Patil, Nitin S; Mendhe, Rakesh B; Sankar, Ajeet A; Iyer, Harish
2008-01-11
In preparative chromatography, often the solubility of the sample in the mobile phase is limited, making the mobile phase unsuitable as a solvent for preparation of load. Generally, solvents that have high solubility for the sample also have higher elution strengths than the mobile phase. Additionally, at high loading volumes, these strong sample solvents are known to adversely affect the band profiles leading to poor chromatographic performance. Here, we show that controlling the mobile phase strength during loading and post-load elution resulted in improved band profiles when the sample solvent was stronger than the mobile phase. Such an approach improves performance in preparative chromatography by allowing either higher sample loading or higher organic content in mobile phase (without loss of yield). Alternately, the approach can be used for improvement in performance by increase in yield or product purity.
Method for determining asphaltene stability of a hydrocarbon-containing material
Schabron, John F; Rovani, Jr., Joseph F
2013-02-05
A method for determining asphaltene stability in a hydrocarbon-containing material having solvated asphaltenes therein is disclosed. In at least one embodiment, it involves the steps of: (a) precipitating an amount of the asphaltenes from a liquid sample of the hydrocarbon-containing material with an alkane mobile phase solvent in a column; (b) dissolving a first amount and a second amount of the precipitated asphaltenes by changing the alkane mobile phase solvent to a final mobile phase solvent having a solubility parameter that is higher than the alkane mobile phase solvent; (c) monitoring the concentration of eluted fractions from the column; (d) creating a solubility profile of the dissolved asphaltenes in the hydrocarbon-containing material; and (e) determining one or more asphaltene stability parameters of the hydrocarbon-containing material.
Torres-Lapasió, J R; Ruiz-Angel, M J; García-Alvarez-Coque, M C
2007-09-28
Solvation parameter models relate linearly compound properties with five fundamental solute descriptors (excess molar refraction, dipolarity/polarizability, effective hydrogen-bond acidity and basicity, and McGowan volume). These models are widely used, due to the availability of protocols to obtain the descriptors, good performance, and general applicability. Several approaches to predict retention in reversed-phase liquid chromatography (RPLC) as a function of these descriptors and mobile phase composition are compared, assaying the performance with a set of 146 organic compounds of diverse nature, eluted with acetonitrile and methanol. The approaches are classified in two groups: those that only allow predictions of retention for the mobile phases used to build the models, and those valid at any other mobile phase composition. The first group includes the use of ratios between the regressed coefficients of the solvation models that are assumed to be characteristic for a column/solvent system, and the application of offsets to transfer the retention from a reference mobile phase to any other. Maximal accuracy in predictions corresponded, however, to the approaches in the second group, which were based on models that describe the retention as a function of mobile phase composition (expressed as the solvent volume fraction or a normalised polarity measurement), where the coefficients were made dependent on the solvent descriptors. The study revealed the properties that influence the retention and distinguish the particular behaviour of acetonitrile and methanol in RPLC.
Tan, Ting; Zhang, Mingliang; Wan, Yiqun; Qiu, Hongdeng
2016-01-01
Deep eutectic solvents (DESs) were used as novel mobile phase additives to improve chromatographic separation of four quaternary alkaloids including coptisine chloride, sanguinarine, berberine chloride and chelerythrine on a C18 column. DESs as a new class of ionic liquids are renewably sourced, environmentally benign, low cost and easy to prepare. Seven DESs were obtained by mixing different hydrogen acceptors and hydrogen-bond donors. The effects of organic solvents, the concentration of DESs, the types of DESs and the pH values of the buffer solution on the separation of the analytes were investigated. The composition of acetonitrile and 1.0% deep eutectic solvents aqueous solution (pH 3.3, adjusted with hydrochloric acid) in a 32:68 (v/v) ratio was used as optimized mobile phase, with which four quaternary alkaloids were well separated. When a small amount of DESs was added in the mobile phase for the separation of alkaloids on the C18 column, noticeable improvements were distinctly observed such as decreasing peak tailing and improving resolution. The separation mechanism mediated by DESs as mobile phase additives can be attributed to combined effect of both hydrogen acceptors and hydrogen-bond donors. For example, choline chloride can effectively cover the residual silanols on silica surface and ethylene glycol can reduce the retention time of analytes. The proposed method has been applied to determine BerbC in Lanqin Chinese herbal oral solution and BerbC tablet. Utilization of DESs in mobile phase can efficiently improve separation and selectivity of analytes from complex samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Selectivity in reversed-phase separations: general influence of solvent type and mobile phase pH.
Neue, Uwe D; Méndez, Alberto
2007-05-01
The influence of the mobile phase on retention is studied in this paper for a group of over 70 compounds with a broad range of multiple functional groups. We varied the pH of the mobile phase (pH 3, 7, and 10) and the organic modifier (methanol, acetonitrile (ACN), and tetrahydrofuran (THF)), using 15 different stationary phases. In this paper, we describe the overall retention and selectivity changes observed with these variables. We focus on the primary effects of solvent choice and pH. For example, transfer rules for solvent composition resulting in equivalent retention depend on the packing as well as on the type of analyte. Based on the retention patterns, one can calculate selectivity difference values for different variables. The selectivity difference is a measure of the importance of the different variables involved in method development. Selectivity changes specific to the type of analyte are described. The largest selectivity differences are obtained with pH changes.
Downes, Katherine; Terry, Leon A
2010-06-30
Onion soluble non-structural carbohydrates consist of fructose, glucose and sucrose plus fructooligosaccharides (FOS) with degrees of polymerisation (DP) in the range of 3-19. In onion, sugars and FOS are typically separated using liquid chromatography (LC) with acetonitrile (ACN) as a mobile phase. In recent times, however, the production of ACN has diminished due, in part, to the current worldwide economic recession. A study was therefore undertaken, to find an alternative LC method to quantify sugars and FOS from onion without the need for ACN. Two mobile phases were compared; the first taken from a paper by Vågen and Slimestad (2008) using ACN mobile phase, the second, a newly reported method using ethanol (EtOH). The EtOH mobile phase eluted similar concentrations of all FOS compared to the ACN mobile phase. In addition, limit of detection, limit of quantification and relative standard deviation values were sufficiently and consistently lower for all FOS using the EtOH mobile phase. The drawback of the EtOH mobile phase was mainly the inability to separate all individual sugar peaks, yet FOS could be successfully separated. However, using the same onion extract, a previously established LC method based on an isocratic water mobile phase could be used in a second run to separate sugars. Although the ACN mobile phase method is more convenient, in the current economic climate a method based on inexpensive and plentiful ethanol is a valid alternative and could potentially be applied to other fresh produce types. In addition to the mobile phase solvent, the effect of extraction solvents on sugar and FOS concentration was also investigated. EtOH is still widely used to extract sugars from onion although previous literature has concluded that MeOH is a superior solvent. For this reason, an EtOH-based extraction method was compared with a MeOH-based method to extract both sugars and FOS. The MeOH-based extraction method was more efficacious at extracting sugars and FOS from onion flesh, eluting significantly higher concentrations of glucose, kestose, nystose and DP5-DP8. Copyright 2010 Elsevier B.V. All rights reserved.
Fanali, Salvatore; Catarcini, Paolo; Quaglia, Maria Giovanna
2002-02-01
The separation of basic compounds into their enantiomers was achieved using capillary electrochromatography in 50 or 75 microm inner diameter (ID) fused-silica capillaries packed with silica a stationary phase derivatized with vancomycin and mobile phases composed of mixtures of polar organic solvents containing 13 mM ammonium acetate. Enantiomer resolution, electroosmotic flow, and the number of theoretical plates were strongly influenced by the type and concentration of the organic solvent. Mobile phases composed of 13 mM ammonium acetate dissolved in mixtures of acetonitrile/methanol, ethanol, n-propanol, or isopropanol were tested and the highest enantioresolutions were achieved using the first mobile phase, allowing the separation of almost all investigated enantiomers (9 from 11 basic compounds). The use of capillaries with different ID (50 and 75 microm ID) packed with the same chiral stationary phase revealed that a higher number of theoretical plates and higher enantioresolution was achieved with the tube with lowest ID.
Alagesan, Kathirvel; Khilji, Sana Khan; Kolarich, Daniel
2017-01-01
Glycopeptide enrichment is a crucial step in glycoproteomics for which hydrophilic interaction chromatography (HILIC) has extensively been applied due to its low bias towards different glycan types. A systematic evaluation of applicable HILIC mobile phases on glycopeptide enrichment efficiency and selectivity is, to date, however, still lacking. Here, we present a novel, simplified technique for HILIC enrichment termed "Drop-HILIC", which was applied to systematically evaluate the mobile phase effect on ZIC-HILIC (zwitterionic type of hydrophilic interaction chromatography) glycopeptide enrichment. The four most commonly used MS compatible organic solvents were investigated: (i) acetonitrile, (ii) methanol, (iii) ethanol and (iv) isopropanol. Glycopeptide enrichment efficiencies were evaluated for each solvent system using samples of increasing complexity ranging from well-defined synthetic glycopeptides spiked into different concentrations of tryptic BSA peptides, followed by standard glycoproteins, and a complex sample derived from human (depleted and non-depleted) serum. ZIC-HILIC glycopeptide efficiency largely relied upon the used solvent. Different organic mobile phases enriched distinct glycopeptide subsets in a peptide backbone hydrophilicity-dependant manner. Acetonitrile provided the best compromise for the retention of both hydrophilic and hydrophobic glycopeptides, whereas methanol was confirmed to be unsuitable for this purpose. The enrichment efficiency of ethanol and isopropanol towards highly hydrophobic glycopeptides was compromised as considerable co-enrichment of unmodified peptides occurred, though for some hydrophobic glycopeptides isopropanol showed the best enrichment properties. This study shows that even minor differences in the peptide backbone and solvent do significantly influence HILIC glycopeptide enrichment and need to be carefully considered when employed for glycopeptide enrichment. Graphical Abstract The organic solvent plays a crucial role in ZIC-HILIC glycopeptide enrichment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtubise, R.J.; Hussain, A.; Silver, H.F.
1981-11-01
The normal-phase liquid chromatographic models of Scott, Snyder, and Soczewinski were considered for a ..mu..-Bondapak NH/sub 2/ stationary phase. n-Heptane:2-propanol and n-heptane:ethyl acetate mobile phases of different compositions were used. Linear relationships were obtained from graphs of log K' vs. log mole fraction of the strong solvent for both n-heptane:2-propanol and n-heptane:ethyl acetate mobile phases. A linear relationship was obtained between the reciprocal of corrected retention volume and % wt/v of 2-propanol but not between the reciprocal of corrected retention volume and % wt/v of ethyl acetate. The slopes and intercept terms from the Snyder and Soczewinski models were foundmore » to approximately describe interactions with ..mu..-Bondapak NH/sub 2/. Capacity factors can be predicted for the compounds by using the equations obtained from mobile phase composition variation experiments.« less
Sutton, Adam T; Fraige, Karina; Leme, Gabriel Mazzi; da Silva Bolzani, Vanderlan; Hilder, Emily F; Cavalheiro, Alberto J; Arrua, R Dario; Funari, Cristiano Soleo
2018-06-01
Over the past six decades, acetonitrile (ACN) has been the most employed organic modifier in reversed-phase high-performance liquid chromatography (RP-HPLC), followed by methanol (MeOH). However, from the growing environmental awareness that leads to the emergence of "green analytical chemistry," new research has emerged that includes finding replacements to problematic ACN because of its low sustainability. Deep eutectic solvents (DES) can be produced from an almost infinite possible combinations of compounds, while being a "greener" alternative to organic solvents in HPLC, especially those prepared from natural compounds called natural DES (NADES). In this work, the use of three NADES as the main organic component in RP-HPLC, rather than simply an additive, was explored and compared to the common organic solvents ACN and MeOH but additionally to the greener ethanol for separating two different mixtures of compounds, one demonstrating the elution of compounds with increasing hydrophobicity and the other comparing molecules of different functionality and molar mass. To utilize NADES as an organic modifier and overcome their high viscosity monolithic columns, temperatures at 50 °C and 5% ethanol in the mobile phase were used. NADES are shown to give chromatographic performances in between those observed for ACN and MeOH when eluotropic strength, resolution, and peak capacity were taken into consideration, while being less environmentally impactful as shown by the HPLC-Environmental Assessment Tool (HPLC-EAT) metric. With the development of proper technologies, DES could open a new class of mobile phases increasing the possibilities of new separation selectivities while reducing the environmental impact of HPLC analyses. Graphical abstract Natural deep eutectic solvents versus traditional solvents in HPLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, L.T.
Because it has been our goal to interface the supercritical fluid chromatograph with a Fourier transform infrared spectrometer we have initially chosen packed columns due to their increased sample capacities, and supercritical CO/sub 2/ because of its infrared transparency. This paper compares two sampling techniques that can be utilized in packed column supercritical fluid Chromatography (SFC). Traditional sample introduction is accomplished using an injector with a sample loop. The loop is filled with the appropriate amount of material, and subsequently inserted into the mobile phase path. In most cases the sample must be either dissolved or extracted into an appropriatemore » solvent for such sample introduction. Note that unlike HPLC, where the solvent can be the same as the mobile phase, traditional sampling with SFC must use a solvent that is very different from the mobile phase. As a result, solvent peaks are almost always present, especially with universal detectors like FTIR. An alternative method is described here whereby both extraction of the sample and introduction of the extract onto the column is accomplished on-line using only the supercritical fluid mobile phase. This sampling technique is made possible by a simple valving scheme which ties directly the extraction vessel, the injector, the packed column and the detector. This technique has several advantages over the traditional methods, not the least of which is the absence of a large amount of foreign solvent introduced on the column. 11 refs., 7 figs.« less
Shinomiya, Kazufusa; Zaima, Kazumasa; Harada, Yukina; Yasue, Miho; Harikai, Naoki; Tokura, Koji; Ito, Yoichiro
2017-01-20
Coil satellite centrifuge (CSC) produces the complex satellite motion consisting of the triplicate rotation of the coiled column around three axes including the sun axis (the angular velocity, ω 1 ), the planet axis (ω 2 ) and the satellite axis (the central axis of the column) (ω 3 ) according to the following formula: ω 1 =ω 2 +ω 3 . Improved peak resolution in the separation of 4-methylumbelliferyl sugar derivatives was achieved using the conventional multilayer coiled columns with ethyl acetate/1-butanol/water (3: 2: 5, v/v) for the lower mobile phase at the combination of the rotation speeds (ω 1 , ω 2 , ω 3 )=(300, 150, 150rpm), and (1:4:5, v/v) for the upper mobile phase at (300:100:200rpm). The effect of the satellite motion on the peak resolution and the stationary phase retention was evaluated by each CSC separation with the different rotation speeds of ω 2 and ω 3 under the constant revolution speed at ω 1 =300rpm. With the lower mobile phase, almost constant peak resolution and stationary phase retention were yielded regardless of the change of ω 2 and ω 3 , while with the upper mobile phase these two values were sensitively varied according to the different combination of ω 2 and ω 3 . For example, when ω 2 =147 or 200rpm is used, no stationary phase was retained in the coiled column while ω 2 =150rpm could retain enough volume of stationary phase for separation. On the other hand, the combined rotation speeds at (ω 1 , ω 2 , ω 3 )=(300, 300, 0rpm) or (300, 0, 300rpm) produced insufficient peak resolution regardless of the choice of the mobile phase apparently due to the lack of rotation speed except at (300, 0, 300rpm) with the upper mobile phase. At lower rotation speed of ω 1 =300rpm, better peak resolution and stationary phase retention were obtained by the satellite motion (ω 3 ) than by the planetary motion (ω 2 ), or ω 3 >ω 2 . The effect of the hydrophobicity of the two-phase solvent systems on the stationary phase retention was further examined using the n-hexane/ethyl acetate/1-butanol/methanol/water system at different volume ratios. In the satellite motion at (ω 1 , ω 2 , ω 3 )=(300, 150, 150rpm), almost constant stationary phase retention was obtained with the lower mobile phase regardless of the hydrophobicity of the solvent system whereas the stationary phase retention varied according to the volume ratio of the two-phase solvent system for the upper mobile phase. However, stable stationary phase retention was observed with either phase used as the mobile phase. In order to analyze the acceleration acting on the coiled column, an acceleration sensor was set on the column holder by displacing the multilayer column. The combination of the rotation speeds at (300, 100, 200rpm) showed double loops in the acceleration track, whereas (300, 150, 150rpm) showed a single loop, and all other combinations showed, complex tracks. The overall results indicate that the satellite motion is seriously affected by the combination of rotation speeds and the hydrophobicity of the two-phase solvent system when the upper phase was used as the mobile phase for separation. Copyright © 2016 Elsevier B.V. All rights reserved.
Shinomiya, Kazufusa; Zaima, Kazumasa; Harada, Yukina; Yasue, Miho; Harikai, Naoki; Tokura, Koji; Ito, Yoichiro
2016-01-01
Coil satellite centrifuge (CSC) produces the complex satellite motion consisting of the triplicate rotation of the coiled column around three axes including the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3) according to the following formula: ω1 = ω2 + ω3. Improved peak resolution in the separation of 4-methylumbelliferyl sugar derivatives was achieved using the conventional multilayer coiled columns with ethyl acetate/1-butanol/water (3 : 2 : 5, v/v) for the lower mobile phase at the combination of the rotation speeds (ω1, ω2, ω3) = (300, 150, 150 rpm), and (1 : 4 : 5, v/v) for the upper mobile phase at (300 : 100 : 200 rpm). The effect of the satellite motion on the peak resolution and the stationary phase retention was evaluated by each CSC separation with the different rotation speeds of ω2 and ω3 under the constant revolution speed at ω1 = 300 rpm. With the lower mobile phase, almost constant peak resolution and stationary phase retention were yielded regardless of the change of ω2 and ω3, while with the upper mobile phase these two values were sensitively varied according to the different combination of ω2 and ω3. For example, when ω2 = 147 or 200 rpm is used, no stationary phase was retained in the coiled column while ω2 = 150 rpm could retain enough volume of stationary phase for separation. On the other hand, the combined rotation speeds at (ω1, ω2, ω3) = (300, 300, 0 rpm) or (300, 0, 300 rpm) produced insufficient peak resolution regardless of the choice of the mobile phase apparently due to the lack of rotation speed except at (300, 0, 300 rpm) with the upper mobile phase. At lower rotation speed of ω1 = 300 rpm, better peak resolution and stationary phase retention were obtained by the satellite motion (ω3) than by the planetary motion (ω2), or ω3 > ω2. The effect of the hydrophobicity of the two-phase solvent systems on the stationary phase retention was further examined using the n-hexane/ethyl acetate/1-butanol/methanol/water system at different volume ratios. In the satellite motion at (ω1, ω2, ω3) = (300, 150, 150 rpm), almost constant stationary phase retention was obtained with the lower mobile phase regardless of the hydrophobicity of the solvent system whereas the stationary phase retention varied according to the volume ratio of the two-phase solvent system for the upper mobile phase. However, stable stationary phase retention was observed with either phase used as the mobile phase. In order to analyze the acceleration acting on the coiled column, an acceleration sensor was set on the column holder by displacing the multilayer column. The combination of the rotation speeds at (300, 100, 200 rpm) showed double loops in the acceleration track, whereas (300, 150, 150 rpm) showed a single loop, and all other combinations showed, complex tracks. The overall results indicate that the satellite motion is seriously affected by the combination of rotation speeds and the hydrophobicity of the two-phase solvent system when the upper phase was used as the mobile phase for separation. PMID:28040269
Wu, Di; Nedev, Georgi K; Lucy, Charles A
2014-11-28
Hypercrosslinked polystyrene phases have been described as quasi-normal phase because they lack discrete polar sites. Retention on the HC-Tol column is investigated using the Snyder-Soczewinski model. Solvent strength of different hexane-solvent binary mobile phase compositions can be predicted with solvent strength of pure dichloromethane (DCM, 0.159), tetrahydrofuran (THF, 0.22), and benzene (0.127). The HC-Tol column is shown to be a localizing adsorptive phase. Also, site-competition delocalization on HC-Tol demonstrates that whatever its adsorption groups are, they are able to participate in lateral interactions. Copyright © 2014 Elsevier B.V. All rights reserved.
Ito, Y
1984-10-05
Hydrodynamic distribution of two-phase solvent systems in a rotating helical column subjected to centrifugal fields produced by two different types of synchronous planetary motion has been studied by the use of the combined horizontal flow-through coil planet centrifuge. With continuous elution of the mobile phase, the simpler type of motion resulted in low retention of the stationary phase in the column whereas a more complex motion, which produces a quasi-radial centrifugal field varying in both intensity and direction, yielded high stationary phase retention for commonly used solvent systems having a wide range of hydrophobicity. These solvent systems display highly complex modes of hydrodynamic interaction in the coil according to their particular physical properties.
Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R
2008-08-15
Stationary phases with embedded polar groups possess several advantages over conventional alkylsilane phases, such as reduced peak tailing, enhanced selectivity for specific functional groups, and the ability to use a highly aqueous mobile phase. To gain a deeper understanding of the retentive properties of these reversed-phase packings, molecular simulations were carried out for three different stationary phases in contact with mobile phases of various water/methanol ratios. Two polar-embedded phases were modeled, namely, amide and ether containing, and compared to a conventional octadecylsilane phase. The simulations show that, due to specific hydrogen bond interactions, the polar-embedded phases take up significantly more solvent and are more ordered than their alkyl counterparts. Alkane and alcohol probe solutes indicate that the polar-embedded phases are less retentive than alkyl phases for nonpolar species, whereas polar species are more retained by them due to hydrogen bonding with the embedded groups and the increased amount of solvent within the stationary phase. This leads to a significant reduction of the free-energy barrier for the transfer of polar species from the mobile phase to residual silanols, and this reduced barrier provides a possible explanation for reduced peak tailing.
The Evolution of Electrospray Generated Droplets is Not Affected by Ionization Mode
NASA Astrophysics Data System (ADS)
Liigand, Piia; Heering (Suu), Agnes; Kaupmees, Karl; Leito, Ivo; Girod, Marion; Antoine, Rodolphe; Kruve, Anneli
2017-10-01
Ionization efficiency and mechanism in ESI is strongly affected by the properties of mobile phase. The use of mobile-phase properties to accurately describe droplets in ESI source is convenient but may be inadequate as the composition of the droplets is changing in the plume due to electrochemical reactions occurring in the needle tip as well as continuous drying and fission of droplets. Presently, there is paucity of research on the effect of the polarity of the ESI mode on mobile phase composition in the droplets. In this paper, the change in the organic solvent content, pH, and droplet size are studied in the ESI plume in both ESI+ and ESI- ionization mode. We introduce a rigorous way - the absolute pH (pHabs H 2 O) - to describe pH change in the plume that takes into account organic solvent content in the mobile phase. pHabs H 2 O enables comparing acidities of ESI droplets with different organic solvent contents. The results are surprisingly similar for both ionization modes, indicating that the dynamics of the change of mobile-phase properties is independent from the ESI mode used. This allows us to conclude that the evolution of ESI droplets first of all proceeds via the evaporation of the organic modifier and to a lesser extent via fission of smaller droplets from parent droplets. Secondly, our study shows that qualitative findings related to the ESI process obtained on the ESI+ mode can almost directly be applied also in the ESI- mode. [Figure not available: see fulltext.
Adelmann, S; Schembecker, G
2011-08-12
Besides the selection of a suitable biphasic solvent system the separation efficiency in Centrifugal Partition Chromatography (CPC) is mainly influenced by the hydrodynamics in the chambers. The flow pattern, the stationary phase retention and the interfacial area for mass transfer strongly depend on physical properties of the solvent system and operating parameters. In order to measure these parameters we visualized the hydrodynamics in a FCPC-chamber for five different solvent systems with an optical measurement system and calculated the stationary phase retention, interfacial area and the distribution of mobile phase thickness in the chamber. Although inclined chambers were used we found that the Coriolis force always deflected the mobile phase towards the chamber wall reducing the interfacial area. This effect increased for systems with low density difference. We also have shown that the stability of phase systems (stationary phase retention) and its tendency to disperse increased for smaller values of the ratio of interfacial tension and density difference. But also the viscosity ratio and the flow pattern itself had a significant effect on retention and dispersion of the mobile phase. As a result operating parameters should be chosen carefully with respect to physical properties for a CPC system. In order to reduce the effect of the Coriolis force CPC devices with greater rotor radius are desirable. Copyright © 2011 Elsevier B.V. All rights reserved.
He, Kai; Zou, Zongyao; Hu, Yinran; Yang, Yong; Xiao, Yubo; Gao, Pincao; Li, Xuegang; Ye, Xiaoli
2016-02-01
Countercurrent chromatography coupled with a reverse micelle solvent was applied to separate α-glucosidase, which is stable at pH 6.0-8.8, 15-50°C. The separation conditions are as follows: stationary phase: pH 4.0 Tris-HCl buffer phase containing 50 mM Tris-HCl and 50 mM KCl; mobile phase A: isooctane containing 50 mM anionic surfactant sodium di(2-ethylhexyl)sulfosuccinate; mobile phase B: 50 mM Tris-HCl buffer containing 500 mM KCl (pH 8.0); In total, 25 mL (23.9 mg) crude enzyme was injected through the injection valve, the enzymatic reaction and sodium dodecylsulfate polyacrylamide gel electrophoresis results imply that the activity of purified α-glucosidase is 6.63-fold higher than that of the crude enzyme. Therefore, countercurrent chromatography coupled with a reverse micelle solvent is capable for protein separation and enrichment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Hui; Chen, Bo; Zhang, Zhaohui; Yao, Shouzhuo
2004-06-17
A new focused microwave-assisted solvent extraction method using water as solvent has been developed for leaching geniposidic and chlorogenic acids from Eucommia ulmodies Oliv. The extraction procedures were optimized using a two indexes orthogonal experimental design and graphical analysis, by varying irradiation time, solvent volume, solvent composition and microwave power. The optimum extraction conditions were obtained: for geniposidic acid, 50% micorwave power, 40s irradiation, and 80% (v/v) aqueous methanol as extraction solvent (20mlg(-1) sample); and for chlorogenic acid, 50% micorwave power, 30s irradiation, and 20% aqueous methanol (20mlg(-1) sample). The composition of the extraction solvent was optimized and can be directly used as the mobile phase in the HPLC separation. Quantification of organic acids was done by HPLC at room temperature using Spherigel C(18) chromatographic column (250 mm x4.6 mm , i.d. 5mum), the methanol:water:acetic acid (20:80:1.0, v/v) mobile phase and UV detection at 240nm. The R.S.D. of the extraction process for geniposidic and chlorogenic acid were 3.8 and 4.1%, respectively.
NASA Astrophysics Data System (ADS)
Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng
2015-01-01
High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm2/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.
Ikehata, Jun-Ichi; Shinomiya, Kazufusa; Kobayashi, Koji; Ohshima, Hisashi; Kitanaka, Susumu; Ito, Yoichiro
2004-02-06
The effect of Coriolis force on the counter-current chromatographic separation was studied using centrifugal partition chromatography (CPC) with four different two-phase solvent systems including n-hexane-acetonitrile (ACN); tert-butyl methyl ether (MtBE)-aqueous 0.1% trifluoroacetic acid (TFA) (1:1); MtBE-ACN-aqueous 0.1% TFA (2:2:3); and 12.5% (w/w) polyethylene glycol (PEG) 1000-12.5% (w/w) dibasic potassium phosphate. Each separation was performed by eluting either the upper phase in the ascending mode or the lower phase in the descending mode, each in clockwise (CW) and counterclockwise column rotation. Better partition efficiencies were attained by the CW rotation in both mobile phases in all the two-phase solvent systems examined. The mathematical analysis also revealed the Coriolis force works favorably under the CW column rotation for both mobile phases. The overall results demonstrated that the Coriolis force produces substantial effects on CPC separation in both organic-aqueous and aqueous-aqueous two-phase systems.
Slow equilibration of reversed-phase columns for the separation of ionized solutes.
Marchand, D H; Williams, L A; Dolan, J W; Snyder, L R
2003-10-10
Reversed-phase columns that have been stored in buffer-free solvents can exhibit pronounced retention-time drift when buffered, low-pH mobile phases are used with ionized solutes. Whereas non-ionized compounds exhibit constant retention times within 20 min of the beginning of mobile phase flow, the retention of ionized compounds can continue to change (by 20% or more) for several hours. If mobile phase pH is changed from low to high and back again, an even longer time may be required before the column reaches equilibration at low pH. The speed of column equilibration for ionized solutes can vary significantly among different reversed-phase columns and is not affected by flow rate.
Separation of VX, RVX and GB Enantiomers Using Liquid ChromatographyTime-of-Flight Mass Spectrometry
2016-02-01
Torrance, CA). The mobile phase consisted of n - hexane (A) and isopropyl alcohol (B), and sample volume was 10 µL. Separation was achieved using...level for preparative separation. All reagents and solvents were high-performance LC grade. Hexane and isopropyl alcohol were purchased from Fisher...1 column and normal-phase LC were used with a mobile phase of 96/4 (v/v %) hexane /isopropyl alcohol at a flow rate of 0.6 mL/min. The enantiomers
Modeling solvent evaporation during thin film formation in phase separating polymer mixtures
Cummings, John; Lowengrub, John S.; Sumpter, Bobby G.; ...
2018-02-09
Preparation of thin films by dissolving polymers in a common solvent followed by evaporation of the solvent has become a routine processing procedure. However, modeling of thin film formation in an evaporating solvent has been challenging due to a need to simulate processes at multiple length and time scales. In this paper, we present a methodology based on the principles of linear non-equilibrium thermodynamics, which allows systematic study of various effects such as the changes in the solvent properties due to phase transformation from liquid to vapor and polymer thermodynamics resulting from such solvent transformations. The methodology allows for themore » derivation of evaporative flux and boundary conditions near each surface for simulations of systems close to the equilibrium. We apply it to study thin film microstructural evolution in phase segregating polymer blends dissolved in a common volatile solvent and deposited on a planar substrate. Finally, effects of the evaporation rates, interactions of the polymers with the underlying substrate and concentration dependent mobilities on the kinetics of thin film formation are studied.« less
Modeling solvent evaporation during thin film formation in phase separating polymer mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummings, John; Lowengrub, John S.; Sumpter, Bobby G.
Preparation of thin films by dissolving polymers in a common solvent followed by evaporation of the solvent has become a routine processing procedure. However, modeling of thin film formation in an evaporating solvent has been challenging due to a need to simulate processes at multiple length and time scales. In this paper, we present a methodology based on the principles of linear non-equilibrium thermodynamics, which allows systematic study of various effects such as the changes in the solvent properties due to phase transformation from liquid to vapor and polymer thermodynamics resulting from such solvent transformations. The methodology allows for themore » derivation of evaporative flux and boundary conditions near each surface for simulations of systems close to the equilibrium. We apply it to study thin film microstructural evolution in phase segregating polymer blends dissolved in a common volatile solvent and deposited on a planar substrate. Finally, effects of the evaporation rates, interactions of the polymers with the underlying substrate and concentration dependent mobilities on the kinetics of thin film formation are studied.« less
Zhang, Qinghai; Lin, Changhu; Duan, Wenjuan; Wang, Xiao; Luo, Aiqin
2013-12-12
pH-Zone refining counter-current chromatography was successfully applied to the preparative isolation and purification of six alkaloids from the ethanol extracts of Uncaria macrophylla Wall. Because of the low content of alkaloids (about 0.2%, w/w) in U. macrophylla Wall, the target compounds were enriched by pH-zone refining counter-current chromatography using a two-phase solvent system composed of petroleum ether-ethyl acetate-isopropanol-water (2:6:3:9, v/v), adding 10 mM triethylamine in organic stationary phase and 5 mM hydrochloric acid in aqueous mobile phase. Then pH-zone refining counter-current chromatography using the other two-phase solvent system was used for final purification. Six target compounds were finally isolated and purified by following two-phase solvent system composed of methyl tert-butyl ether (MTBE)-acetonitrile-water (4:0.5:5, v/v), adding triethylamine (TEA) (10 mM) to the organic phase and HCl (5 mM) to aqueous mobile phase. The separation of 2.8 g enriched total alkaloids yielded 36 mg hirsutine, 48 mg hirsuteine, 82 mg uncarine C, 73 mg uncarine E, 163 mg rhynchophylline, and 149 mg corynoxeine, all with purities above 96% as verified by HPLC Their structures were identified by electrospray ionization-mass spectrometry (ESI-MS) and 1H-NMR spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Wei; Han, Shijiao; Huang, Wei
High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role inmore » enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.« less
Sławik, Tomasz; Kowalski, Cezary
2002-04-05
The lipophilicity (R(Mo)) and specific hydrophobic surface area of seven 1,2-benzisothiazol-3(2H)-ones have been determined by reversed-phase TLC and the effect of different mobile-phase modifiers (acetone, acetonitrile, methanol) on the retention has been studied. The linear correlations between the volume fraction of the organic solvent and the R(M) values over a limited range were established for each solute with high values of correlation coefficients (>0.99). The influence of solvent pH on R(M) values was investigated.
Glenne, Emelie; Leek, Hanna; Klarqvist, Magnus; Samuelsson, Jörgen; Fornstedt, Torgny
2017-05-05
Strangely shaped overloaded bands were recently reported using a standard supercritical fluid chromatographic system comprising a diol column as the stationary phase and carbon dioxide with methanol as the mobile phase. Some of these overloaded elution profiles appeared strongly deformed and even had "anti-Langmuirian" shapes although their solute compounds had "Langmuirian" adsorption. To obtain a more complete understanding of the generality of these effects, the investigation was expanded to cover also other common co-solvents, such as ethanol, 2-propanol, and acetonitrile, as well as various stationary phase materials, such as silica, and 2-ethylpyridine. From this expanded study it could be confirmed that the effects of deformed overloaded solute band shapes, due to co-solvent adsorption, is general phenomena in supercritical fluid chromatographic. It could also be concluded that these effects as well as previously observed "solvent effects" or "plug effects" are entirely due to competition between the solute and solvent molecules for the adsorption sites on the stationary phase surface. Finally, guidelines were given for how to evaluate the risk of deformations occurring for a given solvent-column combination, based simply on testing retention times of solutes and co-solvent. Copyright © 2017 Elsevier B.V. All rights reserved.
Jandera, Pavel; Vyňuchalová, Kateřina; Nečilová, Kateřina
2013-11-22
Combined effects of temperature and mobile-phase composition on retention and separation selectivity of phenolic acids and flavonoid compounds were studied in liquid chromatography on a polydentate Blaze C8 silica based column. The temperature effects on the retention can be described by van't Hoff equation. Good linearity of lnk versus 1/T graphs indicates that the retention is controlled by a single mechanism in the mobile phase and temperature range studied. Enthalpic and entropic contributions to the retention were calculated from the regression lines. Generally, enthalpic contributions control the retention at lower temperatures and in mobile phases with lower concentrations of methanol in water. Semi-empirical retention models describe the simultaneous effects of temperature and the volume fraction of the organic solvent in the mobile phase. Using the linear free energy-retention model, selective dipolarity/polarizability, hydrogen-bond donor, hydrogen-bond acceptor and molecular size contributions to retention were estimated at various mobile phase compositions and temperatures. In addition to mobile phase gradients, temperature programming can be used to reduce separation times. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Alvarez, Guillermo A.; Baumanna, Wolfram
2005-02-01
A thermodynamic model for the partition of a solute (pesticide) between two immiscible phases, such as the stationary and mobile phases of supercritical fluid chromatography with CO2, is developed from first principles. A key ingredient of the model is the result of the calculation made by Liptay of the energy of interaction of a polar molecule with a dielectric continuum, which represents the solvent. The strength of the interaction between the solute and the solvent, which may be considered a measure of the solvent power, is characterized by a function g = (ɛ - 1)/(2ɛ +1), where ɛ is the dielectric constant of the medium, which is a function of the temperature T and the pressure P. Since the interactions between the nonpolar supercritical CO2 solvent and the slightly polar pesticide molecules are considered to be extremely weak, a regular solution model is appropriate from the thermodynamic point of view. At constant temperature, the model predicts a linear dependence of the logarithm of the capacity factor (lnk) of the chromatographic experiment on the function g = g(P), as the pressure is varied, with a slope which depends on the dipole moment of the solute, dispersion interactions and the size of the solute cavity in the solvent. At constant pressure, once the term containing the g (solvent interaction) factor is subtracted from lnk, a plot of the resulting term against the inverse of temperature yields the enthalpy change of transfer of the solute from the mobile (supercritical CO2) phase to the stationary (adsorbent) phase. The increase in temperature with the consequent large volume expansion of the supercritical fluid lowers its solvent strength and hence the capacity factor of the column (or solute retention time) increases. These pressure and temperature effects, predicted by the model, agree excellently with the experimental retention times of seven pesticides. Beyond a temperature of about 393 K, where the liquid solvent densities approach those of a gas (and hence the solvent strength becomes negligible), a dramatic loss of the retention times of all pesticides is observed in the experiments; this is attributed to desorption of the solute from the stationary phase, as predicted by Le Châtelier's principle for the (exothermic) adsorption process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtubise, R.J.; Allen, T.W.; Hussain, A.
1981-03-29
Dry-column chromatography with an aluminum oxide stationary phase and a n-hexane-ether (19:1) mobile phase was used to separate polycyclic aromatic hydrocarbons (PAH) by ring size. Prior to the dry-column chromatography step, the coal derived solvents were added to an acid treated silica gel column and eluted with chloroform. This step removed pyridine-type nitrogen heterocycles. After separation of the individual ring fractions, the fractions were further separated by either thin layer chromatography (TLC) or high performance liquid chromatography (HPLC). If TLC was used, then after separation fluorescence profiles of each PAH ring fraction distributed on 30%-acetylated cellulose chromatoplates were obtained withmore » a spectrodensitometer. Measurement of fluorescence peak heights gave an approximate measure of the amount of the 3-, 4-, 5-, and 6- ring PAH. For HPLC separation, the 3- and 4- ring PAH fractions obtained from the dry-column chromatography step were separated with a ..mu..-Bondapak C/sub 18/ column and methanol:water (65:35) mobile phase. The HPLC separated PAH were characterized by chromatographic correlation factors and corrected fluorescence excitation spectra. Alkylphenols were identified in coal recycle solvent sample following separation by HPLC.« less
Baeza-Baeza, J J; Ruiz-Angel, M J; García-Alvarez-Coque, M C
2007-09-07
A simple model is proposed that relates the parameters describing the peak width with the retention time, which can be easily predicted as a function of mobile phase composition. This allows the further prediction of peak shape with global errors below 5%, using a modified Gaussian model with a parabolic variance. The model is useful in the optimisation of chromatographic resolution to assess an eventual overlapping of close peaks. The dependence of peak shape with mobile phase composition was studied for mobile phases containing acetonitrile in the presence and absence of micellised surfactant (micellar-organic and hydro-organic reversed-phase liquid chromatography, RPLC). In micellar RPLC, both modifiers (surfactant and acetonitrile) were observed to decrease or improve the efficiencies in the same percentage, at least in the studied concentration ranges. The study also revealed that the problem of achieving smaller efficiencies in this chromatographic mode, compared to hydro-organic RPLC, is not only related to the presence of surfactant covering the stationary phase, but also to the smaller concentration of organic solvent in the mobile phase.
ERIC Educational Resources Information Center
Penteado, Jose C.; Masini, Jorge Cesar
2011-01-01
Influence of the solvent strength determined by the addition of a mobile-phase organic modifier and pH on chromatographic separation of sorbic acid and vanillin has been investigated by the relatively new technique, liquid sequential injection chromatography (SIC). This technique uses reversed-phase monolithic stationary phase to execute fast…
Quigley, W W; Ecker, S T; Vahey, P G; Synovec, R E
1999-10-01
The development of liquid chromatography with a commercially available cyano propyl stationary phase and a 100% water mobile phase is reported. Separations were performed at ambient temperature, simplifying instrumental requirements. Excellent separation efficiency using a water mobile phase was achieved, for example N=18 800, or 75 200 m(-1), was obtained for resorcinol, at a retention factor of k'=4.88 (retention time of 9.55 min at 1 ml min(-1) for a 25 cmx4.6 mm i.d. column, packed with 5 mum diameter particles with the cyano propyl stationary phase). A separation via reversed phase liquid chromatography (RP-LC) with a 100% water mobile phase of six phenols and related compounds was compared to a separation of the same compounds by traditional RP-LC, using octadecylsilane (ODS), i.e. C18, bound to silica and an aqueous mobile phase modified with acetonitrile. Nearly identical analysis time was achieved for the separation of six phenols and related compounds using the cyano propyl stationary phase with a 100% water mobile phase, as compared to traditional RP-LC requiring a relatively large fraction of organic solvent modifier in the mobile phase (25% acetonitrile:75% water). Additional understanding of the retention mechanism with the 100% water mobile phase was obtained by relating measured retention factors of aliphatic alcohols, phenols and related compounds, and chlorinated hydrocarbons to their octanol:water partition coefficients. The retention mechanism is found to be consistent with a RP-LC mechanism coupled with an additional retention effect due to residual hydroxyl groups on the cyano propyl stationary phase. Advantages due to a 100% water mobile phase for the chemical analysis of alcohol mixtures and chlorinated hydrocarbons are reported. By placing an absorbance detector in-series and preceding a novel drop interface to a flame ionization detector (FID), selective detection of a separated mixture of phenols and related compounds and aliphatic alcohols is achieved. The compound class of aliphatic alcohols is selectively and sensitively detected by the drop interface/FID, and the phenols and related compounds are selectively and sensitively detected by absorbance detection at 200 nm. The separation and detection of chlorinated hydrocarbons in a water sample matrix further illustrated the advantages of this methodology. The sensitivity and selectivity of the FID signal for the chlorinated hydrocarbons are significantly better than absorbance detection, even at 200 nm. This methodology is well suited to continuous and automated monitoring of water samples. The applicability of samples initially in an organic solvent matrix is explored, since an organic sample matrix may effect retention and efficiency. Separations in acetonitrile and isopropyl alcohol sample matrices compared well to separations with a water sample matrix.
Herath, H M D R; Shaw, P N; Cabot, P; Hewavitharana, A K
2010-06-15
The high-performance liquid chromatography (HPLC) column is capable of enrichment/pre-concentration of trace impurities in the mobile phase during the column equilibration, prior to sample injection and elution. These impurities elute during gradient elution and result in significant chromatographic peaks. Three types of purified water were tested for their impurity levels, and hence their performances as mobile phase, in HPLC followed by total ion current (TIC) mode of MS. Two types of HPLC-grade water produced 3-4 significant peaks in solvent blanks while LC/MS-grade water produced no peaks (although peaks were produced by LC/MS-grade water also after a few days of standing). None of the three waters produced peaks in HPLC followed by UV-Vis detection. These peaks, if co-eluted with analyte, are capable of suppressing or enhancing the analyte signal in a MS detector. As it is not common practice to run solvent blanks in TIC mode, when quantification is commonly carried out using single ion monitoring (SIM) or single or multiple reaction monitoring (SRM or MRM), the effect of co-eluting impurities on the analyte signal and hence on the accuracy of the results is often unknown to the analyst. Running solvent blanks in TIC mode, regardless of the MS mode used for quantification, is essential in order to detect this problem and to take subsequent precautions. Copyright (c) 2010 John Wiley & Sons, Ltd.
Hohn, Nuri; Schlosser, Steffen J; Bießmann, Lorenz; Grott, Sebastian; Xia, Senlin; Wang, Kun; Schwartzkopf, Matthias; Roth, Stephan V; Müller-Buschbaum, Peter
2018-03-15
The amphiphilic diblock copolymer polystyrene-block-polyethylene oxide is combined with sol-gel chemistry to control the structure formation of blade-coated foam-like titania thin films. The influence of evaporation time before immersion into a poor solvent bath and polarity of the poor solvent bath are studied. Resulting morphological changes are quantified by scanning electron microscopy (SEM) and grazing incidence small angle X-ray scattering (GISAXS) measurements. SEM images surface structures while GISAXS accesses inner film structures. Due to the correlation of evaporation time and mobility of the polymer template during the phase separation process, a decrease in the distances of neighboring titania nanostructures from 50 nm to 22 nm is achieved. Furthermore, through an increase of polarity of an immersion bath the energetic incompatibility of the hydrophobic block and the solvent can be enhanced, leading to an increase of titania nanostructure distances from 35 nm to 55 nm. Thus, a simple approach is presented to control titania nanostructure in foam-like films prepared via blade coating, which enables an easy upscaling of film preparation.
NASA Astrophysics Data System (ADS)
Valeja, Santosh G.; Emmett, Mark R.; Marshall, Alan G.
2012-04-01
Hydrogen/deuterium exchange monitored by mass spectrometry is an important non-perturbing tool to study protein structure and protein-protein interactions. However, water in the reversed-phase liquid chromatography mobile phase leads to back-exchange of D for H during chromatographic separation of proteolytic peptides following H/D exchange, resulting in incorrect identification of fast-exchanging hydrogens as unexchanged hydrogens. Previously, fast high-performance liquid chromatography (HPLC) and supercritical fluid chromatography have been shown to decrease back-exchange. Here, we show that replacement of up to 40% of the water in the LC mobile phase by the modifiers, dimethylformamide (DMF) and N-methylpyrrolidone (NMP) (i.e., polar organic modifiers that lack rapid exchanging hydrogens), significantly reduces back-exchange. On-line LC micro-ESI FT-ICR MS resolves overlapped proteolytic peptide isotopic distributions, allowing for quantitative determination of the extent of back-exchange. The DMF modified solvent composition also improves chromatographic separation while reducing back-exchange relative to conventional solvent.
Gil-Agustí, M; Monferrer-Pons, L; Esteve-Romero, J; García-Alvarez-Coque, M C
2001-01-01
A reversed-phase liquid chromatographic procedure with a micellar mobile phase of sodium dodecyl sulfate (SDS), containing a small amount of pentanol, was developed for the control of 7 antihistamines of diverse action in pharmaceutical preparations (tablets, capsules, powders, solutions, and syrups): azatadine, carbinoxamine, cyclizine, cyproheptadine, diphenhydramine, doxylamine, and tripelennamine. The retention times of the drugs were <9 min with a mobile phase of 0.15M SDS-6% (v/v) pentanol. The recoveries with respect to the declared compositions were in the range of 93-110%, and the intra- and interday repeatabilities and interday reproducibility were <1.2%. The results were similar to those obtained with a conventional 60 + 40 (v/v) methanol-water mixture, with the advantage of reduced toxicity, flammability, environmental impact, and cost of the micellar-pentanol solutions. The lower risk of evaporation of the organic solvent dissolved in the micellar solutions also increased the stability of the mobile phase.
Effects of elevated temperature and mobile phase composition on a novel C18 silica column.
Lippert, J Andreas; Johnson, Todd M; Lloyd, Jarem B; Smith, Jared P; Johnson, Bryce T; Furlow, Jason; Proctor, Angela; Marin, Stephanie J
2007-05-01
A novel polydentate C18 silica column was evaluated at an elevated temperature under acidic, basic, and neutral mobile phase conditions using ACN and methanol as the mobile phase organic modifier. The temperature range was 40-200 degrees C. The mobile phase compositions were from 0 to 80% organic-aqueous v/v and the mobile phase pH levels were between 2 and 12. The maximum operating temperature of the column was affected by the amount and type of organic modifier used in the mobile phase. Under neutral conditions, the column showed good column thermal stability at temperatures ranging between 120 and 200 degrees C in methanol-water and ACN-water solvent systems. At pH 2 and 3, the column performed well up to about 160 degrees C at two fixed ACN-buffer compositions. Under basic conditions at elevated temperatures, the column material deteriorated more quickly, but still remained stable up to 100 degrees C at pH 9 and 60 degrees C at pH 10. The results of this study indicate that this novel C18 silica-based column represents a significant advancement in RPLC column technology with enhanced thermal and pH stability when compared to traditional bonded phase silica columns.
Fu, Qing; Wang, Jun; Liang, Tu; Xu, Xiaoyong; Jin, Yu
2013-11-01
A systematic evaluation of retention behavior of carbohydrates in hydrophilic interaction liquid chromatography (HILIC) was performed. The influences of mobile phase, stationary phase and buffer salt on the retention of carbohydrates were investigated. According to the results, the retention time of carbohydrates decreased as the proportion of acetonitrile in mobile phase decreased. Increased time of carbohydrates was observed as the concentration of buffer salt in mobile phase increased. The retention behavior of carbohydrates was also affected by organic solvent and HILIC stationary phase. Furthermore, an appropriate retention equation was used in HILIC mode. The retention equation lnk = a + blnC(B) + cC(B) could quantitatively describe the retention factors of carbohydrates of plant origin with good accuracy: the relative error of the predicted time to actual time was less than 0.3%. The evaluation results could provide guidance for carbohydrates to optimize the experimental conditions in HILIC method development especially for carbohydrate separation
West, Caroline; Melin, Jodie; Ansouri, Hassna; Mengue Metogo, Maïly
2017-04-07
The mobile phases employed in current supercritical fluid chromatography (SFC) are usually composed of a mixture of pressurized carbon dioxide and a co-solvent. The co-solvent is most often an alcohol and may contain a third component in small proportions, called an additive (acid, base or salt). The polarity of such mobile phase compositions is here re-evaluated with a solvatochromic dye (Nile Red), particularly to assess the contribution of additives. It appears that additives, when employed in usual concentration range (0.1% or 20mM) do not modify the polarity in the immediate environment of the probe. In addition, the combination of carbon dioxide and an alcohol is known to form alkoxylcarbonic acid, supposedly conferring some acidic character to SFC mobile phases. Direct measurements of the apparent pH are impossible, but colour indicators of pH can be used to define the range of apparent pH provided by carbon dioxide-alcohol mixtures, with or without additives. Five colour indicators (Thymol Blue, Bromocresol Green, Methyl Red, Bromocresol Purple, and Bromothymol Blue) were selected to provide a wide range of aqueous pK a values (from 1.7 to 8.9). UV-vis absorption spectra measured in liquid phases of controlled pH were compared to those measured with a diode-array detector employed in SFC, with the help of chemometric methods. Based on these observations, it is concluded that the apparent pH range in carbon dioxide-methanol mobile phases is close to 5. Increasing the proportion of methanol (in the course of a gradient elution for instance) causes decreasing apparent pH. Strong acids can further decrease the apparent pH below 1.7; strong bases have little influence on the apparent pH, probably because, in this range of concentrations, they are titrated by alkoxylcarbonic acid or form ion pairs with alkoxycarbonate. However, bases and salts could stabilize the acidity in the course of gradient runs. Copyright © 2017 Elsevier B.V. All rights reserved.
Khater, Syame; Lozac'h, Marie-Anne; Adam, Isabelle; Francotte, Eric; West, Caroline
2016-10-07
Analysis and production of enantiomerically pure compounds is a major topic of interest when active pharmaceutical ingredients are concerned. Enantioselective chromatography has become a favourite both at the analytical and preparative scales. High-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) are dominating the scene and are often seen as complementary techniques. Nowadays, for economic and ecologic reasons, SFC may be preferred over normal-phase HPLC (NPLC) as it allows significant reductions in solvent consumption. However, the transfer of NPLC methods to SFC is not always straightforward. In this study, we compare the retention of achiral molecules and separation of enantiomers under supercritical fluid (carbon dioxide with ethanol or isopropanol) and liquid normal-phase (heptane with ethanol or isopropanol) elution modes with polysaccharide stationary phases in order to explore the differences between the retention and enantioseparation properties between the two modes. Chemometric methods (namely quantitative structure-retention relationships and discriminant analysis) are employed to compare the results obtained on a large set of analytes (171 achiral probes and 97 racemates) and gain some understanding on the retention and separation mechanisms. The results indicate that, contrary to popular belief, carbon dioxide - solvent SFC mobile phases are often weaker eluents than liquid mobile phases. It appears that SFC and NPLC elution modes provide different retention mechanisms. While some enantioseparations are unaffected, facilitating the transfer between the two elution modes, other enantioseparations may be drastically different due to different types and strength of interactions contributing to enantioselectivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Methylammonium formate as a mobile phase modifier for reversed-phase liquid chromatography
Grossman, Shau; Danielson, Neil D.
2009-01-01
Although alkylammonium ionic liquids such as ethylammonium nitrate and ethylammonium formate have been used as mobile phase “solvents” for liquid chromatography (LC), we have shown that methylammonium formate (MAF), in part because of its lower viscosity, can be an effective replacement for methanol (MeOH) in reversed-phase LC. Plots of log retention factor versus the fraction of MeOH and MAF in the mobile phase indicate quite comparable solvent strength slope values of 2.50 and 2.05, respectively. Using a polar endcapped C18 column, furazolidone and nitrofurantoin using 20% MAF-80% water could be separated in 22 min but no baseline separation was possible using MeOH as the modifier, even down to 10%. Suppression of silanol peak broadening effects by MAF is important permitting a baseline separation of pyridoxine, thiamine, and nicotinamide using 5% MAF-95% water at 0.7 mL/min. Using 5% MeOH-95% water, severe peak broadening for thiamine is evident. The compatibility of MAF as a mobile phase modifer for LC with mass spectrometry detection of water soluble vitamins is also shown. PMID:18849044
Hertzberg, S; Kvittingen, L; Anthonsen, T; Skjåk-Braek, G
1992-01-01
Alginate was evaluated as an immobilization matrix for enzyme-catalyzed reactions in organic solvents. In contrast to most hydrogels, calcium alginate was found to be stable in a range of organic solvents and to retain the enzyme inside the gel matrix. In hydrophobic solvents, the alginate gel (greater than 95% water) thus provided a stable, two-phase liquid system. The lipase from Candida cylindracea, after immobilization in alginate beads, catalysed esterification and transesterification in n-hexane under both batch and continuous-flow conditions. The operational stability of the lipase was markedly enhanced by alginate entrapment. In the esterification of butanoic acid with n-butanol, better results were obtained in the typical hydrophilic calcium alginate beads than in less hydrophilic matrices. The effects of substrate concentration, matrix area, and polarity of the substrate alcohols and of the organic solvent on the esterification activity were examined. The transesterification of octyl 2-bromopropanoate with ethanol was less efficient than that of ethyl 2-bromopropanoate with octanol. By using the hydrophilic alginate gel as an immobilization matrix in combination with a mobile hydrophobic phase, a two-phase liquid system was achieved with definite advantages for a continuous, enzyme-catalysed process.
Yang, Beibei; Cai, Tianpei; Li, Zhan; Guan, Ming; Qiu, Hongdeng
2017-12-01
In this paper, deep eutectic solvents (DESs) were firstly used as new and green solvents for the preparation of polymer-grafted silica stationary phases. 1-Vinylimidazole and acrylic acid were homopolymerized and copolymerized on silica via surface radical chain-transfer reaction in the DESs. Three stationary phases including poly(1-vinylimidazole)-, poly(acrylic acid)-, poly(1-vinylimidazole-co-acrylic acid)-grafted silica were obtained and characterized by elemental analysis and Fourier transform infrared spectroscopy. Their hydrophilic interaction chromatographic properties were investigated for separation of nucleosides, nucleobases, saccharides and amino acids. The retention changes of nucleosides and nucleobases on these columns were investigated under different chromatographic conditions including acetonitrile content, salt concentration, pH of mobile phase and column temperature. The repeatability of these columns was also investigated. The results demonstrate that DESs can be used as new media for the synthesis of silica-based stationary phases by homopolymerization and copolymerization on the surface of porous silica particles. Copyright © 2017 Elsevier B.V. All rights reserved.
Use of Pseudophase TLC in Teaching Laboratories.
ERIC Educational Resources Information Center
Armstrong, Daniel W.; And Others
1984-01-01
Suggests that pseudophase liquid chromatography, which uses aqueous surfactant solutions instead of organic solvents for the mobile phase, can be substituted for thin-layer chromatography in the introductory organic course. Outlines the method as it applies to common separations in the laboratory. (JN)
Determination of some phenolic compounds in red wine by RP-HPLC: method development and validation.
Burin, Vívian Maria; Arcari, Stefany Grützmann; Costa, Léa Luzia Freitas; Bordignon-Luiz, Marilde T
2011-09-01
A methodology employing reversed-phase high-performance liquid chromatography (RP-HPLC) was developed and validated for simultaneous determination of five phenolic compounds in red wine. The chromatographic separation was carried out in a C(18) column with water acidify with acetic acid (pH 2.6) (solvent A) and 20% solvent A and 80% acetonitrile (solvent B) as the mobile phase. The validation parameters included: selectivity, linearity, range, limits of detection and quantitation, precision and accuracy, using an internal standard. All calibration curves were linear (R(2) > 0.999) within the range, and good precision (RSD < 2.6%) and recovery (80-120%) was obtained for all compounds. This method was applied to quantify phenolics in red wine samples from Santa Catarina State, Brazil, and good separation peaks for phenolic compounds in these wines were observed.
Lesellier, E; Mith, D; Dubrulle, I
2015-12-04
Analyses of complex samples of cosmetics, such as creams or lotions, are generally achieved by HPLC. These analyses are often multistep gradients, due to the presence of compounds with a large range of polarity. For instance, the bioactive compounds may be polar, while the matrix contains lipid components that are rather non-polar, thus cosmetic formulations are usually oil-water emulsions. Supercritical fluid chromatography (SFC) uses mobile phases composed of carbon dioxide and organic co-solvents, allowing for good solubility of both the active compounds and the matrix excipients. Moreover, the classical and well-known properties of these mobile phases yield fast analyses and ensure rapid method development. However, due to the large number of stationary phases available for SFC and to the varied additional parameters acting both on retention and separation factors (co-solvent nature and percentage, temperature, backpressure, flow rate, column dimensions and particle size), a simplified approach can be followed to ensure a fast method development. First, suited stationary phases should be carefully selected for an initial screening, and then the other operating parameters can be limited to the co-solvent nature and percentage, maintaining the oven temperature and back-pressure constant. To describe simple method development guidelines in SFC, three sample applications are discussed in this paper: UV-filters (sunscreens) in sunscreen cream, glyceryl caprylate in eye liner and caffeine in eye serum. Firstly, five stationary phases (ACQUITY UPC(2)) are screened with isocratic elution conditions (10% methanol in carbon dioxide). Complementary of the stationary phases is assessed based on our spider diagram classification which compares a large number of stationary phases based on five molecular interactions. Secondly, the one or two best stationary phases are retained for further optimization of mobile phase composition, with isocratic elution conditions or, when necessary, two-step gradient elution. The developed methods were then applied to real cosmetic samples to assess the method specificity, with regards to matrix interferences, and calibration curves were plotted to evaluate quantification. Besides, depending on the matrix and on the studied compounds, the importance of the detector type, UV or ELSD (evaporative light-scattering detection), and of the particle size of the stationary phase is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Levi M. J.; Bhattacharya, Mithun; Wu, Qi
Polymer organic photovoltaic (OPV) device performance is defined by the three-dimensional morphology of the phase-separated domains in the active layer. Here, we determine the evolution of morphology through different stages of tailored solvent vapor and thermal annealing techniques in air-processed poly(3-hexylthiophene-2,5-diyl)/phenyl-C61-butyric acid methyl ester-based OPV blends. A comparative evaluation of the effect of solvent type used for vapor annealing was performed using grazing-incidence wide-angle X-ray scattering, atomic force microscopy, and UV–vis spectroscopy to probe the active-layer morphology. A nonhalogenated orthogonal solvent was found to impart controlled morphological features within the exciton diffusion length scales, enhanced absorbance, greater crystallinity, increased paracrystallinemore » disorder, and improved charge-carrier mobility. Low-boiling, fast-diffusing isopropanol allowed the greatest control over the nanoscale structure of the solvents evaluated and yielded a cocontinuous morphology with narrowed domains and enhanced paths for the charge carrier to reach the anode.« less
A Simple RP-HPLC Method for Quantitation of Itopride HCl in Tablet Dosage Form.
Thiruvengada, Rajan Vs; Mohamed, Saleem Ts; Ramkanth, S; Alagusundaram, M; Ganaprakash, K; Madhusudhana, Chetty C
2010-10-01
An isocratic reversed phase high-performance liquid chromatographic method with ultraviolet detection at 220 nm has been developed for the quantification of itopride hydrochloride in tablet dosage form. The quantification was carried out using C(8) column (250 mm × 4.6 mm), 5-μm particle size SS column. The mobile phase comprised of two solvents (Solvent A: buffer 1.4 mL ortho-phosphoric acid adjusted to pH 3.0 with triethyl amine and Solvent B: acetonitrile). The ratio of Solvent A: Solvent B was 75:25 v/v. The flow rate was 1.0 mL (-1)with UV detection at 220 nm. The method has been validated and proved to be robust. The calibration curve was linear in the concentration range of 80-120% with coefficient of correlation 0.9995. The percentage recovery for itopride HCl was 100.01%. The proposed method was validated for its selectivity, linearity, accuracy, and precision. The method was found to be suitable for the quality control of itopride HCl in tablet dosage formulation.
A Simple RP-HPLC Method for Quantitation of Itopride HCl in Tablet Dosage Form
Thiruvengada, Rajan VS; Mohamed, Saleem TS; Ramkanth, S; Alagusundaram, M; Ganaprakash, K; Madhusudhana, Chetty C
2010-01-01
An isocratic reversed phase high-performance liquid chromatographic method with ultraviolet detection at 220 nm has been developed for the quantification of itopride hydrochloride in tablet dosage form. The quantification was carried out using C8 column (250 mm × 4.6 mm), 5-μm particle size SS column. The mobile phase comprised of two solvents (Solvent A: buffer 1.4 mL ortho-phosphoric acid adjusted to pH 3.0 with triethyl amine and Solvent B: acetonitrile). The ratio of Solvent A: Solvent B was 75:25 v/v. The flow rate was 1.0 mL -1with UV detection at 220 nm. The method has been validated and proved to be robust. The calibration curve was linear in the concentration range of 80-120% with coefficient of correlation 0.9995. The percentage recovery for itopride HCl was 100.01%. The proposed method was validated for its selectivity, linearity, accuracy, and precision. The method was found to be suitable for the quality control of itopride HCl in tablet dosage formulation. PMID:21264104
Immobilized polysaccharide derivatives: chiral packing materials for efficient HPLC resolution.
Ikai, Tomoyuki; Yamamoto, Chiyo; Kamigaito, Masami; Okamoto, Yoshio
2007-01-01
Polysaccharide-based chiral packing materials (CPMs) for high-performance liquid chromatography have frequently been used not only to determine the enantiomeric excess of chiral compounds but also to preparatively resolve a wide range of racemates. However, these CPMs can be used with only a limited number of solvents as mobile phases because some organic solvents, such as tetrahydrofuran, chloroform, and so on, dissolve or swell the polysaccharide derivatives coated on a support, e.g., silica gel, and destroy their packed columns. The limitation of mobile phase selection is sometimes a serious problem for the efficient analytical and preparative resolution of enantiomers. This defect can be resolved by the immobilization of the polysaccharide derivatives onto silica gel. Efficient immobilizations have been attained through the radical copolymerization of the polysaccharide derivatives bearing small amounts of polymerizable residues and also through the polycondensation of the polysaccharide derivatives containing a few percent of 3-(triethoxysilyl)propyl residue. (c) 2007 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.
Dahal, Udaya R; Dormidontova, Elena E
2017-04-12
Polymers hydrogen-bonding with solvent represent an important broad class of polymers, properties of which depend on solvation. Using atomistic molecular dynamics simulations with the OPLS/AA force field we investigate the effect of hydrogen bonding on PEO conformation and chain mobility by comparing its behavior in isobutyric acid and aqueous solutions. In agreement with experimental data, we found that in isobutyric acid PEO forms a rather rigid extended helical structure, while in water it assumes a highly flexible coil conformation. We show that the difference in PEO conformation and flexibility is the result of the hydrogen bond stability and overall solvent dynamics near PEO. Isobutyric acid forms up to one hydrogen bond per repeat unit of PEO and interacts with PEO for a prolonged period of time, thereby stabilizing the helical structure of the polymer and reducing its segmental mobility. In contrast, water forms on average 1.2 hydrogen bonds per repeat unit of PEO (with 60% of water forming a single hydrogen bond and 40% of water forming two hydrogen bonds) and resides near PEO for a noticeably shorter time than isobutyric acid, leading to the well-documented high segmental mobility of PEO in water. We also analyze PEO conformation, hydrogen bonding and segmental mobility in binary water/isobutyric acid solutions and find that in the phase separated region PEO resides in the isobutyric-rich phase forming about 25% of its hydrogen bonds with isobutyric acid and 75% with water. We show that the dynamics of solvation affects the equilibrium properties of macromolecules, such as conformation, and by mixing of hydrogen bond-donating solvents one can significantly alter both polymer conformation and its local dynamics.
Cheel, José; Minceva, Mirjana; Urajová, Petra; Aslam, Rabya; Hrouzek, Pavel; Kopecký, Jiří
2015-10-01
Aeruginosin-865 was isolated from cultivated soil cyanobacteria using a combination of centrifugal partition chromatography (CPC) and gel permeation chromatography. The solubility of Aer-865 in different solvents was evaluated using the conductor-like screening model for real solvents (COSMO-RS). The CPC separation was performed in descending mode with a biphasic solvent system composed of water-n-BuOH-acetic acid (5:4:1, v/v/v). The upper phase was used as a stationary phase, whereas the lower phase was employed as a mobile phase at a flow rate of 10 mL/min. The revolution speed and temperature of the separation column were 1700 rpm and 25 degrees C, respectively. Preparative CPC separation followed by gel permeation chromatography was performed on 50 mg of crude extract yielding Aer-865 (3.5 mg), with a purity over 95% as determined by HPLC. The chemical identity of the isolated compound was confirmed by comparing its spectroscopic data (UV, HRESI-MS, HRESI-MS/MS) with those of an authentic standard and data available in the literature.
Lange, Jeffrey J; Culbertson, Christopher T; Higgins, Daniel A
2008-12-15
Single molecule microscopic and spectroscopic methods are employed to probe the mobility and physical entrapment of dye molecules in dry and solvent-loaded poly(dimethylsiloxane) (PDMS) films. PDMS films of approximately 220 nm thickness are prepared by spin casting dilute solutions of Sylgard 184 onto glass coverslips, followed by low temperature curing. A perylene diimide dye (BPPDI) is used to probe diffusion and molecule-matrix interactions. Two classes of dye-loaded samples are investigated: (i) those incorporating dye dispersed throughout the films ("in film" samples) and (ii) those in which the dye is restricted primarily to the PDMS surface ("on film" samples). Experiments are performed under dry nitrogen and at various levels of isopropyl alcohol (IPA) loading from the vapor phase. A PDMS-coated quartz-crystal microbalance is employed to monitor solvent loading and drying of the PDMS and to ensure equilibrium conditions are achieved. Single molecules are shown to be predominantly immobile under dry conditions and mostly mobile under IPA-saturated conditions. Quantitative methods for counting the fluorescent spots produced by immobile single molecules in optical images of the samples demonstrate that the population of mobile molecules increases nonlinearly with IPA loading. Even under IPA saturated conditions, the population of fixed molecules is found to be greater than zero and is greatest for "in film" samples. Fluorescence correlation spectroscopy is used to measure the apparent diffusion coefficient for the mobile molecules, yielding a mean value of D = 1.4(+/-0.4) x 10(-8) cm(2)/s that is virtually independent of IPA loading and sample class. It is concluded that a nonzero population of dye molecules is physically entrapped within the PDMS matrix under all conditions. The increase in the population of mobile molecules under high IPA conditions is attributed to the filling of film micropores with solvent, rather than by incorporation of molecularly dispersed solvent into the PDMS.
