ID were trained using both a classroom activity-based version of the training program and the interactive CD-ROM in a counterbalanced presentation. All individuals were pre- and…
GeneStoryTeller: a mobile app for quick and comprehensive information retrieval of human genes.
Eleftheriou, Stergiani V; Bourdakou, Marilena M; Athanasiadis, Emmanouil I; Spyrou, George M
2015-01-01
In the last few years, mobile devices such as smartphones and tablets have become an integral part of everyday life, due to their software/hardware rapid development, as well as the increased portability they offer. Nevertheless, up to now, only few Apps have been developed in the field of bioinformatics, capable to perform fast and robust access to services. We have developed the GeneStoryTeller, a mobile application for Android platforms, where users are able to instantly retrieve information regarding any recorded human gene, derived from eight publicly available databases, as a summary story. Complementary information regarding gene-drugs interactions, functional annotation and disease associations for each selected gene is also provided in the gene story. The most challenging part during the development of the GeneStoryTeller was to keep balance between storing data locally within the app and obtaining the updated content dynamically via a network connection. This was accomplished with the implementation of an administrative site where data are curated and synchronized with the application requiring a minimum human intervention. © The Author(s) 2015. Published by Oxford University Press.
[Characteristics of autonomic status in employees working with computers].
Vlasova, E M; Zaĭtseva, N V; Maliutina, N N
2011-01-01
Human evolution is accompanied by "sensible thoughts" spread to all spheres of occupational activities. One can hardly find an industrial enterprise without computers. In contemporary industry, health care in conditions of humans and computers interaction and evaluation of harm in computer users remain topical. Social and occupational environment is not always comfortable for human body. Changes is occupational conditions, with wide use of computer technologies, decrease role of manual labour and increase role of intellectual work from the one hand, but from the other hand, chasing economic profit alters individual "comfort zone" due to constant psychoemotional stress and causes "burnout". Being healthy in constant stress is impossible.
On the performances of computer vision algorithms on mobile platforms
NASA Astrophysics Data System (ADS)
Battiato, S.; Farinella, G. M.; Messina, E.; Puglisi, G.; Ravì, D.; Capra, A.; Tomaselli, V.
2012-01-01
Computer Vision enables mobile devices to extract the meaning of the observed scene from the information acquired with the onboard sensor cameras. Nowadays, there is a growing interest in Computer Vision algorithms able to work on mobile platform (e.g., phone camera, point-and-shot-camera, etc.). Indeed, bringing Computer Vision capabilities on mobile devices open new opportunities in different application contexts. The implementation of vision algorithms on mobile devices is still a challenging task since these devices have poor image sensors and optics as well as limited processing power. In this paper we have considered different algorithms covering classic Computer Vision tasks: keypoint extraction, face detection, image segmentation. Several tests have been done to compare the performances of the involved mobile platforms: Nokia N900, LG Optimus One, Samsung Galaxy SII.
Novel agents and approaches for stem cell mobilization in normal donors and patients.
Bakanay, Ş M; Demirer, T
2012-09-01
In spite of the safety and efficiency of the classical mobilization protocols, recombinant human G-CSF±chemotherapy, there is still a considerable amount of mobilization failures (10-30%), which warrant novel agents and approaches both in an autologous and an allogeneic transplant setting. Attempts to improve CD34+ yields by using several cytokines and growth factors as adjuncts to G-CSF could not change the standard approaches during the last decade, either because of inefficiency or the adverse events encountered with these agents. As a long-acting G-CSF analog, pegfilgrastim has the advantages of an earlier start of apheresis, reduction in the number of apheresis procedures as well as a reduced number of injections as compared with unconjugated G-CSF. However, dosing and cost-effectiveness especially in cytokine-only mobilizations require further investigation. As interactions between hematopoietic stem cells and the BM microenvironment are better understood, new molecules targeting these interactions are emerging. Plerixafor, which started its journey as an anti-HIV drug, recently ended up being a popular stem cell mobilizer with the ability of rapid mobilization and gained approval as an adjunct to G-CSF for poor mobilizers. At present, it is challenging to search for the best approach by using the available drugs with appropriate timing to provide sufficient CD34+ yield after an initial mobilization attempt, and in a cost-effective manner thereby avoiding further mobilization attempts and exposure to chemotherapy. Approaches not only for increasing stem cell yield, but also aiming to improve the quality of graft content and the associated transplantation outcomes are promising areas of research.
Stone, John E; Hallock, Michael J; Phillips, James C; Peterson, Joseph R; Luthey-Schulten, Zaida; Schulten, Klaus
2016-05-01
Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers.
NASA Technical Reports Server (NTRS)
1990-01-01
While a new technology called 'virtual reality' is still at the 'ground floor' level, one of its basic components, 3D computer graphics is already in wide commercial use and expanding. Other components that permit a human operator to 'virtually' explore an artificial environment and to interact with it are being demonstrated routinely at Ames and elsewhere. Virtual reality might be defined as an environment capable of being virtually entered - telepresence, it is called - or interacted with by a human. The Virtual Interface Environment Workstation (VIEW) is a head-mounted stereoscopic display system in which the display may be an artificial computer-generated environment or a real environment relayed from remote video cameras. Operator can 'step into' this environment and interact with it. The DataGlove has a series of fiber optic cables and sensors that detect any movement of the wearer's fingers and transmit the information to a host computer; a computer generated image of the hand will move exactly as the operator is moving his gloved hand. With appropriate software, the operator can use the glove to interact with the computer scene by grasping an object. The DataSuit is a sensor equipped full body garment that greatly increases the sphere of performance for virtual reality simulations.
Mobile Cloud Computing with SOAP and REST Web Services
NASA Astrophysics Data System (ADS)
Ali, Mushtaq; Fadli Zolkipli, Mohamad; Mohamad Zain, Jasni; Anwar, Shahid
2018-05-01
Mobile computing in conjunction with Mobile web services drives a strong approach where the limitations of mobile devices may possibly be tackled. Mobile Web Services are based on two types of technologies; SOAP and REST, which works with the existing protocols to develop Web services. Both the approaches carry their own distinct features, yet to keep the constraint features of mobile devices in mind, the better in two is considered to be the one which minimize the computation and transmission overhead while offloading. The load transferring of mobile device to remote servers for execution called computational offloading. There are numerous approaches to implement computational offloading a viable solution for eradicating the resources constraints of mobile device, yet a dynamic method of computational offloading is always required for a smooth and simple migration of complex tasks. The intention of this work is to present a distinctive approach which may not engage the mobile resources for longer time. The concept of web services utilized in our work to delegate the computational intensive tasks for remote execution. We tested both SOAP Web services approach and REST Web Services for mobile computing. Two parameters considered in our lab experiments to test; Execution Time and Energy Consumption. The results show that RESTful Web services execution is far better than executing the same application by SOAP Web services approach, in terms of execution time and energy consumption. Conducting experiments with the developed prototype matrix multiplication app, REST execution time is about 200% better than SOAP execution approach. In case of energy consumption REST execution is about 250% better than SOAP execution approach.
