Sample records for mobile mapping applications

  1. Customised City Maps in Mobile Applications for Senior Citizens.

    PubMed

    Reins, Frank; Berker, Frank; Heck, Helmut

    2017-01-01

    Map services should be used in mobile applications for senior citizens. Do the commonly used map services meet the needs of elderly people? - Exemplarily, the contrast ratios of common maps in comparison to an optimized custom rendered map are examined in the paper.

  2. Monitoring and evaluation of rowing performance using mobile mapping data

    NASA Astrophysics Data System (ADS)

    Mpimis, A.; Gikas, V.

    2011-12-01

    Traditionally, the term mobile mapping refers to a means of collecting geospatial data using mapping sensors that are mounted on a mobile platform. Historically, this process was mainly driven by the need for highway infrastructure mapping and transportation corridor inventories. However, the recent advances in mapping sensor and telecommunication technologies create the opportunity that, completely new, emergent application areas of mobile mapping to evolve rapidly. This article examines the potential of mobile mapping technology (MMT) in sports science and in particular in competitive rowing. Notably, in this study the concept definition of mobile mapping somehow differs from the traditional one in a way that, the end result is not relevant to the geospatial information acquired as the moving platform travels in space. In contrast, the interest is placed on the moving platform (rowing boat) itself and on the various subsystems which are also in continuous motion.

  3. A Backpack-Mounted Omnidirectional Camera with Off-the-Shelf Navigation Sensors for Mobile Terrestrial Mapping: Development and Forest Application

    PubMed Central

    Prol, Fabricio dos Santos; El Issaoui, Aimad; Hakala, Teemu

    2018-01-01

    The use of Personal Mobile Terrestrial System (PMTS) has increased considerably for mobile mapping applications because these systems offer dynamic data acquisition with ground perspective in places where the use of wheeled platforms is unfeasible, such as forests and indoor buildings. PMTS has become more popular with emerging technologies, such as miniaturized navigation sensors and off-the-shelf omnidirectional cameras, which enable low-cost mobile mapping approaches. However, most of these sensors have not been developed for high-accuracy metric purposes and therefore require rigorous methods of data acquisition and data processing to obtain satisfactory results for some mapping applications. To contribute to the development of light, low-cost PMTS and potential applications of these off-the-shelf sensors for forest mapping, this paper presents a low-cost PMTS approach comprising an omnidirectional camera with off-the-shelf navigation systems and its evaluation in a forest environment. Experimental assessments showed that the integrated sensor orientation approach using navigation data as the initial information can increase the trajectory accuracy, especially in covered areas. The point cloud generated with the PMTS data had accuracy consistent with the Ground Sample Distance (GSD) range of omnidirectional images (3.5–7 cm). These results are consistent with those obtained for other PMTS approaches. PMID:29522467

  4. Laser mobile mapping standards and applications in transportation.

    DOT National Transportation Integrated Search

    2015-11-01

    This report describes the work that was done to support the development of a chapter for the INDOT Survey Manual on Mobile : Mapping. The work includes experiments that were done, data that was collected, analysis that was carried out, and conclusion...

  5. Robot map building based on fuzzy-extending DSmT

    NASA Astrophysics Data System (ADS)

    Li, Xinde; Huang, Xinhan; Wu, Zuyu; Peng, Gang; Wang, Min; Xiong, Youlun

    2007-11-01

    With the extensive application of mobile robots in many different fields, map building in unknown environments has been one of the principal issues in the field of intelligent mobile robot. However, Information acquired in map building presents characteristics of uncertainty, imprecision and even high conflict, especially in the course of building grid map using sonar sensors. In this paper, we extended DSmT with Fuzzy theory by considering the different fuzzy T-norm operators (such as Algebraic Product operator, Bounded Product operator, Einstein Product operator and Default minimum operator), in order to develop a more general and flexible combinational rule for more extensive application. At the same time, we apply fuzzy-extended DSmT to mobile robot map building with the help of new self-localization method based on neighboring field appearance matching( -NFAM), to make the new tool more robust in very complex environment. An experiment is conducted to reconstruct the map with the new tool in indoor environment, in order to compare their performances in map building with four T-norm operators, when Pioneer II mobile robot runs along the same trace. Finally, a conclusion is reached that this study develops a new idea to extend DSmT, also provides a new approach for autonomous navigation of mobile robot, and provides a human-computer interactive interface to manage and manipulate the robot remotely.

  6. Smartphones Based Mobile Mapping Systems

    NASA Astrophysics Data System (ADS)

    Al-Hamad, A.; El-Sheimy, N.

    2014-06-01

    The past 20 years have witnessed an explosive growth in the demand for geo-spatial data. This demand has numerous sources and takes many forms; however, the net effect is an ever-increasing thirst for data that is more accurate, has higher density, is produced more rapidly, and is acquired less expensively. For mapping and Geographic Information Systems (GIS) projects, this has been achieved through the major development of Mobile Mapping Systems (MMS). MMS integrate various navigation and remote sensing technologies which allow mapping from moving platforms (e.g. cars, airplanes, boats, etc.) to obtain the 3D coordinates of the points of interest. Such systems obtain accuracies that are suitable for all but the most demanding mapping and engineering applications. However, this accuracy doesn't come cheaply. As a consequence of the platform and navigation and mapping technologies used, even an "inexpensive" system costs well over 200 000 USD. Today's mobile phones are getting ever more sophisticated. Phone makers are determined to reduce the gap between computers and mobile phones. Smartphones, in addition to becoming status symbols, are increasingly being equipped with extended Global Positioning System (GPS) capabilities, Micro Electro Mechanical System (MEMS) inertial sensors, extremely powerful computing power and very high resolution cameras. Using all of these components, smartphones have the potential to replace the traditional land MMS and portable GPS/GIS equipment. This paper introduces an innovative application of smartphones as a very low cost portable MMS for mapping and GIS applications.

  7. New approach to study mobility in the vicinity of dynamical arrest; exact application to a kinetically constrained model

    NASA Astrophysics Data System (ADS)

    DeGregorio, P.; Lawlor, A.; Dawson, K. A.

    2006-04-01

    We introduce a new method to describe systems in the vicinity of dynamical arrest. This involves a map that transforms mobile systems at one length scale to mobile systems at a longer length. This map is capable of capturing the singular behavior accrued across very large length scales, and provides a direct route to the dynamical correlation length and other related quantities. The ideas are immediately applicable in two spatial dimensions, and have been applied to a modified Kob-Andersen type model. For such systems the map may be derived in an exact form, and readily solved numerically. We obtain the asymptotic behavior across the whole physical domain of interest in dynamical arrest.

  8. EpiCollect: linking smartphones to web applications for epidemiology, ecology and community data collection.

    PubMed

    Aanensen, David M; Huntley, Derek M; Feil, Edward J; al-Own, Fada'a; Spratt, Brian G

    2009-09-16

    Epidemiologists and ecologists often collect data in the field and, on returning to their laboratory, enter their data into a database for further analysis. The recent introduction of mobile phones that utilise the open source Android operating system, and which include (among other features) both GPS and Google Maps, provide new opportunities for developing mobile phone applications, which in conjunction with web applications, allow two-way communication between field workers and their project databases. Here we describe a generic framework, consisting of mobile phone software, EpiCollect, and a web application located within www.spatialepidemiology.net. Data collected by multiple field workers can be submitted by phone, together with GPS data, to a common web database and can be displayed and analysed, along with previously collected data, using Google Maps (or Google Earth). Similarly, data from the web database can be requested and displayed on the mobile phone, again using Google Maps. Data filtering options allow the display of data submitted by the individual field workers or, for example, those data within certain values of a measured variable or a time period. Data collection frameworks utilising mobile phones with data submission to and from central databases are widely applicable and can give a field worker similar display and analysis tools on their mobile phone that they would have if viewing the data in their laboratory via the web. We demonstrate their utility for epidemiological data collection and display, and briefly discuss their application in ecological and community data collection. Furthermore, such frameworks offer great potential for recruiting 'citizen scientists' to contribute data easily to central databases through their mobile phone.

  9. Mapping of multiple parameter m-health scenarios to mobile WiMAX QoS variables.

    PubMed

    Alinejad, Ali; Philip, N; Istepanian, R S H

    2011-01-01

    Multiparameter m-health scenarios with bandwidth demanding requirements will be one of key applications in future 4 G mobile communication systems. These applications will potentially require specific spectrum allocations with higher quality of service requirements. Furthermore, one of the key 4 G technologies targeting m-health will be medical applications based on WiMAX systems. Hence, it is timely to evaluate such multiple parametric m-health scenarios over mobile WiMAX networks. In this paper, we address the preliminary performance analysis of mobile WiMAX network for multiparametric telemedical scenarios. In particular, we map the medical QoS to typical WiMAX QoS parameters to optimise the performance of these parameters in typical m-health scenario. Preliminary performance analyses of the proposed multiparametric scenarios are evaluated to provide essential information for future medical QoS requirements and constraints in these telemedical network environments.

  10. Using Mobile Devices to Display, Overlay, and Animate Geophysical Data and Imagery

    NASA Astrophysics Data System (ADS)

    Batzli, S.; Parker, D.

    2011-12-01

    A major challenge in mobile-device map application development is to offer rich content and features with simple and intuitive controls and fast performance. Our goal is to bring visualization, animation, and notifications of near real-time weather and earth observation information derived from satellite and sensor data to mobile devices. Our robust back-end processing infrastructure can deliver content in the form of images, shapes, standard descriptive formats (eg. KML, JSON) or raw data to a variety of desktop software, browsers, and mobile devices on demand. We have developed custom interfaces for low-bandwidth browsers (including mobile phones) and high-feature browsers (including smartphones), as well as native applications for Android and iOS devices. Mobile devices offer time- and location-awareness and persistent data connections, allowing us to tailor timely notifications and displays to the user's geographic and time context. This presentation includes a live demo of how our mobile apps deliver animation of standard and custom data products in an interactive map interface.

  11. Applications of Mobile GIS in Forestry South Australia

    NASA Astrophysics Data System (ADS)

    Battad, D. T.; Mackenzie, P.

    2012-07-01

    South Australian Forestry Corporation (ForestrySA) had been actively investigating the applications of mobile GIS in forestry for the past few years. The main objective is to develop an integrated mobile GIS capability that allows staff to collect new spatial information, verify existing data, and remotely access and post data from the field. Two (2) prototype mobile GIS applications have been developed already using the Environmental Systems Research Institute (ESRI) ARCGISR technology as the main spatial component. These prototype systems are the Forest Health Surveillance System and the Mobile GIS for Wetlands System. The Forest Health Surveillance System prototype is used primarily for aerial forest health surveillance. It was developed using a tablet PC with ArcMapR GIS. A customised toolbar was developed using ArcObjectsR in the Visual Basic 6 Integrated Development Environment (IDE). The resulting dynamic linked library provides a suite of custom tools which enables the following: - quickly create spatial features and attribute the data - full utilisation of global positioning system (GPS) technology - excellent screen display navigation tools, i.e. pan, rotate map, capture of flight path - seamless integration of data into GIS as geodatabase (GDB) feature classes - screen entry of text and conversion to annotation feature classes The Mobile GIS for Wetlands System prototype was developed for verifying existing wetland areas within ForestrySA's plantation estate, collect new wetland data, and record wetland conditions. Mapping of actual wetlands within ForestrySA's plantation estate is very critical because of the need to establish protection buffers around these features during the implementation of plantation operations. System development has been focussed on a mobile phone platform (HTC HD2R ) with WindowsR Mobile 6, ESRI's ArcGISR Mobile software development kit (SDK) employing ArcObjectsR written on C#.NET IDE, and ArcGIS ServerR technology. The system is also implemented in the VILIVR X70. The system has undergone testing by ForestrySA staff and the refinements had been incorporated in the latest version of the system. The system has the following functionalities: - display and query strategic data layers - collect and edit spatial and attribute data - full utilisation of global positioning GPS technology - distance and area measurements - display of high resolution imagery - seamless integration of data into GIS as feature classes - screen display and navigation tools, i.e. pan, zoom in/out, rotate map - capture of flight path The next stages in the development of mobile GIS technologies at ForestrySA are to enhance the systems' capabilities as one of the organization main data capture systems. These include incorporating other applications, e.g. roads/tracks mapping, mapping of significant sites, etc., and migration of the system to Windows Phone7.

  12. Behavior Life Style Analysis for Mobile Sensory Data in Cloud Computing through MapReduce

    PubMed Central

    Hussain, Shujaat; Bang, Jae Hun; Han, Manhyung; Ahmed, Muhammad Idris; Amin, Muhammad Bilal; Lee, Sungyoung; Nugent, Chris; McClean, Sally; Scotney, Bryan; Parr, Gerard

    2014-01-01

    Cloud computing has revolutionized healthcare in today's world as it can be seamlessly integrated into a mobile application and sensor devices. The sensory data is then transferred from these devices to the public and private clouds. In this paper, a hybrid and distributed environment is built which is capable of collecting data from the mobile phone application and store it in the cloud. We developed an activity recognition application and transfer the data to the cloud for further processing. Big data technology Hadoop MapReduce is employed to analyze the data and create user timeline of user's activities. These activities are visualized to find useful health analytics and trends. In this paper a big data solution is proposed to analyze the sensory data and give insights into user behavior and lifestyle trends. PMID:25420151

  13. Behavior life style analysis for mobile sensory data in cloud computing through MapReduce.

    PubMed

    Hussain, Shujaat; Bang, Jae Hun; Han, Manhyung; Ahmed, Muhammad Idris; Amin, Muhammad Bilal; Lee, Sungyoung; Nugent, Chris; McClean, Sally; Scotney, Bryan; Parr, Gerard

    2014-11-20

    Cloud computing has revolutionized healthcare in today's world as it can be seamlessly integrated into a mobile application and sensor devices. The sensory data is then transferred from these devices to the public and private clouds. In this paper, a hybrid and distributed environment is built which is capable of collecting data from the mobile phone application and store it in the cloud. We developed an activity recognition application and transfer the data to the cloud for further processing. Big data technology Hadoop MapReduce is employed to analyze the data and create user timeline of user's activities. These activities are visualized to find useful health analytics and trends. In this paper a big data solution is proposed to analyze the sensory data and give insights into user behavior and lifestyle trends.

  14. Mobile service for open data visualization on geo-based images

    NASA Astrophysics Data System (ADS)

    Lee, Kiwon; Kim, Kwangseob; Kang, Sanggoo

    2015-12-01

    Since the early 2010s, governments in most countries have adopted and promoted open data policy and open data platform. Korea are in the same situation, and government and public organizations have operated the public-accessible open data portal systems since 2011. The number of open data and data type have been increasing every year. These trends are more expandable or extensible on mobile environments. The purpose of this study is to design and implement a mobile application service to visualize various typed or formatted public open data with geo-based images on the mobile web. Open data cover downloadable data sets or open-accessible data application programming interface API. Geo-based images mean multi-sensor satellite imageries which are referred in geo-coordinates and matched with digital map sets. System components for mobile service are fully based on open sources and open development environments without any commercialized tools: PostgreSQL for database management system, OTB for remote sensing image processing, GDAL for data conversion, GeoServer for application server, OpenLayers for mobile web mapping, R for data analysis and D3.js for web-based data graphic processing. Mobile application in client side was implemented by using HTML5 for cross browser and cross platform. The result shows many advantageous points such as linking open data and geo-based data, integrating open data and open source, and demonstrating mobile applications with open data. It is expected that this approach is cost effective and process efficient implementation strategy for intelligent earth observing data.

  15. An Augmented-Reality-Based Concept Map to Support Mobile Learning for Science

    ERIC Educational Resources Information Center

    Chen, Chien-Hsu; Chou, Yin-Yu; Huang, Chun-Yen

    2016-01-01

    Computer hardware and mobile devices have developed rapidly in recent years, and augmented reality (AR) technology has been increasingly applied in mobile learning. Although instructional AR applications have yielded satisfactory results and prompted students' curiosity and interest, a number of problems remain. The crucial topic for AR…

  16. Usability evaluation of mobile applications using ISO 9241 and ISO 25062 standards.

    PubMed

    Moumane, Karima; Idri, Ali; Abran, Alain

    2016-01-01

    This paper presents an empirical study based on a set of measures to evaluate the usability of mobile applications running on different mobile operating systems, including Android, iOS and Symbian. The aim is to evaluate empirically a framework that we have developed on the use of the Software Quality Standard ISO 9126 in mobile environments, especially the usability characteristic. To do that, 32 users had participated in the experiment and we have used ISO 25062 and ISO 9241 standards for objective measures by working with two widely used mobile applications: Google Apps and Google Maps. The QUIS 7.0 questionnaire have been used to collect measures assessing the users' level of satisfaction when using these two mobile applications. By analyzing the results we highlighted a set of mobile usability issues that are related to the hardware as well as to the software and that need to be taken into account by designers and developers in order to improve the usability of mobile applications.

  17. The Performance of a Tight Ins/gnss/photogrammetric Integration Scheme for Land Based MMS Applications in Gnss Denied Environments

    NASA Astrophysics Data System (ADS)

    Chu, Chien-Hsun; Chiang, Kai-Wei

    2016-06-01

    The early development of mobile mapping system (MMS) was restricted to applications that permitted the determination of the elements of exterior orientation from existing ground control. Mobile mapping refers to a means of collecting geospatial data using mapping sensors that are mounted on a mobile platform. Research works concerning mobile mapping dates back to the late 1980s. This process is mainly driven by the need for highway infrastructure mapping and transportation corridor inventories. In the early nineties, advances in satellite and inertial technology made it possible to think about mobile mapping in a different way. Instead of using ground control points as references for orienting the images in space, the trajectory and attitude of the imager platform could now be determined directly. Cameras, along with navigation and positioning sensors are integrated and mounted on a land vehicle for mapping purposes. Objects of interest can be directly measured and mapped from images that have been georeferenced using navigation and positioning sensors. Direct georeferencing (DG) is the determination of time-variable position and orientation parameters for a mobile digital imager. The most common technologies used for this purpose today are satellite positioning using the Global Navigation Satellite System (GNSS) and inertial navigation using an Inertial Measuring Unit (IMU). Although either technology used along could in principle determine both position and orientation, they are usually integrated in such a way that the IMU is the main orientation sensor, while the GNSS receiver is the main position sensor. However, GNSS signals are obstructed due to limited number of visible satellites in GNSS denied environments such as urban canyon, foliage, tunnel and indoor that cause the GNSS gap or interfered by reflected signals that cause abnormal measurement residuals thus deteriorates the positioning accuracy in GNSS denied environments. This study aims at developing a novel method that uses ground control points to maintain the positioning accuracy of the MMS in GNSS denied environments. At last, this study analyses the performance of proposed method using about 20 check-points through DG process.

  18. From field data collection to earth sciences dissemination: mobile examples in the digital era

    NASA Astrophysics Data System (ADS)

    Giardino, Marco; Ghiraldi, Luca; Palomba, Mauro; Perotti, Luigi

    2015-04-01

    In the framework of the technological and cultural revolution related to the massive diffusion of mobile devices, as smartphones and tablets, the information management and accessibility is changing, and many software houses and developer communities realized applications that can meet various people's needs. Modern collection, storing and sharing of data have radically changed, and advances in ICT increasingly involve field-based activities. Progresses in these researches and applications depend on three main components: hardware, software and web system. Since 2008 the geoSITLab multidisciplinary group (Earth Sciences Department and NatRisk Centre of the University of Torino and the Natural Sciences Museum of the Piemonte Region) is active in defining and testing methods for collecting, managing and sharing field information using mobile devices. Key issues include: Geomorphological Digital Mapping, Natural Hazards monitoring, Geoheritage assessment and applications for the teaching of Earth Sciences. An overview of the application studies is offered here, including the use of Mobile tools for data collection, the construction of relational databases for inventory activities and the test of Web-Mapping tools and mobile apps for data dissemination. The fil rouge of connection is a standardized digital approach allowing the use of mobile devices in each step of the process, which will be analysed within different projects set up by the research group (Geonathaz, EgeoFieldwork, Progeo Piemonte, GeomediaWeb). The hardware component mainly consists of the availability of handheld mobile devices (e.g. smartphones, PDAs and Tablets). The software component corresponds to applications for spatial data visualization on mobile devices, such as composite mobile GIS or simple location-based apps. The web component allows the integration of collected data into geodatabase based on client-server architecture, where the information can be easily loaded, uploaded and shared between field staff and data management team, in order to disseminate collected information to media or to inform the decision makers. Results demonstrated the possibility to record field observations in a fast and reliable way, using standardized formats that can improve the precision of collected information and lower the possibility of errors and data omission. Dedicated forms have been set up for gathering different thematic data (geologic/geomorphologic, faunal and floristic, path system…etc.). Field data allowed to arrange maps and SDI useful for many application purposes: from country-planning to disaster risk management, from Geoheritage management to Earth Science concepts dissemination.

  19. BoreholeAR: A mobile tablet application for effective borehole database visualization using an augmented reality technology

    NASA Astrophysics Data System (ADS)

    Lee, Sangho; Suh, Jangwon; Park, Hyeong-Dong

    2015-03-01

    Boring logs are widely used in geological field studies since the data describes various attributes of underground and surface environments. However, it is difficult to manage multiple boring logs in the field as the conventional management and visualization methods are not suitable for integrating and combining large data sets. We developed an iPad application to enable its user to search the boring log rapidly and visualize them using the augmented reality (AR) technique. For the development of the application, a standard borehole database appropriate for a mobile-based borehole database management system was designed. The application consists of three modules: an AR module, a map module, and a database module. The AR module superimposes borehole data on camera imagery as viewed by the user and provides intuitive visualization of borehole locations. The map module shows the locations of corresponding borehole data on a 2D map with additional map layers. The database module provides data management functions for large borehole databases for other modules. Field survey was also carried out using more than 100,000 borehole data.

  20. The Performance Analysis of AN Indoor Mobile Mapping System with Rgb-D Sensor

    NASA Astrophysics Data System (ADS)

    Tsai, G. J.; Chiang, K. W.; Chu, C. H.; Chen, Y. L.; El-Sheimy, N.; Habib, A.

    2015-08-01

    Over the years, Mobile Mapping Systems (MMSs) have been widely applied to urban mapping, path management and monitoring and cyber city, etc. The key concept of mobile mapping is based on positioning technology and photogrammetry. In order to achieve the integration, multi-sensor integrated mapping technology has clearly established. In recent years, the robotic technology has been rapidly developed. The other mapping technology that is on the basis of low-cost sensor has generally used in robotic system, it is known as the Simultaneous Localization and Mapping (SLAM). The objective of this study is developed a prototype of indoor MMS for mobile mapping applications, especially to reduce the costs and enhance the efficiency of data collection and validation of direct georeferenced (DG) performance. The proposed indoor MMS is composed of a tactical grade Inertial Measurement Unit (IMU), the Kinect RGB-D sensor and light detection, ranging (LIDAR) and robot. In summary, this paper designs the payload for indoor MMS to generate the floor plan. In first session, it concentrates on comparing the different positioning algorithms in the indoor environment. Next, the indoor plans are generated by two sensors, Kinect RGB-D sensor LIDAR on robot. Moreover, the generated floor plan will compare with the known plan for both validation and verification.

  1. Integrated Georeferencing of Stereo Image Sequences Captured with a Stereovision Mobile Mapping System - Approaches and Practical Results

    NASA Astrophysics Data System (ADS)

    Eugster, H.; Huber, F.; Nebiker, S.; Gisi, A.

    2012-07-01

    Stereovision based mobile mapping systems enable the efficient capturing of directly georeferenced stereo pairs. With today's camera and onboard storage technologies imagery can be captured at high data rates resulting in dense stereo sequences. These georeferenced stereo sequences provide a highly detailed and accurate digital representation of the roadside environment which builds the foundation for a wide range of 3d mapping applications and image-based geo web-services. Georeferenced stereo images are ideally suited for the 3d mapping of street furniture and visible infrastructure objects, pavement inspection, asset management tasks or image based change detection. As in most mobile mapping systems, the georeferencing of the mapping sensors and observations - in our case of the imaging sensors - normally relies on direct georeferencing based on INS/GNSS navigation sensors. However, in urban canyons the achievable direct georeferencing accuracy of the dynamically captured stereo image sequences is often insufficient or at least degraded. Furthermore, many of the mentioned application scenarios require homogeneous georeferencing accuracy within a local reference frame over the entire mapping perimeter. To achieve these demands georeferencing approaches are presented and cost efficient workflows are discussed which allows validating and updating the INS/GNSS based trajectory with independently estimated positions in cases of prolonged GNSS signal outages in order to increase the georeferencing accuracy up to the project requirements.

  2. In campus location finder using mobile application services

    NASA Astrophysics Data System (ADS)

    Fai, Low Weng; Audah, Lukman

    2017-09-01

    Navigation services become very common in this era, the application include Google Map, Waze and etc. Although navigation application contains the main routing service in open area but not all of the buildings are recorded in the database. In this project, an application is made for the indoor and outdoor navigation in Universiti Tun Hussein Onn Malaysia (UTHM). It is used to help outsider and new incoming students by navigating them from their current location to destination using mobile application name "U Finder". Thunkable website has been used to build the application for outdoor and indoor navigation. Outdoor navigation is linked to the Google Map and indoor navigation is using the QR code for positioning and routing picture for navigation. The outdoor navigation can route user to the main faculties in UTHM and indoor navigation is only done for the G1 building in UTHM.

  3. Direct visualization of in vitro drug mobilization from Lescol XL tablets using two-dimensional (19)F and (1)H magnetic resonance imaging.

    PubMed

    Chen, Chen; Gladden, Lynn F; Mantle, Michael D

    2014-02-03

    This article reports the application of in vitro multinuclear ((19)F and (1)H) two-dimensional magnetic resonance imaging (MRI) to study both dissolution media ingress and drug egress from a commercial Lescol XL extended release tablet in a United States Pharmacopeia Type IV (USP-IV) dissolution cell under pharmacopoeial conditions. Noninvasive spatial maps of tablet swelling and dissolution, as well as the mobilization and distribution of the drug are quantified and visualized. Two-dimensional active pharmaceutical ingredient (API) mobilization and distribution maps were obtained via (19)F MRI. (19)F API maps were coregistered with (1)H T2-relaxation time maps enabling the simultaneous visualization of drug distribution and gel layer dynamics within the swollen tablet. The behavior of the MRI data is also discussed in terms of its relationship to the UV drug release behavior.

  4. Development of a mobile borehole investigation software using augmented reality

    NASA Astrophysics Data System (ADS)

    Son, J.; Lee, S.; Oh, M.; Yun, D. E.; Kim, S.; Park, H. D.

    2015-12-01

    Augmented reality (AR) is one of the most developing technologies in smartphone and IT areas. While various applications have been developed using the AR, there are a few geological applications which adopt its advantages. In this study, a smartphone application to manage boreholes using AR has been developed. The application is consisted of three major modules, an AR module, a map module and a data management module. The AR module calculates the orientation of the device and displays nearby boreholes distributed in three dimensions using the orientation. This module shows the boreholes in a transparent layer on a live camera screen so the user can find and understand the overall characteristics of the underground geology. The map module displays the boreholes on a 2D map to show their distribution and the location of the user. The database module uses SQLite library which has proper characteristics for mobile platforms, and Binary XML is adopted to enable containing additional customized data. The application is able to provide underground information in an intuitive and refined forms and to decrease time and general equipment required for geological field investigations.

  5. Fusion of 3D laser scanner and depth images for obstacle recognition in mobile applications

    NASA Astrophysics Data System (ADS)

    Budzan, Sebastian; Kasprzyk, Jerzy

    2016-02-01

    The problem of obstacle detection and recognition or, generally, scene mapping is one of the most investigated problems in computer vision, especially in mobile applications. In this paper a fused optical system using depth information with color images gathered from the Microsoft Kinect sensor and 3D laser range scanner data is proposed for obstacle detection and ground estimation in real-time mobile systems. The algorithm consists of feature extraction in the laser range images, processing of the depth information from the Kinect sensor, fusion of the sensor information, and classification of the data into two separate categories: road and obstacle. Exemplary results are presented and it is shown that fusion of information gathered from different sources increases the effectiveness of the obstacle detection in different scenarios, and it can be used successfully for road surface mapping.

  6. AEDs at your fingertips: automated external defibrillators on college campuses and a novel approach for increasing accessibility.

    PubMed

    Berger, Ryan J; O'Shea, Jesse G

    2014-01-01

    The use of automated external defibrillators (AEDs) increases survival in cardiac arrest events. Due to the success of previous efforts and free, readily available mobile mapping software, the discussion is to emphasize the importance of the use of AEDs to prevent sudden cardiac arrest-related deaths on college campuses and abroad, while suggesting a novel approach to aiding in access and awareness issues. A user-friendly mobile application (a low-cost iOS map) was developed at Florida State University to decrease AED retrieval distance and time. The development of mobile AED maps is feasible for a variety of universities and other entities, with the potential to save lives. Just having AEDs installed is not enough--they need to be easily locatable. Society increasingly relies on phones to provide information, and there are opportunities to use mobile technology to locate and share information about relevant emergency devices; these should be incorporated into the chain of survival.

  7. An Investigation of Traveling-Wave Electrophoresis using a Trigonometric Potential

    NASA Astrophysics Data System (ADS)

    Vopal, James

    Traveling-wave electrophoresis, a technique for microfluidic separations in lab-on-achip devices, is investigated using a trigonometric model that naturally incorporates the spatial periodicity of the device. Traveling-wave electrophoresis can be used to separate high-mobility ions from low-mobility ions in forensic and medical applications, with a separation threshold that can be tuned for specific applications by simply choosing the traveling wave frequency. Our simulations predict plateaus in the average ion velocity verses the mobility, plateaus that correspond to Farey fractions and yield Devil's staircases for non-zero discreteness values. The plateaus indicate that ions with different mobilities can travel with the same average velocity. To determine the conditions for chaos, Lyapunov exponents and contact maps are employed. Through the use of contact maps, the chaotic trajectories are determined to be either narrowband or broadband. Narrowband chaotic trajectories are exhibited in the plateaus of the average velocity, while broadband chaotic trajectories are exhibited where the average velocity varies nonmonotonically with the mobility. Narrowband chaos will be investigated in future work incorporating the role of diffusion. The results of this and future work can be used to develop new tools for electrophoretic separation.

  8. An offline-online Web-GIS Android application for fast data acquisition of landslide hazard and risk

    NASA Astrophysics Data System (ADS)

    Olyazadeh, Roya; Sudmeier-Rieux, Karen; Jaboyedoff, Michel; Derron, Marc-Henri; Devkota, Sanjaya

    2017-04-01

    Regional landslide assessments and mapping have been effectively pursued by research institutions, national and local governments, non-governmental organizations (NGOs), and different stakeholders for some time, and a wide range of methodologies and technologies have consequently been proposed. Land-use mapping and hazard event inventories are mostly created by remote-sensing data, subject to difficulties, such as accessibility and terrain, which need to be overcome. Likewise, landslide data acquisition for the field navigation can magnify the accuracy of databases and analysis. Open-source Web and mobile GIS tools can be used for improved ground-truthing of critical areas to improve the analysis of hazard patterns and triggering factors. This paper reviews the implementation and selected results of a secure mobile-map application called ROOMA (Rapid Offline-Online Mapping Application) for the rapid data collection of landslide hazard and risk. This prototype assists the quick creation of landslide inventory maps (LIMs) by collecting information on the type, feature, volume, date, and patterns of landslides using open-source Web-GIS technologies such as Leaflet maps, Cordova, GeoServer, PostgreSQL as the real DBMS (database management system), and PostGIS as its plug-in for spatial database management. This application comprises Leaflet maps coupled with satellite images as a base layer, drawing tools, geolocation (using GPS and the Internet), photo mapping, and event clustering. All the features and information are recorded into a GeoJSON text file in an offline version (Android) and subsequently uploaded to the online mode (using all browsers) with the availability of Internet. Finally, the events can be accessed and edited after approval by an administrator and then be visualized by the general public.

  9. Have I Been Here Before? A Method for Detecting Loop Closure With LiDAR

    DTIC Science & Technology

    2015-01-01

    mobile robot system, which has the unfortunate task of exploring a system of austere underground tunnels with only a laser scanner as a guide. 15...INTENTIONALLY LEFT BLANK. 1 1. Introduction Techniques for using mobile robots to generate detailed maps of different environments...durations. This is especially true for applications involving small mobile robots where sensor drift and inaccuracies can cause significant mistakes

  10. 2Loud?: Community mapping of exposure to traffic noise with mobile phones.

    PubMed

    Leao, Simone; Ong, Kok-Leong; Krezel, Adam

    2014-10-01

    Despite ample medical evidence of the adverse impacts of traffic noise on health, most policies for traffic noise management are arbitrary or incomplete, resulting in serious social and economic impacts. Surprisingly, there is limited information about citizen's exposure to traffic noise worldwide. This paper presents the 2Loud? mobile phone application, developed and tested as a methodology to monitor, assess and map the level of exposure to traffic noise of citizens with focus on the night period and indoor locations, since sleep disturbance is one of the major triggers for ill health related to traffic noise. Based on a community participation experiment using the 2Loud? mobile phone application in a region close to freeways in Australia, the results of this research indicates a good level of accuracy for the noise monitoring by mobile phones and also demonstrates significant levels of indoor night exposure to traffic noise in the study area. The proposed methodology, through the data produced and the participatory process involved, can potentially assist in planning and management towards healthier urban environments.

  11. Geo-spatial reporting for monitoring of household immunization coverage through mobile phones: Findings from a feasibility study.

    PubMed

    Kazi, A M; Ali, M; K, Ayub; Kalimuddin, H; Zubair, K; Kazi, A N; A, Artani; Ali, S A

    2017-11-01

    The addition of Global Positioning System (GPS) to a mobile phone makes it a very powerful tool for surveillance and monitoring coverage of health programs. This technology enables transfer of data directly into computer applications and cross-references to Geographic Information Systems (GIS) maps, which enhances assessment of coverage and trends. Utilization of these systems in low and middle income countries is currently limited, particularly for immunization coverage assessments and polio vaccination campaigns. We piloted the use of this system and discussed its potential to improve the efficiency of field-based health providers and health managers for monitoring of the immunization program. Using "30×7" WHO sampling technique, a survey of children less than five years of age was conducted in random clusters of Karachi, Pakistan in three high risk towns where a polio case was detected in 2011. Center point of the cluster was calculated by the application on the mobile. Data and location coordinates were collected through a mobile phone. This data was linked with an automated mHealth based monitoring system for monitoring of Supplementary Immunization Activities (SIAs) in Karachi. After each SIA, a visual report was generated according to the coordinates collected from the survey. A total of 3535 participants consented to answer to a baseline survey. We found that the mobile phones incorporated with GIS maps can improve efficiency of health providers through real-time reporting and replacing paper based questionnaire for collection of data at household level. Visual maps generated from the data and geospatial analysis can also give a better assessment of the immunization coverage and polio vaccination campaigns. The study supports a model system in resource constrained settings that allows routine capture of individual level data through GPS enabled mobile phone providing actionable information and geospatial maps to local public health managers, policy makers and study staff monitoring immunization coverage. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Migrating Department of Defense (DoD) Web Service Based Applications to Mobile Computing Platforms

    DTIC Science & Technology

    2012-03-01

    World Wide Web Consortium (W3C) Geolocation API to identify the device’s location and then center the map on the device. Finally, we modify the entry...THIS PAGE INTENTIONALLY LEFT BLANK xii List of Acronyms and Abbreviations API Application Programming Interface CSS Cascading Style Sheets CLIMO...Java API for XML Web Services Reference Implementation JS JavaScript JSNI JavaScript Native Interface METOC Meteorological and Oceanographic MAA Mobile

  13. Land-Based Mobile Laser Scanning Systems: a Review

    NASA Astrophysics Data System (ADS)

    Puente, I.; González-Jorge, H.; Arias, P.; Armesto, J.

    2011-09-01

    Mobile mapping has been using various photogrammetric techniques for many years. In recent years, there has been an increase in the number of mobile mapping systems using laser scanners available in the market, partially because of the improvement in GNSS/INS performance for direct georeferencing. In this article, some of the most important land-based mobile laser scanning (MLS) systems are reviewed. Firstly, the main characteristics of MLS systems vs. airborne (ALS) and terrestrial laser scanning (TLS) systems are compared. Secondly, a short overview of the mobile mapping technology is also provided so that the reader can fully grasp the complexity and operation of these devices. As we put forward in this paper, a comparison of different systems is briefly carried out regarding specifications provided by the manufacturers. Focuses on the current research are also addressed with emphasis on the practical applications of these systems. Most of them have been utilized for data collection on road infrastructures or building façades. This article shows that MLS technology is nowadays well established and proven, since the demand has grown to the point that there are several systems suppliers offering their products to satisfy this particular market.

  14. Research on application of GIS and GPS in inspection and management of city gas pipeline network

    NASA Astrophysics Data System (ADS)

    Zhou, Jin; Meng, Xiangyin; Tao, Tao; Zhang, Fengpei

    2018-01-01

    To solve the problems existing in the current Gas Company patrol management, such as inaccurate attendance, whether or not the patrol personnel exceed the scope of patrol inspection. This paper Proposed that we apply the SuperMap iDeskTop 8C plug-in desktop GIS application and development platform, the positioning function of GPS and the data transmission function of 3G/4G/GPRS/Ethernet to develop a gas pipeline inspection management system. We build association between real-time data, pipe network information, patrol data, map information, spatial data and so on to realize the bottom data fusion, use the mobile location system and patrol management client to achieve real-time interaction between the client and the mobile terminal. Practical application shows that the system has completed the standardized management of patrol tasks, the reasonable evaluation of patrol work and the maximum utilization of patrol resources.

  15. A Mobile GPS Application: Mosque Tracking with Prayer Time Synchronization

    NASA Astrophysics Data System (ADS)

    Hashim, Rathiah; Ikhmatiar, Mohammad Sibghotulloh; Surip, Miswan; Karmin, Masiri; Herawan, Tutut

    Global Positioning System (GPS) is a popular technology applied in many areas and embedded in many devices, facilitating end-users to navigate effectively to user's intended destination via the best calculated route. The ability of GPS to track precisely according to coordinates of specific locations can be utilized to assist a Muslim traveler visiting or passing an unfamiliar place to find the nearest mosque in order to perform his prayer. However, not many techniques have been proposed for Mosque tracking. This paper presents the development of GPS technology in tracking the nearest mosque using mobile application software embedded with the prayer time's synchronization system on a mobile application. The prototype GPS system developed has been successfully incorporated with a map and several mosque locations.

  16. Digital watermarking opportunities enabled by mobile media proliferation

    NASA Astrophysics Data System (ADS)

    Modro, Sierra; Sharma, Ravi K.

    2009-02-01

    Consumer usages of mobile devices and electronic media are changing. Mobile devices now include increased computational capabilities, mobile broadband access, better integrated sensors, and higher resolution screens. These enhanced features are driving increased consumption of media such as images, maps, e-books, audio, video, and games. As users become more accustomed to using mobile devices for media, opportunities arise for new digital watermarking usage models. For example, transient media, like images being displayed on screens, could be watermarked to provide a link between mobile devices. Applications based on these emerging usage models utilizing watermarking can provide richer user experiences and drive increased media consumption. We describe the enabling factors and highlight a few of the usage models and new opportunities. We also outline how the new opportunities are driving further innovation in watermarking technologies. We discuss challenges in market adoption of applications based on these usage models.

  17. Global Coverage Measurement Planning Strategies for Mobile Robots Equipped with a Remote Gas Sensor

    PubMed Central

    Arain, Muhammad Asif; Trincavelli, Marco; Cirillo, Marcello; Schaffernicht, Erik; Lilienthal, Achim J.

    2015-01-01

    The problem of gas detection is relevant to many real-world applications, such as leak detection in industrial settings and landfill monitoring. In this paper, we address the problem of gas detection in large areas with a mobile robotic platform equipped with a remote gas sensor. We propose an algorithm that leverages a novel method based on convex relaxation for quickly solving sensor placement problems, and for generating an efficient exploration plan for the robot. To demonstrate the applicability of our method to real-world environments, we performed a large number of experimental trials, both on randomly generated maps and on the map of a real environment. Our approach proves to be highly efficient in terms of computational requirements and to provide nearly-optimal solutions. PMID:25803707

  18. Global coverage measurement planning strategies for mobile robots equipped with a remote gas sensor.

    PubMed

    Arain, Muhammad Asif; Trincavelli, Marco; Cirillo, Marcello; Schaffernicht, Erik; Lilienthal, Achim J

    2015-03-20

    The problem of gas detection is relevant to many real-world applications, such as leak detection in industrial settings and landfill monitoring. In this paper, we address the problem of gas detection in large areas with a mobile robotic platform equipped with a remote gas sensor. We propose an algorithm that leverages a novel method based on convex relaxation for quickly solving sensor placement problems, and for generating an efficient exploration plan for the robot. To demonstrate the applicability of our method to real-world environments, we performed a large number of experimental trials, both on randomly generated maps and on the map of a real environment. Our approach proves to be highly efficient in terms of computational requirements and to provide nearly-optimal solutions.

  19. Application of OpenStreetMap (OSM) to Support the Mapping Village in Indonesia

    NASA Astrophysics Data System (ADS)

    Swasti Kanthi, Nurin; Hery Purwanto, Taufik

    2016-11-01

    Geospatial Information is a important thing in this era, because the need for location information is needed to know the condition of a region. In 2015 the Indonesian government release detailed mapping in village level and their Parent maps Indonesian state regulatory standards set forth in Rule form Norm Standards, Procedures and Criteria for Mapping Village (NSPK). Over time Web and Mobile GIS was developed with a wide range of applications. The merger between detailed mapping and Web GIS is still rarely performed and not used optimally. OpenStreetMap (OSM) is a WebGIS which can be utilized as Mobile GIS providing sufficient information to the representative levels of the building and can be used for mapping the village.Mapping Village using OSM was conducted using remote sensing approach and Geographical Information Systems (GIS), which's to interpret remote sensing imagery from OSM. The study was conducted to analyzed how far the role of OSM to support the mapping of the village, it's done by entering the house number data, administrative boundaries, public facilities and land use into OSM with reference data and data image Village Plan. The results of the mapping portion villages in OSM as a reference map-making village and analyzed in accordance with NSPK for detailed mapping Rukun Warga (RW) is part of the village mapping. The use of OSM greatly assists the process of mapping the details of the region with data sources in the form of images and can be accessed for Open Source. But still need their care and updating the data source to maintain the validity of the data.

  20. Adaptive multimodal interaction in mobile augmented reality: A conceptual framework

    NASA Astrophysics Data System (ADS)

    Abidin, Rimaniza Zainal; Arshad, Haslina; Shukri, Saidatul A'isyah Ahmad

    2017-10-01

    Recently, Augmented Reality (AR) is an emerging technology in many mobile applications. Mobile AR was defined as a medium for displaying information merged with the real world environment mapped with augmented reality surrounding in a single view. There are four main types of mobile augmented reality interfaces and one of them are multimodal interfaces. Multimodal interface processes two or more combined user input modes (such as speech, pen, touch, manual gesture, gaze, and head and body movements) in a coordinated manner with multimedia system output. In multimodal interface, many frameworks have been proposed to guide the designer to develop a multimodal applications including in augmented reality environment but there has been little work reviewing the framework of adaptive multimodal interface in mobile augmented reality. The main goal of this study is to propose a conceptual framework to illustrate the adaptive multimodal interface in mobile augmented reality. We reviewed several frameworks that have been proposed in the field of multimodal interfaces, adaptive interface and augmented reality. We analyzed the components in the previous frameworks and measure which can be applied in mobile devices. Our framework can be used as a guide for designers and developer to develop a mobile AR application with an adaptive multimodal interfaces.

  1. An Offline-Online Android Application for Hazard Event Mapping Using WebGIS Open Source Technologies

    NASA Astrophysics Data System (ADS)

    Olyazadeh, Roya; Jaboyedoff, Michel; Sudmeier-Rieux, Karen; Derron, Marc-Henri; Devkota, Sanjaya

    2016-04-01

    Nowadays, Free and Open Source Software (FOSS) plays an important role in better understanding and managing disaster risk reduction around the world. National and local government, NGOs and other stakeholders are increasingly seeking and producing data on hazards. Most of the hazard event inventories and land use mapping are based on remote sensing data, with little ground truthing, creating difficulties depending on the terrain and accessibility. Open Source WebGIS tools offer an opportunity for quicker and easier ground truthing of critical areas in order to analyse hazard patterns and triggering factors. This study presents a secure mobile-map application for hazard event mapping using Open Source WebGIS technologies such as Postgres database, Postgis, Leaflet, Cordova and Phonegap. The objectives of this prototype are: 1. An Offline-Online android mobile application with advanced Geospatial visualisation; 2. Easy Collection and storage of events information applied services; 3. Centralized data storage with accessibility by all the service (smartphone, standard web browser); 4. Improving data management by using active participation in hazard event mapping and storage. This application has been implemented as a low-cost, rapid and participatory method for recording impacts from hazard events and includes geolocation (GPS data and Internet), visualizing maps with overlay of satellite images, viewing uploaded images and events as cluster points, drawing and adding event information. The data can be recorded in offline (Android device) or online version (all browsers) and consequently uploaded through the server whenever internet is available. All the events and records can be visualized by an administrator and made public after approval. Different user levels can be defined to access the data for communicating the information. This application was tested for landslides in post-earthquake Nepal but can be used for any other type of hazards such as flood, avalanche, etc. Keywords: Offline, Online, WebGIS Open source, Android, Hazard Event Mapping

  2. Design and implementation of a cartographic client application for mobile devices using SVG Tiny and J2ME

    NASA Astrophysics Data System (ADS)

    Hui, L.; Behr, F.-J.; Schröder, D.

    2006-10-01

    The dissemination of digital geospatial data is available now on mobile devices such as PDAs (personal digital assistants) and smart-phones etc. The mobile devices which support J2ME (Java 2 Micro Edition) offer users and developers one open interface, which they can use to develop or download the software according their own demands. Currently WMS (Web Map Service) can afford not only traditional raster image, but also the vector image. SVGT (Scalable Vector Graphics Tiny) is one subset of SVG (Scalable Vector Graphics) and because of its precise vector information, original styling and small file size, SVGT format is fitting well for the geographic mapping purpose, especially for the mobile devices which has bandwidth net connection limitation. This paper describes the development of a cartographic client for the mobile devices, using SVGT and J2ME technology. Mobile device will be simulated on the desktop computer for a series of testing with WMS, for example, send request and get the responding data from WMS and then display both vector and raster format image. Analyzing and designing of System structure such as user interface and code structure are discussed, the limitation of mobile device should be taken into consideration for this applications. The parsing of XML document which is received from WMS after the GetCapabilities request and the visual realization of SVGT and PNG (Portable Network Graphics) image are important issues in codes' writing. At last the client was tested on Nokia S40/60 mobile phone successfully.

  3. Automatic and robust extrinsic camera calibration for high-accuracy mobile mapping

    NASA Astrophysics Data System (ADS)

    Goeman, Werner; Douterloigne, Koen; Bogaert, Peter; Pires, Rui; Gautama, Sidharta

    2012-10-01

    A mobile mapping system (MMS) is the answer of the geoinformation community to the exponentially growing demand for various geospatial data with increasingly higher accuracies and captured by multiple sensors. As the mobile mapping technology is pushed to explore its use for various applications on water, rail, or road, the need emerges to have an external sensor calibration procedure which is portable, fast and easy to perform. This way, sensors can be mounted and demounted depending on the application requirements without the need for time consuming calibration procedures. A new methodology is presented to provide a high quality external calibration of cameras which is automatic, robust and fool proof.The MMS uses an Applanix POSLV420, which is a tightly coupled GPS/INS positioning system. The cameras used are Point Grey color video cameras synchronized with the GPS/INS system. The method uses a portable, standard ranging pole which needs to be positioned on a known ground control point. For calibration a well studied absolute orientation problem needs to be solved. Here, a mutual information based image registration technique is studied for automatic alignment of the ranging pole. Finally, a few benchmarking tests are done under various lighting conditions which proves the methodology's robustness, by showing high absolute stereo measurement accuracies of a few centimeters.

  4. GIS Data Collection for Oil Palm (DaCOP) Mobile Application for Smart Phone

    NASA Astrophysics Data System (ADS)

    Abdullah, A. F.; Muhadi, N. A.

    2015-10-01

    Nowadays, smart phone has become a necessity as it offers more than just making a phone call. Smart phone combines the features of cell phone with other mobile devices such as personal digital assistant (PDA) and GPS navigation unit that propel the popularity of smart phones. In recent years, the interest in mobile communication has been increased. Previous research using mobile application has been successfully done in varies areas of study. Areas of study that have been done are health care, education, and traffic monitoring. Besides, mobile application has also been applied in agricultural sector for various purposes such as plant pest risk management. In this study, mobile application for data collection on Ganoderma disease of oil palm has been successfully developed. The application uses several devices in a smart phone such as GPS, Wifi/ GPRS connection and accelerometer devices. The application can be installed in the smart phone and users can use the application while working on-site. The data can be updated immediately through their smart phones to the service. Besides, the application provides offline map so the user can be productive even though their network connectivity is poor or nonexistent. The data can be synced when the users online again. This paper presents an application that allows users to download features from a sync-enabled ArcGIS Feature Service, view and edit the features even when the devices fail to connect with any network connectivity while collecting data on-site.

  5. Guide to Canadian Aerospace Related Industries,

    DTIC Science & Technology

    1983-01-01

    Research and Development (US). Digital Radar - Contract with Fundacao Educacional Data Processing de Bauru, Brazil. Satellite/Radar - Contract with Canadian... especially suitable for cartography and thematic mapping. The principal applications to date have been to Vehicle Mobility mapping for the Canadian Forces...This latter capability is especially applied to the repair and rebuilding of sawmill and pulpmill machinery, and mining equipment. Ebco is

  6. Energy-Efficient Crowdsensing of Human Mobility and Signal Levels in Cellular Networks

    PubMed Central

    Foremski, Paweł; Gorawski, Michał; Grochla, Krzysztof; Polys, Konrad

    2015-01-01

    The paper presents a practical application of the crowdsensing idea to measure human mobility and signal coverage in cellular networks. Currently, virtually everyone is carrying a mobile phone, which may be used as a sensor to gather research data by measuring, e.g., human mobility and radio signal levels. However, many users are unwilling to participate in crowdsensing experiments. This work begins with the analysis of the barriers for engaging people in crowdsensing. A survey showed that people who agree to participate in crowdsensing expect a minimum impact on their battery lifetime and phone usage habits. To address these requirements, this paper proposes an application for measuring the location and signal strength data based on energy-efficient GPS tracking, which allows one to perform the measurements of human mobility and radio signal levels with minimum energy utilization and without any engagement of the user. The method described combines measurements from the accelerometer with effective management of the GPS to monitor the user mobility with the decrease in battery lifetime by approximately 20%. To show the applicability of the proposed platform, the sample results of signal level distribution and coverage maps gathered for an LTE network and representing human mobility are shown. PMID:26340633

  7. Android Based Binus Profile Applications as the Marketing Tools of Bina Nusantara University

    NASA Astrophysics Data System (ADS)

    Iskandar, Karto

    2014-03-01

    Smart phones with apps in it is not a new phenomenon. Both of technologies have been fused with the lifestyle today. The ease and speed of access to information makes a lot of companies use it in the process of marketing a product to the public. Objective of this action is to win the competition that more competitive. The purpose of this research is to create mobile application android based to assist in the marketing and introduction Bina Nusantara University profile to prospective students. This research method using software engineering waterfall model to produce Android-based mobile applications. The results in the form of Android-based mobile application that can be used as a viral marketing tool for Bina Nusantara University. At the end of this study can be generated that mobile technology can be used as a media for effective marketing and branding, especially for Bina Nusantara University. Android technology based for marketing applications suited to the Bina Nusantara University applicant segment which are generally young people. The future along with the improvement of network quality and affordable cost, then the application can be made online, so features such as chat, maps, and other can be used optimally.

  8. Magrit: a new thematic cartography tool

    NASA Astrophysics Data System (ADS)

    Viry, Matthieu; Giraud, Timothée; Lambert, Nicolas

    2018-05-01

    The article provides an overview of the features of the Magrit web application: a free online thematic mapping tool, presenting a strong pedagogical dimension and making possible to mobilize all the elements necessary for the realization of a thematic map. In this tool, several simple modes of representation are proposed such as proportional maps or choropleth maps. Other, more complex modes are also available such as smoothed maps and cartograms. Each map can be finalized thanks to layout and customization features (projection, scale, orientation, toponyms, etc.) and exported in vector format. Magrit is therefore a complete, light and versatile tool particularly adapted to cartography teaching at the university.

  9. Rapid Offline-Online Post-Disaster Landslide Mapping Tool: A case study from Nepal

    NASA Astrophysics Data System (ADS)

    Olyazadeh, Roya; Jaboyedoff, Michel; Sudmeier-Rieux, Karen; Derron, Marc-Henri; Devkota, Sanjaya

    2016-04-01

    One of the crucial components of post disaster management is the efficient mapping of impacted areas. Here we present a tool designed to map landslides and affected objects after the earthquakes of 2015 in Nepal as well as for intense rainfall impact. Because internet is not available in many rural areas of Nepal, we developed an offline-online prototype based on Open-Source WebGIS technologies to make data on hazard impacts, including damaged infrastructure, landslides or flooding events available to authorities and the general public. This mobile application was designed as a low-cost, rapid and participatory method for recording impacts from hazard events. It is possible to record such events offline and upload them through a server, where internet connection is available. This application allows user authentication, image capturing, and information collation such as geolocation, event description, interactive mapping and finally storing all the data in the server for further analysis and visualisation. This application can be accessed by a mobile phone (Android) or a tablet as a hybrid version for both offline and online versions. The offline version has an interactive-offline map function which allows users to upload satellites image in order to improve ground truthing interpretation. After geolocation, the user can start mapping and then save recorded data into Geojson-TXT files that can be easily uploaded to the server whenever internet is available. This prototype was tested specifically for a rapid assessment of landslides and relevant land use characteristics such as roads, forest area, rivers in the Phewa Lake watershed near Pokhara, Nepal where a large number landslides were activated or reactivated after the 2015 monsoon season. More than 60 landslides were recorded during two days of field trip. Besides, it is possible to use this application for any other kind of hazard event like flood, avalanche, etc. Keywords: Offline, Online, Open source, WebGIS, Android, Post-Disaster, Landslide mapping

  10. Sparse Measurement Systems: Applications, Analysis, Algorithms and Design

    ERIC Educational Resources Information Center

    Narayanaswamy, Balakrishnan

    2011-01-01

    This thesis deals with "large-scale" detection problems that arise in many real world applications such as sensor networks, mapping with mobile robots and group testing for biological screening and drug discovery. These are problems where the values of a large number of inputs need to be inferred from noisy observations and where the…

  11. Translating statistical images to text summaries for partially sighted persons on mobile devices: iconic image maps approach

    NASA Astrophysics Data System (ADS)

    Williams, Godfried B.

    2005-03-01

    This paper attempts to demonstrate a novel based idea for transforming statistical image data to text using autoassociative and unsupervised artificial neural network and iconic image maps using the shape and texture genetic algorithm, underlying concepts translating the image data to text. Full details of experiments could be assessed at http://www.uel.ac.uk/seis/applications/.

  12. The Use of Behavior Modeling Training in a Mobile App Parent Training Program to Improve Functional Communication of Young Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Law, Gloria C.; Neihart, Maureen; Dutt, Anuradha

    2018-01-01

    Communication intervention in early life can significantly impact long-term outcomes for young children with autism. Parents can be vital resources in the midst of the current manpower shortage. "Map4speech" is a new mobile application developed for parents of children with autism spectrum disorder. It is specially designed to provide…

  13. Intervention Mapping Approach in the Design of an Interactive Mobile Health Application to Improve Self-care in Heart Failure.

    PubMed

    Athilingam, Ponrathi; Clochesy, John M; Labrador, Miguel A

    2018-02-01

    Heart failure is a complex syndrome among older adults who may experience and interpret symptoms differently. These differences in symptom interpretation may influence decision-making in symptom management. A well-informed and motivated person may develop the knowledge and skills needed to successfully manage symptoms. Therefore, the patient-centered mobile health application HeartMapp was designed to engage patients with heart failure in self-care management by offering tailored alerts and feedback using mobile phones. The main objective of this article is to describe the six-step intervention mapping approach including (1) the initial needs assessment, (2) proximal program objective, (3) selection of theory-based methods, (4) the translation of objectives into an actual program plan for mobile health intervention, (5) adaptation and implementation plan, and (6) evaluation plan that assisted the team in the development of a conceptual framework and intervention program matrix during the development of HeartMapp. The HeartMapp intervention takes the information, motivation, and behavioral skills model as the theoretical underpinning, with "patient engagement" as the key mediator in achieving targeted and persistent self-care behavioral changes in patients with heart failure. The HeartMapp intervention is proposed to improve self-care management and long-term outcomes.

  14. Precise Positioning of Uavs - Dealing with Challenging Rtk-Gps Measurement Conditions during Automated Uav Flights

    NASA Astrophysics Data System (ADS)

    Zimmermann, F.; Eling, C.; Klingbeil, L.; Kuhlmann, H.

    2017-08-01

    For some years now, UAVs (unmanned aerial vehicles) are commonly used for different mobile mapping applications, such as in the fields of surveying, mining or archeology. To improve the efficiency of these applications an automation of the flight as well as the processing of the collected data is currently aimed at. One precondition for an automated mapping with UAVs is that the georeferencing is performed directly with cm-accuracies or better. Usually, a cm-accurate direct positioning of UAVs is based on an onboard multi-sensor system, which consists of an RTK-capable (real-time kinematic) GPS (global positioning system) receiver and additional sensors (e.g. inertial sensors). In this case, the absolute positioning accuracy essentially depends on the local GPS measurement conditions. Especially during mobile mapping applications in urban areas, these conditions can be very challenging, due to a satellite shadowing, non-line-of sight receptions, signal diffraction or multipath effects. In this paper, two straightforward and easy to implement strategies will be described and analyzed, which improve the direct positioning accuracies for UAV-based mapping and surveying applications under challenging GPS measurement conditions. Based on a 3D model of the surrounding buildings and vegetation in the area of interest, a GPS geometry map is determined, which can be integrated in the flight planning process, to avoid GPS challenging environments as far as possible. If these challenging environments cannot be avoided, the GPS positioning solution is improved by using obstruction adaptive elevation masks, to mitigate systematic GPS errors in the RTK-GPS positioning. Simulations and results of field tests demonstrate the profit of both strategies.

  15. Teaching Young Adults with Intellectual and Developmental Disabilities Community-Based Navigation Skills to Take Public Transportation.

    PubMed

    Price, Richard; Marsh, Abbie J; Fisher, Marisa H

    2018-03-01

    Facilitating the use of public transportation enhances opportunities for independent living and competitive, community-based employment for individuals with intellectual and developmental disabilities (IDD). Four young adults with IDD were taught through total-task chaining to use the Google Maps application, a self-prompting, visual navigation system, to take the bus to locations around a college campus and the community. Three of four participants learned to use Google Maps to independently navigate public transportation. Google Maps may be helpful in supporting independent travel, highlighting the importance of future research in teaching navigation skills. Learning to independently use public transportation increases access to autonomous activities, such as opportunities to work and to attend postsecondary education programs on large college campuses.Individuals with IDD can be taught through chaining procedures to use the Google Maps application to navigate public transportation.Mobile map applications are an effective and functional modern tool that can be used to teach community navigation.

  16. Study on application of dynamic monitoring of land use based on mobile GIS technology

    NASA Astrophysics Data System (ADS)

    Tian, Jingyi; Chu, Jian; Guo, Jianxing; Wang, Lixin

    2006-10-01

    The land use dynamic monitoring is an important mean to maintain the real-time update of the land use data. Mobile GIS technology integrates GIS, GPS and Internet. It can update the historic al data in real time with site-collected data and realize the data update in large scale with high precision. The Monitoring methods on the land use change data with the mobile GIS technology were discussed. Mobile terminal of mobile GIS has self-developed for this study with GPS-25 OEM and notebook computer. The RTD (real-time difference) operation mode is selected. Mobile GIS system of dynamic monitoring of land use have developed with Visual C++ as operation platform, MapObjects control as graphic platform and MSCmm control as communication platform, which realizes organic integration of GPS, GPRS and GIS. This system has such following basic functions as data processing, graphic display, graphic editing, attribute query and navigation. Qinhuangdao city was selected as the experiential area. Shown by the study result, the mobile GIS integration system of dynamic monitoring of land use developed by this study has practical application value.

  17. FIRE-CAT - An application for mobile devices for first response after natural disasters

    NASA Astrophysics Data System (ADS)

    Eggert, S.; Schmid, S.

    2011-12-01

    The FIRE-CAT application uses the technology of an easy to use mobile application that works independently from any phone system and applies it to the field of near real-time disaster management. The application allows the user to report about structural or human damages to the operation's head quarter. Requirements are a mobile phone or tablet based on the WebOS system and equipped with a GPS receiver. Starting the application, the user can tag a damage to the actual position he is. He can distinguish between different classes of damage, from "visually intact building" to "completely collapsed building" and add any further information concerning human losses or comments. This information will then be sent to a geographical information system in the head quarter. Information can also be updated, corrected or completed with comments. The damage map created by these reports from victims directly in the affected areas can then be a base for the disaster management to decide where to send rescue teams first.

  18. FASTMap v. 2010.01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bynum, Leo

    FASTMap is mapping application available for the web or on mobile devices (IOS and Android) that browses geospatial data and produces detailed reports of objects within any area of analysis. FASTMap can access any geospatial dataset. The software can provide immediate access to the selected data through a fully symbolized interactive mapping interface. FASTMap can load arbitrary contours that represent a region of interest and can dynamically identify and geospatially select objects that reside within the region. The software can produce a report listing the objects and aggregations for the region, as well as producing publication quality maps. FASTMap alsomore » has the ability to post and maintain authored maps, any GIS data included in the map, areas of interest, as well as any titles, and labels. These defining ingredients of a map are called map contexts. These mao contexts can be instantly broadcast via the internet through any of an infinite number of named channels to small or large numbers of users monitouring any of the channels being posted to, so a user can author a map and immediately share that map with others instantly, whether they are on traditional desktop computer, laptop, mobile tablet or smartphone. Further, users receiving broadcast maps can also alter the maps can also alter the maps, or create new ones and publish back to the channel in a collaborative manner. FASTMap can be configured to access virtually any geospatial data.« less

  19. Obstacle Characterization in a Geocrowdsourced Accessibility System

    NASA Astrophysics Data System (ADS)

    Qin, H.; Aburizaiza, A. O.; Rice, R. M.; Paez, F.; Rice, M. T.

    2015-08-01

    Transitory obstacles - random, short-lived and unpredictable objects - are difficult to capture in any traditional mapping system, yet they have significant negative impacts on the accessibility of mobility- and visually-impaired individuals. These transitory obstacles include sidewalk obstructions, construction detours, and poor surface conditions. To identify these obstacles and assist the navigation of mobility- and visually- impaired individuals, crowdsourced mapping applications have been developed to harvest and analyze the volunteered obstacles reports from local students, faculty, staff, and residents. In this paper, we introduce a training program designed and implemented for recruiting and motivating contributors to participate in our geocrowdsourced accessibility system, and explore the quality of geocrowdsourced data with a comparative analysis methodology.

  20. Dynamic population mapping using mobile phone data.

    PubMed

    Deville, Pierre; Linard, Catherine; Martin, Samuel; Gilbert, Marius; Stevens, Forrest R; Gaughan, Andrea E; Blondel, Vincent D; Tatem, Andrew J

    2014-11-11

    During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography.

  1. Dynamic population mapping using mobile phone data

    PubMed Central

    Deville, Pierre; Martin, Samuel; Gilbert, Marius; Stevens, Forrest R.; Gaughan, Andrea E.; Blondel, Vincent D.; Tatem, Andrew J.

    2014-01-01

    During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography. PMID:25349388

  2. Beebook: light field mapping app

    NASA Astrophysics Data System (ADS)

    De Donatis, Mauro; Di Pietro, Gianfranco; Rinnone, Fabio

    2014-05-01

    In the last decade the mobile systems for field digital mapping were developed (see Wikipedia for "Digital geologic mapping"), also against many skeptic traditional geologists. Until now, hardware was often heavy (tablet PC) and software sometime difficult also for expert GIS users. At present, the advent of light tablet and applications makes things easier, but we are far to find a whole solution for a complex survey like the geological one where you have to manage complexities such information, hypothesis, data, interpretation. Beebook is a new app for Android devices, has been developed for fast ad easy mapping work in the field trying to try to solve this problem. The main features are: • off-line raster management, GeoTIFF ed other raster format using; • on-line map visualisation (Google Maps, OSM, WMS, WFS); • SR management and conversion using PROJ.4; • vector file mash-up (KML and SQLite format); • editing of vector data on the map (lines, points, polygons); • augmented reality using "Mixare" platform; • export of vector data in KML, CSV, SQLite (Spatialite) format; • note: GPS or manual point inserting linked to other application files (pictures, spreadsheet, etc.); • form: creation, edition and filling of customized form; • GPS: status control, tracker and positioning on map; • sharing: synchronization and sharing of data, forms, positioning and other information can be done among users. The input methods are different from digital keyboard to fingers touch, from voice recording to stylus. In particular the most efficient way of inserting information is the stylus (or pen): field geologists are familiar with annotation and sketches. Therefore we suggest the use of devices with stylus. The main point is that Beebook is the first "transparent" mobile GIS for tablet and smartphone deriving from previous experience as traditional mapping and different previous digital mapping software ideation and development (MapIT, BeeGIS, Geopaparazzi). Deriving from those experiences, we developed a tool which is easy to use and applicable not only for geology but also to every field survey.

  3. A mobile tool about causes and distribution of dramatic natural phenomena

    NASA Astrophysics Data System (ADS)

    Boppidi, Ravikanth Reddy

    Most Research suggests that tablet computers could aid the study of many scientific concepts that are difficult to grasp, such as places, time and statistics. These occur especially in the study of geology, chemistry, biology and so on. Tapping the technology will soon become critical career training for future generations. Teaching through mobile is more interactive and helps students to grasp quickly. In this thesis an interactive mobile tool is developed which explains about the causes and distribution of natural disasters like Earthquakes, Tsunami, Tropical Cyclones, Volcanic Eruptions and Tornadoes. The application shows the places of disasters on an interactive map and it also contains YouTube embedded videos, which explain the disasters visually. The advantage of this tool is, it can be deployed onto major mobile operating systems like Android and IOS. The application's user interface (UI) is made very responsive using D3 JavaScript, JQuery, Java Script, HTML, CSS so that it can adapt to mobiles, tablets, and desktop screens.

  4. Towards Scalable Graph Computation on Mobile Devices.

    PubMed

    Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng

    2014-10-01

    Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach.

  5. Towards Scalable Graph Computation on Mobile Devices

    PubMed Central

    Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng

    2015-01-01

    Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach. PMID:25859564

  6. An Integrated Mobile Application to Improve the Watershed Management in Taiwan

    NASA Astrophysics Data System (ADS)

    Chou, T. Y.; Chen, M. H.; Lee, C. Y.

    2015-12-01

    This study aims to focus on the application of information technology on the reservoir watershed management. For the civil and commercial water usage, reservoirs and its upstream plays a significant role due to water scarcity and inequality, especially in Taiwan. Due to the progress of information technology, apply it can improve the efficiency and accuracy of daily affairs significantly which already proved by previous researches. Taipei Water Resource District (TWRD) is selected as study area for this study, it is the first reservoir watershed which authorized as special protection district by urban planning act. This study has designed a framework of mobile application, which addressed three types of public affairs relate to watershed management, includes building management, illegal land-use investigation, and a dashboard of real time stream information. This mobile application integrated a dis-connected map and interactive interface to collect, record and calculate field information which helps the authority manage the public affairs more efficiency.

  7. Study of Mobile GIS Application on the Field of GPR in the Road Disease Detection

    NASA Astrophysics Data System (ADS)

    Liao, Q.; Yang, F.

    2013-12-01

    With the reflection principle of pulsed electromagnetic waves, ground penetrating radar (GPR) is available to measure depth of the pavement layer, reflecting different hidden danger underground. Currently, GPR has been widely used in road engineering with the constantly improved ability of detection and diagnosis to road diseases. The sum of road disease data of a region, a city, and even a wider range will be a very informative database, so we need a more convenient way to achieve data query intuitively. As mobile internet develops continuously, application of mobile terminal device plays a more important role in information platform. Mobile GIS, with smartphone as its terminal, is supported by the mobile Internet, GPS or base station as its positioning method. In this article, based on Android Platform and using C/S pattern, the LBS application of road diseases information which integrates Baidu Map API and database technology was discussed. After testing, it can display and query the real-time and historical road diseases data, the classification of data on a phone intuitively and easily. Because of the location technique and high portability of smart phone, the spot investigations of road diseases become easier. Though, the system needs further improvement, especially with the improving of the mobile phone performance, the system can also add the function of analysis to the disease data, thus forming a set of service system with more applicable.