Multiphase flow modeling in centrifugal partition chromatography.
Adelmann, S; Schwienheer, C; Schembecker, G
2011-09-09
The separation efficiency in Centrifugal Partition Chromatography (CPC) depends on selection of a suitable biphasic solvent system (distribution ratio, selectivity factor, sample solubility) and is influenced by hydrodynamics in the chambers. Especially the stationary phase retention, the interfacial area for mass transfer and the flow pattern (backmixing) are important parameters. Their relationship with physical properties, operating parameters and chamber geometry is not completely understood and predictions are hardly possible. Experimental flow visualization is expensive and two-dimensional only. Therefore we simulated the flow pattern using a volume-of-fluid (VOF) method, which was implemented in OpenFOAM®. For the three-dimensional simulation of a rotating FCPC®-chamber, gravitational centrifugal and Coriolis forces were added to the conservation equation. For experimental validation the flow pattern of different solvent systems was visualized with an optical measurement system. The amount of mobile phase in a chamber was calculated from gray scale values of videos recorded by an image processing routine in ImageJ®. To visualize the flow of the stationary phase polyethylene particles were used to perform a qualitative particle image velocimetry (PIV) analysis. We found a good agreement between flow patterns and velocity profiles of experiments and simulations. By using the model we found that increasing the chamber depth leads to higher specific interfacial area. Additionally a circular flow in the stationary phase was identified that lowers the interfacial area because it pushes the jet of mobile phase to the chamber wall. The Coriolis force alone gives the impulse for this behavior. As a result the model is easier to handle than experiments and allows 3D prediction of hydrodynamics in the chamber. Additionally it can be used for optimizing geometry and operating parameters for given physical properties of solvent systems. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Anil K.; Zhang, Rui; Orton, Daniel J.
Two unexpected singly charged ions at m/z 1103 and 944 have been observed in mass spectra obtained from electrospray ionization-mass spectrometric analysis of liquid chromatography effluents with mobile phases containing trifluoroacetic acid. Accurate mass measurement and tandem mass spectrometry studies revealed that these two ions are not due to any contamination from solvents and chemicals used for mobile and stationary phases or from the laboratory atmospheric environment. Instead these ions are clusters of trifluoroacetic acid formed in association with acetonitrile, water and iron from the stainless steel union used to connect the column with the electrospray tip and to applymore » high voltage; the molecular formulae are Fe+((OH)(H2O)2)9(CF3COOH)5 and Fe+((OH)(H2O)2)6 (CF3COOH)5.« less
Adelmann, S; Baldhoff, T; Koepcke, B; Schembecker, G
2013-01-25
The selection of solvent systems in centrifugal partition chromatography (CPC) is the most critical point in setting up a separation. Therefore, lots of research was done on the topic in the last decades. But the selection of suitable operating parameters (mobile phase flow rate, rotational speed and mode of operation) with respect to hydrodynamics and pressure drop limit in CPC is still mainly driven by experience of the chromatographer. In this work we used hydrodynamic analysis for the prediction of most suitable operating parameters. After selection of different solvent systems with respect to partition coefficients for the target compound the hydrodynamics were visualized. Based on flow pattern and retention the operating parameters were selected for the purification runs of nybomycin derivatives that were carried out with a 200 ml FCPC(®) rotor. The results have proven that the selection of optimized operating parameters by analysis of hydrodynamics only is possible. As the hydrodynamics are predictable by the physical properties of the solvent system the optimized operating parameters can be estimated, too. Additionally, we found that dispersion and especially retention are improved if the less viscous phase is mobile. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Yoshie, Ayano; Kanda, Ayato; Nakamura, Takahiro; Igusa, Hisao; Hara, Setsuko
2009-01-01
Although there are various determination methods for gamma -oryzanol contained in rice bran oil by absorptiometry, normal-phase HPLC, and reversed-phase HPLC, their accuracies and the correlations among them have not been revealed yet. Chloroform-containing mixed solvents are widely used as mobile phases in some HPLC methods, but researchers have been apprehensive about its use in terms of safety for the human body and the environment.In the present study, a simple and accurate determination method was developed by improving the reversed-phase HPLC method. This novel HPLC method uses methanol/acetonitrile/acetic acid (52/45/3 v/v/v), a non-chlorinated solvent, as the mobile phase, and shows an excellent linearity (y = 0.9527x + 0.1241, R(2) = 0.9974) with absorptiometry. The mean relative errors among the existing 3 methods and the novel method, determined by adding fixed amounts of gamma-oryzanol into refined rice salad oil, were -4.7% for the absorptiometry, -6.8% for the existing normal-phase HPLC, +4.6% for the existing reversed-phase HPLC, and -1.6% for the novel reversed-phase HPLC method. gamma -Oryzanol content in 12 kinds of crude rice bran oils obtained from different sources were determined by the four methods. The mean content of those oils were 1.75+/-0.18% for the absorptiometry, 1.29+/-0.11% for the existing normal-phase HPLC, 1.51+/-0.10% for the existing reversed-phase HPLC, and 1.54+/-0.19% for the novel reversed-phase HPLC method.
The role of ultra-fast solvent evaporation on the directed self-assembly of block polymer thin films
NASA Astrophysics Data System (ADS)
Drapes, Chloe; Nelson, G.; Grant, M.; Wong, J.; Baruth, A.
The directed self-assembly of nano-structures in block polymer thin films viasolvent vapor annealing is complicated by several factors, including evaporation rate. Solvent vapor annealing exposes a disordered film to solvent(s) in the vapor phase, increasing mobility and tuning surface energy, with the intention of producing an ordered structure. Recent theoretical predictions reveal the solvent evaporation affects the resultant nano-structuring. In a competition between phase separation and kinetic trapping during drying, faster solvent removal can enhance the propagation of a given morphology into the bulk of the thin film down to the substrate. Recent construction of a purpose-built, computer controlled solvent vapor annealing chamber provides control over forced solvent evaporation down to 15 ms. This is accomplished using pneumatically actuated nitrogen flow into and out of the chamber. Furthermore, in situ spectral reflectance, with 10 ms temporal resolution, monitors the swelling and evaporation. Presently, cylinder-forming polystyrene-block-polylactide thin films were swollen with 40% (by volume) tetrahydrofuran, followed by immediate evaporation under a variety of designed conditions. This includes various evaporation times, ranging from 15 ms to several seconds, and four unique rate trajectories, including linear, exponential, and combinations. Atomic force microscopy reveals specific surface, free and substrate, morphologies of the resultant films, dependent on specific evaporation conditions. Funded by the Clare Boothe Luce Foundation and Nebraska EPSCoR.
Shinomiya, Kazufusa; Tokura, Koji; Kimura, Emiru; Takai, Midori; Harikai, Naoki; Yoshida, Kazunori; Yanagidaira, Kazuhiro; Ito, Yoichiro
2015-05-01
A new high-speed counter-current chromatograph, named coil satellite centrifuge (CSC), was designed and fabricated in our laboratory. The CSC apparatus produces the satellite motion such that the coiled column simultaneously rotates around the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3). In order to achieve this triplicate rotary motion without twisting of the flow tube, the rotation of each axis was determined by the following formula: ω1=ω2+ω3. This relation enabled to lay out the flow tube without twisting by the simultaneous rotation of three axes. The flow tube was introduced from the bottom side of the apparatus into the sun axis of the first rotary frame reaching the upper side of the planet axis and connected to the column in the satellite axis. The performance of the apparatus was examined on separation of 4-methylumbelliferyl (MU) sugar derivatives as test samples with organic-aqueous two-phase solvent systems composed of ethyl acetate/1-butanol/water (3:2:5, v/v) for lower phase mobile and (1:4:5, v/v) for upper phase mobile. With lower phase mobile, five 4-MU sugar derivatives including β-D-cellobioside (Cel), β-D-glucopyranoside, α-D-mannopyranoside, β-D-fucopyranoside and α-L-fucopyranoside (α-L-Fuc) were separated with the combined rotation around each axis at counterclockwise (CCW) (ω1) - CCW (ω2) - CCW (ω3) by the flow tube distribution. With upper phase mobile, three 4-MU sugar derivatives including α-L-Fuc, β-D-galactopyranoside and Cel were separated with the combined rotation around each axis at clockwise (CW) (ω1) - CW (ω2) - CW (ω3) by the flow tube distribution. A series of experiments on peak resolution and stationary phase retention revealed that better partition efficiencies were obtained at the flow rate of 0.5 mL/min (column 1) and 0.8 mL/min (column 2) for lower phase mobile and 0.2 mL/min (column 1) and 0.4 mL/min (column 2) for upper phase mobile when using the left-handed multilayer coil (total capacity: 57.0 mL for column 1 and 75.0 mL for column 2) under the rotation speeds of approximately ω1=300 rpm, ω2=150 rpm and ω3=150 rpm. Copyright © 2015 Elsevier B.V. All rights reserved.
Nshanian, Michael; Lakshmanan, Rajeswari; Chen, Hao; Ogorzalek Loo, Rachel R; Loo, Joseph A
2018-04-01
Trifluoroacetic acid (TFA) is often used as a mobile phase modifier to enhance reversed phase chromatographic performance. TFA adjusts solution pH and is an ion-pairing agent, but it is not typically suitable for electrospray ionization-mass spectrometry (ESI-MS) and liquid chromatography/MS (LC/MS) because of its significant signal suppression. Supercharging agents elevate peptide and protein charge states in ESI, increasing tandem MS (MS/MS) efficiency. Here, LC/MS protein supercharging was effected by adding agents to LC mobile phase solvents. Significantly, the ionization suppression generally observed with TFA was, for the most part, rescued by supercharging agents, with improved separation efficiency (higher number of theoretical plates) and lowered detection limits.
[Separation of alkaloids in tea by high-speed counter-current chromatography].
Yuan, L; Fu, R; Zhang, T; Deng, J; Li, X
1998-07-01
Alkaloids extracted from the green tea were separated by high-speed counter-current chromatography. A series of experiments have been performed to investigate effects of different solvent system. A system of CHCl3-CH3OH-NaH2PO4(23 mmol/L) = (4:3:2) was selected, in which the upper phase was used as the stationary phase, and the lower phase as mobile phase. When acidity of solvent system is pH 5.6, three chemical components are very efficiently isolated by one injection of 50 mg sample mixture. Analyzing the eluted fractions by TLC, we know that one is caffeine, and the other is theophylline. In comparing the separation results by high-speed counter-current chromatography with those by TLC, the advantages of this method is verified. It should find wide applications of this technology for the separation of crude mixture of plant components.
David, Victor; Galaon, Toma; Aboul-Enein, Hassan Y
2014-01-03
Recent studies showed that injection of large volume of hydrophobic solvents used as sample diluents could be applied in reversed-phase liquid chromatography (RP-LC). This study reports a systematic research focused on the influence of a series of aliphatic alcohols (from methanol to 1-octanol) on the retention process in RP-LC, when large volumes of sample are injected on the column. Several model analytes with low hydrophobic character were studied by RP-LC process, for mobile phases containing methanol or acetonitrile as organic modifiers in different proportions with aqueous component. It was found that starting with 1-butanol, the aliphatic alcohols can be used as sample solvents and they can be injected in high volumes, but they may influence the retention factor and peak shape of the dissolved solutes. The dependence of the retention factor of the studied analytes on the injection volume of these alcohols is linear, with a decrease of its value as the sample volume is increased. The retention process in case of injecting up to 200μL of upper alcohols is dependent also on the content of the organic modifier (methanol or acetonitrile) in mobile phase. Copyright © 2013 Elsevier B.V. All rights reserved.
The separation of the enantiomers of twelve organophosphorus pesticides (OPs) was investigated on the CHIRALCEL?OJ column to determine whether the mobile phase composition, flow rate and column temperature could be optimized to yield at least partial separation of the enantiomers...
Tong, Shengqiang; Shen, Mangmang; Cheng, Dongping; Ito, Yoichiro; Yan, Jizhong
2014-01-01
This work concentrates on the separation mechanism and application of chiral ligand exchange high-speed countercurrent chromatography (HSCCC) in enantioseparations, and comparison with traditional chiral ligand exchange high performance liquid chromatography (HPLC). The enantioseparation of ten aromatic α-hydroxyl acids were performed by these two chromatographic methods. Results showed that five of the racemates were successfully enantioseparated by HSCCC while only three of the racemates could be enantioseparated by HPLC using a suitable chiral ligand mobile phase additive. For HSCCC, the two-phase solvent system was composed of butanol-water (1:1, v/v), to which N-n-dodecyl-L-proline was added in the organic phase as chiral ligand and cupric acetate was added in the aqueous phase as a transition metal ion. Various operation parameters in HSCCC were optimized by enantioselective liquid-liquid extraction. Based on the results of the present studies the separation mechanism for HSCCC was proposed. For HPLC, the optimized mobile phase composed of aqueous solution containing 6 mmol L−1 L-phenylalanine and 3 mmol L−1 cupric sulfate and methanol was used for enantioseparation. Among three ligands tested on a conventional reverse stationary phase column, only one was found to be effective. In the present studies HSCCC presented unique advantages due to its high versatility of two-phase solvent systems and it could be used as an alternative method for enantioseparations. PMID:25087742
Influence of sample processing on the analysis of carotenoids in maize.
Rivera, Sol; Canela, Ramon
2012-09-21
We performed a number of tests with the aim to develop an effective extraction method for the analysis of carotenoid content in maize seed. Mixtures of methanol-ethyl acetate (6:4, v/v) and methanol-tetrahydrofuran (1:1, v/v) were the most effective solvent systems for carotenoid extraction from maize endosperm under the conditions assayed. In addition, we also addressed sample preparation prior to the analysis of carotenoids by liquid chromatography (LC). The LC response of extracted carotenoids and standards in several solvents was evaluated and results were related to the degree of solubility of these pigments. Three key factors were found to be important when selecting a suitable injection solvent: compatibility between the mobile phase and injection solvent, carotenoid polarity and content in the matrix.
Kawabe, Takefumi; Tomitsuka, Toshiaki; Kajiro, Toshi; Kishi, Naoyuki; Toyo'oka, Toshimasa
2013-01-18
An optimization procedure of ternary isocratic mobile phase composition in the HPLC method using a statistical prediction model and visualization technique is described. In this report, two prediction models were first evaluated to obtain reliable prediction results. The retention time prediction model was constructed by modification from past respectable knowledge of retention modeling against ternary solvent strength changes. An excellent correlation between observed and predicted retention time was given in various kinds of pharmaceutical compounds by the multiple regression modeling of solvent strength parameters. The peak width of half height prediction model employed polynomial fitting of the retention time, because a linear relationship between the peak width of half height and the retention time was not obtained even after taking into account the contribution of the extra-column effect based on a moment method. Accurate prediction results were able to be obtained by such model, showing mostly over 0.99 value of correlation coefficient between observed and predicted peak width of half height. Then, a procedure to visualize a resolution Design Space was tried as the secondary challenge. An artificial neural network method was performed to link directly between ternary solvent strength parameters and predicted resolution, which were determined by accurate prediction results of retention time and a peak width of half height, and to visualize appropriate ternary mobile phase compositions as a range of resolution over 1.5 on the contour profile. By using mixtures of similar pharmaceutical compounds in case studies, we verified a possibility of prediction to find the optimal range of condition. Observed chromatographic results on the optimal condition mostly matched with the prediction and the average of difference between observed and predicted resolution were approximately 0.3. This means that enough accuracy for prediction could be achieved by the proposed procedure. Consequently, the procedure to search the optimal range of ternary solvent strength achieving an appropriate separation is provided by using the resolution Design Space based on accurate prediction. Copyright © 2012 Elsevier B.V. All rights reserved.
Determination of void volume in normal phase liquid chromatography.
Jiang, Ping; Wu, Di; Lucy, Charles A
2014-01-10
Void volume is an important fundamental parameter in chromatography. Little prior discussion has focused on the determination of void volume in normal phase liquid chromatography (NPLC). Various methods to estimate the total void volume are compared: pycnometry; minor disturbance method based on injection of weak solvent; tracer pulse method; hold-up volume based on unretained compounds; and accessible volume based on Martin's rule and its descendants. These are applied to NPLC on silica, RingSep and DNAP columns. Pycnometry provides a theoretically maximum value for the total void volume and should be performed at least once for each new column. However, pycnometry does not reflect the volume of adsorbed strong solvent on the stationary phase, and so only yields an accurate void volume for weaker mobile phase conditions. 1,3,5-Tri-t-butyl benzene (TTBB) results in hold-up volumes that are convenient measures of the void volume for all eluent conditions on charge-transfer columns (RingSep and DNAP), but is weakly retained under weak eluent conditions on silica. Injection of the weak mobile phase component (hexane) may be used to determine void volume, but care must be exercised to select the appropriate disturbance feature. Accessible volumes, that are determined using a homologous series, are always biased low, and are not recommended as a measure of the void volume. Copyright © 2013 Elsevier B.V. All rights reserved.
Modelling of ceramide interactions with porous graphite carbon in non-aqueous liquid chromatography.
West, C; Cilpa, G; Gaudin, K; Chaminade, P; Lesellier, E
2005-09-16
Interactions of solutes on porous graphitic carbon (PGC) with non-aqueous mobile phases are studied by the linear solvation energy relationship (LSER). Studies have been carried out with eight binary mixtures composed of a weak solvent (acetonitrile or methanol) and a strong solvent (tetrahydrofuran, n-butanol, CH2Cl2, 1,1,2-trichloro-2,2,1-trifluoroethane). The systematic analysis of a set of test compounds was performed for each solvent mixture in isocratic mode (50:50). The results were compared to those obtained on PGC with hydro-organic liquids and supercritical fluids. They were then correlated with the observed retention behaviour of lipid compounds, more particularly ceramides.
Shinomiya, Kazufusa; Umezawa, Motoki; Seki, Manami; Nitta, Jun; Zaima, Kazumasa; Harikai, Naoki; Ito, Yoichiro
2016-12-01
Countercurrent chromatography (CCC) is liquid-liquid partition chromatography without using a solid support matrix. This technique requires further improvement of partition efficiency and shortening theseparation time. The locular multilayer coils modified with and without mixer glass beads were developed for the separation of proteins and 4-methylumbelliferyl (MU) sugar derivatives using the small-scale cross-axis coil planet centrifuge. Proteins were well separated from each other and the separation was improved at a low flow rate of the mobile phase. On the other hand, 4-MU sugar derivatives were sufficiently resolved with short separation time at a highflow rate of the mobile phase under satisfactory stationary phase retention. Effective separations were achieved using the locular multilayer coil for proteins with aqueous-aqueous polymer phase systems and for 4-MU sugar derivatives with organic-aqueous two-phase solvent systems by inserting a glass bead into each locule.
De Pauw, Ruben; Swier, Tim; Degreef, Bart; Desmet, Gert; Broeckhoven, Ken
2016-11-18
The limits in operating pressures are extended for narrow-bore columns in gradient elution up to 2000bar. As the required pumps for these pressures are incompatible with common chromatographic solvents and are not suitable to apply a mobile phase composition gradient, a mobile phase delivery and injection system is described and experimentally validated which allows to use any possible chromatographic solvent in isocratic and gradient elution. The mobile phase delivery and injection system also allows to perform multiple separations without the need to depressurize the column. This system consists out of 5 dual on/off valves and two large volume loops in which the gradient and equilibration volume of initial mobile phase are loaded by a commercial liquid chromatography pump. The loops are then flushed toward the column at extreme pressures. The mobile phase delivery and injection system is first evaluated in isocratic elution and shows a comparable performance to a state-of-the-art commercial flow-through-needle injector but with twice the pressure rating. Distortion of the loaded gradient by dispersion in the gradient storage loop is studied. The effect of the most important parameters (such as flow rate, pressure and gradient steepness) is experimentally investigated. Different gradient steepnesses and volumes can be applied at different flow rates and operating pressures with a good repeatability. Due to the isobaric operation of the pumps, the gradient is monitored in real-time by a mass flow meter installed at the detector outlet. The chromatograms are then converted from time to volume-base. A separation of a 19-compound sample is performed on a 300×2.1mm column at 1000bar and on a 600×2.1mm column at 2000bar. The peak capacity was found to increase from 141 to 199 and thus scales with L as is predicted by theory. This allows to conclude that the inlet pressure for narrow-bore columns in gradient elution can be increased up to 2000bar without fundamental pressure-induced limitations. Copyright © 2016 Elsevier B.V. All rights reserved.
Influence of a strong sample solvent on analyte dispersion in chromatographic columns.
Mishra, Manoranjan; Rana, Chinar; De Wit, A; Martin, Michel
2013-07-05
In chromatographic columns, when the eluting strength of the sample solvent is larger than that of the carrier liquid, a deformation of the analyte zone occurs because its frontal part moves at a relatively high velocity due to a low retention factor in the sample solvent while the rear part of the analyte zone is more retained in the carrier liquid and hence moves at a lower velocity. The influence of this solvent strength effect on the separation of analytes is studied here theoretically using a mass balance model describing the spatio-temporal evolution of the eluent, the sample solvent and the analyte. The viscosity of the sample solvent and carrier fluid is supposed to be the same (i.e. no viscous fingering effects are taken into account). A linear isotherm adsorption with a retention factor depending upon the local concentration of the liquid phase is considered. The governing equations are numerically solved by using a Fourier spectral method and parametric studies are performed to analyze the effect of various governing parameters on the dispersion and skewness of the analyte zone. The distortion of this zone is found to depend strongly on the difference in eluting strength between the mobile phase and the sample solvent as well as on the sample volume. Copyright © 2013 Elsevier B.V. All rights reserved.
Sharma, G D; Suresh, P; Sharma, S S; Vijay, Y K; Mikroyannidis, John A
2010-02-01
The morphology of the photoactive layer used in the bulk heterojunction photovoltaic devices is crucial for efficient charge generation and their collection at the electrodes. We investigated the solvent vapor annealing and thermal annealing effect of an alternating phenylenevinylene copolymer P:PCBM blend on its morphology and optical properties. The UV-visible absorption spectroscopy shows that both solvent and thermal annealing can result in self-assembling of copolymer P to form an ordered structure, leading to enhanced absorption in the red region and hole transport enhancement. By combining the solvent and thermal annealing of the devices, the power conversion efficiency is improved. This feature was attributed to the fact that the PCBM molecules begin to diffuse into aggregates and together with the ordered copolymer P phase form bicontinuous pathways in the entire layer for efficient charge separation and transport. Furthermore, the measured photocurrent also suggests that the space charges no longer limit the values of the short circuit current (J(sc)) and fill factor (FF) for solvent-treated and thermally annealed devices. These results indicate that the higher J(sc) and PCE for the solvent-treated and thermally annealed devices can be attributed to the phase separation of active layers, which leads to a balanced carrier mobility. The overall PCE of the device based on the combination of solvent annealing and thermal annealing is about 3.7 %.
Ortín, A; Torres-Lapasió, J R; García-Álvarez-Coque, M C
2011-08-26
Situations of minimal resolution are often found in liquid chromatography, when samples that contain a large number of compounds, or highly similar in terms of structure and/or polarity, are analysed. This makes full resolution with a single separation condition (e.g., mobile phase, gradient or column) unfeasible. In this work, the optimisation of the resolution of such samples in reversed-phase liquid chromatography is approached using two or more isocratic mobile phases with a complementary resolution behaviour (complementary mobile phases, CMPs). Each mobile phase is dedicated to the separation of a group of compounds. The CMPs are selected in such a way that, when the separation is considered globally, all the compounds in the sample are satisfactorily resolved. The search of optimal CMPs can be carried out through a comprehensive examination of the mobile phases in a selected domain. The computation time of this search has been reported to be substantially reduced by application of a genetic algorithm with local search (LOGA). A much simpler approach is here described, which is accessible to non-experts in programming, and offers solutions of the same quality as LOGA, with a similar computation time. The approach makes a sequential search of CMPs based on the peak count concept, which is the number of peaks exceeding a pre-established resolution threshold. The new approach is described using as test sample a mixture of 30 probe compounds, 23 of them with an ionisable character, and the pH and organic solvent contents as experimental factors. Copyright © 2011 Elsevier B.V. All rights reserved.
Yang, Wenzhi; Zhang, Yibei; Pan, Huiqin; Yao, Changliang; Hou, Jinjun; Yao, Shuai; Cai, Luying; Feng, Ruihong; Wu, Wanying; Guo, Dean
2017-02-05
Increasing challenge arising from configurational interconversion in aqueous solvent renders it rather difficult to isolate high-purity tautomeric reference standards and thus largely hinders the holistic quality control of traditional Chinese medicine (TCM). Spiro oxindole alkaloids (SOAs), as the markers for the medicinal Uncaria herbs, can easily isomerize in polar or aqueous solvent via a retro-Mannich reaction. In the present study, supercritical fluid chromatography (SFC) is utilized to separate and isolate two pairs of 7-epimeric SOAs, including rhynchophylline (R) and isorhynchophylline (IR), corynoxine (C) and corynoxine B (CB), from Uncaria macrophylla. Initially, the solvent that can stabilize SOA epimers was systematically screened, and acetonitrile was used to dissolve and as the modifier in SFC. Then, key parameters of ultra-high performance SFC (ultra-performance convergence chromatography, UPC 2 ), comprising stationary phase, additive in modifier, column temperature, ABPR pressure, and flow rate, were optimized in sequence. Two isocratic UPC 2 methods were developed on the achiral Torus 1-AA and Torus Diol columns, suitable for UV and MS detection, respectively. MCI gel column chromatography fractionated the U. macrophylla extract into two mixtures (R/IR and C/CB). Preparative SFC, using a Viridis Prep Silica 2-EP OBD column and acetonitrile-0.2% diethylamine in CO 2 as the mobile phase, was finally employed for compound purification. As a result, the purity of four SOA compounds was all higher than 95%. Different from reversed-phase HPLC, SFC, by use of water-free mobile phase (inert CO 2 and aprotic modifier), provides a solution to rapid analysis and isolation of tautomeric reference standards for quality control of TCM. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Yuchi; Guo, Liping; Liu, Chunming; Fu, Zi' ao; Cong, Lei; Qi, Yanjuan; Li, Dongping; Li, Sainan; Wang, Jing
2013-09-15
Pressurized liquid extraction (PLE) coupled with high-speed countercurrent chromatography (HSCCC) via an automated procedure was firstly developed to extract and isolate ginsenosides from Panax quinquefolium. The experiments were designed under the guidance of mathematical model. The partition coefficient (K) values of the target compounds and resolutions of peak profiles were employed as the research indicators, and exponential function and binomial formulas were used to optimizing the solvent systems and flow rates of the mobile phases in a three-stage separation. In the first stage, ethyl acetate, n-butanol, and water were simultaneously pumped into the solvent separator at the flow rates 11.0, 10.0, and 23.0mL/min, respectively. The upper phase of the solvent system in the solvent separator was used as both the PLE solvent and the HSCCC stationary phase, followed by elution with the lower phase of the corresponding solvent system to separate the common ginsenosides. In the second and third stages, rare ginsenosides were first separated by elution with ethyl acetate, n-butanol, methanol, and water (flow rates: 20.0, 3.0, 5.0, and 11.0mL/min, respectively), then with n-heptane, n-butanol, methanol, and water (flow rates: 17.5, 6.0, 5.0, and 22.5mL/min, respectively). Nine target compounds, with purities exceeding 95.0%, and three non-target compounds, with purities above 84.48%, were successfully separated at the semipreparative scale in 450min. The separation results prove that the PLE/HSCCC parameters calculated via mathematical model and formulas were accurately and scientifically. This research has opened up great prospects for industrial automation application. Copyright © 2013 Elsevier B.V. All rights reserved.
Dotterer, Sally K; Forbes, Robert A; Hammill, Cynthia L
2011-04-05
Case studies are presented demonstrating how exposure to traces of transition metals such as copper and/or iron during sample preparation or analysis can impact the accuracy of purity analysis of pharmaceuticals. Some compounds, such as phenols and indoles, react with metals in the presence of oxygen to produce metal-induced oxidative decomposition products. Compounds susceptible to metal-induced decomposition can degrade following preparation for purity analysis leading to falsely high impurity results. Our work has shown even metals at levels below 0.1 ppm can negatively impact susceptible compounds. Falsely low results are also possible when the impurities themselves react with metals and degrade prior to analysis. Traces of metals in the HPLC mobile phase can lead to chromatographic artifacts, affecting the reproducibility of purity results. To understand and mitigate the impact of metal induced decomposition, a proactive strategy is presented. The pharmaceutical would first be tested for reactivity with specific transition metals in the sample solvent/diluents and in the HPLC mobile phase. If found to be reactive, alternative sample diluents and/or mobile phases with less reactive solvents or addition of a metal chelator would be explored. If unsuccessful, glassware cleaning or sample solution refrigeration could be investigated. By employing this strategy during method development, robust purity methods would be delivered to the quality control laboratories, preventing future problems from potential sporadic contamination of glassware with metals. Copyright © 2010 Elsevier B.V. All rights reserved.
Van Wanseele, Yannick; Viaene, Johan; Van den Borre, Leslie; Dewachter, Kathleen; Vander Heyden, Yvan; Smolders, Ilse; Van Eeckhaut, Ann
2017-04-15
In this study, the separation of four neuromedin-like peptides is investigated on four different core-shell stationary phases. Moreover, the effect of the mobile phase composition, i.e. organic modifier (acetonitrile and methanol) and additive (trifluoroacetic acid, formic acid, acetic acid, ammonium formate and ammonium acetate) on the chromatographic performance is studied. An improvement in chromatographic performance is observed when using the ammonium salt instead of its corresponding acid as additive, except for the column containing a positively charged surface (C18+). In general, the RP-Amide column provided the highest separation power with different mobile phases. However, for the neuromedin-like peptides of interest, the C18+ column in combination with a mobile phase containing methanol as organic modifier and acetic acid as additive provided narrower and higher peaks. A three-factor, three-level design is applied to further optimize the method in terms of increased peak height and reduced solvent consumption, without loss in resolution. The optimized method was subsequently used to assess the in vitro microdialysis recovery of the peptides of interest. Recovery values between 4 and 8% were obtained using a perfusion flow rate of 2μL/min. Copyright © 2017 Elsevier B.V. All rights reserved.
Dias, M Graça; Oliveira, Luísa; Camões, M Filomena G F C; Nunes, Baltazar; Versloot, Pieter; Hulshof, Paul J M
2010-05-21
Three sets of extraction/saponification/HPLC conditions for food carotenoid quantification were technically and economically compared. Samples were analysed for carotenoids alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein, lycopene, and zeaxanthin. All methods demonstrated good performance in the analysis of a composite food standard reference material for the analytes they are applicable to. Methods using two serial connected C(18) columns and a mobile phase based on acetonitrile, achieved a better carotenoid separation than the method using a mobile phase based on methanol and one C(18)-column. Carotenoids from leafy green vegetable matrices appeared to be better extracted with a mixture of methanol and tetrahydrofuran than with tetrahydrofuran alone. Costs of carotenoid determination in foods were lower for the method with mobile phase based on methanol. However for some food matrices and in the case of E-Z isomer separations, this was not technically satisfactory. Food extraction with methanol and tetrahydrofuran with direct evaporation of these solvents, and saponification (when needed) using pyrogallol as antioxidant, combined with a HPLC system using a slight gradient mobile phase based on acetonitrile and a stationary phase composed by two serial connected C(18) columns was the most technically and economically favourable method. 2010. Published by Elsevier B.V.
Dopamine-imprinted monolithic column for capillary electrochromatography.
Aşır, Süleyman; Sarı, Duygu; Derazshamshir, Ali; Yılmaz, Fatma; Şarkaya, Koray; Denizli, Adil
2017-11-01
A dopamine-imprinted monolithic column was prepared and used in capillary electrochromatography as stationary phase for the first time. Dopamine was selectively separated from aqueous solution containing the competitor molecule norepinephrine, which is similar in size and shape to the template molecule. Morphology of the dopamine-imprinted column was observed by scanning electron microscopy. The influence of the organic solvent content of mobile phase, applied pressure and pH of the mobile phase on the recognition of dopamine by the imprinted monolithic column has been evaluated, and the imprinting effect in the dopamine-imprinted monolithic polymer was verified. Developed dopamine-imprinted monolithic column resulted in excellent separation of dopamine from structurally related competitor molecule, norepinephrine. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 5.81 × 10 -5 m 2 V -1 s -1 at pH 5.0 and 500 mbar pressure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Online hydrogen/deuterium exchange performed in the ion mobility cell of a hybrid mass spectrometer.
Nagy, Kornél; Redeuil, Karine; Rezzi, Serge
2009-11-15
The present paper describes the performance of online, gas-phase hydrogen/deuterium exchange implemented in the ion mobility cell of a quadrupole time-of-flight mass spectrometer. Deuterium oxide and deuterated methanol were utilized to create deuterated vapor that is introduced into the ion mobility region of the mass spectrometer. Hydrogen/deuterium exchange occurs spontaneously in the milliseconds time frame without the need of switching the instrument into ion mobility mode. The exchange was studied in case of low molecular weight molecules and proteins. The observed number of exchanged hydrogens was equal to the number of theoretically exchangeable hydrogens for all low molecular weight compounds. This method needs only minimal instrumental modifications, is simple, cheap, environment friendly, compatible with ultraperformance liquid chromatography, and can be implemented on commercially available instruments. It does not compromise choice of liquid chromatographic solvents and accurate mass or parallel-fragmentation (MS(E)) methods. The performance of this method was compared to that of conventional alternatives where the deuterated solvent is introduced into the cone gas of the instrument. Although the degree of exchange was similar between the two methods, the "cone gas method" requires 10 times higher deuterated solvent volumes (50 muL/min) and offers reduced sensitivity in the tandem mass spectrometry (MS/MS) mode. The presented method is suggested as a standard future element of mass spectrometers to aid online structural characterization of unknowns and to study conformational changes of proteins with hydrogen/deuterium exchange.
Zhang, Yuchi; Liu, Chunming; Li, Jing; Qi, Yanjuan; Li, Yuchun; Li, Sainan
2015-09-01
A new method for the extraction of medicinal herbs termed ultrasonic-assisted dynamic extraction (UADE) was designed and evaluated. This technique was coupled with counter-current chromatography (CCC) and centrifugal partition chromatography (CPC) and then applied to the continuous extraction and online isolation of chemical constituents from Paeonia lactiflora Pall (white peony) roots. The mechanical parameters, including the pitch and diameter of the shaft, were optimized by means of mathematical modeling. Furthermore, the configuration and mechanism of online UADE coupled with CCC and CPC were elaborated. The stationary phases of the two-phase solvent systems from CCC and CPC were utilized as the UADE solution. The extraction solution was pumped into the sample loop and then introduced into the CCC column; the target compounds were eluted with the lower aqueous phase of the two-phase solvent system. During the CCC separation, the extraction solution was continuously fed in the sample loop by turning the ten-port valve; the extraction solution was then pumped into the CPC column and eluted by the mobile phase of the two-phase solvent system mentioned above. When the first cycle of the UADE/CCC/CPC was completed, the second cycle experiment could be carried out, and so on. Four target compounds (albiflorin, benzoylpaeoniflorin, paeoniflorin, and galloylpaeoniflorin) with purities above 94.96% were successfully extracted and isolated online using the two-phase solvent system comprising ethyl acetate-n-butanol-ethanol-water (1:3.5:2:4.5, v/v/v/v). Compared with conventional extraction methods, the instrumental setup of the present method offers the advantages of automation and systematic extraction and isolation of natural products. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
The design of a new concept chromatography column.
Camenzuli, Michelle; Ritchie, Harald J; Ladine, James R; Shalliker, R Andrew
2011-12-21
Active Flow Management is a new separation technique whereby the flow of mobile phase and the injection of sample are introduced to the column in a manner that allows migration according to the principles of the infinite diameter column. A segmented flow outlet fitting allows for the separation of solvent or solute that elutes along the central radial section of the column from that of the sample or solvent that elutes along the wall region of the column. Separation efficiency on the analytical scale is increased by 25% with an increase in sensitivity by as much as 52% compared to conventional separations.
Giegold, Sascha; Teutenberg, Thorsten; Tuerk, Jochen; Kiffmeyer, Thekla; Wenclawiak, Bernd
2008-10-01
A fast HPLC method for the analysis of eight selected sulfonamides (SA) and trimethoprim has been developed with the use of high temperature HPLC. The separation could be achieved in less than 1.5 min on a 50 mm sub 2 microm column with simultaneous solvent and temperature gradient programming. Due to the lower viscosity of the mobile phase and the increased mass transfer at higher temperatures, the separation could be performed on a conventional HPLC system obtaining peak widths at half height between 0.6 and 1.3 s.
Wang, Zhibing; Sun, Rui; Wang, Yuanpeng; Li, Na; Lei, Lei; Yang, Xiao; Yu, Aimin; Qiu, Fangping; Zhang, Hanqi
2014-10-15
The silica-supported ionic liquid (S-SIL) was prepared by impregnation and used as the dispersion adsorbent of matrix solid phase dispersion (MSPD) for the simultaneous extraction of eight phenolic acids and flavonoids, including caffeic acid, ferulic acid, morin, luteolin, quercetin, apigenin, chrysin, and kaempferide in raw propolis. High performance liquid chromatography with a Zorbax SB-C18 column (150mm×4.6mm, 3.5μm) was used for separation of the analytes. The mobile phase consisted of 0.2% phosphoric acid aqueous solution and acetonitrile and the flow rate of the mobile phase was 0.5mL/min. The experimental conditions for silica-supported ionic liquid-based matrix solid phase dispersion (S-SIL-based MSPD) were optimized. S-SIL containing 10% [C6MIM]Cl was used as dispersant, 20mL of n-hexane as washing solvent and 15mL of methanol as elution solvent. The ratio of S-SIL to sample was selected to be 4:1. The standard curves showed good linear relationship (r>0.9995). The limits of detection and quantification were in the range of 5.8-22.2ngmL(-1) and 19.2-74.0ngmL(-1), respectively. The relative standard deviations (RSDs) of intra-day and inter-day determination were lower than 8.80% and 11.19%, respectively. The recoveries were between 65.51% and 92.32% with RSDs lower than 8.95%. Compared with ultrasound-assisted extraction (UAE) and soxhlet extraction, the present method consumed less sample, organic solvent, and extraction time, although the extraction yields obtained by S-SIL-based MSPD are slightly lower than those obtained by UAE. Copyright © 2014 Elsevier B.V. All rights reserved.
Phthalimide Copolymer Solar Cells
NASA Astrophysics Data System (ADS)
Xin, Hao; Guo, Xugang; Ren, Guoqiang; Kim, Felix; Watson, Mark; Jenekhe, Samson
2010-03-01
Photovoltaic properties of bulk heterojunction solar cells based on phthalimide donor-acceptor copolymers have been investigated. Due to the strong π-π stacking of the polymers, the state-of-the-art thermal annealing approach resulted in micro-scale phase separation and thus negligible photocurrent. To achieve ideal bicontinuous morphology, different strategies including quickly film drying and mixed solvent for film processing have been explored. In these films, nano-sale phase separation was achieved and a power conversion efficiency of 3.0% was obtained. Absorption and space-charge limited current mobility measurements reveal similar light harvesting and hole mobilities in all the films, indicating that the morphology is the dominant factor determining the photovoltaic performance. Our results demonstrate that for highly crystalline and/or low-solubility polymers, finding a way to prevent polymer aggregation and large scale phase separation is critical to realizing high performance solar cells.
Clean Transfer of Wafer-Scale Graphene via Liquid Phase Removal of Polycyclic Aromatic Hydrocarbons.
Kim, Hyun Ho; Kang, Boseok; Suk, Ji Won; Li, Nannan; Kim, Kwang S; Ruoff, Rodney S; Lee, Wi Hyoung; Cho, Kilwon
2015-05-26
Pentacene (C22H14), a polycyclic aromatic hydrocarbon, was used as both supporting and sacrificing layers for the clean and doping-free graphene transfer. After successful transfer of graphene to a target substrate, the pentacene layer was physically removed from the graphene surface by using intercalating organic solvent. This solvent-mediated removal of pentacene from graphene surface was investigated by both theoretical calculation and experimental studies with various solvents. The uses of pentacene and appropriate intercalation solvent enabled graphene transfer without forming a residue from the supporting layer. Such residues tend to cause charged impurity scattering and unintentional graphene doping effects. As a result, this clean graphene exhibited extremely homogeneous surface potential profiles over a large area. A field-effect transistor fabricated using this graphene displayed a high hole (electron) mobility of 8050 cm(2)/V·s (9940 cm(2)/V·s) with a nearly zero Dirac point voltage.
Foulon, Catherine; Di Giulio, Pauline; Lecoeur, Marie
2018-01-26
Supercritical fluid chromatography (SFC) is commonly used for the analysis of non-polar compounds, but remains poorly explored for the separation of polar and ionized molecules. In this paper, SFC has been investigated for the separation of 14 inorganic ions sampled in aqueous solutions. Four polar stationary phases were first screened using CO 2 -methanol-based mobile phases containing water or different acidic or basic additives, in order to select the most efficient conditions for the simultaneous retention of inorganic cations and anions and to favor their detection using evaporative light scattering detector (ELSD). Orthogonal selectivity was obtained depending on the stationary phase used: whereas anions are less retained on HILIC stationary phase, 2-ethylpyridine (2-EP) stationary phase exhibits strong interaction for anions. Best results were obtained under gradient elution mode using a 2-EP stationary phase and by adding 0.2% triethylamine in the CO 2 -methanol-based mobile phase. The composition of the injection solvent was also investigated. The results showed that a methanolic sample containing a percentage of water not exceeding 20% does not affect the analytical performances obtained on 2-EP. Moreover, the presence of triethylamine in the injection solvent contributes to eliminate peaks shoulders. Among the 14 inorganic ions tested, three cations (Li + , Ca 2+ and Mg 2+ ) and five anions (Cl - , Br - , NO 3 - , I - , SCN - ) were totally resolved in 15 min. NO 3 - and NO 2 - still coeluted in the final optimized conditions. The other investigated ions were either strongly retained on the stationary phase or not detected by the ELSD. Copyright © 2017 Elsevier B.V. All rights reserved.
Lu, Yuanyuan; Dong, Genlai; Gu, Yanxiang; Ito, Yoichiro; Wei, Yun
2013-07-01
Chlorogenic acid and caffeic acid were selected as test samples for separation by the pH-zone-refining countercurrent chromatography (CCC). The separation of these test samples was performed with a two-phase solvent system composed of methyl-tert-butyl-ether/acetonitrile/water at a volume ratio of 4:1:5 v/v/v where trifluoroacetic acid (TFA; 8 mM) was added to the organic stationary phase as a retainer and NH4 OH (10 mM) to the aqueous mobile phase as an eluter. Chlorogenic acid was successfully separated from Flaveria bidentis (L.) Kuntze (F. bidentis) and Lonicerae Flos by pH-zone-refining CCC, a slightly polar two-phase solvent system composed of methyl-tert-butyl-ether/acetonitrile/n-butanol/water at a volume ratio of 4:1:1:5 v/v/v/v was selected where TFA (3 mM) was added to the organic stationary phase as a retainer and NH4 OH (3 mM) to the aqueous mobile phase as an eluter. A 16.2 mg amount of chlorogenic acid with the purity of 92% from 1.4 g of F. bidentis, and 134 mg of chlorogenic acid at the purity of 99% from 1.3 g of crude extract of Lonicerae Flos have been obtained. These results suggest that pH-zone-refining CCC is suitable for the isolation of the chlorogenic acid from the crude extracts of F. bidentis and Lonicerae Flos. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling the effects of pH and ionic strength on swelling of anionic polyelectrolyte gels
NASA Astrophysics Data System (ADS)
Drozdov, A. D.; deClaville Christiansen, J.
2015-07-01
A constitutive model is developed for the elastic response of an anionic polyelectrolyte gel under swelling in water with an arbitrary pH and an arbitrary molar fraction of dissolved monovalent salt. A gel is treated as a three-phase medium consisting of a solid phase (polymer network), solvent (water), and solute (mobile ions). Transport of solvent and solute is thought of as their diffusion through the polymer network accelerated by an electric field formed by mobile and fixed ions and accompanied by chemical reactions (dissociation of functional groups attached to polymer chains and formation of ion pairs between bound charges and mobile counter-ions). Constitutive equations are derived by means of the free energy imbalance inequality for an arbitrary three-dimensional deformation with finite strains. These relations are applied to analyze equilibrium swelling diagrams on poly(acrylic acid) gel, poly(methacrylic acid) gel, and three composite hydrogels under water uptake in a bath (i) with a fixed molar fraction of salt and varied pH, and (ii) with a fixed pH and varied molar fraction of salt. To validate the ability of the model to predict observations quantitatively, material constants are found by matching swelling curves under one type of experimental conditions and results of simulation are compared with experimental data in the other type of tests.
Shinomiya, Kazufusa; Umezawa, Motoki; Seki, Manami; Nitta, Jun; Zaima, Kazumasa; Harikai, Naoki; Ito, Yoichiro
2016-01-01
1) Background Countercurrent chromatography (CCC) is liquid-liquid partition chromatography without using a solid support matrix. This technique requires further improvement of partition efficiency and shortening theseparation time. 2) Methods The locular multilayer coils modified with and without mixer glass beads were developed for the separation of proteins and 4-methylumbelliferyl (MU) sugar derivatives using the small-scale cross-axis coil planet centrifuge. 3) Results Proteins were well separated from each other and the separation was improved at a low flow rate of the mobile phase. On the other hand, 4-MU sugar derivatives were sufficiently resolved with short separation time at a highflow rate of the mobile phase under satisfactory stationary phase retention. 4) Conclusion Effective separations were achieved using the locular multilayer coil for proteins with aqueous-aqueous polymer phase systems and for 4-MU sugar derivatives with organic-aqueous two-phase solvent systems by inserting a glass bead into each locule. PMID:27891507
Kalíková, Květa; Martínková, Monika; Schmid, Martin G; Tesařová, Eva
2018-03-01
A cellulose tris-(3,5-dimethylphenylcarbamate)-based chiral stationary phase was studied as a tool for the enantioselective separation of 21 selected analytes with different pharmaceutical and physicochemical properties. The enantioseparations were performed using supercritical fluid chromatography. The effect of the mobile phase composition was studied. Four different additives (diethylamine, triethylamine, isopropylamine, and trifluoroacetic acid) and isopropylamine combined with trifluoroacetic acid were tested and their influence on enantioseparation was compared. The influence of two different mobile phase co-solvents (methanol and propan-2-ol) combined with all the additives was also evaluated. The best mobile phase compositions for the separation of the majority of enantiomers were CO 2 /methanol/isopropylamine 80:20:0.1 v/v/v or CO 2 /propan-2-ol/isopropylamine/trifluoroacetic acid 80:20:0.05:0.05 v/v/v/v. The best results were obtained from the group of basic β-blockers. A high-performance liquid chromatography separation system composed of the same stationary phase and mobile phase of similar properties prepared as a mixture of hexane/propan-2-ol/additive 80:20:0.1 v/v/v was considered for comparison. Supercritical fluid chromatography was found to yield better results, i.e. better enantioresolution for shorter analysis times than high-performance liquid chromatography. However, examples of enantiomers better resolved under the optimized conditions in high-performance liquid chromatography were also found. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yin, Hao; Zhang, Si; Long, Lijuan; Yin, Hang; Tian, Xinpeng; Luo, Xiongming; Nan, Haihan; He, Sha
2013-11-08
The mangrove plant Pongamia pinnata (Leguminosae) is well known as a plant pesticide. Previous studies have indicated that the flavonoids are responsible of the biological activities of the plant. A new high-speed counter-current chromatography (HSCCC) method for the separation of three flavonoids, karanjin (1), pinnatin (2), and pongaflavone (3), from P. pinnata was developed in the present study. The lower and intermediate phase (LP and IP) of a new three-phase solvent system, n-hexane-acetonitrile-dichloromethane-water, at a volume ratio of 5:5:1:5, were used as the stationary phases, while the upper phase (UP) was used as the mobile phase, and the volume ratio between the stationary phases in the CCC column could be tuned by varying the initial pumped volume ratio of the stationary phases. The CCC columns containing all three phases of the solvent system were considered combination columns. According to the theories of combination column, it is possible to optimize the retention time of the target compounds by varying the volume ratio of the stationary phases in the HSCCC combination columns, as well as the suitable volume ratios of the stationary phases for the separation of the target compounds were predicted from the partition coefficients of the compounds in the three-phase solvent system. Then, three HSCCC separations using the combination columns with initial pumped LP:IP volume ratios of 1:0, 0.9:0.1, and 0.7:0.3 were performed separately based on the prediction. Three target compounds were prepared with high purity when the initial pumped volume ratio of the stationary phases was 0.9:0.1. The baseline separation of compounds 2 and 3 was achieved on the combination column with an initial pumped volume ratio of 0.7:0.3. Furthermore, the three experiments clearly demonstrated that the retentions and resolutions of the target compounds increased with an increasing volume ratio of IP, which is consistent with the prediction for the retention times for the solutes on combination columns. The method proposed here reduces the need for solvent selection compared with the conventional method and may have broad potential applicability in the preparation of natural products. Copyright © 2013 Elsevier B.V. All rights reserved.
Cirunay, J J; Vander Heyden, Y; Plaizier-Vercammen, J
2001-08-01
Mobile phase optimization and reversed-phase column characteristics were used to separate photodegradation products from the parent compound, 24-cyclopropyl-9-,10-secochola-5,7,10(19),22-tetraene-1alpha,3beta,24-triol (calcipotriol). Separation between calcipotriol and its degradation products was obtained with an acetonitrile/water (53:47, v/v) mobile phase on a C(18) Hypersil ODS column (250 mm length, 4.6 mm id, 5 microm particle size) and a flow rate of 1 ml/min. Using this system, the influence of commonly used solvents in dermatology on degradation was studied. The addition of a UV filter in two concentrations was also evaluated for its possible protective effect to light exposure. Propylene glycol and polyethylene glycol 400 decreased the speed of degradation. The sunscreen 2-hydroxy-4-methoxybenzophenone affords a protection proportional to the filter concentration used in the study.
Shinomiya, Kazufusa; Tokura, Koji; Kimura, Emiru; Takai, Midori; Harikai, Naoki; Yoshida, Kazunori; Yanagidaira, Kazuhiro; Ito, Yoichiro
2015-01-01
A new high-speed counter-current chromatograph, named coil satellite centrifuge (CSC), was designed and fabricated in our laboratory. The CSC apparatus produces the satellite motion such that the coiled column simultaneously rotates around the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3). In order to achieve this triplicate rotary motion without twisting of the flow tube, the rotation of each axis was determined by the following formula: ω1 = ω2 + ω3. This relation enabled to lay out the flow tube by two different ways, the SS type and the JS type. In the SS type, the flow tube was introduced from the upper side of the apparatus into the sun axis of the first rotary frame and connected to the planet axis of the second rotary frame like a double letter SS. In the JS type, the flow tube was introduced from the bottom of the apparatus into the sun axis reaching the upper side of the planet axis an inversed letter J, followed by distribution as in the SS type. The performance of the apparatus was examined on separation of 4-methylumbelliferyl (MU) sugar derivatives as test samples with organic-aqueous two-phase solvent systems composed of ethyl acetate/1-butanol/water (3 : 2 : 5, v/v) for lower phase mobile and (1 : 4 : 5, v/v) for upper phase mobile. With lower phase mobile, five 4-MU sugar derivatives including β-D-cellobioside (Cel), β-D-glucopyranoside, α-D-mannopyranoside, β-D-fucopyranoside and α-L-fucopyranoside (α-L-Fuc) were separated with the combined rotation around each axis at counterclockwise (CCW) (ω1) – CCW (ω2) – CCW (ω3) by the JS type flow tube distribution. With upper phase mobile, three 4-MU sugar derivatives including α-L-Fuc, β-D-galactopyranoside and Cel were separated with the combined rotation around each axis at clockwise (CW) (ω1) – CW (ω2) – CW (ω3) by the JS type flow tube distribution. A series of experiments on peak resolution and stationary phase retention revealed that better partition efficiencies were obtained at the flow rate of 0.5 mL/min (column 1) and 0.8 mL/min (column 2) for lower phase mobile and 0.2 mL/min (column 1) and 0.4 mL/min (column 2) for upper phase mobile when using the left-handed multilayer coil (total capacity: 57.0 mL for column 1 and 75.0 mL for column 2) under the rotation speeds of approximately ω1 = 300 rpm, ω2 = 150 rpm and ω3 = 150 rpm. PMID:25805719
Search of non-ionic surfactants suitable for micellar liquid chromatography.
Peris-García, Ester; Rodríguez-Martínez, Jorge; Baeza-Baeza, Juan J; García-Alvarez-Coque, María Celia; Ruiz-Angel, María José
2018-06-19
Most reports in reversed-phase liquid chromatography (RPLC) with micellar mobile phases make use of the anionic sodium dodecyl sulfate. This surfactant masks efficiently the silanol groups that are the origin of the poor efficiencies and tailing peaks observed for basic compounds in conventional RPLC. However, it has the handicap of yielding excessive retention, which forces the addition of an organic solvent to reduce the retention times to practical values. Other surfactants, such as the non-ionic polyoxyethylene(23)lauryl ether (Brij-35), are rarely used. Brij-35 allows the separation of a large range of analytes in adequate retention times, without the need of adding an organic solvent to the mobile phase. However, this non-ionic surfactant shows irreversible adsorption on chromatographic columns and peak shape is poorer. Therefore, the search of non-ionic surfactants with similar properties to Brij-35, but showing reversible adsorption and better peak shape, can be of great interest. In this work, the adequacy of several non-ionic surfactants as modifiers in RPLC has been explored, being polyoxyethylene(10)tridecyl ether particularly attractive. The separation of different types of compounds was checked: sulfonamides (acidic), β-adrenoceptor antagonists and tricyclic antidepressants (basic with diverse polarity), and flavonoids (with and without hydroxyl groups on the aromatic rings). The chromatographic behaviors were examined in terms of retention and peak shape. The results were compared with those obtained with Brij-35.
Yang, Yu; Strickland, Zackary; Kapalavavi, Brahmam; Marple, Ronita; Gamsky, Chris
2011-03-15
In this work, chromatographic separation of niacin and niacinamide using pure water as the sole component in the mobile phase has been investigated. The separation and analysis of niacinamide have been optimized using three columns at different temperatures and various flow rates. Our results clearly demonstrate that separation and analysis of niacinamide from skincare products can be achieved using pure water as the eluent at 60°C on a Waters XTerra MS C18 column, a Waters XBridge C18 column, or at 80°C on a Hamilton PRP-1 column. The separation efficiency, quantification quality, and analysis time of this new method are at least comparable with those of the traditional HPLC methods. Compared with traditional HPLC, the major advantage of this newly developed green chromatography technique is the elimination of organic solvents required in the HPLC mobile phase. In addition, the pure water chromatography separations described in this work can be directly applied in industrial plant settings without further modification of the existing HPLC equipment. Copyright © 2011 Elsevier B.V. All rights reserved.
Protein separations using enhanced-fluidity liquid chromatography.
Bennett, Raffeal; Olesik, Susan V
2017-11-10
Enhanced-fluidity liquid chromatography (EFLC) methods using methanol/H 2 O/CO 2 and hydrophilic interaction liquid chromatography (HILIC) were explored for the separation of proteins and peptides. EFLC is a separation mode that uses a mobile phase made of conventional solvents combined with liquid carbon dioxide (CO 2 ) in subcritical conditions. The addition of liquid CO 2 enhances diffusivity and decreases viscosity while maintaining mixture polarity, which typically results in reduced time of analysis. TFA additive and elevated temperature were leveraged as key factors in the separation of a 13-analyte intact protein mixture in under 5min. Under these conditions EFLC showed modest improvement in terms of peak asymmetry and analysis time over the competing ACN/H 2 O separation. Protein analytes detected by electrospray ionization - quadrupole time of flight, were shown to be unaffected by the addition of CO 2 in the mobile phase. Herein, the feasibility of separating hydrophilic proteins up to 80kDa (with transferrin) is demonstrated for CO 2 -containing mobile phases. Copyright © 2017 Elsevier B.V. All rights reserved.
Kondalaji, Samaneh Ghassabi; Khakinejad, Mahdiar; Valentine, Stephen J
2018-06-01
Molecular dynamics (MD) simulations have been utilized to study peptide ion conformer establishment during the electrospray process. An explicit water model is used for nanodroplets containing a model peptide and hydronium ions. Simulations are conducted at 300 K for two different peptide ion charge configurations and for droplets containing varying numbers of hydronium ions. For all conditions, modeling has been performed until production of the gas-phase ions and the resultant conformers have been compared to proposed gas-phase structures. The latter species were obtained from previous studies in which in silico candidate structures were filtered according to ion mobility and hydrogen-deuterium exchange (HDX) reactivity matches. Results from the present study present three key findings namely (1) the evidence from ion production modeling supports previous structure refinement studies based on mobility and HDX reactivity matching, (2) the modeling of the electrospray process is significantly improved by utilizing initial droplets existing below but close to the calculated Rayleigh limit, and (3) peptide ions in the nanodroplets sample significantly different conformers than those in the bulk solution due to altered physicochemical properties of the solvent. Graphical Abstract ᅟ.
Chebrolu, Kranthi K; Jayaprakasha, G K; Jifon, J; Patil, Bhimanagouda S
2011-07-15
Understanding the factors influencing flavonone extraction is critical for the knowledge in sample preparation. The present study was focused on the extraction parameters such as solvent, heat, centrifugal speed, centrifuge temperature, sample to solvent ratio, extraction cycles, sonication time, microwave time and their interactions on sample preparation. Flavanones were analyzed in a high performance liquid chromatography (HPLC) and later identified by liquid chromatography and mass spectrometry (LC-MS). The five flavanones were eluted by a binary mobile phase with 0.03% phosphoric acid and acetonitrile in 20 min and detected at 280 nm, and later identified by mass spectral analysis. Dimethylsulfoxide (DMSO) and dimethyl formamide (DMF) had optimum extraction levels of narirutin, naringin, neohesperidin, didymin and poncirin compared to methanol (MeOH), ethanol (EtOH) and acetonitrile (ACN). Centrifuge temperature had a significant effect on flavanone distribution in the extracts. The DMSO and DMF extracts had homogeneous distribution of flavanones compared to MeOH, EtOH and ACN after centrifugation. Furthermore, ACN showed clear phase separation due to differential densities in the extracts after centrifugation. The number of extraction cycles significantly increased the flavanone levels during extraction. Modulating the sample to solvent ratio increased naringin quantity in the extracts. Current research provides critical information on the role of centrifuge temperature, extraction solvent and their interactions on flavanone distribution in extracts. Published by Elsevier B.V.
Solvent Effect on Morphology and Optical Properties of Poly(3-hexylthiophene):TIPS-Pentacene Blends
NASA Astrophysics Data System (ADS)
Ozório, Maíza Silva; Camacho, Sabrina Alessio; Cordeiro, Neusmar Junior Artico; Duarte, José Leonil; Alves, Neri
2018-02-01
Optical, electrical, and morphological properties of poly(3-hexylthiophene):6,13-bis(triisopropylsilylethynyl) (TIPS)-pentacene (P3HT:TP) blend films, in the proportion of 1:1 (w/w), have been investigated using chloroform, toluene, or trichlorobenzene as solvent. The main morphological feature was formation of aggregates that tended to segregate vertically, exhibiting characteristics that were strongly influenced by the type of solvent applied. The phase segregation of TP observed for the P3HT:TP blend film obtained using chloroform, the most volatile of the investigated solvents, can be explained based on the Marangoni effect and the Flory-Huggins model. The TP molecules induce better organization of P3HT, as evidenced by the ultraviolet-visible (UV-Vis) absorption spectra. Photoluminescence (PL) measurements revealed quenching and an increase in the lifetime of the carriers. The PL measurements also showed that the exciton dissociation was dependent on the characteristics of the surface on which the film was deposited. P3HT:TP blend film prepared using trichlorobenzene showed the best morphology with moderate phase segregation and better P3HT ordering. The output current from organic field-effect transistors (OFETs) with blend film prepared using trichlorobenzene was three times (3×) larger than when using the other solvents, with carrier mobility of 5.0 × 10-3 cm2 V-1 s-1.
Morphological control in polymer solar cells using low-boiling-point solvent additives
NASA Astrophysics Data System (ADS)
Mahadevapuram, Rakesh C.
In the global search for clean, renewable energy sources, organic photovoltaics (OPVs) have recently been given much attention. Popular modern-day OPVs are made from solution-processible, carbon-based polymers (e.g. the model poly(3-hexylthiophene) that are intimately blended with fullerene derivatives (e.g. [6,6]-phenyl-C71-butyric acid methyl ester) to form what is known as the dispersed bulk-heterojunction (BHJ). This BHJ architecture has produced some of the most efficient OPVs to date, with reports closing in on 10% power conversion efficiency. To push efficiencies further into double digits, many groups have identified the BHJ nanomorphology---that is, the phase separations and grain sizes within the polymer: fullerene composite---as a key aspect in need of control and improvement. As a result, many methods, including thermal annealing, slow-drying (solvent) annealing, vapor annealing, and solvent additives, have been developed and studied to promote BHJ self-organization. Processing organic photovoltaic (OPV) blend solutions with high-boiling-point solvent additives has recently been used for morphological control in BHJ OPV cells. Here we show that even low-boiling-point solvents can be effective additives. When P3HT:PCBM OPV cells were processed with a low-boiling-point solvent tetrahydrafuran as an additive in parent solvent o-dichlorobenzene, charge extraction increased leading to fill factors as high as 69.5%, without low work-function cathodes, electrode buffer layers or thermal treatment. This was attributed to PCBM demixing from P3HT domains and better vertical phase separation, as indicated by photoluminescence lifetimes, hole mobilities, and shunt leakage currents. Dependence on solvent parameters and applicability beyond P3HT system was also investigated.
Evidence for α-helices in the gas phase: a case study using Melittin from honey bee venom.
Florance, Hannah V; Stopford, Andrew P; Kalapothakis, Jason M; McCullough, Bryan J; Bretherick, Andrew; Barran, Perdita E
2011-09-07
Gas phase methodologies are increasingly used to study the structure of proteins and peptides. A challenge to the mass spectrometrist is to preserve the structure of the system of interest intact and unaltered from solution into the gas phase. Small peptides are very flexible and can present a number of conformations in solution. In this work we examine Melittin a 26 amino acid peptide that forms the active component of honey bee venom. Melittin is haemolytic and has been shown to form an α-helical tetrameric structure by X-ray crystallography [M. Gribskov et al., The RCSB Protein Data Bank, 1990] and to be helical in high concentrations of methanol. Here we use ion mobility mass spectrometry, molecular dynamics and gas-phase HDX to probe its structure in the gas phase and specifically interrogate whether the helical form can be preserved. All low energy calculated structures possess some helicity. In our experiments we examine the peptide following nano-ESI from solutions with varying methanol content. Ion mobility gives collision cross sections (CCS) that compare well with values found from molecular modelling and from other reported structures, but with inconclusive results regarding the effect of solvent. There is only a slight increase in CCS with charge, showing minimal coloumbically driven unfolding. HDX supports preservation of some helical content into the gas phase and again shows little difference in the exchange rates of species sprayed from different solvents. The [M + 3H](3+) species has two exchanging populations both of which exhibit faster exchange rates than observed for the [M + 2H](2+) species. One interpretation for these results is that the time spent being analysed is sufficient for this peptide to form a helix in the 'ultimate' hydrophobic environment of a vacuum.
Prieto-Blanco, M C; Moliner-Martínez, Y; López-Mahía, P; Campíns-Falcó, P
2012-07-27
A quick, miniaturized and on-line method has been developed for the determination in water of the predominant homologue of benzalkonium chloride, dodecyl dimethyl benzyl ammonium chloride or lauralkonium chloride (C(12)-BAK). The method is based on the formation of an ion-pair in both in-tube solid-phase microextraction (IT-SPME) and capillary liquid chromatography. The IT-SPME optimization required the study of the length and nature of the stationary phase of capillary and the processed sample volume. Because to the surfactant character of the analyte both, the extracting and replacing solvents, have played a decisive role in the IT-SPME optimized procedure. Conditioning the capillary with the mobile phase which contains the counter ion (acetate), using an organic additive (tetrabutylammonium chloride) added to the sample and a mixture water/methanol as replacing solvent (processed just before the valve is switched to the inject position), allowed to obtain good precision of the retention time and a narrow peak for C(12)-BAK. A reversed-phase capillary based TiO(2) column and a mobile phase containing ammonium acetate at pH 5.0 for controlling the interactions of cationic surfactant with titania surface were proposed. The optimized procedure provided adequate linearity, accuracy and precision at the concentrations interval of 1.5-300 μg L(-1) .The limit of detection (LOD) was 0.5 μg L(-1) using diode array detection (DAD). The applicability of proposed IT-SPME-capillary LC method has been assessed in several water samples. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nelson, Gunnar; Wong, J.; Drapes, C.; Grant, M.; Baruth, A.
Despite the promise of cheap and fast nanoscale ordering of block polymer thin films via solvent vapor annealing, a standardized, scalable production scheme remains elusive. Solvent vapor annealing exposes a nano-thin film to the vapors of one or more solvents with the goal of forming a swollen and mobile state to direct the self-assembly process by tuning surface energies and mediating unfavorable chain interactions. We have shown that optimized annealing conditions, where kinetic and thermal properties for crystal growth are extremely fast (<1s), exist at solvent concentrations just below the order-disorder transition of the film. However, when investigating the propagation of a given morphology into the bulk of a film during drying, the role of solvent evaporation comes under great scrutiny. During this process, the film undergoes a competition between two fronts; phase separation and kinetic trapping. Recent results in both theory and experiment point toward this critical element in controlling the resultant morphologies; however, no current method includes a controllable solvent evaporation rate at ultra-fast time scales. We report on a computer-controlled, pneumatically actuated chamber that provides control over solvent evaporation down to 15 ms. Furthermore, in situ spectral reflectance monitors solvent concentration with 10 ms temporal resolution and reveals several possible evaporation trajectories, ranging from linear to exponential to logarithmic. Funded by Dr. Randolph Ferlic Summer Research Scholarship and NASA Nebraska Space Grant.
Sandmann, Gerhard
2010-01-01
Acetonitrile-based HPLC systems are the most commonly used for carotenoid analysis from different plant tissues. Because of the acetonitrile shortage, an HPLC system for the separation of carotenoids on C(18) reversed-phase columns was developed in which an acetonitrile-alcohol-based mobile phase was replaced by nitromethane. This solvent comes closest to acetonitrile with respect to its elutrophic property. Our criterion was to obtain similar separation and retention times for a range of differently structured carotenoids. This was achieved by further increase in the lipophilicity with ethylacetate. For all the carotenoids which we tested, we found co-elution only of β-cryptoxanthin and lycopene. By addition of 1% of water, separation of this pair of carotenoids was also achieved. The final recommended mobile phase consisted of nitromethane : 2-propanol : ethyl acetate : water (79 : 10 : 10 : 1, by volume). On Nucleosil C(18) columns and related ones like Hypersil C(18), we obtained separation of carotenes, hydroxyl, epoxy and keto derivatives, which resembles the excellent separation properties of acetonitrile-based mobile phases on C(18) reversed phase columns. We successfully applied the newly developed HPLC system to the separation of carotenoids from different vegetables and fruit. Copyright © 2010 John Wiley & Sons, Ltd.
