DOT National Transportation Integrated Search
2000-03-01
One-third-scale Model Mobile Load Simulator Mk3 (MMLS3) tests were conducted on US 281 in Jacksboro, Texas, adjacent to the full-scale Texas Mobile Load Simulator (TxMLS). The objectives were to investigate the moisture susceptibility and relative pe...
Model of load balancing using reliable algorithm with multi-agent system
NASA Astrophysics Data System (ADS)
Afriansyah, M. F.; Somantri, M.; Riyadi, M. A.
2017-04-01
Massive technology development is linear with the growth of internet users which increase network traffic activity. It also increases load of the system. The usage of reliable algorithm and mobile agent in distributed load balancing is a viable solution to handle the load issue on a large-scale system. Mobile agent works to collect resource information and can migrate according to given task. We propose reliable load balancing algorithm using least time first byte (LFB) combined with information from the mobile agent. In system overview, the methodology consisted of defining identification system, specification requirements, network topology and design system infrastructure. The simulation method for simulated system was using 1800 request for 10 s from the user to the server and taking the data for analysis. Software simulation was based on Apache Jmeter by observing response time and reliability of each server and then compared it with existing method. Results of performed simulation show that the LFB method with mobile agent can perform load balancing with efficient systems to all backend server without bottleneck, low risk of server overload, and reliable.
Equal-mobility bed load transport in a small, step-pool channel in the Ouachita Mountains
Daniel A. Marion; Frank Weirich
2003-01-01
Abstract: Equal-mobility transport (EMT) of bed load is more evident than size-selective transport during near-bankfull flow events in a small, step-pool channel in the Ouachita Mountains of central Arkansas. Bed load transport modes were studied by simulating five separate runoff events with peak discharges between 0.25 and 1.34 m3...
Application of neural models as controllers in mobile robot velocity control loop
NASA Astrophysics Data System (ADS)
Cerkala, Jakub; Jadlovska, Anna
2017-01-01
This paper presents the application of an inverse neural models used as controllers in comparison to classical PI controllers for velocity tracking control task used in two-wheel, differentially driven mobile robot. The PI controller synthesis is based on linear approximation of actuators with equivalent load. In order to obtain relevant datasets for training of feed-forward multi-layer perceptron based neural network used as neural model, the mathematical model of mobile robot, that combines its kinematic and dynamic properties such as chassis dimensions, center of gravity offset, friction and actuator parameters is used. Neural models are trained off-line to act as an inverse dynamics of DC motors with particular load using data collected in simulation experiment for motor input voltage step changes within bounded operating area. The performances of PI controllers versus inverse neural models in mobile robot internal velocity control loops are demonstrated and compared in simulation experiment of navigation control task for line segment motion in plane.
Characterizing the uncertainty in holddown post load measurements
NASA Technical Reports Server (NTRS)
Richardson, J. A.; Townsend, J. S.
1993-01-01
In order to understand unexpectedly erratic load measurements in the launch-pad supports for the space shuttle, the sensitivities of the load cells in the supports were analyzed using simple probabilistic techniques. NASA engineers use the loads in the shuttle's supports to calculate critical stresses in the shuttle vehicle just before lift-off. The support loads are measured with 'load cells' which are actually structural components of the mobile launch platform which have been instrumented with strain gauges. Although these load cells adequately measure vertical loads, the horizontal load measurements have been erratic. The load measurements were simulated in this study using Monte Carlo simulation procedures. The simulation studies showed that the support loads are sensitive to small deviations in strain and calibration. In their current configuration, the load cells will not measure loads with sufficient accuracy to reliably calculate stresses in the shuttle vehicle. A simplified model of the holddown post (HDP) load measurement system was used to study the effect on load measurement accuracy for several factors, including load point deviations, gauge heights, and HDP geometry.
NASA Astrophysics Data System (ADS)
Wang, Shengling; Cui, Yong; Koodli, Rajeev; Hou, Yibin; Huang, Zhangqin
Due to the dynamics of topology and resources, Call Admission Control (CAC) plays a significant role for increasing resource utilization ratio and guaranteeing users' QoS requirements in wireless/mobile networks. In this paper, a dynamic multi-threshold CAC scheme is proposed to serve multi-class service in a wireless/mobile network. The thresholds are renewed at the beginning of each time interval to react to the changing mobility rate and network load. To find suitable thresholds, a reward-penalty model is designed, which provides different priorities between different service classes and call types through different reward/penalty policies according to network load and average call arrival rate. To speed up the running time of CAC, an Optimized Genetic Algorithm (OGA) is presented, whose components such as encoding, population initialization, fitness function and mutation etc., are all optimized in terms of the traits of the CAC problem. The simulation demonstrates that the proposed CAC scheme outperforms the similar schemes, which means the optimization is realized. Finally, the simulation shows the efficiency of OGA.
Stress Analysis of Boom of Special Mobile Crane for Plain Region in Transmission Line
NASA Astrophysics Data System (ADS)
Qin, Jian; Shao, Tao; Chen, Jun; Wan, Jiancheng; Li, Zhonghuan; Jiang, Ming
2017-10-01
Basis of the boom force analysis of special mobile crane for plain region in transmission line, the load type of boom design is confirmed. According to the different combinations of boom sections, the composite pattern of the different boom length is obtained to suit the actual conditions of boom overlapping. The large deformation model is employed with FEM to simulate the stress distribution of boom, and the calculation results are checked. The performance curves of rated load with different arm length and different working range are obtained, which ensures the lifting capacity of special mobile crane meeting the requirement of tower erection of transmission line. The proposed FEM of boom of mobile crane would provide certain guiding and reference to the boom design.
GAPR2: A DTN Routing Protocol for Communications in Challenged, Degraded, and Denied Environments
2015-09-01
Transmission Speed Vs. Latency Figure 4.7: Helsinki Simulation Set 2, High Network Load and Small Buffers Analysis of Delivery Ratio in Helsinki Simulation...ipnsig.org/. [17] MANET routing, class notes for CS4554: Network modeling and analysis . 119 [18] S. Basagni et al. Mobile ad hoc networking . John...Wiley & Sons, 2004. [19] E. Royer et al. A review of current routing protocols for ad hoc mobile wireless networks . Personal Communications, IEEE, 6(2
Impact of police body armour and equipment on mobility.
Dempsey, Paddy C; Handcock, Phil J; Rehrer, Nancy J
2013-11-01
Body armour is used widely by law enforcement and other agencies but has received mixed reviews. This study examined the influence of stab resistant body armour (SRBA) and mandated accessories on physiological responses to, and the performance of, simulated mobility tasks. Fifty-two males (37 ± 9.2 yr, 180.7 ± 6.1 cm, 90.2 ± 11.6 kg, VO2max 50 ± 8.5 ml kg(-1) min(-1), BMI 27.6 ± 3.1, mean ± SD) completed a running VO2max test and task familiarisation. Two experimental sessions were completed (≥4 days in between) in a randomised counterbalanced order, one while wearing SRBA and appointments (loaded) and one without additional load (unloaded). During each session participants performed five mobility tasks: a balance task, an acceleration task that simulated exiting a vehicle, chin-ups, a grappling task, and a manoeuvrability task. A 5-min treadmill run (zero-incline at 13 km·h(-1), running start) was then completed. One min after the run the five mobility tasks were repeated. There was a significant decrease in performance during all tasks with loading (p < 0.001). Participants were off-balance longer; slower to complete the acceleration, grapple and mobility tasks; completed fewer chin-ups; and had greater physiological cost (↑ %HRmax, ↑ %VO2max, ↑ RER) and perceptual effort (↑ RPE) during the 5-min run. Mean performance decreases ranged from 13 to 42% while loaded, with further decreases of 6-16% noted after the 5-min run. Unloaded task performance was no different between phases. Wearing SRBA and appointments significantly reduced mobility during key task elements and resulted in greater physiological effort. These findings could have consequences for optimal function in the working environment and therefore officer and public safety. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
D'Souza, Clive; Paquet, Victor L; Lenker, James A; Steinfeld, Edward
2017-11-13
Low ridership of public transit buses among wheeled mobility device users suggests the need to identify vehicle design conditions that are either particularly accommodating or challenging. The objective of this study was to determine the effects of low-floor bus interior seating configuration and passenger load on wheeled mobility device user-reported difficulty, overall acceptability and design preference. Forty-eight wheeled mobility users evaluated three interior design layouts at two levels of passenger load (high vs. low) after simulating boarding and disembarking tasks on a static full-scale low-floor bus mockup. User self-reports of task difficulty, acceptability and design preference were analyzed across the different test conditions. Ramp ascent was the most difficult task for manual wheelchair users relative to other tasks. The most difficult tasks for users of power wheelchairs and scooters were related to interior circulation, including moving to the securement area, entry and positioning in the securement area and exiting the securement area. Boarding and disembarking at the rear doorway was significantly more acceptable and preferred compared to the layouts with front doorways. Understanding transit usability barriers, perceptions and preferences among wheeled mobility users is an important consideration for clinicians who recommend mobility-related device interventions to those who use public transportation. Implications for Rehabilitation In order to maximize community participation opportunities for wheeled mobility users, clinicians should consider potential public transit barriers during the processes of wheelchair device selection and skills training. Usability barriers experienced by wheeled mobility device users on transit vehicles differ by mobility device type and vehicle configurations. Full-scale environment simulations are an effective means of identifying usability barriers and design needs in people with mobility impairments and may provide an alternative model for determining readiness for using fixed route buses or eligibility for paratransit.
Improving Paramedic Distance Education through Mobile Mixed Reality Simulation
ERIC Educational Resources Information Center
Birt, James; Moore, Emma; Cowling, Michael
2017-01-01
There is growing evidence that the use of simulation in teaching is a key means of improving learning, skills, and outcomes, particularly for practical skills. In the health sciences, the use of high-fidelity task trainers has been shown to be ideal for reducing cognitive load and leading to enhanced learning outcomes. However, how do we make…
Report on the First Jacksboro MMLS Tests
DOT National Transportation Integrated Search
1999-12-01
This report outlines the two accelerated pavement tests completed in Jacksboro, Texas, using the 1/3-scale Model Mobile Load Simulator (MMLS3).The MMLS3 tests were initially commissioned to investigate the stripping phenomenon evident under conventio...
Utilizing NX Advanced Simulation for NASA's New Mobile Launcher for Ares-l
NASA Technical Reports Server (NTRS)
Brown, Christopher
2010-01-01
This slide presentation reviews the use of NX to simulate the new Mobile Launcher (ML) for the Ares-I. It includes: a comparison of the sizes of the Saturn 5, the Space Shuttle, the Ares I, and the Ares V, with the height, and payload capability; the loads control plan; drawings of the base framing, the underside of the ML, beam arrangement, and the finished base and the origin of the 3D CAD data. It also reviews the modeling approach, meshing. the assembly Finite Element Modeling, the model summary. and beam improvements.
Adaptive MANET multipath routing algorithm based on the simulated annealing approach.
Kim, Sungwook
2014-01-01
Mobile ad hoc network represents a system of wireless mobile nodes that can freely and dynamically self-organize network topologies without any preexisting communication infrastructure. Due to characteristics like temporary topology and absence of centralized authority, routing is one of the major issues in ad hoc networks. In this paper, a new multipath routing scheme is proposed by employing simulated annealing approach. The proposed metaheuristic approach can achieve greater and reciprocal advantages in a hostile dynamic real world network situation. Therefore, the proposed routing scheme is a powerful method for finding an effective solution into the conflict mobile ad hoc network routing problem. Simulation results indicate that the proposed paradigm adapts best to the variation of dynamic network situations. The average remaining energy, network throughput, packet loss probability, and traffic load distribution are improved by about 10%, 10%, 5%, and 10%, respectively, more than the existing schemes.
Zhao, Yongli; Chen, Zhendong; Zhang, Jie; Wang, Xinbo
2016-07-25
Driven by the forthcoming of 5G mobile communications, the all-IP architecture of mobile core networks, i.e. evolved packet core (EPC) proposed by 3GPP, has been greatly challenged by the users' demands for higher data rate and more reliable end-to-end connection, as well as operators' demands for low operational cost. These challenges can be potentially met by software defined optical networking (SDON), which enables dynamic resource allocation according to the users' requirement. In this article, a novel network architecture for mobile core network is proposed based on SDON. A software defined network (SDN) controller is designed to realize the coordinated control over different entities in EPC networks. We analyze the requirement of EPC-lightpath (EPCL) in data plane and propose an optical switch load balancing (OSLB) algorithm for resource allocation in optical layer. The procedure of establishment and adjustment of EPCLs is demonstrated on a SDON-based EPC testbed with extended OpenFlow protocol. We also evaluate the OSLB algorithm through simulation in terms of bandwidth blocking ratio, traffic load distribution, and resource utilization ratio compared with link-based load balancing (LLB) and MinHops algorithms.
Eckley, Chris S; Branfireun, Brian
2009-08-01
This research focuses on mercury (Hg) mobilization in stormwater runoff from an urban roadway. The objectives were to determine: how the transport of surface-derived Hg changes during an event hydrograph; the influence of antecedent dry days on the runoff Hg load; the relationship between total suspended sediments (TSS) and Hg transport, and; the fate of new Hg input in rain and its relative importance to the runoff Hg load. Simulated rain events were used to control variables to elucidate transport processes and a Hg stable isotope was used to trace the fate of Hg inputs in rain. The results showed that Hg concentrations were highest at the beginning of the hydrograph and were predominantly particulate bound (HgP). On average, almost 50% of the total Hg load was transported during the first minutes of runoff, underscoring the importance of the initial runoff on load calculations. Hg accumulated on the road surface during dry periods resulting in the Hg runoff load increasing with antecedent dry days. The Hg concentrations in runoff were significantly correlated with TSS concentrations (mean r(2)=0.94+/-0.09). The results from the isotope experiments showed that the new Hg inputs quickly become associated with the surface particles and that the majority of Hg in runoff is derived from non-event surface-derived sources.
Context dependent off loading for cloudlet in mobile ad-hoc network
NASA Astrophysics Data System (ADS)
Bhatt, N.; Nadesh, R. K.; ArivuSelvan, K.
2017-11-01
Cloud Computing in Mobile Ad-hoc network is emerging part of research consideration as the demand and competency of mobile devices increased in last few years. To follow out operation within the remote cloud builds the postponement and influences the administration standard. To keep away from this trouble cloudlet is presented. Cloudlet gives identical support of the devices as cloud at low inactivity however at high transfer speed. Be that as it may, choice of a cloudlet for offloading calculation with flat energy is a noteworthy test if multiple cloud let is accessible adjacent. Here I proposed energy and bandwidth (Traffic overload for communication with cloud) aware cloudlet selection strategy based on the context dependency of the device location. It works on the basis of mobile device location and bandwidth availability of cloudlet. The cloudlet offloading and selection process using given solution is simulated in Cloud ~ Simulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheppard, Colin; Waraich, Rashid; Campbell, Andrew
This report summarizes the BEAM modeling framework (Behavior, Energy, Mobility, and Autonomy) and its application to simulating plug-in electric vehicle (PEV) mobility, energy consumption, and spatiotemporal charging demand. BEAM is an agent-based model of PEV mobility and charging behavior designed as an extension to MATSim (the Multi-Agent Transportation Simulation model). We apply BEAM to the San Francisco Bay Area and conduct a preliminary calibration and validation of its prediction of charging load based on observed charging infrastructure utilization for the region in 2016. We then explore the impact of a variety of common modeling assumptions in the literature regarding chargingmore » infrastructure availability and driver behavior. We find that accurately reproducing observed charging patterns requires an explicit representation of spatially disaggregated charging infrastructure as well as a more nuanced model of the decision to charge that balances tradeoffs people make with regards to time, cost, convenience, and range anxiety.« less
Schelker, J.; Burns, Douglas A.; Weiler, M.; Laudon, H.
2011-01-01
The mobilization of mercury and dissolved organic carbon (DOC) during snowmelt often accounts for a major fraction of the annual loads. We studied the role of hydrological connectivity of riparian wetlands and upland/wetland transition zones to surface waters on the mobilization of Hg and DOC in Fishing Brook, a headwater of the Adirondack Mountains, New York. Stream water total mercury (THg) concentrations varied strongly (mean = 2.25 ?? 0.5 ng L -1), and the two snowmelt seasons contributed 40% (2007) and 48% (2008) of the annual load. Methyl mercury (MeHg) concentrations ranged up to 0.26 ng L-1, and showed an inverse log relationship with discharge. TOPMODEL-simulated saturated area corresponded well with wetland areas, and the application of a flow algorithm based elevation-above-creek approach suggests that most wetlands become well connected during high flow. The dynamics of simulated saturated area and soil storage deficit were able to explain a large part of the variation of THg concentrations (r2 = 0.53 to 0.72). In contrast, the simulations were not able to explain DOC variations and DOC and THg concentrations were not correlated. These results indicate that all three constituents, THg, MeHg, and DOC, follow different patterns at the outlet: (1) the mobilization of THg is primarily controlled by the saturation state of the catchment, (2) the dilution of MeHg suggests flushing from a supply limited pool, and (3) DOC dynamics follow a pattern different from THg dynamics, which likely results from differing gain and/or loss processes for THg and/or DOC within the Fishing Brook catchment. Copyright 2011 by the American Geophysical Union.
Increased Cognitive Load Leads to Impaired Mobility Decisions in Seniors at Risk for Falls
Nagamatsu, Lindsay S.; Voss, Michelle; Neider, Mark B.; Gaspar, John G.; Handy, Todd C.; Kramer, Arthur F.; Liu-Ambrose, Teresa Y. L.
2011-01-01
Successful mobility requires appropriate decision-making. Seniors with reduced executive functioning— such as senior fallers—may be prone to poor mobility judgments, especially under dual-task conditions. We classified participants as “At-Risk” and “Not-At-Risk” for falls using a validated physiological falls-risk assessment. Dual-task performance was assessed in a virtual reality environment where participants crossed a simulated street by walking on a manual treadmill while listening to music or conversing on a phone. Those “At-Risk” experienced more collisions with oncoming cars and had longer crossing times in the Phone condition compared to controls. We conclude that poor mobility judgments during a dual-task leads to unsafe mobility for those at-risk for falls. PMID:21463063
Increased cognitive load leads to impaired mobility decisions in seniors at risk for falls.
Nagamatsu, Lindsay S; Voss, Michelle; Neider, Mark B; Gaspar, John G; Handy, Todd C; Kramer, Arthur F; Liu-Ambrose, Teresa Y L
2011-06-01
Successful mobility requires appropriate decision-making. Seniors with reduced executive functioning-such as senior fallers-may be prone to poor mobility judgments, especially under dual-task conditions. We classified participants as "At-Risk" and "Not-At-Risk" for falls using a validated physiological falls-risk assessment. Dual-task performance was assessed in a virtual reality environment where participants crossed a simulated street by walking on a manual treadmill while listening to music or conversing on a phone. Those "At-Risk" experienced more collisions with oncoming cars and had longer crossing times in the Phone condition compared to controls. We conclude that poor mobility judgments during a dual-task leads to unsafe mobility for those at-risk for falls. (c) 2011 APA, all rights reserved.
Autonomous distributed self-organization for mobile wireless sensor networks.
Wen, Chih-Yu; Tang, Hung-Kai
2009-01-01
This paper presents an adaptive combined-metrics-based clustering scheme for mobile wireless sensor networks, which manages the mobile sensors by utilizing the hierarchical network structure and allocates network resources efficiently A local criteria is used to help mobile sensors form a new cluster or join a current cluster. The messages transmitted during hierarchical clustering are applied to choose distributed gateways such that communication for adjacent clusters and distributed topology control can be achieved. In order to balance the load among clusters and govern the topology change, a cluster reformation scheme using localized criterions is implemented. The proposed scheme is simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithm provides efficient network topology management and achieves high scalability in mobile sensor networks.
Proxy-assisted multicasting of video streams over mobile wireless networks
NASA Astrophysics Data System (ADS)
Nguyen, Maggie; Pezeshkmehr, Layla; Moh, Melody
2005-03-01
This work addresses the challenge of providing seamless multimedia services to mobile users by proposing a proxy-assisted multicast architecture for delivery of video streams. We propose a hybrid system of streaming proxies, interconnected by an application-layer multicast tree, where each proxy acts as a cluster head to stream out content to its stationary and mobile users. The architecture is based on our previously proposed Enhanced-NICE protocol, which uses an application-layer multicast tree to deliver layered video streams to multiple heterogeneous receivers. We targeted the study on placements of streaming proxies to enable efficient delivery of live and on-demand video, supporting both stationary and mobile users. The simulation results are evaluated and compared with two other baseline scenarios: one with a centralized proxy system serving the entire population and one with mini-proxies each to serve its local users. The simulations are implemented using the J-SIM simulator. The results show that even though proxies in the hybrid scenario experienced a slightly longer delay, they had the lowest drop rate of video content. This finding illustrates the significance of task sharing in multiple proxies. The resulted load balancing among proxies has provided a better video quality delivered to a larger audience.
A Novel Mobile Testing Equipment for Rock Cuttability Assessment: Vertical Rock Cutting Rig (VRCR)
NASA Astrophysics Data System (ADS)
Yasar, Serdar; Yilmaz, Ali Osman
2017-04-01
In this study, a new mobile rock cutting testing apparatus was designed and produced for rock cuttability assessment called vertical rock cutting rig (VRCR) which was designed specially to fit into hydraulic press testing equipment which are available in almost every rock mechanics laboratory. Rock cutting trials were initiated just after the production of VRCR along with calibration of the measuring load cell with an external load cell to validate the recorded force data. Then, controlled rock cutting tests with both relieved and unrelieved cutting modes were implemented on five different volcanic rock samples with a standard simple-shaped wedge tool. Additionally, core cutting test which is an important approach for roadheader performance prediction was simulated with VRCR. Mini disc cutters and point attack tools were used for execution of experimental trials. Results clearly showed that rock cutting tests were successfully realized and measuring system is delicate to rock strength, cutting depth and other variables. Core cutting test was successfully simulated, and it was also shown that rock cutting tests with mini disc cutters and point attack tools are also successful with VRCR.
Performance, Capacity and Limitations of AMSS Communications
NASA Technical Reports Server (NTRS)
Ripamonti, Claudio; Konangi, Vijay K.; Kerczewski, robert J.
2002-01-01
This paper reports on the performance of Aeronautical Mobile Satellite Service (AMSS), based on simulation results, when incorporated into the Aeronautical Telecommunications Network (ATN). A comparison between its performance under current data traffic load and under future ATN traffic load was used to determine the reliability of AMSS in providing continuous communications between the ground and the aircraft over remote regions of the globe. The simulation involved modeling AMSS through the use of the published standards to ensure the accuracy of the results. Although the results indicated that there is indeed a reduced capacity (to about one-fourth) and efficiency of the system at the increased traffic load, the reduction in performance does not lead to the conclusion that an alternative to AMSS must be found. On the contrary, some modifications to the protocols controlling the operation of AMSS and updating the system with new technologies, would make it as valid a solution to the problem as it is today.
Ths test simulated through routine land transportation routes and across international ports of entry in the El Paso/Ciudad Juarez trade area. RFID tags were attached to four of each container type for a total of 12 containers which were loaded onto a standard 53-foot semi-truck...
Khodaverdi, Elham; Ahmadi, Mina; Kamali, Hossein; Hadizadeh, Farzin
2017-01-01
Objective: Synthetic Mobil Crystalline Material 41 (MCM-41) as a mesoporous material and functionalized MCM-41 using aminopropyl groups were studied in order to investigate their ability to encapsulate and to control the release of diclofenac sodium and piroxicam. Materials and Methods: MCM-41 was synthesized through sol–gel procedure and functionalized with aminopropyl groups. The physicochemical properties of MCM-41 were studied through particle size analysis, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and carbon–hydrogen–nitrogen analysis. Diclofenac sodium and piroxicam were loaded into the MCM-41 matrix using the filtration and solvent evaporation methods. The drug-loading capacity was determined by ultraviolet, Fourier transform infrared, X-ray diffraction, and Brunauer–Emmett–Teller analysis. Results: According to the results for pure drug release, >57% was released in the 1st h, but when these drugs were loaded into pure Mobil Crystalline Material 41 (MCM-41) and functionalized MCM-41, the release into the simulated gastrointestinal medium was less, continuous, and slower. The release of piroxicam from functionalized MCM-41 was slower than that from MCM-41 in the simulated intestinal medium because of the formation of electrostatic bonds between piroxicam and the aminopropyl groups of the functionalized MCM-41. However, in the case of diclofenac sodium, there was no significant difference between pure MCM-41 and functionalized MCM-41. The difference between piroxicam and diclofenac sodium was due to the high solubility of diclofenac sodium in the intestinal medium (pH 6.8), which caused more rapid release from the matrixes than for piroxicam. Conclusion: Our findings indicate that, after functionalization of MCM-41, it could offer a good means of delivering controlled diclofenac sodium and piroxicam. PMID:29692976
Khodaverdi, Elham; Ahmadi, Mina; Kamali, Hossein; Hadizadeh, Farzin
2017-01-01
Synthetic Mobil Crystalline Material 41 (MCM-41) as a mesoporous material and functionalized MCM-41 using aminopropyl groups were studied in order to investigate their ability to encapsulate and to control the release of diclofenac sodium and piroxicam. MCM-41 was synthesized through sol-gel procedure and functionalized with aminopropyl groups. The physicochemical properties of MCM-41 were studied through particle size analysis, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and carbon-hydrogen-nitrogen analysis. Diclofenac sodium and piroxicam were loaded into the MCM-41 matrix using the filtration and solvent evaporation methods. The drug-loading capacity was determined by ultraviolet, Fourier transform infrared, X-ray diffraction, and Brunauer-Emmett-Teller analysis. According to the results for pure drug release, >57% was released in the 1 st h, but when these drugs were loaded into pure Mobil Crystalline Material 41 (MCM-41) and functionalized MCM-41, the release into the simulated gastrointestinal medium was less, continuous, and slower. The release of piroxicam from functionalized MCM-41 was slower than that from MCM-41 in the simulated intestinal medium because of the formation of electrostatic bonds between piroxicam and the aminopropyl groups of the functionalized MCM-41. However, in the case of diclofenac sodium, there was no significant difference between pure MCM-41 and functionalized MCM-41. The difference between piroxicam and diclofenac sodium was due to the high solubility of diclofenac sodium in the intestinal medium (pH 6.8), which caused more rapid release from the matrixes than for piroxicam. Our findings indicate that, after functionalization of MCM-41, it could offer a good means of delivering controlled diclofenac sodium and piroxicam.
Based new WiMax simulation model to investigate Qos with OPNET modeler in sheduling environment
NASA Astrophysics Data System (ADS)
Saini, Sanju; Saini, K. K.
2012-11-01
WiMAX stands for World Interoperability for Microwave Access. It is considered a major part of broadband wireless network having the IEEE 802.16 standard. WiMAX provides innovative, fixed as well as mobile platforms for broadband internet access anywhere anytime with different transmission modes. The results show approximately equal load and throughput while the delay values vary among the different Base Stations Introducing the various type of scheduling algorithm, like FIFO,PQ,WFQ, for comparison of four type of scheduling service, with its own QoS needs and also introducing OPNET modeler support for Worldwide Interoperability for Microwave Access (WiMAX) network. The simulation results indicate the correctness and the effectiveness of this algorithm. This paper presents a WiMAX simulation model designed with OPNET modeler 14 to measure the delay, load and the throughput performance factors.
Patil, Nitin S; Mendhe, Rakesh B; Sankar, Ajeet A; Iyer, Harish
2008-01-11
In preparative chromatography, often the solubility of the sample in the mobile phase is limited, making the mobile phase unsuitable as a solvent for preparation of load. Generally, solvents that have high solubility for the sample also have higher elution strengths than the mobile phase. Additionally, at high loading volumes, these strong sample solvents are known to adversely affect the band profiles leading to poor chromatographic performance. Here, we show that controlling the mobile phase strength during loading and post-load elution resulted in improved band profiles when the sample solvent was stronger than the mobile phase. Such an approach improves performance in preparative chromatography by allowing either higher sample loading or higher organic content in mobile phase (without loss of yield). Alternately, the approach can be used for improvement in performance by increase in yield or product purity.
Optimization of the computational load of a hypercube supercomputer onboard a mobile robot.
Barhen, J; Toomarian, N; Protopopescu, V
1987-12-01
A combinatorial optimization methodology is developed, which enables the efficient use of hypercube multiprocessors onboard mobile intelligent robots dedicated to time-critical missions. The methodology is implemented in terms of large-scale concurrent algorithms based either on fast simulated annealing, or on nonlinear asynchronous neural networks. In particular, analytic expressions are given for the effect of singleneuron perturbations on the systems' configuration energy. Compact neuromorphic data structures are used to model effects such as prec xdence constraints, processor idling times, and task-schedule overlaps. Results for a typical robot-dynamics benchmark are presented.
Optimization of the computational load of a hypercube supercomputer onboard a mobile robot
NASA Technical Reports Server (NTRS)
Barhen, Jacob; Toomarian, N.; Protopopescu, V.
1987-01-01
A combinatorial optimization methodology is developed, which enables the efficient use of hypercube multiprocessors onboard mobile intelligent robots dedicated to time-critical missions. The methodology is implemented in terms of large-scale concurrent algorithms based either on fast simulated annealing, or on nonlinear asynchronous neural networks. In particular, analytic expressions are given for the effect of single-neuron perturbations on the systems' configuration energy. Compact neuromorphic data structures are used to model effects such as precedence constraints, processor idling times, and task-schedule overlaps. Results for a typical robot-dynamics benchmark are presented.
Highly-resolved numerical simulations of bed-load transport in a turbulent open-channel flow
NASA Astrophysics Data System (ADS)
Vowinckel, Bernhard; Kempe, Tobias; Nikora, Vladimir; Jain, Ramandeep; Fröhlich, Jochen
2015-11-01
The study presents the analysis of phase-resolving Direct Numerical Simulations of a horizontal turbulent open-channel flow laden with a large number of spherical particles. These particles have a mobility close to their threshold of incipient motion andare transported in bed-load mode. The coupling of the fluid phase with the particlesis realized by an Immersed Boundary Method. The Double-Averaging Methodology is applied for the first time convolutingthe data into a handy set of quantities averaged in time and space to describe the most prominent flow features.In addition, a systematic study elucidatesthe impact of mobility and sediment supply on the pattern formation of particle clusters ina very large computational domain. A detailed description of fluid quantities links the developed particle patterns to the enhancement of turbulence and to a modified hydraulic resistance. Conditional averaging isapplied toerosion events providingthe processes involved inincipient particle motion. Furthermore, the detection of moving particle clusters as well as their surrounding flow field is addressedby a a moving frameanalysis. Funded by German Research Foundation (DFG), project FR 1593/5-2, computational time provided by ZIH Dresden, Germany, and JSC Juelich, Germany.
Simulation of cooperating robot manipulators on a mobile platform
NASA Technical Reports Server (NTRS)
Murphy, Stephen H.; Wen, John Ting-Yung; Saridis, George N.
1991-01-01
The dynamic equations of motion are presented for two or more cooperating manipulators on a freely moving mobile platform. The system of cooperating robot manipulators forms a closed kinematic chain where the force of interaction must be included in the formulation of robot and platform dynamics. The formulation includes the full dynamic interactions from arms to platform and arm tip to arm tip, and the possible translation and rotation of the platform. The equations of motion are shown to be identical in structure to the fixed-platform cooperative manipulator dynamics. The number of DOFs of the system is sufficiently large to make recursive dynamic calculation methods potentially more efficient than closed-form solutions. A complete simulation with two 6-DOF manipulators of a free-floating platform is presented along a with a multiple-arm controller to position the common load.
D'Souza, Clive; Paquet, Victor; Lenker, James A; Steinfeld, Edward
2017-07-01
The emergence of low-floor bus designs and related regulatory standards in the U.S. have resulted in substantial improvements in public transit accessibility. However, passengers using wheeled mobility devices still experience safety concerns and inefficiencies in boarding, disembarking, and interior circulation on low-floor buses. This study investigates effects of low-floor bus interior configuration and passenger crowding on boarding and disembarking efficiency and safety. Users of manual wheelchairs (n = 18), powered wheelchairs (n = 21) and electric scooters (n = 9) simulated boarding and disembarking in three interior layout configurations at low and high passenger crowding conditions on a full-scale laboratory mock-up of a low-floor bus. Dependent measures comprised task times and critical incidents during access ramp use, fare payment, and movement to and from the doorway and wheeled mobility securement area. Individual times for unassisted boarding ranged from 15.2 to 245.3 s and for disembarking ranged from 9.1 to 164.6 s across layout and passenger crowding conditions. Nonparametric analysis of variance showed significant differences and interactions across vehicle design conditions, passenger load and mobility device type on user performance. The configuration having electronic on-board fare payment, rear-bus entrance doorways and adjacent device securement areas demonstrated greatest efficiency and safety. High passenger load adversely impacted efficiency and frequency of critical incidents during on-board circulation across all three layouts. Findings have broader implications for improving transit system efficiency and quality of service across the spectrum of transit users. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Javernick, Luke; Redolfi, Marco; Bertoldi, Walter
2018-05-01
New data collection techniques offer numerical modelers the ability to gather and utilize high quality data sets with high spatial and temporal resolution. Such data sets are currently needed for calibration, verification, and to fuel future model development, particularly morphological simulations. This study explores the use of high quality spatial and temporal data sets of observed bed load transport in braided river flume experiments to evaluate the ability of a two-dimensional model, Delft3D, to predict bed load transport. This study uses a fixed bed model configuration and examines the model's shear stress calculations, which are the foundation to predict the sediment fluxes necessary for morphological simulations. The evaluation is conducted for three flow rates, and model setup used highly accurate Structure-from-Motion (SfM) topography and discharge boundary conditions. The model was hydraulically calibrated using bed roughness, and performance was evaluated based on depth and inundation agreement. Model bed load performance was evaluated in terms of critical shear stress exceedance area compared to maps of observed bed mobility in a flume. Following the standard hydraulic calibration, bed load performance was tested for sensitivity to horizontal eddy viscosity parameterization and bed morphology updating. Simulations produced depth errors equal to the SfM inherent errors, inundation agreement of 77-85%, and critical shear stress exceedance in agreement with 49-68% of the observed active area. This study provides insight into the ability of physically based, two-dimensional simulations to accurately predict bed load as well as the effects of horizontal eddy viscosity and bed updating. Further, this study highlights how using high spatial and temporal data to capture the physical processes at work during flume experiments can help to improve morphological modeling.
Design and Analysis of Windmill Simulation and Pole by Solidwork Program
NASA Astrophysics Data System (ADS)
Mulyana, Tatang; Sebayang, Darwin; R, Akmal Muamar. D.; A, Jauharah H. D.; Yahya Shomit, M.
2018-03-01
The Indonesian state of archipelago has great wind energy potential. For micro-scale power generation, the energy obtained from the windmill can be connected directly to the electrical load and can be used without problems. However, for macro-scale power generation, problems will arise such as the design of vane shapes, there should be a simulation and an accurate experiment to produce blades with a special shape that can capture wind energy. In addition, daily and yearly wind and wind rate calculations are also required to ensure the best latitude and longitude positions for building windmills. This paper presents a solution to solve the problem of how to produce a windmill which in the builder is very practical and very mobile can be moved its location. Before a windmill prototype is built it should have obtained the best windmill design result. Therefore, the simulation of the designed windmill is of crucial importance. Solid simulation express is a tool that serves to generate simulation of a design. Some factors that can affect a design result include the power part and the rest part of the part, material selection, the load is given, the security of the design power made, and changes in shape due to treat the load given to the design made. In this paper, static and thermal simulations of windmills have been designed. Based on the simulation result on the designed windmill, it shows that the design has been made very satisfactory so that it can be done prototyping fabrication process.
Complex Mobile Learning That Adapts to Learners' Cognitive Load
ERIC Educational Resources Information Center
Deegan, Robin
2015-01-01
Mobile learning is cognitively demanding and frequently the ubiquitous nature of mobile computing means that mobile devices are used in cognitively demanding environments. This paper examines the use of mobile devices from a Learning, Usability and Cognitive Load Theory perspective. It suggests scenarios where these fields interact and presents an…
SATCOM simulator speeds MSS deployment and lowers costs
NASA Technical Reports Server (NTRS)
Carey, Tim; Hassun, Roland; Koberstein, Dave
1993-01-01
Mobile satellite systems (MSS) are being proposed and licensed at an accelerating rate. How can the design, manufacture, and performance of these systems be optimized at costs that allow a reasonable return on investment? The answer is the use of system simulation techniques beginning early in the system design and continuing through integration, pre- and post-launch monitoring, and in-orbit monitoring. This paper focuses on using commercially available, validated simulation instruments to deliver accurate, repeatable, and cost effective measurements throughout the life of a typical mobile satellite system. A satellite communications test set is discussed that provides complete parametric test capability with a significant improvement in measurement speed for manufacturing, integration, and pre-launch and in-orbit testing. The test set can simulate actual up and down link traffic conditions to evaluate the effects of system impairments, propagation and multipath on bit error rate (BER), channel capacity and transponder and system load balancing. Using a standard set of commercial instruments to deliver accurate, verifiable measurements anywhere in the world speeds deployment, generates measurement confidence, and lowers total system cost.
Impact of kinetic mass transfer on free convection in a porous medium
NASA Astrophysics Data System (ADS)
Lu, Chunhui; Shi, Liangsheng; Chen, Yiming; Xie, Yueqing; Simmons, Craig T.
2016-05-01
We investigate kinetic mass transfer effects on unstable density-driven flow and transport processes by numerical simulations of a modified Elder problem. The first-order dual-domain mass transfer model coupled with a variable-density-flow model is employed to describe transport behavior in porous media. Results show that in comparison to the no-mass-transfer case, a higher degree of instability and more unstable system is developed in the mass transfer case due to the reduced effective porosity and correspondingly a larger Rayleigh number (assuming permeability is independent on the mobile porosity). Given a constant total porosity, the magnitude of capacity ratio (i.e., immobile porosity/mobile porosity) controls the macroscopic plume profile in the mobile domain, while the magnitude of mass transfer timescale (i.e., the reciprocal of the mass transfer rate coefficient) dominates its evolution rate. The magnitude of capacity ratio plays an important role on the mechanism driving the mass flux into the aquifer system. Specifically, for a small capacity ratio, solute loading is dominated by the density-driven transport, while with increasing capacity ratio local mass transfer dominated solute loading may occur at later times. At significantly large times, however, both mechanisms contribute comparably to solute loading. Sherwood Number could be a nonmonotonic function of mass transfer timescale due to complicated interactions of solute between source zone, mobile zone and immobile zone in the top boundary layer, resulting in accordingly a similar behavior of the total mass. The initial assessment provides important insights into unstable density-driven flow and transport in the presence of kinetic mass transfer.
Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution.
Frey, S K; Gottschall, N; Wilkes, G; Grégoire, D S; Topp, E; Pintar, K D M; Sunohara, M; Marti, R; Lapen, D R
2015-01-01
When surface water levels decline, exposed streambed sediments can be mobilized and washed into the water course when subjected to erosive rainfall. In this study, rainfall simulations were conducted over exposed sediments along stream banks at four distinct locations in an agriculturally dominated river basin with the objective of quantifying the potential for contaminant loading from these often overlooked runoff source areas. At each location, simulations were performed at three different sites. Nitrogen, phosphorus, sediment, fecal indicator bacteria, pathogenic bacteria, and microbial source tracking (MST) markers were examined in both prerainfall sediments and rainfall-induced runoff water. Runoff generation and sediment mobilization occurred quickly (10-150 s) after rainfall initiation. Temporal trends in runoff concentrations were highly variable within and between locations. Total runoff event loads were considered large for many pollutants considered. For instance, the maximum observed total phosphorus runoff load was on the order of 1.5 kg ha. Results also demonstrate that runoff from exposed sediments can be a source of pathogenic bacteria. spp. and spp. were present in runoff from one and three locations, respectively. Ruminant MST markers were also present in runoff from two locations, one of which hosted pasturing cattle with stream access. Overall, this study demonstrated that rainfall-induced runoff from exposed streambed sediments can be an important source of surface water pollution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Mobile Learning Application Interfaces: First Steps to a Cognitive Load Aware System
ERIC Educational Resources Information Center
Deegan, Robin
2013-01-01
Mobile learning is a cognitively demanding application and more frequently the ubiquitous nature of mobile computing means that mobile devices are used in cognitively demanding environments. This paper examines the nature of this use of mobile devices from a Learning, Usability and Cognitive Load Theory perspective. It suggests scenarios where…
Evaluating the Impact of Land Use Change on Submerged Aquatic Vegetation Stressors in Mobile Bay
NASA Technical Reports Server (NTRS)
Al-Hamdan, Mohammad; Estes, Maurice G., Jr.; Quattrochi, Dale; Thom, Ronald; Woodruff, Dana; Judd, Chaeli; Ellis, Jean; Watson, Brian; Rodriquez, Hugo; Johnson, Hoyt
2009-01-01
Alabama coastal systems have been subjected to increasing pressure from a variety of activities including urban and rural development, shoreline modifications, industrial activities, and dredging of shipping and navigation channels. The impacts on coastal ecosystems are often observed through the use of indicator species. One such indicator species for aquatic ecosystem health is submerged aquatic vegetation (SAV). Watershed and hydrodynamic modeling has been performed to evaluate the impact of land use change in Mobile and Baldwin counties on SAV stressors and controlling factors (temperature, salinity, and sediment) in Mobile Bay. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for land use scenarios in 1948, 1992, 2001, and 2030. Landsat-derived National Land Cover Data (NLCD) were used in the 1992 and 2001 simulations after having been reclassified to a common classification scheme. The Prescott Spatial Growth Model was used to project the 2030 land use scenario based on current trends. The LSPC model simulations provided output on changes in flow, temperature, and sediment for 22 discharge points into the Bay. Theses results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment on a grid with four vertical profiles throughout Mobile Bay. The changes in the aquatic ecosystem were used to perform an ecological analysis to evaluate the impact on SAV habitat suitability. This is the key product benefiting the Mobile Bay coastal environmental managers that integrates the influences of temperature, salinity, and sediment due to land use driven flow changes with the restoration potential of SAVs.
NASA Technical Reports Server (NTRS)
Regalado Reyes, Bjorn Constant
2015-01-01
1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.
NASA Astrophysics Data System (ADS)
Ristau, Henry
Many tasks in smart environments can be implemented using message based communication paradigms that decouple applications in time, space, synchronization and semantics. Current solutions for decoupled message based communication either do not support message processing and thus semantic decoupling or rely on clearly defined network structures. In this paper we present ASP, a novel concept for such communication that can directly operate on neighbor relations between brokers and does not rely on a homogeneous addressing scheme or anymore than simple link layer communication. We show by simulation that ASP performs well in a heterogeneous scenario with mobile nodes and decreases network or processor load significantly compared to message flooding.
The impact of occupational load carriage on carrier mobility: a critical review of the literature.
Carlton, Simon D; Orr, Robin M
2014-01-01
Military personnel and firefighters are required to carry occupational loads and complete tasks in hostile and unpredictable environments where a lack of mobility may risk lives. This review critically examines the literature investigating the impacts of load carriage on the mobility of these specialist personnel. Several literature databases, reference lists, and subject matter experts were employed to identify relevant studies. Studies meeting the inclusion criteria were critiqued using the Downs and Black protocol. Inter-rater agreement was determined by Cohen's κ. Twelve original research studies, which included male and female participants from military and firefighting occupations, were critiqued (κ = .81). A review of these papers found that as the carried load weight increased, carrier mobility during aerobic tasks (like road marching) and anaerobic tasks (like obstacle course negotiation) decreased. As such, it can be concluded that the load carried by some specialist personnel may increase their occupational risk by reducing their mobility.
An Efficient Framework Model for Optimizing Routing Performance in VANETs.
Al-Kharasani, Nori M; Zulkarnain, Zuriati Ahmad; Subramaniam, Shamala; Hanapi, Zurina Mohd
2018-02-15
Routing in Vehicular Ad hoc Networks (VANET) is a bit complicated because of the nature of the high dynamic mobility. The efficiency of routing protocol is influenced by a number of factors such as network density, bandwidth constraints, traffic load, and mobility patterns resulting in frequency changes in network topology. Therefore, Quality of Service (QoS) is strongly needed to enhance the capability of the routing protocol and improve the overall network performance. In this paper, we introduce a statistical framework model to address the problem of optimizing routing configuration parameters in Vehicle-to-Vehicle (V2V) communication. Our framework solution is based on the utilization of the network resources to further reflect the current state of the network and to balance the trade-off between frequent changes in network topology and the QoS requirements. It consists of three stages: simulation network stage used to execute different urban scenarios, the function stage used as a competitive approach to aggregate the weighted cost of the factors in a single value, and optimization stage used to evaluate the communication cost and to obtain the optimal configuration based on the competitive cost. The simulation results show significant performance improvement in terms of the Packet Delivery Ratio (PDR), Normalized Routing Load (NRL), Packet loss (PL), and End-to-End Delay (E2ED).
NASA Astrophysics Data System (ADS)
Benage, M. C.; Dufek, J.; Mothes, P. A.
2016-07-01
The entrainment of air into pyroclastic density currents (PDCs) impacts the dynamics and thermal history of these highly mobile currents. However, direct measurement of entrainment in PDCs is hampered due to hazardous conditions and opaqueness of these flows. We combine three-dimensional multiphase Eulerian-Eulerian-Lagrangian calculations with proxies of thermal conditions preserved in deposits to quantify air entrainment in PDCs at Tungurahua volcano, Ecuador. We conclude that small-volume PDCs develop a particle concentration gradient that results in disparate thermal characteristics for the concentrated bed load (>600 to ~800 K) and the overlying dilute suspended load (~300-600 K). The dilute suspended load has effective entrainment coefficients 2-3 times larger than the bed load. This investigation reveals a dichotomy in entrainment and thermal history between two regions in the current and provides a mechanism to interpret the depositional thermal characteristics of small-volume but frequently occurring PDCs.
NASA Technical Reports Server (NTRS)
Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.; Judd, Chaeli; Thom, Ron; Woodruff, Dana; Ellis, Jean T.; Quattrochi, Dale; Watson, Brian; Rodriquez, Hugo; Johnson, Hoyt
2012-01-01
Alabama coastal systems have been subjected to increasing pressure from a variety of activities including urban and rural development, shoreline modifications, industrial activities, and dredging of shipping and navigation channels. The impacts on coastal ecosystems are often observed through the use of indicator species. One such indicator species for aquatic ecosystem health is submerged aquatic vegetation (SAV). Watershed and hydrodynamic modeling has been performed to evaluate the impact of land cover land use (LCLU) change in the two counties surrounding Mobile Bay (Mobile and Baldwin) on SAV stressors and controlling factors (temperature, salinity, and sediment) in the Mobile Bay estuary. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for LCLU scenarios in 1948, 1992, 2001, and 2030. Remotely sensed Landsat-derived National Land Cover Data (NLCD) were used in the 1992 and 2001 simulations after having been reclassified to a common classification scheme. The Prescott Spatial Growth Model was used to project the 2030 LCLU scenario based on current trends. The LSPC model simulations provided output on changes in flow, temperature, and sediment for 22 discharge points into the estuary. These results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment on a grid throughout Mobile Bay and adjacent estuaries. The changes in the aquatic ecosystem were used to perform an ecological analysis to evaluate the impact on SAV habitat suitability. This is the key product benefiting the Mobile Bay coastal environmental managers that integrates the influences of temperature, salinity, and sediment due to LCLU driven flow changes with the restoration potential of SAVs. Data products and results are being integrated into NOAA s EcoWatch and Gulf of Mexico Data Atlas online systems for dissemination to coastal resource managers and stakeholders.
NASA Astrophysics Data System (ADS)
Al-Hamdan, M. Z.; Estes, M. G.; Judd, C.; Thom, R.; Woodruff, D.; Ellis, J. T.; Quattrochi, D.; Watson, B.; Rodriguez, H.; Johnson, H.
2012-12-01
Alabama coastal systems have been subjected to increasing pressure from a variety of activities including urban and rural development, shoreline modifications, industrial activities, and dredging of shipping and navigation channels. The impacts on coastal ecosystems are often observed through the use of indicator species. One such indicator species for aquatic ecosystem health is submerged aquatic vegetation (SAV). Watershed and hydrodynamic modeling has been performed to evaluate the impact of land cover land use (LCLU) change in the two counties surrounding Mobile Bay (Mobile and Baldwin) on SAV stressors and controlling factors (temperature, salinity, and sediment) in the Mobile Bay estuary. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for LCLU scenarios in 1948, 1992, 2001, and 2030. Remotely sensed Landsat-derived National Land Cover Data (NLCD) were used in the 1992 and 2001 simulations after having been reclassified to a common classification scheme. The Prescott Spatial Growth Model was used to project the 2030 LCLU scenario based on current trends. The LSPC model simulations provided output on changes in flow, temperature, and sediment for 22 discharge points into the estuary. These results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment on a grid throughout Mobile Bay and adjacent estuaries. The changes in the aquatic ecosystem were used to perform an ecological analysis to evaluate the impact on SAV habitat suitability. This is the key product benefiting the Mobile Bay coastal environmental managers that integrates the influences of temperature, salinity, and sediment due to LCLU driven flow changes with the restoration potential of SAVs. Data products and results are being integrated into NOAA's EcoWatch and Gulf of Mexico Data Atlas online systems for dissemination to coastal resource managers and stakeholders.
Gaze entropy reflects surgical task load.
Di Stasi, Leandro L; Diaz-Piedra, Carolina; Rieiro, Héctor; Sánchez Carrión, José M; Martin Berrido, Mercedes; Olivares, Gonzalo; Catena, Andrés
2016-11-01
Task (over-)load imposed on surgeons is a main contributing factor to surgical errors. Recent research has shown that gaze metrics represent a valid and objective index to asses operator task load in non-surgical scenarios. Thus, gaze metrics have the potential to improve workplace safety by providing accurate measurements of task load variations. However, the direct relationship between gaze metrics and surgical task load has not been investigated yet. We studied the effects of surgical task complexity on the gaze metrics of surgical trainees. We recorded the eye movements of 18 surgical residents, using a mobile eye tracker system, during the performance of three high-fidelity virtual simulations of laparoscopic exercises of increasing complexity level: Clip Applying exercise, Cutting Big exercise, and Translocation of Objects exercise. We also measured performance accuracy and subjective rating of complexity. Gaze entropy and velocity linearly increased with increased task complexity: Visual exploration pattern became less stereotyped (i.e., more random) and faster during the more complex exercises. Residents performed better the Clip Applying exercise and the Cutting Big exercise than the Translocation of Objects exercise and their perceived task complexity differed accordingly. Our data show that gaze metrics are a valid and reliable surgical task load index. These findings have potential impacts to improve patient safety by providing accurate measurements of surgeon task (over-)load and might provide future indices to assess residents' learning curves, independently of expensive virtual simulators or time-consuming expert evaluation.
Bae, Se Won; Cho, Soo Gyeong
2016-07-01
We utilized molecular dynamics (MD) to investigate the behavior of nitromethane molecules (NMs) enclosed inside carbon nanotube (CNT) containers sealed with buckybowl caps. Two different sizes of CNT containers, i.e., (10,10) and (20,20), were employed to contain the energetic NMs. After loading the NMs into these containers, MD simulations were carried out at different loading densities. The loading density was changed from 0.4 to 2.0 g/cc. At low loading densities, NMs preferentially resided near the surface of the CNT wall (orienting themselves in the cylindrical direction) and near the buckybowl caps (orienting themselves in the principal-axis direction). This behavior suggests the buckybowl caps and the CNT wall have attractive interactions with the NMs. The distribution of the NMs inside the containers did not change upon increasing the temperature from ambient to 100 °C. However, the positional preference of the NMs found at ambient temperature to 100 °C was not the same as that observed at 1000 °C due to the increased thermal motions of the NMs. The size of the CNT container had a significant effect on the fluidity of the NMs. From 25 to 100 °C, the NMs inside the (10,10) CNT container were only mobile at low loading densities. On the other hand, in the (20,20) CNT container, the NMs showed good mobility up to a loading density of 1.6 g/cc. Graphical Abstract Attractive interactions between the nitromethanes and the buckybowl caps as well as the carbon nanotube wall.
Object Transportation by Two Mobile Robots with Hand Carts
Hara, Tatsunori
2014-01-01
This paper proposes a methodology by which two small mobile robots can grasp, lift, and transport large objects using hand carts. The specific problems involve generating robot actions and determining the hand cart positions to achieve the stable loading of objects onto the carts. These problems are solved using nonlinear optimization, and we propose an algorithm for generating robot actions. The proposed method was verified through simulations and experiments using actual devices in a real environment. The proposed method could reduce the number of robots required to transport large objects with 50–60%. In addition, we demonstrated the efficacy of this task in real environments where errors occur in robot sensing and movement. PMID:27433499
Object Transportation by Two Mobile Robots with Hand Carts.
Sakuyama, Takuya; Figueroa Heredia, Jorge David; Ogata, Taiki; Hara, Tatsunori; Ota, Jun
2014-01-01
This paper proposes a methodology by which two small mobile robots can grasp, lift, and transport large objects using hand carts. The specific problems involve generating robot actions and determining the hand cart positions to achieve the stable loading of objects onto the carts. These problems are solved using nonlinear optimization, and we propose an algorithm for generating robot actions. The proposed method was verified through simulations and experiments using actual devices in a real environment. The proposed method could reduce the number of robots required to transport large objects with 50-60%. In addition, we demonstrated the efficacy of this task in real environments where errors occur in robot sensing and movement.
Sasaki, Kotaro; Rispin, Karen
2017-01-01
In under-resourced settings where motorized wheelchairs are rarely available, manual wheelchair users with limited upper-body strength and functionalities need to rely on assisting pushers for their mobility. Because traveling surfaces in under-resourced settings are often unpaved and rough, wheelchair pushers could experience high physiological loading. In order to evaluate pushers' physiological loading and to improve wheelchair designs, we built indoor modular units that simulate rough surface conditions, and tested a hypothesis that pushing different wheelchairs would result in different physiological performances and pushers' perception of difficulty on the simulated rough surface. Eighteen healthy subjects pushed two different types of pediatric wheelchairs (Moti-Go manufactured by Motivation, and KidChair by Hope Haven) fitted with a 50-kg dummy on the rough and smooth surfaces at self-selected speeds. Oxygen uptake, traveling distance for 6 minutes, and the rating of difficulty were obtained. The results supported our hypothesis, showing that pushing Moti-Go on the rough surface was physiologically less loading than KidChair, but on the smooth surface, the two wheelchairs did not differ significantly. These results indicate wheelchair designs to improve pushers' performance in under-resourced settings should be evaluated on rough surfaces.
Performance evaluation of a second-generation elastic loop mobility system
NASA Technical Reports Server (NTRS)
Melzer, K. J.; Swanson, G. D.
1974-01-01
Tests were conducted to evaluate the mobility performance of a second-generation Elastic Loop Mobility System (ELMS II). Performance on level test lanes and slopes of lunar soil simulant (LSS) and obstacle-surmounting and crevasse-crossing capabilities were investigated. In addition, internal losses and contact pressure distributions were evaluated. To evaluate the soft-soil performance, two basic soil conditions were tested: loose (LSS1) and dense (LSS5). These conditions embrace the spectrum of soil strengths tested during recent studies for NASA related to the mobility performance of the LRV. Data indicated that for the tested range of the various performance parameters, performance was independent of unit load (contact pressure) and ELMS II drum angular velocity, but was influenced by soil strength and ELMS pitch mode. Power requirements were smaller at a given system output for dense soil than for loose soil. The total system output in terms of pull developed or slope-climbing capability was larger for the ELMS II operating in restrained-pitch mode than in free-pitch mode.
Mechanisms Underlying Ionic Mobilities in Nanocomposite Polymer Electrolytes
NASA Astrophysics Data System (ADS)
Ganesan, Venkat; Hanson, Benjamin; Pryamitsyn, Victor
2014-03-01
Recently, a number of experiments have demonstrated that addition of ceramics with nanoscale dimensions can lead to substantial improvements in the low temperature conductivity of the polymeric materials. However, the origin of such behaviors, and more generally, the manner by which nanoscale fillers impact the ion mobilities remain unresolved. In this communication, we report the results of atomistic molecular dynamics simulations which used multibody polarizable force-fields to study lithium ion diffusivities in an amorphous poly(ethylene-oxide) (PEO) melt containing well-dispersed TiO2 nanoparticles. We observed that the lithium ion diffusivities decrease with increased particle loading. Our analysis suggests that the ion mobilities are correlated to the nanoparticle-induced changes in the polymer segmental dynamics. Interestingly, the changes in polymer segmental dynamics were seen to be related to the nanoparticle's influence on the polymer conformational features. Overall, our results indicate that addition of nanoparticle fillers modify polymer conformations and the polymer segmental dynamics, and thereby influence the ion mobilities of polymer electrolytes.
Nothdurft, Frank P; Doppler, Klaus E; Erdelt, Kurt J; Knauber, Andreas W; Pospiech, Peter R
2010-01-01
The aim of the study was to evaluate the influence of artificial aging on the fracture behavior of straight and angulated zirconia implant abutments used in ZirDesign (Astra Tech) implant/tooth-supported fixed partial dentures (FPDs) in the maxilla. Four different test groups (n = 8) representing anterior implant/tooth-supported FPDs were prepared. Groups 1 and 2 simulated a clinical situation with an ideal implant position (maxillary left central incisor) from a prosthetic point of view, which allowed for the use of a straight, prefabricated zirconia abutment. Groups 3 and 4 simulated a situation with a compromised implant position that required an angulated (20-degree) abutment. OsseoSpeed implants (4.5 3 13 mm, Astra Tech) as well as metal tooth analogs (maxillary right lateral incisor) with simulated periodontal mobility were mounted in polymethyl methacrylate. The FPDs (chromium-cobalt alloy) were cemented with glass ionomer. Groups 2 and 4 were thermomechanically loaded and subjected to static loading until failure. Statistical analysis of force data at the fracture site was performed using nonparametric tests. All samples survived thermomechanical loading. Artificial aging did not lead to a significant decrease in load-bearing capacity in either the straight abutments or the angulated abutments. The restorations that used angulated abutments exhibited higher fracture loads than the restorations with straight abutments (group 1: 209.13 ± 39.11 N; group 2: 233.63 ± 30.68 N; group 3: 324.62 ± 108.07 N; group 4: 361.75 ± 73.82 N). This difference in load-bearing performance was statistically significant, both with and without artificial aging. All abutment fractures occurred below the implant shoulder. Compensation for angulated implant positions with an angulated zirconia abutment is possible without reducing the load-bearing capacity of implant/tooth-supported anterior FPDs.
Niedermeier, W
1993-03-01
Tooth mobility was measured mechano-electronically with the aid of quasi-static and dynamic methods in 309 patients comprising 2650 teeth being periodontally healthy. Besides, clinical and roentgenographic findings were ascertained to relate functional features to each periodontium. In general the result was that teeth loaded excessively show increased mobility parameters compared to those loaded normally. However, the mobility of teeth loaded poorly or deficiently was even greater compared to teeth stressed excessively. Moreover, follow-up studies showed that tooth mobility decreases after removal of functional disorders of the masticatory system or an immobilisation of splinted teeth. An experimental trauma of the periodontal ligament also brings on an increased tooth mobility which decreases to the original values some days after the trial.
Enhanced Handover Decision Algorithm in Heterogeneous Wireless Network
Abdullah, Radhwan Mohamed; Zukarnain, Zuriati Ahmad
2017-01-01
Transferring a huge amount of data between different network locations over the network links depends on the network’s traffic capacity and data rate. Traditionally, a mobile device may be moved to achieve the operations of vertical handover, considering only one criterion, that is the Received Signal Strength (RSS). The use of a single criterion may cause service interruption, an unbalanced network load and an inefficient vertical handover. In this paper, we propose an enhanced vertical handover decision algorithm based on multiple criteria in the heterogeneous wireless network. The algorithm consists of three technology interfaces: Long-Term Evolution (LTE), Worldwide interoperability for Microwave Access (WiMAX) and Wireless Local Area Network (WLAN). It also employs three types of vertical handover decision algorithms: equal priority, mobile priority and network priority. The simulation results illustrate that the three types of decision algorithms outperform the traditional network decision algorithm in terms of handover number probability and the handover failure probability. In addition, it is noticed that the network priority handover decision algorithm produces better results compared to the equal priority and the mobile priority handover decision algorithm. Finally, the simulation results are validated by the analytical model. PMID:28708067
Design and Implementation of RF Energy Harvesting System for Low-Power Electronic Devices
NASA Astrophysics Data System (ADS)
Uzun, Yunus
2016-08-01
Radio frequency (RF) energy harvester systems are a good alternative for energizing of low-power electronics devices. In this work, an RF energy harvester is presented to obtain energy from Global System for Mobile Communications (GSM) 900 MHz signals. The energy harvester, consisting of a two-stage Dickson voltage multiplier circuit and L-type impedance matching circuits, was designed, simulated, fabricated and tested experimentally in terms of its performance. Simulation and experimental works were carried out for various input power levels, load resistances and input frequencies. Both simulation and experimental works have been carried out for this frequency band. An efficiency of 45% is obtained from the system at 0 dBm input power level using the impedance matching circuit. This corresponds to the power of 450 μW and this value is sufficient for many low-power devices. The most important parameters affecting the efficiency of the RF energy harvester are the input power level, frequency band, impedance matching and voltage multiplier circuits, load resistance and the selection of diodes. RF energy harvester designs should be optimized in terms of these parameters.