NASA Technical Reports Server (NTRS)
Pholsiri, Chalongrath; English, James; Seberino, Charles; Lim, Yi-Je
2010-01-01
The Excavator Design Validation tool verifies excavator designs by automatically generating control systems and modeling their performance in an accurate simulation of their expected environment. Part of this software design includes interfacing with human operations that can be included in simulation-based studies and validation. This is essential for assessing productivity, versatility, and reliability. This software combines automatic control system generation from CAD (computer-aided design) models, rapid validation of complex mechanism designs, and detailed models of the environment including soil, dust, temperature, remote supervision, and communication latency to create a system of high value. Unique algorithms have been created for controlling and simulating complex robotic mechanisms automatically from just a CAD description. These algorithms are implemented as a commercial cross-platform C++ software toolkit that is configurable using the Extensible Markup Language (XML). The algorithms work with virtually any mobile robotic mechanisms using module descriptions that adhere to the XML standard. In addition, high-fidelity, real-time physics-based simulation algorithms have also been developed that include models of internal forces and the forces produced when a mechanism interacts with the outside world. This capability is combined with an innovative organization for simulation algorithms, new regolith simulation methods, and a unique control and study architecture to make powerful tools with the potential to transform the way NASA verifies and compares excavator designs. Energid's Actin software has been leveraged for this design validation. The architecture includes parametric and Monte Carlo studies tailored for validation of excavator designs and their control by remote human operators. It also includes the ability to interface with third-party software and human-input devices. Two types of simulation models have been adapted: high-fidelity discrete element models and fast analytical models. By using the first to establish parameters for the second, a system has been created that can be executed in real time, or faster than real time, on a desktop PC. This allows Monte Carlo simulations to be performed on a computer platform available to all researchers, and it allows human interaction to be included in a real-time simulation process. Metrics on excavator performance are established that work with the simulation architecture. Both static and dynamic metrics are included.
A prisoner's dilemma experiment on cooperation with people and human-like computers.
Kiesler, S; Sproull, L; Waters, K
1996-01-01
The authors investigated basic properties of social exchange and interaction with technology in an experiment on cooperation with a human-like computer partner or a real human partner. Talking with a computer partner may trigger social identity feelings or commitment norms. Participants played a prisoner's dilemma game with a confederate or a computer partner. Discussion, inducements to make promises, and partner cooperation varied across trials. On Trial 1, after discussion, most participants proposed cooperation. They kept their promises as much with a text-only computer as with a person, but less with a more human-like computer. Cooperation dropped sharply when any partner avoided discussion. The strong impact of discussion fits a social contract explanation of cooperation following discussion. Participants broke their promises to a computer more than to a person, however, indicating that people make heterogeneous commitments.
NASA Astrophysics Data System (ADS)
Bannon, Liam J.
The field of HCI has evolved and expanded dramatically since its origin in the early 1980’s. The HCI community embraces a large community of researchers and practitioners around the world, from a variety of disciplinary backgrounds in the human and social sciences, engineering and informatics, and more recently, the arts and design disciplines. This kaleidoscope of cultures and disciplines as seen at INTERACT Conferences provides a rich pool of resources for examining our field. Applications are increasingly exploring our full range of sensory modalities, and merging the digital and physical worlds. WiFi has opened up a huge design space for mobile applications. A focus on usability of products and services has been complemented by an emphasis on engagement, enjoyment and experience. With the advent of ubiquitous computing, and the emergence of “The Internet of Things”, new kinds of more open infrastructures make possible radically new kinds of applications. The sources of innovation have also broadened, to include human and social actors outside of the computing and design organizations. The question is to what extent is our mainstream thinking in the HCI field ready for the challenges of this Brave New World? Do the technological and social innovations that we see emerging require us to re-shape, or even, re-create, our field, or is it a case of a more gradual evolution and development of that which we already know? In this closing Keynote, I will provide a perspective on the evolution and development of the HCI field, looking backwards as well as forwards, in order to determine what are some of the changes of significance in the field. This “broad-brush” approach to what I term “ human-centred design” will be complemented by the examination of specific projects and applications, to help anchor some of the discussion. Areas such as user-centred design, participatory design, computer-supported cooperative work and learning, and interaction design, in which I have had some involvement over the years, will be mentioned. I will discuss the themes of “ecologies of artefacts”, appropriation, tinkering/bricolage, and the emergence of design anthropology, among other topics. The purpose of the talk is not to engage in a form of Futurism concerning the HCI field, but to examine some of the technical and social trends that can be observed, and to highlight some areas of particular significance that warrant further attention. I argue for a multi-layered approach that, while exploring new avenues of research concerning people’s use of technology, does not necessarily dismiss the corpus of knowledge we have built up over the years concerning human-computer interaction. From a personal perspective, issues such as means and ends, our underlying values, and concern for our fellow human beings in an increasingly fragile world, are issues that, while perhaps seen as outside the remit of a narrow HCI brief, impact on the field in significant ways. In this regard, discussions of our future should not be the preserve of techno-determinists, but be open to all. For example, ubiquitous computing can be involved in many scenarios, not only that of “Ambient Intelligence”. We need to engage in the development and critique of these different perspectives and approaches. Being able to work in and with multidisciplinary teams embodying distint, and at times conflicting perspectives, being able to communicate ones ideas and information across a variety of social and institutional boundaries, will become of great importance. Of particular concern, in the context of an IFIP INTERACT event, is the need to balance the heterogeneity of concepts and methods being used in research and practice with some form of quality control. Despite the heterogeneity of perspectives and disciplines nowadays involved in the field, I will argue that the HCI community, as a community, still does have a significant role to play in the development and evolution of useful, usable and enaging ICT-enabled infrastructures and applications.
On-line and Mobil Learning Activities
NASA Astrophysics Data System (ADS)
Ackerman, S. A.; Whittaker, T. M.; Jasmin, T.; Mooney, M. E.
2012-12-01
Introductory college-level science courses for non-majors are critical gateways to imparting not only discipline-specific information, but also the basics of the scientific method and how science influences society. They are also indispensable for student success to degree. On-line, web-based homework (whether on computers or mobile devices) is a rapidly growing use of the Internet and is becoming a major component of instruction in science, replacing delayed feedback from a few major exams. Web delivery and grading of traditional textbook-type questions is equally effective as having students write them out for hand grading, as measured by student performance on conceptual and problem solving exams. During this presentation we will demonstrate some of the interactive on-line activities used to teach concepts and how scientists approach problem solving, and how these activities have impacted student learning. Evaluation of the activities, including formative and summative, will be discussed and provide evidence that these interactive activities significantly enhance understanding of introductory meteorological concepts in a college-level science course. More advanced interactive activities are also used in our courses for department majors, some of these will be discussed and demonstrated. Bring your mobile devices to play along! Here is an example on teaching contouring: http://profhorn.aos.wisc.edu/wxwise/contour/index.html
Visual Exploratory Search of Relationship Graphs on Smartphones
Ouyang, Jianquan; Zheng, Hao; Kong, Fanbin; Liu, Tianming
2013-01-01
This paper presents a novel framework for Visual Exploratory Search of Relationship Graphs on Smartphones (VESRGS) that is composed of three major components: inference and representation of semantic relationship graphs on the Web via meta-search, visual exploratory search of relationship graphs through both querying and browsing strategies, and human-computer interactions via the multi-touch interface and mobile Internet on smartphones. In comparison with traditional lookup search methodologies, the proposed VESRGS system is characterized with the following perceived advantages. 1) It infers rich semantic relationships between the querying keywords and other related concepts from large-scale meta-search results from Google, Yahoo! and Bing search engines, and represents semantic relationships via graphs; 2) the exploratory search approach empowers users to naturally and effectively explore, adventure and discover knowledge in a rich information world of interlinked relationship graphs in a personalized fashion; 3) it effectively takes the advantages of smartphones’ user-friendly interfaces and ubiquitous Internet connection and portability. Our extensive experimental results have demonstrated that the VESRGS framework can significantly improve the users’ capability of seeking the most relevant relationship information to their own specific needs. We envision that the VESRGS framework can be a starting point for future exploration of novel, effective search strategies in the mobile Internet era. PMID:24223936
ERIC Educational Resources Information Center
McCartney, Robert; Tenenberg, Josh
2008-01-01
Some have proposed that realistic problem situations are better for learning. This issue contains two articles that examine the effects of "making it real" in computer architecture and human-computer interaction.