Tuning structure and mobility of solvation shells surrounding tracer additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmer, James; Jain, Avni; Bollinger, Jonathan A.
2015-03-28
Molecular dynamics simulations and a stochastic Fokker-Planck equation based approach are used to illuminate how position-dependent solvent mobility near one or more tracer particle(s) is affected when tracer-solvent interactions are rationally modified to affect corresponding solvation structure. For tracers in a dense hard-sphere fluid, we compare two types of tracer-solvent interactions: (1) a hard-sphere-like interaction, and (2) a soft repulsion extending beyond the hard core designed via statistical mechanical theory to enhance tracer mobility at infinite dilution by suppressing coordination-shell structure [Carmer et al., Soft Matter 8, 4083–4089 (2012)]. For the latter case, we show that the mobility of surroundingmore » solvent particles is also increased by addition of the soft repulsive interaction, which helps to rationalize the mechanism underlying the tracer’s enhanced diffusivity. However, if multiple tracer surfaces are in closer proximity (as at higher tracer concentrations), similar interactions that disrupt local solvation structure instead suppress the position-dependent solvent dynamics.« less
Tuning structure and mobility of solvation shells surrounding tracer additives.
Carmer, James; Jain, Avni; Bollinger, Jonathan A; van Swol, Frank; Truskett, Thomas M
2015-03-28
Molecular dynamics simulations and a stochastic Fokker-Planck equation based approach are used to illuminate how position-dependent solvent mobility near one or more tracer particle(s) is affected when tracer-solvent interactions are rationally modified to affect corresponding solvation structure. For tracers in a dense hard-sphere fluid, we compare two types of tracer-solvent interactions: (1) a hard-sphere-like interaction, and (2) a soft repulsion extending beyond the hard core designed via statistical mechanical theory to enhance tracer mobility at infinite dilution by suppressing coordination-shell structure [Carmer et al., Soft Matter 8, 4083-4089 (2012)]. For the latter case, we show that the mobility of surrounding solvent particles is also increased by addition of the soft repulsive interaction, which helps to rationalize the mechanism underlying the tracer's enhanced diffusivity. However, if multiple tracer surfaces are in closer proximity (as at higher tracer concentrations), similar interactions that disrupt local solvation structure instead suppress the position-dependent solvent dynamics.
HPLC Determination of Esculin and Esculetin in Rat Plasma for Pharmacokinetic Studies.
Rehman, Shaheed Ur; Kim, In Sook; Kang, Ki Sung; Yoo, Hye Hyun
2015-09-01
An optimized, sensitive and validated reversed-phase high-performance liquid chromatography (RP-HPLC) method with UV detection is described for simultaneous determination of esculin and its aglycone, esculetin, in rat plasma. After addition of internal standard (chrysin), plasma samples were pretreated by solid-phase extraction and introduced into the HPLC system. Analytes were separated on a RP C18 column with a mobile phase of 0.075% acetic acid in water (solvent A) and 90% acetonitrile in solvent A (solvent B) using gradient elution at a flow rate of 1.0 mL/min. The wavelength for UV detection was set at 338 nm. Calibration curves for esculin and esculetin were constructed over a range of 10-1,000 ng/mL. The developed method was found to be specific, precise and accurate. The method was successfully applied to study the pharmacokinetics of esculin and esculetin in rats. After oral administration of 120 mg/kg, the mean Cmax values were 340.3 and 316.5 ng/mL and the AUClast values were 377.3 and 1276.5 h ng/mL for esculin and esculetin, respectively. The bioavailability of esculin was calculated to be 0.62%. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Protomers of benzocaine: solvent and permittivity dependence.
Warnke, Stephan; Seo, Jongcheol; Boschmans, Jasper; Sobott, Frank; Scrivens, James H; Bleiholder, Christian; Bowers, Michael T; Gewinner, Sandy; Schöllkopf, Wieland; Pagel, Kevin; von Helden, Gert
2015-04-01
The immediate environment of a molecule can have a profound influence on its properties. Benzocaine, the ethyl ester of para-aminobenzoic acid that finds an application as a local anesthetic, is found to adopt in its protonated form at least two populations of distinct structures in the gas phase, and their relative intensities strongly depend on the properties of the solvent used in the electrospray ionization process. Here, we combine IR-vibrational spectroscopy with ion mobility-mass spectrometry to yield gas-phase IR spectra of simultaneously m/z and drift-time-resolved species of benzocaine. The results allow for an unambiguous identification of two protomeric species: the N- and O-protonated forms. Density functional theory calculations link these structures to the most stable solution and gas-phase structures, respectively, with the electric properties of the surrounding medium being the main determinant for the preferred protonation site. The fact that the N-protonated form of benzocaine can be found in the gas phase is owed to kinetic trapping of the solution-phase structure during transfer into the experimental setup. These observations confirm earlier studies on similar molecules where N- and O-protonation have been suggested.
A microfluidic device for open loop stripping of volatile organic compounds.
Cvetković, Benjamin Z; Dittrich, Petra S
2013-03-01
The detection of volatile organic compounds is of great importance for assessing the quality of water. In this contribution, we describe a miniaturized stripping device that allows fast online detection of organic solvents in water. The core component is a glass microfluidic chip that facilitates the creation of an annular-flowing stream of water and nitrogen gas. Volatile compounds are transferred efficiently from the water into the gas phase along the microfluidic pathway at room temperature within less than 5 s. Before exiting the microchip, the liquid phase is separated from the enriched gas phase by incorporating side capillaries through which the hydrophilic water phase is withdrawn. The gas phase is conveniently collected at the outlet reservoir by tubing. Finally, a semiconductor gas sensor analyzes the concentration of (volatile) organic compounds in the nitrogen gas. The operation and use of the stripping device is demonstrated for the organic solvents THF, 1-propanol, toluene, ethylbenzene, benzaldehyde, and methanol. The mobile, inexpensive, and continuously operating system with liquid flow rates in the low range of microliters per minute can be connected to other detectors or implemented in chemical production line for process control.
Tejada-Casado, Carmen; Lara, Francisco J; García-Campaña, Ana M; Del Olmo-Iruela, Monsalud
2018-03-30
Ultra-high performance liquid chromatography (UHPLC) coupled with fluorescence detection (FL) has been proposed for the first time to determine thirteen benzimidazoles (BZs) in farmed fish samples. In order to optimize the chromatographic separation, parameters such as mobile phase composition and flow rate were carefully studied, establishing a gradient mode with a mobile phase consisted of water (solvent A) and acetonitrile (solvent B) at a flow rate of 0.4 mL/min. The separation was performed on a Zorbax Eclipse Plus RRHD C 18 column (50 × 2.1 mm, 1.8 μm), involving a total analysis time lower than 12 min. Salting-out assisted liquid-liquid extraction (SALLE) was applied as sample treatment to different types of farmed fish (trout, sea bream and sea bass). To obtain satisfactory extraction efficiencies for the studied analytes, several parameters affecting the SALLE procedure were optimized including the amount of sample, type and volume of the extraction solvent, and the nature and amount of the salt used. Characterization of the method in terms of performance characteristics was carried out, obtaining satisfactory results for the linearity (R 2 ≥ 0.997), repeatability (RSD ≤ 6.1%), reproducibility (RSD ≤ 10.8%) and recoveries (R ≥ 79%; RSD ≤ 7.8%). Detection limits between 0.04-29.9 μg kg -1 were obtained, demonstrating the applicability of this fast, simple and environmentally friendly method. Copyright © 2018 Elsevier B.V. All rights reserved.
Temperature-responsive chromatography for the separation of biomolecules.
Kanazawa, Hideko; Okano, Teruo
2011-12-09
Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here. Copyright © 2011 Elsevier B.V. All rights reserved.
Tsao, Rong; Yang, Raymond
2003-11-07
An HPLC method is reported for the separation and quantification of five major polyphenolic groups found in fruits and related products: single ring phenolic acids (hydroxybenzoic acid and hydroxycinnamic acid derivatives), flavan-3-ols, flavonols, anthocyanins, and dihydrochalcones. A binary mobile phase consisting of 6% acetic acid in 2 mM sodium acetate aqueous solution (v/v, final pH 2.55) (solvent A) and acetonitrile (solvent B) was used. The use of sodium acetate was new and key to the near baseline separation of 25 phenolics commonly found in fruits. A photodiode array detector was used and data were collected at four wavelengths (280, 320, 360, and 520 nm). This method was sensitive and gave good separation of polyphenolics in apple, cherry, strawberry, blackberry, grape, apple juice, and a processing by-product. The improved separation has led to better understanding of the polyphenolic profiles of these fruits. Individual as well as total phenolic content was obtained, and the latter was close to and correlated well with that obtained by the Folin-Ciocalteu method (FC). The HPLC data can be used as a total phenolic index (TPI) for quantification of fruit phenolics, which is advantageous over the FC because it has more information on individual compounds.
Bennett, Raffeal; Olesik, Susan V
2017-04-01
Enhanced fluidity liquid chromatography using the hydrophilic interaction retention mechanism (EFLC-HILIC) is studied as an alternative separation mode for analyzing oligosaccharides and other sugars. These carbohydrates, which are important for the study of foods and biological systems, are difficult to comprehensively profile and either require a non-green, expensive solvent (i.e. acetonitrile) or derivatization of the analytes at the expense of time, sample loss, and loss of quantitative information. These difficulties arise from the diverse isomerism, mutarotation, and lack of a useable chromophore/fluorophore for spectroscopic detection. Enhanced fluidity liquid chromatography is an alternative separation method that involves the use of conventional polar solvents, such as methanol/water mixtures, as the primary mobile phase component and liquid carbon dioxide (CO 2 ) as the modifier in subcritical conditions. The addition of liquid CO 2 enhances diffusivity and decreases viscosity while maintaining mixture polarity, which typically results in reduced time of analysis and higher efficiency. This work illustrates an optimized EFLC-HILIC separation of a test mixture of oligosaccharides and simple sugars with a resolution greater than 1.3 and an analysis time decrease of over 35% compared to a conventional HPLC HILIC-mode analysis using acetonitrile/water mobile phases. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalliker, R. Andrew; Guiochon, Georges A
Understanding the nature of viscosity contrast induced flow instabilities is an important aspect in the design of two-dimensional HPLC separations. When the viscosity contrast between the sample plug and the mobile phase is sufficiently large, the phenomenon known as viscous fingering can be induced. Viscous fingering is a flow instability phenomenon that occurs at the interface between two fluids with different viscosities. In liquid chromatography, viscous fingering results in the solute band undergoing a change in form as it enters into the chromatography column. Moreover, even in the absence of viscous fingering, band shapes change shape at low viscosity contrasts.more » These changes can result in a noticeable change in separation performance, with the result depending on whether the solvent pushing the solute plug has a higher or lower viscosity than the solute plug. These viscosity induced changes become more important as the solute injection volume increases and hence understanding the process becomes critical in the implementation of multidimensional HPLC techniques, since in these techniques the sample injection plug into the second dimension is an order of magnitude greater than in one-dimensional HPLC. This review article assesses the current understanding of the viscosity contrast induced processes as they relate to liquid chromatographic separation behaviour.« less
Vera, C M; Shock, D; Dennis, G R; Farrell, W; Shalliker, R A
2017-04-14
The chiral separation of d- and l- FMOC amino acids was undertaken using the Lux Cellulose-1 polysaccharide based chiral column in HPLC (normal phase and reverse phase) and SFC conditions. This was done to compare the relative selectivity and separation between the three separation modes and to evaluate the potential benefits of SFC separations with regards to resolution, throughput, economic and environmental impact. It was established that the separation of d- and l- FMOC amino acids in SFC displayed behaviours that were similar to both normal phase and reversed phase, rather than distinctly one or the other. Additionally, although reversed phase conditions yielded significantly higher resolution values between enantiomers across the range of amino acids studied, improvements in selectivity in SFC via the introduction of higher concentrations of formic acid in the mobile phase allowed for better resolution per unit of time. Moreover since the SFC mobile phase is composed mostly of recyclable CO 2 , there is a reduction in organic solvent consumption, which minimises the economic and environmental costs. Copyright © 2017. Published by Elsevier B.V.
Shinomiya, Kazufusa; Sato, Kazuki; Yoshida, Kazunori; Tokura, Koji; Maruyama, Hiroshi; Yanagidaira, Kazuhiro; Ito, Yoichiro
2013-12-27
A new design of universal high-speed counter-current chromatograph (HSCCC) was fabricated in our laboratory. It holds a set of four column holders symmetrically around the rotary frame at a distance of 11.2cm from the central axis. By engaging the stationary gear on the central axis of the centrifuge to the planetary gears on the column holder shaft through a set of idle gears, two pairs of diagonally located column holders simultaneously rotate about their own axes in the opposite directions: one forward (type-J planetary motion) and the other backward (type-I planetary motion) each synchronously with the revolution. Using the eccentric coil assembly, partition efficiencies produced by these two planetary motions were compared on the separation of two different types of sugar derivatives (4-methylumbelliferyl and 5-bromo-4-chloro-3-indoxyl sugar derivatives) using organic-aqueous two-phase solvent systems composed of n-hexane/ethyl acetate/1-butanol/methanol/water and aqueous 0.1M sodium tetraborate, respectively. With lower phase mobile, better peak resolution was obtained by the type-J forward rotation for both samples probably due to higher retention of the stationary phase. With upper phase mobile, however, similar peak resolutions were obtained between these two planetary motions for both sugar derivatives. The overall results indicate that the present universal HSCCC is useful for counter-current chromatographic separation since each planetary motion has its specific applications: e.g., vortex CCC by the type-I planetary motion and HSCCC by the type-J planetary motion both for separation of various natural and synthetic products. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gnabasik, Ryan; Haase, Rustin; Baruth, Andrew
2014-03-01
Despite its efficacy to produce well-ordered, periodic nanostructures, the intricate role multiple parameters play in solvent vapor annealing has not been fully established. In solvent vapor annealing a thin polymer film is exposed to the vapors of a solvent(s) thus forming a swollen and mobile layer to direct the self-assembly process at the nanoscale. Recent developments in both theory and experiment have directly identified critical parameters, but controlling them in any systematic way has proven non-trivial. These identified parameters include vapor pressure, solvent concentration in the film, and, critically, the solvent evaporation rate. To explore their role, a purpose-built solvent vapor annealing chamber was designed and constructed. The all-metal chamber is inert to solvent exposure and pneumatically actuated valves allow for precision timing in the introduction and withdrawal of solvent vapor. Furthermore, the mass flow controlled inlet, chamber pressure gauges, in situ spectral reflectance-based thickness monitoring, and high precision micrometer relief valve, give real-time monitoring and control during the annealing and evaporation phases. Using atomic force microscopy to image the annealed films, we are able to map out the parameter space for a series of polystyrene- b-polylactide (Mn = 75 kg/mol and fPLA = 0.28) block polymer thin films with an intrinsic cylindrical morphology and identify their role in directed assembly. Funded by Creighton University Summer Research Grant.
Use of limonene in countercurrent chromatography: a green alkane substitute.
Faure, Karine; Bouju, Elodie; Suchet, Pauline; Berthod, Alain
2013-05-07
Counter-current chromatography (CCC) is a preparative separation technique working with the two liquid phases of a biphasic liquid system. One phase is used as the mobile phase when the other, the stationary phase, is held in place by centrifugal fields. Limonene is a biorenewable cycloterpene solvent coming from orange peel waste. It was evaluated as a possible substitute for heptane in CCC separations. The limonene/methanol/water and heptane/methanol/water phase diagrams are very similar at room temperature. The double bonds of the limonene molecule allows for possible π-π interactions with solutes rendering limonene slightly more polar than heptane giving small differences in solute partition coefficients in the two systems. The 24% higher limonene density is a difference with heptane that has major consequences in CCC. The polar and apolar phases of the limonene/methanol/water 10/9/1 v/v have -0.025 g/cm(3) density difference (lower limonene phase) compared to +0.132 g/cm(3) with heptane (upper heptane phase). This precludes the use of this limonene system with hydrodynamic CCC columns that need significant density difference to retain a liquid stationary phase. It is an advantage with hydrostatic CCC columns because density difference is related to the working pressure drop: limonene allows one to work with high centrifugal fields and moderate pressure drop. Limonene has the capability to be a "green" alternative to petroleum-based solvents in CCC applications.
NASA Astrophysics Data System (ADS)
Janneck, Robby; Vercesi, Federico; Heremans, Paul; Genoe, Jan; Rolin, Cedric
2016-09-01
Organic thin film transistors (OTFTs) based on single crystalline thin films of organic semiconductors have seen considerable development in the recent years. The most successful method for the fabrication of single crystalline films are solution-based meniscus guided coating techniques such as dip-coating, solution shearing or zone casting. These upscalable methods enable rapid and efficient film formation without additional processing steps. The single-crystalline film quality is strongly dependent on solvent choice, substrate temperature and coating speed. So far, however, process optimization has been conducted by trial and error methods, involving, for example, the variation of coating speeds over several orders of magnitude. Through a systematic study of solvent phase change dynamics in the meniscus region, we develop a theoretical framework that links the optimal coating speed to the solvent choice and the substrate temperature. In this way, we can accurately predict an optimal processing window, enabling fast process optimization. Our approach is verified through systematic OTFT fabrication based on films grown with different semiconductors, solvents and substrate temperatures. The use of best predicted coating speeds delivers state of the art devices. In the case of C8BTBT, OTFTs show well-behaved characteristics with mobilities up to 7 cm2/Vs and onset voltages close to 0 V. Our approach also explains well optimal recipes published in the literature. This route considerably accelerates parameter screening for all meniscus guided coating techniques and unveils the physics of single crystalline film formation.
Greyling, Guilaume; Pasch, Harald
2017-08-25
Multidetector thermal field-flow fractionation (ThFFF) is shown to be a versatile characterisation platform that can be used to characterise hydrophilic polymers in a variety of organic and aqueous solutions with various ionic strengths. It is demonstrated that ThFFF fractionates isotactic and syndiotactic poly(methacrylic acid) (PMAA) as well as poly(2-vinyl pyridine) (P2VP) and poly(4-vinyl pyridine) (P4VP) according to microstructure in organic solvents and that the ionic strength of the mobile phase has no influence on the retention behaviour of the polymers. With regard to aqueous solutions, it is shown that, despite the weak retention, isotactic and syndiotactic PMAA show different retention behaviours which can qualitatively be attributed to microstructure. Additionally, it is shown that the ionic strength of the mobile phase has a significant influence on the thermal diffusion of polyelectrolytes in aqueous solutions and that the addition of an electrolyte is essential to achieve a microstructure-based separation of P2VP and P4VP in aqueous solutions. Copyright © 2017 Elsevier B.V. All rights reserved.
Spórna-Kucab, Aneta; Garrard, Ian; Ignatova, Svetlana; Wybraniec, Sławomir
2015-02-06
Betalains, natural plant pigments, are beneficial compounds due to their antioxidant and possible chemoprotective properties. A mixture of betalains: betanin/isobetanin, decarboxybetanins and neobetanin from processed red beet roots (Beta vulgaris L.) juice was separated in food-grade, gradient solvent systems using high-performance counter-current chromatography (HPCCC). The decarboxylated and dehydrogenated betanins were obtained by thermal degradation of betanin/isobetanin from processed B. vulgaris L. juice under mild conditions. Two solvent systems (differing in their composition by phosphoric acid and ethanol volume gradient) consisting of BuOH-EtOH-NaClsolution-H2O-H3PO4 (v/v/v/v/v, 1300:200-1000:1300:700:2.5-10) in the 'tail-to-head' mode were run. The flow rate of the mobile phase (organic phase) was 1.0 or 2.0 ml/min and the column rotation speed was 1,600 rpm (20°C). The retention of the solvent system stationary phase (aqueous phase) was ca. 80%. The system with the acid and ethanol volume gradient consisting of BuOH-EtOH-NaClsolution-H2O-H3PO4 (v/v/v/v/v, 1300:200-240:1300:700:2.5-4.5) pumped at 2.0 ml/min was the most effective for a separation of betanin/isobetanin, 17-decarboxy-betanin/-isobetanin, 2-decarboxy-betanin/-isobetanin, 2,17-bidecarboxy-betanin/-isobetanin pairs as well as neobetanin. The pigments were detected by LC-DAD and LC-MS. The results are crucial in the application of completely food-grade solvent systems in separation of food-grade compounds as well, and the systems can possibly be extended to other ionizable and polar compounds with potential health benefits. In particular, the method is applicable for the isolation and purification of betalains present in such rich sources as B. vulgaris L. roots as well as cacti fruits and Amaranthaceae flowering plants due to modification possibilities of the solvent systems polarity. Copyright © 2014 Elsevier B.V. All rights reserved.
Rodriguez-Aller, Marta; Guillarme, Davy; Beck, Alain; Fekete, Szabolcs
2016-01-25
The goal of this work is to provide some recommendations for method development in HIC using monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) as model drug candidates. The effects of gradient steepness, mobile phase pH, salt concentration and type, as well as organic modifier were evaluated for tuning selectivity and retention in HIC. Except the nature of the stationary phase, which was not discussed in this study, the most important parameter for modifying selectivity was the gradient steepness. The addition of organic solvent (up to 15% isopropanol) in the mobile phase was also found to be useful for mAbs analysis, since it could provide some changes in elution order, in some cases. On the contrary, isopropanol was not beneficial with ADCs, since the most hydrophobic DAR species (DAR6 and DAR8) cannot be eluted from the stationary phase under these conditions. This study also illustrates the possibility to perform HIC method development using optimization software, such as Drylab. The optimum conditions suggested by the software were tested using therapeutic mAbs and commercial cysteine linked ADC (brentuximab-vedotin) and the average retention time errors between predicted and experimental retention times were ∼ 1%. Copyright © 2015 Elsevier B.V. All rights reserved.
Gavioli, Elena; Maier, Norbert M; Minguillón, Cristina; Lindner, Wolfgang
2004-10-01
A countercurrent chromatography protocol for support-free preparative enantiomer separation of the herbicidal agent 2-(2,4-dichlorphenoxy)propionic acid (dichlorprop) was developed utilizing a purposefully designed, highly enantioselective chiral stationary-phase additive (CSPA) derived from bis-1,4-(dihydroquinidinyl)phthalazine. Guided by liquid-liquid extraction experiments, a solvent system consisting of 10 mM CSPA in methyl tert-butyl ether and 100 mM sodium phosphate buffer (pH 8.0) was identified as a suitable stationary/mobile-phase combination. This solvent system provided an ideal compromise among stationary-phase retention, enantioselectivity, and well-balanced analyte distribution behavior. Using a commercial centrifugal partition chromatography instrument, complete enantiomer separations of up to 366 mg of racemic dichlorprop could be achieved, corresponding to a sample load being equivalent to the molar amount of CSPA employed. Comparison of the preparative performance characteristics of the CPC protocol with that of a HPLC separation using a silica-supported bis-1,4-(dihydroquinidinyl)phthalazine chiral stationary phase CSP revealed comparable loading capacities for both techniques but a significantly lower solvent consumption for CPC. With respect to productivity, HPLC was found to be superior, mainly due to inherent flow rate restrictions of the CPC instrument. Given that further progress in instrumental design and engineering of dedicated, highly enantioselective CSPAs can be achieved, CPC may offer a viable alternative to CSP-based HPLC for preparative-scale enantiomer separation.
2012-05-01
methods demonstrated that desorption into solvents suitable for subsequent chemical analysis (into acetonitrile for HPLC analysis or hexane for GC...SPME. Analysis by HPLC with EPA 8310 with fluorescent detection. a) surface water quality criteria (NRWQC) are given for comparison to detection... analysis ) or hexane (for PCB analysis ) was added to the inserts. The vials were then analyzed directly by HPLC (PAHs) or GC-ECD (PCBs). Fiber achieved
Mobil lube dewaxing technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, C.L.; McGuiness, M.P.
1995-09-01
Currently, the lube refining industry is in a period of transition, with both hydroprocessing and catalytic dewaxing gathering momentum as replacements for solvent extraction and solvent dewaxing. In addition, lube product quality requirements have been increasing, both in the US and abroad. Mobil has developed a broad array of dewaxing catalytic technologies which can serve refiners throughout the stages of this transition. In the future, lube feedstocks which vary in source and wax content will become increasingly important, requiring an optimized system for highest performance. The Mobil Lube Dewaxing (MLDW) process is the work-horse of the catalytic dewaxing technologies, beingmore » a robust, low cost technology suitable for both solvent extracted and hydrocracked feeds. The Mobil Selective Dewaxing (MSDW) process has been recently introduced in response to the growth of hydroprocessing. MSDW requires either severely hydrotreated or hydrocracked feeds and provides improved lube yields and VI. For refiners with hydrocrackers and solvent dewaxing units, Mobil Wax Isomerization (MWI) technology can make higher VI base stocks to meet the growing demand for very high quality lube products. A review of these three technologies is presented in this paper.« less
Electrophoretic kinetics of concentrated TiO2 nanoparticle suspensions in aprotic solvent
NASA Astrophysics Data System (ADS)
Lee, So-Yeon; Yim, Jung-Ryoul; Lee, Se-Hee; Choi, In-Suk; Nam, Ki Tae; Joo, Young-Chang
2018-01-01
We studied the dependences of the concentration of additive and particle size on the electrophoretic mobility of TiO2 nanoparticles. A high concentration of TiO2 nanoparticles was dispersed in aprotic solvent, which is similar to the operating conditions of electrophoretic applications. Because spectroscopy has limits to measuring the electrophoretic mobility of concentrated suspensions in aprotic solvents, we developed a new measurement to determine the electrophoretic mobility of particles using the reflectance change according to the motion of the particles. TiO2 nanoparticles with sizes of 31 nm to 164 nm were synthesized by hydrolysis and were dispersed in cyclohexanone with a dye (Sudan Black B) for use in the new measurement method. In a concentrated suspension in aprotic solvent, the mobility of the particles was proportional to the dye concentration and was inversely proportional to the size of the particles. This infers that the particle size influences the drag force rather than the surface charge, and therefore, to increase the mobility by changing the surface charge, an additive is effective. [Figure not available: see fulltext.
Berrueta, L A; Fernández-Armentia, M; Bakkali, A; Gonzalo, A; Lucero, M L; Orjales, A
2001-08-25
A matrix solid-phase dispersion (MSPD) procedure for the isolation and HPLC determination of a new antiallergic agent, bilastine, in rat faeces is presented. The effect on recovery of empirical variables such as nature, pH and volume of the washing and elution liquids and nature of the adsorbent has been tested. The best recoveries were attained using an octadecylsilyl sorbent, 10 ml of a 0.1 M NaHCO3-Na2CO3 aqueous buffer of pH 10.0 as washing solvent and 10 ml of methanol as elution solvent. The extracts were evaporated to dryness and reconstituted in mobile phase before their injection into a HPLC system, equipped with a Discovery RP-amide C16 column and a fluorescence detector. The method allows one to reach recoveries of 95.0% within the concentration range 0.05-10 microg/g, with within-day repeatabilities of less than 5% and between-day repeatabilities of less than 9% within this range. This method has been successfully applied to the excretion studies of bilastine in the rat.
Preparative supercritical fluid chromatography: A powerful tool for chiral separations.
Speybrouck, David; Lipka, Emmanuelle
2016-10-07
In 2012, the 4 biggest pharmaceutical blockbusters were pure enantiomers and separating racemic mixtures is now frequently a key step in the development of a new drug. For a long time, preparative liquid chromatography was the technique of choice for the separation of chiral compounds either during the drug discovery process to get up to a hundred grams of a pure enantiomer or during the clinical trial phases needing kilograms of material. However the advent of supercritical Fluid Chromatography (SFC) in the 1990s has changed things. Indeed, the use of carbon dioxide as the mobile phase in SFC offers many advantages including high flow rate, short equilibration time as well as low solvent consumption. Despite some initial teething troubles, SFC is becoming the primary method for preparative chiral chromatography. This article will cover recent developments in preparative SFC for the separation of enantiomers, reviewing several aspects such as instrumentation, chiral stationary phases, mobile phases or purely preparative considerations including overloading, productivity or large scale chromatography. Copyright © 2016 Elsevier B.V. All rights reserved.
Cheng, Heyong; Shen, Lihuan; Liu, Jinhua; Xu, Zigang; Wang, Yuanchao
2018-04-01
Nanoliter high-performance liquid chromatography shows low consumption of solvents and samples, offering one of the best choices for arsenic speciation in precious samples in combination with inuctively coupled plasma mass spectrometry. A systematic investigation on coupling nanoliter high-performance liquid chromatography to inductively coupled plasma mass spectrometry from instrument design to injected sample volume and mobile phase was performed in this study. Nanoflow mobile phase was delivered by flow splitting using a conventional high-pressure pump with reuse of mobile phase waste. Dead volume was minimized to 60 nL for the sheathless interface based on the previously developed nanonebulizer. Capillary columns for nanoliter high-performance liquid chromatography were found to be sensitive to sample loading volume. An apparent difference was also found between the mobile phases for nanoliter and conventional high-performance liquid chromatography. Baseline separation of arsenite, arsenate, monomethylarsenic, and dimethylarsenic was achieved within 11 min on a 15 cm C 18 capillary column and within 12 min on a 25 cm strong anion exchange column. Detection limits of 0.9-1.8 μg/L were obtained with precisions variable in the range of 1.6-4.2%. A good agreement between determined and certified values of a certified reference material of human urine (GBW 09115) validated its accuracy along with good recoveries (87-102%). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Extraction and identification of flavonoids from parsley extracts by HPLC analysis
NASA Astrophysics Data System (ADS)
Stan, M.; Soran, M. L.; Varodi, C.; Lung, I.
2012-02-01
Flavonoids are phenolic compounds isolated from a wide variety of plants, and are valuable for their multiple properties, including antioxidant and antimicrobial activities. In the present work, parsley (Petroselinum crispum L.) extracts were obtained by three different extraction techniques: maceration, ultrasonic-assisted and microwave-assisted solvent extractions. The extractions were performed with ethanol-water mixtures in various ratios. From these extracts, flavonoids like the flavones apigenin and luteolin, and the flavonols quercetin and kaempferol were identified using an HPLC Shimadzu apparatus equipped with PDA and MS detectors. The separation method involved a gradient step. The mobile phase consisted of two solvents: acetonitrile and distilled water with 0.1% formic acid. The separation was performed on a RP-C18 column.
Viñas, Pilar; Pastor-Belda, Marta; Campillo, Natalia; Bravo-Bravo, María; Hernández-Córdoba, Manuel
2014-06-01
Capillary liquid chromatography (LC) is used for the determination of tocopherols and tocotrienols in cosmetic products. Dispersive liquid-liquid microextraction (DLLME) allows the analytes to be preconcentrated into a very small volume of organic solvent which is then injected into the chromatograph running at a very low flow rate. Pressurized liquid extraction (PLE) at a high temperature and pressure was used to isolate vitamin E forms from cosmetics. The Taguchi experimental method was used to optimize the factors affecting DLLME. The parameters selected were 2mL of acetonitrile (disperser solvent), 100μL carbon tetrachloride (extraction solvent) and 10mL aqueous solution. A volume of 5μL of the organic phase was injected into the reversed-phase capillary LC system equipped with a diode array detector and using an isocratic mobile phase composed of an 95:5 (v/v) methanol:water mixture at a flow-rate of 20μLmin(-1). Quantification was carried out using aqueous standards and detection limits were in the range 0.1-0.5ngmL(-1), corresponding to 3-15ngg(-1) in the cosmetic sample. The recoveries were in the 87-105% range, with RSDs lower than 7.8%. The method was validated according to international guidelines and using a certified reference material. Copyright © 2014 Elsevier B.V. All rights reserved.
Weisz, Adrian; Ito, Yoichiro
2011-09-09
The performance of three types of high-speed counter-current chromatography (HSCCC) instruments was assessed for their use in separating components in hydrophilic and hydrophobic dye mixtures. The HSCCC instruments compared were: (i) a J-type coil planet centrifuge (CPC) system with a conventional multilayer-coil column, (ii) a J-type CPC system with a spiral-tube assembly-coil column, and (iii) a cross-axis CPC system with a multilayer-coil column. The hydrophilic dye mixture consisted of a sample of FD&C Blue No. 2 that contained mainly two isomeric components, 5,5'- and 5,7'-disulfonated indigo, in the ratio of ∼7:1. The hydrophobic dye mixture consisted of a sample of D&C Red No. 17 (mainly Sudan III) and Sudan II in the ratio of ∼4:1. The two-phase solvent systems used for these separations were 1-butanol/1.3M HCl and hexane/acetonitrile. Each of the three instruments was used in two experiments for the hydrophilic dye mixture and two for the hydrophobic dye mixture, for a total of 12 experiments. In one set of experiments, the lower phase was used as the mobile phase, and in the second set of experiments, the upper phase was used as the mobile phase. The results suggest that: (a) use of a J-type instrument with either a multilayer-coil column or a spiral-tube assembly column, applying the lower phase as the mobile phase, is preferable for separating the hydrophilic components of FD&C Blue No. 2; and (b) use of a J-type instrument with multilayer-coil column, while applying either the upper phase or the lower phase as the mobile phase, is preferable for separating the hydrophobic dye mixture of D&C Red No. 17 and Sudan II. Published by Elsevier B.V.
Xia, Hanxue; Attygalle, Athula B
2017-12-01
The role of water vapor in transforming the thermodynamically preferred species of protonated benzocaine to the less favored protomer was investigated using helium-plasma ionization (HePI) in conjunction with ion-mobility mass spectrometry (IM-MS). The IM arrival-time distribution (ATD) recorded from a neat benzocaine sample desorbed to the gas phase by a stream of dry nitrogen and ionized by HePI showed essentially one peak for the O-protonated species. However, when water vapor was introduced to the enclosed ion source, within a span of about 150 ms the ATD profile changed completely to one dominated by the N-protonated species. Under spray-based ionization conditions, the nature and composition of the solvents have been postulated to play a decisive role in defining the manifested protomer ratios. In reality, the solvent vapors present in the ion source (particularly the ambient humidity) indirectly dictate the gas-phase ratio of the protomers. Evidently, the gas-phase protomer ratio established at the confinement of the ions is readjusted by the ion-activation that takes place during the transmission of ions to the vacuum. Although it has been repeatedly stated that ions can retain a "memory" of their solution structures because they can be kinetically trapped, and thereby represent their solution-based stabilities, we show that the initial airborne ions can undergo significant transformations in the transit through the intermediate vacuum zones between the ion source and the mass detector. In this context, we demonstrate that the kinetically trapped N-protomer of benzocaine can be untrapped by reducing the humidity of the enclosed ion source. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Xia, Hanxue; Attygalle, Athula B.
2017-12-01
The role of water vapor in transforming the thermodynamically preferred species of protonated benzocaine to the less favored protomer was investigated using helium-plasma ionization (HePI) in conjunction with ion-mobility mass spectrometry (IM-MS). The IM arrival-time distribution (ATD) recorded from a neat benzocaine sample desorbed to the gas phase by a stream of dry nitrogen and ionized by HePI showed essentially one peak for the O-protonated species. However, when water vapor was introduced to the enclosed ion source, within a span of about 150 ms the ATD profile changed completely to one dominated by the N-protonated species. Under spray-based ionization conditions, the nature and composition of the solvents have been postulated to play a decisive role in defining the manifested protomer ratios. In reality, the solvent vapors present in the ion source (particularly the ambient humidity) indirectly dictate the gas-phase ratio of the protomers. Evidently, the gas-phase protomer ratio established at the confinement of the ions is readjusted by the ion-activation that takes place during the transmission of ions to the vacuum. Although it has been repeatedly stated that ions can retain a "memory" of their solution structures because they can be kinetically trapped, and thereby represent their solution-based stabilities, we show that the initial airborne ions can undergo significant transformations in the transit through the intermediate vacuum zones between the ion source and the mass detector. In this context, we demonstrate that the kinetically trapped N-protomer of benzocaine can be untrapped by reducing the humidity of the enclosed ion source. [Figure not available: see fulltext.
Geng, Ping; Fang, Yingtong; Xie, Ronglong; Hu, Weilun; Xi, Xingjun; Chu, Qiao; Dong, Genlai; Shaheen, Nusrat; Wei, Yun
2017-02-01
Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid-phase extraction with high-speed counter-current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid-phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid-phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two-phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid-phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p-coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution-extrusion counter-current chromatography and back-extrusion counter-current chromatography were compared. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory V. Lowry; Sara Majetich; Krzysztof Matyjaszewski
2006-12-27
Dense Non-Aqueous Phase Liquid (DNAPL) such as trichloroethylene act as long term sources of groundwater contaminants and are difficult and expensive to remediate. DNAPL-contaminated sites are a significant financial liability for the Department of Energy and the private sector. The objective of this study was to engineer reactive Fe-based nanoparticles with specialized polymeric coatings to make them mobile in the subsurface and to provide them with an affinity for the DNAPL/water interface. The synthesis, characterization, and reactivity/mobility of the engineered particles, and a molecular dynamic model that predicts their behavior at the DNPAL/water interface are described in this report.
Effect of Crystallizable Solvent on Phase Separation and Charge Transport in Polymer-fullerene Films
NASA Astrophysics Data System (ADS)
Kaewprajak, A.; Lohawet, K.; Wutikhun, T.; Meemuk, B.; Kumnorkaew, P.; Sagawa, T.
2017-09-01
The effect of 1,3,5-trichlorobenzene (TCB) as crystallizable solvent on poly[N-9‧-heptadecanyl-2,7-carbazole-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) bulk heterojunction (BHJ) was investigated. We found that phase separation of PCDTBT and PC71BM and formation of the condensed network of polymers were appropriately regulated by addition of TCB in the BHJ films, which were confirmed by optical microscopic, AFM, and TEM observations in addition to current-voltage analyses. Through the formation of a good continuous pathway for carrier transport by the addition of TCB, 2.5 times enhancement of the hole mobility in the BHJ film was attained from 5.82 × 10-5 cm2 V-1 s-1 without TCB to 1.48 × 10-4 cm2 V-1 s-1 with 20 mg ml-1 of TCB.
Conjugated foldamers with unusually high space-charge-limited current hole mobilities.
Li, Yong; Dutta, Tanmoy; Gerasimchuk, Nikolay; Wu, Shijie; Shetye, Kuldeep; Jin, Lu; Wang, Ruixin; Zhu, Da-Ming; Peng, Zhonghua
2015-05-13
Charge carrier mobility and its optimization play a critical role in the development of cutting-edge organic electronic and optoelectronic devices. Even though space-charge-limited current (SCLC) hole mobilities as high as 1.4 cm(2) V(-1) s(-1) have been reported for microscopically sized highly ordered liquid-crystalline conjugated small molecules, the SCLC hole mobility of device-sized thin films of conjugated polymers is still much lower, ranging from 10(-6) to 10(-3) cm(2) V(-1) s(-1). Herein, we report the synthesis, characterizations, and thin-film SCLC mobility of three discotic conjugated polymers, INDT-TT, INDT-BT, and INDT-NDT. Optical studies indicate that polymer INDT-NDT adopts a folded conformation in solutions of good or poor solvents, whereas polymer INDT-TT stays as random monomeric chains in good solvents and interchain aggregates in poor solvents. INDT-BT polymer chains, however, stay as foldamers in dilute solutions of good solvents but interchain aggregates in concentrated solutions or poor solvents. Circular dichroism spectroscopy provides clear evidence for the helical folding of INDT-NDT in solutions. Thin films spin-coated from 1,2-dichlorobenzene solutions of the polymers show SCLC hole mobility of 2.20 × 10(-6), 8.79 × 10(-5), and 2.77 × 10(-2) cm(2) V(-1) s(-1) for INDT-TT, INDT-BT, and INDT-NDT, respectively. HRTEM and powder XRD measurements show that INDT-NDT pristine thin films contain nanocrystalline domains, whereas the INDT-TT and INDT-BT films are amorphous. Thin films of INDT-NDT:PC71BM blends show increased crystallinity and further improved SCLC hole mobility up to 1.29 × 10(-1) cm(2) V(-1) s(-1), one of the highest SCLC mobility values ever recorded on solution-processed organic semiconducting thin films. The persistent folding conformation of INDT-NDT is believed to be responsible for the high crystallinity of its thin films and its high SCLC mobilities.
Cho, Yunju; Choi, Man-Ho; Kim, Byungjoo; Kim, Sunghwan
2016-04-29
An experimental setup for the speciation of compounds by hydrogen/deuterium exchange (HDX) with atmospheric pressure ionization while performing chromatographic separation is presented. The proposed experimental setup combines the high performance supercritical fluid chromatography (SFC) system that can be readily used as an inlet for mass spectrometry (MS) and atmospheric pressure photo ionization (APPI) or atmospheric pressure chemical ionization (APCI) HDX. This combination overcomes the limitation of an approach using conventional liquid chromatography (LC) by minimizing the amount of deuterium solvents used for separation. In the SFC separation, supercritical CO2 was used as a major component of the mobile phase, and methanol was used as a minor co-solvent. By using deuterated methanol (CH3OD), AP HDX was achieved during SFC separation. To prove the concept, thirty one nitrogen- and/or oxygen-containing standard compounds were analyzed by SFC-AP HDX MS. The compounds were successfully speciated from the obtained SFC-MS spectra. The exchange ions were observed with as low as 1% of CH3OD in the mobile phase, and separation could be performed within approximately 20min using approximately 0.24 mL of CH3OD. The results showed that SFC separation and APPI/APCI HDX could be successfully performed using the suggested method. Copyright © 2016 Elsevier B.V. All rights reserved.
Abdelaleem, Eglal Adelhamid; Abdelwahab, Nada Sayed
2013-01-01
This work is concerned with development and validation of chromatographic and spectrophotometric methods for analysis of mebeverine HCl (MEH), diloxanide furoate (DF) and metronidazole (MET) in Dimetrol® tablets - spectrophotometric and RP-HPLC methods using UV detection. The developed spectrophotometric methods depend on determination of MEH and DF in the combined dosage form using the successive derivative ratio spectra method which depends on derivatization of the obtained ratio spectra in two steps using methanol as a solvent and measuring MEH at 226.4-232.2 nm (peak to peak) and DF at 260.6-264.8 nm (peak to peak). While MET concentrations were determined using first derivative (1D) at λ = 327 nm using the same solvent. The chromatographic method depends on HPLC separation on ODS column and elution with a mobile phase consisting water: methanol: triethylamine (25: 75: 0.5, by volume, orthophosphoric acid to pH =4). Pumping the mobile phase at 0.7 ml min-1 with UV at 230 nm. Factors affecting the developed methods were studied and optimized, moreover, they have been validated as per ICH guideline and the results demonstrated that the suggested methods are reproducible, reliable and can be applied for routine use with short time of analysis. Statistical analysis of the two developed methods with each other using F and student's-t tests showed no significant difference.
Kienen, Vanessa; Costa, Willian F; Visentainer, Jesuí V; Souza, Nilson E; Oliveira, Cláudio C
2008-03-15
A green chromatographic analytical method for determination of fat-soluble vitamins (A, E, D3 and K1) in food and pharmaceutical supplement samples is proposed. The method is based on the modification of a C18 column with a 3.00% (w/v) sodium dodecyl sulphate (SDS) aqueous solution at pH 7 (0.02 mol L(-1) phosphate buffer solution) and in the usage of the same surfactant solution as mobile phase with the presence of 15.0% (v/v) butyl alcohol as an organic solvent modifier. After the separation process, the vitamins are detected at 230 nm (K1, D3 and E), 280 nm (A, E, D3 and K1) and 300 nm (K1, D3 and E). The chromatographic procedure yielded precise results (better than 5%) and is able to run one sample in 25 min, consuming 1.5 g of SDS, 90 mg of phosphate and 7.5 mL of butyl alcohol. When the flow rate of the mobile phase is 2 mL min(-1) the retention times are 4.0, 9.6, 13.0 and 22.7 min for D3, A, E and K1 vitamins, respectively; and all peak resolutions are higher than 2. The analytical curves present the following linear equations: area=6290+34852 (vitamin A), R2=0.9998; area=4092+36333 (vitamin E), R2=0.9997; area=-794+30382 (vitamin D3) R2=0.9998 and area=-7175+82621 (vitamin K1), R2=0.9996. The limits of detection and quantification for vitamins A, E, D(3) and K(1) were estimated for a test pharmaceutical vitamin supplement sample as 0.81, 1.12, 0.91 and 0.83 mg L(-1) and 2.43, 3.36, 2.73 and 2.49, respectively. When the proposed method was applied to food and pharmaceutical sample analysis, precise results were obtained (R.S.D.<5% and n=3) and in agreement with those obtained by using the classical chromatographic method that uses methanol and acetonitrile as mobile phase. Here, the traditional usage of toxic organic solvent as mobile phase is avoided, which permits to classify the present method as green.
APPI-MS: Effects of mobile phases and VUV lamps on the detection of PAH compounds
Short, Luke Chandler; Cai, Sheng-Suan; Syage, Jack A.
2009-01-01
The technique of atmospheric pressure photoionization (APPI) has several advantages over electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), including efficient ionization of non-polar or low charge affinity compounds, reduced susceptibility to ion suppression, high sensitivity, and large linear dynamic range. These benefits are greatest at low flow rates (i.e., ≤100 μL/min), while at a higher flow, photon absorption and ion-molecule reactions become significant. Under certain circumstances, APPI signal and S/N have been observed to excel at higher flow, which may be due to a non-photoionzation mechanism. To better understand APPI at higher flow rates, we have selected three lamps (Xe, Kr and Ar) and four mobile phases typical for reverse-phase, high-pressure liquid chromatography: acetonitrile, methanol, (1:1) acetonitrile:water and (1:1) methanol:water. As test compounds, three polyaromatic hydrocarbons are studied: benzo[a]pyrene, indeno[1,2,3-c,d]pyrene and benz[a]anthracene. We find that solvent photoabsorption cross-section is not the only parameter in explaining relative signal intensity, but that solvent photo-ion chemistry can also play a significant role. Three conclusions from this investigation are: (i) Methanol photoionization leads to protonated methanol clusters that can result in chemical ionization of analyte molecule; (ii) Use of the Ar lamp often results in greater signal and S/N; (iii) Acetonitrile photoionization is less efficient and resulting clusters are too strongly bound to efficiently chemically ionize the analyte, so that analyte ion formation is dominated by direct photoionization. PMID:17188507
APPI-MS: effects of mobile phases and VUV lamps on the detection of PAH compounds.
Short, Luke Chandler; Cai, Sheng-Suan; Syage, Jack A
2007-04-01
The technique of atmospheric pressure photoionization (APPI) has several advantages over electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), including efficient ionization of nonpolar or low charge affinity compounds, reduced susceptibility to ion suppression, high sensitivity, and large linear dynamic range. These benefits are greatest at low flow rates (i.e.,
Roque, Jose A.; Mazzola, Eugene P.; Ito, Yoichiro
2014-01-01
Specifications in the U.S. Code of Federal Regulations for the color additive FD&C Yellow No. 5 (Colour Index No. 19140) limit the level of the tetrasodium salt of 4-[(4',5-disulfo[1,1'-biphenyl]-2-yl)hydrazono]-4,5-dihydro-5-oxo-1-(4-sulfophenyl)-1H-pyrazole-3-carboxylic acid and that of the trisodium salt of 4,4'-[4,5-dihydro-5-oxo-4-[(4-sulfophenyl)hydrazono]-1H-pyrazol-1,3-diyl]bis[benzenesulfonic acid], which are subsidiary colors abbreviated as Pk5 and Pk7, respectively. Small amounts of Pk5 and Pk7 are needed by the U.S. Food and Drug Administration for confirmatory analyses and for development of analytical methods. The present study describes the use of spiral high-speed counter-current chromatography (HSCCC) with the recently introduced highly polar organic/high-ionic strength aqueous solvent systems to separate Pk5 and Pk7 from a sample of FD&C Yellow No. 5 containing ~3.5% Pk5 and ~0.7% Pk7. Multiple ~1.0 g portions of FD&C Yellow No. 5 (totaling 6.4 g dye) were separated, using the upper phase of the solvent system 1-BuOH/EtOHabs/saturated ammonium sulfate/water, 1.7:0.3:1:1, v/v/v/v, as the mobile phase. After applying a specially developed method for removing the ammonium sulfate from the HSCCC-collected fractions, these separations resulted in an enriched mixture (~160 mg) of Pk5 and Pk7 (~46% and ~21%, respectively). Separation of the enriched mixture, this time using the lower phase of that solvent system as the mobile phase, resulted in ~ 61 mg of Pk5 collected in fractions whose purity ranged from 88.0% to 92.7% (by HPLC at 254 nm). Pk7 (20.7 mg, ~83% purity) was recovered from the upper phase of the column content. Application of this procedure also resulted in purifying the major component of FD&C Yellow No. 5 to >99% purity. The separated compounds were characterized by high-resolution mass spectrometry and several 1H and 13C nuclear magnetic resonance spectroscopic techniques (COSY, NOESY, HSQC, and HMBC). PMID:24755184
Liquid chromatography of hydrocarbonaeous quaternary amines on cyclodextrin bonded silica
Abidi, S.L.
1986-01-01
Mixtures of n-alkylbenzyldimethylammonium chloride (ABDAC) were resolved into homologous components by high-performance liquid chromatography (HPLC) with a cyclodextrin-bonded silica stationary phase. With a few exceptions, results from this study are similar to those obtained from traditional reversed-phase HPLC. It was found that the presence of electrolytes in aqueous mobile phases is not a critical factor in determining the success of HPLC separation. Under normal HPLC conditions, a mobile phase consisting of either methanol–water (50:50) or acetonitrile–water (30:70) was employed for obtaining adequate resolution of the quaternary ammonium mixtures. Although the percent organic modifier–water profiles were similar to those in previous studies with these compounds, resolution (R) and selectivity (α) parameters were found to be quite susceptible to changes in the mobile phase solvent composition. The retention behavior of the cationic analytes in the homologous series is consistent with the hydrophobic-interaction concept proposed for the retention mechanism via dominant inclusion complex formation. Several electrolytes were chosen for a study of the counter ion effect on the chromatographic characteristics of ABDAC components. Among the electrolytes examined, the perchlorate ion was found most likely to act as an ion-pairing counter ion for ammonium cations in the HPLC system studied. A correlation study established linear relationships between the chain length of ABDAC and the logarithmic capacity factor (k2). The analytical utility of the HPLC method was demonstrated by the analysis of various unknown mixtures.
Sun, Xiaoli; Hao, Weiqiang; Wang, Junde; Di, Bin; Chen, Qiang; Zhuang, Wei; Yu, Qiang; Zhang, Peipei
2013-08-01
By not explicitly specifying the type of solvent strength model, the features of ladder-like gradient elution were studied based on the general retention time formula that was derived in our previous work. For the case where the solute is eluted at like gradient, we derived the expression that connects the mobile phase composition (phiR), at which the solute is eluted from the column, with the gradient slope (B). It was shown that phiR will increase with the increase of B in this case. For the case where the solute is eluted at the last isocratic segment of the ladder-like gradient, it was proven that the retention time (tR) will correlate linearly with the reciprocal of the gradient slope (1/B) when the initial and final mobile phase compositions are set to be constant. In experiments, by taking biphenyl as the sample, the values of retention time in isocratic and gradient elution were measured on a C18 column by using a mixture of methanol and water as the mobile phase. The experimental values were found to be well consistent with the theoretical values that were calculated from the expressions. These expressions will be helpful to understand the features of the ladder-like gradient in practice.
Guo, Mengzhe; Liang, Junling; Wu, Shihua
2010-08-13
In this work, we have developed a novel hybrid two-dimensional counter-current chromatography and liquid chromatography (2D CCC x LC) system for the continuous purification of arctiin from crude extract of Arctium lappa. The first dimensional CCC column has been designed to fractionalize crude complex extract into pure arctiin effluent using a one-component organic/salt-containing system, and the second dimensional LC column has been packed with macroporous resin for on-line adsorption, desalination and desorption of arctiin which was effluent purified from the first CCC dimension. Thus, the crude arctiin mixture has been purified efficiently and conveniently by on-line CCC x LC in spite of the use of a salt-containing solvent system in CCC separation. As a result, high purity (more than 97%) of arctiin has been isolated by repeated injections both using the ethyl acetate-8% sodium chloride aqueous solution and butanol-1% sodium chloride aqueous solution. By contrast with the traditional CCC processes using multi-component organic/aqueous solvent systems, the present on-line CCC x LC process only used a one-component organic solvent and thus the solvent is easier to recover and regenerate. All of used solvents such as ethyl acetate, n-butanol and NaCl aqueous solution are low toxicity and environment-friendly. Moreover, the lower phase of salt-containing aqueous solution used as mobile phase, only contained minor organic solvent, which will save much organic solvent in continuous separation. In summary, our results indicated that the on-line hybrid 2D CCC x LC system using one-component organic/salt-containing aqueous solution is very promising and powerful tool for high-throughput purification of arctiin from fruits of A. lappa. 2010 Elsevier B.V. All rights reserved.
Zou, Nan; Gu, Kejia; Liu, Shaowen; Hou, Yanbing; Zhang, Jialei; Xu, Xiang; Li, Xuesheng; Pan, Canping
2016-03-01
An analytical method based on dispersive solid-phase extraction with a multiwalled carbon nanotubes sorbent coupled with positive pulse glow discharge ion mobility spectrometry was developed for analysis of 30 pesticide residues in drinking water samples. Reduced ion mobilities and the mass-mobility correlation of 30 pesticides were measured. The pesticides were divided into five groups to verify the separation capability of pulse glow discharge in mobility spectrometry. The extraction conditions such as desorption solvent, ionic strength, conditions of adsorption and desorption, the amounts of multiwalled carbon nanotubes, and solution pH were optimized. The enrichment factors of pesticides were 5.4- to 48.7-fold (theoretical enrichment factor was 50-fold). The detection limits of pesticides were 0.01∼0.77 μg/kg. The linear range was 0.005-0.2 mg/L for pesticide standard solutions, with determination coefficients from 0.9616 to 0.9999. The method was applied for the analysis of practical and spiked drinking water samples. All results were confirmed by high-performance liquid chromatography with tandem mass spectrometry. The proposed method was proven to be a commendably rapid screening qualitative and semiquantitative technique for the analysis of pesticide residues in drinking water samples on site. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Woo Choi, Jin; Woo, Hee Chul; Huang, Xiaoguang; Jung, Wan-Gil; Kim, Bong-Joong; Jeon, Sie-Wook; Yim, Sang-Youp; Lee, Jae-Suk; Lee, Chang-Lyoul
2018-05-22
The photoluminescence quantum yield (PLQY) and charge carrier mobility of organic-inorganic perovskite QDs were enhanced by the optimization of crystallinity and surface passivation as well as solid-state ligand exchange. The crystallinity of perovskite QDs was determined by the Effective solvent field (Esol) of various solvents for precipitation. The solvent with high Esol could more quickly countervail the localized field generated by the polar solvent, and it causes fast crystallization of the dissolved precursor, which results in poor crystallinity. The post-ligand adding process (PLAP) and post-ligand exchange process (PLEP) increase the PLQY of perovskite QDs by reducing non-radiative recombination and the density of surface defect states through surface passivation. Particularly, the post ligand exchange process (PLEP) in the solid-state improved the charge carrier mobility of perovskite QDs in addition to the PLQY enhancement. The ligand exchange with short alkyl chain length ligands could improve the packing density of perovskite QDs in films by reducing the inter-particle distance between perovskite QDs. The maximum hole mobility of 6.2 × 10-3 cm2 V-1 s-1, one order higher than that of pristine QDs without the PLEP, is obtained at perovskite QDs with hexyl ligands. By using PLEP treatment, compared to the pristine device, a 2.5 times higher current efficiency in perovskite QD-LEDs was achieved due to the improved charge carrier mobility and PLQY.
Li, Wei; Wang, Jun; Yan, Zheng-Yu
2015-10-10
A novel simple, fast and efficient supercritical fluid chromatography (SFC) method was developed and compared with RPLC method for the separation and determination of impurities in rifampicin. The separation was performed using a packed diol column and a mobile phase B (modifier) consisting of methanol with 0.1% ammonium formate (w/v) and 2% water (v/v). Overall satisfactory resolutions and peak shapes for rifampicin quinone (RQ), rifampicin (RF), rifamycin SV (RSV), rifampicin N-oxide (RNO) and 3-formylrifamycinSV (3-FR) were obtained by optimization of the chromatography system. With gradient elution of mobile phase, all of the impurities and the active were separated within 4 min. Taking full advantage of features of SFC (such as particular selectivity, non-sloping baseline in gradient elution, and without injection solvent effects), the method was successfully used for determination of impurities in rifampicin, with more impurity peaks detected, better resolution achieved and much less analysis time needed compared with conventional reversed-phase liquid chromatography (RPLC) methods. Copyright © 2015 Elsevier B.V. All rights reserved.
Hammann, Simon; Conrad, Jürgen; Vetter, Walter
2015-06-12
Countercurrent chromatography (CCC) is a technique, which uses two immiscible liquid phases for a separation process in a long and hollow tube. The technique allows the separation of high amounts of sample (50mg to several grams) with a low consumption of solvents. In this study, we fractionated 50mg technical octabromodiphenyl ether (DE-79) and analyzed the fractions by gas chromatography with mass spectrometry (GC/MS) and proton nuclear magnetic resonance ((1)H NMR) spectroscopy. CCC separations were performed with n-hexane/acetonitrile as solvent system in tail-to-head (i.e. the upper phase is mobile) mode. Twelve CCC fractions were studied for the PBDE composition. CCC elution of PBDE congeners was dependent both on the degree of bromination and substitution pattern. Higher brominated congeners eluted faster than lower brominated congeners and isomers with vicinal hydrogen atoms eluted last. In addition to several known PBDE congeners in DE-79, we were able to unequivocally identify BDE 195 in DE-79 and we could verify the presence of BDE 184. Finally, we also established the online hyphenation of CCC with (1)H NMR. The use of deuterated solvents could be avoided by using n-hexane/acetonitrile as two-phase system. By online CCC-(1)H NMR in stop-flow mode we were able to detect eight PBDE congeners in the mixture. Copyright © 2015 Elsevier B.V. All rights reserved.
Green synthesis of a typical chiral stationary phase of cellulose-tris(3, 5-dimethylphenylcarbamate)
2013-01-01
Background At present, the study on the homogeneous-phase derivatization of cellulose in ionic liquid is mainly focused on its acetylation. To the best of our knowledge, there has been no such report on the preparation of cellulose-tris(3,5-dimethylphenylcarbamate) (CDMPC) with ionic liquid 1-allyl-3-methyl-imidazolium chloride (AmimCl) so far. Results With ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as a reaction solvent, cellulose-tris(3,5-dimethylphenylcarbamate) (CDMPC) was synthesized by the reaction of 3,5-dimethylphenyl isocyanate and soluble microcrystalline cellulose in a homogeneous phase. The synthesized CDMPC was then coated onto the surfaces of aminopropyl silica gel to prepare a chiral stationary phase (CSP). The prepared CSP was successfully used in chiral separation of seven racemic pesticides by high performance liquid chromatography (HPLC). Good chiral separation was obtained using n-hexane and different modifiers as the mobile phases under the optimal percentage and column temperature, with the resolution of metalaxyl, diniconazole, flutriafol, paclobutrazol, hexaconazole, myclobutanil and hexythiazox of 1.73, 1.56, 1.26, 1.00, 1.18, 1.14 and 1.51, respectively. The experimental results suggested it was a good choice using a green solvent of AmimCl for cellulose functionalization. Conclusion CDMPC was successfully synthesized as the chiral selector by reacting 3, 5-dimethylphenyl isocyanate with dissolved microcrystalline cellulose in a green ionic liquid of AmimCl. PMID:23890199
Characterization of retentivity of reversed phase liquid chromatography columns.
Ying, P T; Dorsey, J G
1991-03-01
There are dozens of commercially available reversed phase columns, most marketed as C-8 or C-18 materials, but with no useful way of classifying their retentivity. A useful way of ranking these columns in terms of column "strength" or retentivity is presented. The method utilizes a value for ln k'(w), the estimated retention of a solute from a mobile phase of 100% water, and the slope of the plot of ln k' vsE(T)(30), the solvent polarity. The method is validated with 26 solutes varying in ln k'(w) from about 2 to over 20, on 14 different reversed phase columns. In agreement with previous work, it is found that the phase volume ratio of the column is the most important parameter in determining retentivity. It is strongly suggested that manufacturers adopt a uniform method of calculating this value and that it be made available in advertising, rather than the uninterpretable "% carbon".
Peristyy, Anton; Paull, Brett; Nesterenko, Pavel N
2016-10-28
The chromatographic properties of high pressure high temperature synthesised diamond (HPHT) are investigated under the conditions of hydrophilic interaction liquid chromatography (HILIC). A 50×4.6mm ID stainless steel column packed with HPHT particles of mean diameter 1.6μm and specific surface area 5.1m 2 g -1 is used. According to the results of acid-base titration with NaOH the purified HPHT batch contains 4.59μeqg -1 of protogenic, mainly carboxyl- and hydroxyl-, groups, which make this polar adsorbent suitable for use as a stationary phase in HILIC. The retention behaviour of several classes of polar compounds including benzoic and benzenesulfonic acids, nitro- and chlorophenols, various organic bases, and quaternary ammonium compounds are studied using acetonitrile and methanol based mobile phases containing 5-30v/v% of water. The effects of the buffer pH and concentration, column temperature and organic solvent content on retention of model compounds are also investigated. It is shown that both pH and acetonitrile/methanol ratio in the mobile phase can be used to vary the separation selectivity. Molecular adsorption mechanism (related to aqueous normal phase mode), rather than partitioning is established to be responsible for the retention. Copyright © 2016 Elsevier B.V. All rights reserved.
Česla, Petr; Vaňková, Nikola; Křenková, Jana; Fischer, Jan
2016-03-18
In this work, we have investigated retention of maltooligosaccharides and their fluorescent derivatives in hydrophilic interaction liquid chromatography using four different stationary phases. The non-derivatized maltooligosaccharides (maltose to maltoheptaose) and their derivatives with 2-aminobenzoic acid, 2-aminobenzamide, 2-aminopyridine and 8-aminonaphthalene-1,3,6-trisulfonic acid were analyzed on silica gel, aminopropyl silica, amide (carbamoyl-bonded silica) and ZIC-HILIC zwitterionic sulfobetain bonded phase. The partitioning of the analytes between the bulk mobile phase and adsorbed water-rich layer, polar and ionic interactions of analytes with stationary phase have been evaluated and compared. The effects of the mobile phase additives (0.1% (v/v) of acetic acid and ammonium acetate in concentration range 5-30 mmol L(-1)) on retention were described. The suitability of different models for prediction of retention was tested including linear solvent strength model, quadratic model, mixed-mode model, and empirical Neue-Kuss model. The mixed-mode model was extended to the parameter describing the contribution of monomeric glucose unit to the retention of non-derivatized and derivatized maltooligosaccharides, which was used for evaluation of contribution of both, oligosaccharide backbone and end-group to retention. Copyright © 2016 Elsevier B.V. All rights reserved.
Reduction of Solvent Effect in Reverse Phase Gradient Elution LC-ICP-MS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Patrick Allen
2005-12-17
Quantification in liquid chromatography (LC) is becoming very important as more researchers are using LC, not as an analytical tool itself, but as a sample introduction system for other analytical instruments. The ability of LC instrumentation to quickly separate a wide variety of compounds makes it ideal for analysis of complex mixtures. For elemental speciation, LC is joined with inductively coupled plasma mass spectrometry (ICP-MS) to separate and detect metal-containing, organic compounds in complex mixtures, such as biological samples. Often, the solvent gradients required to perform complex separations will cause matrix effects within the plasma. This limits the sensitivity ofmore » the ICP-MS and the quantification methods available for use in such analyses. Traditionally, isotope dilution has been the method of choice for LC-ICP-MS quantification. The use of naturally abundant isotopes of a single element in quantification corrects for most of the effects that LC solvent gradients produce within the plasma. However, not all elements of interest in speciation studies have multiple naturally occurring isotopes; and polyatomic interferences for a given isotope can develop within the plasma, depending on the solvent matrix. This is the case for reverse phase LC separations, where increasing amounts of organic solvent are required. For such separations, an alternative to isotope dilution for quantification would be is needed. To this end, a new method was developed using the Apex-Q desolvation system (ESI, Omaha, NE) to couple LC instrumentation with an ICP-MS device. The desolvation power of the system allowed greater concentrations of methanol to be introduced to the plasma prior to destabilization than with direct methanol injection into the plasma. Studies were performed, using simulated and actual linear methanol gradients, to find analyte-internal standard (AIS) pairs whose ratio remains consistent (deviations {+-} 10%) over methanol concentration ranges of 5%-35% (simulated) and 8%-32% (actual). Quadrupole (low resolution) and sector field (high resolution) ICP-MS instrumentation were utilized in these studies. Once an AIS pair is determined, quantification studies can be performed. First, an analysis is performed by adding both elements of the AIS pair post-column while performing the gradient elution without sample injection. A comparison of the ratio of the measured intensities to the atomic ratio of the two standards is used to determine a correction factor that can be used to account for the matrix effects caused by the mobile phase. Then, organic and/or biological molecules containing one of the two elements in the AIS pair are injected into the LC column. A gradient method is used to vary the methanol-water mixture in the mobile phase and to separate out the compounds in a given sample. A standard solution of the second ion in the AIS pair is added continuously post-column. By comparing the ratio of the measured intensities to the atomic ratio of the eluting compound and internal standard, the concentration of the injected compound can be determined.« less
Kumar, Navneet; Sangeetha, Dhanaraj; Reddy, Sunil P
2012-10-01
The objective of the current investigation was to study the degradation behavior of irinotecan hydrochloride under different International Conference on Harmonization (ICH) recommended stress conditions using ultra-performance liquid chromatography and liquid chromatography-mass spectrometry and to establish a validated stability-indicating reverse-phase ultra-performance liquid chromatographic method for the quantitative determination of irinotecan hydrochloride and its seven impurities and degradation products in pharmaceutical dosage forms. Irinotecan hydrochloride was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. Irinotecan hydrochloride was found to degrade significantly in oxidative and base hydrolysis and photolytic degradation conditions. The degradation products were well resolved from the main peak and its impurities, thus proving the stability-indicating power of the method. Chromatographic separation was achieved on a Waters Acquity BEH C8 (100 × 2.1 mm) 1.7-µm column with a mobile phase containing a gradient mixture of solvent A (0.02M KH(2)PO(4) buffer, pH 3.4) and solvent B (a mixture of acetonitrile and methanol in the ratio of 62:38 v/v). The mobile phase was delivered at a flow rate of 0.3 mL/min with ultraviolet detection at 220 nm. The run time was 8 min, within which irinotecan and its seven impurities and degradation products were satisfactorily separated. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. This method was also suitable for the assay determination of irinotecan hydrochloride in pharmaceutical dosage forms.
A salient effect of density on the dynamics of nonaqueous electrolytes.