NASA Astrophysics Data System (ADS)
Jia, Zhenzhong; Sun, Jing; Dobbs, Herb; King, Joel
2015-02-01
Conventional recuperating solid oxide fuel cell (SOFC)/gas turbine (GT) system suffers from its poor dynamic capability and load following performance. To meet the fast, safe and efficient load following requirements for mobile applications, a sprinter SOFC/GT system concept is proposed in this paper. In the proposed system, an SOFC stack operating at fairly constant temperature provides the baseline power with high efficiency while the fast dynamic capability of the GT-generator is fully explored for fast dynamic load following. System design and control studies have been conducted by using an SOFC/GT system model consisting of experimentally-verified component models. In particular, through analysis of the steady-state simulation results, an SOFC operation strategy is proposed to maintain fairly constant SOFC power (less than 2% power variation) and temperature (less than 2 K temperature variation) over the entire load range. A system design procedure well-suited to the proposed system has also been developed to help determining component sizes and the reference steady-state operation line. In addition, control analysis has been studied for both steady-state and transient operations. Simulation results suggest that the proposed system holds the promise to achieve fast and safe transient operations by taking full advantage of the fast dynamics of the GT-generator.
An Efficient Framework Model for Optimizing Routing Performance in VANETs
Zulkarnain, Zuriati Ahmad; Subramaniam, Shamala
2018-01-01
Routing in Vehicular Ad hoc Networks (VANET) is a bit complicated because of the nature of the high dynamic mobility. The efficiency of routing protocol is influenced by a number of factors such as network density, bandwidth constraints, traffic load, and mobility patterns resulting in frequency changes in network topology. Therefore, Quality of Service (QoS) is strongly needed to enhance the capability of the routing protocol and improve the overall network performance. In this paper, we introduce a statistical framework model to address the problem of optimizing routing configuration parameters in Vehicle-to-Vehicle (V2V) communication. Our framework solution is based on the utilization of the network resources to further reflect the current state of the network and to balance the trade-off between frequent changes in network topology and the QoS requirements. It consists of three stages: simulation network stage used to execute different urban scenarios, the function stage used as a competitive approach to aggregate the weighted cost of the factors in a single value, and optimization stage used to evaluate the communication cost and to obtain the optimal configuration based on the competitive cost. The simulation results show significant performance improvement in terms of the Packet Delivery Ratio (PDR), Normalized Routing Load (NRL), Packet loss (PL), and End-to-End Delay (E2ED). PMID:29462884
Han, Sehyun; Jung, Yong-Won
2012-07-01
This study is considered the first attempt to apply a mobile monitoring system to estimating silt loading on paved roads in a megacity such as the Seoul metropolitan area. Using a mobile monitoring system developed in 2005, we estimated silt loadings on representative paved roads in the Seoul metropolitan area, including the city of Incheon, over a period of 3 yr. The temporal and spatial characteristics of silt loading were investigated for the carefully selected roads that may reflect the characteristics of the cities of Seoul and Incheon. In this study, changes in the average silt loading values were investigated in terms of land use, the temporal resolution of data acquisition (i.e., seasonal, daily, three-hour scale), the road width or number of lanes, and rainfall, which may affect the characteristics of the average silt loading significantly. It was found that the advantages of using the mobile monitoring system are its ability to obtain a large quantity of silt loading data in a short period of time and over a wide area and its ability to create a silt loading map showing the relative magnitude of silt loading in relation to a specific location, which makes it possible to easily locate hot spots.
NASA Technical Reports Server (NTRS)
Al-Hamdan, Mohammad; Estes, Maurice G., Jr.; Judd, Chaeli; Woodruff, Dana; Ellis, Jean; Quattrochi, Dale; Watson, Brian; Rodriquez, Hugo; Johnson, Hoyt
2012-01-01
Alabama coastal systems have been subjected to increasing pressure from a variety of activities including urban and rural development, shoreline modifications, industrial activities, and dredging of shipping and navigation channels. The impacts on coastal ecosystems are often observed through the use of indicator species. One such indicator species for aquatic ecosystem health is submerged aquatic vegetation (SAV). Watershed and hydrodynamic modeling has been performed to evaluate the impact of land cover land use (LCLU) change in the two counties surrounding Mobile Bay (Mobile and Baldwin) on SAV stressors and controlling factors (temperature, salinity, and sediment) in the Mobile Bay estuary. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for LCLU scenarios in 1948, 1992, 2001, and 2030. Remotely sensed Landsat-derived National Land Cover Data (NLCD) were used in the 1992 and 2001 simulations after having been reclassified to a common classification scheme. The Prescott Spatial Growth Model was used to project the 2030 LCLU scenario based on current trends. The LSPC model simulations provided output on changes in flow, temperature, and sediment for 22 discharge points into the estuary. These results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment on a grid throughout Mobile Bay and adjacent estuaries. The changes in the aquatic ecosystem were used to perform an ecological analysis to evaluate the impact on SAV habitat suitability. This is the key product benefiting the Mobile Bay coastal environmental managers that integrates the influences of temperature, salinity, and sediment due to LCLU driven flow changes with the restoration potential of SAVs. Data products and results are being integrated into NOAA s EcoWatch and Gulf of Mexico Data Atlas online systems for dissemination to coastal resource managers and stakeholders. Objective 1: Develop and utilize Land Use scenarios for Mobile and Baldwin Counties, AL as input to models to predict the affects on water properties (temperature,salinity,)for Mobile Bay through 2030. Objective 2: Evaluate the impact of land use change on seagrasses and SAV in Mobile Bay. Hypothesis: Urbanization will significantly increase surface flows and impact salinity and temperature variables that effect seagrasses and SAVs.
Failure Simulation Testing of the Z-1 Spacesuit Titanium Bearing Assemblies
NASA Technical Reports Server (NTRS)
de Baca, Richard C.; Juarez, Alfredo; Peralta, Stephen; Tylka, Jonathan; Rhodes, Richard
2016-01-01
The Z-2 is a candidate for NASA's next generation spacesuit, designed for a range of possible missions with enhanced mobility for spacewalks both on planetary surfaces and in microgravity. Increased mobility was accomplished through innovations in shoulder and hip joints, using a number of new bearings to allow spacesuit wearers to dip, walk, and bend with ease; all important tasks for a planetary explorer collecting samples or traveling over rough terrain. The Advanced Spacesuit Development Team of NASA Johnson Space Center requested that the NASA White Sands Test Facility (WSTF) perform a series failure simulation tests on three titanium bearing assemblies, an elemental part of the joint construction used in new spacesuit designs. This testing simulated two undetected failures within the bearings and as a result the objective of this test program was to evaluate whether a failed or failing bearing could result in ignition of the titanium race material due to friction. The first failure was an inner seal leak sufficient to pressurize the race with +99 percent oxygen. The second failure was an improperly installed or mismatched ball port that created a protrusion in the ball bearing race, partially obstructing the nominal rolling path of each ball bearing. When the spacesuit bearings are assembled, bearing balls are loaded into the assembly via a ball port. The ball port is specific and unique to each bearing assembly (matched pair). The simulated mismatched ball port is a significant source of friction, which would be caused by an assembly error. To evaluate this risk, the bearings were cycled in a simulated worst-case scenario environment, with operational loads, and potential flaw conditions. During test the amount of actuation torque required and heat generated through continuous operation were measured and the bearings were observed for sparks or burning events. This paper provides detailed descriptions of the test hardware, methodology, and results.
Moumene, Missoum; Geisler, Fred H
2007-08-01
Finite element model. To estimate the effect of lumbar mobile-core and fixed-core artificial disc design and placement on the loading of the facet joints, and stresses on the polyethylene core. Although both mobile-core and fixed-core lumbar artificial disc designs have been used clinically, the effect of their design and the effect of placement within the disc space on the structural element loading, and in particular the facets and the implant itself, have not been investigated. A 3D nonlinear finite element model of an intact ligamentous L4-L5 motion segment was developed and validated in all 6 df based on previous experiments conducted on human cadavers. Facet loading of a mobile-core TDR and a fixed-core TDR were estimated with 4 different prosthesis placements for 3 different ranges of motion. Placing the mobile-core TDR anywhere within the disc space reduced facet loading by more than 50%, while the fixed-core TDR increased facet loading by more than 10% when compared with the intact disc in axial rotation. For central (ideal) placement, the mobile- and fixed-core implants were subjected to compressive stresses on the order of 3 MPa and 24 MPa, respectively. The mobile-core stresses were not affected by implant placement, while the fixed-core stresses increased by up to 40%. A mobile-core artificial disc design is less sensitive to placement, and unloads the facet joints, compared with a fixed-core design. The decreased core stress may result in a reduced potential for wear in a mobile-core prosthesis compared with a fixed-core prosthesis, which may increase the functional longevity of the device.
Measurements and modelling of base station power consumption under real traffic loads.
Lorincz, Josip; Garma, Tonko; Petrovic, Goran
2012-01-01
Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications) and UMTS (Universal Mobile Telecommunications System) base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient.
Measurements and Modelling of Base Station Power Consumption under Real Traffic Loads †
Lorincz, Josip; Garma, Tonko; Petrovic, Goran
2012-01-01
Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications) and UMTS (Universal Mobile Telecommunications System) base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient. PMID:22666026
Belyazid, Salim; Kurz, Dani; Braun, Sabine; Sverdrup, Harald; Rihm, Beat; Hettelingh, Jean-Paul
2011-03-01
A dynamic model of forest ecosystems was used to investigate the effects of climate change, atmospheric deposition and harvest intensity on 48 forest sites in Sweden (n = 16) and Switzerland (n = 32). The model was used to investigate the feasibility of deriving critical loads for nitrogen (N) deposition based on changes in plant community composition. The simulations show that climate and atmospheric deposition have comparably important effects on N mobilization in the soil, as climate triggers the release of organically bound nitrogen stored in the soil during the elevated deposition period. Climate has the most important effect on plant community composition, underlining the fact that this cannot be ignored in future simulations of vegetation dynamics. Harvest intensity has comparatively little effect on the plant community in the long term, while it may be detrimental in the short term following cutting. This study shows: that critical loads of N deposition can be estimated using the plant community as an indicator; that future climatic changes must be taken into account; and that the definition of the reference deposition is critical for the outcome of this estimate. Copyright © 2010 Elsevier Ltd. All rights reserved.
Mechanical responses of a-axis GaN nanowires under axial loads
NASA Astrophysics Data System (ADS)
Wang, R. J.; Wang, C. Y.; Feng, Y. T.; Tang, Chun
2018-03-01
Gallium nitride (GaN) nanowires (NWs) hold technological significance as functional components in emergent nano-piezotronics. However, the examination of their mechanical responses, especially the mechanistic understanding of behavior beyond elasticity (at failure) remains limited due to the constraints of in situ experimentation. We therefore performed simulations of the molecular dynamics (MD) of the mechanical behavior of [1\\bar{2}10]-oriented GaN NWs subjected to tension or compression loading until failure. The mechanical properties and critical deformation processes are characterized in relation to NW sizes and loading conditions. Detailed examinations revealed that the failure mechanisms are size-dependent and controlled by the dislocation mobility on shuffle-set pyramidal planes. The size dependence of the elastic behavior is also examined in terms of the surface structure determined modification of Young’s modulus. In addition, a comparison with c-axis NWs is made to show how size-effect trends vary with the growth orientation of NWs.
Power Management Integrated Circuit for Indoor Photovoltaic Energy Harvesting System
NASA Astrophysics Data System (ADS)
Jain, Vipul
In today's world, power dissipation is a main concern for battery operated mobile devices. Key design decisions are being governed by power rather than area/delay because power requirements are growing more stringent every year. Hence, a hybrid power management system is proposed, which uses both a solar panel to harvest energy from indoor lighting and a battery to power the load. The system tracks the maximum power point of the solar panel and regulates the battery and microcontroller output load voltages through the use of an on-chip switched-capacitor DC-DC converter. System performance is verified through simulation at the 180nm technology node and is made to be integrated on-chip with 0.25 second startup time, 79% efficiency, --8/+14% ripple on the load, an average 1micro A of quiescent current (3.7micro W of power) and total on-chip area of 1.8mm2 .
Effect of the connection gap on the heat-load characteristics of a liquid nitrogen bayonet coupling
NASA Astrophysics Data System (ADS)
Tsai, H. H.; Liu, C. P.; Hsiao, F. Z.; Huang, T. Y.; Li, H. C.; Chiou, W. S.; Chang, S. H.; Lin, T. F.
2012-12-01
A transfer system for liquid nitrogen (LN2) installed at National Synchrotron Radiation Research Center (NSRRC) to provide LN2 required for the superconducting equipment and experimental stations has a LN2 transfer line of length 160 m and pipeline of inner diameter 25 mm, a phase separator (250 L) and an automatic filling station. The end uses include two cryogenic systems, one Superconducting Radio Frequency (SRF) cavity, five superconducting magnets, monochromators for the beam line and filling of mobile Dewars. The transfer line is segmented and connected with bayonet couplings. The aim of this work was to investigate, by numerical simulation, the effects on the heat load of the gap thickness of the bayonet assembly and the thickness of vacuum insulation. A numerical correlation was created that has become a basis to minimize the head load for future design of bayonet couplings.
Development of transportable wheelchair design criteria using computer crash simulation.
Bertocci, G E; Hobson, D A; Digges, K H
1996-09-01
The Americans with Disabilities Act (ADA) has led to an increase in disabled travelers, many of whom are unable to transfer to a vehicle seat and are required to use their wheelchair to fulfill this function. ANSI/RESNA is currently developing a transportable wheelchair standard which will identify design requirements and testing methods for wheelchairs suitable for transport. Wheelchair manufacturers should begin to modify their existing design criteria established for a normal mobility function to design criteria appropriate for a transportation function which may subject the wheelchair to large dynamic crash forces. A thorough understanding of the crash environment and its effect on the wheelchair is necessary to insure the safety of the wheelchair user. To assist manufacturers in the design effort, this study uses mathematical crash simulations to evaluate loads imposed upon a wheelchair when subjected to a 48 kph/20 g frontal crash. Using a four-point belt tiedown system to secure the wheelchair, securement point, seat, lap belt anchor, and wheel loads are evaluated under three different securement configurations. Results show that positioning of rear securement points near the wheelchair center of gravity can serve as an effective strategy for managing crash response and loadings on the wheelchair. Force ranges for each of the evaluated parameters, derived for a 50th percentile male using a simulated power wheelchair, are provided for use as a preliminary guide when designing transportable wheelchairs.
NASA Astrophysics Data System (ADS)
Busono, Pratondo; Kartini, Evvy
2013-07-01
Mobile medical clinic has been proposed to serve homeless people, people in the disaster area or in the remote area where no health service exist. At that site, a number of essential services such as primary health care, general health screening, medical treatment and emergency/rescue operations are required. Such services usually requires on board electrical equipments such as refrigerators, komputer, power tools and medical equipments. To supply such electrical equipments, it needs extra auxiliary power sources, in addition of standard automotive power supply. The auxiliary power source specifically design to supply non automotive load which may have similar configuration, but usually uses high power alternator rated and larger deep cycle on board battery bank. This study covers the modeling and dynamic simulation of auxiliary power source/battery to supply the medical equipment and other electrical equipments on board. It consists a variable speed diesel generator set, photovoltaic (PV) generator mounted on the roof of the car, a rechargable battery bank. As an initial step in the system design, a simulation study was performed. The simulation is conducted in the system level. Simulation results shows that dynamical behaviour by means of current density, voltage and power plot over a chosen time range, and functional behaviour such as charging and discharging characteristic of the battery bank can be obtained.
NASA Astrophysics Data System (ADS)
Suryati, Isra; Turmuzi Lubis, Muhammad; Mawaddah, Nurul
2018-03-01
Carbon Dioxide (CO2) is one of the greenhouse gases. One source of greenhouse gases comes from the use of fossil fuels from the transport sector. The transportation sector is one of the dominant sectors in contributing to the greenhouse effect. This study aims to calculate the amount of CO2 from transportation activities by using mobile six equations in Gatot Subroto Street, Medan City. A sampling of CO2 concentration was done using Carbon Dioxide Monitor with Non-Dispersive Infra Red (NDIR) Analyzer method. Also, a simulation of the reduction of the number of private vehicles to mass transportation such as BRT gas-fired. The results showed CO2 emissions calculations with mobile six ranged from 47.2 kg CO2 - 978.2 kg CO2. Meanwhile, measurements range from 3,004 ppm - 3,405 ppm. Implementation of the concept of environmentally friendly transportation such as BRT in Gatot Subroto Street, Medan City will be able to reduce the average emissions load CO2 by 42.75% -78.80%. Based on the calculation simulation in this study is estimated the number of BRT required approximately 71 units.
Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming
2016-07-14
Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle's position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption.
Stability and Workload of the Virtual Reality-Based Simulator-2.
Kamaraj, Deepan C; Dicianno, Brad E; Mahajan, Harshal P; Buhari, Alhaji M; Cooper, Rory A
2016-07-01
To assess the stability of clinicians' and users' rating of electric-powered wheelchair (EPW) driving while using 4 different human-machine interfaces (HMIs) within the Virtual Reality-based SIMulator-version 2 (VRSIM-2) and in the real world (accounting for a total of 5 unique driving conditions). Within-subjects repeated-measures design. Simulation-based assessment in a research laboratory. A convenience sample of EPW athletes (N=21) recruited at the 31st National Veterans Wheelchair Games. Not applicable. Composite PMRT scores from the Power Mobility Road Test (PMRT); Raw Task Load Index; and the 6 subscale scores from the Task Load Index developed by the National Aeronautics and Space Administration (NASA-TLX). There was moderate stability (intraclass correlation coefficient between .50 and .75) in the total composite PMRT scores (P<.001) and the users' self-reported performance scores (P<.001) among the 5 driving conditions. There was a significant difference in the workload among the 5 different driving conditions as reflected by the Raw Task Load Index (P=.009). Subanalyses revealed this difference was due to the difference in the mental demand (P=.007) and frustration (P=.007) subscales. Post hoc analyses revealed that these differences in the NASA-TLX subscale scores were due to the differences between real-world and virtual driving scores, particularly attributable to the conditions (1 and 3) that lacked the rollers as a part of the simulation. Further design improvements in the simulator to increase immersion experienced by the EPW user, along with a standardized training program for clinicians to deliver PMRT in VRSIM-2, could improve the stability between the different HMIs and real-world driving. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Receiver-Based Ad Hoc On Demand Multipath Routing Protocol for Mobile Ad Hoc Networks
Al-Nahari, Abdulaziz; Mohamad, Mohd Murtadha
2016-01-01
Decreasing the route rediscovery time process in reactive routing protocols is challenging in mobile ad hoc networks. Links between nodes are continuously established and broken because of the characteristics of the network. Finding multiple routes to increase the reliability is also important but requires a fast update, especially in high traffic load and high mobility where paths can be broken as well. The sender node keeps re-establishing path discovery to find new paths, which makes for long time delay. In this paper we propose an improved multipath routing protocol, called Receiver-based ad hoc on demand multipath routing protocol (RB-AOMDV), which takes advantage of the reliability of the state of the art ad hoc on demand multipath distance vector (AOMDV) protocol with less re-established discovery time. The receiver node assumes the role of discovering paths when finding data packets that have not been received after a period of time. Simulation results show the delay and delivery ratio performances are improved compared with AOMDV. PMID:27258013
Receiver-Based Ad Hoc On Demand Multipath Routing Protocol for Mobile Ad Hoc Networks.
Al-Nahari, Abdulaziz; Mohamad, Mohd Murtadha
2016-01-01
Decreasing the route rediscovery time process in reactive routing protocols is challenging in mobile ad hoc networks. Links between nodes are continuously established and broken because of the characteristics of the network. Finding multiple routes to increase the reliability is also important but requires a fast update, especially in high traffic load and high mobility where paths can be broken as well. The sender node keeps re-establishing path discovery to find new paths, which makes for long time delay. In this paper we propose an improved multipath routing protocol, called Receiver-based ad hoc on demand multipath routing protocol (RB-AOMDV), which takes advantage of the reliability of the state of the art ad hoc on demand multipath distance vector (AOMDV) protocol with less re-established discovery time. The receiver node assumes the role of discovering paths when finding data packets that have not been received after a period of time. Simulation results show the delay and delivery ratio performances are improved compared with AOMDV.
Wave energy focusing to subsurface poroelastic formations to promote oil mobilization
NASA Astrophysics Data System (ADS)
Karve, Pranav M.; Kallivokas, Loukas F.
2015-07-01
We discuss an inverse source formulation aimed at focusing wave energy produced by ground surface sources to target subsurface poroelastic formations. The intent of the focusing is to facilitate or enhance the mobility of oil entrapped within the target formation. The underlying forward wave propagation problem is cast in two spatial dimensions for a heterogeneous poroelastic target embedded within a heterogeneous elastic semi-infinite host. The semi-infiniteness of the elastic host is simulated by augmenting the (finite) computational domain with a buffer of perfectly matched layers. The inverse source algorithm is based on a systematic framework of partial-differential-equation-constrained optimization. It is demonstrated, via numerical experiments, that the algorithm is capable of converging to the spatial and temporal characteristics of surface loads that maximize energy delivery to the target formation. Consequently, the methodology is well-suited for designing field implementations that could meet a desired oil mobility threshold. Even though the methodology, and the results presented herein are in two dimensions, extensions to three dimensions are straightforward.
NASA Astrophysics Data System (ADS)
Khosronejad, Ali; Sotiropoulos, Fotis
2012-11-01
We develop and validate a 3D numerical model for coupled simulations of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions. We employ the Fluid-Structure Interaction Curvilinear Immersed Boundary (FSI-CURVIB) method of Khosronejad et al. (Adv. in Water Res., 2011). The mobile channel bed is discretized with an unstructured triangular grid and treated as the sharp-interface immersed boundary embedded in a background curvilinear mesh. Transport of bed load and suspended load sediments are combined in the non-equilibrium from of the Exner-Poyla for the bed surface elevation, which evolves due to the spatio-temporally varying bed shear stress and velocity vector induced by the turbulent flow field. Both URANS and LES models are implemented to simulate the effects of turbulence. Simulations are carried out for a wide range of waterways, from small scale streams to large-scale rivers, and the simulated sand-waves are quantitatively compared to available measurements. It is shown that the model can accurately capture sand-wave formation, growth, and migration processes observed in nature. The simulated bed-forms are found to have amplitude and wave length scales ranging from the order of centimeters up to several meters. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, and National Cooperative Highway Research Program Grant NCHRP-HR 24-33. Computational resources were provided by the University of Minnesota Supercomputing Institute.
AD HOC Networks for the Autonomous Car
NASA Astrophysics Data System (ADS)
Ron, Davidescu; Negrus, Eugen
2017-10-01
The future of the vehicle is made of cars, roads and infrastructures connected in a two way automated communication in a holistic system. It is a mandatory to use Encryption to maintain Confidentiality, Integrity and Availability in an ad hoc vehicle network. Vehicle to Vehicle communication, requires multichannel interaction between mobile, moving and changing parties to insure the full benefit from data sharing and real time decision making, a network of such users referred as mobile ad hoc network (MANET), however as ad hoc networks were not implemented in such a scale, it is not clear what is the best method and protocol to apply. Furthermore the visibility of secure preferred asymmetric encrypted ad hoc networks in a real time environment of dense moving autonomous vehicles has to be demonstrated, In order to evaluate the performance of Ad Hoc networks in changing conditions a simulation of multiple protocols was performed on large number of mobile nodes. The following common routing protocols were tested, DSDV is a proactive protocol, every mobile station maintains a routing table with all available destinations, DSR is a reactive routing protocol which allows nodes in the MANET to dynamically discover a source route across multiple network hops, AODV is a reactive routing protocol Instead of being proactive. It minimizes the number of broadcasts by creating routes based on demand, SAODV is a secure version of AODV, requires heavyweight asymmetric cryptographic, ARIANDE is a routing protocol that relies on highly efficient symmetric cryptography the concept is primarily based on DSR. A methodical evolution was performed in a various density of transportation, based on known communication bench mark parameters including, Throughput Vs. time, Routing Load per packets and bytes. Out of the none encrypted protocols, It is clear that in terms of performance of throughput and routing load DSR protocol has a clear advantage the high node number mode. The encrypted protocols show lower performance with ARIANDE being superior to SAODV and SRP. Nevertheless all protocol simulation proved it to match required real time performance.
Development of a device to simulate tooth mobility.
Erdelt, Kurt-Jürgen; Lamper, Timea
2010-10-01
The testing of new materials under simulation of oral conditions is essential in medicine. For simulation of fracture strength different simulation devices are used for test set-up. The results of these in vitro tests differ because there is no standardization of tooth mobility in simulation devices. The aim of this study is to develop a simulation device that depicts the tooth mobility curve as accurately as possible and creates reproducible and scalable mobility curves. With the aid of published literature and with the help of dentists, average forms of tooth classes were generated. Based on these tooth data, different abutment tooth shapes and different simulation devices were designed with a CAD system and were generated with a Rapid Prototyping system. Then, for all simulation devices the displacement curves were created with a universal testing machine and compared with the tooth mobility curve. With this new information, an improved adapted simulation device was constructed. A simulations device that is able to simulate the mobility curve of natural teeth with high accuracy and where mobility is reproducible and scalable was developed.
Channel simulation to facilitate mobile-satellite communications research
NASA Technical Reports Server (NTRS)
Davarian, Faramaz
1987-01-01
The mobile-satellite-service channel simulator, which is a facility for an end-to-end hardware simulation of mobile satellite communications links is discussed. Propagation effects, Doppler, interference, band limiting, satellite nonlinearity, and thermal noise have been incorporated into the simulator. The propagation environment in which the simulator needs to operate and the architecture of the simulator are described. The simulator is composed of: a mobile/fixed transmitter, interference transmitters, a propagation path simulator, a spacecraft, and a fixed/mobile receiver. Data from application experiments conducted with the channel simulator are presented; the noise converison technique to evaluate interference effects, the error floor phenomenon of digital multipath fading links, and the fade margin associated with a noncoherent receiver are examined. Diagrams of the simulator are provided.
Ares I-X Flight Test Vehicle Modal Test
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.
2010-01-01
The first test flight of NASA's Ares I crew launch vehicle, called Ares I-X, was launched on October 28, 2009. Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Flight test data will provide important information on ascent loads, vehicle control, separation, and first stage reentry dynamics. As part of hardware verification, a series of modal tests were designed to verify the dynamic finite element model (FEM) used in loads assessments and flight control evaluations. Based on flight control system studies, the critical modes were the first three free-free bending mode pairs. Since a test of the free-free vehicle was not practical within project constraints, modal tests for several configurations during vehicle stacking were defined to calibrate the FEM. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report describes the test requirements, constraints, pre-test analysis, test execution and results for the Ares I-X flight test vehicle modal test on the Mobile Launcher Platform. Initial comparisons between pre-test predictions and test data are also presented.
Assessing the scalability of dynamic field gradient focusing by linear modeling
Tracy, Noah I.; Ivory, Cornelius F.
2010-01-01
Dynamic field gradient focusing (DFGF) separates and concentrates proteins in native buffers, where proteins are most soluble, using a computer-controlled electric field gradient which lets the operator adjust the pace and resolution of the separation in real-time. The work in this paper assessed whether DFGF could be scaled up from microgram analytical-scale protein loads to milligram preparative-scale loads. Linear modeling of the electric potential, protein transport, and heat transfer simulated the performance of a preparative-scale DFGF instrument. The electric potential model showed where the electrodes should be placed to optimize the shape and strength of the electric field gradient. Results from the protein transport model suggested that in 10 min the device should separate 10 mg each of two proteins whose electrophoretic mobilities differ by 5 ×. Proteins with electrophoretic mobilities differing by only 5% should separate in 3 h. The heat transfer model showed that the preparative DFGF design could dissipate 1 kW of Joule heat while keeping the separation chamber at 25°C. Model results pointed to DFGF successfully scaling up by 1000 × using the proposed instrument design. PMID:18196522
Settlement statistics of a granular layer composed of polyhedral particles
NASA Astrophysics Data System (ADS)
Quezada, Juan Carlos; Saussine, Gilles; Breul, Pierre; Radjai, Farhang
2013-06-01
We use 3D contact dynamics simulations to investigate the mechanical equilibrium and settlement of a granular material composed of irregular polyhedral particles confined between two horizontal frictional planes. We show that, as a consequence of mobilized wall-particle friction force at the top and bottom boundaries, the transient deformation induced by a constant vertical load increment is controlled by the aspect ratio (thickness over width) of the packing as well as the stress ratio. The transient deformation declines considerably for increasingly smaller aspect ratios and grows with the stress ratio. From the simulation data for a large number of independent configurations, we find that sample-to-sample fluctuations of the deformation have a broad distribution and they scale with the average deformation.
47 CFR 90.633 - Conventional systems loading requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of need. In a ribbon, regional or statewide system, a mobile station will be counted for channel... 47 Telecommunication 5 2011-10-01 2011-10-01 false Conventional systems loading requirements. 90... RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Regulations Governing Licensing and Use of Frequencies...
Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming
2016-01-01
Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle’s position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption. PMID:27428971
On motions of a carrier with a mobile load along a rough inclined plane
NASA Astrophysics Data System (ADS)
Bilchenko, Grigory; Bilchenko, Grigory; Bilchenko, Nataly
2018-05-01
A mechanical system consisting of a carrier and a load is considered. The load can move respectively to the carrier according to a predetermined motion law. The carrier can move translationally along a rectilinear trajectory on a rough inclined plane. The trajectory is the line of the greatest descent. The axis of the rectilinear channel, along which the load moves, is located in a vertical plane passing through the trajectory of the carrier. The Coulomb dry friction model is applied for simulation the forces of resistance to the motion of the carrier from the side of the underlying inclined plane. The extreme value of plane inclination angle at which the carrier is at rest, when the load is stationary, is obtained by taking into account the frictional forces of sliding at rest. Differential equations of motion of a carrier with a load moving with respect to the carrier are obtained taking into account the requirement of motion of the carrier along an inclined plane without detachment. The determining relationships are given which made it possible to classify the types of carrier motion when the channel setting angle and the plane inclination angle are related by a certain inequality. The results of computational experiments are presented.
Li, Limin; Xu, Yubin; Soong, Boon-Hee; Ma, Lin
2013-01-01
Vehicular communication platforms that provide real-time access to wireless networks have drawn more and more attention in recent years. IEEE 802.11p is the main radio access technology that supports communication for high mobility terminals, however, due to its limited coverage, IEEE 802.11p is usually deployed by coupling with cellular networks to achieve seamless mobility. In a heterogeneous cellular/802.11p network, vehicular communication is characterized by its short time span in association with a wireless local area network (WLAN). Moreover, for the media access control (MAC) scheme used for WLAN, the network throughput dramatically decreases with increasing user quantity. In response to these compelling problems, we propose a reinforcement sensor (RFS) embedded vertical handoff control strategy to support mobility management. The RFS has online learning capability and can provide optimal handoff decisions in an adaptive fashion without prior knowledge. The algorithm integrates considerations including vehicular mobility, traffic load, handoff latency, and network status. Simulation results verify that the proposed algorithm can adaptively adjust the handoff strategy, allowing users to stay connected to the best network. Furthermore, the algorithm can ensure that RSUs are adequate, thereby guaranteeing a high quality user experience. PMID:24193101
Nolan, Bernard T; Dubus, Igor G; Surdyk, Nicolas; Fowler, Hayley J; Burton, Aidan; Hollis, John M; Reichenberger, Stefan; Jarvis, Nicholas J
2008-09-01
Key climatic factors influencing the transport of pesticides to drains and to depth were identified. Climatic characteristics such as the timing of rainfall in relation to pesticide application may be more critical than average annual temperature and rainfall. The fate of three pesticides was simulated in nine contrasting soil types for two seasons, five application dates and six synthetic weather data series using the MACRO model, and predicted cumulative pesticide loads were analysed using statistical methods. Classification trees and Pearson correlations indicated that simulated losses in excess of 75th percentile values (0.046 mg m(-2) for leaching, 0.042 mg m(-2) for drainage) generally occurred with large rainfall events following autumn application on clay soils, for both leaching and drainage scenarios. The amount and timing of winter rainfall were important factors, whatever the application period, and these interacted strongly with soil texture and pesticide mobility and persistence. Winter rainfall primarily influenced losses of less mobile and more persistent compounds, while short-term rainfall and temperature controlled leaching of the more mobile pesticides. Numerous climatic characteristics influenced pesticide loss, including the amount of precipitation as well as the timing of rainfall and extreme events in relation to application date. Information regarding the relative influence of the climatic characteristics evaluated here can support the development of a climatic zonation for European-scale risk assessment for pesticide fate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Zeli; Zhuang, Qianlai; Shurpali, Narasinha J.
Recent studies indicated that Arctic lakes play an important role in receiving, processing, and storing organic carbon exported from terrestrial ecosystems. To quantify the contribution of Arctic lakes to the global carbon cycle, we developed a one-dimensional process-based Arctic Lake Biogeochemistry Model (ALBM) that explicitly simulates the dynamics of organic and inorganic carbon in Arctic lakes. By realistically modeling water mixing, carbon biogeochemistry, and permafrost carbon loading, the model can reproduce the seasonal variability of CO 2 fluxes from the study Arctic lakes. The simulated area-weighted CO 2 fluxes from yedoma thermokarst lakes, nonyedoma thermokarst lakes, and glacial lakes aremore » 29.5, 13.0, and 21.4 g C m -2 yr -1, respectively, close to the observed values (31.2, 17.2, and 16.5 ± 7.7 g C m -2 yr -1, respectively). The simulations show that the high CO 2 fluxes from yedoma thermokarst lakes are stimulated by the biomineralization of mobilized labile organic carbon from thawing yedoma permafrost. The simulations also imply that the relative contribution of glacial lakes to the global carbon cycle could be the largest because of their much larger surface area and high biomineralization and carbon loading. According to the model, sunlight-induced organic carbon degradation is more important for shallow nonyedoma thermokarst lakes but its overall contribution to the global carbon cycle could be limited. Overall, the ALBM can simulate the whole-lake carbon balance of Arctic lakes, a difficult task for field and laboratory experiments and other biogeochemistry models.« less
Wan, Chao; Hao, Zhixiu
2018-02-01
Graft tissues within bone tunnels remain mobile for a long time after anterior cruciate ligament (ACL) reconstruction. However, whether the graft-tunnel friction affects the finite element (FE) simulation of the ACL reconstruction is still unclear. Four friction coefficients (from 0 to 0.3) were simulated in the ACL-reconstructed joint model as well as two loading levels of anterior tibial drawer. The graft-tunnel friction did not affect joint kinematics and the maximal principal strain of the graft. By contrast, both the relative graft-tunnel motion and equivalent strain for the bone tunnels were altered, which corresponded to different processes of graft-tunnel integration and bone remodeling, respectively. It implies that the graft-tunnel friction should be defined properly for studying the graft-tunnel integration or bone remodeling after ACL reconstruction using numerical simulation.
Heitmuller, Franklin T.; Asquith, William H.; Fang, Xing; Thompson, David B.; Wang, Keh-Han
2005-01-01
A review of the literature addressing sediment transport in gravel-bed river systems and structures designed to control bed-load mobility is provided as part of Texas Department of Transportation research project 0–4695: Guidance for Design in Areas of Extreme Bed-Load Mobility. The study area comprises the western half of the Edwards Plateau in central Texas. Three primary foci of the literature review are journal articles, edited volumes, and government publications. Major themes within the body of literature include deterministic sediment transport theory and equations, development of methods to measure and analyze fluvial sediment, applications and development of theory in natural channels and flume experiments, and recommendations for river management and structural design. The literature review provides an outline and foundation for the research project to characterize extreme bed-load mobility in rivers and streams across the study area. The literature review also provides a basis upon which potential modifications to low-water stream-crossing design in the study area can be made.
ERIC Educational Resources Information Center
Chen, Chih-Ming; Lin, Yu-Ju
2016-01-01
Despite the popularity of mobile reading devices, many studies have indicated that small screens restrict information transmission, adversely affecting reading performance on mobile devices. Moreover, mobile reading typically occurs in different reading contexts. Therefore, suitable text display type for mobile reading in different reading…
Rule-Based vs. Behavior-Based Self-Deployment for Mobile Wireless Sensor Networks
Urdiales, Cristina; Aguilera, Francisco; González-Parada, Eva; Cano-García, Jose; Sandoval, Francisco
2016-01-01
In mobile wireless sensor networks (MWSN), nodes are allowed to move autonomously for deployment. This process is meant: (i) to achieve good coverage; and (ii) to distribute the communication load as homogeneously as possible. Rather than optimizing deployment, reactive algorithms are based on a set of rules or behaviors, so nodes can determine when to move. This paper presents an experimental evaluation of both reactive deployment approaches: rule-based and behavior-based ones. Specifically, we compare a backbone dispersion algorithm with a social potential fields algorithm. Most tests are done under simulation for a large number of nodes in environments with and without obstacles. Results are validated using a small robot network in the real world. Our results show that behavior-based deployment tends to provide better coverage and communication balance, especially for a large number of nodes in areas with obstacles. PMID:27399709
Effects of Presentation Modes on Mobile-Assisted Vocabulary Learning and Cognitive Load
ERIC Educational Resources Information Center
Lin, Chih-Cheng; Yu, Ya-Chuan
2017-01-01
Previous studies of multimedia presentations have determined the effects of the combination of text and pictures on vocabulary learning, but not those of the sound of new words. This study was intended to confirm those previous findings from the integration of mobile technologies and the approach of cognitive load. It adopted a within-subjects…
Probabilistic load simulation: Code development status
NASA Astrophysics Data System (ADS)
Newell, J. F.; Ho, H.
1991-05-01
The objective of the Composite Load Spectra (CLS) project is to develop generic load models to simulate the composite load spectra that are included in space propulsion system components. The probabilistic loads thus generated are part of the probabilistic design analysis (PDA) of a space propulsion system that also includes probabilistic structural analyses, reliability, and risk evaluations. Probabilistic load simulation for space propulsion systems demands sophisticated probabilistic methodology and requires large amounts of load information and engineering data. The CLS approach is to implement a knowledge based system coupled with a probabilistic load simulation module. The knowledge base manages and furnishes load information and expertise and sets up the simulation runs. The load simulation module performs the numerical computation to generate the probabilistic loads with load information supplied from the CLS knowledge base.
NASA Astrophysics Data System (ADS)
Pan, Patricia Wang; Dickson, Russell J.; Gordon, Heather L.; Rothstein, Stuart M.; Tanaka, Shigenori
2005-01-01
Functionally relevant motion of proteins has been associated with a number of atoms moving in a concerted fashion along so-called "collective coordinates." We present an approach to extract collective coordinates from conformations obtained from molecular dynamics simulations. The power of this technique for differentiating local structural fuctuations between classes of conformers obtained by clustering is illustrated by analyzing nanosecond-long trajectories for the response regulator protein Spo0F of Bacillus subtilis, generated both in vacuo and using an implicit-solvent representation. Conformational clustering is performed using automated histogram filtering of the inter-Cα distances. Orthogonal (varimax) rotation of the vectors obtained by principal component analysis of these interresidue distances for the members of individual clusters is key to the interpretation of collective coordinates dominating each conformational class. The rotated loadings plots isolate significant variation in interresidue distances, and these are associated with entire mobile secondary structure elements. From this we infer concerted motions of these structural elements. For the Spo0F simulations employing an implicit-solvent representation, collective coordinates obtained in this fashion are consistent with the location of the protein's known active sites and experimentally determined mobile regions.
NASA Astrophysics Data System (ADS)
Sun, Tao; Fang, Manquan; Wu, Zhen; Yu, Lixin; Li, Jiding
2017-04-01
Molecular dynamics (MD) simulation was used to study the structural and diffusive properties of zeolitic imidazolate framework-8 (ZIF-8)/polydimethylsiloxane (PDMS), a novel alcohol-permselective mixed matrix membrane (MMM). Simulation models of one pure PDMS membrane and three ZIF-8/PDMS MMMs with increasing loadings were successfully constructed. Non-bond energy turned out to be a strong attractive interaction between the PDMS matrix and ZIF-8 cells. The morphology and mobility of PDMS chains were characterized by mean square displacement (MSD). The fraction of free volume (FFV) of the pure membrane and MMMs was calculated and showed declining trends with increasing ZIF-8 loadings. The diffusion coefficients of n-butanol and water molecules were calculated by the Einstein relation. {D}n-\\text{butanol} first increased then decreased, while {D}{{water}} decreased with the increasing loadings. The mechanism of selective diffusion behaviour was investigated and it was found that the inner channels of ZIF-8 provided selective pathways for n-butanol. Diffusion coefficients were correlated with FFV and the results showed that the logarithm of {D}{{water}} demonstrated a good linear relation with the inverse FFV and was in agreement with the free volume theory, while {D}n-\\text{butanol} showed a significant deviation in the case of MMM-1 due to the selective diffusion channels provided by ZIF-8.
Subject-Specific Modeling of Muscle Force and Knee Contact in Total Knee Arthroplasty
Navacchia, Alessandro; Rullkoetter, Paul J.; Schütz, Pascal; List, Renate B.; Fitzpatrick, Clare K.; Shelburne, Kevin B.
2017-01-01
Understanding the mechanical loading environment and resulting joint mechanics for activities of daily living in total knee arthroplasty is essential to continuous improvement in implant design. Although survivorship of these devices is good, a substantial number of patients report dissatisfaction with the outcome of their procedure. Knowledge of in vivo kinematics and joint loading will enable improvement in preclinical assessment and refinement of implant geometry. The purpose of this investigation was to describe the mechanics of total knee arthroplasty during a variety of activities of daily living (gait, walking down stairs, and chair rise/sit). Estimates of muscle forces, tibial contact load, location, and pressure distribution was performed through a combination of mobile fluoroscopy data collection, musculoskeletal modeling, and finite element simulation. For the activities evaluated, joint compressive load was greatest during walking down stairs; however, the highest contact pressure occurred during chair rise/sit. The joint contact moment in the frontal plane was mainly varus for gait and walking down stairs, while it was valgus during chair rise/sit. Excursion of the center of pressure on the tibial component was similar during each activity and between the medial and lateral sides. The main determinants of center of pressure location were internal–external rotation, joint load, and tibial insert conformity. PMID:26792665
Mobile propeller dynamometer validation
NASA Astrophysics Data System (ADS)
Morris, Mason Wade
With growing interest in UAVs and OSU's interest in propeller performance and manufacturing, evaluating UAV propeller and propulsion system performance has become essential. In attempts to evaluate these propellers a mobile propeller dynamometer has been designed, built, and tested. The mobile dyno has been designed to be cost effective through the ability to load it into the back of a test vehicle to create simulated forward flight characteristics. This allows much larger propellers to be dynamically tested without the use of large and expensive wind tunnels. While evaluating the accuracy of the dyno, several improvements had to be made to get accurate results. The decisions made to design and improve the mobile propeller dyno will be discussed along with attempts to validate the dyno by comparing its results against known sources. Another large part of assuring the accuracy of the mobile dyno is determining if the test vehicle will influence the flow going into the propellers being tested. The flow into the propeller needs to be as smooth and uniform as possible. This is determined by characterizing the boundary layer and accelerated flow over the vehicle. This evaluation was accomplished with extensive vehicle aerodynamic measurements with the use of full-scale tests using a pitot-rake and the actual test vehicle. Additional tests were conducted in Oklahoma State University's low speed wind tunnel with a 1/8-scale model using qualitative flow visualization with smoke. Continuing research on the mobile dyno will be discussed, along with other potential uses for the dyno.
Lou, Jigang; Li, Yuanchao; Wang, Beiyu; Meng, Yang; Wu, Tingkui; Liu, Hao
2017-01-01
Abstract In vitro biomechanical analysis after cervical disc replacement (CDR) with a novel artificial disc prosthesis (mobile core) was conducted and compared with the intact model, simulated fusion, and CDR with a fixed-core prosthesis. The purpose of this experimental study was to analyze the biomechanical changes after CDR with a novel prosthesis and the differences between fixed- and mobile-core prostheses. Six human cadaveric C2–C7 specimens were biomechanically tested sequentially in 4 different spinal models: intact specimens, simulated fusion, CDR with a fixed-core prosthesis (Discover, DePuy), and CDR with a mobile-core prosthesis (Pretic-I, Trauson). Moments up to 2 Nm with a 75 N follower load were applied in flexion–extension, left and right lateral bending, and left and right axial rotation. The total range of motion (ROM), segmental ROM, and adjacent intradiscal pressure (IDP) were calculated and analyzed in 4 different spinal models, as well as the differences between 2 disc prostheses. Compared with the intact specimens, the total ROM, segmental ROM, and IDP at the adjacent segments showed no significant difference after arthroplasty. Moreover, CDR with a mobile-core prosthesis presented a little higher values of target segment (C5/6) and total ROM than CDR with a fixed-core prosthesis (P > .05). Besides, the difference in IDP at C4/5 after CDR with 2 prostheses was without statistical significance in all the directions of motion. However, the IDP at C6/7 after CDR with a mobile-core prosthesis was lower than CDR with a fixed-core prosthesis in flexion, extension, and lateral bending, with significant difference (P < .05), but not under axial rotation. CDR with a novel prosthesis was effective to maintain the ROM at the target segment and did not affect the ROM and IDP at the adjacent segments. Moreover, CDR with a mobile-core prosthesis presented a little higher values of target segment and total ROM, but lower IDP at the inferior adjacent segment than CDR with a fixed-core prosthesis. PMID:29019902
Large-eddy simulation of sand dune morphodynamics
NASA Astrophysics Data System (ADS)
Khosronejad, Ali; Sotiropoulos, Fotis; St. Anthony Falls Laboratory, University of Minnesota Team
2015-11-01
Sand dunes are natural features that form under complex interaction between turbulent flow and bed morphodynamics. We employ a fully-coupled 3D numerical model (Khosronejad and Sotiropoulos, 2014, Journal of Fluid Mechanics, 753:150-216) to perform high-resolution large-eddy simulations of turbulence and bed morphodynamics in a laboratory scale mobile-bed channel to investigate initiation, evolution and quasi-equilibrium of sand dunes (Venditti and Church, 2005, J. Geophysical Research, 110:F01009). We employ a curvilinear immersed boundary method along with convection-diffusion and bed-morphodynamics modules to simulate the suspended sediment and the bed-load transports respectively. The coupled simulation were carried out on a grid with more than 100 million grid nodes and simulated about 3 hours of physical time of dune evolution. The simulations provide the first complete description of sand dune formation and long-term evolution. The geometric characteristics of the simulated dunes are shown to be in excellent agreement with observed data obtained across a broad range of scales. This work was supported by NSF Grants EAR-0120914 (as part of the National Center for Earth-Surface Dynamics). Computational resources were provided by the University of Minnesota Supercomputing Institute.
Application of the mobility power flow approach to structural response from distributed loading
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1988-01-01
The problem of the vibration power flow through coupled substructures when one of the substructures is subjected to a distributed load is addressed. In all the work performed thus far, point force excitation was considered. However, in the case of the excitation of an aircraft fuselage, distributed loading on the whole surface of a panel can be as important as the excitation from directly applied forces at defined locations on the structures. Thus using a mobility power flow approach, expressions are developed for the transmission of vibrational power between two coupled plate substructures in an L configuration, with one of the surfaces of one of the plate substructures being subjected to a distributed load. The types of distributed loads that are considered are a force load with an arbitrary function in space and a distributed load similar to that from acoustic excitation.
30 CFR 57.12005 - Protection of power conductors from mobile equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of power conductors from mobile... NONMETAL MINES Electricity Surface and Underground § 57.12005 Protection of power conductors from mobile equipment. Mobile equipment shall not run over power conductors, nor shall loads be dragged over power...
30 CFR 56.12005 - Protection of power conductors from mobile equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Protection of power conductors from mobile... MINES Electricity § 56.12005 Protection of power conductors from mobile equipment. Mobile equipment shall not run over power conductors, nor shall loads be dragged over power conductors, unless the...
30 CFR 56.12005 - Protection of power conductors from mobile equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of power conductors from mobile... MINES Electricity § 56.12005 Protection of power conductors from mobile equipment. Mobile equipment shall not run over power conductors, nor shall loads be dragged over power conductors, unless the...
30 CFR 57.12005 - Protection of power conductors from mobile equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Protection of power conductors from mobile... NONMETAL MINES Electricity Surface and Underground § 57.12005 Protection of power conductors from mobile equipment. Mobile equipment shall not run over power conductors, nor shall loads be dragged over power...
Chung, Yun Won; Kwon, Jae Kyun; Park, Suwon
2014-01-01
One of the key technologies to support mobility of mobile station (MS) in mobile communication systems is location management which consists of location update and paging. In this paper, an improved movement-based location management scheme with two movement thresholds is proposed, considering bursty data traffic characteristics of packet-switched (PS) services. The analytical modeling for location update and paging signaling loads of the proposed scheme is developed thoroughly and the performance of the proposed scheme is compared with that of the conventional scheme. We show that the proposed scheme outperforms the conventional scheme in terms of total signaling load with an appropriate selection of movement thresholds.
Modeling CO 2 emissions from Arctic lakes: Model development and site-level study
Tan, Zeli; Zhuang, Qianlai; Shurpali, Narasinha J.; ...
2017-09-14
Recent studies indicated that Arctic lakes play an important role in receiving, processing, and storing organic carbon exported from terrestrial ecosystems. To quantify the contribution of Arctic lakes to the global carbon cycle, we developed a one-dimensional process-based Arctic Lake Biogeochemistry Model (ALBM) that explicitly simulates the dynamics of organic and inorganic carbon in Arctic lakes. By realistically modeling water mixing, carbon biogeochemistry, and permafrost carbon loading, the model can reproduce the seasonal variability of CO 2 fluxes from the study Arctic lakes. The simulated area-weighted CO 2 fluxes from yedoma thermokarst lakes, nonyedoma thermokarst lakes, and glacial lakes aremore » 29.5, 13.0, and 21.4 g C m -2 yr -1, respectively, close to the observed values (31.2, 17.2, and 16.5 ± 7.7 g C m -2 yr -1, respectively). The simulations show that the high CO 2 fluxes from yedoma thermokarst lakes are stimulated by the biomineralization of mobilized labile organic carbon from thawing yedoma permafrost. The simulations also imply that the relative contribution of glacial lakes to the global carbon cycle could be the largest because of their much larger surface area and high biomineralization and carbon loading. According to the model, sunlight-induced organic carbon degradation is more important for shallow nonyedoma thermokarst lakes but its overall contribution to the global carbon cycle could be limited. Overall, the ALBM can simulate the whole-lake carbon balance of Arctic lakes, a difficult task for field and laboratory experiments and other biogeochemistry models.« less
Weikert, Madeline; Motl, Robert W; Suh, Yoojin; McAuley, Edward; Wynn, Daniel
2010-03-15
Motion sensors such as accelerometers have been recognized as an ideal measure of physical activity in persons with MS. This study examined the hypothesis that accelerometer movement counts represent a measure of both physical activity and walking mobility in individuals with MS. The sample included 269 individuals with a definite diagnosis of relapsing-remitting MS who completed the Godin Leisure-Time Exercise Questionnaire (GLTEQ), International Physical Activity Questionnaire (IPAQ), Multiple Sclerosis Walking Scale-12 (MSWS-12), Patient Determined Disease Steps (PDDS), and then wore an ActiGraph accelerometer for 7days. The data were analyzed using bivariate correlation and confirmatory factor analysis. The results indicated that (a) the GLTEQ and IPAQ scores were strongly correlated and loaded significantly on a physical activity latent variable, (b) the MSWS-12 and PDDS scores strongly correlated and loaded significantly on a walking mobility latent variable, and (c) the accelerometer movement counts correlated similarly with the scores from the four self-report questionnaires and cross-loaded on both physical activity and walking mobility latent variables. Our data suggest that accelerometers are measuring both physical activity and walking mobility in persons with MS, whereas self-report instruments are measuring either physical activity or walking mobility in this population.
Julien, Ryan; Safferman, Steven
2015-01-01
Wastewater generated during food processing is commonly treated using land-application systems which primarily rely on soil microbes to transform nutrients and organic compounds into benign byproducts. Naturally occurring metals in the soil may be chemically reduced via microbially mediated oxidation-reduction reactions as oxygen becomes depleted. Some metals such as manganese and iron become water soluble when chemically reduced, leading to groundwater contamination. Alternatively, metals within the wastewater may not become assimilated into the soil and leach into the groundwater if the environment is not sufficiently oxidizing. A lab-scale column study was conducted to investigate the impacts of wastewater loading values on metal mobilization within the soil. Oxygen content and volumetric water data were collected via soil sensors for the duration of the study. The pH, chemical oxygen demand, manganese, and iron concentrations in the influent and effluent water from each column were measured. Average organic loading and organic loading per dose were shown to have statistically significant impacts using Spearman's Rank Correlation Coefficient on effluent water quality. The Hydraulic resting period qualitatively appeared to have impacts on effluent water quality. This study verifies that excessive organic loading of land application systems causes mobilization of naturally occurring metals and prevents those added in the wastewater from becoming immobilized, resulting in ineffective wastewater treatment. Results also indicate the need to consider the organic dose load and hydraulic resting period in the treatment system design. Findings from this study demonstrate waste application twice daily may encourage soil aeration and allow for increased organic loading while limiting the mobilization of metals already in the soil and those being applied.
Modeling methods of MEMS micro-speaker with electrostatic working principle
NASA Astrophysics Data System (ADS)
Tumpold, D.; Kaltenbacher, M.; Glacer, C.; Nawaz, M.; Dehé, A.
2013-05-01
The market for mobile devices like tablets, laptops or mobile phones is increasing rapidly. Device housings get thinner and energy efficiency is more and more important. Micro-Electro-Mechanical-System (MEMS) loudspeakers, fabricated in complementary metal oxide semiconductor (CMOS) compatible technology merge energy efficient driving technology with cost economical fabrication processes. In most cases, the fabrication of such devices within the design process is a lengthy and costly task. Therefore, the need for computer modeling tools capable of precisely simulating the multi-field interactions is increasing. The accurate modeling of such MEMS devices results in a system of coupled partial differential equations (PDEs) describing the interaction between the electric, mechanical and acoustic field. For the efficient and accurate solution we apply the Finite Element (FE) method. Thereby, we fully take the nonlinear effects into account: electrostatic force, charged moving body (loaded membrane) in an electric field, geometric nonlinearities and mechanical contact during the snap-in case between loaded membrane and stator. To efficiently handle the coupling between the mechanical and acoustic fields, we apply Mortar FE techniques, which allow different grid sizes along the coupling interface. Furthermore, we present a recently developed PML (Perfectly Matched Layer) technique, which allows limiting the acoustic computational domain even in the near field without getting spurious reflections. For computations towards the acoustic far field we us a Kirchhoff Helmholtz integral (e.g, to compute the directivity pattern). We will present simulations of a MEMS speaker system based on a single sided driving mechanism as well as an outlook on MEMS speakers using double stator systems (pull-pull-system), and discuss their efficiency (SPL) and quality (THD) towards the generated acoustic sound.
NASA Astrophysics Data System (ADS)
Thapa, Mahendra Bahadur
Calbindin D9k (CAB) is a single domain calcium-binding protein and is the smallest members of the calmodulin superfamily, possessing a pair of calcium-binding EF-hands, and structures for all four states have been determined and extensively characterized experimentally. Because of the tremendous advancement in hardware and software computer technologies in recent years, longer and more realistic molecular dynamics (MD) simulations of a protein are possible now in reasonable periods of time. These advances were exploited to generate multiple, all-atom MD simulations of CAB via the AMBER software package, and the resulting trajectories were employed to calculate backbone order parameters of the apo, the singly and the doubly loaded states of calcium in CAB. The results are in very good agreement with corresponding experimental NMR-based (Nuclear Magnetic Resonance spectroscopy) results, and are improved in comparison to those calculated over a decade ago; use of modified force fields played a key role in the observed improvements. The apo state is the most flexible, and the singly loaded and the doubly loaded states are similar, thus supporting positive cooperativity in line with the experimental results. Further, B-factor calculations of backbone atoms for these calcium-binding states of calbindin D9k also support such cooperativity. Although changes in side-chain motions are not necessarily correlated to changes in protein backbone mobility, past studies on the comparison of experimental and simulated methyl side-chain NMR relaxation parameters of CAB for the doubly-loaded state reported significant improvements in the quantitative representation of side-chain motion by MD simulation. In this project, the order parameters for various side chains in apo, singly loaded and doubly loaded states of CAB were calculated. The primary goal of this work was to determine whether or not the allosteric effect of calcium binding, as observed via the backbone order parameters, also extended to the amino acid side chains, and if so, to what extent. Such information could be useful in better understanding the physical basis of cooperative calcium binding in CAB. Most of the residues which provide ligands to bind calcium at the binding sites support positive cooperativity, as observed when Ca-Cß, Cß-C?, C-C bond and C-O bonds of COO groups of aspartic and glutamic acid residues, the C-N bond of the side-chain amide group in asparagine and glutamine residues, and the N-H bonds of amide (NH2) group order parameters were studied. There are only a few residues containing methyl groups that are involved in providing ligands to the calcium, and the studies of order parameters of C-C bond and C-H bond of these methyl groups did not exhibit the cooperativity effect upon calcium binding; the simulated C-C bond order parameter of the methyl group symmetry axis did correlate well with the experimental results for the fully loaded state of CAB (4ICB). Analysis of the MD trajectories using GSATools and MutInf, provided valuable insights into possible pathways for communicating allosteric effects between the two calcium-binding sites of CAB.
Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.
2015-06-01
Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).
Thomas E. Lisle; Jonathan M. Nelson; John Pitlick; Mary Ann Madej; Brent L. Barkett
2000-01-01
Abstract - Local variations in boundary shear stress acting on bed-surface particles control patterns of bed load transport and channel evolution during varying stream discharges. At the reach scale a channel adjusts to imposed water and sediment supply through mutual interactions among channel form, local grain size, and local flow dynamics that govern bed mobility...
Lange, Jeffrey J; Culbertson, Christopher T; Higgins, Daniel A
2008-12-15
Single molecule microscopic and spectroscopic methods are employed to probe the mobility and physical entrapment of dye molecules in dry and solvent-loaded poly(dimethylsiloxane) (PDMS) films. PDMS films of approximately 220 nm thickness are prepared by spin casting dilute solutions of Sylgard 184 onto glass coverslips, followed by low temperature curing. A perylene diimide dye (BPPDI) is used to probe diffusion and molecule-matrix interactions. Two classes of dye-loaded samples are investigated: (i) those incorporating dye dispersed throughout the films ("in film" samples) and (ii) those in which the dye is restricted primarily to the PDMS surface ("on film" samples). Experiments are performed under dry nitrogen and at various levels of isopropyl alcohol (IPA) loading from the vapor phase. A PDMS-coated quartz-crystal microbalance is employed to monitor solvent loading and drying of the PDMS and to ensure equilibrium conditions are achieved. Single molecules are shown to be predominantly immobile under dry conditions and mostly mobile under IPA-saturated conditions. Quantitative methods for counting the fluorescent spots produced by immobile single molecules in optical images of the samples demonstrate that the population of mobile molecules increases nonlinearly with IPA loading. Even under IPA saturated conditions, the population of fixed molecules is found to be greater than zero and is greatest for "in film" samples. Fluorescence correlation spectroscopy is used to measure the apparent diffusion coefficient for the mobile molecules, yielding a mean value of D = 1.4(+/-0.4) x 10(-8) cm(2)/s that is virtually independent of IPA loading and sample class. It is concluded that a nonzero population of dye molecules is physically entrapped within the PDMS matrix under all conditions. The increase in the population of mobile molecules under high IPA conditions is attributed to the filling of film micropores with solvent, rather than by incorporation of molecularly dispersed solvent into the PDMS.
Williams, D S Blaise; Tierney, Robin N; Butler, Robert J
2014-01-01
Runners with high medial longitudinal arch structure demonstrate unique kinematics and kinetics that may lead to running injuries. The mobility of the midfoot as measured by the change in arch height is also suspected to play a role in lower extremity function during running. The effect of arch mobility in high-arched runners is an important factor in prescribing footwear, training, and rehabilitating the running athlete after injury. To examine the effect of medial longitudinal arch mobility on running kinematics, ground reaction forces, and loading rates in high-arched runners. Cross-sectional study. Human movement research laboratory. A total of 104 runners were screened for arch height. Runners were then identified as having high arches if the arch height index was greater than 0.5 SD above the mean. Of the runners with high arches, 11 rigid runners with the lowest arch mobility (R) were compared with 8 mobile runners with the highest arch mobility (M). Arch mobility was determined by calculating the left arch height index in all runners. Three-dimensional motion analysis of running over ground. Rearfoot and tibial angular excursions, eversion-to-tibial internal-rotation ratio, vertical ground reaction forces, and the associated loading rates. Runners with mobile arches exhibited decreased tibial internal-rotation excursion (mobile: 5.6° ± 2.3° versus rigid: 8.0° ± 3.0°), greater eversion-to-tibial internal-rotation ratio (mobile: 2.1 ± 0.8 versus rigid: 1.5 ± 0.5), decreased second peak vertical ground reaction force values (mobile: 2.3 ± 0.2 × body weight versus rigid: 2.4 ± 0.1 × body weight), and decreased vertical loading rate values (mobile: 55.7 ± 14.1 × body weight/s versus rigid: 65.9 ± 11.4 × body weight/s). Based on the results of this study, it appears that runners with high arch structure but differing arch mobility exhibited differences in select lower extremity movement patterns and forces. Future authors should investigate the impact of arch mobility on running-related injuries.
Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.
2012-01-01
Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (HgT, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream HgT. We found that shallow subsurface flow is a potentially important transport mechanism of particulate HgT during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate HgT in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved HgT concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-HgT complexes from surface soils can also occur during this period, DOC-complexed HgT becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily HgT loadings, but shallow subsurface flow is important for HgT loads during high-flow events. Results suggest limited seasonal trends in HgT dynamics.
Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.