ERIC Educational Resources Information Center
Tung, Fang-Wu; Deng, Yi-Shin
2006-01-01
The "computers are social actors" paradigm asserts that human-to-computer interactions are fundamentally social responses. Earlier research has shown that effective management of the social presence in user interface design can improve user engagement and motivation. Much of this research has focused on adult subjects. This study…
A Kinect-Based Assessment System for Smart Classroom
ERIC Educational Resources Information Center
Kumara, W. G. C. W.; Wattanachote, Kanoksak; Battulga, Batbaatar; Shih, Timothy K.; Hwang, Wu-Yuin
2015-01-01
With the advancements of the human computer interaction field, nowadays it is possible for the users to use their body motions, such as swiping, pushing and moving, to interact with the content of computers or smart phones without traditional input devices like mouse and keyboard. With the introduction of gesture-based interface Kinect from…
Enrichment of Human-Computer Interaction in Brain-Computer Interfaces via Virtual Environments
Víctor Rodrigo, Mercado-García
2017-01-01
Tridimensional representations stimulate cognitive processes that are the core and foundation of human-computer interaction (HCI). Those cognitive processes take place while a user navigates and explores a virtual environment (VE) and are mainly related to spatial memory storage, attention, and perception. VEs have many distinctive features (e.g., involvement, immersion, and presence) that can significantly improve HCI in highly demanding and interactive systems such as brain-computer interfaces (BCI). BCI is as a nonmuscular communication channel that attempts to reestablish the interaction between an individual and his/her environment. Although BCI research started in the sixties, this technology is not efficient or reliable yet for everyone at any time. Over the past few years, researchers have argued that main BCI flaws could be associated with HCI issues. The evidence presented thus far shows that VEs can (1) set out working environmental conditions, (2) maximize the efficiency of BCI control panels, (3) implement navigation systems based not only on user intentions but also on user emotions, and (4) regulate user mental state to increase the differentiation between control and noncontrol modalities. PMID:29317861
Cynicism, anger and cardiovascular reactivity during anger recall and human-computer interaction.
Why, Yong Peng; Johnston, Derek W
2008-06-01
Cynicism moderated by interpersonal anger has been found to be related to cardiovascular reactivity. This paper reports two studies; Study 1 used an Anger Recall task, which aroused interpersonal anger, while participants in Study 2 engaged in a multitasking computer task, which aroused non-interpersonal anger via systematic manipulation of the functioning of the computer mouse. The Cynicism by State Anger interaction was significant for blood pressure arousal in Study 2 but not for Study 1: in Study 2, when State Anger was high, cynicism was positively related to blood pressure arousal but when State Anger was low, cynicism was negatively related to blood pressure arousal. For both studies, when State Anger was low, cynicism was positively related to cardiac output arousal and negatively related to vascular arousal. The results suggest that Cynicism-State Anger interaction can be generalised to non-social anger-arousing situations for hemodynamic processes but blood pressure reactivity is task-dependent. The implication for the role of job control and cardiovascular health during human-computer interactions is discussed.
People Detection by a Mobile Robot Using Stereo Vision in Dynamic Indoor Environments
NASA Astrophysics Data System (ADS)
Méndez-Polanco, José Alberto; Muñoz-Meléndez, Angélica; Morales, Eduardo F.
People detection and tracking is a key issue for social robot design and effective human robot interaction. This paper addresses the problem of detecting people with a mobile robot using a stereo camera. People detection using mobile robots is a difficult task because in real world scenarios it is common to find: unpredictable motion of people, dynamic environments, and different degrees of human body occlusion. Additionally, we cannot expect people to cooperate with the robot to perform its task. In our people detection method, first, an object segmentation method that uses the distance information provided by a stereo camera is used to separate people from the background. The segmentation method proposed in this work takes into account human body proportions to segment people and provides a first estimation of people location. After segmentation, an adaptive contour people model based on people distance to the robot is used to calculate a probability of detecting people. Finally, people are detected merging the probabilities of the contour people model and by evaluating evidence over time by applying a Bayesian scheme. We present experiments on detection of standing and sitting people, as well as people in frontal and side view with a mobile robot in real world scenarios.
A Decade of Mobile Computing for Students
ERIC Educational Resources Information Center
Jenny, Frederick J.
2005-01-01
This paper describes the mobile computing at Grove City College, a small, private, liberal arts institution in Western Pennsylvania. They have entered their second decade of mobile computing for students in the school of about 2200. Each incoming freshman receives a laptop computing and inkjet printer during the fall orientation, all a benefit of…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-14
... Communications and Computer Devices and Components Thereof; Notice of Commission Determination Not To Review an... in its entirety Inv. No. 337-TA-704, Certain Mobile Communications and Computer Devices and... importation of certain mobile communications and computer devices and components thereof by reason of...
Learning by Communicating in Natural Language with Conversational Agents
ERIC Educational Resources Information Center
Graesser, Arthur; Li, Haiying; Forsyth, Carol
2014-01-01
Learning is facilitated by conversational interactions both with human tutors and with computer agents that simulate human tutoring and ideal pedagogical strategies. In this article, we describe some intelligent tutoring systems (e.g., AutoTutor) in which agents interact with students in natural language while being sensitive to their cognitive…
A Test-Bed of Secure Mobile Cloud Computing for Military Applications
2016-09-13
searching databases. This kind of applications is a typical example of mobile cloud computing (MCC). MCC has lots of applications in the military...Release; Distribution Unlimited UU UU UU UU 13-09-2016 1-Aug-2014 31-Jul-2016 Final Report: A Test-bed of Secure Mobile Cloud Computing for Military...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Test-bed, Mobile Cloud Computing , Security, Military Applications REPORT
Rotation-invariant features for multi-oriented text detection in natural images.
Yao, Cong; Zhang, Xin; Bai, Xiang; Liu, Wenyu; Ma, Yi; Tu, Zhuowen
2013-01-01
Texts in natural scenes carry rich semantic information, which can be used to assist a wide range of applications, such as object recognition, image/video retrieval, mapping/navigation, and human computer interaction. However, most existing systems are designed to detect and recognize horizontal (or near-horizontal) texts. Due to the increasing popularity of mobile-computing devices and applications, detecting texts of varying orientations from natural images under less controlled conditions has become an important but challenging task. In this paper, we propose a new algorithm to detect texts of varying orientations. Our algorithm is based on a two-level classification scheme and two sets of features specially designed for capturing the intrinsic characteristics of texts. To better evaluate the proposed method and compare it with the competing algorithms, we generate a comprehensive dataset with various types of texts in diverse real-world scenes. We also propose a new evaluation protocol, which is more suitable for benchmarking algorithms for detecting texts in varying orientations. Experiments on benchmark datasets demonstrate that our system compares favorably with the state-of-the-art algorithms when handling horizontal texts and achieves significantly enhanced performance on variant texts in complex natural scenes.
Artificial Intelligence and the Teaching of Reading and Writing by Computers.
ERIC Educational Resources Information Center
Balajthy, Ernest
1985-01-01
Discusses how computers can "converse" with students for teaching purposes, demonstrates how these interactions are becoming more complex, and explains how the computer's role is becoming more "human" in giving intelligent responses to students. (HOD)
PKI-based secure mobile access to electronic health services and data.