  8. Web GIS in practice VIII: HTML5 and the canvas element for interactive online mapping.

    PubMed

    Boulos, Maged N Kamel; Warren, Jeffrey; Gong, Jianya; Yue, Peng

    2010-03-03

    HTML5 is being developed as the next major revision of HTML (Hypertext Markup Language), the core markup language of the World Wide Web. It aims at reducing the need for proprietary, plug-in-based rich Internet application (RIA) technologies such as Adobe Flash. The canvas element is part of HTML5 and is used to draw graphics using scripting (e.g., JavaScript). This paper introduces Cartagen, an open-source, vector-based, client-side framework for rendering plug-in-free, offline-capable, interactive maps in native HTML5 on a wide range of Web browsers and mobile phones. Cartagen was developed at MIT Media Lab's Design Ecology group. Potential applications of the technology as an enabler for participatory online mapping include mapping real-time air pollution, citizen reporting, and disaster response, among many other possibilities.

  9. Impact of human mobility on the emergence of dengue epidemics in Pakistan

    PubMed Central

    Wesolowski, Amy; Qureshi, Taimur; Boni, Maciej F.; Sundsøy, Pål Roe; Johansson, Michael A.; Rasheed, Syed Basit; Engø-Monsen, Kenth; Buckee, Caroline O.

    2015-01-01

    The recent emergence of dengue viruses into new susceptible human populations throughout Asia and the Middle East, driven in part by human travel on both local and global scales, represents a significant global health risk, particularly in areas with changing climatic suitability for the mosquito vector. In Pakistan, dengue has been endemic for decades in the southern port city of Karachi, but large epidemics in the northeast have emerged only since 2011. Pakistan is therefore representative of many countries on the verge of countrywide endemic dengue transmission, where prevention, surveillance, and preparedness are key priorities in previously dengue-free regions. We analyze spatially explicit dengue case data from a large outbreak in Pakistan in 2013 and compare the dynamics of the epidemic to an epidemiological model of dengue virus transmission based on climate and mobility data from ∼40 million mobile phone subscribers. We find that mobile phone-based mobility estimates predict the geographic spread and timing of epidemics in both recently epidemic and emerging locations. We combine transmission suitability maps with estimates of seasonal dengue virus importation to generate fine-scale dynamic risk maps with direct application to dengue containment and epidemic preparedness. PMID:26351662

  10. An ISVD-based Euclidian structure from motion for smartphones

    NASA Astrophysics Data System (ADS)

    Masiero, A.; Guarnieri, A.; Vettore, A.; Pirotti, F.

    2014-06-01

    The development of Mobile Mapping systems over the last decades allowed to quickly collect georeferenced spatial measurements by means of sensors mounted on mobile vehicles. Despite the large number of applications that can potentially take advantage of such systems, because of their cost their use is currently typically limited to certain specialized organizations, companies, and Universities. However, the recent worldwide diffusion of powerful mobile devices typically embedded with GPS, Inertial Navigation System (INS), and imaging sensors is enabling the development of small and compact mobile mapping systems. More specifically, this paper considers the development of a 3D reconstruction system based on photogrammetry methods for smartphones (or other similar mobile devices). The limited computational resources available in such systems and the users' request for real time reconstructions impose very stringent requirements on the computational burden of the 3D reconstruction procedure. This work takes advantage of certain recently developed mathematical tools (incremental singular value decomposition) and of photogrammetry techniques (structure from motion, Tomasi-Kanade factorization) to access very computationally efficient Euclidian 3D reconstruction of the scene. Furthermore, thanks to the presence of instrumentation for localization embedded in the device, the obtained 3D reconstruction can be properly georeferenced.

  11. Design and Development of a Low-Cost Aerial Mobile Mapping System for Multi-Purpose Applications

    NASA Astrophysics Data System (ADS)

    Acevedo Pardo, C.; Farjas Abadía, M.; Sternberg, H.

    2015-08-01

    The research project with the working title "Design and development of a low-cost modular Aerial Mobile Mapping System" was formed during the last year as the result from numerous discussions and considerations with colleagues from the HafenCity University Hamburg, Department Geomatics. The aim of the project is to design a sensor platform which can be embedded preferentially on an UAV, but also can be integrated on any adaptable vehicle. The system should perform a direct scanning of surfaces with a laser scanner and supported through sensors for determining the position and attitude of the platform. The modular design allows his extension with other sensors such as multispectral cameras, digital cameras or multiple cameras systems.

  12. Perceived usefulness, perceived ease of use, and perceived enjoyment as drivers for the user acceptance of interactive mobile maps

    NASA Astrophysics Data System (ADS)

    Hussain, Azham; Mkpojiogu, Emmanuel O. C.; Yusof, Muhammad Mat

    2016-08-01

    This study examines the user perception of usefulness, ease of use and enjoyment as drivers for the users' complex interaction with map on mobile devices. TAM model was used to evaluate users' intention to use and their acceptance of interactive mobile map using the above three beliefs as antecedents. Quantitative research (survey) methodology was employed and the analysis and findings showed that all the three explanatory variables used in this study, explain the variability in the user acceptance of interactive mobile map technology. Perceived usefulness, perceived ease of use, and perceived enjoyment each have significant positive influence on user acceptance of interactive mobile maps. This study further validates the TAM model.

  13. NAVIS-An UGV Indoor Positioning System Using Laser Scan Matching for Large-Area Real-Time Applications

    PubMed Central

    Tang, Jian.; Chen, Yuwei.; Jaakkola, Anttoni.; Liu, Jinbing.; Hyyppä, Juha.; Hyyppä, Hannu.

    2014-01-01

    Laser scan matching with grid-based maps is a promising tool for real-time indoor positioning of mobile Unmanned Ground Vehicles (UGVs). While there are critical implementation problems, such as the ability to estimate the position by sensing the unknown indoor environment with sufficient accuracy and low enough latency for stable vehicle control, further development work is necessary. Unfortunately, most of the existing methods employ heuristics for quick positioning in which numerous accumulated errors easily lead to loss of positioning accuracy. This severely restricts its applications in large areas and over lengthy periods of time. This paper introduces an efficient real-time mobile UGV indoor positioning system for large-area applications using laser scan matching with an improved probabilistically-motivated Maximum Likelihood Estimation (IMLE) algorithm, which is based on a multi-resolution patch-divided grid likelihood map. Compared with traditional methods, the improvements embodied in IMLE include: (a) Iterative Closed Point (ICP) preprocessing, which adaptively decreases the search scope; (b) a totally brute search matching method on multi-resolution map layers, based on the likelihood value between current laser scan and the grid map within refined search scope, adopted to obtain the global optimum position at each scan matching; and (c) a patch-divided likelihood map supporting a large indoor area. A UGV platform called NAVIS was designed, manufactured, and tested based on a low-cost robot integrating a LiDAR and an odometer sensor to verify the IMLE algorithm. A series of experiments based on simulated data and field tests with NAVIS proved that the proposed IMEL algorithm is a better way to perform local scan matching that can offer a quick and stable positioning solution with high accuracy so it can be part of a large area localization/mapping, application. The NAVIS platform can reach an updating rate of 12 Hz in a feature-rich environment and 2 Hz even in a feature-poor environment, respectively. Therefore, it can be utilized in a real-time application. PMID:24999715

  14. NAVIS-An UGV indoor positioning system using laser scan matching for large-area real-time applications.

    PubMed

    Tang, Jian; Chen, Yuwei; Jaakkola, Anttoni; Liu, Jinbing; Hyyppä, Juha; Hyyppä, Hannu

    2014-07-04

    Laser scan matching with grid-based maps is a promising tool for real-time indoor positioning of mobile Unmanned Ground Vehicles (UGVs). While there are critical implementation problems, such as the ability to estimate the position by sensing the unknown indoor environment with sufficient accuracy and low enough latency for stable vehicle control, further development work is necessary. Unfortunately, most of the existing methods employ heuristics for quick positioning in which numerous accumulated errors easily lead to loss of positioning accuracy. This severely restricts its applications in large areas and over lengthy periods of time. This paper introduces an efficient real-time mobile UGV indoor positioning system for large-area applications using laser scan matching with an improved probabilistically-motivated Maximum Likelihood Estimation (IMLE) algorithm, which is based on a multi-resolution patch-divided grid likelihood map. Compared with traditional methods, the improvements embodied in IMLE include: (a) Iterative Closed Point (ICP) preprocessing, which adaptively decreases the search scope; (b) a totally brute search matching method on multi-resolution map layers, based on the likelihood value between current laser scan and the grid map within refined search scope, adopted to obtain the global optimum position at each scan matching; and (c) a patch-divided likelihood map supporting a large indoor area. A UGV platform called NAVIS was designed, manufactured, and tested based on a low-cost robot integrating a LiDAR and an odometer sensor to verify the IMLE algorithm. A series of experiments based on simulated data and field tests with NAVIS proved that the proposed IMEL algorithm is a better way to perform local scan matching that can offer a quick and stable positioning solution with high accuracy so it can be part of a large area localization/mapping, application. The NAVIS platform can reach an updating rate of 12 Hz in a feature-rich environment and 2 Hz even in a feature-poor environment, respectively. Therefore, it can be utilized in a real-time application.

  15. Mobile 3D laser scanning technology application in the surveying of urban underground rail transit

    NASA Astrophysics Data System (ADS)

    Han, Youmei; Yang, Bogang; Zhen, Yinan

    2016-11-01

    Mobile 3D laser scanning technology is one hot kind of digital earth technology. 3D completion surveying is relative new concept in surveying and mapping. A kind of mobile 3D laser scanning system was developed for the urban underground rail 3D completion surveying. According to the characteristics of underground rail environment and the characters of the mobile laser scanning system, it designed a suitable test scheme to improving the accuracy of this kind of mobile laser scanning system when it worked under no GPS signal environment. Then it completed the application of this technology in the No.15 rail 3D completion surveying. Meanwhile a set of production process was made for the 3D completion surveying based on this kind of mobile 3D laser scanning technology. These products were also proved the efficiency of the new technology in the rail 3D completion surveying. Using mobile 3D laser scanning technology to complete underground rail completion surveying has been the first time in China until now. It can provide a reference for 3D measurement of rail completion surveying or the 3D completion surveying of other areas.

  16. Healthcare in the Pocket: Mapping the Space of Mobile-Phone Health Interventions

    PubMed Central

    Klasnja, Predrag; Pratt, Wanda

    2011-01-01

    Mobile phones are becoming an increasingly important platform for the delivery of health interventions. In recent years, researchers have used mobile phones as tools for encouraging physical activity and healthy diets, for symptom monitoring in asthma and heart disease, for sending patients reminders about upcoming appointments, for supporting smoking cessation, and for a range of other health problems. This paper provides an overview of this rapidly growing body of work. We describe the features of mobile phones that make them a particularly promising platform for health interventions, and we identify five basic intervention strategies that have been used in mobile-phone health applications across different health conditions. Finally, we outline the directions for future research that could increase our understanding of functional and design requirements for the development of highly effective mobile-phone health interventions. PMID:21925288

  17. Interpretation of medical imaging data with a mobile application: a mobile digital imaging processing environment.

    PubMed

    Lin, Meng Kuan; Nicolini, Oliver; Waxenegger, Harald; Galloway, Graham J; Ullmann, Jeremy F P; Janke, Andrew L

    2013-01-01

    Digital Imaging Processing (DIP) requires data extraction and output from a visualization tool to be consistent. Data handling and transmission between the server and a user is a systematic process in service interpretation. The use of integrated medical services for management and viewing of imaging data in combination with a mobile visualization tool can be greatly facilitated by data analysis and interpretation. This paper presents an integrated mobile application and DIP service, called M-DIP. The objective of the system is to (1) automate the direct data tiling, conversion, pre-tiling of brain images from Medical Imaging NetCDF (MINC), Neuroimaging Informatics Technology Initiative (NIFTI) to RAW formats; (2) speed up querying of imaging measurement; and (3) display high-level of images with three dimensions in real world coordinates. In addition, M-DIP provides the ability to work on a mobile or tablet device without any software installation using web-based protocols. M-DIP implements three levels of architecture with a relational middle-layer database, a stand-alone DIP server, and a mobile application logic middle level realizing user interpretation for direct querying and communication. This imaging software has the ability to display biological imaging data at multiple zoom levels and to increase its quality to meet users' expectations. Interpretation of bioimaging data is facilitated by an interface analogous to online mapping services using real world coordinate browsing. This allows mobile devices to display multiple datasets simultaneously from a remote site. M-DIP can be used as a measurement repository that can be accessed by any network environment, such as a portable mobile or tablet device. In addition, this system and combination with mobile applications are establishing a virtualization tool in the neuroinformatics field to speed interpretation services.

  18. Interpretation of Medical Imaging Data with a Mobile Application: A Mobile Digital Imaging Processing Environment

    PubMed Central

    Lin, Meng Kuan; Nicolini, Oliver; Waxenegger, Harald; Galloway, Graham J.; Ullmann, Jeremy F. P.; Janke, Andrew L.

    2013-01-01

    Digital Imaging Processing (DIP) requires data extraction and output from a visualization tool to be consistent. Data handling and transmission between the server and a user is a systematic process in service interpretation. The use of integrated medical services for management and viewing of imaging data in combination with a mobile visualization tool can be greatly facilitated by data analysis and interpretation. This paper presents an integrated mobile application and DIP service, called M-DIP. The objective of the system is to (1) automate the direct data tiling, conversion, pre-tiling of brain images from Medical Imaging NetCDF (MINC), Neuroimaging Informatics Technology Initiative (NIFTI) to RAW formats; (2) speed up querying of imaging measurement; and (3) display high-level of images with three dimensions in real world coordinates. In addition, M-DIP provides the ability to work on a mobile or tablet device without any software installation using web-based protocols. M-DIP implements three levels of architecture with a relational middle-layer database, a stand-alone DIP server, and a mobile application logic middle level realizing user interpretation for direct querying and communication. This imaging software has the ability to display biological imaging data at multiple zoom levels and to increase its quality to meet users’ expectations. Interpretation of bioimaging data is facilitated by an interface analogous to online mapping services using real world coordinate browsing. This allows mobile devices to display multiple datasets simultaneously from a remote site. M-DIP can be used as a measurement repository that can be accessed by any network environment, such as a portable mobile or tablet device. In addition, this system and combination with mobile applications are establishing a virtualization tool in the neuroinformatics field to speed interpretation services. PMID:23847587

  19. Arsenic concentrations, related environmental factors, and the predicted probability of elevated arsenic in groundwater in Pennsylvania

    USGS Publications Warehouse

    Gross, Eliza L.; Low, Dennis J.

    2013-01-01

    Logistic regression models were created to predict and map the probability of elevated arsenic concentrations in groundwater statewide in Pennsylvania and in three intrastate regions to further improve predictions for those three regions (glacial aquifer system, Gettysburg Basin, Newark Basin). Although the Pennsylvania and regional predictive models retained some different variables, they have common characteristics that can be grouped by (1) geologic and soils variables describing arsenic sources and mobilizers, (2) geochemical variables describing the geochemical environment of the groundwater, and (3) locally specific variables that are unique to each of the three regions studied and not applicable to statewide analysis. Maps of Pennsylvania and the three intrastate regions were produced that illustrate that areas most at risk are those with geology and soils capable of functioning as an arsenic source or mobilizer and geochemical groundwater conditions able to facilitate redox reactions. The models have limitations because they may not characterize areas that have localized controls on arsenic mobility. The probability maps associated with this report are intended for regional-scale use and may not be accurate for use at the field scale or when considering individual wells.

  20. Web GIS in practice VIII: HTML5 and the canvas element for interactive online mapping

    PubMed Central

    2010-01-01

    HTML5 is being developed as the next major revision of HTML (Hypertext Markup Language), the core markup language of the World Wide Web. It aims at reducing the need for proprietary, plug-in-based rich Internet application (RIA) technologies such as Adobe Flash. The canvas element is part of HTML5 and is used to draw graphics using scripting (e.g., JavaScript). This paper introduces Cartagen, an open-source, vector-based, client-side framework for rendering plug-in-free, offline-capable, interactive maps in native HTML5 on a wide range of Web browsers and mobile phones. Cartagen was developed at MIT Media Lab's Design Ecology group. Potential applications of the technology as an enabler for participatory online mapping include mapping real-time air pollution, citizen reporting, and disaster response, among many other possibilities. PMID:20199681

  1. Local Free-Space Mapping and Path Guidance for Mobile Robots.

    DTIC Science & Technology

    1988-03-01

    CM a CD U 00 Technical Document 1227 March 1988 Local Free- Space Mapping o and Path Guidance for Mobile Robots o William T. Gex N’% Nancy L. Campbell...TITLE (inludvSeocutCl&sas~o*) Local Free- Space Mapping and Path Guidance for Mobile Robots 12. PERSONAL AUTHOR(S) William T. Gex and Nancy L...Description of Robot System... 2 Free- Space Mapping ... 4 Map Construction ... 4 . ,12pping Examplk... 5 ’ft Sensor Unreliability... 8 % Path Guidance

  2. Transportation cost index : a comprehensive performance measure for transportation and land and its application in OR, FL, and UT : final report.

    DOT National Transportation Integrated Search

    2017-04-01

    MAP-21 and state laws are placing increasing emphasis on using comprehensive transportation performance measures that include mobility, : safety, economy, livability, equity, and environmental to guide transportation decision-making. One of the tough...

  3. Augmented paper maps: Exploring the design space of a mixed reality system

    NASA Astrophysics Data System (ADS)

    Paelke, Volker; Sester, Monika

    Paper maps and mobile electronic devices have complementary strengths and shortcomings in outdoor use. In many scenarios, like small craft sailing or cross-country trekking, a complete replacement of maps is neither useful nor desirable. Paper maps are fail-safe, relatively cheap, offer superior resolution and provide large scale overview. In uses like open-water sailing it is therefore mandatory to carry adequate maps/charts. GPS based mobile devices, on the other hand, offer useful features like automatic positioning and plotting, real-time information update and dynamic adaptation to user requirements. While paper maps are now commonly used in combination with mobile GPS devices, there is no meaningful integration between the two, and the combined use leads to a number of interaction problems and potential safety issues. In this paper we explore the design space of augmented paper maps in which maps are augmented with additional functionality through a mobile device to achieve a meaningful integration between device and map that combines their respective strengths.

  4. Abu Dhabi Basemap Update Using the LiDAR Mobile Mapping Technology

    NASA Astrophysics Data System (ADS)

    Alshaiba, Omar; Amparo Núñez-Andrés, M.; Lantada, Nieves

    2016-04-01

    Mobile LiDAR system provides a new technology which can be used to update geospatial information by direct and rapid data collection. This technology is faster than the traditional survey ways and has lower cost. Abu Dhabi Municipal System aims to update its geospatial system frequently as the government entities have invested heavily in GIS technology and geospatial data to meet the repaid growth in the infrastructure and construction projects in recent years. The Emirate of Abu Dhabi has witnessed a huge growth in infrastructure and construction projects in recent years. Therefore, it is necessary to develop and update its basemap system frequently to meet their own organizational needs. Currently, the traditional ways are used to update basemap system such as human surveyors, GPS receivers and controller (GPS assigned computer). Then the surveyed data are downloaded, edited and reviewed manually before it is merged to the basemap system. Traditional surveying ways may not be applicable in some conditions such as; bad weather, difficult topographic area and boundary area. This paper presents a proposed methodology which uses the Mobile LiDAR system to update basemap in Abu Dhabi by using daily transactions services. It aims to use and integrate the mobile LiDAR technology into the municipality's daily workflow such that it becomes the new standard cost efficiency operating procedure for updating the base-map in Abu Dhabi Municipal System. On another note, the paper will demonstrate the results of the innovated workflow for the base-map update using the mobile LiDAR point cloud and few processing algorithms.

  5. Efficient Information Access for Location-Based Services in Mobile Environments

    ERIC Educational Resources Information Center

    Lee, Chi Keung

    2009-01-01

    The demand for pervasive access of location-related information (e.g., local traffic, restaurant locations, navigation maps, weather conditions, pollution index, etc.) fosters a tremendous application base of "Location Based Services (LBSs)". Without loss of generality, we model location-related information as "spatial objects" and the accesses…

  6. Mobile therapy: case study evaluations of a cell phone application for emotional self-awareness.

    PubMed

    Morris, Margaret E; Kathawala, Qusai; Leen, Todd K; Gorenstein, Ethan E; Guilak, Farzin; Labhard, Michael; Deleeuw, William

    2010-04-30

    Emotional awareness and self-regulation are important skills for improving mental health and reducing the risk of cardiovascular disease. Cognitive behavioral therapy can teach these skills but is not widely available. This exploratory study examined the potential of mobile phone technologies to broaden access to cognitive behavioral therapy techniques and to provide in-the-moment support. We developed a mobile phone application with touch screen scales for mood reporting and therapeutic exercises for cognitive reappraisal (ie, examination of maladaptive interpretations) and physical relaxation. The application was deployed in a one-month field study with eight individuals who had reported significant stress during an employee health assessment. Participants were prompted via their mobile phones to report their moods several times a day on a Mood Map-a translation of the circumplex model of emotion-and a series of single-dimension mood scales. Using the prototype, participants could also activate mobile therapies as needed. During weekly open-ended interviews, participants discussed their use of the device and responded to longitudinal views of their data. Analyses included a thematic review of interview narratives, assessment of mood changes over the course of the study and the diurnal cycle, and interrogation of this mobile data based on stressful incidents reported in interviews. Five case studies illustrate participants' use of the mobile phone application to increase self-awareness and to cope with stress. One example is a participant who had been coping with longstanding marital conflict. After reflecting on his mood data, particularly a drop in energy each evening, the participant began practicing relaxation therapies on the phone before entering his house, applying cognitive reappraisal techniques to cope with stressful family interactions, and talking more openly with his wife. His mean anger, anxiety and sadness ratings all were lower in the second half of the field study than in the first (P

  7. Multiplatform Mobile Laser Scanning: Usability and Performance

    PubMed Central

    Kukko, Antero; Kaartinen, Harri; Hyyppä, Juha; Chen, Yuwei

    2012-01-01

    Mobile laser scanning is an emerging technology capable of capturing three-dimensional data from surrounding objects. With state-of-the-art sensors, the achieved point clouds capture object details with good accuracy and precision. Many of the applications involve civil engineering in urban areas, as well as traffic and other urban planning, all of which serve to make 3D city modeling probably the fastest growing market segment in this field. This article outlines multiplatform mobile laser scanning solutions such as vehicle- and trolley-operated urban area data acquisition, and boat-mounted equipment for fluvial environments. Moreover, we introduce a novel backpack version of mobile laser scanning equipment for surveying applications in the field of natural sciences where the requirements include precision and mobility in variable terrain conditions. In addition to presenting a technical description of the systems, we discuss the performance of the solutions in the light of various applications in the fields of urban mapping and modeling, fluvial geomorphology, snow-cover characterization, precision agriculture, and in monitoring the effects of climate change on permafrost landforms. The data performance of the mobile laser scanning approach is described by the results of an evaluation of the ROAMER on a permanent MLS test field. Furthermore, an in situ accuracy assessment using a field of spherical 3D targets for the newly-introduced Akhka backpack system is conducted and reported on.

  8. Owgis 2.0: Open Source Java Application that Builds Web GIS Interfaces for Desktop Andmobile Devices

    NASA Astrophysics Data System (ADS)

    Zavala Romero, O.; Chassignet, E.; Zavala-Hidalgo, J.; Pandav, H.; Velissariou, P.; Meyer-Baese, A.

    2016-12-01

    OWGIS is an open source Java and JavaScript application that builds easily configurable Web GIS sites for desktop and mobile devices. The current version of OWGIS generates mobile interfaces based on HTML5 technology and can be used to create mobile applications. The style of the generated websites can be modified using COMPASS, a well known CSS Authoring Framework. In addition, OWGIS uses several Open Geospatial Consortium standards to request datafrom the most common map servers, such as GeoServer. It is also able to request data from ncWMS servers, allowing the websites to display 4D data from NetCDF files. This application is configured by XML files that define which layers, geographic datasets, are displayed on the Web GIS sites. Among other features, OWGIS allows for animations; streamlines from vector data; virtual globe display; vertical profiles and vertical transects; different color palettes; the ability to download data; and display text in multiple languages. OWGIS users are mainly scientists in the oceanography, meteorology and climate fields.

  9. Caltrans - California Department of Transportation

    Science.gov Websites

    Caltrans QuickMap QuickMap Mobile QuickMap Android App Check Current Highway Conditions: Enter Highway the App Store. Google Play Apple Store Quickmap Mobile Version Quickmap Full Version CA Safety

  10. The use of behavior modeling training in a mobile app parent training program to improve functional communication of young children with autism spectrum disorder.

    PubMed

    Law, Gloria C; Neihart, Maureen; Dutt, Anuradha

    2018-05-01

    Communication intervention in early life can significantly impact long-term outcomes for young children with autism. Parents can be vital resources in the midst of the current manpower shortage. Map4speech is a new mobile application developed for parents of children with autism spectrum disorder. It is specially designed to provide high-quality, interactive learning, coupled with frequent feedback and live coaching to train parents in a naturalistic language intervention. A multiple-baseline single-case experimental design was conducted across three parent-child dyads. Results indicate that procedural integrity of parents' intervention techniques was above 85% during post-training intervention, and their respective children showed increases in spontaneous word/gesture use. The results show that mobile applications with feedback can be a promising means for improving efficiency and effectiveness in disseminating evidence-based practices for autism intervention.

  11. A Mobile, Map-Based Tasking Interface for Human-Robot Interaction

    DTIC Science & Technology

    2010-12-01

    A MOBILE, MAP-BASED TASKING INTERFACE FOR HUMAN-ROBOT INTERACTION By Eli R. Hooten Thesis Submitted to the Faculty of the Graduate School of...SUBTITLE A Mobile, Map-Based Tasking Interface for Human-Robot Interaction 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...3 II.1 Interactive Modalities and Multi-Touch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 II.2

  12. a Man-Portable Imu-Free Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Nüchter, A.; Borrmann, D.; Koch, P.; Kühn, M.; May, S.

    2015-08-01

    Mobile mapping systems are commonly mounted on cars, ships and robots. The data is directly geo-referenced using GPS data and expensive IMU (inertial measurement systems). Driven by the need for flexible, indoor mapping systems we present an inexpensive mobile mapping solution that can be mounted on a backpack. It combines a horizontally mounted 2D profiler with a constantly spinning 3D laser scanner. The initial system featuring a low-cost MEMS IMU was revealed and demonstrated at MoLaS: Technology Workshop Mobile Laser Scanning at Fraunhofer IPM in Freiburg in November 2014. In this paper, we present an IMU-free solution.

  13. Open-Source GIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vatsavai, Raju; Burk, Thomas E; Lime, Steve

    2012-01-01

    The components making up an Open Source GIS are explained in this chapter. A map server (Sect. 30.1) can broadly be defined as a software platform for dynamically generating spatially referenced digital map products. The University of Minnesota MapServer (UMN Map Server) is one such system. Its basic features are visualization, overlay, and query. Section 30.2 names and explains many of the geospatial open source libraries, such as GDAL and OGR. The other libraries are FDO, JTS, GEOS, JCS, MetaCRS, and GPSBabel. The application examples include derived GIS-software and data format conversions. Quantum GIS, its origin and its applications explainedmore » in detail in Sect. 30.3. The features include a rich GUI, attribute tables, vector symbols, labeling, editing functions, projections, georeferencing, GPS support, analysis, and Web Map Server functionality. Future developments will address mobile applications, 3-D, and multithreading. The origins of PostgreSQL are outlined and PostGIS discussed in detail in Sect. 30.4. It extends PostgreSQL by implementing the Simple Feature standard. Section 30.5 details the most important open source licenses such as the GPL, the LGPL, the MIT License, and the BSD License, as well as the role of the Creative Commons.« less

  14. Adaptive Monocular Visual-Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices.

    PubMed

    Piao, Jin-Chun; Kim, Shin-Dug

    2017-11-07

    Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual-inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual-inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual-inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual-inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method.

  15. New developments in ground probing radar for Earth resource mapping and planetology

    NASA Astrophysics Data System (ADS)

    Cattermole, P. J.; Junkin, G.; Finkelstein, M. I.; Kingsley, S. P.

    1992-07-01

    Ground probing radar is a well established technique for locating buried objects and has found application in resource mapping. The development of this technology for the Mars exploration programme has lead to lightweight systems with potential applications for investigating shallow geological structures on Earth, Mars and Venus. Recent advances in ground probing radar technology for planetary exploration include the development of single-antenna systems with improved beam focussing into the ground and a move to lower frequencies which considerably extends the depth penetration in dry ground. These systems are designed for mobility and could form the basis of autonomous mapping systems for terrestrial exploration. Such systems would be particularly valuable for water resource surveying in arid and semi-arid regions, where there is a need to have lightweight instrumentation that can be moved into sometimes inhospitable terrain.

  16. Performance Characteristic Mems-Based IMUs for UAVs Navigation

    NASA Astrophysics Data System (ADS)

    Mohamed, H. A.; Hansen, J. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, A. B.

    2015-08-01

    Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs) are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS) or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK), and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS) signal outage.

  17. FAIMS Mobile: Flexible, open-source software for field research

    NASA Astrophysics Data System (ADS)

    Ballsun-Stanton, Brian; Ross, Shawn A.; Sobotkova, Adela; Crook, Penny

    2018-01-01

    FAIMS Mobile is a native Android application supported by an Ubuntu server facilitating human-mediated field research across disciplines. It consists of 'core' Java and Ruby software providing a platform for data capture, which can be deeply customised using 'definition packets' consisting of XML documents (data schema and UI) and Beanshell scripts (automation). Definition packets can also be generated using an XML-based domain-specific language, making customisation easier. FAIMS Mobile includes features allowing rich and efficient data capture tailored to the needs of fieldwork. It also promotes synthetic research and improves transparency and reproducibility through the production of comprehensive datasets that can be mapped to vocabularies or ontologies as they are created.

  18. An Android based location service using GSMCellID and GPS to obtain a graphical guide to the nearest cash machine

    NASA Astrophysics Data System (ADS)

    Jacobsen, Jurma; Edlich, Stefan

    2009-02-01

    There is a broad range of potential useful mobile location-based applications. One crucial point seems to be to make them available to the public at large. This case illuminates the abilities of Android - the operating system for mobile devices - to fulfill this demand in the mashup way by use of some special geocoding web services and one integrated web service for getting the nearest cash machines data. It shows an exemplary approach for building mobile location-based mashups for everyone: 1. As a basis for reaching as many people as possible the open source Android OS is assumed to spread widely. 2. Everyone also means that the handset has not to be an expensive GPS device. This is realized by re-utilization of the existing GSM infrastructure with the Cell of Origin (COO) method which makes a lookup of the CellID in one of the growing web available CellID databases. Some of these databases are still undocumented and not yet published. Furthermore the Google Maps API for Mobile (GMM) and the open source counterpart OpenCellID are used. The user's current position localization via lookup of the closest cell to which the handset is currently connected to (COO) is not as precise as GPS, but appears to be sufficient for lots of applications. For this reason the GPS user is the most pleased one - for this user the system is fully automated. In contrary there could be some users who doesn't own a GPS cellular. This user should refine his/her location by one click on the map inside of the determined circular region. The users are then shown and guided by a path to the nearest cash machine by integrating Google Maps API with an overlay. Additionally, the GPS user can keep track of him- or herself by getting a frequently updated view via constantly requested precise GPS data for his or her position.

  19. Improving Land Cover Mapping: a Mobile Application Based on ESA Sentinel 2 Imagery

    NASA Astrophysics Data System (ADS)

    Melis, M. T.; Dessì, F.; Loddo, P.; La Mantia, C.; Da Pelo, S.; Deflorio, A. M.; Ghiglieri, G.; Hailu, B. T.; Kalegele, K.; Mwasi, B. N.

    2018-04-01

    The increasing availability of satellite data is a real value for the enhancement of environmental knowledge and land management. Possibilities to integrate different source of geo-data are growing and methodologies to create thematic database are becoming very sophisticated. Moreover, the access to internet services and, in particular, to web mapping services is well developed and spread either between expert users than the citizens. Web map services, like Google Maps or Open Street Maps, give the access to updated optical imagery or topographic maps but information on land cover/use - are not still provided. Therefore, there are many failings in the general utilization -non-specialized users- and access to those maps. This issue is particularly felt where the digital (web) maps could form the basis for land use management as they are more economic and accessible than the paper maps. These conditions are well known in many African countries where, while the internet access is becoming open to all, the local map agencies and their products are not widespread.

  20. Mobile mapping and eddy covariance flux measurements of NH3 emissions from cattle feedlots with a portable laser-based open-path sensor

    NASA Astrophysics Data System (ADS)

    Tao, L.; Sun, K.; Pan, D.; Golston, L.; Stanton, L. G.; Ham, J. M.; Shonkwiler, K. B.; Nash, C.; Zondlo, M. A.

    2014-12-01

    Ammonia (NH3) is the dominant alkaline species in the atmosphere and an important compound in the global nitrogen cycle. There is a large uncertainty in NH3 emission inventory from agriculture, which is the largest source of NH3, including livestock farming and fertilizer applications. In recent years, a quantum cascade laser (QCL)-based open-path sensor has been developed to provide high-resolution, fast-response and high-sensitivity NH3 measurements. It has a detection limit of 150 pptv with a sample rate up to 20 Hz. This sensor has been integrated into a mobile platform mounted on the roof of a car to perform measurement of multiple trace gases. We have also used the sensor for eddy covariance (EC) flux measurements. The mobile sensing method provides high spatial resolution and fast mapping of measured gases. Meanwhile, the EC flux method offers accurate flux measurements and resolves the diurnal variability of NH3emissions. During the DISCOVER-AQ and FRAPPÉ field campaigns in 2014, this mobile platform was used to study NH3 emissions from cattle feedlot near Fort Morgan, Colorado. This specific feedlot was mapped multiple times in different days to study the variability of its plume characteristics. At the same time, we set up another open-path NH3 sensor with LICOR open-path sensors to perform EC flux measurements of NH3, CH4 and CO2 simultaneously in the same cattle feedlot as shown in Fig. 1. NH3/CH4 emission flux ratio show a strong temperature dependence from EC flux measurements. The median value of measured NH3 and CH4 emission flux ratio is 0.60 ppmv/ppmv. In contrast, the median value of ΔNH3/ΔCH4 ratios measured from mobile platform is 0.53 ppmv/ppmv for the same farm. The combination of mobile mapping and EC flux measurements with the same open-path sensors greatly improves understanding of NH3 emissions both spatially and temporally.

  1. Mobile Robot Self-Localization by Matching Range Maps Using a Hausdorff Measure

    NASA Technical Reports Server (NTRS)

    Olson, C. F.

    1997-01-01

    This paper examines techniques for a mobile robot to perform self-localization in natural terrain by comparing a dense range map computed from stereo imagery to a range map in a known frame of reference.

  2. Assessing Landslide Mobility Using GIS: Application to Kosrae, Micronesia

    NASA Astrophysics Data System (ADS)

    Reid, M. E.; Brien, D. L.; Godt, J.; Schmitt, R. G.; Harp, E. L.

    2015-12-01

    Deadly landslides are often mobile landslides, as exemplified by the disastrous landslide that occurred near Oso, Washington in 2014 killing 43. Despite this association, many landslide susceptibility maps do not identify runout areas. We developed a simple, GIS-based method for identifying areas potentially overrun by mobile slides and debris flows. Our method links three processes within a DEM landscape: landslide initiation, transport, and debris-flow inundation (from very mobile slides). Given spatially distributed shear strengths, we first identify initiation areas using an infinite-slope stability analysis. We then delineate transport zones, or regions of potential entrainment and/or deposition, using a height/length runout envelope. Finally, where these transport zones intersect the channel network, we start debris-flow inundation zones. The extent of inundation is computed using the USGS model Laharz, modified to include many debris-flow locations throughout a DEM. Potential debris-flow volumes are computed from upslope initiation areas and typical slide thicknesses. We applied this approach to the main island of Kosrae State, Federated States of Micronesia (FSM). In 2002, typhoon Chata'an triggered numerous landslides on the neighboring islands of Chuuk State, FSM, resulting in 43 fatalities. Using an infinite-slope stability model calibrated to the Chuuk event, we identified potential landslide initiation areas on Kosrae. We then delineated potential transport zones using a 20º runout envelope, based on runout observations from Chuuk. Potential debris-flow inundation zones were then determined using Laharz. Field inspections on Kosrae revealed that our resulting susceptibility map correctly classified areas covered by previous debris-flow deposits and did not include areas covered by fluvial deposits. Our map has the advantage of providing a visual tool to portray initiation, transport, and runout zones from mobile landslides.

  3. Localization and Mapping Using a Non-Central Catadioptric Camera System

    NASA Astrophysics Data System (ADS)

    Khurana, M.; Armenakis, C.

    2018-05-01

    This work details the development of an indoor navigation and mapping system using a non-central catadioptric omnidirectional camera and its implementation for mobile applications. Omnidirectional catadioptric cameras find their use in navigation and mapping of robotic platforms, owing to their wide field of view. Having a wider field of view, or rather a potential 360° field of view, allows the system to "see and move" more freely in the navigation space. A catadioptric camera system is a low cost system which consists of a mirror and a camera. Any perspective camera can be used. A platform was constructed in order to combine the mirror and a camera to build a catadioptric system. A calibration method was developed in order to obtain the relative position and orientation between the two components so that they can be considered as one monolithic system. The mathematical model for localizing the system was determined using conditions based on the reflective properties of the mirror. The obtained platform positions were then used to map the environment using epipolar geometry. Experiments were performed to test the mathematical models and the achieved location and mapping accuracies of the system. An iterative process of positioning and mapping was applied to determine object coordinates of an indoor environment while navigating the mobile platform. Camera localization and 3D coordinates of object points obtained decimetre level accuracies.

  4. Decision support system for the response to infectious disease emergencies based on WebGIS and mobile services in China.

    PubMed

    Li, Ya-pin; Fang, Li-qun; Gao, Su-qing; Wang, Zhen; Gao, Hong-wei; Liu, Peng; Wang, Ze-Rui; Li, Yan-Li; Zhu, Xu-Guang; Li, Xin-Lou; Xu, Bo; Li, Yin-Jun; Yang, Hong; de Vlas, Sake J; Shi, Tao-Xing; Cao, Wu-Chun

    2013-01-01

    For years, emerging infectious diseases have appeared worldwide and threatened the health of people. The emergence and spread of an infectious-disease outbreak are usually unforeseen, and have the features of suddenness and uncertainty. Timely understanding of basic information in the field, and the collection and analysis of epidemiological information, is helpful in making rapid decisions and responding to an infectious-disease emergency. Therefore, it is necessary to have an unobstructed channel and convenient tool for the collection and analysis of epidemiologic information in the field. Baseline information for each county in mainland China was collected and a database was established by geo-coding information on a digital map of county boundaries throughout the country. Google Maps was used to display geographic information and to conduct calculations related to maps, and the 3G wireless network was used to transmit information collected in the field to the server. This study established a decision support system for the response to infectious-disease emergencies based on WebGIS and mobile services (DSSRIDE). The DSSRIDE provides functions including data collection, communication and analyses in real time, epidemiological detection, the provision of customized epidemiological questionnaires and guides for handling infectious disease emergencies, and the querying of professional knowledge in the field. These functions of the DSSRIDE could be helpful for epidemiological investigations in the field and the handling of infectious-disease emergencies. The DSSRIDE provides a geographic information platform based on the Google Maps application programming interface to display information of infectious disease emergencies, and transfers information between workers in the field and decision makers through wireless transmission based on personal computers, mobile phones and personal digital assistants. After a 2-year practice and application in infectious disease emergencies, the DSSRIDE is becoming a useful platform and is a useful tool for investigations in the field carried out by response sections and individuals. The system is suitable for use in developing countries and low-income districts.

  5. Monitoring Global Precipitation through UCI CHRS's RainMapper App on Mobile Devices

    NASA Astrophysics Data System (ADS)

    Nguyen, P.; Huynh, P.; Braithwaite, D.; Hsu, K. L.; Sorooshian, S.

    2014-12-01

    The Water and Development Information for Arid Lands-a Global Network (G-WADI) Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks—Cloud Classification System (PERSIANN-CCS) GeoServer has been developed through a collaboration between the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine (UCI) and the UNESCO's International Hydrological Program (IHP). G-WADI PERSIANN-CCS GeoServer provides near real-time high resolution (0.04o, approx 4km) global (60oN - 60oS) satellite precipitation estimated by the PERSIANN-CCS algorithm developed by the scientists at CHRS. The G-WADI PERSIANN-CCS GeoServer utilizes the open-source MapServer software from the University of Minnesota to provide a user-friendly web-based mapping and visualization of satellite precipitation data. Recent efforts have been made by the scientists at CHRS to provide free on-the-go access to the PERSIANN-CCS precipitation data through an application named RainMapper for mobile devices. RainMapper provides visualization of global satellite precipitation of the most recent 3, 6, 12, 24, 48 and 72-hour periods overlaid with various basemaps. RainMapper uses the Google maps application programing interface (API) and embedded global positioning system (GPS) access to better monitor the global precipitation data on mobile devices. Functionalities include using geographical searching with voice recognition technologies make it easy for the user to explore near real-time precipitation in a certain location. RainMapper also allows for conveniently sharing the precipitation information and visualizations with the public through social networks such as Facebook and Twitter. RainMapper is available for iOS and Android devices and can be downloaded (free) from the App Store and Google Play. The usefulness of RainMapper was demonstrated through an application in tracking the evolution of the recent Rammasun Typhoon over the Philippines in mid July 2014.

  6. Mobile platform of altitude measurement based on a smartphone

    NASA Astrophysics Data System (ADS)

    Roszkowski, Paweł; Kowalczyk, Marcin

    2016-09-01

    The article presents a low cost, fully - functional meter of altitude and pressure changes in a form of mobile application controlled by Android OS (operating system). The measurements are possible due to pressure sensor inserted in majority of latest modern mobile phones, which are known as smartphones. Using their computing capabilities and other equipment components like GPS receiver in connection with data from the sensor enabled authors to create a sophisticated handheld measuring platform with many unique features. One of them is a drawing altitude maps mode in which user can create maps of altitude changes just by moving around examined area. Another one is a convenient mode for altitude measurement. It is also extended with analysis tools which provide a possibility to compare measured values by displaying the data in a form of plots. The platform consists of external backup server, where the user can secure all gathered data. Moreover, the results of measurement's accuracy examination process which was executed after building the solution were shown. At the end, the realized meter of altitude was compared to other popular altimeters, which are available on the market currently.

  7. Sensing Home: A Cost-Effective Design for Smart Home via Heterogeneous Wireless Networks

    PubMed Central

    Fan, Xiaohu; Huang, Hao; Qi, Shipeng; Luo, Xincheng; Zeng, Jing; Xie, Qubo; Xie, Changsheng

    2015-01-01

    The aging population has inspired the marketing of advanced real time devices for home health care, more and more wearable devices and mobile applications, which have emerged in this field. However, to properly collect behavior information, accurately recognize human activities, and deploy the whole system in a real living environment is a challenging task. In this paper, we propose a feasible wireless-based solution to deploy a data collection scheme, activity recognition model, feedback control and mobile integration via heterogeneous networks. We compared and found a suitable algorithm that can be run on cost-efficient embedded devices. Specifically, we use the Super Set Transformation method to map the raw data into a sparse binary matrix. Furthermore, designed front-end devices of low power consumption gather the living data of the habitant via ZigBee to reduce the burden of wiring work. Finally, we evaluated our approach and show it can achieve a theoretical time-slice accuracy of 98%. The mapping solution we propose is compatible with more wearable devices and mobile apps. PMID:26633424

  8. Sensing Home: A Cost-Effective Design for Smart Home via Heterogeneous Wireless Networks.

    PubMed

    Fan, Xiaohu; Huang, Hao; Qi, Shipeng; Luo, Xincheng; Zeng, Jing; Xie, Qubo; Xie, Changsheng

    2015-12-03

    The aging population has inspired the marketing of advanced real time devices for home health care, more and more wearable devices and mobile applications, which have emerged in this field. However, to properly collect behavior information, accurately recognize human activities, and deploy the whole system in a real living environment is a challenging task. In this paper, we propose a feasible wireless-based solution to deploy a data collection scheme, activity recognition model, feedback control and mobile integration via heterogeneous networks. We compared and found a suitable algorithm that can be run on cost-efficient embedded devices. Specifically, we use the Super Set Transformation method to map the raw data into a sparse binary matrix. Furthermore, designed front-end devices of low power consumption gather the living data of the habitant via ZigBee to reduce the burden of wiring work. Finally, we evaluated our approach and show it can achieve a theoretical time-slice accuracy of 98%. The mapping solution we propose is compatible with more wearable devices and mobile apps.

  9. Cooperative mobile agents search using beehive partitioned structure and Tabu Random search algorithm

    NASA Astrophysics Data System (ADS)

    Ramazani, Saba; Jackson, Delvin L.; Selmic, Rastko R.

    2013-05-01

    In search and surveillance operations, deploying a team of mobile agents provides a robust solution that has multiple advantages over using a single agent in efficiency and minimizing exploration time. This paper addresses the challenge of identifying a target in a given environment when using a team of mobile agents by proposing a novel method of mapping and movement of agent teams in a cooperative manner. The approach consists of two parts. First, the region is partitioned into a hexagonal beehive structure in order to provide equidistant movements in every direction and to allow for more natural and flexible environment mapping. Additionally, in search environments that are partitioned into hexagons, mobile agents have an efficient travel path while performing searches due to this partitioning approach. Second, we use a team of mobile agents that move in a cooperative manner and utilize the Tabu Random algorithm to search for the target. Due to the ever-increasing use of robotics and Unmanned Aerial Vehicle (UAV) platforms, the field of cooperative multi-agent search has developed many applications recently that would benefit from the use of the approach presented in this work, including: search and rescue operations, surveillance, data collection, and border patrol. In this paper, the increased efficiency of the Tabu Random Search algorithm method in combination with hexagonal partitioning is simulated, analyzed, and advantages of this approach are presented and discussed.

  10. Video-based Mobile Mapping System Using Smartphones

    NASA Astrophysics Data System (ADS)

    Al-Hamad, A.; Moussa, A.; El-Sheimy, N.

    2014-11-01

    The last two decades have witnessed a huge growth in the demand for geo-spatial data. This demand has encouraged researchers around the world to develop new algorithms and design new mapping systems in order to obtain reliable sources for geo-spatial data. Mobile Mapping Systems (MMS) are one of the main sources for mapping and Geographic Information Systems (GIS) data. MMS integrate various remote sensing sensors, such as cameras and LiDAR, along with navigation sensors to provide the 3D coordinates of points of interest from moving platform (e.g. cars, air planes, etc.). Although MMS can provide accurate mapping solution for different GIS applications, the cost of these systems is not affordable for many users and only large scale companies and institutions can benefits from MMS systems. The main objective of this paper is to propose a new low cost MMS with reasonable accuracy using the available sensors in smartphones and its video camera. Using the smartphone video camera, instead of capturing individual images, makes the system easier to be used by non-professional users since the system will automatically extract the highly overlapping frames out of the video without the user intervention. Results of the proposed system are presented which demonstrate the effect of the number of the used images in mapping solution. In addition, the accuracy of the mapping results obtained from capturing a video is compared to the same results obtained from using separate captured images instead of video.

  11. SLAM algorithm applied to robotics assistance for navigation in unknown environments.

    PubMed

    Cheein, Fernando A Auat; Lopez, Natalia; Soria, Carlos M; di Sciascio, Fernando A; Pereira, Fernando Lobo; Carelli, Ricardo

    2010-02-17

    The combination of robotic tools with assistance technology determines a slightly explored area of applications and advantages for disability or elder people in their daily tasks. Autonomous motorized wheelchair navigation inside an environment, behaviour based control of orthopaedic arms or user's preference learning from a friendly interface are some examples of this new field. In this paper, a Simultaneous Localization and Mapping (SLAM) algorithm is implemented to allow the environmental learning by a mobile robot while its navigation is governed by electromyographic signals. The entire system is part autonomous and part user-decision dependent (semi-autonomous). The environmental learning executed by the SLAM algorithm and the low level behaviour-based reactions of the mobile robot are robotic autonomous tasks, whereas the mobile robot navigation inside an environment is commanded by a Muscle-Computer Interface (MCI). In this paper, a sequential Extended Kalman Filter (EKF) feature-based SLAM algorithm is implemented. The features correspond to lines and corners -concave and convex- of the environment. From the SLAM architecture, a global metric map of the environment is derived. The electromyographic signals that command the robot's movements can be adapted to the patient's disabilities. For mobile robot navigation purposes, five commands were obtained from the MCI: turn to the left, turn to the right, stop, start and exit. A kinematic controller to control the mobile robot was implemented. A low level behavior strategy was also implemented to avoid robot's collisions with the environment and moving agents. The entire system was tested in a population of seven volunteers: three elder, two below-elbow amputees and two young normally limbed patients. The experiments were performed within a closed low dynamic environment. Subjects took an average time of 35 minutes to navigate the environment and to learn how to use the MCI. The SLAM results have shown a consistent reconstruction of the environment. The obtained map was stored inside the Muscle-Computer Interface. The integration of a highly demanding processing algorithm (SLAM) with a MCI and the communication between both in real time have shown to be consistent and successful. The metric map generated by the mobile robot would allow possible future autonomous navigation without direct control of the user, whose function could be relegated to choose robot destinations. Also, the mobile robot shares the same kinematic model of a motorized wheelchair. This advantage can be exploited for wheelchair autonomous navigation.

  12. Expanding Access and Usage of NASA Near Real-Time Imagery and Data

    NASA Astrophysics Data System (ADS)

    Cechini, M.; Murphy, K. J.; Boller, R. A.; Schmaltz, J. E.; Thompson, C. K.; Huang, T.; McGann, J. M.; Ilavajhala, S.; Alarcon, C.; Roberts, J. T.

    2013-12-01

    In late 2009, the Land Atmosphere Near-real-time Capability for EOS (LANCE) was created to greatly expand the range of near real-time data products from a variety of Earth Observing System (EOS) instruments. Since that time, NASA's Earth Observing System Data and Information System (EOSDIS) developed the Global Imagery Browse Services (GIBS) to provide highly responsive, scalable, and expandable imagery services that distribute near real-time imagery in an intuitive and geo-referenced format. The GIBS imagery services provide access through standards-based protocols such as the Open Geospatial Consortium (OGC) Web Map Tile Service (WMTS) and standard mapping file formats such as the Keyhole Markup Language (KML). Leveraging these standard mechanisms opens NASA near real-time imagery to a broad landscape of mapping libraries supporting mobile applications. By easily integrating with mobile application development libraries, GIBS makes it possible for NASA imagery to become a reliable and valuable source for end-user applications. Recently, EOSDIS has taken steps to integrate near real-time metadata products into the EOS ClearingHOuse (ECHO) metadata repository. Registration of near real-time metadata allows for near real-time data discovery through ECHO clients. In kind with the near real-time data processing requirements, the ECHO ingest model allows for low-latency metadata insertion and updates. Combining with the ECHO repository, the fast visual access of GIBS imagery can now be linked directly back to the source data file(s). Through the use of discovery standards such as OpenSearch, desktop and mobile applications can connect users to more than just an image. As data services, such as OGC Web Coverage Service, become more prevalent within the EOSDIS system, applications may even be able to connect users from imagery to data values. In addition, the full resolution GIBS imagery provides visual context to other GIS data and tools. The NASA near real-time imagery covers a broad set of Earth science disciplines. By leveraging the ECHO and GIBS services, these data can become a visual context within which other GIS activities are performed. The focus of this presentation is to discuss the GIBS imagery and ECHO metadata services facilitating near real-time discovery and usage. Existing synergies and future possibilities will also be discussed. The NASA Worldview demonstration client will be used to show an existing application combining the ECHO and GIBS services.

  13. GIS Application Management for Disabled People

    NASA Astrophysics Data System (ADS)

    Tongkaw, Sasalak

    2017-08-01

    This research aimed to develop and design Geographical Information Systems (GIS) for facilitating disabled people by presenting some useful disabled information on the Google Map. The map could provide information about disabled types of people such as blind, deaf and physical movement. This research employed the Multiview 2 theory and method to plan and find out the problems in real world situation. This research used many designing data structure methods such as Data Flow Diagram, and ER-Diagram. The research focused into two parts: server site and client site which included the interface for Web-based application. The clear information of disable people on the map was useful for facilitating disabled people to find some useful information. In addition, it provided specialized data for company and government officers for managing and planning local facilities for disabled people in the cities. The disable could access the system through the Internet access at any time by using mobile or portable devices.

  14. Mobile robot motion estimation using Hough transform

    NASA Astrophysics Data System (ADS)

    Aldoshkin, D. N.; Yamskikh, T. N.; Tsarev, R. Yu

    2018-05-01

    This paper proposes an algorithm for estimation of mobile robot motion. The geometry of surrounding space is described with range scans (samples of distance measurements) taken by the mobile robot’s range sensors. A similar sample of space geometry in any arbitrary preceding moment of time or the environment map can be used as a reference. The suggested algorithm is invariant to isotropic scaling of samples or map that allows using samples measured in different units and maps made at different scales. The algorithm is based on Hough transform: it maps from measurement space to a straight-line parameters space. In the straight-line parameters, space the problems of estimating rotation, scaling and translation are solved separately breaking down a problem of estimating mobile robot localization into three smaller independent problems. The specific feature of the algorithm presented is its robustness to noise and outliers inherited from Hough transform. The prototype of the system of mobile robot orientation is described.

  15. Accurate Mobile Urban Mapping via Digital Map-Based SLAM †

    PubMed Central

    Roh, Hyunchul; Jeong, Jinyong; Cho, Younggun; Kim, Ayoung

    2016-01-01

    This paper presents accurate urban map generation using digital map-based Simultaneous Localization and Mapping (SLAM). Throughout this work, our main objective is generating a 3D and lane map aiming for sub-meter accuracy. In conventional mapping approaches, achieving extremely high accuracy was performed by either (i) exploiting costly airborne sensors or (ii) surveying with a static mapping system in a stationary platform. Mobile scanning systems recently have gathered popularity but are mostly limited by the availability of the Global Positioning System (GPS). We focus on the fact that the availability of GPS and urban structures are both sporadic but complementary. By modeling both GPS and digital map data as measurements and integrating them with other sensor measurements, we leverage SLAM for an accurate mobile mapping system. Our proposed algorithm generates an efficient graph SLAM and achieves a framework running in real-time and targeting sub-meter accuracy with a mobile platform. Integrated with the SLAM framework, we implement a motion-adaptive model for the Inverse Perspective Mapping (IPM). Using motion estimation derived from SLAM, the experimental results show that the proposed approaches provide stable bird’s-eye view images, even with significant motion during the drive. Our real-time map generation framework is validated via a long-distance urban test and evaluated at randomly sampled points using Real-Time Kinematic (RTK)-GPS. PMID:27548175

  16. Arrowland v1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BIRKEL, GARRETT; GARCIA MARTIN, HECTOR; MORRELL, WILLIAM

    "Arrowland" is a web-based software application primarily for mapping, integrating and visualizing a variety of metabolism data of living organisms, including but not limited to metabolomics, proteomics, transcriptomics and fluxomics. This software application makes multi-omics data analysis intuitive and interactive. It improves data sharing and communication by enabling users to visualize their omics data using a web browser (on a PC or mobile device). It increases user's productivity by simplifying multi-omics data analysis using well developed maps as a guide. Users using this tool can gain insights into their data sets that would be difficult or even impossible to teasemore » out by looking at raw number, or using their currently existing toolchains to generate static single-use maps. Arrowland helps users save time by visualizing relative changes in different conditions or over time, and helps users to produce more significant insights faster. Preexisting maps decrease the learning curve for beginners in the omics field. Sets of multi-omics data are presented in the browser, as a two-dimensional flowchart resembling a map, with varying levels of detail information, based on the scaling of the map. Users can pan and zoom to explore different maps, compare maps, upload their own research data sets onto desired maps, alter map appearance in ways that facilitate interpretation, visualization and analysis of the given data, and export data, reports and actionable items to help the user initiative.« less

  17. Effectiveness of the new 'Mobile AED Map' to find and retrieve an AED: A randomised controlled trial.

    PubMed

    Sakai, Tomohiko; Iwami, Taku; Kitamura, Tetsuhisa; Nishiyama, Chika; Kawamura, Takashi; Kajino, Kentaro; Tanaka, Hiroshi; Marukawa, Seishiro; Tasaki, Osamu; Shiozaki, Tadahiko; Ogura, Hiroshi; Kuwagata, Yasuyuki; Shimazu, Takeshi

    2011-01-01

    Although early shock with an automated external defibrillator (AED) is one of the several key elements to save out-of-hospital cardiac arrest (OHCA) victims, it is not always easy to find and retrieve a nearby AED in emergency settings. We developed a cell phone web system, the Mobile AED Map, displaying nearby AEDs located anywhere. The simulation trial in the present study aims to compare the time and travel distance required to access an AED and retrieve it with and without the Mobile AED Map. Randomised controlled trial. Two fields where it was estimated to take 2min (120-170m) to access the nearest AED. Participants were randomly assigned to either the Mobile AED Map group or the control group. We provided each participant in both groups with an OHCA scenario, and measured the time and travel distance to find and retrieve a nearby AED. Forty-three volunteers were enrolled and completed the protocol. The time to access and retrieve an AED was not significantly different between the Mobile AED Map group (400±238s) and the control group (407±256s, p=0.92). The travel distance was significantly shorter in the Mobile AED Map group (606m vs. 891m, p=0.019). Trial field conditions affected the results differently. Although the new Mobile AED Map reduced the travel distance to access and retrieve the AED, it failed to shorten the time. Further technological improvements of the system are needed to increase its usefulness in emergency settings (UMIN000002043). Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Adaptive Monocular Visual–Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices

    PubMed Central

    Piao, Jin-Chun; Kim, Shin-Dug

    2017-01-01

    Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual–inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual–inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual–inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual–inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method. PMID:29112143

  19. Method of App Selection for Healthcare Providers Based on Consumer Needs.

    PubMed

    Lee, Jisan; Kim, Jeongeun

    2018-01-01

    Mobile device applications can be used to manage health. However, healthcare providers hesitate to use them because selection methods that consider the needs of health consumers and identify the most appropriate application are rare. This study aimed to create an effective method of identifying applications that address user needs. Women experiencing dysmenorrhea and premenstrual syndrome were the targeted users. First, we searched for related applications from two major sources of mobile applications. Brainstorming, mind mapping, and persona and scenario techniques were used to create a checklist of relevant criteria, which was used to rate the applications. Of the 2784 applications found, 369 were analyzed quantitatively. Of those, five of the top candidates were evaluated by three groups: application experts, clinical experts, and potential users. All three groups ranked one application the highest; however, the remaining rankings differed. The results of this study suggest that the method created is useful because it considers not only the needs of various users but also the knowledge of application and clinical experts. This study proposes a method for finding and using the best among existing applications and highlights the need for nurses who can understand and combine opinions of users and application and clinical experts.

  20. Computer vision enhances mobile eye-tracking to expose expert cognition in natural-scene visual-search tasks

    NASA Astrophysics Data System (ADS)

    Keane, Tommy P.; Cahill, Nathan D.; Tarduno, John A.; Jacobs, Robert A.; Pelz, Jeff B.

    2014-02-01

    Mobile eye-tracking provides the fairly unique opportunity to record and elucidate cognition in action. In our research, we are searching for patterns in, and distinctions between, the visual-search performance of experts and novices in the geo-sciences. Traveling to regions resultant from various geological processes as part of an introductory field studies course in geology, we record the prima facie gaze patterns of experts and novices when they are asked to determine the modes of geological activity that have formed the scene-view presented to them. Recording eye video and scene video in natural settings generates complex imagery that requires advanced applications of computer vision research to generate registrations and mappings between the views of separate observers. By developing such mappings, we could then place many observers into a single mathematical space where we can spatio-temporally analyze inter- and intra-subject fixations, saccades, and head motions. While working towards perfecting these mappings, we developed an updated experiment setup that allowed us to statistically analyze intra-subject eye-movement events without the need for a common domain. Through such analyses we are finding statistical differences between novices and experts in these visual-search tasks. In the course of this research we have developed a unified, open-source, software framework for processing, visualization, and interaction of mobile eye-tracking and high-resolution panoramic imagery.

  1. A Pervasive Social Networking Application: I-NFC enabled Florist Smart Advisor

    NASA Astrophysics Data System (ADS)

    Swee Wen, Khoo; Mahinderjit Singh, Manmeet

    2016-11-01

    Location based service is an information and entertainment service, accessible with mobile devices through the mobile network and utilizing the ability to make use of the geographical position of the mobile device. NFC location based service is using one of the modes of NFC such as peer-to-peer, reader/writer, and card emulation to obtain the information of the object and then get the location of the object. In this paper, the proposed solution is I- NFC-enabled Pervasive Social Networking apps for florists. It combines the NFC location based service with Online Social Network (OSN). In addition, a smart advisor in the system to provide output in making their own decision while purchasing products.The development of the system demonstrates that a designed commerce site is provided which enable a communication between NFC-enabled smartphone, NFC-enabled application and OSN. GPS functionalities also implemented to provide map and location of business services. Smart advisor also designed to provide information for users who do not have ideas what to purchase.

  2. Geometric validation of a mobile laser scanning system for urban applications

    NASA Astrophysics Data System (ADS)

    Guan, Haiyan; Li, Jonathan; Yu, Yongtao; Liu, Yan

    2016-03-01

    Mobile laser scanning (MLS) technologies have been actively studied and implemented over the past decade, as their application fields are rapidly expanding and extending beyond conventional topographic mapping. Trimble's MX-8, as one of the MLS systems in the current market, generates rich survey-grade laser and image data for urban surveying. The objective of this study is to evaluate whether Trimble MX-8 MLS data satisfies the accuracy requirements of urban surveying. According to the formula of geo-referencing, accuracies of navigation solution and laser scanner determines the accuracy of the collected LiDAR point clouds. Two test sites were selected to test the performance of Trimble MX-8. Those extensive tests confirm that Trimble MX-8 offers a very promising tool to survey complex urban areas.

  3. Comparison of three orientation and mobility aids for individuals with blindness: Verbal description, audio-tactile map and audio-haptic map.

    PubMed

    Papadopoulos, Konstantinos; Koustriava, Eleni; Koukourikos, Panagiotis; Kartasidou, Lefkothea; Barouti, Marialena; Varveris, Asimis; Misiou, Marina; Zacharogeorga, Timoclia; Anastasiadis, Theocharis

    2017-01-01

    Disorientation and inability of wayfinding are phenomena with a great frequency for individuals with visual impairments during the process of travelling novel environments. Orientation and mobility aids could suggest important tools for the preparation of a more secure and cognitively mapped travelling. The aim of the present study was to examine if spatial knowledge structured after an individual with blindness had studied the map of an urban area that was delivered through a verbal description, an audio-tactile map or an audio-haptic map, could be used for detecting in the area specific points of interest. The effectiveness of the three aids with reference to each other was also examined. The results of the present study highlight the effectiveness of the audio-tactile and the audio-haptic maps as orientation and mobility aids, especially when these are compared to verbal descriptions.

  4. Opportunistic mobile air pollution monitoring: A case study with city wardens in Antwerp

    NASA Astrophysics Data System (ADS)

    Van den Bossche, Joris; Theunis, Jan; Elen, Bart; Peters, Jan; Botteldooren, Dick; De Baets, Bernard

    2016-09-01

    The goal of this paper is to explore the potential of opportunistic mobile monitoring to map the exposure to air pollution in the urban environment at a high spatial resolution. Opportunistic mobile monitoring makes use of existing mobile infrastructure or people's common daily routines to move measurement devices around. Opportunistic mobile monitoring can also play a crucial role in participatory monitoring campaigns as a typical way to gather data. A case study to measure black carbon was set up in Antwerp, Belgium, with the collaboration of city employees (city wardens). The Antwerp city wardens are outdoors for a large part of the day on surveillance tours by bicycle or on foot, and gathered a total of 393 h of measurements. The data collection is unstructured both in space and time, leading to sampling bias. A temporal adjustment can only partly counteract this bias. Although a high spatial coverage was obtained, there is still a rather large uncertainty on the average concentration levels at a spatial resolution of 50 m due to a limited number of measurements and sampling bias. Despite of this uncertainty, large spatial patterns within the city are clearly captured. This study illustrates the potential of campaigns with unstructured opportunistic mobile monitoring, including participatory monitoring campaigns. The results demonstrate that such an approach can indeed be used to identify broad spatial trends over a wider area, enabling applications including hotspot identification, personal exposure studies, regression mapping, etc. But, they also emphasize the need for repeated measurements and careful processing and interpretation of the data.

  5. Point Cloud Refinement with a Target-Free Intrinsic Calibration of a Mobile Multi-Beam LIDAR System

    NASA Astrophysics Data System (ADS)

    Nouiraa, H.; Deschaud, J. E.; Goulettea, F.

    2016-06-01

    LIDAR sensors are widely used in mobile mapping systems. The mobile mapping platforms allow to have fast acquisition in cities for example, which would take much longer with static mapping systems. The LIDAR sensors provide reliable and precise 3D information, which can be used in various applications: mapping of the environment; localization of objects; detection of changes. Also, with the recent developments, multi-beam LIDAR sensors have appeared, and are able to provide a high amount of data with a high level of detail. A mono-beam LIDAR sensor mounted on a mobile platform will have an extrinsic calibration to be done, so the data acquired and registered in the sensor reference frame can be represented in the body reference frame, modeling the mobile system. For a multibeam LIDAR sensor, we can separate its calibration into two distinct parts: on one hand, we have an extrinsic calibration, in common with mono-beam LIDAR sensors, which gives the transformation between the sensor cartesian reference frame and the body reference frame. On the other hand, there is an intrinsic calibration, which gives the relations between the beams of the multi-beam sensor. This calibration depends on a model given by the constructor, but the model can be non optimal, which would bring errors and noise into the acquired point clouds. In the litterature, some optimizations of the calibration parameters are proposed, but need a specific routine or environment, which can be constraining and time-consuming. In this article, we present an automatic method for improving the intrinsic calibration of a multi-beam LIDAR sensor, the Velodyne HDL-32E. The proposed approach does not need any calibration target, and only uses information from the acquired point clouds, which makes it simple and fast to use. Also, a corrected model for the Velodyne sensor is proposed. An energy function which penalizes points far from local planar surfaces is used to optimize the different proposed parameters for the corrected model, and we are able to give a confidence value for the calibration parameters found. Optimization results on both synthetic and real data are presented.

  6. Mobile devices, Virtual Reality, Augmented Reality, and Digital Geoscience Education.

    NASA Astrophysics Data System (ADS)

    Crompton, H.; De Paor, D. G.; Whitmeyer, S. J.; Bentley, C.

    2016-12-01

    Mobile devices are playing an increasing role in geoscience education. Affordances include instructor-student communication and class management in large classrooms, virtual and augmented reality applications, digital mapping, and crowd-sourcing. Mobile technologies have spawned the sub field of mobile learning or m-learning, which is defined as learning across multiple contexts, through social and content interactions. Geoscientists have traditionally engaged in non-digital mobile learning via fieldwork, but digital devices are greatly extending the possibilities, especially for non-traditional students. Smartphones and tablets are the most common devices but smart glasses such as Pivothead enable live streaming of a first-person view (see for example, https://youtu.be/gWrDaYP5w58). Virtual reality headsets such as Google Cardboard create an immersive virtual field experience and digital imagery such as GigaPan and Structure from Motion enables instructors and/or students to create virtual specimens and outcrops that are sharable across the globe. Whereas virtual reality (VR) replaces the real world with a virtual representation, augmented reality (AR) overlays digital data on the live scene visible to the user in real time. We have previously reported on our use of the AR application called FreshAiR for geoscientific "egg hunts." The popularity of Pokémon Go demonstrates the potential of AR for mobile learning in the geosciences.

  7. Designing a Sustainable Noise Mapping System Based on Citizen Scientists Smartphone Sensor Data.

    PubMed

    Shim, Eunyoung; Kim, Dohyeong; Woo, Hyekyung; Cho, Youngtae

    2016-01-01

    In this study, we attempted to assess the feasibility of collecting population health data via mobile devices. Specifically, we constructed noise maps based on sound information monitored by individuals' smartphones. We designed a sustainable way of creating noise maps that can overcome the shortcomings of existing station-based noise-monitoring systems. Three hundred and nine Seoul residents aged 20-49 years who used Android-based smartphones were recruited, and the subjects installed a special application that we developed for this study. This application collected information on sound and geographical location every 10 min for 7 days. Using GIS, we were able to construct various types of noise maps of Seoul (e.g., daytime/nighttime and weekdays/weekends) using the information on sound and geographical location obtained via the users' smartphones. Despite the public health importance of noise management, a number of countries and cities lack a sustainable system to monitor noise. This pilot study showed the possibility of using the smartphones of citizen scientists as an economical and sustainable way of monitoring noise, particularly in an urban context in developing countries.