2012-01-01
Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (Hg T, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream Hg T. We found that shallow subsurface flow is a potentially important transport mechanism of particulate Hg T during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate Hg T in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved Hg T concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-Hg T complexes from surface soils can also occur during this period, DOC-complexed Hg T becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily Hg T loadings, but shallow subsurface flow is important for Hg T loads during high-flow events. Results suggest limited seasonal trends in Hg T dynamics. Copyright 2012 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Ueberham, Maximilian; Hertel, Daniel; Schlink, Uwe
2017-04-01
Deeper knowledge about urban climate conditions is getting more important in the context of climate change, urban population growth, urban compaction and continued surface sealing. Especially the urban heat island effect (UHI) is one of the most significant human induced alterations of Earth's surface climate. According to this the appearance frequency of heat waves in cities will increase with deep impacts on personal thermal comfort, human health and local residential quality of citizens. UHI can be very heterogenic within a city and research needs to focus more on the neighborhood scale perspective to get further insights about the heat burden of individuals. However, up to now, few is known about local thermal environmental variances and personal exposure loads. To monitor these processes and the impact on individuals, improved monitoring approaches are crucial, complementing data recorded at conventional fixed stations. Therefore we emphasize the importance of micro-meteorological modelling and mobile measurements to shed new light on the nexus of urban human-climate interactions. Contributing to this research we jointly present the approaches of our two PhD-projects. Firstly we illustrate on the basis of an example site, how local thermal conditions in an urban district can be simulated and predicted by a micro-meteorological model. Secondly we highlight the potentials of personal exposure measurements based on an evaluation of mobile micro-sensing devices (MSDs) and analyze and explain differences between model predictions and mobile records. For the examination of local thermal conditions we calculated ENVI-met simulations within the "Bayerischer Bahnhof" quarter in Leipzig (Saxony, Germany; 51°20', 12°22'). To accomplish the maximum temperature contrasts within the diverse built-up structures we chose a hot summer day (25 Aug 2016) under autochthonous weather conditions. From these simulations we analyzed a UHI effect between the model core (urban area) and the surrounding nesting area (rural area). Preparing for the outdoor application of mobile MSDs we tested their accuracy and performance between several MSDs and reliable sophisticated devices under laboratory conditions. We found that variations mainly depend on the device design and technology (e.g. active/passive ventilation). The standard deviation of the temperature records was quite stable over the whole range of values and the MSDs proved to be applicable for the purpose of our study. In conclusion the benefit of integrating mobile data and micrometeorological predictions is manifold. Mobile data can be used for the investigation of personal exposure in the context of heat stress and for the verification and training of micrometeorological models. Otherwise, model predictions can identify local areas of special climate interest where additional mobile measurements would be beneficial to provide new information for mitigation and adaptation actions.
A maximum entropy fracture model for low and high strain-rate fracture in TinSilverCopper alloys
NASA Astrophysics Data System (ADS)
Chan, Dennis K.
SnAgCu solder alloys exhibit significant rate-dependent constitutive behavior. Solder joints made of these alloys exhibit failure modes that are also rate-dependent. Solder joints are an integral part of microelectronic packages and are subjected to a wide variety of loading conditions which range from thermo-mechanical fatigue to impact loading. Consequently, there is a need for non-empirical rate-dependent failure theory that is able to accurately predict fracture in these solder joints. In the present thesis, various failure models are first reviewed. But, these models are typically empirical or are not valid for solder joints due to limiting assumptions such as elastic behavior. Here, the development and validation of a maximum entropy fracture model (MEFM) valid for low strain-rate fracture in SnAgCu solders is presented. To this end, work on characterizing SnAgCu solder behavior at low strain-rates using a specially designed tester to estimate parameters for constitutive models is presented. Next, the maximum entropy fracture model is reviewed. This failure model uses a single damage accumulation parameter and relates the risk of fracture to accumulated inelastic dissipation. A methodology is presented to extract this model parameter through a custom-built microscale mechanical tester for Sn3.8Ag0.7Cu solder. This single parameter is used to numerically simulate fracture in two solder joints with entirely different geometries. The simulations are compared to experimentally observed fracture in these same packages. Following the simulations of fracture at low strain rate, the constitutive behavior of solder alloys across nine decades of strain rates through MTS compression tests and split-Hopkinson bar are presented. Preliminary work on using orthogonal machining as novel technique of material characterization at high strain rates is also presented. The resultant data from the MTS compression and split-Hopkinson bar tester is used to demonstrate the localization of stress to the interface of solder joints at high strain rates. The MEFM is further extended to predict failure in brittle materials. Such an extension allows for fracture prediction within intermetallic compounds (IMCs) in solder joints. It has been experimentally observed that the failure mode shifts from bulk solder to the IMC layer with increasing loading rates. The extension of the MEFM would allow for prediction of the fracture mode within the solder joint under different loading conditions. A fracture model capable of predicting failure modes at higher strain rates is necessary, as mobile electronics are becoming ubiquitous. Mobile devices are prone to being dropped which can induce loading rates within solder joints that are much larger than experienced under thermo-mechanical fatigue. A range of possible damage accumulation parameters for Cu6Sn 5 is determined for the MEFM. A value within the aforementioned range is used to demonstrate the increasing likelihood of IMC fracture in solder joints with larger loading rates. The thesis is concluded with remarks about ongoing work that include determining a more accurate damage accumulation parameter for Cu6Sn 5 IMC, and on using machining as a technique for extracting failure parameters for the MEFM.
2016-11-01
ER D C/ G SL T R- 16 -3 1 Modeling the Blast Load Simulator Airblast Environment Using First Principles Codes Report 1, Blast Load...Simulator Airblast Environment using First Principles Codes Report 1, Blast Load Simulator Environment Gregory C. Bessette, James L. O’Daniel...evaluate several first principles codes (FPCs) for modeling airblast environments typical of those encountered in the BLS. The FPCs considered were
The effects of mobile applications in cardiopulmonary assessment education.
Yoo, In-Young; Lee, Young-Mi
2015-02-01
Mobile applications can be used as effective simulations for nursing education. However, little is known regarding the effects of mobile application-mediated training on nursing. The aim of this study was to determine the effectiveness of mobile applications by comparing the effectiveness of a high-fidelity human patient simulator to that of a mobile application on student learning. Following lectures on the lungs and the heart, twenty-two students were separated into two groups to perform a simulation exercise. Then, the students' education effects were evaluated based on their knowledge of lung and heart assessments, their clinical assessment skill, and satisfaction with their education. After four weeks, the mobile application group maintained their knowledge, whereas the high-fidelity human patient simulator group exhibited significantly decreased knowledge of the lung assessment. Knowledge of the heart assessment was significantly increased in both groups. There was no significant difference in clinical assessment skill or educational satisfaction between the groups. We found that mobile applications provide educational tools similarly effective to a high-fidelity human patient simulator to maintain memory and to teach cardiopulmonary assessment skills. Copyright © 2014 Elsevier Ltd. All rights reserved.
Clinical Simulation: A Protocol for Evaluation of Mobile Technology.
Mather, Carey; Jensen, Sanne; Cummings, Elizabeth
2017-01-01
For mobile technology to be accepted at point of care in healthcare environments there is a need to demonstrate benefits whilst ameliorating the risks and challenges. To provide a standardised approach to evaluation of mobile technology a simulation protocol was developed to provide guidance for its use in healthcare environments. Simulated conditions provide the opportunity to assess intended and unintended consequences and identify potential workarounds when using technology. The protocol can also be used to demonstrate the importance of the development of digital professionalism by end-users prior to students entering the clinical practice setting. The mobile technology protocol was adapted from a health information systems protocol developed and used at the ITX Lab, Denmark for use in other simulation laboratories. Use case scenarios were developed to enable evaluation of mobile technology for mobile learning of nurses, nurse supervisors, students and patients. The scenarios can be used in a range of simulated environments including hospital bedside, outpatient clinic or community settings. A case study exemplar of a nurse and patient is included to demonstrate how the mobile technology protocol can be applied.
Okundamiya, Michael S; Emagbetere, Joy O; Ogujor, Emmanuel A
2014-01-01
The rapid growth of the mobile telecommunication sectors of many emerging countries creates a number of problems such as network congestion and poor service delivery for network operators. This results primarily from the lack of a reliable and cost-effective power solution within such regions. This study presents a comprehensive review of the underlying principles of the renewable energy technology (RET) with the objective of ensuring a reliable and cost-effective energy solution for a sustainable development in the emerging world. The grid-connected hybrid renewable energy system incorporating a power conversion and battery storage unit has been proposed based on the availability, dynamism, and technoeconomic viability of energy resources within the region. The proposed system's performance validation applied a simulation model developed in MATLAB, using a practical load data for different locations with varying climatic conditions in Nigeria. Results indicate that, apart from being environmentally friendly, the increase in the overall energy throughput of about 4 kWh/$ of the proposed system would not only improve the quality of mobile services, by making the operations of GSM base stations more reliable and cost effective, but also better the living standards of the host communities.
Okundamiya, Michael S.; Emagbetere, Joy O.; Ogujor, Emmanuel A.
2014-01-01
The rapid growth of the mobile telecommunication sectors of many emerging countries creates a number of problems such as network congestion and poor service delivery for network operators. This results primarily from the lack of a reliable and cost-effective power solution within such regions. This study presents a comprehensive review of the underlying principles of the renewable energy technology (RET) with the objective of ensuring a reliable and cost-effective energy solution for a sustainable development in the emerging world. The grid-connected hybrid renewable energy system incorporating a power conversion and battery storage unit has been proposed based on the availability, dynamism, and technoeconomic viability of energy resources within the region. The proposed system's performance validation applied a simulation model developed in MATLAB, using a practical load data for different locations with varying climatic conditions in Nigeria. Results indicate that, apart from being environmentally friendly, the increase in the overall energy throughput of about 4 kWh/$ of the proposed system would not only improve the quality of mobile services, by making the operations of GSM base stations more reliable and cost effective, but also better the living standards of the host communities. PMID:24578673
Mobility Models for Systems Evaluation
NASA Astrophysics Data System (ADS)
Musolesi, Mirco; Mascolo, Cecilia
Mobility models are used to simulate and evaluate the performance of mobile wireless systems and the algorithms and protocols at the basis of them. The definition of realistic mobility models is one of the most critical and, at the same time, difficult aspects of the simulation of applications and systems designed for mobile environments. There are essentially two possible types of mobility patterns that can be used to evaluate mobile network protocols and algorithms by means of simulations: traces and synthetic models [130]. Traces are obtained by means of measurements of deployed systems and usually consist of logs of connectivity or location information, whereas synthetic models are mathematical models, such as sets of equations, which try to capture the movement of the devices.
Khan, Majid I; Gansterer, Wilfried N; Haring, Guenter
2013-05-15
Over the last decade a large number of routing protocols has been designed for achieving energy efficiency in data collecting wireless sensor networks. The drawbacks of using a static sink are well known. It has been argued in the literature that a mobile sink may improve the energy dissipation compared to a static one. Some authors focus on minimizing Emax , the maximum energy dissipation of any single node in the network, while others aim at minimizing Ebar , the average energy dissipation over all nodes. In our paper we take a more holistic view, considering both Emax and Ebar . The main contribution of this paper is to provide a simulation-based analysis of the energy efficiency of WSNs with static and mobile sinks. The focus is on two important configuration parameters: mobility path of the sink and duty cycling value of the nodes. On the one hand, it is well known that in the case of a mobile sink with fixed trajectory the choice of the mobility path influences energy efficiency. On the other hand, in some types of applications sensor nodes spend a rather large fraction of their total lifetime in idle mode, and therefore higher energy efficiency can be achieved by using the concept of reduced duty cycles. In particular, we quantitatively analyze the influence of duty cycling and the mobility radius of the sink as well as their interrelationship in terms of energy consumption for a well-defined model scenario. The analysis starts from general load considerations and is refined into a geometrical model. This model is validated by simulations which are more realistic in terms of duty cycling than previous work. It is illustrated that over all possible configuration scenarios in terms of duty cycle and mobility radius of the sink the energy dissipation in the WSN can vary up to a factor of nine in terms of Emax and up to a factor of 17 in terms of Ebar. It turns out that in general the choice of the duty cycle value is more important for achieving energy efficiency than the choice of the mobility radius of the sink. Moreover, for small values of the duty cycle, a static sink turns out to be optimal in terms of both Emax and Ebar . For larger values of the duty cycle, a mobile sink has advantages over a static sink, especially in terms of Emax . These insights into the basic interrelationship between duty cycle value and mobility radius of a mobile sink are relevant for energy efficient operation of homogeneous WSNs beyond our model scenario.
Research and Simulation on Application of the Mobile IP Network
NASA Astrophysics Data System (ADS)
Yibing, Deng; Wei, Hu; Minghui, Li; Feng, Gao; Junyi, Shen
The paper analysed the mobile node, home agent, and foreign agent of mobile IP network firstly, some key technique, such as mobile IP network basical principle, protocol work principle, agent discovery, registration, and IP packet transmission, were discussed. Then a network simulation model was designed, validating the characteristic of mobile IP network, and some advantages, which were brought by mobile network, were testified. Finally, the conclusion is gained: mobile IP network could realize the expectation of consumer that they can communicate with others anywhere.
Meyer, N K; Ristovski, Z D
2007-11-01
The volatile and hygroscopic properties of diesel nanoparticles were simultaneously determined under a range of engine loads using the volatilization and humidification tandem differential mobility analyzer (VH-TDMA). Additionally, the VH-TDMA was used to measure changes in the hygroscopic behavior of the heterogeneously nucleated diesel nanoparticles as one or more semivolatile species were removed via thermal evaporation or decomposition. Particles produced at high loads exhibited high, dual-step volatility, while those particles produced at low loads were less volatile and exhibited continuous volatilization curves. The hygroscopic growth factor of the particles was shown to be load dependent with high-load particles exhibiting growth factors similar to that of ammonium sulfate. At 85% relative humidity, particles produced at moderate loads exhibited growth factors of approximately 1.1 while low-load particles were shown to be hydrophobic. Growth factors and volatilization temperatures measured for high-load particles clearly indicate that ternary nucleation is involved in particle formation.
NASA Astrophysics Data System (ADS)
Manodham, Thavisak; Loyola, Luis; Miki, Tetsuya
IEEE 802.11 wirelesses LANs (WLANs) have been rapidly deployed in enterprises, public areas, and households. Voice-over-IP (VoIP) and similar applications are now commonly used in mobile devices over wireless networks. Recent works have improved the quality of service (QoS) offering higher data rates to support various kinds of real-time applications. However, besides the need for higher data rates, seamless handoff and load balancing among APs are key issues that must be addressed in order to continue supporting real-time services across wireless LANs and providing fair services to all users. In this paper, we introduce a novel access point (AP) with two transceivers that improves network efficiency by supporting seamless handoff and traffic load balancing in a wireless network. In our proposed scheme, the novel AP uses the second transceiver to scan and find neighboring STAs in the transmission range and then sends the results to neighboring APs, which compare and analyze whether or not the STA should perform a handoff. The initial results from our simulations show that the novel AP module is more effective than the conventional scheme and a related work in terms of providing a handoff process with low latency and sharing traffic load with neighbor APs.
Fuereder, Markus; Majeed, Imthiyas N; Panke, Sven; Bechtold, Matthias
2014-06-13
Teicoplanin aglycone columns allow efficient separation of amino acid enantiomers in aqueous mobile phases and enable robust and predictable simulated moving bed (SMB) separation of racemic methionine despite a dependency of the adsorption behavior on the column history (memory effect). In this work we systematically investigated the influence of the mobile phase (methanol content) and temperature on SMB performance using a model-based optimization approach that accounts for methionine solubility, adsorption behavior and back pressure. Adsorption isotherms became more favorable with increasing methanol content but methionine solubility was decreased and back pressure increased. Numerical optimization suggested a moderate methanol content (25-35%) for most efficient operation. Higher temperature had a positive effect on specific productivity and desorbent requirement due to higher methionine solubility, lower back pressure and virtually invariant selectivity at high loadings of racemic methionine. However, process robustness (defined as a difference in flow rate ratios) decreased strongly with increasing temperature to the extent that any significant increase in temperature over 32°C will likely result in operating points that cannot be realized technically even with the lab-scale piston pump SMB system employed in this study. Copyright © 2014. Published by Elsevier B.V.
Cation mobility and the sorption of chloroform in zeolite NaY: molecular dynamics study.
Ramsahye, Naseem A; Bell, Robert G
2005-03-17
Molecular dynamics simulations at temperatures of 270, 330, and 390 K have been carried out to address the question of cation migration upon chloroform sorption in sodium zeolite Y. The results show that sodium cations located in different sites exhibit different types of mobility. These may be summarized as follows: (1) SII cations migrate toward the center of the supercage upon sorption, due to interactions with the polar sorbate molecules. (2) SI' cations hop from the sodalite cage into the supercage to fill vacant SII sites. (3) SI' cations migrate to other SI' sites within the same sodalite cage. (4) SI cations hop out of the double six-rings into SI' sites. In some instances, concerted motion of cations is observed. Furthermore, former SI' and SI cations, having crossed to SII sites, may then further migrate within the supercage, as in (1). The cation motion is dependent on the level of sorbate loading, with 10 molecules per unit cell not being enough to induce significant cation displacements, whereas the sorption of 40 molecules per unit cell results in a number of cations being displaced from their original positions. Further rearrangement of the cation positions is observed upon evacuation of the simulation cell, with some cations reverting back to sites normally occupied in bare NaY.
Effect of age and rainfall pH on contaminant yields from metal roofs.
Wicke, Daniel; Cochrane, Thomas A; O'Sullivan, Aisling D; Cave, Simon; Derksen, Mark
2014-01-01
Metal roofs are recognized for conveying significant metal loads to urban streams through stormwater runoff. Metal concentrations in urban runoff depend on roof types and prevailing weather conditions but the combined effects of roof age and rainfall pH on metal mobilization are not well understood. To investigate these effects on roof runoff, water quality was analysed from galvanized iron and copper roofs following rainfall events and also from simulating runoff using a rainfall simulator on specially constructed roof modules. Zinc and copper yields under different pH regimes were investigated for two roof materials and two different ages. Metal mobilization from older roofs was greater than new roofs with 55-year-old galvanized roof surfaces yielding more Zn, on average increasing by 45% and 30% under a rainfall pH of 4 and 8, respectively. Predominantly dissolved (85-95%) Zn and Cu concentrations in runoff exponentially increased as the rainfall pH decreased. Results also confirmed that copper guttering and downpipes associated with galvanized steel roof systems can substantially increase copper levels in roof runoff. Understanding the dynamics of roof surfaces as a function of weathering and rainfall pH regimes can help developers with making better choices about roof types and materials for stormwater improvement.
NASA Technical Reports Server (NTRS)
Contreras, Michael T.; Trease, Brian P.; Bojanowski, Cezary; Kulakx, Ronald F.
2013-01-01
A wheel experiencing sinkage and slippage events poses a high risk to planetary rover missions as evidenced by the mobility challenges endured by the Mars Exploration Rover (MER) project. Current wheel design practice utilizes loads derived from a series of events in the life cycle of the rover which do not include (1) failure metrics related to wheel sinkage and slippage and (2) performance trade-offs based on grouser placement/orientation. Wheel designs are rigorously tested experimentally through a variety of drive scenarios and simulated soil environments; however, a robust simulation capability is still in development due to myriad of complex interaction phenomena that contribute to wheel sinkage and slippage conditions such as soil composition, large deformation soil behavior, wheel geometry, nonlinear contact forces, terrain irregularity, etc. For the purposes of modeling wheel sinkage and slippage at an engineering scale, meshfree nite element approaches enable simulations that capture su cient detail of wheel-soil interaction while remaining computationally feasible. This study implements the JPL wheel-soil benchmark problem in the commercial code environment utilizing the large deformation modeling capability of Smooth Particle Hydrodynamics (SPH) meshfree methods. The nominal, benchmark wheel-soil interaction model that produces numerically stable and physically realistic results is presented and simulations are shown for both wheel traverse and wheel sinkage cases. A sensitivity analysis developing the capability and framework for future ight applications is conducted to illustrate the importance of perturbations to critical material properties and parameters. Implementation of the proposed soil-wheel interaction simulation capability and associated sensitivity framework has the potential to reduce experimentation cost and improve the early stage wheel design proce
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Zeli; Zhuang, Qianlai; Shurpali, Narasinha J.
Recent studies indicated that Arctic lakes play an important role in receiving, processing, and storing organic carbon exported from terrestrial ecosystems. To quantify the contribution of Arctic lakes to the global carbon cycle, we developed a one-dimensional process-based Arctic Lake Biogeochemistry Model (ALBM) that explicitly simulates the dynamics of organic and inorganic carbon in Arctic lakes. By realistically modeling water mixing, carbon biogeochemistry, and permafrost carbon loading, the model can reproduce the seasonal variability of CO2 fluxes from the study Arctic lakes. The simulated area-weighted CO2 fluxes from yedoma thermokarst lakes, non-yedoma thermokarst lakes and glacial lakes are 29.5 gmore » C m-2 yr-1, 13.0 g C m-2 yr-1 and 21.4 g C m-2 yr-1, respectively, close to the observed values (31.2 g C m-2 yr-1, 17.2 g C m-2 yr-1 and 16.5±7.7 g C m-2 yr-1, respectively). The simulations show that the high CO2 fluxes from yedoma thermokarst lakes are stimulated by the biomineralization of mobilized labile organic carbon from thawing yedoma permafrost. The simulations also imply that the relative contribution of glacial lakes to the global carbon cycle could be the largest because of their much larger surface area and high biomineralization and carbon loading. According to the model, sunlight-induced organic carbon degradation is more important for shallow non-yedoma thermokarst lakes but its overall contribution to the global carbon cycle could be limited. Overall, the ALBM model can simulate the whole-lake carbon balance of Arctic lakes, a difficult task for field and laboratory experiments and other biogeochemistry models.« less
Accelerator-Driven Subcritical System for Disposing of the U.S. Spent Nuclear Fuel Inventory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gohar, Yousry; Cao, Yan; Kraus, Adam R.
The current United States inventory of the spent nuclear fuel (SNF) is ~80,000 metric tons of heavy metal (MTHM), including ~131 tons of minor actinides (MAs) and ~669 tons of plutonium. This study describes a conceptual design of an accelerator-driven subcritical (ADS) system for disposing of this SNF inventory by utilizing the 131 tons of MAs inventory and a fraction of the plutonium inventory for energy production, and transmuting some long-lived fission products. An ADS system with a homogeneous subcritical fission blanket was first examined. A spallation neutron source is used to drive the blanket and it is produced frommore » the interaction of a 1-GeV proton beam with a lead-bismuth eutectic (LBE) target. The blanket has a liquid mobile fuel using LBE as the fuel carrier. The fuel materials are dissolved, mixed, or suspended in the liquid fuel carrier. Monte Carlo analyses were performed to determine the overall parameters of the concept. Steady-state Monte Carlo simulations were performed for three similar fission blankets. Except for, the loaded amount of actinide materials in the LBE is either 5, 7, or 10% of the total volume of the blanket, respectively. The neutron multiplication factors of the three blankets are ~0.98 and the initial MAs blanket inventories are ~10 tons. In addition, Monte Carlo burnup simulations using the MCB5 code were performed to analyze the performance of the three conceptual ADS systems. During operation, fresh fuel was fed into the fission blanket to adjust its reactivity and to control the system power. The burnup analysis shows that the three ADS concepts consume about 1.2 tons of actinides per full power year and produce 3 GW thermal power, with a proton beam power of 25 MW. For the blankets with 5, 7, or 10% actinide fuel particles loaded in the LBE, assuming that the ADS systems can be operated for 35 full-power years, the total MA materials consumed in the three ADS systems are about 30.6, 35.3, and 37.2 tons, respectively. Thus, the corresponding numbers of ADS systems to utilize the 131 tons of MA materials of the SNF inventory are 4.3, 3.7, or 3.5, respectively. ADS concepts with tube bundles inserted in the fission blanket were analyzed to overcome the disadvantages of the homogeneous blanket concept. The liquid lead is used as the target material, the mobile fuel carrier, and the primary coolant to avoid the polonium production from bismuth. Reactor physics and thermal-hydraulic analyses were coupled to determine the parameters of the heterogeneous fission blanket. The engineering requirements for a satisfactory operation performance of the HT-9 ferritic steel structure material have been realized. Two heterogeneous concepts of the subcritical fission blanket with the liquid lead mobile fuel inside or outside the tube bundles were considered. The heterogeneous configuration with the mobile fuel inside the tubes showed better performance than the configuration with mobile fuel outside the bundle tubes. The Monte Carlo burnup codes, MCB5 and SERPENT were both used to simulate the fuel burnup in the ADS concepts with the mobile fuels inside the tubes. The burnup analyses were carried out for 35 full power years. The results show that 5 ADS systems can dispose of the total United States inventory of the spent nuclear fuel.« less
NASA Astrophysics Data System (ADS)
Tsuji, Takao; Hara, Ryoichi; Oyama, Tsutomu; Yasuda, Keiichiro
A super distributed energy system is a future energy system in which the large part of its demand is fed by a huge number of distributed generators. At one time some nodes in the super distributed energy system behave as load, however, at other times they behave as generator - the characteristic of each node depends on the customers' decision. In such situation, it is very difficult to regulate voltage profile over the system due to the complexity of power flows. This paper proposes a novel control method of distributed generators that can achieve the autonomous decentralized voltage profile regulation by using multi-agent technology. The proposed multi-agent system employs two types of agent; a control agent and a mobile agent. Control agents generate or consume reactive power to regulate the voltage profile of neighboring nodes and mobile agents transmit the information necessary for VQ-control among the control agents. The proposed control method is tested through numerical simulations.
NASA Astrophysics Data System (ADS)
Mogurampelly, Santosh; Ganesan, Venkat
2017-02-01
We use all atom molecular dynamics simulations to investigate the influence of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) ionic liquid on the structure and transport properties of poly(ethylene oxide) (PEO) polymer electrolytes doped with LiPF6 salt. We observe enhanced diffusivities of the Li+, PF6-, and BMIM+ ions with increasing loading of the ionic liquid. Interplay between the different ion-ion and ion-polymer interactions is seen to lead to a destabilization of the Li-PF6 coordination and increase in the strength of association between the Li+ cations and the polymer backbone. As a consequence, the polymer segmental relaxation times are shown to be only moderately affected by the addition of ionic liquids. The ionic-liquid induced changes in the mobilities of Li+ ions are seen to be correlated to polymer segmental relaxation times. However, the mobilities of BMIM+ ions are seen to be more strongly correlated to the BMIM-PF6 ion-pair relaxation times.
Identification of task demands and usability issues in police use of mobile computing terminals.
Zahabi, Maryam; Kaber, David
2018-01-01
Crash reports from various states in the U.S. have shown high numbers of emergency vehicle crashes, especially in law enforcement situations. This study identified the perceived importance and frequency of police mobile computing terminal (MCT) tasks, quantified the demands of different tasks using a cognitive performance modeling methodology, identified usability violations of current MCT interface designs, and formulated design recommendations for an enhanced interface. Results revealed that "access call notes", "plate number check" and "find location on map" are the most important and frequently performed tasks for officers. "Reading plate information" was also found to be the most visually and cognitively demanding task-method. Usability principles of "using simple and natural dialog" and "minimizing user memory load" were violated by the current MCT interface design. The enhanced design showed potential for reducing cognitive demands and task completion time. Findings should be further validated using a driving simulation study. Copyright © 2017 Elsevier Ltd. All rights reserved.
Composite load spectra for select space propulsion structural components
NASA Technical Reports Server (NTRS)
Newell, J. F.; Kurth, R. E.; Ho, H.
1991-01-01
The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen posts and system ducting. The first approach will consist of using state of the art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The second approach will consist of developing coupled models for composite load spectra simulation which combine the deterministic models for composite load dynamic, acoustic, high pressure, and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, Abhijit A.; Pandey, Yogendra Narayan; Doxastakis, Manolis
2014-10-01
The acid-catalyzed deprotection of glassy poly(4-hydroxystyrene-co-tertbutyl acrylate) films was studied with infrared absorbance spectroscopy and stochastic simulations. Experimental data were interpreted with a simple description of subdiffusive acid transport coupled to second-order acid loss. This model predicts key attributes of observed deprotection rates, such as fast reaction at short times, slow reaction at long times, and a nonlinear dependence on acid loading. Fickian diffusion is approached by increasing the post-exposure bake temperature or adding plasticizing agents to the polymer resin. These findings demonstrate that acid mobility and overall deprotection kinetics are coupled to glassy matrix dynamics. To complement the analysismore » of bulk kinetics, acid diffusion lengths were calculated from the anomalous transport model and compared with nanopattern line widths. The consistent scaling between experiments and simulations suggests that the anomalous diffusion model could be further developed into a predictive lithography tool.« less
Use of a Mobile Device Simulation as a Preclass Active Learning Exercise.
Keegan, Robert D; Oliver, M Cecile; Stanfill, Teresa J; Stevens, Kevin V; Brown, Gary R; Ebinger, Michael; Gay, John M
2016-01-01
Research shows that preclass activities introducing new material can increase student performance. In an effort to engage students in an active learning, preclass activity, the authors developed a mobile application. Eighty-four nursing students were assigned a preclass reading exercise, whereas 32 students completed the preclass simulation scenario on their mobile device. All students completed the same electronic fetal monitoring (EFM) quiz 1 week following the lecture. The effects of reading or simulation on student quiz performance was evaluated with a student's paired t test, using an alpha of .05. Students completing the preclass simulation scored higher on the EFM quiz, compared with students assigned the preclass reading (85% versus 70% correct answers, p = .01). Student survey data indicated that the mobile device simulation was perceived as an engaging and desirable instructional tool. Nursing students completing the mobile device EFM preclass simulation outperformed the students who were given the traditional reading assignment. Copyright 2016, SLACK Incorporated.
Immobilization After Rotator Cuff Repair: What Evidence Do We Have Now?
Hsu, Jason E; Horneff, John G; Gee, Albert O
2016-01-01
Recurrent tears after rotator cuff repair are common. Postoperative rehabilitation after rotator cuff repair is a modifiable factor controlled by the surgeon that can affect re-tear rates. Some surgeons prefer early mobilization after rotator cuff repair, whereas others prefer a period of immobilization to protect the repair site. The tendon-healing process incorporates biochemical and biomechanical responses to mechanical loading. Healing can be optimized with controlled loading. Complete load removal and chronic overload can be deleterious to the process. Several randomized clinical studies have also characterized the role of postoperative mobilization after rotator cuff repair. Copyright © 2016 Elsevier Inc. All rights reserved.
Sivakumar, B; Bhalaji, N; Sivakumar, D
2014-01-01
In mobile ad hoc networks connectivity is always an issue of concern. Due to dynamism in the behavior of mobile nodes, efficiency shall be achieved only with the assumption of good network infrastructure. Presence of critical links results in deterioration which should be detected in advance to retain the prevailing communication setup. This paper discusses a short survey on the specialized algorithms and protocols related to energy efficient load balancing for critical link detection in the recent literature. This paper also suggests a machine learning based hybrid power-aware approach for handling critical nodes via load balancing.
Sivakumar, B.; Bhalaji, N.; Sivakumar, D.
2014-01-01
In mobile ad hoc networks connectivity is always an issue of concern. Due to dynamism in the behavior of mobile nodes, efficiency shall be achieved only with the assumption of good network infrastructure. Presence of critical links results in deterioration which should be detected in advance to retain the prevailing communication setup. This paper discusses a short survey on the specialized algorithms and protocols related to energy efficient load balancing for critical link detection in the recent literature. This paper also suggests a machine learning based hybrid power-aware approach for handling critical nodes via load balancing. PMID:24790546
Multidirectional mobilities: Advanced measurement techniques and applications
NASA Astrophysics Data System (ADS)
Ivarsson, Lars Holger
Today high noise-and-vibration comfort has become a quality sign of products in sectors such as the automotive industry, aircraft, components, households and manufacturing. Consequently, already in the design phase of products, tools are required to predict the final vibration and noise levels. These tools have to be applicable over a wide frequency range with sufficient accuracy. During recent decades a variety of tools have been developed such as transfer path analysis (TPA), input force estimation, substructuring, coupling by frequency response functions (FRF) and hybrid modelling. While these methods have a well-developed theoretical basis, their application combined with experimental data often suffers from a lack of information concerning rotational DOFs. In order to measure response in all 6 DOFs (including rotation), a sensor has been developed, whose special features are discussed in the thesis. This transducer simplifies the response measurements, although in practice the excitation of moments appears to be more difficult. Several excitation techniques have been developed to enable measurement of multidirectional mobilities. For rapid and simple measurement of the loaded mobility matrix, a MIMO (Multiple Input Multiple Output) technique is used. The technique has been tested and validated on several structures of different complexity. A second technique for measuring the loaded 6-by-6 mobility matrix has been developed. This technique employs a model of the excitation set-up, and with this model the mobility matrix is determined from sequential measurements. Measurements on ``real'' structures show that both techniques give results of similar quality, and both are recommended for practical use. As a further step, a technique for measuring the unloaded mobilities is presented. It employs the measured loaded mobility matrix in order to calculate compensation forces and moments, which are later applied in order to compensate for the loading of the measurement equipment. The developed measurement techniques have been used in a hybrid coupling of a plate-and-beam structure to study different aspects of the coupling technique. Results show that RDOFs are crucial and have to be included in this case. The importance of stiffness residuals when mobilities are estimated from modal superposition is demonstrated. Finally it is shown that proper curve fitting can correct errors from inconsistently measured data.
Creating a Lunar EVA Work Envelope
NASA Technical Reports Server (NTRS)
Griffin, Brand N.; Howard, Robert; Rajulu, Sudhakar; Smitherman, David
2009-01-01
A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.
Learning anatomy via mobile augmented reality: Effects on achievement and cognitive load.
Küçük, Sevda; Kapakin, Samet; Göktaş, Yüksel
2016-10-01
Augmented reality (AR), a new generation of technology, has attracted the attention of educators in recent years. In this study, a MagicBook was developed for a neuroanatomy topic by using mobile augmented reality (mAR) technology. This technology integrates virtual learning objects into the real world and allow users to interact with the environment using mobile devices. The purpose of this study was to determine the effects of learning anatomy via mAR on medical students' academic achievement and cognitive load. The mixed method was applied in the study. The random sample consisted of 70 second-year undergraduate medical students: 34 in an experimental group and 36 in a control group. Academic achievement test and cognitive load scale were used as data collection tool. A one-way MANOVA test was used for analysis. The experimental group, which used mAR applications, reported higher achievement and lower cognitive load. The use of mAR applications in anatomy education contributed to the formation of an effective and productive learning environment. Student cognitive load decreased as abstract information became concrete in printed books via multimedia materials in mAR applications. Additionally, students were able to access the materials in the MagicBook anytime and anywhere they wanted. The mobile learning approach helped students learn better by exerting less cognitive effort. Moreover, the sensory experience and real time interaction with environment may provide learning satisfaction and enable students to structure their knowledge to complete the learning tasks. Anat Sci Educ 9: 411-421. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.
NASA Astrophysics Data System (ADS)
Birkel, Christian; Broder, Tanja; Biester, Harald
2017-04-01
Peat soils act as important carbon sinks, but they also release large amounts of dissolved organic carbon (DOC) to the aquatic system. The DOC export is strongly tied to the export of soluble heavy metals. The accumulation of potentially toxic substances due to anthropogenic activities, and their natural export from peat soils to the aquatic system is an important health and environmental issue. However, limited knowledge exists as to how much of these substances are mobilized, how they are mobilized in terms of flow pathways and under which hydrometeorological conditions. In this study, we report from a combined experimental and modelling effort to provide greater process understanding from a small, lead (Pb) and arsenic (As) contaminated upland peat catchment in northwestern Germany. We developed a minimally parameterized, but process-based, coupled hydrology-biogeochemistry model applied to simulate detailed hydrometric and biogeochemical data. The model was based on an initial data mining analysis, in combination with regression relationships of discharge, DOC and element export. We assessed the internal model DOC-processing based on stream-DOC hysteresis patterns and 3-hourly time step groundwater level and soil DOC data (not used for calibration as an independent model test) for two consecutive summer periods in 2013 and 2014. We found that Pb and As mobilization can be efficiently predicted from DOC transport alone, but Pb showed a significant non-linear relationship with DOC, while As was linearly related to DOC. The relatively parsimonious model (nine calibrated parameters in total) showed the importance of non-linear and rapid near-surface runoff-generation mechanisms that caused around 60% of simulated DOC load. The total load was high even though these pathways were only activated during storm events on average 30% of the monitoring time - as also shown by the experimental data. Overall, the drier period 2013 resulted in increased nonlinearity, but exported less DOC (115 kg C ha-1 yr-1 ± 11 kg C ha-1 yr-1) compared to the equivalent but wetter period in 2014 (189 kg C ha-1 yr-1 ± 38 kg C ha-1 yr-1). The exceedance of a critical water table threshold (-10 cm) triggered a rapid near-surface runoff response with associated higher DOC transport connecting all available DOC pools, and with subsequent dilution. We conclude that the combination of detailed experimental work with relatively simple, coupled hydrology-biogeochemistry models allowed not only the model to be internally constrained, but also provided important insight into how DOC and tightly coupled heavy metals are mobilized.
NASA Astrophysics Data System (ADS)
Firojkhan, Pathan; Tanpure, Kshitijit; Dawale, Ajinkya; Patil, Shital
2018-04-01
Fiber reinforced polymer (FRP) composites are widely use in aerospace, marine, auto-mobile and civil engineering applications because of their high strength-to-weight and stiffness-to-weight ratios, corrosion resistance and potentially high durability. The purpose of this research is to experimentally investigate the mechanical and fracture properties of glass-fiber reinforced polyester composite material, 450 g/m 2 randomly distributed glass-fiber mat also known as woven strand mat with polyester resin as a matrix. The samples have been produced by the conventional hand layup process and the specimens were prepared as per the ASTM standards. The tensile test was performed on the composite specimens using Universal testing machine (UTM) which are used for the finite element simulation of composite Layered fracture model. The mechanical properties were evaluated from the stress vs. strain curve obtained from the test result. Later, fracture tests were performed on the CT specimen. In case of CT specimen the load vs. Displacement plot obtained from the experimental results was used to determine the fracture properties of the composite. The failure load of CT specimen using FEA is simulated which gives the Stress intensity factor by using FEA. Good agreement between the FEA and experimental results was observed.
Amiel, Imri; Simon, Daniel; Merin, Ofer; Ziv, Amitai
2016-01-01
Medical simulation is an increasingly recognized tool for teaching, coaching, training, and examining practitioners in the medical field. For many years, simulation has been used to improve trauma care and teamwork. Despite technological advances in trauma simulators, including better means of mobilization and control, most reported simulation-based trauma training has been conducted inside simulation centers, and the practice of mobile simulation in hospitals' trauma rooms has not been investigated fully. The emergency department personnel from a second-level trauma center in Israel were evaluated. Divided into randomly formed trauma teams, they were reviewed twice using in situ mobile simulation training at the hospital's trauma bay. In all, 4 simulations were held before and 4 simulations were held after a structured learning intervention. The intervention included a 1-day simulation-based training conducted at the Israel Center for Medical Simulation (MSR), which included video-based debriefing facilitated by the hospital's 4 trauma team leaders who completed a 2-day simulation-based instructors' course before the start of the study. The instructors were also trained on performance rating and thus were responsible for the assessment of their respective teams in real time as well as through reviewing of the recorded videos; thus enabling a comparison of the performances in the mobile simulation exercise before and after the educational intervention. The internal reliability of the experts' evaluation calculated in the Cronbach α model was found to be 0.786. Statistically significant improvement was observed in 4 of 10 parameters, among which were teamwork (29.64%) and communication (24.48%) (p = 0.00005). The mobile in situ simulation-based training demonstrated efficacy both as an assessment tool for trauma teams' function and an educational intervention when coupled with in vitro simulation-based training, resulting in a significant improvement of the teams' function in various aspects of treatment. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Effects of nitrogen loading on greenhouse gas emissions in salt marshes
NASA Astrophysics Data System (ADS)
Tang, J.; Moseman-Valtierra, S.; Kroeger, K. D.; Morkeski, K.; Mora, J.; Chen, X.; Carey, J.
2014-12-01
Salt marshes play an important role in global and regional carbon and nitrogen cycling. We tested the hypothesis that anthropogenic nitrogen loading alters greenhouse gas (GHG, including CO2, CH4, and N2O) emissions and carbon sequestration in salt marshes. We measured GHG emissions biweekly for two growing seasons across a nitrogen-loading gradient of four Spartina salt marshes in Waquoit Bay, Massachusetts. In addition, we conducted nitrogen addition experiments in a pristine marsh by adding low and high nitrate to triplicate plots bi-weekly during the summer. The GHG flux measurements were made in situ with a state-of-the-art mobile gas measurement system using the cavity ring down technology that consists of a CO2/CH4 analyzer (Picarro) and an N2O/CO analyzer (Los Gatos). We observed strong seasonal variations in greenhouse gas emissions. The differences in gas emissions across the nitrogen gradient were not significant, but strong pulse emissions of N2O were observed after nitrogen was artificially added to the marsh. Our results will facilitate model development to simulate GHG emissions in coastal wetlands and support methodology development to assess carbon credits in preserving and restoring coastal wetlands.
Schlairet, Maura C; Schlairet, Timothy James; Sauls, Denise H; Bellflowers, Lois
2015-03-01
Establishing the impact of the high-fidelity simulation environment on student performance, as well as identifying factors that could predict learning, would refine simulation outcome expectations among educators. The purpose of this quasi-experimental pilot study was to explore the impact of simulation on emotion and cognitive load among beginning nursing students. Forty baccalaureate nursing students participated in teaching simulations, rated their emotional state and cognitive load, and completed evaluation simulations. Two principal components of emotion were identified representing the pleasant activation and pleasant deactivation components of affect. Mean rating of cognitive load following simulation was high. Linear regression identiffed slight but statistically nonsignificant positive associations between principal components of emotion and cognitive load. Logistic regression identified a negative but statistically nonsignificant effect of cognitive load on assessment performance. Among lower ability students, a more pronounced effect of cognitive load on assessment performance was observed; this also was statistically non-significant. Copyright 2015, SLACK Incorporated.
Mobile-ip Aeronautical Network Simulation Study
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Tran, Diepchi T.
2001-01-01
NASA is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AATT), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This report presents the results of a simulation study of mobile-ip for an aeronautical network. The study was performed to determine the performance of the transmission control protocol (TCP) in a mobile-ip environment and to gain an understanding of how long delays, handoffs, and noisy channels affect mobile-ip performance.
46 CFR 109.525 - Cranes: Working loads.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Cranes: Working loads. 109.525 Section 109.525 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Cranes § 109.525 Cranes: Working loads. The master or person in charge shall ensure that tables...
46 CFR 107.260 - Rated load test for cranes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Rated load test for cranes. 107.260 Section 107.260 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.260 Rated load test for cranes. (a) To meet...
46 CFR 109.525 - Cranes: Working loads.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Cranes: Working loads. 109.525 Section 109.525 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Cranes § 109.525 Cranes: Working loads. The master or person in charge shall ensure that tables...
46 CFR 107.260 - Rated load test for cranes.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Rated load test for cranes. 107.260 Section 107.260 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.260 Rated load test for cranes. (a) To meet...
46 CFR 107.260 - Rated load test for cranes.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Rated load test for cranes. 107.260 Section 107.260 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.260 Rated load test for cranes. (a) To meet...
46 CFR 107.260 - Rated load test for cranes.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Rated load test for cranes. 107.260 Section 107.260 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.260 Rated load test for cranes. (a) To meet...
46 CFR 109.525 - Cranes: Working loads.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Cranes: Working loads. 109.525 Section 109.525 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Cranes § 109.525 Cranes: Working loads. The master or person in charge shall ensure that tables...
46 CFR 109.525 - Cranes: Working loads.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Cranes: Working loads. 109.525 Section 109.525 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Cranes § 109.525 Cranes: Working loads. The master or person in charge shall ensure that tables...
46 CFR 109.525 - Cranes: Working loads.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Cranes: Working loads. 109.525 Section 109.525 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Cranes § 109.525 Cranes: Working loads. The master or person in charge shall ensure that tables...
46 CFR 107.260 - Rated load test for cranes.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Rated load test for cranes. 107.260 Section 107.260 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.260 Rated load test for cranes. (a) To meet...
Computer simulator for a mobile telephone system
NASA Technical Reports Server (NTRS)
Schilling, D. L.
1981-01-01
A software simulator was developed to assist NASA in the design of the land mobile satellite service. Structured programming techniques were used by developing the algorithm using an ALCOL-like pseudo language and then encoding the algorithm into FORTRAN 4. The basic input data to the system is a sine wave signal although future plans call for actual sampled voice as the input signal. The simulator is capable of studying all the possible combinations of types and modes of calls through the use of five communication scenarios: single hop systems; double hop, signal gateway system; double hop, double gateway system; mobile to wireline system; and wireline to mobile system. The transmitter, fading channel, and interference source simulation are also discussed.
Romano, Ron; Baum, Neil
2014-01-01
Having a Web page and a blog site are the minimum requirements for an Internet presence in the new millennium. However, a Web page that loads on a personal computer or a laptop will be ineffective on a mobile or cellular phone. Today, with more existing and potential patients having access to cellular technology, it is necessary to reconfigure the appearance of your Web site that appears on a mobile phone. This article discusses mobile computing and suggestions for improving the appearance of your Web site on a mobile or cellular phone.
Computer Simulation and Field Experiment for Downlink Multiuser MIMO in Mobile WiMAX System.
Yamaguchi, Kazuhiro; Nagahashi, Takaharu; Akiyama, Takuya; Matsue, Hideaki; Uekado, Kunio; Namera, Takakazu; Fukui, Hiroshi; Nanamatsu, Satoshi
2015-01-01
The transmission performance for a downlink mobile WiMAX system with multiuser multiple-input multiple-output (MU-MIMO) systems in a computer simulation and field experiment is described. In computer simulation, a MU-MIMO transmission system can be realized by using the block diagonalization (BD) algorithm, and each user can receive signals without any signal interference from other users. The bit error rate (BER) performance and channel capacity in accordance with modulation schemes and the number of streams were simulated in a spatially correlated multipath fading environment. Furthermore, we propose a method for evaluating the transmission performance for this downlink mobile WiMAX system in this environment by using the computer simulation. In the field experiment, the received power and downlink throughput in the UDP layer were measured on an experimental mobile WiMAX system developed in Azumino City in Japan. In comparison with the simulated and experimented results, the measured maximum throughput performance in the downlink had almost the same performance as the simulated throughput. It was confirmed that the experimental mobile WiMAX system for MU-MIMO transmission successfully increased the total channel capacity of the system.
Computer Simulation and Field Experiment for Downlink Multiuser MIMO in Mobile WiMAX System
Yamaguchi, Kazuhiro; Nagahashi, Takaharu; Akiyama, Takuya; Matsue, Hideaki; Uekado, Kunio; Namera, Takakazu; Fukui, Hiroshi; Nanamatsu, Satoshi
2015-01-01
The transmission performance for a downlink mobile WiMAX system with multiuser multiple-input multiple-output (MU-MIMO) systems in a computer simulation and field experiment is described. In computer simulation, a MU-MIMO transmission system can be realized by using the block diagonalization (BD) algorithm, and each user can receive signals without any signal interference from other users. The bit error rate (BER) performance and channel capacity in accordance with modulation schemes and the number of streams were simulated in a spatially correlated multipath fading environment. Furthermore, we propose a method for evaluating the transmission performance for this downlink mobile WiMAX system in this environment by using the computer simulation. In the field experiment, the received power and downlink throughput in the UDP layer were measured on an experimental mobile WiMAX system developed in Azumino City in Japan. In comparison with the simulated and experimented results, the measured maximum throughput performance in the downlink had almost the same performance as the simulated throughput. It was confirmed that the experimental mobile WiMAX system for MU-MIMO transmission successfully increased the total channel capacity of the system. PMID:26421311
Wu, Weiliang; Zhang, Xianming; Lin, Lin; Ou, Yonger; Li, Xiaoying; Guan, Lili; Guo, Bingpeng; Zhou, Luqian; Chen, Rongchang
2017-01-01
Inspiratory muscle training (IMT) is a rehabilitation therapy for stable patients with COPD. However, its therapeutic effect remains undefined due to the unclear nature of diaphragmatic mobilization during IMT. Diaphragmatic mobilization, represented by transdiaphragmatic pressure (Pdi), and neural respiratory drive, expressed as the corrected root mean square (RMS) of the diaphragmatic electromyogram (EMGdi), both provide vital information to select the proper IMT device and loads in COPD, therefore contributing to the curative effect of IMT. Pdi and RMS of EMGdi (RMSdi%) were measured and compared during inspiratory resistive training and threshold load training in stable patients with COPD. Pdi and neural respiratory drive were measured continuously during inspiratory resistive training and threshold load training in 12 stable patients with COPD (forced expiratory volume in 1 s ± SD was 26.1%±10.2% predicted). Pdi was significantly higher during high-intensity threshold load training (91.46±17.24 cmH 2 O) than during inspiratory resistive training (27.24±6.13 cmH 2 O) in stable patients with COPD, with P <0.01 for each. Significant difference was also found in RMSdi% between high-intensity threshold load training and inspiratory resistive training (69.98%±16.78% vs 17.26%±14.65%, P <0.01). We concluded that threshold load training shows greater mobilization of Pdi and neural respiratory drive than inspiratory resistive training in stable patients with COPD.
Uranium fate in wetland mesocosms: Effects of plants at two iron loadings with different pH values.
Koster van Groos, Paul G; Kaplan, Daniel I; Chang, Hyun-Shik; Seaman, John C; Li, Dien; Peacock, Aaron D; Scheckel, Kirk G; Jaffé, Peter R
2016-11-01
Small-scale continuous flow wetland mesocosms (∼0.8 L) were used to evaluate how plant roots under different iron loadings affect uranium (U) mobility. When significant concentrations of ferrous iron (Fe) were present at circumneutral pH values, U concentrations in root exposed sediments were an order of magnitude greater than concentrations in root excluded sediments. Micro X-ray absorption near-edge structure (μ-XANES) spectroscopy indicated that U was associated with the plant roots primarily as U(VI) or U(V), with limited evidence of U(IV). Micro X-ray fluorescence (μ-XRF) of plant roots suggested that for high iron loading at circumneutral pH, U was co-located with Fe, perhaps co-precipitated with root Fe plaques, while for low iron loading at a pH of ∼4 the correlation between U and Fe was not significant, consistent with previous observations of U associated with organic matter. Quantitative PCR analyses indicated that the root exposed sediments also contained elevated numbers of Geobacter spp., which are likely associated with enhanced iron cycling, but may also reduce mobile U(VI) to less mobile U(IV) species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Subject-specific modeling of muscle force and knee contact in total knee arthroplasty.
Navacchia, Alessandro; Rullkoetter, Paul J; Schütz, Pascal; List, Renate B; Fitzpatrick, Clare K; Shelburne, Kevin B
2016-09-01
Understanding the mechanical loading environment and resulting joint mechanics for activities of daily living in total knee arthroplasty is essential to continuous improvement in implant design. Although survivorship of these devices is good, a substantial number of patients report dissatisfaction with the outcome of their procedure. Knowledge of in vivo kinematics and joint loading will enable improvement in preclinical assessment and refinement of implant geometry. The purpose of this investigation was to describe the mechanics of total knee arthroplasty during a variety of activities of daily living (gait, walking down stairs, and chair rise/sit). Estimates of muscle forces, tibial contact load, location, and pressure distribution was performed through a combination of mobile fluoroscopy data collection, musculoskeletal modeling, and finite element simulation. For the activities evaluated, joint compressive load was greatest during walking down stairs; however, the highest contact pressure occurred during chair rise/sit. The joint contact moment in the frontal plane was mainly varus for gait and walking down stairs, while it was valgus during chair rise/sit. Excursion of the center of pressure on the tibial component was similar during each activity and between the medial and lateral sides. The main determinants of center of pressure location were internal-external rotation, joint load, and tibial insert conformity. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1576-1587, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Allen, David K.; Shoard, M.
2005-01-01
Introduction: We report on a small-scale research project which examined the impact of mobile technologies on the users' experience of information overload. The project focused on a group of worker who have had relatively little attention in both the mobile technology and information overload literatures: senior managers. Method: The case study…
The composite load spectra project
NASA Technical Reports Server (NTRS)
Newell, J. F.; Ho, H.; Kurth, R. E.
1990-01-01
Probabilistic methods and generic load models capable of simulating the load spectra that are induced in space propulsion system components are being developed. Four engine component types (the transfer ducts, the turbine blades, the liquid oxygen posts and the turbopump oxidizer discharge duct) were selected as representative hardware examples. The composite load spectra that simulate the probabilistic loads for these components are typically used as the input loads for a probabilistic structural analysis. The knowledge-based system approach used for the composite load spectra project provides an ideal environment for incremental development. The intelligent database paradigm employed in developing the expert system provides a smooth coupling between the numerical processing and the symbolic (information) processing. Large volumes of engine load information and engineering data are stored in database format and managed by a database management system. Numerical procedures for probabilistic load simulation and database management functions are controlled by rule modules. Rules were hard-wired as decision trees into rule modules to perform process control tasks. There are modules to retrieve load information and models. There are modules to select loads and models to carry out quick load calculations or make an input file for full duty-cycle time dependent load simulation. The composite load spectra load expert system implemented today is capable of performing intelligent rocket engine load spectra simulation. Further development of the expert system will provide tutorial capability for users to learn from it.
NASA Astrophysics Data System (ADS)
Yue, Yingchao; Fan, Wenhui; Xiao, Tianyuan; Ma, Cheng
2013-07-01
High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation based on HLA/RTI, which extends HLA in various aspects like functionality and efficiency. However, related study on the load balancing problem of HLA collaborative simulation is insufficient. Without load balancing, collaborative simulation under HLA/RTI may encounter performance reduction or even fatal errors. In this paper, load balancing is further divided into static problems and dynamic problems. A multi-objective model is established and the randomness of model parameters is taken into consideration for static load balancing, which makes the model more credible. The Monte Carlo based optimization algorithm(MCOA) is excogitated to gain static load balance. For dynamic load balancing, a new type of dynamic load balancing problem is put forward with regards to the variable-structured collaborative simulation under HLA/RTI. In order to minimize the influence against the running collaborative simulation, the ordinal optimization based algorithm(OOA) is devised to shorten the optimization time. Furthermore, the two algorithms are adopted in simulation experiments of different scenarios, which demonstrate their effectiveness and efficiency. An engineering experiment about collaborative simulation under HLA/RTI of high speed electricity multiple units(EMU) is also conducted to indentify credibility of the proposed models and supportive utility of MCOA and OOA to practical engineering systems. The proposed research ensures compatibility of traditional HLA, enhances the ability for assigning simulation loads onto computing units both statically and dynamically, improves the performance of collaborative simulation system and makes full use of the hardware resources.
NASA Astrophysics Data System (ADS)
Dumitrache, P.; Goanţă, A. M.
2017-08-01
The ability of the cabins to insure the operator protection in the case of the shock loading that appears at the roll-over of the machine or when the cab is struck by the falling objects, it’s one of the most important performance criterions that it must comply by the machines and the mobile equipments. The experimental method provides the most accurate information on the behaviour of protective structures, but generates high costs due to experimental installations and structures which may be compromised during the experiments. In these circumstances, numerical simulation of the actual problem (mechanical shock applied to a strength structure) is a perfectly viable alternative, given that the hardware and software current performances provides the necessary support to obtain results with an acceptable level of accuracy. In this context, the paper proposes using FEA platforms for virtual testing of the actual strength structures of the cabins using their finite element models based on 3D models generated in CAD environments. In addition to the economic advantage above mentioned, although the results obtained by simulation using the finite element method are affected by a number of simplifying assumptions, the adequate modelling of the phenomenon can be a successful support in the design process of structures to meet safety performance criteria imposed by current standards. In the first section of the paper is presented the general context of the security performance requirements imposed by current standards on the cabins strength structures. The following section of the paper is dedicated to the peculiarities of finite element modelling in problems that impose simulation of the behaviour of structures subjected to shock loading. The final section of the paper is dedicated to a case study and to the future objectives.
Neck muscle activity in fighter pilots wearing night-vision equipment during simulated flight.
Ang, Björn O; Kristoffersson, Mats
2013-02-01
Night-vision goggles (NVG) in jet fighter aircraft appear to increase the risk of neck strain due to increased neck loading. The present aim was, therefore, to evaluate the effect on neck-muscle activity and subjective ratings of head-worn night-vision (NV) equipment in controlled simulated flights. Five experienced fighter pilots twice flew a standardized 2.5-h program in a dynamic flight simulator; one session with NVG and one with standard helmet mockup (control session). Each session commenced with a 1-h simulation at 1 Gz followed by a 1.5-h dynamic flight with repeated Gz profiles varying between 3 and 7 Gz and including aerial combat maneuvers (ACM) at 3-5 Gz. Large head-and-neck movements under high G conditions were avoided. Surface electromyographic (EMG) data was simultaneously measured bilaterally from anterior neck, upper and lower posterior neck, and upper shoulder muscles. EMG activity was normalized as the percentage of pretest maximal voluntary contraction (%MVC). Head-worn equipment (helmet comfort, balance, neck mobility, and discomfort) was rated subjectively immediately after flight. A trend emerged toward greater overall neck muscle activity in NV flight during sustained ACM episodes (10% vs. 8% MVC for the control session), but with no such effects for temporary 3-7 Gz profiles. Postflight ratings for NV sessions emerged as "unsatisfactory" for helmet comfort/neck discomfort. However, this was not significant compared to the control session. Helmet mounted NV equipment caused greater neck muscle activity during sustained combat maneuvers, indicating increased muscle strain due to increased neck loading. In addition, postflight ratings indicated neck discomfort after NV sessions, although not clearly increased compared to flying with standard helmet mockup.
Zimmerman, Marc J.; Waldron, Marcus C.; DeSimone, Leslie A.
2015-01-01
Analysis of the representative constituents (total phosphorus, total chromium, and suspended sediment) upstream and downstream of impoundments indicated that the existing impoundments, such as Rice City Pond, can be sources of particulate contaminant loads in the Blackstone River. Loads of particulate phosphorus, particulate chromium, and suspended sediment were consistently higher downstream from Rice City Pond than upstream during high-flow events, and there was a positive, linear relation between streamflow and changes in these constituents from upstream to downstream of the impoundment. Thus, particulate contaminants were mobilized from Rice City Pond during high-flow events and transported downstream. In contrast, downstream loads of particulate phosphorus, particulate chromium, and suspended sediment were generally lower than or equal to upstream loads for the former Rockdale Pond impoundment. Sediments associated with the former impoundment at Rockdale Pond, breached in the late 1960s, did not appear to be mobilized during the high-flow events monitored during this study.
Extraneous torque and compensation control on the electric load simulator
NASA Astrophysics Data System (ADS)
Jiao, Zongxia; Li, Chenggong; Ren, Zhiting
2003-09-01
In this paper a novel motor-drive load simulator based on compensation control strategy is proposed and designed. Through analyzing the torque control system consisting of DC torque motor, PWM module and torque sensor, it is shown that performance of the motor-drive load simulator is possible to be as good as that of the electro-hydraulic load simulator in the range of small torque. In the course of loading, the rotation of the actuator would cause a strong disturbance torque through the motor back-EMF, which produces extraneous torque similar as in electro-hydraulic load simulator. This paper analyzes the cause of extraneous torque inside the torque motor in detail and presents an appropriate compensation control with which the extraneous torque can be compensated and the good performance of the torque control system can be obtained. The results of simulation indicate that the compensation is very effective and the track performance is according with the request.
Mineral dust transport in the Arctic modelled with FLEXPART
NASA Astrophysics Data System (ADS)
Groot Zwaaftink, Christine; Grythe, Henrik; Stohl, Andreas
2016-04-01
Aeolian transport of mineral dust is suggested to play an important role in many processes. For instance, mineral aerosols affect the radiation balance of the atmosphere, and mineral deposits influence ice sheet mass balances and terrestrial and ocean ecosystems. While many efforts have been done to model global dust transport, relatively little attention has been given to mineral dust in the Arctic. Even though this region is more remote from the world's major dust sources and dust concentrations may be lower than elsewhere, effects of mineral dust on for instance the radiation balance can be highly relevant. Furthermore, there are substantial local sources of dust in or close to the Arctic (e.g., in Iceland), whose impact on Arctic dust concentrations has not been studied in detail. We therefore aim to estimate contributions of different source regions to mineral dust in the Arctic. We have developed a dust mobilization routine in combination with the Lagrangian dispersion model FLEXPART to make such estimates. The lack of details on soil properties in many areas requires a simple routine for global simulations. However, we have paid special attention to the dust sources on Iceland. The mobilization routine does account for topography, snow cover and soil moisture effects, in addition to meteorological parameters. FLEXPART, driven with operational meteorological data from European Centre for Medium-Range Weather Forecasts, was used to do a three-year global dust simulation for the years 2010 to 2012. We assess the model performance in terms of surface concentration and deposition at several locations spread over the globe. We will discuss how deposition and dust load patterns in the Arctic change throughout seasons based on the source of the dust. Important source regions for mineral dust found in the Arctic are not only the major desert areas, such as the Sahara, but also local bare-soil regions. From our model results, it appears that total dust load in the Arctic atmosphere is dominated by dust from Africa and Asia. However, in the lower atmosphere, local sources also contribute strongly to dust concentrations. Especially from Iceland, significant amounts of dust are mobilized. These local sources with relatively shallow transport of dust also affect the spatial distribution of dust deposition. For instance, model estimates show that in autumn and winter most of the deposited dust in Greenland originates from sources north of 60 degrees latitude.