Kambourakis, G; Maglogiannis, I; Rouskas, A
2005-01-01
Recent research works examine the potential employment of public-key cryptography schemes in e-health environments. In such systems, where a Public Key Infrastructure (PKI) is established beforehand, Attribute Certificates (ACs) and public key enabled protocols like TLS, can provide the appropriate mechanisms to effectively support authentication, authorization and confidentiality services. In other words, mutual trust and secure communications between all the stakeholders, namely physicians, patients and e-health service providers, can be successfully established and maintained. Furthermore, as the recently introduced mobile devices with access to computer-based patient record systems are expanding, the need of physicians and nurses to interact increasingly with such systems arises. Considering public key infrastructure requirements for mobile online health networks, this paper discusses the potential use of Attribute Certificates (ACs) in an anticipated trust model. Typical trust interactions among doctors, patients and e-health providers are presented, indicating that resourceful security mechanisms and trust control can be obtained and implemented. The application of attribute certificates to support medical mobile service provision along with the utilization of the de-facto TLS protocol to offer competent confidentiality and authorization services is also presented and evaluated through experimentation, using both the 802.11 WLAN and General Packet Radio Service (GPRS) networks.
1991-07-01
authoring systems. Concurrently, great strides in computer-aided design and computer-aided maintenance have contributed to this capability. 12 Junod ...J.; William A. Nugent; and L. John Junod . Plan for the Navy/Air Force Test of the Interactive Electronic Technical Manual (IETM) at Cecil Field...AFHRL Logistics and Human Factors Division, WPAFB. Aug 1990. 12. Junod , John L. PY90 Interactive Electronic Technical Manual (IETM) Portable Delivery
ERIC Educational Resources Information Center
Ramsay, Judith; Terras, Melody M.
2015-01-01
The use of technology to support learning is well recognised. One generation ago a major strand of human--computer interaction research focussed on the development of forms of instruction in how to interact with computers. Today, however, the advanced usability of modern technologies has all but removed the presence of many user manuals. Learners,…
2017-11-13
behavior . The International Journal of Human-Computer Studies , 108, 105-121. https://doi.org/10.1016/j.ijhcs.2017.06.006 A second journal article...documenting the erroneous behavior generation approach and the case study analyses is currently being written. Planned submission is Spring 2017. RPPR...Belvoir, 2010. [3] A task-based taxonomy of erroneous human behavior . International Journal of Human-Computer Studies , 108:105–121, 2017. [4] M. L
NASA Technical Reports Server (NTRS)
Ambrose, Robert O.
2007-01-01
Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and power modules over long distances, pre-positioning them for the arrival of crew on a subsequent lander. Surface Handling 1. Offload surface system payloads from the lander, breaking launch restraints and power/data connections. Payloads may be offloaded to a wheeled vehicle for transport. 2. Deploy payloads from a wheeled vehicle at a field site, placing the payloads in their final use site on the ground or mating them with existing surface systems. 3. Support regolith collection, site preparation, berm construction, or other civil engineering tasks using tools and implements attached to rovers. Human-Systems Interaction 1. Provide a safe command and control interface for suited EVA to ride on and drive the vehicles, making sure that the systems are also safe for working near dismounted crew. 2. Provide an effective control system for IV crew to tele-operate vehicles, cranes and other equipment from inside the surface habitats with evolving independence from Earth. .. Provide a supervisory system that allows machines to be commanded from the ground, working across the Earth-Lunar time delays on the order of 5-10 seconds (round trip) to support operations when crew are not resident on the surface. Technology Development Needs 1. Surface vehicles that can dock, align and mate with outpost equipment such as landers, habitats and fluid/power interfaces. 2. Long life motors, drive trains, seals, motor electronics, sensors, processors, cable harnesses, and dash board displays. 3. Active suspension control, localization, high speed obstacle avoidance, and safety systems for operating near dismounted crew. 4. High specific energy and specific power batteries that are safe, rechargeable, and long lived.
Transformation of personal computers and mobile phones into genetic diagnostic systems.
Walker, Faye M; Ahmad, Kareem M; Eisenstein, Michael; Soh, H Tom
2014-09-16
Molecular diagnostics based on the polymerase chain reaction (PCR) offer rapid and sensitive means for detecting infectious disease, but prohibitive costs have impeded their use in resource-limited settings where such diseases are endemic. In this work, we report an innovative method for transforming a desktop computer and a mobile camera phone--devices that have become readily accessible in developing countries--into a highly sensitive DNA detection system. This transformation was achieved by converting a desktop computer into a de facto thermal cycler with software that controls the temperature of the central processing unit (CPU), allowing for highly efficient PCR. Next, we reconfigured the mobile phone into a fluorescence imager by adding a low-cost filter, which enabled us to quantitatively measure the resulting PCR amplicons. Our system is highly sensitive, achieving quantitative detection of as little as 9.6 attograms of target DNA, and we show that its performance is comparable to advanced laboratory instruments at approximately 1/500th of the cost. Finally, in order to demonstrate clinical utility, we have used our platform for the successful detection of genomic DNA from the parasite that causes Chagas disease, Trypanosoma cruzi, directly in whole, unprocessed human blood at concentrations 4-fold below the clinical titer of the parasite.
Transformation of Personal Computers and Mobile Phones into Genetic Diagnostic Systems
2014-01-01
Molecular diagnostics based on the polymerase chain reaction (PCR) offer rapid and sensitive means for detecting infectious disease, but prohibitive costs have impeded their use in resource-limited settings where such diseases are endemic. In this work, we report an innovative method for transforming a desktop computer and a mobile camera phone—devices that have become readily accessible in developing countries—into a highly sensitive DNA detection system. This transformation was achieved by converting a desktop computer into a de facto thermal cycler with software that controls the temperature of the central processing unit (CPU), allowing for highly efficient PCR. Next, we reconfigured the mobile phone into a fluorescence imager by adding a low-cost filter, which enabled us to quantitatively measure the resulting PCR amplicons. Our system is highly sensitive, achieving quantitative detection of as little as 9.6 attograms of target DNA, and we show that its performance is comparable to advanced laboratory instruments at approximately 1/500th of the cost. Finally, in order to demonstrate clinical utility, we have used our platform for the successful detection of genomic DNA from the parasite that causes Chagas disease, Trypanosoma cruzi, directly in whole, unprocessed human blood at concentrations 4-fold below the clinical titer of the parasite. PMID:25223929
ERIC Educational Resources Information Center
Zadahmad, Manouchehr; Yousefzadehfard, Parisa
2016-01-01
Mobile Cloud Computing (MCC) aims to improve all mobile applications such as m-learning systems. This study presents an innovative method to use web technology and software engineering's best practices to provide m-learning functionalities hosted in a MCC-learning system as service. Components hosted by MCC are used to empower developers to create…
Chernova, Irene; Lai, Jian-Ping; Li, Haiying; Schwartz, Lynnae; Tuluc, Florin; Korchak, Helen M.; Douglas, Steven D.; Kilpatrick, Laurie E.
2009-01-01
Substance P (SP) is a potent modulator of monocyte/macrophage function. The SP-preferring receptor neurokinin-1 receptor (NK1R) has two forms: a full-length NK1R (NK1R-F) isoform and a truncated NK1R (NK1R-T) isoform, which lacks the terminal cytoplasmic 96-aa residues. The distribution of these receptor isoforms in human monocytes is not known. We previously identified an interaction among SP, NK1R, and HIV viral strains that use the chemokine receptor CCR5 as a coreceptor, suggesting crosstalk between NK1R and CCR5. The purpose of this study was to determine which form(s) of NK1R are expressed in human peripheral blood monocytes and to determine whether SP affects proinflammatory cellular responses mediated through the CCR5 receptor. Human peripheral blood monocytes were found to express NK1R-T but not NK1R-F. SP interactions with NK1R-T did not mobilize calcium (Ca2+), but SP mobilized Ca2+ when the NK1R-F was transfected into monocytes. However, the NK1R-T was functional in monocytes, as SP enhanced the CCR5 ligand CCL5-elicited Ca2+ mobilization, a response inhibited by the NK1R antagonist aprepitant. SP interactions with the NK1R-T also enhanced CCL5-mediated chemotaxis, which was ERK1/2-dependent. NK1R-T selectively activated ERK2 but increased ERK1 and ERK2 activation by CCL5. Activation of NK1R-T elicited serine phosphorylation of CCR5, indicating that crosstalk between CCL5 and SP may occur at the level of the receptor. Thus, NK1R-T is functional in human monocytes and activates select signaling pathways, and the NK1R-T-mediated enhancement of CCL5 responses does not require the NK1R terminal cytoplasmic domain. PMID:18835883
Wireless, Web-Based Interactive Control of Optical Coherence Tomography with Mobile Devices
Mehta, Rajvi; Nankivil, Derek; Zielinski, David J.; Waterman, Gar; Keller, Brenton; Limkakeng, Alexander T.; Kopper, Regis; Izatt, Joseph A.; Kuo, Anthony N.