Han, Sungho
2017-04-24
The mobility and solvation of lithium ions in electrolytes are crucial for the performance and safety of lithium ion batteries. It has been known that a single type of solvent cannot satisfy the requirements of both mobility and solvation simultaneously for electrolytes. Therefore, complex solvent mixtures have been used to optimize both properties. Here we present the effects of density on the dynamics and solvation of organic liquid electrolytes via extensive molecular dynamics simulations. Our study finds that a small variation in density can induce a significant effect on the mobility of electrolytes but does not influence the solvation structure of a lithium ion. It turns out that an adjustment of the density of electrolytes could provide a more effective way to enhance mobility than a control of the solvent mixture ratio of electrolytes. Our study reveals that the density change of electrolytes mainly affects the residence time of solvents in the first solvation shell of a lithium ion rather than the structural change of the solvation sheath. Finally, our results suggest an intriguing point for understanding and designing electrolytes of lithium ion batteries for better performance and safety.
A salient effect of density on the dynamics of nonaqueous electrolytes
NASA Astrophysics Data System (ADS)
Han, Sungho
2017-04-01
The mobility and solvation of lithium ions in electrolytes are crucial for the performance and safety of lithium ion batteries. It has been known that a single type of solvent cannot satisfy the requirements of both mobility and solvation simultaneously for electrolytes. Therefore, complex solvent mixtures have been used to optimize both properties. Here we present the effects of density on the dynamics and solvation of organic liquid electrolytes via extensive molecular dynamics simulations. Our study finds that a small variation in density can induce a significant effect on the mobility of electrolytes but does not influence the solvation structure of a lithium ion. It turns out that an adjustment of the density of electrolytes could provide a more effective way to enhance mobility than a control of the solvent mixture ratio of electrolytes. Our study reveals that the density change of electrolytes mainly affects the residence time of solvents in the first solvation shell of a lithium ion rather than the structural change of the solvation sheath. Finally, our results suggest an intriguing point for understanding and designing electrolytes of lithium ion batteries for better performance and safety.
Jonke, A.A.
1957-10-01
In improved solvent extraction process is described for the extraction of metal values from highly dilute aqueous solutions. The process comprises contacting an aqueous solution with an organic substantially water-immiscible solvent, whereby metal values are taken up by a solvent extract phase; scrubbing the solvent extract phase with an aqueous scrubbing solution; separating an aqueous solution from the scrubbed solvent extract phase; and contacting the scrubbed solvent phase with an aqueous medium whereby the extracted metal values are removed from the solvent phase and taken up by said medium to form a strip solution containing said metal values, the aqueous scrubbing solution being a mixture of strip solution and an aqueous solution which contains mineral acids anions and is free of the metal values. The process is particularly effective for purifying uranium, where one starts with impure aqueous uranyl nitrate, extracts with tributyl phosphate dissolved in carbon tetrachloride, scrubs with aqueous nitric acid and employs water to strip the uranium from the scrubbed organic phase.
Qi, Chao; Cai, Qianqian; Zhao, Pan; Jia, Xiuna; Lu, Nan; He, Lu; Hou, Xiaohong
2016-06-03
Metal-organic framework MIL-101(Cr) was successfully used as an efficient sorbent in a vortex-assisted dispersive solid-phase extraction (VA-DSPE) and applied for the determination and the pharmacokinetic of imatinib mesylate in rat plasma by UPLC-MS/MS. In the enrichment of imatinib from rat plasma, the analyte was efficiently adsorbed on MIL-101(Cr) and simply recovered by using initial mobile phase (0.1% formic acid-methanol (6:4 v/v)) as elution solvent. Meanwhile, the protein in the plasma samples was excluded from the porous structure of MIL-101(Cr), leading to direct extraction of drug molecule from protein-rich biological samples without any other pretreatment procedure. After being removed, the supernatant was filtered and directly injected into the UPLC-MS/MS for the analysis of the target. The experimental parameters, including nature of MOFs, amount of MIL-101(Cr), pH value of aqueous solution, extraction time, type and volume of elution solvent, were systematically optimized. After VA-DSPE, chromatographic separation was performed on an ACQUITY UPLC(®) BEH C18 column (2.1mm×100mm, 1.7μm) with a 3min gradient elution using 0.1% formic acid and methanol as mobile phase at a flow rate of 0.3mL/min. The detection was accomplished on a tandem mass spectrometer via an electrospray ionization (ESI) source by multiple reaction monitoring (MRM) in the positive ionization mode. The lower limit of quantification of 1ng/mL was achieved and the mean recovery of the analyte was higher than 81.2%. Moreover, computational simulation was primarily applied to predict the adsorption behavior and revealed the molecular interactions and free binding energies between MIL-101(Cr) and imatinib with the molecular modeling method, providing certain explanation of the adsorption mechanism. The originally established pretreatment and detection method has some merits, such as less solvent consumption, easy operation, higher sensitivity and lower matrix effect. And the MIL-101(Cr) exhibited a potential as an efficient sorbent in the enrichment of the analyte from complex biosamples. Copyright © 2016 Elsevier B.V. All rights reserved.
Stipcovich, Tea; Barbero, Gerardo F; Ferreiro-González, Marta; Palma, Miguel; Barroso, Carmelo G
2018-01-15
A rapid high-performance liquid chromatography method with a C18 reverse-phase fused-core column has been developed for the determination and quantification of the main capsaicinoids (nornordihydrocapsaicin, nordihydrocapsaicin, capsaicin, dihydrocapsaicin, homocapsaicin and homodihydrocapsaicin) present in Naga Jolokia peppers. A fused-core Kinetex™ C18 column (50×2.1mm i.d.; 2.6μm) was used for the analysis. The chromatographic separation was obtained with a gradient method in which the mobile phase was water (0.1% acetic acid) as solvent A and acetonitrile (0.1% acetic acid) as solvent B. The separation of all compounds was achieved in less than 3min with a total analysis time (sample-to-sample) of 10min. The robustness of the method was evaluated. The method showed excellent repeatability and intermediate precision expressed as coefficient of variance of less than 2%. The developed method was employed for the quantification of the major capsaicinoids present in different peppers and commercial products containing chilli peppers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Moriya, Hyuga; Tanaka, Sohei; Iida, Yukari; Kitagawa, Satomi; Aizawa, Sen-Ichi; Taga, Atsushi; Terashima, Hiroyuki; Yamamoto, Atsushi; Kodama, Shuji
2018-05-16
Xanthohumol, isoxanthohumol, and 8-prenylnaringenin in beer, hop, and hop pellet samples were analyzed by HPLC using InertSustain phenyl column and the mobile phase containing 40% methanol and 12% 2-propanol. Fractions of isoxanthohumol and 8-prenylnaringenin obtained by the above HPLC were separately collected. Isoxanthohumol and 8-prenylnaringenin were enantioseparated by HPLC using Chiralcel OD-H column with a mobile phase composed of hexane/ethanol (90/10, v/v) and Chiralpak AD-RH column with a mobile phase composed of methanol/2-propanol/water (40/20/40, v/v/v), respectively. Both of isoxanthohumol and 8-prenylnaringenin from beer, hop, and hop pellet samples were found to be a racemic mixture. This can be explained that the two analytes were produced by non-enzymatic process. The effects of boiling conditions on the conversion of xanthohumol into isoxanthohumol were also studied. A higher concentration of ethanol in heating solvent resulted in a decrease in the conversion ratio and the conversion was stopped by addition of ethanol more than 50% (v/v). The isomerization was significantly affected pH (2-10) and the boiling medium at pH 5 was minimum for the conversion. Therefore, it was suggested that xanthohumol was relatively difficult to convert to isoxanthohumol in wort (pH 5-5.5) during boiling. This article is protected by copyright. All rights reserved.
Kanie, Yoshimi; Taniuchi, Mizuki; Kanie, Osamu
2018-01-26
Pulse chase analysis is often used in investigating dynamics of cellular substances. Fluorescently labeled lactosyl sphingosine molecule is useful in chasing its transformation, however the analysis of such metabolites in attomole level is of extreme difficult due to the presence of large amount of endogenous amphiphilic molecules such as glycosphingolipids, sphingomyerin, and glycerophospholipids. Nano LC suites for analyzing the attomole scale metabolites, therefore removal of endogenous substances prior to nano LC and finding appropriate nano LC conditions are necessary. Thus, we focused on the solubility of fluorescent BODIPY-labeled lactosylsphingosine (Lac-Sph-BODIPY) to identify suitable solvents to remove endogenous compounds. In this study, we evaluated solvents by using C18 thin layer chromatography (RP TLC). The mobility (R f ) of Lac-Sph-BODIPY against several solvent mixtures on RP TLC were plotted against polarity and hydrogen bonding capability followed by Hansen solubility parameters (HSPs). The optimum solvent mixture with R f = 0.3 ± 0.1 was chosen for elimination of endogenous phospholipids on a ZrO 2 -SiO 2 cartridge column and subsequent separation by nano LC. Efficient removal of endogenous phospholipids was demonstrated, and good resolution in nano LC analysis of Lac-Sph-BODIPY extracted from Chinese hamster ovary (CHO)-K1 cells was achieved. It was also shown that the amount of exogenously added compound was important in the investigation of metabolites using cultured cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Counter-current chromatography: simple process and confusing terminology.
Conway, Walter D
2011-09-09
The origin of counter-current chromatography is briefly stated, followed by a description of the mechanism of elution of solutes, which illustrates the elegance and simplicity of the technique. The CCC retention equation can be mentally derived from three facts; that a substance with a distribution coefficient of 0 elutes at the mobile phase solvent front (one mobile phase volume); and one with a distribution coefficient of 1 elutes at the column volume of mobile phase; and solutes with higher distribution coefficients elute at additional multiples of the stationary phase volume. The pattern corresponds to the classical solute retention equation for chromatography, V(R)=V(M)+K(C)V(S), K(C) not being limited to integer values. This allows the entire pattern of solute retention to be visualized on the chromatogram. The high volume fraction of stationary phase in CCC greatly enhances resolution. A survey of the names, symbols and definitions of several widely used chromatography and liquid-liquid distribution parameters in the IUPAC Gold Book and in a recent summary in LC-GC by Majors and Carr revealed numerous conflicts in both names and definitions. These will retard accurate dissemination of CCC research unless the discordance is resolved. It is proposed that the chromatography retention parameter, K(C), be called the distribution coefficient and that a new biphasic distribution parameter, K(Δ(A)), be defined for CCC and be called the species partition ratio. The definition of V(M) should be clarified. V(H) is suggested to represent the holdup volume and V(X) is suggested for the extra-column volume. H(V) and H(L) are suggested to represent the volume and length of a theoretical plate in CCC. Definitions of the phase ratio, β, conflict and should be clarified. Copyright © 2011 Elsevier B.V. All rights reserved.
Sharma, Primal; Patel, Daxesh P; Sanyal, Mallika; Guttikar, Swati; Shrivastav, Pranav S
2014-01-01
A parallel achiral and chiral determination of oxybutynin, its pharmacologically active metabolite N-desethyl oxybutynin and their enantiomers in human plasma is described using LC-MS/MS. Both the methods were developed and validated using deuterated analogues as internal standards. Achiral analysis of racemic oxybutynin and N-desethyl oxybutynin was carried out on Phenomenex Gemini C18 (150mm×4.6mm, 5μm) column under isocratic conditions using acetonitrile-5.0mM ammonium acetate, pH 4.0 (90:10, v/v) as the mobile phase. Separation of (S)- and (R)-enantiomers of the analytes was performed on Phenomenex Lux Amylose-2 (150mm×4.6mm, 3μm) chiral column using a mixture of solvent A [acetonitrile:10mM ammonium bicarbonate, 80:20 (v/v)] and solvent B [2-propanol:methanol, 50:50 (v/v)] in 20:80 (v/v) ratio as the mobile phase. Plasma samples were prepared by liquid-liquid extraction with ethyl acetate-diethyl ether-n-hexane solvent mixture. A linear range was established from 0.025 to 10.0ng/mL and 0.25 to 100ng/mL for the enantiomers of oxybutynin and N-desethyl oxybutynin respectively. The extraction recovery varied from 96.0 to 105.1%, while the IS-normalized matrix factors ranged from 0.96 to 1.07 for all the enantiomers. The validated method was applied for a pilot bioequivalence study with 5mg oxybutynin tablet formulation in 8 healthy subjects. The pharmacokinetic profiles showed that the plasma concentration of (R)-oxybutynin was lower than that of (S)-oxybutynin, while a reverse trend was observed for the enantiomers of N-desethyl oxybutynin. The reproducibility in the measurement of study data was demonstrated by reanalysis of 20 incurred samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Gong, Xiaoqing; Liu, Ji-Hong
2017-01-01
High-performance liquid chromatography (HPLC) is a sensitive, rapid, and accurate technique to detect and characterize various metabolites from plants. The metabolites are extracted with different solvents and eluted with appropriate mobile phases in a designed HPLC program. Polyamines are known to accumulate under abiotic stress conditions in various plant species and thought to provide protection against oxidative stress by scavenging reactive oxygen species. Here, we describe a common method to detect the free polyamines in plant tissues both qualitatively and quantitatively.
Fully automated methods for the determination of hydrochlorothiazide in human plasma and urine.
Hsieh, J Y; Lin, C; Matuszewski, B K; Dobrinska, M R
1994-12-01
LC assays utilizing fully automated sample preparation procedures on Zymark PyTechnology Robot and BenchMate Workstation for the quantification of hydrochlorothiazide (HCTZ) in human plasma and urine have been developed. After aliquoting plasma and urine samples, and adding internal standard (IS) manually, the robot executed buffer and organic solvent addition, liquid-liquid extraction, solvent evaporation and on-line LC injection steps for plasma samples, whereas, BenchMate performed buffer and organic solvent addition, liquid-liquid and solid-phase extractions, and on-line LC injection steps for urine samples. Chromatographic separations were carried out on Beckman Octyl Ultrasphere column using the mobile phase composed of 12% (v/v) acetonitrile and 88% of either an ion-pairing reagent (plasma) or 0.1% trifluoroacetic acid (urine). The eluent from the column was monitored with UV detector (271 nm). Peak heights for HCTZ and IS were automatically processed using a PE-Nelson ACCESS*CHROM laboratory automation system. The assays have been validated in the concentration range of 2-100 ng ml-1 in plasma and 0.1-20 micrograms ml-1 in urine. Both plasma and urine assays have the sensitivity and specificity necessary to determine plasma and urine concentrations of HCTZ from low dose (6.25/12.5 mg) administration of HCTZ to human subjects in the presence or absence of losartan.
Shweshein, Khalil Salem A. M.; Andrić, Filip; Radoičić, Aleksandra; Gruden-Pavlović, Maja; Tešić, Živoslav; Milojković-Opsenica, Dušanka
2014-01-01
The lipophilicity of ten ruthenium(II)-arene complexes was assessed by reversed-phase thin-layer chromatography (RP-TLC) on octadecyl silica stationary phase. The binary solvent systems composed of water and acetonitrile were used as mobile phase in order to determine chromatographic descriptors for lipophilicity estimation. Octanol-water partition coefficient, logK OW, of tested complexes was experimentally determined using twenty-eight standard solutes which were analyzed under the same chromatographic conditions as target substances. In addition, ab initio density functional theory (DFT) computational approach was employed to calculate logK OW values from the differences in Gibbs' free solvation energies of the solute transfer from n-octanol to water. A good overall agreement between DFT calculated and experimentally determined logK OW values was established (R 2 = 0.8024–0.9658). PMID:24587761
Mobil process converts methanol to high-quality synthetic gasoline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, A.
1978-12-11
If production of gasoline from coal becomes commercially attractive in the United States, a process under development at the Mobil Research and Development Corp. may compete with better known coal liquefaction processes. Mobil process converts methanol to high-octane, unleaded gasoline; methanol can be produced commercially from coal. If gasoline is the desired product, the Mobil process offers strong technical and cost advantages over H-coal, Exxon donor solvent, solvent-refined coal, and Fischer--Tropsch processes. The cost analysis, contained in a report to the Dept. of Energy, concludes that the Mobil process produces more-expensive liquid products than any other liquefaction process except Fischer--Tropsch.more » But Mobil's process produces ready-to-use gasoline, while the others produce oils which require further expensive refining to yield gasoline. Disadvantages and advantages are discussed.« less
Jung, Stephanie; Effelsberg, Uwe; Tallarek, Ulrich
2011-12-01
Dynamic changes in mobile phase composition during high-performance liquid chromatography (HPLC) gradient elution coupled to mass spectrometry (MS) sensitively affect electrospray modes. We investigate the impact of the eluent composition on spray stability and MS response by infusion and injection experiments with a small tetrapeptide in water-acetonitrile mixtures. The employed HPLC/electrospray (ESI)-MS configuration uses a microchip equipped with an enrichment column, a separation column, and a makeup flow (MUF) channel. One nano pump is connected to the separation column, while a second one delivers solvent of exactly inverted composition to the MUF channel. Both solvent streams are united behind the separation column, before the ESI tip, such that the resulting electrosprayed solution always has identical composition during a gradient elution. Analyte peak parameters without and with MUF compensation are determined and discussed with respect to the electrospray mode and eluent composition. The postcolumn MUF significantly improves spray and signal stability over the entire solvent gradient, without compromising the performance of the HPLC separation column. It can also be conveniently implemented on microchip platforms.
Stoll, Dwight R; Sajulga, Ray W; Voigt, Bryan N; Larson, Eli J; Jeong, Lena N; Rutan, Sarah C
2017-11-10
An important research direction in the continued development of two-dimensional liquid chromatography (2D-LC) is to improve the detection sensitivity of the method. This is especially important in applications where injection of large volumes of effluent from the first dimension ( 1 D) column into the second dimension ( 2 D) column leads to severe 2 D peak broadening and peak shape distortion. For example, this is common when coupling two reversed-phase columns and the organic solvent content of the 1 D mobile phase overwhelms the 2 D column with each injection of 1 D effluent, leading to low resolution in the second dimension. In a previous study we validated a simulation approach based on the Craig distribution model and adapted from the work of Czok and Guiochon [1] that enabled accurate simulation of simple isocratic and gradient separations with very small injection volumes, and isocratic separations with mismatched injection and mobile phase solvents [2]. In the present study we have extended this simulation approach to simulate separations relevant to 2D-LC. Specifically, we have focused on simulating 2 D separations where gradient elution conditions are used, there is mismatch between the sample solvent and the starting point in the gradient elution program, injection volumes approach or even exceed the dead volume of the 2 D column, and the extent of sample loop filling is varied. To validate this simulation we have compared results from simulations and experiments for 101 different conditions, including variation in injection volume (0.4-80μL), loop filling level (25-100%), and degree of mismatch between sample organic solvent and the starting point in the gradient elution program (-20 to +20% ACN). We find that that the simulation is accurate enough (median errors in retention time and peak width of -1.0 and -4.9%, without corrections for extra-column dispersion) to be useful in guiding optimization of 2D-LC separations. However, this requires that real injection profiles obtained from 2D-LC interface valves are used to simulate the introduction of samples into the 2 D column. These profiles are highly asymmetric - simulation using simple rectangular pulses leads to peak widths that are far too narrow under many conditions. We believe the simulation approach developed here will be useful for addressing practical questions in the development of 2D-LC methods. Copyright © 2017 Elsevier B.V. All rights reserved.
Parr, Maria Kristina; Wuest, Bernhard; Naegele, Edgar; Joseph, Jan F; Wenzel, Maxi; Schmidt, Alexander H; Stanic, Mijo; de la Torre, Xavier; Botrè, Francesco
2016-09-01
HPLC is considered the method of choice for the separation of various classes of drugs. However, some analytes are still challenging as HPLC shows limited resolution capabilities for highly polar analytes as they interact insufficiently on conventional reversed-phase (RP) columns. Especially in combination with mass spectrometric detection, limitations apply for alterations of stationary phases. Some highly polar sympathomimetic drugs and their metabolites showed almost no retention on different RP columns. Their retention remains poor even on phenylhexyl phases that show different selectivity due to π-π interactions. Supercritical fluid chromatography (SFC) as an orthogonal separation technique to HPLC may help to overcome these issues. Selected polar drugs and metabolites were analyzed utilizing SFC separation. All compounds showed sharp peaks and good retention even for the very polar analytes, such as sulfoconjugates. Retention times and elution orders in SFC are different to both RP and HILIC separations as a result of the orthogonality. Short cycle times could be realized. As temperature and pressure strongly influence the polarity of supercritical fluids, precise regulation of temperature and backpressure is required for the stability of the retention times. As CO2 is the main constituent of the mobile phase in SFC, solvent consumption and solvent waste are considerably reduced. Graphical Abstract SFC-MS/MS vs. LC-MS/MS.
Gritti, Fabrice; Sehajpal, Jyotsna; Fairchild, Jacob
2017-03-17
The peak distortion observed in hydrophilic interaction chromatography (HILIC) may be caused by the sample diluent to mobile phase mismatch. The United States Pharmacopeia (USP) method for organic impurities in cetirizine HCl tablets calls for such a mismatch, having a higher concentration of strong solvent in the sample diluent than in the mobile phase. A significant peak deformation is reported for cetirizine (a second-generation antihistamine) when it is purified on a Ethylene Bridged Hybrid (BEH) HILIC column (4.6mm×100mm, 2.5μm particles) using an acetonitrile-water eluent mixture and a sample diluent containing 7% and 9% water (in volume), respectively. The mechanism and physical origin of such peak distortion are related to (1) the diluent-to-eluent excess of water that propagates along the column at a velocity similar to that of the analyte, (2) the significant drop of the Henry's constant of the analyte upon increasing water concentration in the eluent, (3) the sample volume injected, and (4) to the pre-column sample dilution factor that depends on the characteristics of the LC instrument used. This proposed mechanism is validated from the calculation of the concentration profiles of cetirizine and water by using the equilibrium-dispersive (ED) model of chromatography. The observed distortion of cetirizine peaks is successfully predicted from the measurement of (1) the excess adsorption isotherm of water from acetonitrile onto the BEH HILIC adsorbent, (2) the retention factor of cetirizine as a function of the volume fraction (7, 8, and 9%) of water in the mobile phase, and (3) of the pre-column sample dispersion related to the instrument used (HPLC or UHPLC). The results of the calculations enables the user to anticipate the impacts of the diluent-to-eluent mismatch in water content, the injection volume, the analyte retention under infinite dilution, and of the pre-column sample dispersion on the amplitude of peak distortion in HILIC. Appropriate and permitted alterations of the USP method are then suggested based on a sound physico-chemical approach. Copyright © 2017 Elsevier B.V. All rights reserved.
Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.
An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L
2017-06-02
The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Huang, Yang; Zhang, Tingting; Zhou, Haibo; Feng, Ying; Fan, Chunlin; Chen, Weijia; Crommen, Jacques; Jiang, Zhengjin
2016-03-20
Triterpenoid saponins (TSs) are the most important components of some traditional Chinese medicines (TCMs) and have exhibited valuable pharmacological properties. In this study, a rapid and efficient method was developed for the separation of kudinosides, stauntosides and ginsenosides using supercritical fluid chromatography coupled with single quadrupole mass spectrometry (SFC-MS). The separation conditions for the selected TSs were carefully optimized after the initial screening of eight stationary phases. The best compromise for all compounds in terms of chromatographic performance and MS sensitivity was obtained when water (5-10%) and formic acid (0.05%) were added to the supercritical carbon dioxide/MeOH mobile phase. Beside the composition of the mobile phase, the nature of the make-up solvent for interfacing SFC with MS was also evaluated. Compared to reversed phase liquid chromatography, the SFC approach showed higher resolution and shorter running time. The developed SFC-MS methods were successfully applied to the separation and identification of TSs present in Ilex latifolia Thunb., Panax quinquefolius L. and Panax ginseng C.A. Meyer. These results suggest that this SFC-MS approach could be employed as a useful tool for the quality assessment of natural products containing TSs as active components. Copyright © 2015 Elsevier B.V. All rights reserved.
He, Jiao; Zhang, Yongmin; Ito, Yoichiro; Sun, Wenji
2011-01-01
Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was applied to the separation and purification of three tauro-conjugated cholic acids of taurochenodeoxycholic acid (TCDCA), taurohyodeoxycholic acid (THDCA) and taurohyocholic acid (THCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The two-phase solvent system composed of chloroform-methanol-water-acetic acid (4:4:2:0.3, v/v/v/v) was selected for the one-step separation where the lower phase was used as the mobile phase in the head to tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 1.5 ml/min and 25°C respectively. From 100 mg of the crude extract, 10.2 mg of TCDCA, 11.8 mg of THDCA and 5.3 mg of THCA were obtained with the purity of 94.6%, 96.5% and 95.4%, respectively. in one step separation The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three tauro-conjugated cholic acids were identified by ESI-MS, (1)H NMR and (13)C NMR.
Debrus, Benjamin; Guillarme, Davy; Rudaz, Serge
2013-10-01
A complete strategy dedicated to quality-by-design (QbD) compliant method development using design of experiments (DOE), multiple linear regressions responses modelling and Monte Carlo simulations for error propagation was evaluated for liquid chromatography (LC). The proposed approach includes four main steps: (i) the initial screening of column chemistry, mobile phase pH and organic modifier, (ii) the selectivity optimization through changes in gradient time and mobile phase temperature, (iii) the adaptation of column geometry to reach sufficient resolution, and (iv) the robust resolution optimization and identification of the method design space. This procedure was employed to obtain a complex chromatographic separation of 15 antipsychotic basic drugs, widely prescribed. To fully automate and expedite the QbD method development procedure, short columns packed with sub-2 μm particles were employed, together with a UHPLC system possessing columns and solvents selection valves. Through this example, the possibilities of the proposed QbD method development workflow were exposed and the different steps of the automated strategy were critically discussed. A baseline separation of the mixture of antipsychotic drugs was achieved with an analysis time of less than 15 min and the robustness of the method was demonstrated simultaneously with the method development phase. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Makita, Tatsuyuki; Sasaki, Masayuki; Annaka, Tatsuro; Sasaki, Mari; Matsui, Hiroyuki; Mitsui, Chikahiko; Kumagai, Shohei; Watanabe, Shun; Hayakawa, Teruaki; Okamoto, Toshihiro; Takeya, Jun
2017-04-01
Charge-transporting semiconductor layers with high carrier mobility and low trap-density, desired for high-performance organic transistors, are spontaneously formed as a result of thermodynamic phase separation from a blend of π-conjugated small molecules and precisely synthesized insulating polymers dissolved in an aromatic solvent. A crystal film grows continuously to the size of centimeters, with the critical conditions of temperature, concentrations, and atmosphere. It turns out that the molecular weight of the insulating polymers plays an essential role in stable film growth and interfacial homogeneity at the phase separation boundary. Fabricating the transistor devices directly at the semiconductor-insulator boundaries, we demonstrate that the mixture of 3,11-didecyldinaphtho[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene and poly(methyl methacrylate) with the optimized weight-average molecular weight shows excellent device performances. The spontaneous phase separation with a one-step fabrication process leads to a high mobility up to 10 cm2 V-1 s-1 and a low subthreshold swing of 0.25 V dec-1 even without any surface treatment such as self-assembled monolayer modifications on oxide gate insulators.
Geryk, Radim; Kalíková, Květa; Schmid, Martin G; Tesařová, Eva
2016-08-17
The enantioseparation of basic compounds represent a challenging task in modern SFC. Therefore this work is focused on development and optimization of fast SFC methods suitable for enantioseparation of 27 biologically active basic compounds of various structures. The influences of the co-solvent type as well as different mobile phase additives on retention, enantioselectivity and enantioresolution were investigated. Obtained results confirmed that the mobile phase additives, especially bases (or the mixture of base and acid), improve peak shape and enhance enantioresolution. The best results were achieved with isopropylamine or the mixture of isopropylamine and trifluoroacetic acid as additives. In addition, the effect of temperature and back pressure were evaluated to optimize the enantioseparation process. The immobilized amylose-based chiral stationary phase, i.e. tris(3,5-dimethylphenylcarbamate) derivative of amylose proved to be useful tool for the enantioseparation of a broad spectrum of chiral bases. The chromatographic conditions that yielded baseline enantioseparations of all tested compounds were discovered. The presented work can serve as a guide for simplifying the method development for enantioseparation of basic racemates in SFC. Copyright © 2016 Elsevier B.V. All rights reserved.
Enantioselective HPLC resolution of synthetic intermediates of armodafinil and related substances.
Nageswara Rao, Ramisetti; Shinde, Dhananjay D; Kumar Talluri, Murali V N
2008-04-01
Armodafinil is a unique psychostimulant recently approved by the US Food and Drug Administration for the treatment of narcolepsy. The chromatographic resolution of its chiral intermediates including related substances in the total synthesis of armodafinil was studied on polysaccharide-based stationary phases, viz. cellulose tris-(3,5-dimethylphenylcarbamate) (Chiralcel OD-H) and amylose tris-(3,5-dimethylphenylcarbamate) (Chiralpak AD-H) by HPLC. The effects of 1-propanol, 2-propanol, ethanol, and trifluoroacetic acid added to the mobile phase and of column temperature on resolution were studied. A good separation was achieved on cellulose-based Chiralcel OD-H column compared to amylose-based Chiralpak AD-H. The effects of structural features of the solutes and solvents on discrimination between the enantiomers were examined. Baseline separation with R(s) >1.38 was obtained using a mobile phase containing n-hexane-ethanol-TFA (75:25:0.15 v/v/v). Detection was carried out at 225 nm with photodiode array detector while identification of enantiomers was accomplished by a polarimetric detector connected in series. The method was found to be suitable not only for process development of armodafinil but also for determination of the enantiomeric purity of bulk drugs and pharmaceuticals.
Liu, Yongling; Chen, Tao; Chen, Chen; Zou, Denglang; Li, Yulin
2014-05-01
Aconitum pendulum Busch is rich C19 diterpenoid alkaloids, but there is no report of imidazole alkaloid in Aconitum pendulum Busch. In this study, an imidazole alkaloid named 1H-imidazole-2-carboxylic acid, butyl ester (ICABE) was successfully separated from Aconitum pendulum Busch with semi-preparative high-speed counter-current chromatography (HSCCC). The partition coefficient was measured by HPLC to select the solvent systems for ICABE separation by HSCCC. The separation was performed with a two-phase solvent system composed of n-hexane-chloroform-ethanol-water (10:1 : 13:2, v/v/v/v). The upper phase was used as the stationary phase and the lower phase as the mobile phase. It was operated at a flow rate of 1.8 mL/min. The apparatus was rotated at 850 r/min, and the detection wavelength was set at 230 nm. Under the selected conditions, a high efficiency separation of HSCCC was achieved, and 7.5 mg of ICABE was obtained from 100 mg of the crude sample of Aconitum pendulum in one-step separation within 350 min. The HPLC analysis showed that the purity of the compound was over 98%. The chemical structure was confirmed by UV, 1H-NMR and 13C-NMR. The established method is simple, highly efficient and suitable for large scale separation of ICABE from radix of Aconitum pendulum Busch.
Dispersion and separation of nanostructured carbon in organic solvents
NASA Technical Reports Server (NTRS)
Evans, Christopher M. (Inventor); Ruf, Herbert J. (Inventor); Landi, Brian J. (Inventor); Raffaelle, Ryne P. (Inventor)
2011-01-01
The present invention relates to dispersions of nanostructured carbon in organic solvents containing alkyl amide compounds and/or diamide compounds. The invention also relates to methods of dispersing nanostructured carbon in organic solvents and methods of mobilizing nanostructured carbon. Also disclosed are methods of determining the purity of nanostructured carbon.
Jeong, Jae Won; Jo, Gyounglyul; Choi, Solip; Kim, Yoong Ahm; Yoon, Hyeonseok; Ryu, Sang-Wan; Jung, Jaehan; Chang, Mincheol
2018-05-30
Charge transport in π-conjugated polymer films involves π-π interactions within or between polymer chains. Here, we demonstrate a facile solution processing strategy that provides enhanced intra- and interchain π-π interactions of the resultant polymer films using a good solvent additive with low volatility. These increased interactions result in enhanced charge transport properties. The effect of the good solvent additive on the intra- and intermolecular interactions, morphologies, and charge transport properties of poly(3-hexylthiophene) (P3HT) films is systematically investigated. We found that the good solvent additive facilitates the self-assembly of P3HT chains into crystalline fibrillar nanostructures by extending the solvent drying time during thin-film formation. As compared to the prior approach using a nonsolvent additive with low volatility, the solvent blend system containing a good solvent additive results in enhanced charge transport in P3HT organic field-effect transistor (OFET) devices [from ca. 1.7 × 10 -2 to ca. 8.2 × 10 -2 cm 2 V -1 s -1 for dichlorobenzene (DCB) versus 4.4 × 10 -2 cm 2 V -1 s -1 for acetonitrile]. The mobility appears to be maximized over a broad spectrum of additive concentrations (1-7 vol %), indicative of a wide processing window. Detailed analysis results regarding the charge injection and transport characteristics of the OFET devices reveal that a high-boiling-point solvent additive decreases both the contact resistance ( R c ) and channel resistance ( R ch ), contributing to the mobility enhancement of the devices. Finally, the platform presented here is proven to be applicable to alternative good solvent additives with low volatility, such as chlorobenzene (CB) and trichlorobenzene (TCB). Specifically, the mobility enhancement of the resultant P3HT films increases in the order CB (bp 131 °C) < DCB (bp 180 °C) < TCB (bp 214 °C), suggesting that solvent additives with higher boiling points provide resultant films with preferable molecular ordering and morphologies for efficient charge transport.
Matsumoto, Akihiro; Murao, Satoshi; Matsumoto, Michiko; Watanabe, Chie; Murakami, Masahiro
The feasibility of fabricating Janus particles based on phase separation between a hard fat and a biocompatible polymer was investigated. The solvent evaporation method used involved preparing an oil-in-water (o/w) emulsion with a mixture of poly (lactic-co-glycolic) acid (PLGA), hard fat, and an organic solvent as the oil phase and a polyvinyl alcohol aqueous solution as the water phase. The Janus particles were formed when the solvent was evaporated to obtain certain concentrations of PLGA and hard fat in the oil phase, at which phase separation was estimated to occur based on the phase diagram analysis. The hard fat hemisphere was proven to be the oil phase using a lipophilic dye Oil Red O. When the solvent evaporation process was performed maintaining a specific volume during the emulsification process; Janus particles were formed within 1.5 h. However, the formed Janus particles were destroyed by stirring for over 6 h. In contrast, a few Janus particles were formed when enough water to dissolve the oil phase solvent was added to the emulsion immediately after the emulsification process. The optimized volume of the solvent evaporation medium dominantly formed Janus particles and maintained the conformation for over 6 h with stirring. These results indicate that the formation and stability of Janus particles depend on the rate of solvent evaporation. Therefore, optimization of the solvent evaporation rate is critical to obtaining stable PLGA and hard fat Janus particles.
da Costa César, Isabela; Nogueira, Fernando Henrique Andrade; Pianetti, Gérson Antônio
2008-09-10
This paper describes the development and evaluation of a HPLC, UV spectrophotometry and potentiometric titration methods to quantify lumefantrine in raw materials and tablets. HPLC analyses were carried out using a Symmetry C(18) column and a mobile phase composed of methanol and 0.05% trifluoroacetic acid (80:20), with a flow rate of 1.0ml/min and UV detection at 335nm. For the spectrophotometric analyses, methanol was used as solvent and the wavelength of 335nm was selected for the detection. Non-aqueous titration of lumefantrine was carried out using perchloric acid as titrant and glacial acetic acid/acetic anhydride as solvent. The end point was potentiometrically determined. The three evaluated methods showed to be adequate to quantify lumefantrine in raw materials, while HPLC and UV methods presented the most reliable results for the analyses of tablets.
Application of supercritical fluid carbon dioxide to the extraction and analysis of lipids.
Lee, Jae Won; Fukusaki, Eiichiro; Bamba, Takeshi
2012-10-01
Supercritical carbon dioxide (SCCO(2)) is an ecofriendly supercritical fluid that is chemically inert, nontoxic, noninflammable and nonpolluting. As a green material, SCCO(2) has desirable properties such as high density, low viscosity and high diffusivity that make it suitable for use as a solvent in supercritical fluid extraction, an effective and environment-friendly analytical method, and as a mobile phase for supercritical fluid chromatography, which facilitates high-throughput, high-resolution analysis. Furthermore, the low polarity of SCCO(2) is suitable for the extraction and analysis of hydrophobic compounds. The growing concern surrounding environmental pollution has triggered the development of green analysis methods based on the use of SCCO(2) in various laboratories and industries. SCCO(2) is becoming an effective alternative to conventional organic solvents. In this review, the usefulness of SCCO(2) in supercritical fluid extraction and supercritical fluid chromatography for the extraction and analysis of lipids is described.
Application of ionic liquids in liquid chromatography and electrodriven separation.
Huang, Yi; Yao, Shun; Song, Hang
2013-08-01
Ionic liquids (ILs) are salts in the liquid state at ambient temperature, which are nonvolatile, nonflammable with high thermal stability and dissolve easily for a wide range of inorganic and organic materials. As a kind of potential green solvent, they show high efficiency and selectivity in the field of separation research, especially in instrumental analysis. Thus far, ILs have been successfully applied by many related researchers in high-performance liquid chromatography and capillary electrophoresis as chromatographic stationary phases, mobile phase additives or electroosmotic flow modifiers. This paper provides a detailed review of these applications in the study of natural products, foods, drugs and other fine chemicals. Furthermore, the prospects of ILs in liquid chromatographic and electrodriven techniques are discussed.
Determination of alkyllead compounds by HPLC/ICP using a glass-frit nebulizer ICP interface
NASA Astrophysics Data System (ADS)
Ibrahim, Mona; Nisamaneepong, Wipawan; Haas, David L.; Caruso, Joseph A.
The glass-frit nebulizer, by forming a very fine mist, has improved the ability of the ICP to accept the introduction of organic solvents with high evaporation rates. The reversed-phase chromatographic separation of TML and TEL, and their determination with glass frit nebulization ICP was accomplished with various mobile phases and columns. The separation of several trialkyllead salts also was studied on a strong cation exchange column, but these compounds were not determined with the glass frit nebulizer interface. Detection limits as low as 33 pg s -1 for TML and 100 pg s -1 for TEL and precision of 3.4% for TML and 6.9% relative standard deviation for TEL were obtained.
Wybraniec, Sławomir; Stalica, Paweł; Jerz, Gerold; Klose, Bettina; Gebers, Nadine; Winterhalter, Peter; Spórna, Aneta; Szaleniec, Maciej; Mizrahi, Yosef
2009-10-09
Polar betacyanin pigments together with betaxanthins from ripe cactus fruits of Hylocereus polyrhizus (Cactaceae) were fractionated by means of preparative ion-pair high-speed countercurrent chromatography (IP-HSCCC) also using the elution-extrusion (EE) approach for a complete pigment recovery. HSCCC separations were operated in the classical 'head-to-tail' mode with an aqueous mobile phase. Different CCC solvent systems were evaluated in respect of influence and effectiveness of fractionation capabilities to separate the occurring pigment profile of H. polyrhizus. For that reason, the additions of two different volatile ion-pair forming perfluorinated carboxylic acids (PFCA) were investigated. For a direct comparison, five samples of Hylocereus pigment extract were run on preparative scale (900 mg) in 1-butanol-acetonitrile-aqueous TFA 0.7% (5:1:6, v/v/v) and the modified systems tert.-butyl methyl ether-1-butanol-acetonitrile-aqueous PFCA (2:2:1:5, v/v/v/v) using 0.7% and 1.0% trifluoroacetic acid (TFA) or heptafluorobutyric acid (HFBA) in the aqueous phase, respectively. The chemical affinity to the organic stationary CCC solvent phases and in consequence the retention of these highly polar betalain pigments was significantly increased by the use of the more lipophilic fluorinated ion-pair reagent HFBA instead of TFA. The HFBA additions separated more effectively the typical cacti pigments phyllocactin and hylocerenin from betanin as well as their iso-forms. Unfortunately, similar K(D) ratios and selectivity factors alpha around 1.0-1.1 in all tested solvent systems proved that the corresponding diastereomers, 15S-type pigments cannot be resolved from the 15R-epimers (iso-forms). Surprisingly, additions of the stronger ion-pair reagent (HFBA) resulted in a partial separation of hylocerenin from phyllocactin which were not resolved in the other solvent systems. The pigments were detected by means of HPLC-DAD and HPLC-electrospray ionization-MS using also authentic reference materials.
Zhu, Hao; Huang, Changshun; Chen, Yijun; Lu, Zihui; Zhou, Haidong; Chen, Chunru; Wu, Jin; Chen, Xiaohong; Jin, Micong
2016-06-05
A rapid and sensitive ultra-fast liquid chromatography tandem mass spectrometry method, followed by simple protein precipitation and solid-phase extraction, has been developed and validated for the quantitative determination of four azo dyes (Para red, Solvent yellow 2, Solvent red 1 and Sudan red 7B) in rat plasma using D 5 -Sudan I as the internal standard. The optimal separation was accomplished on an Agilent Eclipse Plus C18 column (100 × 2.1 mm, 1.8 μm) with gradient elution using the mobile phase including acetonitrile and water (containing 0.1% formic acid). The flow rate was 0.45 mL/min. The detection was conducted by means of electrospray ionization mass spectrometry in positive ion mode with multiple reaction monitoring. The calibration curves showed good linearity, with correlation coefficients >0.998 for all of the analytes within the concentration range. The lower limits of quantification (LLOQs) of Para red, Solvent yellow 2, Solvent red 1 and Sudan red 7B in rat plasma were 1.0, 0.1, 0.1 and 0.1 μg/L, respectively. The intra- and interday relative standard deviations were ≤9.6 and ≤12.4%, respectively, and the accuracy was in the range of -5.8 to -9.5%. The average recoveries were between 81.49 and 118.65%, and the matrix effects were satisfactory in the biological matrices. The fully validated method has been successfully applied in measuring levels of the four azo dyes in rat plasma following oral administration of 20.0 mg/kg of analytes in rats, which was suitable for the pharmacokinetic studies of the azo dyes. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Tong, Shengqiang; Zheng, Ye; Yan, Jizhong
2013-03-15
High performance liquid chromatography (HPLC) and high speed counter-current chromatography (HSCCC) were applied and compared in enantioseparation of 2-phenylpropionic acid (2-PPA) when hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as chiral mobile phase additive. For HPLC, the enantioseparation was achieved on ODS C(18) reverse phase column and the mobile phase was 25 mmol L(-1) HP-β-CD aqueous buffer solution (pH 4.0, adjusted with triethylamine): methanol: glacial acetic acid (85:15:0.5 (v/v/v)). For HSCCC, the two-phase solvent system was composed of n-hexane-ethyl acetate-0.1 mol L(-1) phosphate buffer solution pH2.67 (5:5:10 for isocratic elution and 8:2:10 for recycling elution (v/v/v)) added with 0.1 mol L(-1) HP-β-CD. The key parameters, such as a substitution degree of HP-β-CD, the concentration of HP-β-CD, pH value of the aqueous phase and the temperature were optimized for both separation methods. Using the optimum conditions a complete HSCCC enantioseparation of 40 mg of 2-propylpropionic acid in a recycling elution mode gave 15-18 mg of (+)-2-PPA and (-)-2-PPA enantiomers with 95-98% purity and 85-93% recovery. Copyright © 2013 Elsevier B.V. All rights reserved.
Lal, Manohar; Bhushan, Ravi
2016-10-01
An efficient, simple, validated, analytical and semi-preparative HPLC method has been developed for direct enantioresolution of (RS)-Ketorolac (Ket) using monochloro-methylated derivatives of cellulose and amylose, i.e. cellulose (tris-3-chloro-4-methylphenylcarbamate) and amylose (tris-5-chloro-2-methylphenylcarbamate) as chiral stationary phases (CSPs) with photo diode array detection at 320 nm. Enantioresolution was carried out in samples of human plasma spiked with (RS)-Ket under normal and reversed-phase elution modes with suitable mobile phase compositions. The effect of nature of alcohols (MeOH, EtOH, PrOH and n-BuOH) and other solvents (MeCN and MeOH) as organic modifiers in the mobile phase was investigated on the separation performance of two CSPs in terms of retention and separation of enantiomers. The best resolution was observed on cellulose-based CSP using EtOH, while using 2-PrOH (15%) and amylose-based CSP obtained the highest retention. Under reversed-phase elution mode the best enantioseparation was observed using 30% MeCN with ammonium formate buffer. The elution order of enantiomers was ascertained by determining specific rotations. The limit of detection and quantitation values were 5 and 15.5 ng/mL for each enantiomer of (RS)-Ket, respectively. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Nojavan, Saeed; Bidarmanesh, Tina; Memarzadeh, Farkhondeh; Chalavi, Soheila
2014-09-01
A simple electromembrane extraction (EME) procedure combined with ion chromatography (IC) was developed to quantify inorganic anions in different pure water samples and water miscible organic solvents. The parameters affecting extraction performance, such as supported liquid membrane (SLM) solvent, extraction time, pH of donor and acceptor solutions, and extraction voltage were optimized. The optimized EME conditions were as follows: 1-heptanol was used as the SLM solvent, the extraction time was 10 min, pHs of the acceptor and donor solutions were 10 and 7, respectively, and the extraction voltage was 15 V. The mobile phase used for IC was a combination of 1.8 mM sodium carbonate and 1.7 mM sodium bicarbonate. Under these optimized conditions, all anions had enrichment factors ranging from 67 to 117 with RSDs between 7.3 and 13.5% (n = 5). Good linearity values ranging from 2 to 1200 ng/mL with coefficients of determination (R(2) ) between 0.987 and 0.999 were obtained. The LODs of the EME-IC method ranged from 0.6 to 7.5 ng/mL. The developed method was applied to different samples to evaluate the feasibility of the method for real applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Green approach using monolithic column for simultaneous determination of coformulated drugs.
Yehia, Ali M; Mohamed, Heba M
2016-06-01
Green chemistry and sustainability is now entirely encompassed across the majority of pharmaceutical companies and research labs. Researchers' attention is careworn toward implementing the green analytical chemistry principles for more eco-friendly analytical methodologies. Solvents play a dominant role in determining the greenness of the analytical procedure. Using safer solvents, the greenness profile of the methodology could be increased remarkably. In this context, a green chromatographic method has been developed and validated for the simultaneous determination of phenylephrine, paracetamol, and guaifenesin in their ternary pharmaceutical mixture. The chromatographic separation was carried out using monolithic column and green solvents as mobile phase. The use of monolithic column allows efficient separation protocols at higher flow rates, which results in short time of analysis. Two-factor three-level experimental design was used to optimize the chromatographic conditions. The greenness profile of the proposed methodology was assessed using eco-scale as a green metrics and was found to be an excellent green method with regard to the usage and production of hazardous chemicals and solvents, energy consumption, and amount of produced waste. The proposed method improved the environmental impact without compromising the analytical performance criteria and could be used as a safer alternate for the routine analysis of the studied drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mobility Studies of (14)C-Chlorpyrifos in Malaysian Oil Palm Soils.
Halimah, Muhamad; Ismail, B Sahid; Nashriyah, Mat; Maznah, Zainol
2016-01-01
The mobility of (14)C-chlorpyrifos using soil TLC was investigated in this study. It was found that chlorpyrifos was not mobile in clay, clay loam and peat soil. The mobility of (14)C-chlorpyrifos and non-labelled chlorpyrifos was also tested with silica gel TLC using three types of developing solvent hexane (100%), hexane:ethyl acetate (95:5, v/v); and hexane:ethyl acetate (98:2, v/v). The study showed that both the (14)C-labelled and non-labelled chlorpyrifos have the same Retardation Factor (Rf) for different developing solvent systems. From the soil column study on mobility of chlorpyrifos, it was observed that no chlorpyrifos residue was found below 5 cm depth in three types of soil at simulation rainfall of 20, 50 and 100 mm. Therefore, the soil column and TLC studies have shown similar findings in the mobility of chlorpyrifos.
Li, B O; Liu, Yuan
A phase-field free-energy functional for the solvation of charged molecules (e.g., proteins) in aqueous solvent (i.e., water or salted water) is constructed. The functional consists of the solute volumetric and solute-solvent interfacial energies, the solute-solvent van der Waals interaction energy, and the continuum electrostatic free energy described by the Poisson-Boltzmann theory. All these are expressed in terms of phase fields that, for low free-energy conformations, are close to one value in the solute phase and another in the solvent phase. A key property of the model is that the phase-field interpolation of dielectric coefficient has the vanishing derivative at both solute and solvent phases. The first variation of such an effective free-energy functional is derived. Matched asymptotic analysis is carried out for the resulting relaxation dynamics of the diffused solute-solvent interface. It is shown that the sharp-interface limit is exactly the variational implicit-solvent model that has successfully captured capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states of underlying biomolecular systems as found in experiment and molecular dynamics simulations. Our phase-field approach and analysis can be used to possibly couple the description of interfacial fluctuations for efficient numerical computations of biomolecular interactions.
Alternative Solvents/Technologies for Paint Stripping: Phase 1.
1994-03-01
processes . Three phases of study are defined: Phase I, identify alternate solvents/strippers and screen them; Phase II, field test solvent/ strippers...Section Title Page 1 Metal Refinishing Process - Immersion Method ............... 8 2 Phase Summary Chart ........................ 12 3 The...of the following: (a) nontoxic chemical formulations, (b) new process development, and (c) new coating reformulations. This program consists of three
Fingering dynamics on the adsorbed solute with influence of less viscous and strong sample solvent.
Rana, Chinar; Mishra, Manoranjan
2014-12-07
Viscous fingering is a hydrodynamic instability that sets in when a low viscous fluid displaces a high viscous fluid and creates complex patterns in porous media flows. Fundamental facets of the displacement process, such as the solute concentration distribution, spreading length, and the solute mixing, depend strongly on the type of pattern created by the unstable interface of the underlying fluids. In the present study, the frontal interface of the sample shows viscous fingering and the strong solvent causes the retention of the solute to depend on the solvent concentration. This work presents a computational investigation to explore the effect of the underlying physico-chemical phenomena, (i.e., the combined effects of solvent strength, retention, and viscous fingering) on the dynamics of the adsorbed solute. A linear adsorption isotherm has been assumed between the mobile and stationary phases of the solute. We carried out the numerical simulations by considering a rectangular Hele-Shaw cell as an analog to 2D-porous media containing a three component system (displacing fluid, sample solvent, solute) to map out the evolution of the solute concentration. We observed that viscous fingering at the frontal interface of the strong sample solvent intensifies the band broadening of the solute zone. Also notable increase in the spreading dynamics of the solute has been observed for less viscous and strong sample solvent as compared to the high viscous sample slices or in the pure dispersive case. On the contrary, the solute gets intensively mixed at early times for more viscous sample in comparison to less viscous one. The results of the simulations are in qualitative agreement with the behavior observed in the liquid chromatography column experiments.
Carr, John E; Kwok, Kaho; Webster, Gregory K; Carnahan, Jon W
2006-01-23
Atomic spectrometry, specifically inductively coupled plasma atomic emission spectrometry (ICP-AES) and mass spectrometry (ICP-MS) show promise for heteroatom-based detection of pharmaceutical compounds. The combination of ultrasonic nebulization (USN) with membrane desolvation (MD) greatly enhances detection limits with these approaches. Because pharmaceutical analyses often incorporate liquid chromatography, the study herein was performed to examine the effects of solvent composition on the analytical behaviors of these approaches. The target analyte was phosphorus, introduced as phosphomycin. AES response was examined at the 253.7 nm atom line and mass 31 ions were monitored for the MS experiments. With pure aqueous solutions, detection limits of 5 ppb (0.5 ng in 0.1 mL injection volumes) were obtained with ICP-MS. The ICP-AES detection limit was 150 ppb. Solvent compositions were varied from 0 to 80% organic (acetonitrile and methanol) with nine buffers at concentrations typically used in liquid chromatography. In general, solvents and buffers had statistically significant, albeit small, effects on ICP-AES sensitivities. A few exceptions occurred in cases where typical liquid chromatography buffer concentrations produced higher mass loadings on the plasma. Indications are that isocratic separations can be reliably performed. Within reasonable accuracy tolerances, it appears that gradient chromatography can be performed without the need for signal response normalization. Organic solvent and buffer effects were more significant with ICP-MS. Sensitivities varied significantly with different buffers and organic solvent content. In these cases, gradient chromatography will require careful analytical calibration as solvent and buffer content is varied. However, for most buffer and solvent combinations, signal and detection limits are only moderately affected. Isocratic separations and detection are feasible.
Bajpai, Lakshmikant; Naidu, Harshavardhan; Asokan, Kathiravan; Shaik, Khaja Mohiddin; Kaspady, Mahammed; Arunachalam, Piramanayagam; Wu, Dauh-Rurng; Mathur, Arvind; Sarabu, Ramakanth
2017-08-18
Purification of many pharmaceutical compounds by supercritical fluid chromatography (SFC) has always been challenging because of degradation of compound during the isolation step in the presence of acidic or basic modifiers in the mobile phase. Stability of such acid or base-sensitive compounds could be improved by post-column addition of a solvent containing base or acid modifier as counter ion through a make-up pump respectively to neutralize the compound fraction without affecting the resolution. One such case study has been presented in this work where the stability of a base-sensitive compound was addressed by the addition of acidic co-solvent through the make-up pump. Details of this setup and the investigation of degradation of the in-house base-sensitive compound are discussed in this paper. In addition, poor retentivity and low recovery of many non-polar compounds in SFC eluting under low co-solvent percentage is another major concern. Even though the desired separation could be achieved with low percentage of co-solvent, it's difficult to get the proper recovery after purification due to precipitation of the sample and significant aerosol formation inside the cyclone. We have demonstrated the first-time use of a post-column make-up pump on SFC 350 system to introduce additional solvent prior to cyclone to avoid the precipitation, reduce the aerosol formation and thus improve the recovery of non-polar compounds eluting under less than 10% of co-solvent. Copyright © 2017 Elsevier B.V. All rights reserved.
On-chip ultra-thin layer chromatography and surface enhanced Raman spectroscopy.
Chen, Jing; Abell, Justin; Huang, Yao-wen; Zhao, Yiping
2012-09-07
We demonstrate that silver nanorod (AgNR) array substrates can be used for on-chip separation and detection of chemical mixtures by combining ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The UTLC-SERS plate consists of an AgNR array fabricated by oblique angle deposition. The capability of the AgNR substrates to separate the different compounds in a mixture was explored using a mixture of four dyes and a mixture of melamine and Rhodamine 6G at varied concentrations with different mobile phase solvents. After UTLC separation, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the potential for separating the test dyes with plate heights as low as 9.6 μm. The limits of detection are between 10(-5)-10(-6) M. Furthermore, we show that the coupling of UTLC with SERS improves the SERS detection specificity, as small amounts of target analytes can be separated from the interfering background components.
Nováková, Lucie; Grand-Guillaume Perrenoud, Alexandre; Nicoli, Raul; Saugy, Martial; Veuthey, Jean-Luc; Guillarme, Davy
2015-01-01
The conditions for the analysis of selected doping substances by UHPSFC-MS/MS were optimized to ensure suitable peak shapes and maximized MS responses. A representative mixture of 31 acidic and basic doping agents was analyzed, in both ESI+ and ESI- modes. The best compromise for all compounds in terms of MS sensitivity and chromatographic performance was obtained when adding 2% water and 10mM ammonium formate in the CO2/MeOH mobile phase. Beside mobile phase, the nature of the make-up solvent added for interfacing UHPSFC with MS was also evaluated. Ethanol was found to be the best candidate as it was able to compensate for the negative effect of 2% water addition in ESI- mode and provided a suitable MS response for all doping agents. Sensitivity of the optimized UHPSFC-MS/MS method was finally assessed and compared to the results obtained in conventional UHPLC-MS/MS. Sensitivity was improved by 5-100-fold in UHPSFC-MS/MS vs. UHPLC-MS/MS for 56% of compounds, while only one compound (bumetanide) offered a significantly higher MS response (4-fold) under UHPLC-MS/MS conditions. In the second paper of this series, the optimal conditions for UHPSFC-MS/MS analysis will be employed to screen >100 doping agents in urine matrix and results will be compared to those obtained by conventional UHPLC-MS/MS. Copyright © 2014 Elsevier B.V. All rights reserved.
May, Jody C; Goodwin, Cody R; Lareau, Nichole M; Leaptrot, Katrina L; Morris, Caleb B; Kurulugama, Ruwan T; Mordehai, Alex; Klein, Christian; Barry, William; Darland, Ed; Overney, Gregor; Imatani, Kenneth; Stafford, George C; Fjeldsted, John C; McLean, John A
2014-02-18
Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid "omni-omic" characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field.
2014-01-01
Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid “omni-omic” characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field. PMID:24446877
Measurement of dielectric constant of organic solvents by indigenously developed dielectric probe
NASA Astrophysics Data System (ADS)
Keshari, Ajay Kumar; Rao, J. Prabhakar; Rao, C. V. S. Brahmmananda; Ramakrishnan, R.; Ramanarayanan, R. R.
2018-04-01
The extraction, separation and purification of actinides (uranium and plutonium) from various matrices are an important step in nuclear fuel cycle. One of the separation process adopted in an industrial scale is the liquid-liquid extraction or solvent extraction. Liquid-liquid extraction uses a specific ligand/extractant in conjunction with suitable diluent. Solvent extraction or liquid-liquid extraction, involves the partitioning of the solute between two immiscible phases. In most cases, one of the phases is aqueous, and the other one is an organic solvent. The solvent used in solvent extraction should be selective for the metal of interest, it should have optimum distribution ratio, and the loaded metal from the organic phase should be easily stripped under suitable experimental conditions. Some of the important physical properties which are important for the solvent are density, viscosity, phase separation time, interfacial surface tension and the polarity of the extractant.
Ashraf-Khorassani, M; Yan, Q; Akin, A; Riley, F; Aurigemma, C; Taylor, L T
2015-10-30
Method development for normal phase flash liquid chromatography traditionally employs preliminary screening using thin layer chromatography (TLC) with conventional solvents on bare silica. Extension to green flash chromatography via correlation of TLC migration results, with conventional polar/nonpolar liquid mixtures, and packed column supercritical fluid chromatography (SFC) retention times, via gradient elution on bare silica with a suite of carbon dioxide mobile phase modifiers, is reported. Feasibility of TLC/SFC correlation is individually described for eight ternary mixtures for a total of 24 neutral analytes. The experimental criteria for TLC/SFC correlation was assumed to be as follows: SFC/UV/MS retention (tR) increases among each of the three resolved mixture components; while, TLC migration (Rf) decreases among the same resolved mixture components. Successful correlation of TLC to SFC was observed for most of the polar organic solvents tested, with the best results observed via SFC on bare silica with methanol as the CO2 modifier and TLC on bare silica with a methanol/dichloromethane mixture. Copyright © 2015 Elsevier B.V. All rights reserved.
Brady, Jacob P.; Farber, Patrick J.; Sekhar, Ashok; Lin, Yi-Hsuan; Huang, Rui; Bah, Alaji; Chan, Hue Sun; Forman-Kay, Julie D.; Kay, Lewis E.
2017-01-01
Membrane encapsulation is frequently used by the cell to sequester biomolecules and compartmentalize their function. Cells also concentrate molecules into phase-separated protein or protein/nucleic acid “membraneless organelles” that regulate a host of biochemical processes. Here, we use solution NMR spectroscopy to study phase-separated droplets formed from the intrinsically disordered N-terminal 236 residues of the germ-granule protein Ddx4. We show that the protein within the concentrated phase of phase-separated Ddx4, Ddx4cond, diffuses as a particle of 600-nm hydrodynamic radius dissolved in water. However, NMR spectra reveal sharp resonances with chemical shifts showing Ddx4cond to be intrinsically disordered. Spin relaxation measurements indicate that the backbone amides of Ddx4cond have significant mobility, explaining why high-resolution spectra are observed, but motion is reduced compared with an equivalently concentrated nonphase-separating control. Observation of a network of interchain interactions, as established by NOE spectroscopy, shows the importance of Phe and Arg interactions in driving the phase separation of Ddx4, while the salt dependence of both low- and high-concentration regions of phase diagrams establishes an important role for electrostatic interactions. The diffusion of a series of small probes and the compact but disordered 4E binding protein 2 (4E-BP2) protein in Ddx4cond are explained by an excluded volume effect, similar to that found for globular protein solvents. No changes in structural propensities of 4E-BP2 dissolved in Ddx4cond are observed, while changes to DNA and RNA molecules have been reported, highlighting the diverse roles that proteinaceous solvents play in dictating the properties of dissolved solutes. PMID:28894006
Topgaard, Daniel; Sparr, Emma
2017-01-01
Solvents are commonly used in pharmaceutical and cosmetic formulations and sanitary products and cleansers. The uptake of solvent into the skin may change the molecular organization of skin lipids and proteins, which may in turn alter the protective skin barrier function. We herein examine the molecular effects of 10 different solvents on the outermost layer of skin, the stratum corneum (SC), using polarization transfer solid-state NMR on natural abundance 13C in intact SC. With this approach it is possible to characterize the molecular dynamics of solvent molecules when present inside intact SC and to simultaneously monitor the effects caused by the added solvent on SC lipids and protein components. All solvents investigated cause an increased fluidity of SC lipids, with the most prominent effects shown for the apolar hydrocarbon solvents and 2-propanol. However, no solvent other than water shows the ability to fluidize amino acids in the keratin filaments. The solvent molecules themselves show reduced molecular mobility when incorporated in the SC matrix. Changes in the molecular properties of the SC, and in particular alternation in the balance between solid and fluid SC components, may have significant influences on the macroscopic SC barrier properties as well as mechanical properties of the skin. Deepened understanding of molecular effects of foreign compounds in SC fluidity can therefore have strong impact on the development of skin products in pharmaceutical, cosmetic, and sanitary applications. PMID:28028209
You, Jichun; Zhang, Shuangshuang; Huang, Gang; Shi, Tongfei; Li, Yongjin
2013-06-28
The competition between "dewetting" and "phase separation" behaviors in polymer blend films attracts significant attention in the last decade. The simultaneous phase separation and dewetting in PMMA∕SAN [poly(methyl methacrylate) and poly(styrene-ran-acrylonitrile)] blend ultrathin films upon solvent annealing have been observed for the first time in our previous work. In this work, film thickness and annealing solvent dependence of phase behaviors in this system has been investigated using atomic force microscopy and grazing incidence small-angle X-ray scattering (GISAXS). On one hand, both vertical phase separation and dewetting take place upon selective solvent vapor annealing, leading to the formation of droplet∕mimic-film structures with various sizes (depending on original film thickness). On the other hand, the whole blend film dewets the substrate and produces dispersed droplets on the silicon oxide upon common solvent annealing. GISAXS results demonstrate the phase separation in the big dewetted droplets resulted from the thicker film (39.8 nm). In contrast, no period structure is detected in small droplets from the thinner film (5.1 nm and 9.7 nm). This investigation indicates that dewetting and phase separation in PMMA∕SAN blend film upon solvent annealing depend crucially on the film thickness and the atmosphere during annealing.
Chen, Miao; Xia, Qinghai; Liu, Mousheng; Yang, Yaling
2011-01-01
A cloud-point extraction (CPE) method using Triton X-114 (TX-114) nonionic surfactant was developed for the extraction and preconcentration of propyl gallate (PG), tertiary butyl hydroquinone (TBHQ), butylated hydroxyanisole (BHA), and butylated hydroxytoluene (BHT) from edible oils. The optimum conditions of CPE were 2.5% (v/v) TX-114, 0.5% (w/v) NaCl and 40 min equilibration time at 50 °C. The surfactant-rich phase was then analyzed by reversed-phase high-performance liquid chromatography with ultraviolet detection at 280 nm, using a gradient mobile phase consisting of methanol and 1.5% (v/v) acetic acid. Under the studied conditions, 4 synthetic phenolic antioxidants (SPAs) were successfully separated within 24 min. The limits of detection (LOD) were 1.9 ng mL(-1) for PG, 11 ng mL(-1) for TBHQ, 2.3 ng mL(-1) for BHA, and 5.9 ng mL(-1) for BHT. Recoveries of the SPAs spiked into edible oil were in the range 81% to 88%. The CPE method was shown to be potentially useful for the preconcentration of the target analytes, with a preconcentration factor of 14. Moreover, the method is simple, has high sensitivity, consumes much less solvent than traditional methods, and is environment-friendly. Practical Application: The method established in this article uses less organic solvent to extract SPAs from edible oils; it is simple, highly sensitive and results in no pollution to the environment.
Weisz, Adrian; Ridge, Clark D.; Mazzola, Eugene P.; Ito, Yoichiro
2015-01-01
Three low-level subsidiary color impurities (A, B, and C) often present in batches of the color additive D&C Red No. 33 (R33, Acid Red 33, Colour Index No. 17200) were separated from a portion of R33 by spiral high-speed counter-current chromatography (HSCCC). The separation involved use of a very polar solvent system, 1-BuOH/5 mM aq. (NH4)2SO4. Addition of ammonium sulfate to the lower phase forced partition of the components into the upper phase, thereby eliminating the need to add a hydrophobic counterion as was previously required for separations of components from sulfonated dyes. The very polar solvent system used would not have been retained in a conventional multi-layer coil HSCCC instrument, but the spiral configuration enabled retention of the stationary phase, and thus, the separation was possible. A 1 g portion of R33 enriched in A, B, and C was separated using the upper phase of the solvent system as the mobile phase. The retention of the stationary phase was 38.1%, and the separation resulted in 4.8 mg of A of >90% purity, 18.3 mg of B of >85% purity, and 91 mg of C of 65–72% purity. A second separation of a portion of the C mixture resulted in 7 mg of C of >94% purity. The separated impurities were identified by high-resolution mass spectrometry and NMR spectroscopic techniques as follows: 5-amino-3-biphenyl-3-ylazo-4-hydroxy-naphthalene-2,7-disulfonic acid, A; 5-amino-4-hydroxy-6-phenyl-3-phenylazo-naphthalene-2,7-disulfonic acid, B; and 5-amino-4-hydroxy-3,6-bis-phenylazo-naphthalene-2,7-disulfonic acid, C. The isomers A and B are compounds reported for the first time. Application of the spiral HSCCC method resulted in the additional benefit of yielding 930 mg of the main component of R33, 5-amino-4-hydroxy-3-phenylazo-naphthalene-2,7-disulfonic acid, of >97% purity. PMID:25591404
Weisz, Adrian; Ridge, Clark D; Mazzola, Eugene P; Ito, Yoichiro
2015-02-06
Three low-level subsidiary color impurities (A, B, and C) often present in batches of the color additive D&C Red No. 33 (R33, Acid Red 33, Colour Index No. 17200) were separated from a portion of R33 by spiral high-speed counter-current chromatography (HSCCC). The separation involved use of a very polar solvent system, 1-BuOH/5mM aq. (NH4)2SO4. Addition of ammonium sulfate to the lower phase forced partition of the components into the upper phase, thereby eliminating the need to add a hydrophobic counterion as was previously required for separations of components from sulfonated dyes. The very polar solvent system used would not have been retained in a conventional multi-layer coil HSCCC instrument, but the spiral configuration enabled retention of the stationary phase, and thus, the separation was possible. A 1g portion of R33 enriched in A, B, and C was separated using the upper phase of the solvent system as the mobile phase. The retention of the stationary phase was 38.1%, and the separation resulted in 4.8 mg of A of >90% purity, 18.3mg of B of >85% purity, and 91 mg of C of 65-72% purity. A second separation of a portion of the C mixture resulted in 7 mg of C of >94% purity. The separated impurities were identified by high-resolution mass spectrometry and NMR spectroscopic techniques as follows: 5-amino-3-biphenyl-3-ylazo-4-hydroxy-naphthalene-2,7-disulfonic acid, A; 5-amino-4-hydroxy-6-phenyl-3-phenylazo-naphthalene-2,7-disulfonic acid, B; and 5-amino-4-hydroxy-3,6-bis-phenylazo-naphthalene-2,7-disulfonic acid, C. The isomers A and B are compounds reported for the first time. Application of the spiral HSCCC method resulted in the additional benefit of yielding 930 mg of the main component of R33, 5-amino-4-hydroxy-3-phenylazo-naphthalene-2,7-disulfonic acid, of >97% purity. Published by Elsevier B.V.