Polling-Based High-Bit-Rate Packet Transfer in a Microcellular Network to Allow Fast Terminals
NASA Astrophysics Data System (ADS)
Hoa, Phan Thanh; Lambertsen, Gaute; Yamada, Takahiko
A microcellular network will be a good candidate for the future broadband mobile network. It is expected to support high-bit-rate connection for many fast mobile users if the handover is processed fast enough to lessen its impact on QoS requirements. One of the promising techniques is believed to use for the wireless interface in such a microcellular network is the WLAN (Wireless LAN) technique due to its very high wireless channel rate. However, the less capability of mobility support of this technique must be improved to be able to expand its utilization for the microcellular environment. The reason of its less support mobility is large handover latency delay caused by contention-based handover to the new BS (base station) and delay of re-forwarding data from the old to new BS. This paper presents a proposal of multi-polling and dynamic LMC (Logical Macro Cell) to reduce mentioned above delays. Polling frame for an MT (Mobile Terminal) is sent from every BS belonging to the same LMC — a virtual single macro cell that is a multicast group of several adjacent micro-cells in which an MT is communicating. Instead of contending for the medium of a new BS during handover, the MT responds to the polling sent from that new BS to enable the transition. Because only one BS of the LMC receives the polling ACK (acknowledgement) directly from the MT, this ACK frame has to be multicast to all BSs of the same LMC through the terrestrial network to continue sending the next polling cycle at each BS. Moreover, when an MT hands over to a new cell, its current LMC is switched over to a newly corresponding LMC to prevent the future contending for a new LMC. By this way, an MT can do handover between micro-cells of an LMC smoothly because the redundant resource is reserved for it at neighboring cells, no need to contend with others. Our simulation results using the OMNeT++ simulator illustrate the performance achievements of the multi-polling and dynamic LMC scheme in eliminating handover latency, packet loss and keeping mobile users' throughput stable in the high traffic load condition though it causes somewhat overhead on the neighboring cells.
ERIC Educational Resources Information Center
Bruce-Low, S. S.; Burnet, S.; Arber, K.; Price, D.; Webster, L.; Stopforth, M.
2013-01-01
Mobile learning has increasingly become interwoven into the fabric of learning and teaching in the United Kingdom higher education sector, and as technological issues become addressed, this phenomena has accelerated. The aim of the study was to examine whether learning using a mobile learning device (Samsung NC10 Netbook) loaded with interactive…
NASA Astrophysics Data System (ADS)
Ningaraju, S.; Hegde, Vinayakaprasanna N.; Prakash, A. P. Gnana; Ravikumar, H. B.
2018-04-01
Polymer nanocomposites of Poly (styrene co-acrylonitrile)/Nickel Oxide (PSAN/NiO) have been prepared. The increased free volume sizes up to 0.4 wt% of NiO loading indicates overall reduction in packing density of polymer network. The decreased o-Ps lifetime (τ3) at higher concentration of NiO indicates improved interfacial interaction between the surface of NiO nanoparticles and side chain of PSAN polymer matrix. The increased AC/DC conductivity at lower wt% of NiO loading demonstrates increased number of electric charge carriers/mobile ions and their mobility. The increased dielectric constant and dielectric loss up to 0.4 wt% of NiO loading suggests the increased dipoles polarization.
App Usage Factor: A Simple Metric to Compare the Population Impact of Mobile Medical Apps.
Lewis, Thomas Lorchan; Wyatt, Jeremy C
2015-08-19
One factor when assessing the quality of mobile apps is quantifying the impact of a given app on a population. There is currently no metric which can be used to compare the population impact of a mobile app across different health care disciplines. The objective of this study is to create a novel metric to characterize the impact of a mobile app on a population. We developed the simple novel metric, app usage factor (AUF), defined as the logarithm of the product of the number of active users of a mobile app with the median number of daily uses of the app. The behavior of this metric was modeled using simulated modeling in Python, a general-purpose programming language. Three simulations were conducted to explore the temporal and numerical stability of our metric and a simulated app ecosystem model using a simulated dataset of 20,000 apps. Simulations confirmed the metric was stable between predicted usage limits and remained stable at extremes of these limits. Analysis of a simulated dataset of 20,000 apps calculated an average value for the app usage factor of 4.90 (SD 0.78). A temporal simulation showed that the metric remained stable over time and suitable limits for its use were identified. A key component when assessing app risk and potential harm is understanding the potential population impact of each mobile app. Our metric has many potential uses for a wide range of stakeholders in the app ecosystem, including users, regulators, developers, and health care professionals. Furthermore, this metric forms part of the overall estimate of risk and potential for harm or benefit posed by a mobile medical app. We identify the merits and limitations of this metric, as well as potential avenues for future validation and research.
Simulation of short-term electric load using an artificial neural network
NASA Astrophysics Data System (ADS)
Ivanin, O. A.
2018-01-01
While solving the task of optimizing operation modes and equipment composition of small energy complexes or other tasks connected with energy planning, it is necessary to have data on energy loads of a consumer. Usually, there is a problem with obtaining real load charts and detailed information about the consumer, because a method of load-charts simulation on the basis of minimal information should be developed. The analysis of work devoted to short-term loads prediction allows choosing artificial neural networks as a most suitable mathematical instrument for solving this problem. The article provides an overview of applied short-term load simulation methods; it describes the advantages of artificial neural networks and offers a neural network structure for electric loads of residential buildings simulation. The results of modeling loads with proposed method and the estimation of its error are presented.
Limitations of subjective cognitive load measures in simulation-based procedural training.
Naismith, Laura M; Cheung, Jeffrey J H; Ringsted, Charlotte; Cavalcanti, Rodrigo B
2015-08-01
The effective implementation of cognitive load theory (CLT) to optimise the instructional design of simulation-based training requires sensitive and reliable measures of cognitive load. This mixed-methods study assessed relationships between commonly used measures of total cognitive load and the extent to which these measures reflected participants' experiences of cognitive load in simulation-based procedural skills training. Two groups of medical residents (n = 38) completed three questionnaires after participating in simulation-based procedural skills training sessions: the Paas Cognitive Load Scale; the NASA Task Load Index (TLX), and a cognitive load component (CLC) questionnaire we developed to assess total cognitive load as the sum of intrinsic load (how complex the task is), extraneous load (how the task is presented) and germane load (how the learner processes the task for learning). We calculated Pearson's correlation coefficients to assess agreement among these instruments. Group interviews explored residents' perceptions about how the simulation sessions contributed to their total cognitive load. Interviews were audio-recorded, transcribed and subjected to qualitative content analysis. Total cognitive load scores differed significantly according to the instrument used to assess them. In particular, there was poor agreement between the Paas Scale and the TLX. Quantitative and qualitative findings supported intrinsic cognitive load as synonymous with mental effort (Paas Scale), mental demand (TLX) and task difficulty and complexity (CLC questionnaire). Additional qualitative themes relating to extraneous and germane cognitive loads were not reflected in any of the questionnaires. The Paas Scale, TLX and CLC questionnaire appear to be interchangeable as measures of intrinsic cognitive load, but not of total cognitive load. A more complete understanding of the sources of extraneous and germane cognitive loads in simulation-based training contexts is necessary to determine how best to measure and assess their effects on learning and performance outcomes. © 2015 John Wiley & Sons Ltd.
Preduction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation
2016-08-02
PREDICTION OF VEHICLE MOBILITY ON LARGE-SCALE SOFT- SOIL TERRAIN MAPS USING PHYSICS-BASED SIMULATION Tamer M. Wasfy, Paramsothy Jayakumar, Dave...NRMM • Objectives • Soft Soils • Review of Physics-Based Soil Models • MBD/DEM Modeling Formulation – Joint & Contact Constraints – DEM Cohesive... Soil Model • Cone Penetrometer Experiment • Vehicle- Soil Model • Vehicle Mobility DOE Procedure • Simulation Results • Concluding Remarks 2UNCLASSIFIED
2001-05-01
Shoulder Discomfort, March Thermal Comfort z * Front Mobility, Overhead Mobility, March Thermal Comfort r Moment (Amp, Nm/kg) x * Torsional Mobility...0 Fit El Manoeuverability U Acceptability M Integration 0 Mobility 0 Physical Comfort 0 Thermal Comfort Figure 3. Overall Ratings for Four Systems. A... Thermal Comfort ) Total 71.1 % Factor 1 described the balance and general ability to move with the pack in place. Variables included lateral bending
NASA Astrophysics Data System (ADS)
Shultz, Christopher D.; Bailey, Ryan T.; Gates, Timothy K.; Heesemann, Brent E.; Morway, Eric D.
2018-05-01
Elevated levels of selenium (Se) in aqueous environments can harm aquatic life and endanger livestock and human health. Although Se occurs naturally in the rocks and soils of many alluvial aquifers, mining and agricultural activities can increase its rate of mobilization and transport to surface waters. Attention is given here to regions where nonpoint source return flows from irrigated lands carry pollutant loads to aquifers and streams, contributing to concentrations that violate regulatory and performance standards. Of particular concern is the heightened level and mobilization of Se influenced by nitrate (NO3), a harmful pollutant in its own right. We present a numerical model that simulates the reactive transport of Se and nitrogen (N) species in a coupled groundwater-surface water system. Building upon a conceptual model that incorporates the major processes affecting Se and NO3 transport in an irrigated watershed, the model links the finite-difference models MODFLOW, UZF-RT3D, and OTIS, to simulate flow and reactive transport of multiple chemical species in both the aquifer and a stream network, with mass exchange between the two. The capability of the new model is showcased by calibration, testing, and application to a 500 km2 region in Colorado's Lower Arkansas River Valley using a rich data set gathered over a 10-yr period. Simulation of spatial and temporal distributions of Se concentration reveals conditions that exceed standards in groundwater for approximately 20% of the area. For the Arkansas River, standards are exceeded by 290%-450%. Simulation indicates that river concentrations of NO3 alone are near the current interim standard for the total of all dissolved N species. These results indicate the need for future use of the developed model to investigate the prospects for land and water best management practices to decrease pollutant levels.
Shultz, Christopher D.; Bailey, Ryan T.; Gates, Timothy K.; Heesemann, Brent E.; Morway, Eric D.
2018-01-01
Elevated levels of selenium (Se) in aqueous environments can harm aquatic life and endanger livestock and human health. Although Se occurs naturally in the rocks and soils of many alluvial aquifers, mining and agricultural activities can increase its rate of mobilization and transport to surface waters. Attention is given here to regions where nonpoint source return flows from irrigated lands carry pollutant loads to aquifers and streams, contributing to concentrations that violate regulatory and performance standards. Of particular concern is the heightened level and mobilization of Se influenced by nitrate (NO3), a harmful pollutant in its own right. We present a numerical model that simulates the reactive transport of Se and nitrogen (N) species in a coupled groundwater-surface water system. Building upon a conceptual model that incorporates the major processes affecting Se and NO3 transport in an irrigated watershed, the model links the finite-difference models MODFLOW, UZF-RT3D, and OTIS, to simulate flow and reactive transport of multiple chemical species in both the aquifer and a stream network, with mass exchange between the two. The capability of the new model is showcased by calibration, testing, and application to a 500 km2 region in Colorado’s Lower Arkansas River Valley using a rich data set gathered over a 10-yr period. Simulation of spatial and temporal distributions of Se concentration reveals conditions that exceed standards in groundwater for approximately 20% of the area. For the Arkansas River, standards are exceeded by 290%–450%. Simulation indicates that river concentrations of NO3 alone are near the current interim standard for the total of all dissolved N species. These results indicate the need for future use of the developed model to investigate the prospects for land and water best management practices to decrease pollutant levels.
ERIC Educational Resources Information Center
Yin, Chengjiu; Song, Yanjie; Tabata, Yoshiyuki; Ogata, Hiroaki; Hwang, Gwo-Jen
2013-01-01
This paper proposes a conceptual framework, scaffolding participatory simulation for mobile learning (SPSML), used on mobile devices for helping students learn conceptual knowledge in the classroom. As the pedagogical design, the framework adopts an experiential learning model, which consists of five sequential but cyclic steps: the initial stage,…
Comparison of point-source pollutant loadings to soil and groundwater for 72 chemical substances.
Yu, Soonyoung; Hwang, Sang-Il; Yun, Seong-Taek; Chae, Gitak; Lee, Dongsu; Kim, Ki-Eun
2017-11-01
Fate and transport of 72 chemicals in soil and groundwater were assessed by using a multiphase compositional model (CompFlow Bio) because some of the chemicals are non-aqueous phase liquids or solids in the original form. One metric ton of chemicals were assumed to leak in a stylized facility. Scenarios of both surface spills and subsurface leaks were considered. Simulation results showed that the fate and transport of chemicals above the water table affected the fate and transport of chemicals below the water table, and vice versa. Surface spill scenarios caused much less concentrations than subsurface leak scenarios because leaching amounts into the subsurface environment were small (at most 6% of the 1 t spill for methylamine). Then, simulation results were applied to assess point-source pollutant loadings to soil and groundwater above and below the water table, respectively, by multiplying concentrations, impact areas, and durations. These three components correspond to the intensity of contamination, mobility, and persistency in the assessment of pollutant loading, respectively. Assessment results showed that the pollutant loadings in soil and groundwater were linearly related (r 2 = 0.64). The pollutant loadings were negatively related with zero-order and first-order decay rates in both soil (r = - 0.5 and - 0.6, respectively) and groundwater (- 1.0 and - 0.8, respectively). In addition, this study scientifically defended that the soil partitioning coefficient (K d ) significantly affected the pollutant loadings in soil (r = 0.6) and the maximum masses in groundwater (r = - 0.9). However, K d was not a representative factor for chemical transportability unlike the expectation in chemical ranking systems of soil and groundwater pollutants. The pollutant loadings estimated using a physics-based hydrogeological model provided a more rational ranking for exposure assessment, compared to the summation of persistency and transportability scores in the chemical ranking systems. In the surface spill scenario, the pollutant loadings were zeros for all chemicals, except methylamine to soil whose pollutant loading was smaller than that in the subsurface leak scenario by 4 orders of magnitude. The maximum mass and the average mass multiplied by duration in soil greatly depended on leaching fluxes (r = 1.0 and 0.9, respectively), while the effect of leaching fluxes diminished below the water table. The contribution of this work is that a physics-based numerical model was used to quantitatively compare the subsurface pollutant loading in a chemical accident for 72 chemical substances, which can scientifically defend a simpler and more qualitative assessment of pollutant loadings. Besides, this study assessed pollutant loadings to soil (unsaturated zone) and groundwater (saturated zone) all together and discussed their interactions.
LSPC is the Loading Simulation Program in C++, a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for simulating hydrology, sediment, and general water quality
Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads.
Dembia, Christopher L; Silder, Amy; Uchida, Thomas K; Hicks, Jennifer L; Delp, Scott L
2017-01-01
Wearable robotic devices can restore and enhance mobility. There is growing interest in designing devices that reduce the metabolic cost of walking; however, designers lack guidelines for which joints to assist and when to provide the assistance. To help address this problem, we used musculoskeletal simulation to predict how hypothetical devices affect muscle activity and metabolic cost when walking with heavy loads. We explored 7 massless devices, each providing unrestricted torque at one degree of freedom in one direction (hip abduction, hip flexion, hip extension, knee flexion, knee extension, ankle plantarflexion, or ankle dorsiflexion). We used the Computed Muscle Control algorithm in OpenSim to find device torque profiles that minimized the sum of squared muscle activations while tracking measured kinematics of loaded walking without assistance. We then examined the metabolic savings provided by each device, the corresponding device torque profiles, and the resulting changes in muscle activity. We found that the hip flexion, knee flexion, and hip abduction devices provided greater metabolic savings than the ankle plantarflexion device. The hip abduction device had the greatest ratio of metabolic savings to peak instantaneous positive device power, suggesting that frontal-plane hip assistance may be an efficient way to reduce metabolic cost. Overall, the device torque profiles generally differed from the corresponding net joint moment generated by muscles without assistance, and occasionally exceeded the net joint moment to reduce muscle activity at other degrees of freedom. Many devices affected the activity of muscles elsewhere in the limb; for example, the hip flexion device affected muscles that span the ankle joint. Our results may help experimentalists decide which joint motions to target when building devices and can provide intuition for how devices may interact with the musculoskeletal system. The simulations are freely available online, allowing others to reproduce and extend our work.
Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads
Silder, Amy; Uchida, Thomas K.; Hicks, Jennifer L.; Delp, Scott L.
2017-01-01
Wearable robotic devices can restore and enhance mobility. There is growing interest in designing devices that reduce the metabolic cost of walking; however, designers lack guidelines for which joints to assist and when to provide the assistance. To help address this problem, we used musculoskeletal simulation to predict how hypothetical devices affect muscle activity and metabolic cost when walking with heavy loads. We explored 7 massless devices, each providing unrestricted torque at one degree of freedom in one direction (hip abduction, hip flexion, hip extension, knee flexion, knee extension, ankle plantarflexion, or ankle dorsiflexion). We used the Computed Muscle Control algorithm in OpenSim to find device torque profiles that minimized the sum of squared muscle activations while tracking measured kinematics of loaded walking without assistance. We then examined the metabolic savings provided by each device, the corresponding device torque profiles, and the resulting changes in muscle activity. We found that the hip flexion, knee flexion, and hip abduction devices provided greater metabolic savings than the ankle plantarflexion device. The hip abduction device had the greatest ratio of metabolic savings to peak instantaneous positive device power, suggesting that frontal-plane hip assistance may be an efficient way to reduce metabolic cost. Overall, the device torque profiles generally differed from the corresponding net joint moment generated by muscles without assistance, and occasionally exceeded the net joint moment to reduce muscle activity at other degrees of freedom. Many devices affected the activity of muscles elsewhere in the limb; for example, the hip flexion device affected muscles that span the ankle joint. Our results may help experimentalists decide which joint motions to target when building devices and can provide intuition for how devices may interact with the musculoskeletal system. The simulations are freely available online, allowing others to reproduce and extend our work. PMID:28700630
Innovative Varied-Fidelity Simulation Mobile Teaching Cart and Education Project.
Harding, Andrew D; Cullinane Whalen, Kathryn; Silverman, Bradley S
2015-09-01
The use of a varied-fidelity simulation mobile teaching cart is a teaching tool that offers unique advantages in the acute care setting. The cart is used to demonstrate the use of patient monitoring devices, and there are a variety of software tools available with the monitoring technology to ensure that the outputs, including electrocardiographic waves, are analyzed appropriately by nursing staff using this varied-fidelity simulation mobile teaching cart. Bringing varied-fidelity simulation to the nurses' work area is a unique application setting. Copyright © 2015 Emergency Nurses Association. Published by Elsevier Inc. All rights reserved.
Fourchet, François; Girard, Olivier; Kelly, Luke; Horobeanu, Cosmin; Millet, Grégoire P
2015-03-01
This study aimed to determine adjustments in spring-mass model characteristics, plantar loading and foot mobility induced by an exhaustive run. Within-participants repeated measures. Eleven highly-trained adolescent middle-distance runners ran to exhaustion on a treadmill at a constant velocity corresponding to 95% of velocity associated with VO₂max (17.8 ± 1.4 kmh(-1), time to exhaustion=8.8 ± 3.4 min). Contact time obtained from plantar pressure sensors was used to estimate spring-mass model characteristics, which were recorded (during 30 s) 1 min after the start and prior to exhaustion using pressure insoles. Foot mobility magnitude (a composite measure of vertical and medial-lateral mobility of the midfoot) was measured before and after the run. Mean contact area (foot to ground), contact time, peak vertical ground reaction force, centre of mass vertical displacement and leg compression increased significantly with fatigue, while flight time, leg stiffness and mean pressure decreased. Leg stiffness decreased because leg compression increased to a larger extent than peak vertical ground reaction forces. Step length, step frequency and foot mobility magnitude did not change at exhaustion. The stride pattern of adolescents when running on a treadmill at high constant velocity deteriorates near exhaustion, as evidenced by impaired leg-spring behaviour (leg stiffness) and altered plantar loading. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
36 CFR 1192.23 - Mobility aid accessibility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... subpart shall provide a level-change mechanism or boarding device (e.g., lift or ramp) complying with... 22 feet in length or less. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at... upon which the lift depends for support of the load, shall have a safety factor of at least six, based...
36 CFR 1192.23 - Mobility aid accessibility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... subpart shall provide a level-change mechanism or boarding device (e.g., lift or ramp) complying with... 22 feet in length or less. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at... upon which the lift depends for support of the load, shall have a safety factor of at least six, based...
Mobility Case Studies : Where Integrated Corridor Management Has Worked and Why
DOT National Transportation Integrated Search
2018-01-11
Background: Modifying the task load of Emergency Medical Services (EMS) personnel may mitigate fatigue, sleep quality and fatigue related risks. A review of the literature addressing task load interventions may benefit EMS administrators as they craf...
NASA Astrophysics Data System (ADS)
Sekiya, N.
2016-08-01
We have developed two high-order high-temperature superconducting (HTS) dual-band bandpass filters (BPFs) with a receiver subsystem for future mobile communication systems. They feature stub-loaded hair-pin resonators with two types of microstrip lines between them. One has a six-pole design, and the other has an eight-pole design. Both were designed to operate at 2.15 GHz with a 43-MHz (2%) bandwidth for the lower passband and at 3.50 GHz with a 70-MHz (2%) bandwidth for the upper one. They were fabricated using YBa2Cu3Oy thin film on a CeO2-bufferd r-Al2O3 substrate. The measured results for both filters agree well with the simulated ones. The HTS dual-band BPF receiver subsystem uses a pulse tube cryocooler and a wideband low noise amplifier (LNA). We measured the frequency response of the six-pole dual-band BPF with and without a wideband LNA with a gain of 10 dB. The measured return losses were close.
Data Delivery Method Based on Neighbor Nodes' Information in a Mobile Ad Hoc Network
Hayashi, Takuma; Taenaka, Yuzo; Okuda, Takeshi; Yamaguchi, Suguru
2014-01-01
This paper proposes a data delivery method based on neighbor nodes' information to achieve reliable communication in a mobile ad hoc network (MANET). In a MANET, it is difficult to deliver data reliably due to instabilities in network topology and wireless network condition which result from node movement. To overcome such unstable communication, opportunistic routing and network coding schemes have lately attracted considerable attention. Although an existing method that employs such schemes, MAC-independent opportunistic routing and encoding (MORE), Chachulski et al. (2007), improves the efficiency of data delivery in an unstable wireless mesh network, it does not address node movement. To efficiently deliver data in a MANET, the method proposed in this paper thus first employs the same opportunistic routing and network coding used in MORE and also uses the location information and transmission probabilities of neighbor nodes to adapt to changeable network topology and wireless network condition. The simulation experiments showed that the proposed method can achieve efficient data delivery with low network load when the movement speed is relatively slow. PMID:24672371
Data delivery method based on neighbor nodes' information in a mobile ad hoc network.
Kashihara, Shigeru; Hayashi, Takuma; Taenaka, Yuzo; Okuda, Takeshi; Yamaguchi, Suguru
2014-01-01
This paper proposes a data delivery method based on neighbor nodes' information to achieve reliable communication in a mobile ad hoc network (MANET). In a MANET, it is difficult to deliver data reliably due to instabilities in network topology and wireless network condition which result from node movement. To overcome such unstable communication, opportunistic routing and network coding schemes have lately attracted considerable attention. Although an existing method that employs such schemes, MAC-independent opportunistic routing and encoding (MORE), Chachulski et al. (2007), improves the efficiency of data delivery in an unstable wireless mesh network, it does not address node movement. To efficiently deliver data in a MANET, the method proposed in this paper thus first employs the same opportunistic routing and network coding used in MORE and also uses the location information and transmission probabilities of neighbor nodes to adapt to changeable network topology and wireless network condition. The simulation experiments showed that the proposed method can achieve efficient data delivery with low network load when the movement speed is relatively slow.
Load carriage, human performance, and employment standards.
Taylor, Nigel A S; Peoples, Gregory E; Petersen, Stewart R
2016-06-01
The focus of this review is on the physiological considerations necessary for developing employment standards within occupations that have a heavy reliance on load carriage. Employees within military, fire fighting, law enforcement, and search and rescue occupations regularly work with heavy loads. For example, soldiers often carry loads >50 kg, whilst structural firefighters wear 20-25 kg of protective clothing and equipment, in addition to carrying external loads. It has long been known that heavy loads modify gait, mobility, metabolic rate, and efficiency, while concurrently elevating the risk of muscle fatigue and injury. In addition, load carriage often occurs within environmentally stressful conditions, with protective ensembles adding to the thermal burden of the workplace. Indeed, physiological strain relates not just to the mass and dimensions of carried objects, but to how those loads are positioned on and around the body. Yet heavy loads must be borne by men and women of varying body size, and with the expectation that operational capability will not be impinged. This presents a recruitment conundrum. How do employers identify capable and injury-resistant individuals while simultaneously avoiding discriminatory selection practices? In this communication, the relevant metabolic, cardiopulmonary, and thermoregulatory consequences of loaded work are reviewed, along with concomitant impediments to physical endurance and mobility. Also emphasised is the importance of including occupation-specific clothing, protective equipment, and loads during work-performance testing. Finally, recommendations are presented for how to address these issues when evaluating readiness for duty.
Hosoda, Koh; Shimizu, Masahiro; Ikemoto, Shuhei; Nagura, Takeo; Seki, Hiroyuki; Kitashiro, Masateru; Imanishi, Nobuaki; Aiso, Sadakazu; Jinzaki, Masahiro; Ogihara, Naomichi
2017-01-01
The anatomical design of the human foot is considered to facilitate generation of bipedal walking. However, how the morphology and structure of the human foot actually contribute to generation of bipedal walking remains unclear. In the present study, we investigated the three-dimensional kinematics of the foot bones under a weight-bearing condition using cadaver specimens, to characterize the innate mobility of the human foot inherently prescribed in its morphology and structure. Five cadaver feet were axially loaded up to 588 N (60 kgf), and radiographic images were captured using a biplane X-ray fluoroscopy system. The present study demonstrated that the talus is medioinferiorly translated and internally rotated as the calcaneus is everted owing to axial loading, causing internal rotation of the tibia and flattening of the medial longitudinal arch in the foot. Furthermore, as the talus is internally rotated, the talar head moves medially with respect to the navicular, inducing external rotation of the navicular and metatarsals. Under axial loading, the cuboid is everted simultaneously with the calcaneus owing to the osseous locking mechanism in the calcaneocuboid joint. Such detailed descriptions about the innate mobility of the human foot will contribute to clarifying functional adaptation and pathogenic mechanisms of the human foot. PMID:29134100
Admission and Preventive Load Control for Delivery of Multicast and Broadcast Services via S-UMTS
NASA Astrophysics Data System (ADS)
Angelou, E.; Koutsokeras, N.; Andrikopoulos, I.; Mertzanis, I.; Karaliopoulos, M.; Henrio, P.
2003-07-01
An Admission Control strategy is proposed for unidirectional satellite systems delivering multicast and broadcast services to mobile users. In such systems, both the radio interface and the targeted services impose particular requirements on the RRM task. We briefly discuss the RRM requirements that stem from the services point of view and from the features of the SATIN access scheme that differentiate it from the conventional T-UMTS radio interface. The main functional entities of RRM and the alternative modes of operation are outlined and the proposed Admission Control algorithm is described in detail. The results from the simulation study that demonstrate its performance for a number of different scenarios are finally presented and conclusions derived.
NASA Technical Reports Server (NTRS)
1977-01-01
Multiple access techniques (FDMA, CDMA, TDMA) for the mobile user and attempts to identify the current best technique are discussed. Traffic loading is considered as well as voice and data modulation and spacecraft and system design. Emphasis is placed on developing mobile terminal cost estimates for the selected design. In addition, design examples are presented for the alternative techniques of multiple access in order to compare with the selected technique.
Increased Memory Load during Task Completion when Procedures Are Presented on Mobile Screens
ERIC Educational Resources Information Center
Byrd, Keena S.; Caldwell, Barrett S.
2011-01-01
The primary objective of this research was to compare procedure-based task performance using three common mobile screen sizes: ultra mobile personal computer (7 in./17.8 cm), personal data assistant (3.5 in./8.9 cm), and SmartPhone (2.8 in./7.1 cm). Subjects used these three screen sizes to view and execute a computer maintenance procedure.…
NASA Astrophysics Data System (ADS)
Plumb, B. D.; Annable, W. K.; Thompson, P. J.; Hassan, M. A.
2017-10-01
A field investigation has been undertaken to characterize the event-based bed load transport dynamics of a highly urbanized gravel bed stream. A combination of direct bed load and tracer particle measurements were taken over a 3 year period during which time approximately 30 sediment mobilizing events occurred. Sediment transport measurements were used to calibrate a fractional bed load transport model and combined with hydrometric data which represent four different land use conditions (ranging from rural to highly urbanized) to analyze the differences in discharge magnitude and frequency and its impact on sediment transport. Fractional transport analysis of the bed load measurements indicates that frequent intermediate discharge events can mobilize sand and fine gravel to an approximate equally mobile condition, however, the transport rates at these discharges exhibit greater variability than at discharges above the bankfull discharge. Path lengths of the coarse fraction, measured using tracer clasts, are insensitive to peak discharge, and instead transport at distances less than those reported in other gravel bed channels, which is attributed to the shorter duration discharge events common to urban streams. The magnitude-frequency analysis reveals that the frequency, time, and volume of competent sediment mobilizing events are increasing with urbanization. Variability in effective discharges suggests that a range of discharges, spanning between frequent, low magnitude events to less frequent, high magnitude events are geomorphically significant. However, trends in the different land use scenarios suggest that urbanization is shifting the geomorphic significance toward more frequent, lower magnitude events.
NASA Astrophysics Data System (ADS)
Bačić, Iva; Malarić, Krešimir; Dumić, Emil
2014-05-01
Mobile users today expect wide range of multimedia services to be available in different mobility scenarios, and among the others is mobile TV service. The Digital Video Broadcasting - Satellite services to Handheld (DVB-SH) is designed to provide mobile TV services, supporting a wide range of mobile multimedia services, like audio and data broadcasting as well as file downloading services. In this paper we present our simulation model for the performance evaluation of the DVB-SH system following the ETSI standard EN 302 583. Simulation model includes complete DVB-SH system, supporting all standardized system modes and parameters. From transmitter to receiver, the information may be sent over different channel models, thus simulating real case scenarios. To the best of authors' knowledge, this is the first complete model of DVB-SH system that includes all standardized system parameters and may be used for examining real DVB-SH communication as well as for educational purposes.
Fuchs, Andreas; Steinbrecher, Thomas; Mommer, Mario S; Nagata, Yuki; Elstner, Marcus; Lennartz, Christian
2012-03-28
In order to determine the molecular origin of the difference in electron and hole mobilities of amorphous thin films of Alq(3) (meridional Alq(3) (tris(8-hydroxyquinoline) aluminium)) we performed multiscale simulations covering quantum mechanics, molecular mechanics and lattice models. The study includes realistic disordered morphologies, polarized site energies to describe diagonal disorder, quantum chemically calculated transfer integrals for the off-diagonal disorder, inner sphere reorganization energies and an approximative scheme for outer sphere reorganization energies. Intermolecular transfer rates were calculated via Marcus-theory and mobilities were simulated via kinetic Monte Carlo simulations and by a Master Equation approach. The difference in electron and hole mobility originates from the different localization of charge density in the radical anion (more delocalized) compared to the radical cation (more confined). This results in higher diagonal disorder for holes and less favourable overlap properties for the hole transfer integrals leading to an overall higher electron mobility.
Evaluation of the success and complication rates of self-drilling orthodontic mini-implants.
Gurdan, Z; Szalma, J
2018-05-01
Orthodontic mini-implants are important devices for successful anchorage management in orthodontics; however, the survival of these devices depends on several clinical factors. The aim of our study was to calculate the success and complication rates of orthodontic mini-implants. In this retrospective study, patients of our orthodontic department were enrolled, getting overall 59 orthodontic mini-implants during their orthodontic treatment in a 2-year period. Every patient had one or more of the 1.6 mm × 8 mm in size self-drilling mini-implants (Jeil Dual Top Anchor System, Jeil Medical Corp., Seoul, Korea). Screw loading was performed immediately after insertions, keeping tension forces under 150 g. Soft tissue and bone infections, implant mobility and screw loss, implant fracture, and neighboring tooth injury were registered. Relationships between variables were tested using the Chi-square test for statistical significance. The success rate of the orthodontic mini-implants was 89.8% in this study while the average loading period was 8.1 months. Soft-tissue infections varied between 6.3% and 33.3% of the cases while screw mobility varied between 3.1% and 20.8% of the cases regarding the anatomic localization. Screw mobility was significantly more frequent in the buccal fold than in the palate (P = 0.034). Screw mobility was significantly more frequent in the buccal fold than in the palate (P = 0.034) and screw mobility was found more frequently in case of intrusions than by extrusions (P = 0.036). The overall success rate of mini-implants was found acceptable in this study, however, screw mobility in the buccal fold showed a high incidence, suggesting the thorough consideration of the immediate loading by buccal mini-implants.
Beat the Bourgeoisie: A Social Class Inequality and Mobility Simulation Game
ERIC Educational Resources Information Center
Norris, Dawn R.
2013-01-01
Simulation games can help overcome student resistance to thinking structurally about social class inequality, meritocracy, and mobility. Most inequality simulations focus solely on economic inequality and omit social and cultural capital, both of which contribute to social class reproduction. Using a pretest/posttest design, the current study…
A Hybrid Demand Response Simulator Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-05-02
A hybrid demand response simulator is developed to test different control algorithms for centralized and distributed demand response (DR) programs in a small distribution power grid. The HDRS is designed to model a wide variety of DR services such as peak having, load shifting, arbitrage, spinning reserves, load following, regulation, emergency load shedding, etc. The HDRS does not model the dynamic behaviors of the loads, rather, it simulates the load scheduling and dispatch process. The load models include TCAs (water heaters, air conditioners, refrigerators, freezers, etc) and non-TCAs (lighting, washer, dishwasher, etc.) The ambient temperature changes, thermal resistance, capacitance, andmore » the unit control logics can be modeled for TCA loads. The use patterns of the non-TCA can be modeled by probability of use and probabilistic durations. Some of the communication network characteristics, such as delays and errors, can also be modeled. Most importantly, because the simulator is modular and greatly simplified the thermal models for TCA loads, it is very easy and fast to be used to test and validate different control algorithms in a simulated environment.« less
NASA Technical Reports Server (NTRS)
Seshadri, Banavara R.; Smith, Stephen W.
2007-01-01
Variation in constraint through the thickness of a specimen effects the cyclic crack-tip-opening displacement (DELTA CTOD). DELTA CTOD is a valuable measure of crack growth behavior, indicating closure development, constraint variations and load history effects. Fatigue loading with a continual load reduction was used to simulate the load history associated with fatigue crack growth threshold measurements. The constraint effect on the estimated DELTA CTOD is studied by carrying out three-dimensional elastic-plastic finite element simulations. The analysis involves numerical simulation of different standard fatigue threshold test schemes to determine how each test scheme affects DELTA CTOD. The American Society for Testing and Materials (ASTM) prescribes standard load reduction procedures for threshold testing using either the constant stress ratio (R) or constant maximum stress intensity (K(sub max)) methods. Different specimen types defined in the standard, namely the compact tension, C(T), and middle cracked tension, M(T), specimens were used in this simulation. The threshold simulations were conducted with different initial K(sub max) values to study its effect on estimated DELTA CTOD. During each simulation, the DELTA CTOD was estimated at every load increment during the load reduction procedure. Previous numerical simulation results indicate that the constant R load reduction method generates a plastic wake resulting in remote crack closure during unloading. Upon reloading, this remote contact location was observed to remain in contact well after the crack tip was fully open. The final region to open is located at the point at which the load reduction was initiated and at the free surface of the specimen. However, simulations carried out using the constant Kmax load reduction procedure did not indicate remote crack closure. Previous analysis results using various starting K(sub max) values and different load reduction rates have indicated DELTA CTOD is independent of specimen size. A study of the effect of specimen thickness and geometry on the measured DELTA CTOD for various load reduction procedures and its implication in the estimation of fatigue crack growth threshold values is discussed.
Strategies for a better performance of RPL under mobility in wireless sensor networks
NASA Astrophysics Data System (ADS)
Latib, Z. A.; Jamil, A.; Alduais, N. A. M.; Abdullah, J.; Audah, L. H. M.; Alias, R.
2017-09-01
A Wireless Sensor Network (WSN) is usually stationary, which the network comprises of static nodes. The increase demand for mobility in various applications such as environmental monitoring, medical, home automation, and military, raises the question how IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) would perform under these mobility applications. This paper aims to understand performance of RPL and come out with strategies for a better performance of RPL in mobility scenarios. Because of this, this paper evaluates the performance of the RPL protocol under three different scenarios: sink and sensor nodes are static, static sink and mobile sensor nodes, and sink and sensor nodes are mobile. The network scenarios are implemented in Cooja simulator. A WSN consists of 25 sensor nodes and one sink node is configured in the simulation environment. The simulation is varied over different packet rates and ContikiMAC's Clear Channel Assessment (CCA) rate. As the performance metric, RPL is evaluated in term of packet delivery ratio (PDR), power consumption and packet rates. The simulation results show RPL provides a poor PDR in the mobility scenarios when compared to the static scenario. In addition, RPL consumes more power and increases duty-cycle rate to support mobility when compared to the static scenario. Based on the findings, we suggest three strategies for a better performance of RPL in mobility scenarios. First, RPL should operates at a lower packet rates when implemented in the mobility scenarios. Second, RPL should be implemented with a higher duty-cycle rate. Lastly, the sink node should be positioned as much as possible in the center of the mobile network.
The effect of simulated air conditions on N95 filtering facepiece respirators performance.
Ramirez, Joel A; O'Shaughnessy, Patrick T
2016-07-01
The objective of this study was to determine the effect of several simulated air environmental conditions on the particle penetration and the breathing resistance of two N95 filtering facepiece respirator (FFR) models. The particle penetration and breathing resistance of the respirators were evaluated in a test system developed to mimic inhalation and exhalation breathing while relative humidity and temperature were modified. Breathing resistance was measured over 120 min using a calibrated pressure transducer under four different temperature and relative humidity conditions without aerosol loading. Particle penetration was evaluated before and after the breathing resistance test at room conditions using a sodium chloride aerosol measured with a scanning mobility particle sizer. Results demonstrated that increasing relative humidity and lowering external temperature caused significant increases in breathing resistance (p < 0.001). However, these same conditions did not influence the penetration or most penetrating particle size of the tested FFRs. The increase in breathing resistance varied by FFR model suggesting that some FFR media are less influenced by high relative humidity.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.035 Definitions. (a... IA of this chapter: (1) Column stabilized unit. (2) Mobile offshore drilling unit. (3) Self-elevating... loaded or arranged for drilling, field transit, or ocean transit. (4) Severe storm condition means a...
Code of Federal Regulations, 2013 CFR
2013-10-01
... SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.035 Definitions. (a... IA of this chapter: (1) Column stabilized unit. (2) Mobile offshore drilling unit. (3) Self-elevating... loaded or arranged for drilling, field transit, or ocean transit. (4) Severe storm condition means a...
Development and validation of a new kind of coupling element for wheel-hub motors
NASA Astrophysics Data System (ADS)
Perekopskiy, Sergey; Kasper, Roland
2018-05-01
For the automotive industry, electric powered vehicles are becoming an increasingly relevant factor in the competition against climate change. Application of one special example - a wheel-hub motor, for electric powered vehicle can support this challenge. Patented slotless air gap winding invented at the chair of mechatronics of the Otto von Guericke University Magdeburg has great application potential in constantly growing e-mobility field, especially for wheel-hub motors based on this technology due to its advantages, such as a high gravimetric power density and high efficiency. However, advantages of this technology are decreased by its sensibility to the loads out of driving maneuvers by dimensional variations of air gap consistency. This article describes the development and validation of a coupling element for the designed wheel-hub motor. To find a suitable coupling concept first the assembly structure of the motor was analyzed and developed design of the coupling element was checked. Based on the geometry of the motor and wheel a detailed design of the coupling element was generated. The analytical approach for coupling element describes a potential of the possible loads on the coupling element. The FEM simulation of critical load cases for the coupling element validated results of the analytical approach.
Bulk Superconductors in Mobile Application
NASA Astrophysics Data System (ADS)
Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.
We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.
A gravity loading countermeasure skinsuit
NASA Astrophysics Data System (ADS)
Waldie, James M.; Newman, Dava J.
2011-04-01
Despite the use of several countermeasures, significant physiological deconditioning still occurs during long duration spaceflight. Bone loss - primarily due to the absence of loading in microgravity - is perhaps the greatest challenge to resolve. This paper describes a conceptual Gravity Loading Countermeasure Skinsuit (GLCS) that induces loading on the body to mimic standing and - when integrated with other countermeasures - exercising on Earth. Comfort, mobility and other operational issues were explored during a pilot study carried out in parabolic flight for prototype suits worn by three subjects. Compared to the 1- or 2-stage Russian Pingvin Suits, the elastic mesh of the GLCS can create a loading regime that gradually increases in hundreds of stages from the shoulders to the feet, thereby reproducing the weight-bearing regime normally imparted by gravity with much higher resolution. Modelling shows that the skinsuit requires less than 10 mmHg (1.3 kPa) of compression for three subjects of varied gender, height and mass. Negligible mobility restriction and excellent comfort properties were found during the parabolic flights, which suggests that crewmembers should be able to work normally, exercise or sleep while wearing the suit. The suit may also serve as a practical 1 g harness for exercise countermeasures and vibration applications to improve dynamic loading.
NASA Technical Reports Server (NTRS)
Celino, V. A.
1977-01-01
An appendix providing the technical data required for computerized control and/or monitoring of selected MIST subsystems is presented. Specific computerized functions to be performed are as follows: (1) Control of the MIST heating load simulator and monitoring of the diesel engine generators' cooling system; (2) Control of the MIST heating load simulator and MIST heating subsystem including the heating load simulator; and (3) Control of the MIST air conditioning load simulator subsystem and the MIST air conditioning subsystem, including cold thermal storage and condenser water flows.
ATHLETE as a Mobile ISRU and Regolith Construction Platform
NASA Technical Reports Server (NTRS)
Howe, A. Scott; Wilcox, Brian; Barmatz, Martin; Voecks, Gerald
2016-01-01
The All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) robotic mobility platform can provide precision positioning and mobility for site preparation and regolith construction needs. ATHLETE is a multi-use platform designed to use swap-out tools and implements that can be applied to any number of tasks that need precision limb manipulation or mobility. Major capabilities include off-loading habitats, transporting surface assets, robotically assembling outposts from multiple mission manifests, and supporting science and technology objectives. This paper describes conceptual approaches for supporting NASA regolith construction research, such as additive construction, modular brick and panel factory, and mobile ISRU platform.
Does location of rotation center in artificial disc affect cervical biomechanics?
Mo, Zhongjun; Zhao, Yanbin; Du, Chengfei; Sun, Yu; Zhang, Ming; Fan, Yubo
2015-04-15
A 3-dimensional finite element investigation. To compare the biomechanical performances of different rotation centers (RCs) in the prevalent artificial cervical discs. Various configurations are applied in artificial discs. Design parameters may influence the biomechanics of implanted spine. The RC is a primary variation in the popular artificial discs. Implantation of 5 prostheses was simulated at C5-C6 on the basis of a validated finite element cervical model (C3-C7). The prostheses included ball-in-socket design with a fixed RC located on the inferior endplate (BS-FI) and on the superior endplate (BS-FS), with a mobile RC at the inferior endplate (BS-MI), dual articulation with a mobile RC between the endplates (DA-M), and sliding articulation with various RCs (SA-V). The spinal motions in flexion and extension served as a displacement loading at the C3 vertebrae. Total disc replacements reduced extension moment. The ball-in-socket designs required less flexion moment, whereas the flexion stiffness of the spines with DA-M and SA-V was similar to that of the healthy model. The contributions of the implanted level to the global motions increased in the total disc replacements, except in the SA-V and DA-M models (in flexion). Ball-in-socket designs produced severe stress distributions in facet cartilage, whereas DA-M and SA-V produced more severe stress distribution on the bone-implant interface. Cervical stability was extremely affected in extension and partially affected in flexion by total disc replacement. With the prostheses with mobile RC, cervical curvature was readjusted under a low follower load. The SA-V and BS-FS designs exhibited better performances in the entire segmental stiffness and in the stability of the operative level than the BS-MI and BS-FI designs in flexion. The 5 designs demonstrated varying advantages relative to the stress distribution in the facet cartilages and on the bone-implant interface. 5.
A novel stochastic modeling method to simulate cooling loads in residential districts
An, Jingjing; Yan, Da; Hong, Tianzhen; ...
2017-09-04
District cooling systems are widely used in urban residential communities in China. Most of such systems are oversized, which leads to wasted investment, low operational efficiency and, thus, waste of energy. The accurate prediction of district cooling loads that can support the rightsizing of cooling plant equipment remains a challenge. This study develops a novel stochastic modeling method that consists of (1) six prototype house models representing most apartments in a district, (2) occupant behavior models of residential buildings reflecting their spatial and temporal diversity as well as their complexity based on a large-scale residential survey in China, and (3)more » a stochastic sampling process to represent all apartments and occupants in the district. The stochastic method was applied to a case study using the Designer's Simulation Toolkit (DeST) to simulate the cooling loads of a residential district in Wuhan, China. The simulation results agreed well with the measured data based on five performance metrics representing the aggregated cooling consumption, the peak cooling loads, the spatial load distribution, the temporal load distribution and the load profiles. Two prevalent simulation methods were also employed to simulate the district cooling loads. Here, the results showed that oversimplified assumptions about occupant behavior could lead to significant overestimation of the peak cooling load and the total cooling loads in the district. Future work will aim to simplify the workflow and data requirements of the stochastic method for its application, and to explore its use in predicting district heating loads and in commercial or mixed-use districts.« less
A novel stochastic modeling method to simulate cooling loads in residential districts
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Jingjing; Yan, Da; Hong, Tianzhen
District cooling systems are widely used in urban residential communities in China. Most of such systems are oversized, which leads to wasted investment, low operational efficiency and, thus, waste of energy. The accurate prediction of district cooling loads that can support the rightsizing of cooling plant equipment remains a challenge. This study develops a novel stochastic modeling method that consists of (1) six prototype house models representing most apartments in a district, (2) occupant behavior models of residential buildings reflecting their spatial and temporal diversity as well as their complexity based on a large-scale residential survey in China, and (3)more » a stochastic sampling process to represent all apartments and occupants in the district. The stochastic method was applied to a case study using the Designer's Simulation Toolkit (DeST) to simulate the cooling loads of a residential district in Wuhan, China. The simulation results agreed well with the measured data based on five performance metrics representing the aggregated cooling consumption, the peak cooling loads, the spatial load distribution, the temporal load distribution and the load profiles. Two prevalent simulation methods were also employed to simulate the district cooling loads. Here, the results showed that oversimplified assumptions about occupant behavior could lead to significant overestimation of the peak cooling load and the total cooling loads in the district. Future work will aim to simplify the workflow and data requirements of the stochastic method for its application, and to explore its use in predicting district heating loads and in commercial or mixed-use districts.« less
Real versus Simulated Mobile Phone Exposures in Experimental Studies
Panagopoulos, Dimitris J.; Johansson, Olle; Carlo, George L.
2015-01-01
We examined whether exposures to mobile phone radiation in biological/clinical experiments should be performed with real-life Electromagnetic Fields (EMFs) emitted by commercially available mobile phone handsets, instead of simulated EMFs emitted by generators or test phones. Real mobile phone emissions are constantly and unpredictably varying and thus are very different from simulated emissions which employ fixed parameters and no variability. This variability is an important parameter that makes real emissions more bioactive. Living organisms seem to have decreased defense against environmental stressors of high variability. While experimental studies employing simulated EMF-emissions present a strong inconsistency among their results with less than 50% of them reporting effects, studies employing real mobile phone exposures demonstrate an almost 100% consistency in showing adverse effects. This consistency is in agreement with studies showing association with brain tumors, symptoms of unwellness, and declines in animal populations. Average dosimetry in studies with real emissions can be reliable with increased number of field measurements, and variation in experimental outcomes due to exposure variability becomes less significant with increased number of experimental replications. We conclude that, in order for experimental findings to reflect reality, it is crucially important that exposures be performed by commercially available mobile phone handsets. PMID:26346766
MLP-1 on Crawler Transporter 2 (CT-2)
2017-03-22
NASA's upgraded crawler-transporter 2 (CT-2), carrying mobile launcher platform 1, moves slowly along the crawlerway at the agency's Kennedy Space Center in Florida. The crawler's upgrades and modifications will be monitored and tested under loaded conditions during its travel to the crawlerway Pad A/B split and back to the crawler yard to confirm it is ready to support the load of the mobile launcher carrying the Space Launch System with Orion atop for the first test flight, Exploration Mission 1. The Ground Systems Development and Operations Program at Kennedy is managing upgrades to the crawler.
Innovative telecommunications for law enforcement
NASA Technical Reports Server (NTRS)
Sohn, R. L.
1976-01-01
The operation of computer-aided dispatch, mobile digital communications, and automatic vehicle location systems used in law enforcement is discussed, and characteristics of systems used by different agencies are compared. With reference to computer-aided dispatch systems, the data base components, dispatcher work load, extent of usage, and design trends are surveyed. The capabilities, levels of communication, and traffic load of mobile digital communications systems are examined. Different automatic vehicle location systems are distinguished, and two systems are evaluated. Other aspects of the application of innovative technology to operational command, control, and communications systems for law enforcement agencies are described.
NASA Astrophysics Data System (ADS)
Miller, D. J.; Liu, Z.; Sun, K.; Tao, L.; Nowak, J. B.; Bambha, R.; Michelsen, H. A.; Zondlo, M. A.
2014-12-01
Agricultural ammonia (NH3) emissions are highly uncertain in current bottom-up inventories. Ammonium nitrate is a dominant component of fine aerosols in agricultural regions such as the Central Valley of California, especially during winter. Recent high resolution regional modeling efforts in this region have found significant ammonium nitrate and gas-phase NH3 biases during summer. We compare spatially-resolved surface and boundary layer gas-phase NH3 observations during NASA DISCOVER-AQ California with Community Multi-Scale Air Quality (CMAQ) regional model simulations driven by the EPA NEI 2008 inventory to constrain wintertime NH3 model biases. We evaluate model performance with respect to aerosol partitioning, mixing and deposition to constrain contributions to modeled NH3 concentration biases in the Central Valley Tulare dairy region. Ammonia measurements performed with an open-path mobile platform on a vehicle are gridded to 4 km resolution hourly background concentrations. A peak detection algorithm is applied to remove local feedlot emission peaks. Aircraft NH3, NH4+ and NO3- observations are also compared with simulations extracted along the flight tracks. We find NH3 background concentrations in the dairy region are underestimated by three to five times during winter and NH3 simulations are moderately correlated with observations (r = 0.36). Although model simulations capture NH3 enhancements in the dairy region, these simulations are biased low by 30-60 ppbv NH3. Aerosol NH4+ and NO3- are also biased low in CMAQ by three and four times respectively. Unlike gas-phase NH3, CMAQ simulations do not capture typical NH4+ or NO3- enhancements observed in the dairy region. In contrast, boundary layer height simulations agree well with observations within 13%. We also address observational constraints on simulated NH3 deposition fluxes. These comparisons suggest that NEI 2008 wintertime dairy emissions are underestimated by a factor of three to five. We test sensitivity to emissions by increasing the NEI 2008 NH3 emissions uniformly across the dairy region and evaluate the impact on modeled concentrations. These results are applicable to improving predictions of ammoniated aerosol loading and highlight the value of mobile platform spatial NH3 measurements to constrain emission inventories.
ANYmal - A Highly Mobile and Dynamic Quadrupedal Robot
2016-10-09
ANYmal - A Highly Mobile and Dynamic Quadrupedal Robot * Marco Hutter1, Christian Gehring2, Dominic Jud1, Andreas Lauber1, C. Dario Bellicoso1...Abstract— This paper introduces ANYmal, a quadrupedal robot that features outstanding mobility and dynamic motion capability. Thanks to novel...compliant joint modules with integrated electronics, the 30 kg, 0.5 m tall robotic dog is torque controllable and very robust against impulsive loads during
Spatial spreading of infectious disease via local and national mobility networks in South Korea
NASA Astrophysics Data System (ADS)
Kwon, Okyu; Son, Woo-Sik
2017-12-01
We study the spread of infectious disease based on local- and national-scale mobility networks. We construct a local mobility network using data on urban bus services to estimate local-scale movement of people. We also construct a national mobility network from orientation-destination data of vehicular traffic between highway tollgates to evaluate national-scale movement of people. A metapopulation model is used to simulate the spread of epidemics. Thus, the number of infected people is simulated using a susceptible-infectious-recovered (SIR) model within the administrative division, and inter-division spread of infected people is determined through local and national mobility networks. In this paper, we consider two scenarios for epidemic spread. In the first, the infectious disease only spreads through local-scale movement of people, that is, the local mobility network. In the second, it spreads via both local and national mobility networks. For the former, the simulation results show infected people sequentially spread to neighboring divisions. Yet for the latter, we observe a faster spreading pattern to distant divisions. Thus, we confirm the national mobility network enhances synchronization among the incidence profiles of all administrative divisions.
Simulation at the point of care: reduced-cost, in situ training via a mobile cart.
Weinstock, Peter H; Kappus, Liana J; Garden, Alexander; Burns, Jeffrey P
2009-03-01
The rapid growth of simulation in health care has challenged traditional paradigms of hospital-based education and training. Simulation addresses patient safety through deliberative practice of high-risk low-frequency events within a safe, structured environment. Despite its inherent appeal, widespread adoption of simulation is prohibited by high cost, limited space, interruptions to clinical duties, and the inability to replicate important nuances of clinical environments. We therefore sought to develop a reduced-cost low-space mobile cart to provide realistic simulation experiences to a range of providers within the clinical environment and to serve as a model for transportable, cost-effective, widespread simulation-based training of bona-fide workplace teams. Descriptive study. A tertiary care pediatric teaching hospital. A self-contained mobile simulation cart was constructed at a cost of $8054 (mannequin not included). The cart is compatible with any mannequin and contains all equipment needed to produce a high quality simulation experience equivalent to that of our on-site center--including didactics and debriefing with videotaped recordings complete with vital sign overlay. Over a 3-year period the cart delivered 57 courses to 425 participants from five pediatric departments. All individuals were trained among their native teams and within their own clinical environment. By bringing all pedagogical elements to the actual clinical environment, a mobile cart can provide simulation to hospital teams that might not otherwise benefit from the educational tool. By reducing the setup cost and the need for dedicated space, the mobile approach provides a mechanism to increase the number of institutions capable of harnessing the power of simulation-based education internationally.
NASA Technical Reports Server (NTRS)
Salmasi, A. B. (Editor); Springett, J. C.; Sumida, J. T.; Richter, P. H.
1984-01-01
The design and implementation of the Land Mobile Satellite Service (LMSS) channel simulator as a facility for an end to end hardware simulation of the LMSS communications links, primarily with the mobile terminal is described. A number of studies are reported which show the applications of the channel simulator as a facility for validation and assessment of the LMSS design requirements and capabilities by performing quantitative measurements and qualitative audio evaluations for various link design parameters and channel impairments under simulated LMSS operating conditions. As a first application, the LMSS channel simulator was used in the evaluation of a system based on the voice processing and modulation (e.g., NBFM with 30 kHz of channel spacing and a 2 kHz rms frequency deviation for average talkers) selected for the Bell System's Advanced Mobile Phone Service (AMPS). The various details of the hardware design, qualitative audio evaluation techniques, signal to channel impairment measurement techniques, the justifications for criteria of different parameter selection in regards to the voice processing and modulation methods, and the results of a number of parametric studies are further described.
1984-02-01
Added Generators and Breakers 116 * ix I~ Table of Contents (cont.) Item Pace Excitation System 117 Connection to Load 117 Bridge Crane 117 Lower St...118 Added Generator and Breaker 119 Excitation System 120 Connection to Load 120 Mobile Crane 120 Civil Features - Upper Falls 120 Powerhouse 121...intermediate plants fully integrated with the base loaded thermal plants in the area. Gavins Point is generally base- loaded to provide steady flows for
Millimeter-scale MEMS enabled autonomous systems: system feasibility and mobility
NASA Astrophysics Data System (ADS)
Pulskamp, Jeffrey S.
2012-06-01
Millimeter-scale robotic systems based on highly integrated microelectronics and micro-electromechanical systems (MEMS) could offer unique benefits and attributes for small-scale autonomous systems. This extreme scale for robotics will naturally constrain the realizable system capabilities significantly. This paper assesses the feasibility of developing such systems by defining the fundamental design trade spaces between component design variables and system level performance parameters. This permits the development of mobility enabling component technologies within a system relevant context. Feasible ranges of system mass, required aerodynamic power, available battery power, load supported power, flight endurance, and required leg load bearing capability are presented for millimeter-scale platforms. The analysis illustrates the feasibility of developing both flight capable and ground mobile millimeter-scale autonomous systems while highlighting the significant challenges that must be overcome to realize their potential.
App Usage Factor: A Simple Metric to Compare the Population Impact of Mobile Medical Apps
Wyatt, Jeremy C
2015-01-01
Background One factor when assessing the quality of mobile apps is quantifying the impact of a given app on a population. There is currently no metric which can be used to compare the population impact of a mobile app across different health care disciplines. Objective The objective of this study is to create a novel metric to characterize the impact of a mobile app on a population. Methods We developed the simple novel metric, app usage factor (AUF), defined as the logarithm of the product of the number of active users of a mobile app with the median number of daily uses of the app. The behavior of this metric was modeled using simulated modeling in Python, a general-purpose programming language. Three simulations were conducted to explore the temporal and numerical stability of our metric and a simulated app ecosystem model using a simulated dataset of 20,000 apps. Results Simulations confirmed the metric was stable between predicted usage limits and remained stable at extremes of these limits. Analysis of a simulated dataset of 20,000 apps calculated an average value for the app usage factor of 4.90 (SD 0.78). A temporal simulation showed that the metric remained stable over time and suitable limits for its use were identified. Conclusions A key component when assessing app risk and potential harm is understanding the potential population impact of each mobile app. Our metric has many potential uses for a wide range of stakeholders in the app ecosystem, including users, regulators, developers, and health care professionals. Furthermore, this metric forms part of the overall estimate of risk and potential for harm or benefit posed by a mobile medical app. We identify the merits and limitations of this metric, as well as potential avenues for future validation and research. PMID:26290093
Interrater Reliability of the Power Mobility Road Test in the Virtual Reality-Based Simulator-2.
Kamaraj, Deepan C; Dicianno, Brad E; Mahajan, Harshal P; Buhari, Alhaji M; Cooper, Rory A
2016-07-01
To assess interrater reliability of the Power Mobility Road Test (PMRT) when administered through the Virtual Reality-based SIMulator-version 2 (VRSIM-2). Within-subjects repeated-measures design. Participants interacted with VRSIM-2 through 2 display options (desktop monitor vs immersive virtual reality screens) using 2 control interfaces (roller system vs conventional movement-sensing joystick), providing 4 different driving scenarios (driving conditions 1-4). Participants performed 3 virtual driving sessions for each of the 2 display screens and 1 session through a real-world driving course (driving condition 5). The virtual PMRT was conducted in a simulated indoor office space, and an equivalent course was charted in an open space for the real-world assessment. After every change in driving condition, participants completed a self-reported workload assessment questionnaire, the Task Load Index, developed by the National Aeronautics and Space Administration. A convenience sample of electric-powered wheelchair (EPW) athletes (N=21) recruited at the 31st National Veterans Wheelchair Games. Not applicable. Total composite PMRT score. The PMRT had high interrater reliability (intraclass correlation coefficient [ICC]>.75) between the 2 raters in all 5 driving conditions. Post hoc analyses revealed that the reliability analyses had >80% power to detect high ICCs in driving conditions 1 and 4. The PMRT has high interrater reliability in conditions 1 and 4 and could be used to assess EPW driving performance virtually in VRSIM-2. However, further psychometric assessment is necessary to assess the feasibility of administering the PMRT using the different interfaces of VRSIM-2. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Application of visualization and simulation program to improve work zone safety and mobility.
DOT National Transportation Integrated Search
2010-01-01
A previous study sponsored by the Smart Work Zone Deployment Initiative, Feasibility of Visualization and Simulation Applications to Improve Work Zone Safety and Mobility, demonstrated the feasibility of combining readily available, inexpensive...
Application of visualization and simulation program to improve work zone safety and mobility.
DOT National Transportation Integrated Search
2010-01-01
"A previous study sponsored by the Smart Work Zone Deployment Initiative, Feasibility of Visualization and Simulation Applications to Improve Work Zone Safety and Mobility, demonstrated the feasibility of combining readily available, inexpensiv...
NASA Technical Reports Server (NTRS)
Negrut, Dan; Mazhar, Hammad; Melanz, Daniel; Lamb, David; Jayakumar, Paramsothy; Letherwood, Michael; Jain, Abhinandan; Quadrelli, Marco
2012-01-01
This paper is concerned with the physics-based simulation of light tracked vehicles operating on rough deformable terrain. The focus is on small autonomous vehicles, which weigh less than 100 lb and move on deformable and rough terrain that is feature rich and no longer representable using a continuum approach. A scenario of interest is, for instance, the simulation of a reconnaissance mission for a high mobility lightweight robot where objects such as a boulder or a ditch that could otherwise be considered small for a truck or tank, become major obstacles that can impede the mobility of the light autonomous vehicle and negatively impact the success of its mission. Analyzing and gauging the mobility and performance of these light vehicles is accomplished through a modeling and simulation capability called Chrono::Engine. Chrono::Engine relies on parallel execution on Graphics Processing Unit (GPU) cards.
Uranium fate in wetland mesocosms: Effects of plants at two ...