2017-01-01
Purpose Optical coherence tomography (OCT) is widely used in ophthalmology clinics and has potential for more general medical settings and remote diagnostics. In anticipation of remote applications, we developed wireless interactive control of an OCT system using mobile devices. Methods A web-based user interface (WebUI) was developed to interact with a handheld OCT system. The WebUI consisted of key OCT displays and controls ported to a webpage using HTML and JavaScript. Client–server relationships were created between the WebUI and the OCT system computer. The WebUI was accessed on a cellular phone mounted to the handheld OCT probe to wirelessly control the OCT system. Twenty subjects were imaged using the WebUI to assess the system. System latency was measured using different connection types (wireless 802.11n only, wireless to remote virtual private network [VPN], and cellular). Results Using a cellular phone, the WebUI was successfully used to capture posterior eye OCT images in all subjects. Simultaneous interactivity by a remote user on a laptop was also demonstrated. On average, use of the WebUI added only 58, 95, and 170 ms to the system latency using wireless only, wireless to VPN, and cellular connections, respectively. Qualitatively, operator usage was not affected. Conclusions Using a WebUI, we demonstrated wireless and remote control of an OCT system with mobile devices. Translational Relevance The web and open source software tools used in this project make it possible for any mobile device to potentially control an OCT system through a WebUI. This platform can be a basis for remote, teleophthalmology applications using OCT. PMID:28138415
Human-Computer Interaction and Information Management Research Needs
2003-10-01
Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be...hand-held personal digital assistants, networked sensors and actuators, and low-power computers on satellites. 5 most complex tools that humans have...calculations using data on external media such as tapes evolved into our multi-functional 21st century systems. More ideas came as networks of computing
NASA Astrophysics Data System (ADS)
Tomovski, Boyan; Gräbner, Frank; Hungsberg, Axel; Kallmeyer, Christian; Linsel, Mario
2011-11-01
Within only the last decade, usage of mobile phones and many other electronic devices with high speed wireless RF connection is rapidly increasing. Modern life requires reliable, quick and high-quality information connections, which explains the widely spreading craze for electronic mobile devices of various types. The vast technological advances we are witnessing in electronics, electro-optics, and computer science have profoundly affected our everyday lives. Meanwhile, safety concerns regarding the biological effects of electromagnetic (EM) radiation have been raised, in particular at a low level of exposure which we everyday experience. A variety of waves and signals have to be considered such as different sine waves, digital signals used in radio, television, mobile phone systems and other information transfer systems. The field around us has become rather complicated and the "air space is getting more and more dense with RF. The establishing of safety recommendations, law norms and rules augmented by adequate measurements is very important and requires quite an expertise. But as many scientific researches suggest, what we are currently witnessing is very likely to generate a great public danger and a bad influence over the human body. There are many health organisations warning the public for possible development of cancer, mental and physical disorders etc [7, 8]. These suggestions are quite serious and should not be neglected by the official bodies and the test laboratories. In the following work, the effects of electromagnetic field over a virtual model of a human head have been simulated in the frequency range from 900 MHz to 1800 MHz (commonly created in the real life by mobile GSM system) with the help of the program MEFiSTo 2D Classic [1]. The created virtual models using the 2D simulation & computation software proved that the use of new high tech nanotextile materials for shielding layers around the human body can reduce the effects of EM fields dramatically if chosen properly according to the area of application.
Tracing the Attention of Moving Citizens
Wu, Lingfei; Wang, Cheng-Jun
2016-01-01
With the widespread use of mobile computing devices in contemporary society, our trajectories in the physical space and virtual world are increasingly closely connected. Using the anonymous smartphone data of 1 × 105 users in a major city of China, we study the interplay between online and offline human behaviors by constructing the mobility network (offline) and the attention network (online). Using the network renormalization technique, we find that they belong to two different classes: the mobility network is small-world, whereas the attention network is fractal. We then divide the city into different areas based on the features of the mobility network discovered under renormalization. Interestingly, this spatial division manifests the location-based online behaviors, for example shopping, dating, and taxi-requesting. Finally, we offer a geometric network model to help us understand the relationship between small-world and fractal networks. PMID:27608929
Vision-Based Real-Time Traversable Region Detection for Mobile Robot in the Outdoors.
Deng, Fucheng; Zhu, Xiaorui; He, Chao
2017-09-13
Environment perception is essential for autonomous mobile robots in human-robot coexisting outdoor environments. One of the important tasks for such intelligent robots is to autonomously detect the traversable region in an unstructured 3D real world. The main drawback of most existing methods is that of high computational complexity. Hence, this paper proposes a binocular vision-based, real-time solution for detecting traversable region in the outdoors. In the proposed method, an appearance model based on multivariate Gaussian is quickly constructed from a sample region in the left image adaptively determined by the vanishing point and dominant borders. Then, a fast, self-supervised segmentation scheme is proposed to classify the traversable and non-traversable regions. The proposed method is evaluated on public datasets as well as a real mobile robot. Implementation on the mobile robot has shown its ability in the real-time navigation applications.
ERIC Educational Resources Information Center
VanLehn, Kurt
2011-01-01
This article is a review of experiments comparing the effectiveness of human tutoring, computer tutoring, and no tutoring. "No tutoring" refers to instruction that teaches the same content without tutoring. The computer tutoring systems were divided by their granularity of the user interface interaction into answer-based, step-based, and…
Mind, Brain, and Education in the Digital Era
ERIC Educational Resources Information Center
Battro, Antonio M.; Fischer, Kurt W.
2012-01-01
Computers are everywhere, and they are transforming the human world. The technology of computers and the Internet is radically changing the ways that people learn and communicate. In the midst of this technology-driven revolution people need to examine the changes to analyze how they are altering interaction and human culture. The changes have…
Heiland, Max; Pohlenz, Philipp; Blessmann, Marco; Habermann, Christian R; Oesterhelweg, Lars; Begemann, Philipp C; Schmidgunst, Christian; Blake, Felix A S; Püschel, Klaus; Schmelzle, Rainer; Schulze, Dirk
2007-12-01
The aim of this study was to evaluate soft tissue image quality of a mobile cone-beam computed tomography (CBCT) scanner with an integrated flat-panel detector. Eight fresh human cadavers were used in this study. For evaluation of soft tissue visualization, CBCT data sets and corresponding computed tomography (CT) and magnetic resonance imaging (MRI) data sets were acquired. Evaluation was performed with the help of 10 defined cervical anatomical structures. The statistical analysis of the scoring results of 3 examiners revealed the CBCT images to be of inferior quality regarding the visualization of most of the predefined structures. Visualization without a significant difference was found regarding the demarcation of the vertebral bodies and the pyramidal cartilages, the arteriosclerosis of the carotids (compared with CT), and the laryngeal skeleton (compared with MRI). Regarding arteriosclerosis of the carotids compared with MRI, CBCT proved to be superior. The integration of a flat-panel detector improves soft tissue visualization using a mobile CBCT scanner.
Loyalty to Computer Terminals: Is it Anthropomorphism or Consistency?