  8. Designing a Sustainable Noise Mapping System Based on Citizen Scientists Smartphone Sensor Data

    PubMed Central

    Shim, Eunyoung; Kim, Dohyeong; Woo, Hyekyung; Cho, Youngtae

    2016-01-01

    In this study, we attempted to assess the feasibility of collecting population health data via mobile devices. Specifically, we constructed noise maps based on sound information monitored by individuals’ smartphones. We designed a sustainable way of creating noise maps that can overcome the shortcomings of existing station-based noise-monitoring systems. Three hundred and nine Seoul residents aged 20–49 years who used Android-based smartphones were recruited, and the subjects installed a special application that we developed for this study. This application collected information on sound and geographical location every 10 min for 7 days. Using GIS, we were able to construct various types of noise maps of Seoul (e.g., daytime/nighttime and weekdays/weekends) using the information on sound and geographical location obtained via the users’ smartphones. Despite the public health importance of noise management, a number of countries and cities lack a sustainable system to monitor noise. This pilot study showed the possibility of using the smartphones of citizen scientists as an economical and sustainable way of monitoring noise, particularly in an urban context in developing countries. PMID:27626273

  9. Photogrammetric Applications of Immersive Video Cameras

    NASA Astrophysics Data System (ADS)

    Kwiatek, K.; Tokarczyk, R.

    2014-05-01

    The paper investigates immersive videography and its application in close-range photogrammetry. Immersive video involves the capture of a live-action scene that presents a 360° field of view. It is recorded simultaneously by multiple cameras or microlenses, where the principal point of each camera is offset from the rotating axis of the device. This issue causes problems when stitching together individual frames of video separated from particular cameras, however there are ways to overcome it and applying immersive cameras in photogrammetry provides a new potential. The paper presents two applications of immersive video in photogrammetry. At first, the creation of a low-cost mobile mapping system based on Ladybug®3 and GPS device is discussed. The amount of panoramas is much too high for photogrammetric purposes as the base line between spherical panoramas is around 1 metre. More than 92 000 panoramas were recorded in one Polish region of Czarny Dunajec and the measurements from panoramas enable the user to measure the area of outdoors (adverting structures) and billboards. A new law is being created in order to limit the number of illegal advertising structures in the Polish landscape and immersive video recorded in a short period of time is a candidate for economical and flexible measurements off-site. The second approach is a generation of 3d video-based reconstructions of heritage sites based on immersive video (structure from immersive video). A mobile camera mounted on a tripod dolly was used to record the interior scene and immersive video, separated into thousands of still panoramas, was converted from video into 3d objects using Agisoft Photoscan Professional. The findings from these experiments demonstrated that immersive photogrammetry seems to be a flexible and prompt method of 3d modelling and provides promising features for mobile mapping systems.

  10. A mobile mapping system for spatial information based on DGPS/EGIS

    NASA Astrophysics Data System (ADS)

    Pei, Ling; Wang, Qing; Gu, Juan

    2007-11-01

    With the rapid developments of mobile device and wireless communication, it brings a new challenge for acquiring the spatial information. A mobile mapping system based on differential global position system (DGPS) integrated with embedded geographic information system (EGIS) is designed. A mobile terminal adapts to various GPS differential environments such as single base mode and network GPS mode like Virtual Reference Station (VRS) and Master- Auxiliary Concept (MAC) by the mobile communication technology. The spatial information collected through DGPS is organized in an EGIS running in the embedded device. A set of mobile terminal in real-time DGPS based on GPRS adopting multithreading technique of serial port in manner of simulating overlapped I/O operating is developed, further more, the GPS message analysis and checkout based on Strategy Pattern for various receivers are included in the process of development. A mobile terminal accesses to the GPS network successfully by NTRIP (Networked Transport of RTCM via Internet Protocol) compliance. Finally, the accuracy and reliability of the mobile mapping system are proved by a lot of testing in 9 provinces all over the country.

  11. Location Privacy for Mobile Crowd Sensing through Population Mapping †

    PubMed Central

    Shin, Minho; Cornelius, Cory; Kapadia, Apu; Triandopoulos, Nikos; Kotz, David

    2015-01-01

    Opportunistic sensing allows applications to “task” mobile devices to measure context in a target region. For example, one could leverage sensor-equipped vehicles to measure traffic or pollution levels on a particular street or users' mobile phones to locate (Bluetooth-enabled) objects in their vicinity. In most proposed applications, context reports include the time and location of the event, putting the privacy of users at increased risk: even if identifying information has been removed from a report, the accompanying time and location can reveal sufficient information to de-anonymize the user whose device sent the report. We propose and evaluate a novel spatiotemporal blurring mechanism based on tessellation and clustering to protect users' privacy against the system while reporting context. Our technique employs a notion of probabilistic k-anonymity; it allows users to perform local blurring of reports efficiently without an online anonymization server before the data are sent to the system. The proposed scheme can control the degree of certainty in location privacy and the quality of reports through a system parameter. We outline the architecture and security properties of our approach and evaluate our tessellation and clustering algorithm against real mobility traces. PMID:26131676

  12. SLAM algorithm applied to robotics assistance for navigation in unknown environments

    PubMed Central

    2010-01-01

    Background The combination of robotic tools with assistance technology determines a slightly explored area of applications and advantages for disability or elder people in their daily tasks. Autonomous motorized wheelchair navigation inside an environment, behaviour based control of orthopaedic arms or user's preference learning from a friendly interface are some examples of this new field. In this paper, a Simultaneous Localization and Mapping (SLAM) algorithm is implemented to allow the environmental learning by a mobile robot while its navigation is governed by electromyographic signals. The entire system is part autonomous and part user-decision dependent (semi-autonomous). The environmental learning executed by the SLAM algorithm and the low level behaviour-based reactions of the mobile robot are robotic autonomous tasks, whereas the mobile robot navigation inside an environment is commanded by a Muscle-Computer Interface (MCI). Methods In this paper, a sequential Extended Kalman Filter (EKF) feature-based SLAM algorithm is implemented. The features correspond to lines and corners -concave and convex- of the environment. From the SLAM architecture, a global metric map of the environment is derived. The electromyographic signals that command the robot's movements can be adapted to the patient's disabilities. For mobile robot navigation purposes, five commands were obtained from the MCI: turn to the left, turn to the right, stop, start and exit. A kinematic controller to control the mobile robot was implemented. A low level behavior strategy was also implemented to avoid robot's collisions with the environment and moving agents. Results The entire system was tested in a population of seven volunteers: three elder, two below-elbow amputees and two young normally limbed patients. The experiments were performed within a closed low dynamic environment. Subjects took an average time of 35 minutes to navigate the environment and to learn how to use the MCI. The SLAM results have shown a consistent reconstruction of the environment. The obtained map was stored inside the Muscle-Computer Interface. Conclusions The integration of a highly demanding processing algorithm (SLAM) with a MCI and the communication between both in real time have shown to be consistent and successful. The metric map generated by the mobile robot would allow possible future autonomous navigation without direct control of the user, whose function could be relegated to choose robot destinations. Also, the mobile robot shares the same kinematic model of a motorized wheelchair. This advantage can be exploited for wheelchair autonomous navigation. PMID:20163735

  13. Mapping of unknown industrial plant using ROS-based navigation mobile robot

    NASA Astrophysics Data System (ADS)

    Priyandoko, G.; Ming, T. Y.; Achmad, M. S. H.

    2017-10-01

    This research examines how humans work with teleoperated unmanned mobile robot inspection in industrial plant area resulting 2D/3D map for further critical evaluation. This experiment focuses on two parts, the way human-robot doing remote interactions using robust method and the way robot perceives the environment surround as a 2D/3D perspective map. ROS (robot operating system) as a tool was utilized in the development and implementation during the research which comes up with robust data communication method in the form of messages and topics. RGBD SLAM performs the visual mapping function to construct 2D/3D map using Kinect sensor. The results showed that the mobile robot-based teleoperated system are successful to extend human perspective in term of remote surveillance in large area of industrial plant. It was concluded that the proposed work is robust solution for large mapping within an unknown construction building.

  14. Lessons from the pilot of a mobile application to map assistive technology suppliers in Africa.

    PubMed

    Visagie, Surona J; Matter, Rebecca; Kayange, George M; Chiwaula, Mussa; Harniss, Mark; Mji, Gubela; Scheffler, Elsje

    2018-01-01

    A pilot project to develop and implement a mobile smartphone application (App) that tracks and maps assistive technology (AT) availability in southern Africa was launched in Botswana in 2016. The App was developed and tested through an iterative process. The concept of the App (AT-Info-Map) was well received by most stakeholders within the pilot country, and broader networks. Several technical and logistical obstacles were encountered. These included high data costs; difficulty in accessing AT information from the public healthcare sector, the largest supplier of AT; and the high human resource demand of collecting and keeping up-to-date device-level information within a complex and fragmented supply sector that spans private, public and civil society entities. The challenges were dealt with by keeping the data burden low and eliminating product-level tracking. The App design was expanded to include disability services, contextually specific AT categories and make navigation more intuitive. Long-term sustainability strategies like generating funding through advertisements on the App or supplier usage fees must be explored. Outreach and sensitisation programmes about both the App and AT in general must be intensified. The project team must continually strengthen partnerships with private and public stakeholders to ensure ongoing project engagement. The lessons learnt might be of value to others who wish to embark on initiatives in AT and/or implement Apps in health or disability in southern Africa and in low-resourced settings around the world.

  15. Beta Testing StraboSpot: Perspectives on mobile field mapping and data collection

    NASA Astrophysics Data System (ADS)

    Bunse, E.; Graham, K. A.; Rufledt, C.; Walker, J. D.; Müller, A.; Tikoff, B.

    2017-12-01

    Geologic field mapping has recently transitioned away from traditional techniques (e.g. field notebooks, paper mapping, Brunton compasses) and towards mobile `app' mapping technology. The StraboSpot system (Strabo) is an open-source solution for collection and storage for geologic field, microstructural, and lab-based data. Strabo's mission is to "enable recording and sharing data within the geoscience community, encourage interdisciplinary research, and facilitate the investigation of scientific questions that cannot currently be addressed" (Walker et al., 2015). Several mobile application beta tests of the system, on both Android and Apple iOS platforms using smartphones and tablets, began in Summer 2016. Students at the 2016 and 2017 University of Kansas Field Camps used Strabo in place of ArcGIS for Desktop on Panasonic Toughbooks, to field map two study areas. Strabo was also field tested by students of graduate and undergraduate level for both geo/thermochronologic sample collection and reconnaissance mapping associated with regional tectonic analysis in California. Throughout this period of testing, the app was geared toward structural and tectonic geologic data collection, but is versatile enough for other communities to currently use and is expanding to accommodate the sedimentology and petrology communities. Overall, users in each of the beta tests acclimated quickly to using Strabo for field data collection. Some key advantages to using Strabo over traditional mapping methods are: (1) Strabo allows for consolidation of materials in the field; (2) helps students track their position in the field with integrated GPS; and (3) Strabo data is in a uniform format making it simple for geologists to collaborate. While traditional field methods are not likely to go out of style in the near future, Strabo acts as a bridge between professional and novice geologists by providing a tool that is intuitive on all levels of geological and technological experience and allows for more effective collaboration in the field. Walker, J. Douglas, et al. (2015), Development of Structural Geology and Tectonics Data System with Field and Lab Interface, Abstract IN21E-04 presented at 2015 Fall Meeting, AGU, San Francisco, Calif., 14-18 Dec.

  16. Voluntary Noise Mapping for Smart City

    NASA Astrophysics Data System (ADS)

    Poslončec-Petrić, V.; Vuković, V.; Frangeš, S.; Bačić, Ž.

    2016-09-01

    One of the main concept objectives of smart cities is to create a quality living environment that is long-term sustainable and economically justified. In that context, modern cities are aware of the exposure to various forms of physical and non-physical pollution that needs to be remediated, eliminated or reduced. To achieve that it is necessary to quality determine the sources and reasons of each pollution. The most prominent examples of physical pollution that affects the quality of life of citizens in cities are light and noise pollution. Noise pollution or noise, is mostly the consequence of road and rail traffic in cities and it directly affects the health of citizens. Traffic control, reduction of peak congestion, dispersion and traffic redirection or building protective barriers, are ways that cities use to reduce the amount of noise or its effects. To make these measures efficient it is necessary to obtain the information related to the level of noise in certain areas, streets, cities. To achieve this, smart cities use noise mapping. The city of Zagreb since 2012, participates in the i-SCOPE project (interoperable Smart City services trough Open Platform for urban Ecosystems). i-SCOPE delivers an open platform on top of which it develops, three "smart city" services: optimization of energy consumption through a service for accurate assessment of solar energy potential and energy loss at building level, environmental monitoring through a real-time environmental noise mapping service leveraging citizen's involvement will who act as distributed sensors city-wide measuring noise levels through an application on their mobile phones and improved inclusion and personal mobility of aging and diversely able citizens through an accurate personal routing service. The students of Faculty of Geodesy University of Zagreb, who enrolled in the course Thematic Cartography, were actively involved in the voluntary data acquisition in order to monitor the noise in real time. In this paper are presented the voluntary acquisitioned data of noise level measurement in Zagreb through a mobile application named Noise Tube, which were used as the basis for creating the dynamic noise map. The paper describes how citizens through voluntarily collected geoinformation can directly influence decision-making in their community, which certainly affects the quality of life.

  17. Decision Support System for the Response to Infectious Disease Emergencies Based on WebGIS and Mobile Services in China

    PubMed Central

    Gao, Su-qing; Wang, Zhen; Gao, Hong-wei; Liu, Peng; Wang, Ze-rui; Li, Yan-li; Zhu, Xu-guang; Li, Xin-lou; Xu, Bo; Li, Yin-jun; Yang, Hong; de Vlas, Sake J.; Shi, Tao-xing; Cao, Wu-chun

    2013-01-01

    Background For years, emerging infectious diseases have appeared worldwide and threatened the health of people. The emergence and spread of an infectious-disease outbreak are usually unforeseen, and have the features of suddenness and uncertainty. Timely understanding of basic information in the field, and the collection and analysis of epidemiological information, is helpful in making rapid decisions and responding to an infectious-disease emergency. Therefore, it is necessary to have an unobstructed channel and convenient tool for the collection and analysis of epidemiologic information in the field. Methodology/Principal Findings Baseline information for each county in mainland China was collected and a database was established by geo-coding information on a digital map of county boundaries throughout the country. Google Maps was used to display geographic information and to conduct calculations related to maps, and the 3G wireless network was used to transmit information collected in the field to the server. This study established a decision support system for the response to infectious-disease emergencies based on WebGIS and mobile services (DSSRIDE). The DSSRIDE provides functions including data collection, communication and analyses in real time, epidemiological detection, the provision of customized epidemiological questionnaires and guides for handling infectious disease emergencies, and the querying of professional knowledge in the field. These functions of the DSSRIDE could be helpful for epidemiological investigations in the field and the handling of infectious-disease emergencies. Conclusions/Significance The DSSRIDE provides a geographic information platform based on the Google Maps application programming interface to display information of infectious disease emergencies, and transfers information between workers in the field and decision makers through wireless transmission based on personal computers, mobile phones and personal digital assistants. After a 2-year practice and application in infectious disease emergencies, the DSSRIDE is becoming a useful platform and is a useful tool for investigations in the field carried out by response sections and individuals. The system is suitable for use in developing countries and low-income districts. PMID:23372780

  18. Processable Data Making in the Remote Server Sent by Android Phone as a GIS Data Collecting Tool

    NASA Astrophysics Data System (ADS)

    Karaagac, Abdullah; Bostancı, Bulent

    2016-04-01

    Mobile technologies are improving and getting cheaper everyday. Not only smart phones are improved much but also new types of mobile applications and sensors come with the smart phone together. Maps and navigation applications one of the most popular types of applications on these types. Most of these applications uses location services including GNSS, Wi Fi, cellular data and beacon services. Although these coordinate precision not very high, it is appropriate for many applications to utilize. Android is a mobile operating system based on Linux Kernel. It is compatible for varies mobile devices like smart phones, tablets, smart TV's, wearable technologies etc. Android has large capability for application development by using the open source libraries and device sensors like gyroscope, GNSS etc. Android Studio is the most popular integrated development environment (IDE) for Android devices, mainly developing by Google. It had been announced on May 16, 2013 at Google I/O conference. Android Studio is built upon Gradle architecture which is written in Java language. SQLite is a relational database operating system which has so common usage for mobile devices. It developed by using C programming library. It is mostly used via embedding into a software or application. It supports many operating systems including Android. Remote servers can be in several forms from high complexity to simplicity. For this project we will use a open source quad core board computer named Raspberry Pi 2. This device includes 900 MHz ARMv7 compatible quad core CPU, VideoCore IV GPU and 1 GB RAM. Although Raspberry Pi 2's main operating system is Raspbian, we use Debian which are both Linux based operating systems. Raspberry is compatible for many programming language, however some languages are optimized for this device. These are Python, Java, C, C++, Ruby, Perl and Squeak Smalltalk. In this paper, a mobile application will be developed to send coordinate and string data to a SQL database embedded to a remote server. The application will run on Android Operating System running mobile phone. The application will get the location information from the GNSS and cellular data. The user will enter the other information individually. These information will send by clicking a button to remote server which runs SQLite. All these informations will be convertible to any type of measure like type of coordinates could be converted from WGS 84 to ITRF.

  19. 3D indoor modeling using a hand-held embedded system with multiple laser range scanners

    NASA Astrophysics Data System (ADS)

    Hu, Shaoxing; Wang, Duhu; Xu, Shike

    2016-10-01

    Accurate three-dimensional perception is a key technology for many engineering applications, including mobile mapping, obstacle detection and virtual reality. In this article, we present a hand-held embedded system designed for constructing 3D representation of structured indoor environments. Different from traditional vehicle-borne mobile mapping methods, the system presented here is capable of efficiently acquiring 3D data while an operator carrying the device traverses through the site. It consists of a simultaneous localization and mapping(SLAM) module, a 3D attitude estimate module and a point cloud processing module. The SLAM is based on a scan matching approach using a modern LIDAR system, and the 3D attitude estimate is generated by a navigation filter using inertial sensors. The hardware comprises three 2D time-flight laser range finders and an inertial measurement unit(IMU). All the sensors are rigidly mounted on a body frame. The algorithms are developed on the frame of robot operating system(ROS). The 3D model is constructed using the point cloud library(PCL). Multiple datasets have shown robust performance of the presented system in indoor scenarios.

  20. Arctic Research Mapping Application (ARMAP): visualize project-level information for U.S. funded research in the Arctic

    NASA Astrophysics Data System (ADS)

    Kassin, A.; Cody, R. P.; Barba, M.; Escarzaga, S. M.; Score, R.; Dover, M.; Gaylord, A. G.; Manley, W. F.; Habermann, T.; Tweedie, C. E.

    2015-12-01

    The Arctic Research Mapping Application (ARMAP; http://armap.org/) is a suite of online applications and data services that support Arctic science by providing project tracking information (who's doing what, when and where in the region) for United States Government funded projects. In collaboration with 17 research agencies, project locations are displayed in a visually enhanced web mapping application. Key information about each project is presented along with links to web pages that provide additional information. The mapping application includes new reference data layers and an updated ship tracks layer. Visual enhancements are achieved by redeveloping the front-end from FLEX to HTML5 and JavaScript, which now provide access to mobile users utilizing tablets and cell phone devices. New tools have been added that allow users to navigate, select, draw, measure, print, use a time slider, and more. Other module additions include a back-end Apache SOLR search platform that provides users with the capability to perform advance searches throughout the ARMAP database. Furthermore, a new query builder interface has been developed in order to provide more intuitive controls to generate complex queries. These improvements have been made to increase awareness of projects funded by numerous entities in the Arctic, enhance coordination for logistics support, help identify geographic gaps in research efforts and potentially foster more collaboration amongst researchers working in the region. Additionally, ARMAP can be used to demonstrate past, present, and future research efforts supported by the U.S. Government.

  1. Mobile mapping of sporting event spectators using bluetooth sensors: tour of flanders 2011.

    PubMed

    Versichele, Mathias; Neutens, Tijs; Goudeseune, Stephanie; van Bossche, Frederik; van de Weghe, Nico

    2012-10-22

    Accurate spatiotemporal information on crowds is a necessity for a better management in general and for the mitigation of potential security risks. The large numbers of individuals involved and their mobility, however, make generation of this information non-trivial. This paper proposes a novel methodology to estimate and map crowd sizes using mobile Bluetooth sensors and examines to what extent this methodology represents a valuable alternative to existing traditional crowd density estimation methods. The proposed methodology is applied in a unique case study that uses Bluetooth technology for the mobile mapping of spectators of the Tour of Flanders 2011 road cycling race. The locations of nearly 16,000 cell phones of spectators along the race course were registered and detailed views of the spatiotemporal distribution of the crowd were generated. Comparison with visual head counts from camera footage delivered a detection ratio of 13.0 ± 2.3%, making it possible to estimate the crowd size. To our knowledge, this is the first study that uses mobile Bluetooth sensors to count and map a crowd over space and time.

  2. Mobile Mapping of Sporting Event Spectators Using Bluetooth Sensors: Tour of Flanders 2011

    PubMed Central

    Versichele, Mathias; Neutens, Tijs; Goudeseune, Stephanie; van Bossche, Frederik; van de Weghe, Nico

    2012-01-01

    Accurate spatiotemporal information on crowds is a necessity for a better management in general and for the mitigation of potential security risks. The large numbers of individuals involved and their mobility, however, make generation of this information non-trivial. This paper proposes a novel methodology to estimate and map crowd sizes using mobile Bluetooth sensors and examines to what extent this methodology represents a valuable alternative to existing traditional crowd density estimation methods. The proposed methodology is applied in a unique case study that uses Bluetooth technology for the mobile mapping of spectators of the Tour of Flanders 2011 road cycling race. The locations of nearly 16,000 cell phones of spectators along the race course were registered and detailed views of the spatiotemporal distribution of the crowd were generated. Comparison with visual head counts from camera footage delivered a detection ratio of 13.0 ± 2.3%, making it possible to estimate the crowd size. To our knowledge, this is the first study that uses mobile Bluetooth sensors to count and map a crowd over space and time. PMID:23202044

  3. Development and Evaluation of Real-Time Volumetric Compton Gamma-Ray Imaging

    NASA Astrophysics Data System (ADS)

    Barnowski, Ross Wegner

    An approach to gamma-ray imaging has been developed that enables near real-time volumetric (3D) imaging of unknown environments thus improving the utility of gamma-ray imaging for source-search and radiation mapping applications. The approach, herein dubbed scene data fusion (SDF), is based on integrating mobile radiation imagers with real time tracking and scene reconstruction algorithms to enable a mobile mode of operation and 3D localization of gamma-ray sources. The real-time tracking allows the imager to be moved throughout the environment or around a particular object of interest, obtaining the multiple perspectives necessary for standoff 3D imaging. A 3D model of the scene, provided in real-time by a simultaneous localization and mapping (SLAM) algorithm, can be incorporated into the image reconstruction reducing the reconstruction time and improving imaging performance. The SDF concept is demonstrated in this work with a Microsoft Kinect RGB-D sensor, a real-time SLAM solver, and two different mobile gamma-ray imaging platforms. The first is a cart-based imaging platform known as the Volumetric Compton Imager (VCI), comprising two 3D position-sensitive high purity germanium (HPGe) detectors, exhibiting excellent gamma-ray imaging characteristics, but with limited mobility due to the size and weight of the cart. The second system is the High Efficiency Multimodal Imager (HEMI) a hand-portable gamma-ray imager comprising 96 individual cm3 CdZnTe crystals arranged in a two-plane, active-mask configuration. The HEMI instrument has poorer energy and angular resolution than the VCI, but is truly hand-portable, allowing the SDF concept to be tested in multiple environments and for more challenging imaging scenarios. An iterative algorithm based on Compton kinematics is used to reconstruct the gamma-ray source distribution in all three spatial dimensions. Each of the two mobile imaging systems are used to demonstrate SDF for a variety of scenarios, including general search and mapping scenarios with several point gamma-ray sources over the range of energies relevant for Compton imaging. More specific imaging scenarios are also addressed, including directed search and object interrogation scenarios. Finally, the volumetric image quality is quantitatively investigated with respect to the number of Compton events acquired during a measurement, the list-mode uncertainty of the Compton cone data, and the uncertainty in the pose estimate from the real-time tracking algorithm. SDF advances the real-world applicability of gamma-ray imaging for many search, mapping, and verification scenarios by improving the tractability of the gamma-ray image reconstruction and providing context for the 3D localization of gamma-ray sources within the environment in real-time.

  4. Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping.

    PubMed

    Cui, Tingting; Ji, Shunping; Shan, Jie; Gong, Jianya; Liu, Kejian

    2016-12-31

    For multi-sensor integrated systems, such as the mobile mapping system (MMS), data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable.

  5. Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping

    PubMed Central

    Cui, Tingting; Ji, Shunping; Shan, Jie; Gong, Jianya; Liu, Kejian

    2016-01-01

    For multi-sensor integrated systems, such as the mobile mapping system (MMS), data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable. PMID:28042855

  6. Wireless technology applied to GIS

    NASA Astrophysics Data System (ADS)

    Casademont, Jordi; Lopez-Aguilera, Elena; Paradells, Josep; Rojas, Alfonso; Calveras, Anna; Barceló, Francisco; Cotrina, Josep

    2004-07-01

    At present, there is a growing interest in wireless applications, due to the fact that the technology begins to support them at reasonable costs. In this paper, we present the technology currently available for use in wireless environments, focusing on Geographic Information Systems. As an example, we present a newly developed platform for the commercialization of advanced geographical information services for use in portable devices. This platform uses available mobile telephone networks and wireless local area networks, but it is completely scalable to new technologies such as third generation mobile networks. Users access the service using a vector map player that runs on a Personal Digital Assistant with wireless access facilities and a Global Positioning System receiver. Before accessing the information, the player will request authorization from the server and download the requested map from it, if necessary. The platform also includes a system for improving Global Positioning System localization with the Real Time Differential Global Positioning System, which uses short GSM messages as the transmission medium.

  7. Robust, Efficient Depth Reconstruction With Hierarchical Confidence-Based Matching.

    PubMed

    Sun, Li; Chen, Ke; Song, Mingli; Tao, Dacheng; Chen, Gang; Chen, Chun

    2017-07-01

    In recent years, taking photos and capturing videos with mobile devices have become increasingly popular. Emerging applications based on the depth reconstruction technique have been developed, such as Google lens blur. However, depth reconstruction is difficult due to occlusions, non-diffuse surfaces, repetitive patterns, and textureless surfaces, and it has become more difficult due to the unstable image quality and uncontrolled scene condition in the mobile setting. In this paper, we present a novel hierarchical framework with multi-view confidence-based matching for robust, efficient depth reconstruction in uncontrolled scenes. Particularly, the proposed framework combines local cost aggregation with global cost optimization in a complementary manner that increases efficiency and accuracy. A depth map is efficiently obtained in a coarse-to-fine manner by using an image pyramid. Moreover, confidence maps are computed to robustly fuse multi-view matching cues, and to constrain the stereo matching on a finer scale. The proposed framework has been evaluated with challenging indoor and outdoor scenes, and has achieved robust and efficient depth reconstruction.

  8. DIY-style GIS service in mobile navigation system integrated with web and wireless GIS

    NASA Astrophysics Data System (ADS)

    Yan, Yongbin; Wu, Jianping; Fan, Caiyou; Wang, Minqi; Dai, Sheng

    2007-06-01

    Mobile navigation system based on handheld device can not only provide basic GIS services, but also enable these GIS services to be provided without location limit, to be more instantly interacted between users and devices. However, we still see that most navigation systems have common defects on user experience like limited map format, few map resources, and unable location share. To overcome the above defects, we propose DIY-style GIS service which provide users a more free software environment and allow uses to customize their GIS services. These services include defining geographical coordinate system of maps which helps to hugely enlarge the map source, editing vector feature, related property information and hotlink images, customizing covered area of download map via General Packet Radio Service (GPRS), and sharing users' location information via SMS (Short Message Service) which establishes the communication between users who needs GIS services. The paper introduces the integration of web and wireless GIS service in a mobile navigation system and presents an implementation sample of a DIY-Style GIS service in a mobile navigation system.

  9. Visualizing Mobility of Public Transportation System.

    PubMed

    Zeng, Wei; Fu, Chi-Wing; Arisona, Stefan Müller; Erath, Alexander; Qu, Huamin

    2014-12-01

    Public transportation systems (PTSs) play an important role in modern cities, providing shared/massive transportation services that are essential for the general public. However, due to their increasing complexity, designing effective methods to visualize and explore PTS is highly challenging. Most existing techniques employ network visualization methods and focus on showing the network topology across stops while ignoring various mobility-related factors such as riding time, transfer time, waiting time, and round-the-clock patterns. This work aims to visualize and explore passenger mobility in a PTS with a family of analytical tasks based on inputs from transportation researchers. After exploring different design alternatives, we come up with an integrated solution with three visualization modules: isochrone map view for geographical information, isotime flow map view for effective temporal information comparison and manipulation, and OD-pair journey view for detailed visual analysis of mobility factors along routes between specific origin-destination pairs. The isotime flow map linearizes a flow map into a parallel isoline representation, maximizing the visualization of mobility information along the horizontal time axis while presenting clear and smooth pathways from origin to destinations. Moreover, we devise several interactive visual query methods for users to easily explore the dynamics of PTS mobility over space and time. Lastly, we also construct a PTS mobility model from millions of real passenger trajectories, and evaluate our visualization techniques with assorted case studies with the transportation researchers.

  10. Evaluation of a HDR image sensor with logarithmic response for mobile video-based applications

    NASA Astrophysics Data System (ADS)

    Tektonidis, Marco; Pietrzak, Mateusz; Monnin, David

    2017-10-01

    The performance of mobile video-based applications using conventional LDR (Low Dynamic Range) image sensors highly depends on the illumination conditions. As an alternative, HDR (High Dynamic Range) image sensors with logarithmic response are capable to acquire illumination-invariant HDR images in a single shot. We have implemented a complete image processing framework for a HDR sensor, including preprocessing methods (nonuniformity correction (NUC), cross-talk correction (CTC), and demosaicing) as well as tone mapping (TM). We have evaluated the HDR sensor for video-based applications w.r.t. the display of images and w.r.t. image analysis techniques. Regarding the display we have investigated the image intensity statistics over time, and regarding image analysis we assessed the number of feature correspondences between consecutive frames of temporal image sequences. For the evaluation we used HDR image data recorded from a vehicle on outdoor or combined outdoor/indoor itineraries, and we performed a comparison with corresponding conventional LDR image data.

  11. Performance enhancement of wireless mobile adhoc networks through improved error correction and ICI cancellation

    NASA Astrophysics Data System (ADS)

    Sabir, Zeeshan; Babar, M. Inayatullah; Shah, Syed Waqar

    2012-12-01

    Mobile adhoc network (MANET) refers to an arrangement of wireless mobile nodes that have the tendency of dynamically and freely self-organizing into temporary and arbitrary network topologies. Orthogonal frequency division multiplexing (OFDM) is the foremost choice for MANET system designers at the Physical Layer due to its inherent property of high data rate transmission that corresponds to its lofty spectrum efficiency. The downside of OFDM includes its sensitivity to synchronization errors (frequency offsets and symbol time). Most of the present day techniques employing OFDM for data transmission support mobility as one of the primary features. This mobility causes small frequency offsets due to the production of Doppler frequencies. It results in intercarrier interference (ICI) which degrades the signal quality due to a crosstalk between the subcarriers of OFDM symbol. An efficient frequency-domain block-type pilot-assisted ICI mitigation scheme is proposed in this article which nullifies the effect of channel frequency offsets from the received OFDM symbols. Second problem addressed in this article is the noise effect induced by different sources into the received symbol increasing its bit error rate and making it unsuitable for many applications. Forward-error-correcting turbo codes have been employed into the proposed model which adds redundant bits into the system which are later used for error detection and correction purpose. At the receiver end, maximum a posteriori (MAP) decoding algorithm is implemented using two component MAP decoders. These decoders tend to exchange interleaved extrinsic soft information among each other in the form of log likelihood ratio improving the previous estimate regarding the decoded bit in each iteration.

  12. Long-Term Simultaneous Localization and Mapping in Dynamic Environments

    DTIC Science & Technology

    2015-01-01

    core competencies required for autonomous mobile robotics is the ability to use sensors to perceive the environment. From this noisy sensor data, the...and mapping (SLAM), is a prerequisite for almost all higher-level autonomous behavior in mobile robotics. By associating the robot???s sensory...distributed stochastic neighbor embedding x ABSTRACT One of the core competencies required for autonomous mobile robotics is the ability to use sensors

  13. Feasibility of smartphone application and social media intervention on breast cancer survivors' health outcomes.

    PubMed

    Pope, Zachary; Lee, Jung Eun; Zeng, Nan; Lee, Hee Yun; Gao, Zan

    2018-02-17

    Breast cancer survivors are at risk for poor health, with physical activity a possible treatment. Little research has examined how technology might promote breast cancer survivor physical activity or health. The aim of this study is to investigate the feasibility of employing a commercially available mobile health application- and social media-based health education intervention to improve breast cancer survivor physical activity or health.Ten breast cancer survivors (X̅ age = 45.80 ± 10.23 years; X̅ weight = 79.51 ± 20.85 kg) participated in this 10-week single-group pilot study from 2015 to 2016. Participants downloaded the MapMyFitness application, documented all physical activity with MapMyFitness, and were enrolled in a Social Cognitive Theory-based, Facebook-delivered health education intervention. Objectively measured physical activity, weight or body composition, cardiovascular fitness, psychosocial constructs, and quality of life indices were measured at baseline and 10 weeks. Intervention use and acceptability was evaluated during and following the intervention. Descriptive statistics were calculated for all study outcomes, with qualitative analyses performed regarding use and acceptability. At postintervention, average daily moderate-to-vigorous physical activity and steps increased by 2.6 min and 1,657, respectively, with notable decreases in weight (2.4 kg) and body fat percentage (2.3%). Physical activity-related social support and ability to engage in social roles or activity demonstrated the greatest improvements among all psychosocial and quality of life indices, respectively. Participants enjoyed the feedback and tracking features of MapMyFitness, with most finding the Facebook component helpful. All participants recommended the intervention for future use.Physical activity interventions combining commercially available mobile health applications and theoretically based social media-delivered health interventions may promote certain physiological, psychosocial, and quality of life outcomes among breast cancer survivors. Larger samples and randomized studies are warranted.

  14. Environmental Monitoring and Characterization of Radiation Sources on UF Campus Using a Large Volume NaI Detector

    NASA Astrophysics Data System (ADS)

    Bruner, Jesse A.; Gardiner, Hannah E.; Jordan, Kelly A.; Baciak, James E.

    2016-09-01

    Environmental radiation surveys are important for applications such as safety and regulations. This is especially true for areas exposed to emissions from nuclear reactors, such as the University of Florida Training Reactor (UFTR). At the University of Florida, surveys are performed using the RSX-1 NaI detector, developed by Radiation Solutions Inc. The detector uses incoming gamma rays and an Advanced Digital Spectrometer module to produce a linear energy spectrum. These spectra can then be analyzed in real time with a personal computer using the built in software, RadAssist. We report on radiation levels around the University of Florida campus using two mobile detection platforms, car-borne and cart-borne. The car-borne surveys provide a larger, broader map of campus radiation levels. On the other hand, cart-borne surveys provide a more detailed radiation map because of its ability to reach places on campus cars cannot go. Throughout the survey data, there are consistent radon decay product energy peaks in addition to other sources such as medical I-131 found in a large crowd of people. Finally, we investigate further applications of this mobile detection platform, such as tracking the Ar-41 plume emitted from the UFTR and detection of potential environmental hazards.

  15. Mobile robot sense net

    NASA Astrophysics Data System (ADS)

    Konolige, Kurt G.; Gutmann, Steffen; Guzzoni, Didier; Ficklin, Robert W.; Nicewarner, Keith E.

    1999-08-01

    Mobile robot hardware and software is developing to the point where interesting applications for groups of such robots can be contemplated. We envision a set of mobots acting to map and perform surveillance or other task within an indoor environment (the Sense Net). A typical application of the Sense Net would be to detect survivors in buildings damaged by earthquake or other disaster, where human searchers would be put a risk. As a team, the Sense Net could reconnoiter a set of buildings faster, more reliably, and more comprehensibly than an individual mobot. The team, for example, could dynamically form subteams to perform task that cannot be done by individual robots, such as measuring the range to a distant object by forming a long baseline stereo sensor form a pari of mobots. In addition, the team could automatically reconfigure itself to handle contingencies such as disabled mobots. This paper is a report of our current progress in developing the Sense Net, after the first year of a two-year project. In our approach, each mobot has sufficient autonomy to perform several tasks, such as mapping unknown areas, navigating to specific positions, and detecting, tracking, characterizing, and classifying human and vehicular activity. We detail how some of these tasks are accomplished, and how the mobot group is tasked.

  16. Assessing the quality of open spatial data for mobile location-based services research and applications

    NASA Astrophysics Data System (ADS)

    Ciepłuch, C.; Mooney, P.; Jacob, R.; Zheng, J.; Winstanely, A. C.

    2011-12-01

    New trends in GIS such as Volunteered Geographical Information (VGI), Citizen Science, and Urban Sensing, have changed the shape of the geoinformatics landscape. The OpenStreetMap (OSM) project provided us with an exciting, evolving, free and open solution as a base dataset for our geoserver and spatial data provider for our research. OSM is probably the best known and best supported example of VGI and user generated spatial content on the Internet. In this paper we will describe current results from the development of quality indicators for measures for OSM data. Initially we have analysed the Ireland OSM data in grid cells (5km) to gather statistical data about the completeness, accuracy, and fitness for purpose of the underlying spatial data. This analysis included: density of user contributions, spatial density of points and polygons, types of tags and metadata used, dominant contributors in a particular area or for a particular geographic feature type, etc. There greatest OSM activity and spatial data density is highly correlated with centres of large population. The ability to quantify and assess if VGI, such as OSM, is of sufficient quality for mobile mapping applications and Location-based services is critical to the future success of VGI as a spatial data source for these technologies.

  17. Developing an eBook-Integrated High-Fidelity Mobile App Prototype for Promoting Child Motor Skills and Taxonomically Assessing Children's Emotional Responses Using Face and Sound Topology.

    PubMed

    Brown, William; Liu, Connie; John, Rita Marie; Ford, Phoebe

    2014-01-01

    Developing gross and fine motor skills and expressing complex emotion is critical for child development. We introduce "StorySense", an eBook-integrated mobile app prototype that can sense face and sound topologies and identify movement and expression to promote children's motor skills and emotional developmental. Currently, most interactive eBooks on mobile devices only leverage "low-motor" interaction (i.e. tapping or swiping). Our app senses a greater breath of motion (e.g. clapping, snapping, and face tracking), and dynamically alters the storyline according to physical responses in ways that encourage the performance of predetermined motor skills ideal for a child's gross and fine motor development. In addition, our app can capture changes in facial topology, which can later be mapped using the Facial Action Coding System (FACS) for later interpretation of emotion. StorySense expands the human computer interaction vocabulary for mobile devices. Potential clinical applications include child development, physical therapy, and autism.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Derr; Milos Manic

    Location Based Services (LBS), context aware applications, and people and object tracking depend on the ability to locate mobile devices, also known as localization, in the wireless landscape. Localization enables a diverse set of applications that include, but are not limited to, vehicle guidance in an industrial environment, security monitoring, self-guided tours, personalized communications services, resource tracking, mobile commerce services, guiding emergency workers during fire emergencies, habitat monitoring, environmental surveillance, and receiving alerts. This paper presents a new neural network approach (LENSR) based on a competitive topological Counter Propagation Network (CPN) with k-nearest neighborhood vector mapping, for indoor location estimationmore » based on received signal strength. The advantage of this approach is both speed and accuracy. The tested accuracy of the algorithm was 90.6% within 1 meter and 96.4% within 1.5 meters. Several approaches for location estimation using WLAN technology were reviewed for comparison of results.« less

  19. The influence of urban development and social mobility on socioeconomic level: The application of GIS on urban ecosystems

    NASA Astrophysics Data System (ADS)

    Suhaili Mansor, Nur; Zulhaidi Mohd Shafri, Helmi; Mansor, Shattri; Paradhan, Biswajeet

    2014-06-01

    Specifically, the integration between social sciences and natural science are fundamental in our understanding of the economic, social and technological transformations that have drastically changed the society. This study will be based on the municipality of Sungai Petani, Kedah as it has been most influenced by urbanization and urban development. Urban development in Sungai Petani is closely associated with a tremendous increase in demand for land, which is highly related to population growth, human movement and their social mobility. The qualitative case study taken will rely on the visual interpretation technique that would allow the researcher to develop a map of urban changes detection. The potential application of GIS information to estimate socioeconomic indicators and the modelling of socio-economic activities that are explored in this study is hoped to increase further our understanding of the impacts of development and urbanization on social life.

  20. Seabed maps showing topography, ruggedness, backscatter intensity, sediment mobility, and the distribution of geologic substrates in Quadrangle 6 of the Stellwagen Bank National Marine Sanctuary Region offshore of Boston, Massachusetts

    USGS Publications Warehouse

    Valentine, Page C.; Gallea, Leslie B.

    2015-11-10

    The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration's National Marine Sanctuary Program, has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The area is approximately 3,700 square kilometers (km2) and is subdivided into 18 quadrangles. Seven maps, at a scale of 1:25,000, of quadrangle 6 (211 km2) depict seabed topography, backscatter, ruggedness, geology, substrate mobility, mud content, and areas dominated by fine-grained or coarse-grained sand. Interpretations of bathymetric and seabed backscatter imagery, photographs, video, and grain-size analyses were used to create the geology-based maps. In all, data from 420 stations were analyzed, including sediment samples from 325 locations. The seabed geology map shows the distribution of 10 substrate types ranging from boulder ridges to immobile, muddy sand to mobile, rippled sand. Mapped substrate types are defined on the basis of sediment grain-size composition, surface morphology, sediment layering, the mobility or immobility of substrate surfaces, and water depth range. This map series is intended to portray the major geological elements (substrates, topographic features, processes) of environments within quadrangle 6. Additionally, these maps will be the basis for the study of the ecological requirements of invertebrate and vertebrate species that utilize these substrates and guide seabed management in the region.

  1. Mobile Networked Sensors for Environmental Observatories

    NASA Astrophysics Data System (ADS)

    Kaiser, W. J.

    2005-12-01

    The development of the first embedded networked sensing (ENS) systems has been rapidly followed by their successful deployment for investigations in environments ranging from forest ecosystems, to rivers and lakes, and to subsurface soil observations. As ENS systems have been deployed, many technology challenges have been successfully addressed. For example, the requirements for local and remote data access and long operating life have been encountered and solved with a novel hierarchical network architecture and unique, low power platforms. This presentation will describe this progress and also the development and applications of a new ENS system addressing the most current challenges: A robotic ENS platform providing precise, reliable, and sustained observation capability with diverse sensing capabilities that may adapt to environmental dynamics. In the development of methods for autonomous observation by networked sensors, many applications have emerged requiring spatially and temporally intensive data sampling. Examples include the mapping of forest understory solar radiation, autonomous acquisition of imaging for plant phenology, and mapping of contaminant concentration in aquatic systems. Common to these applications is the need to actively and continuously configure the location and orientation of sensors for high fidelity mapping of the spatial distribution of phenomena. To address this primary environmental observation need, a new sensing platform, Networked Infomechanical Systems (NIMS) has been developed. NIMS relies on deployed aerial infrastructure (for example, cable suspension systems) in the natural environment to permit robotic devices to precisely and reliably move or remain stationary as required at elevations that may lie directly in or above the forest canopy or within a river or stream. NIMS systems are suspended to allow devices to translate a sensor node horizontally, and also to raise and lower devices. Examples of sensors that are now carried by NIMS include sensors for visible wavelength imaging, thermal infrared temperature mapping, microclimate, solar radiation, and for water quality and physical characterization of aquatic systems. NIMS devices include compact embedded computing, wireless network connectivity to surrounding static sensors, and remote Internet access. Exploiting this onboard computing allows NIMS devices to follow precise scanning protocols and self-calibration procedures. This presentation will describe permanent facility NIMS systems deployed at the James San Jacinto Mountains Reserve. Rapidly deployable NIMS permitting short term, highly mobile experiments will also be discussed. This includes the Thermal Mapper system that simultaneously samples plant physical structure (using laser position sensing and imaging) along with plant surface temperature (using high spatial resolution thermal infrared sensing). This compact system has been applied to the investigation of thermal characteristics of alpine plants in varying soil surfaces at the White Mountains Research Station. Other NIMS applications and results to be described include novel spatial mapping of nitrate concentration and other variables in flowing streams. Finally, this presentation will also address the many future applications of observatories linking investigators with remote mobile and static sensor networks. This research is supported by the NSF0331481 ITR program. Research has been performed in collaboration with R. Ambrose, K. Bible, D. Estrin, E. Graham, M. Hamilton, M. Hanson, T. Harmon, G. Pottie, P. Rundel, M. Srivastava, and G. Sukhatme

  2. Mapping of MPEG-4 decoding on a flexible architecture platform

    NASA Astrophysics Data System (ADS)

    van der Tol, Erik B.; Jaspers, Egbert G.

    2001-12-01

    In the field of consumer electronics, the advent of new features such as Internet, games, video conferencing, and mobile communication has triggered the convergence of television and computers technologies. This requires a generic media-processing platform that enables simultaneous execution of very diverse tasks such as high-throughput stream-oriented data processing and highly data-dependent irregular processing with complex control flows. As a representative application, this paper presents the mapping of a Main Visual profile MPEG-4 for High-Definition (HD) video onto a flexible architecture platform. A stepwise approach is taken, going from the decoder application toward an implementation proposal. First, the application is decomposed into separate tasks with self-contained functionality, clear interfaces, and distinct characteristics. Next, a hardware-software partitioning is derived by analyzing the characteristics of each task such as the amount of inherent parallelism, the throughput requirements, the complexity of control processing, and the reuse potential over different applications and different systems. Finally, a feasible implementation is proposed that includes amongst others a very-long-instruction-word (VLIW) media processor, one or more RISC processors, and some dedicated processors. The mapping study of the MPEG-4 decoder proves the flexibility and extensibility of the media-processing platform. This platform enables an effective HW/SW co-design yielding a high performance density.

  3. A Visual-Based Approach for Indoor Radio Map Construction Using Smartphones.

    PubMed

    Liu, Tao; Zhang, Xing; Li, Qingquan; Fang, Zhixiang

    2017-08-04

    Localization of users in indoor spaces is a common issue in many applications. Among various technologies, a Wi-Fi fingerprinting based localization solution has attracted much attention, since it can be easily deployed using the existing off-the-shelf mobile devices and wireless networks. However, the collection of the Wi-Fi radio map is quite labor-intensive, which limits its potential for large-scale application. In this paper, a visual-based approach is proposed for the construction of a radio map in anonymous indoor environments. This approach collects multi-sensor data, e.g., Wi-Fi signals, video frames, inertial readings, when people are walking in indoor environments with smartphones in their hands. Then, it spatially recovers the trajectories of people by using both visual and inertial information. Finally, it estimates the location of fingerprints from the trajectories and constructs a Wi-Fi radio map. Experiment results show that the average location error of the fingerprints is about 0.53 m. A weighted k-nearest neighbor method is also used to evaluate the constructed radio map. The average localization error is about 3.2 m, indicating that the quality of the constructed radio map is at the same level as those constructed by site surveying. However, this approach can greatly reduce the human labor cost, which increases the potential for applying it to large indoor environments.

  4. An ontology of and roadmap for mHealth research.

    PubMed

    Cameron, Joshua D; Ramaprasad, Arkalgud; Syn, Thant

    2017-04-01

    Mobile health or mHealth research has been growing exponentially in recent years. However, the research on mHealth has been ad-hoc and selective without a clear definition of the mHealth domain. Without a roadmap for research we may not realize the full potential of mHealth. In this paper, we present an ontological framework to define the mHealth domain and illuminate a roadmap. We present an ontology of mHealth. The ontology is developed by systematically deconstructing the domain into its primary dimensions and elements. We map the extent research on mHealth in 2014 onto the ontology and highlight the bright, light, and blind/blank spots which represent the emphasis of mHealth research. The emphases of mHealth research in 2014 are very uneven. There are a few bright spots and many light spots. The research predominantly focuses on individuals' use of mobile devices and applications to capture or obtain health-related data mostly to improve quality of care through mobile intervention. We argue that the emphases can be balanced in the roadmap for mHealth research. The ontological mapping plays an integral role in developing and maintaining the roadmap which can be updated periodically to continuously assess and guide mHealth research. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. An enhanced mobile-healthcare emergency system based on extended chaotic maps.

    PubMed

    Lee, Cheng-Chi; Hsu, Che-Wei; Lai, Yan-Ming; Vasilakos, Athanasios

    2013-10-01

    Mobile Healthcare (m-Healthcare) systems, namely smartphone applications of pervasive computing that utilize wireless body sensor networks (BSNs), have recently been proposed to provide smartphone users with health monitoring services and received great attentions. An m-Healthcare system with flaws, however, may leak out the smartphone user's personal information and cause security, privacy preservation, or user anonymity problems. In 2012, Lu et al. proposed a secure and privacy-preserving opportunistic computing (SPOC) framework for mobile-Healthcare emergency. The brilliant SPOC framework can opportunistically gather resources on the smartphone such as computing power and energy to process the computing-intensive personal health information (PHI) in case of an m-Healthcare emergency with minimal privacy disclosure. To balance between the hazard of PHI privacy disclosure and the necessity of PHI processing and transmission in m-Healthcare emergency, in their SPOC framework, Lu et al. introduced an efficient user-centric privacy access control system which they built on the basis of an attribute-based access control mechanism and a new privacy-preserving scalar product computation (PPSPC) technique. However, we found out that Lu et al.'s protocol still has some secure flaws such as user anonymity and mutual authentication. To fix those problems and further enhance the computation efficiency of Lu et al.'s protocol, in this article, the authors will present an improved mobile-Healthcare emergency system based on extended chaotic maps. The new system is capable of not only providing flawless user anonymity and mutual authentication but also reducing the computation cost.

  6. Combined EDL-Mobility Planning for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Kuwata, Yoshiaki; Balaram, Bob

    2011-01-01

    This paper presents an analysis framework for planetary missions that have coupled mobility and EDL (Entry-Descent-Landing) systems. Traditional systems engineering approaches to mobility missions such as MERs (Mars Exploration Rovers) and MSL (Mars Science Laboratory) independently study the EDL system and the mobility system, and does not perform explicit trade-off between them or risk minimization of the overall system. A major challenge is that EDL operation is inherently uncertain and its analysis results such as landing footprint are described using PDF (Probability Density Function). The proposed approach first builds a mobility cost-to-go map that encodes the driving cost of any point on the map to a science target location. The cost could include variety of metrics such as traverse distance, time, wheel rotation on soft soil, and closeness to hazards. It then convolves the mobility cost-to-go map with the landing PDF given by the EDL system, which provides a histogram of driving cost, which can be used to evaluate the overall risk of the mission. By capturing the coupling between EDL and mobility explicitly, this analysis framework enables quantitative tradeoff between EDL and mobility system performance, as well as the characterization of risks in a statistical way. The simulation results are presented with a realistic Mars terrain data

  7. Malaria diagnosis and mapping with m-Health and geographic information systems (GIS): evidence from Uganda.

    PubMed

    Larocca, Alberto; Moro Visconti, Roberto; Marconi, Michele

    2016-10-24

    Rural populations experience several barriers to accessing clinical facilities for malaria diagnosis. Increasing penetration of ICT and mobile-phones and subsequent m-Health applications can contribute overcoming such obstacles. GIS is used to evaluate the feasibility of m-Health technologies as part of anti-malaria strategies. This study investigates where in Uganda: (1) malaria affects the largest number of people; (2) the application of m-Health protocol based on the mobile network has the highest potential impact. About 75% of the population affected by Plasmodium falciparum malaria have scarce access to healthcare facilities. The introduction of m-Health technologies should be based on the 2G protocol, as 3G mobile network coverage is still limited. The western border and the central-Southeast are the regions where m-Health could reach the largest percentage of the remote population. Six districts (Arua, Apac, Lira, Kamuli, Iganga, and Mubende) could have the largest benefit because they account for about 28% of the remote population affected by falciparum malaria with access to the 2G mobile network. The application of m-Health technologies could improve access to medical services for distant populations. Affordable remote malaria diagnosis could help to decongest health facilities, reducing costs and contagion. The combination of m-Health and GIS could provide real-time and geo-localized data transmission, improving anti-malarial strategies in Uganda. Scalability to other countries and diseases looks promising.

  8. Mapping mHealth research: a decade of evolution.

    PubMed

    Fiordelli, Maddalena; Diviani, Nicola; Schulz, Peter J

    2013-05-21

    For the last decade, mHealth has constantly expanded as a part of eHealth. Mobile applications for health have the potential to target heterogeneous audiences and address specific needs in different situations, with diverse outcomes, and to complement highly developed health care technologies. The market is rapidly evolving, making countless new mobile technologies potentially available to the health care system; however, systematic research on the impact of these technologies on health outcomes remains scarce. To provide a comprehensive view of the field of mHealth research to date and to understand whether and how the new generation of smartphones has triggered research, since their introduction 5 years ago. Specifically, we focused on studies aiming to evaluate the impact of mobile phones on health, and we sought to identify the main areas of health care delivery where mobile technologies can have an impact. A systematic literature review was conducted on the impact of mobile phones and smartphones in health care. Abstracts and articles were categorized using typologies that were partly adapted from existing literature and partly created inductively from publications included in the review. The final sample consisted of 117 articles published between 2002 and 2012. The majority of them were published in the second half of our observation period, with a clear upsurge between 2007 and 2008, when the number of articles almost doubled. The articles were published in 77 different journals, mostly from the field of medicine or technology and medicine. Although the range of health conditions addressed was very wide, a clear focus on chronic conditions was noted. The research methodology of these studies was mostly clinical trials and pilot studies, but new designs were introduced in the second half of our observation period. The size of the samples drawn to test mobile health applications also increased over time. The majority of the studies tested basic mobile phone features (eg, text messaging), while only a few assessed the impact of smartphone apps. Regarding the investigated outcomes, we observed a shift from assessment of the technology itself to assessment of its impact. The outcome measures used in the studies were mostly clinical, including both self-reported and objective measures. Research interest in mHealth is growing, together with an increasing complexity in research designs and aim specifications, as well as a diversification of the impact areas. However, new opportunities offered by new mobile technologies do not seem to have been explored thus far. Mapping the evolution of the field allows a better understanding of its strengths and weaknesses and can inform future developments.

  9. Mobile task management tool that improves workflow of an acute general surgical service.

    PubMed

    Foo, Elizabeth; McDonald, Rod; Savage, Earle; Floyd, Richard; Butler, Anthony; Rumball-Smith, Alistair; Connor, Saxon

    2015-10-01

    Understanding and being able to measure constraints within a health system is crucial if outcomes are to be improved. Current systems lack the ability to capture decision making with regard to tasks performed within a patient journey. The aim of this study was to assess the impact of a mobile task management tool on clinical workflow within an acute general surgical service by analysing data capture and usability of the application tool. The Cortex iOS application was developed to digitize patient flow and provide real-time visibility over clinical decision making and task performance. Study outcomes measured were workflow data capture for patient and staff events. Usability was assessed using an electronic survey. There were 449 unique patient journeys tracked with a total of 3072 patient events recorded. The results repository was accessed 7792 times. The participants reported that the application sped up decision making, reduced redundancy of work and improved team communication. The mode of the estimated time the application saved participants was 5-9 min/h of work. Of the 14 respondents, nine discarded their analogue methods of tracking tasks by the end of the study period. The introduction of a mobile task management system improved the working efficiency of junior clinical staff. The application allowed capture of data not previously available to hospital systems. In the future, such data will contribute to the accurate mapping of patient journeys through the health system. © 2015 Royal Australasian College of Surgeons.

  10. The Mobility Assistance Program. A Comprehensive Evaluation Report.

    ERIC Educational Resources Information Center

    Hicks, Laurabeth H.

    The Mobility Assistance Program (MAP) was established to assist U.S. Department of Education employees affected by the reduction in force (RIF). MAP's mission was to provide career transition and outplacement job search assistance to RIF-affected employees. It provided these services: job search, personnel support, training, and professional…

  11. Expert Concept Mapping Study on Mobile Learning

    ERIC Educational Resources Information Center

    Borner, Dirk; Glahn, Christian; Stoyanov, Slavi; Kalz, Marco; Specht, Marcus

    2010-01-01

    Purpose: The present paper introduces concept mapping as a structured participative conceptualization approach to identify clusters of ideas and opinions generated by experts within the domain of mobile learning. Utilizing this approach, the paper aims to contribute to a definition of key domain characteristics by identifying the main educational…

  12. Predicting impact of multi-paths on phase change in map-based vehicular ad hoc networks

    NASA Astrophysics Data System (ADS)

    Rahmes, Mark; Lemieux, George; Sonnenberg, Jerome; Chester, David B.

    2014-05-01

    Dynamic Spectrum Access, which through its ability to adapt the operating frequency of a radio, is widely believed to be a solution to the limited spectrum problem. Mobile Ad Hoc Networks (MANETs) can extend high capacity mobile communications over large areas where fixed and tethered-mobile systems are not available. In one use case with high potential impact cognitive radio employs spectrum sensing to facilitate identification of allocated frequencies not currently accessed by their primary users. Primary users own the rights to radiate at a specific frequency and geographic location, secondary users opportunistically attempt to radiate at a specific frequency when the primary user is not using it. We quantify optimal signal detection in map based cognitive radio networks with multiple rapidly varying phase changes and multiple orthogonal signals. Doppler shift occurs due to reflection, scattering, and rapid vehicle movement. Path propagation as well as vehicle movement produces either constructive or destructive interference with the incident wave. Our signal detection algorithms can assist the Doppler spread compensation algorithm by deciding how many phase changes in signals are present in a selected band of interest. Additionally we can populate a spatial radio environment map (REM) database with known information that can be leveraged in an ad hoc network to facilitate Dynamic Spectrum Access. We show how topography can help predict the impact of multi-paths on phase change, as well as about the prediction from dense traffic areas. Utilization of high resolution geospatial data layers in RF propagation analysis is directly applicable.

  13. a Multidisciplinary Analytical Framework for Studying Active Mobility Patterns

    NASA Astrophysics Data System (ADS)

    Orellana, D.; Hermida, C.; Osorio, P.

    2016-06-01

    Intermediate cities are urged to change and adapt their mobility systems from a high energy-demanding motorized model to a sustainable low-motorized model. In order to accomplish such a model, city administrations need to better understand active mobility patterns and their links to socio-demographic and cultural aspects of the population. During the last decade, researchers have demonstrated the potential of geo-location technologies and mobile devices to gather massive amounts of data for mobility studies. However, the analysis and interpretation of this data has been carried out by specialized research groups with relatively narrow approaches from different disciplines. Consequently, broader questions remain less explored, mainly those relating to spatial behaviour of individuals and populations with their geographic environment and the motivations and perceptions shaping such behaviour. Understanding sustainable mobility and exploring new research paths require an interdisciplinary approach given the complex nature of mobility systems and their social, economic and environmental impacts. Here, we introduce the elements for a multidisciplinary analytical framework for studying active mobility patterns comprised of three components: a) Methodological, b) Behavioural, and c) Perceptual. We demonstrate the applicability of the framework by analysing mobility patterns of cyclists and pedestrians in an intermediate city integrating a range of techniques, including: GPS tracking, spatial analysis, auto-ethnography, and perceptual mapping. The results demonstrated the existence of non-evident spatial behaviours and how perceptual features affect mobility. This knowledge is useful for developing policies and practices for sustainable mobility planning.

  14. BatSLAM: Simultaneous localization and mapping using biomimetic sonar.

    PubMed

    Steckel, Jan; Peremans, Herbert

    2013-01-01

    We propose to combine a biomimetic navigation model which solves a simultaneous localization and mapping task with a biomimetic sonar mounted on a mobile robot to address two related questions. First, can robotic sonar sensing lead to intelligent interactions with complex environments? Second, can we model sonar based spatial orientation and the construction of spatial maps by bats? To address these questions we adapt the mapping module of RatSLAM, a previously published navigation system based on computational models of the rodent hippocampus. We analyze the performance of the proposed robotic implementation operating in the real world. We conclude that the biomimetic navigation model operating on the information from the biomimetic sonar allows an autonomous agent to map unmodified (office) environments efficiently and consistently. Furthermore, these results also show that successful navigation does not require the readings of the biomimetic sonar to be interpreted in terms of individual objects/landmarks in the environment. We argue that the system has applications in robotics as well as in the field of biology as a simple, first order, model for sonar based spatial orientation and map building.

  15. BatSLAM: Simultaneous Localization and Mapping Using Biomimetic Sonar

    PubMed Central

    Steckel, Jan; Peremans, Herbert

    2013-01-01

    We propose to combine a biomimetic navigation model which solves a simultaneous localization and mapping task with a biomimetic sonar mounted on a mobile robot to address two related questions. First, can robotic sonar sensing lead to intelligent interactions with complex environments? Second, can we model sonar based spatial orientation and the construction of spatial maps by bats? To address these questions we adapt the mapping module of RatSLAM, a previously published navigation system based on computational models of the rodent hippocampus. We analyze the performance of the proposed robotic implementation operating in the real world. We conclude that the biomimetic navigation model operating on the information from the biomimetic sonar allows an autonomous agent to map unmodified (office) environments efficiently and consistently. Furthermore, these results also show that successful navigation does not require the readings of the biomimetic sonar to be interpreted in terms of individual objects/landmarks in the environment. We argue that the system has applications in robotics as well as in the field of biology as a simple, first order, model for sonar based spatial orientation and map building. PMID:23365647

  16. Preduction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation

    DTIC Science & Technology

    2016-08-02

    PREDICTION OF VEHICLE MOBILITY ON LARGE-SCALE SOFT- SOIL TERRAIN MAPS USING PHYSICS-BASED SIMULATION Tamer M. Wasfy, Paramsothy Jayakumar, Dave...NRMM • Objectives • Soft Soils • Review of Physics-Based Soil Models • MBD/DEM Modeling Formulation – Joint & Contact Constraints – DEM Cohesive... Soil Model • Cone Penetrometer Experiment • Vehicle- Soil Model • Vehicle Mobility DOE Procedure • Simulation Results • Concluding Remarks 2UNCLASSIFIED

  17. Optimizing network connectivity for mobile health technologies in sub-Saharan Africa.

    PubMed

    Siedner, Mark J; Lankowski, Alexander; Musinga, Derrick; Jackson, Jonathon; Muzoora, Conrad; Hunt, Peter W; Martin, Jeffrey N; Bangsberg, David R; Haberer, Jessica E

    2012-01-01

    Mobile health (mHealth) technologies hold incredible promise to improve healthcare delivery in resource-limited settings. Network reliability across large catchment areas can be a major challenge. We performed an analysis of network failure frequency as part of a study of real-time adherence monitoring in rural Uganda. We hypothesized that the addition of short messaging service (SMS+GPRS) to the standard cellular network modality (GPRS) would reduce network disruptions and improve transmission of data. Participants were enrolled in a study of real-time adherence monitoring in southwest Uganda. In June 2011, we began using Wisepill devices that transmit data each time the pill bottle is opened. We defined network failures as medication interruptions of >48 hours duration that were transmitted when network connectivity was re-established. During the course of the study, we upgraded devices from GPRS to GPRS+SMS compatibility. We compared network failure rates between GPRS and GPRS+SMS periods and created geospatial maps to graphically demonstrate patterns of connectivity. One hundred fifty-seven participants met inclusion criteria of seven days of SMS and seven days of SMS+GPRS observation time. Seventy-three percent were female, median age was 40 years (IQR 33-46), 39% reported >1-hour travel time to clinic and 17% had home electricity. One hundred one had GPS coordinates recorded and were included in the geospatial maps. The median number of network failures per person-month for the GPRS and GPRS+SMS modalities were 1.5 (IQR 1.0-2.2) and 0.3 (IQR 0-0.9) respectively, (mean difference 1.2, 95%CI 1.0-1.3, p-value<0.0001). Improvements in network connectivity were notable throughout the region. Study costs increased by approximately $1USD per person-month. Addition of SMS to standard GPRS cellular network connectivity can significantly reduce network connection failures for mobile health applications in remote areas. Projects depending on mobile health data in resource-limited settings should consider this upgrade to optimize mHealth applications.

  18. Fostering Outreach, Education and Exploration of the Moon Using the Lunar Mapping & Modeling Portal

    NASA Astrophysics Data System (ADS)

    Dodge, K.; Law, E.; Malhotra, S.; Chang, G.; Kim, R. M.; Bui, B.; Sadaqathullah, S.; Day, B. H.

    2014-12-01

    The Lunar Mapping and Modeling Portal (LMMP)[1], is a web-based Portal and a suite of interactive visualization and analysis tools for users to access mapped lunar data products (including image mosaics, digital elevation models, etc.) from past and current lunar missions (e.g., Lunar Reconnaissance Orbiter, Apollo, etc.). Originally designed as a mission planning tool for the Constellation Program, LMMP has grown into a generalized suite of tools facilitating a wide range of activities in support of lunar exploration including public outreach, education, lunar mission planning and scientific research. LMMP fosters outreach, education, and exploration of the Moon by educators, students, amateur astronomers, and the general public. These efforts are enhanced by Moon Tours, LMMP's mobile application, which makes LMMP's information accessible to people of all ages, putting opportunities for real lunar exploration in the palms of their hands. Our talk will include an overview of LMMP and a demonstration of its technologies (web portals, mobile apps), to show how it serves NASA data as commodities for use by advanced visualization facilities (e.g., planetariums) and how it contributes to improving teaching and learning, increasing scientific literacy of the general public, and enriching STEM efforts. References:[1] http://www.lmmp.nasa.gov

  19. A novel combined SLAM based on RBPF-SLAM and EIF-SLAM for mobile system sensing in a large scale environment.

    PubMed

    He, Bo; Zhang, Shujing; Yan, Tianhong; Zhang, Tao; Liang, Yan; Zhang, Hongjin

    2011-01-01

    Mobile autonomous systems are very important for marine scientific investigation and military applications. Many algorithms have been studied to deal with the computational efficiency problem required for large scale simultaneous localization and mapping (SLAM) and its related accuracy and consistency. Among these methods, submap-based SLAM is a more effective one. By combining the strength of two popular mapping algorithms, the Rao-Blackwellised particle filter (RBPF) and extended information filter (EIF), this paper presents a combined SLAM-an efficient submap-based solution to the SLAM problem in a large scale environment. RBPF-SLAM is used to produce local maps, which are periodically fused into an EIF-SLAM algorithm. RBPF-SLAM can avoid linearization of the robot model during operating and provide a robust data association, while EIF-SLAM can improve the whole computational speed, and avoid the tendency of RBPF-SLAM to be over-confident. In order to further improve the computational speed in a real time environment, a binary-tree-based decision-making strategy is introduced. Simulation experiments show that the proposed combined SLAM algorithm significantly outperforms currently existing algorithms in terms of accuracy and consistency, as well as the computing efficiency. Finally, the combined SLAM algorithm is experimentally validated in a real environment by using the Victoria Park dataset.

  20. Mapping, Awareness, and Virtualization Network Administrator Training Tool (MAVNATT) Architecture and Framework

    DTIC Science & Technology

    2015-06-01

    unit may setup and teardown the entire tactical infrastructure multiple times per day. This tactical network administrator training is a critical...language and runs on Linux and Unix based systems. All provisioning is based around the Nagios Core application, a powerful backend solution for network...start up a large number of virtual machines quickly. CORE supports the simulation of fixed and mobile networks. CORE is open-source, written in Python

  1. U.S. Geological Survey (USGS) Earthquake Web Applications

    NASA Astrophysics Data System (ADS)

    Fee, J.; Martinez, E.

    2015-12-01

    USGS Earthquake web applications provide access to earthquake information from USGS and other Advanced National Seismic System (ANSS) contributors. One of the primary goals of these applications is to provide a consistent experience for accessing both near-real time information as soon as it is available and historic information after it is thoroughly reviewed. Millions of people use these applications every month including people who feel an earthquake, emergency responders looking for the latest information about a recent event, and scientists researching historic earthquakes and their effects. Information from multiple catalogs and contributors is combined by the ANSS Comprehensive Catalog into one composite catalog, identifying the most preferred information from any source for each event. A web service and near-real time feeds provide access to all contributed data, and are used by a number of users and software packages. The Latest Earthquakes application displays summaries of many events, either near-real time feeds or custom searches, and the Event Page application shows detailed information for each event. Because all data is accessed through the web service, it can also be downloaded by users. The applications are maintained as open source projects on github, and use mobile-first and responsive-web-design approaches to work well on both mobile devices and desktop computers. http://earthquake.usgs.gov/earthquakes/map/

  2. In-field Access to Geoscientific Metadata through GPS-enabled Mobile Phones

    NASA Astrophysics Data System (ADS)

    Hobona, Gobe; Jackson, Mike; Jordan, Colm; Butchart, Ben

    2010-05-01

    Fieldwork is an integral part of much geosciences research. But whilst geoscientists have physical or online access to data collections whilst in the laboratory or at base stations, equivalent in-field access is not standard or straightforward. The increasing availability of mobile internet and GPS-supported mobile phones, however, now provides the basis for addressing this issue. The SPACER project was commissioned by the Rapid Innovation initiative of the UK Joint Information Systems Committee (JISC) to explore the potential for GPS-enabled mobile phones to access geoscientific metadata collections. Metadata collections within the geosciences and the wider geospatial domain can be disseminated through web services based on the Catalogue Service for Web(CSW) standard of the Open Geospatial Consortium (OGC) - a global grouping of over 380 private, public and academic organisations aiming to improve interoperability between geospatial technologies. CSW offers an XML-over-HTTP interface for querying and retrieval of geospatial metadata. By default, the metadata returned by CSW is based on the ISO19115 standard and encoded in XML conformant to ISO19139. The SPACER project has created a prototype application that enables mobile phones to send queries to CSW containing user-defined keywords and coordinates acquired from GPS devices built-into the phones. The prototype has been developed using the free and open source Google Android platform. The mobile application offers views for listing titles, presenting multiple metadata elements and a Google Map with an overlay of bounding coordinates of datasets. The presentation will describe the architecture and approach applied in the development of the prototype.