Small-scale continuous flow wetland mesocosms (~0.8 L) were used to evaluate how plant roots under different iron loadings affect uranium (U) mobility. When significant concentrations of ferrous iron (Fe) were present at circumneutral pH values, U concentrations in root exposed sediments were an order of magnitude greater than concentrations in root excluded sediments. Micro X-ray absorption near-edge structure (µ-XANES) spectroscopy indicated that U was associated with the plant roots primarily as U(VI) or U(V), with limited evidence of U(IV). Micro X-ray fluorescence (µ-XRF) of plant roots suggested that for high iron loading at circumneutral pH, U was co-located with Fe, perhaps co-precipitated with root Fe plaques, while for low iron loading at a pH of ~4 the correlation between U and Fe was not significant, consistent with previous observations of U associated with organic matter. Quantitative PCR analyses indicated that the root exposed sediments also contained elevated numbers of Geobacter spp., which are likely associated with enhanced iron cycling, but may also reduce mobile U(VI) to less mobile U(IV) species. There are significant uncertainties regarding the environmental fate of uranium (U) and efforts to minimize U exposures require understanding of its mobility in environmental systems. Much research has focused on sequestering U as solids within groundwater aquifers, where localized risks can be controlled.1 Subsurface sequestration limits t
NASA Astrophysics Data System (ADS)
Szymanski, Marek Z.; Kulszewicz-Bajer, Irena; Faure-Vincent, Jérôme; Djurado, David
2012-05-01
Space-charge-limited current transients (also referred as time resolved dark injection) is an attractive technique for mobility measurements in low mobility materials, particularly the organic semiconductors. Transients are generally analyzed in terms of the Many-Rakavy theory, which is an approximate analytical solution of the time-dependent drift-diffusion problem after application of a voltage step. In this contribution, we perform full time-dependent drift-diffusion simulation and compare simulated and experimental transients measured on a sample of triaryl-amine based electroactive dendrimer (experimental conditions: μ≈10-5 cm2/(Vs), L=300 nm, E<105 V/cm). We have found that the Many-Rakavy theory is indeed valid for estimating the mobility value, but it fails to predict quantitatively the time-dependent current response. In order to obtain a good agreement in between simulation and experiment, trapping and quasi-ohmic contact models were needed to be taken into account. In the case of the studied electroactive dendrimer, the experimental results were apparently consistent with the constant mobility Many-Rakavy theory, but with this model, a large uncertainty of 20% was found for the mobility value. We show that this uncertainty can be significantly reduced to 10% if a field-dependent mobility is taken into account in the framework of the extended Gaussian disorder model. Finally, we demonstrate that this fitting procedure between simulated and experimental transient responses also permits to unambiguously provide the values of the contact barrier, the trap concentration, the trap depth in addition to that of the mobility of carriers.
NASA Astrophysics Data System (ADS)
Bottari, C.; Albano, M.; Capizzi, P.; D'Alessandro, A.; Doumaz, F.; Martorana, R.; Moro, M.; Saroli, M.
2018-01-01
Seismotectonic activity and slope instability are a permanent threat in the archaeological site of Abakainon and in the nearby village of Tripi in NE Sicily. In recent times, signs of an ancient earthquake have been identified in the necropolis of Abakainon which dating was ascertained to the first century AD earthquake. The site is located on a slope of Peloritani Mts. along the Tindari Fault Line and contains evidence for earthquake-induced landslide, including fallen columns and blocks, horizontal shift and counter slope tilting of the tomb basements. In this paper, we used an integrated geomorphological and geophysical analysis to constrain the landslide. The research was directed to the acquisition of deep geological data for the reconstruction of slope process and the thickness of mobilized materials. The applied geophysical techniques included seismic refraction tomography and electrical resistivity tomography. The surveys were performed to delineate the sliding surface and to assess approximately the thickness of mobilized materials. The geophysical and geomorphologic data confirmed the presence of different overlapped landslides in the studied area. Moreover, a numerical simulation of the slope under seismic loads supports the hypothesis of a mobilization of the landslide mass in case of strong earthquakes (PGA > 0.3 g). However, numerical results highlight that the main cause of destruction for the Abakainon necropolis is the amplification of the seismic waves, occasionally accompanied by surficial sliding.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Mendelev, M. I.; Wang, C. Z.; Ott, R.; Zhang, F.; Besser, M. F.; Ho, K. M.; Kramer, M. J.
2014-11-01
Despite numerous studies on the atomic structures of Cu-Zr metallic glasses (MGs), their inherent structural ordering, e.g., medium-range order (MRO), remains difficult to describe. Specifically lacking is an understanding of how the MRO responds to deformation and the associated changes in atomic mobility. In this paper, we focus on the impact of deformation on MRO and associated effect on diffusion in a well-relaxed C u64.5Z r35.5 MG by molecular dynamics simulations. The Cu-Zr MG exhibits a larger elastic limit of 0.035 and a yield stress of 3.5 GPa. The cluster alignment method was employed to characterize the icosahedral short-range order (ISRO) and Bergman-type medium-range order (BMRO) in the models upon loading and unloading. From this analysis, we find the disruption of both ISRO and BMRO occurs as the strain reaches about 0.02, well below the elastic limit. Within the elastic limit, the total fractions of ISRO or BMRO can be fully recovered upon unloading. The diffusivity increases six to eight times in regions undergoing plastic deformation, which is due to the dramatic disruption of the ISRO and BMRO. By mapping the spatial distributions of the mobile atoms, we demonstrate the increase in atomic mobility is due to the extended regions of disrupted ISRO and more importantly BMRO.
Mobility based multicast routing in wireless mesh networks
NASA Astrophysics Data System (ADS)
Jain, Sanjeev; Tripathi, Vijay S.; Tiwari, Sudarshan
2013-01-01
There exist two fundamental approaches to multicast routing namely minimum cost trees and shortest path trees. The (MCT's) minimum cost tree is one which connects receiver and sources by providing a minimum number of transmissions (MNTs) the MNTs approach is generally used for energy constraint sensor and mobile ad hoc networks. In this paper we have considered node mobility and try to find out simulation based comparison of the (SPT's) shortest path tree, (MST's) minimum steiner trees and minimum number of transmission trees in wireless mesh networks by using the performance metrics like as an end to end delay, average jitter, throughput and packet delivery ratio, average unicast packet delivery ratio, etc. We have also evaluated multicast performance in the small and large wireless mesh networks. In case of multicast performance in the small networks we have found that when the traffic load is moderate or high the SPTs outperform the MSTs and MNTs in all cases. The SPTs have lowest end to end delay and average jitter in almost all cases. In case of multicast performance in the large network we have seen that the MSTs provide minimum total edge cost and minimum number of transmissions. We have also found that the one drawback of SPTs, when the group size is large and rate of multicast sending is high SPTs causes more packet losses to other flows as MCTs.
47 CFR 90.631 - Trunked systems loading, construction and authorization requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Regulations Governing Licensing and... Processing of Applications and the Selection and Assignment of Frequencies for Use in the 806-824 Mhz, 851... one hundred (100) mobile stations per channel. For purposes of determining compliance with trunked...
47 CFR 90.633 - Conventional systems loading requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... of mobile stations justifies the total number of authorized based frequencies in a given area, the.... If this cannot be determined, it will be counted fractionally over the number of base station... (70) mobile stations for each channel authorized. (b) A channel will not be assigned to additional...
Roche, Christopher P; Staunch, Cameron; Hahn, William; Grey, Sean G; Flurin, Pierre-Henri; Wright, Thomas W; Zuckerman, Joseph D
2015-12-01
ASTM F2028-14 was adopted to recom mend a cyclic eccentric glenoid edge loading test that simulates the rocking horse loading mechanism beleived to cause aTSA glenoid loosening. While this method accurately simulates that failure mechanism, the recommended 750 N load may not be sufficient to simulate worst-case loading magnitudes, and the recommended 100,000 cycles may not be sufficient to simulate device fatigue-related failure modes. Finally, if greater loading magnitude or a larger number of cycles is performed, the recommended substrate density may not be sufficiently strong to support the elevated loads and cycles. To this end, a new test method is proposed to supplement ASTM F2028-14. A series of cyclic tests were performed to evaluate the long-term fixation strength of two different hybrid glenoid designs in both low (15 pcf) and high (30 pcf) density polyurethane blocks at elevated loads relative to ASTM F2028-14. To simulate a worst case clinical condition in which the humeral head is superiorly migrated, a cyclic load was applied to the superior glenoid rim to induce a maximum torque on the fixation pegs for three different cyclic loading tests: 1. 1,250 N load for 0.75 M cycles in a 15 pcf block, 2. 1,250 N load for 1.5 M cycles in a 30 pcf block, and 3. 2,000 N load for 0.65 M cycles in a 30 pcf block. All devices completed cyclic loading without failure, fracture, or loss of fixation regardless of glenoid design, polyurethane density, loading magnitude, or cycle length. No significant difference in post-cyclic displacement was noted between designs in any of the three tests. Post-cyclic radiographs demonstrated that each device maintained fixa - tion with the metal pegs within the bone-substitute blocks with no fatigue related failures. These results demonstrate that both cemented hybrid glenoids maintained fixation when tested according to each cyclic loading scenario, with no difference in post-cyclic displacement observed between designs. The lack of fatigue-related failures in these elevated load and high cycle test scenarios are promising, as are the relatively low displacements given the extreme nature of each test. This cyclic loading method is intended to supplement the ASTM F2028-14 standard that adequately simulates the rocking horse loading mechanism but may not adequately simulate the fatigue-related failure modes.
Active Response Gravity Offload and Method
NASA Technical Reports Server (NTRS)
Dungan, Larry K. (Inventor); Lieberman, Asher P. (Inventor); Shy, Cecil (Inventor); Bankieris, Derek R. (Inventor); Valle, Paul S. (Inventor); Redden, Lee (Inventor)
2015-01-01
A variable gravity field simulator can be utilized to provide three dimensional simulations for simulated gravity fields selectively ranging from Moon, Mars, and micro-gravity environments and/or other selectable gravity fields. The gravity field simulator utilizes a horizontally moveable carriage with a cable extending from a hoist. The cable can be attached to a load which experiences the effects of the simulated gravity environment. The load can be a human being or robot that makes movements that induce swinging of the cable whereby a horizontal control system reduces swinging energy. A vertical control system uses a non-linear feedback filter to remove noise from a load sensor that is in the same frequency range as signals from the load sensor.
Cognitive load predicts point-of-care ultrasound simulator performance.
Aldekhyl, Sara; Cavalcanti, Rodrigo B; Naismith, Laura M
2018-02-01
The ability to maintain good performance with low cognitive load is an important marker of expertise. Incorporating cognitive load measurements in the context of simulation training may help to inform judgements of competence. This exploratory study investigated relationships between demographic markers of expertise, cognitive load measures, and simulator performance in the context of point-of-care ultrasonography. Twenty-nine medical trainees and clinicians at the University of Toronto with a range of clinical ultrasound experience were recruited. Participants answered a demographic questionnaire then used an ultrasound simulator to perform targeted scanning tasks based on clinical vignettes. Participants were scored on their ability to both acquire and interpret ultrasound images. Cognitive load measures included participant self-report, eye-based physiological indices, and behavioural measures. Data were analyzed using a multilevel linear modelling approach, wherein observations were clustered by participants. Experienced participants outperformed novice participants on ultrasound image acquisition. Ultrasound image interpretation was comparable between the two groups. Ultrasound image acquisition performance was predicted by level of training, prior ultrasound training, and cognitive load. There was significant convergence between cognitive load measurement techniques. A marginal model of ultrasound image acquisition performance including prior ultrasound training and cognitive load as fixed effects provided the best overall fit for the observed data. In this proof-of-principle study, the combination of demographic and cognitive load measures provided more sensitive metrics to predict ultrasound simulator performance. Performance assessments which include cognitive load can help differentiate between levels of expertise in simulation environments, and may serve as better predictors of skill transfer to clinical practice.
Martínez, Leandro
2015-01-01
The analysis of structural mobility in molecular dynamics plays a key role in data interpretation, particularly in the simulation of biomolecules. The most common mobility measures computed from simulations are the Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuations (RMSF) of the structures. These are computed after the alignment of atomic coordinates in each trajectory step to a reference structure. This rigid-body alignment is not robust, in the sense that if a small portion of the structure is highly mobile, the RMSD and RMSF increase for all atoms, resulting possibly in poor quantification of the structural fluctuations and, often, to overlooking important fluctuations associated to biological function. The motivation of this work is to provide a robust measure of structural mobility that is practical, and easy to interpret. We propose a Low-Order-Value-Optimization (LOVO) strategy for the robust alignment of the least mobile substructures in a simulation. These substructures are automatically identified by the method. The algorithm consists of the iterative superposition of the fraction of structure displaying the smallest displacements. Therefore, the least mobile substructures are identified, providing a clearer picture of the overall structural fluctuations. Examples are given to illustrate the interpretative advantages of this strategy. The software for performing the alignments was named MDLovoFit and it is available as free-software at: http://leandro.iqm.unicamp.br/mdlovofit.
Martínez, Leandro
2015-01-01
The analysis of structural mobility in molecular dynamics plays a key role in data interpretation, particularly in the simulation of biomolecules. The most common mobility measures computed from simulations are the Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuations (RMSF) of the structures. These are computed after the alignment of atomic coordinates in each trajectory step to a reference structure. This rigid-body alignment is not robust, in the sense that if a small portion of the structure is highly mobile, the RMSD and RMSF increase for all atoms, resulting possibly in poor quantification of the structural fluctuations and, often, to overlooking important fluctuations associated to biological function. The motivation of this work is to provide a robust measure of structural mobility that is practical, and easy to interpret. We propose a Low-Order-Value-Optimization (LOVO) strategy for the robust alignment of the least mobile substructures in a simulation. These substructures are automatically identified by the method. The algorithm consists of the iterative superposition of the fraction of structure displaying the smallest displacements. Therefore, the least mobile substructures are identified, providing a clearer picture of the overall structural fluctuations. Examples are given to illustrate the interpretative advantages of this strategy. The software for performing the alignments was named MDLovoFit and it is available as free-software at: http://leandro.iqm.unicamp.br/mdlovofit PMID:25816325
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doubrawa, P.; Barthelmie, R. J.; Wang, H.
The contribution of wake meandering and shape asymmetry to load and power estimates is quantified by comparing aeroelastic simulations initialized with different inflow conditions: an axisymmetric base wake, an unsteady stochastic shape wake, and a large-eddy simulation with rotating actuator-line turbine representation. Time series of blade-root and tower base bending moments are analyzed. We find that meandering has a large contribution to the fluctuation of the loads. Moreover, considering the wake edge intermittence via the stochastic shape model improves the simulation of load and power fluctuations and of the fatigue damage equivalent loads. Furthermore, these results indicate that the stochasticmore » shape wake simulator is a valuable addition to simplified wake models when seeking to obtain higher-fidelity computationally inexpensive predictions of loads and power.« less
Doubrawa, P.; Barthelmie, R. J.; Wang, H.; ...
2016-10-03
The contribution of wake meandering and shape asymmetry to load and power estimates is quantified by comparing aeroelastic simulations initialized with different inflow conditions: an axisymmetric base wake, an unsteady stochastic shape wake, and a large-eddy simulation with rotating actuator-line turbine representation. Time series of blade-root and tower base bending moments are analyzed. We find that meandering has a large contribution to the fluctuation of the loads. Moreover, considering the wake edge intermittence via the stochastic shape model improves the simulation of load and power fluctuations and of the fatigue damage equivalent loads. Furthermore, these results indicate that the stochasticmore » shape wake simulator is a valuable addition to simplified wake models when seeking to obtain higher-fidelity computationally inexpensive predictions of loads and power.« less
Composite Load Spectra for Select Space Propulsion Structural Components
NASA Technical Reports Server (NTRS)
Ho, Hing W.; Newell, James F.
1994-01-01
Generic load models are described with multiple levels of progressive sophistication to simulate the composite (combined) load spectra (CLS) that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades and liquid oxygen (LOX) posts. These generic (coupled) models combine the deterministic models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients are then determined using advanced probabilistic simulation methods with and without strategically selected experimental data. The entire simulation process is included in a CLS computer code. Applications of the computer code to various components in conjunction with the PSAM (Probabilistic Structural Analysis Method) to perform probabilistic load evaluation and life prediction evaluations are also described to illustrate the effectiveness of the coupled model approach.
Yang, K; Perez, M; Perrenot, C; Hubert, N; Felblinger, J; Hubert, J
2016-12-01
The da Vinci robot provides a sitting position and an armrest to decrease workload and increase dexterity. We investigated the surgeon's ergonomic behaviour by installing force sensors on the dV-Trainer® simulator's armrest to measure the 'armrest load' during the performance of simulated exercises. Five experts and 48 novices performed two robotic simulation exercises on the dV-Trainer. We calculated the armrest load and evaluated their armrest-using habits. Overall score and workspace range were evaluated automatically by the simulator and compared with armrest load. Statistically significant differences exist for overall score, workspace range and armrest load between novices and experts. The armrest load score is a direct, sensitive measure for the ergonomic evaluation of a simulator's armrest use. This experience-dependent ergonomic difference between experts and novices (p = 0.007) highlights the importance of ergonomic training for novice robot users. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
McCahill, Peter W; Noste, Erin E; Rossman, A J; Callaway, David W
2014-12-01
Disasters create major strain on energy infrastructure in affected communities. Advances in microgrid technology offer the potential to improve "off-grid" mobile disaster medical response capabilities beyond traditional diesel generation. The Carolinas Medical Center's mobile emergency medical unit (MED-1) Green Project (M1G) is a multi-phase project designed to demonstrate the benefits of integrating distributive generation (DG), high-efficiency batteries, and "smart" energy utilization in support of major out-of-hospital medical response operations. Carolinas MED-1 is a mobile medical facility composed of a fleet of vehicles and trailers that provides comprehensive medical care capacities to support disaster response and special-event operations. The M1G project partnered with local energy companies to deploy energy analytics and an energy microgrid in support of mobile clinical operations for the 2012 Democratic National Convention (DNC) in Charlotte, North Carolina (USA). Energy use data recorded throughout the DNC were analyzed to create energy utilization models that integrate advanced battery technology, solar photovoltaic (PV), and energy conservation measures (ECM) to improve future disaster response operations. The generators that supply power for MED-1 have a minimum loading ratio (MLR) of 30 kVA. This means that loads below 30 kW lead to diesel fuel consumption at the same rate as a 30 kW load. Data gathered from the two DNC training and support deployments showed the maximum load of MED-1 to be around 20 kW. This discrepancy in MLR versus actual load leads to significant energy waste. The lack of an energy storage system reduces generator efficiency and limits integration of alternative energy generation strategies. A storage system would also allow for alternative generation sources, such as PV, to be incorporated. Modeling with a 450 kWh battery bank and 13.5 kW PV array showed a 2-fold increase in potential deployment times using the same amount of fuel versus the current conventional system. The M1G Project demonstrated that the incorporation of a microgrid energy management system and a modern battery system maximize the MED-1 generators' output. Using a 450 kWh battery bank and 13.5 kW PV array, deployment operations time could be more than doubled before refueling. This marks a dramatic increase in patient care capabilities and has significant public health implications. The results highlight the value of smart-microgrid technology in developing energy independent mobile medical capabilities and expanding cost-effective, high-quality medical response.
Cao, Xin; Wang, Yiqi; He, Jian; Luo, Xingzhang; Zheng, Zheng
2016-12-01
This study was focused on the phosphorus mobility among sediments, water and cyanobacteria in eutrophic Lake Dianchi. Four conditions lake water, water and algae, water and sediments, and three objects together were conducted to investigate the effects of cyanobacteria growth on the migration and transformation of phosphorus. Results showed a persistent correlation between the development of cyanobacterial blooms and the increase of soluble reactive phosphorus (SRP) in the lake water under the condition of three objects together. Time-course assays measuring different forms of phosphorus in sediments indicated that inorganic phosphorus (IP) and NaOH-P were relatively more easier to migrate out of sediment to the water and cyanobacteria. Further studies on phosphorus mobility showed that up to 70.2% of the released phosphorus could be absorbed by cyanobacteria, indicating that sediment is a major source of phosphorus when external loading is reduced. Time-course assays also showed that the development of cyanobacterial blooms promoted an increase in pH and a decrease in the redox potential of the lake water. The structure of the microbial communities in sediments was also significantly changed, revealed a great impaction of cyanobacterial blooms on the microbial communities in sediments, which may contribute to phosphorus release. Our study simulated the cyanobacterial blooms of Lake Dianchi and revealed that the cyanobacterial blooms is a driving force for phosphorus mobility among sediments, water and cyanobacteria. The outbreak of algal blooms caused deterioration in water quality. The P in the sediments represented a significant supply for the growth of cyanobacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
MobRISK: a model for assessing the exposure of road users to flash flood events
NASA Astrophysics Data System (ADS)
Shabou, Saif; Ruin, Isabelle; Lutoff, Céline; Debionne, Samuel; Anquetin, Sandrine; Creutin, Jean-Dominique; Beaufils, Xavier
2017-09-01
Recent flash flood impact studies highlight that road networks are often disrupted due to adverse weather and flash flood events. Road users are thus particularly exposed to road flooding during their daily mobility. Previous exposure studies, however, do not take into consideration population mobility. Recent advances in transportation research provide an appropriate framework for simulating individual travel-activity patterns using an activity-based approach. These activity-based mobility models enable the prediction of the sequence of activities performed by individuals and locating them with a high spatial-temporal resolution. This paper describes the development of the MobRISK microsimulation system: a model for assessing the exposure of road users to extreme hydrometeorological events. MobRISK aims at providing an accurate spatiotemporal exposure assessment by integrating travel-activity behaviors and mobility adaptation with respect to weather disruptions. The model is applied in a flash-flood-prone area in southern France to assess motorists' exposure to the September 2002 flash flood event. The results show that risk of flooding mainly occurs in principal road links with considerable traffic load. However, a lag time between the timing of the road submersion and persons crossing these roads contributes to reducing the potential vehicle-related fatal accidents. It is also found that sociodemographic variables have a significant effect on individual exposure. Thus, the proposed model demonstrates the benefits of considering spatiotemporal dynamics of population exposure to flash floods and presents an important improvement in exposure assessment methods. Such improved characterization of road user exposures can present valuable information for flood risk management services.
NASA Technical Reports Server (NTRS)
Pevzner, L. Z.; Venkov, L.; Cheresharov, L.
1980-01-01
Albino rats were kept for a year under conditions of daily motor load or constant hypokinesia. An increase in motor activity results in a rise in the acetylcholinesterase activity determined in the synaptosomal and purified mitochondrial fractions while hypokinesia induces a pronounced decrease in this enzyme activity. The butyrylcholinesterase activity somewhat decreases in the synaptosomal fraction after hypokinesia but does not change under the motor load pattern. Motor load causes an increase in the amount of synaptosomal water-soluble proteins possessing an intermediate electrophoretic mobility and seem to correspond to the brain-specific protein 14-3-2. In the synaptosomal fraction the amount of membrane proteins with a low electrophoretic mobility and with the cholinesterase activity rises. Hypokinesia, on the contrary, decreases the amount of these membrane proteins.
Monolithic Microwave Integrated Circuits (MMIC) Broadband Power Amplifiers (Part 2)
2013-07-01
2 Figure 2. A 2-GHz load-pull simulation of output power (Pcomp-6 x 65 µm PHEMT). ..............2 Figure 3. A 2-GHz load-pull simulation of PAE (6...5. MMIC 1–5 GHz output power and PAE performance simulation (1, 2, 3, and 4 GHz...load-pull simulation of PAE (6 x 50 µm PHEMT). .......................................7 Figure 9. MMIC 10–19 GHz broadband power amplifier linear
40 CFR 85.2216 - Loaded test-EPA 81.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Loaded test-EPA 81. 85.2216 Section 85.2216 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Emission Control System Performance Warranty Short Tests § 85...
Schwiesau, Jens; Schilling, Carolin; Kaddick, Christian; Utzschneider, Sandra; Jansson, Volkmar; Fritz, Bernhard; Blömer, Wilhelm; Grupp, Thomas M
2013-05-01
The objective of our study was the definition of testing scenarios for knee wear simulation under various highly demanding daily activities of patients after total knee arthroplasty. This was mainly based on a review of published data on knee kinematics and kinetics followed by the evaluation of the accuracy and precision of a new experimental setup. We combined tibio-femoral load and kinematic data reported in the literature to develop deep squatting loading profiles for simulator input. A servo-hydraulic knee wear simulator was customised with a capability of a maximum flexion of 120°, a tibio-femoral load of 5000N, an anterior-posterior (AP) shear force of ±1000N and an internal-external (IE) rotational torque of ±50Nm to simulate highly demanding patient activities. During the evaluation of the newly configurated simulator the ability of the test machine to apply the required load and torque profiles and the flexion kinematics in a precise manner was examined by nominal-actual profile comparisons monitored periodically during subsequent knee wear simulation. For the flexion kinematics under displacement control a delayed actuator response of approximately 0.05s was inevitable due to the inertia of masses in movement of the coupled knee wear stations 1-3 during all applied activities. The axial load and IE torque is applied in an effective manner without substantial deviations between nominal and actual load and torque profiles. During the first third of the motion cycle a marked deviation between nominal and actual AP shear load profiles has to be noticed but without any expected measurable effect on the latter wear simulation due to the fact that the load values are well within the peak magnitude of the nominal load amplitude. In conclusion the described testing method will be an important tool to have more realistic knee wear simulations based on load conditions of the knee joint during activities of daily living. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Modular, high power, variable R dynamic electrical load simulator
NASA Technical Reports Server (NTRS)
Joncas, K. P.
1974-01-01
The design of a previously developed basic variable R load simulator was entended to increase its power dissipation and transient handling capabilities. The delivered units satisfy all design requirements, and provides for a high power, modular simulation capability uniquely suited to the simulation of complex load responses. In addition to presenting conclusions and recommendations and pertinent background information, the report covers program accomplishments; describes the simulator basic circuits, transfer characteristic, protective features, assembly, and specifications; indicates the results of simulator evaluation, including burn-in and acceptance testing; provides acceptance test data; and summarizes the monthly progress reports.
Investigation of Noise and Vibration in Tires Through Analytical Modeling, Tests and Simulations
NASA Astrophysics Data System (ADS)
Cao, Rui
Tire noise and vibration is an interesting topic, with more and more people paying attention to this issue. Tire noise can both propagate into the vehicle interior and radiate directly toward the immediate environment. Tire noise is not only related to vehicle passengers' comfort but also affects the residential or working area near highways, especially in high population density regions. The emerging electric vehicles also emphasize tires' role in vehicle Noise Vibration and Harshness (NVH) since power-train noises are significantly reduced. The study in this research focuses on the noise and vibration of tires from the low to high frequency range, typically from 60 kHz to 2 kHz. From the analytical point of view, forced vibration of a fully coupled 2D structural-acoustical model is presented and a 3D structural model is also investigated for various input conditions. Both circumferential and cross-sectional shearing motions in the analytical tire models can be observed. Static tire surface mobilities were also measured to verify the findings from the developed models. On the experimental side, the loading effect on tire noise radiation was studied, where applied loads ranged from 500 lbs to 1300 lbs. Results indicate that sound radiation is usually proportional to the loading, except between 1.1 kHz to 1.7 kHz where the load-noise relation is reversed. In addition, tire noise generated by road surface discontinuities was also studied experimentally. As expected, a broadband increase of the noise spectrum can be observed below 1 kHz compared to the noise on a continuous surface. However, the difference tends to diminish above 1 kHz except in a certain narrow frequency band depending on the particular tire tested. High frequency waves and motions in tire cross-sectional directions were identified as occurring in the frequency range of interest. A two-dimensional cross-sectional analytical tire model was proposed for further investigations, in order to verify the relation among high frequency tire noise properties and the fast propagating waves and cross-sectional motions in tires. Finally, a fully coupled finite element tire-wheel model was developed to simulate the tire deformation under static vertical loading and to explore the influence of various excitation forces. The forces or accelerations, depending on the boundary conditions, at the wheel center can be calculated from the tire model up to 500 Hz. The results can be potentially used as input for vehicle full body simulations, thus accelerating the optimization process of new product development.
Modeling and Simulation of a Helicopter Slung Load Stabilization Device
NASA Technical Reports Server (NTRS)
Cicolani, Luigi S.; Ehlers, George E.
2002-01-01
This paper addresses the problem of simulation and stabilization of the yaw motions of a cargo container slung load. The study configuration is a UH-60 helicopter carrying a 6ft x 6 ft x 8 ft CONEX container. This load is limited to 60 KIAS in operations and flight testing indicates that it starts spinning in hover and that spin rate increases with airspeed. The simulation reproduced the load yaw motions seen in the flight data after augmenting the load model with terms representing unsteady load yaw moment effects acting to reinforce load oscillations, and augmenting the hook model to include yaw resistance at the hook. The use of a vertical fin to stabilize the load is considered. Results indicate that the CONEX airspeed can be extended to 110 kts using a 3x5 ft fin.
Levy, Ayelet; Kopplin, Kara; Gefen, Amit
2013-12-01
Pressure ulcers (PUs) are common in patients who chronically depend on a wheelchair for mobility, such as those with a spinal cord injury (SCI). In attempt to prevent the formation of PUs, pressure relieving maneuvers, such as push-ups, are commonly recommended for individuals with SCI. However, very little is known about skin and subcutaneous fat tissue load distributions during sitting and in particular their development during the process of regaining weight-bearing after a push-up. Knowledge on how these loads evolve during sitting-down is critical for understanding the susceptibility of skin to PUs. Considering the potential practical implications on guidelines for wheelchair users, we studied herein the build-up of shear loads in skin and subcutaneous fat using a model of the buttocks of a single SCI subject. Using 12 variants of our finite element (FE) model, we determined the shear loads in skin and subcutaneous fat tissues under the ischial tuberosities when sitting down on foam cushions with different stiffness properties, in healthy skin and scarred skin conditions, focusing on the time course of the build-up of tissue loads. We found substantial differences between the loading curves of skin and fat: While the fat was loaded at a nearly constant rate, skin loads increased nonlinearly - with a greater load/time slope at early skin-support contact. In the context of tissue health and prevention of PUs, this indicates that the more sensitive period with respect to skin integrity is at initial skin-support contact. We further found that the edges of a pre-existing scar are more susceptible to injury, and the greater risk for that is when a hypertrophic scar is present. Despite that this is a theoretical modeling study with associated limitations, we believe that it is already appropriate to recommend to patients to reposition themselves gradually and gently, and not to "fall" back into the wheelchair after finishing a push-up maneuver. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lunar surface structural concepts and construction studies
NASA Technical Reports Server (NTRS)
Mikulas, Martin
1991-01-01
The topics are presented in viewgraph form and include the following: lunar surface structures construction research areas; lunar crane related disciplines; shortcomings of typical mobile crane in lunar base applications; candidate crane cable suspension systems; NIST six-cable suspension crane; numerical example of natural frequency; the incorporation of two new features for improved performance of the counter-balanced actively-controlled lunar crane; lunar crane pendulum mechanics; simulation results; 1/6 scale lunar crane testbed using GE robot for global manipulation; basic deployable truss approaches; bi-pantograph elevator platform; comparison of elevator platforms; perspective of bi-pantograph beam; bi-pantograph synchronously deployable tower/beam; lunar module off-loading concept; module off-loader concept packaged; starburst deployable precision reflector; 3-ring reflector deployment scheme; cross-section of packaged starburst reflector; and focal point and thickness packaging considerations.
Mobile Bay, Alabama area seen in Skylab 4 Earth Resources Experiment Package
1974-02-01
SL4-92-300 (February 1974) --- A near vertical view of the Mobile Bay, Alabama area is seen in this Skylab 4 Earth Resources Experiments Package S190-B (five-inch earth terrain camera) photograph taken from the Skylab space station in Earth orbit. North of Mobile the Tombigbee and Alabama Rivers join to form the Mobile River. Detailed configuration of the individual stream channels and boundaries can be defined as the Mobile River flows into Mobile Bay, and thence into the Gulf of Mexico. The Mobile River Valley with its numerous stream channels is a distinct light shade in contrast to the dark green shade of the adjacent areas. The red coloration of Mobile Bay reflects the sediment load carried into the Bay by the rivers. Variations in red color indicate sediment load and the current paths within Mobile Bay. The waterly movement of the along shore currents at the mouth of Mobile Bay is shown by the contrasting light blue of the sediment-laden current and the blue of the Gulf predominately. Agricultural areas east and west of Mobile Bay are characterized by a rectangular pattern in green to white shades. Color variations may reflect the type and growth cycle of crops. Agricultural areas (light gray-greens) are also clearly visible in other parts of the photograph. Interstate 10 extends from near Pascagoula, Mississippi eastward through Mobile to the outskirts of Pensacola, Florida. Analysis of the EREP photographic data will be undertaken by the U.S. Corps of Engineers to determine bay dynamic processes. Federal agencies participating with NASA on the EREP project are the Departments of Agriculture, Commerce, Interior, the Environmental Protection Agency and the Corps of Engineers. All EREP photography is available to the public through the Department of Interior's Earth Resources Observations Systems Data Center, Sioux Falls, South Dakota. 57198 Photo credit: NASA
Finite Element Analysis of Single Wheat Mechanical Response to Wind and Rain Loads
NASA Astrophysics Data System (ADS)
Liang, Li; Guo, Yuming
One variety of wheat in the breeding process was chosen to determine the wheat morphological traits and biomechanical properties. ANSYS was used to build the mechanical model of wheat to wind load and the dynamic response of wheat to wind load was simulated. The maximum Von Mises stress is obtained by the powerful calculation function of ANSYS. And the changing stress and displacement of each node and finite element in the process of simulation can be output through displacement nephogram and stress nephogram. The load support capability can be evaluated and to predict the wheat lodging. It is concluded that computer simulation technology has unique advantages such as convenient and efficient in simulating mechanical response of wheat stalk under wind and rain load. Especially it is possible to apply various load types on model and the deformation process can be observed simultaneously.
2012-08-01
based impulsive loading ......................................... 48 4.4 Computational modeling of USLS ...56 4.5 Underwater Shock Loading Simulator ( USLS ) ...................................................... 59 4.6 Concluding...42 Figure 4.1 Schematic of Underwater Shock Loading Simulator ( USLS ). A high-velocity projectile hits the flyer-plate and creates a stress
[Intramedullary stabilisation of clavicula fractures].
Prokop, A; Schiffer, G; Jubel, A; Chmielnicki, M
2013-10-01
With an incidence of 64/100,000, clavicular shaft fractures are one of the most common fractures. Intramedullary fixation with Prevot nails was initially reported in the late 1990s. This procedure offers minimally invasive stabilization of the fracture, thus enabling immediate mobilization and rapid loading capacity. Using a case study, the positioning and procedure are demonstrated on video. The intramedullary implant accommodates the varying tension loading of the clavicle. This treatment is ideal for clavicular fractures with 2-3 fragments. Compared to patients treated conservatively, operated patients achieve more rapid and improved mobility. Employment disability is shorter, and malunion occurs less frequently. Georg Thieme Verlag KG Stuttgart · New York.
MLP-1 on Crawler Transporter 2 (CT-2)
2017-03-22
Ground support technicians walk alongside NASA's upgraded crawler-transporter 2 (CT-2), carrying mobile launcher platform 1, as it slowly travels on the crawlerway at the agency's Kennedy Space Center in Florida. The crawler's upgrades and modifications will be monitored and tested under loaded conditions during its travel to the crawlerway Pad A/B split and back to the crawler yard to confirm it is ready to support the load of the mobile launcher carrying the Space Launch System with Orion atop for the first test flight, Exploration Mission 1. The Ground Systems Development and Operations Program at Kennedy is managing upgrades to the crawler.
MLP-1 on Crawler Transporter 2 (CT-2)
2017-03-22
NASA's upgraded crawler-transporter 2 (CT-2), carrying mobile launcher platform 1, moves slowly along the crawlerway toward the Vehicle Assembly Building at the agency's Kennedy Space Center in Florida. The crawler's upgrades and modifications were monitored and tested during a loaded test to the crawlerway Pad A/B split. CT-2 will return to the crawler yard. The crawler is being tested to confirm it is ready to support the load of the mobile launcher carrying the Space Launch System with Orion atop for the first test flight, Exploration Mission 1. The Ground Systems Development and Operations Program at Kennedy is managing upgrades to the crawler.
NASA Technical Reports Server (NTRS)
April, G. C.; Liu, H. A.
1975-01-01
Total coliform group bacteria were selected to expand the mathematical modeling capabilities of the hydrodynamic and salinity models to understand their relationship to commercial fishing ventures within bay waters and to gain a clear insight into the effect that rivers draining into the bay have on water quality conditions. Parametric observations revealed that temperature factors and river flow rate have a pronounced effect on the concentration profiles, while wind conditions showed only slight effects. An examination of coliform group loading concentrations at constant river flow rates and temperature shows these loading changes have an appreciable influence on total coliform distribution within Mobile Bay.
Mobile Bay turbidity plume study
NASA Technical Reports Server (NTRS)
Crozier, G. F.
1976-01-01
Laboratory and field transmissometer studies on the effect of suspended particulate material upon the appearance of water are reported. Quantitative correlations were developed between remotely sensed image density, optical sea truth data, and actual sediment load. Evaluation of satellite image sea truth data for an offshore plume projects contours of transmissivity for two different tidal phases. Data clearly demonstrate the speed of change and movement of the optical plume for water patterns associated with the mouth of Mobile bay in which relatively clear Gulf of Mexico water enters the bay on the eastern side. Data show that wind stress in excess of 15 knots has a marked impact in producing suspended sediment loads.
Fatigue Tests with Random Flight Simulation Loading
NASA Technical Reports Server (NTRS)
Schijve, J.
1972-01-01
Crack propagation was studied in a full-scale wing structure under different simulated flight conditions. Omission of low-amplitude gust cycles had a small effect on the crack rate. Truncation of the infrequently occurring high-amplitude gust cycles to a lower level had a noticeably accelerating effect on crack growth. The application of fail-safe load (100 percent limit load) effectively stopped subsequent crack growth under resumed flight-simulation loading. In another flight-simulation test series on sheet specimens, the variables studied are the design stress level and the cyclic frequency of the random gust loading. Inflight mean stresses vary from 5.5 to 10.0 kg/sq mm. The effect of the stress level is larger for the 2024 alloy than for the 7075 alloy. Three frequencies were employed: namely, 10 cps, 1 cps, and 0.1 cps. The frequency effect was small. The advantages and limitations of flight-simulation tests are compared with those of alternative test procedures such as constant-amplitude tests, program tests, and random-load tests. Various testing purposes are considered. The variables of flight-simulation tests are listed and their effects are discussed. A proposal is made for performing systematic flight-simulation tests in such a way that the compiled data may be used as a source of reference.
Modeling of anomalous electron mobility in Hall thrusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koo, Justin W.; Boyd, Iain D.
Accurate modeling of the anomalous electron mobility is absolutely critical for successful simulation of Hall thrusters. In this work, existing computational models for the anomalous electron mobility are used to simulate the UM/AFRL P5 Hall thruster (a 5 kW laboratory model) in a two-dimensional axisymmetric hybrid particle-in-cell Monte Carlo collision code. Comparison to experimental results indicates that, while these computational models can be tuned to reproduce the correct thrust or discharge current, it is very difficult to match all integrated performance parameters (thrust, power, discharge current, etc.) simultaneously. Furthermore, multiple configurations of these computational models can produce reasonable integrated performancemore » parameters. A semiempirical electron mobility profile is constructed from a combination of internal experimental data and modeling assumptions. This semiempirical electron mobility profile is used in the code and results in more accurate simulation of both the integrated performance parameters and the mean potential profile of the thruster. Results indicate that the anomalous electron mobility, while absolutely necessary in the near-field region, provides a substantially smaller contribution to the total electron mobility in the high Hall current region near the thruster exit plane.« less
Rotorcraft Brownout Advanced Understanding, Control, and Mitigation
2014-10-31
rotor disk loading , blade loading , number and placement of rotors, number of blades, blade twist, blade tip shape, fuselage shape, as well as...Mechanical Engineering • Ramani Duraiswami, Ph.D., Associate Professor, Department of Computer Science & Insti- tute for Advanced Computer Studies • Nail ...23, 2013. 71. Mulinti, R., Corfman, K., and Kiger, K. T., “Particle-Turbulence Interaction of Suspended Load by Forced Jet Impinging on a Mobile
Fate and mobility of pharmaceuticals in solid matrices.
Drillia, Panagiota; Stamatelatou, Katerina; Lyberatos, Gerasimos
2005-08-01
The sorption and mobility of six pharmaceuticals were investigated in two soil types with different organic carbon and clay content, and in bacterial biomass (aerobic and anaerobic). The pharmaceuticals examined were carbamazepine, propranolol, diclofenac sodium, clofibric acid, sulfamethoxazole and ofloxacin. The sorption experiments were performed according to the OECD test Guideline 106. The distribution coefficients determined by this batch equilibrium method varied with the pharmaceutical tested and the solid matrix type. Ofloxacin was particularly strongly adsorbed (except of the case of using anaerobic biomass for the solid matrix) while clofibric acid was found to be weakly adsorbed. The fate of pharmaceuticals in soil was also assessed using lysimeters. Important parameters that were studied were: the pharmaceutical loading rate and the hydraulic loading rate for adsorption and the rate and duration of a "rain" event for desorption. Major differences in the mobility of the six pharmaceuticals were observed and correlated with the adsorption/desorption properties of the compounds.
Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination
NASA Astrophysics Data System (ADS)
Xia, Yufei; Wu, Jie; Wei, Wei; Du, Yiqun; Wan, Tao; Ma, Xiaowei; An, Wenqi; Guo, Aiying; Miao, Chunyu; Yue, Hua; Li, Shuoguo; Cao, Xuetao; Su, Zhiguo; Ma, Guanghui
2018-02-01
A major challenge in vaccine formulations is the stimulation of both the humoral and cellular immune response for well-defined antigens with high efficacy and safety. Adjuvant research has focused on developing particulate carriers to model the sizes, shapes and compositions of microbes or diseased cells, but not antigen fluidity and pliability. Here, we develop Pickering emulsions--that is, particle-stabilized emulsions that retain the force-dependent deformability and lateral mobility of presented antigens while displaying high biosafety and antigen-loading capabilities. Compared with solid particles and conventional surfactant-stabilized emulsions, the optimized Pickering emulsions enhance the recruitment, antigen uptake and activation of antigen-presenting cells, potently stimulating both humoral and cellular adaptive responses, and thus increasing the survival of mice upon lethal challenge. The pliability and lateral mobility of antigen-loaded Pickering emulsions may provide a facile, effective, safe and broadly applicable strategy to enhance adaptive immunity against infections and diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shurupov, A. V.; Zavalova, V. E., E-mail: zavalova@fites.ru; Kozlov, A. V.
The report presents the results of the development and field testing of a mobile test facility based on a helical magnetic cumulative generator (MCGTF). The system is designed for full-scale modeling of lightning currents to study the safety of power plants of any type, including nuclear power plants. Advanced technologies of high-energy physics for solving both engineering and applied problems underlie this pilot project. The energy from the magnetic cumulative generator (MCG) is transferred to a high-impedance load with high efficiency of more than 50% using pulse transformer coupling. Modeling of the dynamics of the MEG that operates in amore » circuit with lumped parameters allows one to apply the law of inductance output during operation of the MCG, thus providing the required front of the current pulse in the load without using any switches. The results of field testing of the MCGTF are presented for both the ground loop and the model load. The ground loop generates a load resistance of 2–4 Ω. In the tests, the ohmic resistance of the model load is 10 Ω. It is shown that the current pulse parameters recorded in the resistive-inductive load are close to the calculated values.« less
Wang, Hongwu; Candiotti, Jorge; Shino, Motoki; Chung, Cheng-Shiu; Grindle, Garrett G; Ding, Dan; Cooper, Rory A
2013-07-01
This paper describes the development of a mobile base for the Personal Mobility and Manipulation Appliance Generation II (PerMMA Gen II robotic wheelchair), an obstacle-climbing wheelchair able to move in structured and unstructured environments, and to climb over curbs as high as 8 inches. The mechanical, electrical, and software systems of the mobile base are presented in detail, and similar devices such as the iBOT mobility system, TopChair, and 6X6 Explorer are described. The mobile base of PerMMA Gen II has two operating modes: "advanced driving mode" on flat and uneven terrain, and "automatic climbing mode" during stair climbing. The different operating modes are triggered either by local and dynamic conditions or by external commands from users. A step-climbing sequence, up to 0.2 m, is under development and to be evaluated via simulation. The mathematical model of the mobile base is introduced. A feedback and a feed-forward controller have been developed to maintain the posture of the passenger when driving over uneven surfaces or slopes. The effectiveness of the controller has been evaluated by simulation using the open dynamics engine tool. Future work for PerMMA Gen II mobile base is implementation of the simulation and control on a real system and evaluation of the system via further experimental tests.
Wang, Hongwu; Candiotti, Jorge; Shino, Motoki; Chung, Cheng-Shiu; Grindle, Garrett G.; Ding, Dan; Cooper, Rory A.
2013-01-01
Background This paper describes the development of a mobile base for the Personal Mobility and Manipulation Appliance Generation II (PerMMA Gen II robotic wheelchair), an obstacle-climbing wheelchair able to move in structured and unstructured environments, and to climb over curbs as high as 8 inches. The mechanical, electrical, and software systems of the mobile base are presented in detail, and similar devices such as the iBOT mobility system, TopChair, and 6X6 Explorer are described. Findings The mobile base of PerMMA Gen II has two operating modes: “advanced driving mode” on flat and uneven terrain, and “automatic climbing mode” during stair climbing. The different operating modes are triggered either by local and dynamic conditions or by external commands from users. A step-climbing sequence, up to 0.2 m, is under development and to be evaluated via simulation. The mathematical model of the mobile base is introduced. A feedback and a feed-forward controller have been developed to maintain the posture of the passenger when driving over uneven surfaces or slopes. The effectiveness of the controller has been evaluated by simulation using the open dynamics engine tool. Conclusion Future work for PerMMA Gen II mobile base is implementation of the simulation and control on a real system and evaluation of the system via further experimental tests. PMID:23820149
Mermigkis, Panagiotis G; Tsalikis, Dimitrios G; Mavrantzas, Vlasis G
2015-10-28
A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrix and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, D(eff), of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, D(eff) is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for D(eff) as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on D(eff) (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them with the time needed for penetrant water molecules to explore the available large, fast-diffusing CNT pores before Fickian diffusion is reached.
NASA Astrophysics Data System (ADS)
Mermigkis, Panagiotis G.; Tsalikis, Dimitrios G.; Mavrantzas, Vlasis G.
2015-10-01
A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrix and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, Deff, of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, Deff is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for Deff as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on Deff (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them with the time needed for penetrant water molecules to explore the available large, fast-diffusing CNT pores before Fickian diffusion is reached.
Emotion, cognitive load and learning outcomes during simulation training.
Fraser, Kristin; Ma, Irene; Teteris, Elise; Baxter, Heather; Wright, Bruce; McLaughlin, Kevin
2012-11-01
Simulation training has emerged as an effective way to complement clinical training of medical students. Yet outcomes from simulation training must be considered suboptimal when 25-30% of students fail to recognise a cardiac murmur on which they were trained 1 hour previously. There are several possible explanations for failure to improve following simulation training, which include the impact of heightened emotions on learning and cognitive overload caused by interactivity with high-fidelity simulators. This study was conducted to assess emotion during simulation training and to explore the relationships between emotion and cognitive load, and diagnostic performance. We trained 84 Year 1 medical students on a scenario of chest pain caused by symptomatic aortic stenosis. After training, students were asked to rate their emotional state and cognitive load. We then provided training on a dyspnoea scenario before asking participants to diagnose the murmur in which they had been trained (aortic stenosis) and a novel murmur (mitral regurgitation). We used factor analysis to identify the principal components of emotion, and then studied the associations between these components of emotion and cognitive load and diagnostic performance. We identified two principal components of emotion, which we felt represented invigoration and tranquillity. Both of these were associated with cognitive load with adjusted regression coefficients of 0.63 (95% confidence interval [CI] 0.28-0.99; p = 0.001) and - 0.44 (95% CI - 0.77 to - 0.10; p = 0.009), respectively. We found a significant negative association between cognitive load and the odds of subsequently identifying the trained murmur (odds ratio 0.27, 95% CI 0.11-0.67; p = 0.004). We found that increased invigoration and reduced tranquillity during simulation training were associated with increased cognitive load, and that the likelihood of correctly identifying a trained murmur declined with increasing cognitive load. Further studies are needed to evaluate the impact on performance of strategies to alter emotion and cognitive load during simulation training. © Blackwell Publishing Ltd 2012.
30 CFR 77.1605 - Loading and haulage equipment; installations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Mobile equipment shall be provided with audible warning devices. Lights shall be provided on both ends... windows shall be of safety glass or equivalent, in good condition and shall be kept clean. (b) Mobile... passage of wheels. (h) Rocker-bottom or bottom-dump cars shall be equipped with positive locking devices...
Risky Business or Sharing the Load?--Social Flow in Collaborative Mobile Learning
ERIC Educational Resources Information Center
Ryu, Hokyoung; Parsons, David
2012-01-01
Mobile learning has been built upon the premise that we can transform traditional classroom or computer-based learning activities into a more ubiquitous and connected form of learning. Tentative outcomes from this assertion have been witnessed in many collaborative learning activities, but few analytic observations on what triggers this…
Chidagam, Prudhvi Raj Lakshmi Venkata; Gande, Vijaya Chandra; Yadlapalli, Sravanthi; Venkata, Ramani Yarlagadda; Kondaka, Sudheer; Chedalawada, Sravya
2017-04-01
Emergence of dental implants made the replacement of missing tooth easy. During the early days of introduction, implants were loaded three to six months after implant insertion, but understanding of healing cascade and improved production technology has changed the phase of restoration from delayed to immediate loading. To evaluate and compare the clinical outcome of immediate and delayed loaded implant supported prosthesis for missing mandibular first molar. The objectives were bleeding on probing, probing depth, implant mobility, marginal bone level and peri-implant radiolucency were evaluated during follow up period. Twenty patients were included in this study who were in the need of fixed implant supported prosthesis for missing mandibular first molar. Single tooth implant with immediate loading done within two days of implant insertion in one group and another group were loaded after three months of implant insertion. These groups were evaluated clinically and radiographically over a period of 72 months after loading using Wilcoxon matched pairs test and Mann-Whitney U test. The study consists of 14 male and six female patients with the age range of 19 to 31 years. There was no bleeding on probing and probing depth remained well within the normal range even after 72 months of loading among both the groups. Minimal marginal bone loss observed with no mobility and peri-implant radiolucency. Implant supported prosthesis for missing mandibular first molar with immediate loading can be used as a successful treatment modality. It reduces treatment time, provides early function and prevents undue migration of adjacent tooth. Immediate loading showed similar clinical and radiographic results as that of delayed loading, indicating it as an equally efficient technique for implant supported prosthesis.
A research on motion design for APP's loading pages based on time perception
NASA Astrophysics Data System (ADS)
Cao, Huai; Hu, Xiaoyun
2018-04-01
Due to restrictions caused by objective reasons like network bandwidth, hardware performance and etc., waiting is still an inevitable phenomenon that appears in our using mobile-terminal products. Relevant researches show that users' feelings in a waiting scenario can affect their evaluations on the whole product and services the product provides. With the development of user experience and inter-facial design subjects, the role of motion effect in the interface design has attracted more and more scholars' attention. In the current studies, the research theory of motion design in a waiting scenario is imperfect. This article will use the basic theory and experimental research methods of cognitive psychology to explore the motion design's impact on user's time perception when users are waiting for loading APP pages. Firstly, the article analyzes the factors that affect waiting experience of loading APP pages based on the theory of time perception, and then discusses motion design's impact on the level of time-perception when loading pages and its design strategy. Moreover, by the operation analysis of existing loading motion designs, the article classifies the existing loading motions and designs an experiment to verify the impact of different types of motions on the user's time perception. The result shows that the waiting time perception of mobile's terminals' APPs is related to the loading motion types, the combination type of loading motions can effectively shorten the waiting time perception as it scores a higher mean value in the length of time perception.
Load shift potential of electric vehicles in Europe
NASA Astrophysics Data System (ADS)
Babrowski, Sonja; Heinrichs, Heidi; Jochem, Patrick; Fichtner, Wolf
2014-06-01
Many governments highly encourage electric mobility today, aiming at a high market penetration. This development would bring forth an impact on the energy system, which strongly depends on the driving and charging behavior of the users. While an uncontrolled immediate charging might strain the local grid and/or higher peak loads, there are benefits to be gained by a controlled charging. We examine six European mobility studies in order to display the effects of controlled and uncontrolled unidirectional charging. Taking into account country-specific driving patterns, we generate for each country a charging load curve corresponding to uncontrolled charging and consider the corresponding parking time at charging facilities in order to identify load shift potentials. The main results are that besides the charging power of the vehicles, the possibility to charge at the work place has a significant influence on the uncontrolled charging curve. Neither national nor regional differences are as significant. When charging is only possible at home, the vehicle availability at charging facilities during the day for all countries is at least 24%. With the additional possibility to charge at work, at least 45% are constantly available. Accordingly, we identified a big potential for load shifting through controlled charging.
Energy-efficient boarder node medium access control protocol for wireless sensor networks.
Razaque, Abdul; Elleithy, Khaled M
2014-03-12
This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC) for wireless sensor networks (WSNs), which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols, BN-MAC reduces idle listening time, emissions, and collision handling at low cost at one-hop neighbor nodes and achieves high channel utilization under heavy network loads. BN-MAC is particularly designed for region-wise WSNs. Each region is controlled by a boarder node (BN), which is of paramount importance. The BN coordinates with the remaining nodes within and beyond the region. Unlike other hybrid MAC protocols, BN-MAC incorporates three promising models that further reduce the energy consumption, idle listening time, overhearing, and congestion to improve the throughput and reduce the latency. One of the models used with BN-MAC is automatic active and sleep (AAS), which reduces the ideal listening time. When nodes finish their monitoring process, AAS lets them automatically go into the sleep state to avoid the idle listening state. Another model used in BN-MAC is the intelligent decision-making (IDM) model, which helps the nodes sense the nature of the environment. Based on the nature of the environment, the nodes decide whether to use the active or passive mode. This decision power of the nodes further reduces energy consumption because the nodes turn off the radio of the transceiver in the passive mode. The third model is the least-distance smart neighboring search (LDSNS), which determines the shortest efficient path to the one-hop neighbor and also provides cross-layering support to handle the mobility of the nodes. The BN-MAC also incorporates a semi-synchronous feature with a low duty cycle, which is advantageous for reducing the latency and energy consumption for several WSN application areas to improve the throughput. BN-MAC uses a unique window slot size to enhance the contention resolution issue for improved throughput. BN-MAC also prefers to communicate within a one-hop destination using Anycast, which maintains load balancing to maintain network reliability. BN-MAC is introduced with the goal of supporting four major application areas: monitoring and behavioral areas, controlling natural disasters, human-centric applications, and tracking mobility and static home automation devices from remote places. These application areas require a congestion-free mobility-supported MAC protocol to guarantee reliable data delivery. BN-MAC was evaluated using network simulator-2 (ns2) and compared with other hybrid MAC protocols, such as Zebra medium access control (Z-MAC), advertisement-based MAC (A-MAC), Speck-MAC, adaptive duty cycle SMAC (ADC-SMAC), and low-power real-time medium access control (LPR-MAC). The simulation results indicate that BN-MAC is a robust and energy-efficient protocol that outperforms other hybrid MAC protocols in the context of quality of service (QoS) parameters, such as energy consumption, latency, throughput, channel access time, successful delivery rate, coverage efficiency, and average duty cycle.
Energy-Efficient Boarder Node Medium Access Control Protocol for Wireless Sensor Networks
Razaque, Abdul; Elleithy, Khaled M.
2014-01-01
This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC) for wireless sensor networks (WSNs), which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols, BN-MAC reduces idle listening time, emissions, and collision handling at low cost at one-hop neighbor nodes and achieves high channel utilization under heavy network loads. BN-MAC is particularly designed for region-wise WSNs. Each region is controlled by a boarder node (BN), which is of paramount importance. The BN coordinates with the remaining nodes within and beyond the region. Unlike other hybrid MAC protocols, BN-MAC incorporates three promising models that further reduce the energy consumption, idle listening time, overhearing, and congestion to improve the throughput and reduce the latency. One of the models used with BN-MAC is automatic active and sleep (AAS), which reduces the ideal listening time. When nodes finish their monitoring process, AAS lets them automatically go into the sleep state to avoid the idle listening state. Another model used in BN-MAC is the intelligent decision-making (IDM) model, which helps the nodes sense the nature of the environment. Based on the nature of the environment, the nodes decide whether to use the active or passive mode. This decision power of the nodes further reduces energy consumption because the nodes turn off the radio of the transceiver in the passive mode. The third model is the least-distance smart neighboring search (LDSNS), which determines the shortest efficient path to the one-hop neighbor and also provides cross-layering support to handle the mobility of the nodes. The BN-MAC also incorporates a semi-synchronous feature with a low duty cycle, which is advantageous for reducing the latency and energy consumption for several WSN application areas to improve the throughput. BN-MAC uses a unique window slot size to enhance the contention resolution issue for improved throughput. BN-MAC also prefers to communicate within a one-hop destination using Anycast, which maintains load balancing to maintain network reliability. BN-MAC is introduced with the goal of supporting four major application areas: monitoring and behavioral areas, controlling natural disasters, human-centric applications, and tracking mobility and static home automation devices from remote places. These application areas require a congestion-free mobility-supported MAC protocol to guarantee reliable data delivery. BN-MAC was evaluated using network simulator-2 (ns2) and compared with other hybrid MAC protocols, such as Zebra medium access control (Z-MAC), advertisement-based MAC (A-MAC), Speck-MAC, adaptive duty cycle SMAC (ADC-SMAC), and low-power real-time medium access control (LPR-MAC). The simulation results indicate that BN-MAC is a robust and energy-efficient protocol that outperforms other hybrid MAC protocols in the context of quality of service (QoS) parameters, such as energy consumption, latency, throughput, channel access time, successful delivery rate, coverage efficiency, and average duty cycle. PMID:24625737
Brewer, Zachary E; Ogden, William David; Fann, James I; Burdon, Thomas A; Sheikh, Ahmad Y
Several modern learning frameworks (eg, cognitive apprenticeship, anchored instruction, and situated cognition) posit the utility of nontraditional methods for effective experiential learning. Thus, development of novel educational tools emphasizing the cognitive framework of operative sequences may be of benefit to surgical trainees. We propose the development and global deployment of an effective, mobile cognitive cardiac surgical simulator. In methods, 16 preclinical medical students were assessed. Overall, 4 separate surgical modules (sternotomy, cannulation, decannulation, and sternal closure) were created utilizing the Touch Surgery (London, UK) platform. Modules were made available to download free of charge for use on mobile devices. Usage data were collected over a 6-month period. Educational efficacy of the modules was evaluated by randomizing a cohort of medical students to either module usage or traditional, reading-based self-study, followed by a multiple-choice learning assessment tool. In results, downloads of the simulator achieved global penetrance, with highest usage in the USA, Brazil, Italy, UK, and India. Overall, 5368 unique users conducted a total of 1971 hours of simulation. Evaluation of the medical student cohort revealed significantly higher assessment scores in those randomized to module use versus traditional reading (75% ± 9% vs 61% ± 7%, respectively; P < 0.05). In conclusion, this study represents the first effort to create a mobile, interactive cognitive simulator for cardiac surgery. Simulators of this type may be effective for the training and assessment of surgical students. We investigated whether an interactive, mobile-computing-based cognitive task simulator for cardiac surgery could be developed, deployed, and validated. Our findings suggest that such simulators may be a useful learning tool. Copyright © 2016. Published by Elsevier Inc.
Investigation of the Vehicle Mobility in Fording
2016-05-29
Conference on Multibody System Dynamics May 29 – June 2, 2016, Montréal, Canada Investigation of the Vehicle Mobility in Fording Arman Pazouki1...strategy outlined has been implemented in Chrono as a dedicated add-on called Chrono::FSI [3]. Figure 1 shows a vehicle model used in a fording simulation...rigid objects. Chrono::FSI has been used for vehicle mobility in fording operations as shown in Figure 2. The computational time per simulation time
Study on Roadheader Cutting Load at Different Properties of Coal and Rock
2013-01-01
The mechanism of cutting process of roadheader with cutting head was researched, and the influences of properties of coal and rock on cutting load were deeply analyzed. Aimed at the defects of traditional calculation method of cutting load on fully expressing the complex cutting process of cutting head, the method of finite element simulation was proposed to simulate the dynamic cutting process. Aimed at the characteristics of coal and rock which affect the cutting load, several simulations with different firmness coefficient were taken repeatedly, and the relationship between three-axis force and firmness coefficient was derived. A comparative analysis of cutting pick load between simulation results and theoretical formula was carried out, and a consistency was achieved. Then cutting process with a total cutting head was carried out on this basis. The results show that the simulation analysis not only provides a reliable guarantee for the accurate calculation of the cutting head load and improves the efficiency of the cutting head cutting test but also offers a basis for selection of cutting head with different geological conditions of coal or rock. PMID:24302866
NASA Astrophysics Data System (ADS)
Dulǎu, Lucian Ioan
2015-12-01
This paper describes the simulation of a microgrid system with storage technologies. The microgrid comprises 6 distributed generators (DGs), 3 loads and a 150 kW storage unit. The installed capacity of the generators is 1100 kW, while the total load demand is 900 kW. The simulation is performed by using a SCADA software, considering the power generation costs, the loads demand and the system's power losses. The generators access the system in order of their power generation cost. The simulation is performed for the entire day.
Grain scale observations of stick-slip dynamics in fluid saturated granular fault gouge
NASA Astrophysics Data System (ADS)
Johnson, P. A.; Dorostkar, O.; Guyer, R. A.; Marone, C.; Carmeliet, J.