ERIC Educational Resources Information Center
Sundar, S. Shyam
2004-01-01
The psychological tendency to behave socially with a computer is quite well documented in the literature. But does the short-term socialness of human-computer interaction extend over to long-term social relationships with computers? In particular, do we show loyalty to particular computer terminals over a period of time? An electronic observation…
Advances in Human-Computer Interaction: Graphics and Animation Components for Interface Design
NASA Astrophysics Data System (ADS)
Cipolla Ficarra, Francisco V.; Nicol, Emma; Cipolla-Ficarra, Miguel; Richardson, Lucy
We present an analysis of communicability methodology in graphics and animation components for interface design, called CAN (Communicability, Acceptability and Novelty). This methodology has been under development between 2005 and 2010, obtaining excellent results in cultural heritage, education and microcomputing contexts. In studies where there is a bi-directional interrelation between ergonomics, usability, user-centered design, software quality and the human-computer interaction. We also present the heuristic results about iconography and layout design in blogs and websites of the following countries: Spain, Italy, Portugal and France.
Setting the New Standard with Mobile Computing in Online Learning
ERIC Educational Resources Information Center
Shih, Yuhsun Edward; Mills, Dennis
2007-01-01
Mobile learning represents exciting new frontiers in education and pedagogy. With the features of "wearable" computing and multimedia content delivery via mobile technologies, mobile learning becomes feasible and offers new benefits to instructors and learners. How do mobile technologies influence our teaching and learning in traditional…
Adaptive Device Context Based Mobile Learning Systems
ERIC Educational Resources Information Center
Pu, Haitao; Lin, Jinjiao; Song, Yanwei; Liu, Fasheng
2011-01-01
Mobile learning is e-learning delivered through mobile computing devices, which represents the next stage of computer-aided, multi-media based learning. Therefore, mobile learning is transforming the way of traditional education. However, as most current e-learning systems and their contents are not suitable for mobile devices, an approach for…
BaffleText: a Human Interactive Proof
NASA Astrophysics Data System (ADS)
Chew, Monica; Baird, Henry S.
2003-01-01
Internet services designed for human use are being abused by programs. We present a defense against such attacks in the form of a CAPTCHA (Completely Automatic Public Turing test to tell Computers and Humans Apart) that exploits the difference in ability between humans and machines in reading images of text. CAPTCHAs are a special case of 'human interactive proofs,' a broad class of security protocols that allow people to identify themselves over networks as members of given groups. We point out vulnerabilities of reading-based CAPTCHAs to dictionary and computer-vision attacks. We also draw on the literature on the psychophysics of human reading, which suggests fresh defenses available to CAPTCHAs. Motivated by these considerations, we propose BaffleText, a CAPTCHA which uses non-English pronounceable words to defend against dictionary attacks, and Gestalt-motivated image-masking degradations to defend against image restoration attacks. Experiments on human subjects confirm the human legibility and user acceptance of BaffleText images. We have found an image-complexity measure that correlates well with user acceptance and assists in engineering the generation of challenges to fit the ability gap. Recent computer-vision attacks, run independently by Mori and Jitendra, suggest that BaffleText is stronger than two existing CAPTCHAs.
Mobile app for human-interaction with sitter robots
NASA Astrophysics Data System (ADS)
Das, Sumit Kumar; Sahu, Ankita; Popa, Dan O.
2017-05-01
Human environments are often unstructured and unpredictable, thus making the autonomous operation of robots in such environments is very difficult. Despite many remaining challenges in perception, learning, and manipulation, more and more studies involving assistive robots have been carried out in recent years. In hospital environments, and in particular in patient rooms, there are well-established practices with respect to the type of furniture, patient services, and schedule of interventions. As a result, adding a robot into semi-structured hospital environments is an easier problem to tackle, with results that could have positive benefits to the quality of patient care and the help that robots can offer to nursing staff. When working in a healthcare facility, robots need to interact with patients and nurses through Human-Machine Interfaces (HMIs) that are intuitive to use, they should maintain awareness of surroundings, and offer safety guarantees for humans. While fully autonomous operation for robots is not yet technically feasible, direct teleoperation control of the robot would also be extremely cumbersome, as it requires expert user skills, and levels of concentration not available to many patients. Therefore, in our current study we present a traded control scheme, in which the robot and human both perform expert tasks. The human-robot communication and control scheme is realized through a mobile tablet app that can be customized for robot sitters in hospital environments. The role of the mobile app is to augment the verbal commands given to a robot through natural speech, camera and other native interfaces, while providing failure mode recovery options for users. Our app can access video feed and sensor data from robots, assist the user with decision making during pick and place operations, monitor the user health over time, and provides conversational dialogue during sitting sessions. In this paper, we present the software and hardware framework that enable a patient sitter HMI, and we include experimental results with a small number of users that demonstrate that the concept is sound and scalable.
Stochastic interactions of two Brownian hard spheres in the presence of depletants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karzar-Jeddi, Mehdi; Fan, Tai-Hsi, E-mail: thfan@engr.uconn.edu; Tuinier, Remco
2014-06-07
A quantitative analysis is presented for the stochastic interactions of a pair of Brownian hard spheres in non-adsorbing polymer solutions. The hard spheres are hypothetically trapped by optical tweezers and allowed for random motion near the trapped positions. The investigation focuses on the long-time correlated Brownian motion. The mobility tensor altered by the polymer depletion effect is computed by the boundary integral method, and the corresponding random displacement is determined by the fluctuation-dissipation theorem. From our computations it follows that the presence of depletion layers around the hard spheres has a significant effect on the hydrodynamic interactions and particle dynamicsmore » as compared to pure solvent and uniform polymer solution cases. The probability distribution functions of random walks of the two interacting hard spheres that are trapped clearly shift due to the polymer depletion effect. The results show that the reduction of the viscosity in the depletion layers around the spheres and the entropic force due to the overlapping of depletion zones have a significant influence on the correlated Brownian interactions.« less
Pritchard, Caroline; O'Connor, Gavin; Ashcroft, Alison E
2013-08-06
To achieve comparability of measurement results of protein amount of substance content between clinical laboratories, suitable reference materials are required. The impact on measurement comparability of potential differences in the tertiary and quaternary structure of protein reference standards is as yet not well understood. With the use of human growth hormone as a model protein, the potential of ion mobility spectrometry-mass spectrometry as a tool to assess differences in the structure of protein reference materials and their interactions with antibodies has been investigated here.
ERIC Educational Resources Information Center
Cheung, Alan C. K.; Slavin, Robert E.
2011-01-01
The use of educational technology in K-12 classrooms has been gaining tremendous momentum across the country since the 1990s. Many school districts have been investing heavily in various types of technology, such as computers, mobile devices, internet access, and interactive whiteboards. Almost all public schools have access to the internet and…
Jefferis, R; Lund, J; Pound, J D
1998-06-01
The Fc region of human IgG expresses interaction sites for many effector ligands. In this review the topographical distributions of ten of these sites are discussed in relation to functional requirement. It is apparent that interaction sites localised to the inter-CH2-CH3 domain region of the Fc allow for functional divalency, whereas sites localised to the hinge proximal region of the CH2 domain are functionally monovalent, with expression of the latter sites being particularly dependent on glycosylation. All x-ray crystal structures for Fc and Fc-ligand complexes report that the protein structure of the hinge proximal region of the CH2 domain is "disordered", suggesting "internal mobility". We propose a model in which such "internal mobility" results in the generation of a dynamic equilibrium between multiple conformers, certain of which express interaction sites specific to individual ligands. The emerging understanding of the influence of oligosaccharide/protein interactions on protein conformation and biological function of IgG antibodies suggests a potential to generate novel glycoforms of antibody molecules having unique profiles of effector functions.