Ginosar, Daniel M.; Wendt, Daniel S.; Petkovic, Lucia M.
2014-06-10
A method of removing a nonpolar solvent from a fluid volume that includes at least one nonpolar compound, such as a fat, an oil or a triglyceride, is provided. The method comprises contacting a fluid volume with an expanding gas to expand the nonpolar solvent and form a gas-expanded solvent. The gas-expanded solvent may have a substantially reduced density in comparison to the at least one nonpolar compound and/or a substantially reduced capacity to solubilize the nonpolar compound, causing the nonpolar compounds to separate from the gas-expanded nonpolar solvent into a separate liquid phase. The liquid phase including the at least one nonpolar compound may be separated from the gas-expanded solvent using conventional techniques. After separation of the liquid phase, at least one of the temperature and pressure may be reduced to separate the nonpolar solvent from the expanding gas such that the nonpolar solvent may be recovered and reused.
Hydrophilic interaction liquid chromatography in the speciation analysis of selenium.
Sentkowska, Aleksandra; Pyrzynska, Krystyna
2018-02-01
The hydrophilic interaction liquid chromatography (HILIC) coupled to mass spectrometry was employed to study retention behavior of selected selenium compounds using two different HILIC stationary phases: silica and zwitterionic. Two organic solvents - acetonitrile and methanol - were compared as a component of mobile phase. Separation parameters such as a content of organic modifier, the eluent pH and inorganic buffer concentration were investigated. Based on all observations, methanol seems to be beneficial for the separation of studied compounds. The optimal HILIC separation method involved silica column and eluent composed of 85% MeOH and CH 3 COONH 4 (8 mM, pH 7) was compared to RP method in terms of time of the single run, the separation efficiency and limit of detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Giri, Gaurav; Park, Steve; Vosgueritchian, Michael; Shulaker, Max Marcel; Bao, Zhenan
2014-01-22
Patterns composed of solvent wetting and dewetting regions promote lateral confinement of solution-sheared and lattice-strained TIPS-pentacene crystals. This lateral confinement causes aligned crystal growth, and the smallest patterns of 0.5 μm wide solvent wetting regions promotes formation of highly strained, aligned, and single-crystalline TIPS-pentacene regions with mobility as high as 2.7 cm(2) V(-1) s(-1) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cai, Jianfeng; Cheng, Lingping; Zhao, Jianchao; Fu, Qing; Jin, Yu; Ke, Yanxiong; Liang, Xinmiao
2017-11-17
A hydrophilic interaction liquid chromatography (HILIC) stationary phase was prepared by a two-step synthesis method, immobilizing polyacrylamide on silica sphere particles. The stationary phase (named PA, 5μm dia) was evaluated using a mixture of carbohydrates in HILIC mode and the column efficiency reached 121,000Nm -1 . The retention behavior of carbohydrates on PA stationary phase was investigated with three different organic solvents (acetonitrile, ethanol and methanol) employed as the weak eluent. The strongest hydrophilicity of PA stationary phase was observed in both acetonitrile and methanol as the weak eluent, when compared with another two amide stationary phases. Attributing to its high hydrophilicity, three oligosaccharides (xylooligosaccharide, fructooligosaccharide and chitooligosaccharides) presented good retention on PA stationary phase using alcohols/water as mobile phase. Finally, PA stationary phase was successfully applied for the purification of galactooligosaccharides and saponins of Paris polyphylla. It is feasible to use safer and cheaper alcohols to replace acetonitrile as the weak eluent for green analysis and purification of polar compounds on PA stationary phase. Copyright © 2017. Published by Elsevier B.V.
Effect of enzyme on extraction of ginsenoside Rb1 and Rg3 from Panax notoginseng roots
NASA Astrophysics Data System (ADS)
Phuong, Nguyen Tran Xuan; Thy, Lu Thi Mong; Khang, Nguyen Luu Vinh; My, Huynh Thi Kieu; Tam, Nguyen Le Phuong; Hieu, Nguyen Huu
2018-04-01
Panax notoginseng is distributed throughout the north and northwest of Vietnam, especially Ha Giang, Lao Cai, and Cao Bang provinces. The root of this plant contains ginsenosides (Rb1, Rb2, Rd, Rg3), flavonoids, polyacetylene, polysaccharides, amino acids, fatty acids, and peptides. In this study, the ratios of enzyme (Viscozyme, Termamyl, Cellulase), solvent of components, and time extraction were investigated. The results showed that the highest contents of Rb1 and Rg3 were achieved in the sample extracted with the ratio of enzymes V:C:T = 1:0:0, ethanol:water (60:40, v/v) as extracting solvent in 45 minutes. Then, conditions of high performance liquid chromatography with diode array detector method to determine the content of ginsenosides Rb1 and Rg3 in the roots of Panax notoginseng were studied, including wavelength, mobile phase, and flow rate. The separation was subjected on a reversed-phase C18 column using acetonitrile (A) and water (B) as mobile phase. The gradient elution was set as follow: 0-10 min, 15-25% A; 10-20 min, 25-30% A; 20-40 min, 30-60% A; 40-60 min, 60-80% A; and 60-65 min back to 15% A before the next injection, at a flow rate of 0.5 mL/min, and the wavelength was set at 202 nm. The linear range was from 298.59 to 696.72 µg/mL for Rb1 and from 8.19 to 19.10 µg/L for Rg3. The limits of detection for Rb1 and Rg3 obtained were 0.31 µg/mL and 0.33 µg/mL, respectively. The limits of quantification were 0.95 µg/mL and 1.01 µg/mL for Rb1 and Rg3, respectively. Consequently, the high performance liquid chromatography demonstrated the highly sensitive and accurate method for determination of Rb1 and Rg3 in Panax notoginseng.
Madej, Katarzyna; Janiga, Katarzyna; Piekoszewski, Wojciech
2018-01-01
Isolation conditions for five pesticides (metazachlor, tebuconazole, λ -cyhalothrin, chlorpyrifos, and deltamethrin) from rape oil samples were examined using the dispersive solid-phase graphene extraction technique. To determine the optimal extraction conditions, a number of experimental factors (amount of graphene, amount of salt, type and volume of the desorbing solvent, desorption time with and without sonication energy, and temperature during desorption) were studied. The compounds of interest were separated and detected by an HPLC-UV employing a Kinetex XB-C18 column and a mobile phase consisting of acetonitrile and water flowing in a gradient mode. The optimized extraction conditions were: the amount of graphene 15 mg, desorbing solvent (acetonitrile) 5 mL, time desorption 10 min at 40°C, and amount of NaCl 1 g. The detection limit for metazachlor, tebuconazole, λ -cyhalothrin, and chlorpyrifos was 62.5 ng·g -1 , and for deltamethrin, it was 500 ng·g -1 . The obtained results lead to the conclusion that graphene may be successfully used for the isolation of the five pesticides from rape oil. However, their determination at low concentration levels, as they occur in real oil samples, requires the employment of appropriately highly sensitive analytical methods, as well as a more suitable graphene form (e.g., magnetically modified graphene).
NASA Astrophysics Data System (ADS)
Arahman, Nasrul; Maimun, Teuku; Mukramah, Syawaliah
2017-01-01
The composition of polymer solution and the methods of membrane preparation determine the solidification process of membrane. The formation of membrane structure prepared via non-solvent induced phase separation (NIPS) method is mostly determined by phase separation process between polymer, solvent, and non-solvent. This paper discusses the phase separation process of polymer solution containing Polyethersulfone (PES), N-methylpirrolidone (NMP), and surfactant Tetronic 1307 (Tet). Cloud point experiment is conducted to determine the amount of non-solvent needed on induced phase separation. Amount of water required as a non-solvent decreases by the addition of surfactant Tet. Kinetics of phase separation for such system is studied by the light scattering measurement. With the addition of Tet., the delayed phase separation is observed and the structure growth rate decreases. Moreover, the morphology of fabricated membrane from those polymer systems is analyzed by scanning electron microscopy (SEM). The images of both systems show the formation of finger-like macrovoids through the cross-section.
Yi, Yan; Zhang, Qing-Wen; Li, Song-Lin; Wang, Ying; Ye, Wen-Cai; Zhao, Jing; Wang, Yi-Tao
2012-11-15
A pressurised liquid extraction (PLE) and high performance liquid chromatography (HPLC) method was developed for simultaneous quantification of six major flavonoids in edible flower of Hylocereus undatus. In order to achieve the baseline separation of two pairs of isomers, the HPLC conditions were optimised with different kind of reversed phase columns and mobile phase gradient programs. In addition, the solvent concentration, extraction temperature, extraction time and flush cycle for PLE were also optimised. Zorbax SB-C8 (100×2.1 mm, 1.8 μm) column was chosen with acetonitrile and water containing 0.1% trifluoroacetic acid as mobile phase, the six analytes were eluted with baseline separation. The calibration curves showed good linearity (r(2)>0.9994) with LODs and LOQs less than 0.90 and 3.60 ng respectively. The RSDs for intra- and inter-day repeatability was not more than 1.09% and 1.79% respectively. The overall recovery of the assay was 96.9-105.2%. The sample was stable for at least 12 h. The newly established method was successfully applied to quantify six flavonoids in different parts of "Bawanghua", and the commercial samples from different locations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Shi, Huilin; Pierson, Nicholas A.; Valentine, Stephen J.; Clemmer, David E.
2012-01-01
Ion mobility and mass spectrometry measurements are used to examine the gas-phase populations of [M+8H]8+ ubiquitin ions formed upon electrospraying 20 different solutions: from 100:0 to 5:95 water:methanol that are maintained at pH = 2.0. Over this range of solution conditions, mobility distributions for the +8 charge state show substantial variations. Here we develop a model that treats the combined measurements as one data set. By varying the relative abundances of a discrete set of conformation types, it is possible to represent distributions obtained from any solution. For solutions that favor the well-known A-state ubiquitin, it is possible to represent the gas-phase distributions with seven conformation types. Aqueous conditions that favor the native structure require four more structural types to represent the distribution. This analysis provides the first direct evidence for trace amounts of the A state under native conditions. The method of analysis presented here should help illuminate how solution populations evolve into new gas-phase structures as solvent is removed. Evidence for trace quantities of previously unknown states under native solution conditions may provide insight about the relationship of dynamics to protein function as well as misfolding and aggregation phenomena. PMID:22315998
Kakitani, Ayano; Inoue, Tomonori; Matsumoto, Keiko; Watanabe, Jun; Nagatomi, Yasushi; Mochizuki, Naoki
2014-01-01
An LC-MS/MS method was developed for the simultaneous determination of 15 water-soluble vitamins that are widely used as additives in beverages and dietary supplements. This combined method involves the following simple pre-treatment procedures: dietary supplement samples were prepared by centrifugation and filtration after an extraction step, whereas beverage samples were diluted prior to injection. Chromatographic analysis in this method utilised a multi-mode ODS column, which provided reverse-phase, anion- and cation-exchange capacities, and therefore improved the retention of highly polar analytes such as water-soluble vitamins. Additionally, the multi-mode ODS column did not require adding ion pair reagents to the mobile phase. We optimised the chromatographic separation of 15 water-soluble vitamins by adjusting the mobile phase pH and the organic solvent. We also conducted an analysis of a NIST Standard Reference Material (SRM 3280 Multi-vitamin/Multi-element tablets) using this method to verify its accuracy. In addition, the method was applied to identify the vitamins in commercial beverages and dietary supplements. By comparing results with the label values and results obtained by official methods, it was concluded that the method could be used for quality control and to compose nutrition labels for vitamin-enriched products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szabo, G.; Bulman, R.A.
The determination of soil adsorption coefficients (K[sub oc]) via HPLC capacity factors (k[prime]) has been studied, including the effect of column type and mobile phase composition on the correlation between log K[sub oc] and log k[prime]. K[sub oc] values obtained by procedures other than HPLC correlate well with HPLC capacity factors determined on a chemically immobilized humic acid stationary phase, and it is suggested that this phase is a better model for the sorption onto soil or sediment than the octadecyl-, phenyl- and ethylsilica phases. By using log k[prime][sub w] a theoretical capacity factor has been obtained by extrapolation ofmore » the retention data in a binary solvent system to pure aqueous eluent. There is a better correlation between log K[sub oc] and log k[prime][sub w] than the correlation between log K[sub oc] and log k[prime].« less
Kenndler, Ernst
2014-03-28
This two-part review critically gives an overview on the theoretical and practical advances in non-aqueous capillary electrophoresis (NACE) achieved over the recent five years. Part I starts out by reviewing the aspects relevant to electromigration in organic solvents and evaluates potential advantages of the latter in comparison to aqueous solvent systems. The crucial role of solubility for the species involved in CE - analytes and back ground electrolyte constituents - is discussed both for ionic and neutral compounds. The impact of organic solvents on the electrophoretic and electroosmotic mobility and on the ionization (pKa values) of weak acids and bases is highlighted. Special emphasis is placed on methanol, acetonitrile and mixtures of these solvents, being the most frequent employed media for NACE applications. In addition, also solvents less commonly used in NACE will be covered, including other alcohols, amides (formamide, N-methylformamide, N,N-dimethylformamide, N,N-dimethylacetamide), propylene carbonate, dimethylsulphoxide, and nitromethane. The discussions address the consequences of dramatic pKa shifts frequently seen for weak acids and bases, and the important contributions of medium-specific electroosmotic flow (EOF) to electromigration in nonaqueous media. Important for NACE, the role of the water content on pKa and mobility is analyzed. Finally, association phenomena rather specific to nonaqueous solvents (ion pairing, homo- and heteroconjugation) will be addressed, along with their potential advantages for the development of NACE separation protocols. It is pointed out that this review is not intended as a listing of all papers that have been published on NACE in the period mentioned above. It rather deals with general aspects of migration and selectivity in organic solvent systems, and discusses - critically - examples from the literature with particular interest to the topic. An analog discussion about the role of the solvent on efficiency will be presented in Part II. Copyright © 2014 Elsevier B.V. All rights reserved.
Xiao, Ya-Bing; Zhang, Man; Wen, Hua-Wei
2014-04-01
A method for simultaneous determination of arsanilic, nitarsone and roxarsone (ROX) residues in foods of animal origin was developed by accelerated solvent extraction-liquid chromatography-atomic fluorescence spectrometry (ASE-LC-AFS). The ultrasound centrifugation extraction and accelerated solvent extraction were compared, and the accelerated solvent extraction conditions, namely the proportion of the extraction solvent, the extraction temperature, extraction time and extraction times, were optimized. The operating conditions of LC-AFS and the mobile phase were optimized. Under the optimal conditions, the calibration curves for ASA , NIT and ROX were linear over the concentration range of 0-2.0 mg x L(-1) and their correlation coefficients were 0.999 2-0.999 8. The detection limits of ASA, NIT and ROX were 2.4, 7.4 and 4.1 microg x L(-1) respectively. The average recoveries of ASA, NIT and ROX from two samples spiked at three levels of 0.5, 2, 5 mg x kg(-1) were in the ranges of 87.1%-93.2%, 85.2%-93.9%, and 84.2%-93.7% with RSDs of 1.4%-4.6%, 1.2%-4.2%, and 1.1%-4.5%, respectively. This method possesses the merits of convenience and good repeatability, and is a feasible method for analysis of ASA, NIT and ROX in foods of animal origin.
Hynninen, P H; Räisänen, R
2001-01-01
Preparative-scale separation of substituted anthraquinones by multiple liquid-liquid partition was studied using isopropylmethyl ketone (IMK)/aqueous phosphate buffer (aq.) as the solvent system and the Hietala apparatus with 100 partition units as the partition equipment. The lower (aq.) phase was chosen as mobile, while the upper (IMK) phase remained stationary. Hence, the principle of stepwise pH-gradient elution could be utilized to separate the components in two complex mixtures of hydroxyanthraquinones and hydroxyanthraquinone carboxylic acids, isolated from the fungus Dermocybe sanguinea. In spite of the nonlinearity of the partition isotherms for these anthraquinones, implying deviations from the Nernst partition law, remarkable separations were achieved for the components in each mixture. Every anthraquinone carboxylic acid showed markedly irregular partition behavior, appearing in the effluent as two more or less resolved concentration zones. Such splitting was attributed to the formation of relatively stable sandwich-dimers, which were in a slow equilibrium with the monomers in the more nonpolar organic phase. At lower pH-values, only the polar monomers were distributed into the mobile aqueous phase and moved forward, whereas the nonpolar sandwich-dimers remained almost entirely in the stationary organic phase and lagged behind. When the pH of the mobile aqueous phase was raised high enough, the firmly linked dimers were monomerized and emerged from the apparatus as a second concentration profile. Intermolecular hydrogen bonding and pi-pi interaction between the pi-systems of two anthraquinone molecules in a parallel orientation were considered responsible for the nonlinear and markedly irregular partition behavior of the natural anthraquinones studied. The nonlinearity of the partition behavior of the hydroxyanthraquinones lacking the carboxyl group, appeared merely as excessive broadening of the experimental concentration profile, which impaired the resolution between the components only insignificantly. Thus, e.g. the main components, dermocybin and emodin, could both be obtained from Separation 1 in a purity of at least 99%.
Han, Quan-Bin; Tang, Wai-Lun; Dong, Cai-Xia; Xu, Hong-Xi; Jiang, Zhi-Hong
2013-04-01
Two-phase solvent system plays crucial role in successful separation of organic compounds using counter-current chromatography (CCC). An interesting two-phase solvent system, composed of chloroform/ethyl acetate/methanol/water, is reported here, in which both phases contain sufficient organic solvents to balance their dissolving capacities. Adjusting the solvent system to get satisfactory partition coefficients (K values) for target compounds becomes relatively simple. This solvent system succeeded in sample preparation of aconitine (8.07 mg, 93.69%), hypaconitine (7.74 mg, 93.17%), mesaconitine (1.95 mg, 94.52%) from raw aconite roots (102.24 mg, crude extract), benzoylmesaconine (34.79 mg, 98.67%) from processed aconite roots (400.01 mg, crude extract), and yunaconitine (253.59 mg, 98.65%) from a crude extract of Aconitum forrestii (326.69 mg, crude extract). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solvent-mediated nonelectrostatic ion-ion interactions predicting anomalies in electrophoresis.
Goswami, Prakash; Dhar, Jayabrata; Ghosh, Uddipta; Chakraborty, Suman
2017-03-01
We study the effects of solvent-mediated nonelectrostatic ion-ion interactions on electrophoretic mobility of a charged spherical particle. To this end, we consider the case of low surface electrostatic potential resulting in the linearization of the governing equations, which enables us to deduce a closed-form analytical solution to the electrophoretic mobility. We subsequently compare our results to the standard model using Henry's approach and report the changes brought about by the nonelectrostatic potential. The classical approach to determine the electrophoretic mobility underpredicts the particle velocity when compared with experiments. We show that this issue can be resolved by taking into account nonelectrostatic interactions. Our analysis further reveals the phenomenon of electrophoretic mobility reversal that has been experimentally observed in numerous previous studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Methods for detecting the mobility of trace elements during medium-temperature pyrolysis
Shiley, R.H.; Konopka, K.L.; Cahill, R.A.; Hinckley, C.C.; Smith, Gerard V.; Twardowska, H.; Saporoschenko, Mykola
1983-01-01
The mobility (volatility) of trace elements in coal during pyrolysis has been studied for distances of up to 40 cm between the coal and the trace element collector, which was graphite or a baffled solvent trap. Nineteen elements not previously recorded as mobile were detected. ?? 1983.
Chavez-Eng, C M; Lutz, R W; Li, H; Goykhman, D; Bateman, K P; Woolf, E
2016-02-01
An ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous determination of (4S,5R)-5-[3,5-bis (trifluoromethyl)phenyl]-3-{[4'-fluoro-5'-isopropyl-2'-methoxy-4-(trifluoromethyl)biphenyl-2-yl] methyl}-4-methyl-1,3-oxazolidin-2-one (anacetrapib, I) and [(13)C5(15)N]-anacetrapib, II in human plasma has been developed to support a clinical study to determine the absolute bioavailability of I. The analytes and the stable-isotope labeled internal standard ([(13)C7(15)N(2)H7]-anacetrapib, III) were extracted from 100μL of human plasma by liquid-liquid extraction using 20/80 isopropyl alcohol/hexane (v/v). The chromatographic separation of the analytes was achieved using Waters BEH Shield RP 18 (50×2.1mm×1.7μm) column and mobile phase gradient of 0.1% formic acid in water (Solvent A) and 0.1% formic acid in acetonitrile (Solvent B) at 0.6mL/min flow rate. The MS/MS detection was performed on AB Sciex 5000 or AB 5500 in positive electrospray ionization mode, operated in selected reaction monitoring mode. The assay was validated in the concentration range 1-2000ng/mL for I; and a lower curve range, 0.025-50ng/mL for II. In addition to the absolute bioavailability determination, it was desired to better elucidate the pharmacokinetic behavior of several hydroxylated metabolites of I. Toward this end, two exploratory assays for the hydroxy metabolites of I were qualified in the concentration range 0.5-500ng/mL. All metabolites were separated on a Supelco Ascentis Express Phenyl-Hexyl (50×2.1mm, 2.7μm) column. Metabolite M4 was analyzed in the negative mode with a mobile phase consisting of a gradient mixture of water (A) and acetonitrile (B). The other three metabolites, M1-M3 were analyzed in the positive mode using a mobile phase gradient of water with 0.1% formic acid (A) and acetonitrile with 0.1% formic acid (B). The assays were utilized to support a clinical study in which a microdosing approach was used to determine the pharmacokinetics of anacetrapib and its metabolites. Copyright © 2016 Elsevier B.V. All rights reserved.
Optimization of throughput in semipreparative chiral liquid chromatography using stacked injection.
Taheri, Mohammadreza; Fotovati, Mohsen; Hosseini, Seyed-Kiumars; Ghassempour, Alireza
2017-10-01
An interesting mode of chromatography for preparation of pure enantiomers from pure samples is the method of stacked injection as a pseudocontinuous procedure. Maximum throughput and minimal production costs can be achieved by the use of total chiral column length in this mode of chromatography. To maximize sample loading, often touching bands of the two enantiomers is automatically achieved. Conventional equations show direct correlation between touching-band loadability and the selectivity factor of two enantiomers. The important question for one who wants to obtain the highest throughput is "How to optimize different factors including selectivity, resolution, run time, and loading of the sample in order to save time without missing the touching-band resolution?" To answer this question, tramadol and propranolol were separated on cellulose 3,5-dimethyl phenyl carbamate, as two pure racemic mixtures with low and high solubilities in mobile phase, respectively. The mobile phase composition consisted of n-hexane solvent with alcohol modifier and diethylamine as the additive. A response surface methodology based on central composite design was used to optimize separation factors against the main responses. According to the stacked injection properties, two processes were investigated for maximizing throughput: one with a poorly soluble and another with a highly soluble racemic mixture. For each case, different optimization possibilities were inspected. It was revealed that resolution is a crucial response for separations of this kind. Peak area and run time are two critical parameters in optimization of stacked injection for binary mixtures which have low solubility in the mobile phase. © 2017 Wiley Periodicals, Inc.
Sharma, Upendra Kumar; Sharma, Nandini; Gupta, Ajai Prakash; Kumar, Vinod; Sinha, Arun Kumar
2007-12-01
A simple, fast and sensitive RP-HPTLC method is developed for simultaneous quantitative determination of vanillin and related phenolic compounds in ethanolic extracts of Vanilla planifolia pods. In addition to this, the applicability of accelerated solvent extraction (ASE) as an alternative to microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and Soxhlet extraction was also explored for the rapid extraction of phenolic compounds in vanilla pods. Good separation was achieved on aluminium plates precoated with silica gel RP-18 F(254S) in the mobile phase of methanol/water/isopropanol/acetic acid (30:65:2:3, by volume). The method showed good linearity, high precision and good recovery of compounds of interest. ASE showed good extraction efficiency in less time as compared to other techniques for all the phenolic compounds. The present method would be useful for analytical research and for routine analysis of vanilla extracts for their quality control.
NASA Astrophysics Data System (ADS)
Yang, Shaoping
This dissertation is an investigation of two aspects of coupling condensation nucleation light scattering detection (CNLSD) with supercritical fluid chromatography (SFC). In the first part, it was demonstrated that CNLSD was compatible with packed column SFC using either pure CO2 or organic solvent modified CO2 as mobile phases. Factors which were expected to affect the interface between SFC and CNLSD were optimized for the detector to reach low detection limits. With SFC using pure CO2 as mobile phase, the detection limit of CNLSD with SFC was observed to be at low nanogram levels, which was at the same level of flame ionization detection (FID) coupled with SFC. For SFC using modified CO2 as mobile phase, detection limits at the picogram level were observed for CNLSD at optimal conditions, which were at least ten times lower than those reached by evaporative light scattering detection. In the second part, particle size distributions of aerosols produced from rapid expansion of supercritical solutions were measured with a scanning mobility particle sizer. The effect of the factors, which were investigated in the first part for their effects on signal intensities and signal to noise ratios (S/N), on particle size distributions (PSDs) of both analyte and background were investigated. Whenever possible, both particle sizes and particle number obtained from PSDs were used to explain the optimization results. In general, PSD data support the observations made in the first part. The detection limits of CNLSD obtained were much higher than predicted. PSDs did not provide direct explanation of this problem. The amount of analyte deposited in the transport tubing, evaporated to gas phase, and condensed to form particles was determined experimentally. Almost no analyte was found in the gas phase. Less than 3% was found in the particle forms. The vast majority of analyte was lost in the transport tubing, especially in the short distance after supercritical fluid expansion. A mechanism was proposed to explain the loss of analyte in the transport tubing.
Semiautomated solid-phase extraction manifold with a solvent-level sensor.
Orlando, R M; Rath, S; Rohwedder, J J R
2013-11-15
A semiautomated solid-phase extraction manifold for multiple extractions is presented. The manifold utilizes commercial solid-phase syringe cartridges and automatically introduces and elutes all the solvents during the extraction, reducing the typical workload and stress of the analyst. The manifold consists of a peristaltic pump with solenoid valves in a flow circuit that contains transmissive photomicrosensors. The photomicrosensors were used to control the solvent dispenser and the solvent level inside the cartridge. As solvent-level sensors, the photomicrosensors determined the exact time the solvent reached the top frit to avoid sorbent drying and accurately perform the solvent exchange. The repeatability of the manifold to introduce a particular volume of solvent into the cartridges was measured, and the precisions were between 0.05 and 2.89% (RSD). To evaluate the manifold, the amount of two fluoroquinolones in a fortified blank milk sample was determined. The results of the intra- and inter-day precision of multiple extractions from the fortified milk samples resulted in precisions better than 9.0% (RSD) and confirmed that the arrangement of the semiautomated manifold could adequately be used in solid-phase extraction with commercial cartridges. Copyright © 2013 Elsevier B.V. All rights reserved.
Direct coupling of microbore HPLC columns to MS systems
NASA Technical Reports Server (NTRS)
Mcnair, H. M.
1985-01-01
A detailed investigation using electron microscopy was conducted which examined the conditions of materials used in the construction of stable, high performance microbore liquid chromatography (LC) columns. Small details proved to be important. The effects of temperature on the elution of several homologous series used as probe compounds was examined in reverse phase systems. They showed that accessible temperature changes provide roughly half the increase in solvent strength that would be obtained going from a 100% aqueous to a 100% organic mobile phase, which is sufficient to warrant their use in many analyses requiring the use of gradients. Air circulation temperature control systems provide the easiest means of obtaining rapid, wide range changes in column temperature. However, slow heat transfer from the gas leads to thermal nonuniformity in the column and a decrease in resolution as the temperature program progresses.
Azevedo de Brito, Wanessa; Gomes Dantas, Monique; Andrade Nogueira, Fernando Henrique; Ferreira da Silva-Júnior, Edeildo; Xavier de Araújo-Júnior, João; Aquino, Thiago Mendonça de; Adélia Nogueira Ribeiro, Êurica; da Silva Solon, Lilian Grace; Soares Aragão, Cícero Flávio; Barreto Gomes, Ana Paula
2017-08-30
Guanylhydrazones are molecules with great pharmacological potential in various therapeutic areas, including antitumoral activity. Factorial design is an excellent tool in the optimization of a chromatographic method, because it is possible quickly change factors such as temperature, mobile phase composition, mobile phase pH, column length, among others to establish the optimal conditions of analysis. The aim of the present work was to develop and validate a HPLC and UHPLC methods for the simultaneous determination of guanylhydrazones with anticancer activity employing experimental design. Precise, exact, linear and robust HPLC and UHPLC methods were developed and validated for the simultaneous quantification of the guanylhydrazones LQM10, LQM14, and LQM17. The UHPLC method was more economic, with a four times less solvent consumption, and 20 times less injection volume, what allowed better column performance. Comparing the empirical approach employed in the HPLC method development to the DoE approach employed in the UHPLC method development, we can conclude that the factorial design made the method development faster, more practical and rational. This resulted in methods that can be employed in the analysis, evaluation and quality control of these new synthetic guanylhydrazones.
PROCESS OF SEPARATING URANIUM FROM AQUEOUS SOLUTION BY SOLVENT EXTRACTION
Warf, J.C.
1958-08-19
A process is described for separating uranium values from aqueous uranyl nitrate solutions. The process consists in contacting the uramium bearing solution with an organic solvent, tributyl phosphate, preferably diluted with a less viscous organic liquida whereby the uranyl nitrate is extracted into the organic solvent phase. The uranvl nitrate may be recovered from the solvent phase bv back extracting with an aqueous mediuin.
Zhang, Xin; Li, Weiping; Yao, Jiannian; Zhan, Chuanlang
2016-06-22
Carrier mobility is a vital factor determining the electrical performance of organic solar cells. In this paper we report that a high-efficiency nonfullerene organic solar cell (NF-OSC) with a power conversion efficiency of 6.94 ± 0.27% was obtained by optimizing the hole and electron transportations via following judicious selection of polymer donor and engineering of film-morphology and cathode interlayers: (1) a combination of solvent annealing and solvent vapor annealing optimizes the film morphology and hence both hole and electron mobilities, leading to a trade-off of fill factor and short-circuit current density (Jsc); (2) the judicious selection of polymer donor affords a higher hole and electron mobility, giving a higher Jsc; and (3) engineering the cathode interlayer affords a higher electron mobility, which leads to a significant increase in electrical current generation and ultimately the power conversion efficiency (PCE).
Vay, Kerstin; Frieß, Wolfgang; Scheler, Stefan
2012-06-01
Biodegradable poly(D,L-lactide-co-glycolide) microspheres were prepared by a well-controlled emulsion solvent extraction/evaporation process. The objective of this study was to investigate how drug release can be modified by changing the morphology of the polymer matrix. The matrix structure was controlled by the preparation temperature which was varied between 10 and 35 °C, thus changing the 4 weeks release pattern from almost linear kinetics to a sigmoidal profile with a distinct lag phase and furthermore decreasing the encapsulation efficiency. By monitoring the glass transition temperature during the extraction process, it was shown that the preparation temperature determines the particle morphology by influencing the time span in which the polymer chains were mobile and flexible during the extraction process. Further factors determining drug release were found to be the molecular weight of the polymer and the rate of solvent removal. The latter, however, has also influence on the encapsulation efficiency with slow removal causing a higher drug loss. A secondary modification of the outer particle structure could be achieved by ethanolic post-treatment of the particles, which caused an extension of the lag phase and subsequently an accelerated drug release. Copyright © 2012. Published by Elsevier B.V.
Hosotani, Keisuke; Kitagawa, Masahiro
2003-07-05
Among the many simultaneous determination methods for carotenoid and retinoid, there are only a few reports including the saponification process. However, the yields of beta-carotene and retinol were higher when using this process. In this study, the analytical conditions, including saponification, were investigated. The extraction solvent was n-hexane and the sample solvent was HPLC mobile phase in the beta-carotene and retinol analysis. BHT as an antioxidant was added at concentrations of 0.125 and 0.025%, respectively, to ethanol and n-hexane phase in the extraction process for serum. The recovery rates were 99.7, 93.7 and 98.3% for beta-carotene, retinol and retinyl palmitate in serum, respectively, and 107.1, 92.8 and 98.8% for beta-carotene, retinol and retinyl palmitate in liver, respectively. The within-day coefficients of variation (C.V.) were 6.0% for serum and 4.7% for liver in the case of beta-carotene, 7.1% for serum, and 5.1% for liver in the case of retinol. The between-day coefficients of variation were 2.7% for serum and 2.7% for liver in the case of beta-carotene, and for retinol, 6.4% for serum and 2.7% for liver.
Purification of optical imaging ligand-Cybesin by high-speed counter-current chromatography
Ma, Zhiyong; Ma, Ying; Sun, Xilin; Ye, Yunpeng; Shen, Baozhong; Chen, Xiaoyuan; Ito, Yoichiro
2010-01-01
Fluorescent Cybesin (Cypate-Bombesin Peptide Analogue Conjugate) was synthesized from Indocyanine Green (ICG) and the bombesin receptor ligand as a contrast agent for detecting pancreas tumors. However, the LC–MS analysis indicated that the target compound was only a minor component in the reaction mixture. Since preparative HPLC can hardly separate such a small amount of the target compound directly from the original crude reaction mixture without a considerable adsorptive loss onto the solid support, high-speed counter-current chromatography (HSCCC) was used for purification since the method uses no solid support and promises high sample recovery. A suitable two-phase solvent system composed of hexane/ethyl acetate/methanol/methyl t.-butyl ether/acetonitrile/water) at a volume ratio of 1:1:1:4:4:7 was selected based on the partition coefficient of Cybesin (K ≈ 0.9) determined by LC–MS. The separation was performed in two steps using the same solvent system with lower aqueous mobile phase. From 400 mg of the crude reaction mixture the first separation yielded 7.7 mg of fractions containing the target compound at 12.8% purity, and in the second run 1 mg of Cybesin was obtained at purity of 94.0% with a sample recovery rate of over 95% based on the LC–MS Analysis. PMID:20933483
Low density microcellular foams
Aubert, James H.; Clough, Roger L.; Curro, John G.; Quintana, Carlos A.; Russick, Edward M.; Shaw, Montgomery T.
1987-01-01
Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the resultant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Means for subjecting such a solvent to one-dimensional cooling are also provided. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 .mu.m and a volume such that the foams have a length greater than 1 cm are provided.
Angelis, Apostolis; Hamzaoui, Mahmoud; Aligiannis, Nektarios; Nikou, Theodora; Michailidis, Dimitris; Gerolimatos, Panagiotis; Termentzi, Aikaterini; Hubert, Jane; Halabalaki, Maria; Renault, Jean-Hugues; Skaltsounis, Alexios-Léandros
2017-03-31
An integrated extraction and purification process for the direct recovery of high added value compounds from extra virgin olive oil (EVOO) is proposed by using solid support free liquid-liquid extraction and chromatography techniques. Two different extraction methods were developed on a laboratory-scale Centrifugal Partition Extractor (CPE): a sequential strategy consisting of several "extraction-recovery" cycles and a continuous strategy based on stationary phase co-current elution. In both cases, EVOO was used as mobile phase diluted in food grade n-hexane (feed mobile phase) and the required biphasic system was obtained by adding ethanol and water as polar solvents. For the sequential process, 17.5L of feed EVOO containing organic phase (i.e. 7L of EVOO treated) were extracted yielding 9.5g of total phenolic fraction corresponding to a productivity of 5.8g/h/L of CPE column. Regarding the second approach, the co-current process, 2L of the feed oil phase (containing to 0.8L of EVOO) were treated at 100mL/min yielding 1.03g of total phenolic fraction corresponding to a productivity of 8.9g/h/L of CPE column. The total phenolic fraction was then fractionated by using stepwise gradient elution Centrifugal Partition Chromatography (CPC). The biphasic solvent systems were composed of n-hexane, ethyl acetate, ethanol and water in different proportions (X/Y/2/3, v/v). In a single run of 4h on a column with a capacity of 1L, 910mg of oleocanthal, 882mg of oleacein, 104mg of hydroxytyrosol were successfully recovered from 5g of phenolic extract with purities of 85%, 92% and 90%, respectively. CPC fractions were then submitted to orthogonal chromatographic steps (adsorption on silica gel or size exclusion chromatography) leading to the isolation of additional eleven compounds belonging to triterpens, phenolic compounds and secoiridoids. Among them, elenolic acid ethylester was found to be new compound. Thin Layer Chromatography (TLC), Nuclear magnetic Resonance (NMR) and High Performance Liquid Chromatography - Diode Array Detector (HPLC-DAD) were used for monitoring and evaluation purposes throughout the entire procedure. Copyright © 2017 Elsevier B.V. All rights reserved.
Tong, Shengqiang; Zhang, Hu; Shen, Mangmang; Ito, Yoichiro; Yan, Jizhong
2014-01-01
Preparative enantioseparations of α-cyclopentylmandelic acid and α-methylmandelic acid by high-speed countercurrent chromatography (HSCCC) and high performance liquid chromatography (HPLC) were compared using hydroxypropy-β-cyclodextrin (HP-β-CD) and sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as the chiral mobile phase additives. In preparative HPLC the enantioseparation was achieved on the ODS C18 reverse phase column with the mobile phase composed of a mixture of acetonitrile and 0.10 mol L−1 phosphate buffer at pH 2.68 containing 20 mmol L−1 HP-β-CD for α-cyclopentylmandelic acid and 20 mmol L−1 SBE-β-CD for α-methylmandelic acid. The maximum sample size for α-cyclopentylmandelic acid and α-methylmandelic acid was only about 10 mg and 5 mg, respectively. In preparative HSCCC the enantioseparations of these two racemates were performed with the two-phase solvent system composed of n-hexane-methyl tert.-butyl ether-0.1 molL−1 phosphate buffer solution at pH 2.67 containing 0.1 mol L−1 HP-β-CD for α-cyclopentylmandelic acid (8.5:1.5:10, v/v/v) and 0.1 mol L−1 SBE-β-CD for α-methylmandelic acid (3:7:10, v/v/v). Under the optimum separation conditions, total 250 mg of racemic α-cyclopentylmandelic acid could be completely enantioseparated by HSCCC with HP-β-CD as a chiral mobile phase additive in a single run, yielding 105-110 mg of enantiomers with 95-98% purity and 85-90% recovery. But, no complete enantioseparation of α-methylmandelic acid was achieved by preparative HSCCC with either of the chiral selectors due to their limited enantioselectivity. In this paper preparative enantioseparation by HSCCC and HPLC was compared from various aspects. PMID:25983356
Tong, Shengqiang; Zhang, Hu; Shen, Mangmang; Ito, Yoichiro; Yan, Jizhong
2015-04-01
Preparative enantioseparations of α-cyclopentylmandelic acid and α-methylmandelic acid by high-speed countercurrent chromatography (HSCCC) and high performance liquid chromatography (HPLC) were compared using hydroxypropy-β-cyclodextrin (HP-β-CD) and sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as the chiral mobile phase additives. In preparative HPLC the enantioseparation was achieved on the ODS C 18 reverse phase column with the mobile phase composed of a mixture of acetonitrile and 0.10 mol L -1 phosphate buffer at pH 2.68 containing 20 mmol L -1 HP-β-CD for α-cyclopentylmandelic acid and 20 mmol L -1 SBE-β-CD for α-methylmandelic acid. The maximum sample size for α-cyclopentylmandelic acid and α-methylmandelic acid was only about 10 mg and 5 mg, respectively. In preparative HSCCC the enantioseparations of these two racemates were performed with the two-phase solvent system composed of n -hexane-methyl tert. -butyl ether-0.1 molL -1 phosphate buffer solution at pH 2.67 containing 0.1 mol L -1 HP-β-CD for α-cyclopentylmandelic acid (8.5:1.5:10, v/v/v) and 0.1 mol L -1 SBE-β-CD for α-methylmandelic acid (3:7:10, v/v/v). Under the optimum separation conditions, total 250 mg of racemic α-cyclopentylmandelic acid could be completely enantioseparated by HSCCC with HP-β-CD as a chiral mobile phase additive in a single run, yielding 105-110 mg of enantiomers with 95-98% purity and 85-90% recovery. But, no complete enantioseparation of α-methylmandelic acid was achieved by preparative HSCCC with either of the chiral selectors due to their limited enantioselectivity. In this paper preparative enantioseparation by HSCCC and HPLC was compared from various aspects.
Ebrahimi, Amir; Jafari, Mohammad T
2015-03-01
This paper deals with a method based on negative corona discharge ionization ion mobility spectrometry (NCD-IMS) for the analysis of ethion (as an organophosphorus pesticide). The negative ions such as O2(-) and NO(x)(-) were eliminated from the background spectrum to increase the instrument sensitivity. The method was used to specify the sample extracted via dispersive liquid-liquid microextraction (DLLME) based on low density extraction solvent. The ion mobility spectrum of ethion in the negative mode and the reduced mobility value for its ion peak are firstly reported and compared with those of the positive mode. In order to combine the low density solvent DLLME directly with NCD-IMS, cyclohexane was selected as the extraction solvent, helping us to have a direct injection up to 20 µL solution, without any signal interference. The method was exhaustively validated in terms of sensitivity, enrichment factor, relative recovery, and repeatability. The linear dynamic range of 0.2-100.0 µg L(-1), detection limit of 0.075 µg L(-1), and the relative standard deviation (RSD) of about 5% were obtained for the analysis of ethion through this method. The average recoveries were calculated about 68% and 92% for the grape juice and underground water, respectively. Finally, some real samples were analyzed and the feasibility of the proposed method was successfully verified by the efficient extraction of the analyte using DLLME before the analysis by NCD-IMS. Copyright © 2014 Elsevier B.V. All rights reserved.
Kitaguchi, Koichi; Hanamura, Naoya; Murata, Masaharu; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko
2014-01-01
A fluorocarbon and hydrocarbon organic solvent mixture is known as a temperature-induced phase-separation solution. When a mixed solution of tetradecafluorohexane as a fluorocarbon organic solvent and hexane as a hydrocarbon organic solvent (e.g., 71:29 volume ratio) was delivered in a capillary tube that was controlled at 10°C, the tube radial distribution phenomenon (TRDP) of the solvents was clearly observed through fluorescence images of the dye, perylene, dissolved in the mixed solution. The homogeneous mixed solution (single phase) changed to a heterogeneous solution (two phases) with inner tetradecafluorohexane and outer hexane phases in the tube under laminar flow conditions, generating the dynamic liquid-liquid interface. We also tried to apply TRDP to a separation technique for metal compounds. A model analyte mixture, copper(II) and hematin, was separated through the capillary tube, and detected with a chemiluminescence detector in this order within 4 min.
Khoeini Sharifabadi, Malihe; Saber-Tehrani, Mohammad; Waqif Husain, Syed; Mehdinia, Ali; Aberoomand-Azar, Parviz
2014-01-01
A simple and sensitive solid-phase extraction method for separation and preconcentration of trace amount of four nonsteroidal anti-inflammatory drugs (naproxen, indomethacin, diclofenac, and ibuprofen) using Fe3O4 magnetic nanoparticles modified with cetyltrimethylammonium bromide has been developed. For this purpose, the surface of MNPs was modified with cetyltrimethylammonium bromide (CTAB) as a cationic surfactant. Effects of different parameters influencing the extraction efficiency of drugs including the pH, amount of salt, shaking time, eluent type, the volume of solvent, amount of adsorbent, sample volume, and the time of desorption were investigated and optimized. Methanol has been used as desorption solvent and the extracts were analysed on a reversed-phase octadecyl silica column using 0.02 M phosphate-buffer (pH = 6.02) acetonitrile (65 : 35 v/v) as the mobile phase and the effluents were measured at 202 nm with ultraviolet detector. The relative standard deviation (RSD%) of the method was investigated at three concentrations (25, 50, and 200 ng/mL) and was in the range of 3.98-9.83% (n = 6) for 50 ng/mL. The calibration curves obtained for studied drugs show reasonable linearity (R (2) > 0.99) and the limit of detection (LODs) ranged between 2 and 7 ng/mL. Finally, the proposed method has been effectively employed in extraction and determination of the drugs in biological and environmental samples.
Bouchard, Daniel; Wanner, Philipp; Luo, Hong; McLoughlin, Patrick W; Henderson, James K; Pirkle, Robert J; Hunkeler, Daniel
2017-10-20
The methodology of the solvent-based dissolution method used to sample gas phase volatile organic compounds (VOC) for compound-specific isotope analysis (CSIA) was optimized to lower the method detection limits for TCE and benzene. The sampling methodology previously evaluated by [1] consists in pulling the air through a solvent to dissolve and accumulate the gaseous VOC. After the sampling process, the solvent can then be treated similarly as groundwater samples to perform routine CSIA by diluting an aliquot of the solvent into water to reach the required concentration of the targeted contaminant. Among solvents tested, tetraethylene glycol dimethyl ether (TGDE) showed the best aptitude for the method. TGDE has a great affinity with TCE and benzene, hence efficiently dissolving the compounds during their transition through the solvent. The method detection limit for TCE (5±1μg/m 3 ) and benzene (1.7±0.5μg/m 3 ) is lower when using TGDE compared to methanol, which was previously used (385μg/m 3 for TCE and 130μg/m 3 for benzene) [2]. The method detection limit refers to the minimal gas phase concentration in ambient air required to load sufficient VOC mass into TGDE to perform δ 13 C analysis. Due to a different analytical procedure, the method detection limit associated with δ 37 Cl analysis was found to be 156±6μg/m 3 for TCE. Furthermore, the experimental results validated the relationship between the gas phase TCE and the progressive accumulation of dissolved TCE in the solvent during the sampling process. Accordingly, based on the air-solvent partitioning coefficient, the sampling methodology (e.g. sampling rate, sampling duration, amount of solvent) and the final TCE concentration in the solvent, the concentration of TCE in the gas phase prevailing during the sampling event can be determined. Moreover, the possibility to analyse for TCE concentration in the solvent after sampling (or other targeted VOCs) allows the field deployment of the sampling method without the need to determine the initial gas phase TCE concentration. The simplified field deployment approach of the solvent-based dissolution method combined with the conventional analytical procedure used for groundwater samples substantially facilitates the application of CSIA to gas phase studies. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Steele, John; Chullen, Cinda; Morenz, Jesse; Stephenson, Curtis
2010-01-01
Freon-113(TradeMark) has been used as a chemistry lab sampling solvent at NASA/JSC for EMU (extravehicular Mobility Unit) SOP (Secondary Oxygen Pack) oxygen testing Cold Traps utilized at the USA (United Space Alliance) Houston facility. Similar testing has occurred at the HSWL (Hamilton Sundstrand Windsor Locks) facility. A NASA Executive Order bans the procurement of all ODS (ozone depleting substances), including Freon-113 by the end of 2009. In order to comply with NASA direction, HSWL began evaluating viable solvents to replace Freon-113 . The study and testing effort to find Freon-113 replacements used for Cold Trap sampling is the subject of this paper. Test results have shown HFE-7100 (a 3M fluorinated ether) to be an adequate replacement for Freon-113 as a solvent to remove and measure the non-volatile residue collected in a Cold Trap during oxygen testing. Furthermore, S-316 (a Horiba Instruments Inc. high molecular weight, non-ODS chlorofluorocarbon) was found to be an adequate replacement for Freon-113 as a solvent to reconstitute non-volatile residue removed from a Cold Trap during oxygen testing for subsequent HC (hydrocarbon) analysis via FTIR (Fourier Transform Infrared Spectroscopy).
Dephasing dynamics in confined myoglobin
NASA Astrophysics Data System (ADS)
Goj, Anne; Loring, Roger F.
2007-11-01
Confinement of a solution can slow solvent dynamics and in turn influence the reactivity and structure of the solute. Encapsulating a protein in an aqueous pore affects its binding properties, stability to degradation, interconversion between conformational states, and energy relaxation. We perform molecular dynamics simulations of H64V-CO mutant myoglobin solvated by varying amounts of liquid water, and in turn enclosed by a matrix of immobilized solvent, to mimic differing degrees of confinement of H64V-CO in a glass. We calculate the three-pulse vibrational echo signal of the CO ligand from the autocorrelation function of fluctuations in the CO vibrational frequency. When the first solvation layer alone is free to relax, the correlation function displays only fast relaxation reminiscent of the case of a protein in a fixed, immobilized solvent matrix. However the vibrational echo signal in this case decays significantly more rapidly than for a static solvent. With two solvation layers mobile, the correlation function displays long time relaxation characteristic of the unconfined protein and the echo signal decays rapidly. The echo signal of the protein with two mobile solvation layers is nearly identical to that of the unconfined protein, despite the substantially constrained solvent dynamics in the confined case.
Mohamed, Heba M; Lamie, Nesrine T
2016-09-01
In the past few decades the analytical community has been focused on eliminating or reducing the usage of hazardous chemicals and solvents, in different analytical methodologies, that have been ascertained to be extremely dangerous to human health and environment. In this context, environmentally friendly, green, or clean practices have been implemented in different research areas. This study presents a greener alternative of conventional RP-HPLC methods for the simultaneous determination and quantitative analysis of a pharmaceutical ternary mixture composed of telmisartan, hydrochlorothiazide, and amlodipine besylate, using an ecofriendly mobile phase and short run time with the least amount of waste production. This solvent-replacement approach was feasible without compromising method performance criteria, such as separation efficiency, peak symmetry, and chromatographic retention. The greenness profile of the proposed method was assessed and compared with reported conventional methods using the analytical Eco-Scale as an assessment tool. The proposed method was found to be greener in terms of usage of hazardous chemicals and solvents, energy consumption, and production of waste. The proposed method can be safely used for the routine analysis of the studied pharmaceutical ternary mixture with a minimal detrimental impact on human health and the environment.
Porous fiber formation in polymer-solvent system undergoing solvent evaporation
NASA Astrophysics Data System (ADS)
Dayal, Pratyush; Kyu, Thein
2006-08-01
Temporal evolution of the fiber morphology during dry spinning has been investigated in the framework of Cahn-Hilliard equation [J. Chem. Phys. 28, 258 (1958)] pertaining to the concentration order parameter or volume fraction given by the Flory-Huggins free energy of mixing [P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953), p. 672] in conjunction with the solvent evaporation rate. To guide the solvent evaporation induced phase separation, equilibrium phase diagram of the starting polymer solution was established on the basis of the Flory-Huggins free energy of mixing. The quasi-steady-state approximation has been adopted to account for the nonconserved nature of the concentration field caused by the solvent loss. The process of solvent evaporation across the fiber skin-air interface was treated in accordance with the classical Fick's law [R. B. Bird et al., Transport Phenomena (J. Wiley, New York, 1960), p. 780]. The simulated morphologies include gradient type, hollow fiber type, bicontinuous type, and host-guest type. The development of these diverse fiber morphologies is explicable in terms of the phase diagram of the polymer solution in a manner dependent on the competition between the phase separation dynamics and rate of solvent evaporation.
Xuan, Xueyi; Huang, Lina; Pan, Xiaoling; Li, Ning
2013-02-01
A pH/organic solvent double-gradient mode in reversed-phase high performance liquid chromatography (HPLC) has been established as a new approach to the simultaneous determination of acetaminophen, caffeine, salicylamide, pseudoephedrine hydrochloride and triprolidine hydrochloride in paracetamol triprolidine hydrochloride and pseudoephedrine hydrochloride tablets. Through the optimization of the organic solvent gradient mode and pH/organic solvent double-gradient mode, the optimum double-gradient HPLC system of the five cold medicine ingredients has been built. The determination was carried out on a Diamonsiol C18 column (250 mm x 4.6 mm, 5 microm). The mobile phase consisted of methanol, 0.05 mol/L ammonium acetate solution and 0.08 mol/L acetic acid solution. The column temperature was set at 30 degrees C. The flow rate was 1.0 mL/min. The sample was measured at multiple wavelengths: 0-6 min, 280 nm; 6-7 min, 257 nm; 7-14 min, 280 nm; 14 min, 233 nm. The separation of the five cold medicine ingredients in the tablets was achieved in 25.5 min. The linear ranges of acetaminophen, pseudoephedrine hydrochloride, caffeine, salicylamide and triprolidine hydrochloride were 0.055 -0.998 g/L, 0.053-0.946 g/L, 0.007-0.129 g/L, 0.035-0.622 g/L and 0.002-0.039 g/L, respectively, with their correlation coefficients greater than 0.999 0. The detection limits (S/N = 3) were 0.09, 6, 0.02, 0.128 and 0.02 mg/L, respectively. Their mean recoveries were 97.9%-102.8%. The advantage of the method is the simultaneous determination of acidic, neutral and basic compounds. It also can improve the column efficiency of the analyte, compress the half-peak width and reduce the trailing. The optimized and validated method can be used for the simultaneous determination of the five cold medicine ingredients in the tablets.
Glycoalkaloid content in pet food by UPLC-tandem mass spectrometry.
Sheridan, Robert S; Kemnah, Jennifer L
2010-11-01
The glycoalkaloid content of pet food containing potatoes is investigated using a liquid-liquid solvent extraction followed by analysis by ultra-high pressure liquid chromatography tandem mass spectrometry (UPLC-MS-MS). Pet food samples are homogenized and extracted with a solution of 50:50 (v/v) acetonitrile-deionized water containing 5% acetic acid. Following vortexing and centrifugation, 3 mL of the supernatant is filtered and diluted in deionized water. The extract is injected onto a reverse phase C18 UPLC column with an initial mobile phase composed of 0.15% acetic acid in water (A) and 0.15% acetic acid in methanol (B) in a ratio of 70:30, respectively. The mobile phase reaches a final concentration of 15% A and 85% B over 10 min, at which point it is returned to the initial conditions. α-Solanine is measured by monitoring transitions m/z = 868.50 → 398.40 and 868.50 → 722.50, while α-chaconine is measure by monitoring transitions m/z = 852.60 → 97.80 and 852.60 → 706.50. Each analyte is measured and combined to determine total glycoalkaloid content (TGA). The results of the analysis of 52 pet food samples indicate both glycoalkaloids are present in all samples and two pet foods were found to contain > 100 μg/g total glycoalkaloid.
Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett
2013-12-01
The comprehensive separation and detection of hydrophobic and hydrophilic active pharmaceutical ingredients (APIs), their counter-ions (organic, inorganic) and excipients, using a single mixed-mode chromatographic column, and a dual injection approach is presented. Using a mixed-mode Thermo Fisher Acclaim Trinity P1 column, APIs, their counter-ions and possible degradants were first separated using a combination of anion-exchange, cation-exchange and hydrophobic interactions, using a mobile phase consisting of a dual organic modifier/salt concentration gradient. A complementary method was also developed using the same column for the separation of hydrophilic bulk excipients, using hydrophilic interaction liquid chromatography (HILIC) under high organic solvent mobile phase conditions. These two methods were then combined within a single gradient run using dual sample injection, with the first injection at the start of the applied gradient (mixed-mode retention of solutes), followed by a second sample injection at the end of the gradient (HILIC retention of solutes). Detection using both ultraviolet absorbance and refractive index enabled the sensitive detection of APIs and UV-absorbing counter-ions, together with quantitative determination of bulk excipients. The developed approach was applied successfully to the analysis of a dry powder inhalers (Flixotide(®), Spiriva(®)), enabling comprehensive quantification of all APIs and excipients in the sample. Copyright © 2013 Elsevier B.V. All rights reserved.
Ma, Jie; Chen, Qianliang; Lai, Daowan; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro
2009-01-01
Coupled with evaporative light scattering detection, high-speed countercurrent chromatography was successfully applied for the first time to separation and purification of four triterpene saponins including esculentoside A, B, C and D from roots of Radix Phytolaccae. The separation was performed with an optimized two-phase solvent system composed of chloroform-methanol-water (4:4:2, v/v) using the lower phase as the mobile phase at a flow rate of 1.5 ml/min,. From 150 mg of crude extract 46.3 mg of esculentoside A, 21.8 mg of esculentoside B, 7.3 mg of esculentoside C, and 13.6 mg of esculentoside D were obtained at purities of 96.7%, 99.2%, 96.5% and 97.8%, respectively, as determined by HPLC analysis. The structures of the four triterpene saponins were identified by ESI-MS,1H NMR and 13C NMR. PMID:20454595
Mohammadnezhad, Nasim; Matin, Amir Abbas; Samadi, Naser; Shomali, Ashkan; Valizadeh, Hassan
2017-01-01
Linear ionic liquid bonded to fused silica and its application as a solid-phase microextraction fiber for the extraction of bisphenol A (BPA) from water samples were studied. After optimization of microextraction conditions (15 mL sample volume, extraction time of 40 min, extraction temperature of 30 ± 1°C, 300 μL acetonitrile as the desorption solvent, and desorption time of 7 min), the fiber was used to extract BPA from packed mineral water, followed by HPLC-UV on an XDB-C18 column (150 × 4.6 mm id, 3.5 μm particle) with a mobile phase of acetonitrile-water (45 + 55%, v/v) and flow rate of 1 mL . min-1). A low LOD (0.20 μg . L-1) and good linearity (0.9977) in the calibration graph indicated that the proposed method was suitable for the determination of BPA.
Cheng, Heyong; Chen, Xiaopan; Shen, Lihuan; Wang, Yuanchao; Xu, Zigang; Liu, Jinhua
2018-01-05
Most of analytical community is focused on reversed phase high performance liquid chromatography (RP-HPLC) for mercury speciation by employing mobile phases comprising of high salts and moderate amounts of organic solvents. This study aims at rapid mercury speciation analysis by ion-pairing RP-HPLC with inductively coupled plasma mass spectrometry (ICP-MS) detection only using low salts for the sake of green analytical chemistry. Two ion-pairing HPLC methods were developed on individual usage of positively and negatively charged ion-pairing reagents (tetrabutylammonium hydroxide -TBAH and sodium dodecylbenzene sulfonate -SDBS), where sodium 3-mercapto-1-propysulfonate (MPS) and l-cysteine (Cys) were individually added in mobile phases to transform mercury species into negative and positive Hg-complexes for good resolution. Addition of phenylalanine was also utilized for rapid baseline separation in combination of short C 18 guard columns. Optimum mobile phases of 2.0mM SDBS+2.0mM Cys+1.0mM Phe (pH 3.0) and 4.0mM TBAH+2.0mM MPS+2.0mM Phe (pH 6.0) both achieved baseline separation of inorganic mercury (Hg 2+ ), methylmercury (MeHg), ethylmercury (EtHg) and phenylmercury (PhHg) on two consecutive 12.5-mm C 18 columns. The former mobile phase was selected for mercury speciation in freshwater fish because of short separation time (3.0min). Detection limits of 0.015 for Hg 2+ , 0.014 for MeHg, 0.028 for EtHg and 0.042μgL -1 for PhHg were obtained along with satisfactory precisions of peak height and area (1.0-2.8% for 5.0μgL -1 Hg-mixture standard). Good accordance of determined values of MeHg and total mercury in certified reference materials of fish tissue (GBW 10029) and tuna fish (BCR-463) with certified values as well as good recoveries (91-106%) proved good accuracy of the proposed method. An example application to freshwater fish indicated its potential in routine analysis, where MeHg was presented at 3.7-20.3μgkg -1 as the dominate species. Copyright © 2017 Elsevier B.V. All rights reserved.
Separation by solvent extraction
Holt, Jr., Charles H.
1976-04-06
17. A process for separating fission product values from uranium and plutonium values contained in an aqueous solution, comprising adding an oxidizing agent to said solution to secure uranium and plutonium in their hexavalent state; contacting said aqueous solution with a substantially water-immiscible organic solvent while agitating and maintaining the temperature at from -1.degree. to -2.degree. C. until the major part of the water present is frozen; continuously separating a solid ice phase as it is formed; separating a remaining aqueous liquid phase containing fission product values and a solvent phase containing plutonium and uranium values from each other; melting at least the last obtained part of said ice phase and adding it to said separated liquid phase; and treating the resulting liquid with a new supply of solvent whereby it is practically depleted of uranium and plutonium.
Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars
Black, S.K.; Hames, B.R.; Myers, M.D.
1998-03-24
A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.
Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars
Black, Stuart K.; Hames, Bonnie R.; Myers, Michele D.
1998-01-01
A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.
Janney, Mark A.; Kiggans, Jr., James O.
1999-01-01
A method of drying a green particulate article includes the steps of: a. Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and b. contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores.
Balkatzopoulou, P; Fasoula, S; Gika, H; Nikitas, P; Pappa-Louisi, A
2015-05-29
In the present work the retention of three highly polar and ionizable solutes - uric acid, nicotinic acid and ascorbic acid - was investigated on a mixed-mode reversed-phase and weak anion-exchange (RP/WAX) stationary phase in buffered aqueous acetonitrile (ACN) mobile phases. A U-shaped retention behavior was observed for all solutes with respect to the eluent organic modifier content studied in a range of 5-95% (v/v). This retention behavior clearly demonstrates the presence of a HILIC-type retention mechanism at ACN-rich hydro-organic eluents and an RP-like retention at aqueous-rich hydro-organic eluents. Hence, this column should be promising for application under both RP and HILIC gradient elution modes. For this reason, a series of programmed elution runs were carried out with increasing (RP) and decreasing (HILIC) organic solvent concentration in the mobile phase. This dual gradient process was successfully modeled by two retention models exhibiting a quadratic or a cubic dependence of the logarithm of the solute retention factor (lnk) upon the organic modifier volume fraction (φ). It was found that both models produced by gradient retention data allow the prediction of solute retention times for both types of programmed elution on the mixed-mode column. Four, in the case of the quadratic model, or five, in the case of the cubic model, initial HILIC- and RP-type gradient runs gave satisfactory retention predictions of any similar kind elution program, even with different flow rate, with an overall error of only 2.5 or 1.7%, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budkov, Yu. A., E-mail: urabudkov@rambler.ru; National Research University Higher School of Economics, Moscow; Department of Chemistry, Lomonosov Moscow State University, Moscow
2014-11-28
We investigate local phase transitions of the solvent in the neighborhood of a solvophobic polymer chain which is induced by a change of the polymer-solvent repulsion and the solvent pressure in the bulk solution. We describe the polymer in solution by the Edwards model, where the conditional partition function of the polymer chain at a fixed radius of gyration is described by a mean-field theory. The contributions of the polymer-solvent and the solvent-solvent interactions to the total free energy are described within the mean-field approximation. We obtain the total free energy of the solution as a function of the radiusmore » of gyration and the average solvent number density within the gyration volume. The resulting system of coupled equations is solved varying the polymer-solvent repulsion strength at high solvent pressure in the bulk. We show that the coil-globule (globule-coil) transition occurs accompanied by a local solvent evaporation (condensation) within the gyration volume.« less
Green analytical method development for statin analysis.
Assassi, Amira Louiza; Roy, Claude-Eric; Perovitch, Philippe; Auzerie, Jack; Hamon, Tiphaine; Gaudin, Karen
2015-02-06
Green analytical chemistry method was developed for pravastatin, fluvastatin and atorvastatin analysis. HPLC/DAD method using ethanol-based mobile phase with octadecyl-grafted silica with various grafting and related-column parameters such as particle sizes, core-shell and monolith was studied. Retention, efficiency and detector linearity were optimized. Even for column with particle size under 2 μm, the benefit of keeping efficiency within a large range of flow rate was not obtained with ethanol based mobile phase compared to acetonitrile one. Therefore the strategy to shorten analysis by increasing the flow rate induced decrease of efficiency with ethanol based mobile phase. An ODS-AQ YMC column, 50 mm × 4.6 mm, 3 μm was selected which showed the best compromise between analysis time, statin separation, and efficiency. HPLC conditions were at 1 mL/min, ethanol/formic acid (pH 2.5, 25 mM) (50:50, v/v) and thermostated at 40°C. To reduce solvent consumption for sample preparation, 0.5mg/mL concentration of each statin was found the highest which respected detector linearity. These conditions were validated for each statin for content determination in high concentrated hydro-alcoholic solutions. Solubility higher than 100mg/mL was found for pravastatin and fluvastatin, whereas for atorvastatin calcium salt the maximum concentration was 2mg/mL for hydro-alcoholic binary mixtures between 35% and 55% of ethanol in water. Using atorvastatin instead of its calcium salt, solubility was improved. Highly concentrated solution of statins offered potential fluid for per Buccal Per-Mucous(®) administration with the advantages of rapid and easy passage of drugs. Copyright © 2014 Elsevier B.V. All rights reserved.
Kuroda, Noritaka; Hird, Nick; Cork, David G
2006-01-01
During further improvement of a high-throughput, solution-phase synthesis system, new workup tools and apparatus for parallel liquid-liquid extraction and evaporation have been developed. A combination of in-house design and collaboration with external manufacturers has been used to address (1) environmental issues concerning solvent emissions and (2) sample tracking errors arising from manual intervention. A parallel liquid-liquid extraction unit, containing miniature high-speed magnetic stirrers for efficient mixing of organic and aqueous phases, has been developed for use on a multichannel liquid handler. Separation of the phases is achieved by dispensing them into a newly patented filter tube containing a vertical hydrophobic porous membrane, which allows only the organic phase to pass into collection vials positioned below. The vertical positioning of the membrane overcomes the hitherto dependence on the use of heavier-than-water, bottom-phase, organic solvents such as dichloromethane, which are restricted due to environmental concerns. Both small (6-mL) and large (60-mL) filter tubes were developed for parallel phase separation in library and template synthesis, respectively. In addition, an apparatus for parallel solvent evaporation was developed to (1) remove solvent from the above samples with highly efficient recovery and (2) avoid the movement of individual samples between their collection on a liquid handler and registration to prevent sample identification errors. The apparatus uses a diaphragm pump to achieve a dynamic circulating closed system with a heating block for the rack of 96 sample vials and an efficient condenser to trap the solvents. Solvent recovery is typically >98%, and convenient operation and monitoring has made the apparatus the first choice for removal of volatile solvents.