2017-12-01
We are studying granular mechanics during slip. In the present work, we conduct coupled computational fluid dynamics (CFD) and discrete element method (DEM) simulations to study grain scale characteristics of slip instabilities in fluid saturated granular fault gouge. The granular sample is confined with constant normal load (10 MPa), and sheared with constant velocity (0.6 mm/s). This loading configuration is chosen to promote stick-slip dynamics, based on a phase-space study. Fluid is introduced in the beginning of stick phase and characteristics of slip events i.e. macroscopic friction coefficient, kinetic energy and layer thickness are monitored. At the grain scale, we monitor particle coordination number, fluid-particle interaction forces as well as particle and fluid kinetic energy. Our observations show that presence of fluids in a drained granular fault gouge stabilizes the layer in the stick phase and increases the recurrence time. In saturated model, we observe that average particle coordination number reaches higher values compared to dry granular gouge. Upon slip, we observe that a larger portion of the granular sample is mobilized in saturated gouge compared to dry system. We also observe that regions with high particle kinetic energy are correlated with zones of high fluid motion. Our observations highlight that spatiotemporal profile of fluid dynamic pressure affects the characteristics of slip instabilities, increasing macroscopic friction coefficient drop, kinetic energy release and granular layer compaction. We show that numerical simulations help characterize the micromechanics of fault mechanics.
Active colloids as mobile microelectrodes for unified label-free selective cargo transport.
Boymelgreen, Alicia M; Balli, Tov; Miloh, Touvia; Yossifon, Gilad
2018-02-22
Utilization of active colloids to transport both biological and inorganic cargo has been widely examined in the context of applications ranging from targeted drug delivery to sample analysis. In general, carriers are customized to load one specific target via a mechanism distinct from that driving the transport. Here we unify these tasks and extend loading capabilities to include on-demand selection of multiple nano/micro-sized targets without the need for pre-labelling or surface functionalization. An externally applied electric field is singularly used to drive the active cargo carrier and transform it into a mobile floating electrode that can attract (trap) or repel specific targets from its surface by dielectrophoresis, enabling dynamic control of target selection, loading and rate of transport via the electric field parameters. In the future, dynamic selectivity could be combined with directed motion to develop building blocks for bottom-up fabrication in applications such as additive manufacturing and soft robotics.
The development of the Canadian Mobile Servicing System Kinematic Simulation Facility
NASA Technical Reports Server (NTRS)
Beyer, G.; Diebold, B.; Brimley, W.; Kleinberg, H.
1989-01-01
Canada will develop a Mobile Servicing System (MSS) as its contribution to the U.S./International Space Station Freedom. Components of the MSS will include a remote manipulator (SSRMS), a Special Purpose Dexterous Manipulator (SPDM), and a mobile base (MRS). In order to support requirements analysis and the evaluation of operational concepts related to the use of the MSS, a graphics based kinematic simulation/human-computer interface facility has been created. The facility consists of the following elements: (1) A two-dimensional graphics editor allowing the rapid development of virtual control stations; (2) Kinematic simulations of the space station remote manipulators (SSRMS and SPDM), and mobile base; and (3) A three-dimensional graphics model of the space station, MSS, orbiter, and payloads. These software elements combined with state of the art computer graphics hardware provide the capability to prototype MSS workstations, evaluate MSS operational capabilities, and investigate the human-computer interface in an interactive simulation environment. The graphics technology involved in the development and use of this facility is described.
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.
2013-01-01
The Aeronautical Mobile Airport Communications System (AeroMACS), which is based upon the IEEE 802.16e mobile wireless standard, is expected to be implemented in the 5091 to 5150 MHz frequency band. As this band is also occupied by Mobile Satellite Service feeder uplinks, AeroMACS must be designed to avoid interference with this incumbent service. The aspects of AeroMACS operation that present potential interference are under analysis in order to enable the definition of standards that assure that such interference will be avoided. In this study, the cumulative interference power distribution at low Earth orbit from transmitters at global airports was simulated with the Visualyse Professional software. The dependence of the interference power on antenna distribution, gain patterns, duty cycle, and antenna tilt was simulated. As a function of these parameters, the simulation results are presented in terms of the limitations on transmitter power from global airports required to maintain the cumulative interference power under the established threshold.
Innovative research of AD HOC network mobility model
NASA Astrophysics Data System (ADS)
Chen, Xin
2017-08-01
It is difficult for researchers of AD HOC network to conduct actual deployment during experimental stage as the network topology is changeable and location of nodes is unfixed. Thus simulation still remains the main research method of the network. Mobility model is an important component of AD HOC network simulation. It is used to describe the movement pattern of nodes in AD HOC network (including location and velocity, etc.) and decides the movement trail of nodes, playing as the abstraction of the movement modes of nodes. Therefore, mobility model which simulates node movement is an important foundation for simulation research. In AD HOC network research, mobility model shall reflect the movement law of nodes as truly as possible. In this paper, node generally refers to the wireless equipment people carry. The main research contents include how nodes avoid obstacles during movement process and the impacts of obstacles on the mutual relation among nodes, based on which a Node Self Avoiding Obstacle, i.e. NASO model is established in AD HOC network.
CFD simulations of transient load change on a high head Francis turbine
NASA Astrophysics Data System (ADS)
Jakobsen, Ken-Robert G.; Aasved Holst, Martin
2017-01-01
Motivated by the importance of better understanding the structural integrity of high-head hydraulic turbines operating at intermittent conditions, complete 360º steady-state and transient simulations of a Francis turbine are presented in this paper. The main target of the work has been to investigate different numerical approaches such as mesh deformation for different operating conditions. Steady-state simulations were performed at the best efficiency point (BEP) and used as initial conditions for the transient simulations considering load rejection from BEP to part load (BEP2PL) and during load acceptance from BEP to high load (BEP2HL). Simulation results were compared with experimental data available for the Francis-99 project where close agreement was found for the mesh independent solution. The transient load analyses showed general trends in accordance with the measurement reports, especially for the pressure in vaneless space that is of high importance regarding RSI effects. Some deviations were identified for the net head at load rejection for which further investigations will be conducted. All CFD simulations were performed at model scale with ANSYS CFX v. 17 at either 96 or 120 cores (2.60 GHz). The immersed boundary technique was tested during the initial stages of the project, but had to be abandoned due to severe memory requirements. Pressure amplitudes and other instantaneous results were not considered.
Modeling charge transport in organic photovoltaic materials.
Nelson, Jenny; Kwiatkowski, Joe J; Kirkpatrick, James; Frost, Jarvist M
2009-11-17
The performance of an organic photovoltaic cell depends critically on the mobility of charge carriers within the constituent molecular semiconductor materials. However, a complex combination of phenomena that span a range of length and time scales control charge transport in disordered organic semiconductors. As a result, it is difficult to rationalize charge transport properties in terms of material parameters. Until now, efforts to improve charge mobilities in molecular semiconductors have proceeded largely by trial and error rather than through systematic design. However, recent developments have enabled the first predictive simulation studies of charge transport in disordered organic semiconductors. This Account describes a set of computational methods, specifically molecular modeling methods, to simulate molecular packing, quantum chemical calculations of charge transfer rates, and Monte Carlo simulations of charge transport. Using case studies, we show how this combination of methods can reproduce experimental mobilities with few or no fitting parameters. Although currently applied to material systems of high symmetry or well-defined structure, further developments of this approach could address more complex systems such anisotropic or multicomponent solids and conjugated polymers. Even with an approximate treatment of packing disorder, these computational methods simulate experimental mobilities within an order of magnitude at high electric fields. We can both reproduce the relative values of electron and hole mobility in a conjugated small molecule and rationalize those values based on the symmetry of frontier orbitals. Using fully atomistic molecular dynamics simulations of molecular packing, we can quantitatively replicate vertical charge transport along stacks of discotic liquid crystals which vary only in the structure of their side chains. We can reproduce the trends in mobility with molecular weight for self-organizing polymers using a cheap, coarse-grained structural simulation method. Finally, we quantitatively reproduce the field-effect mobility in disordered C60 films. On the basis of these results, we conclude that all of the necessary building blocks are in place for the predictive simulation of charge transport in macromolecular electronic materials and that such methods can be used as a tool toward the future rational design of functional organic electronic materials.
The congestion control algorithm based on queue management of each node in mobile ad hoc networks
NASA Astrophysics Data System (ADS)
Wei, Yifei; Chang, Lin; Wang, Yali; Wang, Gaoping
2016-12-01
This paper proposes an active queue management mechanism, considering the node's own ability and its importance in the network to set the queue threshold. As the network load increases, local congestion of mobile ad hoc network may lead to network performance degradation, hot node's energy consumption increase even failure. If small energy nodes congested because of forwarding data packets, then when it is used as the source node will cause a lot of packet loss. This paper proposes an active queue management mechanism, considering the node's own ability and its importance in the network to set the queue threshold. Controlling nodes buffer queue in different levels of congestion area probability by adjusting the upper limits and lower limits, thus nodes can adjust responsibility of forwarding data packets according to their own situation. The proposed algorithm will slow down the send rate hop by hop along the data package transmission direction from congestion node to source node so that to prevent further congestion from the source node. The simulation results show that, the algorithm can better play the data forwarding ability of strong nodes, protect the weak nodes, can effectively alleviate the network congestion situation.
Heat-load simulator for heat sink design
NASA Technical Reports Server (NTRS)
Dunleavy, A. M.; Vaughn, T. J.
1968-01-01
Heat-load simulator is fabricated from 1/4-inch aluminum plate with a contact surface equal in dimensions and configuration to those of the electronic installation. The method controls thermal output to simulate actual electronic component thermal output.
Gustafsson, Ewa; Johnson, Peter W; Hagberg, Mats
2010-02-01
The aim of this study was to evaluate thumb postures, thumb movements and muscle activity when using mobile phones for SMS messaging and to determine whether there were differences in these exposures (a) across various mobile phone tasks, (b) between gender and (c) between subjects with and without musculoskeletal symptoms in shoulders and upper extremities. Fifty-six young adults (15 healthy and 41 with musculoskeletal symptoms) performed a series of distinct tasks on a mobile phone. Muscular load in four forearm/hand muscles in the right arm and the right and left trapezius muscles were measured using electromyography (EMG). Thumb movements were registered using an electrogoniometer. The results showed that postures (sitting or standing) and the type of mobile phone task (holding the phone versus texting) affected muscle activity and thumb positions. Females compared to males had higher muscle activity in the extensor digitorum and the abductor pollicis longus when entering SMS messages and tended to have greater thumb abduction, higher thumb movement velocities and fewer pauses in the thumb movements. Subjects with symptoms had lower muscle activity levels in the abductor pollicis longus and tended to have higher thumb movement velocities and fewer pauses in the thumb movements compared to those without symptoms.
Static load simulation of steering knuckle for a formula student race car
NASA Astrophysics Data System (ADS)
Saputro, Bagus Aulia; Ubaidillah, Triono, Dicky Agus; Pratama, Dzaky Roja; Cahyono, Sukmaji Indro; Imaduddin, Fitrian
2018-02-01
This research aims to determine the stress distribution which occurs on the steering knuckle and to define its safety factor number. Steering knuckle is the most critical part of a car's steering system. Steering knuckle supports the tie rod, brake caliper, and the wheels to provide stability. Steering knuckle withstands the load which given on the front wheels and functions as the wheel's axis. Balljoint and king support the rotation of the suspension arm. When the car is in idle position, knuckle hold the weight of the car, it gets braking force when it's braking and cornering. Knuckle is designed to have the strength that could withstand load and to have a good safety factor value. Knuckle is designed using Fusion software then simulated using Fusion simulation software with a static load, moment braking force, and cornering force as the loads in this simulation. The simulation works in ideal condition. The result of this simulation is satisfying. This simulation produces a maximum displacement of 0.01281mm, the maximum shear stress is 3.707 MPa on the stub hole, and the safety factor is 5.24. The material used for this product is mild steel AISI 1018.
A piezoelectric shock-loading response simulator for piezoelectric-based device developers
NASA Astrophysics Data System (ADS)
Rastegar, J.; Feng, Z.
2017-04-01
Pulsed loading of piezoelectric transducers occurs in many applications, such as those in munitions firing, or when a mechanical system is subjected to impact type loading. In this paper, an electronic simulator that can be programmed to generate electrical charges that a piezoelectric transducer generates as it is subjected to various shock loading profiles is presented. The piezoelectric output simulator can provide close to realistic outputs so that the circuit designer can use it to test the developed system under close to realistic conditions without the need for the costly and time consuming process of performing actual tests. The design of the electronic simulator and results of its testing are presented.
Tang, Chengpei; Shokla, Sanesy Kumcr; Modhawar, George; Wang, Qiang
2016-02-19
Collaborative strategies for mobile sensor nodes ensure the efficiency and the robustness of data processing, while limiting the required communication bandwidth. In order to solve the problem of pipeline inspection and oil leakage monitoring, a collaborative weighted mobile sensing scheme is proposed. By adopting a weighted mobile sensing scheme, the adaptive collaborative clustering protocol can realize an even distribution of energy load among the mobile sensor nodes in each round, and make the best use of battery energy. A detailed theoretical analysis and experimental results revealed that the proposed protocol is an energy efficient collaborative strategy such that the sensor nodes can communicate with a fusion center and produce high power gain.
Intelligent Mobility Modeling and Simulation
2015-03-04
U.S. ARMY TANK AUTOMOTIVE RESEARCH, DEVELOPMENT AND ENGINEERING CENTER Intelligent Mobility Modeling and Simulation 1 Dr. P. Jayakumar , S. Arepally...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) P. Jayakumar ; S. Arepally; D. Gorsich 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER
NASA Astrophysics Data System (ADS)
Schafhirt, S.; Kaufer, D.; Cheng, P. W.
2014-12-01
In recent years many advanced load simulation tools, allowing an aero-servo-hydroelastic analyses of an entire offshore wind turbine, have been developed and verified. Nowadays, even an offshore wind turbine with a complex support structure such as a jacket can be analysed. However, the computational effort rises significantly with an increasing level of details. This counts especially for offshore wind turbines with lattice support structures, since those models do naturally have a higher number of nodes and elements than simpler monopile structures. During the design process multiple load simulations are demanded to obtain an optimal solution. In the view of pre-design tasks it is crucial to apply load simulations which keep the simulation quality and the computational effort in balance. The paper will introduce a reference wind turbine model consisting of the REpower5M wind turbine and a jacket support structure with a high level of detail. In total twelve variations of this reference model are derived and presented. Main focus is to simplify the models of the support structure and the foundation. The reference model and the simplified models are simulated with the coupled simulation tool Flex5-Poseidon and analysed regarding frequencies, fatigue loads, and ultimate loads. A model has been found which reaches an adequate increase of simulation speed while holding the results in an acceptable range compared to the reference results.
Load Balancing Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearce, Olga Tkachyshyn
2014-12-01
The largest supercomputers have millions of independent processors, and concurrency levels are rapidly increasing. For ideal efficiency, developers of the simulations that run on these machines must ensure that computational work is evenly balanced among processors. Assigning work evenly is challenging because many large modern parallel codes simulate behavior of physical systems that evolve over time, and their workloads change over time. Furthermore, the cost of imbalanced load increases with scale because most large-scale scientific simulations today use a Single Program Multiple Data (SPMD) parallel programming model, and an increasing number of processors will wait for the slowest one atmore » the synchronization points. To address load imbalance, many large-scale parallel applications use dynamic load balance algorithms to redistribute work evenly. The research objective of this dissertation is to develop methods to decide when and how to load balance the application, and to balance it effectively and affordably. We measure and evaluate the computational load of the application, and develop strategies to decide when and how to correct the imbalance. Depending on the simulation, a fast, local load balance algorithm may be suitable, or a more sophisticated and expensive algorithm may be required. We developed a model for comparison of load balance algorithms for a specific state of the simulation that enables the selection of a balancing algorithm that will minimize overall runtime.« less
49 CFR 38.23 - Mobility aid accessibility.
Code of Federal Regulations, 2013 CFR
2013-10-01
... maneuvering into or out of the aisle. The loading-edge barrier (outer barrier) which functions as a loading.... The outer barrier of the lift shall automatically raise or close, or a supplementary system shall... accessible entrance as practicable and shall have a clear floor area of 30 inches by 48 inches. Such space...
Uranium fate in wetland mesocosms: Effects of plants at two iron loadings with different pH values
Small-scale continuous flow wetland mesocosms (~0.8 L) were used to evaluate how plant roots under different iron loadings affect uranium (U) mobility. When significant concentrations of ferrous iron (Fe) were present at circumneutral pH values, U concentrations in root exposed ...
47 CFR 90.631 - Trunked systems loading, construction and authorization requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... authorization requirements. (a) Non-SMR trunked systems will be authorized on the basis of a loading criteria of... minimum of seventy (70) mobiles for each channel authorized will be placed into operation within five (5...; Washington, DC; Dallas-Fort Worth, TX; Miami, FL; Cleveland, OH; St. Louis, MO; Atlanta, GA; Pittsburgh, PA...
47 CFR 90.631 - Trunked systems loading, construction and authorization requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... authorization requirements. (a) Non-SMR trunked systems will be authorized on the basis of a loading criteria of... minimum of seventy (70) mobiles for each channel authorized will be placed into operation within five (5..., TX; Washington, DC; Dallas-Fort Worth, TX; Miami, FL; Cleveland, OH; St. Louis, MO; Atlanta, GA...
47 CFR 90.631 - Trunked systems loading, construction and authorization requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... authorization requirements. (a) Non-SMR trunked systems will be authorized on the basis of a loading criteria of... minimum of seventy (70) mobiles for each channel authorized will be placed into operation within five (5..., TX; Washington, DC; Dallas-Fort Worth, TX; Miami, FL; Cleveland, OH; St. Louis, MO; Atlanta, GA...
36 CFR 1192.83 - Mobility aid accessibility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or boarding device (e.g., lift, ramp or bridge plate) complying with either paragraph (b) or (c) of... used by standees and designation of specific spaces is not required. (2) Exception. If lifts, ramps or... a single vehicle. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at least...
49 CFR 38.23 - Mobility aid accessibility.
Code of Federal Regulations, 2010 CFR
2010-10-01
....g., lift or ramp) complying with paragraph (b) or (c) of this section and sufficient clearances to... this section, shall be provided on vehicles 22 feet in length or less. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at least 600 pounds. Working parts, such as cables, pulleys, and...
49 CFR 38.159 - Mobility aid accessibility.
Code of Federal Regulations, 2010 CFR
2010-10-01
... boarding device (e.g., lift or ramp) complying with paragraph (b) or (c) of this section and sufficient...) Exception. If portable or station-based lifts, ramps or bridge plates meeting the applicable requirements of... device. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at least 600 pounds (2665...
49 CFR 38.83 - Mobility aid accessibility.
Code of Federal Regulations, 2010 CFR
2010-10-01
... shall provide a level-change mechanism or boarding device (e.g., lift, ramp or bridge plate) complying... required. (2) Exception. If lifts, ramps or bridge plates meeting the requirements of this section are... accommodated on a single vehicle. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at...
49 CFR 38.159 - Mobility aid accessibility.
Code of Federal Regulations, 2011 CFR
2011-10-01
... boarding device (e.g., lift or ramp) complying with paragraph (b) or (c) of this section and sufficient...) Exception. If portable or station-based lifts, ramps or bridge plates meeting the applicable requirements of... device. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at least 600 pounds (2665...
49 CFR 38.23 - Mobility aid accessibility.
Code of Federal Regulations, 2011 CFR
2011-10-01
....g., lift or ramp) complying with paragraph (b) or (c) of this section and sufficient clearances to... this section, shall be provided on vehicles 22 feet in length or less. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at least 600 pounds. Working parts, such as cables, pulleys, and...
49 CFR 38.83 - Mobility aid accessibility.
Code of Federal Regulations, 2011 CFR
2011-10-01
... shall provide a level-change mechanism or boarding device (e.g., lift, ramp or bridge plate) complying... required. (2) Exception. If lifts, ramps or bridge plates meeting the requirements of this section are... accommodated on a single vehicle. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at...
36 CFR 1192.83 - Mobility aid accessibility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... or boarding device (e.g., lift, ramp or bridge plate) complying with either paragraph (b) or (c) of... used by standees and designation of specific spaces is not required. (2) Exception. If lifts, ramps or... a single vehicle. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at least...
Analysis of load monitoring system in hydraulic mobile cranes
NASA Astrophysics Data System (ADS)
Kalairassan, G.; Boopathi, M.; Mohan, Rijo Mathew
2017-11-01
Load moment limiters or safe load control systems or are very important in crane safety. The system detects the moment of lifting load and compares this actual moment with the rated moment. The system uses multiple sensors such as boom angle sensor, boom length sensor for telescopic booms, pressure transducers for measuring the load, anti-two block switch and roller switches. The system works both on rubber and on outriggers. The sensors measure the boom extension, boom angle and load to give as inputs to the central processing, which calculate the safe working load range for that particular configuration of the crane and compare it with the predetermined safe load. If the load exceeds the safe load, actions will be taken which will reduce the load moment, which is boom telescopic retraction and boom lifting. Anti-two block switch is used to prevent the two blocking condition. The system is calibrated and load tested for at most precision.
Partridge, Susan; Tipper, Joanne L; Al-Hajjar, Mazen; Isaac, Graham H; Fisher, John; Williams, Sophie
2018-05-01
Wear and fatigue of polyethylene acetabular cups have been reported to play a role in the failure of total hip replacements. Hip simulator testing under a wide range of clinically relevant loading conditions is important. Edge loading of hip replacements can occur following impingement under extreme activities and can also occur during normal gait, where there is an offset deficiency and/or joint laxity. This study evaluated a hip simulator method that assessed wear and damage in polyethylene acetabular liners that were subjected to edge loading. The liners tested to evaluate the method were a currently manufactured crosslinked polyethylene acetabular liner and an aged conventional polyethylene acetabular liner. The acetabular liners were tested for 5 million standard walking cycles and following this 5 million walking cycles with edge loading. Edge loading conditions represented a separation of the centers of rotation of the femoral head and the acetabular liner during the swing phase, leading to loading of the liner rim on heel strike. Rim damage and cracking was observed in the aged conventional polyethylene liner. Steady-state wear rates assessed gravimetrically were lower under edge loading compared to standard loading. This study supports previous clinical findings that edge loading may cause rim cracking in liners, where component positioning is suboptimal or where material degradation is present. The simulation method developed has the potential to be used in the future to test the effect of aging and different levels of severity of edge loading on a range of cross-linked polyethylene materials. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1456-1462, 2018. © 2017 Wiley Periodicals, Inc.
Ringh, Mattias; Fredman, David; Nordberg, Per; Stark, Tomas; Hollenberg, Jacob
2011-12-01
In a two-parted study, evaluate a new concept were mobile phone technology is used to dispatch lay responders to nearby out-of-hospital cardiac arrests (OHCAs). Mobile phone positioning systems (MPS) can geographically locate selected mobile phone users at any given moment. A mobile phone service using MPS was developed and named Mobile Life Saver (MLS). Simulation study: 25 volunteers named mobile responders (MRs) were connected to MLS. Ambulance time intervals from 22 consecutive OHCAs in 2005 were used as controls. The MRs randomly moved in Stockholm city centre and were dispatched to simulated OHCAs (identical to controls) if they were within a 350 m distance. Real life study: during 25 weeks 1271-1801 MRs trained in CPR were connected to MLS. MLS was activated at the dispatch centre in parallel with ambulance dispatch when an OHCA was suspected. The MRs were dispatched if they were within 500 m from the suspected OHCA. Simulation study: mean response time for the MRs compared to historical ambulance time intervals was reduced by 2 min 20s (44%), p<0.001, (95% CI, 1 min 5s - 3 min 35s). The MRs reached the simulated OHCA prior to the historical control in 72% of cases. Real life study: the MLS was triggered 92 times. In 45% of all suspected and in 56% of all true OHCAs the MRs arrived prior to ambulance. CPR was performed by MRs in 17% of all true OHCAs and in 30% of all true OHCAs if MRs arrived prior to ambulance. Mobile phone technology can be used to identify and recruit nearby CPR-trained citizens to OHCAs for bystander CPR prior to ambulance arrival. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Learning Anatomy via Mobile Augmented Reality: Effects on Achievement and Cognitive Load
ERIC Educational Resources Information Center
Küçük, Sevda; Kapakin, Samet; Göktas, Yüksel
2016-01-01
Augmented reality (AR), a new generation of technology, has attracted the attention of educators in recent years. In this study, a MagicBook was developed for a neuroanatomy topic by using mobile augmented reality (mAR) technology. This technology integrates virtual learning objects into the real world and allow users to interact with the…
NASA Technical Reports Server (NTRS)
Dickey, J. O.; Bentley, C. R.; Bilham, R.; Carton, J. A.; Eanes, R. J.; Herring, T. A.; Kaula, W. M.; Lagerloef, G. S. E.; Rojstaczer, S.; Smith, W. H. F.;
1998-01-01
The Earth is a dynamic system-it has a fluid, mobile atmosphere and oceans, a continually changing distribution of ice, snow, and groundwater, a fluid core undergoing hydromagnetic motion, a mantle undergoing both thermal convection and rebound from glacial loading of the last ice age, and mobile tectonic plates.
Code of Federal Regulations, 2010 CFR
2010-10-01
... certifies on its application that a channel will be loaded to 70 mobile stations, that channel will be made... COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES... Policies Governing the Processing of Applications and the Selection and Assignment of Frequencies for Use...
Transient simulations of nitrogen load for a coastal aquifer and embayment, Cape Cod, MA
Colman, J.A.; Masterson, J.P.
2008-01-01
A time-varying, multispecies, modular, three-dimensional transport model (MT3DMS) was developed to simulate groundwater transport of nitrogen from increasing sources on land to the shore of Nauset Marsh, a coastal embayment of the Cape Cod National Seashore. Simulated time-dependent nitrogen loads at the coast can be used to correlate with current observed coastal eutrophic effects, to predict current and ultimate effects of development, and to predict loads resulting from source remediation. A time-varying nitrogen load, corrected for subsurface loss, was applied to the land subsurface in the transport model based on five land-use coverages documenting increasing development from 1951 to 1999. Simulated nitrogen loads to Nauset Marsh increased from 230 kg/yr before 1930 to 4390 kg/yr in 2001 to 7130 kg/yr in 2100, assuming future nitrogen sources constant at the 1999 land-use rate. The simulated nitrogen load per area of embayment was 5 times greater for Salt Pond, a eutrophic landward extension of Nauset Marsh, than for other Nauset Marsh areas. Sensitivity analysis indicated that load results were little affected by changes in vertical discretization and annual recharge but much affected by the nitrogen loss rate assumed for a kettle lake downgradient from a landfill.
Fey, Nicholas P; Klute, Glenn K; Neptune, Richard R
2012-11-01
Unilateral below-knee amputees develop abnormal gait characteristics that include bilateral asymmetries and an elevated metabolic cost relative to non-amputees. In addition, long-term prosthesis use has been linked to an increased prevalence of joint pain and osteoarthritis in the intact leg knee. To improve amputee mobility, prosthetic feet that utilize elastic energy storage and return (ESAR) have been designed, which perform important biomechanical functions such as providing body support and forward propulsion. However, the prescription of appropriate design characteristics (e.g., stiffness) is not well-defined since its influence on foot function and important in vivo biomechanical quantities such as metabolic cost and joint loading remain unclear. The design of feet that improve these quantities could provide considerable advancements in amputee care. Therefore, the purpose of this study was to couple design optimization with dynamic simulations of amputee walking to identify the optimal foot stiffness that minimizes metabolic cost and intact knee joint loading. A musculoskeletal model and distributed stiffness ESAR prosthetic foot model were developed to generate muscle-actuated forward dynamics simulations of amputee walking. Dynamic optimization was used to solve for the optimal muscle excitation patterns and foot stiffness profile that produced simulations that tracked experimental amputee walking data while minimizing metabolic cost and intact leg internal knee contact forces. Muscle and foot function were evaluated by calculating their contributions to the important walking subtasks of body support, forward propulsion and leg swing. The analyses showed that altering a nominal prosthetic foot stiffness distribution by stiffening the toe and mid-foot while making the ankle and heel less stiff improved ESAR foot performance by offloading the intact knee during early to mid-stance of the intact leg and reducing metabolic cost. The optimal design also provided moderate braking and body support during the first half of residual leg stance, while increasing the prosthesis contributions to forward propulsion and body support during the second half of residual leg stance. Future work will be directed at experimentally validating these results, which have important implications for future designs of prosthetic feet that could significantly improve amputee care.
Simulating Turbulent Wind Fields for Offshore Turbines in Hurricane-Prone Regions (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Damiani, R.; Musial, W.
Extreme wind load cases are one of the most important external conditions in the design of offshore wind turbines in hurricane prone regions. Furthermore, in these areas, the increase in load with storm return-period is higher than in extra-tropical regions. However, current standards have limited information on the appropriate models to simulate wind loads from hurricanes. This study investigates turbulent wind models for load analysis of offshore wind turbines subjected to hurricane conditions. Suggested extreme wind models in IEC 61400-3 and API/ABS (a widely-used standard in oil and gas industry) are investigated. The present study further examines the wind turbinemore » response subjected to Hurricane wind loads. Three-dimensional wind simulator, TurbSim, is modified to include the API wind model. Wind fields simulated using IEC and API wind models are used for an offshore wind turbine model established in FAST to calculate turbine loads and response.« less
Analysis of Aerodynamic Load of LSU-03 (LAPAN Surveillance UAV-03) Propeller
NASA Astrophysics Data System (ADS)
Rahmadi Nuranto, Awang; Jamaludin Fitroh, Ahmad; Syamsudin, Hendri
2018-04-01
The existing propeller of the LSU-03 aircraft is made of wood. To improve structural strength and obtain better mechanical properties, the propeller will be redesigned usingcomposite materials. It is necessary to simulate and analyze the design load. This research paper explainsthe simulation and analysis of aerodynamic load prior to structural design phase of composite propeller. Aerodynamic load calculations are performed using both the Blade Element Theory(BET) and the Computational Fluid Dynamic (CFD)simulation. The result of both methods show a close agreement, the different thrust forces is only 1.2 and 4.1% for two type mesh. Thus the distribution of aerodynamic loads along the surface of the propeller blades of the 3-D CFD simulation results are considered valid and ready to design the composite structure. TheCFD results is directly imported to the structure model using the Direct Import CFD / One-Way Fluid Structure Interaction (FSI) method. Design load of propeller is chosen at the flight condition at speed of 20 km/h at 7000 rpm.
Meng, Jia; Zhang, Yewen; Holé, Stéphane; Zheng, Feihu; An, Zhenlian
2018-04-12
Space charge migration characteristics play an important role in the evaluation of polymer insulation performance. However, an accurate description of charge carrier mobility in several typical insulating polymers such as polyethylene, polypropylene is currently not available. Recently, with the observation of a series of negative charge packet movements associated with the negative differential resistance characteristic of charge mobility in LDPE films, the extraction of charge mobility from the apparent charge packet movement has been attempted using appropriate methods. Based on the previous report of the successful derivation of charge mobility from experimental results using numerical methods, the present research improves the derivation accuracy and describes the details of the charge mobility derivation procedure. Back simulation results under several typical polarizing fields using the derived charge mobility are exhibited. The results indicate that both the NDR theory and the simulation models for the polyethylene materials are reasonable. A significant migration velocity difference between the charge carrier and the charge packet is observed. Back simulations of the charge packet under several typical polarizing fields using the obtained E-v curve show good agreement with the experimental results. The charge packet shapes during the migrations were also found to vary with the polarizing field.
Design and Control of Compliant Tensegrity Robots Through Simulation and Hardware Validation
NASA Technical Reports Server (NTRS)
Caluwaerts, Ken; Despraz, Jeremie; Iscen, Atil; Sabelhaus, Andrew P.; Bruce, Jonathan; Schrauwen, Benjamin; Sunspiral, Vytas
2014-01-01
To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center has developed and validated two different software environments for the analysis, simulation, and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity ("tensile-integrity") structures have unique physical properties which make them ideal for interaction with uncertain environments. Yet these characteristics, such as variable structural compliance, and global multi-path load distribution through the tension network, make design and control of bio-inspired tensegrity robots extremely challenging. This work presents the progress in using these two tools in tackling the design and control challenges. The results of this analysis includes multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures. The current hardware prototype of a six-bar tensegrity, code-named ReCTeR, is presented in the context of this validation.
NASA Technical Reports Server (NTRS)
Estes, Maurice G.; Al-Hamdan, Mohammed; Thom, Ron; Quattrochi, Dale; Woodruff, Dana; Judd, Chaeli; Ellism Jean; Watson, Brian; Rodriguez, Hugo; Johnson, Hoyt
2009-01-01
There is a continued need to understand how human activities along the northern Gulf of Mexico coast are impacting the natural ecosystems. The gulf coast is experiencing rapid population growth and associated land cover/land use change. Mobile Bay, AL is a designated pilot region of the Gulf of Mexico Alliance (GOMA) and is the focus area of many current NASA and NOAA studies, for example. This is a critical region, both ecologically and economically to the entire United States because it has the fourth largest freshwater inflow in the continental USA, is a vital nursery habitat for commercially and recreational important fisheries, and houses a working waterfront and port that is expanding. Watershed and hydrodynamic modeling has been performed for Mobile Bay to evaluate the impact of land use change in Mobile and Baldwin counties on the aquatic ecosystem. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for land use Scenarios in 1948, 1992, 2001, and 2030. The Prescott Spatial Growth Model was used to project the 2030 land use scenario based on observed trends. All land use scenarios were developed to a common land classification system developed by merging the 1992 and 2001 National Land Cover Data (NLCD). The LSPC model output provides changes in flow, temperature, sediments and general water quality for 22 discharge points into the Bay. These results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment concentrations on a grid with four vertical profiles throughout the Bay s aquatic ecosystems. The models were calibrated using in-situ data collected at sampling stations in and around Mobile bay. This phase of the project has focused on sediment modeling because of its significant influence on light attenuation which is a critical factor in the health of submerged aquatic vegetation. The impact of land use change on sediment concentrations was evaluated by analyzing the LSPC and EFDC sediment simulations for the four land use scenarios. Such analysis was also performed for storm and non-storm periods. In- situ data of total suspended sediments (TSS) and light attenuation were used to develop a regression model to estimate light attenuation from TSS. This regression model was used to derive marine light attenuation estimates throughout Mobile bay using the EFDC TSS outputs. The changes in sediment concentrations and associated impact on light attenuation in the aquatic ecosystem were used to perform an ecological analysis to evaluate the impact on seagreasses and Submerged Aquatic Vegetation (SAV) habitat. This is the key product benefiting the Mobile Bay coastal environmental managers that integrates the influences of sediments due to land use driven flow changes with the restoration potential of SAVs.
Stawarczyk, Bogna; Ozcan, Mutlu; Roos, Malgorzata; Trottmann, Albert; Hämmerle, Christoph H F
2011-01-01
This study determined the fracture load of zirconia crowns veneered with four overpressed and four layered ceramics after chewing simulation. The veneered zirconia crowns were cemented and subjected to chewing cycling. Subsequently, the specimens were loaded at an angle of 45° in a Universal Testing Machine to determine the fracture load. One-way ANOVA, followed by a post-hoc Scheffé test, t-test and Weibull statistic were performed. Overpressed crowns showed significantly lower fracture load (543-577 N) compared to layered ones (805-1067 N). No statistical difference was found between the fracture loads within the overpressed group. Within the layered groups, LV (1067 N) presented significantly higher results compared to LC (805 N). The mean values of all other groups were not significantly different. Single zirconia crowns veneered with overpressed ceramics exhibited lower fracture load than those of the layered ones after chewing simulation.
Optimizing Cognitive Load for Learning from Computer-Based Science Simulations
ERIC Educational Resources Information Center
Lee, Hyunjeong; Plass, Jan L.; Homer, Bruce D.
2006-01-01
How can cognitive load in visual displays of computer simulations be optimized? Middle-school chemistry students (N = 257) learned with a simulation of the ideal gas law. Visual complexity was manipulated by separating the display of the simulations in two screens (low complexity) or presenting all information on one screen (high complexity). The…
Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation
Friederich, Pascal; Schäfer, Bernhard; Fattori, Valeria; Sun, Xiangnan; Strunk, Timo; Meded, Velimir; Hueso, Luis E; Wenzel, Wolfgang; Ruben, Mario
2015-01-01
Summary We have studied the electronic properties and the charge carrier mobility of the organic semiconductor tris(1-oxo-1H-phenalen-9-olate)aluminium(III) (Al(Op)3) both experimentally and theoretically. We experimentally estimated the HOMO and LUMO energy levels to be −5.93 and −3.26 eV, respectively, which were close to the corresponding calculated values. Al(Op)3 was successfully evaporated onto quartz substrates and was clearly identified in the absorption spectra of both the solution and the thin film. A structured steady state fluorescence emission was detected in solution, whereas a broad, red-shifted emission was observed in the thin film. This indicates the formation of excimers in the solid state, which is crucial for the transport properties. The incorporation of Al(Op)3 into organic thin film transistors (TFTs) was performed in order to measure the charge carrier mobility. The experimental setup detected no electron mobility, while a hole mobility between 0.6 × 10−6 and 2.1 × 10−6 cm2·V−1·s−1 was measured. Theoretical simulations, on the other hand, predicted an electron mobility of 9.5 × 10−6 cm2·V−1·s−1 and a hole mobility of 1.4 × 10−4 cm2·V−1·s−1. The theoretical simulation for the hole mobility predicted an approximately one order of magnitude higher hole mobility than was observed in the experiment, which is considered to be in good agreement. The result for the electron mobility was, on the other hand, unexpected, as both the calculated electron mobility and chemical common sense (based on the capability of extended aromatic structures to efficiently accept and delocalize additional electrons) suggest more robust electron charge transport properties. This discrepancy is explained by the excimer formation, whose inclusion in the multiscale simulation workflow is expected to bring the theoretical simulation and experiment into agreement. PMID:26171287
Mobility in a strongly coupled dusty plasma with gas.
Liu, Bin; Goree, J
2014-04-01
The mobility of a charged projectile in a strongly coupled dusty plasma is simulated. A net force F, opposed by a combination of collisional scattering and gas friction, causes projectiles to drift at a mobility-limited velocity up. The mobility μp=up/F of the projectile's motion is obtained. Two regimes depending on F are identified. In the high-force regime, μp∝F0.23, and the scattering cross section σs diminishes as up-6/5. Results for σs are compared with those for a weakly coupled plasma and for two-body collisions in a Yukawa potential. The simulation parameters are based on microgravity plasma experiments.
Micromagnetics on high-performance workstation and mobile computational platforms
NASA Astrophysics Data System (ADS)
Fu, S.; Chang, R.; Couture, S.; Menarini, M.; Escobar, M. A.; Kuteifan, M.; Lubarda, M.; Gabay, D.; Lomakin, V.
2015-05-01
The feasibility of using high-performance desktop and embedded mobile computational platforms is presented, including multi-core Intel central processing unit, Nvidia desktop graphics processing units, and Nvidia Jetson TK1 Platform. FastMag finite element method-based micromagnetic simulator is used as a testbed, showing high efficiency on all the platforms. Optimization aspects of improving the performance of the mobile systems are discussed. The high performance, low cost, low power consumption, and rapid performance increase of the embedded mobile systems make them a promising candidate for micromagnetic simulations. Such architectures can be used as standalone systems or can be built as low-power computing clusters.
Mobility in a strongly coupled dusty plasma with gas
NASA Astrophysics Data System (ADS)
Liu, Bin; Goree, J.
2014-04-01
The mobility of a charged projectile in a strongly coupled dusty plasma is simulated. A net force F, opposed by a combination of collisional scattering and gas friction, causes projectiles to drift at a mobility-limited velocity up. The mobility μp=up/F of the projectile's motion is obtained. Two regimes depending on F are identified. In the high-force regime, μp∝F0.23, and the scattering cross section σs diminishes as up-6/5. Results for σs are compared with those for a weakly coupled plasma and for two-body collisions in a Yukawa potential. The simulation parameters are based on microgravity plasma experiments.
Simulation of load traffic and steeped speed control of conveyor
NASA Astrophysics Data System (ADS)
Reutov, A. A.
2017-10-01
The article examines the possibilities of the step control simulation of conveyor speed within Mathcad, Simulink, Stateflow software. To check the efficiency of the control algorithms and to more accurately determine the characteristics of the control system, it is necessary to simulate the process of speed control with real values of traffic for a work shift or for a day. For evaluating the belt workload and absence of spillage it is necessary to use empirical values of load flow in a shorter period of time. The analytical formulas for optimal speed step values were received using empirical values of load. The simulation checks acceptability of an algorithm, determines optimal parameters of regulation corresponding to load flow characteristics. The average speed and the number of speed switching during simulation are admitted as criteria of regulation efficiency. The simulation example within Mathcad software is implemented. The average conveyor speed decreases essentially by two-step and three-step control. A further increase in the number of regulatory steps decreases average speed insignificantly but considerably increases the intensity of the speed switching. Incremental algorithm of speed regulation uses different number of stages for growing and reducing load traffic. This algorithm allows smooth control of the conveyor speed changes with monotonic variation of the load flow. The load flow oscillation leads to an unjustified increase or decrease of speed. Work results can be applied at the design of belt conveyors with adjustable drives.
REopt Lite Training Video - Text Version | State, Local, and Tribal
information about your electric load profile. So, if you have hourly interval data from your utility, you can input that by selecting custom load profile. If you don't have that, you can simulate your electric load Palmdale, California. And we're going to simulate this load profile based on a medium office that consumes
Reconstruction of Orion Engineering Development Unit (EDU) Parachute Inflation Loads
NASA Technical Reports Server (NTRS)
Ray, Eric S.
2013-01-01
The process of reconstructing inflation loads of Capsule Parachute Assembly System (CPAS) has been updated as the program transitioned to testing Engineering Development Unit (EDU) hardware. The equations used to reduce the test data have been re-derived based on the same physical assumptions made by simulations. Due to instrumentation challenges, individual parachute loads are determined from complementary accelerometer and load cell measurements. Cluster inflations are now simulated by modeling each parachute individually to better represent different inflation times and non-synchronous disreefing. The reconstruction procedure is tailored to either infinite mass or finite mass events based on measurable characteristics from the test data. Inflation parameters are determined from an automated optimization routine to reduce subjectivity. Infinite mass inflation parameters have been re-defined to avoid unrealistic interactions in Monte Carlo simulations. Sample cases demonstrate how best-fit inflation parameters are used to generate simulated drag areas and loads which favorably agree with test data.
Wireless Relay Selection in Pocket Switched Networks Based on Spatial Regularity of Human Mobility †
Huang, Jianhui; Cheng, Xiuzhen; Bi, Jingping; Chen, Biao
2016-01-01
Pocket switched networks (PSNs) take advantage of human mobility to deliver data. Investigations on real-world trace data indicate that human mobility shows an obvious spatial regularity: a human being usually visits a few places at high frequencies. These most frequently visited places form the home of a node, which is exploited in this paper to design two HomE based Relay selectiOn (HERO) algorithms. Both algorithms input single data copy into the network at any time. In the basic HERO, only the first node encountered by the source and whose home overlaps a destination’s home is selected as a relay while the enhanced HERO keeps finding more optimal relay that visits the destination’s home with higher probability. The two proposed algorithms only require the relays to exchange the information of their home and/or the visiting frequencies to their home when two nodes meet. As a result, the information update is reduced and there is no global status information that needs to be maintained. This causes light loads on relays because of the low communication cost and storage requirements. Additionally, only simple operations are needed in the two proposed algorithms, resulting in little computation overhead at relays. At last, a theoretical analysis is performed on some key metrics and then the real-world based simulations indicate that the two HERO algorithms are efficient and effective through employing only one or a few relays. PMID:26797609
NASA Technical Reports Server (NTRS)
Joncas, K. P.
1972-01-01
Concepts and techniques for identifying and simulating both the steady state and dynamic characteristics of electrical loads for use during integrated system test and evaluation are discussed. The investigations showed that it is feasible to design and develop interrogation and simulation equipment to perform the desired functions. During the evaluation, actual spacecraft loads were interrogated by stimulating the loads with their normal input voltage and measuring the resultant voltage and current time histories. Elements of the circuits were optimized by an iterative process of selecting element values and comparing the time-domain response of the model with those obtained from the real equipment during interrogation.
May, Jody C.; McLean, John A.
2013-01-01
The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations. PMID:23888124
May, Jody C; McLean, John A
2003-06-01
The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations.
1980-05-01
engineering ,ZteNo D R RPTE16 research w 9 laboratory COMPARISON OF BUILDING LOADS ANALYSIS AND SYSTEM THERMODYNAMICS (BLAST) AD 0 5 5,0 3COMPUTER PROGRAM...Building Loads Analysis and System Thermodynamics (BLAST) computer program. A dental clinic and a battalion headquarters and classroom building were...Building and HVAC System Data Computer Simulation Comparison of Actual and Simulated Results ANALYSIS AND FINDINGS
Ha, D; Bertocci, G; Deemer, E; van Roosmalen, L; Karg, P
2000-01-01
Automotive seats are tested for compliance with federal motor vehicle safety standards (FMVSS) to assure safety during impact. Many wheelchair users rely upon their wheelchairs to serve as vehicle seats. However, the crashworthiness of these wheelchairs during impact is often unknown. This study evaluated the crashworthiness of five combinations of wheelchair back support surfaces and attachment hardware using a static test procedure simulating crash loading conditions. The crashworthiness was tested by applying a simulated rearward load to each seat-back system. The magnitude of the applied load was established through computer simulation and biodynamic calculations. None of the five tested wheelchair back supports withstood the simulated crash loads. All failures were associated with attachment hardware.
Biomechanical analysis of tension band fixation for olecranon fracture treatment.
Kozin, S H; Berglund, L J; Cooney, W P; Morrey, B F; An, K N
1996-01-01
This study assessed the strength of various tension band fixation methods with wire and cable applied to simulated olecranon fractures to compare stability and potential failure or complications between the two. Transverse olecranon fractures were simulated by osteotomy. The fracture was anatomically reduced, and various tension band fixation techniques were applied with monofilament wire or multifilament cable. With a material testing machine load displacement curves were obtained and statistical relevance determined by analysis of variance. Two loading modes were tested: loading on the posterior surface of olecranon to simulate triceps pull and loading on the anterior olecranon tip to recreate a potential compressive loading on the fragment during the resistive flexion. All fixation methods were more resistant to posterior loading than to an anterior load. Individual comparative analysis for various loading conditions concluded that tension band fixation is more resilient to tensile forces exerted by the triceps than compressive forces on the anterior olecranon tip. Neither wire passage anterior to the K-wires nor the multifilament cable provided statistically significant increased stability.
G2 Autonomous Control for Cryogenic Delivery Systems
NASA Technical Reports Server (NTRS)
Dito, Scott J.
2014-01-01
The Independent System Health Management-Autonomous Control (ISHM-AC) application development for cryogenic delivery systems is intended to create an expert system that will require minimal operator involvement and ultimately allow for complete autonomy when fueling a space vehicle in the time prior to launch. The G2-Autonomous Control project is the development of a model, simulation, and ultimately a working application that will control and monitor the cryogenic fluid delivery to a rocket for testing purposes. To develop this application, the project is using the programming language/environment Gensym G2. The environment is an all-inclusive application that allows development, testing, modeling, and finally operation of the unique application through graphical and programmatic methods. We have learned G2 through training classes and subsequent application development, and are now in the process of building the application that will soon be used to test on cryogenic loading equipment here at the Kennedy Space Center Cryogenics Test Laboratory (CTL). The G2 ISHM-AC application will bring with it a safer and more efficient propellant loading system for the future launches at Kennedy Space Center and eventually mobile launches from all over the world.
Performance evaluation of power control algorithms in wireless cellular networks
NASA Astrophysics Data System (ADS)
Temaneh-Nyah, C.; Iita, V.
2014-10-01
Power control in a mobile communication network intents to control the transmission power levels in such a way that the required quality of service (QoS) for the users is guaranteed with lowest possible transmission powers. Most of the studies of power control algorithms in the literature are based on some kind of simplified assumptions which leads to compromise in the validity of the results when applied in a real environment. In this paper, a CDMA network was simulated. The real environment was accounted for by defining the analysis area and the network base stations and mobile stations are defined by their geographical coordinates, the mobility of the mobile stations is accounted for. The simulation also allowed for a number of network parameters including the network traffic, and the wireless channel models to be modified. Finally, we present the simulation results of a convergence speed based comparative analysis of three uplink power control algorithms.
Mobile surgical skills education unit: a new concept in surgical training.
Shaikh, Faisal M; Hseino, Hazem; Hill, Arnold D K; Kavanagh, Eamon; Traynor, Oscar
2011-08-01
Basic surgical skills are an integral part of surgical training. Simulation-based surgical training offers an opportunity both to trainees and trainers to learn and teach surgical skills outside the operating room in a nonpatient, nonstressed environment. However, widespread adoption of simulation technology especially in medical education is prohibited by its inherent higher cost, limited space, and interruptions to clinical duties. Mobile skills laboratory has been proposed as a means to address some of these limitations. A new program is designed by the Royal College of Surgeons in Ireland (RCSI), in an approach to teach its postgraduate basic surgical trainees the necessary surgical skills, by making the use of mobile innovative simulation technology in their own hospital settings. In this article, authors describe the program and students response to the mobile surgical skills being delivered in the region of their training hospitals and by their own regional consultant trainers.
NASA Astrophysics Data System (ADS)
Shukri, Seyfan Kelil
2017-01-01
We have done Kinetic Monte Carlo (KMC) simulations to investigate the effect of charge carrier density on the electrical conductivity and carrier mobility in disordered organic semiconductors using a lattice model. The density of state (DOS) of the system are considered to be Gaussian and exponential. Our simulations reveal that the mobility of the charge carrier increases with charge carrier density for both DOSs. In contrast, the mobility of charge carriers decreases as the disorder increases. In addition the shape of the DOS has a significance effect on the charge transport properties as a function of density which are clearly seen. On the other hand, for the same distribution width and at low carrier density, the change occurred on the conductivity and mobility for a Gaussian DOS is more pronounced than that for the exponential DOS.
Miniaturized accelerometer made with ZnO nanowires
NASA Astrophysics Data System (ADS)
Song, Sangho; Kim, Jeong Woong; Kim, Hyun Chan; Yun, Youngmin; Kim, Jaehwan
2017-04-01
Miniaturized accelerometer is required in many applications, such as, robotics, haptic devices, gyroscopes, simulators and mobile devices. ZnO is an essential semiconductor material with wide direct band gap, thermal stability and piezoelectricity. Especially, well aligned ZnO nanowire is appropriate for piezoelectric applications since it can produce high electrical signal under mechanical load. To miniaturize accelerometer, an aligned ZnO nanowire is adopted to implement active piezoelectric layer of the accelerometer and copper is chosen for the head mass. To grow ZnO nanowire on the copper head mass, hydrothermal synthesis is conducted and the effect of ZnO nanowire length on the accelerometer performance is investigated. Refresh hydrothermal synthesis can increase the length of ZnO nanowire. The performance of the fabricated ZnO accelerometers is compared with a commercial accelerometer. Sensitivity and linearity of the fabricated accelerometers are investigated.
NASA Astrophysics Data System (ADS)
Reshetova, E. N.; Asnin, L. D.; Kachmarsky, K.
2018-02-01
The chromatographic separation of ibuprofen enantiomers on a Nautilus-E chiral stationary phase with a grafted eremomycin antibiotic at high column loading is accompanied by distortion of the shape of chromatographic peaks. A model is proposed to explain this phenomenon. A number of factors are considered in the model: the ionization of ibuprofen in the mobile phase, the pH change in the mass transfer zone caused by ionization, and competitive adsorption involving buffer components. Simulations performed using this model within the theory of nonequilibrium chromatography allow the shape of chromatograms for large amounts of S- and R-ibuprofen samples to be predicted. The adsorption mechanism is found to be mainly ion-exchange. The contribution from the molecular adsorption of ibuprofen to the total retention is shown to be several percent.
Trellis coding with Continuous Phase Modulation (CPM) for satellite-based land-mobile communications
NASA Technical Reports Server (NTRS)
1989-01-01
This volume of the final report summarizes the results of our studies on the satellite-based mobile communications project. It includes: a detailed analysis, design, and simulations of trellis coded, full/partial response CPM signals with/without interleaving over various Rician fading channels; analysis and simulation of computational cutoff rates for coherent, noncoherent, and differential detection of CPM signals; optimization of the complete transmission system; analysis and simulation of power spectrum of the CPM signals; design and development of a class of Doppler frequency shift estimators; design and development of a symbol timing recovery circuit; and breadboard implementation of the transmission system. Studies prove the suitability of the CPM system for mobile communications.
Novel graphical environment for virtual and real-world operations of tracked mobile manipulators
NASA Astrophysics Data System (ADS)
Chen, ChuXin; Trivedi, Mohan M.; Azam, Mir; Lassiter, Nils T.
1993-08-01
A simulation, animation, visualization and interactive control (SAVIC) environment has been developed for the design and operation of an integrated mobile manipulator system. This unique system possesses the abilities for (1) multi-sensor simulation, (2) kinematics and locomotion animation, (3) dynamic motion and manipulation animation, (4) transformation between real and virtual modes within the same graphics system, (5) ease in exchanging software modules and hardware devices between real and virtual world operations, and (6) interfacing with a real robotic system. This paper describes a working system and illustrates the concepts by presenting the simulation, animation and control methodologies for a unique mobile robot with articulated tracks, a manipulator, and sensory modules.
Parameter Accuracy in Meta-Analyses of Factor Structures
ERIC Educational Resources Information Center
Gnambs, Timo; Staufenbiel, Thomas
2016-01-01
Two new methods for the meta-analysis of factor loadings are introduced and evaluated by Monte Carlo simulations. The direct method pools each factor loading individually, whereas the indirect method synthesizes correlation matrices reproduced from factor loadings. The results of the two simulations demonstrated that the accuracy of…
SHER: a colored petri net based random mobility model for wireless communications.
Khan, Naeem Akhtar; Ahmad, Farooq; Khan, Sher Afzal
2015-01-01
In wireless network research, simulation is the most imperative technique to investigate the network's behavior and validation. Wireless networks typically consist of mobile hosts; therefore, the degree of validation is influenced by the underlying mobility model, and synthetic models are implemented in simulators because real life traces are not widely available. In wireless communications, mobility is an integral part while the key role of a mobility model is to mimic the real life traveling patterns to study. The performance of routing protocols and mobility management strategies e.g. paging, registration and handoff is highly dependent to the selected mobility model. In this paper, we devise and evaluate the Show Home and Exclusive Regions (SHER), a novel two-dimensional (2-D) Colored Petri net (CPN) based formal random mobility model, which exhibits sociological behavior of a user. The model captures hotspots where a user frequently visits and spends time. Our solution eliminates six key issues of the random mobility models, i.e., sudden stops, memoryless movements, border effect, temporal dependency of velocity, pause time dependency, and speed decay in a single model. The proposed model is able to predict the future location of a mobile user and ultimately improves the performance of wireless communication networks. The model follows a uniform nodal distribution and is a mini simulator, which exhibits interesting mobility patterns. The model is also helpful to those who are not familiar with the formal modeling, and users can extract meaningful information with a single mouse-click. It is noteworthy that capturing dynamic mobility patterns through CPN is the most challenging and virulent activity of the presented research. Statistical and reachability analysis techniques are presented to elucidate and validate the performance of our proposed mobility model. The state space methods allow us to algorithmically derive the system behavior and rectify the errors of our proposed model.
SHER: A Colored Petri Net Based Random Mobility Model for Wireless Communications
Khan, Naeem Akhtar; Ahmad, Farooq; Khan, Sher Afzal
2015-01-01
In wireless network research, simulation is the most imperative technique to investigate the network’s behavior and validation. Wireless networks typically consist of mobile hosts; therefore, the degree of validation is influenced by the underlying mobility model, and synthetic models are implemented in simulators because real life traces are not widely available. In wireless communications, mobility is an integral part while the key role of a mobility model is to mimic the real life traveling patterns to study. The performance of routing protocols and mobility management strategies e.g. paging, registration and handoff is highly dependent to the selected mobility model. In this paper, we devise and evaluate the Show Home and Exclusive Regions (SHER), a novel two-dimensional (2-D) Colored Petri net (CPN) based formal random mobility model, which exhibits sociological behavior of a user. The model captures hotspots where a user frequently visits and spends time. Our solution eliminates six key issues of the random mobility models, i.e., sudden stops, memoryless movements, border effect, temporal dependency of velocity, pause time dependency, and speed decay in a single model. The proposed model is able to predict the future location of a mobile user and ultimately improves the performance of wireless communication networks. The model follows a uniform nodal distribution and is a mini simulator, which exhibits interesting mobility patterns. The model is also helpful to those who are not familiar with the formal modeling, and users can extract meaningful information with a single mouse-click. It is noteworthy that capturing dynamic mobility patterns through CPN is the most challenging and virulent activity of the presented research. Statistical and reachability analysis techniques are presented to elucidate and validate the performance of our proposed mobility model. The state space methods allow us to algorithmically derive the system behavior and rectify the errors of our proposed model. PMID:26267860
Jayme-Torres, Gonzalo; Hansen, Anne M
2017-10-04
Since nutrients are emitted and mobilized in river basins, causing eutrophication of water bodies, it is important to reduce such emissions and subsequent nutrient loads. Due to processes of attenuation, nutrient loads are reduced during their mobilization in river basins. At the mouth of the Río Verde basin in western Mexico, the El Purgatorio dam is being constructed to supply water to the metropolitan area of the second most populated city in the country, Guadalajara. To analyze situations that allow protecting this future dam from eutrophication, nutrient loads in the mouth of the river basin were determined and their reduction scenarios evaluated by using the NEWS2 (Nutrient Export from Watersheds) model. For this, a nutrient emissions inventory was established and used to model nutrient loads, and modeling results were compared to an analysis of water quality data from two different monitoring sites located on the river. The results suggest that 96% of nitrogen and 99% of phosphorus emissions are attenuated in the watershed. Nutrient loads reaching the mouth of the river basin come mainly from wastewater discharges, followed by livestock activities and different land uses, and loads are higher as emissions are located closer to the mouth of the river basin. To achieve and maintain mesotrophic state of water in the future dam, different nutrient emission reduction scenarios were evaluated. According to these results, the reduction of 90% of the phosphorus loads in wastewater emissions or 75% of the phosphorus loads in wastewater emissions and at least 50% in emissions from livestock activities in the river basin are required.
2009-02-13
CAPE CANAVERAL, Fla. – At the turn basin at NASA's Kennedy Space Center in Florida, a tug boat keeps the barge in place for the offloading of the girder for the new mobile launcher. The new mobile launcher will be the base for the Ares rockets to launch the Orion crew exploration vehicle and the cargo vehicle. The base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the added load of the 345-foot tower and taller rocket. When the structural portion of the new mobile launcher is complete, umbilicals, access arms, communications equipment and command/control equipment will be installed. Photo credit: NASA/Jack Pfaller
Measuring cognitive load: performance, mental effort and simulation task complexity.
Haji, Faizal A; Rojas, David; Childs, Ruth; de Ribaupierre, Sandrine; Dubrowski, Adam
2015-08-01
Interest in applying cognitive load theory in health care simulation is growing. This line of inquiry requires measures that are sensitive to changes in cognitive load arising from different instructional designs. Recently, mental effort ratings and secondary task performance have shown promise as measures of cognitive load in health care simulation. We investigate the sensitivity of these measures to predicted differences in intrinsic load arising from variations in task complexity and learner expertise during simulation-based surgical skills training. We randomly assigned 28 novice medical students to simulation training on a simple or complex surgical knot-tying task. Participants completed 13 practice trials, interspersed with computer-based video instruction. On trials 1, 5, 9 and 13, knot-tying performance was assessed using time and movement efficiency measures, and cognitive load was assessed using subjective rating of mental effort (SRME) and simple reaction time (SRT) on a vibrotactile stimulus-monitoring secondary task. Significant improvements in knot-tying performance (F(1.04,24.95) = 41.1, p < 0.001 for movements; F(1.04,25.90) = 49.9, p < 0.001 for time) and reduced cognitive load (F(2.3,58.5) = 57.7, p < 0.001 for SRME; F(1.8,47.3) = 10.5, p < 0.001 for SRT) were observed in both groups during training. The simple-task group demonstrated superior knot tying (F(1,24) = 5.2, p = 0.031 for movements; F(1,24) = 6.5, p = 0.017 for time) and a faster decline in SRME over the first five trials (F(1,26) = 6.45, p = 0.017) compared with their peers. Although SRT followed a similar pattern, group differences were not statistically significant. Both secondary task performance and mental effort ratings are sensitive to changes in intrinsic load among novices engaged in simulation-based learning. These measures can be used to track cognitive load during skills training. Mental effort ratings are also sensitive to small differences in intrinsic load arising from variations in the physical complexity of a simulation task. The complementary nature of these subjective and objective measures suggests their combined use is advantageous in simulation instructional design research. © 2015 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mermigkis, Panagiotis G.; Tsalikis, Dimitrios G.; Institute of Chemical Engineering and High Temperature Chemical Processes, GR 26500 Patras
A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrixmore » and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, D{sub eff}, of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, D{sub eff} is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for D{sub eff} as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on D{sub eff} (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them with the time needed for penetrant water molecules to explore the available large, fast-diffusing CNT pores before Fickian diffusion is reached.« less
Logistics Handbook for Strategic Mobility Planning
1994-04-01
tion 83 E. Flatrack Characteristics 85 F. Seashed Characteristics 88 G. Equipment Deployment and Storage Systems (EDSS) 88 H. Palletized Load...Equipment Deployment and Storage Systems (EDSS) 94 41 Containerizable Unit Equipment 97 42 Mobilization Station to Inland Waterway Dock Mileage 101...passengers worldwide, and the DOD Worldwide Personal Property Movement and Storage Program. 15 MTMC also provides interface between military shippers
The Impact of Supported and Annotated Mobile Learning on Achievement and Cognitive Load
ERIC Educational Resources Information Center
Shadiev, Rustam; Hwang, Wu-Yuin; Huang, Yueh-Min; Liu, Tzu-Yu
2015-01-01
We designed activities for learning English as a foreign language in a mobile learning environment with familiar authentic support for this study. Students learned at school and then applied their newly gained knowledge to solve daily life problems by first using a tablet to take pictures of objects they wished to learn about, then describing them…
Information transmission on hybrid networks
NASA Astrophysics Data System (ADS)
Chen, Rongbin; Cui, Wei; Pu, Cunlai; Li, Jie; Ji, Bo; Gakis, Konstantinos; Pardalos, Panos M.