  3. Neural networks for satellite remote sensing and robotic sensor interpretation

    NASA Astrophysics Data System (ADS)

    Martens, Siegfried

    Remote sensing of forests and robotic sensor fusion can be viewed, in part, as supervised learning problems, mapping from sensory input to perceptual output. This dissertation develops ARTMAP neural networks for real-time category learning, pattern recognition, and prediction tailored to remote sensing and robotics applications. Three studies are presented. The first two use ARTMAP to create maps from remotely sensed data, while the third uses an ARTMAP system for sensor fusion on a mobile robot. The first study uses ARTMAP to predict vegetation mixtures in the Plumas National Forest based on spectral data from the Landsat Thematic Mapper satellite. While most previous ARTMAP systems have predicted discrete output classes, this project develops new capabilities for multi-valued prediction. On the mixture prediction task, the new network is shown to perform better than maximum likelihood and linear mixture models. The second remote sensing study uses an ARTMAP classification system to evaluate the relative importance of spectral and terrain data for map-making. This project has produced a large-scale map of remotely sensed vegetation in the Sierra National Forest. Network predictions are validated with ground truth data, and maps produced using the ARTMAP system are compared to a map produced by human experts. The ARTMAP Sierra map was generated in an afternoon, while the labor intensive expert method required nearly a year to perform the same task. The robotics research uses an ARTMAP system to integrate visual information and ultrasonic sensory information on a B14 mobile robot. The goal is to produce a more accurate measure of distance than is provided by the raw sensors. ARTMAP effectively combines sensory sources both within and between modalities. The improved distance percept is used to produce occupancy grid visualizations of the robot's environment. The maps produced point to specific problems of raw sensory information processing and demonstrate the benefits of using a neural network system for sensor fusion.

  4. Google Maps for Crowdsourced Emergency Routing

    NASA Astrophysics Data System (ADS)

    Nedkov, S.; Zlatanova, S.

    2012-08-01

    Gathering infrastructure data in emergency situations is challenging. The affected by a disaster areas are often large and the needed observations numerous. Spaceborne remote sensing techniques cover large areas but they are of limited use as their field of view may be blocked by clouds, smoke, buildings, highways, etc. Remote sensing products furthermore require specialists to collect and analyze the data. This contrasts the nature of the damage detection problem: almost everyone is capable of observing whether a street is usable or not. The crowd is fit for solving these challenges as its members are numerous, they are willing to help and are often in the vicinity of the disaster thereby forming a highly dispersed sensor network. This paper proposes and implements a small WebGIS application for performing shortest path calculations based on crowdsourced information about the infrastructure health. The application is built on top of Google Maps and uses its routing service to calculate the shortest distance between two locations. Impassable areas are indicated on a map by people performing in-situ observations on a mobile device, and by users on a desktop machine who consult a multitude of information sources.

  5. Point-Cloud Compression for Vehicle-Based Mobile Mapping Systems Using Portable Network Graphics

    NASA Astrophysics Data System (ADS)

    Kohira, K.; Masuda, H.

    2017-09-01

    A mobile mapping system is effective for capturing dense point-clouds of roads and roadside objects Point-clouds of urban areas, residential areas, and arterial roads are useful for maintenance of infrastructure, map creation, and automatic driving. However, the data size of point-clouds measured in large areas is enormously large. A large storage capacity is required to store such point-clouds, and heavy loads will be taken on network if point-clouds are transferred through the network. Therefore, it is desirable to reduce data sizes of point-clouds without deterioration of quality. In this research, we propose a novel point-cloud compression method for vehicle-based mobile mapping systems. In our compression method, point-clouds are mapped onto 2D pixels using GPS time and the parameters of the laser scanner. Then, the images are encoded in the Portable Networking Graphics (PNG) format and compressed using the PNG algorithm. In our experiments, our method could efficiently compress point-clouds without deteriorating the quality.

  6. GPR Image and Signal Processing for Pavement and Road Monitoring on Android Smartphones and Tablets

    NASA Astrophysics Data System (ADS)

    Benedetto, Francesco; Benedetto, Andrea; Tedeschi, Antonio

    2014-05-01

    Ground Penetrating Radar (GPR) is a geophysical method that uses radar pulses to image the subsurface. This non-destructive method uses electromagnetic radiation and detects the reflected signals from subsurface structures. It can detect objects, changes in material, and voids and cracks. GPR has many applications in a number of fields. In the field of civil engineering one of the most advanced technologies used for road pavement monitoring is based on the deployment of advanced GPR systems. One of the most relevant causes of road pavement damage is often referable to water intrusion in structural layers. In this context, GPR has been recently proposed as a method to estimate moisture content in a porous medium without preventive calibration. Hence, the development of methods to obtain an estimate of the moisture content is a crucial research field involving economic, social and strategic aspects in road safety for a great number of public and private Agencies. In particular, a recent new approach was proposed to estimate moisture content in a porous medium basing on the theory of Rayleigh scattering, showing a shift of the frequency peak of the GPR spectrum towards lower frequencies as the moisture content increases in the soil. Addressing some of these issues, this work proposes a mobile application, for smartphones and tablets, for GPR image and signal processing. Our application has been designed for the Android mobile operating system, since it is open source and android mobile platforms are selling the most smartphones in the world (2013). The GPR map can be displayed in black/white or color and the user can zoom and navigate into the image. The map can be loaded in two different ways: from the local memory of the portable device or from a remote server. This latter possibility can be very useful for real-time and mobile monitoring of road and pavement inspection. In addition, the application allows analyzing the GPR data also in the frequency domain. It is possible to visualize the GPR spectrum, and the application returns the (abscissa of the) frequency peak of the GPR spectrum. It is also possible to visualize more GPR spectra on the same figure, in order to understand if a frequency shift (related to moisture content) has been observed. Finally, the GPR spectra can be exported as a JPEG file. This application has a strategic and innovative potentiality for all the Agencies involved in roads and highway management in order to improve the onsite efficiency and effectiveness of the works. ACKNOWLEDGMENT This work is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar."

  7. Building a Secure and Feature-rich Mobile Mapping Service App Using HTML5: Challenges and Best Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karthik, Rajasekar; Patlolla, Dilip Reddy; Sorokine, Alexandre

    Managing a wide variety of mobile devices across multiple mobile operating systems is a security challenge for any organization [1, 2]. With the wide adoption of mobile devices to access work-related apps, there is an increase in third-party apps that might either misuse or improperly handle user s personal or sensitive data [3]. HTML5 has been receiving wide attention for developing cross-platform mobile apps. According to International Data Corporation (IDC), by 2015, 80% of all mobile apps will be based in part or wholly upon HTML5 [4]. Though HTML5 provides a rich set of features for building an app, itmore » is a challenge for organizations to deploy and manage HTML5 apps on wide variety of devices while keeping security policies intact. In this paper, we will describe an upcoming secure mobile environment for HTML5 apps, called Sencha Space that addresses these issues and discuss how it will be used to design and build a secure and cross-platform mobile mapping service app. We will also describe how HTML5 and a new set of related technologies such as Geolocation API, WebGL, Open Layers 3, and Local Storage, can be used to provide a high end and high performance experience for users of the mapping service app.« less

  8. The Importance of Visual Experience, Gender, and Emotion in the Assessment of an Assistive Tactile Mouse.

    PubMed

    Brayda, Luca; Campus, Claudio; Memeo, Mariacarla; Lucagrossi, Laura

    2015-01-01

    Tactile maps are efficient tools to improve spatial understanding and mobility skills of visually impaired people. Their limited adaptability can be compensated with haptic devices which display graphical information, but their assessment is frequently limited to performance-based metrics only which can hide potential spatial abilities in O&M protocols. We assess a low-tech tactile mouse able to deliver three-dimensional content considering how performance, mental workload, behavior, and anxiety status vary with task difficulty and gender in congenitally blind, late blind, and sighted subjects. Results show that task difficulty coherently modulates the efficiency and difficulty to build mental maps, regardless of visual experience. Although exhibiting attitudes that were similar and gender-independent, the females had lower performance and higher cognitive load, especially when congenitally blind. All groups showed a significant decrease in anxiety after using the device. Tactile graphics with our device seems therefore to be applicable with different visual experiences, with no negative emotional consequences of mentally demanding spatial tasks. Going beyond performance-based assessment, our methodology can help with better targeting technological solutions in orientation and mobility protocols.

  9. Building simplification algorithms based on user cognition in mobile environment

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Shi, Junfei; Wang, Meizhen; Wu, Chenyan

    2008-10-01

    With the development of LBS, mobile map should adaptively satisfy the cognitive requirement of user. User cognition in mobile environment is much more objective oriented and also seem to be a heavier burden than the user in static environment. The holistic idea and methods of map generalization can not fully suitable for the mobile map. This paper took the building simplification in habitation generalization as example, analyzed the characteristic of user cognition in mobile environment and the basic rules of building simplification, collected and studied the state-of-the-art of algorithms of building simplification in the static and mobile environment, put forward the idea of hierarchical building simplification based on user cognition. This paper took Hunan road business district of Nanjing as test area and took the building data with shapfile format of ESRI as test data and realized the simplification algorithm. The method took user as center, calculated the distance between user and the building which will be simplified and took the distance as the basis for choosing different simplification algorithm for different spaces. This contribution aimed to hierarchically present the building in different level of detail by real-time simplification.

  10. Distributed Sensor Fusion for Scalar Field Mapping Using Mobile Sensor Networks.

    PubMed

    La, Hung Manh; Sheng, Weihua

    2013-04-01

    In this paper, autonomous mobile sensor networks are deployed to measure a scalar field and build its map. We develop a novel method for multiple mobile sensor nodes to build this map using noisy sensor measurements. Our method consists of two parts. First, we develop a distributed sensor fusion algorithm by integrating two different distributed consensus filters to achieve cooperative sensing among sensor nodes. This fusion algorithm has two phases. In the first phase, the weighted average consensus filter is developed, which allows each sensor node to find an estimate of the value of the scalar field at each time step. In the second phase, the average consensus filter is used to allow each sensor node to find a confidence of the estimate at each time step. The final estimate of the value of the scalar field is iteratively updated during the movement of the mobile sensors via weighted average. Second, we develop the distributed flocking-control algorithm to drive the mobile sensors to form a network and track the virtual leader moving along the field when only a small subset of the mobile sensors know the information of the leader. Experimental results are provided to demonstrate our proposed algorithms.

  11. From Pressure to Path: Barometer-based Vehicle Tracking

    PubMed Central

    Ho, Bo-Jhang; Martin, Paul; Swaminathan, Prashanth; Srivastava, Mani

    2017-01-01

    Pervasive mobile devices have enabled countless context-and location-based applications that facilitate navigation, life-logging, and more. As we build the next generation of smart cities, it is important to leverage the rich sensing modalities that these numerous devices have to offer. This work demonstrates how mobile devices can be used to accurately track driving patterns based solely on pressure data collected from the device’s barometer. Specifically, by correlating pressure time-series data against topographic elevation data and road maps for a given region, a centralized computer can estimate the likely paths through which individual users have driven, providing an exceptionally low-power method for measuring driving patterns of a given individual or for analyzing group behavior across multiple users. This work also brings to bear a more nefarious side effect of pressure-based path estimation: a mobile application can, without consent and without notifying the user, use pressure data to accurately detect an individual’s driving behavior, compromising both user privacy and security. We further analyze the ability to predict driving trajectories in terms of the variance in barometer pressure and geographical elevation, demonstrating cases in which more than 80% of paths can be accurately predicted. PMID:29503981

  12. From Pressure to Path: Barometer-based Vehicle Tracking.

    PubMed

    Ho, Bo-Jhang; Martin, Paul; Swaminathan, Prashanth; Srivastava, Mani

    2015-11-01

    Pervasive mobile devices have enabled countless context-and location-based applications that facilitate navigation, life-logging, and more. As we build the next generation of smart cities, it is important to leverage the rich sensing modalities that these numerous devices have to offer. This work demonstrates how mobile devices can be used to accurately track driving patterns based solely on pressure data collected from the device's barometer. Specifically, by correlating pressure time-series data against topographic elevation data and road maps for a given region, a centralized computer can estimate the likely paths through which individual users have driven, providing an exceptionally low-power method for measuring driving patterns of a given individual or for analyzing group behavior across multiple users. This work also brings to bear a more nefarious side effect of pressure-based path estimation: a mobile application can, without consent and without notifying the user, use pressure data to accurately detect an individual's driving behavior, compromising both user privacy and security. We further analyze the ability to predict driving trajectories in terms of the variance in barometer pressure and geographical elevation, demonstrating cases in which more than 80% of paths can be accurately predicted.

  13. Real-time terrain storage generation from multiple sensors towards mobile robot operation interface.

    PubMed

    Song, Wei; Cho, Seoungjae; Xi, Yulong; Cho, Kyungeun; Um, Kyhyun

    2014-01-01

    A mobile robot mounted with multiple sensors is used to rapidly collect 3D point clouds and video images so as to allow accurate terrain modeling. In this study, we develop a real-time terrain storage generation and representation system including a nonground point database (PDB), ground mesh database (MDB), and texture database (TDB). A voxel-based flag map is proposed for incrementally registering large-scale point clouds in a terrain model in real time. We quantize the 3D point clouds into 3D grids of the flag map as a comparative table in order to remove the redundant points. We integrate the large-scale 3D point clouds into a nonground PDB and a node-based terrain mesh using the CPU. Subsequently, we program a graphics processing unit (GPU) to generate the TDB by mapping the triangles in the terrain mesh onto the captured video images. Finally, we produce a nonground voxel map and a ground textured mesh as a terrain reconstruction result. Our proposed methods were tested in an outdoor environment. Our results show that the proposed system was able to rapidly generate terrain storage and provide high resolution terrain representation for mobile mapping services and a graphical user interface between remote operators and mobile robots.

  14. Real-Time Terrain Storage Generation from Multiple Sensors towards Mobile Robot Operation Interface

    PubMed Central

    Cho, Seoungjae; Xi, Yulong; Cho, Kyungeun

    2014-01-01

    A mobile robot mounted with multiple sensors is used to rapidly collect 3D point clouds and video images so as to allow accurate terrain modeling. In this study, we develop a real-time terrain storage generation and representation system including a nonground point database (PDB), ground mesh database (MDB), and texture database (TDB). A voxel-based flag map is proposed for incrementally registering large-scale point clouds in a terrain model in real time. We quantize the 3D point clouds into 3D grids of the flag map as a comparative table in order to remove the redundant points. We integrate the large-scale 3D point clouds into a nonground PDB and a node-based terrain mesh using the CPU. Subsequently, we program a graphics processing unit (GPU) to generate the TDB by mapping the triangles in the terrain mesh onto the captured video images. Finally, we produce a nonground voxel map and a ground textured mesh as a terrain reconstruction result. Our proposed methods were tested in an outdoor environment. Our results show that the proposed system was able to rapidly generate terrain storage and provide high resolution terrain representation for mobile mapping services and a graphical user interface between remote operators and mobile robots. PMID:25101321

  15. Scene text recognition in mobile applications by character descriptor and structure configuration.

    PubMed

    Yi, Chucai; Tian, Yingli

    2014-07-01

    Text characters and strings in natural scene can provide valuable information for many applications. Extracting text directly from natural scene images or videos is a challenging task because of diverse text patterns and variant background interferences. This paper proposes a method of scene text recognition from detected text regions. In text detection, our previously proposed algorithms are applied to obtain text regions from scene image. First, we design a discriminative character descriptor by combining several state-of-the-art feature detectors and descriptors. Second, we model character structure at each character class by designing stroke configuration maps. Our algorithm design is compatible with the application of scene text extraction in smart mobile devices. An Android-based demo system is developed to show the effectiveness of our proposed method on scene text information extraction from nearby objects. The demo system also provides us some insight into algorithm design and performance improvement of scene text extraction. The evaluation results on benchmark data sets demonstrate that our proposed scheme of text recognition is comparable with the best existing methods.

  16. Atlas Basemaps in Web 2.0 Epoch

    NASA Astrophysics Data System (ADS)

    Chabaniuk, V.; Dyshlyk, O.

    2016-06-01

    The authors have analyzed their experience of the production of various Electronic Atlases (EA) and Atlas Information Systems (AtIS) of so-called "classical type". These EA/AtIS have been implemented in the past decade in the Web 1.0 architecture (e.g., National Atlas of Ukraine, Atlas of radioactive contamination of Ukraine, and others). One of the main distinguishing features of these atlases was their static nature - the end user could not change the content of EA/AtIS. Base maps are very important element of any EA/AtIS. In classical type EA/AtIS they were static datasets, which consisted of two parts: the topographic data of a fixed scale and data of the administrative-territorial division of Ukraine. It is important to note that the technique of topographic data production was based on the use of direct channels of topographic entity observation (such as aerial photography) for the selected scale. Changes in the information technology of the past half-decade are characterized by the advent of the "Web 2.0 epoch". Due to this, in cartography appeared such phenomena as, for example, "neo-cartography" and various mapping platforms like OpenStreetMap. These changes have forced developers of EA/AtIS to use new atlas basemaps. Our approach is described in the article. The phenomenon of neo-cartography and/or Web 2.0 cartography are analysed by authors using previously developed Conceptual framework of EA/AtIS. This framework logically explains the cartographic phenomena relations of three formations: Web 1.0, Web 1.0x1.0 and Web 2.0. Atlas basemaps of the Web 2.0 epoch are integrated information systems. We use several ways to integrate separate atlas basemaps into the information system - by building: weak integrated information system, structured system and meta-system. This integrated information system consists of several basemaps and falls under the definition of "big data". In real projects it is already used the basemaps of three strata: Conceptual, Application and Operational. It is possible to use several variants of the basemap for each stratum. Furthermore, the developed methods of integration allow logically coordinate the application of different types of basemaps into a specific EA/AtIS. For example, such variants of the Conceptual strata basemap as the National map of Ukraine of our production and external resources such as OpenStreetMap are used with the help of meta-system replacement procedures. The authors propose a Conceptual framework of the basemap, which consists of the Conceptual solutions framework of the basemap and few Application solutions frameworks of the basemap. Conceptual framework is intended to be reused in many projects and significantly reduce the resources. We differentiate Application frameworks for mobile and non-mobile environments. The results of the research are applied in few EA produced in 2014-2015 at the Institute of Geography of the National Academy of Sciences of Ukraine. One of them is the Atlas of emergency situations. It includes elements that work on mobile devices. At its core it is "ubiquitous" subset of the Atlas.

  17. Mobile Assisted Language Learning and Mnemonic Mapping -- The Loci Method Revisited

    ERIC Educational Resources Information Center

    Waragai, Ikumi; Raindl, Marco; Ohta, Tatsuya; Miyasaka, Kosuke

    2016-01-01

    This paper presents the prototype of a Mobile Language Learning Environment (MLLE) allowing learners of German at a Japanese university to map classroom learning content onto the pathways of their everyday lives, turning places they come by into mnemonic "loci", and thus changing their daily commute into a learning trail. Even though the…

  18. 76 FR 56215 - John H. Chafee Coastal Barrier Resources System; Baldwin and Mobile Counties, AL; Availability of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... aquatic habitat. These areas are depicted on a series of maps entitled ``John H. Chafee Coastal Barrier...] John H. Chafee Coastal Barrier Resources System; Baldwin and Mobile Counties, AL; Availability of Draft... availability of a John H. Chafee Coastal Barrier Resources System (CBRS) draft revised map, dated September 22...

  19. Retrieval Algorithms for Road Surface Modelling Using Laser-Based Mobile Mapping.

    PubMed

    Jaakkola, Anttoni; Hyyppä, Juha; Hyyppä, Hannu; Kukko, Antero

    2008-09-01

    Automated processing of the data provided by a laser-based mobile mapping system will be a necessity due to the huge amount of data produced. In the future, vehiclebased laser scanning, here called mobile mapping, should see considerable use for road environment modelling. Since the geometry of the scanning and point density is different from airborne laser scanning, new algorithms are needed for information extraction. In this paper, we propose automatic methods for classifying the road marking and kerbstone points and modelling the road surface as a triangulated irregular network. On the basis of experimental tests, the mean classification accuracies obtained using automatic method for lines, zebra crossings and kerbstones were 80.6%, 92.3% and 79.7%, respectively.

  20. Fully distributed monitoring architecture supporting multiple trackees and trackers in indoor mobile asset management application.

    PubMed

    Jeong, Seol Young; Jo, Hyeong Gon; Kang, Soon Ju

    2014-03-21

    A tracking service like asset management is essential in a dynamic hospital environment consisting of numerous mobile assets (e.g., wheelchairs or infusion pumps) that are continuously relocated throughout a hospital. The tracking service is accomplished based on the key technologies of an indoor location-based service (LBS), such as locating and monitoring multiple mobile targets inside a building in real time. An indoor LBS such as a tracking service entails numerous resource lookups being requested concurrently and frequently from several locations, as well as a network infrastructure requiring support for high scalability in indoor environments. A traditional centralized architecture needs to maintain a geographic map of the entire building or complex in its central server, which can cause low scalability and traffic congestion. This paper presents a self-organizing and fully distributed indoor mobile asset management (MAM) platform, and proposes an architecture for multiple trackees (such as mobile assets) and trackers based on the proposed distributed platform in real time. In order to verify the suggested platform, scalability performance according to increases in the number of concurrent lookups was evaluated in a real test bed. Tracking latency and traffic load ratio in the proposed tracking architecture was also evaluated.

  1. A study of atmospheric effects on pattern recognition devices. [Sacramento Valley, California

    NASA Technical Reports Server (NTRS)

    Thomson, F. J. (Principal Investigator); Sadowski, F. G.

    1975-01-01

    The author has identified the following significant results. ERTS-1 imagery can be applied in the broadscale assessment of forest resources as a supplement to aerial photography and field survey. There was no application to inventory of crop and pasture diseases mainly because of poor quality and low resolution, and unreliability of image acquisition. Inventory of soil erosion was satisfactory in humid eastern New South Wales, but not in semi-arid areas. Patterns of snow cover, areas of water in natural and artificial water bodies, extent of bushfires, and location of coastal mobile sand bodies were readily apparent. ERTS-1 imagery was judged to be a valuable addition to conventional techniques of regional small scale geological mapping. ERTS data was successfully used to map flooding and flood progression. The imagery was found suitable for mapping at 1:1,000,000 scale both on the mainland and in Antarctica, but did not meet accuracy specifications for 1:250,000 mapping.

  2. Building the Joint Battlespace Infosphere. Volume 1: Summary

    DTIC Science & Technology

    1999-12-17

    portable devices , including wearable computer technology for mobile or field application 7.1.4.4.3 The Far Term (2009) The technology will be...graphic on a 2-D map image, or change the list of weapons to be loaded on an F/A-18, or sound an audible alarm in conjunction with flashing red...information automatically through a subscribe process. (3) At the same time, published information can be automatically changed into a new representation or

  3. Spatial Data Services for Interdisciplinary Applications from the NASA Socioeconomic Data and Applications Center

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; MacManus, K.; Vinay, S.; Yetman, G.

    2016-12-01

    The Socioeconomic Data and Applications Center (SEDAC), one of 12 Distributed Active Archive Centers (DAACs) in the NASA Earth Observing System Data and Information System (EOSDIS), has developed a variety of operational spatial data services aimed at providing online access, visualization, and analytic functions for geospatial socioeconomic and environmental data. These services include: open web services that implement Open Geospatial Consortium (OGC) specifications such as Web Map Service (WMS), Web Feature Service (WFS), and Web Coverage Service (WCS); spatial query services that support Web Processing Service (WPS) and Representation State Transfer (REST); and web map clients and a mobile app that utilize SEDAC and other open web services. These services may be accessed from a variety of external map clients and visualization tools such as NASA's WorldView, NOAA's Climate Explorer, and ArcGIS Online. More than 200 data layers related to population, settlements, infrastructure, agriculture, environmental pollution, land use, health, hazards, climate change and other aspects of sustainable development are available through WMS, WFS, and/or WCS. Version 2 of the SEDAC Population Estimation Service (PES) supports spatial queries through WPS and REST in the form of a user-defined polygon or circle. The PES returns an estimate of the population residing in the defined area for a specific year (2000, 2005, 2010, 2015, or 2020) based on SEDAC's Gridded Population of the World version 4 (GPWv4) dataset, together with measures of accuracy. The SEDAC Hazards Mapper and the recently released HazPop iOS mobile app enable users to easily submit spatial queries to the PES and see the results. SEDAC has developed an operational virtualized backend infrastructure to manage these services and support their continual improvement as standards change, new data and services become available, and user needs evolve. An ongoing challenge is to improve the reliability and performance of the infrastructure, in conjunction with external services, to meet both research and operational needs.

  4. The application of mobile satellite services to emergency response communications

    NASA Technical Reports Server (NTRS)

    Freibaum, J.

    1980-01-01

    The application of an integrated satellite/terrestrial emergency response communications system in disaster relief operations is discussed. Large area coverage communications capability, full-time availability, a high degree of mobility, plus reliability, are pointed out as criteria for an effective emergency communications system. Response time is seen as a major factor determining the possible survival and/or protection of property. These criteria, can not be met by existing communications systems and complete blackouts were experienced during the past decades caused by either interruption or destruction of existing power lines, and overload or inadequacy of remaining lines. Several emergency cases, caused by either hurricanes, tornados, or floods, during which communication via satellite was instrumental to inform rescue and relief teams, are described in detail. Seismic Risk Maps and charts of Major Tectonic Plates Earthquake Epicenters are given, and it is noted that, 35 percent of the U.S. population is living in critical areas. National and international agreements for the implementation of a satellite-aided global Search and Rescue Program is mentioned. Technological and economic breakthroughs are still needed in large multibeam antennas, switching circuits, and low cost mobile ground terminals. A pending plan of NASA to initiate a multiservice program in 1982/83, with a Land Mobile Satellite capability operating in the 806 - 890 MHz band as a major element, may help to accelerate the needed breakthroughs.

  5. Ego-location and situational awareness in semistructured environments

    NASA Astrophysics Data System (ADS)

    Goodsell, Thomas G.; Snorrason, Magnus S.; Stevens, Mark R.; Stube, Brian; McBride, Jonah

    2003-09-01

    The success of any potential application for mobile robots depends largely on the specific environment where the application takes place. Practical applications are rarely found in highly structured environments, but unstructured environments (such as natural terrain) pose major challenges to any mobile robot. We believe that semi-structured environments-such as parking lots-provide a good opportunity for successful mobile robot applications. Parking lots tend to be flat and smooth, and cars can be uniquely identified by their license plates. Our scenario is a parking lot where only known vehicles are supposed to park. The robot looks for vehicles that do not belong in the parking lot. It checks both license plates and vehicle types, in case the plate is stolen from an approved vehicle. It operates autonomously, but reports back to a guard who verifies its performance. Our interest is in developing the robot's vision system, which we call Scene Estimation & Situational Awareness Mapping Engine (SESAME). In this paper, we present initial results from the development of two SESAME subsystems, the ego-location and license plate detection systems. While their ultimate goals are obviously quite different, our design demonstrates that by sharing intermediate results, both tasks can be significantly simplified. The inspiration for this design approach comes from the basic tenets of Situational Awareness (SA), where the benefits of holistic perception are clearly demonstrated over the more typical designs that attempt to solve each sensing/perception problem in isolation.

  6. Centimeter-Level Robust Gnss-Aided Inertial Post-Processing for Mobile Mapping Without Local Reference Stations

    NASA Astrophysics Data System (ADS)

    Hutton, J. J.; Gopaul, N.; Zhang, X.; Wang, J.; Menon, V.; Rieck, D.; Kipka, A.; Pastor, F.

    2016-06-01

    For almost two decades mobile mapping systems have done their georeferencing using Global Navigation Satellite Systems (GNSS) to measure position and inertial sensors to measure orientation. In order to achieve cm level position accuracy, a technique referred to as post-processed carrier phase differential GNSS (DGNSS) is used. For this technique to be effective the maximum distance to a single Reference Station should be no more than 20 km, and when using a network of Reference Stations the distance to the nearest station should no more than about 70 km. This need to set up local Reference Stations limits productivity and increases costs, especially when mapping large areas or long linear features such as roads or pipelines. An alternative technique to DGNSS for high-accuracy positioning from GNSS is the so-called Precise Point Positioning or PPP method. In this case instead of differencing the rover observables with the Reference Station observables to cancel out common errors, an advanced model for every aspect of the GNSS error chain is developed and parameterized to within an accuracy of a few cm. The Trimble Centerpoint RTX positioning solution combines the methodology of PPP with advanced ambiguity resolution technology to produce cm level accuracies without the need for local reference stations. It achieves this through a global deployment of highly redundant monitoring stations that are connected through the internet and are used to determine the precise satellite data with maximum accuracy, robustness, continuity and reliability, along with advance algorithms and receiver and antenna calibrations. This paper presents a new post-processed realization of the Trimble Centerpoint RTX technology integrated into the Applanix POSPac MMS GNSS-Aided Inertial software for mobile mapping. Real-world results from over 100 airborne flights evaluated against a DGNSS network reference are presented which show that the post-processed Centerpoint RTX solution agrees with the DGNSS solution to better than 2.9 cm RMSE Horizontal and 5.5 cm RMSE Vertical. Such accuracies are sufficient to meet the requirements for a majority of airborne mapping applications.

  7. NWS Mobile Weather

    Science.gov Websites

    Astronomical Data Tsunami Full Site FAQ Site Info Feedback Click map for forecast jQuery Mobile Framework = Requested Location Satellite Visible (Vis) Infrared (IR) Regional Vis Regional IR Legal Mobile site Product : NWS Internet Team Privacy Policy Mobile Page Feedback Full Survey Tweet feedback (#nwsmobileweb

  8. Developing an eBook-Integrated High-Fidelity Mobile App Prototype for Promoting Child Motor Skills and Taxonomically Assessing Children’s Emotional Responses Using Face and Sound Topology

    PubMed Central

    Brown, William; Liu, Connie; John, Rita Marie; Ford, Phoebe

    2014-01-01

    Developing gross and fine motor skills and expressing complex emotion is critical for child development. We introduce “StorySense”, an eBook-integrated mobile app prototype that can sense face and sound topologies and identify movement and expression to promote children’s motor skills and emotional developmental. Currently, most interactive eBooks on mobile devices only leverage “low-motor” interaction (i.e. tapping or swiping). Our app senses a greater breath of motion (e.g. clapping, snapping, and face tracking), and dynamically alters the storyline according to physical responses in ways that encourage the performance of predetermined motor skills ideal for a child’s gross and fine motor development. In addition, our app can capture changes in facial topology, which can later be mapped using the Facial Action Coding System (FACS) for later interpretation of emotion. StorySense expands the human computer interaction vocabulary for mobile devices. Potential clinical applications include child development, physical therapy, and autism. PMID:25954336

  9. A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals

    PubMed Central

    Castañón–Puga, Manuel; Salazar, Abby Stephanie; Aguilar, Leocundo; Gaxiola-Pacheco, Carelia; Licea, Guillermo

    2015-01-01

    The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs). This approach takes advantage of wireless local area networks (WLANs) over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi–Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information. PMID:26633417

  10. A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals.

    PubMed

    Castañón-Puga, Manuel; Salazar, Abby Stephanie; Aguilar, Leocundo; Gaxiola-Pacheco, Carelia; Licea, Guillermo

    2015-12-02

    The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs). This approach takes advantage of wireless local area networks (WLANs) over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi-Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information.

  11. Creation of a Web Map and Mobile Application Based on a Printed Book

    NASA Astrophysics Data System (ADS)

    Holubec, V.; Valášková, T.; Halounová, L.

    2016-06-01

    The project describes a process of conversion of printed books into a web map and mobile application. The goal of the project is to make spatial data in the book accessible to wide public using GIS especially on web in order to spread the information about this topic. Moreover, as a result of the analysis and of the new perspectives gained from the data context, historians will be able to find new connections. The books that serve as sources of the project (two books with the scope of about 1400 pages featuring hundreds of locations where each location is associated with more events of different types) refer to places with many addresses in Prague and some villages in the Czech Republic which are related to events that took place during the World War II. The paper describes the steps of conversion, the design of the data model in Esri geodatabase and examples of outputs. The historical data are connected to actual addresses and thanks to such a combination of historical and actual locations, the project will help to discover a part of the history of the Czech Republic and it will show new context in data via GIS capabilities. This project is a continuation of a project which recorded a march of death on a map. This is a unique project created in cooperation with Academia Publishing. The outputs of the project will serve as a core resource for a multimedia history portal. The author of the book is currently writing sequels from the post-war period and at least two other books are envisioned, so the future of the project is ensured.

  12. Mobile Instruments Measure Atmospheric Pollutants

    NASA Technical Reports Server (NTRS)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  13. Reconstruction of Sky Illumination Domes from Ground-Based Panoramas

    NASA Astrophysics Data System (ADS)

    Coubard, F.; Lelégard, L.; Brédif, M.; Paparoditis, N.; Briottet, X.

    2012-07-01

    The knowledge of the sky illumination is important for radiometric corrections and for computer graphics applications such as relighting or augmented reality. We propose an approach to compute environment maps, representing the sky radiance, from a set of ground-based images acquired by a panoramic acquisition system, for instance a mobile-mapping system. These images can be affected by important radiometric artifacts, such as bloom or overexposure. A Perez radiance model is estimated with the blue sky pixels of the images, and used to compute additive corrections in order to reduce these radiometric artifacts. The sky pixels are then aggregated in an environment map, which still suffers from discontinuities on stitching edges. The influence of the quality of estimated sky radiance on the simulated light signal is measured quantitatively on a simple synthetic urban scene; in our case, the maximal error for the total sensor radiance is about 10%.

  14. Participatory Gis: Experimentations for a 3d Social Virtual Globe

    NASA Astrophysics Data System (ADS)

    Brovelli, M. A.; Minghini, M.; Zamboni, G.

    2013-08-01

    The dawn of GeoWeb 2.0, the geographic extension of Web 2.0, has opened new possibilities in terms of online dissemination and sharing of geospatial contents, thus laying the foundations for a fruitful development of Participatory GIS (PGIS). The purpose of the study is to investigate the extension of PGIS applications, which are quite mature in the traditional bi-dimensional framework, up to the third dimension. More in detail, the system should couple a powerful 3D visualization with an increase of public participation by means of a tool allowing data collecting from mobile devices (e.g. smartphones and tablets). The PGIS application, built using the open source NASA World Wind virtual globe, is focussed on the cultural and tourism heritage of Como city, located in Northern Italy. An authentication mechanism was implemented, which allows users to create and manage customized projects through cartographic mash-ups of Web Map Service (WMS) layers. Saved projects populate a catalogue which is available to the entire community. Together with historical maps and the current cartography of the city, the system is also able to manage geo-tagged multimedia data, which come from user field-surveys performed through mobile devices and report POIs (Points Of Interest). Each logged user can then contribute to POIs characterization by adding textual and multimedia information (e.g. images, audios and videos) directly on the globe. All in all, the resulting application allows users to create and share contributions as it usually happens on social platforms, additionally providing a realistic 3D representation enhancing the expressive power of data.

  15. Remote imagery for unmanned ground vehicles: the future of path planning for ground robotics

    NASA Astrophysics Data System (ADS)

    Frederick, Philip A.; Theisen, Bernard L.; Ward, Derek

    2006-10-01

    Remote Imagery for Unmanned Ground Vehicles (RIUGV) uses a combination of high-resolution multi-spectral satellite imagery and advanced commercial off-the-self (COTS) object-oriented image processing software to provide automated terrain feature extraction and classification. This information, along with elevation data, infrared imagery, a vehicle mobility model and various meta-data (local weather reports, Zobler Soil map, etc...), is fed into automated path planning software to provide a stand-alone ability to generate rapidly updateable dynamic mobility maps for Manned or Unmanned Ground Vehicles (MGVs or UGVs). These polygon based mobility maps can reside on an individual platform or a tactical network. When new information is available, change files are generated and ingested into existing mobility maps based on user selected criteria. Bandwidth concerns are mitigated by the use of shape files for the representation of the data (e.g. each object in the scene is represented by a shape file and thus can be transmitted individually). User input (desired level of stealth, required time of arrival, etc...) determines the priority in which objects are tagged for updates. This paper will also discuss the planned July 2006 field experiment.

  16. Certainty grids for mobile robots

    NASA Technical Reports Server (NTRS)

    Moravec, H. P.

    1987-01-01

    A numerical representation of uncertain and incomplete sensor knowledge called Certainty Grids has been used successfully in several mobile robot control programs, and has proven itself to be a powerful and efficient unifying solution for sensor fusion, motion planning, landmark identification, and many other central problems. Researchers propose to build a software framework running on processors onboard the new Uranus mobile robot that will maintain a probabilistic, geometric map of the robot's surroundings as it moves. The certainty grid representation will allow this map to be incrementally updated in a uniform way from various sources including sonar, stereo vision, proximity and contact sensors. The approach can correctly model the fuzziness of each reading, while at the same time combining multiple measurements to produce sharper map features, and it can deal correctly with uncertainties in the robot's motion. The map will be used by planning programs to choose clear paths, identify locations (by correlating maps), identify well-known and insufficiently sensed terrain, and perhaps identify objects by shape. The certainty grid representation can be extended in the same dimension and used to detect and track moving objects.

  17. Pressure Mapping Mat for Tele-Home Care Applications

    PubMed Central

    Saenz-Cogollo, Jose Francisco; Pau, Massimiliano; Fraboni, Beatrice; Bonfiglio, Annalisa

    2016-01-01

    In this paper we present the development of a mat-like pressure mapping system based on a single layer textile sensor and intended to be used in home environments for monitoring the physical condition of persons with limited mobility. The sensor is fabricated by embroidering silver-coated yarns on a light cotton fabric and creating pressure-sensitive resistive elements by stamping the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) at the crossing points of conductive stitches. A battery-operated mat prototype was developed and includes the scanning circuitry and a wireless communication module. A functional description of the system is presented together with a preliminary experimental evaluation of the mat prototype in the extraction of plantar pressure parameters. PMID:26978369

  18. Using Mobile App Development Tools to Build a GIS Application

    NASA Astrophysics Data System (ADS)

    Mital, A.; Catchen, M.; Mital, K.

    2014-12-01

    Our group designed and built working web, android, and IOS applications using different mapping libraries as bases on which to overlay fire data from NASA. The group originally planned to make app versions for Google Maps, Leaflet, and OpenLayers. However, because the Leaflet library did not properly load on Android, the group focused efforts on the other two mapping libraries. For Google Maps, the group first designed a UI for the web app and made a working version of the app. After updating the source of fire data to one which also provided historical fire data, the design had to be modified to include the extra data. After completing a working version of the web app, the group used webview in android, a built in resource which allowed porting the web app to android without rewriting the code for android. Upon completing this, the group found Apple IOS devices had a similar capability, and so decided to add an IOS app to the project using a function similar to webview. Alongside this effort, the group began implementing an OpenLayers fire map using a simpler UI. This web app was completed fairly quickly relative to Google Maps; however, it did not include functionality such as satellite imagery or searchable locations. The group finished the project with a working android version of the Google Maps based app supporting API levels 14-19 and an OpenLayers based app supporting API levels 8-19, as well as a Google Maps based IOS app supporting both old and new screen formats. This project was implemented by high school and college students under an SGT Inc. STEM internship program

  19. Drawing road networks with focus regions.

    PubMed

    Haunert, Jan-Henrik; Sering, Leon

    2011-12-01

    Mobile users of maps typically need detailed information about their surroundings plus some context information about remote places. In order to avoid that the map partly gets too dense, cartographers have designed mapping functions that enlarge a user-defined focus region--such functions are sometimes called fish-eye projections. The extra map space occupied by the enlarged focus region is compensated by distorting other parts of the map. We argue that, in a map showing a network of roads relevant to the user, distortion should preferably take place in those areas where the network is sparse. Therefore, we do not apply a predefined mapping function. Instead, we consider the road network as a graph whose edges are the road segments. We compute a new spatial mapping with a graph-based optimization approach, minimizing the square sum of distortions at edges. Our optimization method is based on a convex quadratic program (CQP); CQPs can be solved in polynomial time. Important requirements on the output map are expressed as linear inequalities. In particular, we show how to forbid edge crossings. We have implemented our method in a prototype tool. For instances of different sizes, our method generated output maps that were far less distorted than those generated with a predefined fish-eye projection. Future work is needed to automate the selection of roads relevant to the user. Furthermore, we aim at fast heuristics for application in real-time systems. © 2011 IEEE

  20. Systematic Calibration for a Backpacked Spherical Photogrammetry Imaging System

    NASA Astrophysics Data System (ADS)

    Rau, J. Y.; Su, B. W.; Hsiao, K. W.; Jhan, J. P.

    2016-06-01

    A spherical camera can observe the environment for almost 720 degrees' field of view in one shoot, which is useful for augmented reality, environment documentation, or mobile mapping applications. This paper aims to develop a spherical photogrammetry imaging system for the purpose of 3D measurement through a backpacked mobile mapping system (MMS). The used equipment contains a Ladybug-5 spherical camera, a tactical grade positioning and orientation system (POS), i.e. SPAN-CPT, and an odometer, etc. This research aims to directly apply photogrammetric space intersection technique for 3D mapping from a spherical image stereo-pair. For this purpose, several systematic calibration procedures are required, including lens distortion calibration, relative orientation calibration, boresight calibration for direct georeferencing, and spherical image calibration. The lens distortion is serious on the ladybug-5 camera's original 6 images. Meanwhile, for spherical image mosaicking from these original 6 images, we propose the use of their relative orientation and correct their lens distortion at the same time. However, the constructed spherical image still contains systematic error, which will reduce the 3D measurement accuracy. Later for direct georeferencing purpose, we need to establish a ground control field for boresight/lever-arm calibration. Then, we can apply the calibrated parameters to obtain the exterior orientation parameters (EOPs) of all spherical images. In the end, the 3D positioning accuracy after space intersection will be evaluated, including EOPs obtained by structure from motion method.

  1. Using qualitative maps to direct reactive robots

    NASA Technical Reports Server (NTRS)

    Bertin, Randolph; Pendleton, Tom

    1992-01-01

    The principal advantage of mobile robots is that they are able to go to specific locations to perform useful tasks rather than have the tasks brought to them. It is important therefore that the robot be used to reach desired locations efficiently and reliably. A mobile robot whose environment extends significantly beyond its sensory horizon must maintain a representation of the environment, a map, in order to attain these efficiency and reliability requirements. We believe that qualitative mapping methods provide useful and robust representation schemes and that such maps may be used to direct the actions of a reactively controlled robot. In this paper we describe our experience in employing qualitative maps to direct, through the selection of desired control strategies, a reactive-behavior based robot. This mapping capability represents the development of one aspect of a successful deliberative/reactive hybrid control architecture.

  2. Characterization of the Hokuyo URG-04LX laser rangefinder for mobile robot obstacle negotiation

    NASA Astrophysics Data System (ADS)

    Okubo, Yoichi; Ye, Cang; Borenstein, Johann

    2009-05-01

    This paper presents a characterization study of the Hokuyo URG-04LX scanning laser rangefinder (LRF). The Hokuyo LRF is similar in function to the Sick LRF, which has been the de-facto standard range sensor for mobile robot obstacle avoidance and mapping applications for the last decade. Problems with the Sick LRF are its relatively large size, weight, and power consumption, allowing its use only on relatively large mobile robots. The Hokuyo LRF is substantially smaller, lighter, and consumes less power, and is therefore more suitable for small mobile robots. The question is whether it performs just as well as the Sick LRF in typical mobile robot applications. In 2002, two of the authors of the present paper published a characterization study of the Sick LRF. For the present paper we used the exact same test apparatus and test procedures as we did in the 2002 paper, but this time to characterize the Hokuyo LRF. As a result, we are in the unique position of being able to provide not only a detailed characterization study of the Hokuyo LRF, but also to compare the Hokuyo LRF with the Sick LRF under identical test conditions. Among the tested characteristics are sensitivity to a variety of target surface properties and incidence angles, which may potentially affect the sensing performance. We also discuss the performance of the Hokuyo LRF with regard to the mixed pixels problem associated with LRFs. Lastly, the present paper provides a calibration model for improving the accuracy of the Hokuyo LRF.

  3. U.S. Seismic Design Maps Web Application

    NASA Astrophysics Data System (ADS)

    Martinez, E.; Fee, J.

    2015-12-01

    The application computes earthquake ground motion design parameters compatible with the International Building Code and other seismic design provisions. It is the primary method for design engineers to obtain ground motion parameters for multiple building codes across the country. When designing new buildings and other structures, engineers around the country use the application. Users specify the design code of interest, location, and other parameters to obtain necessary ground motion information consisting of a high-level executive summary as well as detailed information including maps, data, and graphs. Results are formatted such that they can be directly included in a final engineering report. In addition to single-site analysis, the application supports a batch mode for simultaneous consideration of multiple locations. Finally, an application programming interface (API) is available which allows other application developers to integrate this application's results into larger applications for additional processing. Development on the application has proceeded in an iterative manner working with engineers through email, meetings, and workshops. Each iteration provided new features, improved performance, and usability enhancements. This development approach positioned the application to be integral to the structural design process and is now used to produce over 1800 reports daily. Recent efforts have enhanced the application to be a data-driven, mobile-first, responsive web application. Development is ongoing, and source code has recently been published into the open-source community on GitHub. Open-sourcing the code facilitates improved incorporation of user feedback to add new features ensuring the application's continued success.

  4. Cloud Computing Boosts Business Intelligence of Telecommunication Industry

    NASA Astrophysics Data System (ADS)

    Xu, Meng; Gao, Dan; Deng, Chao; Luo, Zhiguo; Sun, Shaoling

    Business Intelligence becomes an attracting topic in today's data intensive applications, especially in telecommunication industry. Meanwhile, Cloud Computing providing IT supporting Infrastructure with excellent scalability, large scale storage, and high performance becomes an effective way to implement parallel data processing and data mining algorithms. BC-PDM (Big Cloud based Parallel Data Miner) is a new MapReduce based parallel data mining platform developed by CMRI (China Mobile Research Institute) to fit the urgent requirements of business intelligence in telecommunication industry. In this paper, the architecture, functionality and performance of BC-PDM are presented, together with the experimental evaluation and case studies of its applications. The evaluation result demonstrates both the usability and the cost-effectiveness of Cloud Computing based Business Intelligence system in applications of telecommunication industry.

  5. Mobile Therapy: Case Study Evaluations of a Cell Phone Application for Emotional Self-Awareness

    PubMed Central

    Kathawala, Qusai; Leen, Todd K; Gorenstein, Ethan E; Guilak, Farzin; Labhard, Michael; Deleeuw, William

    2010-01-01

    Background Emotional awareness and self-regulation are important skills for improving mental health and reducing the risk of cardiovascular disease. Cognitive behavioral therapy can teach these skills but is not widely available. Objective This exploratory study examined the potential of mobile phone technologies to broaden access to cognitive behavioral therapy techniques and to provide in-the-moment support. Methods We developed a mobile phone application with touch screen scales for mood reporting and therapeutic exercises for cognitive reappraisal (ie, examination of maladaptive interpretations) and physical relaxation. The application was deployed in a one-month field study with eight individuals who had reported significant stress during an employee health assessment. Participants were prompted via their mobile phones to report their moods several times a day on a Mood Map—a translation of the circumplex model of emotion—and a series of single-dimension mood scales. Using the prototype, participants could also activate mobile therapies as needed. During weekly open-ended interviews, participants discussed their use of the device and responded to longitudinal views of their data. Analyses included a thematic review of interview narratives, assessment of mood changes over the course of the study and the diurnal cycle, and interrogation of this mobile data based on stressful incidents reported in interviews. Results Five case studies illustrate participants' use of the mobile phone application to increase self-awareness and to cope with stress. One example is a participant who had been coping with longstanding marital conflict. After reflecting on his mood data, particularly a drop in energy each evening, the participant began practicing relaxation therapies on the phone before entering his house, applying cognitive reappraisal techniques to cope with stressful family interactions, and talking more openly with his wife. His mean anger, anxiety and sadness ratings all were lower in the second half of the field study than in the first (P ≤ .01 for all three scales). Similar changes were observed among other participants as they used the application to negotiate bureaucratic frustrations, work tensions and personal relationships. Participants appeared to understand the mood scales developed for this experience sampling application and responded to them in a way that was generally consistent with self-reflection in weekly interviews. Interview accounts of mood changes, associated with diurnal cycles, personal improvement over the course of the study, and stressful episodes, could be seen in the experience sampling data. Discrepancies between interview and experience-sampling data highlighted the ways that individuals responded to the two forms of inquiry and how they calibrated mood ratings over the course of the study. Conclusions Participants quickly grasped the Mood Mapping and therapeutic concepts, and applied them creatively in order to help themselves and empathize with others. Applications developed for mobile phones hold promise for delivering state-of-the-art psychotherapies in a nonstigmatizing fashion to many people who otherwise would not have access to therapy. PMID:20439251

  6. Mapping barriers and intervention activities to behaviour change theory for Mobilization of Vulnerable Elders in Ontario (MOVE ON), a multi-site implementation intervention in acute care hospitals.

    PubMed

    Moore, Julia E; Mascarenhas, Alekhya; Marquez, Christine; Almaawiy, Ummukulthum; Chan, Wai-Hin; D'Souza, Jennifer; Liu, Barbara; Straus, Sharon E

    2014-10-30

    As evidence-informed implementation interventions spread, they need to be tailored to address the unique needs of each setting, and this process should be well documented to facilitate replication. To facilitate the spread of the Mobilization of Vulnerable Elders in Ontario (MOVE ON) intervention, the aim of the current study is to develop a mapping guide that links identified barriers and intervention activities to behaviour change theory. Focus groups were conducted with front line health-care professionals to identify perceived barriers to implementation of an early mobilization intervention targeted to hospitalized older adults. Participating units then used or adapted intervention activities from an existing menu or developed new activities to facilitate early mobilization. A thematic analysis was performed on the focus group data, emphasizing concepts related to barriers to behaviour change. A behaviour change theory, the 'capability, opportunity, motivation-behaviour (COM-B) system', was used as a taxonomy to map the identified barriers to their root causes. We also mapped the behaviour constructs and intervention activities to overcome these. A total of 46 focus groups were conducted across 26 hospital inpatient units in Ontario, Canada, with 261 participants. The barriers were conceptualized at three levels: health-care provider (HCP), patient, and unit. Commonly mentioned barriers were time constraints and workload (HCP), patient clinical acuity and their perceived 'sick role' (patient), and lack of proper equipment and human resources (unit level). Thirty intervention activities to facilitate early mobilization of older adults were implemented across hospitals; examples of unit-developed intervention activities include the 'mobility clock' communication tool and the use of staff champions. A mapping guide was created with barriers and intervention activities matched though the lens of the COM-B system. We used a systematic approach to develop a guide, which maps barriers, intervention activities, and behaviour change constructs in order to tailor an implementation intervention to the local context. This approach allows implementers to identify potential strategies to overcome local-level barriers and to document adaptations.

  7. MonoSLAM: real-time single camera SLAM.

    PubMed

    Davison, Andrew J; Reid, Ian D; Molton, Nicholas D; Stasse, Olivier

    2007-06-01

    We present a real-time algorithm which can recover the 3D trajectory of a monocular camera, moving rapidly through a previously unknown scene. Our system, which we dub MonoSLAM, is the first successful application of the SLAM methodology from mobile robotics to the "pure vision" domain of a single uncontrolled camera, achieving real time but drift-free performance inaccessible to Structure from Motion approaches. The core of the approach is the online creation of a sparse but persistent map of natural landmarks within a probabilistic framework. Our key novel contributions include an active approach to mapping and measurement, the use of a general motion model for smooth camera movement, and solutions for monocular feature initialization and feature orientation estimation. Together, these add up to an extremely efficient and robust algorithm which runs at 30 Hz with standard PC and camera hardware. This work extends the range of robotic systems in which SLAM can be usefully applied, but also opens up new areas. We present applications of MonoSLAM to real-time 3D localization and mapping for a high-performance full-size humanoid robot and live augmented reality with a hand-held camera.

  8. How to identify, assess and utilise mobile medical applications in clinical practice.

    PubMed

    Aungst, T D; Clauson, K A; Misra, S; Lewis, T L; Husain, I

    2014-02-01

    There are thousands of medical applications for mobile devices targeting use by healthcare professionals. However, several factors related to the structure of the existing market for medical applications create significant barriers preventing practitioners from effectively identifying mobile medical applications for individual professional use. To define existing market factors relevant to selection of medical applications and describe a framework to empower clinicians to identify, assess and utilise mobile medical applications in their own practice. Resources available on the Internet regarding mobile medical applications, guidelines and published research on mobile medical applications. Mobile application stores (e.g. iTunes, Google Play) are not effective means of identifying mobile medical applications. Users of mobile devices that desire to implement mobile medical applications into practice need to carefully assess individual applications prior to utilisation. Searching and identifying mobile medical applications requires clinicians to utilise multiple references to determine what application is best for their individual practice methods. This can be done with a cursory exploration of mobile application stores and then moving onto other available resources published in the literature or through Internet resources (e.g. blogs, medical websites, social media). Clinicians must also take steps to ensure that an identified mobile application can be integrated into practice after carefully reviewing it themselves. Clinicians seeking to identify mobile medical application for use in their individual practice should use a combination of app stores, published literature, web-based resources, and personal review to ensure safe and appropriate use. © 2014 John Wiley & Sons Ltd.

  9. Use of Mobile Information Technology during Planning, Implementation and Evaluation of a Polio Campaign in South Sudan.

    PubMed

    Haskew, John; Kenyi, Veronica; William, Juma; Alum, Rebecca; Puri, Anu; Mostafa, Yehia; Davis, Robert

    2015-01-01

    Use of mobile information technology may aid collection of real-time, standardised data to inform and improve decision-making for polio programming and response. We utilised Android-based smartphones to collect data electronically from more than 8,000 households during a national round of polio immunisation in South Sudan. The results of the household surveys are presented here, together with discussion of the application of mobile information technology for polio campaign planning, implementation and evaluation in a real-time setting. Electronic questionnaires were programmed onto Android-based smartphones for mapping, supervision and survey activities during a national round of polio immunisation. National census data were used to determine the sampling frame for each activity and select the payam (district). Individual supervisors, in consultation with the local district health team, selected villages and households within each payam. Data visualisation tools were utilised for analysis and reporting. Implementation of mobile information technology and local management was feasible during a national round of polio immunisation in South Sudan. Red Cross visits during the polio campaign were equitable according to household wealth index and households who received a Red Cross visit had significantly higher odds of being aware of the polio campaign than those who did not. Nearly 95% of children under five were reported to have received polio immunisation (according to maternal recall) during the immunisation round, which varied by state, county and payam. A total of 11 payams surveyed were identified with less than 90% reported immunisation coverage and the least poor households had significantly higher odds of being vaccinated than the most poor. More than 95% of households were aware of the immunisation round and households had significantly higher odds of being vaccinated if they had prior awareness of the campaign taking place. Pre-campaign community education and household awareness of polio is important to increase campaign participation and subsequent immunisation coverage in South Sudan. More emphasis should be placed on ensuring immunisation is equitable according to geographic area and household socio-economic index in future rounds. We demonstrate the utility of mobile information technology for household mapping, supervision and survey activities during a national round of polio immunisation and encourage future studies to compare the effectiveness of electronic data collection and its application in polio planning and programming.

  10. Use of Mobile Information Technology during Planning, Implementation and Evaluation of a Polio Campaign in South Sudan

    PubMed Central

    Haskew, John; Kenyi, Veronica; William, Juma; Alum, Rebecca; Puri, Anu; Mostafa, Yehia; Davis, Robert

    2015-01-01

    Background Use of mobile information technology may aid collection of real-time, standardised data to inform and improve decision-making for polio programming and response. We utilised Android-based smartphones to collect data electronically from more than 8,000 households during a national round of polio immunisation in South Sudan. The results of the household surveys are presented here, together with discussion of the application of mobile information technology for polio campaign planning, implementation and evaluation in a real-time setting. Methods Electronic questionnaires were programmed onto Android-based smartphones for mapping, supervision and survey activities during a national round of polio immunisation. National census data were used to determine the sampling frame for each activity and select the payam (district). Individual supervisors, in consultation with the local district health team, selected villages and households within each payam. Data visualisation tools were utilised for analysis and reporting. Results Implementation of mobile information technology and local management was feasible during a national round of polio immunisation in South Sudan. Red Cross visits during the polio campaign were equitable according to household wealth index and households who received a Red Cross visit had significantly higher odds of being aware of the polio campaign than those who did not. Nearly 95% of children under five were reported to have received polio immunisation (according to maternal recall) during the immunisation round, which varied by state, county and payam. A total of 11 payams surveyed were identified with less than 90% reported immunisation coverage and the least poor households had significantly higher odds of being vaccinated than the most poor. More than 95% of households were aware of the immunisation round and households had significantly higher odds of being vaccinated if they had prior awareness of the campaign taking place. Conclusion Pre-campaign community education and household awareness of polio is important to increase campaign participation and subsequent immunisation coverage in South Sudan. More emphasis should be placed on ensuring immunisation is equitable according to geographic area and household socio-economic index in future rounds. We demonstrate the utility of mobile information technology for household mapping, supervision and survey activities during a national round of polio immunisation and encourage future studies to compare the effectiveness of electronic data collection and its application in polio planning and programming. PMID:26252383

  11. City model enrichment

    NASA Astrophysics Data System (ADS)

    Smart, Philip D.; Quinn, Jonathan A.; Jones, Christopher B.

    The combination of mobile communication technology with location and orientation aware digital cameras has introduced increasing interest in the exploitation of 3D city models for applications such as augmented reality and automated image captioning. The effectiveness of such applications is, at present, severely limited by the often poor quality of semantic annotation of the 3D models. In this paper, we show how freely available sources of georeferenced Web 2.0 information can be used for automated enrichment of 3D city models. Point referenced names of prominent buildings and landmarks mined from Wikipedia articles and from the OpenStreetMaps digital map and Geonames gazetteer have been matched to the 2D ground plan geometry of a 3D city model. In order to address the ambiguities that arise in the associations between these sources and the city model, we present procedures to merge potentially related buildings and implement fuzzy matching between reference points and building polygons. An experimental evaluation demonstrates the effectiveness of the presented methods.

  12. Geological analysis of parts of the southern Arabian Shield based on Landsat imagery

    NASA Astrophysics Data System (ADS)

    Qari, Mohammed Yousef Hedaytullah T.

    This thesis examines the capability and applicability of Landsat multispectral remote sensing data for geological analysis in the arid southern Arabian Shield, which is the eastern segment of the Nubian-Arabian Shield surrounding the Red Sea. The major lithologies in the study area are Proterozoic metavolcanics, metasediments, gneisses and granites. Three test-sites within the study area, located within two tectonic assemblages, the Asir Terrane and the Nabitah Mobile Belt, were selected for detailed comparison of remote sensing methods and ground geological studies. Selected digital image processing techniques were applied to full-resolution Landsat TM imagery and the results are interpreted and discussed. Methods included: image contrast improvement, edge enhancement for detecting lineaments and spectral enhancement for geological mapping. The last method was based on two principles, statistical analysis of the data and the use of arithmetical operators. New and detailed lithological and structural maps were constructed and compared with previous maps of these sites. Examples of geological relations identified using TM imagery include: recognition and mapping of migmatites for the first time in the Arabian Shield; location of the contact between the Asir Terrane and the Nabitah Mobile Belt; and mapping of lithologies, some of which were not identified on previous geological maps. These and other geological features were confirmed by field checking. Methods of lineament enhancement implemented in this study revealed structural lineaments, mostly mapped for the first time, which can be related to regional tectonics. Structural analysis showed that the southern Arabian Shield has been affected by at least three successive phases of deformation. The third phase is the most dominant and widespread. A crustal evolutionary model in the vicinity of the study area is presented showing four stages, these are: arc stage, accretion stage, collision stage and post-collision stage. The results of this study demonstrate that Landsat TM data can be used reliably for geological investigations in the Arabian Shield and comparable areas, particularly to generate detailed geological maps over large areas by using quantitative remote sensing methods, providing there is prior knowledge of part of the area.

  13. Low Cost and Efficient 3d Indoor Mapping Using Multiple Consumer Rgb-D Cameras

    NASA Astrophysics Data System (ADS)

    Chen, C.; Yang, B. S.; Song, S.

    2016-06-01

    Driven by the miniaturization, lightweight of positioning and remote sensing sensors as well as the urgent needs for fusing indoor and outdoor maps for next generation navigation, 3D indoor mapping from mobile scanning is a hot research and application topic. The point clouds with auxiliary data such as colour, infrared images derived from 3D indoor mobile mapping suite can be used in a variety of novel applications, including indoor scene visualization, automated floorplan generation, gaming, reverse engineering, navigation, simulation and etc. State-of-the-art 3D indoor mapping systems equipped with multiple laser scanners product accurate point clouds of building interiors containing billions of points. However, these laser scanner based systems are mostly expensive and not portable. Low cost consumer RGB-D Cameras provides an alternative way to solve the core challenge of indoor mapping that is capturing detailed underlying geometry of the building interiors. Nevertheless, RGB-D Cameras have a very limited field of view resulting in low efficiency in the data collecting stage and incomplete dataset that missing major building structures (e.g. ceilings, walls). Endeavour to collect a complete scene without data blanks using single RGB-D Camera is not technic sound because of the large amount of human labour and position parameters need to be solved. To find an efficient and low cost way to solve the 3D indoor mapping, in this paper, we present an indoor mapping suite prototype that is built upon a novel calibration method which calibrates internal parameters and external parameters of multiple RGB-D Cameras. Three Kinect sensors are mounted on a rig with different view direction to form a large field of view. The calibration procedure is three folds: 1, the internal parameters of the colour and infrared camera inside each Kinect are calibrated using a chess board pattern, respectively; 2, the external parameters between the colour and infrared camera inside each Kinect are calibrated using a chess board pattern; 3, the external parameters between every Kinect are firstly calculated using a pre-set calibration field and further refined by an iterative closet point algorithm. Experiments are carried out to validate the proposed method upon RGB-D datasets collected by the indoor mapping suite prototype. The effectiveness and accuracy of the proposed method is evaluated by comparing the point clouds derived from the prototype with ground truth data collected by commercial terrestrial laser scanner at ultra-high density. The overall analysis of the results shows that the proposed method achieves seamless integration of multiple point clouds form different RGB-D cameras collected at 30 frame per second.

  14. A cognitive robotic system based on the Soar cognitive architecture for mobile robot navigation, search, and mapping missions

    NASA Astrophysics Data System (ADS)

    Hanford, Scott D.

    Most unmanned vehicles used for civilian and military applications are remotely operated or are designed for specific applications. As these vehicles are used to perform more difficult missions or a larger number of missions in remote environments, there will be a great need for these vehicles to behave intelligently and autonomously. Cognitive architectures, computer programs that define mechanisms that are important for modeling and generating domain-independent intelligent behavior, have the potential for generating intelligent and autonomous behavior in unmanned vehicles. The research described in this presentation explored the use of the Soar cognitive architecture for cognitive robotics. The Cognitive Robotic System (CRS) has been developed to integrate software systems for motor control and sensor processing with Soar for unmanned vehicle control. The CRS has been tested using two mobile robot missions: outdoor navigation and search in an indoor environment. The use of the CRS for the outdoor navigation mission demonstrated that a Soar agent could autonomously navigate to a specified location while avoiding obstacles, including cul-de-sacs, with only a minimal amount of knowledge about the environment. While most systems use information from maps or long-range perceptual capabilities to avoid cul-de-sacs, a Soar agent in the CRS was able to recognize when a simple approach to avoiding obstacles was unsuccessful and switch to a different strategy for avoiding complex obstacles. During the indoor search mission, the CRS autonomously and intelligently searches a building for an object of interest and common intersection types. While searching the building, the Soar agent builds a topological map of the environment using information about the intersections the CRS detects. The agent uses this topological model (along with Soar's reasoning, planning, and learning mechanisms) to make intelligent decisions about how to effectively search the building. Once the object of interest has been detected, the Soar agent uses the topological map to make decisions about how to efficiently return to the location where the mission began. Additionally, the CRS can send an email containing step-by-step directions using the intersections in the environment as landmarks that describe a direct path from the mission's start location to the object of interest. The CRS has displayed several characteristics of intelligent behavior, including reasoning, planning, learning, and communication of learned knowledge, while autonomously performing two missions. The CRS has also demonstrated how Soar can be integrated with common robotic motor and perceptual systems that complement the strengths of Soar for unmanned vehicles and is one of the few systems that use perceptual systems such as occupancy grid, computer vision, and fuzzy logic algorithms with cognitive architectures for robotics. The use of these perceptual systems to generate symbolic information about the environment during the indoor search mission allowed the CRS to use Soar's planning and learning mechanisms, which have rarely been used by agents to control mobile robots in real environments. Additionally, the system developed for the indoor search mission represents the first known use of a topological map with a cognitive architecture on a mobile robot. The ability to learn both a topological map and production rules allowed the Soar agent used during the indoor search mission to make intelligent decisions and behave more efficiently as it learned about its environment. While the CRS has been applied to two different missions, it has been developed with the intention that it be extended in the future so it can be used as a general system for mobile robot control. The CRS can be expanded through the addition of new sensors and sensor processing algorithms, development of Soar agents with more production rules, and the use of new architectural mechanisms in Soar.

  15. 77 FR 15369 - Mobility Fund Phase I Auction GIS Data of Potentially Eligible Census Blocks

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ....fcc.gov/auctions/901/ , are the following: Downloadable shapefile Web mapping service MapBox map tiles... GIS software allows you to add this service as a layer to your session or project. 6. MapBox map tiles are cached map tiles of the data. With this open source software approach, these image tiles can be...

  16. A Sharing Mind Map-Oriented Approach to Enhance Collaborative Mobile Learning with Digital Archiving Systems

    ERIC Educational Resources Information Center

    Chang, Jui-Hung; Chiu, Po-Sheng; Huang, Yueh-Min

    2018-01-01

    With the advances in mobile network technology, the use of portable devices and mobile networks for learning is not limited by time and space. Such use, in combination with appropriate learning strategies, can achieve a better effect. Despite the effectiveness of mobile learning, students' learning direction, progress, and achievement may differ.…

  17. Semantic Location Extraction from Crowdsourced Data

    NASA Astrophysics Data System (ADS)

    Koswatte, S.; Mcdougall, K.; Liu, X.

    2016-06-01

    Crowdsourced Data (CSD) has recently received increased attention in many application areas including disaster management. Convenience of production and use, data currency and abundancy are some of the key reasons for attracting this high interest. Conversely, quality issues like incompleteness, credibility and relevancy prevent the direct use of such data in important applications like disaster management. Moreover, location information availability of CSD is problematic as it remains very low in many crowd sourced platforms such as Twitter. Also, this recorded location is mostly related to the mobile device or user location and often does not represent the event location. In CSD, event location is discussed descriptively in the comments in addition to the recorded location (which is generated by means of mobile device's GPS or mobile communication network). This study attempts to semantically extract the CSD location information with the help of an ontological Gazetteer and other available resources. 2011 Queensland flood tweets and Ushahidi Crowd Map data were semantically analysed to extract the location information with the support of Queensland Gazetteer which is converted to an ontological gazetteer and a global gazetteer. Some preliminary results show that the use of ontologies and semantics can improve the accuracy of place name identification of CSD and the process of location information extraction.