Kafle, Amol; Coy, Stephen L.; Wong, Bryan M.; Fornace, Albert J.; Glick, James J.; Vouros, Paul
2014-01-01
A systematic study involving the use and optimization of gas phase modifiers in quantitative differential mobility- mass spectrometry (DMS-MS) analysis is presented using mucleoside-adduct biomarkers of DNA damage as an important reference point for analysis in complex matrices. Commonly used polar protic and polar aprotic modifiers have been screened for use against two deoxyguanosine adducts of DNA: N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP) and N-(deoxyguanosin-8-y1)-2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Particular attention was paid to compensation voltage (CoV) shifts, peak shapes and product ion signal intensities while optimizing the DMS-MS conditions. The optimized parameters were then applied to rapid quantitation of the DNA adducts in calf thymus DNA. After a protein precipitation step, adduct levels corresponding to less than one modification in 106 normal DNA bases were detected using the DMS-MS platform. Based on DMS fundamentals and ab-initio thermochemical results we interpret the complexity of DMS modifier responses in terms of thermal activation and the development of solvent shells. At very high bulk gas temperature, modifier dipole moment may be the most important factor in cluster formation and cluster geometry in mobility differences, but at lower temperatures multi-neutral clusters are important and less predictable. This work provides a useful protocol for targeted DNA adduct quantitation and a basis for future work on DMS modifier effects. PMID:24452298
50th Anniversary Perspective: A Perspective on Polyelectrolyte Solutions
2017-01-01
From the beginning of life with the information-containing polymers until the present era of a plethora of water-based materials in health care industry and biotechnology, polyelectrolytes are ubiquitous with a broad range of structural and functional properties. The main attribute of polyelectrolyte solutions is that all molecules are strongly correlated both topologically and electrostatically in their neutralizing background of charged ions in highly polarizable solvent. These strong correlations and the necessary use of numerous variables in experiments on polyelectrolytes have presented immense challenges toward fundamental understanding of the various behaviors of charged polymeric systems. This Perspective presents the author’s subjective summary of several conceptual advances and the remaining persistent challenges in the contexts of charge and size of polymers, structures in homogeneous solutions, thermodynamic instability and phase transitions, structural evolution with oppositely charged polymers, dynamics in polyelectrolyte solutions, kinetics of phase separation, mobility of charged macromolecules between compartments, and implications to biological systems. PMID:29296029
NASA Astrophysics Data System (ADS)
Rakitin, M. S.; Mirzoev, A. A.; Mirzaev, D. A.
2018-04-01
Mobile hydrogen, when dissolving in metals, redistributes due to the density gradients and elastic stresses, and enables destruction processes or phase transformations in local volumes of a solvent metal. It is rather important in solid state physics to investigate these interactions. The first-principle calculations performed in terms of the density functional theory, are used for thermodynamic simulation of the elastic stress effect on the energy of hydrogen dissolution in α-Fe crystal lattice. The paper presents investigations of the total energy of Fe-H system depending on the lattice parameter. As a result, the relation is obtained between the hydrogen dissolution energy and stress. A good agreement is shown between the existing data and simulation results. The extended equation is suggested for the chemical potential of hydrogen atom in iron within the local stress field. Two parameters affecting the hydrogen distribution are compared, namely local stress and phase transformations.
Yang, Xia; Guo, Bao-Lin; Hu, Hong-Yu; Huang, Wen-Hua; Qiao, He-Ping; Fan, Sheng-Ci; Guan, Zha-Gen
2013-09-01
A Cleanert Alumina-N-SPE column (0.5 g/6 mL) chromatograpy with 5 mL of chloroform-methanol (7: 3) as eluent, instead of aluminum oxide column (100-200 mesh, 5 g, 1 cm) chromatograpy eluted successively with chloroform and the chloroform-methanol (7:3) (20 mL each), was applied to enrich matrine and oxymatrine in Sophora flavescens. Also, the optimization of the HPLC determination conditions with acetonitrile-ethanol absolute-3% phosphoric acid solution (84: 6: 10) as mobile phase, instead of acetonitrile-ethanol absolute -3% Phosphoric acid solution (80: 10: 10) recorded in Chinese Pharmacopoeia 2010 Edition, was more suitable for determination of matrine and oxymatrine in S. flavescens. This method has advantage of reducing sample handling time and solvent volume and increasing the accuracy and feasibility, which can simplify the procedure for determination of matrine and oxymatrine in S. flavescens.
Demuth, Dominik; Haase, Nils; Malzacher, Daniel; Vogel, Michael
2015-08-01
We use (13)C CP MAS NMR to investigate the dependence of elastin dynamics on the concentration and composition of the solvent at various temperatures. For elastin in pure glycerol, line-shape analysis shows that larger-scale fluctuations of the protein backbone require a minimum glycerol concentration of ~0.6 g/g at ambient temperature, while smaller-scale fluctuations are activated at lower solvation levels of ~0.2 g/g. Immersing elastin in various glycerol-water mixtures, we observe at room temperature that the protein mobility is higher for lower glycerol fractions in the solvent and, thus, lower solvent viscosity. When decreasing the temperature, the elastin spectra approach the line shape for the rigid protein at 245 K for all studied samples, indicating that the protein ceases to be mobile on the experimental time scale of ~10(-5) s. Our findings yield evidence for a strong coupling between elastin fluctuations and solvent dynamics and, hence, such interaction is not restricted to the case of protein-water mixtures. Spectral resolution of different carbon species reveals that the protein-solvent couplings can, however, be different for side chain and backbone units. We discuss these results against the background of the slaving model for protein dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.
Phaechamud, Thawatchai; Tuntarawongsa, Sarun
2016-01-01
Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (Tg) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and −31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully. PMID:27366064
Phaechamud, Thawatchai; Tuntarawongsa, Sarun
2016-01-01
Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (T g) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and -31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully.
Chaudhari, Mangesh I.; You, Xinli; Pratt, Lawrence R.; ...
2015-11-24
Ethylene carbonate (EC) and propylene carbonate (PC) are widely used solvents in lithium (Li)-ion batteries and supercapacitors. Ion dissolution and diffusion in those media are correlated with solvent dielectric responses. Here, we use all-atom molecular dynamics simulations of the pure solvents to calculate dielectric constants and relaxation times, and molecular mobilities. The computed results are compared with limited available experiments to assist more exhaustive studies of these important characteristics. As a result, the observed agreement is encouraging and provides guidance for further validation of force-field simulation models for EC and PC solvents.
Coutinho, Lincoln Figueira Marins; Nazario, Carlos Eduardo Domingues; Monteiro, Alessandra Maffei; Lanças, Fernando Mauro
2014-08-01
Analyses in chromatographic systems able to save mobile and stationary phases without reducing efficiency and resolution are of current interest. These advantages regarding savings have challenged us to develop a system dedicated to miniaturized liquid chromatography. This paper reports on the development of a high-pressure syringe-type pump, an oven able to perform isothermal and temperature programming and a software program to control these chromatographic devices. The experimental results show that the miniaturized system can generate reproducible and accurate temperature and flow rate. The system was applied to the separation of statins and tetracylines and showed excellent performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Low density microcellular foams
Aubert, J.H.; Clough, R.L.; Curro, J.G.; Quintana, C.A.; Russick, E.M.; Shaw, M.T.
1985-10-02
Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the reusltant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 ..mu..m and a volume such that the foams have a length greater than 1 cm are provided.
Method of analysis of polymerizable monomeric species in a complex mixture
Hermes, Robert E
2014-03-18
Method of selective quantitation of a polymerizable monomeric species in a well spacer fluid, said method comprising the steps of adding at least one solvent having a refractive index of less than about 1.33 to a sample of the complex mixture to produce a solvent phase, and measuring the refractive index of the solvent phase.
Fang, Yingtong; Li, Quan; Shao, Qian; Wang, Binghai; Wei, Yun
2017-07-21
The alkaloids from lotus (Nelumbo nucifera Gaertn) are effective in lowering hyperlipemia and level of cholesterol. However, there is not a general method for their separation. In this work, a general ionic liquid pH-zone-refining countercurrent chromatography method for isolation and purification of six alkaloids from the whole lotus plant was successfully established by using ionic liquids as the modifier of the two-phase solvent system. The conditions of ionic liquid pH-zone-refining countercurrent chromatography, involving solvent systems, concentration of retainer and eluter, types of ionic liquids, the content of ionic liquids as well as ionic liquids posttreatment, were optimized to improve extraction efficiency. Finally, the separation of these six alkaloids was performed with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water-[C 4 mim][PF 6 ] at a volume ratio of 5:2:2:8:0.1, where 10mM TEA was added to the organic stationary phase as a retainer and 3mM HCl was added to the aqueous mobile phase as an eluter. As a result, six alkaloids including N-nornuciferine, liensinine, nuciferine, isoliensinine, roemerine and neferine were successfully separated with the purities of 97.0%, 90.2%, 94.7%, 92.8%, 90.4% and 95.9%, respectively. The established general method has been respectively applied to the crude samples of lotus leaves and lotus plumules. A total of 37.3mg of liensinine, 57.7mg of isoliensinine and 179.9mg of neferine were successfully purified in one run from 1.00g crude extract of lotus plumule with the purities of 93.2%, 96.5% and 98.8%, respectively. Amount of 45.6mg N-nornuciferine, 21.6mg nuciferine and 11.7mg roemerine was obtained in one step separation from 1.05g crude extract of lotus leaves with the purity of 96.9%, 95.6% and 91.33%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Development of Simulation Methods in the Gibbs Ensemble to Predict Polymer-Solvent Phase Equilibria
NASA Astrophysics Data System (ADS)
Gartner, Thomas; Epps, Thomas; Jayaraman, Arthi
Solvent vapor annealing (SVA) of polymer thin films is a promising method for post-deposition polymer film morphology control. The large number of important parameters relevant to SVA (polymer, solvent, and substrate chemistries, incoming film condition, annealing and solvent evaporation conditions) makes systematic experimental study of SVA a time-consuming endeavor, motivating the application of simulation and theory to the SVA system to provide both mechanistic insight and scans of this wide parameter space. However, to rigorously treat the phase equilibrium between polymer film and solvent vapor while still probing the dynamics of SVA, new simulation methods must be developed. In this presentation, we compare two methods to study polymer-solvent phase equilibrium-Gibbs Ensemble Molecular Dynamics (GEMD) and Hybrid Monte Carlo/Molecular Dynamics (Hybrid MC/MD). Liquid-vapor equilibrium results are presented for the Lennard Jones fluid and for coarse-grained polymer-solvent systems relevant to SVA. We found that the Hybrid MC/MD method is more stable and consistent than GEMD, but GEMD has significant advantages in computational efficiency. We propose that Hybrid MC/MD simulations be used for unfamiliar systems in certain choice conditions, followed by much faster GEMD simulations to map out the remainder of the phase window.
NASA Astrophysics Data System (ADS)
Metwally, Fadia H.; Abdelkawy, M.; Abdelwahab, Nada S.
2007-12-01
Spectrophotometric, spectrodensitometric and HPLC are stability indicating methods described for determination of Zaleplon in pure and dosage forms. As Zaleplon is easily degradable, the proposed techniques in this manuscript are adopted for its determination in presence of its alkaline degradation product, namely N-[4-(3-cyano-pyrazolo[1,5a]pyridin-7-yl)-phenyl]- N-ethyl-acetamide. These approaches are successfully applied to quantify Zaleplon using the information included in the absorption spectra of appropriate solutions. The second derivative (D 2) spectrophotometric method, allows determination of Zaleplon without interference of its degradate at 235.2 nm using 0.01N HCl as a solvent with obedience to Beer's law over a concentration range of 1-10 μg ml -1 with mean percentage recovery 100.24 ± 0.86%. The first derivative of the ratio spectra ( 1DD) based on the simultaneous use of ( 1DD) and measurement at 241.8 nm using the same solvent and over the same concentration range as (D 2) spectrophotometric method, with mean percentage recovery 99.9 ± 1.07%. The spectrodensitometric analysis allows the separation and quantitation of Zaleplon from its degradate on silica gel plates using chloroform:acetone:ammonia solution (9:1:0.2 by volume) as a mobile phase. This method depends on quantitave densitometric evaluation of thin layer chromatogram of Zaleplon at 338 nm over a concentration range of 0.2-1 μg band -1, with mean percentage recovery 99.73 ± 1.35. Also a reversed-phase liquid chromatographic method using 5-C8 (22 cm × 4.6 mm i.d. 5 μm particle size) column was described and validated for quantitation of Zaleplon using acetonitrile:deionised water (35:65, v/v) as a mobile phase using Paracetamol as internal standard and a flow rate of 1.5 ml min -1 with UV detection of the effluent at 232 nm at ambient temperature over a concentration range of 2-20 μg ml -1 with mean percentage recovery 100.19 ± 1.15%. The insignificance difference of the proposed methods results with those of the reference one proved their accuracy and precision.
Gu, Minjeong; Cho, Keunchang; Kang, Seong Ho
2018-07-27
The migration behavior of organic fluorescent dyes (i.e., crystal violet, methyl violet base, methyl violet B base, rhodamine 6G, and rhodamine B base) in non-aqueous capillary electrophoresis (NACE) was investigated by focusing on the physicochemical properties of various organic solvents [ethanol, methanol, 2-propanol, dimethylformamide (DMF), and dimethyl sulfoxide (DMSO)] in background electrolyte (BGE). Laser-induced fluorescence (LIF) and UV/Vis detectors were employed to observe both the migration time of organic dyes and the electroosmotic flow (EOF) in NACE, respectively. As seen in conventional aqueous BGE, the mobility of EOF in organic solvents tended to rise when the ratio between the dielectric constant and the solvent's viscosity (ε/η) increased in accordance with Smoluchowski's equation. However, unlike the ε/η of pure organic solvents, the migration order of dyes changed as follows: methanol (60.0) > DMF (45.8) > ethanol (22.8) > DMSO (23.4) > 2-propanol (9.8). Since the amount of acetic acid added to balance the pH depends on the pK a of each solvent, EOF changed when the difference in the ε/η value was small. This resulted from the inhibition of mobility, and its difference was dependent on the ε/η of BGEs with high ionic strength. In particular, the actual mobility of dyes in DMF showed excellent compliance with the Debye-Hückel-Onsager (DHO) theory extended by Falkenhagen and Pitts, which enabled us to analyze all dyes within 15 min with excellent resolution (R s > 2.5) under optimum NACE conditions (10 mM sodium borate and 4661 mM acetic acid in 100% DMF, pH 4.5). In addition, the NACE method was successfully applied for analyzing commercially available ballpoint ink pens. Thus, these results could be used to anticipate the migration order of organic dyes in a 100% NACE separation system. Copyright © 2018 Elsevier B.V. All rights reserved.
The Denaturation Transition of DNA in Mixed Solvents
Hammouda, Boualem; Worcester, David
2006-01-01
The helix-to-coil denaturation transition in DNA has been investigated in mixed solvents at high concentration using ultraviolet light absorption spectroscopy and small-angle neutron scattering. Two solvents have been used: water and ethylene glycol. The “melting” transition temperature was found to be 94°C for 4% mass fraction DNA/d-water and 38°C for 4% mass fraction DNA/d-ethylene glycol. The DNA melting transition temperature was found to vary linearly with the solvent fraction in the mixed solvents case. Deuterated solvents (d-water and d-ethylene glycol) were used to enhance the small-angle neutron scattering signal and 0.1M NaCl (or 0.0058 g/g mass fraction) salt concentration was added to screen charge interactions in all cases. DNA structural information was obtained by small-angle neutron scattering, including a correlation length characteristic of the inter-distance between the hydrogen-containing (desoxyribose sugar-amine base) groups. This correlation length was found to increase from 8.5 to 12.3 Å across the melting transition. Ethylene glycol and water mixed solvents were found to mix randomly in the solvation region in the helix phase, but nonideal solvent mixing was found in the melted coil phase. In the coil phase, solvent mixtures are more effective solvating agents than either of the individual solvents. Once melted, DNA coils behave like swollen water-soluble synthetic polymer chains. PMID:16815902
Electron mobility enhancement in ZnO thin films via surface modification by carboxylic acids
NASA Astrophysics Data System (ADS)
Spalenka, Josef W.; Gopalan, Padma; Katz, Howard E.; Evans, Paul G.
2013-01-01
Modifying the surface of polycrystalline ZnO films using a monolayer of organic molecules with carboxylic acid attachment groups increases the field-effect electron mobility and zero-bias conductivity, resulting in improved transistors and transparent conductors. The improvement is consistent with the passivation of defects via covalent bonding of the carboxylic acid and is reversible by exposure to a UV-ozone lamp. The properties of the solvent used for the attachment are crucial because solvents with high acid dissociation constants (Ka) for carboxylic acids lead to high proton activities and etching of the nanometers-thick ZnO films, masking the electronic effect.
Fluoro-alcohol phase modifiers and process for cesium solvent extraction
Bonnesen, Peter V.; Moyer, Bruce A.; Sachleben, Richard A.
2003-05-20
The invention relates to a class of phenoxy fluoro-alcohols, their preparation, and their use as phase modifiers and solvating agents in a solvent composition for the extraction of cesium from alkaline solutions. These phenoxy fluoro-alcohols comply with the formula: ##STR1## in which n=2 to 4; X represents a hydrogen or a fluorine atom, and R.sup.2 -R.sup.6 are hydrogen or alkyl substituents. These phenoxy fluoro-alcohol phase modifiers are a necessary component to a robust solvent composition and process useful for the removal of radioactive cesium from alkaline nuclear waste streams. The fluoro-alcohols can also be used in solvents designed to extract other cesium from acidic or neutral solutions.
Confinement effects on lyotropic nematic liquid crystal phases of graphene oxide dispersions
NASA Astrophysics Data System (ADS)
Al-Zangana, Shakhawan; Iliut, Maria; Turner, Michael; Vijayaraghavan, Aravind; Dierking, Ingo
2017-12-01
Graphene oxide (GO) forms well ordered liquid crystal (LC) phases in polar solvents. Here, we map the lyotropic phase diagram of GO as a function of the lateral dimensions of the GO flakes, their concentration, geometrical confinement configuration and solvent polarity. GO flakes were prepared in water and transferred into other polar solvents. Polarising optical microscopy (POM) was used to determine the phase evolution through the isotropic-biphasic-nematic transitions of the GO LC. We report that the confinement volume and geometry relative to the particle size is critical for the observation of the lyotropic phase, specifically, this determines the low-end concentration limit for the detection of the GO LC. Additionally, a solvent with higher polarisability stabilises the LC phases at lower concentrations and smaller flake sizes. GO LCs have been proposed for a range of applications from display technologies to conductive fibres, and the behaviour of LC phase formation under confinement imposes a limit on miniaturisation of the dimensions of such GO LC systems which could significantly impact on their potential applications.
NASA Astrophysics Data System (ADS)
Moortgat, J.; Amooie, M. A.; Soltanian, M. R.
2016-12-01
Problems in hydrogeology and hydrocarbon reservoirs generally involve the transport of solutes in a single solvent phase (e.g., contaminants or dissolved injection gas), or the flow of multiple phases that may or may not exchange mass (e.g., brine, NAPL, oil, gas). Often, flow is viscously and gravitationally unstable due to mobility and density contrasts within a phase or between phases. Such instabilities have been studied in detail for single-phase incompressible fluids and for two-phase immiscible flow, but to a lesser extent for multiphase multicomponent compressible flow. The latter is the subject of this presentation. Robust phase stability analyses and phase split calculations, based on equations of state, determine the mass exchange between phases and the resulting phase behavior, i.e., phase densities, viscosities, and volumes. Higher-order finite element methods and fine grids are used to capture the small-scale onset of flow instabilities. A full matrix of composition dependent coefficients is considered for each Fickian diffusive phase flux. Formation heterogeneity can have a profound impact and is represented by realistic geostatistical models. Qualitatively, fingering in multiphase compositional flow is different from single-phase problems because 1) phase mobilities depend on rock wettability through relative permeabilities, and 2) the initial density and viscosity ratios between phases may change due to species transfer. To quantify mixing rates in different flow regimes and for varying degrees of miscibility and medium heterogeneities, we define the spatial variance, scalar dissipation rate, dilution index, skewness, and kurtosis of the molar density of introduced species. Molar densities, unlike compositions, include compressibility effects. The temporal evolution of these measures shows that, while transport at the small-scale (cm) is described by the classical advection-diffusion-dispersion relations, scaling at the macro-scale (> 10 m) shows transitions between advective, diffusive, ballistic, sub-diffusive, and non-Fickian diffusive behavior. These scaling relations can be used to improve the predictive powers of field-scale reservoir simulations that cannot resolve the complexities of unstable flow and transport at cm-m scales.
NASA Astrophysics Data System (ADS)
Dammertz, K.; Saier, A. M.; Marti, O.; Amirkhani, M.
2014-04-01
External stimuli such as vapours and electric fields can be used to manipulate the formation of AB-diblock copolymers on surfaces. We study the conformational variation of PS-b-PMMA (polystyrene-block-poly(methyl methacrylate)), PS and PMMA adsorbed on mica and their response to saturated water or chloroform atmospheres. Using specimens with only partial polymer coverage, new unanticipated effects were observed. Water vapour, a non-solvent for all three polymers, was found to cause high surface mobility. In contrast, chloroform vapour (a solvent for all three polymers) proved to be less efficient. Furthermore, the influence of an additional applied electric field was investigated. A dc field oriented parallel to the sample surface induces the formation of polymer islands which assemble into wormlike chains. Moreover, PS-b-PMMA forms octopus-like micelles (OLMs) on mica. Under the external stimuli mentioned above, the wormlike formations of OLMs are able to align in the direction of the external electric field. In the absence of an electric field, the OLMs disaggregate and exhibit phase separated structures under chloroform vapour.
Jia, Li; Liu, Yaling; Du, Yanyan; Xing, Da
2007-06-22
A pressurized capillary electrochromatography (pCEC) system was developed for the separation of water-soluble vitamins, in which UV absorbance was used as the detection method and a monolithic silica-ODS column as the separation column. The parameters (type and content of organic solvent in the mobile phase, type and concentration of electrolyte, pH of the electrolyte buffer, applied voltage and flow rate) affecting the separation resolution were evaluated. The combination of two on-line concentration techniques, namely, solvent gradient zone sharpening effect and field-enhanced sample stacking, was utilized to improve detection sensitivity, which proved to be beneficial to enhance the detection sensitivity by enabling the injection of large volumes of samples. Coupling electrokinetic injection with the on-line concentration techniques was much more beneficial for the concentration of positively charged vitamins. Comparing with the conventional injection mode, the enhancement in the detection sensitivities of water-soluble vitamins using the on-line concentration technique is in the range of 3 to 35-fold. The developed pCEC method was applied to evaluate water-soluble vitamins in corns.
Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R
2009-03-20
Particle-based simulations using the configurational-bias and Gibbs ensemble Monte Carlo techniques are carried out to probe the effects of various chromatographic parameters on bonded-phase chain conformation, solvent penetration, and retention in reversed-phase liquid chromatography (RPLC). Specifically, we investigate the effects due to the length of the bonded-phase chains (C(18), C(8), and C(1)), the inclusion of embedded polar groups (amide and ether) near the base of the bonded-phase chains, the column pressure (1, 400, and 1000 atm), and the pore shape (planar slit pore versus cylindrical pore with a 60A diameter). These simulations utilize a bonded-phase coverage of 2.9 micromol/m(2)and a mobile phase containing methanol at a molfraction of 33% (about 50% by volume). The simulations show that chain length, embedded polar groups, and pore shape significantly alter structural and retentive properties of the model RPLC system, whereas the column pressure has a relatively small effect. The simulation results are extensively compared to retention measurements. A molecular view of the RPLC retention mechanism emerges that is more complex than can be inferred from thermodynamic measurements.
Langlois, Marie-Hélène; Vekris, Antonios; Bousses, Christine; Mordelet, Elodie; Buhannic, Nathalie; Séguard, Céline; Couraud, Pierre-Olivier; Weksler, Babette B; Petry, Klaus G; Gaudin, Karen
2015-04-15
A Reversed Phase-High Performance Liquid Chromatography/Diode Array Detection method was developed and validated for paracetamol quantification in cell culture fluid from an in vitro Blood Brain Barrier model. The chromatographic method and sample preparation were developed using only aqueous solvents. The column was a XTerra RP18 150 × 4.6mm, 3.5 μm with a guard column XTerra RP18 20 × 4.6 mm, 3.5 μm at 35 °C and the mobile phase was composed by 100% formate buffer 20 mM at pH 4 and flow rate was set at 1 mL/min. The detection was at 242 nm. The sample was injected at 10 μL. Validation was performed using the accuracy profile approach. The analytical procedure was validated with the acceptance limits at ± 10% over a range of concentration from 1 to 58 mg L(-1). The procedure was then used in routine to determine paracetamol concentration in a brain blood barrier in vitro model. Application of the Unither paracetamol formulation in Blood Brain Barrier model allowed the determination and comparison of the transcellular passage of paracetamol at 37 °C and 4 °C, that excludes paracellular or non specific leakage. Copyright © 2015 Elsevier B.V. All rights reserved.
Yang, Xiu-Min; Wang, Ou; Wang, Ming-Zhao; Hu, Yan-Xue; Li, Wei-Ning; Wang, Zhi
2008-09-01
A method for the determination of metolcarb and diethofencarb in apples and apple juice is developed using solid-phase microextraction (SPME) coupled with high-performance liquid chromatography (HPLC). The experimental conditions of SPME, such as the kind of extraction fiber, extraction time, stirring rate, pH of the extracting solution, and desorption conditions are optimized. The SPME is performed on a 60 microm polydimethylsiloxane/divinylbenzene fiber for 40 min at room temperature with the solution being stirred at 1100 rpm. The extracted pesticides on the SPME fiber are desorbed in the mobile phase into SPME-HPLC interface for HPLC analysis. Separations are carried out on a Baseline C18 column (4.6 i.d. x 250 mm, 5.0 microm) with acetonitrile-water (55/45, v/v) as the mobile phase at a flow rate of 1.0 mL/min, and photodiode-array detection at 210 nm. For apple samples, the method is linear for both metolcarb and diethofencarb in the range of 0.05-1.0 mg/kg (r > 0.99), with a detection limit (S/N = 3 ) of 15 and 5 microg/kg, respectively. For apple juice, the method is linear for both metholcarb and diethofencarb over the range of 0.05-1.0 mg/L (r > 0.99) with the detection limit (S/N = 3 ) of 15 and 3 microg/L, respectively. Excellent recovery and reproducibility values are achieved. The proposed method is shown to be simple, sensitive, and organic solvent-free, and is suitable for the determination of the two pesticides in apples and apple juice.
Liang, Chao; Qiao, Jun-Qin; Lian, Hong-Zhen
2017-12-15
Reversed-phase liquid chromatography (RPLC) based octanol-water partition coefficient (logP) or distribution coefficient (logD) determination methods were revisited and assessed comprehensively. Classic isocratic and some gradient RPLC methods were conducted and evaluated for neutral, weak acid and basic compounds. Different lipophilicity indexes in logP or logD determination were discussed in detail, including the retention factor logk w corresponding to neat water as mobile phase extrapolated via linear solvent strength (LSS) model from isocratic runs and calculated with software from gradient runs, the chromatographic hydrophobicity index (CHI), apparent gradient capacity factor (k g ') and gradient retention time (t g ). Among the lipophilicity indexes discussed, logk w from whether isocratic or gradient elution methods best correlated with logP or logD. Therefore logk w is recommended as the preferred lipophilicity index for logP or logD determination. logk w easily calculated from methanol gradient runs might be the main candidate to replace logk w calculated from classic isocratic run as the ideal lipophilicity index. These revisited RPLC methods were not applicable for strongly ionized compounds that are hardly ion-suppressed. A previously reported imperfect ion-pair RPLC method was attempted and further explored for studying distribution coefficients (logD) of sulfonic acids that totally ionized in the mobile phase. Notably, experimental logD values of sulfonic acids were given for the first time. The IP-RPLC method provided a distinct way to explore logD values of ionized compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Photoisomerization action spectroscopy of the carbocyanine dye DTC+ in the gas phase.
Adamson, Brian D; Coughlan, Neville J A; da Silva, Gabriel; Bieske, Evan J
2013-12-19
Molecular photoisomerization plays a crucial role in diverse biological and technological contexts. Here, we combine ion mobility spectrometry and laser spectroscopy to characterize the photoisomerization of molecular cations in the gas phase. The target molecular ions, polymethine dye cations 3,3'-diethylthiacarbocyanine (DTC(+)), are propelled through helium buffer gas by an electric field and are photoisomerized by light from a tunable laser. Photoexcitation over the 450-570 nm range converts trans-DTC(+) to cis-DTC(+), noticeably modifying the ions' arrival time distribution. The photoisomerization action spectrum, which has a maximum at 535 nm, resembles the absorption spectrum of DTC(+) in solution but is shifted 25 nm to shorter wavelength. Comparisons between measured and calculated mobilities suggest that the photoisomer involves a twist about the second C-C bond in the methine chain (8,9-cis isomer) rather than a twist about the first methine C-C bond (2,8-cis isomer). It is postulated that the excited gas-phase ions internally convert from the S1 Franck-Condon region to the S0 manifold and explore the conformational landscape as they cool through He buffer gas collisions. Master equation simulations of the relaxation process in the S0 manifold suggest that the 8,9-cis isomer is preferred over the 2,8-cis isomer because it lies lower in energy and because it is separated from the trans isomer by a substantially higher barrier. The study demonstrates that the photoisomerization of molecular ions can be probed selectively in the gas phase, providing insights into photoisomerization mechanisms and information on the solvent-free absorption spectrum.
Roy, Sudeshna; Sharma, Ashutosh
2015-07-01
Dewetting pathways, kinetics and morphologies of thin films of phase separating polymer blends are governed by the relative mobilities of the two components. We characterize the morphological transformations of the nanostructures of a PS/PMMA blend by annealing in toluene and chloroform vapors. Toluene leads to faster reorganization of PS, whereas chloroform engenders the opposite effect. Spin coating produces a very rough PMMA rich layer that completely wets the substrate and forms a plethora of slender columns protruding through the continuous PS rich layer on top. The nanostructures were stable under long thermal annealing but in the vapor annealing, phase separation and dewetting occurred readily to form the equilibrium structures of dewetted droplets of PS on top of PMMA which also climbed around the PS droplets to form rims. Toluene and chloroform annealing required around 50 h and 1 h respectively to attain the equilibrium. Substantial differences are observed in the intermediate morphologies (heights of nanostructures, roughness and size). PMMA columns remained embedded in the dewetted PS droplets, whereas a high mobility of PMMA in chloroform allowed its rapid evacuation during dewetting to produce an intermediate swiss-cheese like morphology of PS domains. Copyright © 2015 Elsevier Inc. All rights reserved.
Flynt, Elizabeth; Dupuy, Aubry; Kennedy, Charles; Bennett, Shanda
2006-09-01
The rapid detection of contaminants in our nation's drinking water has become a top homeland security priority in this time of increased national vigilance. Real-time monitoring of drinking water for deliberate or accidental contamination is key to national security. One method that can be employed for the rapid screening of pollutants in water is solid-phase microextraction (SPME). SPME is a rapid, sensitive, solvent-free system that can be used to screen for contaminants that have been accidentally or intentionally introduced into a water system. A method using SPME has been developed and optimized for the detection of seven organophosphate pesticides in drinking water treatment facility source waters. The method is tested in source waters for drinking water treatment facilities in Mississippi and Alabama. Water is collected from a deepwater well at Stennis Space Center (SSC), MS, the drinking water source for SSC, and from the Converse Reservoir, the main drinking water supply for Mobile, AL. Also tested are samples of water collected from the Mobile Alabama Water and Sewer System drinking water treatment plant prior to chlorination. The method limits of detection for the seven organophosphates were comparable to those described in several Environmental Protection Agency standard methods. They range from 0.25 to 0.94 microg/L.
Supercritical crystallization: The RESs-process and the GAS-process
NASA Astrophysics Data System (ADS)
Berends, Edwin M.
1994-09-01
This Doctoral Ph.D. thesis describes the development of two novel crystallization processes utilizing supercritical fluids either as a solvent, the RESS-process, or as an anti-solvent, the GAS-process. In th RESS-process precipitation of the solute is performed by expansion of the solution over a nozzle to produce ultra-fine, monodisperse particles without any solvent inclusions. In the GAS-process a high pressure gas is dissolved into the liquid phase solvent, where it causes a volumetric expansion of this liquid solvent and lowers the equilibrium solubility. Particle size, particle size distribution and other particle characteristics such as their shape, internal structure and the residual amount of solvent in the particles are expected to be influenced by the liquid phase expansion profile.
Pickett, Alec; Torkkeli, Mika; Mukhopadhyay, Tushita; Puttaraju, Boregowda; Laudari, Amrit; Lauritzen, Andreas E; Bikondoa, Oier; Kjelstrup-Hansen, Jakob; Knaapila, Matti; Patil, Satish; Guha, Suchismita
2018-06-13
Copolymers based on diketopyrrolopyrrole (DPP) cores have attracted a lot of attention because of their high p-type as well as n-type carrier mobilities in organic field-effect transistors (FETs) and high power conversion efficiencies in solar cell structures. We report the structural and charge transport properties of n-dialkyl side-chain-substituted thiophene DPP end-capped with a phenyl group (Ph-TDPP-Ph) monomer in FETs which were fabricated by vacuum deposition and solvent coating. Grazing-incidence X-ray diffraction (GIXRD) from bottom-gate, bottom-contact FET architectures was measured with and without biasing. Ph-TDPP-Ph reveals a polymorphic structure with π-conjugated stacking direction oriented in-plane. The unit cell comprises either one monomer with a = 20.89 Å, b = 13.02 Å, c = 5.85 Å, α = 101.4°, β = 90.6°, and γ = 94.7° for one phase (TR1) or two monomers with a = 24.92 Å, b = 25.59 Å, c = 5.42 Å, α = 80.3°, β = 83.5°, and γ = 111.8° for the second phase (TR2). The TR2 phase thus signals a shift from a coplanar to herringbone orientation of the molecules. The device performance is sensitive to the ratio of the two triclinic phases found in the film. Some of the best FET performances with p-type carrier mobilities of 0.1 cm 2 /V s and an on/off ratio of 10 6 are for films that comprise mainly the TR1 phase. GIXRD from in operando FETs demonstrates the crystalline stability of Ph-TDPP-Ph.
Han, Linjie; Hyung, Suk-Joon; Ruotolo, Brandon T
2013-01-01
The role that water plays in the salt-based stabilization of proteins is central to our understanding of protein biophysics. Ion hydration and the ability of ions to alter water surface tension are typically invoked, along with direct ion-protein binding, to describe Hofmeister stabilization phenomena observed for proteins experimentally, but the relative influence of these forces has been extraordinarily difficult to measure directly. Recently, we have used gas-phase measurements of proteins and large multiprotein complexes, using a combination of innovative ion mobility (IM) and mass spectrometry (MS) techniques, to assess the ability of bound cations and anions to stabilize protein ions in the absence of the solvation forces described above. Our previous work has studied a broad set of 12 anions bound to a range of proteins and protein complexes, and while primarily motivated by the analytical challenges surrounding the gas-phase measurement of solution-phase relevant protein structures, our work has also lead to a detailed physical mechanism of anion-protein complex stabilization in the absence of bulk solvent. Our more-recent work has screened a similarly-broad set of cations for their ability to stabilize gas-phase protein structure, and we have discovered surprising differences between the operative mechanisms for cations and anions in gas-phase protein stabilization. In both cases, cations and anions affect protein stabilization in the absence of solvent in a manner that is generally reversed relative to their ability to stabilize the same proteins in solution. In addition, our evidence suggests that the relative solution-phase binding affinity of the anions and cations studied here is preserved in our gas-phase measurements, allowing us to study the influence of such interactions in detail. In this report, we collect and summarize such gas-phase measurements to distill a generalized picture of salt-based protein stabilization in the absence of bulk water. Further, we communicate our most recent efforts to study the combined effects of stabilizing cations and anions on gas-phase proteins, and identify those salts that bear anion/cation pairs having the strongest stabilizing influence on protein structures
Cho, H. Jean; Jaffe, Peter R.; Smith, James A.
1993-01-01
This paper describes laboratory and field experiments which were conducted to study the dynamics of trichloroethylene (TCE) as it volatilized from contaminated groundwater and diffused in the presence of infiltrating water through the unsaturated soil zone to the land surface. The field experiments were conducted at the Picatinny Arsenal, which is part of the United States Geological Survey Toxic Substances Hydrology Program. In both laboratory and field settings the gas and water phase concentrations of TCE were not in equilibrium during infiltration. Gas-water mass transfer rate constants were calibrated to the experimental data using a model in which the water phase was treated as two phases: a mobile water phase and an immobile water phase. The mass transfer limitations of a volatile organic compound between the gas and liquid phases were described explicitly in the model. In the laboratory experiment the porous medium was nonsorbing, and water infiltration rates ranged from 0.076 to 0.28 cm h−1. In the field experiment the water infiltration rate was 0.34 cm h−1, and sorption onto the soil matrix was significant. The laboratory-calibrated gas-water mass transfer rate constant is 3.3×10−4 h−1 for an infiltration rate of 0.076 cm h−1 and 1.4×10−3 h−1 for an infiltration rate of 0.28 cm h−1. The overall mass transfer rate coefficients, incorporating the contribution of mass transfer between mobile and immobile water phases and the variation of interfacial area with moisture content, range from 3×10−4 h−1 to 1×10−2 h−1. A power law model relates the gas-water mass transfer rate constant to the infiltration rate and the fraction of the water phase which is mobile. It was found that the results from the laboratory experiments could not be extrapolated to the field. In order to simulate the field experiment the very slow desorption of TCE from the soil matrix was incorporated into the mathematical model. When desorption from the soil matrix was added to the model, the calibrated gas-water mass transfer rate constant is 2 orders of magnitude lower than that predicted using the power law model developed for the nonsorbing laboratory soil.
Mitigation of solvent interference using a short packed column prior to ion mobility spectrometry.
Jafari, Mohammad T; Saraji, Mohammad; Mossaddegh, Mehdi
2017-05-15
This paper introduces a novel approach to overcome the solvent interference in corona discharge-ion mobility spectrometry (CD-IMS) based on the time-resolved signals of the solvent and the analyte. To that end, a short Teflon tube was filled with a low amount of squalene or OV-1, which was prepared and located between the injection port and the entrance of the CD-IMS cell. Through this procedure, a sufficient delay (~5s) was obtained between the introduction of the solvent and the analyte into the reaction region of IMS. This resulted in removing the proton by solvent molecules, as well as increasing the effective collision during the analyte ionization, thereby providing an analysis with more sensitivity, accuracy, and precision. To show the column efficiency, ethion and diazinon (organophosphorus pesticides) were selected as the test compounds and their solutions were analyzed by the proposed method. The amount of sorbent, carrier gas flow rate, and the sorbent temperature affecting the sorbent efficiency were optimized by employing the response surface methodology and the central composite design. The proposed method was exhaustively validated in terms of sensitivity, linearity, and repeatability. In particular, the feasibility of direct injection was successfully verified by the satisfactory results, as compared with those achieved without the prior column. The methodology used in this study is very simple and inexpensive, which can overcome the solvent interference when a solution is directly injected into the CD-IMS. Copyright © 2017 Elsevier B.V. All rights reserved.
Continuous extraction of organic materials from water
Goldberg, M.C.; DeLong, L.; Kahn, L.
1971-01-01
A continuous liquid solvent extractor, designed to utilize organic solvents that are heavier than water, is described. The extractor is capable of handling input rates up to 2 liters per hour and has a 500-ml. extractant capacity. Extraction efficiency is dependent upon the p-value, the two solvent ratios, rate of flow of the aqueous phase, and rate of reflux of the organic phase. Extractors can be serially coupled to increase extraction efficiency and, when coupled with a lighter-than-water extractor, the system will allow the use of any immiscible solvent.
Tedder, Daniel W.
1985-05-14
Alcohol substantially free of water is prepared by continuously fermenting a fermentable biomass feedstock in a fermentation unit, thereby forming an aqueous fermentation liquor containing alcohol and microorganisms. Continuously extracting a portion of alcohol from said fermentation liquor with an organic solvent system containing an extractant for said alcohol, thereby forming an alcohol-organic solvent extract phase and an aqueous raffinate. Said alcohol is separated from said alcohol-organic solvent phase. A raffinate comprising microorganisms and unextracted alcohol is returned to the fermentation unit.
NASA Astrophysics Data System (ADS)
Semenov, K. N.; Charykov, N. A.; Postnov, V. N.; Sharoyko, V. V.; Murin, I. V.
2016-01-01
This review is the first attempt to integrate the available data on all types of phase equilibria (solubility, extraction and sorption) in systems containing light fullerenes (C60 and C70). In the case of solubility diagrams, the following types of phase equilibria are considered: individual fullerene (C60 or C70)-solvent under polythermal and polybaric conditions; C60-C70-solvent, individual fullerene-solvent(1)-solvent(2), as well as multicomponent systems comprising a single fullerene or an industrial mixture of fullerenes and vegetable oils, animal fats or essential oils under polythermal conditions. All published experimental data on the extraction equilibria in C60-C70-liquid phase(1)-liquid phase(2) systems are described systematically and the sorption characteristics of various materials towards light fullerenes are estimated. The possibility of application of these experimental data for development of pre-chromatographic and chromatographic methods for separation of fullerene mixtures and application of fullerenes as nanomodifiers are described. The bibliography includes 87 references.
Taha, Mohamed; Lee, Ming-Jer
2013-06-28
Water and the organic solvents tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone are completely miscible in all proportions at room temperature. Here, we present new buffering-out phase separation systems that the above mentioned organic aqueous solutions can be induced to form two liquid phases in the presence of a biological buffer 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES). The lower liquid phase is rich in water and buffer, and the upper phase is organic rich. This observation has both practical and mechanistic interests. The phase diagrams of these systems were constructed by experimental measurements at ambient conditions. Molecular dynamic (MD) simulations were performed for TES + water + THF system to understand the interactions between TES, water, and organic solvent at molecular level. Several composition-sets for this system, beyond and inside the liquid-liquid phase-splitting region, have been simulated. Interestingly, the MD simulation for compositions inside the phase separation region showed that THF molecules are forced out from the water network to start forming a new liquid phase. The hydrogen-bonds, hydrogen-bonds lifetimes, hydrogen-bond energies, radial distribution functions, coordination numbers, the electrostatic interactions, and the van der Waals interactions between the different pairs have been calculated. Additionally, MD simulations for TES + water + tert-butanol∕acetonitrile∕acetone phase separation systems were simulated. The results from MD simulations provide an explanation for the buffering-out phenomena observed in [TES + water + organic solvent] systems by a mechanism controlled by the competitive interactions of the buffer and the organic solvent with water. The molecular mechanism reported here is helpful for designing new benign separation materials.
Moloney, M; Tuck, S; Ramkumar, A; Furey, A; Danaher, M
2018-03-01
A method was developed for the confirmatory and quantitative analysis of one pyrethrin and 18 pyrethroid residues in animal fat. Fat was extracted was collected from adipose tissue melted in an oven at 65 °C for 2 h. Fat samples (1 g) were dispersed with deactivated Florisil ® sorbent and extracted with MeCN. Sample extracts were purified by cold temperature precipitation at -30 °C for 4 h and further purified using dispersive solid-phase extraction (d-SPE) clean-up in tubes containing 500 mg of Z-SEP+ and 125 mg of PSA bonded silica. Purified samples were analysed by ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) detection. Chromatographic separation was carried out on a Acquity C 8 BEH column, using a binary gradient separation comprising of mobile phase A, 5 mM ammonium formate in water:MeOH (80:20, v/v,) and mobile phase B, 5 mM ammonium formate in MeOH. The mass spectrometer was operated in the positive electrospray ionisation mode (ESI(+)). Validation was performed following the 2002/657/EC guidelines. Trueness ranged between 84% and 143% and precision ranged between 3.9% and 29%. The developed method is particularly advantageous because the sample preparation procedure does not require complex sample extraction equipment and uses less solvent compared to other sample preparation protocols. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhao, Lu; Xie, Jingqian; Guo, Fangjie; Liu, Kai
2018-05-01
Supercritical fluid chromatography (SFC) is already used for enantioseparation in the pharmaceutical industry, but it is rarely used for the separation of chiral pesticides. Comparing with high performence liquid chromatography, SFC uses much more environmnetal friendly and economic mobile phase, supercritical CO 2 . In our work, the enantioseparation of an amide herbicide, napropamide, using three different polysaccharide-type chiral stationary phases (CSPs) in SFC was investigated. By studying the effect of different CSPs, organic modifiers, temperature, back-pressure regulator pressures, and flow rates for the enantioseparation of napropamide, we established a rapid and green method for enantioseparation that takes less than 2 minutes: The column was CEL2, the mobile phase was CO 2 with 20% 2-propanol, and the flow rate was 2.0 mL/min. We found that CEL2 demonstrated the strongest resolution capability. Acetonitrile was favored over alcoholic solvents when the CSP was amylose and 2-propanol was the best choice when using cellulose. When the concentration of the modifiers or the flow rate was decreased, resolutions and analysis times increased concurrently. The temperature and back-pressure regulator pressure exhibited only minor influences on the resolution and analysis time of the napropamide enantioseparations with these chiral columns. The molecular docking analysis provided a deeper insight into the interactions between the enantiomers and the CSPs at the atomic level and partly explained the reason for the different elution orders using the different chiral columns. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew
2015-12-01
Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.
Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew
2015-12-28
Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.
Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew
2015-01-01
Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson–Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum–Chandler–Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods. PMID:26723595
Process for removing polychlorinated biphenyls from soil
Hancher, C.W.; Saunders, M.B.; Googin, J.M.
1984-11-16
The present invention relates to a method of removing polychlorinated biphenyls from soil. The polychlorinated biphenyls are extracted from the soil by employing a liquid organic solvent dispersed in water in the ratio of about 1:3 to 3:1. The organic solvent includes such materials as short-chain hydrocarbons including kerosene or gasoline which are immiscible with water and are nonpolar. The organic solvent has a greater affinity for the PCB's than the soil so as to extract the PCB's from the soil upon contact. The organic solvent phase is separated from the suspended soil and water phase and distilled for permitting the recycle of the organic solvent phase and the concentration of the PCB's in the remaining organic phase. The present process can be satisfactorily practiced with soil containing 10 to 20% petroleum-based oils and organic fluids such as used in transformers and cutting fluids, coolants and the like which contain PCB's. The subject method provides for the removal of a sufficient concentration of PCB's from the soil to provide the soil with a level of PCB's within the guidelines of the Environmental Protection Agency.
NASA Astrophysics Data System (ADS)
Wang, W. S.; Aggarwal, M. D.; Choi, J.; Gebre, T.; Shields, Angela D.; Penn, Benjamin G.; Frazier, Donald O.
1999-03-01
Single crystals of a new promising nonlinear optical material for the tunable UV harmonic generation, L-pyroglutamic acid 60×20×20 mm 3 in size were obtained from aqueous solution by using the temperature-lowering method. Solubility of L-pyroglutamic acid in different solvents was measured. The single crystals showed different morphological characteristics and growth rate in different solvents with different crystallographic orientations. Methanol or ethanol solutions yielded needle-like crystals. In mixed solution such as methanol/H 2O or ethanol/ H 2O plate-like crystals with a thickness in the direction [0 1 0] were observed. The water as a good solvent, however, produced long prism-like crystals. The two polymorphs of L-pyroglutamic acid (α and β phases) were found for the first time. The growth shapes of α-phase is mainly a prism and β phases is a rhombic plate.The growth rate of α and β phases is mainly a function of the supersaturation of the L-pyroglutamic acid in solution.
Zhang, Shao Fei; Chen, Peng Hao; Zhang, Fei; Yang, Yan Fang; Liu, De Kun; Wu, Gang
2013-12-18
Emamectin benzoate is highly effective against insect pests and widely used in the world. However, its biological activity is limited because of high resistance of target insects and rapid degradation speed in fields. Preparation and physicochemical characterization of degradable microcapsules of emamectin benzoate were studied by modified solvent evaporation/extraction method using polylactide (PLA) as wall material. The influence of different compositions of the solvent in internal organic phase and external aqueous phase on diameter, span, pesticide loading, and entrapment rate of the microspheres was investigated. The results indicated that the process of solvent extraction and the formation of the microcapsules would be accelerated by adding water-miscible organic solvents such as ethyl ether, acetone, ethyl acetate, or n-butanol into internal organic phase and external aqueous phase. Accelerated formation of the microcapsules would result in entrapment rates of emamectin benzoate increased to as high as 97%. In addition, by adding ethanol into the external aqueous phase, diameters would reduce to 6.28 μm, whereas the loading efficiency of emamectin benzoate did not increase. The PLA microspheres prepared under optimum conditions were smoother and more spherical. The degradation rate in PLA microspheres of emamectin benzoate on the 10th day was 4.29 ± 0.74%, whereas the degradation rates of emamectin benzoate in methanol solution and solid technical material were 46.3 ± 2.11 and 22.7 ± 1.51%, respectively. The PLA skeleton had combined with emamectin benzoate in an amorphous or molecular state by using differential scanning calorimetry (DSC) determination. The results indicated that PLA microspheres of emamectin benzoate with high entrapment rate, loading efficiency, and physicochemical characteristics could be obtained by adding water-miscible organic solvents into the internal organic phase and external aqueous phase.
Xue, Guobiao; Xin, Huolin L.; Wu, Jiake; ...
2015-10-29
Enhancing electron transport to match with the development in hole transport is critical for organic electronics in the future. As electron motion is susceptible to extrinsic factors, seeking these factors and avoiding their negative effects have become the central challenge. Here, the existence of polar solvent residues in solution-grown single-crystals of 6,13-bis(triisopropylsilylethynyl)-5,7,12,14-tetraazapentacene is identified as a factor detrimental to electron motion. Field-effect transistors of the crystals exhibit electron mobility boosted by about 60% after the residues are removed. The average electron mobility reaches up to 8.0 ± 2.2 cm 2 V –1 s –1 with a highest value of 13.3more » cm 2 V –1 s –1; these results are significantly higher than those obtained previously for the same molecule (1.0–5.0 cm 2 V –1 s –1). Furthermore, the achieved mobility is also higher than the maximum reported electron mobility for organic materials (11 cm 2 V –1 s –1). As a result, this work should greatly accelerate the advancement of organic electron-transporting materials.« less
Liu, Kai; Ma, Chao; Göstl, Robert; Zhang, Lei; Herrmann, Andreas
2017-05-16
Biomacromolecules, such as nucleic acids, proteins, and virus particles, are persistent molecular entities with dimensions that exceed the range of their intermolecular forces hence undergoing degradation by thermally induced bond-scission upon heating. Consequently, for this type of molecule, the absence of a liquid phase can be regarded as a general phenomenon. However, certain advantageous properties usually associated with the liquid state of matter, such as processability, flowability, or molecular mobility, are highly sought-after features for biomacromolecules in a solvent-free environment. Here, we provide an overview over the design principles and synthetic pathways to obtain solvent-free liquids of biomacromolecular architectures approaching the topic from our own perspective of research. We will highlight the milestones in synthesis, including a recently developed general surfactant complexation method applicable to a large variety of biomacromolecules as well as other synthetic principles granting access to electrostatically complexed proteins and DNA. These synthetic pathways retain the function and structure of the biomacromolecules even under extreme, nonphysiological conditions at high temperatures in water-free melts challenging the existing paradigm on the role of hydration in structural biology. Under these conditions, the resulting complexes reveal their true potential for previously unthinkable applications. Moreover, these protocols open a pathway toward the assembly of anisotropic architectures, enabling the formation of solvent-free biomacromolecular thermotropic liquid crystals. These ordered biomaterials exhibit vastly different mechanical properties when compared to the individual building blocks. Beyond the preparative aspects, we will shine light on the unique potential applications and technologies resulting from solvent-free biomacromolecular fluids: From charge transport in dehydrated liquids to DNA electrochromism to biocatalysis in the absence of a protein hydration shell. Moreover, solvent-free biological liquids containing viruses can be used as novel storage and process media serving as a formulation technology for the delivery of highly concentrated bioactive compounds. We are confident that this new class of hybrid biomaterials will fuel further studies and applications of biomacromolecules beyond water and other solvents and in a much broader context than just the traditional physiological conditions.
Microporous polymer films and methods of their production
Aubert, James H.
1995-01-01
A process for producing thin microporous polymeric films for a variety of uses. The process utilizes a dense gas (liquified gas or supercritical fluid) selected to combine with a solvent-containing polymeric film so that the solvent is dissolved in the dense gas, the polymer is substantially insoluble in the dense gas, and two phases are formed. A microporous film is obtained by removal of a dense gas-solvent phase.
Dispersions of Goethite Nanorods in Aprotic Polar Solvents
Coursault, Delphine; Dozov, Ivan; Nobili, Maurizio; Dupont, Laurent; Chanéac, Corinne
2017-01-01
Colloidal suspensions of anisotropic nanoparticles can spontaneously self-organize in liquid-crystalline phases beyond some concentration threshold. These phases often respond to electric and magnetic fields. At lower concentrations, usual isotropic liquids are observed but they can display very strong Kerr and Cotton-Mouton effects (i.e., field-induced particle orientation). For many examples of these colloidal suspensions, the solvent is water, which hinders most electro-optic applications. Here, for goethite (α-FeOOH) nanorod dispersions, we show that water can be replaced by polar aprotic solvents, such as N-methyl-2-pyrrolidone (NMP) and dimethylsulfoxide (DMSO), without loss of colloidal stability. By polarized-light microscopy, small-angle X-ray scattering and electro-optic measurements, we found that the nematic phase, with its field-response properties, is retained. Moreover, a strong Kerr effect was also observed with isotropic goethite suspensions in these polar aprotic solvents. Furthermore, we found no significant difference in the behavior of both the nematic and isotropic phases between the aqueous and non-aqueous dispersions. Our work shows that goethite nanorod suspensions in polar aprotic solvents, suitable for electro-optic applications, can easily be produced and that they keep all their outstanding properties. It also suggests that this solvent replacement method could be extended to the aqueous colloidal suspensions of other kinds of charged anisotropic nanoparticles. PMID:29039797
The solvent component of macromolecular crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weichenberger, Christian X.; Afonine, Pavel V.; Kantardjieff, Katherine
2015-04-30
On average, the mother liquor or solvent and its constituents occupy about 50% of a macromolecular crystal. Ordered as well as disordered solvent components need to be accurately accounted for in modelling and refinement, often with considerable complexity. The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initialmore » phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands.« less
Thin layer chromatography-ion mobility spectrometry (TLC-IMS).
Ilbeigi, Vahideh; Tabrizchi, Mahmoud
2015-01-06
Ion mobility spectrometry (IMS) is a fast and sensitive analytical method which operates at the atmospheric pressure. To enhance the capability of IMS for the analysis of mixtures, it is often used with preseparation techniques, such as GC or HPLC. Here, we report for the first time the coupling of the thin-layer chromatography and IMS. A variety of coupling schemes were tried that included direct electrospray from the TLC strip tip, indirect electrospray from a needle connected to the TLC strip, introducing the moving solvent into the injection port, and, the simplest way, offline introduction of scratched or cut pieces of strips into the IMS injection port. In this study a special solvent tank was designed and the TLC strip was mounted horizontally where the solvent would flow down. A very small funnel right below the TLC tip collected the solvent and transferred it to a needle via a capillary tubing. Using the TLC-ESI-IMS technique, acceptable separations were achieved for two component mixtures of morphine-papaverine and acridine-papaverine. A special injection port was designed to host the pieces cut off the TLC. The method was successfully used to identify each spot on the TLC by IMS in a few seconds.
Adsorption of polypropylene from dilute solutions on a zeolite column packing.
Macko, Tibor; Pasch, Harald; Denayer, Joeri F
2005-01-01
Faujasite type zeolite CBV-780 was tested as adsorbent for isotactic polypropylene by liquid chromatography. When cyclohexane, cyclohexanol, n-decanol, n-dodecanol, diphenylmethane, or methylcyclohexane was used as mobile phase, polypropylene was fully or partially retained within the column packing. This is the first series of sorbent-solvent systems to show a pronounced retention of isotactic polypropylene. According to the hydrodynamic volumes of polypropylene in solution, macromolecules of polypropylene should be fully excluded from the pore volume of the sorbent. Sizes of polypropylene macromolecules in linear conformations, however, correlate with the pore size of the column packing used. It is presumed that the polypropylene chains partially penetrate into the pores and are retained due to the high adsorption potential in the narrow pores.
Predicting ESI/MS Signal Change for Anions in Different Solvents.
Kruve, Anneli; Kaupmees, Karl
2017-05-02
LC/ESI/MS is a technique widely used for qualitative and quantitative analysis in various fields. However, quantification is currently possible only for compounds for which the standard substances are available, as the ionization efficiency of different compounds in ESI source differs by orders of magnitude. In this paper we present an approach for quantitative LC/ESI/MS analysis without standard substances. This approach relies on accurately predicting the ionization efficiencies in ESI source based on a model, which uses physicochemical parameters of analytes. Furthermore, the model has been made transferable between different mobile phases and instrument setups by using a suitable set of calibration compounds. This approach has been validated both in flow injection and chromatographic mode with gradient elution.
Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment
Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira; ...
2016-01-29
Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organicmore » solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.« less
Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira
Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organicmore » solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.« less
Yang, Zhi; Wu, Youqian; Wu, Shihua
2016-01-29
Despite of substantial developments of extraction and separation techniques, isolation of natural products from natural resources is still a challenging task. In this work, an efficient strategy for extraction and isolation of multi-component natural products has been successfully developed by combination of systematic two-phase liquid-liquid extraction-(13)C NMR pattern recognition and following conical counter-current chromatography separation. A small-scale crude sample was first distributed into 9 systematic hexane-ethyl acetate-methanol-water (HEMWat) two-phase solvent systems for determination of the optimum extraction solvents and partition coefficients of the prominent components. Then, the optimized solvent systems were used in succession to enrich the hydrophilic and lipophilic components from the large-scale crude sample. At last, the enriched components samples were further purified by a new conical counter-current chromatography (CCC). Due to the use of (13)C NMR pattern recognition, the kinds and structures of major components in the solvent extracts could be predicted. Therefore, the method could collect simultaneously the partition coefficients and the structural information of components in the selected two-phase solvents. As an example, a cytotoxic extract of podophyllotoxins and flavonoids from Dysosma versipellis (Hance) was selected. After the systematic HEMWat system solvent extraction and (13)C NMR pattern recognition analyses, the crude extract of D. versipellis was first degreased by the upper phase of HEMWat system (9:1:9:1, v/v), and then distributed in the two phases of the system of HEMWat (2:8:2:8, v/v) to obtain the hydrophilic lower phase extract and lipophilic upper phase extract, respectively. These extracts were further separated by conical CCC with the HEMWat systems (1:9:1:9 and 4:6:4:6, v/v). As results, total 17 cytotoxic compounds were isolated and identified. In general, whole results suggested that the strategy was very efficient for the systematic extraction and isolation of biological active components from the complex biomaterials. Copyright © 2016 Elsevier B.V. All rights reserved.
Wei, Yun; Hu, Jia; Li, Hao; Liu, Jiangang
2011-12-01
Three active compounds, senkyunolide-I, senkyunolide-H and ferulic acid (FA), were successfully isolated and purified from the extracts of Rhizoma Chuanxiong by counter-current chromatography (CCC). Based on the principle of the partition coefficient values (k) for target compounds and the separation factor (α) between target compounds, the two-phase solvent system that contains n-hexane-ethyl acetate-methanol-water at an optimized volume ratio of 3:7:4:6 v/v was selected for the CCC separation, and the lower phase was employed as the mobile phase in the head-to-tail elution mode. In a single run, 400 mg of the crude extract yielded pure senkyunolide-I (6.4 mg), senkyunolide-H (1.7 mg) and FA (4.4 mg) with the purities of 98, 93 and 99%, respectively. The CCC fractions were analyzed by high-performance liquid chromatography, and the structures of the three active compounds were identified by MS and (1)H NMR. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Malik, Poonam; Bhushan, Ravi
2018-01-01
Direct enantiomeric resolution of commonly used five racemic β-adrenolytics, namely, bisoprolol, atenolol, propranolol, salbutamol and carvedilol has been achieved by thin layer chromatography using bovine serum albumin (BSA) as chiral additive in stationary phase. Successful resolution of the enantiomers of all racemic β-adrenolytics was achieved by use of different composition of simple organic solvents having no buffer or inorganic ions. The effect of variation in pH, temperature, amount of BSA as the additive, and composition of mobile phase on resolution was systematically studied. Spots were visualized in iodine vapors. Native enantiomers for each of the five analytes were isolated and identified and their elution order was determined. The limit of detection was found to be 0.7, 1.2, 0.84, 1.6 and 0.9 μg (per spot) for each enantiomer of bisoprolol, atenolol, propranolol, salbutamol and carvedilol, respectively. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bergh, Marianne Skov-Skov; Bogen, Inger Lise; Andersen, Jannike Mørch; Øiestad, Åse Marit Leere; Berg, Thomas
2018-01-01
A novel ion pair reversed phase ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of the stress hormones adrenaline, noradrenaline and corticosterone in rodent blood was developed and fully validated. Separations were performed on an Acquity HSS T3 column (2.1mm i.d.×100mm, 1.8μm) with gradient elution and a runtime of 5.5min. The retention of adrenaline and noradrenaline was substantially increased by employing the ion pair reagent heptafluorobutyric acid (HFBA). Ion pair reagents are usually added to the mobile phase only, but we demonstrate for the first time that including HFBA to the sample reconstitution solvent as well, has a major impact on the chromatography of these compounds. The stability of adrenaline and corticosterone in rodent blood was investigated using the surrogate analytes adrenaline-d 3 and corticosterone-d 8 . The applicability of the described method was demonstrated by measuring the concentration of stress hormones in rodent blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Immobilized aptamer paper spray ionization source for ion mobility spectrometry.
Zargar, Tahereh; Khayamian, Taghi; Jafari, Mohammad T
2017-01-05
A selective thin-film microextraction based on aptamer immobilized on cellulose paper was used as a paper spray ionization source for ion mobility spectrometry (PSI-IMS), for the first time. In this method, the paper is not only used as an ionization source but also it is utilized for the selective extraction of analyte, based on immobilized aptamer. This combination integrates both sample preparation and analyte ionization in a Whatman paper. To that end, an appropriate sample introduction system with a novel design was constructed for the paper spray ionization source. Using this system, a continuous solvent flow works as an elution and spray solvent simultaneously. In this method, analyte is adsorbed on a triangular paper with immobilized aptamer and then it is desorbed and ionized by elution solvent and applied high voltage on paper, respectively. The effects of different experimental parameters such as applied voltage, angle of paper tip, distance between paper tip and counter electrode, elution solvent type, and solvent flow rate were optimized. The proposed method was exhaustively validated in terms of sensitivity and reproducibility by analyzing the standard solutions of codeine and acetamiprid. The analytical results obtained are promising enough to ensure the use of immobilized aptamer paper-spray as both the extraction and ionization techniques in IMS for direct analysis of biomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.
Vegso, Karol; Siffalovic, Peter; Jergel, Matej; Nadazdy, Peter; Nadazdy, Vojtech; Majkova, Eva
2017-03-08
Solvent annealing is an efficient way of phase separation in polymer-fullerene blends to optimize bulk heterojunction morphology of active layer in polymer solar cells. To track the process in real time across all relevant stages of solvent evaporation, laboratory-based in situ small- and wide-angle X-ray scattering measurements were applied simultaneously to a model P3HT:PCBM blend dissolved in dichlorobenzene. The PCBM molecule agglomeration starts at ∼7 wt % concentration of solid content of the blend in solvent. Although PCBM agglomeration is slowed-down at ∼10 wt % of solid content, the rate constant of phase separation is not changed, suggesting agglomeration and reordering of P3HT molecular chains. Having the longest duration, this stage most affects BHJ morphology. Phase separation is accelerated rapidly at concentration of ∼25 wt %, having the same rate constant as the growth of P3HT crystals. P3HT crystallization is driving force for phase separation at final stages before a complete solvent evaporation, having no visible temporal overlap with PCBM agglomeration. For the first time, such a study was done in laboratory demonstrating potential of the latest generation table-top high-brilliance X-ray source as a viable alternative before more sophisticated X-ray scattering experiments at synchrotron facilities are performed.
Zhu, Yindi; Liu, Yue; Zhan, Ying; Liu, Lin; Xu, Yajuan; Xu, Tunhai; Liu, Tonghua
2013-12-16
Psidium guajava leaves have a diverse phytochemical composition including flavonoids, phenolics, meroterpenoids and triterpenes, responsible for the biological activities of the medicinal parts. In particular, flavonol glycosides show beneficial effects on type II diabetes mellitus. A simple and efficient HSCCC method has been developed for the preparative separation of five flavonoid glycosides and one diphenylmethane glycoside from P. guajava. A solvent system composed of n-hexane-ethyl acetate-methanol-water (0.7:4:0.8:4, v/v/v/v) was optimized for the separation. The upper phase was used as the stationary phase, and the lower phase was used as the mobile phase. Under the optimized conditions, hyperoside (15.3 mg), isoquercitrin (21.1 mg), reynoutrin (65.2 mg), quercetin-3-O-β-D-arabinopyranoside (71.7 mg), quercetin-3-O-α-L-arabinofuranoside (105.6 mg) and 2,4,6-trihydroxy-3,5-dimethylbenzophenone 4-O-(6''-O-galloyl)-β-D-glucopyranoside (98.4 mg) were separated from crude sample (19.8 g). The structures of all the isolates were identified by ESI-MS, 1H- and 13C-NMR analyses and their purities (>95%) were determined using HPLC.
Niu, Lili; Xie, Zhensheng; Cai, Tanxi; Wu, Peng; Xue, Peng; Chen, Xiulan; Wu, Zhiyong; Ito, Yoichiro; Li, Famei; Yang, Fuquan
2011-01-01
High-speed counter-current chromatography (HSCCC) was successfully applied for the preparative separation and purification of alkaloids from Corydalis bungeana Turcz. (Kudiding in Chinese) for the first time. After the measurement of partition coefficient of seven target alkaloids in the nine two-phase solvent systems composed of CHCl3–MeOH–(0.1 M; 0.2 M; 0.3 M) HCl (4:1.5:2; 4:2:2; 4:3:2, v/v), CHCl3–MeOH–0.2 M HCl (4:2:2, v/v) and CHCl3–MeOH–0.3 M HCl (4:3:2, v/v) were finally selected for the HSCCC separation using the first upper phase as the stationary phase and the stepwise elution of the two lower mobile phases. Consequently, sanguinarine (10 mg), corynoline (25 mg), protopine (20 mg), corynoloxine (18 mg), and 12-hydroxycorynoline (8 mg) were obtained from 200 mg of crude alkaloid extracts with purities of 94–99% as determined by HPLC. Their chemical structures were characterized on the basis of 1H-NMR, 13C-NMR, and LC-ESI-Q-TOF-MS/MS analyses. PMID:21387560
Terra-Kleen Response Group Inc. (Terra-Kleen), has commercialized a solvent extraction technology that uses a proprietary extraction solvent to transfer organic constituents from soil to a liquid phase in a batch process at ambient temperatures. The proprietary solvent has a rel...
Differential Microscopic Mobility of Components within a Deep Eutectic Solvent
Wagle, Durgesh V.; Baker, Gary A.; Mamontov, Eugene
2015-07-13
From macroscopic measurements of deep eutectic solvents such as glyceline (1:2 molar ratio of choline chloride to glycerol), the long-range translational diffusion of the larger cation (choline) is known to be slower compared to that of the smaller hydrogen bond donor (glycerol). However, when the diffusion dynamics are analyzed on the subnanometer length scale, we discover that the displacements associated with the localized diffusive motions are actually larger for choline. This counterintuitive diffusive behavior can be understood as follows. The localized diffusive motions confined in the transient cage of neighbor particles, which precede the cage-breaking long-range diffusion jumps, are moremore » spatially constrained for glycerol than for choline because of the stronger hydrogen bonds the former makes with chloride anions. The implications of differential localized mobility of the constituents should be especially important for applications where deep eutectic solvents are confined on the nanometer length scale and their long-range translational diffusion is strongly inhibited (e.g., within microporous media).« less
Comparison of single-ion molecular dynamics in common solvents
NASA Astrophysics Data System (ADS)
Muralidharan, A.; Pratt, L. R.; Chaudhari, M. I.; Rempe, S. B.