2018-01-01
Many real-world communication networks often have hybrid nature with both fixed nodes and moving modes, such as the mobile phone networks mainly composed of fixed base stations and mobile phones. In this paper, we discuss the information transmission process on the hybrid networks with both fixed and mobile nodes. The fixed nodes (base stations) are connected as a spatial lattice on the plane forming the information-carrying backbone, while the mobile nodes (users), which are the sources and destinations of information packets, connect to their current nearest fixed nodes respectively to deliver and receive information packets. We observe the phase transition of traffic load in the hybrid network when the packet generation rate goes from below and then above a critical value, which measures the network capacity of packets delivery. We obtain the optimal speed of moving nodes leading to the maximum network capacity. We further improve the network capacity by rewiring the fixed nodes and by considering the current load of fixed nodes during packets transmission. Our purpose is to optimize the network capacity of hybrid networks from the perspective of network science, and provide some insights for the construction of future communication infrastructures.
The EPA Mobile Reaction Chamber (MRC) is a 24-foot trailer containing a 14.3-m3 Teflon lined photochemical chamber used to generate simulated urban atmospheres. Photochemistry in the MRC is catalyzed by 120 fluorescent bulbs evenly mixed with black light bulbs and UV bulbs (300 &...
DOT National Transportation Integrated Search
2017-07-04
The primary objective of this project is to develop multiple simulation testbeds/transportation models to evaluate the impacts of Dynamic Mobility Application (DMA) connected vehicle applications and Active Transportation and Demand management (ATDM)...
DOT National Transportation Integrated Search
2017-04-01
The primary objective of this project is to develop multiple simulation testbeds and transportation models to evaluate the impacts of Connected Vehicle Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) strateg...
DOT National Transportation Integrated Search
2017-04-01
The primary objective of this project is to develop multiple simulation testbeds and transportation models to evaluate the impacts of Connected Vehicle Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) strateg...
DOT National Transportation Integrated Search
2017-07-16
The primary objective of this project is to develop multiple simulation testbeds/transportation models to evaluate the impacts of Dynamic Mobility Applications (DMA) and the Active Transportation and Demand Management (ATDM) strategies. Specifically,...
DOT National Transportation Integrated Search
2017-07-04
The primary objective of this project is to develop multiple simulation testbeds/transportation models to evaluate the impacts of Dynamic Mobility Application (DMA) connected vehicle applications and Active Transportation and Dynamic management (ATDM...
Tang, Chengpei; Shokla, Sanesy Kumcr; Modhawar, George; Wang, Qiang
2016-01-01
Collaborative strategies for mobile sensor nodes ensure the efficiency and the robustness of data processing, while limiting the required communication bandwidth. In order to solve the problem of pipeline inspection and oil leakage monitoring, a collaborative weighted mobile sensing scheme is proposed. By adopting a weighted mobile sensing scheme, the adaptive collaborative clustering protocol can realize an even distribution of energy load among the mobile sensor nodes in each round, and make the best use of battery energy. A detailed theoretical analysis and experimental results revealed that the proposed protocol is an energy efficient collaborative strategy such that the sensor nodes can communicate with a fusion center and produce high power gain. PMID:26907285
An energy efficient multiple mobile sinks based routing algorithm for wireless sensor networks
NASA Astrophysics Data System (ADS)
Zhong, Peijun; Ruan, Feng
2018-03-01
With the fast development of wireless sensor networks (WSNs), more and more energy efficient routing algorithms have been proposed. However, one of the research challenges is how to alleviate the hot spot problem since nodes close to static sink (or base station) tend to die earlier than other sensors. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we mainly study the energy efficient routing method with multiple mobile sinks support. We divide the whole network into several clusters and study the influence of mobile sink number on network lifetime. Simulation results show that the best network performance appears when mobile sink number is about 3 under our simulation environment.
Simulation of water-quality data at selected stream sites in the Missouri River Basin, Montana
Knapton, J.R.; Jacobson, M.A.
1980-01-01
Modification of sampling programs at some water-quality stations in the Missouri River basin in Montana has eliminated the means by which solute loads have been directly obtained in past years. To compensate for this loss, water-quality and streamflow data were statistically analyzed and solute loads were simulated using computer techniques.Functional relationships existing between specific conductance and solute concentration for monthly samples were used to develop linear regression models. The models were then used to simulate daily solute concentrations using daily specific conductance as the independent variable. Once simulated, the solute concentrations, in milligrams per liter, were transformed into daily solute loads, in tons, using mean daily streamflow records.Computer output was formatted into tables listing simulated mean monthly solute concentrations, in milligrams per liter, and the monthly and annual solute loads, in tons, for water years 1975-78.
Flow Quality for Turbine Engine Loads Simulator (TELS) Facility
1980-06-01
2.2 GAS INGESTION A mathematical simulation of the turbojet engine and jet deflector was formulated to estimate the severity of the recirculating...3. Swain. R. L. and Mitchell, J. G. "’Smlulatlon of Turbine Engine Operational Loads." Journal of Aircraft Vol. 15, No. 6, June 1978• 4. Ryan, J...3 AEDC-TR-79-83 ~...~ i ,i g - Flow Quality for Turbine Engine Loads Simulator (TELS) Facility R..I. Schulz ARO, Inc. June 1980
Temporal pattern of emotions and cognitive load during simulation training and debriefing.
Fraser, Kristin; McLaughlin, Kevin
2018-04-24
In the simulated clinical environment, there is a perceived benefit to the emotional activation experienced by learners; however, potential harm of excessive and/or negative emotions has also been hypothesized. An improved understanding of the emotional experiences of learners during each phase of the simulation session will inform instructional design. In this observational study, we asked 174 first-year medical students about their emotional state upon arrival to the simulation lab (t1). They were then trained on a standard simulation scenario, after which they rated their emotional state and perceived cognitive load (t2). After debriefing, we then asked them to again rate their emotions and cognitive load (t3). Students reported that their experience of tranquility (a positive and low-arousal state) dropped from pre-scenario (t1) to post-scenario (t2), and returned to baseline levels after debriefing (t3), from 0.69 (0.87) to 0.14 (0.78) to 0.62 (0.78). Post scenario cognitive load was rated to be moderately high at 6.62 (1.12) and scores increased after debriefing to 6.90 (1.05) d = 0.26, p < 0.001. Cognitive load was associated with the simultaneous measures of emotions at both t2 and t3. Participant emotions are significantly altered through the experience of medical simulation and emotions are associated with subjective ratings of cognitive load.
Load-Dependent Friction Hysteresis on Graphene.
Ye, Zhijiang; Egberts, Philip; Han, Gang Hee; Johnson, A T Charlie; Carpick, Robert W; Martini, Ashlie
2016-05-24
Nanoscale friction often exhibits hysteresis when load is increased (loading) and then decreased (unloading) and is manifested as larger friction measured during unloading compared to loading for a given load. In this work, the origins of load-dependent friction hysteresis were explored through atomic force microscopy (AFM) experiments of a silicon tip sliding on chemical vapor deposited graphene in air, and molecular dynamics simulations of a model AFM tip on graphene, mimicking both vacuum and humid air environmental conditions. It was found that only simulations with water at the tip-graphene contact reproduced the experimentally observed hysteresis. The mechanisms underlying this friction hysteresis were then investigated in the simulations by varying the graphene-water interaction strength. The size of the water-graphene interface exhibited hysteresis trends consistent with the friction, while measures of other previously proposed mechanisms, such as out-of-plane deformation of the graphene film and irreversible reorganization of the water molecules at the shearing interface, were less correlated to the friction hysteresis. The relationship between the size of the sliding interface and friction observed in the simulations was explained in terms of the varying contact angles in front of and behind the sliding tip, which were larger during loading than unloading.
NASA Astrophysics Data System (ADS)
Lin, Kan-Ju; Maranas, Janna
2010-03-01
We use molecular dynamics simulation to study ion clustering and dynamics in ion containing polymers. This PEO based single-ion conducting ionomer serves as a model system for understanding cation transport in solid state polymer electrolytes (SPEs). Although small-angle x-ray scattering does not show an ionomer peak, we observer various cation-anion complexes in the simulation, suggesting ionomer backbones are crosslinked through ion complexes. These crosslinks reduce the adjacent PEO mobility resulting in a symmetric mobility gradient along the PEO chain. We vary the cation-anion interaction in the simulation to observe the interplay of cation-anion association, polymer mobility and cation motion. Cation-anion association controls the number of free ions, which is important in ionic conductivity when these materials are used as SPEs. Polymer mobility controls how fast the free ions are able to move through the SPE. High conductivity requires both a high free ion content and fast polymer motion. To understand the connection between the two, we ``tune'' the force field in order to manipulate the free ion content and observe the influence on PEO dynamics.
NASA Astrophysics Data System (ADS)
Lizzit, D.; Badami, O.; Specogna, R.; Esseni, D.
2017-06-01
We present a new model for surface roughness (SR) scattering in n-type multi-gate FETs (MuGFETs) and gate-all-around nanowire FETs with fairly arbitrary cross-sections, its implementation in a complete device simulator, and the validation against experimental electron mobility data. The model describes the SR scattering matrix elements as non-linear transformations of interface fluctuations, which strongly influences the root mean square value of the roughness required to reproduce experimental mobility data. Mobility simulations are performed via the deterministic solution of the Boltzmann transport equation for a 1D-electron gas and including the most relevant scattering mechanisms for electronic transport, such as acoustic, polar, and non-polar optical phonon scattering, Coulomb scattering, and SR scattering. Simulation results show the importance of accounting for arbitrary cross-sections and biasing conditions when compared to experimental data. We also discuss how mobility is affected by the shape of the cross-section as well as by its area in gate-all-around and tri-gate MuGFETs.
Description and History of the MOBILE Highway Vehicle Emission Factor Model
MOBILE is an EPA model for estimating pollution from highway vehicles. It has been superseded by the Motor Vehicle Emission Simulator (MOVES). MOBILE calculates emissions of hydrocarbons (HC), oxides of nitrogen (NOx) and carbon monoxide (CO).
2015-05-01
changes have been historically seen with the heavier approach march load between 21 kg and 33 kg (Schiffman et al., 2006, and Harman et al., 1999) or...the heaviest emergency approach march load greater than 32 kg (Attwells et al., 2006, and Harman et al., 1999). Increasing ballistic protection...vital to maintaining upright posture while walking ( Harman et al., 1999). Alterations made lower in the kinematic chain, such as the hip flexion
Development of a residuum/socket interface simulator for lower limb prosthetics.
McGrath, Michael Paul; Gao, Jianliang; Tang, Jinghua; Laszczak, Piotr; Jiang, Liudi; Bader, Dan; Moser, David; Zahedi, Saeed
2017-03-01
Mechanical coupling at the interface between lower limb residua and prosthetic sockets plays an important role in assessing socket fitting and tissue health. However, most research lab-based lower limb prosthetic simulators to-date have implemented a rigid socket coupling. This study describes the fabrication and implementation of a lower limb residuum/socket interface simulator, designed to reproduce the forces and moments present during the key loading phases of amputee walking. An artificial residuum made with model bones encased in silicone was used, mimicking the compliant mechanical loading of a real residuum/socket interface. A 6-degree-of-freedom load cell measured the overall kinetics, having previously been incorporated into an amputee's prosthesis to collect reference data. The developed simulator was compared to a setup where a rigid pylon replaced the artificial residuum. A maximum uniaxial load of 850 N was applied, comparable to the peak vertical ground reaction force component during amputee walking. Load cell outputs from both pylon and residuum setups were compared. During weight acceptance, when including the artificial residuum, compression decreased by 10%, while during push off, sagittal bending and anterior-posterior shear showed a 25% increase and 34% decrease, respectively. Such notable difference by including a compliant residuum further highlighted the need for such an interface simulator. Subsequently, the simulator was adjusted to produce key load cell outputs briefly aligning with those from amputee walking. Force sensing resistors were deployed at load bearing anatomic locations on the residuum/socket interface to measure pressures and were compared to those cited in the literature for similar locations. The development of such a novel simulator provides an objective adjunct, using commonly available mechanical test machines. It could potentially be used to provide further insight into socket design, fit and the complex load transfer mechanics at the residuum/socket interface, as well as to evaluate the structural performance of prostheses.
Landslide Mobility and Hazards: A Geophysical Overview of the Oso Disaster
NASA Astrophysics Data System (ADS)
Iverson, R. M.; George, D. L.; Allstadt, K.; Godt, J.; Reid, M. E.; Vallance, J. W.; Schilling, S. P.; Cannon, C.; Magirl, C. S.; Collins, B. D.; Baum, R. L.; Coe, J. A.; Schulz, W. H.; Bower, J. B.
2014-12-01
Some landslides move slowly or intermittently downslope, whereas others accelerate catastrophically and run out long distances across flat or gently sloping terrain. Seldom does landsliding of one type transition abruptly into the other, however, and seldom are the consequences more severe than at a site near Oso, Washington, where more than 40 fatalities resulted from a high-speed, long-runout landslide on 22 March 2014. Our interpretations of seismic data inversions and eyewitness accounts indicate that the Oso event began gradually, with remobilization of old landslide deposits that were unusually wet due to months of exceptional precipitation. For about 50 s, relatively slow downslope motion of these deposits withdrew support from a bluff above them, and then the bluff collapsed abruptly. This collapse radiated strong broadband seismic energy and rapidly loaded the old landslide material downslope. We infer that this rapid loading of previously dilated landslide debris caused contractive deformation, widespread liquefaction, and runaway acceleration. The resulting debris avalanche flow (DAF) had a volume of 8 ×106 m3and a fahrböschung (H/L ratio) of 0.106, making it exceptionally mobile for a landslide of its size. The leading edge of the Oso DAF may have gained mobility by entraining water as it displaced the adjacent Stillaguamish River and by liquefying wet floodplain sediments as it overran them, and it formed distal deposits that resembled those of many wood-freighted debris flows. The transition from relatively slow landslide motion (which had occurred intermittently for decades at the Oso site) to high-speed motion and long runout appears to have been very sensitive to contingencies. Our simulations of the Oso event using a new numerical model (D-Claw) show that small differences in water-saturated porosity (n) were sufficient to cause divergent landslide behaviors. In a case with n = 0.38, D-Claw predicts runaway liquefaction and high-speed runout much like that observed at Oso, and in a case with n = 0.36, it predicts much slower landsliding that ceases after only about 100 m of motion. This behavioral bifurcation has fundamental physical importance as well as large ramifications for assessment of landslide hazards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koh, J. H.; Robertson, A.; Jonkman, J.
Need to modify simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions. the SWAY system in both turbine operating and nonoperating conditions. Mixed results were observed when comparing the simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions. without the new tower-load capability to examine its influence on the response characteristics of the system. This is important in situations when the turbine is parked in survival conditions. The simulation results were then compared to measured data from the SWAY system in bothmore » turbine operating and nonoperating conditions. Mixed results were observed when comparing the simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions.« less
Effect of simulated acid rain on fluorine mobility and the bacterial community of phosphogypsum.
Wang, Mei; Tang, Ya; Anderson, Christopher W N; Jeyakumar, Paramsothy; Yang, Jinyan
2018-06-01
Contamination of soil and water with fluorine (F) leached from phosphogypsum (PG) stacks is a global environmental issue. Millions of tons of PG is produced each year as a by-product of fertilizer manufacture, and in China, weathering is exacerbated by acid rain. In this work, column leaching experiments using simulated acid rain were run to evaluate the mobility of F and the impact of weathering on native bacterial community composition in PG. After a simulated summer rainfall, 2.42-3.05 wt% of the total F content of PG was leached and the F concentration in leachate was above the quality standard for surface water and groundwater in China. Acid rain had no significant effect on the movement of F in PG. A higher concentration of F was observed at the bottom than the top section of PG columns suggesting mobility and reprecipitation of F. Throughout the simulation, the PG was environmentally safe according the TCLP testing. The dominant bacteria in PG were from the Enterococcus and Bacillus genus. Bacterial community composition in PG leached by simulated acid rain (pH 3.03) was more abundant than at pH 6.88. Information on F mobility and bacterial community in PG under conditions of simulated rain is relevant to management of environmental risk in stockpiled PG waste.
Crew Access Arm arrival at Mobile Launcher
2017-11-09
A heavy-load transport truck carrying the Orion crew access arm arrives at the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The crew access arm will be installed at about the 274-foot level on the mobile launcher tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower to prepare for Exploration Mission-1.
Development and Validation of a Mobile Device-based External Ventricular Drain Simulator.
Morone, Peter J; Bekelis, Kimon; Root, Brandon K; Singer, Robert J
2017-10-01
Multiple external ventricular drain (EVD) simulators have been created, yet their cost, bulky size, and nonreusable components limit their accessibility to residency programs. To create and validate an animated EVD simulator that is accessible on a mobile device. We developed a mobile-based EVD simulator that is compatible with iOS (Apple Inc., Cupertino, California) and Android-based devices (Google, Mountain View, California) and can be downloaded from the Apple App and Google Play Store. Our simulator consists of a learn mode, which teaches users the procedure, and a test mode, which assesses users' procedural knowledge. Twenty-eight participants, who were divided into expert and novice categories, completed the simulator in test mode and answered a postmodule survey. This was graded using a 5-point Likert scale, with 5 representing the highest score. Using the survey results, we assessed the module's face and content validity, whereas construct validity was evaluated by comparing the expert and novice test scores. Participants rated individual survey questions pertaining to face and content validity a median score of 4 out of 5. When comparing test scores, generated by the participants completing the test mode, the experts scored higher than the novices (mean, 71.5; 95% confidence interval, 69.2 to 73.8 vs mean, 48; 95% confidence interval, 44.2 to 51.6; P < .001). We created a mobile-based EVD simulator that is inexpensive, reusable, and accessible. Our results demonstrate that this simulator is face, content, and construct valid. Copyright © 2017 by the Congress of Neurological Surgeons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparn, Bethany F; Ruth, Mark F; Krishnamurthy, Dheepak
Many have proposed that responsive load provided by distributed energy resources (DERs) and demand response (DR) are an option to provide flexibility to the grid and especially to distribution feeders. However, because responsive load involves a complex interplay between tariffs and DER and DR technologies, it is challenging to test and evaluate options without negatively impacting customers. This paper describes a hardware-in-the-loop (HIL) simulation system that has been developed to reduce the cost of evaluating the impact of advanced controllers (e.g., model predictive controllers) and technologies (e.g., responsive appliances). The HIL simulation system combines large-scale software simulation with a smallmore » set of representative building equipment hardware. It is used to perform HIL simulation of a distribution feeder and the loads on it under various tariff structures. In the reported HIL simulation, loads include many simulated air conditioners and one physical air conditioner. Independent model predictive controllers manage operations of all air conditioners under a time-of-use tariff. Results from this HIL simulation and a discussion of future development work of the system are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starke, Michael R; Abdelaziz, Omar A; Jackson, Rogerick K
Residential Simulation Tool was developed to understand the impact of residential load consumption on utilities including the role of demand response. This is complicated as many different residential loads exist and are utilized for different purposes. The tool models human behavior and contributes this to load utilization, which contributes to the electrical consumption prediction by the tool. The tool integrates a number of different databases from Department of Energy and other Government websites to support the load consumption prediction.
Predicting Failure Progression and Failure Loads in Composite Open-Hole Tension Coupons
NASA Technical Reports Server (NTRS)
Arunkumar, Satyanarayana; Przekop, Adam
2010-01-01
Failure types and failure loads in carbon-epoxy [45n/90n/-45n/0n]ms laminate coupons with central circular holes subjected to tensile load are simulated using progressive failure analysis (PFA) methodology. The progressive failure methodology is implemented using VUMAT subroutine within the ABAQUS(TradeMark)/Explicit nonlinear finite element code. The degradation model adopted in the present PFA methodology uses an instantaneous complete stress reduction (COSTR) approach to simulate damage at a material point when failure occurs. In-plane modeling parameters such as element size and shape are held constant in the finite element models, irrespective of laminate thickness and hole size, to predict failure loads and failure progression. Comparison to published test data indicates that this methodology accurately simulates brittle, pull-out and delamination failure types. The sensitivity of the failure progression and the failure load to analytical loading rates and solvers precision is demonstrated.
Rose, William J.; Robertson, Dale M.; Mergener, Elizabeth A.
2004-01-01
Simulations using water-quality models within the Wisconsin Lake Model Suite (WiLMS) indicated Pike Lake's response to 13 different phosphorus-loading scenarios. These scenarios included a base 'normal' year (2000) for which lake water quality and loading were known, six different percentage increases or decreases in phosphorus loading from controllable sources, and six different loading scenarios corresponding to specific management actions. Model simulations indicate that a 50-percent reduction in controllable loading sources would be needed to achieve a mesotrophic classification with respect to phosphorus, chlorophyll a, and Secchi depth (an index of water clarity). Model simulations indicated that short-circuiting of phosphorus from the inlet to the outlet was the main reason the water quality of the lake is good relative to the amount of loading from the Rubicon River and that changes in the percentage of inlet-to-outlet short-circuiting have a significant influence on the water quality of the lake.
Design, modeling, and analysis of a feedstock logistics system.
Judd, Jason D; Sarin, Subhash C; Cundiff, John S
2012-01-01
Given the location of a bio-energy plant for the conversion of biomass to bio-energy, a feedstock logistics system that relies on the use of satellite storage locations (SSLs) for temporary storage and loading of round bales is proposed. Three equipment systems are considered for handling biomass at the SSLs, and they are either placed permanently or are mobile and thereby travel from one SSL to another. A mathematical programming-based approach is utilized to determine SSLs and equipment routes in order to minimize the total cost. The use of a Side-loading Rack System results in average savings of 21.3% over a Densification System while a Rear-loading Rack System is more expensive to operate than either of the other equipment systems. The utilization of mobile equipment results in average savings of 14.8% over the equipment placed permanently. Furthermore, the Densification System is not justifiable for transportation distances less than 81 km. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lester, Richard T; Ritvo, Paul; Mills, Edward J; Kariri, Antony; Karanja, Sarah; Chung, Michael H; Jack, William; Habyarimana, James; Sadatsafavi, Mohsen; Najafzadeh, Mehdi; Marra, Carlo A; Estambale, Benson; Ngugi, Elizabeth; Ball, T Blake; Thabane, Lehana; Gelmon, Lawrence J; Kimani, Joshua; Ackers, Marta; Plummer, Francis A
2010-11-27
Mobile (cell) phone communication has been suggested as a method to improve delivery of health services. However, data on the effects of mobile health technology on patient outcomes in resource-limited settings are limited. We aimed to assess whether mobile phone communication between health-care workers and patients starting antiretroviral therapy in Kenya improved drug adherence and suppression of plasma HIV-1 RNA load. WelTel Kenya1 was a multisite randomised clinical trial of HIV-infected adults initiating antiretroviral therapy (ART) in three clinics in Kenya. Patients were randomised (1:1) by simple randomisation with a random number generating program to a mobile phone short message service (SMS) intervention or standard care. Patients in the intervention group received weekly SMS messages from a clinic nurse and were required to respond within 48 h. Randomisation, laboratory assays, and analyses were done by investigators masked to treatment allocation; however, study participants and clinic staff were not masked to treatment. Primary outcomes were self-reported ART adherence (>95% of prescribed doses in the past 30 days at both 6 and 12 month follow-up visits) and plasma HIV-1 viral RNA load suppression (<400 copies per mL) at 12 months. The primary analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, NCT00830622. Between May, 2007, and October, 2008, we randomly assigned 538 participants to the SMS intervention (n=273) or to standard care (n=265). Adherence to ART was reported in 168 of 273 patients receiving the SMS intervention compared with 132 of 265 in the control group (relative risk [RR] for non-adherence 0·81, 95% CI 0·69-0·94; p=0·006). Suppressed viral loads were reported in 156 of 273 patients in the SMS group and 128 of 265 in the control group, (RR for virologic failure 0·84, 95% CI 0·71-0·99; p=0·04). The number needed to treat (NNT) to achieve greater than 95% adherence was nine (95% CI 5·0-29·5) and the NNT to achieve viral load suppression was 11 (5·8-227·3). Patients who received SMS support had significantly improved ART adherence and rates of viral suppression compared with the control individuals. Mobile phones might be effective tools to improve patient outcome in resource-limited settings. US President's Emergency Plan for AIDS Relief. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mössinger, Peter; Jester-Zürker, Roland; Jung, Alexander
2017-01-01
With increasing requirements for hydropower plant operation due to intermittent renewable energy sources like wind and solar, numerical simulations of transient operations in hydraulic turbo machines become more important. As a continuation of the work performed for the first workshop which covered three steady operating conditions, in the present paper load changes and a shutdown procedure are investigated. The findings of previous studies are used to create a 360° model and compare measurements with simulation results for the operating points part load, high load and best efficiency. A mesh motion procedure is introduced, allowing to represent moving guide vanes for load changes from best efficiency to part load and high load. Additionally an automated re-mesh procedure is added for turbine shutdown to ensure reliable mesh quality during guide vane closing. All three transient operations are compared to PIV velocity measurements in the draft tube and pressure signals in the vaneless space. Simulation results of axial velocity distributions for all three steady operation points, during both load changes and for the shutdown correlated well with the measurement. An offset at vaneless space pressure is found to be a result of guide vane corrections for the simulation to ensure similar velocity fields. Short-time Fourier transformation indicating increasing amplitudes and frequencies at speed-no load conditions. Further studies will discuss the already measured start-up procedure and investigate the necessity to consider the hydraulic system dynamics upstream of the turbine by means of a 1D3D coupling between the 3D flow field and a 1D system model.
NASA Technical Reports Server (NTRS)
Regan, Timothy F.
2004-01-01
The free-piston Stirling convertor end-to-end modeling effort at the NASA Glenn Research Center has produced a software-based test bed in which free-piston Stirling convertors can be simulated and evaluated. The simulation model includes all the components of the convertor: the Stirling cycle engine, heat source, linear alternator, controller, and load. So far, it has been used in evaluating the performance of electronic controller designs. Three different controller design concepts were simulated using the model: 1) Controllers with parasitic direct current loading. 2) Controllers with parasitic alternating current loading. 3) Controllers that maintain a reference current. The free-piston Stirling convertor is an electromechanical device that operates at resonance. It is the function of the electronic load controller to ensure that the electrical load seen by the machine is always great enough to keep the amplitude of the piston and alternator oscillation at the rated value. This is done by regulating the load on the output bus. The controller monitors the instantaneous voltage, regulating it by switching loads called parasitic loads onto the bus whenever the bus voltage is too high and removing them whenever the voltage is too low. In the first type of controller, the monitor-ing and switching are done on the direct-current (dc) bus. In the second type, the alternating current bus is used. The model allows designers to test a controller concept before investing time in hardware. The simulation code used to develop the model also offers detailed models of digital and analog electronic components so that the resulting designs are realistic enough to translate directly into hardware circuits.
Parkhurst, David L.; Stollenwerk, Kenneth G.; Colman, John A.
2003-01-01
The subsurface transport of phosphorus introduced by the disposal of treated sewage effluent to ground-infiltration disposal beds at the Massachusetts Military Reservation on western Cape Cod was simulated with a three-dimensional reactive-transport model. The simulations were used to estimate the load of phosphorus transported to Ashumet Pond during operation of the sewage-treatment plant?from 1936 to 1995?and for 60 years following cessation of sewage disposal. The model accounted for spatial and temporal changes in water discharge from the sewage-treatment plant, ground-water flow, transport of associated chemical constituents, and a set of chemical reactions, including phosphorus sorption on aquifer materials, dissolution and precipitation of iron- and manganese-oxyhydroxide and iron phosphate minerals, organic carbon sorption and decomposition, cation sorption, and irreversible denitrification. The flow and transport in the aquifer were simulated by using parameters consistent with those used in previous flow models of this area of Cape Cod, except that numerical dispersion was much larger than the physical dispersion estimated in previous studies. Sorption parameters were fit to data derived from phosphorus sorption and desorption laboratory column experiments. Rates of organic carbon decomposition were adjusted to match the location of iron concentrations in an anoxic iron zone within the sewage plume. The sensitivity of the simulated load of phosphorus transported to Ashumet Pond was calculated for a variety of processes and input parameters. Model limitations included large uncertainties associated with the loading of the sewage beds, the flow system, and the chemistry and sorption characteristics in the aquifer. The results of current model simulations indicate a small load of phosphorus transported to Ashumet Pond during 1965?85, but this small load was particularly sensitive to model parameters that specify flow conditions and the chemical process by which non-desorbable phosphorus is incorporated in the sediments. The uncertainties were large enough to make it difficult to determine whether loads of phosphorus transported to Ashumet Pond in the 1990s were greater or less than loads during the previous two decades. The model simulations indicate substantial discharge of phosphorus to Ashumet Pond after about 1965. After the period 2000?10 the simulations indicate that the load of phosphorus transported to Ashumet Pond decreases continuously, but the load of phosphorus remains substantial for many decades. The current simulations indicate a peak in phosphorus discharge to Ashumet Pond of about 1,000 kilograms per year during the 1990s; however, comparisons of simulated phosphorus concentrations with measured concentrations in 1993 indicate that the peak in phosphorus load transported to Ashumet Pond may be larger and moving more quickly in the model simulations than in the aquifer. The results of the three-dimensional reactive-transport simulations are consistent with the loading history, experimental laboratory data, and field measurements. The results of the simulations adequately reproduce the spatial distribution of phosphorus concentrations measured in 1993, the magnitude of changes in phosphorus concentration with time in a profile near the disposal beds following cessation of sewage disposal, the observed iron zone in the sewage plume, the approximate flow of treated sewage effluent into Ashumet Valley, and laboratory-column data for phosphorus sorption and desorption.
DOT National Transportation Integrated Search
2017-07-01
The primary objective of this project is to develop multiple simulation testbeds and transportation models to evaluate the impacts of Connected Vehicle Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) strateg...
DOT National Transportation Integrated Search
2017-07-01
The primary objective of this project is to develop multiple simulation testbeds and transportation models to evaluate the impacts of Connected Vehicle Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) strateg...
DOT National Transportation Integrated Search
2017-08-01
The primary objective of this project is to develop multiple simulation testbeds and transportation models to evaluate the impacts of Connected Vehicle Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) strateg...
Dynamic load balance scheme for the DSMC algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jin; Geng, Xiangren; Jiang, Dingwu
The direct simulation Monte Carlo (DSMC) algorithm, devised by Bird, has been used over a wide range of various rarified flow problems in the past 40 years. While the DSMC is suitable for the parallel implementation on powerful multi-processor architecture, it also introduces a large load imbalance across the processor array, even for small examples. The load imposed on a processor by a DSMC calculation is determined to a large extent by the total of simulator particles upon it. Since most flows are impulsively started with initial distribution of particles which is surely quite different from the steady state, themore » total of simulator particles will change dramatically. The load balance based upon an initial distribution of particles will break down as the steady state of flow is reached. The load imbalance and huge computational cost of DSMC has limited its application to rarefied or simple transitional flows. In this paper, by taking advantage of METIS, a software for partitioning unstructured graphs, and taking the total of simulator particles in each cell as a weight information, the repartitioning based upon the principle that each processor handles approximately the equal total of simulator particles has been achieved. The computation must pause several times to renew the total of simulator particles in each processor and repartition the whole domain again. Thus the load balance across the processors array holds in the duration of computation. The parallel efficiency can be improved effectively. The benchmark solution of a cylinder submerged in hypersonic flow has been simulated numerically. Besides, hypersonic flow past around a complex wing-body configuration has also been simulated. The results have displayed that, for both of cases, the computational time can be reduced by about 50%.« less
Dornseifer, Ulf; Kleeberger, Charlotte; Kargl, Lukas; Schönberger, Markus; Rohde, Daniel; Ninkovic, Milomir; Schilling, Arndt
2017-03-01
Background The current standard to gradually adapt the fragile perfusion in lower extremity free flaps to an upright posture is the dangling maneuver. This type of flap training neither fits the orthostatic target load of an upright posture, nor does it assist in mobilizing the patients effectively. In this study, we quantitatively analyzed training effects of an early and full mobilization on flap perfusion. Methods A total of 15 patients with gracilis flaps for distal lower extremity reconstruction were included. Flap training was performed daily by mobilizing the patients on a tilt table into a fully upright posture for 5 minutes between the third and fifth postop days (PODs). Changes in micro- and macrocirculation were analyzed by laser Doppler flowmetry, remission spectroscopy, and an implanted Doppler probe. Results All flaps healed without complications. Yet, in three patients, the increased orthostatic load required an adjustment of the training duration due to a critical blood flow. The others showed an increasing compensation in the microcirculation. When tilting the patients, blood flow and oxygen saturation dropped significantly less on POD5 than on POD3. Furthermore, a significant increase of the blood flow was noted after an initial decrease during the mobilization on all days. An increasing compensation in the macrocirculation could not be determined. Conclusion Full mobilization of patients with lower extremity free flaps can be performed safely under perfusion monitoring, already starting on POD3. Additionally, monitoring allows a consideration of the individual orthostatic competence and therefore, exploitation of the maximum mobilization potential. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Mobile Bay, Alabama area seen in Skylab 4 Earth Resources Experiment Package
NASA Technical Reports Server (NTRS)
1974-01-01
A near vertical view of the Mobile Bay, Alabama area seen in this Skylab 4 Earth Resources Experiment Package S190-B (five-inch earth terrain camera) photograph taken from the Skylab space station in earth orbit. North of Mobile the Tombigbee and Alabama Rivers join to form the Mobile River. Detailed configuration of the individual stream channels and boundaries can be defined as the Mobile River flows into Mobile Bay and into the Gulf of Mexico. The Mobile River Valley with its numerous stream channels is a distinct light shade in contrast to the dark green shade of the adjacent areas. The red coloration of Mobile Bay reflects the sediment load carried into the bay by the rivers. The westerly movement of the shore currents at the mouth of Mobile Bay is shown by the contrasting light blue of the sediment-laden current the the blue of the Gulf. Agricultural areas east and west of Mobile Bay are characterized by a rectangular pattern in green to white shades. Color variations may reflect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, E.
1979-06-01
The Building Loads Analysis and System Thermodynamics (BLAST) program is a comprehensive set of subprograms for predicting energy consumption in buildings. There are three major subprograms: (1) the space load predicting subprogram, which computes hourly space loads in a building or zone based on user input and hourly weather data; (2) the air distribution system simulation subprogram, which uses the computed space load and user inputs describing the building air-handling system to calculate hot water or steam, chilled water, and electric energy demands; and (3) the central plant simulation program, which simulates boilers, chillers, onsite power generating equipment and solarmore » energy systems and computes monthly and annual fuel and electrical power consumption and plant life cycle cost.« less
Lapid-Gortzak, Ruth; Traversari, Roberto; van der Linden, Jan Willem; Lesnik Oberstein, Sarit Y; Lapid, Oren; Schlingemann, Reinier O
2017-02-01
The aim of this study is to determine whether the use of a mobile ultra-clean laminar airflow screen reduces the air-borne particle counts in the setting of a simulated procedure of an intra-vitreal injection. A mobile ultra-clean unidirectional airflow (UDF) screen was tested in a simulated procedure for intra-vitreal injections in a treatment room without mechanical ventilation. One UDF was passed over the instrument tray and the surgical area. The concentration of particles was measured in the background, over the instrument table, and next to the ocular area. The degree of protection was calculated at the instrument table and at the surgical site. Use of the UDF mobile screen reduced the mean particle concentration (particles > 0.3 microns) on the instrument table by a factor of at least 100.000 (p < 0.05), and over the patient's eye by at least a factor of 436 (p < 0.05), which in clinical practice translates into significantly reduced air contamination. Mobile UDF screen reduces the mean particle concentration substantially. The mobile UDF screen may therefore allow for a safer procedural environment for ambulatory care procedures such as intra-vitreal injections in treatment rooms.
Development of emergency department load relief area--gauging benefits in empirical terms.
Rasheed, Farrukh; Lee, Young Hoon; Kim, Seung Ho; Park, In Cheol
2012-12-01
The primary goal of this investigation was to develop a simulation model to evaluate the various internal and external factors affecting patient flow and crowding in the emergency department (ED). In addition, a few recommendations are proposed to reconfigure the patient flow to improve ED capacity while maintaining service quality. In this research, we present a simulation study conducted in the ED at the "S Hospital" located in Seoul. Based on patient flow data and process analysis, a simulation model of patient throughput in the ED has been developed. We evaluated simulations of diverting the specific patient load in the light of our proposed recommendations to a separately managed area named as the ED load relief area (ED-LRA) and analyzing potential effects on overall length of stay (LOS) and waiting time (WT). What-if analyses have been proposed to identify key issues and investigate the improvements as per our proposed recommendations. The simulation results suggest that specific patient load diversion is needed to ensure desired outcomes. With the diversion of specific patient load to ED-LRA, there is a reduction of 40.60% in mean LOS and 42.5% in WT with improved resource utilization. As a result, opening of an ED-LRA is justified. Real-world systems are often too intricate for analytical models and often too expensive to trial with directly. Simulation models allow the modeling of this intricacy and enable experimentation to make inferences about how the actual system might perform. Our simulation study modeled that diverting the specific patient load to ED-LRA produced an improvement in overall ED's LOS and WT.
Learning for intelligent mobile robots
NASA Astrophysics Data System (ADS)
Hall, Ernest L.; Liao, Xiaoqun; Alhaj Ali, Souma M.
2003-10-01
Unlike intelligent industrial robots which often work in a structured factory setting, intelligent mobile robots must often operate in an unstructured environment cluttered with obstacles and with many possible action paths. However, such machines have many potential applications in medicine, defense, industry and even the home that make their study important. Sensors such as vision are needed. However, in many applications some form of learning is also required. The purpose of this paper is to present a discussion of recent technical advances in learning for intelligent mobile robots. During the past 20 years, the use of intelligent industrial robots that are equipped not only with motion control systems but also with sensors such as cameras, laser scanners, or tactile sensors that permit adaptation to a changing environment has increased dramatically. However, relatively little has been done concerning learning. Adaptive and robust control permits one to achieve point to point and controlled path operation in a changing environment. This problem can be solved with a learning control. In the unstructured environment, the terrain and consequently the load on the robot"s motors are constantly changing. Learning the parameters of a proportional, integral and derivative controller (PID) and artificial neural network provides an adaptive and robust control. Learning may also be used for path following. Simulations that include learning may be conducted to see if a robot can learn its way through a cluttered array of obstacles. If a situation is performed repetitively, then learning can also be used in the actual application. To reach an even higher degree of autonomous operation, a new level of learning is required. Recently learning theories such as the adaptive critic have been proposed. In this type of learning a critic provides a grade to the controller of an action module such as a robot. The creative control process is used that is "beyond the adaptive critic." A mathematical model of the creative control process is presented that illustrates the use for mobile robots. Examples from a variety of intelligent mobile robot applications are also presented. The significance of this work is in providing a greater understanding of the applications of learning to mobile robots that could lead to many applications.
Research Based on AMESim of Electro-hydraulic Servo Loading System
NASA Astrophysics Data System (ADS)
Li, Jinlong; Hu, Zhiyong
2017-09-01
Electro-hydraulic servo loading system is a subject studied by many scholars in the field of simulation and control at home and abroad. The electro-hydraulic servo loading system is a loading device simulation of stress objects by aerodynamic moment and other force in the process of movement, its function is all kinds of gas in the lab condition to analyze stress under dynamic load of objects. The purpose of this paper is the design of AMESim electro-hydraulic servo system, PID control technology is used to configure the parameters of the control system, complete the loading process under different conditions, the optimal design parameters, optimization of dynamic performance of the loading system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinones, Armando, Sr.; Bibeau, Tiffany A.; Ho, Clifford Kuofei
2008-08-01
Finite-element analyses were performed to simulate the response of a hypothetical vertical masonry wall subject to different lateral loads with and without continuous horizontal filament ties laid between rows of concrete blocks. A static loading analysis and cost comparison were also performed to evaluate optimal materials and designs for the spacers affixed to the filaments. Results showed that polypropylene, ABS, and polyethylene (high density) were suitable materials for the spacers based on performance and cost, and the short T-spacer design was optimal based on its performance and functionality. Simulations of vertical walls subject to static loads representing 100 mph windsmore » (0.2 psi) and a seismic event (0.66 psi) showed that the simulated walls performed similarly and adequately when subject to these loads with and without the ties. Additional simulations and tests are required to assess the performance of actual walls with and without the ties under greater loads and more realistic conditions (e.g., cracks, non-linear response).« less
Kawchuk, Gregory N; Carrasco, Alejandro; Beecher, Grayson; Goertzen, Darrell; Prasad, Narasimha
2010-10-15
Serial dissection of porcine motion segments during robotic control of vertebral kinematics. To identify which spinal tissues are loaded in response to manual therapy (manipulation and mobilization) and to what magnitude. Various theoretical constructs attempt to explain how manual therapies load specific spinal tissues. By using a parallel robot to control vertebral kinematics during serial dissection, it is possible to quantify the loads experienced by discrete spinal tissues undergoing common therapeutic procedures such as manual therapy. In 9 porcine cadavers, manual therapy was provided to L3 and the kinematic response of L3-L4 recorded. The exact kinematic trajectory experienced by L3-L4 in response to manual therapy was then replayed to the isolated segment by a parallel robot equipped with a 6-axis load cell. Discrete spinal tissues were then removed and the kinematic pathway replayed. The change in forces and moments following tissue removal were considered to be those applied to that specific tissue by manual therapy. In this study, both manual therapies affected spinal tissues. The intervertebral disc experienced the greatest forces and moments arising from both manipulation and mobilization. This study is the first to identify which tissues are loaded in response to manual therapy. The observation that manual therapy loads some tissues to a much greater magnitude than others offers a possible explanation for its modest treatment effect; only conditions involving these tissues may be influenced by manual therapy. Future studies are planned to determine if manual therapy can be altered to target (or avoid) specific spinal tissues.
An electromechanical based deformable model for soft tissue simulation.
Zhong, Yongmin; Shirinzadeh, Bijan; Smith, Julian; Gu, Chengfan
2009-11-01
Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues. Soft tissue deformation is formulated as a reaction-diffusion process coupled with a mechanical load. The mechanical load applied to a soft tissue to cause a deformation is incorporated into the reaction-diffusion system, and consequently distributed among mass points of the soft tissue. Reaction-diffusion of mechanical load and non-rigid mechanics of motion are combined to govern the simulation dynamics of soft tissue deformation. An improved reaction-diffusion model is developed to describe the distribution of the mechanical load in soft tissues. A three-layer artificial cellular neural network is constructed to solve the reaction-diffusion model for real-time simulation of soft tissue deformation. A gradient based method is established to derive internal forces from the distribution of the mechanical load. Integration with a haptic device has also been achieved to simulate soft tissue deformation with haptic feedback. The proposed methodology does not only predict the typical behaviours of living tissues, but it also accepts both local and large-range deformations. It also accommodates isotropic, anisotropic and inhomogeneous deformations by simple modification of diffusion coefficients.
Mobile Applications and Multi-User Virtual Reality Simulations
NASA Technical Reports Server (NTRS)
Gordillo, Orlando Enrique
2016-01-01
This is my third internship with NASA and my second one at the Johnson Space Center. I work within the engineering directorate in ER7 (Software Robotics and Simulations Division) at a graphics lab called IGOAL. We are a very well-rounded lab because we have dedicated software developers and dedicated 3D artist, and when you combine the two, what you get is the ability to create many different things such as interactive simulations, 3D models, animations, and mobile applications.
Mobile Christian - shuttle flight
NASA Technical Reports Server (NTRS)
2009-01-01
Erin Whittle, 14, (seated) and Brianna Johnson, 14, look on as Louis Stork, 13, attempts a simulated landing of a space shuttle at StenniSphere. The young people were part of a group from Mobile Christian School in Mobile, Ala., that visited StenniSphere on April 21.
NASA Astrophysics Data System (ADS)
Huber, A.; Sergienko, G.; Wirtz, M.; Steudel, I.; Arakcheev, A.; Brezinsek, S.; Burdakov, A.; Dittmar, T.; Esser, H. G.; Kreter, A.; Linke, J.; Linsmeier, Ch; Mertens, Ph; Möller, S.; Philipps, V.; Pintsuk, G.; Reinhart, M.; Schweer, B.; Shoshin, A.; Terra, A.; Unterberg, B.
2016-02-01
The impact on the deuterium retention of simultaneous exposure of tungsten to a steady-state plasma and transient cyclic heat loads has been studied in the linear PSI-2 facility with the main objective of qualifying tungsten (W) as plasma-facing material. The transient heat loads were applied by a high-energy laser, a Nd:YAG laser (λ = 1064 nm) with an energy per pulse of up to 32 J and a duration of 1 ms. A pronounced increase in the D retention by a factor of 13 has been observed during the simultaneous transient heat loads and plasma exposure. These data indicate that the hydrogen clustering is enhanced by the thermal shock exposures, as seen on the increased blister size due to mobilization and thermal production of defects during transients. In addition, the significant increase of the D retention during the simultaneous loads could be explained by an increased diffusion of D atoms into the W material due to strong temperature gradients during the laser pulse exposure and to an increased mobility of D atoms along the shock-induced cracks. Only 24% of the retained deuterium is located inside the near-surface layer (d<4 μm). Enhanced blister formation has been observed under combined loading conditions at power densities close to the threshold for damaging. Blisters are not mainly responsible for the pronounced increase of the D retention.
Effects of forming history on crash simulation of a vehicle
NASA Astrophysics Data System (ADS)
Gökler, M. İ.; Doğan, U. Ç.; Darendeliler, H.
2016-08-01
The effects of forming on the crash simulation of a vehicle have been investigated by considering the load paths produced by sheet metal forming process. The frontal crash analysis has been performed by the finite element method, firstly without considering the forming history, to find out the load paths that absorb the highest energy. The sheet metal forming simulations have been realized for each structural component of the load paths and the frontal crash analysis has been repeated by including forming history. The results of the simulations with and without forming effects have been compared with the physical crash test results available in literature.
Ockerman, Darwin J.; McNamara, Kenna C.
2003-01-01
The U.S. Geological Survey developed watershed models (Hydrological Simulation Program—FORTRAN) to simulate streamflow and estimate streamflow constituent loads from five basins that compose the San Antonio River watershed in Bexar County, Texas. Rainfall and streamflow data collected during 1997–2001 were used to calibrate and test the model. The model was configured so that runoff from various land uses and discharges from other sources (such as wastewater recycling facilities) could be accounted for to indicate sources of streamflow. Simulated streamflow volumes were used with land-use-specific, water-quality data to compute streamflow loads of selected constituents from the various streamflow sources.Model simulations for 1997–2001 indicate that inflow from the upper Medina River (originating outside Bexar County) represents about 22 percent of total streamflow. Recycled wastewater discharges account for about 20 percent and base flow (ground-water inflow to streams) about 18 percent. Storm runoff from various land uses represents about 33 percent. Estimates of sources of streamflow constituent loads indicate recycled wastewater as the largest source of dissolved solids and nitrate plus nitrite nitrogen (about 38 and 66 percent, respectively, of the total loads) during 1997–2001. Stormwater runoff from urban land produced about 49 percent of the 1997–2001 total suspended solids load. Stormwater runoff from residential and commercial land (about 23 percent of the land area) produced about 70 percent of the total lead streamflow load during 1997–2001.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karr, Dale G.; Yu, Bingbin; Sirnivas, Senu
To create long-term solutions for offshore wind turbines in a variety of environmental conditions, CAE tools are needed to model the design-driving loads that interact with an offshore wind turbine system during operation. This report describes our efforts in augmenting existing CAE tools used for offshore wind turbine analysis with a new module that can provide simulation capabilities for ice loading on the system. This augmentation was accomplished by creating an ice-loading module coupled to FAST8, the CAE tool maintained by the NREL for simulating land-based and offshore wind turbine dynamics. The new module includes both static and dynamic icemore » loading that can be applied during a dynamic simulation of the response of an offshore wind turbine. The ice forces can be prescribed, or influenced by the structure’s compliant response, or by the dynamics of both the structure and the ice floe. The new module covers ice failure modes of spalling, buckling, crushing, splitting, and bending. The supporting structure of wind turbines can be modeled as a vertical or sloping form at the waterline. The Inward Battered Guide Structure (IBGS) foundation designed by Keystone Engineering for the Great Lakes was used to study the ice models coupled to FAST8. The IBGS foundation ice loading simulations in FAST8 were compared to the baseline simulation case without ice loading. The ice conditions reflecting those from Lake Huron at Port Huron and Lake Michigan at North Manitou were studied under near rated wind speed of 12 m/s for the NREL 5-MW reference turbine. Simulations were performed on ice loading models 1 through 4 and ice model 6 with their respective sub-models. The purpose of ice model 5 is to investigate ice loading on sloping structures such as ice-cones on a monopile and is not suitable for multi-membered jacketed structures like the IBGS foundation. The key response parameters from the simulations, shear forces and moments from the tower base and IBGS foundation base, were compared. Ice models 1 and 6 do not significantly affect the tower fore-aft shear and moment. However, ice model 2 (dynamic analyses), model 3 (random ice loading), and model 4 (multiple ice failure zone loading) show increased effect on the tower fore-aft shear and moment with significant effect from ice model 3.1. In general ice loading creates large reaction forces and moments at the base of the IBGS foundation; the largest occurred in model 1.1 (steady creep ice indentation loading) followed by model 3.1 (random creep ice indentation loading). In general the power production from the ice loading cases had little deviation from the baseline case without ice loading. For ultimate limit state (ULS), ice model 1.1 ice and 3.1 appear to be the ice most critical models to consider at an early stage of design. Ice model 4 is an important tool for assessing structural fatigue.« less
Compact propane fuel processor for auxiliary power unit application
NASA Astrophysics Data System (ADS)
Dokupil, M.; Spitta, C.; Mathiak, J.; Beckhaus, P.; Heinzel, A.
With focus on mobile applications a fuel cell auxiliary power unit (APU) using liquefied petroleum gas (LPG) is currently being developed at the Centre for Fuel Cell Technology (Zentrum für BrennstoffzellenTechnik, ZBT gGmbH). The system is consisting of an integrated compact and lightweight fuel processor and a low temperature PEM fuel cell for an electric power output of 300 W. This article is presenting the current status of development of the fuel processor which is designed for a nominal hydrogen output of 1 k Wth,H2 within a load range from 50 to 120%. A modular setup was chosen defining a reformer/burner module and a CO-purification module. Based on the performance specifications, thermodynamic simulations, benchmarking and selection of catalysts the modules have been developed and characterised simultaneously and then assembled to the complete fuel processor. Automated operation results in a cold startup time of about 25 min for nominal load and carbon monoxide output concentrations below 50 ppm for steady state and dynamic operation. Also fast transient response of the fuel processor at load changes with low fluctuations of the reformate gas composition have been achieved. Beside the development of the main reactors the transfer of the fuel processor to an autonomous system is of major concern. Hence, concepts for packaging have been developed resulting in a volume of 7 l and a weight of 3 kg. Further a selection of peripheral components has been tested and evaluated regarding to the substitution of the laboratory equipment.
Ercit, Kyla; Martinez-Novoa, Andrew; Gwynne, Darryl T
2014-01-01
Female-biased predation is an uncommon phenomenon in nature since males of many species take on riskier behaviours to gain more mates. Several species of sphecid wasps have been observed taking more female than male prey, and it is not fully understood why. The solitary sphecid Isodontia mexicana catches more adult female tree cricket (Oecanthus nigricornis) prey. Previous work has shown that, although female tree crickets are larger and thus likely to be more valuable as prey than males, body size alone cannot fully explain why wasps take more females. We tested the hypothesis that wasps catch adult female tree crickets more often because bearing eggs impedes a female's ability to escape predation. We compared female survivors to prey of I. mexicana, and found that females carrying more eggs were significantly more likely to be caught by wasps, regardless of their body size and jumping leg mass. We also conducted laboratory experiments where females' jumping responses to a simulated attack were measured and compared to her egg load and morphology. We found a significant negative relationship between egg load and jumping ability, and a positive relationship between body size and jumping ability. These findings support the hypothesis that ovarian eggs are a physical handicap that contributes to female-biased predation in this system. Predation on the most fecund females may have ecological-evolutionary consequences such as collapse of prey populations or selection for alternate life history strategies and behaviours.
Revealing the Effects of Nanoscale Membrane Curvature on Lipid Mobility.
Kabbani, Abir Maarouf; Woodward, Xinxin; Kelly, Christopher V
2017-10-18
Recent advances in nanoengineering and super-resolution microscopy have enabled new capabilities for creating and observing membrane curvature. However, the effects of curvature on single-lipid diffusion have yet to be revealed. The simulations presented here describe the capabilities of varying experimental methods for revealing the effects of nanoscale curvature on single-molecule mobility. Traditionally, lipid mobility is revealed through fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), and single particle tracking (SPT). However, these techniques vary greatly in their ability to detect the effects of nanoscale curvature on lipid behavior. Traditionally, FRAP and FCS depend on diffraction-limited illumination and detection. A simulation of FRAP shows minimal effects on lipids diffusion due to a 50 nm radius membrane bud. Throughout the stages of the budding process, FRAP detected minimal changes in lipid recovery time due to the curvature versus flat membrane. Simulated FCS demonstrated small effects due to a 50 nm radius membrane bud that was more apparent with curvature-dependent lipid mobility changes. However, SPT achieves a sub-diffraction-limited resolution of membrane budding and lipid mobility through the identification of the single-lipid positions with ≤15 nm spatial and ≤20 ms temporal resolution. By mapping the single-lipid step lengths to locations on the membrane, the effects of membrane topography and curvature could be correlated to the effective membrane viscosity. Single-fluorophore localization techniques, such SPT, can detect membrane curvature and its effects on lipid behavior. These simulations and discussion provide a guideline for optimizing the experimental procedures in revealing the effects of curvature on lipid mobility and effective local membrane viscosity.
Optimised in vitro applicable loads for the simulation of lateral bending in the lumbar spine.
Dreischarf, Marcel; Rohlmann, Antonius; Bergmann, Georg; Zander, Thomas
2012-07-01
In in vitro studies of the lumbar spine simplified loading modes (compressive follower force, pure moment) are usually employed to simulate the standard load cases flexion-extension, axial rotation and lateral bending of the upper body. However, the magnitudes of these loads vary widely in the literature. Thus the results of current studies may lead to unrealistic values and are hardly comparable. It is still unknown which load magnitudes lead to a realistic simulation of maximum lateral bending. A validated finite element model of the lumbar spine was used in an optimisation study to determine which magnitudes of the compressive follower force and bending moment deliver results that fit best with averaged in vivo data. The best agreement with averaged in vivo measured data was found for a compressive follower force of 700 N and a lateral bending moment of 7.8 Nm. These results show that loading modes that differ strongly from the optimised one may not realistically simulate maximum lateral bending. The simplified but in vitro applicable loading cannot perfectly mimic the in vivo situation. However, the optimised magnitudes are those which agree best with averaged in vivo measured data. Its consequent application would lead to a better comparability of different investigations. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Comparison of Deterministic and Probabilistic Radial Distribution Systems Load Flow
NASA Astrophysics Data System (ADS)
Gupta, Atma Ram; Kumar, Ashwani
2017-12-01
Distribution system network today is facing the challenge of meeting increased load demands from the industrial, commercial and residential sectors. The pattern of load is highly dependent on consumer behavior and temporal factors such as season of the year, day of the week or time of the day. For deterministic radial distribution load flow studies load is taken as constant. But, load varies continually with a high degree of uncertainty. So, there is a need to model probable realistic load. Monte-Carlo Simulation is used to model the probable realistic load by generating random values of active and reactive power load from the mean and standard deviation of the load and for solving a Deterministic Radial Load Flow with these values. The probabilistic solution is reconstructed from deterministic data obtained for each simulation. The main contribution of the work is: Finding impact of probable realistic ZIP load modeling on balanced radial distribution load flow. Finding impact of probable realistic ZIP load modeling on unbalanced radial distribution load flow. Compare the voltage profile and losses with probable realistic ZIP load modeling for balanced and unbalanced radial distribution load flow.
A mobile-mobile transport model for simulating reactive transport in connected heterogeneous fields
NASA Astrophysics Data System (ADS)
Lu, Chunhui; Wang, Zhiyuan; Zhao, Yue; Rathore, Saubhagya Singh; Huo, Jinge; Tang, Yuening; Liu, Ming; Gong, Rulan; Cirpka, Olaf A.; Luo, Jian
2018-05-01
Mobile-immobile transport models can be effective in reproducing heavily tailed breakthrough curves of concentration. However, such models may not adequately describe transport along multiple flow paths with intermediate velocity contrasts in connected fields. We propose using the mobile-mobile model for simulating subsurface flow and associated mixing-controlled reactive transport in connected fields. This model includes two local concentrations, one in the fast- and the other in the slow-flow domain, which predict both the concentration mean and variance. The normalized total concentration variance within the flux is found to be a non-monotonic function of the discharge ratio with a maximum concentration variance at intermediate values of the discharge ratio. We test the mobile-mobile model for mixing-controlled reactive transport with an instantaneous, irreversible bimolecular reaction in structured and connected random heterogeneous domains, and compare the performance of the mobile-mobile to the mobile-immobile model. The results indicate that the mobile-mobile model generally predicts the concentration breakthrough curves (BTCs) of the reactive compound better. Particularly, for cases of an elliptical inclusion with intermediate hydraulic-conductivity contrasts, where the travel-time distribution shows bimodal behavior, the prediction of both the BTCs and maximum product concentration is significantly improved. Our results exemplify that the conceptual model of two mobile domains with diffusive mass transfer in between is in general good for predicting mixing-controlled reactive transport, and particularly so in cases where the transfer in the low-conductivity zones is by slow advection rather than diffusion.
NASA Astrophysics Data System (ADS)
Belyaev, Fedor S.; Volkov, Aleksandr E.; Evard, Margarita E.; Khvorov, Aleksandr A.
2018-05-01
Microstructural simulation of mechanical behavior of shape memory alloy samples at cyclic loading in the pseudoelastic state has been carried out. Evolution of the oriented and scattered deformation defects leading to damage accumulation and resulting in the fatigue fracture has been taken into account. Simulations were performed for the regime of loading imitating that for endovascular stents: preliminary straining, unloading, deformation up to some mean level of the strain and subsequent mechanical cycling at specified strain amplitude. Dependence of the fatigue life on the loading parameters (pre-strain, mean and amplitude values of strain) has been obtained. The results show a good agreement with available experimental data.
Borycki, Elizabeth M; Griffith, Janessa; Monkman, Helen; Reid-Haughian, Cheryl
2017-01-01
Mobile phones are used in conjunction with mobile eHealth software applications. These mobile software applications can be used to access, review and document clinical information. The objective of this research was to explore the relationship between mobile phones, usability and safety. Clinical simulations and semi-structured interviews were used to investigate this relationship. The findings revealed that mobile phones may lead to specific types of usability issues that may introduce some types of errors.
A Mobile IPv6 based Distributed Mobility Management Mechanism of Mobile Internet
NASA Astrophysics Data System (ADS)
Yan, Shi; Jiayin, Cheng; Shanzhi, Chen
A flatter architecture is one of the trends of mobile Internet. Traditional centralized mobility management mechanism faces the challenges such as scalability and UE reachability. A MIPv6 based distributed mobility management mechanism is proposed in this paper. Some important network entities and signaling procedures are defined. UE reachability is also considered in this paper through extension to DNS servers. Simulation results show that the proposed approach can overcome the scalability problem of the centralized scheme.
Simulating Vibrations in a Complex Loaded Structure
NASA Technical Reports Server (NTRS)
Cao, Tim T.
2005-01-01
The Dynamic Response Computation (DIRECT) computer program simulates vibrations induced in a complex structure by applied dynamic loads. Developed to enable rapid analysis of launch- and landing- induced vibrations and stresses in a space shuttle, DIRECT also can be used to analyze dynamic responses of other structures - for example, the response of a building to an earthquake, or the response of an oil-drilling platform and attached tanks to large ocean waves. For a space-shuttle simulation, the required input to DIRECT includes mathematical models of the space shuttle and its payloads, and a set of forcing functions that simulates launch and landing loads. DIRECT can accommodate multiple levels of payload attachment and substructure as well as nonlinear dynamic responses of structural interfaces. DIRECT combines the shuttle and payload models into a single structural model, to which the forcing functions are then applied. The resulting equations of motion are reduced to an optimum set and decoupled into a unique format for simulating dynamics. During the simulation, maximum vibrations, loads, and stresses are monitored and recorded for subsequent analysis to identify structural deficiencies in the shuttle and/or payloads.
Robertson, Dale M.; Schladow, S.G.
2008-01-01
Salton Sea, California, like many other lakes, has become eutrophic because of excessive nutrient loading, primarily phosphorus (P). A Total Maximum Daily Load (TMDL) is being prepared for P to reduce the input of P to the Sea. In order to better understand how P-load reductions should affect the average annual water quality of this terminal saline lake, three different eutrophication programs (BATHTUB, WiLMS, and the Seepage Lake Model) were applied. After verifying that specific empirical models within these programs were applicable to this saline lake, each model was calibrated using water-quality and nutrient-loading data for 1999 and then used to simulate the effects of specific P-load reductions. Model simulations indicate that a 50% decrease in external P loading would decrease near-surface total phosphorus concentrations (TP) by 25-50%. Application of other empirical models demonstrated that this decrease in loading should decrease near-surface chlorophyll a concentrations (Chl a) by 17-63% and increase Secchi depths (SD) by 38-97%. The wide range in estimated responses in Chl a and SD were primarily caused by uncertainty in how non-algal turbidity would respond to P-load reductions. If only the models most applicable to the Salton Sea are considered, a 70-90% P-load reduction is required for the Sea to be classified as moderately eutrophic (trophic state index of 55). These models simulate steady-state conditions in the Sea; therefore, it is difficult to ascertain how long it would take for the simulated changes to occur after load reductions. ?? 2008 Springer Science+Business Media B.V.