  18. Formative research to develop a lifestyle application (app) for African American breast cancer survivors

    PubMed Central

    Smith, Selina A.; Whitehead, Mary S.; Sheats, Joyce Q.; Fontenot, Brittney; Alema-Mensah, Ernest; Ansa, Benjamin

    2016-01-01

    Background There is a proliferation of lifestyle-oriented mobile technologies; however, few have targeted users. Through intervention mapping, investigators and community partners completed Steps 1–3 (needs assessment, formulation of change objectives, and selection of theory-based methods) of a process to develop a mobile cancer prevention application (app) for cancer prevention. The aim of this qualitative study was to complete Step 4 (intervention development) by eliciting input from African American (AA) breast cancer survivors (BCSs) to guide app development. Methods Four focus group discussions (n=60) and three individual semi-structured interviews (n=36) were conducted with AA BCSs (40–72 years of age) to assess barriers and strategies for lifestyle change. All focus groups and interviews were recorded and transcribed verbatim. Data were analyzed with NVivo qualitative data analysis software version 10, allowing categories, themes, and patterns to emerge. Results Three categories and related themes emerged from the analysis: 1) perceptions about modifiable risk factors; 2) strategies related to adherence to cancer prevention guidelines; and 3) app components to address barriers to adherence. Participant perceptions, strategies, and recommended components guided development of the app. Conclusions For development of a mobile cancer prevention app, these findings will assist investigators in targeting features that are usable, acceptable, and accessible for AA BCSs. PMID:27583307

  19. Mobile health clinics in the era of reform.

    PubMed

    Hill, Caterina F; Powers, Brian W; Jain, Sachin H; Bennet, Jennifer; Vavasis, Anthony; Oriol, Nancy E

    2014-03-01

    Despite the role of mobile clinics in delivering care to the full spectrum of at-risk populations, the collective impact of mobile clinics has never been assessed. This study characterizes the scope of the mobile clinic sector and its impact on access, costs, and quality. It explores the role of mobile clinics in the era of delivery reform and expanded insurance coverage. A synthesis of observational data collected through Mobile Health Map and published literature related to mobile clinics. Analysis of data from the Mobile Health Map Project, an online platform that aggregates data on mobile health clinics in the United States, supplemented by a comprehensive literature review. Mobile clinics represent an integral component of the healthcare system that serves vulnerable populations and promotes high-quality care at low cost. There are an estimated 1500 mobile clinics receiving 5 million visits nationwide per year. Mobile clinics improve access for vulnerable populations, bolster prevention and chronic disease management, and reduce costs. Expanded coverage and delivery reform increase opportunities for mobile clinics to partner with hospitals, health systems, and insurers to improve care and lower costs. Mobile clinics have a critical role to play in providing high-quality, low-cost care to vulnerable populations. The postreform environment, with increasing accountability for population health management and expanded access among historically underserved populations, should strengthen the ability for mobile clinics to partner with hospitals, health systems, and payers to improve care and lower costs.

  20. Understanding the role of contrasting urban contexts in healthy aging: an international cohort study using wearable sensor devices (the CURHA study protocol).

    PubMed

    Kestens, Yan; Chaix, Basile; Gerber, Philippe; Desprès, Michel; Gauvin, Lise; Klein, Olivier; Klein, Sylvain; Köppen, Bernhard; Lord, Sébastien; Naud, Alexandre; Payette, Hélène; Richard, Lucie; Rondier, Pierre; Shareck, Martine; Sueur, Cédric; Thierry, Benoit; Vallée, Julie; Wasfi, Rania

    2016-05-05

    Given the challenges of aging populations, calls have been issued for more sustainable urban re-development and implementation of local solutions to address global environmental and healthy aging issues. However, few studies have considered older adults' daily mobility to better understand how local built and social environments may contribute to healthy aging. Meanwhile, wearable sensors and interactive map-based applications offer novel means for gathering information on people's mobility, levels of physical activity, or social network structure. Combining such data with classical questionnaires on well-being, physical activity, perceived environments and qualitative assessment of experience of places opens new opportunities to assess the complex interplay between individuals and environments. In line with current gaps and novel analytical capabilities, this research proposes an international research agenda to collect and analyse detailed data on daily mobility, social networks and health outcomes among older adults using interactive web-based questionnaires and wearable sensors. Our study resorts to a battery of innovative data collection methods including use of a novel multisensor device for collection of location and physical activity, interactive map-based questionnaires on regular destinations and social networks, and qualitative assessment of experience of places. This rich data will allow advanced quantitative and qualitative analyses in the aim to disentangle the complex people-environment interactions linking urban local contexts to healthy aging, with a focus on active living, social networks and participation, and well-being. This project will generate evidence about what characteristics of urban environments relate to active mobility, social participation, and well-being, three important dimensions of healthy aging. It also sets the basis for an international research agenda on built environment and healthy aging based on a shared and comprehensive data collection protocol.

  1. Mobilizing the GLOBE at Night Citizen-Scientist

    NASA Astrophysics Data System (ADS)

    Newhouse, M. A.; Walker, C. E.; Boss, S. K.; Hennig, A. J.

    2012-12-01

    GLOBE at Night is an international campaign to raise public awareness of the impact of light pollution. Citizen-scientists around the world measure their night sky brightness and submit their observations to a website from a computer. In the last two years a web application (webapp) was developed to enable reporting from mobile devices. Nearly 80,000 data points have been submitted by people in 115 countries during the last 7 years. Our poster will examine the effect of enabling real-time data reporting via mobile devices, and how the Adopt-a-Street pilot project has impacted data collection in two U.S. cities. Recognizing the increasing popularity of smartphones, in late 2010 NOAO staff built a webapp to take advantage of the GPS capabilities built into mobile devices to get an automated and accurate report of the user's location. Refinements to the application have enabled an order of magnitude reduction in the number of erroneous data points due to incorrect location. During the 2011 campaign a pilot program called Adopt-a-Street was created to further take advantage of the ability to report data in real-time via mobile devices. For the 2012 campaign the program continued in Tucson and expanded to Fayetteville, Arkansas. Both of these sub-campaigns encouraged more participation, and resulted in more meaningful results. For example, in prior years Fayetteville averaged three data points in the three years any points were submitted in that area. In 2012, due to the Adopt-a-Street program, there were 98 points submitted, clearly matching the map on their Adopt-a-Street page. Adding support for mobile devices has increased the accuracy and relevance of the data submitted via both mobile devices and desktop computers, as well as enabled new programs. We plan to expand the Adopt-a-Street program next year and find an easier way to accommodate multiple measurements.

  2. Adaptive Data Gathering in Mobile Sensor Networks Using Speedy Mobile Elements

    PubMed Central

    Lai, Yongxuan; Xie, Jinshan; Lin, Ziyu; Wang, Tian; Liao, Minghong

    2015-01-01

    Data gathering is a key operator for applications in wireless sensor networks; yet it is also a challenging problem in mobile sensor networks when considering that all nodes are mobile and the communications among them are opportunistic. This paper proposes an efficient data gathering scheme called ADG that adopts speedy mobile elements as the mobile data collector and takes advantage of the movement patterns of the network. ADG first extracts the network meta-data at initial epochs, and calculates a set of proxy nodes based on the meta-data. Data gathering is then mapped into the Proxy node Time Slot Allocation (PTSA) problem that schedules the time slots and orders, according to which the data collector could gather the maximal amount of data within a limited period. Finally, the collector follows the schedule and picks up the sensed data from the proxy nodes through one hop of message transmissions. ADG learns the period when nodes are relatively stationary, so that the collector is able to pick up the data from them during the limited data gathering period. Moreover, proxy nodes and data gathering points could also be timely updated so that the collector could adapt to the change of node movements. Extensive experimental results show that the proposed scheme outperforms other data gathering schemes on the cost of message transmissions and the data gathering rate, especially under the constraint of limited data gathering period. PMID:26389903

  3. Fully Distributed Monitoring Architecture Supporting Multiple Trackees and Trackers in Indoor Mobile Asset Management Application

    PubMed Central

    Jeong, Seol Young; Jo, Hyeong Gon; Kang, Soon Ju

    2014-01-01

    A tracking service like asset management is essential in a dynamic hospital environment consisting of numerous mobile assets (e.g., wheelchairs or infusion pumps) that are continuously relocated throughout a hospital. The tracking service is accomplished based on the key technologies of an indoor location-based service (LBS), such as locating and monitoring multiple mobile targets inside a building in real time. An indoor LBS such as a tracking service entails numerous resource lookups being requested concurrently and frequently from several locations, as well as a network infrastructure requiring support for high scalability in indoor environments. A traditional centralized architecture needs to maintain a geographic map of the entire building or complex in its central server, which can cause low scalability and traffic congestion. This paper presents a self-organizing and fully distributed indoor mobile asset management (MAM) platform, and proposes an architecture for multiple trackees (such as mobile assets) and trackers based on the proposed distributed platform in real time. In order to verify the suggested platform, scalability performance according to increases in the number of concurrent lookups was evaluated in a real test bed. Tracking latency and traffic load ratio in the proposed tracking architecture was also evaluated. PMID:24662407

  4. LiteNet: Lightweight Neural Network for Detecting Arrhythmias at Resource-Constrained Mobile Devices.

    PubMed

    He, Ziyang; Zhang, Xiaoqing; Cao, Yangjie; Liu, Zhi; Zhang, Bo; Wang, Xiaoyan

    2018-04-17

    By running applications and services closer to the user, edge processing provides many advantages, such as short response time and reduced network traffic. Deep-learning based algorithms provide significantly better performances than traditional algorithms in many fields but demand more resources, such as higher computational power and more memory. Hence, designing deep learning algorithms that are more suitable for resource-constrained mobile devices is vital. In this paper, we build a lightweight neural network, termed LiteNet which uses a deep learning algorithm design to diagnose arrhythmias, as an example to show how we design deep learning schemes for resource-constrained mobile devices. Compare to other deep learning models with an equivalent accuracy, LiteNet has several advantages. It requires less memory, incurs lower computational cost, and is more feasible for deployment on resource-constrained mobile devices. It can be trained faster than other neural network algorithms and requires less communication across different processing units during distributed training. It uses filters of heterogeneous size in a convolutional layer, which contributes to the generation of various feature maps. The algorithm was tested using the MIT-BIH electrocardiogram (ECG) arrhythmia database; the results showed that LiteNet outperforms comparable schemes in diagnosing arrhythmias, and in its feasibility for use at the mobile devices.

  5. LiteNet: Lightweight Neural Network for Detecting Arrhythmias at Resource-Constrained Mobile Devices

    PubMed Central

    Zhang, Xiaoqing; Cao, Yangjie; Liu, Zhi; Zhang, Bo; Wang, Xiaoyan

    2018-01-01

    By running applications and services closer to the user, edge processing provides many advantages, such as short response time and reduced network traffic. Deep-learning based algorithms provide significantly better performances than traditional algorithms in many fields but demand more resources, such as higher computational power and more memory. Hence, designing deep learning algorithms that are more suitable for resource-constrained mobile devices is vital. In this paper, we build a lightweight neural network, termed LiteNet which uses a deep learning algorithm design to diagnose arrhythmias, as an example to show how we design deep learning schemes for resource-constrained mobile devices. Compare to other deep learning models with an equivalent accuracy, LiteNet has several advantages. It requires less memory, incurs lower computational cost, and is more feasible for deployment on resource-constrained mobile devices. It can be trained faster than other neural network algorithms and requires less communication across different processing units during distributed training. It uses filters of heterogeneous size in a convolutional layer, which contributes to the generation of various feature maps. The algorithm was tested using the MIT-BIH electrocardiogram (ECG) arrhythmia database; the results showed that LiteNet outperforms comparable schemes in diagnosing arrhythmias, and in its feasibility for use at the mobile devices. PMID:29673171

  6. Use of Open Standards and Technologies at the Lunar Mapping and Modeling Project

    NASA Astrophysics Data System (ADS)

    Law, E.; Malhotra, S.; Bui, B.; Chang, G.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Sadaqathulla, S.; Rodriguez, L.

    2011-12-01

    The Lunar Mapping and Modeling Project (LMMP), led by the Marshall Space Flight center (MSFC), is tasked by NASA. The project is responsible for the development of an information system to support lunar exploration activities. It provides lunar explorers a set of tools and lunar map and model products that are predominantly derived from present lunar missions (e.g., the Lunar Reconnaissance Orbiter (LRO)) and from historical missions (e.g., Apollo). At Jet Propulsion Laboratory (JPL), we have built the LMMP interoperable geospatial information system's underlying infrastructure and a single point of entry - the LMMP Portal by employing a number of open standards and technologies. The Portal exposes a set of services to users to allow search, visualization, subset, and download of lunar data managed by the system. Users also have access to a set of tools that visualize, analyze and annotate the data. The infrastructure and Portal are based on web service oriented architecture. We designed the system to support solar system bodies in general including asteroids, earth and planets. We employed a combination of custom software, commercial and open-source components, off-the-shelf hardware and pay-by-use cloud computing services. The use of open standards and web service interfaces facilitate platform and application independent access to the services and data, offering for instances, iPad and Android mobile applications and large screen multi-touch with 3-D terrain viewing functions, for a rich browsing and analysis experience from a variety of platforms. The web services made use of open standards including: Representational State Transfer (REST); and Open Geospatial Consortium (OGC)'s Web Map Service (WMS), Web Coverage Service (WCS), Web Feature Service (WFS). Its data management services have been built on top of a set of open technologies including: Object Oriented Data Technology (OODT) - open source data catalog, archive, file management, data grid framework; openSSO - open source access management and federation platform; solr - open source enterprise search platform; redmine - open source project collaboration and management framework; GDAL - open source geospatial data abstraction library; and others. Its data products are compliant with Federal Geographic Data Committee (FGDC) metadata standard. This standardization allows users to access the data products via custom written applications or off-the-shelf applications such as GoogleEarth. We will demonstrate this ready-to-use system for data discovery and visualization by walking through the data services provided through the portal such as browse, search, and other tools. We will further demonstrate image viewing and layering of lunar map images from the Internet, via mobile devices such as Apple's iPad.

  7. Mobile and replicated alignment of arrays in data-parallel programs

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    When a data-parallel language like FORTRAN 90 is compiled for a distributed-memory machine, aggregate data objects (such as arrays) are distributed across the processor memories. The mapping determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. A common approach is to break the mapping into two stages: first, an alignment that maps all the objects to an abstract template, and then a distribution that maps the template to the processors. We solve two facets of the problem of finding alignments that reduce residual communication: we determine alignments that vary in loops, and objects that should have replicated alignments. We show that loop-dependent mobile alignment is sometimes necessary for optimum performance, and we provide algorithms with which a compiler can determine good mobile alignments for objects within do loops. We also identify situations in which replicated alignment is either required by the program itself (via spread operations) or can be used to improve performance. We propose an algorithm based on network flow that determines which objects to replicate so as to minimize the total amount of broadcast communication in replication. This work on mobile and replicated alignment extends our earlier work on determining static alignment.

  8. High-resolution charge carrier mobility mapping of heterogeneous organic semiconductors

    NASA Astrophysics Data System (ADS)

    Button, Steven W.; Mativetsky, Jeffrey M.

    2017-08-01

    Organic electronic device performance is contingent on charge transport across a heterogeneous landscape of structural features. Methods are therefore needed to unravel the effects of local structure on overall electrical performance. Using conductive atomic force microscopy, we construct high-resolution out-of-plane hole mobility maps from arrays of 5000 to 16 000 current-voltage curves. To demonstrate the efficacy of this non-invasive approach for quantifying and mapping local differences in electrical performance due to structural heterogeneities, we investigate two thin film test systems, one bearing a heterogeneous crystal structure [solvent vapor annealed 5,11-Bis(triethylsilylethynyl)anthradithiophene (TES-ADT)—a small molecule organic semiconductor] and one bearing a heterogeneous chemical composition [p-DTS(FBTTh2)2:PC71BM—a high-performance organic photovoltaic active layer]. TES-ADT shows nearly an order of magnitude difference in hole mobility between semicrystalline and crystalline areas, along with a distinct boundary between the two regions, while p-DTS(FBTTh2)2:PC71BM exhibits subtle local variations in hole mobility and a nanoscale domain structure with features below 10 nm in size. We also demonstrate mapping of the built-in potential, which plays a significant role in organic light emitting diode and organic solar cell operation.

  9. System Design, Calibration and Performance Analysis of a Novel 360° Stereo Panoramic Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Blaser, S.; Nebiker, S.; Cavegn, S.

    2017-05-01

    Image-based mobile mapping systems enable the efficient acquisition of georeferenced image sequences, which can later be exploited in cloud-based 3D geoinformation services. In order to provide a 360° coverage with accurate 3D measuring capabilities, we present a novel 360° stereo panoramic camera configuration. By using two 360° panorama cameras tilted forward and backward in combination with conventional forward and backward looking stereo camera systems, we achieve a full 360° multi-stereo coverage. We furthermore developed a fully operational new mobile mapping system based on our proposed approach, which fulfils our high accuracy requirements. We successfully implemented a rigorous sensor and system calibration procedure, which allows calibrating all stereo systems with a superior accuracy compared to that of previous work. Our study delivered absolute 3D point accuracies in the range of 4 to 6 cm and relative accuracies of 3D distances in the range of 1 to 3 cm. These results were achieved in a challenging urban area. Furthermore, we automatically reconstructed a 3D city model of our study area by employing all captured and georeferenced mobile mapping imagery. The result is a very high detailed and almost complete 3D city model of the street environment.

  10. Ad-Hoc Networks and the Mobile Application Security System (MASS)

    DTIC Science & Technology

    2006-01-01

    solution to this problem that addresses critical aspects of security in ad-hoc mobile application networks. This approach involves preventing unauthorized...modification of a mobile application , both by other applications and by hosts, and ensuring that mobile code is authentic and authorized. These...capabilities constitute the Mobile Application Security System (MASS). The MASS applies effective, robust security to mobile application -based systems

  11. Case studies: Soil mapping using multiple methods

    NASA Astrophysics Data System (ADS)

    Petersen, Hauke; Wunderlich, Tina; Hagrey, Said A. Al; Rabbel, Wolfgang; Stümpel, Harald

    2010-05-01

    Soil is a non-renewable resource with fundamental functions like filtering (e.g. water), storing (e.g. carbon), transforming (e.g. nutrients) and buffering (e.g. contamination). Degradation of soils is meanwhile not only to scientists a well known fact, also decision makers in politics have accepted this as a serious problem for several environmental aspects. National and international authorities have already worked out preservation and restoration strategies for soil degradation, though it is still work of active research how to put these strategies into real practice. But common to all strategies the description of soil state and dynamics is required as a base step. This includes collecting information from soils with methods ranging from direct soil sampling to remote applications. In an intermediate scale mobile geophysical methods are applied with the advantage of fast working progress but disadvantage of site specific calibration and interpretation issues. In the framework of the iSOIL project we present here some case studies for soil mapping performed using multiple geophysical methods. We will present examples of combined field measurements with EMI-, GPR-, magnetic and gammaspectrometric techniques carried out with the mobile multi-sensor-system of Kiel University (GER). Depending on soil type and actual environmental conditions, different methods show a different quality of information. With application of diverse methods we want to figure out, which methods or combination of methods will give the most reliable information concerning soil state and properties. To investigate the influence of varying material we performed mapping campaigns on field sites with sandy, loamy and loessy soils. Classification of measured or derived attributes show not only the lateral variability but also gives hints to a variation in the vertical distribution of soil material. For all soils of course soil water content can be a critical factor concerning a succesful application of geophysical methods, e.g. GPR on wet loessy soils will result in a high attenuation of signals. Furthermore, with this knowledge we support the development of geophysical pedo-transfer-functions, i.e. the link between geophysical to soil parameters, which is active researched in another work package of the iSOIL project. Acknowledgement: iSOIL-Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment.

  12. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System

    PubMed Central

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-01-01

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated. PMID:28327513

  13. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System.

    PubMed

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-03-22

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated.

  14. Using Locata to augment GNSS in a kinematic urban environment

    NASA Astrophysics Data System (ADS)

    Bonenberg, L. K.; Roberts, G. W.; Hancock, C. M.

    2011-12-01

    GNSS has become one of the most widespread measurement technologies, widely used in GIS, mobile mapping applications and civil engineering. Utilisation of differential techniques offers cm-level positioning accuracy. Identified drawbacks are the requirement for line of sight to the satellites and accuracy dependent on the geometric distribution of the satellites. Especially the latter is paramount for any surveying or mobile mapping application in the urban environment. The utilisation of additional constellations (GLONASS, GALILEO or COMPASS) only partly mitigates the problem. Locata is an Australian terrestrial positioning technology, based on the pseudolite concept. It's unique in its utilisation of the 2.4GHz ISM band and proprietary TimeLoc procedure, allowing for network synchronisation at the nanosecond level. This paper focuses on the tight integration of GNSS with Locata, in order to address the described drawbacks and to provide cm level positioning in areas currently "difficult" for GNSS - such as urban canyons. This paper describes the intended deployment and utilisation of the integrated system in the typical urban environment where availability of GPScan be limited or even non-existent, depending on the time and location. The verification of the integration methods has been carried out using simulated GPS and Locata data. Also presented is an application simulation in a typical urban canyon environment (Canary Wharf, London, UK) using proprietary software developed at the University of Nottingham. Simulation of the proposed integration algorithms, using a real life scenario, has shown promising results with centimetre-level positioning accuracy on the moving platform. The algorithm provides code ambiguity estimation for both Locata and GPS on-the-fly, without prior knowledge of the position, providing predominantly 3D position on the cm level.

  15. A Framework for Developing Mobile Location Based Applications

    DTIC Science & Technology

    2006-10-01

    B into the application running on her mobile device. The mobile application contacts the appropriate service provided by T- mobile which calculates...the optimal route between points A and B. The mobile application then displays driving directions to point B in a fashion similar to one found in car...navigation systems. The mobile application requires a Bluetooth GPS receiver to be connected to the mobile device to determine its current position

  16. Mobile lidar system for monitoring of gaseous pollutants in atmosphere over industrial and urban area

    NASA Astrophysics Data System (ADS)

    Moskalenko, Irina V.; Shecheglov, Djolinard A.; Rogachev, Aleksei P.; Avdonin, Aleksandr A.; Molodtsov, Nikolai A.

    1999-01-01

    The lidar remote sensing techniques are powerful for monitoring of gaseous toxic species in atmosphere over wide areas. The paper presented describes design, development and field testing of Mobile Lidar System (MLS) based on utilization of Differential Absorption Lidar (DIAL) technique. The activity is performed by Russian Research Center 'Kurchatov Institute' and Research Institute of Pulse Technique within the project 'Mobile Remote SEnsing System Based on Tunable Laser Transmitter for Environmental Monitoring' under funding of International Scientific and Technology Center Moscow. A brief description of MLS is presented including narrowband transmitter, receiver, system steering, data acquisition subsystem and software. MLS is housed in a mobile truck and is able to provide 3D mapping of gaseous species. Sulfur dioxide and elemental mercury were chosen as basic atmospheric pollutants for field test of MLS. The problem of anthropogenic ozone detection attracts attention due to increase traffic in Moscow. The experimental sites for field testing are located in Moscow Region. Examples of field DIAL measurements will be presented. Application of remote sensing to toxic species near-real time measurements is now under consideration. The objective is comparison of pollution level in working zone with maximum permissible concentration of hazardous pollutant.

  17. Advanced Tie Feature Matching for the Registration of Mobile Mapping Imaging Data and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Jende, P.; Peter, M.; Gerke, M.; Vosselman, G.

    2016-06-01

    Mobile Mapping's ability to acquire high-resolution ground data is opposing unreliable localisation capabilities of satellite-based positioning systems in urban areas. Buildings shape canyons impeding a direct line-of-sight to navigation satellites resulting in a deficiency to accurately estimate the mobile platform's position. Consequently, acquired data products' positioning quality is considerably diminished. This issue has been widely addressed in the literature and research projects. However, a consistent compliance of sub-decimetre accuracy as well as a correction of errors in height remain unsolved. We propose a novel approach to enhance Mobile Mapping (MM) image orientation based on the utilisation of highly accurate orientation parameters derived from aerial imagery. In addition to that, the diminished exterior orientation parameters of the MM platform will be utilised as they enable the application of accurate matching techniques needed to derive reliable tie information. This tie information will then be used within an adjustment solution to correct affected MM data. This paper presents an advanced feature matching procedure as a prerequisite to the aforementioned orientation update. MM data is ortho-projected to gain a higher resemblance to aerial nadir data simplifying the images' geometry for matching. By utilising MM exterior orientation parameters, search windows may be used in conjunction with a selective keypoint detection and template matching. Originating from different sensor systems, however, difficulties arise with respect to changes in illumination, radiometry and a different original perspective. To respond to these challenges for feature detection, the procedure relies on detecting keypoints in only one image. Initial tests indicate a considerable improvement in comparison to classic detector/descriptor approaches in this particular matching scenario. This method leads to a significant reduction of outliers due to the limited availability of putative matches and the utilisation of templates instead of feature descriptors. In our experiments discussed in this paper, typical urban scenes have been used for evaluating the proposed method. Even though no additional outlier removal techniques have been used, our method yields almost 90% of correct correspondences. However, repetitive image patterns may still induce ambiguities which cannot be fully averted by this technique. Hence and besides, possible advancements will be briefly presented.

  18. Research on military application of 3D real scene technology to road into Tibet

    NASA Astrophysics Data System (ADS)

    Yin, Peng; Yang, Liang

    2018-04-01

    In recent years, the troops have been carrying out training missions to Tibet more and more. How to improve the inspection results of the road lead to Tibet, ensure that the army carry out and formulate targeted motorized mobility training programs and related disposal plans, is a real problem to be solved and answered. This article analyzes the current research status at home and abroad, introduces the key technologies and main functions of the military application, and puts forward that the use of 3D real maps of Highway into Tibet, which will promote the motorized training of troops into Tibet and complete the resolution of determination.

  19. Use of ion-mobility mass spectrometry (IMS-MS) to map polyoxometalate Keplerate clusters and their supramolecular assemblies.

    PubMed

    Robbins, Philip J; Surman, Andrew J; Thiel, Johannes; Long, De-Liang; Cronin, Leroy

    2013-03-07

    We present the high-resolution (HRES-MS) and ion-mobility (IMS-MS) mass spectrometry studies of icosahedral nanoscale polyoxometalate-based {L(30)}{(Mo)Mo(5)} Keplerate clusters, and demonstrate the use of IMS-MS to resolve and map intact nanoclusters, and its potential for the discovery of new structures, in this case the first gas phase observation of 'proto-clustering' of higher order Keplerate supramolecular aggregates.

  20. Sensor Integration in a Low Cost Land Mobile Mapping System

    PubMed Central

    Madeira, Sergio; Gonçalves, José A.; Bastos, Luísa

    2012-01-01

    Mobile mapping is a multidisciplinary technique which requires several dedicated equipment, calibration procedures that must be as rigorous as possible, time synchronization of all acquired data and software for data processing and extraction of additional information. To decrease the cost and complexity of Mobile Mapping Systems (MMS), the use of less expensive sensors and the simplification of procedures for calibration and data acquisition are mandatory features. This article refers to the use of MMS technology, focusing on the main aspects that need to be addressed to guarantee proper data acquisition and describing the way those aspects were handled in a terrestrial MMS developed at the University of Porto. In this case the main aim was to implement a low cost system while maintaining good quality standards of the acquired georeferenced information. The results discussed here show that this goal has been achieved. PMID:22736985

  1. [Individual differences in sense of direction and psychological stress associated with mobility in visually impaired people].

    PubMed

    Matsunaka, Kumiko; Shibata, Yuki; Yamamoto, Toshikazu

    2008-08-01

    Study 1 investigated individual differences in spatial cognition amongst visually impaired students and sighted controls, as well as the extent to which visual status contributes to these individual differences. Fifty-eight visually impaired and 255 sighted university students evaluated their sense of direction via self-ratings. Visual impairment contributed to the factors associated with the use and understanding of maps, confirming that maps are generally unfamiliar to visually impaired people. The relationship between psychological stress associated with mobility and individual differences in sense of direction was investigated in Study 2. A stress checklist was administered to the 51 visually impaired students who participated in Study 1. Psychological stress level was related to understanding and use of maps, as well as orientation and renewal, that is, course correction after being got lost. Central visual field deficits were associated with greater mobility-related stress levels than peripheral visual field deficits.

  2. Two-Year-Old Children Interpret Abstract, Purely Geometric Maps

    ERIC Educational Resources Information Center

    Winkler-Rhoades, Nathan; Carey, Susan C.; Spelke, Elizabeth S.

    2013-01-01

    In two experiments, 2.5-year-old children spontaneously used geometric information from 2D maps to locate objects in a 3D surface layout, without instruction or feedback. Children related maps to their corresponding layouts even though the maps differed from the layouts in size, mobility, orientation, dimensionality, and perspective, and even when…

  3. Application of the Intervention Mapping Framework to Develop an Integrated Twenty-First Century Core Curriculum-Part 1: Mobilizing the Community to Revise the Masters of Public Health Core Competencies.

    PubMed

    DeBate, Rita; Corvin, Jaime A; Wolfe-Quintero, Kate; Petersen, Donna J

    2017-01-01

    Twenty-first century health challenges have significantly altered the expanding role and functions of public health professionals. Guided by a call from the Association of Schools and Programs of Public Health's (ASPPH) and the Framing the Future: The Second 100 Years of Education for Public Health report to adopt new and innovative approaches to prepare public health leaders, the University of South Florida College of Public Health aimed to self-assess the current Masters of Public Health (MPH) core curriculum with regard to preparing students to meet twenty-first century public health challenges. This paper describes how Intervention Mapping was employed as a framework to increase readiness and mobilize the COPH community for curricular change. Intervention Mapping provides an ideal framework, allowing organizations to access capacity, specify goals, and guide the change process from curriculum development to implementation and evaluation of competency-driven programs. The steps outlined in this paper resulted in a final set of revised MPH core competencies that are interdisciplinary in nature and fulfill the emergent needs to address changing trends in both public health education and challenges in population health approaches. Ultimately, the competencies developed through this process were agreed upon by the entire College of Public Health faculty, signaling one college's readiness for change, while providing the impetus to revolutionize the delivery of public health education at the University of South Florida.

  4. Application of the Intervention Mapping Framework to Develop an Integrated Twenty-First Century Core Curriculum—Part 1: Mobilizing the Community to Revise the Masters of Public Health Core Competencies

    PubMed Central

    DeBate, Rita; Corvin, Jaime A.; Wolfe-Quintero, Kate; Petersen, Donna J.

    2017-01-01

    Twenty-first century health challenges have significantly altered the expanding role and functions of public health professionals. Guided by a call from the Association of Schools and Programs of Public Health’s (ASPPH) and the Framing the Future: The Second 100 Years of Education for Public Health report to adopt new and innovative approaches to prepare public health leaders, the University of South Florida College of Public Health aimed to self-assess the current Masters of Public Health (MPH) core curriculum with regard to preparing students to meet twenty-first century public health challenges. This paper describes how Intervention Mapping was employed as a framework to increase readiness and mobilize the COPH community for curricular change. Intervention Mapping provides an ideal framework, allowing organizations to access capacity, specify goals, and guide the change process from curriculum development to implementation and evaluation of competency-driven programs. The steps outlined in this paper resulted in a final set of revised MPH core competencies that are interdisciplinary in nature and fulfill the emergent needs to address changing trends in both public health education and challenges in population health approaches. Ultimately, the competencies developed through this process were agreed upon by the entire College of Public Health faculty, signaling one college’s readiness for change, while providing the impetus to revolutionize the delivery of public health education at the University of South Florida. PMID:29164095

  5. Design of a Mobile Low-Cost Sensor Network Using Urban Buses for Real-Time Ubiquitous Noise Monitoring.

    PubMed

    Alsina-Pagès, Rosa Ma; Hernandez-Jayo, Unai; Alías, Francesc; Angulo, Ignacio

    2016-12-29

    One of the main priorities of smart cities is improving the quality of life of their inhabitants. Traffic noise is one of the pollutant sources that causes a negative impact on the quality of life of citizens, which is gaining attention among authorities. The European Commission has promoted the Environmental Noise Directive 2002/49/EC (END) to inform citizens and to prevent the harmful effects of noise exposure. The measure of acoustic levels using noise maps is a strategic issue in the END action plan. Noise maps are typically calculated by computing the average noise during one year and updated every five years. Hence, the implementation of dynamic noise mapping systems could lead to short-term plan actions, besides helping to better understand the evolution of noise levels along time. Recently, some projects have started the monitoring of noise levels in urban areas by means of acoustic sensor networks settled in strategic locations across the city, while others have taken advantage of collaborative citizen sensing mobile applications. In this paper, we describe the design of an acoustic low-cost sensor network installed on public buses to measure the traffic noise in the city in real time. Moreover, the challenges that a ubiquitous bus acoustic measurement system entails are enumerated and discussed. Specifically, the analysis takes into account the feature extraction of the audio signal, the identification and separation of the road traffic noise from urban traffic noise, the hardware platform to measure and process the acoustic signal, the connectivity between the several nodes of the acoustic sensor network to store the data and, finally, the noise maps' generation process. The implementation and evaluation of the proposal in a real-life scenario is left for future work.

  6. Induction Mapping of the 3D-Modulated Spin Texture of Skyrmions in Thin Helimagnets

    NASA Astrophysics Data System (ADS)

    Schneider, S.; Wolf, D.; Stolt, M. J.; Jin, S.; Pohl, D.; Rellinghaus, B.; Schmidt, M.; Büchner, B.; Goennenwein, S. T. B.; Nielsch, K.; Lubk, A.

    2018-05-01

    Envisaged applications of Skyrmions in magnetic memory and logic devices crucially depend on the stability and mobility of these topologically nontrivial magnetic textures in thin films. We present for the first time quantitative maps of the magnetic induction that provide evidence for a 3D modulation of the Skyrmionic spin texture. The projected in-plane magnetic induction maps as determined from in-line and off-axis electron holography carry the clear signature of Bloch Skyrmions. However, the magnitude of this induction is much smaller than the values expected for homogeneous Bloch Skyrmions that extend throughout the thickness of the film. This finding can only be understood if the underlying spin textures are modulated along the out-of-plane z direction. The projection of (the in-plane magnetic induction of) helices is further found to exhibit thickness-dependent lateral shifts, which show that this z modulation is accompanied by an (in-plane) modulation along the x and y directions.

  7. Automatic Construction of Wi-Fi Radio Map Using Smartphones

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Li, Qingquan; Zhang, Xing

    2016-06-01

    Indoor positioning could provide interesting services and applications. As one of the most popular indoor positioning methods, location fingerprinting determines the location of mobile users by matching the received signal strength (RSS) which is location dependent. However, fingerprinting-based indoor positioning requires calibration and updating of the fingerprints which is labor-intensive and time-consuming. In this paper, we propose a visual-based approach for the construction of radio map for anonymous indoor environments without any prior knowledge. This approach collects multi-sensors data, e.g. video, accelerometer, gyroscope, Wi-Fi signals, etc., when people (with smartphones) walks freely in indoor environments. Then, it uses the multi-sensor data to restore the trajectories of people based on an integrated structure from motion (SFM) and image matching method, and finally estimates location of sampling points on the trajectories and construct Wi-Fi radio map. Experiment results show that the average location error of the fingerprints is about 0.53 m.

  8. NYC311 Mobile App | City of New York

    Science.gov Websites

    Mayor Events Connect Jobs NYC311 Mobile App Share Print The NYC311 app is available for free for iPhone DocumentsSNAP (Food Stamps)Parking Signs and LocatorAbout NYC311NYC311 Mobile AppNYC311 TwitterNYC311 Facebook Mobile Apps Maps Resident Toolkit NYC Search City of New York. 2018 All Rights Reserved, NYC is a

  9. Secure and Cost-Effective Distributed Aggregation for Mobile Sensor Networks

    PubMed Central

    Guo, Kehua; Zhang, Ping; Ma, Jianhua

    2016-01-01

    Secure data aggregation (SDA) schemes are widely used in distributed applications, such as mobile sensor networks, to reduce communication cost, prolong the network life cycle and provide security. However, most SDA are only suited for a single type of statistics (i.e., summation-based or comparison-based statistics) and are not applicable to obtaining multiple statistic results. Most SDA are also inefficient for dynamic networks. This paper presents multi-functional secure data aggregation (MFSDA), in which the mapping step and coding step are introduced to provide value-preserving and order-preserving and, later, to enable arbitrary statistics support in the same query. MFSDA is suited for dynamic networks because these active nodes can be counted directly from aggregation data. The proposed scheme is tolerant to many types of attacks. The network load of the proposed scheme is balanced, and no significant bottleneck exists. The MFSDA includes two versions: MFSDA-I and MFSDA-II. The first one can obtain accurate results, while the second one is a more generalized version that can significantly reduce network traffic at the expense of less accuracy loss. PMID:27120599

  10. Global Dynamic Exposure and the OpenBuildingMap - Communicating Risk and Involving Communities

    NASA Astrophysics Data System (ADS)

    Schorlemmer, Danijel; Beutin, Thomas; Hirata, Naoshi; Hao, Ken; Wyss, Max; Cotton, Fabrice; Prehn, Karsten

    2017-04-01

    Detailed understanding of local risk factors regarding natural catastrophes requires in-depth characterization of the local exposure. Current exposure capture techniques have to find the balance between resolution and coverage. We aim at bridging this gap by employing a crowd-sourced approach to exposure capturing, focusing on risk related to earthquake hazard. OpenStreetMap (OSM), the rich and constantly growing geographical database, is an ideal foundation for this task. More than 3.5 billion geographical nodes, more than 200 million building footprints (growing by 100'000 per day), and a plethora of information about school, hospital, and other critical facilities allows us to exploit this dataset for risk-related computations. We are combining the strengths of crowd-sourced data collection with the knowledge of experts in extracting the most information from these data. Besides relying on the very active OpenStreetMap community and the Humanitarian OpenStreetMap Team, which are collecting building information at high pace, we are providing a tailored building capture tool for mobile devices. This tool is facilitating simple and fast building property capturing for OpenStreetMap by any person or interested community. With our OpenBuildingMap system, we are harvesting this dataset by processing every building in near-realtime. We are collecting exposure and vulnerability indicators from explicitly provided data (e.g. hospital locations), implicitly provided data (e.g. building shapes and positions), and semantically derived data, i.e. interpretation applying expert knowledge. The expert knowledge is needed to translate the simple building properties as captured by OpenStreetMap users into vulnerability and exposure indicators and subsequently into building classifications as defined in the Building Taxonomy 2.0 developed by the Global Earthquake Model (GEM) and the European Macroseismic Scale (EMS98). With this approach, we increase the resolution of existing exposure models from aggregated exposure information to building-by-building vulnerability. We report on our method, on the software development for the mobile application and the server-side analysis system, and on the OpenBuildingMap (www.openbuildingmap.org), our global Tile Map Service focusing on building properties. The free/open framework we provide can be used on commodity hardware for local to regional exposure capturing, for stakeholders in disaster management and mitigation for communicating risk, and for communities to understand their risk.

  11. Using the Intervention Mapping and Behavioral Intervention Technology Frameworks: Development of an mHealth Intervention for Physical Activity and Sedentary Behavior Change.

    PubMed

    Direito, Artur; Walsh, Deirdre; Hinbarji, Moohamad; Albatal, Rami; Tooley, Mark; Whittaker, Robyn; Maddison, Ralph

    2018-06-01

    Few interventions to promote physical activity (PA) adapt dynamically to changes in individuals' behavior. Interventions targeting determinants of behavior are linked with increased effectiveness and should reflect changes in behavior over time. This article describes the application of two frameworks to assist the development of an adaptive evidence-based smartphone-delivered intervention aimed at influencing PA and sedentary behaviors (SB). Intervention mapping was used to identify the determinants influencing uptake of PA and optimal behavior change techniques (BCTs). Behavioral intervention technology was used to translate and operationalize the BCTs and its modes of delivery. The intervention was based on the integrated behavior change model, focused on nine determinants, consisted of 33 BCTs, and included three main components: (1) automated capture of daily PA and SB via an existing smartphone application, (2) classification of the individual into an activity profile according to their PA and SB, and (3) behavior change content delivery in a dynamic fashion via a proof-of-concept application. This article illustrates how two complementary frameworks can be used to guide the development of a mobile health behavior change program. This approach can guide the development of future mHealth programs.

  12. Marine Point Forecasts

    Science.gov Websites

    with smartphones and other mobile platforms new Marine Point Forecasts are a forecast for a specific maps providing zone/point marine forecasts Mobile, AL Eureka, CA San Francisco, CA Los Angeles, CA San

  13. Method for tracking the location of mobile agents using stand-off detection technique

    DOEpatents

    Schmitt, Randal L [Tijeras, NM; Bender, Susan Fae Ann [Tijeras, NM; Rodacy, Philip J [Albuquerque, NM; Hargis, Jr., Philip J.; Johnson, Mark S [Albuquerque, NM

    2006-12-26

    A method for tracking the movement and position of mobile agents using light detection and ranging (LIDAR) as a stand-off optical detection technique. The positions of the agents are tracked by analyzing the time-history of a series of optical measurements made over the field of view of the optical system. This provides a (time+3-D) or (time+2-D) mapping of the location of the mobile agents. Repeated pulses of a laser beam impinge on a mobile agent, such as a bee, and are backscattered from the agent into a LIDAR detection system. Alternatively, the incident laser pulses excite fluorescence or phosphorescence from the agent, which is detected using a LIDAR system. Analysis of the spatial location of signals from the agents produced by repeated pulses generates a multidimensional map of agent location.

  14. Counter-Mapping the Neighborhood on Bicycles: Mobilizing Youth to Reimagine the City

    ERIC Educational Resources Information Center

    Taylor, Katie Headrick; Hall, Rogers

    2013-01-01

    Personal mobility is a mundane characteristic of daily life. However, mobility is rarely considered an opportunity for learning in the learning sciences, and is almost never leveraged as relevant, experiential material for teaching. This article describes a social design experiment for spatial justice that focused on changes in the personal…

  15. A Mobile Learning Overview by Timeline and Mind Map

    ERIC Educational Resources Information Center

    Parsons, David

    2014-01-01

    Mobile learning has been a research topic for some 20 years. Over that time it has encompassed a wide range of concepts, theories, designs, experiments and evaluations. With increasing interest in mobile learning from researchers and practitioners, an accessible overview of this area of research that encapsulates its many facets and features can…

  16. Ultra wide-band localization and SLAM: a comparative study for mobile robot navigation.

    PubMed

    Segura, Marcelo J; Auat Cheein, Fernando A; Toibero, Juan M; Mut, Vicente; Carelli, Ricardo

    2011-01-01

    In this work, a comparative study between an Ultra Wide-Band (UWB) localization system and a Simultaneous Localization and Mapping (SLAM) algorithm is presented. Due to its high bandwidth and short pulses length, UWB potentially allows great accuracy in range measurements based on Time of Arrival (TOA) estimation. SLAM algorithms recursively estimates the map of an environment and the pose (position and orientation) of a mobile robot within that environment. The comparative study presented here involves the performance analysis of implementing in parallel an UWB localization based system and a SLAM algorithm on a mobile robot navigating within an environment. Real time results as well as error analysis are also shown in this work.

  17. Activation of p42/p44 mitogen-activated protein kinase and contraction by prostaglandin F2alpha, ionomycin, and thapsigargin in cat iris sphincter smooth muscle: inhibition by PD98059, KN-93, and isoproterenol.

    PubMed

    Ansari, H R; Husain, S; Abdel-Latif, A A

    2001-10-01

    In the present study we investigated the cross talk between the Ca2+ mobilization pathway and the mitogen-activated protein (MAP) kinase pathway and contraction in the cat iris sphincter smooth muscle. Three Ca2+-mobilizing agonists, namely, prostaglandin F2alpha (PGF2alpha), ionomycin, and thapsigargin, and three specific inhibitors, PD98059, a p42/p44 MAP kinase inhibitor; KN-93, a Ca2+-calmodulin-dependent protein kinase II (CaMKII) blocker; and isoproterenol, a cAMP-elevating agent, were used. Changes in tension in response to the agonists were recorded isometrically and MAP kinase phosphorylation and activation were monitored by Western blotting and by in situ myelin basic protein phosphorylation, respectively. We found that 1) stimulation of the sphincter muscle with PGF2alpha, ionomycin, or thapsigargin resulted in rapid phosphorylation and activation of p42/p44 MAP kinase and contraction; and 2) treatment of the muscles with PD98059, KN-93, or isoproterenol resulted in inhibition of the Ca2+-mobilizing agonist-induced responses. The contractile responses induced by PGF2alpha, ionomycin, and thapsigargin were (mg of tension/mg of wet weight tissue) 15.2, 15.4, and 16.2, respectively; the increases in MAP kinase phosphorylation by these agonists were 228, 203, and 190%, respectively; and the increases in MAP kinase activation by the agonists were 212, 191, and 162%, respectively. The stimulatory effects of the agonists on contraction and on MAP kinase phosphorylation and activation were blocked by preincubation of the muscle with PD98059, KN-93, or isoproterenol. These data demonstrate that in the iris sphincter phosphorylation and activation of p42/p44 MAP kinases by PGF2alpha, ionomycin, or thapsigargin require intracellular Ca2+ either from extracellular sources or from internal stores, that CaMKII plays an important role in the regulation of contraction, that CaMKII acts upstream of MAP kinase to control its activation, and that the MAP kinase signaling pathway can play a significant role in mediating the cellular effects of these Ca2+-mobilizing agonists.

  18. The Performance Analysis of a Uav Based Mobile Mapping System Platform

    NASA Astrophysics Data System (ADS)

    Tsai, M. L.; Chiang, K. W.; Lo, C. F.; Ch, C. H.

    2013-08-01

    To facilitate applications such as environment detection or disaster monitoring, the development of rapid low cost systems for collecting near real-time spatial information is very critical. Rapid spatial information collection has become an emerging trend for remote sensing and mapping applications. This study develops a Direct Georeferencing (DG) based fixed-wing Unmanned Aerial Vehicle (UAV) photogrammetric platform where an Inertial Navigation System (INS)/Global Positioning System (GPS) integrated Positioning and Orientation System (POS) system is implemented to provide the DG capability of the platform. The performance verification indicates that the proposed platform can capture aerial images successfully. A flight test is performed to verify the positioning accuracy in DG mode without using Ground Control Points (GCP). The preliminary results illustrate that horizontal DG positioning accuracies in the x and y axes are around 5 m with 300 m flight height. The positioning accuracy in the z axis is less than 10 m. Such accuracy is good for near real-time disaster relief. The DG ready function of proposed platform guarantees mapping and positioning capability even in GCP free environments, which is very important for rapid urgent response for disaster relief. Generally speaking, the data processing time for the DG module, including POS solution generalization, interpolation, Exterior Orientation Parameters (EOP) generation, and feature point measurements, is less than one hour.

  19. Thessaloniki's City Guide: a Tourist Site for Handheld Devices

    NASA Astrophysics Data System (ADS)

    Theodorou, Niki

    Mobile browsing is expected to become very popular during the next decade. Users will connect to the Internet and use a mobile browser as an every day tool, usually as a part of their mobile telephone. Many services that would be relevant for mobile use are location or time dependent such as: tourist information; maps; and train timetables. This paper describes step by step the production of the mobile tourist site of the city of Thessaloniki Greece. In the paper both the marketing strategies and the mobile site development techniques are included.

  20. Providing QoS guarantee in 3G wireless networks

    NASA Astrophysics Data System (ADS)

    Chuah, MooiChoo; Huang, Min; Kumar, Suresh

    2001-07-01

    The third generation networks and services present opportunities to offer multimedia applications and services that meet end-to-end quality of service requirements. In this article, we present UMTS QoS architecture and its requirements. This includes the definition of QoS parameters, traffic classes, the end-to-end data delivery model, and the mapping of end-to-end services to the services provided by the network elements of the UMTS. End-to-end QoS of a user flow is achieved by the combination of the QoS control over UMTS Domain and the IP core Network. In the Third Generation Wireless network, UMTS bearer service manager is responsible to manage radio and transport resources to QoS-enabled applications. The UMTS bearer service consists of the Radio Access Bearer Service between Mobile Terminal and SGSN and Core Network bearer service between SGSN and GGSN. The Radio Access Bearer Service is further realized by the Radio Bearer Service (mostly air interface) and Iu bearer service. For the 3G air interface, one can provide differentiated QoS via intelligent burst allocation scheme, adaptive spreading factor control and weighted fair queueing scheduling algorithms. Next, we discuss the requirements for the transport technologies in the radio access network to provide differentiated QoS to multiple classes of traffic. We discuss both ATM based and IP based transport solutions. Last but not least, we discuss how QoS mechanism is provided in the core network to ensure e2e quality of service requirements. We discuss how mobile terminals that use RSVP as QoS signaling mechanisms can be are supported in the 3G network which may implement only IETF diffserv mechanism. . We discuss how one can map UMTS QoS classes with IETF diffserv code points. We also discuss 2G/3G handover scenarios and how the 2G/3G QoS parameters can be mapped.

  1. The Advent of Indium Selenide: Synthesis, Electronic Properties, Ambient Stability and Applications

    PubMed Central

    Boukhvalov, Danil W.; Gürbulak, Bekir; Duman, Songül; Wang, Lin; Caputi, Lorenzo S.; Chiarello, Gennaro; Cupolillo, Anna

    2017-01-01

    Among the various two-dimensional semiconductors, indium selenide has recently triggered the interest of scientific community, due to its band gap matching the visible region of the electromagnetic spectrum, with subsequent potential applications in optoelectronics and especially in photodetection. In this feature article, we discuss the main issues in the synthesis, the ambient stability and the application capabilities of this novel class of two-dimensional semiconductors, by evidencing open challenges and pitfalls. In particular, we evidence how the growth of single crystals with reduced amount of Se vacancies is crucial in the road map for the exploitation of indium selenide in technology through ambient-stable nanodevices with outstanding values of both mobility of charge carriers and ON/OFF ratio. The surface chemical reactivity of the InSe surface, as well as applications in the fields of broadband photodetection, flexible electronics and solar energy conversion are also discussed. PMID:29113090

  2. Application of whole genome sequence data in analyzing the molecular epidemiology of Shiga toxin-producing Escherichia coli O157:H7/H.

    PubMed

    Yokoyama, Eiji; Hirai, Shinichiro; Ishige, Taichiro; Murakami, Satoshi

    2018-01-02

    Seventeen clusters of Shiga toxin-producing Escherichia coli O157:H7/- (O157) strains, determined by cluster analysis of pulsed-field gel electrophoresis patterns, were analyzed using whole genome sequence (WGS) data to investigate this pathogen's molecular epidemiology. The 17 clusters included 136 strains containing strains from nine outbreaks, with each outbreak caused by a single source contaminated with the organism, as shown by epidemiological contact surveys. WGS data of these strains were used to identify single nucleotide polymorphisms (SNPs) by two methods: short read data were directly mapped to a reference genome (mapping derived SNPs) and common SNPs between the mapping derived SNPs and SNPs in assembled data of short read data (common SNPs). Among both SNPs, those that were detected in genes with a gap were excluded to remove ambiguous SNPs from further analysis. The effectiveness of both SNPs was investigated among all the concatenated SNPs that were detected (whole SNP set); SNPs were divided into three categories based on the genes in which they were located (i.e., backbone SNP set, O-island SNP set, and mobile element SNP set); and SNPs in non-coding regions (intergenic region SNP set). When SNPs from strains isolated from the nine single source derived outbreaks were analyzed using an unweighted pair group method with arithmetic mean tree (UPGMA) and a minimum spanning tree (MST), the maximum pair-wise distances of the backbone SNP set of the mapping derived SNPs were significantly smaller than those of the whole and intergenic region SNP set on both UPGMAs and MSTs. This significant difference was also observed when the backbone SNP set of the common SNPs were examined (Steel-Dwass test, P≤0.01). When the maximum pair-wise distances were compared between the mapping derived and common SNPs, significant differences were observed in those of the whole, mobile element, and intergenic region SNP set (Wilcoxon signed rank test, P≤0.01). When all the strains included in one complex on an MST or one cluster on a UPGMA were designated as the same genotype, the values of the Hunter-Gaston Discriminatory Power Index for the backbone SNP set of the mapping derived and common SNPs were higher than those of other SNP sets. In contrast, the mobile element SNP set could not robustly subdivide lineage I strains of tested O157 strains using both the mapping derived and common SNPs. These results suggested that the backbone SNP set were the most effective for analysis of WGS data for O157 in enabling an appropriation of its molecular epidemiology. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Documentation of Heritage Structures Through Geo-Crowdsourcing and Web-Mapping

    NASA Astrophysics Data System (ADS)

    Dhonju, H. K.; Xiao, W.; Shakya, B.; Mills, J. P.; Sarhosis, V.

    2017-09-01

    Heritage documentation has become increasingly urgent due to both natural impacts and human influences. The documentation of countless heritage sites around the globe is a massive project that requires significant amounts of financial and labour resources. With the concepts of volunteered geographic information (VGI) and citizen science, heritage data such as digital photographs can be collected through online crowd participation. Whilst photographs are not strictly geographic data, they can be geo-tagged by the participants. They can also be automatically geo-referenced into a global coordinate system if collected via mobile phones which are now ubiquitous. With the assistance of web-mapping, an online geo-crowdsourcing platform has been developed to collect and display heritage structure photographs. Details of platform development are presented in this paper. The prototype is demonstrated with several heritage examples. Potential applications and advancements are discussed.

  4. Rapid, Affordable, and Point-of-Care Water Monitoring Via a Microfluidic DNA Sensor and a Mobile Interface for Global Health

    PubMed Central

    Ghanbari, Sarah; Ravikumar, Anusha; Seubert, John; Figueira, Silvia

    2013-01-01

    Contaminated water is a serious concern in many developing countries with severe health consequences particularly for children. Current methods for monitoring waterborne pathogens are often time consuming, expensive, and labor intensive, making them not suitable for these regions. Electrochemical detection in a microfluidic platform offers many advantages such as portability, minimal use of instrumentation, and easy integration with electronics. In many parts of the world, however, the required equipment for pathogen detection through electrochemical sensors is either not available or insufficiently portable, and operators may not be trained to use these sensors and interpret results, ultimately preventing its wide adoption. Counterintuitively, these same regions often have an extensive mobile phone infrastructure, suggesting the possibility of integrating electrochemical detection of bacterial pathogens with a mobile platform. Toward a solution to water quality interventions, we demonstrate a microfluidic electrochemical sensor combined with a mobile interface that detects the sequences from bacterial pathogens, suitable for rapid, affordable, and point-of-care water monitoring. We employ the transduction of DNA hybridization into a readily detectable electric signal by means of a conformational change of DNA stem-loop structure. Using this platform, we successfully demonstrate the detection of as low as 100 nM E. coli sequences and the automatic interpretation and mapping of the detection results via a mobile application. PMID:27170858

  5. Fusion of mobile in situ and satellite remote sensing observations of chemical release emissions to improve disaster response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leifer, Ira; Melton, Christopher; Frash, Jason

    Chemical release disasters have serious consequences, disrupting ecosystems, society, and causing significant loss of life. Mitigating the destructive impacts relies on identification and mapping, monitoring, and trajectory forecasting. Improvements in sensor capabilities are enabling airborne and space-based remote sensing to support response activities. Key applications are improving transport models in complex terrain and improved disaster response. Understanding urban atmospheric transport in the Los Angeles Basin, where topographic influences on transport patterns are significant, was improved by leveraging the Aliso Canyon leak as an atmospheric tracer. Plume characterization data was collected by the AutoMObile trace Gas (AMOG) Surveyor, a commuter carmore » modified for science. Mobile surface in situ CH 4 and winds were measured by AMOG Surveyor under Santa Ana conditions to estimate an emission rate of 365±30% Gg yr -1. Vertical profiles were collected by AMOG Surveyor by leveraging local topography for vertical profiling to identify the planetary boundary layer at ~700 m. Topography significantly constrained plume dispersion by up to a factor of two. The observed plume trajectory was used to validate satellite aerosol optical depth-inferred atmospheric transport, which suggested the plume first was driven offshore, but then veered back towards land. Numerical long-range transport model predictions confirm this interpretation. Lastly, this study demonstrated a novel application of satellite aerosol remote sensing for disaster response.« less

  6. Registration of terrestrial mobile laser data on 2D or 3D geographic database by use of a non-rigid ICP approach.

    NASA Astrophysics Data System (ADS)

    Monnier, F.; Vallet, B.; Paparoditis, N.; Papelard, J.-P.; David, N.

    2013-10-01

    This article presents a generic and efficient method to register terrestrial mobile data with imperfect location on a geographic database with better overall accuracy but less details. The registration method proposed in this paper is based on a semi-rigid point to plane ICP ("Iterative Closest Point"). The main applications of such registration is to improve existing geographic databases, particularly in terms of accuracy, level of detail and diversity of represented objects. Other applications include fine geometric modelling and fine façade texturing, object extraction such as trees, poles, road signs marks, facilities, vehicles, etc. The geopositionning system of mobile mapping systems is affected by GPS masks that are only partially corrected by an Inertial Navigation System (INS) which can cause an important drift. As this drift varies non-linearly, but slowly in time, it will be modelled by a translation defined as a piecewise linear function of time which variation over time will be minimized (rigidity term). For each iteration of the ICP, the drift is estimated in order to minimise the distance between laser points and planar model primitives (data attachment term). The method has been tested on real data (a scan of the city of Paris of 3.6 million laser points registered on a 3D model of approximately 71,400 triangles).

  7. Fusion of mobile in situ and satellite remote sensing observations of chemical release emissions to improve disaster response

    DOE PAGES

    Leifer, Ira; Melton, Christopher; Frash, Jason; ...

    2016-09-22

    Chemical release disasters have serious consequences, disrupting ecosystems, society, and causing significant loss of life. Mitigating the destructive impacts relies on identification and mapping, monitoring, and trajectory forecasting. Improvements in sensor capabilities are enabling airborne and space-based remote sensing to support response activities. Key applications are improving transport models in complex terrain and improved disaster response. Understanding urban atmospheric transport in the Los Angeles Basin, where topographic influences on transport patterns are significant, was improved by leveraging the Aliso Canyon leak as an atmospheric tracer. Plume characterization data was collected by the AutoMObile trace Gas (AMOG) Surveyor, a commuter carmore » modified for science. Mobile surface in situ CH 4 and winds were measured by AMOG Surveyor under Santa Ana conditions to estimate an emission rate of 365±30% Gg yr -1. Vertical profiles were collected by AMOG Surveyor by leveraging local topography for vertical profiling to identify the planetary boundary layer at ~700 m. Topography significantly constrained plume dispersion by up to a factor of two. The observed plume trajectory was used to validate satellite aerosol optical depth-inferred atmospheric transport, which suggested the plume first was driven offshore, but then veered back towards land. Numerical long-range transport model predictions confirm this interpretation. Lastly, this study demonstrated a novel application of satellite aerosol remote sensing for disaster response.« less

  8. Mobile applications for handheld devices to screen and randomize acute stroke patients in clinical trials.

    PubMed

    Qureshi, Ai; Connelly, B; Abbott, Ei; Maland, E; Kim, J; Blake, J

    2012-08-01

    The availability of internet connectivity and mobile application software used by low-power handheld devices makes smart phones of unique value in time-sensitive clinical trials. Trial-specific applications can be downloaded by investigators from various mobile software distribution platforms or web applications delivered over HTTP. The Antihypertensive Treatment in Acute Cerebral Hemorrhage (ATACH) II investigators in collaboration with MentorMate released the ATACH-II Patient Recruitment mobile application available on iPhone, Android, and Blackberry in 2011. The mobile application provides tools for pre-screening, assessment of eligibility, and randomization of patients. Since the release of ATACH-II mobile application, the CLEAR-IVH (Clot Lysis Evaluating Accelerated Resolution of Intraventricular Hemorrhage) trial investigators have also adopted such a mobile application. The video-conferencing capabilities of the most recent mobile devices open up additional opportunities to involve central coordinating centers in the recruitment process in real time.

  9. Design, Development, and Evaluation of a Mobile Learning Application for Computing Education

    ERIC Educational Resources Information Center

    Oyelere, Solomon Sunday; Suhonen, Jarkko; Wajiga, Greg M.; Sutinen, Erkki

    2018-01-01

    The study focused on the application of the design science research approach in the course of developing a mobile learning application, MobileEdu, for computing education in the Nigerian higher education context. MobileEdu facilitates the learning of computer science courses on mobile devices. The application supports ubiquitous, collaborative,…

  10. COEUS: “semantic web in a box” for biomedical applications

    PubMed Central

    2012-01-01

    Background As the “omics” revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter’s complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. Results COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a “semantic web in a box” approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. Conclusions The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/. PMID:23244467

  11. COEUS: "semantic web in a box" for biomedical applications.

    PubMed

    Lopes, Pedro; Oliveira, José Luís

    2012-12-17

    As the "omics" revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter's complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a "semantic web in a box" approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/.

  12. Mobile healthcare informatics.

    PubMed

    Siau, Keng; Shen, Zixing

    2006-06-01

    Advances in wireless technology give pace to the rapid development of mobile applications. The coming mobile revolution will bring dramatic and fundamental changes to our daily life. It will influence the way we live, the way we do things, and the way we take care of our health. For the healthcare industry, mobile applications provide a new frontier in offering better care and services to patients, and a more flexible and mobile way of communicating with suppliers and patients. Mobile applications will provide important real time data for patients, physicians, insurers, and suppliers. In addition, it will revolutionalize the way information is managed in the healthcare industry and redefine the doctor - patient communication. This paper discusses different aspects of mobile healthcare. Specifically, it presents mobile applications in healthcare, and discusses possible challenges facing the development of mobile applications. Obstacles in developing mobile healthcare applications include mobile device limitations, wireless networking problems, infrastructure constraints, security concerns, and user distrust. Research issues in resolving or alleviating these problems are also discussed in the paper.

  13. Magician Simulator. A Realistic Simulator for Heterogenous Teams of Autonomous Robots

    DTIC Science & Technology

    2011-01-18

    IMU, and LIDAR systems for identifying and tracking mobile OOI at long range (>20m), providing early warnings and allowing neutralization from a... LIDAR and Computer Vision template-based feature tracking approaches. Mapping was solved through Multi-Agent particle-filter based Simultaneous...Locali- zation and Mapping ( SLAM ). Our system contains two maps, a physical map and an influence map (location of hostile OOI, explored and unexplored

  14. Accuracy assessment of a mobile terrestrial lidar survey at Padre Island National Seashore

    USGS Publications Warehouse

    Lim, Samsung; Thatcher, Cindy A.; Brock, John C.; Kimbrow, Dustin R.; Danielson, Jeffrey J.; Reynolds, B.J.

    2013-01-01

    The higher point density and mobility of terrestrial laser scanning (light detection and ranging (lidar)) is desired when extremely detailed elevation data are needed for mapping vertically orientated complex features such as levees, dunes, and cliffs, or when highly accurate data are needed for monitoring geomorphic changes. Mobile terrestrial lidar scanners have the capability for rapid data collection on a larger spatial scale compared with tripod-based terrestrial lidar, but few studies have examined the accuracy of this relatively new mapping technology. For this reason, we conducted a field test at Padre Island National Seashore of a mobile lidar scanner mounted on a sport utility vehicle and integrated with a position and orientation system. The purpose of the study was to assess the vertical and horizontal accuracy of data collected by the mobile terrestrial lidar system, which is georeferenced to the Universal Transverse Mercator coordinate system and the North American Vertical Datum of 1988. To accomplish the study objectives, independent elevation data were collected by conducting a high-accuracy global positioning system survey to establish the coordinates and elevations of 12 targets spaced throughout the 12 km transect. These independent ground control data were compared to the lidar scanner-derived elevations to quantify the accuracy of the mobile lidar system. The performance of the mobile lidar system was also tested at various vehicle speeds and scan density settings (e.g. field of view and linear point spacing) to estimate the optimal parameters for desired point density. After adjustment of the lever arm parameters, the final point cloud accuracy was 0.060 m (east), 0.095 m (north), and 0.053 m (height). The very high density of the resulting point cloud was sufficient to map fine-scale topographic features, such as the complex shape of the sand dunes.

  15. Maps to estimate average streamflow and headwater limits for streams in U.S. Army Corps of Engineers, Mobile District, Alabama and adjacent states

    USGS Publications Warehouse

    Nelson, George H.

    1984-01-01

    U.S. Army Corps of Engineers permits are required for discharges of dredged or fill-material downstream from the ' headwaters ' of specified streams. The term ' headwaters ' is defined as the point of a freshwater (non-tidal) stream above which the average flow is less than 5 cu ft/s. Maps of the Mobile District area showing (1) lines of equal average streamflow, and (2) lines of equal drainage areas required to produce an average flow of 5 cu ft/s are contained in this report. These maps are for use by the Corps of Engineers in their permitting program. (USGS)

  16. An Artificial Neural Network Embedded Position and Orientation Determination Algorithm for Low Cost MEMS INS/GPS Integrated Sensors

    PubMed Central

    Chiang, Kai-Wei; Chang, Hsiu-Wen; Li, Chia-Yuan; Huang, Yun-Wen

    2009-01-01

    Digital mobile mapping, which integrates digital imaging with direct geo-referencing, has developed rapidly over the past fifteen years. Direct geo-referencing is the determination of the time-variable position and orientation parameters for a mobile digital imager. The most common technologies used for this purpose today are satellite positioning using Global Positioning System (GPS) and Inertial Navigation System (INS) using an Inertial Measurement Unit (IMU). They are usually integrated in such a way that the GPS receiver is the main position sensor, while the IMU is the main orientation sensor. The Kalman Filter (KF) is considered as the optimal estimation tool for real-time INS/GPS integrated kinematic position and orientation determination. An intelligent hybrid scheme consisting of an Artificial Neural Network (ANN) and KF has been proposed to overcome the limitations of KF and to improve the performance of the INS/GPS integrated system in previous studies. However, the accuracy requirements of general mobile mapping applications can’t be achieved easily, even by the use of the ANN-KF scheme. Therefore, this study proposes an intelligent position and orientation determination scheme that embeds ANN with conventional Rauch-Tung-Striebel (RTS) smoother to improve the overall accuracy of a MEMS INS/GPS integrated system in post-mission mode. By combining the Micro Electro Mechanical Systems (MEMS) INS/GPS integrated system and the intelligent ANN-RTS smoother scheme proposed in this study, a cheaper but still reasonably accurate position and orientation determination scheme can be anticipated. PMID:22574034

  17. Intelligent behavior generator for autonomous mobile robots using planning-based AI decision making and supervisory control logic

    NASA Astrophysics Data System (ADS)

    Shah, Hitesh K.; Bahl, Vikas; Martin, Jason; Flann, Nicholas S.; Moore, Kevin L.

    2002-07-01

    In earlier research the Center for Self-Organizing and Intelligent Systems (CSOIS) at Utah State University (USU) have been funded by the US Army Tank-Automotive and Armaments Command's (TACOM) Intelligent Mobility Program to develop and demonstrate enhanced mobility concepts for unmanned ground vehicles (UGVs). One among the several out growths of this work has been the development of a grammar-based approach to intelligent behavior generation for commanding autonomous robotic vehicles. In this paper we describe the use of this grammar for enabling autonomous behaviors. A supervisory task controller (STC) sequences high-level action commands (taken from the grammar) to be executed by the robot. It takes as input a set of goals and a partial (static) map of the environment and produces, from the grammar, a flexible script (or sequence) of the high-level commands that are to be executed by the robot. The sequence is derived by a planning function that uses a graph-based heuristic search (A* -algorithm). Each action command has specific exit conditions that are evaluated by the STC following each task completion or interruption (in the case of disturbances or new operator requests). Depending on the system's state at task completion or interruption (including updated environmental and robot sensor information), the STC invokes a reactive response. This can include sequencing the pending tasks or initiating a re-planning event, if necessary. Though applicable to a wide variety of autonomous robots, an application of this approach is demonstrated via simulations of ODIS, an omni-directional inspection system developed for security applications.

  18. Developing a Framework and Priorities to Promote Mobility among Older Adults

    ERIC Educational Resources Information Center

    Anderson, Lynda A.; Slonim, Amy; Yen, Irene H.; Jones, Dina L.; Allen, Peg; Hunter, Rebecca H.; Goins, R. Turner; Leith, Katherine H.; Rosenberg, Dori; Satariano, William A.; McPhillips-Tangum, Carol

    2014-01-01

    Mobility, broadly defined as movement in all of its forms from ambulation to transportation, is critical to supporting optimal aging. This article describes two projects to develop a framework and a set of priority actions designed to promote mobility among community-dwelling older adults. Project 1 involved a concept-mapping process to solicit…

  19. About 311

    Science.gov Websites

    NYC311NYC311 Mobile AppNYC311 TwitterNYC311 Facebook Directory of City Agencies Contact NYC Government City Employees Notify NYC CityStore Stay Connected NYC Mobile Apps Maps Resident Toolkit NYC Search City of New

  20. A New Calibration Method Using Low Cost MEM IMUs to Verify the Performance of UAV-Borne MMS Payloads

    PubMed Central

    Chiang, Kai-Wei; Tsai, Meng-Lun; Naser, El-Sheimy; Habib, Ayman; Chu, Chien-Hsun

    2015-01-01

    Spatial information plays a critical role in remote sensing and mapping applications such as environment surveying and disaster monitoring. An Unmanned Aerial Vehicle (UAV)-borne mobile mapping system (MMS) can accomplish rapid spatial information acquisition under limited sky conditions with better mobility and flexibility than other means. This study proposes a long endurance Direct Geo-referencing (DG)-based fixed-wing UAV photogrammetric platform and two DG modules that each use different commercial Micro-Electro Mechanical Systems’ (MEMS) tactical grade Inertial Measurement Units (IMUs). Furthermore, this study develops a novel kinematic calibration method which includes lever arms, boresight angles and camera shutter delay to improve positioning accuracy. The new calibration method is then compared with the traditional calibration approach. The results show that the accuracy of the DG can be significantly improved by flying at a lower altitude using the new higher specification hardware. The new proposed method improves the accuracy of DG by about 20%. The preliminary results show that two-dimensional (2D) horizontal DG positioning accuracy is around 5.8 m at a flight height of 300 m using the newly designed tactical grade integrated Positioning and Orientation System (POS). The positioning accuracy in three-dimensions (3D) is less than 8 m. PMID:25808764

  1. A tesselated probabilistic representation for spatial robot perception and navigation

    NASA Technical Reports Server (NTRS)

    Elfes, Alberto

    1989-01-01

    The ability to recover robust spatial descriptions from sensory information and to efficiently utilize these descriptions in appropriate planning and problem-solving activities are crucial requirements for the development of more powerful robotic systems. Traditional approaches to sensor interpretation, with their emphasis on geometric models, are of limited use for autonomous mobile robots operating in and exploring unknown and unstructured environments. Here, researchers present a new approach to robot perception that addresses such scenarios using a probabilistic tesselated representation of spatial information called the Occupancy Grid. The Occupancy Grid is a multi-dimensional random field that maintains stochastic estimates of the occupancy state of each cell in the grid. The cell estimates are obtained by interpreting incoming range readings using probabilistic models that capture the uncertainty in the spatial information provided by the sensor. A Bayesian estimation procedure allows the incremental updating of the map using readings taken from several sensors over multiple points of view. An overview of the Occupancy Grid framework is given, and its application to a number of problems in mobile robot mapping and navigation are illustrated. It is argued that a number of robotic problem-solving activities can be performed directly on the Occupancy Grid representation. Some parallels are drawn between operations on Occupancy Grids and related image processing operations.