2018-06-01
Laying a basis for molecularly specific theory for the mobilities of ions in solutions of practical interest, we report a broad survey of velocity autocorrelation functions (VACFs) of Li+ and PF6- ions in water, ethylene carbonate, propylene carbonate, and acetonitrile solutions. We extract the memory function, γ(t), which characterizes the random forces governing the mobilities of ions. We provide comparisons controlling for the effects of electrolyte concentration and ion-pairing, van der Waals attractive interactions, and solvent molecular characteristics. For the heavier ion (PF6-), velocity relaxations are all similar: negative tail relaxations for the VACF and a clear second relaxation for γ (t ), observed previously also for other molecular ions and with n-pentanol as the solvent. For the light Li+ ion, short time-scale oscillatory behavior masks simple, longer time-scale relaxation of γ (t ). But the corresponding analysis of the solventberg Li+(H2O)4 does conform to the standard picture set by all the PF6- results.
Wang, Zhi-Xiang; Duan, Yong
2004-11-15
The effects of solvation on the conformations and energies of alanine dipeptide (AD) have been studied by ab initio calculations up to MP2/cc-pVTZ//MP2/6-31G**, utilizing the polarizable continuum model (PCM) to mimic solvation effects. The energy surfaces in the gas phase, ether, and water bear similar topological features carved by the steric hindrance, but the details differ significantly due to the solvent effects. The gas-phase energy map is qualitatively consistent with the Ramachandran plot showing seven energy minima. With respect to the gas-phase map, the significant changes of the aqueous map include (1) the expanded low-energy regions, (2) the emergence of an energy barrier between C5-beta and alpha(R)-beta(2) regions, (3) a clearly pronounced alpha(R) minimum, a new beta-conformer, and the disappearance of the gas-phase global minimum, and (4) the shift of the dominant region in LEII from the gas-phase C7(ax) region to the alpha(L) region. These changes bring the map in water to be much closer to the Ramachandran plot than the gas-phase map. The solvent effects on the geometries include the elongation of the exposed N-H and C=O bonds, the shortening of the buried HN--CO peptide bonds, and the enhanced planarity of the peptide bonds. The energy surface in ether has features similar to those both in the gas phase and in water. The free energy order computed in the gas phase and in ether is in good agreement with experimental studies that concluded that C5 and C7(eq) are the dominant species in both the gas phase and nonpolar solvents. The free energy order in water is consistent with the experimental observation that the dominant C7(eq) in the nonpolar solvent was largely replaced by P(II)-like (i.e., beta) and alpha(R) in the strong polar solvents. Based on calculations on AD + 4H(2)O and other AD-water clusters, we suggest that explicit water-AD interactions may distort C5 and beta (or alpha(R) and beta) to an intermediate conformation. Our analysis also shows that the PCM calculations at the MP2/cc-pVTZ//MP2/6-31G** level give good descriptions to the bulk solvent polarization effect. The results presented in this article should be of sufficient quality to characterize the peptide bonds in the gas phase and solvents. The energy surfaces may serve as the basis for developing of strategies enabling the inclusion of solvent polarization in the force field.
Microporous polymer films and methods of their production
Aubert, J.H.
1995-06-06
A process is described for producing thin microporous polymeric films for a variety of uses. The process utilizes a dense gas (liquefied gas or supercritical fluid) selected to combine with a solvent-containing polymeric film so that the solvent is dissolved in the dense gas, the polymer is substantially insoluble in the dense gas, and two phases are formed. A microporous film is obtained by removal of a dense gas-solvent phase. 9 figs.
Nazaripour, Ali; Yamini, Yadollah; Ebrahimpour, Behnam; Fasihi, Javad
2016-07-01
In this study, two-phase hollow-fiber liquid-phase microextraction and three-phase hollow-fiber liquid-phase microextraction based on two immiscible organic solvents were compared for extraction of oxazepam and Lorazepam. Separations were performed on a liquid chromatography with mass spectrometry instrument. Under optimal conditions, three-phase hollow-fiber liquid-phase microextraction based on two immiscible organic solvents has a better extraction efficiency. In a urine sample, for three-phase hollow fiber liquid-phase microextraction based on two immiscible organic solvents, the calibration curves were found to be linear in the range of 0.6-200 and 0.9-200 μg L(-1) and the limits of detection were 0.2 and 0.3 μg L(-1) for oxazepam and lorazepam, respectively. For two-phase hollow fiber liquid-phase microextraction, the calibration curves were found to be linear in the range of 1-200 and 1.5-200 μg L(-1) and the limits of detection were 0.3 and 0.5 μg L(-1) for oxazepam and lorazepam, respectively. In a urine sample, for three-phase hollow-fiber-based liquid-phase microextraction based on two immiscible organic solvents, relative standard deviations in the range of 4.2-4.5% and preconcentration factors in the range of 70-180 were obtained for oxazepam and lorazepam, respectively. Also for the two-phase hollow-fiber liquid-phase microextraction, preconcentration factors in the range of 101-257 were obtained for oxazepam and lorazepam, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of solvent evaporation and coagulation on morphology development of asymmetric membranes
NASA Astrophysics Data System (ADS)
Chandrasekaran, Neelakandan; Kyu, Thein
2008-03-01
Miscibility behavior of blends of amorphous polyamide (PA) and polyvinylpyrrolidone (PVP) was studied in relation to membrane formation. Dimethylsulfoxide (DMSO) and water were used as solvent and non-solvent, respectively. Differential scanning calorimetry and cloud point measurements revealed that the binary PA/PVP blends as well as the ternary PA/PVP/DMSO system were completely miscible at all compositions. However, the addition of non-solvent (water) to this ternary system has led to phase separation. Visual turbidity study was used to establish a ternary liquid-liquid phase diagram of the PA-PVP/DMSO/water system. Scanning Electron Microscopy (SEM) showed the development of finger-like and sponge-like cross sectional morphologies during coagulation. Effects of polymer concentration, PA/PVP blend ratio, solvent/non-solvent quality, and evaporation time on the resulting membrane morphology will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miebach, Barbara; McDuffie, Dwayne; Spiry, Irina
The objective of this project is to design and build a bench-scale process for a novel phase-changing CO 2 capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO 2 capture absorbent for post-combustion capture of CO 2 from coal-fired power plants with 90% capture efficiency and 95% CO 2 purity at a cost of $40/tonne of CO 2 captured by 2025 and a cost of <$10/tonne of CO 2 captured by 2035. This report presents system and economic analysis for a process that uses a phase changing aminosilicone solvent to remove COmore » 2 from pulverized coal (PC) power plant flue gas. The aminosilicone solvent is a pure 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (GAP-0). Performance of the phase-changing aminosilicone technology is compared to that of a conventional carbon capture system using aqueous monoethanolamine (MEA). This analysis demonstrates that the aminosilicone process has significant advantages relative to an MEA-based system. The first-year CO 2 removal cost for the phase-changing CO 2 capture process is $52.1/tonne, compared to $66.4/tonne for the aqueous amine process. The phase-changing CO 2 capture process is less costly than MEA because of advantageous solvent properties that include higher working capacity, lower corrosivity, lower vapor pressure, and lower heat capacity. The phase-changing aminosilicone process has approximately 32% lower equipment capital cost compared to that of the aqueous amine process. However, this solvent is susceptible to thermal degradation at CSTR desorber operating temperatures, which could add as much as $88/tonne to the CO 2 capture cost associated with solvent makeup. Future work is focused on mitigating this critical risk by developing an advanced low-temperature desorber that can deliver comparable desorption performance and significantly reduced thermal degradation rate.« less
Jindal, Anil B; Devarajan, Padma V
2015-07-15
Asymmetric lipid polymer nanostructures (LIPOMER) comprising glyceryl monostearate (GMS) as lipid and Gantrez AN 119 (Gantrez) as polymer, revealed enhanced splenic accumulation. In the present paper, we attempt to explain the formation of asymmetric GMS LIPOMER using real time imaging. Particles were prepared by precipitation under static conditions using different non-solvent phase compositions. The process was video recorded and the videos converted to time elapsed images using the FFmpeg 0.10.2 software at 25 frames/sec. Non-solvent compositions comprising >30% of IPA/Acetone revealed significant stranding of the solvent phase and slower onset of precipitation(2-6s). At lower concentrations of IPA and acetone, and in non-solvent compositions comprising ethanol/water the stranding phenomenon was not evident. Further, rapid precipitation(<1 s) was evident. Nanoprecipitation based on the Marangoni effect is a result of diffusion stranding, interfacial turbulence, and mass transfer of solvent and non-solvent resulting in solute precipitation. Enhanced diffusion stranding favored by high interaction of GMS and Gantrez(low ΔPol), and the low solubility parameter(Δδtotal) and high mixing enthalpy(ΔHM) of GMS in IPA resulted in droplets with random shapes analogous to an amoeba with pseudopodia, which on precipitation formed asymmetric particles. Asymmetric particles could be readily designed through appropriate selection of solutes and non-solvent phase by modified nanoprecipitation. Copyright © 2015 Elsevier B.V. All rights reserved.
Zeng, Yun; Liu, Gang; Ma, Ying; Chen, Xiaoyuan; Ito, Yoichiro
2012-01-01
A new series of organic-high ionic strength aqueous two-phase solvents systems was designed for separation of highly polar compounds by spiral high-speed counter-current chromatography. A total of 21 solvent systems composed of 1-butanol-ethanol-saturated ammonium sulfate-water at various volume ratios are arranged according to an increasing order of polarity. Selection of the two-phase solvent system for a single compound or a multiple sample mixture can be achieved by two steps of partition coefficient measurements using a graphic method. The capability of the method is demonstrated by optimization of partition coefficient for seven highly polar samples including tartrazine (K=0.77), tryptophan (K=1.00), methyl green (K= 0.93), tyrosine (0.81), metanephrine (K=0.89), tyramine (K=0.98), and normetanephrine (K=0.96). Three sulfonic acid components in D&C Green No. 8 were successfully separated by HSCCC using the graphic selection of the two-phase solvent system. PMID:23467197
Li, Jia-Fu; Yan, Xia; Wu, Yun-Long; Fang, Mei-Juan; Wu, Zhen; Qiu, Ying-Kun
2017-04-15
An analytical two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography (2D NPLC × RPLC) system was constructed with a newly developed thermal evaporation assisted adsorption (TEAA) interface. This novel TEAA interface with heating temperature above solvent boiling point allowed fast removal of organic NPLC solvent and successfully solved the solvent incompatibility problem between NPLC and RPLC. The system achieved rapid on-line solvent exchange between the two dimensions within a short modulation time of 190 s and was applied in the analysis of an extract from the skin of Bufo bufo gargarizans. This is the first time to realize the on-line comprehensive analysis of a moderate polar natural product by coupling NPLC with reversed phase ultra-high performance liquid chromatography (UHPLC). To be highlighted, with the TEAA interface, the 2D NPLC × RPLC system provided excellent resolution and orthogonality (75.2%), when compared with that of 2D RPLC × RPLC. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isakson, K.; Vessell, A.L.
1994-07-01
Fermilab is presently phasing out all solvents containing Freon-113 (CFC-113) as part of the continuing Waste Minimization Program. These solvents are used primarily in cleaning the flux off of electronic circuit boards after soldering, specifically in bench type work. Title VI of the Clean Air Act mandates a production phase-out for ozone depleting substances, like CFC-113, by the year 2000. Our study addresses this issue by evaluating and choosing alternative non-CFC solvents to replace the CFC-1 13 solvents at Fermilab. Several potential non-CFC cleaning solvents were tested. The evaluation took place in three parts: controlled experimental evaluation, chemical composition evaluation,more » and employee performed evaluation. First, we performed a controlled nine-step procedure with the potential solvents where each was evaluated in categories such as cleaning effectiveness, odor, residue, type of output and drying time. Next, we listed the chemical composition of each solvent. We noted which solvents contained hydrochlorofluorocarbons because they are targeted for phase-out in the future and will be recognized as interim solutions only. Finally, after preliminary testing, five solvents were chosen as the best options. These solvents were sent to be tested by Fermilab employees who use such materials. Their opinions are valuable not only because they are knowledgeable in this field, but also because they will be using the solvents chosen to replace the CFC-113 solvents. The results favored two ``best alternatives``: Safezone Solvent Flux Remover by Miller-Stephenson and E-Series CFC Free Flux-Off 2000 by Chemtech. Another possible solution also pursued is the no-clean solder option. In our study, we were not able to thoroughly investigate the many types of no-clean solders because of time and financial constraints. The testing that was done, however, showed that no-clean solder was a viable alternative in many cases.« less
Bruckner, C A; Ecker, S T; Synovec, R E
1997-09-01
A flame ionization detector (FID) is used to detect volatile organic compounds that have been separated by water-only reversed-phase liquid chromatography (WRP-LC). The mobile phase is 100% water at room temperature, without use of organic solvent modifiers. An interface between the LC and detector is presented, whereby a helium stream samples the vapor of volatile components from individual drops of the LC eluent, and the vapor-enriched gas stream is sent to the FID. The design of the drop headspace cell is simple because the water-only nature of the LC separation obviates the need to do any organic solvent removal prior to gas phase detection. Despite the absence of organic modifier, hydrophobic compounds can be separated in a reasonable time due to the low phase volume ratio of the WRP-LC columns. The drop headspace interface easily handles LC flows of 1 mL/min, and, in fact, compound detection limits are improved at faster liquid flow rates. The transfer efficiency of the headspace interface was estimated at 10% for toluene in water at 1 mL/min but varies depending on the volatility of each analyte. The detection system is linear over more than 5 orders of 1-butanol concentration in water and is able to detect sub-ppb amounts of o-xylene and other aromatic compounds in water. In order to analyze volatile and nonvolatile analytes simultaneously, the FID is coupled in series to a WRP-LC system with UV absorbance detection. WRP-LC improves UV absorbance detection limits because the absence of organic modifier allows the detector to be operated in the short-wavelength UV region, where analytes generally have significantly larger molar absorptivities. The selectivity the headspace interface provides for flame ionization detection of volatiles is demonstrated with a separation of 1-butanol, 1,1,2-trichloroethane (TCE), and chlorobenzene in a mixture of benzoic acid in water. Despite coelution of butanol and TCE with the benzoate anion, the nonvolatile benzoate anion does not appear in the FID signal, allowing the analytes of interest to be readily detected. The complementary selectivity of UV-visible absorbance detection and this implementation of flame ionization detection allows for the analysis of volatile and nonvolatile components of complex samples using WRP-LC without the requirement that all the components of interest be fully resolved, thus simplifying the sample preparation and chromatographic requirements. This instrument should be applicable to routine automated water monitoring, in which repetitive injection of water samples onto a gas chromatograph is not recommended.
Wu, Yi; Zhang, Xiaohui; Wei, Juan; Xue, Yunyun; Bahatibieke, Marjan; Wang, Yan; Yan, Chao
2009-09-01
Capillary electrochromatography (CEC), in which electroosmotic flow (EOF) created from the electrical double layer is made to act as a pump to drive the mobile phase in a capillary column packed with micro-particulates or coated with stationary phase. Both neutral and charged species can be resolved by CEC. It has been demonstrated that the efficiency of a separation obtained by electroosmotic propulsion is superior to that obtained by pressure-driven flow (as is the case in HPLC). CEC combines the best features of CE and versatile selectivity and large sample capacity of HPLC, promising high efficiency, high resolution, high selectivity and high peak capacity. However, in practice, when CEC is used without pressure, often used on a commercial CE instrument, there are problems and difficulties associated with bubbles formation and column dry-out. These difficulties can be overcome by a pressurized CEC (pCEC) system, in which a supplementary pressure is applied to the column in addition to the EOF. In such a system, a pressure can be applied to the capillary column to suppress bubbles formation. Quantitative sample introduction in pCEC can be easily achieved through a rotary-type injector. Most importantly, it is amenable for a solvent gradient mode, similar to that in HPLC, by programming the composition of mobile phase. The article brings a comprehensive survey of recent development of CEC and pCEC, including the development of instrumentation, capillary columns and stationary phase as well as CEC and pCEC applications in life science, biotechnology, pharmaceutical analysis, food safety and environmental security. Prospects for CEC and pCEC development and application are also discussed.
Sugaring-out extraction of acetoin from fermentation broth by coupling with fermentation.
Dai, Jian-Ying; Ma, Lin-Hui; Wang, Zhuang-Fei; Guan, Wen-Tian; Xiu, Zhi-Long
2017-03-01
Acetoin is a natural flavor and an important bio-based chemical which could be separated from fermentation broth by solvent extraction, salting-out extraction or recovered in the form of derivatives. In this work, a novel method named as sugaring-out extraction coupled with fermentation was tried in the acetoin production by Bacillus subtilis DL01. The effects of six solvents on bacterial growth and the distribution of acetoin and glucose in different solvent-glucose systems were explored. The operation parameters such as standing time, glucose concentration, and volume ratio of ethyl acetate to fermentation broth were determined. In a system composed of fermentation broth, glucose (100%, m/v) and two-fold volume of ethyl acetate, nearly 100% glucose was distributed into bottom phase, and 61.2% acetoin into top phase without coloring matters and organic acids. The top phase was treated by vacuum distillation to remove solvent and purify acetoin, while the bottom phase was used as carbon source to produce acetoin in the next batch of fermentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boving, T.B.; Wang, X.; Brusseau, M.L.
1999-03-01
The development of improved methods for remediation of contaminated aquifers has emerged as a significant environmental priority. One technology that appears to have considerable promise involves the use of solubilization agents such as surfactants and cosolvents for enhancing the removal of residual phase immiscible liquids. The authors examined the use of cyclodextrin, a glucose-based molecule, for solubilizing and removing residual-phase immiscible liquid from porous media. Batch experiments were conducted to measure the degree of trichloroethene (TCE) and tetrachloroethene (PCE) solubilization induced by hydroxypropyl-{beta}-cyclodextrin (HPCD) and methyl-{beta}-cyclodextrin (MCD). These studies revealed that the solubilities of TCE and PCE were enhanced bymore » up to 9.5 and 36.0 times, respectively. Column experiments were conducted to compare water and cyclodextrin-enhanced flushing of Borden sand containing residual saturations of TCE and PCE. The results indicate that solubilization and mass removal were enhanced substantially with the use of cyclodextrins. The effluent concentrations during the steady-state phase of the HPCD and MCD flushing experiments were close to the apparent solubilities measured with the batch experiments, indicating equilibrium concentrations were maintained during the initial phase of cyclodextrin flushing. Mobilization was observed for only the TCE-MCD and PCE-5%MCD experiments.« less
Li, Chun; Di, Bin; Hao, Weiqiang; Yan, Fang; Su, Mengxiang
2011-01-21
A synthetic approach for synthesizing spherical aminopropyl-functionalized ethane-bridged periodic mesoporous organosilicas (APEPMOs) is reported. The mesoporous material was prepared by a one-step co-condensation of 1,2-bis(triethoxysilyl)ethane (BTSE) and 3-aminopropyltriethoxysilane (APTES) using cetyltrimethylammonium chlorine (C(18)TACl) as a template with the aid of a co-solvent (methanol) in basic medium. The APEPMOs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), powder X-ray diffraction (XRD), nitrogen sorption measurement, Fourier transform infrared spectroscopy (FT-IR) and elemental analysis. It was shown that this material exhibited spherical morphology, ordered cubic mesostructure and good mechanical strength. The APEPMOs were tested as a potential stationary phase for liquid chromatography (LC) because the column exhibited reduced back pressure. Moreover, they exhibited good chemical stability in basic mobile phase, which can be ascribed to the ethane groups in the mesoporous framework. Copyright © 2010 Elsevier B.V. All rights reserved.
Britton, Robert G; Fong, Isabel; Saad, Shaban; Brown, Karen; Steward, William P; Gescher, Andreas; Sale, Stewart
2009-04-01
3',4',5'-Trimethoxyflavonol (TMFol) was synthesized as a potential colorectal cancer chemopreventive agent. An HPLC method for determination for TMFol in murine plasma and tissues was developed and validated using human plasma. Analyte was separated (C(18) column; fluorescence detection 330nm excitation, 440nm emission) using 69% methanol and 0.1M ammonium acetate buffer (pH 5.1) as mobile phase. The method was linear for 50-2500ng/ml plasma and 0.05-10microg/g tissue (r>0.99). TMFol was recovered from plasma or tissues using solid phase columns or organic solvent protein precipitation, respectively. Recovery at low, medium and high concentrations was 97.6-107.3%, with inter- and intra-day coefficients of variation of <10%. The lower limit of quantitation for plasma was 50ng/ml. The method was applied to measure steady-state TMFol plasma and tissue levels in mice which received dietary TMFol (0.2%).
NASA Astrophysics Data System (ADS)
Ioutsi, A. N.; Shapovalova, E. N.; Ioutsi, V. A.; Mazhuga, A. G.; Shpigun, O. A.
2017-12-01
New stationary phases for HPLC are obtained via layer-by-layer deposition of polyelectrolytes and studied: (1) silica gel modified layer-by-layer with 6,10-ionene and dextran sulfate (Sorbent 1); (2) silica gel twice subjected to the above modification (Sorbent 2); and (3) silica gel modified with 6,10-ionene, gold nanoparticles, and dextran sulfate (Sorbent 3). The effect the content of the organic solvent in the mobile phase and the concentration and pH of the buffer solution have on the chromatographic behavior of several pharmacologically active nitrogen-containing compounds is studied. The sorbents are stable during the process and allow the effective separation of beta-blockers, calcium channel blockers, alpha-agonists, and antihistamines. A mixture of caffeine, nadolol, tetrahydrozoline, pindolol, orphenadrine, doxylamine, carbinoxamine, and chlorphenamine is separated in 6.5 min on the silica gel modified with 6,10-ionene, gold nanoparticles, and dextran sulfate.
Density functional theory of freezing of a system of highly elongated ellipsoidal oligomer solutions
NASA Astrophysics Data System (ADS)
Dwivedi, Shikha; Mishra, Pankaj
2017-05-01
We have used the density functional theory of freezing to study the liquid crystalline phase behavior of a system of highly elongated ellipsoidal conjugated oligomers dispersed in three different solvents namely chloroform, toluene and their equimolar mixture. The molecules are assumed to interact via solvent-implicit coarse-grained Gay-Berne potential. Pair correlation functions needed as input in the density functional theory have been calculated using the Percus-Yevick (PY) integral equation theory. Considering the isotropic and nematic phases, we have calculated the isotropic-nematic phase transition parameters and presented the temperature-density and pressure-temperature phase diagrams. Different solvent conditions are found not only to affect the transition parameters but also determine the capability of oligomers to form nematic phase in various thermodynamic conditions. In principle, our results are verifiable through computer simulations.
Ramkumar, Abilasha; Ponnusamy, Vinoth Kumar; Jen, Jen-Fon
2012-08-15
The present study demonstrates a simple, rapid and efficient method for the determination of chlorinated anilines (CAs) in environmental water samples using ultrasonication assisted emulsification microextraction technique based on solidification of floating organic droplet (USAEME-SFO) coupled with high performance liquid chromatography-ultraviolet (HPLC-UV) detection. In this extraction method, 1-dodecanol was used as extraction solvent which is of lower density than water, low toxicity, low volatility, and low melting point (24 °C). After the USAEME, extraction solvent could be collected easily by keeping the extraction tube in ice bath for 2 min and the solidified organic droplet was scooped out using a spatula and transferred to another glass vial and allowed to thaw. Then, 10 μL of extraction solvent was diluted with mobile phase (1:1) and taken for HPLC-UV analysis. Parameters influencing the extraction efficiency, such as the kind and volume of extraction solvent, volume of sample, ultrasonication time, pH and salt concentration were thoroughly examined and optimized. Under the optimal conditions, the method showed good linearity in the concentration range of 0.05-500 ng mL(-1) with correlation coefficients ranging from 0.9948 to 0.9957 for the three target CAs. The limit of detection based on signal to noise ratio of 3 ranged from 0.01 to 0.1 ng mL(-1). The relative standard deviations (RSDs) varied from 2.1 to 6.1% (n=3) and the enrichment factors ranged from 44 to 124. The proposed method has also been successfully applied to analyze real water samples and the relative recoveries of environmental water samples ranged from 81.1 to 116.9%. Copyright © 2012 Elsevier B.V. All rights reserved.
Structural and thermodynamic properties of the Cm III ion solvated by water and methanol
Kelley, Morgan P.; Yang, Ping; Clark, Sue B.; ...
2016-04-27
The geometric and electronic structures of the 9-coordinate Cm 3+ ion solvated with both water and methanol are systematically investigated in the gas phase at each possible solvent-shell composition and configuration using density functional theory and second-order Møller–Plesset perturbation theory. Ab initio molecular dynamics simulations are employed to assess the effects of second and third solvent shells on the gas-phase structure. The ion–solvent dissociation energy for methanol is greater than that of water, potentially because of increased charge donation to the ion made possible by the electron-rich methyl group. Further, the ion–solvent dissociation energy and the ion–solvent distance are shownmore » to be dependent on the solvent-shell composition. Furthermore, this has implications for solvent exchange, which is generally the rate-limiting step in complexation reactions utilized in the separation of curium from complex metal mixtures that derive from the advanced nuclear fuel cycle.« less
Liu, Zhen; Liu, Jingquan; Wang, Yichao; Razal, Joselito M; Francis, Paul S; Biggs, Mark J; Barrow, Colin J; Yang, Wenrong
2018-08-03
Dispersing graphene oxide (GO) in low-polar solvents can realize a perfect self-assembly with functional molecules and application in removal of organic impurities that only dissolve in low-polar solvents. The surface chemistry of GO plays an important role in its dispersity in these solvents. The direct transfer of hydrophilic GO into low-polar solvents, however, has remained an experimental challenge. In this study, we design an interface to transfer GO by simultaneously 'pushing and pulling' the nanosheets into low-polar solvents. Our approach is outstanding due to the ability to obtain monolayers of chemically reduced GO (CRGO) with designed surface properties in the organic phase. Using the transferred GO or CRGO dispersions, we have fabricated GO/fullerene nanocomposites and assessed the ability of CRGOs for dye adsorption. We hope our work can provide a universal approach for the phase transfer of other nanomaterials.
Chocholous, Petr; Satínský, Dalibor; Sklenárová, Hana; Solich, Petr
2010-05-23
This work presents novel approach in low-pressure chromatography flow systems--two-column Sequential Injection Chromatography (2-C SIC) and its comparison with gradient elution chromatography on the same instrument. The system was equipped with two different chromatographic columns (connected to selection valve in parallel design) for isocratic separation and determination of all components in composed anti-inflammatory pharmaceutical preparation (tablets). The sample was first injected on the first column of length 30 mm where less retained analytes were separated and then the sample was injected on the second column of length 10 mm where more retained analytes were separated. The SIC system was based on a commercial SIChrom manifold (8-port high-pressure selection valve and medium-pressure syringe pump with 4 mL reservoir) (FIAlab, USA) with two commercially available monolithic columns the "first column" Chromolith Flash RP-18e (25 mm x 4.6 mm i.d. with guard column 5 mm x 4.6 mm i.d.) and the "second column" Chromolith RP-18e (10 mm x 4.6 mm i.d.) and CCD UV-vis detector USB 4000 with micro-volume 1.0 cm Z flow cell. Two mobile phases were used for analysis (one for each column). The mobile phase 1 used for elution of paracetamol, caffeine and salicylic acid (internal standard) was acetonitrile/water (10:90, v/v, the water part of pH 3.5 adjusted with acetic acid), flow rate was 0.9 mL min(-1) (volume 3.0 mL of mobile phase per analysis). The mobile phase 2 used for elution of propyphenazone was acetonitrile/water (30:70, v/v); flow rate was 1.2 mL min(-1) (volume 1.5 mL of mobile phase per analysis). Absorbance was monitored at 210 nm. Samples were prepared by dissolving of one tablet in 30% acetonitrile and 10 microL of filtered supernatant was injected on each column (2 x 10 microL). The chromatographic resolution between all compounds was >1.45 and analysis time was 5.5 min under the optimal conditions. Limits of detection were determined at 0.4 microg mL(-1) for paracetamol, at 0.5 microg mL(-1) for caffeine and at 0.7 microg mL(-1) for propyphenazone. The new two-column chromatographic set-up developed as an alternative approach to gradient elution chromatography shows evident advantages (time and solvent reduction more than one-third) as compared with single-column gradient SIC method with Chromolith Flash RP-18 (25 mm x 4.6 mm i.d. with guard column 5 mm x 4.6 mm i.d.). Copyright 2010 Elsevier B.V. All rights reserved.
Stocka, Jolanta; Tankiewicz, Maciej; Biziuk, Marek; Namieśnik, Jacek
2011-01-01
Pesticides are among the most dangerous environmental pollutants because of their stability, mobility and long-term effects on living organisms. Their presence in the environment is a particular danger. It is therefore crucial to monitor pesticide residues using all available analytical methods. The analysis of environmental samples for the presence of pesticides is very difficult: the processes involved in sample preparation are labor-intensive and time-consuming. To date, it has been standard practice to use large quantities of organic solvents in the sample preparation process; but as these solvents are themselves hazardous, solvent-less and solvent-minimized techniques are becoming popular. The application of Green Chemistry principles to sample preparation is primarily leading to the miniaturization of procedures and the use of solvent-less techniques, and these are discussed in the paper. PMID:22174632
Li, Ying-yi; Song, Ye-ying; Liu, Chang-hui; Huang, Xiao-tao; Zheng, Xia; Li, Neng; Xu, Mei-li; Mi, Sui-qing; Wang, Ning-sheng
2012-10-15
A new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method operated in the negative electrospray ionization (ESI) switching mode has been developed and validated for the simultaneous determination of esculin and its metabolite esculetin in rat plasma. After addition of internal standards scopoletin, the plasma sample was pretreated by solid-phase extraction (SPE), and separated on a reversed phase C(18) column with a mobile phase of 0.01% formic acid in water (solvent A) and methanol (solvent B) using isocratic elution (A:B=20:80, v/v). The detection of target compounds was done in multiple reaction monitoring (MRM) mode. The MRM detection was operated in the negative ESI mode using the transitions of m/z 339.1 ([M-H](-))→176.7 for esculetin, m/z 176.9 ([M-H](-))→133.0 and m/z 191.0 ([M-H](-))→175.9 for scopoletin. The standard curves, which ranged from 25 to 3200 ng/mL for esculin with the lowest limit of quantification (LLOQ) of 0.25 ng/mL and from 1.25 to 160 ng/mL for esculetin with the LLOQ of 1.25 ng/mL, were fitted to a 1/x weighted quadratic regression model. The method also afforded satisfactory results in terms of the sensitivity, specificity, precision (intra- and inter-day, RSD<8.73%), accuracy, recovery as well as the stability of the analyte under various conditions. The method was successfully applied to study the pharmacokinetics of esculin and its metabolite esculetin in rat plasma after oral administration of esculin at a dose of 100mg/kg. Copyright © 2012 Elsevier B.V. All rights reserved.
Mukhopadhyay, Sutirtho; Kadam, Kiran; Sawant, Laxman; Nachane, Dhanashree; Pandita, Nancy
2011-01-01
Objective: Telmisartan is a potent, long-lasting, nonpeptide antagonist of the angiotensin II type-1 (AT1) receptor that is indicated for the treatment of essential hypertension. Hydrochlorothiazide is a widely prescribed diuretic and it is indicated for the treatment of edema, control of essential hypertension and management of diabetes insipidus. In the current article a new, accurate, sensitive, precise, rapid, reversed phase high performance liquid chromatography (RP-HPLC) method was developed for determination of related substances of Telmisartan and Hydrochlorthiazide in tablet dosage form. Materials and Methods: Simultaneous determination of related substances was performed on Kromasil C18 analytical column (250 × 4.6 mm; 5μm pertical size) column at 40°C employing a gradient elution. Mobile phase consisting of solvent A (solution containing 2.0 g of potassium dihydrogen phosphate anhydrous and 1.04 g of Sodium 1- Hexane sulphonic acid monohydrate per liter of water, adjusted to pH 3.0 with orthophosphoric acid) and solvent B (mixture of Acetonitrile: Methanol in the ratio 80:20 v/v) was used at a flow rate of 1.0 ml min–1. UV detection was performed at 270 nm. Results: During method validation parameter such as precision, linearity, accuracy, specificity, limit of detection and quantification were evaluated, which remained within acceptable limits. Conclusions: HPLC analytical method is linear, accurate, precise, robust and specific, being able to separate the main drug from its degradation products. It may find application for the routine analysis of the related substances of both Telmisartan and Hydrochlorthiazide in this combination tablets. PMID:21966158
Yahaya, Noorfatimah; Sanagi, Mohd Marsin; Abd Aziz, Noorizan; Wan Ibrahim, Wan Aini; Nur, Hadi; Loh, Saw Hong; Kamaruzaman, Sazlinda
2017-02-01
A rapid dispersive micro-solid phase extraction (D-μ-SPE) combined with LC/MS/MS method was developed and validated for the determination of ketoconazole and voriconazole in human urine and plasma samples. Synthesized mesoporous silica MCM-41 was used as sorbent in d-μ-SPE of the azole compounds from biological fluids. Important D-μ-SPE parameters, namely type desorption solvent, extraction time, sample pH, salt addition, desorption time, amount of sorbent and sample volume were optimized. Liquid chromatographic separations were carried out on a Zorbax SB-C 18 column (2.1 × 100 mm, 3.5 μm), using a mobile phase of acetonitrile-0.05% formic acid in 5 mm ammonium acetate buffer (70:30, v/v). A triple quadrupole mass spectrometer with positive ionization mode was used for the determination of target analytes. Under the optimized conditions, the calibration curves showed good linearity in the range of 0.1-10,000 μg/L with satisfactory limit of detection (≤0.06 μg/L) and limit of quantitation (≤0.3 μg/L). The proposed method also showed acceptable intra- and inter-day precisions for ketoconazole and voriconazole from urine and human plasma with RSD ≤16.5% and good relative recoveries in the range 84.3-114.8%. The MCM-41-D-μ-SPE method proved to be rapid and simple and requires a small volume of organic solvent (200 μL); thus it is advantageous for routine drug analysis. Copyright © 2016 John Wiley & Sons, Ltd.
Saidan, Noor Hafizoh; Aisha, Abdalrahim F A; Hamil, Mohd Shahrul Ridzuan; Majid, Amin Malik Shah Abdul; Ismail, Zhari
2015-01-01
Orthosiphon stamineus Benth. (Lamiaceae) is a traditional medicinal plant which has been used in treating various ailments such as kidney diseases, bladder inflammation, arthritis and diabetes. The leaves contain high concentration of phenolic compounds, thus, rosmarinic acid (RA), 3'-hydroxy-5, 6, 7, 4'-tetramethoxyflavone (TMF), sinensetin (SIN) and eupatorin (EUP) were chosen as a marker compounds for standardization of various O. stamineus leaf extracts. The aim was to develop and validate a new high-performance liquid chromatography (HPLC) method for quantification of 4 marker compounds (RA, TMF, SIN, EUP) in various O. stamineus leaf extracts. The method was developed and validated using RP-HPLC-diode-array detection at 320 nm for accuracy, precision and limits of detection and was applied for quantification of it markers in five different extracts prepared in solvents with increasing polarity, using a gradient mobile phase 0.1% formic acid: Acetonitrile at a flow rate of 1 ml/min on reverse phase acclaim polar advantage II C18 column (3 μm, 3 × 150 mm) with 18 min separation time. The developed method provided satisfactory precision, and the accuracy of this method was in the range of 90.2% to 105.5%. All of 4 compounds showed good linearity at R2 > 0.999. The developed method is a simple, cost effective with shorter run time (18 min) in comparison to previous methods (30 min) and utilization of environmental-friendly solvents system. Therefore, this method has the potential to replace currently used methods in the routine standardization work of O. stamineus extracts, raw materials and its commercial products.
Saidan, Noor Hafizoh; Aisha, Abdalrahim F.A.; Hamil, Mohd Shahrul Ridzuan; Majid, Amin Malik Shah Abdul; Ismail, Zhari
2015-01-01
Background: Orthosiphon stamineus Benth. (Lamiaceae) is a traditional medicinal plant which has been used in treating various ailments such as kidney diseases, bladder inflammation, arthritis and diabetes. The leaves contain high concentration of phenolic compounds, thus, rosmarinic acid (RA), 3’-hydroxy-5, 6, 7, 4’-tetramethoxyflavone (TMF), sinensetin (SIN) and eupatorin (EUP) were chosen as a marker compounds for standardization of various O. stamineus leaf extracts. Objective: The aim was to develop and validate a new high-performance liquid chromatography (HPLC) method for quantification of 4 marker compounds (RA, TMF, SIN, EUP) in various O. stamineus leaf extracts. Materials and Methods: The method was developed and validated using RP-HPLC-diode-array detection at 320 nm for accuracy, precision and limits of detection and was applied for quantification of it markers in five different extracts prepared in solvents with increasing polarity, using a gradient mobile phase 0.1% formic acid: Acetonitrile at a flow rate of 1 ml/min on reverse phase acclaim polar advantage II C18 column (3 μm, 3 × 150 mm) with 18 min separation time. Results: The developed method provided satisfactory precision, and the accuracy of this method was in the range of 90.2% to 105.5%. All of 4 compounds showed good linearity at R2 > 0.999. Conclusion: The developed method is a simple, cost effective with shorter run time (18 min) in comparison to previous methods (30 min) and utilization of environmental-friendly solvents system. Therefore, this method has the potential to replace currently used methods in the routine standardization work of O. stamineus extracts, raw materials and its commercial products. PMID:25598631
Gupta, Shikha; Shanker, Karuna; Srivastava, Santosh K
2012-07-01
A new validated high-performance thin-layer chromatographic (HPTLC) method has been developed for the simultaneous quantitation of four antipsychotic indole alkaloids (IAs), reserpiline (RP, 1), α-yohimbine (YH, 2), isoreserpiline (IRP, 3) and 10-methoxy tetrahydroalstonine (MTHA, 4) as markers in the leaves of Rauwolfia tetraphylla. Extraction efficiency of the targeted IAs from the leaf matrix with organic and ecofriendly (green) solvents using percolation, ultrasonication and microwave techniques were studied. Non-ionic surfactants, viz. Triton X-100, Triton X-114 and Genapol X-80 were used for extraction and no back-extraction or liquid chromatographic steps were used to remove the targeted IAs from the surfactant-rich extractant phase. The optimized cloud point extraction was found a potentially useful methodology for the preconcentration of the targeted IAs. The separation was achieved on silica gel 60F(254) HPTLC plates using hexane-ethylacetate-methanol (5:4:1, v/v/v) as mobile phase. The quantitation of IAs (1-4) was carried out using the densitometric reflection/absorption mode at 520 nm after post chromatographic derivatization using Dragendorff's reagent. The method was validated for peak purity, precision, accuracy, robustness, limit of detection (LOD) and quantitation (LOQ). Method specificity was confirmed using retention factor (R(f)) and visible spectral (post chromatographic scan) correlation of marker compounds in the samples and standard tracks. Copyright © 2012 Elsevier B.V. All rights reserved.
Ho, Jenny T C; White, Jim F; Grisshammer, Reinhard; Hess, Sonja
2008-05-01
The type 1 neurotensin receptor (NTS1) belongs to the G protein-coupled receptor (GPCR) family. GPCRs are involved in important physiological processes, but for many GPCRs ligand binding sites and other structural features have yet to be elucidated. Comprehensive analyses by mass spectrometry (MS) could address such issues, but they are complicated by the hydrophobic nature of the receptors. Recombinant NTS1 must be purified in the presence of detergents to maintain solubility and functionality of the receptor, to allow testing of ligand, or to allow G protein interaction. However, detergents are detrimental to MS analyses. Hence, steps need to be taken to substitute the detergents with MS-compatible polar/organic solvents. Here we report the characterization of NTS1 by electrospray ionization (ESI)-MS with emphasis on methods to transfer intact NTS1 or its proteolytic peptides into compatible solvents by protein precipitation and liquid chromatography (LC) prior to ESI-MS analyses. Molecular mass measurement of intact recombinant NTS1 was performed using a mixture of chloroform/methanol/aqueous trifluoroacetic acid as the mobile phase for size exclusion chromatography-ESI-MS analysis. In a separate experiment, NTS1 was digested with a combination of cyanogen bromide and trypsin and/or chymotrypsin. Subsequent reversed phase LC-ESI-tandem MS analysis resulted in greater than 80% sequence coverage of the NTS1 protein, including all seven transmembrane domains. This work represents the first comprehensive analysis of recombinant NTS1 using MS.
Jatczak, Marta; Sidoryk, Katarzyna; Kossykowska, Magdalena; Łuniewski, Wojciech; Zagrodzka, Joanna; Lipiec-Abramska, Elżbieta
2016-01-01
Bosentan monohydrate (4- tert -butyl- N -[6-(2-hydroxyethoxy)-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl) pyrimidin-4-yl]benzene-1-sulfonamide monohydrate) is a dual endothelin receptor antagonist (ERA) applied in the treatment of pulmonary arterial hypertension. To achieve effective process control of the bosentan monohydrate synthesis, it was necessary to develop a selective and not highly time-consuming method for ultra-high performance liquid chromatography (UHPLC). The method is characterized by adequate sensitivity, reproducibility and selectivity for the determination of bosentan monohydrate and related compounds from all synthetic stages. The UHPLC separation was carried out by reversed phase chromatography on the Acquity BEH C18 column (100 mm × 2.1 mm, 1.7 µm) with a mobile phase composed of solvent A (0.1 %, v/v, acetic acid in water) and solvent B (methanol), in the gradient mode at the flow rate of 0.4 mL min -1 . Limits of detection and quantification for the compounds were ≤0.1 µg mL -1 and 0.3 µg mL -1 , respectively. The linearity for all related compounds was investigated as in the range for the active pharmaceutical ingredient (API) and as in the range for the in-process control. The developed method was validated according to the current guidelines, proving the suitability of the method for its intended purpose.
Confined polar mixtures within cylindrical nanocavities.
Rodriguez, Javier; Elola, M Dolores; Laria, Daniel
2010-06-17
Using molecular dynamics experiments, we have extended our previous analysis of equimolar mixtures of water and acetonitrile confined between silica walls [J. Phys. Chem. B 2009, 113, 12744] to examine similar solutions trapped within carbon nanotubes and cylindrical silica pores. Two different carbon tube sizes were investigated, (8,8) tubes, with radius R(cnt) = 0.55 nm, and (16,16) ones, with R(cnt) = 1.1 nm. In the narrowest tubes, we found that the cylindrical cavity is filled exclusively by acetonitrile; as the radius of the tube reaches approximately 1 nm, water begins to get incorporated within the inner cavities. In (16,16) tubes, the analysis of global and local concentration fluctuations shows a net increment of the global acetonitrile concentration; in addition, the aprotic solvent is also the prevailing species at the vicinity of the tube walls. Mixtures confined within silica nanopores of radius approximately 1.5 nm were also investigated. Three pores, differing in the effective wall/solvent interactions, were analyzed, (i) a first class, in which dispersive forces prevail (hydrophobic cavities), (ii) a second type, where oxygen sites at the pore walls are transformed into polar silanol groups (hydrophilic cavities), and (iii) finally, an intermediate scenario, in which 60% of the OH groups are replaced by mobile trimethylsilyl groups. Within the different pores, we found clear distinctions between the solvent layers that lie in close contact with the silica substrate and those with more central locations. Dynamical modes of the confined liquid phases were investigated in terms of diffusive and rotational time correlation functions. Compared to bulk results, the characteristic time scales describing different solvent motions exhibit significant increments. In carbon nanotubes, the most prominent modifications operate in the narrower tubes, where translations and rotations become severely hindered. In silica nanopores, the manifestations of the overall retardations are more dramatic for solvent species lying at the vicinity of trimethylsilyl groups.
Experiment on the treatment of waste extraction solvent from the molybdenum-99 process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsien-Ming Hsiao; Chang-Liang Hu; Kuang-Li Chien
2013-07-01
In the Mo-99 (Molybdenum-99) isotope extraction test process for radiopharmaceutical applications, organic solvent is used to extract Mo-99 from an irradiated UO{sub 2} dissolution. The extraction solvent was stored when the test work was stopped. A total of about 120 liters of waste solvent was stored at INER (Institute of Nuclear Energy Research, Taiwan). The extraction solvent consisted of 5% di-(2-ethylhexyl)-phosphoric acid (D2EHPA) and kerosene. The radionuclides found in the waste solvent include Cs-137, Am-241, Tc-99, and Sr-90, which give off gross alpha and beta radioactivity of 1898 and 471 Bq/ml, respectively. This study aims to remove radionuclides from themore » waste solvent using sodium carbonate and sodium hydroxide solutions in different concentrations. After mixing the waste solvent with the alkaline solution followed by settling, a third phase other than organic and aqueous phase appeared which is expected due to the saponification reaction. The experimental results showed that increasing the number of washing and the alkaline solution concentration could enhance the radionuclides removal rate. An optimal removal method was proposed using 2 M Na{sub 2}CO{sub 3} solution twice followed by 1 M NaOH solution one time for the third phase generated early in the mixing stages. The remaining gross alpha and beta radioactivity of the treated organic solvent was 2 and 3 Bq/ml, respectively. The treated solvent could be stabilized by ashing at 500 deg. C and then immobilized. The alkaline solution would be neutralized by hydrochloric or nitric acid and then treated using a variety of adsorbents or bone char via adsorption to remove nuclides to meet the wastewater discharge limitation. (authors)« less
Yu, Chang Ho; Patel, Bhupendra; Palencia, Marilou; Fan, Zhihua Tina
2017-01-13
A selective, sensitive, and accurate analytical method for the measurement of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in human serum, utilizing LC-MS/MS (liquid chromatography-tandem mass spectrometry), was developed and validated according to the Centers for Disease Control and Prevention (CDC) guidelines for biological sample analysis. Tests were conducted to determine the optimal analytical column, mobile phase composition and pH, gradient program, and cleaning procedure. The final analytical column selected for analysis was an extra densely bonded silica-packed reverse-phase column (Agilent XDB-C 8 , 3.0×100mm, 3.5μm). Mobile phase A was an aqueous buffer solution containing 10mM ammonium acetate (pH=4.3). Mobile phase B was a mixture of methanol and acetonitrile (1:1, v/v). The gradient program was programmed by initiating a fast elution (%B, from 40 to 65%) between 1.0 and 1.5min, followed by a slow elution (%B: 65-80%) in the period of 1.5-7.5min. The cleanup procedures were augmented by cleaning with (1) various solvents (isopropyl alcohol, methanol, acetonitrile, and reverse osmosis-purified water); (2) extensive washing steps for the autosampler and solid phase extraction (SPE) cartridge; and (3) a post-analysis cleaning step for the whole system. Under the above conditions, the resolution and sensitivity were significantly improved. Twelve target PFASs were baseline-separated (2.5-7.0min) within a 10-min of acquisition time. The limits of detection (LODs) were 0.01ng/mL or lower for all of the target compounds, making this method 5 times more sensitive than previously published methods. The newly developed method was validated in the linear range of 0.01-50ng/mL, and the accuracy (recovery between 80 and 120%) and precision (RSD<20%) were acceptable at three spiked levels (0.25, 2.5, and 25ng/mL). The method development and validation results demonstrated that this method was precise, accurate, and robust, with high-throughput (∼10min per sample); thus suitable for large-scale epidemiological studies. Published by Elsevier B.V.
Yang, Y; Kapalavavi, B; Gujjar, L; Hadrous, S; Marple, R; Gamsky, C
2012-10-01
Several high-temperature liquid chromatography (HTLC) and subcritical water chromatography (SBWC) methods have been successfully developed in this study for separation and analysis of preservatives contained in Olay skincare creams. Efficient separation and quantitative analysis of preservatives have been achieved on four commercially available ZirChrom and Waters XBridge columns at temperatures ranging from 100 to 200°C. The quantification results obtained by both HTLC and SBWC methods developed for preservatives analysis are accurate and reproducible. A large number of replicate HTLC and SBWC runs also indicate no significant system building-up or interference for skincare cream analysis. Compared with traditional HPLC separation carried out at ambient temperature, the HTLC methods can save up to 90% methanol required in the HPLC mobile phase. However, the SBWC methods developed in this project completely eliminated the use of toxic organic solvents required in the HPLC mobile phase, thus saving a significant amount of money and making the environment greener. Although both homemade and commercial systems can accomplish SBWC separations, the SBWC methods using the commercial system for preservative analysis are recommended for industrial applications because they can be directly applied in industrial plant settings. © 2012 The Authors ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
NASA Astrophysics Data System (ADS)
Wandekoken, Flávia G.; Duyck, Christiane B.; Fonseca, Teresa C. O.; Saint'Pierre, Tatiana D.
2016-05-01
High performance liquid chromatography hyphenated by flow injection to inductively coupled plasma mass spectrometry (HPLC-FI-ICP-MS) was used to investigate V linked to porphyrins present in fractions of crude oil. First, the crude oil sample was submitted to fractionation by preparative liquid chromatography with UV detection, at the porphyrin Soret band wavelength (400 nm). The obtained porphyrin fractions were then separated in a 250 mm single column, in the HPLC, and eluted with different mobile phases (methanol or methanol:toluene (80:20; v:v)). The quantification of V-porphyrins in the fractions eluted from HPLC was carried out by online measuring the 51V isotope in the ICP-MS, against vanadyl octaethylporphine standard solutions (VO-OEP), prepared in the same solvent as the mobile phase, and injected post-column directly into the plasma. A 20 μg L- 1 Ge in methanol was used as internal standard for minimizing non-spectral interference, such as short-term variations due to injection. The mathematical treatment of the signal based on Fast Fourier Transform smoothing algorithm was employed to improve the precision. The concentrations of V as V-porphyrins were between 2.7 and 11 mg kg- 1 in the fractions, which were close to the total concentration of V in the porphyrin fractions of the studied crude oil.
Kamalabadi, Mahdie; Mohammadi, Abdorreza; Alizadeh, Naader
2016-08-15
A polypyrrole nanowire coated fiber was prepared and used in head-space solid phase microextraction coupled with ion mobility spectrometry (HS-SPME-IMS) to the analysis of bisphenol A (BPA) in canned food samples, for the first time. This fiber was synthesized by electrochemical oxidation of the monomer in aqueous solution. The fiber characterization by scanning electron microscopy (SEM) revealed that the new fiber exhibited two-dimensional structures with a nanowire morphology. The effects of important extraction parameters on the efficiency of HS-SPME were investigated and optimized. Under the optimum conditions, the linearity of 10-150ngg(-1) and limit of detection (based on S/N=3) of 1ngg(-1) were obtained in BPA analysis. The repeatability (n=5) expressed as the relative standard deviation (RSD%) was 5.8%. At the end, the proposed method was successfully applied to determine BPA in various canned food samples (peas, corns, beans). Relative recoveries were obtained 93-96%. Method validation was conducted by comparing our results with those obtained through HPLC with fluorescence detection (FLD). Compatible results indicate that the proposed method can be successfully used in BPA analysis. This method is simple and cheaper than chromatographic methods, with no need of extra organic solvent consumption and derivatization prior to sample introduction. Copyright © 2016 Elsevier B.V. All rights reserved.
Gong, Zhilong; Chandler, Kiresha; Webster, Stephen; Kerley, Remy; Buist, Susan; McCort-Tipton, Melanie
2012-03-15
We report for the first time an ultra performance liquid chromatographic method with tandem mass spectrometric detection (UPLC/MS/MS) for the determination of norethindrone alone in human plasma over the concentration range of 50.0-25000 pg mL(-1) using a sample volume of 0.250 mL. Norethindrone and its internal standard (ISTD), norethindrone-(13)C(2), were extracted from human plasma by supported liquid extraction (SLE). After evaporation of the organic solvent, samples were reconstituted and analyzed on an UPLC/MS/MS system. The UPLC system used a Waters BEH C18 (100 mm × 2.1mm, 1.7 μm) column with mobile phase A of 0.05% formic acid in water:acetonitrile (65:35, v/v) and mobile phase B of 0.05% formic acid in methanol:acetonitrile (50:50, v/v). The flow rate was 0.500 mL min(-1). The method was fully validated. The inter-run accuracy and precision at the lower limit of quantitation (LLOQ), low, mid and high quality control (QC) concentration levels were 99.2-108.4% with a <8.1% CV (coefficient of variation), respectively. The validated method has been successfully applied to analysis of thousands of pharmacokinetic samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Liu, Yong-Qiang; Yu, Hong
2016-08-01
Indirect ultraviolet detection was conducted in ultraviolet-absorption-agent-added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li(+) , Na(+) , K(+) , and NH4 (+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography-indirect ultraviolet detection. The successful separation and detection of Li(+) , Na(+) , K(+) , and NH4 (+) within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Junguo; Song, Jiuxue; Huang, Karen; Michel, Deborah; Fang, Jim
2018-05-01
A high-performance liquid chromatography tandem-mass spectrometry (HPLC-MS/MS) method has been developed to analyze anthocyanins in urine and plasma to further understand their absorption, distribution, metabolism and excretion. The method employed a Synergi RP-Max column (250 × 4.6 mm, 4 μm) and an API 4000 mass spectrometer. A gradient elution system consisted of mobile phase A (water-1% formic acid) and mobile phase B (acetonitrile) with a flow rate of 0.60 mL/min. The gradient was initiated at 5% B, increased to 21% B at 20 min, and then increased to 40% B at 35 min. The analysis of anthocyanins presents a challenge because of the poor stability of anthocyanins during sample preparation, especially during solvent evaporation. In this method, the degradation of anthocyanins was minimized using protein precipitation and dilute-and-shoot and sample preparation methods for plasma and urine, respectively. No interferences were observed from endogenous compounds. The method has been used to analyze anthocyanin concentrations in urine and plasma samples from volunteers administered saskatoon berries. Cyanidin-3-galactoside, cyanidin-3-glucoside, cyanidin-3-arabinoside, cyanidin-3-xyloside and quercetin-3-galactoside, the five major flavonoid components in saskatoon berries, were identified in plasma and urine samples. Copyright © 2017 John Wiley & Sons, Ltd.
Jinno, Naoya; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko
2011-01-01
A capillary chromatography system has been developed based on the tube radial distribution of the carrier solvents using an open capillary tube and a water-acetonitrile-ethyl acetate mixture carrier solution. This tube radial distribution chromatography (TRDC) system works under laminar flow conditions. In this study, a phase diagram for the ternary mixture carrier solvents of water, acetonitrile, and ethyl acetate was constructed. The phase diagram that included a boundary curve between homogeneous and heterogeneous solutions was considered together with the component ratios of the solvents in the homogeneous carrier solutions required for the TRDC system. It was found that the TRDC system performed well with homogeneous solutions having component ratios of the solvents that were positioned near the homogeneous-heterogeneous solution boundary of the phase diagram. For preparing the carrier solutions of water-hydrophilic/hydrophobic organic solvents for the TRDC system, we used for the first time methanol, ethanol, 1,4-dioxane, and 1-propanol, instead of acetonitrile (hydrophilic organic solvent), as well as chloroform and 1-butanol, instead of ethyl acetate (hydrophobic organic solvent). The homogeneous ternary mixture carrier solutions were prepared near the homogeneous-heterogeneous solution boundary. Analyte mixtures of 2,6-naphthalenedisulfonic acid and 1-naphthol were separated with the TRDC system using these homogeneous ternary mixture carrier solutions. The pressure change in the capillary tube under laminar flow conditions might alter the carrier solution from homogeneous in the batch vessel to heterogeneous, thus affecting the tube radial distribution of the solvents in the capillary tube.
Han, Yuqian; Ma, Qinchuan; Lu, Jie; Xue, Yong; Xue, Changhu
2012-12-15
A simple, rapid and sensitive method was developed for determination of 17α-methyltestosterone in aquatic products by extraction with subcritical 1,1,1,2-tetrafluoroethane (R134a) extraction and high performance liquid chromatography (HPLC). Response surface methodology (RSM) was adopted to optimise extraction pressure, temperature and co-solvent volume. The optimum extraction conditions predicted within the experimental ranges were as follows: pressure 5 MPa, temperature 31°C, and co-solvent volume 3.35ml. The analysis was carried out on XDB-C(18) column (4.6 mm × 250 mm, 5 μm) with the mobile phase acetonitrile-water (55:45, v/v), flow rate 0.8 ml/min, temperature 30°C and wavelength 245 nm. Good linearity of detection was obtained for 17α-methyltestosterone between concentrations of 50-250 ng/ml, r(2)=0.999. The method was validated using samples fortified with 17α-methyltestosterone at levels of 10, 30 and 50 ng/g, the mean recovery exceeds 90%, and the RSD values were less than 10%. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Flaminio, L; Ripamonti, M; Ascalone, V
1994-05-13
Alpidem, 6-chloro-2-(4-chlorophenyl)-N,N-dipropylimidazo[1,2-a]pyridine- 3-acetamide, is an anxiolytic imidazopyridine that undergoes a first-pass elimination after oral administration to humans; it is actively metabolized and three circulating metabolites have been identified in plasma due to N-dealkylation, oxidation or a combination of both processes. For the determination of the unchanged drug and its metabolites in human plasma, a column-switching HPLC method was developed. The method, based on solid-phase extraction (performed on-line), involves the automatic injection of plasma samples (200 microliters) on to a precolumn filled with C18 material, clean-up of the sample with water in order to remove protein and salts and transfer of the analytes to the analytical column (after valve switching) by means of the mobile phase. All the processes were performed in the presence of an internal standard, a compound chemically related to alpidem. During the analytical chromatography, the precolumn was flushed with different solvents and after regeneration with water, it was ready for further injections. The analytical column was a C8 type and the mobile phase was acetonitrile-methanol-phosphate buffer solution (45:15:45, v/v/v) at a flow-rate of 1.5 ml min-1. The column was connected to a fluorimetric detector operating at excitation and emission wavelengths of 255 and 423 nm, respectively. The limits of quantitation of alpidem and three metabolites were 2.5 and 1.5 ng ml-1, respectively, in human plasma.
A New Method to Grow SiC: Solvent-Laser Heated Floating Zone
NASA Technical Reports Server (NTRS)
Woodworth, Andrew A.; Neudeck, Philip G.; Sayir, Ali
2012-01-01
The solvent-laser heated floating zone (solvent-LHFZ) growth method is being developed to grow long single crystal SiC fibers. The technique combines the single crystal fiber growth ability of laser heated floating zone with solvent based growth techniques (e.g. traveling solvent method) ability to grow SiC from the liquid phase. Initial investigations reported in this paper show that the solvent-LHFZ method readily grows single crystal SiC (retains polytype and orientation), but has a significant amount of inhomogeneous strain and solvent rich inclusions.
NEPTUNIUM SOLVENT EXTRACTION PROCESS
Dawson, L.R.; Fields, P.R.
1959-10-01
The separation of neptunium from an aqueous solution by solvent extraction and the extraction of neptunium from the solvent solution are described. Neptunium is separated from an aqueous solution containing tetravalent or hexavalent neptunium nitrate, nitric acid, and a nitrate salting out agent, such as sodium nitrate, by contacting the solution with an organic solvent such as diethyl ether. Subsequently, the neptunium nitrate is extracted from the organic solvent extract phase with water.
Kline, David; Ritruthai, Vicha; Babajanian, Silva; Gao, Quanyin; Ingle, Prashant; Chang, Peter; Swanson, Gary
2017-05-01
A single-laboratory validation study is described for a method of quantitative analysis of aloins (aloins A and B) and aloe-emodin in aloe vera raw materials and finished products. This method used HPLC coupled with UV detection at 380 nm for the aloins and 430 nm for aloe-emodin. The advantage of this test method is that the target analytes are concentrated from the sample matrix (either liquid or solid form) using stepwise liquid-liquid extraction (water-ethyl acetate-methanol), followed by solvent evaporation and reconstitution. This sample preparation process is suitable for different forms of products. The concentrating step for aloins and aloe-emodin has enhanced the method quantitation level to 20 parts per billion (ppb). Reversed-phase chromatography using a 250 × 4.6 mm column under gradient elution conditions was used. Mobile phase A is 0.1% acetic acid in water and mobile phase B is 0.1% acetic acid in acetonitrile. The HPLC run starts with a 20% mobile phase B that reaches 35% at 13 min. From 13 to 30 min, mobile phase B is increased from 35 to 100%. From 30 to 40 min, mobile phase B is changed from 100% back to the initial condition of 20% for re-equilibration. The flow rate is 1 mL/min, with a 100 μL injection volume. Baseline separation (Rs > 2.0) for aloins A and B and aloe-emodin was observed under this chromatographic condition. This test method was validated with raw materials of aloe vera 5× (liquid) and aloe vera 200× (powder) and finished products of aloe concentrate (liquid) and aloe (powder). The linearity of the method was studied from 10 to 500 ppb for aloins A and B and aloe-emodin, with correlation coefficients of 0.999964, 0.999957, and 0.999980, respectively. The test method was proven to be specific, precise, accurate, rugged, and suitable for the intended quantitative analysis of aloins and aloe-emodin in raw materials and finished products. The S/N for aloins A and B and aloe-emodin at 10 ppb level were 12, 10, and 8, respectively, indicating our conservative LOD level at 10 ppb (the typical LOD level S/N is about 3). The S/N for aloins A and B and aloe-emodin at the 20 ppb level were 17, 14, and 16, respectively, indicating our conservative LOQ level at 20 ppb (the typical LOQ level S/N is about 10). The stock standard solution of a mixture of aloins and aloe-emodin and a working standard solution were found to be stable for at least 19 days when stored refrigerated at 2-8°C, with a recovery of 100 ± 5%.
Quintanar-Guerrero, D; Allémann, E; Fessi, H; Doelker, E
1999-10-25
Pseudolatexes were obtained by a new process based on an emulsification-diffusion technique involving partially water-miscible solvents. The preparation method consisted of emulsifying an organic solution of polymer (saturated with water) in an aqueous solution of a stabilizing agent (saturated with solvent) using conventional stirrers, followed by direct solvent distillation. The technique relies on the rapid displacement of the solvent from the internal into the external phase which thereby provokes polymer aggregation. Nanoparticle formation is believed to occur because rapid solvent diffusion produces regions of local supersaturation near the interface, and nanoparticles are formed due to the ensuing interfacial phase transformations and polymer aggregation that occur in these interfacial domains. Using this method, it was possible to prepare pseudolatexes of biodegradable and non-biodegradable polymers such as poly(D,L-lactic acid) and poly(epsilon-caprolactone), Eudragit E, cellulose acetate phthalate, cellulose acetate trimellitate using ethyl acetate or 2-butanone as partially water-miscible solvents and poly(vinyl alcohol) or poloxamer 407 as stabilizing agent. A transition from nano- to microparticles was observed at high polymer concentrations. At concentrations above 30% w/v of Eudragit E in ethyl acetate or cellulose acetate phthalate in 2-butanone only microparticles were obtained. This behaviour was attributed to decreased transport of polymer molecules into the aqueous phase.
High p-type doping, mobility, and photocarrier lifetime in arsenic-doped CdTe single crystals
NASA Astrophysics Data System (ADS)
Nagaoka, Akira; Kuciauskas, Darius; McCoy, Jedidiah; Scarpulla, Michael A.
2018-05-01
Group-V element doping is promising for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe for thin film solar cells, but there are roadblocks concerning point defects including the possibility of self-compensation by AX metastability. Herein, we report on doping, lifetime, and mobility of CdTe single crystals doped with As between 1016 and 1020 cm-3 grown from the Cd solvent by the travelling heater method. Evidence consistent with AX instability as a major contributor to compensation in samples doped below 1017 cm-3 is presented, while for higher-doped samples, precipitation of a second phase on planar structural defects is also observed and may explain spatial variation in properties such as lifetime. Rapid cooling after crystal growth increases doping efficiency and mobility for times up to 20-30 days at room temperature with the highest efficiencies observed close to 45% and a hole mobility of 70 cm2/Vs at room temperature. A doping limit in the low 1017/cm3 range is observed for samples quenched at 200-300 °C/h. Bulk minority carrier lifetimes exceeding 20 ns are observed for samples doped near 1016 cm-3 relaxed in the dark and for unintentionally doped samples, while a lifetime of nearly 5 ns is observed for 1018 cm-3 As doping. These results help us to establish limits on properties expected for group-V doped CdTe polycrystalline thin films for use in photovoltaics.
Khezeli, Tahere; Daneshfar, Ali; Sahraei, Reza
2016-04-01
A simple, inexpensive and sensitive ultrasonic-assisted liquid-liquid microextraction method based on deep eutectic solvent (UALLME-DES) was used for the extraction of three phenolic acids (ferulic, caffeic and cinnamic) from vegetable oils. In a typical experiment, deep eutectic solvent as green extraction solvent was added to n-hexane (as a typical oil medium) containing target analytes. Subsequently, the extraction was accelerated by sonication. After the extraction, phase separation (DES rich phase/n-hexane phase) was performed by centrifugation. DES rich phase (lower phase) was withdrawn by a micro-syringe and submitted to isocratic reverse-phase HPLC with UV detection. Under optimum conditions obtained by response surface methodology (RSM) and desirability function (DF), the method has good linear calibration ranges (between 1.30 and 1000 µg L(-1)), coefficients of determination (r(2)>0.9949) and low limits of detection (between 0.39 and 0.63 µg L(-1)). This procedure was successfully applied to the determination of target analytes in olive, almond, sesame and cinnamon oil samples. The relative mean recoveries ranged from 94.7% to 104.6%. Copyright © 2015 Elsevier B.V. All rights reserved.
Phase-field approach to implicit solvation of biomolecules with Coulomb-field approximation
NASA Astrophysics Data System (ADS)
Zhao, Yanxiang; Kwan, Yuen-Yick; Che, Jianwei; Li, Bo; McCammon, J. Andrew
2013-07-01
A phase-field variational implicit-solvent approach is developed for the solvation of charged molecules. The starting point of such an approach is the representation of a solute-solvent interface by a phase field that takes one value in the solute region and another in the solvent region, with a smooth transition from one to the other on a small transition layer. The minimization of an effective free-energy functional of all possible phase fields determines the equilibrium conformations and free energies of an underlying molecular system. All the surface energy, the solute-solvent van der Waals interaction, and the electrostatic interaction are coupled together self-consistently through a phase field. The surface energy results from the minimization of a double-well potential and the gradient of a field. The electrostatic interaction is described by the Coulomb-field approximation. Accurate and efficient methods are designed and implemented to numerically relax an underlying charged molecular system. Applications to single ions, a two-plate system, and a two-domain protein reveal that the new theory and methods can capture capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states as found in molecular dynamics simulations. Comparisons of the phase-field and the original sharp-interface variational approaches are discussed.