A Mobile Heat Applicator for Simulating Prescribed Fire Intensities
Stephen S. Sackett; Darold E. Ward
1972-01-01
In testing the degree of tolerance or susceptibility of tree stems to heat from prescribed fires, it is desirable to apply controlled quantities of heat to the lower bole. This paper describes an infrared heater capable of simulating the intensities of prescribed fires and mobile enough for use in the field under natural conditions. Procedures for calibrating the unit...
DOT National Transportation Integrated Search
2017-07-26
The datasets in this zip file are in support of FHWA-JPO-16-379, Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Program...
DOT National Transportation Integrated Search
2017-04-01
The datasets in this zip file are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-16-385, "Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applica...
DOT National Transportation Integrated Search
2017-07-26
The datasets in this zip file are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-16-385, "Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applica...
DOT National Transportation Integrated Search
2017-06-26
This zip file contains files of data to support FHWA-JPO-16-370, Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Program...
Mahmud, Ilias; Clarke, Lynda; Nahar, Nazmun; Ploubidis, George B
2018-05-02
Disability does not only depend on individuals' health conditions but also the contextual factors in which individuals live. Therefore, disability measurement scales need to be developed or adapted to the context. Bangladesh lacks any locally developed or validated scales to measure disabilities in adults with mobility impairment. We developed a new Locomotor Disability Scale (LDS) in a previous qualitative study. The present study developed a shorter version of the scale and explored its factorial structure. We administered the LDS to 316 adults with mobility impairments, selected from outpatient and community-based settings of a rehabilitation centre in Bangladesh. We did exploratory factor analysis (EFA) to determine a shorter version of the LDS and explore its factorial structure. We retained 19 items from the original LDS following evaluation of response rate, floor/ceiling effects, inter-item correlations, and factor loadings in EFA. The Eigenvalues greater than one rule and the Scree test suggested a two-factor model of measuring locomotor disability (LD) in adults with mobility impairment. These two factors are 'mobility activity limitations' and 'functional activity limitations'. We named the higher order factor as 'locomotor disability'. This two-factor model explained over 68% of the total variance among the LD indicators. The reproduced correlation matrix indicated a good model fit with 14% non-redundant residuals with absolute values > 0.05. However, the Chi-square test indicated poor model fit (p < .001). The Bartlett's test of Sphericity confirmed patterned relationships amongst the LD indicators (p < .001). The Kaiser-Meyer-Olkin Measure (KMO) of sampling adequacy was .94 and the individual diagonal elements in the anti-correlation matrix were > .91. Among the retained 19 items, there was no correlation coefficient > .9 or a large number of correlation coefficients < .3. The communalities were high: between .495 and .882 with a mean of 0.684. As an evidence of convergent validity, we had all loadings above .5, except one. As an evidence of discriminant validity, we had no strong (> .3) cross loadings and the correlation between the two factors was .657. The 'mobility activity limitations' and 'functional activity limitations' sub-scales demonstrated excellent internal consistency (Cronbach's alpha were .954 and .937, respectively). The 19-item LDS was found to be a reliable and valid scale to measure the latent constructs mobility activity limitations and functional activity limitations among adults with mobility impairments in outpatient and community-based settings in Bangladesh.
Development and validation of a piloted simulation of a helicopter and external sling load
NASA Technical Reports Server (NTRS)
Shaughnessy, J. D.; Deaux, T. N.; Yenni, K. R.
1979-01-01
A generalized, real time, piloted, visual simulation of a single rotor helicopter, suspension system, and external load is described and validated for the full flight envelope of the U.S. Army CH-54 helicopter and cargo container as an example. The mathematical model described uses modified nonlinear classical rotor theory for both the main rotor and tail rotor, nonlinear fuselage aerodynamics, an elastic suspension system, nonlinear load aerodynamics, and a loadground contact model. The implementation of the mathematical model on a large digital computing system is described, and validation of the simulation is discussed. The mathematical model is validated by comparing measured flight data with simulated data, by comparing linearized system matrices, eigenvalues, and eigenvectors with manufacturers' data, and by the subjective comparison of handling characteristics by experienced pilots. A visual landing display system for use in simulation which generates the pilot's forward looking real world display was examined and a special head up, down looking load/landing zone display is described.
Micro-macro correlations and anisotropy in granular assemblies under uniaxial loading and unloading.
Imole, Olukayode I; Wojtkowski, Mateusz; Magnanimo, Vanessa; Luding, Stefan
2014-04-01
The influence of contact friction on the behavior of dense, polydisperse granular assemblies under uniaxial (oedometric) loading and unloading deformation is studied using discrete element simulations. Even though the uniaxial deformation protocol is one of the "simplest" element tests possible, the evolution of the structural anisotropy necessitates its careful analysis and understanding, since it is the source of interesting and unexpected observations. On the macroscopic, homogenized, continuum scale, the deviatoric stress ratio and the deviatoric fabric, i.e., the microstructure behave in a different fashion during uniaxial loading and unloading. The maximal stress ratio and strain increase with increasing contact friction. In contrast, the deviatoric fabric reaches its maximum at a unique strain level independent of friction, with the maximal value decreasing with friction. For unloading, both stress and fabric respond to unloading strain with a friction-dependent delay but at different strains. On the micro-level, a friction-dependent non-symmetry of the proportion of weak (strong) and sliding (sticking) contacts with respect to the total contacts during loading and unloading is observed. Coupled to this, from the directional probability distribution, the "memory" and history-dependent behavior of granular systems is confirmed. Surprisingly, while a rank-2 tensor is sufficient to describe the evolution of the normal force directions, a sixth order harmonic approximation is necessary to describe the probability distribution of contacts, tangential force, and mobilized friction. We conclude that the simple uniaxial deformation activates microscopic phenomena not only in the active Cartesian directions, but also at intermediate orientations, with the tilt angle being dependent on friction, so that this microstructural features cause the interesting, nontrivial macroscopic behavior.
Effect of micromorphology of cortical bone tissue on crack propagation under dynamic loading
NASA Astrophysics Data System (ADS)
Wang, Mayao; Gao, Xing; Abdel-Wahab, Adel; Li, Simin; Zimmermann, Elizabeth A.; Riedel, Christoph; Busse, Björn; Silberschmidt, Vadim V.
2015-09-01
Structural integrity of bone tissue plays an important role in daily activities of humans. However, traumatic incidents such as sports injuries, collisions and falls can cause bone fracture, servere pain and mobility loss. In addition, ageing and degenerative bone diseases such as osteoporosis can increase the risk of fracture [1]. As a composite-like material, a cortical bone tissue is capable of tolerating moderate fracture/cracks without complete failure. The key to this is its heterogeneously distributed microstructural constituents providing both intrinsic and extrinsic toughening mechanisms. At micro-scale level, cortical bone can be considered as a four-phase composite material consisting of osteons, Haversian canals, cement lines and interstitial matrix. These microstructural constituents can directly affect local distributions of stresses and strains, and, hence, crack initiation and propagation. Therefore, understanding the effect of micromorphology of cortical bone on crack initiation and propagation, especially under dynamic loading regimes is of great importance for fracture risk evaluation. In this study, random microstructures of a cortical bone tissue were modelled with finite elements for four groups: healthy (control), young age, osteoporosis and bisphosphonate-treated, based on osteonal morphometric parameters measured from microscopic images for these groups. The developed models were loaded under the same dynamic loading conditions, representing a direct impact incident, resulting in progressive crack propagation. An extended finite-element method (X-FEM) was implemented to realize solution-dependent crack propagation within the microstructured cortical bone tissues. The obtained simulation results demonstrate significant differences due to micromorphology of cortical bone, in terms of crack propagation characteristics for different groups, with the young group showing highest fracture resistance and the senior group the lowest.
Bandwidth management for mobile mode of mobile monitoring system for Indonesian Volcano
NASA Astrophysics Data System (ADS)
Evita, Maria; Djamal, Mitra; Zimanowski, Bernd; Schilling, Klaus
2017-01-01
Volcano monitoring requires the system which has high-fidelity operation and real-time acquisition. MONICA (Mobile Monitoring System for Indonesian Volcano), a system based on Wireless Sensor Network, mobile robot and satellite technology has been proposed to fulfill this requirement for volcano monitoring system in Indonesia. This system consists of fixed-mode for normal condition and mobile mode for emergency situation. The first and second modes have been simulated in slow motion earthquake cases of Merapi Volcano, Indonesia. In this research, we have investigated the application of our bandwidth management for high-fidelity operation and real time acquisition in mobile mode of a strong motion earthquake from this volcano. The simulation result showed that our system still could manage the bandwidth even when there were 2 died fixed node after had stroked by the lightning. This result (64% to 83% throughput in average) was still better than the bandwidth utilized by the existing equipment (0% throughput because of the broken seismometer).
Efficient Deployment of Key Nodes for Optimal Coverage of Industrial Mobile Wireless Networks
Li, Xiaomin; Li, Di; Dong, Zhijie; Hu, Yage; Liu, Chengliang
2018-01-01
In recent years, industrial wireless networks (IWNs) have been transformed by the introduction of mobile nodes, and they now offer increased extensibility, mobility, and flexibility. Nevertheless, mobile nodes pose efficiency and reliability challenges. Efficient node deployment and management of channel interference directly affect network system performance, particularly for key node placement in clustered wireless networks. This study analyzes this system model, considering both industrial properties of wireless networks and their mobility. Then, static and mobile node coverage problems are unified and simplified to target coverage problems. We propose a novel strategy for the deployment of clustered heads in grouped industrial mobile wireless networks (IMWNs) based on the improved maximal clique model and the iterative computation of new candidate cluster head positions. The maximal cliques are obtained via a double-layer Tabu search. Each cluster head updates its new position via an improved virtual force while moving with full coverage to find the minimal inter-cluster interference. Finally, we develop a simulation environment. The simulation results, based on a performance comparison, show the efficacy of the proposed strategies and their superiority over current approaches. PMID:29439439
Global Mobile Satellite Service Interference Analysis for the AeroMACS
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.; Apaza, Rafael D.; Hall, Ward; Phillips, Brent
2013-01-01
The AeroMACS (Aeronautical Mobile Airport Communications System), which is based on the IEEE 802.16-2009 mobile wireless standard, is envisioned as the wireless network which will cover all areas of airport surfaces for next generation air transportation. It is expected to be implemented in the 5091-5150 MHz frequency band which is also occupied by mobile satellite service uplinks. Thus the AeroMACS must be designed to avoid interference with this incumbent service. Simulations using Visualyse software were performed utilizing a global database of 6207 airports. Variations in base station and subscriber antenna distribution and gain pattern were examined. Based on these simulations, recommendations for global airport base station and subscriber antenna power transmission limitations are provided.
Biogeochemical Gradients in Wetland Sediments and their Effect on the Fate Trace Metals
NASA Astrophysics Data System (ADS)
Jaffe, P. R.; Choi, J.; Xu, S.
2005-12-01
The interactions between sediment biogeochemistry processes and higher plants play a major role on trace metal mobility in wetlands. Most wetland sediments are characterized by steep redox gradients, resulting from the sequential utilization of different electron acceptors during the degradation of organic matter provided by leaf litter and root turnover. Metals in wetland sediments may be immobilized due to precipitation or adsorption to different organic and inorganic sediment constituents. Adsorption onto iron, and manganese oxides, are important in the rhizosphere where iron oxyhydroxide plaques may form on the surface of roots. As the sediments becomes more reduced, bioavailable iron and manganese oxides are used as electron acceptor and are gradually depleted, resulting in the mobilization of some adsorbed species (i.e., As(V), phosphate, etc.), the reduction of some trace metals such as Cr(VI) (which is then immobilized as Cr(III)), and for more reduced conditions the immobilization of trace metals (i.e., Cd, Pb, Zn) as sulfides. Results from numerical simulations, laboratory experiments, and field measurements will be presented, showing how redox gradients and hence, trace-metal immobilization, in wetlands respond to external forcing functions such as changes in nutrient loading, plant distribution, seasonal and diurnal plant activity (specifically evapotranspiration and oxygen release), and temporal or spatial changes in the profile of iron and manganese oxides.
Aorta: a management layer for mobile peer-to-peer massive multiplayer games
NASA Astrophysics Data System (ADS)
Edlich, Stefan; Hoerning, Henrik; Brunnert, Andreas; Hoerning, Reidar
2005-03-01
The development of massive multiplayer games (MMPGs) for personal computers is based on a wide range of frameworks and technologies. In contrast, MMPG development for cell phones lacks the availability of framework support. We present Aorta as a multi-purpose lightweight MIDP 2.0 framework to support the transparent and equal API usage of peer-to-peer communication via http, IP and Bluetooth. Special experiments, such as load-tests on Nokia 6600s, have been carried out with Bluetooth support in using a server-as-client architecture to create ad-hoc networks by using piconet functionalities. Additionally, scatternet functionalities, which will be supported in upcoming devices, have been tested in a simulated environment on more than 12 cell phones. The core of the Aorta framework is the Etherlobby, which manages connections, peers, the game lobby, game policies and much more. The framework itself was developed to enable the fast development of mobile games, regardless of the distance between users, which might be within the schoolyard or much further away. The earliest market-ready application shown here is a multimedia game for cell phones utilizing all of the frameworks features. This game, called Micromonster, acts as platform for developer tests, as well as providing valuable information about interface usability and user acceptance.
Coon, William F.; Reddy, James E.
2008-01-01
Onondaga Lake in Onondaga County, New York, has been identified as one of the Nation?s most contaminated lakes as a result of industrial and sanitary-sewer discharges and stormwater nonpoint sources, and has received priority cleanup status under the national Water Resources Development Act of 1990. A basin-scale precipitation-runoff model of the Onondaga Lake basin was identified as a desirable water-resources management tool to better understand the processes responsible for the generation of loads of sediment and nutrients that are transported to Onondaga Lake. During 2003?07, the U.S. Geological Survey (USGS) developed a model based on the computer program, Hydrological Simulation Program?FORTRAN (HSPF), which simulated overland flow to, and streamflow in, the major tributaries of Onondaga Lake, and loads of sediment, phosphorus, and nitrogen transported to the lake. The simulation period extends from October 1997 through September 2003. The Onondaga Lake basin was divided into 107 subbasins and within these subbasins, the land area was apportioned among 19 pervious and impervious land types on the basis of land use and land cover, hydrologic soil group (HSG), and aspect. Precipitation data were available from three sources as input to the model. The model simulated streamflow, water temperature, concentrations of dissolved oxygen, and concentrations and loads of sediment, orthophosphate, total phosphorus, nitrate, ammonia, and organic nitrogen in the four major tributaries to Onondaga Lake?Onondaga Creek, Harbor Brook, Ley Creek, and Ninemile Creek. Simulated flows were calibrated to data from nine USGS streamflow-monitoring sites; simulated nutrient concentrations and loads were calibrated to data collected at six of the nine streamflow-monitoring sites. Water-quality samples were collected, processed, and analyzed by personnel from the Onondaga County Department of Water Environment Protection. Several time series of flow, and sediment and nutrient loads were generated for known sources of these constituents, including the Tully Valley mudboils (flow and sediment), Otisco Lake (flow and nutrients), the Marcellus wastewater-treatment plant (flow and nutrients), and springs from carbonate bedrock (flow). Runoff from the impervious sewered areas of the City of Syracuse was adjusted for the quantity that was treatable at the county wastewater-treatment plant; the excess flows were routed to nearby streams through combined-sanitary-and-storm-sewer overflows. The mitigative effects that the Onondaga Reservoir and Otisco Lake were presumed to have on loads of sediment and particulate constituents were simulated by adjustment of parameter values that controlled sediment settling rates, deposition, and scour in the reservoir and lake. Graphical representations of observed and simulated data, and relevant statistics, were compared to assess model performance. Simulated daily and monthly streamflows were rated ?very good? (within 10 percent of observed flows) at all calibration sites, except Onondaga Creek at Cardiff, which was rated ?fair? (10?15 percent difference). Simulations of monthly average water temperatures were rated ?very good? (within 7 percent of observed temperatures) at all sites. No observed data were available by which to directly assess the model?s simulation of suspended sediment loads. Available measured total suspended solids data provided an indirect means of comparison but, not surprisingly, yielded only ?fair? to ?poor? ratings (greater than 30 percent difference) for simulated monthly sediment loads at half the water-quality calibration sites. Simulations of monthly orthophosphate loads ranged from ?very good? (within 15 percent of measured loads) at three sites to ?poor? (greater than 35 percent difference) at one site; simulations of ammonia nitrogen loads ranged from ?very good? at one site to ?fair? (25?35 percent difference) at two sites. Simulations of monthly total phosphorus, nitrate, and or
Manure and nitrogen application enhances soil phosphorus mobility in calcareous soil in greenhouses.
Yan, Zhengjuan; Chen, Shuo; Li, Junliang; Alva, Ashok; Chen, Qing
2016-10-01
Over many years, high phosphorus (P) loading for intensive vegetable cropping in greenhouses of North China has contributed to excessive P accumulation, resulting in environmental risk. In this study, the influences of manure and nitrogen (N) application on the transformation and transport of soil P were investigated after nine years in a greenhouse tomato double cropping system (winter-spring and autumn-winter seasons). High loading of manure significantly increased the soil inorganic P (Pi), inositol hexakisphosphate (IHP), mobile P and P saturation ratio (PSR, >0.7 in 0-30 cm depth soil; PSR was estimated from P/(Fe + Al) in an oxalate extract of the soil). The high rate of N fertilizer application to the studied calcareous soil with heavy loading of manure increased the following: (i) mobile organic P (Po) and Pi fractions, as evidenced by the decrease in the ratio of monoesters to diesters and the proportion of stable Pi (i.e., HCl-Pi) in total P (Pt) in 0-30 cm depth soil; (ii) relative distribution of Po in the subsoil layer; and (iii) P leaching to soil depths below 90 cm and the proportion of Po in Pt in the leachate. More acidic soil due to excessive N application increased P mobility and leaching. The increase in Ox-Al (oxalate-extractable Al) and the proportion of microbe-associated Po related to N application at soil depths of 0-30 cm suggested decrease in the net Po mineralization, which may contribute to downward transport of Po in the soil profile. Copyright © 2016 Elsevier Ltd. All rights reserved.
High-Voltage, Asymmetric-Waveform Generator
NASA Technical Reports Server (NTRS)
Beegle, Luther W.; Duong, Tuan A.; Duong, Vu A.; Kanik, Isik
2008-01-01
The shapes of waveforms generated by commercially available analytical separation devices, such as some types of mass spectrometers and differential mobility spectrometers are, in general, inadequate and result in resolution degradation in output spectra. A waveform generator was designed that would be able to circumvent these shortcomings. It is capable of generating an asymmetric waveform, having a peak amplitude as large as 2 kV and frequency of several megahertz, which can be applied to a capacitive load. In the original intended application, the capacitive load would consist of the drift plates in a differential-mobility spectrometer. The main advantage to be gained by developing the proposed generator is that the shape of the waveform is made nearly optimum for various analytical devices requiring asymmetric-waveform such as differential-mobility spectrometers. In addition, this waveform generator could easily be adjusted to modify the waveform in accordance with changed operational requirements for differential-mobility spectrometers. The capacitive nature of the load is an important consideration in the design of the proposed waveform generator. For example, the design provision for shaping the output waveform is based partly on the principle that (1) the potential (V) on a capacitor is given by V=q/C, where C is the capacitance and q is the charge stored in the capacitor; and, hence (2) the rate of increase or decrease of the potential is similarly proportional to the charging or discharging current. The proposed waveform generator would comprise four functional blocks: a sine-wave generator, a buffer, a voltage shifter, and a high-voltage switch (see Figure 1). The sine-wave generator would include a pair of operational amplifiers in a feedback configuration, the parameters of which would be chosen to obtain a sinusoidal timing signal of the desired frequency. The buffer would introduce a slight delay (approximately equal to 20 ns) but would otherwise leave the fundamental timing signal unchanged. The buffered timing signal would be fed as input to the level shifter. The output of the level shifter would serve as a timing and control signal for the high-voltage switch, causing the switch to alternately be (1) opened, allowing the capacitive load to be charged from a high-voltage DC power supply; then (2) closed to discharge the capacitive load to ground. Hence, the output waveform would closely approximate a series of exponential charging and discharging curves (see Figure 2).
ERIC Educational Resources Information Center
Haji, Faizal A.; Khan, Rabia; Regehr, Glenn; Drake, James; de Ribaupierre, Sandrine; Dubrowski, Adam
2015-01-01
As interest in applying cognitive load theory (CLT) to the study and design of pedagogic and technological approaches in healthcare simulation grows, suitable measures of cognitive load (CL) are needed. Here, we report a two-phased study investigating the sensitivity of subjective ratings of mental effort (SRME) and secondary-task performance…
Sepúlveda, Nicasio; Zack, A.L.; Krishna, J.H.; Quinones-Aponte, Vicente; Gomez-Gomez, Fernando; Morris, G.L.
1990-01-01
A laboratory experiment to measure the specific storage of an aquifer material was conducted. A known dead load, simulating an overburden load, was applied to a sample of completely saturated aquifer material contained inside a cylinder. After the dead load was applied, water was withdrawn from the sample, causing the hydrostatic pressure to decrease and the effective stress to increase. The resulting compression of the sample and the amount of water withdrawn were measured after equilibrium was reached. The procedure was repeated by increasing the dead load and the hydrostatic pressure followed by withdrawing water to determine new values of effective stress and compaction. The simulated dead loads are typical of those experienced by shallow artesian aquifers. The void ratio and the effective stress of the aquifer sample, as simulated by different dead loads, determine the pore volume compressibility which, in turn, determines the values of specific storage. An analytical algorithm was used to independently determine the stress dependent profile of specific storage. These values are found to be in close agreement with laboratory results. Implications for shallow artesian aquifers, with relatively small overburden stress, are also addressed.
NASA Astrophysics Data System (ADS)
Huang, Yin; Chen, Jianhua; Xiong, Shaojun
2009-07-01
Mobile-Learning (M-learning) makes many learners get the advantages of both traditional learning and E-learning. Currently, Web-based Mobile-Learning Systems have created many new ways and defined new relationships between educators and learners. Association rule mining is one of the most important fields in data mining and knowledge discovery in databases. Rules explosion is a serious problem which causes great concerns, as conventional mining algorithms often produce too many rules for decision makers to digest. Since Web-based Mobile-Learning System collects vast amounts of student profile data, data mining and knowledge discovery techniques can be applied to find interesting relationships between attributes of learners, assessments, the solution strategies adopted by learners and so on. Therefore ,this paper focus on a new data-mining algorithm, combined with the advantages of genetic algorithm and simulated annealing algorithm , called ARGSA(Association rules based on an improved Genetic Simulated Annealing Algorithm), to mine the association rules. This paper first takes advantage of the Parallel Genetic Algorithm and Simulated Algorithm designed specifically for discovering association rules. Moreover, the analysis and experiment are also made to show the proposed method is superior to the Apriori algorithm in this Mobile-Learning system.
Phase-field modeling of void anisotropic growth behavior in irradiated zirconium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, G. M.; Wang, H.; Lin, De-Ye
2017-06-01
A three-dimensional (3D) phase field model was developed to study the effects of surface energy and diffusivity anisotropy on void growth behavior in irradiated Zr. The gamma surface energy function, which is used in the phase field model, was developed with the surface energy anisotropy calculated from the molecular dynamics (MD) simulations. It is assumed that vacancies have much larger mobility in c-axis than a- and b- axes while interstitials have much larger mobility in basal plane then that in c-axis. With the model, the equilibrium void morphology and the effect of defect concentrations and defect mobility anisotropy on voidmore » growth behavior were simulated. The simulations demonstrated that 1) The developed phase-field model can correctly reproduce the faceted void morphology predicted by the Wullf construction. 2) With isotropic diffusivity the void prefers to grow on the basal plane. 3) When the vacancy has large mobility along c-axis and interstitial has a large mobility on the basal plane of hexagonal closed packed (hcp) Zr alloys a platelet void grows in c-direction and shrinks on the basal plane, which is in agreement with the experimental observation of void growth behavior in irradiated Zr.« less
Identification of Defects in Piles Through Dynamic Testing
NASA Astrophysics Data System (ADS)
Liao, Shutao T.; Roesset, Jose M.
1997-04-01
The objective of this work was to evaluate the theoretical capabilities of the non-destructive impact-response method in detecting the existence of a single defect in a pile, its location and its length. The cross-section of the pile is assumed to be circular and the defects are assumed to be axisymmetric in geometry. As mentioned in the companion paper, special codes utilizing one-dimensional (1-D) and three-dimensional (3-D) axisymmetric finite element models were developed to simulate the responses of defective piles to an impact load. Extensive parametric studies were then performed. In each study, the results from the direct use of time histories of displacements or velocities and the mechanical admittance (or mobility) function were compared in order to assess their capabilities. The effects of the length and the width of a defect were also investigated using these methods. Int. J. Numer. Anal. Meth. Geomech., vol. 21, 277-291 (1997)
Reducing Extra-Terrestrial Excavation Forces with Percussion
NASA Technical Reports Server (NTRS)
Mueller, Robert; Schuler, Jason M.; Smith, Jonathan Drew; Nick, Andrew J.; Lippitt, Thomas
2012-01-01
High launch costs and mission requirements drive the need for low mass excavators with mobility platforms, which in turn have little traction and excavation reaction capacity in low gravity environments. This presents the need for precursor and long term future missions with low mass robotic mining technology to perform In-Situ Resource Utilization (ISRU) tasks. This paper discusses a series of experiments that investigate the effectiveness of a percussive digging device to reduce excavation loads and thereby the mass of the excavator itself. A percussive mechanism and 30" wide pivoting bucket were attached at the end of the arm simulating a basic backhoe with a percussion direction tangent to the direction of movement. Impact energies from 13.6J to 30.5J and frequencies from 0 BPM to 700 BPM were investigated. A reduction in excavation force of as much as 50% was achieved in this experimental investigation.
Mafole, Prosper; Aritsugi, Masayoshi
2016-01-01
Backoff-free fragment retransmission (BFFR) scheme enhances the performance of legacy MAC layer fragmentation by eliminating contention overhead. The eliminated overhead is the result of backoff executed before a retransmission attempt is made when fragment transmission failure occurs within a fragment burst. This paper provides a mathematical analysis of BFFR energy efficiency and further assesses, by means of simulations, the energy efficiency, throughput and delay obtained when BFFR is used. The validity of the new scheme is evaluated in different scenarios namely, constant bit rate traffic, realistic bursty internet traffic, node mobility, rigid and elastic flows and their combinations at different traffic loads. We also evaluate and discuss the impact of BFFR on MAC fairness when the number of nodes is varied from 4 to 10. It is shown that BFFR has advantages over legacy MAC fragmentation scheme in all the scenarios.
Does distal tibiofibular joint mobilization decrease limitation of ankle dorsiflexion?
Fujii, Misaki; Suzuki, Daisuke; Uchiyama, Eiichi; Muraki, Takayuki; Teramoto, Atsushi; Aoki, Mitsuhiro; Miyamoto, Shigenori
2010-02-01
Limitation of ankle motion is in many cases treated by joint mobilization (JM), a kind of manual physical therapy technique. Until now, the JM approach has mainly focused on the talocrural joint, with less attention to the distal tibiofibular joint. We applied cyclic loading to the lateral malleolus as in JM in order to clarify the relationship between the dorsiflexion angle and the excursion of the lateral malleolus. Seven normal, fresh-frozen cadaver legs were used. To each specimen, cyclic loading with a 30N force was applied 1000 times to the lateral malleolus at a speed of 15N/s. The displacement of the lateral malleolus was measured with a magnetic tracking system. The maximum dorsiflexion angle was measured before and after cyclic loading. After the first 100 and 1000 times of cyclic loading, the tibia was displaced 0.44+/-0.30mm and 0.75+/-0.36mm, respectively, and the fibula was displaced 0.44+/-0.28mm and 0.92+/-0.39mm, respectively. The average dorsiflexion angle increased from 14.36+/-7.51 degrees to 16.74+/-7.21 degrees after cyclic loading (P<0.05). Movement of the distal tibiofibular joint led to a significant increase in the range of ankle dorsiflexion. These results suggest that tibiofibular JM would be effective for limitation of ankle dorsiflexion.
Adaptive Beam Loading Compensation in Room Temperature Bunching Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, J. P.; Chase, B. E.; Cullerton, E.
In this paper we present the design, simulation, and proof of principle results of an optimization based adaptive feedforward algorithm for beam-loading compensation in a high impedance room temperature cavity. We begin with an overview of prior developments in beam loading compensation. Then we discuss different techniques for adaptive beam loading compensation and why the use of Newton?s Method is of interest for this application. This is followed by simulation and initial experimental results of this method.
Drop Height and Volume Control the Mobility of Long-Runout Landslides on the Earth and Mars
NASA Astrophysics Data System (ADS)
Johnson, Brandon C.; Campbell, Charles S.
2017-12-01
Long-runout landslides are landslides with volumes of 105 m3 or more, which move much farther from their source than expected. The observation that Martian landslides are generally less mobile than terrestrial landslides offers important evidence regarding the mechanism responsible for the high mobility of long-runout landslides. Here we simulate landslides as granular flow using a soft-particle discrete element model. We show that while surface gravity plays a negligible role, observed differences in fall height naturally reproduce the observed differences in mobility of Martian and terrestrial landslides. We also demonstrate that landslides on Iapetus may fit this trend. Our simulations do not include any fluid and indicate that a mechanism similar to acoustic fluidization can explain the high mobility of long-runout landslides. This implies that long-runout landslides on Mars should not be considered as evidence for ice, saturated clays, or liquid water.
NASA Astrophysics Data System (ADS)
Matha, Denis; Sandner, Frank; Schlipf, David
2014-12-01
Design verification of wind turbines is performed by simulation of design load cases (DLC) defined in the IEC 61400-1 and -3 standards or equivalent guidelines. Due to the resulting large number of necessary load simulations, here a method is presented to reduce the computational effort for DLC simulations significantly by introducing a reduced nonlinear model and simplified hydro- and aerodynamics. The advantage of the formulation is that the nonlinear ODE system only contains basic mathematic operations and no iterations or internal loops which makes it very computationally efficient. Global turbine extreme and fatigue loads such as rotor thrust, tower base bending moment and mooring line tension, as well as platform motions are outputs of the model. They can be used to identify critical and less critical load situations to be then analysed with a higher fidelity tool and so speed up the design process. Results from these reduced model DLC simulations are presented and compared to higher fidelity models. Results in frequency and time domain as well as extreme and fatigue load predictions demonstrate that good agreement between the reduced and advanced model is achieved, allowing to efficiently exclude less critical DLC simulations, and to identify the most critical subset of cases for a given design. Additionally, the model is applicable for brute force optimization of floater control system parameters.
Thomas, Kevin V; Amador, Arturo; Baz-Lomba, Jose Antonio; Reid, Malcolm
2017-10-03
Wastewater-based epidemiology is an established approach for quantifying community drug use and has recently been applied to estimate population exposure to contaminants such as pesticides and phthalate plasticizers. A major source of uncertainty in the population weighted biomarker loads generated is related to estimating the number of people present in a sewer catchment at the time of sample collection. Here, the population quantified from mobile device-based population activity patterns was used to provide dynamic population normalized loads of illicit drugs and pharmaceuticals during a known period of high net fluctuation in the catchment population. Mobile device-based population activity patterns have for the first time quantified the high degree of intraday, week, and month variability within a specific sewer catchment. Dynamic population normalization showed that per capita pharmaceutical use remained unchanged during the period when static normalization would have indicated an average reduction of up to 31%. Per capita illicit drug use increased significantly during the monitoring period, an observation that was only possible to measure using dynamic population normalization. The study quantitatively confirms previous assessments that population estimates can account for uncertainties of up to 55% in static normalized data. Mobile device-based population activity patterns allow for dynamic normalization that yields much improved temporal and spatial trend analysis.
Mobile shearography in applications
NASA Astrophysics Data System (ADS)
Kalms, Michael
2007-09-01
Modern optical methods such as digital shearography have attracted interest not only for laboratory investigations but also for applications on the factory floor because they can be sensitive, accurate, non-tactile and non-destructive. Optical inspection and measurement systems are more and more used in the entire manufacturing process. Shearography as a coherent optical method has been widely accepted as a useful NDT tool. It is a robust interferometric method to determine locations with maximum stress on various material structures. However, limitations of this technique can be found in the bulky equipment components, the interpretation of the complex shearographic result images and a barely solvable challenge at the work with difficult surfaces like dark absorbing or bright reflecting materials. We report a mobile shearography system that was especially designed for investigations at aircraft constructions. The great advantage of this system is the adjusted balance of all single elements to a complete measurement procedure integrated in a handy body. Only with the arrangement of all involved parameters like loading, laser source, sensor unit and software, it is feasible to get optimal measurement results. This paper describes a complete mobile shearographic procedure including loading and image processing facilities for structural testing and flaw recognition on aircrafts. The mobile system was successfully tested, e.g. with the up-to-date EADS multi-role combat aircraft Eurofighter.
Field Experience with Lock Culvert Valves
2013-12-01
factors pertaining to valves such as the hoist loads, cavitation parameter, and effects of venting. To reduce the surge in the navigation channel...2 min 15 sec, filling-and-emptying valve opening time) ensures that adequate air is drawn into the culvert to cushion the cavitation implosions...shape can have adverse hydrodynamic loading consequences. The USACE, Mobile District (SAM) is in the process of designing replacement valves that are
Richard D. Woodsmith; Marwan A. Hassan
2005-01-01
Maintenance of pool morphology in a stream channel with a mobile bed requires hydraulic conditions at moderate to high flows that route bed load through the pool as it is delivered from upstream. Through field measurements of discharge, vertical velocity profiles, bed load transport, and streambed scour, fill, and grain-size distribution, we found that maintenance of a...
Pérez-González, A; González-Lluch, C; Sancho-Bru, J L; Rodríguez-Cervantes, P J; Barjau-Escribano, A; Forner-Navarro, L
2012-03-01
The aim of this study was to analyse the strength and failure mode of teeth restored with fibre posts under retention and flexural-compressive loads at different stages of the restoration and to analyse whether including a simulated ligament in the experimental setup has any effect on the strength or the failure mode. Thirty human maxillary central incisors were distributed in three different groups to be restored with simulation of different restoration stages (1: only post, 2: post and core, 3: post-core and crown), using Rebilda fibre posts. The specimens were inserted in resin blocks and loaded by means of a universal testing machine until failure under tension (stage 1) and 50º flexion (stages 2-3). Half the specimens in each group were restored using a simulated ligament between root dentine and resin block and the other half did not use this element. Failure in stage 1 always occurred at the post-dentine interface, with a mean failure load of 191·2 N. Failure in stage 2 was located mainly in the core or coronal dentine (mean failure load of 505·9 N). Failure in stage 3 was observed in the coronal dentine (mean failure load 397·4 N). Failure loads registered were greater than expected masticatory loads. Fracture modes were mostly reparable, thus indicating that this post is clinically valid at the different stages of restoration studied. The inclusion of the simulated ligament in the experimental system did not show a statistically significant effect on the failure load or the failure mode. © 2011 Blackwell Publishing Ltd.
Intelligent call admission control for multi-class services in mobile cellular networks
NASA Astrophysics Data System (ADS)
Ma, Yufeng; Hu, Xiulin; Zhang, Yunyu
2005-11-01
Scarcity of the spectrum resource and mobility of users make quality of service (QoS) provision a critical issue in mobile cellular networks. This paper presents a fuzzy call admission control scheme to meet the requirement of the QoS. A performance measure is formed as a weighted linear function of new call and handoff call blocking probabilities of each service class. Simulation compares the proposed fuzzy scheme with complete sharing and guard channel policies. Simulation results show that fuzzy scheme has a better robust performance in terms of average blocking criterion.
Mobile Learning and Early Age Mathematics
ERIC Educational Resources Information Center
Peled, Shir; Schocken, Shimon
2014-01-01
The ability to develop engaging simulations and constructive learning experiences using mobile devices is unprecedented, presenting a disruption in educational practices of historical proportions. In this paper we describe some of the unique virtues that mobile learning hold for early age mathematics education. In particular, we describe how…
Unsteady hydraulic simulation of the cavitating part load vortex rope in Francis turbines
NASA Astrophysics Data System (ADS)
Brammer, J.; Segoufin, C.; Duparchy, F.; Lowys, P. Y.; Favrel, A.; Avellan, F.
2017-04-01
For Francis turbines at part load operation a helical vortex rope is formed due to the swirling nature of the flow exiting the runner. This vortex creates pressure fluctuations which can lead to power swings, and the unsteady loading can lead to fatigue damage of the runner. In the case that the vortex rope cavitates there is the additional risk that hydro-acoustic resonance can occur. It is therefore important to be able to accurately simulate this phenomenon to address these issues. In this paper an unsteady, multi-phase CFD model was used to simulate two part-load operating points, for two different cavitation conditions. The simulation results were validated with test-rig data, and showed very good agreement. These results also served as an input for FEA calculations and fatigue analysis, which are presented in a separate study.
A tool for simulating parallel branch-and-bound methods
NASA Astrophysics Data System (ADS)
Golubeva, Yana; Orlov, Yury; Posypkin, Mikhail
2016-01-01
The Branch-and-Bound method is known as one of the most powerful but very resource consuming global optimization methods. Parallel and distributed computing can efficiently cope with this issue. The major difficulty in parallel B&B method is the need for dynamic load redistribution. Therefore design and study of load balancing algorithms is a separate and very important research topic. This paper presents a tool for simulating parallel Branchand-Bound method. The simulator allows one to run load balancing algorithms with various numbers of processors, sizes of the search tree, the characteristics of the supercomputer's interconnect thereby fostering deep study of load distribution strategies. The process of resolution of the optimization problem by B&B method is replaced by a stochastic branching process. Data exchanges are modeled using the concept of logical time. The user friendly graphical interface to the simulator provides efficient visualization and convenient performance analysis.
NASA Astrophysics Data System (ADS)
Sliseris, J.; Yan, L.; Kasal, B.
2017-09-01
Numerical methods for simulating hollow and foam-filled flax-fabric-reinforced epoxy tubular energy absorbers subjected to lateral crashing are presented. The crashing characteristics, such as the progressive failure, load-displacement response, absorbed energy, peak load, and failure modes, of the tubes were simulated and calculated numerically. A 3D nonlinear finite-element model that allows for the plasticity of materials using an isotropic hardening model with strain rate dependence and failure is proposed. An explicit finite-element solver is used to address the lateral crashing of the tubes considering large displacements and strains, plasticity, and damage. The experimental nonlinear crashing load vs. displacement data are successfully described by using the finite-element model proposed. The simulated peak loads and absorbed energy of the tubes are also in good agreement with experimental results.
Joint Seasonal ARMA Approach for Modeling of Load Forecast Errors in Planning Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafen, Ryan P.; Samaan, Nader A.; Makarov, Yuri V.
2014-04-14
To make informed and robust decisions in the probabilistic power system operation and planning process, it is critical to conduct multiple simulations of the generated combinations of wind and load parameters and their forecast errors to handle the variability and uncertainty of these time series. In order for the simulation results to be trustworthy, the simulated series must preserve the salient statistical characteristics of the real series. In this paper, we analyze day-ahead load forecast error data from multiple balancing authority locations and characterize statistical properties such as mean, standard deviation, autocorrelation, correlation between series, time-of-day bias, and time-of-day autocorrelation.more » We then construct and validate a seasonal autoregressive moving average (ARMA) model to model these characteristics, and use the model to jointly simulate day-ahead load forecast error series for all BAs.« less
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Chamis, Christos C.
1992-01-01
The nonlinear behavior of a high-temperature metal-matrix composite (HT-MMC) was simulated by using the metal matrix composite analyzer (METCAN) computer code. The simulation started with the fabrication process, proceeded to thermomechanical cyclic loading, and ended with the application of a monotonic load. Classical laminate theory and composite micromechanics and macromechanics are used in METCAN, along with a multifactor interaction model for the constituents behavior. The simulation of the stress-strain behavior from the macromechanical and the micromechanical points of view, as well as the initiation and final failure of the constituents and the plies in the composite, were examined in detail. It was shown that, when the fibers and the matrix were perfectly bonded, the fracture started in the matrix and then propagated with increasing load to the fibers. After the fibers fractured, the composite lost its capacity to carry additional load and fractured.
Primary radiation damage of an FeCr alloy under pressure: Atomistic simulation
NASA Astrophysics Data System (ADS)
Tikhonchev, M. Yu.; Svetukhin, V. V.
2017-05-01
The primary radiation damage of a binary FeCr alloy deformed by applied mechanical loading is studied by an atomistic molecular dynamics simulation. Loading is simulated by specifying an applied pressure of 0.25, 1.0, and 2.5 GPa of both signs. Hydrostatic and uniaxial loading is considered along the [001], [111], [112], and [210] directions. The influence of loading on the energy of point defect formation and the threshold atomic displacement energy in single-component bcc iron is investigated. The 10-keV atomic displacement cascades in a "random" binary Fe-9 at % Cr alloy are simulated at an initial temperature of 300 K. The number of the point defects generated in a cascade is estimated, and the clustering of point defects and the spatial orientation of interstitial configurations are analyzed. Our results agree with the results of other researchers and supplement them.
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.
1991-01-01
The nonlinear behavior of a high-temperature metal-matrix composite (HT-MMC) was simulated by using the metal matrix composite analyzer (METCAN) computer code. The simulation started with the fabrication process, proceeded to thermomechanical cyclic loading, and ended with the application of a monotonic load. Classical laminate theory and composite micromechanics and macromechanics are used in METCAN, along with a multifactor interaction model for the constituents behavior. The simulation of the stress-strain behavior from the macromechanical and the micromechanical points of view, as well as the initiation and final failure of the constituents and the plies in the composite, were examined in detail. It was shown that, when the fibers and the matrix were perfectly bonded, the fracture started in the matrix and then propagated with increasing load to the fibers. After the fibers fractured, the composite lost its capacity to carry additional load and fractured.
Caravaggi, Paolo; Leardini, Alberto; Giacomozzi, Claudia
2016-10-03
Plantar load can be considered as a measure of the foot ability to transmit forces at the foot/ground, or foot/footwear interface during ambulatory activities via the lower limb kinematic chain. While morphological and functional measures have been shown to be correlated with plantar load, no exhaustive data are currently available on the possible relationships between range of motion of foot joints and plantar load regional parameters. Joints' kinematics from a validated multi-segmental foot model were recorded together with plantar pressure parameters in 21 normal-arched healthy subjects during three barefoot walking trials. Plantar pressure maps were divided into six anatomically-based regions of interest associated to corresponding foot segments. A stepwise multiple regression analysis was performed to determine the relationships between pressure-based parameters, joints range of motion and normalized walking speed (speed/subject height). Sagittal- and frontal-plane joint motion were those most correlated to plantar load. Foot joints' range of motion and normalized walking speed explained between 6% and 43% of the model variance (adjusted R 2 ) for pressure-based parameters. In general, those joints' presenting lower mobility during stance were associated to lower vertical force at forefoot and to larger mean and peak pressure at hindfoot and forefoot. Normalized walking speed was always positively correlated to mean and peak pressure at hindfoot and forefoot. While a large variance in plantar pressure data is still not accounted for by the present models, this study provides statistical corroboration of the close relationship between joint mobility and plantar pressure during stance in the normal healthy foot. Copyright © 2016 Elsevier Ltd. All rights reserved.
A computer program for simulating salinity loads in streams
Glover, Kent C.
1978-01-01
A FORTRAN IV program that simulates salinity loads in streams is described. Daily values of stream-discharge in cubic feet per second, or stream-discharge and specific conductance in micromhos, are used to estimate daily loads in tons by one of five available methods. The loads are then summarized by computing either total and mean monthly loads or various statistics for each calendar day. Results are output in tabular and, if requested, punch card format. Under selection of appropriate methods for estimating and summarizing daily loads is provided through the coding of program control cards. The program is designed to interface directly with data retrieved from the U.S. Geological Survey WATSTORE Daily Values File. (Woodard-USGS)
Buckling and Post-Buckling Behaviors of a Variable Stiffness Composite Laminated Wing Box Structure
NASA Astrophysics Data System (ADS)
Wang, Peiyan; Huang, Xinting; Wang, Zhongnan; Geng, Xiaoliang; Wang, Yuansheng
2018-04-01
The buckling and post-buckling behaviors of variable stiffness composite laminates (VSCL) with curvilinear fibers were investigated and compared with constant stiffness composite laminates (CSCL) with straight fibers. A VSCL box structure was evaluated under a pure bending moment. The results of the comparative test showed that the critical buckling load of the VSCL box was approximately 3% higher than that of the CSCL box. However, the post-buckling load-bearing capacity was similar due to the layup angle and the immature status of the material processing technology. The properties of the VSCL and CSCL boxes under a pure bending moment were simulated using the Hashin criterion and cohesive interface elements. The simulation results are consistent with the experimental results in stiffness, critical buckling load and failure modes but not in post-buckling load capacity. The results of the experiment, the simulation and laminated plate theory show that VSCL greatly improves the critical buckling load but has little influence on the post-buckling load-bearing capacity.
Coles, L G; Gheduzzi, S; Miles, A W
2014-12-01
The patellofemoral joint is a common site of pain and failure following total knee arthroplasty. A contributory factor may be adverse patellofemoral biomechanics. Cadaveric investigations are commonly used to assess the biomechanics of the joint, but are associated with high inter-specimen variability and often cannot be carried out at physiological levels of loading. This study aimed to evaluate the suitability of a novel knee simulator for investigating patellofemoral joint biomechanics. This simulator specifically facilitated the extended assessment of patellofemoral joint biomechanics under physiological levels of loading. The simulator allowed the knee to move in 6 degrees of freedom under quadriceps actuation and included a simulation of the action of the hamstrings. Prostheses were implanted on synthetic bones and key soft tissues were modelled with a synthetic analogue. In order to evaluate the physiological relevance and repeatability of the simulator, measurements were made of the quadriceps force and the force, contact area and pressure within the patellofemoral joint using load cells, pressure-sensitive film, and a flexible pressure sensor. The results were in agreement with those previously reported in the literature, confirming that the simulator is able to provide a realistic physiological loading situation. Under physiological loading, average standard deviations of force and area measurements were substantially lower and comparable to those reported in previous cadaveric studies, respectively. The simulator replicates the physiological environment and has been demonstrated to allow the initial investigation of factors affecting patellofemoral biomechanics following total knee arthroplasty. © IMechE 2014.
CFD simulation of a 2 bladed multi megawatt wind turbine with flexible rotor connection
NASA Astrophysics Data System (ADS)
Klein, L.; Luhmann, B.; Rösch, K.-N.; Lutz, T.; Cheng, P.-W.; Krämer, E.
2016-09-01
An innovative passive load reduction concept for a two bladed 3.4 MW wind turbine is investigated by a conjoint CFD and MBS - BEM methodology. The concept consists of a flexible hub mount which allows a tumbling motion of the rotor. First, the system is simulated with a MBS tool coupled to a BEM code. Then, the resulting motion of the rotor is extracted from the simulation and applied on the CFD simulation as prescribed motion. The aerodynamic results show a significant load reduction on the support structure. Hub pitching and yawing moment amplitudes are reduced by more than 50% in a vertically sheared inflow. Furthermore, the suitability of the MBS - BEM approach for the simulation of the load reduction system is shown.
NASA Tech Briefs, February 2014
NASA Technical Reports Server (NTRS)
2014-01-01
Topics include: JWST Integrated Simulation and Test (JIST) Core; Software for Non-Contact Measurement of an Individual's Heart Rate Using a Common Camera; Rapid Infrared Pixel Grating Response Testbed; Temperature Measurement and Stabilization in a Birefringent Whispering Gallery Resonator; JWST IV and V Simulation and Test (JIST) Solid State Recorder (SSR) Simulator; Development of a Precision Thermal Doubler for Deep Space; Improving Friction Stir Welds Using Laser Peening; Methodology of Evaluating Margins of Safety in Critical Brazed Joints; Interactive Inventory Monitoring; Sensor for Spatial Detection of Single-Event Effects in Semiconductor-Based Electronics; Reworked CCGA-624 Interconnect Package Reliability for Extreme Thermal Environments; Current-Controlled Output Driver for Directly Coupled Loads; Bulk Metallic Glasses and Matrix Composites as Spacecraft Shielding; Touch Temperature Coating for Electrical Equipment on Spacecraft; Li-Ion Electrolytes Containing Flame-Retardant Additives; Autonomous Robotic Manipulation (ARM); CARVE Log; Platform Perspective Toolkit; Convex Hull-Based Plume and Anomaly Detection; Pre-Filtration of GOSAT Data Using Only Level 1 Data and an Intelligent Filter to Remove Low Clouds; Affordability Comparison Tool - ACT; "Ascent - Commemorating Shuttle" for iPad; Cassini Mission App; Light-Weight Workflow Engine: A Server for Executing Generic Workflows; Model for System Engineering of the CheMin Instrument; Timeline Central Concepts; Parallel Particle Filter Toolkit; Particle Filter Simulation and Analysis Enabling Non-Traditional Navigation; Quasi-Terminator Orbits for Mapping Small Primitive Bodies; The Subgrid-Scale Scalar Variance Under Supercritical Pressure Conditions; Sliding Gait for ATHLETE Mobility; and Automated Generation of Adaptive Filter Using a Genetic Algorithm and Cyclic Rule Reduction.
Hickey, Owen A; Shendruk, Tyler N; Harden, James L; Slater, Gary W
2012-08-31
We introduce a mesoscale simulation method based on multiparticle collision dynamics (MPCD) for the electrohydrodynamics of polyelectrolytes with finite Debye lengths. By applying the Debye-Hückel approximation to assign an effective charge to MPCD particles near charged monomers, our simulations are able to reproduce the rapid rise in the electrophoretic mobility with respect to the degree of polymerization for the shortest polymer lengths followed by a small decrease for longer polymers due to charge condensation. Moreover, these simulations demonstrate the importance of a finite Debye length in accurately determining the mobility of uniformly charged polyelectrolytes and net neutral polyampholytes.
DOT National Transportation Integrated Search
2016-06-26
The datasets in this zip file are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-16-385, "Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applica...
Miller, Ross H; Hamill, Joseph
2009-08-01
Biomechanical aspects of running injuries are often inferred from external loading measurements. However, previous research has suggested that relationships between external loading and potential injury-inducing internal loads can be complex and nonintuitive. Further, the loading response to training interventions can vary widely between subjects. In this study, we use a subject-specific computer simulation approach to estimate internal and external loading of the distal tibia during the impact phase for two runners when running in shoes with different midsole cushioning parameters. The results suggest that: (1) changes in tibial loading induced by footwear are not reflected by changes in ground reaction force (GRF) magnitudes; (2) the GRF loading rate is a better surrogate measure of tibial loading and stress fracture risk than the GRF magnitude; and (3) averaging results across groups may potentially mask differential responses to training interventions between individuals.
Development of a Pressure Box to Evaluate Reusable-Launch-Vehicle Cryogenic-Tank Panels
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Sikora, Joseph; Maguire, James F.; Winn, Peter M.
1996-01-01
A cryogenic pressure-box test machine has been designed and is being developed to test full-scale reusable-launch-vehicle cryogenic-tank panels. This machine is equipped with an internal pressurization system, a cryogenic cooling system, and a heating system to simulate the mechanical and thermal loading conditions that are representative of a reusable-launch-vehicle mission profile. The cryogenic cooling system uses liquid helium and liquid nitrogen to simulate liquid hydrogen and liquid oxygen tank internal temperatures. A quartz lamp heating system is used for heating the external surface of the test panels to simulate cryogenic-tank external surface temperatures during re-entry of the launch vehicle. The pressurization system uses gaseous helium and is designed to be controlled independently of the cooling system. The tensile loads in the axial direction of the test panel are simulated by means of hydraulic actuators and a load control system. The hoop loads in the test panel are reacted by load-calibrated turnbuckles attached to the skin and frame elements of the test panel. The load distribution in the skin and frames can be adjusted to correspond to the tank structure by using these turnbuckles. The seal between the test panel and the cryogenic pressure box is made from a reinforced Teflon material which can withstand pressures greater than 52 psig at cryogenic temperatures. Analytical results and tests on prototype test components indicate that most of the cryogenic-tank loading conditions that occur in flight can be simulated in the cryogenic pressure-box test machine.
Simulation Study on the Deflection Response of the 921A Steel thin plate under Explosive Impact Load
NASA Astrophysics Data System (ADS)
Zhang, Yu-Xiang; Chen, Fang; Han, Yan
2018-03-01
The Ship cabin would be subject to high-intensity shock wave load when it is attacked by anti-ship weapons, causing its side board damaged. The time course of the deflection of the thin plate made of 921A steel in different initial conditions under the impact load is researched by theoretical analysis and numerical simulation. According to the theory of elastic-plastic deformation of the thin plate, the dynamic response equation of the thin plate under the explosion impact load is established with the method of energy, and the theoretical calculation value is compared with the result from the simulation method. It proved that the theoretical calculation method has better reliability and accuracy in different boundary size.
Root, Robert A.; Fathordoobadi, Sahar; Alday, Fernando; Ela, Wendell; Chorover, Jon
2013-01-01
During treatment for potable use, water utilities generate arsenic-bearing ferric wastes that are subsequently dispatched to landfills. The biogeochemical weathering of these residuals in mature landfills affects the potential mobilization of sorbed arsenic species via desorption from solids subjected to phase transformations driven by abundant organic matter and bacterial activity. Such processes are not simulated with the Toxicity Characteristic Leaching Procedure (TCLP) currently used to characterize hazard. To examine the effect of sulfate on As retention in landfill leachate, columns of As(V) loaded amorphous ferric hydroxide were reacted biotically at two leachate sulfate concentrations (0.064 mM and 2.1 mM). After 300 d, ferric sorbents were reductively dissolved. Arsenic released to porewaters was partially co-precipitated in mixed-valent secondary iron phases whose speciation was dependent on sulfate concentration. As and Fe XAS showed that, in the low sulfate column, 75–81% of As(V) was reduced to As(III), and 53–68% of the Fe(III) sorbent was transformed, dominantly to siderite and green rust. In the high sulfate column, Fe(III) solids were reduced principally to FeS(am), whereas As(V) was reduced to a polymeric sulfide with local atomic structure of realgar. Multi-energy micro-X-ray fluorescence (ME-μXRF) imaging at Fe and As K-edges showed that As formed surface complexes with ferrihydrite > siderite > green rust in the low sulfate column; while discrete realgar-like phases formed in the high sulfate systems. Results indicate that landfill sulfur chemistry exerts strong control over the potential mobilization of As from ferric sorbent residuals by controlling secondary As and Fe sulfide co-precipitate formation. PMID:24102155
Feaster, Toby D.; Conrads, Paul; Guimaraes, Wladmir B.; Sanders, Curtis L.; Bales, Jerad D.
2003-01-01
Time-series plots of dissolved-oxygen concentrations were determined for various simulated hydrologic and point-source loading conditions along a free-flowing section of the Catawba River from Lake Wylie Dam to the headwaters of Fishing Creek Reservoir in South Carolina. The U.S. Geological Survey one-dimensional dynamic-flow model, BRANCH, was used to simulate hydrodynamic data for the Branched Lagrangian Transport Model. Waterquality data were used to calibrate the Branched Lagrangian Transport Model and included concentrations of nutrients, chlorophyll a, and biochemical oxygen demand in water samples collected during two synoptic sampling surveys at 10 sites along the main stem of the Catawba River and at 3 tributaries; and continuous water temperature and dissolved-oxygen concentrations measured at 5 locations along the main stem of the Catawba River. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to watertemperature boundary data due to the effect of temperature on reaction kinetics and the solubility of dissolved oxygen. Of the model coefficients, the simulated dissolved-oxygen concentration was most sensitive to the biological oxidation rate of nitrite to nitrate. To demonstrate the utility of the Branched Lagrangian Transport Model for the Catawba River, the model was used to simulate several water-quality scenarios to evaluate the effect on the 24-hour mean dissolved-oxygen concentrations at selected sites for August 24, 1996, as simulated during the model calibration period of August 23 27, 1996. The first scenario included three loading conditions of the major effluent discharges along the main stem of the Catawba River (1) current load (as sampled in August 1996); (2) no load (all point-source loads were removed from the main stem of the Catawba River; loads from the main tributaries were not removed); and (3) fully loaded (in accordance with South Carolina Department of Health and Environmental Control National Discharge Elimination System permits). Results indicate that the 24-hour mean and minimum dissolved-oxygen concentrations for August 24, 1996, changed from the no-load condition within a range of - 0.33 to 0.02 milligram per liter and - 0.48 to 0.00 milligram per liter, respectively. Fully permitted loading conditions changed the 24-hour mean and minimum dissolved-oxygen concentrations from - 0.88 to 0.04 milligram per liter and - 1.04 to 0.00 milligram per liter, respectively. A second scenario included the addition of a point-source discharge of 25 million gallons per day to the August 1996 calibration conditions. The discharge was added at S.C. Highway 5 or at a location near Culp Island (about 4 miles downstream from S.C. Highway 5) and had no significant effect on the daily mean and minimum dissolved-oxygen concentration. A third scenario evaluated the phosphorus loading into Fishing Creek Reservoir; four loading conditions of phosphorus into Catawba River were simulated. The four conditions included fully permitted and actual loading conditions, removal of all point sources from the Catawba River, and removal of all point and nonpoint sources from Sugar Creek. Removing the point-source inputs on the Catawba River and the point and nonpoint sources in Sugar Creek reduced the organic phosphorus and orthophosphate loadings to Fishing Creek Reservoir by 78 and 85 percent, respectively.
Wise, Joel K.; Sumner, Dale Rick
2012-01-01
Enhancement of in vivo mobilization and homing of endogenous mesenchymal stem cells (MSCs) to an injury site is an innovative strategy for improvement of bone tissue engineering and repair. The present study was designed to determine whether mobilization by AMD3100 and/or local homing by delivery of stromal cell-derived factor-1 (SDF-1) enhances recombinant human bone morphogenetic protein-2 (rhBMP-2) induced ectopic bone formation in an established rat model. Rats received an injection of either saline or AMD3100 treatment 1 h before harvesting of bone marrow for in vitro colony-forming unit-fibroblasts (CFU-F) culture or the in vivo subcutaneous implantation of absorbable collagen sponges (ACSs) loaded with saline, recombinant human bone morphogenetic protein-2 (rhBMP-2), SDF-1, or the combination of SDF-1 and rhBMP-2. AMD3100 treatment resulted in a significant decrease in CFU-F number, compared with saline, which confirmed that a single systemic AMD3100 treatment rapidly mobilized MSCs from the bone marrow. At 28 and 56 days, bone formation in the explanted ACS was assessed by microcomputed tomography (μCT) and histology. At 28 days, AMD3100 and/or SDF-1 had no statistically significant effect on bone volume (BV) or bone mineral content (BMC), but histology revealed more active bone formation with treatment of AMD3100, loading of SDF-1, or the combination of both AMD3100 and SDF-1, compared with saline-treated rhBMP-2 loaded ACS. At 56 days, the addition of AMD3100 treatment, loading of SDF-1, or the combination of both resulted in a statistically significant stimulatory effect on BV and BMC, compared with the saline-treated rhBMP-2 loaded ACS. Histology of the 56-day ACS were consistent with the μCT analysis, exhibiting more mature and mineralized bone formation with AMD3100 treatment, SDF-1 loading, or the combination of both, compared with the saline-treated rhBMP-2 loaded ACS. The present study is the first that provides evidence of the efficacy of AMD3100 and SDF-1 treatment to stimulate trafficking of MSCs to an ectopic implant site, in order to ultimately enhance rhBMP-2 induced long-term bone formation. PMID:22035136
Aeration of the teuftal landfill: Field scale concept and lab scale simulation.
Ritzkowski, Marco; Walker, Beat; Kuchta, Kerstin; Raga, Roberto; Stegmann, Rainer
2016-09-01
Long lasting post-closure care (PCC) is often the major financial burden for operators of municipal solid waste (MSW) landfills. Beside costs for the installation and maintenance of technical equipment and barriers, in particular long term treatment of leachate and landfill gas has to be paid from capital surplus. Estimations based on laboratory experiments project time periods of many decades until leachate quality allows for direct discharge (i.e. no need for further purification). Projections based on leachate samples derived from the last 37years for 35 German landfills confirm these assumption. Moreover, the data illustrate that in particular ammonium nitrogen concentrations are likely to fall below limit values only after a period of 300years. In order to avoid long lasting PCC the operator of Teuftal landfill, located in the Swiss canton Bern, decided to biologically stabilize the landfill by means of a combined in situ aeration and moisturization approach. In December 2014 the aeration started at a landfill section containing approximately 30% of the total landfill volume. From summer 2016 onwards the remaining part of the landfill will be aerated. Landfill aeration through horizontal gas and leachate drains is carried out for the first time in field scale in Europe. The technical concept is described in the paper. Parallel to field scale aeration, investigations for the carbon and nitrogen turnover are carried out by means of both simulated aerated landfills and simulated anaerobic landfills. The results presented in this paper demonstrate that aeration is capable to enhance, both carbon mobilization and discharge via the gas phase. This effect comes along with a significant increase in bio-stabilization of the waste organic fraction, which positively affects the landfill emission behavior in the long run. In terms of leachate pollution reduction it could be demonstrated that the organic load decrease fast and widely independent of the adjusted aeration rates whereby ammonium nitrogen load efficiently decrease later and only under higher aeration rates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Assessing Teaching Skills with a Mobile Simulation
ERIC Educational Resources Information Center
Gibson, David
2013-01-01
Because mobile technologies are overtaking personal computers as the primary tools of Internet access, and cloud-based resources are fundamentally transforming the world's knowledge, new forms of teaching and assessment are required to foster 21st century literacies, including those needed by K-12 teachers. A key feature of mobile technology…