  2. New calibration method using low cost MEM IMUs to verify the performance of UAV-borne MMS payloads.

    PubMed

    Chiang, Kai-Wei; Tsai, Meng-Lun; Naser, El-Sheimy; Habib, Ayman; Chu, Chien-Hsun

    2015-03-19

    Spatial information plays a critical role in remote sensing and mapping applications such as environment surveying and disaster monitoring. An Unmanned Aerial Vehicle (UAV)-borne mobile mapping system (MMS) can accomplish rapid spatial information acquisition under limited sky conditions with better mobility and flexibility than other means. This study proposes a long endurance Direct Geo-referencing (DG)-based fixed-wing UAV photogrammetric platform and two DG modules that each use different commercial Micro-Electro Mechanical Systems' (MEMS) tactical grade Inertial Measurement Units (IMUs). Furthermore, this study develops a novel kinematic calibration method which includes lever arms, boresight angles and camera shutter delay to improve positioning accuracy. The new calibration method is then compared with the traditional calibration approach. The results show that the accuracy of the DG can be significantly improved by flying at a lower altitude using the new higher specification hardware. The new proposed method improves the accuracy of DG by about 20%. The preliminary results show that two-dimensional (2D) horizontal DG positioning accuracy is around 5.8 m at a flight height of 300 m using the newly designed tactical grade integrated Positioning and Orientation System (POS). The positioning accuracy in three-dimensions (3D) is less than 8 m.

  3. Public road infrastructure inventory in degraded global navigation satellite system signal environments

    NASA Astrophysics Data System (ADS)

    Sokolova, N.; Morrison, A.; Haakonsen, T. A.

    2015-04-01

    Recent advancement of land-based mobile mapping enables rapid and cost-effective collection of highquality road related spatial information. Mobile Mapping Systems (MMS) can provide spatial information with subdecimeter accuracy in nominal operation environments. However, performance in challenging environments such as tunnels is not well characterized. The Norwegian Public Roads Administration (NPRA) manages the country's public road network and its infrastructure, a large segment of which is represented by road tunnels (there are about 1 000 road tunnels in Norway with a combined length of 800 km). In order to adopt mobile mapping technology for streamlining road network and infrastructure management and maintenance tasks, it is important to ensure that the technology is mature enough to meet existing requirements for object positioning accuracy in all types of environments, and provide homogeneous accuracy over the mapping perimeter. This paper presents results of a testing campaign performed within a project funded by the NPRA as a part of SMarter road traffic with Intelligent Transport Systems (ITS) (SMITS) program. The testing campaign objective was performance evaluation of high end commercial MMSs for inventory of public areas, focusing on Global Navigation Satellite System (GNSS) signal degraded environments.

  4. PRIMAL: Page Rank-Based Indoor Mapping and Localization Using Gene-Sequenced Unlabeled WLAN Received Signal Strength

    PubMed Central

    Zhou, Mu; Zhang, Qiao; Xu, Kunjie; Tian, Zengshan; Wang, Yanmeng; He, Wei

    2015-01-01

    Due to the wide deployment of wireless local area networks (WLAN), received signal strength (RSS)-based indoor WLAN localization has attracted considerable attention in both academia and industry. In this paper, we propose a novel page rank-based indoor mapping and localization (PRIMAL) by using the gene-sequenced unlabeled WLAN RSS for simultaneous localization and mapping (SLAM). Specifically, first of all, based on the observation of the motion patterns of the people in the target environment, we use the Allen logic to construct the mobility graph to characterize the connectivity among different areas of interest. Second, the concept of gene sequencing is utilized to assemble the sporadically-collected RSS sequences into a signal graph based on the transition relations among different RSS sequences. Third, we apply the graph drawing approach to exhibit both the mobility graph and signal graph in a more readable manner. Finally, the page rank (PR) algorithm is proposed to construct the mapping from the signal graph into the mobility graph. The experimental results show that the proposed approach achieves satisfactory localization accuracy and meanwhile avoids the intensive time and labor cost involved in the conventional location fingerprinting-based indoor WLAN localization. PMID:26404274

  5. Gps-Denied Geo-Localisation Using Visual Odometry

    NASA Astrophysics Data System (ADS)

    Gupta, Ashish; Chang, Huan; Yilmaz, Alper

    2016-06-01

    The primary method for geo-localization is based on GPS which has issues of localization accuracy, power consumption, and unavailability. This paper proposes a novel approach to geo-localization in a GPS-denied environment for a mobile platform. Our approach has two principal components: public domain transport network data available in GIS databases or OpenStreetMap; and a trajectory of a mobile platform. This trajectory is estimated using visual odometry and 3D view geometry. The transport map information is abstracted as a graph data structure, where various types of roads are modelled as graph edges and typically intersections are modelled as graph nodes. A search for the trajectory in real time in the graph yields the geo-location of the mobile platform. Our approach uses a simple visual sensor and it has a low memory and computational footprint. In this paper, we demonstrate our method for trajectory estimation and provide examples of geolocalization using public-domain map data. With the rapid proliferation of visual sensors as part of automated driving technology and continuous growth in public domain map data, our approach has the potential to completely augment, or even supplant, GPS based navigation since it functions in all environments.

  6. Studies on deaf mobile application

    NASA Astrophysics Data System (ADS)

    Nathan, Shelena Soosay; Hussain, Azham; Hashim, Nor Laily

    2016-08-01

    The deaf normally considered to be disabled that do not need any mobile technology due to the inabilities of hearing and talking. However, many deaf are using mobile phone in their daily life for various purposes such as communication and learning. Many studies have attempted to identify the need of deaf people in mobile application and level of usage of the applications. This study aims in studying the recent research conducted on deaf mobile application to understand the level of importance of mobile technology for this disabled community. This paper enable identification of studies conducted are limited and the need of more research done of this disabled people to ensure their privilege of using mobile technology and its application, which leads to the identification of deaf user requirement for mobile application as future study.

  7. The Role of Participatory Design in Mobile Application Development

    NASA Astrophysics Data System (ADS)

    Hamzah, Almed

    2018-03-01

    Mobile devices are used by people worldwide. It becomes a common equipment to complete a day-to-day activity. Inside the devices, there are numerous mobile applications that have been built for various needs. Some of these are quite successful while the other are not. The development of successful mobile application faces several challenges. In this research, we want to explore the use of participatory design method in mobile application development. Particularly, the aim of the study is to answer the question whether participatory design method has a place in the realm of mobile application development. We established two sessions of workshop to accommodate the participant to take part in the development process of mobile application. The result shows that participatory design method can determine how the user will deal with the limitations of mobile devices. It helps user to create a particular form of interaction that meets mobile devices characteristics.

  8. Introducing StatHand: A Cross-Platform Mobile Application to Support Students' Statistical Decision Making.

    PubMed

    Allen, Peter J; Roberts, Lynne D; Baughman, Frank D; Loxton, Natalie J; Van Rooy, Dirk; Rock, Adam J; Finlay, James

    2016-01-01

    Although essential to professional competence in psychology, quantitative research methods are a known area of weakness for many undergraduate psychology students. Students find selecting appropriate statistical tests and procedures for different types of research questions, hypotheses and data types particularly challenging, and these skills are not often practiced in class. Decision trees (a type of graphic organizer) are known to facilitate this decision making process, but extant trees have a number of limitations. Furthermore, emerging research suggests that mobile technologies offer many possibilities for facilitating learning. It is within this context that we have developed StatHand, a free cross-platform application designed to support students' statistical decision making. Developed with the support of the Australian Government Office for Learning and Teaching, StatHand guides users through a series of simple, annotated questions to help them identify a statistical test or procedure appropriate to their circumstances. It further offers the guidance necessary to run these tests and procedures, then interpret and report their results. In this Technology Report we will overview the rationale behind StatHand, before describing the feature set of the application. We will then provide guidelines for integrating StatHand into the research methods curriculum, before concluding by outlining our road map for the ongoing development and evaluation of StatHand.

  9. Taking knowledge for health the extra mile: participatory evaluation of a mobile phone intervention for community health workers in Malawi

    PubMed Central

    Campbell, Natalie; Schiffer, Eva; Buxbaum, Ann; McLean, Elizabeth; Perry, Cary; Sullivan, Tara M

    2014-01-01

    In Malawi, where the majority of the population resides in rural areas, community health workers (CHWs) are the first, and often only, providers of health services. An assessment of health information needs, however, found that these frontline workers often lacked essential health information. A pilot project, implemented in 2 rural districts of Malawi between 2010 and 2011, introduced a mobile phone system to strengthen knowledge exchange within networks of CHWs and district staff. To evaluate the mobile phone intervention, a participatory evaluation method called Net-Map was used, an approach built on traditional social network analysis. Together, CHWs and district personnel discussed information needs and gaps and the roles of different actors in their information networks. They then used drawings and 3-dimensional objects to create baseline and endline maps showing the linkages and levels of influence among members of the information network. Net-Map provided them with powerful evidence of differences before and after the mobile phone initiative. At baseline, CHWs were not mentioned as actors in the information network, while at endline they were seen to have significant connections with colleagues, beneficiaries, supervisors, and district health facilities, as both recipients and providers of information. Focus groups with CHWs complemented the Net-Map findings with reports of increased self-confidence and greater trust by their communities. These qualitative results were bolstered by surveys that showed decreases in stockouts of essential medicines, lower communication costs, wider service coverage, and more efficient referrals. As an innovative, participatory form of social network analysis, Net-Map yielded important visual, quantitative, and qualitative information at reasonable cost. PMID:25276560

  10. Taking knowledge for health the extra mile: participatory evaluation of a mobile phone intervention for community health workers in Malawi.

    PubMed

    Campbell, Natalie; Schiffer, Eva; Buxbaum, Ann; McLean, Elizabeth; Perry, Cary; Sullivan, Tara M

    2014-02-01

    In Malawi, where the majority of the population resides in rural areas, community health workers (CHWs) are the first, and often only, providers of health services. An assessment of health information needs, however, found that these frontline workers often lacked essential health information. A pilot project, implemented in 2 rural districts of Malawi between 2010 and 2011, introduced a mobile phone system to strengthen knowledge exchange within networks of CHWs and district staff. To evaluate the mobile phone intervention, a participatory evaluation method called Net-Map was used, an approach built on traditional social network analysis. Together, CHWs and district personnel discussed information needs and gaps and the roles of different actors in their information networks. They then used drawings and 3-dimensional objects to create baseline and endline maps showing the linkages and levels of influence among members of the information network. Net-Map provided them with powerful evidence of differences before and after the mobile phone initiative. At baseline, CHWs were not mentioned as actors in the information network, while at endline they were seen to have significant connections with colleagues, beneficiaries, supervisors, and district health facilities, as both recipients and providers of information. Focus groups with CHWs complemented the Net-Map findings with reports of increased self-confidence and greater trust by their communities. These qualitative results were bolstered by surveys that showed decreases in stockouts of essential medicines, lower communication costs, wider service coverage, and more efficient referrals. As an innovative, participatory form of social network analysis, Net-Map yielded important visual, quantitative, and qualitative information at reasonable cost.

  11. Usability evaluation of mobile applications; where do we stand?

    NASA Astrophysics Data System (ADS)

    Zahra, Fatima; Hussain, Azham; Mohd, Haslina

    2017-10-01

    The range and availability of mobile applications is expanding rapidly. With the increased processing power available on portable devices, developers are increasing the range of services by embracing smartphones in their extensive and diverse practices. While usability testing and evaluations of mobile applications have not yet touched the accuracy level of other web based applications. The existing usability models do not adequately capture the complexities of interacting with applications on a mobile platform. Therefore, this study aims to presents review on existing usability models for mobile applications. These models are in their infancy but with time and more research they may eventually be adopted. Moreover, different categories of mobile apps (medical, entertainment, education) possess different functional and non-functional requirements thus customized models are required for diverse mobile applications.

  12. XMM-Newton Mobile Web Application

    NASA Astrophysics Data System (ADS)

    Ibarra, A.; Kennedy, M.; Rodríguez, P.; Hernández, C.; Saxton, R.; Gabriel, C.

    2013-10-01

    We present the first XMM-Newton web mobile application, coded using new web technologies such as HTML5, the Query mobile framework, and D3 JavaScript data-driven library. This new web mobile application focuses on re-formatted contents extracted directly from the XMM-Newton web, optimizing the contents for mobile devices. The main goals of this development were to reach all kind of handheld devices and operating systems, while minimizing software maintenance. The application therefore has been developed as a web mobile implementation rather than a more costly native application. New functionality will be added regularly.

  13. The Data Reliability of Volunteered Geographic Information with Using Traffic Accident Data

    NASA Astrophysics Data System (ADS)

    Sevinç, H. K.; Karaş, I. R.

    2017-11-01

    The development of mobile technologies is important in the lives of humans. Mobile devices constitute a great part of the daily lives of people. It has come to such a point that when people first wake up, they check their smart phones for the first thing. Users may share their positions with the GNSS sensors in mobile devices or they can add information about their positions in mobile applications. Users contribute to Geographical Information System with this sharing. These users consist of native (citizens) living in that geographical position not of the CBS specialists. Creating, collecting, sharing and disseminating the geographical data provided by voluntary individuals constitute the Volunteered Geographic Information System. The data in the Volunteered Geographic Information System are received from amateur users. "How reliable will the data received from amateur users instead of specialists of the field be in scientific terms?" In this study, the reliability between the data received from the voluntary users through Volunteered Geographic Information System and real data is investigated. The real data consist of the traffic accident coordinates. The data that will be received from users will be received through the speed values in the relevant coordinates and the marking of the users for possible accident points on the map.

  14. FreshAiR and Field Studies—Augmenting Geological Reality with Mobile Devices

    NASA Astrophysics Data System (ADS)

    De Paor, D. G.; Crompton, H.; Dunleavy, M.

    2014-12-01

    During the last decade, mobile devices have fomented a revolution in geological mapping. Present Clinton set the stage for this revolution in the year 2000 when he ordered a cessation to Selective Availability, making reliable GPS available for civilian use. Geologists began using personal digital assistants and ruggedized tablet PCs for geolocation and data recording and the pace of change accelerated with the development of mobile apps such as Google Maps, digital notebooks, and digital compass-clinometers. Despite these changes in map-making technologies, most students continue to learn geology in the field the old-fashioned way, by following a field trip leader as a group and trying to hear and understand lecturettes at the outcrop. In this presentation, we demonstrate the potential of a new Augment Reality (AR) mobile app called "FreshAiR" to change fundamentally the way content-knowledge and learning objectives are delivered to students in the field. FreshAiR, which was developed by co-author and ODU alumnus M.D., triggers content delivery to mobile devices based on proximity. Students holding their mobile devices to the horizon see trigger points superimposed on the field of view of the device's built-in camera. When they walk towards the trigger, information about the location pops up. This can include text, images, movies, and quiz questions (multiple choice and fill-in-the-blank). Students can use the app to reinforce the field trip leader's presentations or they can visit outcrops individuals at different times. This creates the possibility for asynchronous field class, a concept that has profound implications for distance education in the geosciences.

  15. Ultra Wide-Band Localization and SLAM: A Comparative Study for Mobile Robot Navigation

    PubMed Central

    Segura, Marcelo J.; Auat Cheein, Fernando A.; Toibero, Juan M.; Mut, Vicente; Carelli, Ricardo

    2011-01-01

    In this work, a comparative study between an Ultra Wide-Band (UWB) localization system and a Simultaneous Localization and Mapping (SLAM) algorithm is presented. Due to its high bandwidth and short pulses length, UWB potentially allows great accuracy in range measurements based on Time of Arrival (TOA) estimation. SLAM algorithms recursively estimates the map of an environment and the pose (position and orientation) of a mobile robot within that environment. The comparative study presented here involves the performance analysis of implementing in parallel an UWB localization based system and a SLAM algorithm on a mobile robot navigating within an environment. Real time results as well as error analysis are also shown in this work. PMID:22319397

  16. Local adaptive tone mapping for video enhancement

    NASA Astrophysics Data System (ADS)

    Lachine, Vladimir; Dai, Min (.

    2015-03-01

    As new technologies like High Dynamic Range cameras, AMOLED and high resolution displays emerge on consumer electronics market, it becomes very important to deliver the best picture quality for mobile devices. Tone Mapping (TM) is a popular technique to enhance visual quality. However, the traditional implementation of Tone Mapping procedure is limited by pixel's value to value mapping, and the performance is restricted in terms of local sharpness and colorfulness. To overcome the drawbacks of traditional TM, we propose a spatial-frequency based framework in this paper. In the proposed solution, intensity component of an input video/image signal is split on low pass filtered (LPF) and high pass filtered (HPF) bands. Tone Mapping (TM) function is applied to LPF band to improve the global contrast/brightness, and HPF band is added back afterwards to keep the local contrast. The HPF band may be adjusted by a coring function to avoid noise boosting and signal overshooting. Colorfulness of an original image may be preserved or enhanced by chroma components correction by means of saturation function. Localized content adaptation is further improved by dividing an image to a set of non-overlapped regions and modifying each region individually. The suggested framework allows users to implement a wide range of tone mapping applications with perceptional local sharpness and colorfulness preserved or enhanced. Corresponding hardware circuit may be integrated in camera, video or display pipeline with minimal hardware budget

  17. American Meteor Society Fireball reporting system and mobile application

    NASA Astrophysics Data System (ADS)

    Hankey, M.

    2014-07-01

    The American Meteor Society (AMS) founded in 1911 pioneered the visual study of meteors and has collected data relating to meteor observations and bright fireballs for over 100 years. In December 2010, the online fireball reporting system was upgraded to an interactive application that utilizes Google Maps and other programmatic methods to pinpoint the observer's location, azimuth and elevation values with a high degree of precision. The AMS has collected 10s of 1000s of witness reports relating to 100s of events each year since the new application was released. Three dimensional triangulation methods that average the data collected from witnesses have been developed that can determine the start and end points of the meteor with an accuracy of <50 km (when compared to published solutions provided by operators of all sky cameras). RA and DEC radiant estimates can also be computed for all significant events reported to the AMS. With the release of the mobile application, the AMS is able to collect more precise elevation angles than through the web application. Users can file a new report directly on the phone or update the values submitted through a web report. After web users complete their fireball report online, they are prompted to download the app and update their observation with the more precise data provided by the sensors in the mobile device. The mobile app also provides an accurate means for the witness to report the elapsed time of the fireball. To log this value, the user drags the device across the sky where they saw the fireball. This process is designed to require no button click or user interaction to start and stop the time recording. A count down initiates the process and once the user's phone crosses the plane of azimuth for the end point of the fireball the velocity timer automatically stops. Users are asked to log the recording three times in an effort to minimize error. The three values are then averaged into a final score. Once enough witnesses have filed reports, elapsed time data collected from the mobile phone can be used to determine the velocity of the fireball. With the velocity, trajectory solution and RA/DEC the AMS can plot orbital estimates for significant fireball events reported to the society. Our hope is that overtime this catalog of events will reveal patterns relating to the origins of bright fireballs at certain times of year. The AMS also hopes to be able to associate fireball events reported to the society with known meteor showers when RA/DEC radiant estimates fall close enough to those of known showers. In addition to the enhanced fireball reporting application, the AMS Mobile App provides a meteor shower calendar with information, radiant maps and moon conditions for all upcoming showers. There is also a meteor observing function inside the app that enables meteor observers to log meteor observations directly on the phone and have that data uploaded to the AMS online database and associated with that users observing profile. To record observations the user simply points the device at the part of the sky where they saw the meteor. They then drag their finger across the screen in the direction the meteor traveled. The user is then prompted to enter the magnitude of the event and associate the meteor with a known shower that is active for that date. When the user completes their session, all of the data for each meteor along with the information relating to the session is uploaded to the AMS website. Users can then review the data online in the AMS member's area. Data across all users can be aggregated for statistical analysis and ZHR estimates. Currently the AMS has over 10,000 registered users and facebook followers. In 2013 over 680,000 people visited the AMS website and the society received over 18,000 witness reports relating to 713 confirmed unique fireball events.

  18. Mapping planetary caves with an autonomous, heterogeneous robot team

    NASA Astrophysics Data System (ADS)

    Husain, Ammar; Jones, Heather; Kannan, Balajee; Wong, Uland; Pimentel, Tiago; Tang, Sarah; Daftry, Shreyansh; Huber, Steven; Whittaker, William L.

    Caves on other planetary bodies offer sheltered habitat for future human explorers and numerous clues to a planet's past for scientists. While recent orbital imagery provides exciting new details about cave entrances on the Moon and Mars, the interiors of these caves are still unknown and not observable from orbit. Multi-robot teams offer unique solutions for exploration and modeling subsurface voids during precursor missions. Robot teams that are diverse in terms of size, mobility, sensing, and capability can provide great advantages, but this diversity, coupled with inherently distinct low-level behavior architectures, makes coordination a challenge. This paper presents a framework that consists of an autonomous frontier and capability-based task generator, a distributed market-based strategy for coordinating and allocating tasks to the different team members, and a communication paradigm for seamless interaction between the different robots in the system. Robots have different sensors, (in the representative robot team used for testing: 2D mapping sensors, 3D modeling sensors, or no exteroceptive sensors), and varying levels of mobility. Tasks are generated to explore, model, and take science samples. Based on an individual robot's capability and associated cost for executing a generated task, a robot is autonomously selected for task execution. The robots create coarse online maps and store collected data for high resolution offline modeling. The coordination approach has been field tested at a mock cave site with highly-unstructured natural terrain, as well as an outdoor patio area. Initial results are promising for applicability of the proposed multi-robot framework to exploration and modeling of planetary caves.

  19. Using concept mapping to mobilize a Black faith community to address HIV

    PubMed Central

    Szaflarski, Magdalena; Vaughn, Lisa M; McLinden, Daniel; Wess, Yolanda; Ruffner, Andrew

    2017-01-01

    Research that partners with community stakeholders increases contextual relevance and community buy-in and maximizes the chance for intervention success. Within a framework of an academic-community partnership, this project assessed a Black faith-community’s needs and opportunities to address HIV. We used concept mapping to identify/prioritize specific HIV-related strategies that would be acceptable to congregations. Ninety stakeholders brainstormed strategies to address HIV; 21 sorted strategies into groups and rated their importance and feasibility. Multidimensional scaling and cluster analysis were applied to the sorting to produce maps that illustrated the stakeholders’ conceptual thinking about HIV interventions. Of 278 responses, 93 were used in the sorting task. The visual maps represented eight clusters: church acceptance of people living with HIV; education (most feasible); mobilization and communication; church/leaders’ empowerment; church involvement/collaboration; safety/HIV prevention; media outreach; and, stigma (most important). Concept mapping clarified multifaceted issues of HIV in the Black faith community. The results will guide HIV programming in congregations. PMID:28239439

  20. GDA (Geologic Data Assistant), an ArcPad extension for geologic mapping: code, prerequisites, and instructions

    USGS Publications Warehouse

    ,

    2006-01-01

    GDA (Geologic Data Assistant) is an extension to ArcPad, a mobile mapping software program by Environmental Systems Research Institute (ESRI) designed to run on personal digital assistant (PDA) computers. GDA and ArcPad allow a PDA to replace the paper notebook and field map traditionally used for geologic mapping. GDA allows easy collection of field data.

  1. GIS applications for military operations in coastal zones

    USGS Publications Warehouse

    Fleming, S.; Jordan, T.; Madden, M.; Usery, E.L.; Welch, R.

    2009-01-01

    In order to successfully support current and future US military operations in coastal zones, geospatial information must be rapidly integrated and analyzed to meet ongoing force structure evolution and new mission directives. Coastal zones in a military-operational environment are complex regions that include sea, land and air features that demand high-volume databases of extreme detail within relatively narrow geographic corridors. Static products in the form of analog maps at varying scales traditionally have been used by military commanders and their operational planners. The rapidly changing battlefield of 21st Century warfare, however, demands dynamic mapping solutions. Commercial geographic information system (GIS) software for military-specific applications is now being developed and employed with digital databases to provide customized digital maps of variable scale, content and symbolization tailored to unique demands of military units. Research conducted by the Center for Remote Sensing and Mapping Science at the University of Georgia demonstrated the utility of GIS-based analysis and digital map creation when developing large-scale (1:10,000) products from littoral warfare databases. The methodology employed-selection of data sources (including high resolution commercial images and Lidar), establishment of analysis/modeling parameters, conduct of vehicle mobility analysis, development of models and generation of products (such as a continuous sea-land DEM and geo-visualization of changing shorelines with tidal levels)-is discussed. Based on observations and identified needs from the National Geospatial-Intelligence Agency, formerly the National Imagery and Mapping Agency, and the Department of Defense, prototype GIS models for military operations in sea, land and air environments were created from multiple data sets of a study area at US Marine Corps Base Camp Lejeune, North Carolina. Results of these models, along with methodologies for developing large-scale littoral warfare databases, aid the National Geospatial-Intelligence Agency in meeting littoral warfare analysis, modeling and map generation requirements for US military organizations. ?? 2008 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).

  2. GIS applications for military operations in coastal zones

    NASA Astrophysics Data System (ADS)

    Fleming, S.; Jordan, T.; Madden, M.; Usery, E. L.; Welch, R.

    In order to successfully support current and future US military operations in coastal zones, geospatial information must be rapidly integrated and analyzed to meet ongoing force structure evolution and new mission directives. Coastal zones in a military-operational environment are complex regions that include sea, land and air features that demand high-volume databases of extreme detail within relatively narrow geographic corridors. Static products in the form of analog maps at varying scales traditionally have been used by military commanders and their operational planners. The rapidly changing battlefield of 21st Century warfare, however, demands dynamic mapping solutions. Commercial geographic information system (GIS) software for military-specific applications is now being developed and employed with digital databases to provide customized digital maps of variable scale, content and symbolization tailored to unique demands of military units. Research conducted by the Center for Remote Sensing and Mapping Science at the University of Georgia demonstrated the utility of GIS-based analysis and digital map creation when developing large-scale (1:10,000) products from littoral warfare databases. The methodology employed-selection of data sources (including high resolution commercial images and Lidar), establishment of analysis/modeling parameters, conduct of vehicle mobility analysis, development of models and generation of products (such as a continuous sea-land DEM and geo-visualization of changing shorelines with tidal levels)-is discussed. Based on observations and identified needs from the National Geospatial-Intelligence Agency, formerly the National Imagery and Mapping Agency, and the Department of Defense, prototype GIS models for military operations in sea, land and air environments were created from multiple data sets of a study area at US Marine Corps Base Camp Lejeune, North Carolina. Results of these models, along with methodologies for developing large-scale littoral warfare databases, aid the National Geospatial-Intelligence Agency in meeting littoral warfare analysis, modeling and map generation requirements for US military organizations.

  3. Big Data Analytics for Disaster Preparedness and Response of Mobile Communication Infrastructure during Natural Hazards

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Takano, K.; Ji, Y.; Yamada, S.

    2015-12-01

    The disruption of telecommunications is one of the most critical disasters during natural hazards. As the rapid expanding of mobile communications, the mobile communication infrastructure plays a very fundamental role in the disaster response and recovery activities. For this reason, its disruption will lead to loss of life and property, due to information delays and errors. Therefore, disaster preparedness and response of mobile communication infrastructure itself is quite important. In many cases of experienced disasters, the disruption of mobile communication networks is usually caused by the network congestion and afterward long-term power outage. In order to reduce this disruption, the knowledge of communication demands during disasters is necessary. And big data analytics will provide a very promising way to predict the communication demands by analyzing the big amount of operational data of mobile users in a large-scale mobile network. Under the US-Japan collaborative project on 'Big Data and Disaster Research (BDD)' supported by the Japan Science and Technology Agency (JST) and National Science Foundation (NSF), we are going to investigate the application of big data techniques in the disaster preparedness and response of mobile communication infrastructure. Specifically, in this research, we have considered to exploit the big amount of operational information of mobile users for predicting the communications needs in different time and locations. By incorporating with other data such as shake distribution of an estimated major earthquake and the power outage map, we are able to provide the prediction information of stranded people who are difficult to confirm safety or ask for help due to network disruption. In addition, this result could further facilitate the network operators to assess the vulnerability of their infrastructure and make suitable decision for the disaster preparedness and response. In this presentation, we are going to introduce the results we obtained based on the big data analytics of mobile user statistical information and discuss the implications of these results.

  4. Tunable microwave signal generator with an optically-injected 1310 nm QD-DFB laser.

    PubMed

    Hurtado, Antonio; Mee, Jesse; Nami, Mohsen; Henning, Ian D; Adams, Michael J; Lester, Luke F

    2013-05-06

    Tunable microwave signal generation with frequencies ranging from below 1 GHz to values over 40 GHz is demonstrated experimentally with a 1310 nm Quantum Dot (QD) Distributed-Feedback (DFB) laser. Microwave signal generation is achieved using the period 1 dynamics induced in the QD DFB under optical injection. Continuous tuning in the positive detuning frequency range of the quantum dot's unique stability map is demonstrated. The simplicity of the experimental configuration offers promise for novel uses of these nanostructure lasers in Radio-over-Fiber (RoF) applications and future mobile networks.

  5. Safe motion planning for mobile agents: A model of reactive planning for multiple mobile agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Kikuo.

    1990-01-01

    The problem of motion planning for multiple mobile agents is studied. Each planning agent independently plans its own action based on its map which contains a limited information about the environment. In an environment where more than one mobile agent interacts, the motions of the robots are uncertain and dynamic. A model for reactive agents is described and simulation results are presented to show their behavior patterns. 18 refs., 2 figs.

  6. Development of Mobile Electronic Health Records Application in a Secondary General Hospital in Korea

    PubMed Central

    Park, Min Ah; Hong, Eunseok; Kim, Sunhyu; Ahn, Ryeok; Hong, Jungseok; Song, Seungyeol; Kim, Tak; Kim, Jeongkeun; Yeo, Seongwoon

    2013-01-01

    Objectives The recent evolution of mobile devices has opened new possibilities of providing strongly integrated mobile services in healthcare. The objective of this paper is to describe the decision driver, development, and implementation of an integrated mobile Electronic Health Record (EHR) application at Ulsan University Hospital. This application helps healthcare providers view patients' medical records and information without a stationary computer workstation. Methods We developed an integrated mobile application prototype that aimed to improve the mobility and usability of healthcare providers during their daily medical activities. The Android and iOS platform was used to create the mobile EHR application. The first working version was completed in 5 months and required 1,080 development hours. Results The mobile EHR application provides patient vital signs, patient data, text communication, and integrated EHR. The application allows our healthcare providers to know the status of patients within and outside the hospital environment. The application provides a consistent user environment on several compatible Android and iOS devices. A group of 10 beta testers has consistently used and maintained our copy of the application, suggesting user acceptance. Conclusions We are developing the integrated mobile EHR application with the goals of implementing an environment that is user-friendly, implementing a patient-centered system, and increasing the hospital's competitiveness. PMID:24523996

  7. Development of mobile electronic health records application in a secondary general hospital in Korea.

    PubMed

    Choi, Wookjin; Park, Min Ah; Hong, Eunseok; Kim, Sunhyu; Ahn, Ryeok; Hong, Jungseok; Song, Seungyeol; Kim, Tak; Kim, Jeongkeun; Yeo, Seongwoon

    2013-12-01

    The recent evolution of mobile devices has opened new possibilities of providing strongly integrated mobile services in healthcare. The objective of this paper is to describe the decision driver, development, and implementation of an integrated mobile Electronic Health Record (EHR) application at Ulsan University Hospital. This application helps healthcare providers view patients' medical records and information without a stationary computer workstation. We developed an integrated mobile application prototype that aimed to improve the mobility and usability of healthcare providers during their daily medical activities. The Android and iOS platform was used to create the mobile EHR application. The first working version was completed in 5 months and required 1,080 development hours. The mobile EHR application provides patient vital signs, patient data, text communication, and integrated EHR. The application allows our healthcare providers to know the status of patients within and outside the hospital environment. The application provides a consistent user environment on several compatible Android and iOS devices. A group of 10 beta testers has consistently used and maintained our copy of the application, suggesting user acceptance. We are developing the integrated mobile EHR application with the goals of implementing an environment that is user-friendly, implementing a patient-centered system, and increasing the hospital's competitiveness.

  8. The use of mobile technology for tourism development (case study: banyumas regency)

    NASA Astrophysics Data System (ADS)

    Gunawan, H.

    2018-01-01

    Banyumas is regency in Central Java Province and Purwokerto Capital City. Banyumas has a lot of tourism areas, but not all of the areas are known by tourists because the lack of information. The information on Banyumas government’s website is not updated and uncomplete, so that it needs other information services for the tourism information in Banyumas. An android-based application Banyumas Travel Guide (BMSGuide) is a location-based application to help the people can access the information whenever and wherever they are. The service in this application is using Android which is platform that is now developing rapidly with interface User Friendly and the price is affordable. The application will access Google Maps and show the user location, destination location along with the information, and the navigation to the location. The information is gotten by accessing the satellite with GPS (Global Positioning System) tool of the user’s headset. By using BMSGuide application, the information service of tourism location and the supporting place around is served.

  9. Mobility monitoring in your community : interactive workshop.

    DOT National Transportation Integrated Search

    2010-01-01

    For Lesson 4 interactive exercise, participants choose from one of three different maps to identify the : needs and opportunities based on community input. The three maps are medium-sized community, small : community with relief route, and smal...

  10. Indoor and Outdoor Mobile Mapping Systems for Architectural Surveys

    NASA Astrophysics Data System (ADS)

    Campi, M.; di Luggo, A.; Monaco, S.; Siconolfi, M.; Palomba, D.

    2018-05-01

    This paper presents the results of architectural surveys carried out with mobile mapping systems. The data acquired through different instruments for both indoor and outdoor surveying are analyzed and compared. The study sample shows what is required for an acquisition in a dynamic mode indicating the criteria for the creation of a georeferenced network for indoor spaces, as well as the operational processes concerning data capture, processing, and management. The differences between a dynamic and static scan have been evaluated, with a comparison being made with the aerial photogrammetric survey of the same sample.

  11. Crosstalk and transitions between multiple spatial maps in an attractor neural network model of the hippocampus: Collective motion of the activity

    NASA Astrophysics Data System (ADS)

    Monasson, R.; Rosay, S.

    2014-03-01

    The dynamics of a neural model for hippocampal place cells storing spatial maps is studied. In the absence of external input, depending on the number of cells and on the values of control parameters (number of environments stored, level of neural noise, average level of activity, connectivity of place cells), a "clump" of spatially localized activity can diffuse or remains pinned due to crosstalk between the environments. In the single-environment case, the macroscopic coefficient of diffusion of the clump and its effective mobility are calculated analytically from first principles and corroborated by numerical simulations. In the multienvironment case the heights and the widths of the pinning barriers are analytically characterized with the replica method; diffusion within one map is then in competition with transitions between different maps. Possible mechanisms enhancing mobility are proposed and tested.

  12. Estimation of reservoir storage capacity using multibeam sonar and terrestrial lidar, Randy Poynter Lake, Rockdale County, Georgia, 2012

    USGS Publications Warehouse

    Lee, K.G.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Rockdale County Department of Water Resources, conducted a bathymetric and topographic survey of Randy Poynter Lake in northern Georgia in 2012. The Randy Poynter Lake watershed drains surface area from Rockdale, Gwinnett, and Walton Counties. The reservoir serves as the water supply for the Conyers-Rockdale Big Haynes Impoundment Authority. The Randy Poynter reservoir was surveyed to prepare a current bathymetric map and determine storage capacities at specified water-surface elevations. Topographic and bathymetric data were collected using a marine-based mobile mapping unit to estimate storage capacity. The marine-based mobile mapping unit operates with several components: multibeam echosounder, singlebeam echosounder, light detection and ranging system, navigation and motion-sensing system, and data acquisition computer. All data were processed and combined to develop a triangulated irregular network, a reservoir capacity table, and a bathymetric contour map.

  13. The active gene that encodes human High Mobility Group 1 protein (HMG1) contains introns and maps to chromosome 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, S.; Finelli, P.; Rocchi, M.

    The human genome contains a large number of sequences related to the cDNA for High Mobility Group 1 protein (HMG1), which so far has hampered the cloning and mapping of the active HMG1 gene. We show that the human HMG1 gene contains introns, while the HMG1-related sequences do not and most likely are retrotransposed pseudogenes. We identified eight YACs from the ICI and CEPH libraries that contain the human HMG1 gene. The HMG1 gene is similar in structure to the previously characterized murine homologue and maps to human chromosome 13 and q12, as determined by in situ hybridization. The mousemore » Hmg1 gene maps to the telomeric region of murine Chromosome 5, which is syntenic to the human 13q12 band. 18 refs., 3 figs.« less

  14. Geomorphological mapping and geotechnical testing of the March 22, 2014, SR530 landslide near Oso, Washington

    NASA Astrophysics Data System (ADS)

    Collins, B. D.; Reid, M. E.; Vallance, J. W.; Iverson, R. M.; Schmidt, K. M.

    2014-12-01

    The March 22, 2014 landslide near Oso, Washington devastated a community, killing 43 people, destroying dozens of homes, and temporarily closing a section of State Route (SR) 530. The landslide, characterized as a debris avalanche - debris flow - rotational slide, was triggered by heavy precipitation in the region and initiated from a 200 m tall section of Pleistocene glacial deposits. The entire landslide encompassed an area of 1.2 km2. To understand the mobility of this landslide, we performed geological and geomorphological mapping throughout the initiation, transport, and deposition zones. In addition, we mapped a 450-m-long cross-section through the western distal lobe created by the excavation to reopen the SR530 roadbed to temporary traffic. Samples collected during mapping were used for geotechnical testing to evaluate the mobility of the landslide materials. Our detailed (1:300) geological mapping of the excavation revealed the juxtaposition of sand (glacial outwash) and clay (glaciolacustrine) debris avalanche hummocks towards the distal end of the landslide. Further, we found that two sections of the roadbed, having a combined length of at least 150 m, were entrained in the landslide. Throughout the debris avalanche deposit, 1:1200-scale geomorphological mapping identified a preponderance of sand boils located within thinner deposits between hummocks, suggesting that liquefaction played a role in the landslides mobility. In the central distal end of the landslide, we mapped on-lap deposits, wherein distal debris flow material overrode smaller hummocks of the larger debris avalanche deposit. Discovery of these deposits indicates that the run out of the landslide might have been even longer in places had topographic barriers (i.e., the other side of the valley) not reflected the flow back towards itself.

  15. Mobile Applications to Improve Medication Adherence.

    PubMed

    Haase, Jamie; Farris, Karen B; Dorsch, Michael P

    2017-02-01

    Background and Introduction: Mobile applications are useful tools to improve medication adherence. As developers continue to improve the features of existing mobile applications, pharmacists should be aware of the current features that are available to patients. There are limited studies available that discuss which applications have the most desirable features. The aim of this study was to compare available mobile applications and identify ideal application features used to improve medication adherence. As of September 5, 2014, the search terms "medication adherence" and "medication reminder" generated a total of 225 hits. Ideal application features were used to create an Application Score Card to identify applications with the highest number of ideal features. We identified 30 applications that were written in English, medication related, last updated in 2014, and did not meet any exclusion criteria. The top five applications RxNetwork, Mango Health, MyMeds, C3HealthLink, and HuCare are discussed in detail. There are numerous studies looking at medication adherence. However, current literature regarding mobile applications to improve medication adherence is lacking. This article will provide pharmacists with a brief overview of the available mobile applications and features that could be used to improve patient adherence to medications. Existing mobile applications to improve medication adherence have ideal features that could help patients take medication as prescribed. Once further research is performed to establish their efficacy, pharmacists could begin to recommend mobile applications to their patients.

  16. Stereoscopic augmented reality with pseudo-realistic global illumination effects

    NASA Astrophysics Data System (ADS)

    de Sorbier, Francois; Saito, Hideo

    2014-03-01

    Recently, augmented reality has become very popular and has appeared in our daily life with gaming, guiding systems or mobile phone applications. However, inserting object in such a way their appearance seems natural is still an issue, especially in an unknown environment. This paper presents a framework that demonstrates the capabilities of Kinect for convincing augmented reality in an unknown environment. Rather than pre-computing a reconstruction of the scene like proposed by most of the previous method, we propose a dynamic capture of the scene that allows adapting to live changes of the environment. Our approach, based on the update of an environment map, can also detect the position of the light sources. Combining information from the environment map, the light sources and the camera tracking, we can display virtual objects using stereoscopic devices with global illumination effects such as diffuse and mirror reflections, refractions and shadows in real time.

  17. Echo-Planar Imaging: Magnetic Resonance Imaging in a Fraction of a Second

    NASA Astrophysics Data System (ADS)

    Stehling, Michael K.; Turner, Robert; Mansfield, Peter

    1991-10-01

    Progress has recently been made in implementing magnetic resonance imaging (MRI) techniques that can be used to obtain images in a fraction of a second rather than in minutes. Echo-planar imaging (EPI) uses only one nuclear spin excitation per image and lends itself to a variety of critical medical and scientific applications. Among these are evaluation of cardiac function in real time, mapping of water diffusion and temperature in tissue, mapping of organ blood pool and perfusion, functional imaging of the central nervous system, depiction of blood and cerebrospinal fluid flow dynamics, and movie imaging of the mobile fetus in utero. Through shortened patient examination times, higher patient throughput, and lower cost per MRI examination, EPI may become a powerful tool for early diagnosis of some common and potentially treatable diseases such as ischemic heart disease, stroke, and cancer.

  18. Dynamic mobility applications, program evaluation : national-level impacts and costs estimation : final report.

    DOT National Transportation Integrated Search

    2016-07-01

    The vision of the Dynamic Mobility Applications (DMA) program is to expedite the development, testing, and deployment of innovative mobility applications that maximize system productivity and enhance mobility of individuals within the surface transpo...

  19. Early Experiences with Mobile Electronic Health Records Application in a Tertiary Hospital in Korea

    PubMed Central

    Park, Minah; Hong, Eunseok; Kim, Sunhyu; Ahn, Ryeok; Hong, Jungseok; Song, Seungyeol; Kim, Tak; Kim, Jeongkeun; Yeo, Seongwoon

    2015-01-01

    Objectives Recent advances in mobile technology have opened up possibilities to provide strongly integrated mobile-based services in healthcare and telemedicine. Although the number of mobile Electronic Health Record (EHR) applications is large and growing, there is a paucity of evidence demonstrating the usage patterns of these mobile applications by healthcare providers. This study aimed to illustrate the deployment process for an integrated mobile EHR application and to analyze usage patterns after provision of the mobile EHR service. Methods We developed an integrated mobile application that aimed to enhance the mobility of healthcare providers by improving access to patient- and hospital-related information during their daily medical activities. The study included mobile EHR users who accessed patient healthcare records between May 2013 and May 2014. We performed a data analysis using a web server log file analyzer from the integrated EHR system. Cluster analysis was applied to longitudinal user data based on their application usage pattern. Results The mobile EHR service named M-UMIS has been in service since May 2013. Every healthcare provider in the hospital could access the mobile EHR service and view the medical charts of their patients. The frequency of using services and network packet transmission on the M-UMIS increased gradually during the study period. The most frequently accessed service in the menu was the patient list. Conclusions A better understanding regarding the adoption of mobile EHR applications by healthcare providers in patient-centered care provides useful information to guide the design and implementation of future applications. PMID:26618036

  20. Perspectives of a mobile application for people with communication disabilities in the community.

    PubMed

    Crook, Alice; Kenny, Julie; Johnson, Hilary; Davidson, Bronwyn

    2017-02-01

    Purpose To determine the perceptions of people with complex communication needs (CCN) and business staff regarding the uses and functionality of a mobile application to aid communication access. Method A qualitative study using thematic analysis of transcripts and field notes from focus groups and interviews of 19 people with CCN and nine business staff. Results Four themes and 10 subthemes were drawn from the data. Themes highlighted the desire for: increased communication strategies to support customer interactions, increased access to information, functionality of a mobile application to increase its utility, and preferred technical and visual features of mobile applications. Conclusion People with CCN and business staff perceived a mobile application as a useful tool to aid communication access. This research highlighted the importance of facilitating strategies to communicative interactions and information in the community as the fundamental goal of a mobile application developed to support communication access. Implications for Rehabilitation Mobile applications are widely accepted and used in modern customer service industries and have been identified as tools to increase communication access for people with complex communication needs (CCN). People with CCN identified accessibility, presentation, and customisation as important features of mobile applications for communication access. The diversity of user preferences and needs, and the rapid development of new technologies limit the applicability of a single design for mobile applications for people with CCN. People with CCN should be involved in application design and development. A mobile application for communication access would support customer-business interactions as well as enable more accessible information sharing about disability needs and services.

  1. Contour Mapping

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In the early 1990s, the Ohio State University Center for Mapping, a NASA Center for the Commercial Development of Space (CCDS), developed a system for mobile mapping called the GPSVan. While driving, the users can map an area from the sophisticated mapping van equipped with satellite signal receivers, video cameras and computer systems for collecting and storing mapping data. George J. Igel and Company and the Ohio State University Center for Mapping advanced the technology for use in determining the contours of a construction site. The new system reduces the time required for mapping and staking, and can monitor the amount of soil moved.

  2. Development of an intervention delivered by mobile phone aimed at decreasing unintended pregnancy among young people in three lower middle income countries.

    PubMed

    McCarthy, Ona L; Wazwaz, Ola; Osorio Calderon, Veronica; Jado, Iman; Saibov, Salokhiddin; Stavridis, Amina; López Gallardo, Jhonny; Tokhirov, Ravshan; Adada, Samia; Huaynoca, Silvia; Makleff, Shelly; Vandewiele, Marieka; Standaert, Sarah; Free, Caroline

    2018-05-02

    Unintended pregnancies can result in poorer health outcomes for women, children and families. Young people in low and middle income countries are at particular risk of unintended pregnancies and could benefit from innovative contraceptive interventions. There is growing evidence that interventions delivered by mobile phone can be effective in improving a range of health behaviours. This paper describes the development of a contraceptive behavioural intervention delivered by mobile phone for young people in Tajikistan, Bolivia and Palestine, where unmet need for contraception is high among this group. Guided by Intervention Mapping, the following steps contributed to the development of the interventions: (1) needs assessment; (2) specifying behavioural change to result from the intervention; (3) selecting behaviour change methods to include in the intervention; (4) producing and refining the intervention content. The results of the needs assessment produced similar interventions across the countries. The interventions consist of short daily messages delivered over 4 months (delivered by text messaging in Palestine and mobile phone application instant messages in Bolivia and Tajikistan). The messages provide information about contraception, target attitudes that are barriers to contraceptive uptake and support young people in feeling that they can influence their reproductive health. The interventions each contain the same ten behaviour change methods, adapted for delivery by mobile phone. The development resulted in a well-specified, theory-based intervention, tailored to each country. It is feasible to develop an intervention delivered by mobile phone for young people in resource-limited settings.

  3. Scan Line Based Road Marking Extraction from Mobile LiDAR Point Clouds.

    PubMed

    Yan, Li; Liu, Hua; Tan, Junxiang; Li, Zan; Xie, Hong; Chen, Changjun

    2016-06-17

    Mobile Mapping Technology (MMT) is one of the most important 3D spatial data acquisition technologies. The state-of-the-art mobile mapping systems, equipped with laser scanners and named Mobile LiDAR Scanning (MLS) systems, have been widely used in a variety of areas, especially in road mapping and road inventory. With the commercialization of Advanced Driving Assistance Systems (ADASs) and self-driving technology, there will be a great demand for lane-level detailed 3D maps, and MLS is the most promising technology to generate such lane-level detailed 3D maps. Road markings and road edges are necessary information in creating such lane-level detailed 3D maps. This paper proposes a scan line based method to extract road markings from mobile LiDAR point clouds in three steps: (1) preprocessing; (2) road points extraction; (3) road markings extraction and refinement. In preprocessing step, the isolated LiDAR points in the air are removed from the LiDAR point clouds and the point clouds are organized into scan lines. In the road points extraction step, seed road points are first extracted by Height Difference (HD) between trajectory data and road surface, then full road points are extracted from the point clouds by moving least squares line fitting. In the road markings extraction and refinement step, the intensity values of road points in a scan line are first smoothed by a dynamic window median filter to suppress intensity noises, then road markings are extracted by Edge Detection and Edge Constraint (EDEC) method, and the Fake Road Marking Points (FRMPs) are eliminated from the detected road markings by segment and dimensionality feature-based refinement. The performance of the proposed method is evaluated by three data samples and the experiment results indicate that road points are well extracted from MLS data and road markings are well extracted from road points by the applied method. A quantitative study shows that the proposed method achieves an average completeness, correctness, and F-measure of 0.96, 0.93, and 0.94, respectively. The time complexity analysis shows that the scan line based road markings extraction method proposed in this paper provides a promising alternative for offline road markings extraction from MLS data.

  4. Scan Line Based Road Marking Extraction from Mobile LiDAR Point Clouds†

    PubMed Central

    Yan, Li; Liu, Hua; Tan, Junxiang; Li, Zan; Xie, Hong; Chen, Changjun

    2016-01-01

    Mobile Mapping Technology (MMT) is one of the most important 3D spatial data acquisition technologies. The state-of-the-art mobile mapping systems, equipped with laser scanners and named Mobile LiDAR Scanning (MLS) systems, have been widely used in a variety of areas, especially in road mapping and road inventory. With the commercialization of Advanced Driving Assistance Systems (ADASs) and self-driving technology, there will be a great demand for lane-level detailed 3D maps, and MLS is the most promising technology to generate such lane-level detailed 3D maps. Road markings and road edges are necessary information in creating such lane-level detailed 3D maps. This paper proposes a scan line based method to extract road markings from mobile LiDAR point clouds in three steps: (1) preprocessing; (2) road points extraction; (3) road markings extraction and refinement. In preprocessing step, the isolated LiDAR points in the air are removed from the LiDAR point clouds and the point clouds are organized into scan lines. In the road points extraction step, seed road points are first extracted by Height Difference (HD) between trajectory data and road surface, then full road points are extracted from the point clouds by moving least squares line fitting. In the road markings extraction and refinement step, the intensity values of road points in a scan line are first smoothed by a dynamic window median filter to suppress intensity noises, then road markings are extracted by Edge Detection and Edge Constraint (EDEC) method, and the Fake Road Marking Points (FRMPs) are eliminated from the detected road markings by segment and dimensionality feature-based refinement. The performance of the proposed method is evaluated by three data samples and the experiment results indicate that road points are well extracted from MLS data and road markings are well extracted from road points by the applied method. A quantitative study shows that the proposed method achieves an average completeness, correctness, and F-measure of 0.96, 0.93, and 0.94, respectively. The time complexity analysis shows that the scan line based road markings extraction method proposed in this paper provides a promising alternative for offline road markings extraction from MLS data. PMID:27322279

  5. Application of mobile gamma-ray spectrometry for soil mapping

    NASA Astrophysics Data System (ADS)

    Werban, Ulrike; Lein, Claudia; Pohle, Marco; Dietrich, Peter

    2017-04-01

    Gamma-ray measurements have a long tradition for geological surveys and deposit exploration using airborne and borehole logging systems. For these applications, the relationships between the measured physical parameter - the concentration of natural gamma emitters 40K, 238U and 232Th - and geological origin or sedimentary developments are well described. Thus, Gamma-ray spectrometry seems a useful tool for carrying out spatial mapping of physical parameters related to soil properties. The isotope concentration in soils depends on different soil parameters (e.g. geochemical composition, grain size fractions), which are a result of source rock properties and processes during soil geneses. There is a rising interest in the method for application in Digital Soil Mapping or as input data for environmental, ecological or hydrological modelling, e.g. as indicator for clay content. However, the gamma-ray measurement is influenced by endogenous factors and processes like soil moisture variation, erosion and deposition of material or cultivation. We will present results from a time series of car borne gamma-ray measurements to observe heterogeneity of soil on a floodplain area in Central Germany. The study area is characterised by high variations in grain size distribution and occurrence of flooding events. For the survey, we used a 4 l NaI(Tl) detector with GPS connection mounted on a sledge, which is towed across the field sites by a four-wheel-vehicle. The comparison of data from different dates shows similar structures with small variation between the data ranges and shape of structures. We will present our experiences concerning the application of gamma-ray measurements under variable field conditions and their impacts on data quality.

  6. Counter tunnel exploration, mapping, and localization with an unmanned ground vehicle

    NASA Astrophysics Data System (ADS)

    Larson, Jacoby; Okorn, Brian; Pastore, Tracy; Hooper, David; Edwards, Jim

    2014-06-01

    Covert, cross-border tunnels are a security vulnerability that enables people and contraband to illegally enter the United States. All of these tunnels to-date have been constructed for the purpose of drug smuggling, but they may also be used to support terrorist activity. Past robotic tunnel exploration efforts have had limited success in aiding law enforcement to explore and map the suspect cross-border tunnels. These efforts have made use of adapted explosive ordnance disposal (EOD) or pipe inspection robotic systems that are not ideally suited to the cross-border tunnel environment. The Counter Tunnel project was sponsored by the Office of Secretary of Defense (OSD) Joint Ground Robotics Enterprise (JGRE) to develop a prototype robotic system for counter-tunnel operations, focusing on exploration, mapping, and characterization of tunnels. The purpose of this system is to provide a safe and effective solution for three-dimensional (3D) localization, mapping, and characterization of a tunnel environment. The system is composed of the robotic mobility platform, the mapping sensor payload, and the delivery apparatus. The system is able to deploy and retrieve the robotic mobility platform through a 20-cm-diameter borehole into the tunnel. This requirement posed many challenges in order to design and package the sensor and robotic system to fit through this narrow opening and be able to perform the mission. This paper provides a short description of a few aspects of the Counter Tunnel system such as mobility, perception, and localization, which were developed to meet the unique challenges required to access, explore, and map tunnel environments.

  7. Passive mapping and intermittent exploration for mobile robots

    NASA Technical Reports Server (NTRS)

    Engleson, Sean P.

    1994-01-01

    An adaptive state space architecture is combined with diktiometric representation to provide the framework for designing a robot mapping system with flexible navigation planning tasks. This involves indexing waypoints described as expectations, geometric indexing, and perceptual indexing. Matching and updating the robot's projected position and sensory inputs with indexing waypoints involves matchers, dynamic priorities, transients, and waypoint restructuring. The robot's map learning can be opganized around the principles of passive mapping.

  8. Colour gamut mapping between small and large colour gamuts: Part I. gamut compression.

    PubMed

    Xu, Lihao; Zhao, Baiyue; Luo, M R

    2018-04-30

    This paper describes an investigation into the performance of different gamut compression algorithms (GCAs) in different uniform colour spaces (UCSs) between small and large colour gamuts. Gamut mapping is a key component in a colour management system and has drawn much attention in the last two decades. Two new GCAs, i.e. vividness-preserved (VP) and depth-preserved (DP), based on the concepts of 'vividness' and 'depth' are proposed and compared with the other commonly used GCAs with the exception of spatial GCAs since the goal of this study was to develop an algorithm that could be implemented in real time for mobile phone applications. In addition, UCSs including CIELAB, CAM02-UCS, and a newly developed UCS, J z a z b z , were tested to verify how they affect the performance of the GCAs. A psychophysical experiment was conducted and the results showed that one of the newly proposed GCAs, VP, gave the best performance among different GCAs and the J z a z b z is a promising UCS for gamut mapping.

  9. Utilization of Google enterprise tools to georeference survey data among hard-to-reach groups: strategic application in international settings.

    PubMed

    Beletsky, Leo; Arredondo, Jaime; Werb, Dan; Vera, Alicia; Abramovitz, Daniela; Amon, Joseph J; Brouwer, Kimberly C; Strathdee, Steffanie A; Gaines, Tommi L

    2016-07-28

    As geospatial data have become increasingly integral to health and human rights research, their collection using formal address designations or paper maps has been complicated by numerous factors, including poor cartographic literacy, nomenclature imprecision, and human error. As part of a longitudinal study of people who inject drugs in Tijuana, Mexico, respondents were prompted to georeference specific experiences. At baseline, only about one third of the 737 participants were native to Tijuana, underscoring prevalence of migration/deportation experience. Areas frequented typically represented locations with no street address (e.g. informal encampments). Through web-based cartographic technology and participatory mapping, this study was able to overcome the use of vernacular names and difficulties mapping liminal spaces in generating georeferenced data points that were subsequently analyzed in other research. Integrating low-threshold virtual navigation as part of data collection can enhance investigations of mobile populations, informal settlements, and other locations in research into structural production of health at low- or no cost. However, further research into user experience is warranted.

  10. Stay in Touch with City Hall - City of New York

    Science.gov Websites

    Signs and LocatorAbout NYC311NYC311 Mobile AppNYC311 TwitterNYC311 Facebook Directory of City Agencies Contact NYC Government City Employees Notify NYC CityStore Stay Connected NYC Mobile Apps Maps Resident

  11. GIS Story Maps : A Tool to Empower and Engage Stakeholders in Planning Sustainable Places

    DOT National Transportation Integrated Search

    2016-10-01

    Public engagement continues to be transformed by the explosion of new digital technologies/tools, software platforms, social media networks, mobile devices, and mobile apps. Recent changes in geospatial technology offer new opportunities for use in p...

  12. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil

    PubMed Central

    Milani, Narges; Hettiarachchi, Ganga M.; Kirby, Jason K.; Beak, Douglas G.; Stacey, Samuel P.; McLaughlin, Mike J.

    2015-01-01

    Zinc oxide (ZnO) nanoparticles may provide a more soluble and plant available source of Zn in Zn fertilizers due to their greater reactivity compared to equivalent micron- or millimetre-sized (bulk) particles. However, the effect of soil on solubility, spatial distribution and speciation of ZnO nanoparticles has not yet been investigated. In this study, we examined the diffusion and solid phase speciation of Zn in an alkaline calcareous soil following application of nanoparticulate and bulk ZnO coated fertilizer products (monoammonium phosphate (MAP) and urea) using laboratory-based x-ray techniques and synchrotron-based μ-x-ray fluorescence (μ–XRF) mapping and absorption fine structure spectroscopy (μ–XAFS). Mapping of the soil-fertilizer reaction zones revealed that most of the applied Zn for all treatments remained on the coated fertilizer granule or close to the point of application after five weeks of incubation in soil. Zinc precipitated mainly as scholzite (CaZn2(PO4)2.2H2O) and zinc ammonium phosphate (Zn(NH4)PO4) species at the surface of MAP granules. These reactions reduced dissolution and diffusion of Zn from the MAP granules. Although Zn remained as zincite (ZnO) at the surface of urea granules, limited diffusion of Zn from ZnO-coated urea granules was also observed for both bulk and nanoparticulate ZnO treatments. This might be due to either the high pH of urea granules, which reduced solubility of Zn, or aggregation (due to high ionic strength) of released ZnO nanoparticles around the granule/point of application. The relative proportion of Zn(OH)2 and ZnCO3 species increased for all Zn treatments with increasing distance from coated MAP and urea granules in the calcareous soil. When coated on macronutrient fertilizers, Zn from ZnO nanoparticles (without surface modifiers) was not more mobile or diffusible compared to bulk forms of ZnO. The results also suggest that risk associated with the presence of ZnO NPs in calcareous soils would be the same as bulk sources of ZnO. PMID:25965385

  13. An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective.

    PubMed

    Faigl, Jan

    2016-01-01

    In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to "see" the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning.

  14. An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective

    PubMed Central

    Faigl, Jan

    2016-01-01

    In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to “see” the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning. PMID:27340395

  15. Digital field mapping for stimulating Secondary School students in the recognition of geological features and landforms

    NASA Astrophysics Data System (ADS)

    Giardino, Marco; Magagna, Alessandra; Ferrero, Elena; Perrone, Gianluigi

    2015-04-01

    Digital field mapping has certainly provided geoscientists with the opportunity to map and gather data in the field directly using digital tools and software rather than using paper maps, notebooks and analogue devices and then subsequently transferring the data to a digital format for subsequent analysis. But, the same opportunity has to be recognized for Geoscience education, as well as for stimulating and helping students in the recognition of landforms and interpretation of the geological and geomorphological components of a landscape. More, an early exposure to mapping during school and prior to university can optimise the ability to "read" and identify uncertainty in 3d models. During 2014, about 200 Secondary School students (aged 12-15) of the Piedmont region (NW Italy) participated in a research program involving the use of mobile devices (smartphone and tablet) in the field. Students, divided in groups, used the application Trimble Outdoors Navigators for tracking a geological trail in the Sangone Valley and for taking georeferenced pictures and notes. Back to school, students downloaded the digital data in a .kml file for the visualization on Google Earth. This allowed them: to compare the hand tracked trail on a paper map with the digital trail, and to discuss about the functioning and the precision of the tools; to overlap a digital/semitransparent version of the 2D paper map (a Regional Technical Map) used during the field trip on the 2.5D landscape of Google Earth, as to help them in the interpretation of conventional symbols such as contour lines; to perceive the landforms seen during the field trip as a part of a more complex Pleistocene glacial landscape; to understand the classical and innovative contributions from different geoscientific disciplines to the generation of a 3D structural geological model of the Rivoli-Avigliana Morainic Amphitheatre. In 2013 and 2014, some other pilot projects have been carried out in different areas of the Piedmont region, and in the Sesia Val Grande Geopark, for testing the utility of digital field mapping in Geoscience education. Feedback from students are positive: they are stimulated and involved by the use of ICT for learning Geoscience, and they voluntary choose to work with their personal mobile device (more than 90% of them own a smartphone); they are interested in knowing the features of GPS, and of software for the visualization of satellite and aerial images, but they recognize the importance of integrating and comparing traditional and innovative methods in the field.

  16. Identification and Evaluation of Submerged Anomalies, Mobile Harbor, Alabama.

    DTIC Science & Technology

    1984-10-01

    Bay Waters , 1864-1865 APPENDIX B: Description of Maps in National ill Archives Collection V LIST OF FIGURES Figure Page cover Torpedo Raft in Mobile Bay...Anomaly D-E 51 13 Magnetometer Chart, Anomaly F 53 14 Sketch of Steel Wreckage Found at Anomaly F 54 15 Approaches to Mobile City by Water (Merrill...Osage (1863-65) 84 30 CSS Albemarle, Prototype for the Huntsville 86 31 Magnolia, CSA-Utilized Vessel 109 32 Approaches to Mobile City by Water (1864

  17. Alabama Public Scoping Meeting | NOAA Gulf Spill Restoration

    Science.gov Websites

    : Mobile, AL Start Time: 6:30 p.m. Central Time Description: As part of the public scoping process, the co open at 6:30 p.m. and the meeting will begin at 7:30 p.m. Location: The Battle House Renaissance Mobile Hotel & Spa 26 North Royal Street Mobile, AL 36602 (google map of location) Gulf Spill Restoration

  18. Mobile robot trajectory tracking using noisy RSS measurements: an RFID approach.

    PubMed

    Miah, M Suruz; Gueaieb, Wail

    2014-03-01

    Most RF beacons-based mobile robot navigation techniques rely on approximating line-of-sight (LOS) distances between the beacons and the robot. This is mostly performed using the robot's received signal strength (RSS) measurements from the beacons. However, accurate mapping between the RSS measurements and the LOS distance is almost impossible to achieve in reverberant environments. This paper presents a partially-observed feedback controller for a wheeled mobile robot where the feedback signal is in the form of noisy RSS measurements emitted from radio frequency identification (RFID) tags. The proposed controller requires neither an accurate mapping between the LOS distance and the RSS measurements, nor the linearization of the robot model. The controller performance is demonstrated through numerical simulations and real-time experiments. ©2013 Published by ISA. All rights reserved.

  19. The Mobile Aircraft Maintenance Office Concept from a Wide Area Perspective

    DTIC Science & Technology

    2003-03-01

    significant improvements in wireless network data rates, and enhanced mobile application platforms offers an opportunity to effectively integrate m...hardware, and mobile application platforms housing the necessary middleware software comprise the mobile landscape. The m-business network...devices. Lastly, an investigation into mobile application platforms will reveal the middleware functionality required to successfully extend suitable e

  20. Dimensions for hearing-impaired mobile application usability model

    NASA Astrophysics Data System (ADS)

    Nathan, Shelena Soosay; Hussain, Azham; Hashim, Nor Laily; Omar, Mohd Adan

    2017-10-01

    This paper discuss on the dimensions that has been derived for the hearing-impaired mobile applications usability model. General usability model consist of general dimension for evaluating mobile application however requirements for the hearing-impaired are overlooked and often scanted. This led towards mobile application developed for the hearing-impaired are left unused. It is also apparent that these usability models do not consider accessibility dimensions according to the requirement of the special users. This complicates the work of usability practitioners as well as academician that practices research usability when application are developed for the specific user needs. To overcome this issue, dimension chosen for the hearing-impaired are ensured to be align with the real need of the hearing-impaired mobile application. Besides literature studies, requirements for the hearing-impaired mobile application have been identified through interview conducted with hearing-impaired mobile application users that were recorded as video outputs and analyzed using Nvivo. Finally total of 6 out of 15 dimensions gathered are chosen for the proposed model and presented.

  1. Virtual and remote robotic laboratory using EJS, MATLAB and LabVIEW.

    PubMed

    Chaos, Dictino; Chacón, Jesús; Lopez-Orozco, Jose Antonio; Dormido, Sebastián

    2013-02-21

    This paper describes the design and implementation of a virtual and remote laboratory based on Easy Java Simulations (EJS) and LabVIEW. The main application of this laboratory is to improve the study of sensors in Mobile Robotics, dealing with the problems that arise on the real world experiments. This laboratory allows the user to work from their homes, tele-operating a real robot that takes measurements from its sensors in order to obtain a map of its environment. In addition, the application allows interacting with a robot simulation (virtual laboratory) or with a real robot (remote laboratory), with the same simple and intuitive graphical user interface in EJS. Thus, students can develop signal processing and control algorithms for the robot in simulation and then deploy them on the real robot for testing purposes. Practical examples of application of the laboratory on the inter-University Master of Systems Engineering and Automatic Control are presented.