Visual Environments for CFD Research
NASA Technical Reports Server (NTRS)
Watson, Val; George, Michael W. (Technical Monitor)
1994-01-01
This viewgraph presentation gives an overview of the visual environments for computational fluid dynamics (CFD) research. It includes details on critical needs from the future computer environment, features needed to attain this environment, prospects for changes in and the impact of the visualization revolution on the human-computer interface, human processing capabilities, limits of personal environment and the extension of that environment with computers. Information is given on the need for more 'visual' thinking (including instances of visual thinking), an evaluation of the alternate approaches for and levels of interactive computer graphics, a visual analysis of computational fluid dynamics, and an analysis of visualization software.
Katzir, Z; Nardi, N; Geffen, I; Fuhrer, C; Henis, Y I
1994-08-26
Lateral mobility studies comparing native and mutated membrane proteins, combined with treatments that alter clathrin lattice structure, can measure membrane protein-coated pit interactions in intact cells (Fire, E., Zwart, D., Roth, M. G., and Henis, Y. I. (1991) J. Cell Biol. 115, 1585-1594). We applied this approach to study the interactions of the H1 and H2 human asialoglycoprotein receptor subunits with coated pits. The lateral mobilities of singly expressed and coexpressed H1 and H2B (the H2 species that reaches the cell surface) were measured by fluorescence photobleaching recovery. They were compared with mutant proteins, H1(5A) (Tyr-5 replaced by Ala) and H2(5A) (Phe-5 replaced by Ala). While the mobile fractions of H1, H2B, and their mutants were similar, the lateral diffusion rate (measured by D, the lateral diffusion coefficient) was significantly slower for H1, whether expressed alone or with H2B. Coexpression with H1 reduced D of H2B to that of H1. Disruption of the clathrin lattices by hypertonic medium elevated D of H1, H1(5A), H2B, and H2(5A) to the same final level, without affecting their mobile fractions. Cytosol acidification, which retains altered clathrin lattices attached to the membrane and prevents coated vesicle formation, immobilized part of the H1 molecules, reflecting stable entrapment in "frozen" coated pits. H1(5A), H2B, and H2(5A) were not affected; however, coexpression of H2B with H1 conferred the sensitivity to cytosol acidification on H2B. Our results suggest that H1 lateral mobility is inhibited by dynamic interactions with coated pits in which Tyr-5 is involved. H2B resembles H1(5A) rather than H1, and its interactions with coated pits are weaker; efficient interaction of H2B with coated pits depends on complex formation with H1.
A State Cyber Hub Operations Framework
2016-06-01
to communicate and sense or interact with their internal states or the external environment. Machine Learning: A type of artificial intelligence that... artificial intelligence , and computational linguistics concerned with the interactions between computers and human (natural) languages. Patching: A piece...formalizing a proof of concept for cyber initiatives and developed frameworks for operationalizing the data and intelligence produced across state
Visual Debugging of Object-Oriented Systems With the Unified Modeling Language
2004-03-01
to be “the systematic and imaginative use of the technology of interactive computer graphics and the disciplines of graphic design , typography ... Graphics volume 23 no 6, pp893-901, 1999. [SHN98] Shneiderman, B. Designing the User Interface. Strategies for Effective Human-Computer Interaction...System Design Objectives ................................................................................ 44 3.3 System Architecture
Korpinen, Leena; Pääkkönen, Rauno; Gobba, Fabriziomaria
2018-03-01
Recently, computer, mobile phone and Internet use has increased. This study aimed to determine the possible relation between self-reported wrist and finger symptoms (aches, pain or numbness) and using computers/mobile phones, and to analyze how the symptoms are specifically associated with utilizing desktop computers, portable computers or mini-computers and mobile phones. A questionnaire was sent to 15,000 working-age Finns (age 18-65). Via a questionnaire, 723 persons reported wrist and finger symptoms often or more with use. Over 80% use mobile phones daily and less than 30% use desktop computers or the Internet daily at leisure, e.g., over 89.8% quite often or often experienced pain, numbness or aches in the neck, and 61.3% had aches in the hips and the lower back. Only 33.7% connected their symptoms to computer use. In the future, the development of new devices and Internet services should incorporate the ergonomics of the hands and wrists.
Explorative Analysis of Wuhan Intra-Urban Human Mobility Using Social Media Check-In Data
Li, Lin; Yang, Lei; Zhu, Haihong; Dai, Rongrong
2015-01-01
Social media check-in data as a geo-tagged information source have been used for revealing spatio-temporal patterns in the field of social and urban study, such as human behavior or public issues. This paper investigates a case study and presents a new method of representing the mobility of people within a city from check-in data. By dividing the data in a temporal sequence, this study examines the overall mobility in the case study city through the gradient/difference of population density with a series of time after computing the population density from the check-in data using an incorporated Thiessen polygon method. By classifying check-in data with their geo-tags into several groups according to travel purposes, and partitioning the data according to administrative district boundaries, various moving patterns for those travel purposes in those administrative districts are identified by scrutinizing a series of spatial geometries of a weighted standard deviational ellipse (WSDE). Through deep analyses of those data by the adopted approaches, the general pattern of mobility in the case city, such as people moving to the central urban area from the suburb from 4 am to 8 am, is ascertained, and different characteristics of movement in those districts are also depicted. Furthermore, it can tell that in which district less movement is likely for a certain purpose (e.g., for dinner or entertainment). This study has demonstrated the availability of the proposed methodology and check-in data for investigating intra-urban human mobility. PMID:26288273
Physio-Environmental Sensing and Live Modeling
Diaz, Vanessa; Gaggioli, Andrea; Liò, Pietro; Mazzà, Claudia; Merelli, Emanuela; Meskers, Carel G.M; Pappalardo, Francesco; von Ammon, Rainer
2013-01-01
In daily life, humans are constantly interacting with their environment. Evidence is emerging that this interaction is a very important modulator of health and well-being, even more so in our rapidly ageing society. Information and communication technology lies at the heart of the human health care revolution. It cannot remain acceptable to use out of date data analysis and predictive algorithms when superior alternatives exist. Communication network speed, high penetration of home broadband, availability of various mobile network options, together with the available detailed biological data for individuals, are producing promising advances in computerized systems that will turn information on human-environment interactions into actual knowledge with the potential to help make medical and lifestyle decisions. We introduced and discussed a key scenario in which hardware and software technologies capable of simultaneously sensing physiological and environmental signals process health care data in real-time to issue alarms, warnings, or simple recommendations to the patient or carers. PMID:23612245
NASA Astrophysics Data System (ADS)
Miritello, Giovanna; Lara, Rubén; Moro, Esteban
Recent research has shown the deep impact of the dynamics of human interactions (or temporal social networks) on the spreading of information, opinion formation, etc. In general, the bursty nature of human interactions lowers the interaction between people to the extent that both the speed and reach of information diffusion are diminished. Using a large database of 20 million users of mobile phone calls we show evidence this effect is not homogeneous in the social network but in fact, there is a large correlation between this effect and the social topological structure around a given individual. In particular, we show that social relations of hubs in a network are relatively weaker from the dynamical point than those that are poorer connected in the information diffusion process. Our results show the importance of the temporal patterns of communication when analyzing and modeling dynamical process on social networks.
Towards Scalable Graph Computation on Mobile Devices.
Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng
2014-10-01
Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach.
Towards Scalable Graph Computation on Mobile Devices
Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng
2015-01-01
Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach. PMID:25859564
Mixed-Initiative Human-Robot Interaction: Definition, Taxonomy, and Survey
2015-01-01
response situations (i.e., harmful for human lives) that range from natural disasters (e.g., Fukushima nuclear plant meltdown [1]) to terrorist attacks... Fukushima Daiichi Nuclear Power Plants using mobile rescue robots," Journal of Field Robotics, vol. 30, pp. 44-63, 2013. [2] A. Davids, "Urban search...operating environment can be uncertain, unstructured, and hostile. The damaged Fukushima nuclear plant‟s high radiation level not only posed danger to
A universal ankle-foot prosthesis emulator for human locomotion experiments.