  2. Virtual and Remote Robotic Laboratory Using EJS, MATLAB and Lab VIEW

    PubMed Central

    Chaos, Dictino; Chacón, Jesús; Lopez-Orozco, Jose Antonio; Dormido, Sebastián

    2013-01-01

    This paper describes the design and implementation of a virtual and remote laboratory based on Easy Java Simulations (EJS) and LabVIEW. The main application of this laboratory is to improve the study of sensors in Mobile Robotics, dealing with the problems that arise on the real world experiments. This laboratory allows the user to work from their homes, tele-operating a real robot that takes measurements from its sensors in order to obtain a map of its environment. In addition, the application allows interacting with a robot simulation (virtual laboratory) or with a real robot (remote laboratory), with the same simple and intuitive graphical user interface in EJS. Thus, students can develop signal processing and control algorithms for the robot in simulation and then deploy them on the real robot for testing purposes. Practical examples of application of the laboratory on the inter-University Master of Systems Engineering and Automatic Control are presented. PMID:23429578

  3. Arctic-Asian Mobile Belt - Global Structure in the North, Central, and East Asia

    NASA Astrophysics Data System (ADS)

    Shokalsky, Sergey; Petrov, Oleg; Pospelov, Igor; Kashubin, Sergey; Sobolev, Nikolay; Petrov, Evgeny

    2014-05-01

    Over the last decade under the international project of five countries, the geological surveys of Russia, China, Kazakhstan, Mongolia, and the Republic of Korea, with the participation of national academies of sciences in these countries compiled a set of digital maps at 1:2.5 M scale. It includes geological, tectonic, metallogenic maps and map of energy resources with databases for North, Central, and East Asia, area of more than 30 million km2. Map compilation was supervised by the Subcommission for Northern Eurasia and Subcommission for Tectonic Maps of the Commission for the Geological Map of the World under the auspices of UNESCO (CGMW). The set of maps was displayed at the 33rd IGC (Oslo, 2008) and 34th IGC (Brisbane, 2012). One of the largest accretion collages of orogenic belts of different ages on the planet (from the Neoproterozoic to Early Mesozoic) is clearly shown in the tectonic map compiled under the joint project. Extended polychronous mobile belt is bounded in the west by the East European Craton, in the east, by the Siberian Craton, in the south, by a chain of Gondwana cratonic blocks - North China, Tarim, Tajik. In the north it can be traced as a broad band within the Circumpolar Region, where it is limited by the North American Craton. The central part of the accretionary belt is hidden under the Meso-Cenozoic sediments of Western Siberia. Analysis of vast geological material shows that the Arctic-Asian mobile belt was formed on place of an extensive paleo-ocean, which closed with a successive rejuvenation of suture ophiolite zones from the marginal to axial zone and along strike to the north and east of the South Siberian segment towards Paleopacific. Arctic-Asian mobile belt is characterized by a complex combination of accretionary and riftogenic tectonic-magmatic processes. At its early stages, accretionary tectonics with a wide development of volcanic belts dominated; at the late ones (in the Late Paleozoic, Mesozoic, and Cenozoic) stretching, rifting and postrift subsidence were widely shown with the formation of oil and gas sedimentary basins with a thick sedimentary cover (West Siberian, Turan, Caspian, Middle Amur, Songliao), large igneous provinces (South Urals, West and East Siberian, Central Kazakhstan, Trans-Baikal, etc.) and rift systems (Mongol-Transbaikal, Baikal, etc.). The aim of further research under the existing joint projects should be identifying and tracing the boundaries of the Arctic-Asian mobile belt, study and correlation of geological complexes-indicators of major tectonic events, reconstruction of the history of the accretionary belt with superimposed oil and gas bearing sedimentary basins as a tectonic structure of the global level.

  4. Enabling Mobile Air Quality App Development with an AirNow API

    NASA Astrophysics Data System (ADS)

    Dye, T.; White, J. E.; Ludewig, S. A.; Dickerson, P.; Healy, A. N.; West, J. W.; Prince, L. A.

    2013-12-01

    The U.S. Environmental Protection Agency's (EPA) AirNow program works with over 130 participating state, local, and federal air quality agencies to obtain, quality control, and store real-time air quality observations and forecasts. From these data, the AirNow system generates thousands of maps and products each hour. Each day, information from AirNow is published online and in other media to assist the public in making health-based decisions related to air quality. However, an increasing number of people use mobile devices as their primary tool for obtaining information, and AirNow has responded to this trend by publishing an easy-to-use Web API that is useful for mobile app developers. This presentation will describe the various features of the AirNow application programming interface (API), including Representational State Transfer (REST)-type web services, file outputs, and RSS feeds. In addition, a web portal for the AirNow API will be shown, including documentation on use of the system, a query tool for configuring and running web services, and general information about the air quality data and forecasts available. Data published via the AirNow API includes corresponding Air Quality Index (AQI) levels for each pollutant. We will highlight examples of mobile apps that are using the AirNow API to provide location-based, real-time air quality information. Examples will include mobile apps developed for Minnesota ('Minnesota Air') and Washington, D.C. ('Clean Air Partners Air Quality'), and an app developed by EPA ('EPA AirNow').

  5. Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: Two-dimensional liquid chromatography-mass spectrometry vs. liquid chromatography-trapped-ion-mobility-mass spectrometry.

    PubMed

    Baglai, Anna; Gargano, Andrea F G; Jordens, Jan; Mengerink, Ynze; Honing, Maarten; van der Wal, Sjoerd; Schoenmakers, Peter J

    2017-12-29

    Recent advancements in separation science have resulted in the commercialization of multidimensional separation systems that provide higher peak capacities and, hence, enable a more-detailed characterization of complex mixtures. In particular, two powerful analytical tools are increasingly used by analytical scientists, namely online comprehensive two-dimensional liquid chromatography (LC×LC, having a second-dimension separation in the liquid phase) and liquid chromatography-ion mobility-spectrometry (LC-IMS, second dimension separation in the gas phase). The goal of the current study was a general assessment of the liquid-chromatography-trapped-ion-mobility-mass spectrometry (LC-TIMS-MS) and comprehensive two-dimensional liquid chromatography-mass spectrometry (LC×LC-MS) platforms for untargeted lipid mapping in human plasma. For the first time trapped-ion-mobility spectrometry (TIMS) was employed for the separation of the major lipid classes and ion-mobility-derived collision-cross-section values were determined for a number of lipid standards. The general effects of a number of influencing parameters have been inspected and possible directions for improvements are discussed. We aimed to provide a general indication and practical guidelines for the analyst to choose an efficient multidimensional separation platform according to the particular requirements of the application. Analysis time, orthogonality, peak capacity, and an indicative measure for the resolving power are discussed as main characteristics for multidimensional separation systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Technology and tuberculosis control: the OUT-TB Web experience.

    PubMed

    Guthrie, Jennifer L; Alexander, David C; Marchand-Austin, Alex; Lam, Karen; Whelan, Michael; Lee, Brenda; Furness, Colin; Rea, Elizabeth; Stuart, Rebecca; Lechner, Julia; Varia, Monali; McLean, Jennifer; Jamieson, Frances B

    2017-04-01

    Develop a tool to disseminate integrated laboratory, clinical, and demographic case data necessary for improved contact tracing and outbreak detection of tuberculosis (TB). In 2007, the Public Health Ontario Laboratories implemented a universal genotyping program to monitor the spread of TB strains within Ontario. Ontario Universal Typing of TB (OUT-TB) Web utilizes geographic information system (GIS) technology with a relational database platform, allowing TB control staff to visualize genotyping matches and microbiological data within the context of relevant epidemiological and demographic data. OUT-TB Web is currently available to the 8 health units responsible for >85% of Ontario's TB cases and is a valuable tool for TB case investigation. Users identified key features to implement for application enhancements, including an e-mail alert function, customizable heat maps for visualizing TB and drug-resistant cases, socioeconomic map layers, a dashboard providing TB surveillance metrics, and a feature for animating the geographic spread of strains over time. OUT-TB Web has proven to be an award-winning application and a useful tool. Developed and enhanced using regular user feedback, future versions will include additional data sources, enhanced map and line-list filter capabilities, and development of a mobile app. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  7. RadMAP: The Radiological Multi-sensor Analysis Platform

    NASA Astrophysics Data System (ADS)

    Bandstra, Mark S.; Aucott, Timothy J.; Brubaker, Erik; Chivers, Daniel H.; Cooper, Reynold J.; Curtis, Joseph C.; Davis, John R.; Joshi, Tenzing H.; Kua, John; Meyer, Ross; Negut, Victor; Quinlan, Michael; Quiter, Brian J.; Srinivasan, Shreyas; Zakhor, Avideh; Zhang, Richard; Vetter, Kai

    2016-12-01

    The variability of gamma-ray and neutron background during the operation of a mobile detector system greatly limits the ability of the system to detect weak radiological and nuclear threats. The natural radiation background measured by a mobile detector system is the result of many factors, including the radioactivity of nearby materials, the geometric configuration of those materials and the system, the presence of absorbing materials, and atmospheric conditions. Background variations tend to be highly non-Poissonian, making it difficult to set robust detection thresholds using knowledge of the mean background rate alone. The Radiological Multi-sensor Analysis Platform (RadMAP) system is designed to allow the systematic study of natural radiological background variations and to serve as a development platform for emerging concepts in mobile radiation detection and imaging. To do this, RadMAP has been used to acquire extensive, systematic background measurements and correlated contextual data that can be used to test algorithms and detector modalities at low false alarm rates. By combining gamma-ray and neutron detector systems with data from contextual sensors, the system enables the fusion of data from multiple sensors into novel data products. The data are curated in a common format that allows for rapid querying across all sensors, creating detailed multi-sensor datasets that are used to study correlations between radiological and contextual data, and develop and test novel techniques in mobile detection and imaging. In this paper we will describe the instruments that comprise the RadMAP system, the effort to curate and provide access to multi-sensor data, and some initial results on the fusion of contextual and radiological data.

  8. Innovative Ways of Visualising Meta Data in 4D Using Open Source Libaries

    NASA Astrophysics Data System (ADS)

    Balhar, Jakub; Valach, Pavel; Veselka, Jonas; Voumard, Yann

    2016-08-01

    There are more and more data being measured by different Earth Observation satellites around the world. Ever increasing amount of these data present new challenges and opportunities for their visualization.In this paper we propose how to visualize the amount, distribution and the structure of the data in a transparent way, which will take into account time-dimensions as well. Our approach allows us to get a global overview as well detailed regional information about distribution of the products from EO observation missions.We focus on introducing our mobile-friendly and easy- to-use web mapping application for 4D visualization of the data. Apart from that we also present the Java application which can read and process the data from various data sources.

  9. Smoking Cessation: Services and Applications for Mobile Devices.

    PubMed

    Kefaliakos, Antonios; Pliakos, Ioannis; Chardalias, Kostis; Charalampidou, Martha; Diomidous, Marianna

    2016-01-01

    The aim of this review is to present mobile health applications which help individuals to change their smoking habit. An online search on scientific databases and mobile application stores was conducted to collect information about m-Health and the smoking cessation. 12 papers found discussing about mobile applications and solutions for quit smoking referred to 4 different technological approaches. Based on the research results, mobile devices and their applications constitute an excellent mean that can help smokers by providing counseling and give them the necessary motivation to smoking cessation.

  10. A virtual tour of geological heritage: Valourising geodiversity using Google Earth and QR code

    NASA Astrophysics Data System (ADS)

    Martínez-Graña, A. M.; Goy, J. L.; Cimarra, C. A.

    2013-12-01

    When making land-use plans, it is necessary to inventory and catalogue the geological heritage and geodiversity of a site to establish an apolitical conservation protection plan to meet the educational and social needs of society. New technologies make it possible to create virtual databases using virtual globes - e.g., Google Earth - and other personal-use geomatics applications (smartphones, tablets, PDAs) for accessing geological heritage information in “real time” for scientific, educational, and cultural purposes via a virtual geological itinerary. Seventeen mapped and georeferenced geosites have been created in Keyhole Markup Language for use in map layers used in geological itinerary stops for different applications. A virtual tour has been developed for Las Quilamas Natural Park, which is located in the Spanish Central System, using geological layers and topographic and digital terrain models that can be overlaid in a 3D model. The Google Earth application was used to import the geosite placemarks. For each geosite, a tab has been developed that shows a description of the geology with photographs and diagrams and that evaluates the scientific, educational, and tourism quality. Augmented reality allows the user to access these georeferenced thematic layers and overlay data, images, and graphics in real time on their mobile devices. These virtual tours can be incorporated into subject guides designed by public. Seven educational and interpretive panels describing some of the geosites were designed and tagged with a QR code that could be printed at each stop or in the printed itinerary. These QR codes can be scanned with the camera found on most mobile devices, and video virtual tours can be viewed on these devices. The virtual tour of the geological heritage can be used to show tourists the geological history of the Las Quilamas Natural Park using new geomatics technologies (virtual globes, augmented reality, and QR codes).

  11. --No Title--

    Science.gov Websites

    ; Home Fort Belvoir Community Hospital Fort Belvoir Community Hospital Launches Mobile Application for Patients Mobile Application Launches Fort Belvoir Community Hospital Launches Mobile Application for

  12. 77 FR 46067 - Multistakeholder Meetings To Develop Consumer Data Privacy Code of Conduct Concerning Mobile...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... Meetings To Develop Consumer Data Privacy Code of Conduct Concerning Mobile Application Transparency AGENCY... convene meetings of a privacy multistakeholder process concerning mobile application transparency. DATES... of NTIA- convened multistakeholder discussions concerning mobile application transparency. The first...

  13. 78 FR 19461 - Multistakeholder Meetings To Develop Consumer Data Privacy Code of Conduct Concerning Mobile...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ... Meetings To Develop Consumer Data Privacy Code of Conduct Concerning Mobile Application Transparency AGENCY... convene meetings of a privacy multistakeholder process concerning mobile application transparency. This... of a series of NTIA-convened multistakeholder discussions concerning mobile application transparency...

  14. Design and development of the mobile game based on the J2ME technology

    NASA Astrophysics Data System (ADS)

    He, Junhua

    2011-12-01

    With the continuous improvement of mobile performance, mobile entertainment applications market trend has been increasingly clear, mobile entertainment applications will be after the PC entertainment applications is another important business growth. Through the full analysis of the current mobile entertainment applications market demand and trends, the author has accumulated a lot of theoretical knowledge and practical experience. Rational, using of some new technology for a mobile entertainment games design, and described the development of key technologies required for mobile game an analysis and design of the game, and to achieve a complete game development. Light of the specific mobile game project - "Battle City", detailed the development of a mobile game based on the J2ME platform, the basic steps and the various key elements, focusing on how to use object-oriented thinking on the role of mobile phones in the abstract and Game Animation package, the source code with specific instructions.

  15. Design and development of the mobile game based on the J2ME technology

    NASA Astrophysics Data System (ADS)

    He, JunHua

    2012-01-01

    With the continuous improvement of mobile performance, mobile entertainment applications market trend has been increasingly clear, mobile entertainment applications will be after the PC entertainment applications is another important business growth. Through the full analysis of the current mobile entertainment applications market demand and trends, the author has accumulated a lot of theoretical knowledge and practical experience. Rational, using of some new technology for a mobile entertainment games design, and described the development of key technologies required for mobile game an analysis and design of the game, and to achieve a complete game development. Light of the specific mobile game project - "Battle City", detailed the development of a mobile game based on the J2ME platform, the basic steps and the various key elements, focusing on how to use object-oriented thinking on the role of mobile phones in the abstract and Game Animation package, the source code with specific instructions.

  16. Using mobile phones as acoustic sensors for high-throughput mosquito surveillance

    PubMed Central

    Mukundarajan, Haripriya; Hol, Felix Jan Hein; Castillo, Erica Araceli; Newby, Cooper

    2017-01-01

    The direct monitoring of mosquito populations in field settings is a crucial input for shaping appropriate and timely control measures for mosquito-borne diseases. Here, we demonstrate that commercially available mobile phones are a powerful tool for acoustically mapping mosquito species distributions worldwide. We show that even low-cost mobile phones with very basic functionality are capable of sensitively acquiring acoustic data on species-specific mosquito wingbeat sounds, while simultaneously recording the time and location of the human-mosquito encounter. We survey a wide range of medically important mosquito species, to quantitatively demonstrate how acoustic recordings supported by spatio-temporal metadata enable rapid, non-invasive species identification. As proof-of-concept, we carry out field demonstrations where minimally-trained users map local mosquitoes using their personal phones. Thus, we establish a new paradigm for mosquito surveillance that takes advantage of the existing global mobile network infrastructure, to enable continuous and large-scale data acquisition in resource-constrained areas. PMID:29087296

  17. Using mobile phones as acoustic sensors for high-throughput mosquito surveillance.

    PubMed

    Mukundarajan, Haripriya; Hol, Felix Jan Hein; Castillo, Erica Araceli; Newby, Cooper; Prakash, Manu

    2017-10-31

    The direct monitoring of mosquito populations in field settings is a crucial input for shaping appropriate and timely control measures for mosquito-borne diseases. Here, we demonstrate that commercially available mobile phones are a powerful tool for acoustically mapping mosquito species distributions worldwide. We show that even low-cost mobile phones with very basic functionality are capable of sensitively acquiring acoustic data on species-specific mosquito wingbeat sounds, while simultaneously recording the time and location of the human-mosquito encounter. We survey a wide range of medically important mosquito species, to quantitatively demonstrate how acoustic recordings supported by spatio-temporal metadata enable rapid, non-invasive species identification. As proof-of-concept, we carry out field demonstrations where minimally-trained users map local mosquitoes using their personal phones. Thus, we establish a new paradigm for mosquito surveillance that takes advantage of the existing global mobile network infrastructure, to enable continuous and large-scale data acquisition in resource-constrained areas.

  18. Localization and Mapping Using Only a Rotating FMCW Radar Sensor

    PubMed Central

    Vivet, Damien; Checchin, Paul; Chapuis, Roland

    2013-01-01

    Rotating radar sensors are perception systems rarely used in mobile robotics. This paper is concerned with the use of a mobile ground-based panoramic radar sensor which is able to deliver both distance and velocity of multiple targets in its surrounding. The consequence of using such a sensor in high speed robotics is the appearance of both geometric and Doppler velocity distortions in the collected data. These effects are, in the majority of studies, ignored or considered as noise and then corrected based on proprioceptive sensors or localization systems. Our purpose is to study and use data distortion and Doppler effect as sources of information in order to estimate the vehicle's displacement. The linear and angular velocities of the mobile robot are estimated by analyzing the distortion of the measurements provided by the panoramic Frequency Modulated Continuous Wave (FMCW) radar, called IMPALA. Without the use of any proprioceptive sensor, these estimates are then used to build the trajectory of the vehicle and the radar map of outdoor environments. In this paper, radar-only localization and mapping results are presented for a ground vehicle moving at high speed. PMID:23567523

  19. Localization and mapping using only a rotating FMCW radar sensor.

    PubMed

    Vivet, Damien; Checchin, Paul; Chapuis, Roland

    2013-04-08

    Rotating radar sensors are perception systems rarely used in mobile robotics. This paper is concerned with the use of a mobile ground-based panoramic radar sensor which is able to deliver both distance and velocity of multiple targets in its surrounding. The consequence of using such a sensor in high speed robotics is the appearance of both geometric and Doppler velocity distortions in the collected data. These effects are, in the majority of studies, ignored or considered as noise and then corrected based on proprioceptive sensors or localization systems. Our purpose is to study and use data distortion and Doppler effect as sources of information in order to estimate the vehicle's displacement. The linear and angular velocities of the mobile robot are estimated by analyzing the distortion of the measurements provided by the panoramic Frequency Modulated Continuous Wave (FMCW) radar, called IMPALA. Without the use of any proprioceptive sensor, these estimates are then used to build the trajectory of the vehicle and the radar map of outdoor environments. In this paper, radar-only localization and mapping results are presented for a ground vehicle moving at high speed.

  20. Trends in Mobile Application Development

    NASA Astrophysics Data System (ADS)

    Holzer, Adrian; Ondrus, Jan

    Major software companies, such as Apple and Google, are disturbing the relatively safe and established actors of the mobile application business. These newcomers have caused significant structural changes by imposing and enforcing their own rules for the future of mobile application development. The implications of these changes do not only concern the mobile network operators and mobile phone manufacturers. This changed environment also brings additional opportunities and constraints for current mobile application developers. Therefore, developers need to assess what their options are and how they can take advantages of these current trends. In this paper, we take a developer’s perspective in order to explore how the structural changes will influence the mobile application development markets. Moreover, we discuss what aspects developers need to take into account in order to position themselves within the current trends.

  1. By the People, for the People: the Crowdsourcing of "STREETBUMP": AN Automatic Pothole Mapping App

    NASA Astrophysics Data System (ADS)

    Carrera, F.; Guerin, S.; Thorp, J. B.

    2013-05-01

    This paper traces the genesis and development of StreetBump, a smartphone application to map the location of potholes in Boston, Massachusetts. StreetBump belongs to a special category of "subliminal" crowdsourcing mobile applications that turn humans into sensors. Once started, it automatically collects road condition information without any human intervention, using the accelerometers and GPS inside smartphones. The StreetBump app evolved from a hardware device designed and built by WPI's City Lab starting in 2003, which was originally intended to measure and map boat wakes in the city of Venice, Italy (Chiu, 2004). A second version of the custom hardware with onboard GPS and accelerometers was adapted to use in Boston, Massachusetts, to map road damage (potholes) in 2006 (Angelini, 2006). In 2009, Prof. Carrera proposed to the newly created office of New Urban Mechanics in the City of Boston to migrate the concept to Smartphones, based on the Android platform. The first prototype of the mobile app, called StreetBump, was released in 2010 by the authors (Harmon, 2010). In 2011, the app provided the basis for a worldwide Innocentive competition to develop the best postprocessing algorithms to identify the real potholes vs. other phone bumps (Moskowitz, 2011). Starting in 2012, the City of Boston has begun using a subsequent version of the app to operationally manage road repairs based on the data collected by StreetBump. The novelty of this app is not purely technological, but lies also in the top-to-bottom crowdsourcing of all its components. The app was designed to rely on the crowd to confirm the presence of damage though repeat hits (or lack thereof) as more users travel the same roads over time. Moreover, the non-trivial post-processing of the StreetBump data was itself the subject of a crowdsourced competition through an Innocentive challenge for the best algorithm. The release of the StreetBump code as open-source allowed the development of the final version of the app now used on a daily basis by the Department of Public Works in Boston, thus making it perhaps the first example of an app that was crowdsourced "from soup to nuts".

  2. Implementation and evaluation of LMS mobile application: scele mobile based on user-centered design

    NASA Astrophysics Data System (ADS)

    Banimahendra, R. D.; Santoso, H. B.

    2018-03-01

    The development of mobile technology is now increasing rapidly, demanding all activities including learning should be done on mobile devices. It shows that the implementation of mobile application as a learning medium needs to be done. This study describes the process of developing and evaluating the Moodle-based mobile Learning Management System (LMS) application called Student Centered e-Learning Environment (SCeLE). This study discusses the process of defining features, implementing features into the application, and evaluating the application. We define the features using user research and literature study, then we implement the application with user-centered design basis, at the last phase we evaluated the application using usability testing and system usability score (SUS). The purpose of this study is to determine the extent to which this application can help the users doing their tasks and provide recommendation for the next research and development.

  3. Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy.

    PubMed

    Gröner, Nadine; Capoulade, Jérémie; Cremer, Christoph; Wachsmuth, Malte

    2010-09-27

    The intracellular mobility of biomolecules is determined by transport and diffusion as well as molecular interactions and is crucial for many processes in living cells. Methods of fluorescence microscopy like confocal laser scanning microscopy (CLSM) can be used to characterize the intracellular distribution of fluorescently labeled biomolecules. Fluorescence correlation spectroscopy (FCS) is used to describe diffusion, transport and photo-physical processes quantitatively. As an alternative to FCS, spatially resolved measurements of mobilities can be implemented using a CLSM by utilizing the spatio-temporal information inscribed into the image by the scan process, referred to as raster image correlation spectroscopy (RICS). Here we present and discuss an extended approach, multiple scan speed image correlation spectroscopy (msICS), which benefits from the advantages of RICS, i.e. the use of widely available instrumentation and the extraction of spatially resolved mobility information, without the need of a priori knowledge of diffusion properties. In addition, msICS covers a broad dynamic range, generates correlation data comparable to FCS measurements, and allows to derive two-dimensional maps of diffusion coefficients. We show the applicability of msICS to fluorophores in solution and to free EGFP in living cells.

  4. 77 FR 75409 - Multistakeholder Meetings To Develop Consumer Data Privacy Code of Conduct Concerning Mobile...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ... Meetings To Develop Consumer Data Privacy Code of Conduct Concerning Mobile Application Transparency AGENCY... convene meetings of a privacy multistakeholder process concerning mobile application transparency. DATES... are part of a series of NTIA-convened multistakeholder discussions concerning mobile application...

  5. 77 FR 38597 - Multistakeholder Process To Develop Consumer Data Privacy Code of Conduct Concerning Mobile...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... Process To Develop Consumer Data Privacy Code of Conduct Concerning Mobile Application Transparency AGENCY... convene the first meeting of a privacy multistakeholder process concerning mobile application transparency... concerning mobile application transparency. Stakeholders will engage in an open, transparent, consensus...

  6. Methods for sampling geographically mobile female traders in an East African market setting

    PubMed Central

    Achiro, Lillian; Kwena, Zachary A.; McFarland, Willi; Neilands, Torsten B.; Cohen, Craig R.; Bukusi, Elizabeth A.; Camlin, Carol S.

    2018-01-01

    Background The role of migration in the spread of HIV in sub-Saharan Africa is well-documented. Yet migration and HIV research have often focused on HIV risks to male migrants and their partners, or migrants overall, often failing to measure the risks to women via their direct involvement in migration. Inconsistent measures of mobility, gender biases in those measures, and limited data sources for sex-specific population-based estimates of mobility have contributed to a paucity of research on the HIV prevention and care needs of migrant and highly mobile women. This study addresses an urgent need for novel methods for developing probability-based, systematic samples of highly mobile women, focusing on a population of female traders operating out of one of the largest open air markets in East Africa. Our method involves three stages: 1.) identification and mapping of all market stall locations using Global Positioning System (GPS) coordinates; 2.) using female market vendor stall GPS coordinates to build the sampling frame using replicates; and 3.) using maps and GPS data for recruitment of study participants. Results The location of 6,390 vendor stalls were mapped using GPS. Of these, 4,064 stalls occupied by women (63.6%) were used to draw four replicates of 128 stalls each, and a fifth replicate of 15 pre-selected random alternates for a total of 527 stalls assigned to one of five replicates. Staff visited 323 stalls from the first three replicates and from these successfully recruited 306 female vendors into the study for a participation rate of 94.7%. Mobilization strategies and involving traders association representatives in participant recruitment were critical to the study’s success. Conclusion The study’s high participation rate suggests that this geospatial sampling method holds promise for development of probability-based samples in other settings that serve as transport hubs for highly mobile populations. PMID:29324780

  7. Supporting Collaboration and Creativity Through Mobile P2P Computing

    NASA Astrophysics Data System (ADS)

    Wierzbicki, Adam; Datta, Anwitaman; Żaczek, Łukasz; Rzadca, Krzysztof

    Among many potential applications of mobile P2P systems, collaboration applications are among the most prominent. Examples of applications such as Groove (although not intended for mobile networks), collaboration tools for disaster recovery (the WORKPAD project), and Skype's collaboration extensions, all demonstrate the potential of P2P collaborative applications. Yet, the development of such applications for mobile P2P systems is still difficult because of the lack of middleware.

  8. Usability evaluation model for mobile e-book applications

    NASA Astrophysics Data System (ADS)

    Matraf, Munya Saleh Ba; Hussain, Azham

    2017-10-01

    Evaluation for mobile e-book applications are limited and did not address all the important usability measurements. Hence, this study aimed to identify the characteristics that affect user satisfaction on the usability of mobile e-book applications. Five characteristics that have a significant effect on the user satisfaction of mobile e-book applications have been identified namely readability, effectiveness, accessibility, efficiency, and navigation. A usability evaluation was conducted on three mobile e-book applications namely Adobe Acrobat Reader, Ebook Reader, and Amazon Kindle. 30 students from Universiti Utara Malaysia evaluated the mobile e-book applications and their satisfaction was measured using questionnaire. The outcomes discovered that the five characteristics have a significant positive relationship with user satisfaction. This provides insights into the main characteristics that increase user satisfaction.

  9. Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinin, S.V.

    2010-10-19

    Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capabilitymore » for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.« less

  10. Development of a Secure Mobile GPS Tracking and Management System

    ERIC Educational Resources Information Center

    Liu, Anyi

    2012-01-01

    With increasing demand of mobile devices and cloud computing, it becomes increasingly important to develop efficient mobile application and its secured backend, such as web applications and virtualization environment. This dissertation reports a systematic study of mobile application development and the security issues of its related backend. …

  11. Patterns of geographic mobility predict barriers to engagement in HIV care and antiretroviral treatment adherence.

    PubMed

    Taylor, Barbara S; Reyes, Emily; Levine, Elizabeth A; Khan, Shah Z; Garduño, L Sergio; Donastorg, Yeycy; Hammer, Scott M; Brudney, Karen; Hirsch, Jennifer S

    2014-06-01

    Migration and geographic mobility increase risk for HIV infection and may influence engagement in HIV care and adherence to antiretroviral therapy. Our goal is to use the migration-linked communities of Santo Domingo, Dominican Republic, and New York City, New York, to determine the impact of geographic mobility on HIV care engagement and adherence to treatment. In-depth interviews were conducted with HIV+Dominicans receiving antiretroviral therapy, reporting travel or migration in the past 6 months and key informants (n=45). Mobility maps, visual representations of individual migration histories, including lifetime residence(s) and all trips over the past 2 years, were generated for all HIV+ Dominicans. Data from interviews and field observation were iteratively reviewed for themes. Mobility mapping revealed five distinct mobility patterns: travel for care, work-related travel, transnational travel (nuclear family at both sites), frequent long-stay travel, and vacation. Mobility patterns, including distance, duration, and complexity, varied by motivation for travel. There were two dominant barriers to care. First, a fear of HIV-related stigma at the destination led to delays seeking care and poor adherence. Second, longer trips led to treatment interruptions due to limited medication supply (30-day maximum dictated by programs or insurers). There was a notable discordance between what patients and providers perceived as mobility-induced barriers to care and the most common barriers found in the analysis. Interventions to improve HIV care for mobile populations should consider motivation for travel and address structural barriers to engagement in care and adherence.

  12. Patterns of Geographic Mobility Predict Barriers to Engagement in HIV Care and Antiretroviral Treatment Adherence

    PubMed Central

    Reyes, Emily; Levine, Elizabeth A.; Khan, Shah Z.; Garduño, L. Sergio; Donastorg, Yeycy; Hammer, Scott M.; Brudney, Karen; Hirsch, Jennifer S.

    2014-01-01

    Abstract Migration and geographic mobility increase risk for HIV infection and may influence engagement in HIV care and adherence to antiretroviral therapy. Our goal is to use the migration-linked communities of Santo Domingo, Dominican Republic, and New York City, New York, to determine the impact of geographic mobility on HIV care engagement and adherence to treatment. In-depth interviews were conducted with HIV+Dominicans receiving antiretroviral therapy, reporting travel or migration in the past 6 months and key informants (n=45). Mobility maps, visual representations of individual migration histories, including lifetime residence(s) and all trips over the past 2 years, were generated for all HIV+ Dominicans. Data from interviews and field observation were iteratively reviewed for themes. Mobility mapping revealed five distinct mobility patterns: travel for care, work-related travel, transnational travel (nuclear family at both sites), frequent long-stay travel, and vacation. Mobility patterns, including distance, duration, and complexity, varied by motivation for travel. There were two dominant barriers to care. First, a fear of HIV-related stigma at the destination led to delays seeking care and poor adherence. Second, longer trips led to treatment interruptions due to limited medication supply (30-day maximum dictated by programs or insurers). There was a notable discordance between what patients and providers perceived as mobility-induced barriers to care and the most common barriers found in the analysis. Interventions to improve HIV care for mobile populations should consider motivation for travel and address structural barriers to engagement in care and adherence. PMID:24839872

  13. Assessing American Red Cross First Aid mobile app user trends: Implications for resilience.

    PubMed

    Musigdilok, Visanee V; Demeter, Natalie E; Burke, Rita V; Shook, Eric; Ajayakumar, Jayakrishnan; Berg, Bridget M; Hawkins, Michelle D; Ferree, John; MacAloney, Brenton W; Chung, Sarita; Pellegrino, Jeffrey L; Tolli, Dominick; Hansen, Grant; Upperman, Jeffrey S

    2015-01-01

    Disasters have devastated communities, impacted the economy, and resulted in a significant increase in injuries. As the use of mobile technology increasingly becomes a common aspect of everyday life, it is important to understand how it can be used as a resource. The authors examined the use of American Red Cross mobile apps and aimed to characterize user trends to better understand how mobile apps can help bolster individual and community preparedness, resilience, and response efforts. Tornado data were obtained from the National Oceanic and Atmospheric Administration and the National Weather Service. Data for the mobile apps were provided by the American Red Cross. All data were reviewed for 2013, 2014, and three specific tornado events. Data were organized in Microsoft Excel spreadsheets and then graphed or mapped using ArcMap 10.2(™). Between 2013 and 2014, 1,068 tornado watches and 3,682 tornado warnings were issued. Additionally, 37,957,560 Tornado app users and 1,289,676 First Aid app users were active from 2013 to 2014. Overall, there was an increase in the use of American Red Cross mobile apps during tornado occurrences. Yet the increase does not show a consistent correlation with the number of watches and warnings issued. Mobile apps can be a resourceful tool. This study shows that mobile app use increases during a disaster. The findings indicate that there is potential to use mobile apps for building resilience as the apps provide information to support individuals and communities in helping before, during, and after disasters.

  14. Connected Vehicle Applications : Mobility

    DOT National Transportation Integrated Search

    2017-03-03

    Connected vehicle mobility applications are commonly referred to as dynamic mobility applications (DMAs). DMAs seek to fully leverage frequently collected and rapidly disseminated multi-source data gathered from connected travelers, vehicles, and inf...

  15. Center for Neural Engineering: applications of pulse-coupled neural networks

    NASA Astrophysics Data System (ADS)

    Malkani, Mohan; Bodruzzaman, Mohammad; Johnson, John L.; Davis, Joel

    1999-03-01

    Pulsed-Coupled Neural Network (PCNN) is an oscillatory model neural network where grouping of cells and grouping among the groups that form the output time series (number of cells that fires in each input presentation also called `icon'). This is based on the synchronicity of oscillations. Recent work by Johnson and others demonstrated the functional capabilities of networks containing such elements for invariant feature extraction using intensity maps. PCNN thus presents itself as a more biologically plausible model with solid functional potential. This paper will present the summary of several projects and their results where we successfully applied PCNN. In project one, the PCNN was applied for object recognition and classification through a robotic vision system. The features (icons) generated by the PCNN were then fed into a feedforward neural network for classification. In project two, we developed techniques for sensory data fusion. The PCNN algorithm was implemented and tested on a B14 mobile robot. The PCNN-based features were extracted from the images taken from the robot vision system and used in conjunction with the map generated by data fusion of the sonar and wheel encoder data for the navigation of the mobile robot. In our third project, we applied the PCNN for speaker recognition. The spectrogram image of speech signals are fed into the PCNN to produce invariant feature icons which are then fed into a feedforward neural network for speaker identification.

  16. Feasibility of Smartphone Based Photogrammetric Point Clouds for the Generation of Accessibility Maps

    NASA Astrophysics Data System (ADS)

    Angelats, E.; Parés, M. E.; Kumar, P.

    2018-05-01

    Accessible cities with accessible services are an old claim of people with reduced mobility. But this demand is still far away of becoming a reality as lot of work is required to be done yet. First step towards accessible cities is to know about real situation of the cities and its pavement infrastructure. Detailed maps or databases on street slopes, access to sidewalks, mobility in public parks and gardens, etc. are required. In this paper, we propose to use smartphone based photogrammetric point clouds, as a starting point to create accessible maps or databases. This paper analyses the performance of these point clouds and the complexity of the image acquisition procedure required to obtain them. The paper proves, through two test cases, that smartphone technology is an economical and feasible solution to get the required information, which is quite often seek by city planners to generate accessible maps. The proposed approach paves the way to generate, in a near term, accessibility maps through the use of point clouds derived from crowdsourced smartphone imagery.

  17. Review and Analysis of Existing Mobile Phone Apps to Support Heart Failure Symptom Monitoring and Self-Care Management Using the Mobile Application Rating Scale (MARS).

    PubMed

    Masterson Creber, Ruth M; Maurer, Mathew S; Reading, Meghan; Hiraldo, Grenny; Hickey, Kathleen T; Iribarren, Sarah

    2016-06-14

    Heart failure is the most common cause of hospital readmissions among Medicare beneficiaries and these hospitalizations are often driven by exacerbations in common heart failure symptoms. Patient collaboration with health care providers and decision making is a core component of increasing symptom monitoring and decreasing hospital use. Mobile phone apps offer a potentially cost-effective solution for symptom monitoring and self-care management at the point of need. The purpose of this review of commercially available apps was to identify and assess the functionalities of patient-facing mobile health apps targeted toward supporting heart failure symptom monitoring and self-care management. We searched 3 Web-based mobile app stores using multiple terms and combinations (eg, "heart failure," "cardiology," "heart failure and self-management"). Apps meeting inclusion criteria were evaluated using the Mobile Application Rating Scale (MARS), IMS Institute for Healthcare Informatics functionality scores, and Heart Failure Society of America (HFSA) guidelines for nonpharmacologic management. Apps were downloaded and assessed independently by 2-4 reviewers, interclass correlations between reviewers were calculated, and consensus was met by discussion. Of 3636 potentially relevant apps searched, 34 met inclusion criteria. Most apps were excluded because they were unrelated to heart failure, not in English or Spanish, or were games. Interrater reliability between reviewers was high. AskMD app had the highest average MARS total (4.9/5). More than half of the apps (23/34, 68%) had acceptable MARS scores (>3.0). Heart Failure Health Storylines (4.6) and AskMD (4.5) had the highest scores for behavior change. Factoring MARS, functionality, and HFSA guideline scores, the highest performing apps included Heart Failure Health Storylines, Symple, ContinuousCare Health App, WebMD, and AskMD. Peer-reviewed publications were identified for only 3 of the 34 apps. This review suggests that few apps meet prespecified criteria for quality, content, or functionality, highlighting the need for further refinement and mapping to evidence-based guidelines and room for overall quality improvement in heart failure symptom monitoring and self-care related apps.

  18. Radar Based Navigation in Unknown Terrain

    DTIC Science & Technology

    2012-12-31

    localization and mapping ( SLAM ) approach. The radar processing algorithms detect strong, persistent, and stationary reflectors embedded in the...Global System for Mobile Communications . . . . . . . . . 2 LIDAR Light Detection and Ranging . . . . . . . . . . . . . . . . 2 SAR Synthetic Aperture...22 SLAM Simultaneous Localization and Mapping . . . . . . . . . . 25 FDM Frequency Division Multiplexing

  19. Determination of University Students' Most Preferred Mobile Application for Gamification

    ERIC Educational Resources Information Center

    Bicen, Huseyin; Kocakoyun, Senay

    2017-01-01

    In this digital age of technological advancement, mobile applications are fastly approaching acme of development. In order to increase the efficiency of the developed applications, mobile applications which are suitable for gamification have become a contemporary issue. In this study, the applications of Kahoot, ClassDojo, Classcraft and Socrative…

  20. All Property is Riverfront Property: The Raindrop App and FLOW Project

    NASA Astrophysics Data System (ADS)

    Carter, T.; Miss, M.; Kirn, M.; Niyogi, D.; Bachta, E.; Steckel, J.

    2011-12-01

    Rivers in the United States are essential to sustain lives of both nonhuman species and of human societies. Urban areas rely heavily upon their nearby rivers and watersheds for their survival and yet citizens are often unaware of inextricable linkages between societal and river functions. One way to overcome this lack of awareness is by exploring new avenues for engagement with the general public. In this project, we use three fields for this engagement (science, art, and technology) to produce a river awareness tool that creates connections between citizens and their watersheds through visceral and technological interfaces. The target area is the White River watershed, which is entirely contained within the state of Indiana and encompasses nearly 30,000 km2 in the central and southern portions of the state including the metropolitan region of Indianapolis. We developed a mobile device application called "Raindrop" that uses geographic information systems (GIS) and mobile device GPS technology to map a raindrop's path from a user's home to the river and identifies the various flow paths and pollutant constituents transported by this water along the way. Physical markers along the White River designed by an artist on the project team allows for the virtual features of the application to be grounded in physical space. The use of Raindrop to connect users with their urban watershed is shown to have significant promise for widespread application. A number of key advantages of using this technology over traditional forms of outreach are enumerated below. First, by collaborating with a nationally renowned artist both in the design of the application and for physical markers, the audience for Raindrop is greatly expanded and interesting dynamics between the scientific and artist members of the general public are developed. Second, in urban areas the use of mobile devices and handheld Web technology are ubiquitous and thus the information can be conveyed to an audience in a form that is familiar and relevant. By pulling the mobile device users into physical spaces along the river, the experience is enhanced further. Finally, the ability to concisely display essential watershed, weather, and climate information using iconography, predefined data analysis, and dynamic programming allows for the application to run quickly and usability to be optimized. Future work will focus on end user evaluation and replicability in other urban watersheds around the country.

  1. Isolating the Effects of a Mobile Phone on the Usability and Safety of eHealth Software Applications.

    PubMed

    Borycki, Elizabeth M; Griffith, Janessa; Monkman, Helen; Reid-Haughian, Cheryl

    2017-01-01

    Mobile phones are used in conjunction with mobile eHealth software applications. These mobile software applications can be used to access, review and document clinical information. The objective of this research was to explore the relationship between mobile phones, usability and safety. Clinical simulations and semi-structured interviews were used to investigate this relationship. The findings revealed that mobile phones may lead to specific types of usability issues that may introduce some types of errors.

  2. How to Evaluate Mobile Health Applications: A Scoping Review.

    PubMed

    Fiore, Pasquale

    2017-01-01

    Evaluating mobile health applications requires specific criteria. Research suggests evaluation grids and online web sites are available to provide a quick sense of ease for the health care professional wanting to use a mobile application without worrying about the quality, efficacy, and safety of the mobile application. This article will present a scoping review and explore the available resources for health care professionals.

  3. Applang - A DSL for specification of mobile applications for android platform based on textX

    NASA Astrophysics Data System (ADS)

    Kosanović, Milan; Dejanović, Igor; Milosavljević, Gordana

    2016-06-01

    Mobile platforms become a ubiquitous part of our daily lives thus making more pressure to software developers to develop more applications faster and with the support for different mobile operating systems. To foster the faster development of mobile services and applications and to support various mobile operating systems a new software development approaches must be undertaken. Domain-Specific Languages (DSL) are a viable approach that promise to solve a problem of target platform diversity as well as to facilitate rapid application development and shorter time-to-market. This paper presents Applang, a DSL for the specification of mobile applications for the Android platform, based on textX meta-language. The application is described using Applang DSL and the source code for a target platform is automatically generated by the provided code generator. The same application defined using single Applang source can be transformed to various targets with little or no manual modifications.

  4. Automatic Bluetooth testing for mobile multi-user applications

    NASA Astrophysics Data System (ADS)

    Luck, Dennis; Hörning, Henrik; Edlich, Stefan

    2008-02-01

    In this paper we present a simple approach for the development of multiuser and multimedia applications based on Bluetooth. One main obstacle for Bluetooth synchronization of mobile applications is the lack of a complete specification implementation. Nowadays these applications must be on market as fast as possible. Hence, developers must be able to test several dozens of mobile devices for their Bluetooth capability. And surprisingly, the capabilities differ not only between the Bluetooth specification 1.0 and 2.0. The current development was triggered by the development of mass applications as mobile multiuser games (e.g. Tetris). Our Application can be distributed on several mobile phones. If started, the Bluetooth applications try to connect each other and automatically start to detect device capabilities. These capabilities will be gathered and distributed to a server. The server performs statistical investigations and aggregates them to be presented as a report. The result is a faster development regarding mobile communications.

  5. Semantic Labelling of Road Furniture in Mobile Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Li, F.; Oude Elberink, S.; Vosselman, G.

    2017-09-01

    Road furniture semantic labelling is vital for large scale mapping and autonomous driving systems. Much research has been investigated on road furniture interpretation in both 2D images and 3D point clouds. Precise interpretation of road furniture in mobile laser scanning data still remains unexplored. In this paper, a novel method is proposed to interpret road furniture based on their logical relations and functionalities. Our work represents the most detailed interpretation of road furniture in mobile laser scanning data. 93.3 % of poles are correctly extracted and all of them are correctly recognised. 94.3 % of street light heads are detected and 76.9 % of them are correctly identified. Despite errors arising from the recognition of other components, our framework provides a promising solution to automatically map road furniture at a detailed level in urban environments.

  6. A CityGML extension for traffic-sign objects that guides the automatic processing of data collected using Mobile Mapping technology

    NASA Astrophysics Data System (ADS)

    Varela-González, M.; Riveiro, B.; Arias-Sánchez, P.; González-Jorge, H.; Martínez-Sánchez, J.

    2014-11-01

    The rapid evolution of integral schemes, accounting for geometric and semantic data, has been importantly motivated by the advances in the last decade in mobile laser scanning technology; automation in data processing has also recently influenced the expansion of the new model concepts. This paper reviews some important issues involved in the new paradigms of city 3D modelling: an interoperable schema for city 3D modelling (cityGML) and mobile mapping technology to provide the features that composing the city model. This paper focuses in traffic signs, discussing their characterization using cityGML in order to ease the implementation of LiDAR technology in road management software, as well as analysing some limitations of the current technology in the labour of automatic detection and classification.

  7. Mobile application for field data collection and query: Example from wildlife research (Invited)

    NASA Astrophysics Data System (ADS)

    Bateman, H.; Lindquist, T.; Whitehouse, R.

    2013-12-01

    Field data collection is often used in many scientific disciplines and effective approaches rely on accurate data collection and recording. We designed a smartphone and tablet application (app) for field-collected data and tested it during a study on wildlife. The objective of our study was to determine the effectiveness of mobile applications in wildlife field research. Student software developers designed applications for mobile devices on the iOS and Android operating systems. Both platforms had similar user interactions via data entry on a touch screen using pre-programmed fields, checkboxes, drop-down menus, and keypad entry. The mobile application included features to insure collection of all measurements in the field through pop-up messages and could proof entries for valid formats. We used undergraduate student subjects to compare the duration of data recording and data entry, and the frequency of errors between the mobile application and traditional (paper) techniques. We field-tested the mobile application using an existing study on wildlife. From the field, technicians could query a database stored on a mobile device to view histories of previously captured animals. Overall, we found that because the mobile application allowed us to enter data in a digital format in the field we could eliminate timely steps to process handwritten data sheets and double-checking data entries. We estimated that, for a 2-month project, using the mobile application instead of traditional data entry and proofing reduced our total project time by 10%. To our knowledge, this is the first application developed for mobile devices for wildlife users interesting in viewing animal capture histories from the field and could be developed for use in other areas of field research.

  8. Design of a Mobile Low-Cost Sensor Network Using Urban Buses for Real-Time Ubiquitous Noise Monitoring

    PubMed Central

    Alsina-Pagès, Rosa Ma; Hernandez-Jayo, Unai; Alías, Francesc; Angulo, Ignacio

    2016-01-01

    One of the main priorities of smart cities is improving the quality of life of their inhabitants. Traffic noise is one of the pollutant sources that causes a negative impact on the quality of life of citizens, which is gaining attention among authorities. The European Commission has promoted the Environmental Noise Directive 2002/49/EC (END) to inform citizens and to prevent the harmful effects of noise exposure. The measure of acoustic levels using noise maps is a strategic issue in the END action plan. Noise maps are typically calculated by computing the average noise during one year and updated every five years. Hence, the implementation of dynamic noise mapping systems could lead to short-term plan actions, besides helping to better understand the evolution of noise levels along time. Recently, some projects have started the monitoring of noise levels in urban areas by means of acoustic sensor networks settled in strategic locations across the city, while others have taken advantage of collaborative citizen sensing mobile applications. In this paper, we describe the design of an acoustic low-cost sensor network installed on public buses to measure the traffic noise in the city in real time. Moreover, the challenges that a ubiquitous bus acoustic measurement system entails are enumerated and discussed. Specifically, the analysis takes into account the feature extraction of the audio signal, the identification and separation of the road traffic noise from urban traffic noise, the hardware platform to measure and process the acoustic signal, the connectivity between the several nodes of the acoustic sensor network to store the data and, finally, the noise maps’ generation process. The implementation and evaluation of the proposal in a real-life scenario is left for future work. PMID:28036065

  9. Feature-Based Approach for the Registration of Pushbroom Imagery with Existing Orthophotos

    NASA Astrophysics Data System (ADS)

    Xiong, Weifeng

    Low-cost Unmanned Airborne Vehicles (UAVs) are rapidly becoming suitable platforms for acquiring remote sensing data for a wide range of applications. For example, a UAV-based mobile mapping system (MMS) is emerging as a novel phenotyping tool that delivers several advantages to alleviate the drawbacks of conventional manual plant trait measurements. Moreover, UAVs equipped with direct geo-referenced frame cameras and pushbroom scanners can acquire geospatial data for comprehensive high-throughput phenotyping. UAVs for mobile mapping platforms are low-cost and easy to use, can fly closer to the objects, and are filling an important gap between ground wheel-based and traditional manned-airborne platforms. However, consumer-grade UAVs are capable of carrying only equipment with a relatively light payload and their flying time is determined by a limited battery life. These restrictions of UAVs unfortunately force potential users to adopt lower-quality direct geo-referencing and imaging systems that may negatively impact the quality of the deliverables. Recent advances in sensor calibration and automated triangulation have made it feasible to obtain accurate mapping using low-cost camera systems equipped with consumer-grade GNSS/INS units. However, ortho-rectification of the data from a linear-array scanner is challenging for low-cost UAV systems, because the derived geo-location information from pushbroom sensors is quite sensitive to the performance of the implemented direct geo-referencing unit. This thesis presents a novel approach for improving the ortho-rectification of hyperspectral pushbroom scanner imagery with the aid of orthophotos generated from frame cameras through the identification of conjugate features while modeling the impact of residual artifacts in the direct geo-referencing information. The experimental results qualitatively and quantitatively proved the feasibility of the proposed methodology in improving the geo-referencing accuracy of real datasets collected over an agricultural field.

  10. Willingness to use mobile application for smartphone for improving road safety.

    PubMed

    Cardamone, Angelo Stephen; Eboli, Laura; Forciniti, Carmen; Mazzulla, Gabriella

    2016-01-01

    In the last few years mobile devices have reached a large amount of consumers in both developed and high-growth world economies. In 2013, 97% of the Italian population owns a mobile phone, and 62% owns a smartphone. Application software for mobile devices is largely proposed to consumers, and several mobile applications were oriented toward the improvement of road safety and road accident risk reduction. In this paper, we describe the results of a survey oriented to preventively investigate on the willingness to receive and/or to give information about road condition by means of mobile devices. Road users were informed about the characteristics of a mobile application, and then they were invited to complete a questionnaire. Experimental data were used for capturing road user attitudes toward the use of the smartphone to improve road safety, and to establish the preferences for the different features of the proposed mobile application. To this end, we choose to use the ordered probit model methodology. We demonstrate that the adopted methodology accounts for the differential impacts of the willingness to receive and/or to give information about road conditions on the overall willingness to receive and/or to give information through an application software for mobile devices.

  11. Rural land mobile radio market assessment and satellite and terrestrial system concepts

    NASA Technical Reports Server (NTRS)

    Stevenson, S.; Provencher, C.

    1984-01-01

    The market for satellite-based mobile radio in the rural U.S. is evaluated, summarizing the results of two NASA-funded studies reported by Anderson et al. and Hornstein. The study aims are listed, and the results are presented in tables, graphs, and maps and discussed. Space systems are found to be competitive with land-based systems, providing superior service at lower subscriber charges, but having limited compatibility with urban cellular mobile-radio systems. Of the three system concepts evaluated from a technological standpoint (direct-to-mobile, mobile-translator, and hybrid), the mobile-translator concept is considered most cost effective, at least within the constraints assumed in the study.

  12. Real-time global illumination on mobile device

    NASA Astrophysics Data System (ADS)

    Ahn, Minsu; Ha, Inwoo; Lee, Hyong-Euk; Kim, James D. K.

    2014-02-01

    We propose a novel method for real-time global illumination on mobile devices. Our approach is based on instant radiosity, which uses a sequence of virtual point lights in order to represent the e ect of indirect illumination. Our rendering process consists of three stages. With the primary light, the rst stage generates a local illumination with the shadow map on GPU The second stage of the global illumination uses the re ective shadow map on GPU and generates the sequence of virtual point lights on CPU. Finally, we use the splatting method of Dachsbacher et al 1 and add the indirect illumination to the local illumination on GPU. With the limited computing resources in mobile devices, a small number of virtual point lights are allowed for real-time rendering. Our approach uses the multi-resolution sampling method with 3D geometry and attributes simultaneously and reduce the total number of virtual point lights. We also use the hybrid strategy, which collaboratively combines the CPUs and GPUs available in a mobile SoC due to the limited computing resources in mobile devices. Experimental results demonstrate the global illumination performance of the proposed method.

  13. Development of a Scalable Testbed for Mobile Olfaction Verification.

    PubMed

    Zakaria, Syed Muhammad Mamduh Syed; Visvanathan, Retnam; Kamarudin, Kamarulzaman; Yeon, Ahmad Shakaff Ali; Md Shakaff, Ali Yeon; Zakaria, Ammar; Kamarudin, Latifah Munirah

    2015-12-09

    The lack of information on ground truth gas dispersion and experiment verification information has impeded the development of mobile olfaction systems, especially for real-world conditions. In this paper, an integrated testbed for mobile gas sensing experiments is presented. The integrated 3 m × 6 m testbed was built to provide real-time ground truth information for mobile olfaction system development. The testbed consists of a 72-gas-sensor array, namely Large Gas Sensor Array (LGSA), a localization system based on cameras and a wireless communication backbone for robot communication and integration into the testbed system. Furthermore, the data collected from the testbed may be streamed into a simulation environment to expedite development. Calibration results using ethanol have shown that using a large number of gas sensor in the LGSA is feasible and can produce coherent signals when exposed to the same concentrations. The results have shown that the testbed was able to capture the time varying characteristics and the variability of gas plume in a 2 h experiment thus providing time dependent ground truth concentration maps. The authors have demonstrated the ability of the mobile olfaction testbed to monitor, verify and thus, provide insight to gas distribution mapping experiment.

  14. Development of a Scalable Testbed for Mobile Olfaction Verification

    PubMed Central

    Syed Zakaria, Syed Muhammad Mamduh; Visvanathan, Retnam; Kamarudin, Kamarulzaman; Ali Yeon, Ahmad Shakaff; Md. Shakaff, Ali Yeon; Zakaria, Ammar; Kamarudin, Latifah Munirah

    2015-01-01

    The lack of information on ground truth gas dispersion and experiment verification information has impeded the development of mobile olfaction systems, especially for real-world conditions. In this paper, an integrated testbed for mobile gas sensing experiments is presented. The integrated 3 m × 6 m testbed was built to provide real-time ground truth information for mobile olfaction system development. The testbed consists of a 72-gas-sensor array, namely Large Gas Sensor Array (LGSA), a localization system based on cameras and a wireless communication backbone for robot communication and integration into the testbed system. Furthermore, the data collected from the testbed may be streamed into a simulation environment to expedite development. Calibration results using ethanol have shown that using a large number of gas sensor in the LGSA is feasible and can produce coherent signals when exposed to the same concentrations. The results have shown that the testbed was able to capture the time varying characteristics and the variability of gas plume in a 2 h experiment thus providing time dependent ground truth concentration maps. The authors have demonstrated the ability of the mobile olfaction testbed to monitor, verify and thus, provide insight to gas distribution mapping experiment. PMID:26690175

  15. The potential of crowdsourcing and mobile technology to support flood disaster risk reduction

    NASA Astrophysics Data System (ADS)

    See, Linda; McCallum, Ian; Liu, Wei; Mechler, Reinhard; Keating, Adriana; Hochrainer-Stigler, Stefan; Mochizuki, Junko; Fritz, Steffen; Dugar, Sumit; Arestegui, Michael; Szoenyi, Michael; Laso-Bayas, Juan-Carlos; Burek, Peter; French, Adam; Moorthy, Inian

    2016-04-01

    The last decade has seen a rise in citizen science and crowdsourcing for carrying out a variety of tasks across a number of different fields, most notably the collection of data such as the identification of species (e.g. eBird and iNaturalist) and the classification of images (e.g. Galaxy Zoo and Geo-Wiki). Combining human computing with the proliferation of mobile technology has resulted in vast amounts of geo-located data that have considerable value across multiple domains including flood disaster risk reduction. Crowdsourcing technologies, in the form of online mapping, are now being utilized to great effect in post-disaster mapping and relief efforts, e.g. the activities of Humanitarian OpenStreetMap, complementing official channels of relief (e.g. Haiti, Nepal and New York). Disaster event monitoring efforts have been further complemented with the use of social media (e.g. twitter for earthquakes, flood monitoring, and fire detection). Much of the activity in this area has focused on ex-post emergency management while there is considerable potential for utilizing crowdsourcing and mobile technology for vulnerability assessment, early warning and to bolster resilience to flood events. This paper examines the use of crowdsourcing and mobile technology for measuring and monitoring flood hazards, exposure to floods, and vulnerability, drawing upon examples from the literature and ongoing projects on flooding and food security at IIASA.

  16. BeefTracker: Spatial Tracking and Geodatabase for Beef Herd Sustainability and Lifecycle Analysis

    NASA Astrophysics Data System (ADS)

    Oltjen, J. W.; Stackhouse, J.; Forero, L.; Stackhouse-Lawson, K.

    2015-12-01

    We have developed a web-based mapping platform named "BeefTracker" to provide beef cattle ranchers a tool to determine how cattle production fits within sustainable ecosystems and to provide regional data to update beef sustainability lifecycle analysis. After initial identification and mapping of pastures, herd data (class and number of animals) are input on a mobile device in the field with a graphical pasture interface, stored in the cloud, and linked via the web to a personal computer for inventory tracking and analysis. Pasture use calculated on an animal basis provides quantifiable data regarding carrying capacity and subsequent beef production to provide more accurate data inputs for beef sustainability lifecycle analysis. After initial testing by university range scientists and ranchers we have enhanced the BeefTracker application to work when cell service is unavailable and to improve automation for increased ease of use. Thus far experiences with BeefTracker have been largely positive, due to livestock producers' perception of the need for this type of software application and its intuitive interface. We are now in the process of education to increase its use throughout the U.S.

  17. Mobile Learning on the Basis of the Cloud Services

    ERIC Educational Resources Information Center

    Makarchuk, Tatyana

    2017-01-01

    Spreading of interactive applications for mobile devices became one of the trends of IT development in 2015-2017. In higher education mobile applications are being used to advance the productivity of professors and students, which raises the overall quality of education. In the article SkyDrive, GoogleDisk mobile applications' features for group…

  18. A user experience evaluation of Amazon Kindle mobile application

    NASA Astrophysics Data System (ADS)

    Hussain, Azham; Mkpojiogu, Emmanuel O. C.; Musa, Ja'afaru; Mortada, Salah

    2017-10-01

    There is a dramatic increase in the development of mobile applications in recent years. This makes the usability evaluation of these mobile applications an important aspect in the advancement and application of technology. In this paper, a laboratory-based usability evaluation was carried out on the Amazon Kindle app using 15 users who performed 5 tasks on the Kindle e-book mobile app. A post-test questionnaire was administered to elicit users' perception on the usability of the application. The results demonstrate that almost all the participants were satisfied with services provided by the Amazon Kindle e-book mobile app. On all the four user experience factors examined, namely, perceived ease-of-use, perceived visibility, perceived enjoyabilty, and perceived efficiency, the evaluation outcome shows that the participants had a good and rich mobile experience with the application.

  19. Enhanced performance of the Westinghouse Series 1000 Mobile Satellite Telephone System

    NASA Technical Reports Server (NTRS)

    Martinson, Richard E.

    1995-01-01

    The Westinghouse Series 1000 Mobile Satellite Telephone System is designed for land mobile, maritime, and fixed site land applications. The product currently operates on the Optus Mobilesat system in Australia and will operate on American Mobile Satellite Corporation's (AMSC) Skycell service in the U.S. and TMI Communications' (TMIC) MSAT service in Canada. The architecture allows the same transceiver electronics to be used for diverse mobile applications. Advanced antenna designs have made land mobile satellite communications a reality. This paper details the unique high performance product and its configuration for the vehicle mounted land mobile application.

  20. Developing a Mobile Social Media Framework for Creative Pedagogies

    ERIC Educational Resources Information Center

    Cochrane, Thomas; Antonczak, Laurent; Guinibert, Matthew; Mulrennan, Danni

    2014-01-01

    This paper explores an overview of an evolving framework to enable creative pedagogies as applied to three different higher education contexts. Based upon our experiences, we propose a critical framework for supporting and implementing mobile social media for pedagogical change within higher education. Our framework maps the SAMR educational…

  1. The Changing Social Spaces of Learning: Mapping New Mobilities

    ERIC Educational Resources Information Center

    Leander, Kevin M.; Phillips, Nathan C.; Taylor, Katherine Headrick

    2010-01-01

    Writing on contemporary culture and social life, sociologists and cultural theorists have been describing new or changing forms of movement, variously described as cultural "flows," "liquid life," or a "networked society." The change in such movements or mobilities of people, media, material goods, and other social phenomena, including the reach…

  2. Decision support system for emergency management of oil spill accidents in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Liubartseva, Svitlana; Coppini, Giovanni; Pinardi, Nadia; De Dominicis, Michela; Lecci, Rita; Turrisi, Giuseppe; Cretì, Sergio; Martinelli, Sara; Agostini, Paola; Marra, Palmalisa; Palermo, Francesco

    2016-08-01

    This paper presents an innovative web-based decision support system to facilitate emergency management in the case of oil spill accidents, called WITOIL (Where Is The Oil). The system can be applied to create a forecast of oil spill events, evaluate uncertainty of the predictions, and calculate hazards based on historical meteo-oceanographic datasets. To compute the oil transport and transformation, WITOIL uses the MEDSLIK-II oil spill model forced by operational meteo-oceanographic services. Results of the modeling are visualized through Google Maps. A special application for Android is designed to provide mobile access for competent authorities, technical and scientific institutions, and citizens.

  3. Mobile Phone Application Development for the Classroom

    NASA Astrophysics Data System (ADS)

    Lewis, P.; Oostra, D.; Crecelius, S.; Chambers, L. H.

    2012-08-01

    With smartphone sales currently surpassing laptop sales, it is hard not to think that these devices will have a place in the classroom. More specifically, with little to no monetary investment, classroom-centric mobile applications have the ability to suit the needs of teachers. Previously, programming such an item was a daunting task to the classroom teacher. But now, through the use of online visual tools, anyone has the ability to generate a mobile application to suit individual classroom needs. The "MY NASA DATA" (MND) project has begun work on such an application. Using online tools that are directed at the non-programmer, the team has developed two usable mobile applications ("apps") that fit right into the science classroom. The two apps generated include a cloud dichotomous key for cloud identification in the field, and an atmospheric science glossary to help with standardized testing key vocabulary and classroom assignments. Through the use of free online tools, teachers and students now have the ability to customize mobile applications to meet their individual needs. As an extension of the mobile applications, the MND team is planning web-based application programming interfaces (API's) that will be generated from data that is currently included in the MND Live Access Server. This will allow teachers and students to choose data sets that they want to include in the mobile application without having to populate the API themselves. Through the use of easy to understand online mobile app tutorials and MND data sets, teachers will have the ability to generate unit-specific mobile applications to further engage and empower students in the science classroom.

  4. Evidence of sharp and diffuse domain walls in BiFeO3 by means of unit-cell-wise strain and polarization maps obtained with high resolution scanning transmission electron microscopy.

    PubMed

    Lubk, A; Rossell, M D; Seidel, J; He, Q; Yang, S Y; Chu, Y H; Ramesh, R; Hÿtch, M J; Snoeck, E

    2012-07-27

    Domain walls (DWs) substantially influence a large number of applications involving ferroelectric materials due to their limited mobility when shifted during polarization switching. The discovery of greatly enhanced conduction at BiFeO(3) DWs has highlighted yet another role of DWs as a local material state with unique properties. However, the lack of precise information on the local atomic structure is still hampering microscopical understanding of DW properties. Here, we examine the atomic structure of BiFeO(3) 109° DWs with pm precision by a combination of high-angle annular dark-field scanning transmission electron microscopy and a dedicated structural analysis. By measuring simultaneously local polarization and strain, we provide direct experimental proof for the straight DW structure predicted by ab initio calculations as well as the recently proposed theory of diffuse DWs, thus resolving a long-standing discrepancy between experimentally measured and theoretically predicted DW mobilities.

  5. A 3D Model Based Imdoor Navigation System for Hubei Provincial Museum

    NASA Astrophysics Data System (ADS)

    Xu, W.; Kruminaite, M.; Onrust, B.; Liu, H.; Xiong, Q.; Zlatanova, S.

    2013-11-01

    3D models are more powerful than 2D maps for indoor navigation in a complicate space like Hubei Provincial Museum because they can provide accurate descriptions of locations of indoor objects (e.g., doors, windows, tables) and context information of these objects. In addition, the 3D model is the preferred navigation environment by the user according to the survey. Therefore a 3D model based indoor navigation system is developed for Hubei Provincial Museum to guide the visitors of museum. The system consists of three layers: application, web service and navigation, which is built to support localization, navigation and visualization functions of the system. There are three main strengths of this system: it stores all data needed in one database and processes most calculations on the webserver which make the mobile client very lightweight, the network used for navigation is extracted semi-automatically and renewable, the graphic user interface (GUI), which is based on a game engine, has high performance of visualizing 3D model on a mobile display.

  6. GPS as a tool used in tourism as illustrated by selected mobile applications

    NASA Astrophysics Data System (ADS)

    Szark-Eckardt, Mirosława

    2017-11-01

    Mobile technologies have permanently changed our way of life. Their availability, common use and introducing to virtually all areas of human activity means that we can call present times the age of mobility [1]. Mobile applications based on the GPS module belong to the most dynamically developing apps as particularly reflected in tourism. A multitude of applications dedicated to different participants of tourism, which can be operated by means of smartphones or simple GPS trackers, are encouraging more people to reach for this kind of technology perceiving it as a basic tool used in today's tourism. Due to an increasingly wider access to mobile applications, not only more dynamic development of tourism itself can be noticed, but also the growth of healthy behaviours that comprise a positive "side effect" of tourism based on mobile technology. This article demonstrates a correlation between health and physical condition of the population and the use of mobile applications.

  7. Accuracy and impact of spatial aids based upon satellite enumeration to improve indoor residual spraying spatial coverage.

    PubMed

    Bridges, Daniel J; Pollard, Derek; Winters, Anna M; Winters, Benjamin; Sikaala, Chadwick; Renn, Silvia; Larsen, David A

    2018-02-23

    Indoor residual spraying (IRS) is a key tool in the fight to control, eliminate and ultimately eradicate malaria. IRS protection is based on a communal effect such that an individual's protection primarily relies on the community-level coverage of IRS with limited protection being provided by household-level coverage. To ensure a communal effect is achieved through IRS, achieving high and uniform community-level coverage should be the ultimate priority of an IRS campaign. Ensuring high community-level coverage of IRS in malaria-endemic areas is challenging given the lack of information available about both the location and number of households needing IRS in any given area. A process termed 'mSpray' has been developed and implemented and involves use of satellite imagery for enumeration for planning IRS and a mobile application to guide IRS implementation. This study assessed (1) the accuracy of the satellite enumeration and (2) how various degrees of spatial aid provided through the mSpray process affected community-level IRS coverage during the 2015 spray campaign in Zambia. A 2-stage sampling process was applied to assess accuracy of satellite enumeration to determine number and location of sprayable structures. Results indicated an overall sensitivity of 94% for satellite enumeration compared to finding structures on the ground. After adjusting for structure size, roof, and wall type, households in Nchelenge District where all types of satellite-based spatial aids (paper-based maps plus use of the mobile mSpray application) were used were more likely to have received IRS than Kasama district where maps used were not based on satellite enumeration. The probability of a household being sprayed in Nchelenge district where tablet-based maps were used, did not differ statistically from that of a household in Samfya District, where detailed paper-based spatial aids based on satellite enumeration were provided. IRS coverage from the 2015 spray season benefited from the use of spatial aids based upon satellite enumeration. These spatial aids can guide costly IRS planning and implementation leading to attainment of higher spatial coverage, and likely improve disease impact.

  8. ’Pushing a Big Rock Up a Steep Hill’: Acquisition Lessons Learned from DoD Applications Storefront

    DTIC Science & Technology

    2014-04-30

    software patches, web applications, widgets, and mobile application packages. The envisioned application store will deliver software from a central...automated delivery of software patches, web applications, widgets, and mobile application packages. The envisioned application store will deliver... mobile technologies, hoping to enhance warfighter situational awareness and access to information. Unfortunately, the Defense Acquisition System has not

  9. Robust and Accurate Image-Based Georeferencing Exploiting Relative Orientation Constraints

    NASA Astrophysics Data System (ADS)

    Cavegn, S.; Blaser, S.; Nebiker, S.; Haala, N.

    2018-05-01

    Urban environments with extended areas of poor GNSS coverage as well as indoor spaces that often rely on real-time SLAM algorithms for camera pose estimation require sophisticated georeferencing in order to fulfill our high requirements of a few centimeters for absolute 3D point measurement accuracies. Since we focus on image-based mobile mapping, we extended the structure-from-motion pipeline COLMAP with georeferencing capabilities by integrating exterior orientation parameters from direct sensor orientation or SLAM as well as ground control points into bundle adjustment. Furthermore, we exploit constraints for relative orientation parameters among all cameras in bundle adjustment, which leads to a significant robustness and accuracy increase especially by incorporating highly redundant multi-view image sequences. We evaluated our integrated georeferencing approach on two data sets, one captured outdoors by a vehicle-based multi-stereo mobile mapping system and the other captured indoors by a portable panoramic mobile mapping system. We obtained mean RMSE values for check point residuals between image-based georeferencing and tachymetry of 2 cm in an indoor area, and 3 cm in an urban environment where the measurement distances are a multiple compared to indoors. Moreover, in comparison to a solely image-based procedure, our integrated georeferencing approach showed a consistent accuracy increase by a factor of 2-3 at our outdoor test site. Due to pre-calibrated relative orientation parameters, images of all camera heads were oriented correctly in our challenging indoor environment. By performing self-calibration of relative orientation parameters among respective cameras of our vehicle-based mobile mapping system, remaining inaccuracies from suboptimal test field calibration were successfully compensated.

  10. Dynamic mobility applications analytical needs assessment.

    DOT National Transportation Integrated Search

    2012-07-01

    Dynamic Mobility Applications Analytical Needs Assessment was a one-year project (July 2011 to July 2012) to develop a strategy for assessing the potential impact of twenty-eight applications for improved mobility across national transportation syste...

  11. Estimation of head tissue-specific exposure from mobile phones based on measurements in the homogeneous SAM head.

    PubMed

    Gosselin, Marie-Christine; Kühn, Sven; Crespo-Valero, Pedro; Cherubini, Emilio; Zefferer, Marcel; Christ, Andreas; Kuster, Niels

    2011-09-01

    The maximum spatial peak exposure of each commercial mobile phone determined in compliance with the relevant safety and product standards is publicly available. However, this information is not sufficient for epidemiological studies aiming to correlate the use of mobile phones with specific cancers or to behavioral alterations, as the dominant location of the exposure may be anywhere in the head between the chin to above the ear, depending on the phone design. The objective of this study was to develop a methodology to determine tissue-specific exposure by expanding the post-processing of the measured surface or volume scans using standardized compliance testing equipment, that is, specific absorption rate (SAR) scanners. The transformation matrix was developed using the results from generic dipoles to evaluate the relation between the SAR in many brain regions of the Virtual Family anatomical phantoms and in virtual brain regions mapped onto the homogeneous SAM head. A set of transformation factors was derived to correlate the SAR induced in the SAM head to the SAR in the anatomical heads. The evaluation included the uncertainty associated with each factor, arising from the anatomical differences between the phantoms (typically less than 6 dB (4×)). The applicability of these factors was validated by performing simulations of four head models exposed to four realistic mobile phone models. The new methodology enables the reliable determination of the maximum and averaged exposure of specific tissues and functional brain regions to mobile phones when combined with mobile phone power control data, and therefore greatly strengthens epidemiological evaluations and improves information for the consumer. Copyright © 2011 Wiley-Liss, Inc.

  12. The effects of mobile applications in cardiopulmonary assessment education.

    PubMed

    Yoo, In-Young; Lee, Young-Mi

    2015-02-01

    Mobile applications can be used as effective simulations for nursing education. However, little is known regarding the effects of mobile application-mediated training on nursing. The aim of this study was to determine the effectiveness of mobile applications by comparing the effectiveness of a high-fidelity human patient simulator to that of a mobile application on student learning. Following lectures on the lungs and the heart, twenty-two students were separated into two groups to perform a simulation exercise. Then, the students' education effects were evaluated based on their knowledge of lung and heart assessments, their clinical assessment skill, and satisfaction with their education. After four weeks, the mobile application group maintained their knowledge, whereas the high-fidelity human patient simulator group exhibited significantly decreased knowledge of the lung assessment. Knowledge of the heart assessment was significantly increased in both groups. There was no significant difference in clinical assessment skill or educational satisfaction between the groups. We found that mobile applications provide educational tools similarly effective to a high-fidelity human patient simulator to maintain memory and to teach cardiopulmonary assessment skills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. 47 CFR 90.127 - Submission and filing of applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES PRIVATE LAND MOBILE RADIO SERVICES Applications and Authorizations § 90.127 Submission and filing... chapter. (b) Each application shall limit its request for authorized mobile transmitters and paging...) All applications for modification of license and renewal of license must include the number of mobile...

  14. Deaf mobile application accessibility requirements

    NASA Astrophysics Data System (ADS)

    Nathan, Shelena Soosay; Hussain, Azham; Hashim, Nor Laily

    2016-08-01

    Requirement for deaf mobile applications need to be analysed to ensure the disabilities need are instilled into the mobile applications developed for them. Universal design is understandable to comply every user needs, however specific disability is argued by the authors to have different need and requirements. These differences are among the reasons for these applications being developed to target for a specific group of people, however they are less usable and later abandoned. This study focuses on deriving requirements that are needed by the deaf in their mobile applications that are meant specifically for them. Studies on previous literature was conducted it can be concluded that graphic, text, multimedia and sign language interpreter are among mostly required features to be included in their mobile application to ensure the applications are usable for this community.

  15. Mobile Learning: Using Application "Auralbook" to Learn Aural Skills

    ERIC Educational Resources Information Center

    Chen, Chi Wai Jason

    2015-01-01

    This study is to investigate the effectiveness of using mobile devices such as iPhone/iPad/android phone/tablet to facilitate mobile learning in aural skills. The application "Auralbook" was designed in 2011 by an engineer/musician to use mobile devices to learn aural skills. This application enables students to sing, record, clap and…

  16. An Investigation of the High Rate Volumetric Properties of Snow.

    DTIC Science & Technology

    1981-11-01

    experimental data. A number of applications are thenLi Investigated. These applications Include vehicle mobility In shallow anddeep snowpack, steady shockwaves...applications include vehicle mobility : in cb11 low and deep sjnowpack, ,,teady shockwaves, and noiistieady oe.av. -An na, 1, -lromacgnetic -;Lrus...VEHICLE MOBILITY ........................ 48 . III.A. Introductory Remarks .................................... 48 111.0. Tracked Vehicle Mobility in

  17. Towards the Development and Validation of a Global Field Size and Irrigation Map using Crowdsourcing, Mobile Apps and Google Earth Engine in support of GEOGLAM

    NASA Astrophysics Data System (ADS)

    Fritz, S.; Nordling, J.; See, L. M.; McCallum, I.; Perger, C.; Becker-Reshef, I.; Mucher, S.; Bydekerke, L.; Havlik, P.; Kraxner, F.; Obersteiner, M.

    2014-12-01

    The International Institute for Applied Systems Analysis (IIASA) has developed a global cropland extent map, which supports the monitoring and assessment activities of GEOGLAM (Group on Earth Observations Global Agricultural Monitoring Initiative). Through the European-funded SIGMA (Stimulating Innovation for Global Monitoring of Agriculture and its Impact on the Environment in support of GEOGLAM) project, IIASA is continuing to support GEOGLAM by providing cropland projections in the future and modelling environmental impacts on agriculture under various scenarios. In addition, IIASA is focusing on two specific elements within SIGMA: the development of a global field size and irrigation map; and mobile app development for in-situ data collection and validation of remotely-sensed products. Cropland field size is a very useful indicator for agricultural monitoring yet the information we have at a global scale is currently very limited. IIASA has already created a global map of field size at a 1 km resolution using crowdsourced data from Geo-Wiki as a first approximation. Using automatic classification of Landsat imagery and algorithms contained within Google Earth Engine, initial experimentation has shown that circular fields and landscape structures can easily be extracted. Not only will this contribute to improving the global map of field size, it can also be used to create a global map that contains a large proportion of the world's irrigated areas, which will be another useful contribution to GEOGLAM. The field size map will also be used to stratify and develop a global crop map in SIGMA. Mobile app development in support of in-situ data collection is another area where IIASA is currently working. An Android app has been built using the Open Data Toolkit (ODK) and extended further with spatial mapping capabilities called GeoODK. The app allows users to collect data on different crop types and delineate fields on the ground, which can be used to validate the field size map. The app can also cache map data so that high resolution satellite imagery and reference data from the users can be viewed in the field without the need for an internet connection. This app will be used for calibration and validation of the data products in SIGMA, e.g. data collection at JECAM (Joint Experiment of Crop Assessment and Monitoring) sites.

  18. Open Source Web Tool for Tracking in a Lowcost Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Fissore, F.; Pirotti, F.; Vettore, A.

    2017-11-01

    During the last decade several Mobile Mapping Systems (MMSs), i.e. systems able to acquire efficiently three dimensional data using moving sensors (Guarnieri et al., 2008, Schwarz and El-Sheimy, 2004), have been developed. Research and commercial products have been implemented on terrestrial, aerial and marine platforms, and even on human-carried equipment, e.g. backpack (Lo et al., 2015, Nex and Remondino, 2014, Ellum and El-Sheimy, 2002, Leica Pegasus backpack, 2016, Masiero et al., 2017, Fissore et al., 2018). Such systems are composed of an integrated array of time-synchronised navigation sensors and imaging sensors mounted on a mobile platform (Puente et al., 2013, Tao and Li, 2007). Usually the MMS implies integration of different types of sensors, such as GNSS, IMU, video camera and/or laser scanners that allow accurate and quick mapping (Li, 1997, Petrie, 2010, Tao, 2000). The typical requirement of high-accuracy 3D georeferenced reconstruction often makes such systems quite expensive. Indeed, at time of writing most of the terrestrial MMSs on the market have a cost usually greater than 50000, which might be expensive for certain applications (Ellum and El-Sheimy, 2002, Piras et al., 2008). In order to allow best performance sensors have to be properly calibrated (Dong et al., 2007, Ellum and El-Sheimy, 2002). Sensors in MMSs are usually integrated and managed through a dedicated software, which is developed ad hoc for the devices mounted on the mobile platform and hence tailored for the specific used sensors. Despite the fact that commercial solutions are complete, very specific and particularly related to the typology of survey, their price is a factor that restricts the number of users and the possible interested sectors. This paper describes a (relatively low cost) terrestrial Mobile Mapping System developed at the University of Padua (TESAF, Department of Land Environment Agriculture and Forestry) by the research team in CIRGEO, in order to test an alternative solution to other more expensive MMSs. The first objective of this paper is to report on the development of a prototype of MMS for the collection of geospatial data based on the assembly of low cost sensors managed through a web interface developed using open source libraries. The main goal is to provide a system accessible by any type of user, and flexible to any type of upgrade or introduction of new models of sensors or versions thereof. After a presentation of the hardware components used in our system, a more detailed description of the software developed for the management of the MMS will be provided, which is the part of the innovation of the project. According to the worldwide request for having big data available through the web from everywhere in the world (Pirotti et al., 2011), the proposed solution allows to retrieve data from a web interface Figure 4. Actually, this is part of a project for the development of a new web infrastructure in the University of Padua (but it will be available for external users as well), in order to ease collaboration between researchers from different areas. Finally, strengths, weaknesses and future developments of the low cost MMS are discussed.

  19. Human mobility: Models and applications

    NASA Astrophysics Data System (ADS)

    Barbosa, Hugo; Barthelemy, Marc; Ghoshal, Gourab; James, Charlotte R.; Lenormand, Maxime; Louail, Thomas; Menezes, Ronaldo; Ramasco, José J.; Simini, Filippo; Tomasini, Marcello

    2018-03-01

    Recent years have witnessed an explosion of extensive geolocated datasets related to human movement, enabling scientists to quantitatively study individual and collective mobility patterns, and to generate models that can capture and reproduce the spatiotemporal structures and regularities in human trajectories. The study of human mobility is especially important for applications such as estimating migratory flows, traffic forecasting, urban planning, and epidemic modeling. In this survey, we review the approaches developed to reproduce various mobility patterns, with the main focus on recent developments. This review can be used both as an introduction to the fundamental modeling principles of human mobility, and as a collection of technical methods applicable to specific mobility-related problems. The review organizes the subject by differentiating between individual and population mobility and also between short-range and long-range mobility. Throughout the text the description of the theory is intertwined with real-world applications.

  20. The real-world navigator

    NASA Technical Reports Server (NTRS)

    Balabanovic, Marko; Becker, Craig; Morse, Sarah K.; Nourbakhsh, Illah R.

    1994-01-01

    The success of every mobile robot application hinges on the ability to navigate robustly in the real world. The problem of robust navigation is separable from the challenges faced by any particular robot application. We offer the Real-World Navigator as a solution architecture that includes a path planner, a map-based localizer, and a motion control loop that combines reactive avoidance modules with deliberate goal-based motion. Our architecture achieves a high degree of reliability by maintaining and reasoning about an explicit description of positional uncertainty. We provide two implementations of real-world robot systems that incorporate the Real-World Navigator. The Vagabond Project culminated in a robot that successfully navigated a portion of the Stanford University campus. The Scimmer project developed successful entries for the AIAA 1993 Robotics Competition, placing first in one of the two contests entered.

  1. Webizing mobile augmented reality content

    NASA Astrophysics Data System (ADS)

    Ahn, Sangchul; Ko, Heedong; Yoo, Byounghyun

    2014-01-01

    This paper presents a content structure for building mobile augmented reality (AR) applications in HTML5 to achieve a clean separation of the mobile AR content and the application logic for scaling as on the Web. We propose that the content structure contains the physical world as well as virtual assets for mobile AR applications as document object model (DOM) elements and that their behaviour and user interactions are controlled through DOM events by representing objects and places with a uniform resource identifier. Our content structure enables mobile AR applications to be seamlessly developed as normal HTML documents under the current Web eco-system.

  2. Benefits of dynamic mobility applications : preliminary estimates from the literature.

    DOT National Transportation Integrated Search

    2012-12-01

    This white paper examines the available quantitative information on the potential mobility benefits of the connected vehicle Dynamic Mobility Applications (DMA). This work will be refined as more and better estimates of benefits from mobility applica...

  3. Implementation of laser speckle contrast analysis as connection kit for mobile phone for assessment of skin blood flow

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Saknite, Inga; Spigulis, Janis

    2014-05-01

    Laser speckle contrast analysis (LASCA) offers a non-contact, full-field, and real-time mapping of capillary blood flow and can be considered as an alternative method to Laser Doppler perfusion imaging. LASCA technique has been implemented in several commercial instruments. However, these systems are still too expensive and bulky to be widely available. Several optical techniques have found new implementations as connection kits for mobile phones thus offering low cost screening devices. In this work we demonstrate simple implementation of LASCA imaging technique as connection kit for mobile phone for primary low-cost assessment of skin blood flow. Stabilized 650 nm and 532 nm laser diode modules were used for LASCA illumination. Dual wavelength illumination could provide additional information about skin hemoglobin and oxygenation level. The proposed approach was tested for arterial occlusion and heat test. Besides, blood flow maps of injured and provoked skin were demonstrated.

  4. ScaMo: Realisation of an OO-functional DSL for cross platform mobile applications development

    NASA Astrophysics Data System (ADS)

    Macos, Dragan; Solymosi, Andreas

    2013-10-01

    The software market is dynamically changing: the Internet is going mobile, the software applications are shifting from the desktop hardware onto the mobile devices. The largest markets are the mobile applications for iOS, Android and Windows Phone and for the purpose the typical programming languages include Objective-C, Java and C ♯. The realization of the native applications implies the integration of the developed software into the environments of mentioned mobile operating systems to enable the access to different hardware components of the devices: GPS module, display, GSM module, etc. This paper deals with the definition and possible implementation of an environment for the automatic application generation for multiple mobile platforms. It is based on a DSL for mobile application development, which includes the programming language Scala and a DSL defined in Scala. As part of a multi-stage cross-compiling algorithm, this language is translated into the language of the affected mobile platform. The advantage of our method lies in the expressiveness of the defined language and the transparent source code translation between different languages, which implies, for example, the advantages of debugging and development of the generated code.

  5. The prevalence and usage of mobile health applications among mental health patients in Saudi Arabia.

    PubMed

    Atallah, Nora; Khalifa, Mohamed; El Metwally, Ashraf; Househ, Mowafa

    2018-03-01

    Mobile health (mHealth) applications provide new methods of engagement with patients and can help patients manage their mental health condition. The main objective of this study is to explore the prevalence of the use of mobile health applications for mental health patients in Saudi Arabia. A total of 376 participants with depression and/or anxiety completed an online survey distributed by social networks which asked questions relating to mobile phone ownership, uses of health applications, and utilization patterns to track mental health related issues. Approximately, 46% of the participants reported running one or two healthcare related applications on their mobile phones. In all age groups, 64% of the participants used their mobile phones to access information related to their own health. Also, 64% of the participants expressed interest in using their own mobile phones to track and follow the progression of their depression and/or anxiety. Developing mobile health applications for Saudi mental health patients is needed since it can offer opportunities for patients, researchers, caregivers, and legislators to work together to improve the state of mental health care in Saudi Arabia. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Data Processing and Quality Evaluation of a Boat-Based Mobile Laser Scanning System

    PubMed Central

    Vaaja, Matti; Kukko, Antero; Kaartinen, Harri; Kurkela, Matti; Kasvi, Elina; Flener, Claude; Hyyppä, Hannu; Hyyppä, Juha; Järvelä, Juha; Alho, Petteri

    2013-01-01

    Mobile mapping systems (MMSs) are used for mapping topographic and urban features which are difficult and time consuming to measure with other instruments. The benefits of MMSs include efficient data collection and versatile usability. This paper investigates the data processing steps and quality of a boat-based mobile mapping system (BoMMS) data for generating terrain and vegetation points in a river environment. Our aim in data processing was to filter noise points, detect shorelines as well as points below water surface and conduct ground point classification. Previous studies of BoMMS have investigated elevation accuracies and usability in detection of fluvial erosion and deposition areas. The new findings concerning BoMMS data are that the improved data processing approach allows for identification of multipath reflections and shoreline delineation. We demonstrate the possibility to measure bathymetry data in shallow (0–1 m) and clear water. Furthermore, we evaluate for the first time the accuracy of the BoMMS ground points classification compared to manually classified data. We also demonstrate the spatial variations of the ground point density and assess elevation and vertical accuracies of the BoMMS data. PMID:24048340

  7. Data processing and quality evaluation of a boat-based mobile laser scanning system.

    PubMed

    Vaaja, Matti; Kukko, Antero; Kaartinen, Harri; Kurkela, Matti; Kasvi, Elina; Flener, Claude; Hyyppä, Hannu; Hyyppä, Juha; Järvelä, Juha; Alho, Petteri

    2013-09-17

    Mobile mapping systems (MMSs) are used for mapping topographic and urban features which are difficult and time consuming to measure with other instruments. The benefits of MMSs include efficient data collection and versatile usability. This paper investigates the data processing steps and quality of a boat-based mobile mapping system (BoMMS) data for generating terrain and vegetation points in a river environment. Our aim in data processing was to filter noise points, detect shorelines as well as points below water surface and conduct ground point classification. Previous studies of BoMMS have investigated elevation accuracies and usability in detection of fluvial erosion and deposition areas. The new findings concerning BoMMS data are that the improved data processing approach allows for identification of multipath reflections and shoreline delineation. We demonstrate the possibility to measure bathymetry data in shallow (0-1 m) and clear water. Furthermore, we evaluate for the first time the accuracy of the BoMMS ground points classification compared to manually classified data. We also demonstrate the spatial variations of the ground point density and assess elevation and vertical accuracies of the BoMMS data.

  8. Development of Mobile Mapping System for 3D Road Asset Inventory.

    PubMed

    Sairam, Nivedita; Nagarajan, Sudhagar; Ornitz, Scott

    2016-03-12

    Asset Management is an important component of an infrastructure project. A significant cost is involved in maintaining and updating the asset information. Data collection is the most time-consuming task in the development of an asset management system. In order to reduce the time and cost involved in data collection, this paper proposes a low cost Mobile Mapping System using an equipped laser scanner and cameras. First, the feasibility of low cost sensors for 3D asset inventory is discussed by deriving appropriate sensor models. Then, through calibration procedures, respective alignments of the laser scanner, cameras, Inertial Measurement Unit and GPS (Global Positioning System) antenna are determined. The efficiency of this Mobile Mapping System is experimented by mounting it on a truck and golf cart. By using derived sensor models, geo-referenced images and 3D point clouds are derived. After validating the quality of the derived data, the paper provides a framework to extract road assets both automatically and manually using techniques implementing RANSAC plane fitting and edge extraction algorithms. Then the scope of such extraction techniques along with a sample GIS (Geographic Information System) database structure for unified 3D asset inventory are discussed.

  9. Development of Mobile Mapping System for 3D Road Asset Inventory

    PubMed Central

    Sairam, Nivedita; Nagarajan, Sudhagar; Ornitz, Scott

    2016-01-01

    Asset Management is an important component of an infrastructure project. A significant cost is involved in maintaining and updating the asset information. Data collection is the most time-consuming task in the development of an asset management system. In order to reduce the time and cost involved in data collection, this paper proposes a low cost Mobile Mapping System using an equipped laser scanner and cameras. First, the feasibility of low cost sensors for 3D asset inventory is discussed by deriving appropriate sensor models. Then, through calibration procedures, respective alignments of the laser scanner, cameras, Inertial Measurement Unit and GPS (Global Positioning System) antenna are determined. The efficiency of this Mobile Mapping System is experimented by mounting it on a truck and golf cart. By using derived sensor models, geo-referenced images and 3D point clouds are derived. After validating the quality of the derived data, the paper provides a framework to extract road assets both automatically and manually using techniques implementing RANSAC plane fitting and edge extraction algorithms. Then the scope of such extraction techniques along with a sample GIS (Geographic Information System) database structure for unified 3D asset inventory are discussed. PMID:26985897

  10. A Test-Bed of Secure Mobile Cloud Computing for Military Applications

    DTIC Science & Technology

    2016-09-13

    searching databases. This kind of applications is a typical example of mobile cloud computing (MCC). MCC has lots of applications in the military...Release; Distribution Unlimited UU UU UU UU 13-09-2016 1-Aug-2014 31-Jul-2016 Final Report: A Test-bed of Secure Mobile Cloud Computing for Military...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Test-bed, Mobile Cloud Computing , Security, Military Applications REPORT

  11. Cyber Foraging for Improving Survivability of Mobile Systems

    DTIC Science & Technology

    2016-02-10

    environments—such as dynamic context, limited computing resources, disconnected- intermittent - limited (DIL) network connectivity, and high levels of stress...environments, such as dynamic context, limited computing resources, disconnected- intermittent -limited (DIL) network connectivity, and high levels of...Table 1: Mapping of Cloudlet Features to Survivability Requirements Threats Intermittent Cloudlet- Enterprise Connectivity Mobility Limited

  12. 75 FR 11468 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ...] Elevation in meters (MSL) Modified Mobile County, Alabama, and Incorporated Areas Docket No.: FEMA-B-7732..., rounded to the nearest 0.1 meter. ADDRESSES City of Mobile Maps are available for inspection at 205... Incorporated Areas Docket No.: FEMA-B-1022 Bear Creek 9,400 feet upstream of +266 Unincorporated Areas of Weiss...

  13. A Mapping of the Federal Financial Institutions Examination Council (FFIEC) Cybersecurity Assessment Tool (CAT) to the Cyber Resilience Review (CRR)

    DTIC Science & Technology

    2016-10-01

    rooted detection). (*N/A if mobile devices are not used.) Gap Mobile devices connecting to the corporate network for storing and accessing...actions, resources, and time parameters. SCM:G1.Q1 The corporate disaster recovery, business continuity, and crisis management plans have

  14. Maps & Apps: Mobile Media Marketing Education for Food and Farm Entrepreneurs

    ERIC Educational Resources Information Center

    Fox, Julie; Leeds, Rob; Barrett, Eric

    2014-01-01

    With an increasing number of consumers using smartphones, tablets, and other mobile devices to find and interact with local businesses, Ohio State University Extension developed a new curriculum aimed at improving market access for food and farm entrepreneurs. The literature review, curriculum framework, and lessons learned shared in this article…

  15. Mapping the Daily Media Round: Novel Methods for Understanding Families' Mobile Technology Use

    ERIC Educational Resources Information Center

    Taylor, Katie Headrick; Takeuchi, Lori; Stevens, Reed

    2018-01-01

    The pervasiveness of mobile devices in families' homes has dramatically changed the physical and temporal arrangement of co-viewing media content; the representative image of American families seated around a TV set is an anachronism. But understanding and describing contemporary co-participation arrangements around digital media is challenging…

  16. 47 CFR 90.351 - Location and Monitoring Service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of mobile radio units. LMS licensees authorized to operate a system in the 902-928 MHz band may serve... SERVICES PRIVATE LAND MOBILE RADIO SERVICES Intelligent Transportation Systems Radio Service § 90.351... description of the manner in which the system will operate, including a map or diagram. (2) The necessary or...

  17. An Interactive Concept Map Approach to Supporting Mobile Learning Activities for Natural Science Courses

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Wu, Po-Han; Ke, Hui-Ru

    2011-01-01

    Mobile and wireless communication technologies not only enable anytime and anywhere learning, but also provide the opportunity to develop learning environments that combine real-world and digital-world resources. Nevertheless, researchers have indicated that, without effective tools for helping students organize their observations in the field,…

  18. 77 FR 38803 - Mobility Fund Phase I Auction Updated Data For Auction 901

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... FEDERAL COMMUNICATIONS COMMISSION [AU Docket No. 12-25; DA 12-990] Mobility Fund Phase I Auction Updated Data For Auction 901 AGENCY: Federal Communications Commission. ACTION: Notice. SUMMARY: In this... blocks. The map is a visual representation of data from the Attachment A files, which contain more...

  19. Mobile Learning Application Interfaces: First Steps to a Cognitive Load Aware System

    ERIC Educational Resources Information Center

    Deegan, Robin

    2013-01-01

    Mobile learning is a cognitively demanding application and more frequently the ubiquitous nature of mobile computing means that mobile devices are used in cognitively demanding environments. This paper examines the nature of this use of mobile devices from a Learning, Usability and Cognitive Load Theory perspective. It suggests scenarios where…

  20. A Simultaneous Mobile E-Learning Environment and Application

    ERIC Educational Resources Information Center

    Karal, Hasan; Bahcekapili, Ekrem; Yildiz, Adil

    2010-01-01

    The purpose of the present study was to design a mobile learning environment that enables the use of a teleconference application used in simultaneous e-learning with mobile devices and to evaluate this mobile learning environment based on students' views. With the mobile learning environment developed in the study, the students are able to follow…

  1. DoD Application Store: Enabling C2 Agility?

    DTIC Science & Technology

    2014-06-01

    Framework, will include automated delivery of software patches, web applications, widgets and mobile application packages. The envisioned DoD...Marketplace within the Ozone Widget Framework, will include automated delivery of software patches, web applications, widgets and mobile application...current needs. DoD has started to make inroads within this environment with several Programs of Record (PoR) embracing widgets and other mobile

  2. Regulatory frameworks for mobile medical applications.

    PubMed

    Censi, Federica; Mattei, Eugenio; Triventi, Michele; Calcagnini, Giovanni

    2015-05-01

    A mobile application (app) is a software program that runs on mobile communication devices such as a smartphone. The concept of a mobile medical app has gained popularity and diffusion but its reference regulatory context has raised discussion and concerns. Theoretically, a mobile app can be developed and uploaded easily by any person or entity. Thus, if an app can have some effects on the health of the users, it is mandatory to identify its reference regulatory context and the applicable prescriptions.

  3. Consciously Thinking about Consciousness

    ERIC Educational Resources Information Center

    Tribus, Myron

    2004-01-01

    Merker hypothesized that because mobile creatures move around and must constantly readjust their map of the world and because the demands are so great for continually processing information for a map of the world, evolution has created a space in the brain where such preprocessing has been eliminated. This space he calls consciousness with the…

  4. The use of mobile learning application to the fundament of digital electronics course

    NASA Astrophysics Data System (ADS)

    Rakhmawati, L.; Firdha, A.

    2018-01-01

    A new trend in e-learning is known as Mobile Learning. Learning through mobile phones have become part of the educative process. Thus, the purposes of this study are to develop a mobile application for the Fundament of Digital Electronics course that consists of number systems operation, logic gates, and Boolean Algebra, and to assess the readiness, perceptions, and effectiveness of students in the use of mobile devices for learning in the classroom. This research uses Research and Development (R&D) method. The design used in this research, by doing treatment in one class and observing by using Android-based mobile application instructional media. The result obtained from this research shows that the test has 80 % validity aspect, 82 % of the user from senior high school students gives a positive response in using the application of mobile learning, and based on the result of post-test, 90, 90% students passed the exam. At last, it can be concluded that the use of the mobile learning application makes the learning process more effective when it is used in the teaching-learning process.

  5. Application-oriented offloading in heterogeneous networks for mobile cloud computing

    NASA Astrophysics Data System (ADS)

    Tseng, Fan-Hsun; Cho, Hsin-Hung; Chang, Kai-Di; Li, Jheng-Cong; Shih, Timothy K.

    2018-04-01

    Nowadays Internet applications have become more complicated that mobile device needs more computing resources for shorter execution time but it is restricted to limited battery capacity. Mobile cloud computing (MCC) is emerged to tackle the finite resource problem of mobile device. MCC offloads the tasks and jobs of mobile devices to cloud and fog environments by using offloading scheme. It is vital to MCC that which task should be offloaded and how to offload efficiently. In the paper, we formulate the offloading problem between mobile device and cloud data center and propose two algorithms based on application-oriented for minimum execution time, i.e. the Minimum Offloading Time for Mobile device (MOTM) algorithm and the Minimum Execution Time for Cloud data center (METC) algorithm. The MOTM algorithm minimizes offloading time by selecting appropriate offloading links based on application categories. The METC algorithm minimizes execution time in cloud data center by selecting virtual and physical machines with corresponding resource requirements of applications. Simulation results show that the proposed mechanism not only minimizes total execution time for mobile devices but also decreases their energy consumption.

  6. Information Sharing Modalities for Mobile Ad-Hoc Networks

    NASA Astrophysics Data System (ADS)

    de Spindler, Alexandre; Grossniklaus, Michael; Lins, Christoph; Norrie, Moira C.

    Current mobile phone technologies have fostered the emergence of a new generation of mobile applications. Such applications allow users to interact and share information opportunistically when their mobile devices are in physical proximity or close to fixed installations. It has been shown how mobile applications such as collaborative filtering and location-based services can take advantage of ad-hoc connectivity to use physical proximity as a filter mechanism inherent to the application logic. We discuss the different modes of information sharing that arise in such settings based on the models of persistence and synchronisation. We present a platform that supports the development of applications that can exploit these modes of ad-hoc information sharing and, by means of an example, show how such an application can be realised based on the supported event model.

  7. Assessing the initial adaptability and impact of a mobile dictation and reporting system in the radiology department of an academic hospital

    NASA Astrophysics Data System (ADS)

    Gali, Raja L.; Dave, Jaydev K.

    2017-03-01

    Mobile Radiologist 360, rolled out as part of the voice dictation system upgrade from Nuance Powerscribe 5.0 to PS360 allows an attending radiologist to edit and sign-off a report assigned by a trainee or that has been started by the radiologist on a workstation. The purpose of this study was to evaluate the adoptability and impact of this application. Report turnaround time data was extracted from the RIS (GE-Centricity RIS-IC) for 60 days before- (period-1) and 60 days after- (period-2) the application implementation and then, for 60 days after end of period-2 (period-3). Adoptability of the application was evaluated using two metrics; first, the number of attending radiologists who signed-off reports using the application in periods 2 and 3, and second, the proportion of reports signed-off by the top five users of the mobile application using the application. Impact of the application was evaluated by comparing the time from initial dictation to final sign-off (time_PF) for the top five users of the mobile application to the time_PF by other five radiologists who did not use the application. 41% radiologists used the mobile application at least once during the study period; the proportion of cases signed-off using the mobile application ranged from 1% to 20%. ANOVA revealed no statistically significant effect of the mobile application system on time_PF (p=0.842). In conclusion, there was low initial adoptability and no impact of the mobile dictation and reporting system in reducing the time from initial dictation to final sign-off on a radiology report.

  8. Combining non selective gas sensors on a mobile robot for identification and mapping of multiple chemical compounds.

    PubMed

    Bennetts, Victor Hernandez; Schaffernicht, Erik; Pomareda, Victor; Lilienthal, Achim J; Marco, Santiago; Trincavelli, Marco

    2014-09-17

    In this paper, we address the task of gas distribution modeling in scenarios where multiple heterogeneous compounds are present. Gas distribution modeling is particularly useful in emission monitoring applications where spatial representations of the gaseous patches can be used to identify emission hot spots. In realistic environments, the presence of multiple chemicals is expected and therefore, gas discrimination has to be incorporated in the modeling process. The approach presented in this work addresses the task of gas distribution modeling by combining different non selective gas sensors. Gas discrimination is addressed with an open sampling system, composed by an array of metal oxide sensors and a probabilistic algorithm tailored to uncontrolled environments. For each of the identified compounds, the mapping algorithm generates a calibrated gas distribution model using the classification uncertainty and the concentration readings acquired with a photo ionization detector. The meta parameters of the proposed modeling algorithm are automatically learned from the data. The approach was validated with a gas sensitive robot patrolling outdoor and indoor scenarios, where two different chemicals were released simultaneously. The experimental results show that the generated multi compound maps can be used to accurately predict the location of emitting gas sources.

  9. Developing a smartphone software package for predicting atmospheric pollutant concentrations at mobile locations.

    PubMed

    Larkin, Andrew; Williams, David E; Kile, Molly L; Baird, William M

    2015-06-01

    There is considerable evidence that exposure to air pollution is harmful to health. In the U.S., ambient air quality is monitored by Federal and State agencies for regulatory purposes. There are limited options, however, for people to access this data in real-time which hinders an individual's ability to manage their own risks. This paper describes a new software package that models environmental concentrations of fine particulate matter (PM 2.5 ), coarse particulate matter (PM 10 ), and ozone concentrations for the state of Oregon and calculates personal health risks at the smartphone's current location. Predicted air pollution risk levels can be displayed on mobile devices as interactive maps and graphs color-coded to coincide with EPA air quality index (AQI) categories. Users have the option of setting air quality warning levels via color-coded bars and were notified whenever warning levels were exceeded by predicted levels within 10 km. We validated the software using data from participants as well as from simulations which showed that the application was capable of identifying spatial and temporal air quality trends. This unique application provides a potential low-cost technology for reducing personal exposure to air pollution which can improve quality of life particularly for people with health conditions, such as asthma, that make them more susceptible to these hazards.

  10. A Mobile Sensor Network to Map CO2 in Urban Environments

    NASA Astrophysics Data System (ADS)

    Lee, J.; Christen, A.; Nesic, Z.; Ketler, R.

    2014-12-01

    Globally, an estimated 80% of all fuel-based CO2 emissions into the atmosphere are attributable to cities, but there is still a lack of tools to map, visualize and monitor emissions to the scales at which emissions reduction strategies can be implemented - the local and urban scale. Mobile CO2 sensors, such as those attached to taxis and other existing mobile platforms, may be a promising way to observe and map CO2 mixing ratios across heterogenous urban environments with a limited number of sensors. Emerging modular open source technologies, and inexpensive compact sensor components not only enable rapid prototyping and replication, but also are allowing for the miniaturization and mobilization of traditionally fixed sensor networks. We aim to optimize the methods and technologies for monitoring CO2 in cities using a network of CO2 sensors deployable on vehicles and bikes. Our sensor technology is contained in a compact weather-proof case (35.8cm x 27.8cm x 11.8cm), powered independently by battery or by car, and includes the Li-Cor Li-820 infrared gas analyzer (Licor Inc, lincoln, NB, USA), Arduino Mega microcontroller (Arduino CC, Italy) and Adafruit GPS (Adafruit Technologies, NY, USA), and digital air temperature thermometer which measure CO2 mixing ratios (ppm), geolocation and speed, pressure and temperature, respectively at 1-second intervals. With the deployment of our sensor technology, we will determine if such a semi-autonomous mobile approach to monitoring CO2 in cities can determine excess urban CO2 mixing ratios (i.e. the 'urban CO2 dome') when compared to values measured at a fixed, remote background site. We present results from a pilot study in Vancouver, BC, where the a network of our new sensors was deployed both in fixed network and in a mobile campaign and examine the spatial biases of the two methods.

  11. Proceedings of the Fourth International Mobile Satellite Conference (IMSC 1995)

    NASA Technical Reports Server (NTRS)

    Rigley, Jack R. (Compiler); Estabrook, Polly (Compiler); Reekie, D. Hugh M. (Editor)

    1995-01-01

    The theme to the 1995 International Mobile Satellite Conference was 'Mobile Satcom Comes of Age'. The sessions included Modulation, Coding, and Multiple Access; Hybrid Networks - 1; Spacecraft Technology; propagation; Applications and Experiments - 1; Advanced System Concepts and Analysis; Aeronautical Mobile Satellite Communications; Mobile Terminal Antennas; Mobile Terminal Technology; Current and Planned Systems; Direct Broadcast Satellite; The Use of CDMA for LEO and ICO Mobile Satellite Systems; Hybrid Networks - 2; and Applications and Experiments - 2.

  12. Measurable realistic image-based 3D mapping

    NASA Astrophysics Data System (ADS)

    Liu, W.; Wang, J.; Wang, J. J.; Ding, W.; Almagbile, A.

    2011-12-01

    Maps with 3D visual models are becoming a remarkable feature of 3D map services. High-resolution image data is obtained for the construction of 3D visualized models.The3D map not only provides the capabilities of 3D measurements and knowledge mining, but also provides the virtual experienceof places of interest, such as demonstrated in the Google Earth. Applications of 3D maps are expanding into the areas of architecture, property management, and urban environment monitoring. However, the reconstruction of high quality 3D models is time consuming, and requires robust hardware and powerful software to handle the enormous amount of data. This is especially for automatic implementation of 3D models and the representation of complicated surfacesthat still need improvements with in the visualisation techniques. The shortcoming of 3D model-based maps is the limitation of detailed coverage since a user can only view and measure objects that are already modelled in the virtual environment. This paper proposes and demonstrates a 3D map concept that is realistic and image-based, that enables geometric measurements and geo-location services. Additionally, image-based 3D maps provide more detailed information of the real world than 3D model-based maps. The image-based 3D maps use geo-referenced stereo images or panoramic images. The geometric relationships between objects in the images can be resolved from the geometric model of stereo images. The panoramic function makes 3D maps more interactive with users but also creates an interesting immersive circumstance. Actually, unmeasurable image-based 3D maps already exist, such as Google street view, but only provide virtual experiences in terms of photos. The topographic and terrain attributes, such as shapes and heights though are omitted. This paper also discusses the potential for using a low cost land Mobile Mapping System (MMS) to implement realistic image 3D mapping, and evaluates the positioning accuracy that a measureable realistic image-based (MRI) system can produce. The major contribution here is the implementation of measurable images on 3D maps to obtain various measurements from real scenes.

  13. COMBAT: mobile-Cloud-based cOmpute/coMmunications infrastructure for BATtlefield applications

    NASA Astrophysics Data System (ADS)

    Soyata, Tolga; Muraleedharan, Rajani; Langdon, Jonathan; Funai, Colin; Ames, Scott; Kwon, Minseok; Heinzelman, Wendi

    2012-05-01

    The amount of data processed annually over the Internet has crossed the zetabyte boundary, yet this Big Data cannot be efficiently processed or stored using today's mobile devices. Parallel to this explosive growth in data, a substantial increase in mobile compute-capability and the advances in cloud computing have brought the state-of-the- art in mobile-cloud computing to an inflection point, where the right architecture may allow mobile devices to run applications utilizing Big Data and intensive computing. In this paper, we propose the MObile Cloud-based Hybrid Architecture (MOCHA), which formulates a solution to permit mobile-cloud computing applications such as object recognition in the battlefield by introducing a mid-stage compute- and storage-layer, called the cloudlet. MOCHA is built on the key observation that many mobile-cloud applications have the following characteristics: 1) they are compute-intensive, requiring the compute-power of a supercomputer, and 2) they use Big Data, requiring a communications link to cloud-based database sources in near-real-time. In this paper, we describe the operation of MOCHA in battlefield applications, by formulating the aforementioned mobile and cloudlet to be housed within a soldier's vest and inside a military vehicle, respectively, and enabling access to the cloud through high latency satellite links. We provide simulations using the traditional mobile-cloud approach as well as utilizing MOCHA with a mid-stage cloudlet to quantify the utility of this architecture. We show that the MOCHA platform for mobile-cloud computing promises a future for critical battlefield applications that access Big Data, which is currently not possible using existing technology.

  14. Utilizing mobile technology in GIS education: A case study of using iPad and iBooks in fieldwork and location based exercises

    NASA Astrophysics Data System (ADS)

    Chuang, Yi-Ting

    The advancement of mobile computing technology has provided diverse way for education. Combination of mobile devices and GIS tools has become a trend in many geospatial technology applications (i.e., Google Maps application on smartphones). This research aims to develop an iBook prototype (a GIS textbook) for GIS education on Apple iPads and to evaluate the effectiveness of adopting the GIS iBook in classes and fieldwork exercises. We conducted the evaluation tests in two GIS courses (GEOG104 and GEOG381) in Fall 2014 at San Diego State University. There are two main research questions in this study: (1) How to assess and evaluate the effectiveness of location-based learning exercises (from iBook) and fieldwork exercises for first-time GIS students? (2) What were major technical challenges and opportunities to utilize mobile device and mobile technology in GIS education? The procedures of developing and evaluating the prototype of the GIS iBook include creating two new chapters (chapter three: Wander the World through Remote Sensing Data and chapter four: Internet and Mobile GIS), interviewing five educators from high schools and community colleges, and improving the contents of the GIS iBook after the interview. There were 31 students who tested the GIS iBook and did a fieldwork exercise with iPads. The 31 students were required to finish five questionnaires after the exercise to express their user experiences and thoughts about the GIS iBook. Based on the result of questionnaires, most students preferred to take GIS classes with the free GIS iBook and thought fieldwork exercise can help their learning. The students also performed better in knowledge oriented survey after reading the GIS iBook. This research also adopts the SWOT analysis method to evaluate the prototype of the GIS iBook. The result of the SWOT analysis indicates that utilizing mobile device in GIS education does have a great potential value in enhancing student's understanding. The strengths of utilizing mobile device in GIS education include portability, easy update contents and abundant free development resources, while the weaknesses include distracting multimedia widgets, lack of Internet access, and security issues. The opportunities of SWOT analysis include financial plan for iPads and lack of competitors, while the threats include higher price and incompatibility of iBooks on other tablet computers. The major limitations and key challenges are limited survey time, small sample size, and technical difficulties of developing the GIS iBook.

  15. The analysis of visual variables for use in the cartographic design of point symbols for mobile Augmented Reality applications

    NASA Astrophysics Data System (ADS)

    Halik, Łukasz

    2012-11-01

    The objective of the present deliberations was to systematise our knowledge of static visual variables used to create cartographic symbols, and also to analyse the possibility of their utilisation in the Augmented Reality (AR) applications on smartphone-type mobile devices. This was accomplished by combining the visual variables listed over the years by different researchers. Research approach was to determine the level of usefulness of particular characteristics of visual variables such as selective, associative, quantitative and order. An attempt was made to provide an overview of static visual variables and to describe the AR system which is a new paradigm of the user interface. Changing the approach to the presentation of point objects is caused by applying different perspective in the observation of objects (egocentric view) than it is done on traditional analogue maps (geocentric view). Presented topics will refer to the fast-developing field of cartography, namely mobile cartography. Particular emphasis will be put on smartphone-type mobile devices and their applicability in the process of designing cartographic symbols. Celem artykułu było usystematyzowanie wiedzy na temat statycznych zmiennych wizualnych, które sa kluczowymi składnikami budujacymi sygnatury kartograficzne. Podjeto próbe zestawienia zmiennych wizualnych wyodrebnionych przez kartografów na przestrzeni ostatnich piecdziesieciu lat, zaczynajac od klasyfikacji przedstawionej przez J. Bertin’a. Dokonano analizy stopnia uzytecznosci poszczególnych zmiennych graficznych w aspekcie ich wykorzystania w projektowaniu znaków punktowych dla mobilnych aplikacji tworzonych w technologii Rzeczywistosci Rozszerzonej (Augmented Reality). Zmienne poddano analizie pod wzgledem czterech charakterystyk: selektywnosci, skojarzeniowosci, odzwierciedlenia ilosci oraz porzadku. W artykule zwrócono uwage na odmienne zastosowanie perspektywy pomiedzy tradycyjnymi analogowymi mapami (geocentrycznosc) a aplikacjami tworzonymi w technologii Rozszerzonej Rzeczywistosci (egocentrycznosc). Tresci prezentowane w pracy dotycza szybko rozwijajacej sie gałezi kartografii - kartografii mobilnej. Dodatkowy nacisk połozony został na próbe implementacji załozen projektowania punktowych znaków kartograficznych na urzadzenia mobilne typu smartphone.

  16. A web-based screening tool for near-port air quality assessments

    PubMed Central

    Isakov, Vlad; Barzyk, Timothy M.; Smith, Elizabeth R.; Arunachalam, Saravanan; Naess, Brian; Venkatram, Akula

    2018-01-01

    The Community model for near-PORT applications (C-PORT) is a screening tool with an intended purpose of calculating differences in annual averaged concentration patterns and relative contributions of various source categories over the spatial domain within about 10 km of the port. C-PORT can inform decision-makers and concerned citizens about local air quality due to mobile source emissions related to commercial port activities. It allows users to visualize and evaluate different planning scenarios, helping them identify the best alternatives for making long-term decisions that protect community health and sustainability. The web-based, easy-to-use interface currently includes data from 21 seaports primarily in the Southeastern U.S., and has a map-based interface based on Google Maps. The tool was developed to visualize and assess changes in air quality due to changes in emissions and/or meteorology in order to analyze development scenarios, and is not intended to support or replace any regulatory models or programs. PMID:29681760

  17. Geospatial Technology in Disease Mapping, E- Surveillance and Health Care for Rural Population in South India

    NASA Astrophysics Data System (ADS)

    Praveenkumar, B. A.; Suresh, K.; Nikhil, A.; Rohan, M.; Nikhila, B. S.; Rohit, C. K.; Srinivas, A.

    2014-11-01

    Providing Healthcare to rural population has been a challenge to the medical service providers especially in developing countries. For this to be effective, scalable and sustainable, certain strategic decisions have to be taken during the planning phase. Also, there is a big gap between the services available and the availability of doctors and medical resources in rural areas. Use of Information Technology can aid this deficiency to a good extent. In this paper, a mobile application has been developed to gather data from the field. A cloud based interface has been developed to store the data in the cloud for effective usage and management of the data. A decision tree based solution developed in this paper helps in diagnosing a patient based on his health parameters. Interactive geospatial maps have been developed to provide effective data visualization facility. This will help both the user community as well as decision makers to carry out long term strategy planning.

  18. A noise resistant symmetric key cryptosystem based on S8 S-boxes and chaotic maps

    NASA Astrophysics Data System (ADS)

    Hussain, Iqtadar; Anees, Amir; Aslam, Muhammad; Ahmed, Rehan; Siddiqui, Nasir

    2018-04-01

    In this manuscript, we have proposed an encryption algorithm to encrypt any digital data. The proposed algorithm is primarily based on the substitution-permutation in which the substitution process is performed by the S 8 Substitution boxes. The proposed algorithm incorporates three different chaotic maps. We have analysed the behaviour of chaos by secure communication in great length, and accordingly, we have applied those chaotic sequences in the proposed encryption algorithm. The simulation and statistical results revealed that the proposed encryption scheme is secure against different attacks. Moreover, the encryption scheme can tolerate the channel noise as well; if the encrypted data is corrupted by the unauthenticated user or by the channel noise, the decryption can still be successfully done with some distortion. The overall results confirmed that the presented work has good cryptographic features, low computational complexity and resistant to the channel noise which makes it suitable for low profile mobile applications.

  19. Integrating Machine Learning into a Crowdsourced Model for Earthquake-Induced Damage Assessment

    NASA Technical Reports Server (NTRS)

    Rebbapragada, Umaa; Oommen, Thomas

    2011-01-01

    On January 12th, 2010, a catastrophic 7.0M earthquake devastated the country of Haiti. In the aftermath of an earthquake, it is important to rapidly assess damaged areas in order to mobilize the appropriate resources. The Haiti damage assessment effort introduced a promising model that uses crowdsourcing to map damaged areas in freely available remotely-sensed data. This paper proposes the application of machine learning methods to improve this model. Specifically, we apply work on learning from multiple, imperfect experts to the assessment of volunteer reliability, and propose the use of image segmentation to automate the detection of damaged areas. We wrap both tasks in an active learning framework in order to shift volunteer effort from mapping a full catalog of images to the generation of high-quality training data. We hypothesize that the integration of machine learning into this model improves its reliability, maintains the speed of damage assessment, and allows the model to scale to higher data volumes.

  20. Brief report: Mobility and circular migration in Lesotho: implications for transmission, treatment, and control of a severe HIV epidemic.

    PubMed

    Palk, Laurence; Blower, Sally

    2015-04-15

    We analyzed georeferenced data on mobility and HIV infection from the 2009 Demographic and Health Survey of Lesotho. We found ∼50% of the population traveled in the preceding year. By constructing gender-specific mobility maps, we discovered that travel is highest in the urban areas bordering South Africa and in the mountainous interior of the country. For both genders, increased mobility was associated with increased levels of "recent" sexual behavior. Notably, mobility was only associated with an increased risk of HIV infection for men who traveled frequently. We discuss the implications of our results for designing effective treatment programs and HIV interventions.

  1. A mobile agent-based moving objects indexing algorithm in location based service

    NASA Astrophysics Data System (ADS)

    Fang, Zhixiang; Li, Qingquan; Xu, Hong

    2006-10-01

    This paper will extends the advantages of location based service, specifically using their ability to management and indexing the positions of moving object, Moreover with this objective in mind, a mobile agent-based moving objects indexing algorithm is proposed in this paper to efficiently process indexing request and acclimatize itself to limitation of location based service environment. The prominent feature of this structure is viewing moving object's behavior as the mobile agent's span, the unique mapping between the geographical position of moving objects and span point of mobile agent is built to maintain the close relationship of them, and is significant clue for mobile agent-based moving objects indexing to tracking moving objects.

  2. Classification of Mobile Laser Scanning Point Clouds from Height Features

    NASA Astrophysics Data System (ADS)

    Zheng, M.; Lemmens, M.; van Oosterom, P.

    2017-09-01

    The demand for 3D maps of cities and road networks is steadily growing and mobile laser scanning (MLS) systems are often the preferred geo-data acquisition method for capturing such scenes. Because MLS systems are mounted on cars or vans they can acquire billions of points of road scenes within a few hours of survey. Manual processing of point clouds is labour intensive and thus time consuming and expensive. Hence, the need for rapid and automated methods for 3D mapping of dense point clouds is growing exponentially. The last five years the research on automated 3D mapping of MLS data has tremendously intensified. In this paper, we present our work on automated classification of MLS point clouds. In the present stage of the research we exploited three features - two height components and one reflectance value, and achieved an overall accuracy of 73 %, which is really encouraging for further refining our approach.

  3. Unsupervised and self-mapping category formation and semantic object recognition for mobile robot vision used in an actual environment

    NASA Astrophysics Data System (ADS)

    Madokoro, H.; Tsukada, M.; Sato, K.

    2013-07-01

    This paper presents an unsupervised learning-based object category formation and recognition method for mobile robot vision. Our method has the following features: detection of feature points and description of features using a scale-invariant feature transform (SIFT), selection of target feature points using one class support vector machines (OC-SVMs), generation of visual words using self-organizing maps (SOMs), formation of labels using adaptive resonance theory 2 (ART-2), and creation and classification of categories on a category map of counter propagation networks (CPNs) for visualizing spatial relations between categories. Classification results of dynamic images using time-series images obtained using two different-size robots and according to movements respectively demonstrate that our method can visualize spatial relations of categories while maintaining time-series characteristics. Moreover, we emphasize the effectiveness of our method for category formation of appearance changes of objects.

  4. A Design of Irregular Grid Map for Large-Scale Wi-Fi LAN Fingerprint Positioning Systems

    PubMed Central

    Kim, Jae-Hoon; Min, Kyoung Sik; Yeo, Woon-Young

    2014-01-01

    The rapid growth of mobile communication and the proliferation of smartphones have drawn significant attention to location-based services (LBSs). One of the most important factors in the vitalization of LBSs is the accurate position estimation of a mobile device. The Wi-Fi positioning system (WPS) is a new positioning method that measures received signal strength indication (RSSI) data from all Wi-Fi access points (APs) and stores them in a large database as a form of radio fingerprint map. Because of the millions of APs in urban areas, radio fingerprints are seriously contaminated and confused. Moreover, the algorithmic advances for positioning face computational limitation. Therefore, we present a novel irregular grid structure and data analytics for efficient fingerprint map management. The usefulness of the proposed methodology is presented using the actual radio fingerprint measurements taken throughout Seoul, Korea. PMID:25302315

  5. A design of irregular grid map for large-scale Wi-Fi LAN fingerprint positioning systems.

    PubMed

    Kim, Jae-Hoon; Min, Kyoung Sik; Yeo, Woon-Young

    2014-01-01

    The rapid growth of mobile communication and the proliferation of smartphones have drawn significant attention to location-based services (LBSs). One of the most important factors in the vitalization of LBSs is the accurate position estimation of a mobile device. The Wi-Fi positioning system (WPS) is a new positioning method that measures received signal strength indication (RSSI) data from all Wi-Fi access points (APs) and stores them in a large database as a form of radio fingerprint map. Because of the millions of APs in urban areas, radio fingerprints are seriously contaminated and confused. Moreover, the algorithmic advances for positioning face computational limitation. Therefore, we present a novel irregular grid structure and data analytics for efficient fingerprint map management. The usefulness of the proposed methodology is presented using the actual radio fingerprint measurements taken throughout Seoul, Korea.

  6. Technology Review for Mobile Multimedia Learning Environments

    ERIC Educational Resources Information Center

    Styliaras, Georgios

    2015-01-01

    Nowadays, the technological advancement in mobile devices has made possible the development of hypermedia applications that exploit their features. A potential application domain for mobile devices is multimedia educational applications and modules. Such modules may be shared, commented and further reused under other circumstances through the…

  7. Mobile Applications' Impact on Student Performance and Satisfaction

    ERIC Educational Resources Information Center

    Alqahtani, Maha; Mohammad, Heba

    2015-01-01

    Mobile applications are rapidly growing in importance and can be used for various purposes. They had been used widely in education. One of the educational purposes for which mobile applications can be used is learning the right way to read and pronounce the verses of the Holy Quran. There are many applications that translate the Quran into several…

  8. Application of Mobile-ip to Space and Aeronautical Networks

    NASA Technical Reports Server (NTRS)

    Leung, Kent; Shell, Dan; Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AAT-F), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This paper describes mobile-ip and mobile routers--in particular, the features, capabilities, and initial performance of the mobile router are presented. The application of mobile-router technology to NASA's space and aeronautics programs is also discussed.

  9. A framework for stakeholder identification in concept mapping and health research: a novel process and its application to older adult mobility and the built environment.

    PubMed

    Schiller, Claire; Winters, Meghan; Hanson, Heather M; Ashe, Maureen C

    2013-05-02

    Stakeholders, as originally defined in theory, are groups or individual who can affect or are affected by an issue. Stakeholders are an important source of information in health research, providing critical perspectives and new insights on the complex determinants of health. The intersection of built and social environments with older adult mobility is an area of research that is fundamentally interdisciplinary and would benefit from a better understanding of stakeholder perspectives. Although a rich body of literature surrounds stakeholder theory, a systematic process for identifying health stakeholders in practice does not exist. This paper presents a framework of stakeholders related to older adult mobility and the built environment, and further outlines a process for systematically identifying stakeholders that can be applied in other health contexts, with a particular emphasis on concept mapping research. Informed by gaps in the relevant literature we developed a framework for identifying and categorizing health stakeholders. The framework was created through a novel iterative process of stakeholder identification and categorization. The development entailed a literature search to identify stakeholder categories, representation of identified stakeholders in a visual chart, and correspondence with expert informants to obtain practice-based insight. The three-step, iterative creation process progressed from identifying stakeholder categories, to identifying specific stakeholder groups and soliciting feedback from expert informants. The result was a stakeholder framework comprised of seven categories with detailed sub-groups. The main categories of stakeholders were, (1) the Public, (2) Policy makers and governments, (3) Research community, (4) Practitioners and professionals, (5) Health and social service providers, (6) Civil society organizations, and (7) Private business. Stakeholders related to older adult mobility and the built environment span many disciplines and realms of practice. Researchers studying this issue may use the detailed stakeholder framework process we present to identify participants for future projects. Health researchers pursuing stakeholder-based projects in other contexts are encouraged to incorporate this process of stakeholder identification and categorization to ensure systematic consideration of relevant perspectives in their work.

  10. A framework for stakeholder identification in concept mapping and health research: a novel process and its application to older adult mobility and the built environment

    PubMed Central

    2013-01-01

    Background Stakeholders, as originally defined in theory, are groups or individual who can affect or are affected by an issue. Stakeholders are an important source of information in health research, providing critical perspectives and new insights on the complex determinants of health. The intersection of built and social environments with older adult mobility is an area of research that is fundamentally interdisciplinary and would benefit from a better understanding of stakeholder perspectives. Although a rich body of literature surrounds stakeholder theory, a systematic process for identifying health stakeholders in practice does not exist. This paper presents a framework of stakeholders related to older adult mobility and the built environment, and further outlines a process for systematically identifying stakeholders that can be applied in other health contexts, with a particular emphasis on concept mapping research. Methods Informed by gaps in the relevant literature we developed a framework for identifying and categorizing health stakeholders. The framework was created through a novel iterative process of stakeholder identification and categorization. The development entailed a literature search to identify stakeholder categories, representation of identified stakeholders in a visual chart, and correspondence with expert informants to obtain practice-based insight. Results The three-step, iterative creation process progressed from identifying stakeholder categories, to identifying specific stakeholder groups and soliciting feedback from expert informants. The result was a stakeholder framework comprised of seven categories with detailed sub-groups. The main categories of stakeholders were, (1) the Public, (2) Policy makers and governments, (3) Research community, (4) Practitioners and professionals, (5) Health and social service providers, (6) Civil society organizations, and (7) Private business. Conclusions Stakeholders related to older adult mobility and the built environment span many disciplines and realms of practice. Researchers studying this issue may use the detailed stakeholder framework process we present to identify participants for future projects. Health researchers pursuing stakeholder-based projects in other contexts are encouraged to incorporate this process of stakeholder identification and categorization to ensure systematic consideration of relevant perspectives in their work. PMID:23639179

  11. Innovation through Wearable Sensors to Collect Real-Life Data among Pediatric Patients with Cardiometabolic Risk Factors

    PubMed Central

    Yan, Kestens; Tracie, Barnett; Marie-Ève, Mathieu; Mélanie, Henderson; Jean-Luc, Bigras; Benoit, Thierry; St-Onge, Maxime; Marie, Lambert

    2014-01-01

    Background. While increasing evidence links environments to health behavior, clinicians lack information about patients' physical activity levels and lifestyle environments. We present mobile health tools to collect and use spatio-behavioural lifestyle data for personalized physical activity plans in clinical settings. Methods. The Dyn@mo lifestyle intervention was developed at the Sainte-Justine University Hospital Center to promote physical activity and reduce sedentary time among children with cardiometabolic risk factors. Mobility, physical activity, and heart rate were measured in free-living environments during seven days. Algorithms processed data to generate spatio-behavioural indicators that fed a web-based interactive mapping application for personalised counseling. Proof of concept and tools are presented using data collected among the first 37 participants recruited in 2011. Results. Valid accelerometer data was available for 5.6 (SD = 1.62) days in average, heart rate data for 6.5 days, and GPS data was available for 6.1 (2.1) days. Spatio-behavioural indicators were shared between patients, parents, and practitioners to support counseling. Conclusion. Use of wearable sensors along with data treatment algorithms and visualisation tools allow to better measure and describe real-life environments, mobility, physical activity, and physiological responses. Increased specificity in lifestyle interventions opens new avenues for remote patient monitoring and intervention. PMID:24678323

  12. Mobilizing the GLOBE at Night Citizen-Scientist

    NASA Astrophysics Data System (ADS)

    Newhouse, M. A.; Walker, C. E.; Boss, S. K.; Hennig, A. J.

    2013-04-01

    GLOBE at Night is an international campaign to raise public awareness of the impact of light pollution. Citizen-scientists around the world measure their night sky brightness and submit their observations to a website from a computer. In the last two years a webapp was developed to enable reporting from mobile devices. Nearly 80,000 data points have been submitted by people in 115 countries during the last 7 years. Our poster will examine the effect of enabling real-time data reporting via mobile devices, and how the Adopt-a-Street pilot project has impacted data collection in two U.S. cities. Recognizing the increasing popularity of smartphones, in late 2010 NOAO staff built a webapp to take advantage of the GPS capabilities built into mobile devices to get an automated and accurate report of the user's location. Refinements to the application have enabled an order of magnitude reduction in the number of erroneous data points due to incorrect location. During the 2011 campaign a pilot program called Adopt-a-Street was created to further take advantage of the ability to report data in real-time via mobile devices. For the 2012 campaign the program continued in Tucson and expanded to Fayetteville, Arkansas. Both of these sub-campaigns encouraged more participation, and resulted in more meaningful results. For example, in prior years Fayetteville averaged three data points in the three years any points were submitted in that area. In 2012, due to the Adopt-a-Street program, there were 98 points submitted, clearly matching the map on their Adopt-a-Street page. Adding support for mobile devices has increased the accuracy and relevance of the data submitted via both mobile devices and desktop computers, as well as enabled new programs. We plan to expand the Adopt-a-Street program next year and find an easier way to accommodate multiple measurements.

  13. Fall Prevention Self-Assessments Via Mobile 3D Visualization Technologies: Community Dwelling Older Adults’ Perceptions of Opportunities and Challenges

    PubMed Central

    Hamm, Julian; Atwal, Anita

    2017-01-01

    Background In the field of occupational therapy, the assistive equipment provision process (AEPP) is a prominent preventive strategy used to promote independent living and to identify and alleviate fall risk factors via the provision of assistive equipment within the home environment. Current practice involves the use of paper-based forms that include 2D measurement guidance diagrams that aim to communicate the precise points and dimensions that must be measured in order to make AEPP assessments. There are, however, issues such as “poor fit” of equipment due to inaccurate measurements taken and recorded, resulting in more than 50% of equipment installed within the home being abandoned by patients. This paper presents a novel 3D measurement aid prototype (3D-MAP) that provides enhanced measurement and assessment guidance to patients via the use of 3D visualization technologies. Objective The purpose of this study was to explore the perceptions of older adults with regard to the barriers and opportunities of using the 3D-MAP application as a tool that enables patient self-delivery of the AEPP. Methods Thirty-three community-dwelling older adults participated in interactive sessions with a bespoke 3D-MAP application utilizing the retrospective think-aloud protocol and semistructured focus group discussions. The system usability scale (SUS) questionnaire was used to evaluate the application’s usability. Thematic template analysis was carried out on the SUS item discussions, think-aloud, and semistructured focus group data. Results The quantitative SUS results revealed that the application may be described as having “marginal-high” and “good” levels of usability, along with strong agreement with items relating to the usability (P=.004) and learnability (P<.001) of the application. Four high-level themes emerged from think-aloud and focus groups discussions: (1) perceived usefulness (PU), (2) perceived ease of use (PEOU), (3) application use (AU) and (4) self-assessment (SA). The application was seen as a useful tool to enhance visualization of measurement guidance and also to promote independent living, ownership of care, and potentially reduce waiting times. Several design and functionality recommendations emerged from the study, such as a need to manipulate the view and position of the 3D furniture models, and a need for clearer visual prompts and alternative keyboard interface for measurement entry. Conclusions Participants perceived the 3D-MAP application as a useful tool that has the potential to make significant improvements to the AEPP, not only in terms of accuracy of measurement, but also by potentially enabling older adult patients to carry out the data collection element of the AEPP themselves. Further research is needed to further adapt the 3D-MAP application in line with the study outcomes and to establish its clinical utility with regards to effectiveness, efficiency, accuracy, and reliability of measurements that are recorded using the application and to compare it with 2D measurement guidance leaflets. PMID:28630034

  14. Connected vehicle Data Capture and Management (DCM) and dynamic mobility applications (DMA) : assessment of relevant standards and gaps for candidate applications.

    DOT National Transportation Integrated Search

    2012-10-01

    The Connected Vehicle Mobility Standards Coordination Plan project links activities in three programs (Data Capture and Management, Dynamic Mobility Applications, and ITS Standards). The plan coordinates the timing, intent and relationship of activit...

  15. Improving exposure assessment in environmental epidemiology: Application of spatio-temporal visualization tools

    NASA Astrophysics Data System (ADS)

    Meliker, Jaymie R.; Slotnick, Melissa J.; Avruskin, Gillian A.; Kaufmann, Andrew; Jacquez, Geoffrey M.; Nriagu, Jerome O.

    2005-05-01

    A thorough assessment of human exposure to environmental agents should incorporate mobility patterns and temporal changes in human behaviors and concentrations of contaminants; yet the temporal dimension is often under-emphasized in exposure assessment endeavors, due in part to insufficient tools for visualizing and examining temporal datasets. Spatio-temporal visualization tools are valuable for integrating a temporal component, thus allowing for examination of continuous exposure histories in environmental epidemiologic investigations. An application of these tools to a bladder cancer case-control study in Michigan illustrates continuous exposure life-lines and maps that display smooth, continuous changes over time. Preliminary results suggest increased risk of bladder cancer from combined exposure to arsenic in drinking water (>25 μg/day) and heavy smoking (>30 cigarettes/day) in the 1970s and 1980s, and a possible cancer cluster around automotive, paint, and organic chemical industries in the early 1970s. These tools have broad application for examining spatially- and temporally-specific relationships between exposures to environmental risk factors and disease.

  16. AEGIS: a wildfire prevention and management information system

    NASA Astrophysics Data System (ADS)

    Kalabokidis, Kostas; Ager, Alan; Finney, Mark; Athanasis, Nikos; Palaiologou, Palaiologos; Vasilakos, Christos

    2016-03-01

    We describe a Web-GIS wildfire prevention and management platform (AEGIS) developed as an integrated and easy-to-use decision support tool to manage wildland fire hazards in Greece (http://aegis.aegean.gr). The AEGIS platform assists with early fire warning, fire planning, fire control and coordination of firefighting forces by providing online access to information that is essential for wildfire management. The system uses a number of spatial and non-spatial data sources to support key system functionalities. Land use/land cover maps were produced by combining field inventory data with high-resolution multispectral satellite images (RapidEye). These data support wildfire simulation tools that allow the users to examine potential fire behavior and hazard with the Minimum Travel Time fire spread algorithm. End-users provide a minimum number of inputs such as fire duration, ignition point and weather information to conduct a fire simulation. AEGIS offers three types of simulations, i.e., single-fire propagation, point-scale calculation of potential fire behavior, and burn probability analysis, similar to the FlamMap fire behavior modeling software. Artificial neural networks (ANNs) were utilized for wildfire ignition risk assessment based on various parameters, training methods, activation functions, pre-processing methods and network structures. The combination of ANNs and expected burned area maps are used to generate integrated output map of fire hazard prediction. The system also incorporates weather information obtained from remote automatic weather stations and weather forecast maps. The system and associated computation algorithms leverage parallel processing techniques (i.e., High Performance Computing and Cloud Computing) that ensure computational power required for real-time application. All AEGIS functionalities are accessible to authorized end-users through a web-based graphical user interface. An innovative smartphone application, AEGIS App, also provides mobile access to the web-based version of the system.

  17. Mobile VR in Education: From the Fringe to the Mainstream

    ERIC Educational Resources Information Center

    Cochrane, Thomas

    2016-01-01

    This paper explores the development of virtual reality (VR) use in education and the emergence of mobile VR based content creation and sharing as a platform for enabling learner-generated content and learner-generated contexts. The author argues that an ecology of resources that maps the user content creation and sharing affordances of mobile…

  18. Mobility Patterns of Children of Migrant Agricultural Workers.

    ERIC Educational Resources Information Center

    Cox, J. Lamarr; And Others

    Narrative text, tables, and maps summarize information derived from a random sample of 20% of the Migrant Student Record Transfer System (MSRTS) data base as it existed in June 1976 related to the mobility patterns of migrant children in the contiguous United States and Puerto Rico from January 1975 to April 1976. The data base is a tabulation of…

  19. VTT's Fabry-Perot interferometer technologies for hyperspectral imaging and mobile sensing applications

    NASA Astrophysics Data System (ADS)

    Rissanen, Anna; Guo, Bin; Saari, Heikki; Näsilä, Antti; Mannila, Rami; Akujärvi, Altti; Ojanen, Harri

    2017-02-01

    VTT's Fabry-Perot interferometers (FPI) technology enables creation of small and cost-efficient microspectrometers and hyperspectral imagers - these robust and light-weight sensors are currently finding their way into a variety of novel applications, including emerging medical products, automotive sensors, space instruments and mobile sensing devices. This presentation gives an overview of our core FPI technologies with current advances in generation of novel sensing applications including recent mobile technology demonstrators of a hyperspectral iPhone and a mobile phone CO2 sensor, which aim to advance mobile spectroscopic sensing.

  20. Telehealth, Mobile Applications, and Wearable Devices are Expanding Cancer Care Beyond Walls.

    PubMed

    Cannon, Carol

    2018-05-01

    To review telehealth solutions, mobile applications, and wearable devices that are currently impacting patients, caregivers, and providers who work in the oncology setting. A literature search was conducted using the terms (Telehealth, Mobile Health, mHealth, Wearable Devices) + (Oncology, Cancer Care). There are many current applications of telehealth and mobile health in the oncology setting. Nurses who care for patients with cancer should be aware of the pervasiveness and impact of telehealth and mobile health to this unique population. Copyright © 2018 Elsevier Inc. All rights reserved.

Top