Caputo, Joshua M; Collins, Steven H
2014-03-01
Robotic prostheses have the potential to significantly improve mobility for people with lower-limb amputation. Humans exhibit complex responses to mechanical interactions with these devices, however, and computational models are not yet able to predict such responses meaningfully. Experiments therefore play a critical role in development, but have been limited by the use of product-like prototypes, each requiring years of development and specialized for a narrow range of functions. Here we describe a robotic ankle-foot prosthesis system that enables rapid exploration of a wide range of dynamical behaviors in experiments with human subjects. This emulator comprises powerful off-board motor and control hardware, a flexible Bowden cable tether, and a lightweight instrumented prosthesis, resulting in a combination of low mass worn by the human (0.96 kg) and high mechatronic performance compared to prior platforms. Benchtop tests demonstrated closed-loop torque bandwidth of 17 Hz, peak torque of 175 Nm, and peak power of 1.0 kW. Tests with an anthropomorphic pendulum "leg" demonstrated low interference from the tether, less than 1 Nm about the hip. This combination of low worn mass, high bandwidth, high torque, and unrestricted movement makes the platform exceptionally versatile. To demonstrate suitability for human experiments, we performed preliminary tests in which a subject with unilateral transtibial amputation walked on a treadmill at 1.25 ms-1 while the prosthesis behaved in various ways. These tests revealed low torque tracking error (RMS error of 2.8 Nm) and the capacity to systematically vary work production or absorption across a broad range (from -5 to 21 J per step). These results support the use of robotic emulators during early stage assessment of proposed device functionalities and for scientific study of fundamental aspects of human-robot interaction. The design of simple, alternate end-effectors would enable studies at other joints or with additional degrees of freedom.
77 FR 62216 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-12
... NIST researchers to study human-computer interactions and help establish guidelines and standards for more effective and efficient interactions. Affected Public: Individual or households; State, Local or...
NASA Technical Reports Server (NTRS)
Chu, Y.-Y.; Rouse, W. B.
1979-01-01
As human and computer come to have overlapping decisionmaking abilities, a dynamic or adaptive allocation of responsibilities may be the best mode of human-computer interaction. It is suggested that the computer serve as a backup decisionmaker, accepting responsibility when human workload becomes excessive and relinquishing responsibility when workload becomes acceptable. A queueing theory formulation of multitask decisionmaking is used and a threshold policy for turning the computer on/off is proposed. This policy minimizes event-waiting cost subject to human workload constraints. An experiment was conducted with a balanced design of several subject runs within a computer-aided multitask flight management situation with different task demand levels. It was found that computer aiding enhanced subsystem performance as well as subjective ratings. The queueing model appears to be an adequate representation of the multitask decisionmaking situation, and to be capable of predicting system performance in terms of average waiting time and server occupancy. Server occupancy was further found to correlate highly with the subjective effort ratings.
A Novel Computer-Based Set-Up to Study Movement Coordination in Human Ensembles
Alderisio, Francesco; Lombardi, Maria; Fiore, Gianfranco; di Bernardo, Mario
2017-01-01
Existing experimental works on movement coordination in human ensembles mostly investigate situations where each subject is connected to all the others through direct visual and auditory coupling, so that unavoidable social interaction affects their coordination level. Here, we present a novel computer-based set-up to study movement coordination in human groups so as to minimize the influence of social interaction among participants and implement different visual pairings between them. In so doing, players can only take into consideration the motion of a designated subset of the others. This allows the evaluation of the exclusive effects on coordination of the structure of interconnections among the players in the group and their own dynamics. In addition, our set-up enables the deployment of virtual computer players to investigate dyadic interaction between a human and a virtual agent, as well as group synchronization in mixed teams of human and virtual agents. We show how this novel set-up can be employed to study coordination both in dyads and in groups over different structures of interconnections, in the presence as well as in the absence of virtual agents acting as followers or leaders. Finally, in order to illustrate the capabilities of the architecture, we describe some preliminary results. The platform is available to any researcher who wishes to unfold the mechanisms underlying group synchronization in human ensembles and shed light on its socio-psychological aspects. PMID:28649217
1981-02-01
Continue on tevetee «Id* If necemtery mid Identify br black number) Battlefield automated systems Human- computer interaction. Design criteria System...Report (this report) In-Depth Analyses of Individual Systems A. Tactical Fire Direction System (TACFIRE) (RP 81-26) B. Tactical Computer Terminal...select the design features and operating procedures of the human- computer Interface which best match the require- ments and capabilities of anticipated
The gender gap in mobility: a global cross-sectional study.
Mechakra-Tahiri, Samia Djemâa; Freeman, Ellen E; Haddad, Slim; Samson, Elodie; Zunzunegui, Maria Victoria
2012-08-02
Several studies have demonstrated that women have greater mobility disability than men. The goals of this research were: 1) to assess the gender gap in mobility difficulty in 70 countries; 2) to determine whether the gender gap is explained by sociodemographic and health factors; 3) to determine whether the gender gap differs across 6 regions of the world with different degrees of gender equality according to United Nations data. Population-based data were used from the World Health Survey (WHS) conducted in 70 countries throughout the world. 276,647 adults aged 18 years and over were recruited from 6 world regions. Mobility was measured by asking the level of difficulty people had moving around in the last 30 days and then creating a dichotomous measure (no difficulty, difficulty). The human development index and the gender-related development index for each country were obtained from the United Nations Development Program website. Poisson regression with Taylor series linearized variance estimation was used. Women were more likely than men to report mobility difficulty (38% versus 27%, P < 0.0001). The age-adjusted prevalence rate ratio for female gender was 1.35 (95% CI 1.31-1.38). The addition of education, marital status, and urban versus rural setting reduced the prevalence rate ratio to 1.30 (95% CI 1.26-1.33). The addition of the presence of back pain, arthritis, angina, depressive symptoms, and cognitive difficulties further reduced the prevalence rate ratio to 1.12 (95% CI 1.09-1.15). There was statistical interaction on the multiplicative scale between female gender and region (P < 0.01). The Eastern Mediterranean region, which had the greatest loss of human development due to gender inequality, showed the largest gender gap in mobility difficulty, while the Western Pacific region, with the smallest loss of human development due to gender inequality, had the smallest gender gap in mobility difficulty. These are the first world-wide data to examine the gender gap in mobility. Differences in chronic diseases are the main reasons for this gender gap. The gender gap seems to be greater in regions with the largest loss of human development due to gender inequality.
Neural correlate of human reciprocity in social interactions
Sakaiya, Shiro; Shiraito, Yuki; Kato, Junko; Ide, Hiroko; Okada, Kensuke; Takano, Kouji; Kansaku, Kenji
2013-01-01
Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human) and strategy (random, tit-for-tat) in repeated prisoner's dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate) and theory of mind (ToM) regions [i.e., ventromedial prefrontal cortex (VMPFC) and precuneus]. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (de)activation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during social interactions. PMID:24381534
Neural correlate of human reciprocity in social interactions.
Sakaiya, Shiro; Shiraito, Yuki; Kato, Junko; Ide, Hiroko; Okada, Kensuke; Takano, Kouji; Kansaku, Kenji
2013-01-01
Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human) and strategy (random, tit-for-tat) in repeated prisoner's dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate) and theory of mind (ToM) regions [i.e., ventromedial prefrontal cortex (VMPFC) and precuneus]. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (de)activation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during social interactions.