Micro-scale displacement of NAPL by surfactant and microemulsion in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Javanbakht, Gina; Arshadi, Maziar; Qin, Tianzhu; Goual, Lamia
2017-07-01
Industrial processes such as remediation of oil-contaminated aquifers and enhanced oil recovery (EOR) often utilize chemical additives to increase the removal of non-aqueous phase liquids (NAPLs) from subsurface formations. Although the majority of crude oils are classified as LNAPLs, they often contain heavy molecules (DNAPLs) such as asphaltenes that tend to adsorb on minerals and alter their wettability. Effective additives are therefore those that can reduce the threshold capillary pressure, thus mobilizing LNAPL inside pore spaces and solubilizing DNAPL from rock surfaces. Nonionic surfactants in brine have often been injected to oil or contaminated aquifer formations in order to enhance NAPL displacement through IFT reduction. Recent studies revealed that surfactant-based microemulsions have a higher tendency to alter the wettability of surfaces, compared to surfactants alone, leading to more effective NAPL removal. However, the impact of these additives on pore-scale displacement mechanisms and multi-phase fluid occupancy in porous media is, to date, still unclear. In this study, x-ray microtomography experiments were performed to investigate the impact of surfactants and microemulsions on the mobilization and solubilization of NAPL in heterogeneous rocks. Saturation profiles indicated that an incremental NAPL removal was attained by addition of microemulsion to brine, compared with surfactant. Residual cluster size distributions revealed that microemulsions could break up large clusters into smaller disconnected ones, improving their mobilization in the rock. In-situ contact angle measurements showed that microemulsions could reverse the wettability of rough contaminated surfaces to a higher extent than surfactants. Unlike surfactant alone, the surfactant-solvent blend in the carrier fluid of microemulsions was able to penetrate rough grain surfaces, particularly those of dolomite cement, and desorb asphaltenes in the form of small-emulsified NAPL droplets, which were eventually washed away by the continuous flow process. The greater wettability alteration caused by microemulsions resulted in a lower threshold capillary pressure, which in turn promoted the mobilization of NAPL ganglia more than surfactant alone.
Crystallization and Microphase Separation in Chiral Block Copolymers
NASA Astrophysics Data System (ADS)
Ho, Rong-Ming
2012-02-01
Block copolymers composed of chiral entities, denoted as chiral block copolymers (BCP*s), were designed to fabricate helical architectures from self-assembly. A helical phase (denoted H*) was discovered in the self-assembly of poly(styrene)-b-poly(L-lactide) (PS-PLLA) BCPs*. To examine the phase behavior of the PS-PLLA, self-assembled superstructures resulting from the competition between crystallization and microphase separation of the PS-PLLA in solution were examined. A kinetically controlled process by changing non-solvent addition rate was utilized to control the BCP* self-assembly. Single-crystal lozenge lamellae were obtained by the slow self-assembly (i.e., slow non-solvent addition rate) of PS-PLLA whereas amorphous helical ribbon superstructures were obtained from the fast self-assembly (i.e., fast non-solvent addition rate). As a result, the formation of helical architectures from the self-assembly of the PS-PLLA reflects the impact of chirality on microphase separation, but the chiral effect might be overwhelmed by crystallization. Consequently, various crystalline PS-PLLA nanostructures in bulk were obtained by controlling the crystallization temperature of PLLA (Tc,PLLA) at which crystalline helices and crystalline cylinders occur while Tc,PLLA
Mahindrakar, A N; Chandra, S; Shinde, L P
2014-01-01
Solid-phase extraction (SPE) of nine polychlorinated biphenyls (PCBs) from transformer oil samples was evaluated using octadecyl (CI8)-bonded porous silica. The efficiency of SPE of these PCBs was compared with those obtained by solvent extraction with DMSO and hexane. Average recoveries exceeding 95% for these PCBs were obtained via the SPE method using small cartridges containing 100mg of 40 pm CI8-bonded porous silica. The average recovery by solvent extraction with DMSO and hexane exceeded 83%. It was concluded that the recoveries and precision for the solvent extraction of PCBs were poorer than those for the SPE. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zou, Denglang; Zhu, Xuelin; Zhang, Fan; Du, Yurong; Ma, Jianbin; Jiang, Renwang
2018-01-31
This study presents an efficient strategy based on liquid-liquid extraction with three-phase solvent system and high speed counter-current chromatography for rapid enrichment and separation of epimers of minor bufadienolide from toad meat. The reflux extraction conditions were optimized by response surface methodology first, and a novel three-phase solvent system composed of n-hexane/methyl acetate/acetonitrile/water (3:6:5:5, v/v) was developed for liquid-liquid extraction of the crude extract. This integrative extraction process could enrich minor bufadienolide from complex matrix efficiently and minimize the loss of minor targets induced by repeated extraction with different kinds of organic solvents occurring in the classical liquid two-phase extraction. As a result, four epimers of minor bufadienolide were greatly enriched in the middle phase and total content of these epimers of minor bufadienolide was increased from 3.25% to 46.23%. Then, the enriched four epimers were separated by HSCCC with a two-phase solvent system composed of chloroform/methanol/water (4:2:2, v/v) successfully. Furthermore, we tested Na + ,K + -ATPase (NKA) inhibitory effect of the four epimers. 3β-Isomers of bufadienolide showed stronger (>8-fold) inhibitory activity than 3α-isomers. The characterization of minor bufadienolide in toad meat and their significant difference of inhibitory effect on NKA would promote the further quantitative analysis and safety evaluation of toad meat as a food source.
Demonstration of Advanced CO 2 Capture Process Improvements for Coal-Fired Flue Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, John
This document summarizes the activities of Cooperative Agreement DE-FE0026590, “Demonstration of Advanced CO 2 Capture Process Improvements for Coal-Fired Flue Gas” during the performance period of October 1, 2015 through May 31, 2017. This project was funded by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). Southern Company Services, Inc. (SCS) was the prime contractor and co-funder of the project. Mitsubishi Heavy Industries America (MHIA) and AECOM were project team members. The overall project objective was to improve costs, energy requirements, and performance of an existing amine-based CO 2 capture process. This will occur via improvements inmore » three areas: 1. Reboiler design – The first objective of the program was to demonstrate performance of an integrated stripper/reboiler (termed Built-in Reboiler, or BIR) to reduce footprint, capital costs, and integration issues of the current technology. 2. Particulate management – The second objective was to carry out a Particulate Matter Management (PMM) test. This has the potential to reduce operating costs and capital costs due to the reduced or eliminated need for mechanical filtration. 3. Solvent – The third objective was to carry out a new solvent test plan (referred to as NSL) to demonstrate a new solvent (termed New Solvent A), which is expected to reduce regeneration steam. The bulk price is also expected to be lower than KS-1, which is the current solvent used in this process. NSL testing would include baseline testing, optimization, long term testing, solvent reclamation testing, and final inspection. These combine to form the Advanced Carbon Capture (ACC) technology. Much of this work will be applicable to generic solvent processes, especially in regards to improved reboiler design, and focused to meet or exceed the DOE’s overall carbon capture performance goals of 90% CO 2 capture rate with 95% CO 2 purity at a cost of $40/tonne of CO 2 by 2025 and at a cost of electricity (COE) 30% less than baseline CO 2 capture approaches by 2030. This project was divided into two phases. Phase 1 is the planning phase, and Phase 2 is the construction, operations, testing, and analysis phase. A down select occurred after Phase 1. Phase 1 activities were carried out during this reporting period, and therefore, Phase 1 activities are solely considered in this report. The project was not selected for Phase 2 funding.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peteanu, Linda A.; Chowdhury, Sanchari; Wildeman, Jurjen
One measure of exciton mobility in an aggregate is the efficiency of exciton–exciton annihilation (EEA). Both exciton mobilities and EEA are enhanced for aggregate morphologies in which the distances between chromophores and their relative orientations are favorable for Förster energy transfer. Here this principle is applied to gauge the strength of interchain interactions in aggregates of two substituted PPV oligomers of 7 (OPPV7) and 13 (OPPV13) phenylene rings. These are models of the semiconducting conjugated polymer MEH–PPV. The aggregates were formed by adding a poor solvent (methanol or water) to the oligomers dissolved in a good solvent. Aggregates formed frommore » the longer-chain oligomer and/or by addition of the more polar solvent showed the largest contribution of EEA in their emission decay dynamics. This was found to correlate with the degree to which the steady-state emission spectrum of the monomer is altered by aggregation. Furthermore, the wavelength dependence of the EEA signal was also shown to be useful in differentiating emission features due to monomeric and aggregated chains when their spectra overlap significantly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suo, Tongchuan, E-mail: suotc@physics.umanitoba.ca; Whitmore, Mark D., E-mail: mark-whitmore@umanitoba.ca
We examine end-tethered polymers in good solvents, using one- and three-dimensional self-consistent field theory, and strong stretching theories. We also discuss different tethering scenarios, namely, mobile tethers, fixed but random ones, and fixed but ordered ones, and the effects and important limitations of including only binary interactions (excluded volume terms). We find that there is a “mushroom” regime in which the layer thickness is independent of the tethering density, σ, for systems with ordered tethers, but we argue that there is no such plateau for mobile or disordered anchors, nor is there one in the 1D theory. In the othermore » limit of brushes, all approaches predict that the layer thickness scales linearly with N. However, the σ{sup 1/3} scaling is a result of keeping only excluded volume interactions: when the full potential is included, the dependence is faster and more complicated than σ{sup 1/3}. In fact, there does not appear to be any regime in which the layer thickness scales in the combination Nσ{sup 1/3}. We also compare the results for two different solvents with each other, and with earlier Θ solvent results.« less
Exciton–exciton annihilation as a probe of interchain interactions in PPV–oligomer aggregates
Peteanu, Linda A.; Chowdhury, Sanchari; Wildeman, Jurjen; ...
2017-01-20
One measure of exciton mobility in an aggregate is the efficiency of exciton–exciton annihilation (EEA). Both exciton mobilities and EEA are enhanced for aggregate morphologies in which the distances between chromophores and their relative orientations are favorable for Förster energy transfer. Here this principle is applied to gauge the strength of interchain interactions in aggregates of two substituted PPV oligomers of 7 (OPPV7) and 13 (OPPV13) phenylene rings. These are models of the semiconducting conjugated polymer MEH–PPV. The aggregates were formed by adding a poor solvent (methanol or water) to the oligomers dissolved in a good solvent. Aggregates formed frommore » the longer-chain oligomer and/or by addition of the more polar solvent showed the largest contribution of EEA in their emission decay dynamics. This was found to correlate with the degree to which the steady-state emission spectrum of the monomer is altered by aggregation. Furthermore, the wavelength dependence of the EEA signal was also shown to be useful in differentiating emission features due to monomeric and aggregated chains when their spectra overlap significantly.« less
Exciton-Exciton Annihilation as a Probe of Interchain Interactions in PPV-Oligomer Aggregates.
Peteanu, Linda A; Chowdhury, Sanchari; Wildeman, Jurjen; Sfeir, Matthew Y
2017-02-23
One measure of exciton mobility in an aggregate is the efficiency of exciton-exciton annihilation (EEA). Both exciton mobilities and EEA are enhanced for aggregate morphologies in which the distances between chromophores and their relative orientations are favorable for Förster energy transfer. Here this principle is applied to gauge the strength of interchain interactions in aggregates of two substituted PPV oligomers of 7 (OPPV7) and 13 (OPPV13) phenylene rings. These are models of the semiconducting conjugated polymer MEH-PPV. The aggregates were formed by adding a poor solvent (methanol or water) to the oligomers dissolved in a good solvent. Aggregates formed from the longer-chain oligomer and/or by addition of the more polar solvent showed the largest contribution of EEA in their emission decay dynamics. This was found to correlate with the degree to which the steady-state emission spectrum of the monomer is altered by aggregation. The wavelength dependence of the EEA signal was also shown to be useful in differentiating emission features due to monomeric and aggregated chains when their spectra overlap significantly.
Tsukagoshi, Norihiko; Aono, Rikizo
2000-01-01
Growth of Escherichia coli is inhibited upon exposure to a large volume of a harmful solvent, and there is an inverse correlation between the degree of inhibition and the log POW of the solvent, where POW is the partition coefficient measured for the partition equilibrium established between the n-octanol and water phases. The AcrAB-TolC efflux pump system is involved in maintaining intrinsic solvent resistance. We inspected the solvent resistance of ΔacrAB and/or ΔtolC mutants in the presence of a large volume of solvent. Both mutants were hypersensitive to weakly harmful solvents, such as nonane (log POW = 5.5). The ΔtolC mutant was more sensitive to nonane than the ΔacrAB mutant. The solvent entered the E. coli cells rapidly. Entry of solvents with a log POW higher than 4.4 was retarded in the parent cells, and the intracellular levels of these solvents were maintained at low levels. The ΔtolC mutant accumulated n-nonane or decane (log POW = 6.0) more abundantly than the parent or the ΔacrAB mutant. The AcrAB-TolC complex likely extrudes solvents with a log POW in the range of 3.4 to 6.0 through a first-order reaction. The most favorable substrates for the efflux system were considered to be octane, heptane, and n-hexane. PMID:10940021
Karimi, Mehdi; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Tamaddon, Fatemeh; Azadi, Davood
2015-11-01
Deep eutectic liquid organic salt was used as the solvent and a liquid phase microextraction (DES-LPME) combined with electrothermal atomic absorption spectrometry (ETAAS) was developed for separation, preconcentration and determination of lead and cadmium in edible oils. A 4:1 mixture of deep eutectic solvent and 2% nitric acid (200 µL) was added to an oil sample. The mixture was vortexed and transferred into a water bath at 50 °C and stirred for 5 minutes. After the extraction was completed, the phases were separated by centrifugation, and the enriched analytes in the deep eutectic solvent phase were determined by ETAAS. Under optimized extraction conditions and for an oil sample of 28 g, enhancement factors of 198 and 195 and limits of detection (defined as 3 Sb/m) of 8 and 0. 2 ng kg(-1) were achieved for lead and cadmium respectively. The method was successfully applied to the determination of lead and cadmium in various edible oils. Copyright © 2015. Published by Elsevier B.V.
Schenck, Frank J; Callery, Patrick; Gannett, Peter M; Daft, Jonathan R; Lehotay, Steven J
2002-01-01
Water-miscible solvents, such as acetone and acetonitrile, effectively extract both polar and nonpolar pesticide residues from nonfatty foods. The addition of sodium chloride to the resulting acetonitrile-water or acetone-water extract (salting out) results in the separation of the water from the organic solvent. However, the organic solvent layer (pesticide extract) still contains some residual water, which can adversely affect separation procedures that follow, such as solid-phase extraction and/or gas chromatography. Drying agents, such as sodium sulfate or magnesium sulfate, are used to remove the water from the organic extracts. In the present study, we used nuclear magnetic resonance spectroscopy to study the composition of the phases resulting from salting out and to compare the effectiveness of sodium sulfate and magnesium sulfate as drying agents. The study showed that considerable amounts of water remained in the organic phase after phase separation. Sodium sulfate was a relatively ineffective drying agent, removing little or no residual water from the organic solvent. Magnesium sulfate proved to be a much more effective drying agent.
SISGR: Linking Ion Solvation and Lithium Battery Electrolyte Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trulove, Paul C.; Foley, Matthew P.
2012-09-30
The solvation and phase behavior of the model battery electrolyte salt lithium trifluoromethanesulfonate (LiCF 3SO 3) in commonly used organic solvents; ethylene carbonate (EC), gamma-butyrolactone (GBL), and propylene carbonate (PC) was explored. Data from differential scanning calorimetry (DSC), Raman spectroscopy, and X-ray diffraction were correlated to provide insight into the solvation states present within a sample mixture. Data from DSC analyses allowed the construction of phase diagrams for each solvent system. Raman spectroscopy enabled the determination of specific solvation states present within a solvent-salt mixture, and X-ray diffraction data provided exact information concerning the structure of a solvates that couldmore » be isolated Thermal analysis of the various solvent-salt mixtures revealed the phase behavior of the model electrolytes was strongly dependent on solvent symmetry. The point groups of the solvents were (in order from high to low symmetry): C2V for EC, CS for GBL, and C1 for PC(R). The low symmetry solvents exhibited a crystallinity gap that increased as solvent symmetry decreased; no gap was observed for EC-LiTf, while a crystallinity gap was observed spanning 0.15 to 0.3 mole fraction for GBL-LiTf, and 0.1 to 0.33 mole fraction for PC(R)-LiTf mixtures. Raman analysis demonstrated the dominance of aggregated species in almost all solvent compositions. The AGG and CIP solvates represent the majority of the species in solutions for the more concentrated mixtures, and only in very dilute compositions does the SSIP solvate exist in significant amounts. Thus, the poor charge transport characteristics of CIP and AGG account for the low conductivity and transport properties of LiTf and explain why is a poor choice as a source of Li + ions in a Li-ion battery.« less
COORDINATION COMPOUND-SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY
Reas, W.H.
1959-03-10
A method is presented for the separation of uranium from aqueous solutions containing a uranyl salt and thorium. Thc separation is effected by adding to such solutions an organic complexing agent, and then contacting the solution with an organic solvent in which the organic complexing agent is soluble. By use of the proper complexing agent in the proper concentrations uranium will be complexed and subsequently removed in the organic solvent phase, while the thorium remains in the aqueous phase. Mentioned as suitable organic complexing agents are antipyrine, bromoantipyrine, and pyramidon.
NASA Astrophysics Data System (ADS)
Li, Jing; Fa, Wenjun; Li, Yasi; Zhao, Hongxiao; Gao, Yuanhao; Zheng, Zhi
2013-02-01
Copper selenide films with different phase and morphology were synthesized on copper substrate through controlling reaction solvent by microwave-assisted nonaqueous approach. The films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The result showed that the pure films could be obtained using cyclohexyl alcohol or benzyl alcohol as solvent. The cubic Cu2-xSe dendrites were synthesized in cyclohexyl alcohol reaction system and hexagonal CuSe flaky crystals were obtained with benzyl alcohol as solvent.
How High Pressure Unifies Solvation Processes in Liquid Chromatography.
Bocian, Szymon; Škrinjar, Tea; Bolanca, Tomislav; Buszewski, Bogusław
2017-11-01
A series of core-shell-based stationary phases of varying surface chemistry were subjected to solvent adsorption investigation under ultra-HPLC conditions. Acetonitrile and water excess isotherms were measured using a minor disturbance method. It was observed that adsorption of organic solvent is unified under high pressure. Preferential solvation due to specific interactions between the stationary phases and solvent molecules was limited. The obtained results showed that the solvation process is almost independent of surface chemistry, in contrast to HPLC conditions in which specific interactions differentiate solvation processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tingey, J.M.; Fulton, J.L.; Smith, R.D.
1990-03-08
The van der Waals attractive interactions between aqueous droplets in water-in-oil type microemulsions have been investigated for a range of continuous-phase solvents including the alkanes from methane to isooctane and the noble gases, krypton and xenon. Hamaker constants for water droplets with surfactant shells of the sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in subcritical and supercritical solvents were calculated by using Lifshitz theory and the resulting interaction potential calculations qualitatively account for many features of the phase behavior of these systems.
Interaction between morin and AOT reversed micelles--studies with UV-vis at 25 °C.
Bhattarai, Ajaya; Wilczura-Wachnik, H
2014-01-30
The precise measurements of morin absorbance in presence of surfactant/solvent/water systems at 25 °C by UV-vis technique are reported. The surfactant used in presented study was sodium bis(2-ethylhexyl) sulfosuccinate called Aerosol-OT or AOT. The solvents selected were: ethanol, ethylene glycol, and n-decanol. The concentrations of AOT were varied between 0.001 and 0.4 mol/kg. Morin concentration in quvette during UV-vis registration was not equals in all solvent because of its different solubility and absorption intensity depending on the solvent. Water concentration in the studied systems was defined by R parameter according to relation: R=[H2O]/[AOT] and was equal 0, 30 and 40 in ethanol; 0, 10, 20 and 30 in ethylene glycol and 0, 10, 20, 30, and 40 in n-decanol. In presented work a Nernstian distribution of morin between the organic and micellar phases was assumed. The intensity of morin absorbance as a function of AOT concentration was analyzed. Using Non-linear Regression Procedure (NLREG) morin binding constant (K' [mol/kg]), and morin distribution constant (K) between organic phase and AOT micellar phase have been calculated. The experimental results have shown a significant influence of solvent, surfactant and water presence on morin UV-vis spectrum. Calculated data pointed out on different transfer of morin molecules from the organic to micellar phase depending on the solvent. Moreover, results of calculations indicate on competition between morin and water molecules interacting with AOT polar heads. Morin molecules privileged location in AOT reversed micelles strongly depends on the solvent. In case of systems with ethylene glycol as solvent is possible morin molecules location in polar cores of AOT reversed micelles as results of strong interaction between AOT polar heads and morin hydroxyl groups, whereas in case of ethanol and n-decanol morin molecules are located in palisade layer. Copyright © 2013 Elsevier B.V. All rights reserved.
Bandforuzi, Samereh Ranjbar; Hadjmohammadi, Mohammad Reza
2018-08-03
The extraction of phthalate esters (PEs) from aqueous matrices using two-phase solvent bar microextraction by organic micellar phase was investigated. A short hollow fiber immobilized with reverse micelles of Brij 35 surfactant in 1-octanol was served as the solvent bar for microextraction. Experimental results show that the extraction efficiency were much higher using two-phase solvent bar microextraction based on non-ionic surfactant than conventional two-phase solvent bar microextraction because of a positive effect of surfactant-containing extraction phase in promoting the partition process by non-ionic intermolecular forces such as polar and hydrophobicity interactions. The nature of the extraction solvent, type and concentration of non-ionic surfactant, extraction time, sample pH, temperature, stirring rate and ionic strength were the effecting parameters which optimized to obtain the highest extraction recovery. Analysis of recovered analytes was carried out with high performance liquid chromatography coupled with ultraviolet detection (HPLC-UV). Under the optimum conditions, linearity was observed in the range of 1-800 ng mL -1 for dimethylphthalate (DMP) and 0.5-800 ng mL -1 for diethylphthalate (DEP) and di-n-butyl phthalate (DBP) with correlation determination values above 0.99 for them. The limits of detection and quantification were ranged from 0.012 to 0.03 ng mL -1 and 0.04-0.1 ng mL -1 , respectively. The ranges of intra-day and inter-day RSD (n = 3) at 20 ng mL -1 of PEs were 1.8-2.1% and 2.1-2.6%, respectively. Results showed that developed method can be a very powerful, innovative and promising sample preparation technique in PEs analysis from environmental and drinking water samples. Copyright © 2018. Published by Elsevier B.V.
Organic solvents, electrolytes, and lithium ion cells with good low temperature performance
NASA Technical Reports Server (NTRS)
Huang, Chen-Kuo (Inventor); Smart, Marshall C. (Inventor); Surampudi, Subbarao (Inventor); Bugga, Ratnakumar V. (Inventor)
2002-01-01
Multi-component organic solvent systems, electrolytes and electrochemical cells characterized by good low temperature performance are provided. In one embodiment, an improved organic solvent system contains a ternary mixture of ethylene carbonate, dimethyl carbonate and diethyl carbonate. In other embodiments, quaternary systems include a fourth component, i.e, an aliphatic ester, an asymmetric alkyl carbonate or a compound of the formula LiOX, where X is R, COOR, or COR, where R is alkyl or fluoroalkyl. Electrolytes based on such organic solvent systems are also provided and contain therein a lithium salt of high ionic mobility, such as LiPF.sub.6. Reversible electrochemical cells, particularly lithium ion cells, are constructed with the improved electrolytes, and preferably include a carbonaceous anode, an insertion type cathode, and an electrolyte interspersed therebetween.
System for exchange of hydrogen between liquid and solid phases
Reilly, James J.; Grohse, Edward W.; Johnson, John R.; Winsche, deceased, Warren E.
1988-01-01
The reversible reaction M+x/2 H.sub.2 .rarw..fwdarw.MH.sub.x, wherein M is a reversible metal hydride former that forms a hydride MH.sub.x in the presence of H.sub.2, generally used to store and recall H.sub.2, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H.sub.2, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H.sub.2 through the liquid is dependent upon the H.sub.2 pressure in the gas phase at a given temperature. When the actual H.sub.2 pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particles. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.
System for exchange of hydrogen between liquid and solid phases
Reilly, J.J.; Grohse, E.W.; Johnson, J.R.; Winsche, W.E.
1985-02-22
The reversible reaction M + x/2 H/sub 2/ reversible MH/sub x/, wherein M is a reversible metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the actual H/sub 2/ pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.
Li, Yongtao; Whitaker, Joshua S; McCarty, Christina L
2012-07-06
A large volume direct aqueous injection method was developed for the analysis of iodinated haloacetic acids in drinking water by using reversed-phase liquid chromatography/electrospray ionization/tandem mass spectrometry in the negative ion mode. Both the external and internal standard calibration methods were studied for the analysis of monoiodoacetic acid, chloroiodoacetic acid, bromoiodoacetic acid, and diiodoacetic acid in drinking water. The use of a divert valve technique for the mobile phase solvent delay, along with isotopically labeled analogs used as internal standards, effectively reduced and compensated for the ionization suppression typically caused by coexisting common inorganic anions. Under the optimized method conditions, the mean absolute and relative recoveries resulting from the replicate fortified deionized water and chlorinated drinking water analyses were 83-107% with a relative standard deviation of 0.7-11.7% and 84-111% with a relative standard deviation of 0.8-12.1%, respectively. The method detection limits resulting from the external and internal standard calibrations, based on seven fortified deionized water replicates, were 0.7-2.3 ng/L and 0.5-1.9 ng/L, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
He, Jiao; Li, Jing; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro
2012-01-01
Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was developed for preparative isolation and purification of three glycine-conjugated cholic acids, glycochenodeoxycholic acid (GCDCA), glycohyodeoxycholic acid (GHDCA) and glycohyocholic acid (GHCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The separation was performed with a two-phase solvent system consisted of chloroform-methanol-water-acetic acid (65:30:10:1.5, v/v/v/v) by eluting the lower phase in the head-to-tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 2 ml/min and 25 °C, respectively. In a single operation, 33 mg of GCDCA, 38 mg of GHDCA and 23 mg of GHCA were obtained from 200 mg of crude extract with the purity of 95.65%, 96.72% and 96.63%, respectively, in one step separation. The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three glycine-conjugated cholic acids were identified by ESI-MS, (1)H NMR and (13)C NMR.
Ion chromatography in the manufacture of multilayer circuit boards
NASA Astrophysics Data System (ADS)
Smith, R. E.
1987-10-01
Ion chromatography (IC) has proven useful in analyzing chemical solutions used in the manufacture of multilayer circuit boards. IC provides results on ions not expected in the production solutions. Thus, solution contamination and breakdown products can be monitored in every phase of the circuit board manufacturing. During the first phase, epoxy laminates experience an etchback, first in chromic acid, which can be analyzed for trace chloride and sulfate, then in ammonium bifluoride/HCl, which can be analyzed for fluoride and chloride. Following a wet blasting to roughen up the surface, 20 mu in. of copper are deposited using an electroless bath. Again, IC is applicable for monitoring formate, tartarate, and sulfate levels. Next, an acid copper bath is used to electroplate the through holes with 0.001 in. of ductile copper. This bath is analyzed for trace chloride. Photoimaging is then performed, and the organic solvents used can be assayed for trace ionic chloride. Finally, a fluoroboric acid-based tin-lead bath is used to deposit a solderable alloy. This bath is analyzed for total fluoroborate, tin, and lead. In addition, mobile phase ion chromatography (MPIC) is used to monitor the nonionic organic brighteners in the baths.
Ion chromatography in the manufacture of multilayer circuit boards
NASA Astrophysics Data System (ADS)
Smith, Robert E.
1990-01-01
Ion chromatography (IC) has proven useful in analyzing chemical solutions used in the manufacture of multilayer circuit boards. Unlike other chemical quantification techniques, IC provides results on ions not expected in the production solutions. Thus, solution contamination and break-down products can be monitored in every phase of the circuit board manufacturing. During the first phase, epoxy laminates experience an etchback, first in chromic acid, which can be analyzed for trace chloride and sulfate, then in ammonium bifluoride/HCl, which can be analyzed for fluoride and chloride. Following a wet-blasting to roughen up the surface, 20 microinches of copper are deposited using an electroless bath. Again, IC is applicable for monitoring formate, tartarate, and sulfate levels. Next, an acid copper bath is used to electroplate the through holes with 0.001 inches of ductile copper. This bath is analyzed for trace chloride. Photoimaging is then performed, and the organic solvents used can be assayed for trace ionic chloride. Finally, a fluoroboric acid-based tin-lead bath is used to deposit a solderable alloy. This bath is analyzed for fluoroborate, tin, and lead. In addition, mobile phase ion chromatography (MPIC) is used to monitor the nonionic organic brighteners in the baths.
Abidi, S.L.
1983-01-01
A series of eleven p-aminotriphenylmethane dyes have been studied by high-performance liquid chromatography (HPLC). The combined use of HPLC and spectrophotometry permits specific detection of these compounds in the visible range around 600 nm. As the high affinity of the imminium cations for the active sites of the hydrocarbonaceous stationary phase has presented difficulties for reversed-phase HPLC with pure solvents, organic electrolytes were added to the mobile phase to facilitate the elution of the components with improved selectivity, sensitivity (minimum detection limit, 0.1 μg/ml), and peak symmetry. The effects of chromatographic variables on the component retentivity were investigated. Retention times of the dye analytes decreased with increasing concentration of the added ionic reagent and with decreasing number of the hydrophobic alkyl substituents on the nitrogen atom. The influence of pH on the retention parameters appears to parallel that observed previously for cationic quaternary ammonium compounds. Among the acidic reagents employed, naphthalenesulfonic acid yielded the most satisfactory results. The use of binary electrolyte systems invariably improved the chromatographic behavior of the imminium solutes analyzed. Results obtained with two different octadecylsilica columns have been compared.
He, Jiao; Li, Jing; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro
2011-01-01
Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was developed for preparative isolation and purification of three glycine-conjugated cholic acids, glycochenodeoxycholic acid (GCDCA), glycohyodeoxycholic acid (GHDCA) and glycohyocholic acid (GHCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The separation was performed with a two-phase solvent system consisted of chloroform-methanol-water-acetic acid (65:30:10:1.5, v/v/v/v) by eluting the lower phase in the head-to-tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 2 ml/min and 25 °C, respectively. In a single operation, 33 mg of GCDCA, 38 mg of GHDCA and 23 mg of GHCA were obtained from 200 mg of crude extract with the purity of 95.65%, 96.72% and 96.63%, respectively, in one step separation. The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three glycine-conjugated cholic acids were identified by ESI-MS, 1H NMR and 13C NMR. PMID:23008527
Effect of solvents on the optical and morphological properties of MEH-PPV: PC70BM nanocomposites
NASA Astrophysics Data System (ADS)
Mhamdi, Asya; Ltaief, Adnen; Bouazizi, Abdelaziz
2017-10-01
Focused on phase separation and morphologies of polymer poly [2-methoxy-5-(2'-ethyl) hexoxy-1,4-phenylenevinylene] (MEH-PPV) and [6,6]-phenylC71-butyric acid methyl ester (PC70BM) nanocomposite, we studied the effect of organic solvent on the optical and morphological properties of these blends. The MEH-PPV: PC70BM films was prepared using three different solvent; Tetrahydrofuran (THF), Chlorobenzene (CB) and Toluene. On the other hand, the effect of 1-8 octanedithiol additives is also studied with the same different solvents. These blend films are characterized by photoluminescence spectroscopy, UV-Vis absorption spectroscopy and atomic force microscopy (AFM). The photoluminescence results show that the THF solvent provide the better charge transfer. In a morphological view point, the phase segregation was clearly appearing by the addition of the additive on the surface of the blend films.
Preparation of cerium halide solvate complexes
Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E
2013-08-06
Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.
Code of Federal Regulations, 2011 CFR
2011-07-01
... portable or mobile three-phase alternating current equipment; circuit breakers. 77.900 Section 77.900... mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage circuits supplying power to portable or mobile three-phase alternating current equipment shall be protected by...
The Chemistry of Separations Ligand Degradation by Organic Radical Cations
Mezyk, Stephen P.; Horne, Gregory P.; Mincher, Bruce J.; ...
2016-12-01
Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexants and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normalmore » alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R •+), carbon-centered radicals (R •), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R •+ as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with various ligands. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved.« less
The Chemistry of Separations Ligand Degradation by Organic Radical Cations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mezyk, Stephen P.; Horne, Gregory P.; Mincher, Bruce J.
Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexants and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normalmore » alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R •+), carbon-centered radicals (R •), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R •+ as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with various ligands. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved.« less
Aladaghlo, Zolfaghar; Fakhari, Alireza; Behbahani, Mohammad
2016-10-01
In this work, an efficient sample preparation method termed solvent-assisted dispersive solid-phase extraction was applied. The used sample preparation method was based on the dispersion of the sorbent (benzophenone) into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was achieved by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre-concentration of the butachlor, the cloudy solution was centrifuged and butachlor in the sediment phase dissolved in ethanol and determined by gas chromatography with flame ionization detection. Under the optimized conditions (solution pH = 7.0, sorbent: benzophenone, 2%, disperser solvent: ethanol, 500 μL, centrifuged at 4000 rpm for 3 min), the method detection limit for butachlor was 2, 3 and 3 μg/L for distilled water, waste water, and urine sample, respectively. Furthermore, the preconcentration factor was 198.8, 175.0, and 174.2 in distilled water, waste water, and urine sample, respectively. Solvent-assisted dispersive solid-phase extraction was successfully used for the trace monitoring of butachlor in urine and waste water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Dan; Zou, Xiaowei; Gao, Mingzhe; Gu, Ming; Xiao, Hongbin
2014-08-22
Hydrophilic organic/salt-containing aqueous two-phase system composing of ethanol, water and ammonium sulfate for separation polar compounds was investigated on multilayer coil associated with J-type HSCCC devices. Compared to the classical polar solvent system based on 1-butanol-water or PEG1000-ammonium sulfate-water, the water content of upper phase in ethanol-ammonium sulfate-water systems was from 53.7% to 32.8% (wt%), closed to PEG1000-ammonium sulfate-water aqueous two-phase systems and higher than 1-butanol-water (22.0%, wt%). Therefore, the polarity of ethanol-ammonium sulfate-water is in the middle of 1-butanol-water and PEG-ammonium sulfate-water system, which is quite good for separating polar compounds like phenols, nucleosides and amino acids with low partition coefficient in 1-octanol-water system. The retention of stationary phase in four elution mode on type-J counter-current chromatography devices with multilayer coil column changed from 26% to 71%. Hydrodynamic trend possess both intermediate and hydrophilic solvent system property, which closely related to the composition of solvent system. The applicability of this system was demonstrated by successful separation of adenosine, uridine guanosine and cytidine. Copyright © 2014 Elsevier B.V. All rights reserved.
Feasibility of Surfactant-Free Supported Emulsion Liquid Membrane Extraction
NASA Technical Reports Server (NTRS)
Hu, Shih-Yao B.; Li, Jin; Wiencek, John M.
2001-01-01
Supported emulsion liquid membrane (SELM) is an effective means to conduct liquid-liquid extraction. SELM extraction is particularly attractive for separation tasks in the microgravity environment where density difference between the solvent and the internal phase of the emulsion is inconsequential and a stable dispersion can be maintained without surfactant. In this research, dispersed two-phase flow in SELM extraction is modeled using the Lagrangian method. The results show that SELM extraction process in the microgravity environment can be simulated on earth by matching the density of the solvent and the stripping phase. Feasibility of surfactant-free SELM (SFSELM) extraction is assessed by studying the coalescence behavior of the internal phase in the absence of the surfactant. Although the contacting area between the solvent and the internal phase in SFSELM extraction is significantly less than the area provided by regular emulsion due to drop coalescence, it is comparable to the area provided by a typical hollow-fiber membrane. Thus, the stripping process is highly unlikely to become the rate-limiting step in SFSELM extraction. SFSELM remains an effective way to achieve simultaneous extraction and stripping and is able to eliminate the equilibrium limitation in the typical solvent extraction processes. The SFSELM design is similar to the supported liquid membrane design in some aspects.
Understanding morphology-mobility dependence in PEDOT:Tos
NASA Astrophysics Data System (ADS)
Rolland, Nicolas; Franco-Gonzalez, Juan Felipe; Volpi, Riccardo; Linares, Mathieu; Zozoulenko, Igor V.
2018-04-01
The potential of conjugated polymers to compete with inorganic materials in the field of semiconductor is conditional on fine-tuning of the charge carriers mobility. The latter is closely related to the material morphology, and various studies have shown that the bottleneck for charge transport is the connectivity between well-ordered crystallites, with a high degree of π -π stacking, dispersed into a disordered matrix. However, at this time there is a lack of theoretical descriptions accounting for this link between morphology and mobility, hindering the development of systematic material designs. Here we propose a computational model to predict charge carriers mobility in conducting polymer PEDOT depending on the physicochemical properties of the system. We start by calculating the morphology using molecular dynamics simulations. Based on the calculated morphology we perform quantum mechanical calculation of the transfer integrals between states in polymer chains and calculate corresponding hopping rates using the Miller-Abrahams formalism. We then construct a transport resistive network, calculate the mobility using a mean-field approach, and analyze the calculated mobility in terms of transfer integrals distributions and percolation thresholds. Our results provide theoretical support for the recent study [Noriega et al., Nat. Mater. 12, 1038 (2013), 10.1038/nmat3722] explaining why the mobility in polymers rapidly increases as the chain length is increased and then saturates for sufficiently long chains. Our study also provides the answer to the long-standing question whether the enhancement of the crystallinity is the key to designing high-mobility polymers. We demonstrate, that it is the effective π -π stacking, not the long-range order that is essential for the material design for the enhanced electrical performance. This generic model can compare the mobility of a polymer thin film with different solvent contents, solvent additives, dopant species or polymer characteristics, providing a general framework to design new high mobility conjugated polymer materials.
Lu, Ying; Li, JiaYin; Li, MiLu; Hu, Xia; Tan, Jun; Liu, Zhong Hua
2012-10-01
Two new cinnamic acids, 2-O-caffeoyl-3-O-isoferuloyltartaric (3), and 2, 3-di-O-isoferuloyltartaric acid (5), along with three known caffeic acids, cichoric acid (1), 2-O-caffeoyl-3-O-feruloyltartaric acid (2) and 2-O-caffeoyl-3-O-p-coumaroyltartaric acid (4), have been successfully isolated and purified from Echinacea purpurea. In this study, we investigated an efficient method for the preparative isolation and purification of cinnamic acids from E. purpurea by high-speed counter-current chromatography (HSCCC). The separation was performed using a two-phase solvent composed of n-hexane-ethyl-acetate-methanol-0.5% aqueous acetic acid (1:3:1:4, v/v). The upper phase was used as the stationary phase and the lower phase as the mobile phase, with a flow rate of 1.6 mL/min. From 250 mg of crude extracts, 65.1 mg of 1, 8.3 mg of 2, 4.0 mg of 3, 4.5 mg of 4, and 4.3 mg of 5 were isolated in one-step, with purities of 98.5%, 97.7%, 94.6%, 94.3%, and 98.6%, respectively, as evaluated by HPLC-DAD. The chemical structures were identified by electro spray ionization mass spectrometry (ESI-MS) and one- and two-dimensional NMR spectra. HSCCC was very efficient for the separation and purification of the cinnamic acids from
Jung, Chi-Young; Kim, Tae-Hyun; Yi, Sung-Chul
2014-02-01
A dual-electrode membrane electrode assembly (MEA) for proton exchange membrane fuel cells with enhanced polarization under zero relative humidity (RH) is fabricated by introducing a phase-separated morphology in an agglomerated catalyst layer of Pt/C (platinum on carbon black) and Nafion. In the catalyst layer, a sufficient level of phase separation is achieved by dispersing the Pt catalyst and the Nafion dispersion in a mixed-solvent system (propane-1,2,3-triol/1-methyl-2-pyrrolidinone).The high polymer chain mobility results in improved water uptake and regular pore-size distribution with small pore diameters. The electrochemical performance of the dual-film electrode assembly with different levels of phase separation is compared to conventional electrode assemblies. As a result, good performance at 0 % RH is obtained because self-humidification is dramatically improved by attaching this dense and phase-separated catalytic overlayer onto the conventional catalyst layer. A MEA prepared using the thin-film, dual-layered electrode exhibits 39-fold increased RH stability and 28-fold improved start-up recovery time during the on-off operation relative to the conventional device. We demonstrate the successful operation of the dual-layered electrode comprised of discriminatively phase-separated agglomerates with an ultrahigh zero RH fuel-cell performance reaching over 95 % performance of a fully humidified MEA. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, P; Wang, J; Cong, R; Dong, B
1997-05-01
A bonded phase for high performance liquid chromatography (HPLC) has been prepared by the new reaction between silica and silicon ether. The ether was synthesized from alkylchlorosilane and pentane-2,4-dione in the presence of imidazole under inert conditions by using anhydrous tetrahydrofuran as solvent. The bonded phase thus obtained was characterized by elemental analysis, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and HPLC evaluation. The carbon content was 9.4% and the surface coverage almost attained 3.0micromol/m2 without end-capping. The silanol absorption peaks of the product cannot be observed from the DRIFT spectrum, which revealed that the silanization reaction proceeded thoroughly. The basic solutes, such as aniline, o-toluidine, p-toluidine, N,N-dimethylaniline and pyridine were used as the probe solutes to examine their interaction with the residual silanols on the surface of the products. No buffer or salt was used in the mobile phase for these experiments. In comparison with an acidic solute, such as, phenol, basic aniline eluted in front of phenol, and the ratio of asymmetry of aniline peak to that of the phenol peak was 1.1. Furthermore the relative k' value of p-toluidine to that of o-toluidine was also 1.1. All the results showed that the stationary phase has better quality and reproducibility and can be used for the separation of basic solutes efficiently.
Li, Jia-Fu; Fang, Hua; Yan, Xia; Chang, Fang-Rong; Wu, Zhen; Wu, Yun-Long; Qiu, Ying-Kun
2016-07-22
An on-line comprehensive preparative two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography (2D NPLC×RPLC) system was constructed with a newly developed vacuum evaporation assisted adsorption (VEAA) interface, allowing fast removal of NPLC solvent in the vacuum condition and successfully solving the solvent incompatibility problem between NPLC and RPLC. The system achieved on-line solvent exchange within the two dimensions and its performance was illustrated by gram-scale isolation of crude extract from the venom of Bufo bufo gargarizans. Within separation time of ∼20h, 19 compounds were obtained with high purity in a single run. With the VEAA interface, the 2D system exhibited apparent advantages in separation efficiency and automation compared with conventional methods, indicating its promising application in the routine separation process for complicated natural products. Copyright © 2016 Elsevier B.V. All rights reserved.
Gu, Binghe; Meldrum, Brian; McCabe, Terry; Phillips, Scott
2012-01-01
A theoretical treatment was developed and validated that relates analyte concentration and mass sensitivities to injection volume, retention factor, particle diameter, column length, column inner diameter and detection wavelength in liquid chromatography, and sample volume and extracted volume in solid-phase extraction (SPE). The principles were applied to improve sensitivity for trace analysis of clopyralid in drinking water. It was demonstrated that a concentration limit of detection of 0.02 ppb (μg/L) for clopyralid could be achieved with the use of simple UV detection and 100 mL of a spiked drinking water sample. This enabled reliable quantitation of clopyralid at the targeted 0.1 ppb level. Using a buffered solution as the elution solvent (potassium acetate buffer, pH 4.5, containing 10% of methanol) in the SPE procedures was found superior to using 100% methanol, as it provided better extraction recovery (70-90%) and precision (5% for a concentration at 0.1 ppb level). In addition, the eluted sample was in a weaker solvent than the mobile phase, permitting the direct injection of the extracted sample, which enabled a faster cycle time of the overall analysis. Excluding the preparation of calibration standards, the analysis of a single sample, including acidification, extraction, elution and LC run, could be completed in 1 h. The method was used successfully for the determination of clopyralid in over 200 clopyralid monoethanolamine-fortified drinking water samples, which were treated with various water treatment resins. Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Spórna-Kucab, Aneta; Milo, Angelika; Kumorkiewicz, Agnieszka; Wybraniec, Sławomir
2018-01-15
Betacyanins, natural plant pigments exhibiting antioxidant and chemopreventive properties, were extracted from Celosia spicata (Thouars) Spreng. inflorescences and separated by high-speed counter-current chromatography (HSCCC) in two polar solvent systems composed of: TBME - 1-BuOH - ACN - H 2 O (0.7% HFBA, 2:2:1:5, v/v/v/v) (system I) and EtOH - ACN - 1-PrOH - (NH 4 ) 2 SO 4satd.soln - H 2 O (0.5:0.5:0.5:1.2:1, v/v/v/v/v) (system II). The systems were used in the head-to-tail (system I) and tail-to-head (system II) mode. The flow rate of the mobile phase was 2.0 ml/min and the column rotation speed was 860 rpm. The retention of the stationary phase was 73.5% (system I) and 80.0% (system II). For the identification of separated betacyanins in the crude extract as well as in the HSCCC fractions, LC-DAD-ESI-MS/MS analyses were performed. Depending on the target compounds, each of the systems exhibit meaningfully different selectivity and applicability. For the pairs of amaranthines (1/1') and betanins (2/2'), the best choice is the system II, but the acylated amaranthine pairs (3/3' and 4/4') can be resolved only in the ion-pair system I. For the indication of the most suitable solvent system for Celosia plumosa hort., Celosia cristata L. and Celosia spicata (Thouars) Spreng. species, the profiles of betacyanins in different plant parts were studied. Copyright © 2017. Published by Elsevier B.V.
Lin, Monica; Lin, Kham; Lin, Amanda; Gras, Ronda; Luong, Jim
2016-07-01
A novel approach for the determination of parts-per-billion level of 5-hydroxymethyl-2-furaldehyde, furfuryl alcohol, furfural, 2-furyl methyl ketone, and 5-methylfurfural in transformer or rectifier oils has been successfully innovated and implemented. Various extraction methods including solid-phase extraction, liquid-liquid extraction using methanol, acetonitrile, and water were studied. Water was by far the most efficient solvent for use as an extraction medium. Separation of the analytes was conducted using a 4.6 mm × 250 mm × 3.5 μm Agilent Zorbax column while detection and quantitation were conducted with a variable wavelength UV detector. Detection limits of all furans were at 1 ppb v/v with linear ranges range from 5 to 1000 ppb v/v with correlation coefficients of 0.997 or better. A relative standard deviation of at most 2.4% at 1000 ppb v/v and 7.3% at 5 ppb v/v and a recovery from 43% to 90% depending on the analyte monitored were obtained. The method was purposely designed to be environmental friendly with water as an extraction medium. Also, the method uses 80% water and 20% acetonitrile with a mere 0.2 mL/min of acetonitrile in an acetonitrile/water mixture as mobile phase. The analytical technique has been demonstrated to be highly reliable with low cost of ownership, suitable for deployment in quality control labs or in regions where available analytical resources and solvents are difficult to procure. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zlatković, Milica; Jovanović, Miodrag; Djordjević, Dragana; Vucinić, Slavica
2010-09-01
Analysis of organophosphosphorus compounds and their metabolites in a biological material includes the use of numerous methods, covering both preparation of samples for analysis and their identification that is considered to be very complex. Low concentrations monitoring requires implementation of highly sensitive analytical techniques. The aim of this study was to develop and validate an original and sensitive method for the detection and quantitation of organophosphorus pesticides (dimethoate, diazinon, malathion and malaoxon) in human biological matrices (serum, urine). This method was based on a solid-phase extraction procedure, a chromatographic separation using an ACQUITY UPLC HSST3 column and mass spectrometric detection in the positive ion mode. Mobile phase: was consited of Solvent A (5 mM ammonium formate pH 3.0) and Solvent B (0.1% acetic formate in methanol), in a linear gradient (constant flow-rate 0.3 mL/min). The standard curve was linear in the range of 0.05-5.00 mg/L for malathion and malaoxon, 0.10-5.00 mg/L for dimethoate and 0.05-2.50 mg/L for diazinon. The correlation coefficient was r > or = 0.99. Extraction recoveries were satisfactory and ranged between 90-99%. The limits of detection (LOD) was between 0.007-0.07 mg/L and the limits of quantitation (LOQ) ranged between 0.022-0.085 mg/L. Intra- and interassay precision and accuracy were satisfactory for all of the pesticides analyzed. The method of liquid chromatography-mass spectrometry is simple, accurate, and useful for the determination of organophosphorus pesticides in both clinical and forensic toxicology.
Mi, Hao-Yang; Jing, Xin; Salick, Max R; Cordie, Travis M; Turng, Lih-Sheng
2016-09-01
Although phase separation is a simple method of preparing tissue engineering scaffolds, it suffers from organic solvent residual in the scaffold. Searching for nontoxic solvents and developing effective solvent removal methods are current challenges in scaffold fabrication. In this study, thermoplastic polyurethane (TPU) scaffolds containing carbon nanotubes (CNTs) or nanofibrillated cellulose fibers (NFCs) were prepared using low toxicity dimethyl sulfoxide (DMSO) as a solvent. The effects of two solvent removal approaches on the final scaffold morphology were studied. The freeze drying method caused large pores, with small pores on the pore walls, which created connections between the pores. Meanwhile, the leaching and freeze drying method led to interconnected fine pores with smaller pore diameters. The nucleation effect of CNTs and the phase separation behavior of NFCs in the TPU solution resulted in significant differences in the microstructures of the resulting scaffolds. The mechanical performance of the nanocomposite scaffolds with different morphologies was investigated. Generally, the scaffolds with a fine pore structure showed higher compressive properties, and both the CNTs and NFCs improved the compressive properties of the scaffolds, with greater enhancement found in TPU/NFC nanocomposite scaffolds. In addition, all scaffolds showed good sustainability under cyclical load bearing, and the biocompatibility of the scaffolds was verified via 3T3 fibroblast cell culture. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Câmara, L. D. T.
2015-09-01
The solvent-gradient simulated moving bed process (SG-SMB) is the new tendency in the performance improvement if compared to the traditional isocratic solvent conditions. In such SG-SMB separation process the modulation of the solvent strength leads to significant increase in the purities and productivity followed by reduction in the solvent consumption. A stepwise modelling approach was utilized in the representation of the interconnected chromatographic columns of the system combined with lumped mass transfer models between the solid and liquid phase. The influence of the solvent modifier was considered applying the Abel model which takes into account the effect of modifier volume fraction over the partition coefficient. The modelling and simulations were carried out and compared to the experimental SG-SMB separation of the amino acids phenylalanine and tryptophan. A lumped mass transfer kinetic model was applied for both the modifier (ethanol) as well as the solutes. The simulation results showed that such simple and global mass transfer models are enough to represent all the mass transfer effect between the solid adsorbent and the liquid phase. The separation performance can be improved reducing the interaction or the mass transfer kinetic effect between the solid adsorbent phase and the modifier. The simulations showed great agreement fitting the experimental data of the amino acids concentrations both at the extract as well as at the raffinate.
Zhu, Jingbo; Liu, Baoyue; Shan, Shibo; Ding, Yanl; Kou, Zinong; Xiao, Wei
2015-08-01
In order to meet the needs of efficient purification of products from natural resources, this paper developed an automatic vacuum liquid chromatographic device (AUTO-VLC) and applied it to the component separation of petroleum ether extracts of Schisandra chinensis (Turcz) Baill. The device was comprised of a solvent system, a 10-position distribution valve, a 3-position changes valve, dynamic axis compress chromatographic columns with three diameters, and a 10-position fraction valve. The programmable logic controller (PLC) S7- 200 was adopted to realize the automatic control and monitoring of the mobile phase changing, column selection, separation time setting and fraction collection. The separation results showed that six fractions (S1-S6) of different chemical components from 100 g Schisandra chinensis (Turcz) Baill. petroleum ether phase were obtained by the AUTO-VLC with 150 mm diameter dynamic axis compress chromatographic column. A new method used for the VLC separation parameters screened by using multiple development TLC was developed and confirmed. The initial mobile phase of AUTO-VLC was selected by taking Rf of all the target compounds ranging from 0 to 0.45 for fist development on the TLC; gradient elution ratio was selected according to k value (the slope of the linear function of Rf value and development times on the TLC) and the resolution of target compounds; elution times (n) were calculated by the formula n ≈ ΔRf/k. A total of four compounds with the purity more than 85% and 13 other components were separated from S5 under the selected conditions for only 17 h. Therefore, the development of the automatic VLC and its method are significant to the automatic and systematic separation of traditional Chinese medicines.
Medvedovici, Andrei; Udrescu, Stefan; Albu, Florin; Tache, Florentin; David, Victor
2011-09-01
Liquid-liquid extraction of target compounds from biological matrices followed by the injection of a large volume from the organic layer into the chromatographic column operated under reversed-phase (RP) conditions would successfully combine the selectivity and the straightforward character of the procedure in order to enhance sensitivity, compared with the usual approach of involving solvent evaporation and residue re-dissolution. Large-volume injection of samples in diluents that are not miscible with the mobile phase was recently introduced in chromatographic practice. The risk of random errors produced during the manipulation of samples is also substantially reduced. A bioanalytical method designed for the bioequivalence of fenspiride containing pharmaceutical formulations was based on a sample preparation procedure involving extraction of the target analyte and the internal standard (trimetazidine) from alkalinized plasma samples in 1-octanol. A volume of 75 µl from the octanol layer was directly injected on a Zorbax SB C18 Rapid Resolution, 50 mm length × 4.6 mm internal diameter × 1.8 µm particle size column, with the RP separation being carried out under gradient elution conditions. Detection was made through positive ESI and MS/MS. Aspects related to method development and validation are discussed. The bioanalytical method was successfully applied to assess bioequivalence of a modified release pharmaceutical formulation containing 80 mg fenspiride hydrochloride during two different studies carried out as single-dose administration under fasting and fed conditions (four arms), and multiple doses administration, respectively. The quality attributes assigned to the bioanalytical method, as resulting from its application to the bioequivalence studies, are highlighted and fully demonstrate that sample preparation based on large-volume injection of immiscible diluents has an increased potential for application in bioanalysis.
Murakami, Hiroya; Horiba, Ruri; Iwata, Tomoko; Miki, Yuta; Uno, Bunji; Sakai, Tadao; Kaneko, Kazuhiro; Ishihama, Yasushi; Teshima, Norio; Esaka, Yukihiro
2018-01-15
Acetaldehyde (AA), which is present in tobacco smoke, automobile exhaust gases and alcohol beverage, is a mutagen and carcinogen. AA reacts with 2'-deoxyguanosine (dG) in DNA to form N 2 -ethyl-dG (EtdG) and cyclic, 1, N 2 -propano-dG (CPrdG), which are considered to have a critical role in carcinogenesis induced by AA. In this study, we have developed a highly sensitive method for the quantitation of the two AA-derived DNA adducts by using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) in which hydrophilic interaction chromatography (HILIC) employing mobile phases of high organic solvent concentration was selected to improve the ionization efficiency in the ESI process. Fourteen times and 11 times larger peak areas for EtdG and CPrdG, respectively, in HILIC-ESI-MS/MS were obtained compared with those in reversed phase (RP)-LC-ESI-MS/MS. Furthermore, 6.9 times (for EtdG) and 2.4 times (for CPrdG) larger peak areas were also obtained as additional enhancement by varying additive compounds in the HILIC mobile phases from ammonium acetate to ammonium bicarbonate. In total, the enhancements in detected MS signal intensities by exchanging from the RP-LC system to the HILIC system are 97 times for EtdG and 26 times for CPrdG, respectively. Three commercially available HILIC columns with different polar functional groups were examined and sufficient separation between normal 2'-deoxynucleosides and the AA-derived DNA adducts was achieved by a carbamoyl-bonded HILIC column. Finally, we applied the established method to quantify EtdG and CPrdG in the damaged calf thymus DNA. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhao, Shan; Zhang, Jing; Yang, Yi; Shao, Bing
2010-04-01
A method for the determination of 27 industrial dyes in juice and wine has been developed using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/ MS). Acetonitrile was used as extraction solvent, and sodium chloride was added to salt out the analytes from the samples. Chromatographic separation was performed on a C18 column with the gradient elution and the mass spectrometric acquisition was carried out under the mode of multiple reaction monitoring (MRM). Twenty-four of the 27 dyes were detected under positive ionization mode using the mobile phase of acetonitrile and water containing 0.1% formic acid. The other 3 dyes were analyzed under negative ionization mode with the mobile phase of acetonitrile and water. As a result, the average recoveries of 27 dyes spiked in juice ranged from 57.0% to 117.7% with the relative standard deviations (RSDs) of 2.4%-17.7%, and the average recoveries of 27 dyes spiked in wine ranged from 40.8% to 109.4% with the RSDs of 1.6%-17.9%. The limits of quantification (LOQs) of 27 dyes spiked in juice were in the range of 0.1-50 microg/kg, and 0.2-50 microg/kg for those spiked in wine. This method can be applied to rapid detection of illegally added dyes in soft drinks due to its simplicity and high sensitivity.
Sakai, Miho; Hayakawa, Yoshihiro; Funada, Yasuhiro; Ando, Takashi; Fukusaki, Eiichiro; Bamba, Takeshi
2017-09-15
In this study, we propose a novel variable sample injection system based on full-loop injection, named the split-flow sample introduction system, for application in supercritical fluid chromatography (SFC). In this system, the mobile phase is split by the differential pressure between two back pressure regulators (BPRs) after full-loop injection suitable for SFC, and this differential pressure determines the introduction rate. Nine compounds with a wide range of characteristics were introduced with high reproducibility and universality, confirming that a robust variable sample injection system was achieved. We also investigated the control factors of our proposed system. Sample introduction was controlled by the ratio between the column-side pressure drops in splitless and split flow, ΔP columnsideinsplitless and ΔP columnsideinsplit , respectively, where ΔP columnsideinsplitless is related to the mobile phase flow rate and composition and the column resistance. When all other conditions are kept constant, increasing the make-up flow induces an additional pressure drop on the column side of the system, which leads to a reduced column-side flow rate, and hence decreased the amount of sample injected, even when the net pressure drop on the column side remains the same. Thus, sample introduction could be highly controlled at low sample introduction rate, regardless of the introduction conditions. This feature is advantageous because, as a control factor, the solvent in the make-up pump is independent of the column-side pressure drop. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Maragou, Niki C.; Thomaidis, Nikolaos S.; Koupparis, Michael A.
2011-10-01
A systematic and detailed optimization strategy for the development of atmospheric pressure ionization (API) LC-MS/MS methods for the determination of Irgarol 1051, Diuron, and their degradation products (M1, DCPMU, DCPU, and DCA) in water, sediment, and mussel is described. Experimental design was applied for the optimization of the ion sources parameters. Comparison of ESI and APCI was performed in positive- and negative-ion mode, and the effect of the mobile phase on ionization was studied for both techniques. Special attention was drawn to the ionization of DCA, which presents particular difficulty in API techniques. Satisfactory ionization of this small molecule is achieved only with ESI positive-ion mode using acetonitrile in the mobile phase; the instrumental detection limit is 0.11 ng/mL. Signal suppression was qualitatively estimated by using purified and non-purified samples. The sample preparation for sediments and mussels is direct and simple, comprising only solvent extraction. Mean recoveries ranged from 71% to 110%, and the corresponding (%) RSDs ranged between 4.1 and 14%. The method limits of detection ranged between 0.6 and 3.5 ng/g for sediment and mussel and from 1.3 to 1.8 ng/L for sea water. The method was applied to sea water, marine sediment, and mussels, which were obtained from marinas in Attiki, Greece. Ion ratio confirmation was used for the identification of the compounds.
Molecular dynamics studies of interpenetrating polymer networks for actuator devices
NASA Astrophysics Data System (ADS)
Brandell, Daniel; Kasemägi, Heiki; Citérin, Johann; Vidal, Frédéric; Chevrot, Claude; Aabloo, Alvo
2008-03-01
Molecular Dynamics (MD) techniques have been used to study the structure and dynamics of a model system of an interpenetrating polymer (IPN) network for actuator devices. The systems simulated were generated using a Monte Carlo-approach, and consisted of poly(ethylene oxide) (PEO) and poly(butadiene) (PB) in a 80-20 percent weight ratio immersed into propylene carbonate (PC) solutions of LiClO 4. The total polymer content was 32%, in order to model experimental conditions. The dependence of LiClO 4 concentration in PC has been studied by studying five different concentrations: 0.25, 0.5, 0.75, 1.0 and 1.25 M. After equilibration, local structural properties and dynamical features such as phase separation, coordination, cluster stability and ion conductivity were studied. In an effort to study the conduction processes more carefully, external electric fields of 1×10 6 V/m and 5×10 6 V/m has been applied to the simulation boxes. A clear relationship between the degree of local phase separation and ion mobility is established. It is also shown that although the ion pairing increases with concentration, there are still significantly more potential charge carriers in the higher concentrated systems, while concentrations around 0.5-0.75 M of LiClO 4 in PC seem to be favorable in terms of ion mobility. Furthermore, the anions exhibit higher conductivity than the cations, and there are tendencies to solvent drag from the PC molecules.
Wang, Fei; Yang, Fan; Tian, Yang; Liu, Jiawei; Shen, Jiwei; Bai, Quan
2018-01-01
A stoichiometric displacement model for retention (SDM-R) of small solutes and proteins based on hydrophilic interaction chromatography (HILIC) was presented. A linear equation that related the logarithm of the capacity factor of the solute to the logarithm of the concentration of water in the mobile phase was derived. The stoichiometric displacement parameters, Z (the number of water molecules required to displace a solute from ligands) and lgI (containing a number of constants that relate to the affinity of solute to the ligands) could be obtained from the slope and the intercept of the linear plots of lgk' vs. lg[H 2 O]. The retention behaviors and retention mechanism of 15 kinds of small solutes and 6 kinds of proteins on 5 kinds HILIC columns with different ligands were investigated with SDM-R in typical range of water concentration in mobile phase. A good linear relationship between lgk' and lg[H 2 O] demonstrated that the most rational retention mechanism of solute in HILIC was a stoichiometric displacement process between solute and solvent molecules with water as displacing agents, which was not only valid for small solutes, but also could be used to explain the retention mechanism of biopolymers in HILIC. Comparing with the partition and adsorption models in HILIC, SDM-R was superior to them. Copyright © 2017 Elsevier B.V. All rights reserved.
Ghanem, Mashhour M; Abu-Lafi, Saleh A; Hallak, Hussein O
2013-01-01
A simple, specific, accurate, and stability-indicating method was developed and validated for the quantitative determination of menadione sodium bisulfite in the injectable solution formulation. The method is based on zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) coupled with a photodiode array detector. The desired separation was achieved on the ZIC-HILIC column (250 mm × 4.6 mm, 5 μm) at 25°C temperature. The optimized mobile phase consisted of an isocratic solvent mixture of 200mM ammonium acetate (NH4AC) solution and acetonitrile (ACN) (20:80; v/v) pH-adjusted to 5.7 by glacial acetic acid. The mobile phase was fixed at 0.5 ml/min and the analytes were monitored at 261 nm using a photodiode array detector. The effects of the chromatographic conditions on the peak retention, peak USP tailing factor, and column efficiency were systematically optimized. Forced degradation experiments were carried out by exposing menadione sodium bisulfite standard and the injectable solution formulation to thermal, photolytic, oxidative, and acid-base hydrolytic stress conditions. The degradation products were well-resolved from the main peak and the excipients, thus proving that the method is a reliable, stability-indicating tool. The method was validated as per ICH and USP guidelines (USP34/NF29) and found to be adequate for the routine quantitative estimation of menadione sodium bisulfite in commercially available menadione sodium bisulfite injectable solution dosage forms.
Shang, Tanya Q; Saati, Andrew; Toler, Kelly N; Mo, Jianming; Li, Heyi; Matlosz, Tonya; Lin, Xi; Schenk, Jennifer; Ng, Chee-Keng; Duffy, Toni; Porter, Thomas J; Rouse, Jason C
2014-07-01
A highly robust hydrophilic interaction liquid chromatography (HILIC) method that involves both fluorescence and mass spectrometric detection was developed for profiling and characterizing enzymatically released and 2-aminobenzamide (2-AB)-derivatized mAb N-glycans. Online HILIC/mass spectrometry (MS) with a quadrupole time-of-flight mass spectrometer provides accurate mass identifications of the separated, 2-AB-labeled N-glycans. The method features a high-resolution, low-shedding HILIC column with acetonitrile and water-based mobile phases containing trifluoroacetic acid (TFA) as a modifier. This column and solvent system ensures the combination of robust chromatographic performance and full compatibility and sensitivity with online MS in addition to the baseline separation of all typical mAb N-glycans. The use of TFA provided distinct advantages over conventional ammonium formate as a mobile phase additive, such as, optimal elution order for sialylated N-glycans, reproducible chromatographic profiles, and matching total ion current chromatograms, as well as minimal signal splitting, analyte adduction, and fragmentation during HILIC/MS, maximizing sensitivity for trace-level species. The robustness and selectivity of HILIC for N-glycan analyses allowed for method qualification. The method is suitable for bioprocess development activities, heightened characterization, and clinical drug substance release. Application of this HILIC/MS method to the detailed characterization of a marketed therapeutic mAb, Rituxan(®), is described. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Kafle, Amol; Coy, Stephen L.; Wong, Bryan M.; Fornace, Albert J.; Glick, James J.; Vouros, Paul
2014-07-01
A systematic study involving the use and optimization of gas-phase modifiers in quantitative differential mobility-mass spectrometry (DMS-MS) analysis is presented using nucleoside-adduct biomarkers of DNA damage as an important reference point for analysis in complex matrices. Commonly used polar protic and polar aprotic modifiers have been screened for use against two deoxyguanosine adducts of DNA: N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP) and N-(deoxyguanosin-8-y1)-2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Particular attention was paid to compensation voltage (CoV) shifts, peak shapes, and product ion signal intensities while optimizing the DMS-MS conditions. The optimized parameters were then applied to rapid quantitation of the DNA adducts in calf thymus DNA. After a protein precipitation step, adduct levels corresponding to less than one modification in 106 normal DNA bases were detected using the DMS-MS platform. Based on DMS fundamentals and ab initio thermochemical results, we interpret the complexity of DMS modifier responses in terms of thermal activation and the development of solvent shells. At very high bulk gas temperature, modifier dipole moment may be the most important factor in cluster formation and cluster geometry, but at lower temperatures, multi-neutral clusters are important and less predictable. This work provides a useful protocol for targeted DNA adduct quantitation and a basis for future work on DMS modifier effects.
Behnoush, Behnam; Sheikhazadi, Ardeshir; Bazmi, Elham; Fattahi, Akbar; Sheikhazadi, Elham; Saberi Anary, Seyed Hossein
2015-04-01
The aim of this study was to compare system efficiency and analysis duration regarding the solvent consumption and system maintenance in high-pressure liquid chromatography (HPLC) and ultra high-pressure liquid chromatography (UHPLC). In a case-control study, standard solutions of 7 benzodiazepines (BZs) and 73 biological samples such as urine, tissue, stomach content, and bile that screened positive for BZs were analyzed by HPLC and UHPLC in laboratory of forensic toxicology during 2012 to 2013. HPLC analysis was performed using a Knauer by 100-5 C-18 column (250 mm × 4.6 mm) and Knauer photodiode array detector (PAD). UHPLC analysis was performed using Knauer PAD detector with cooling autosampler and Eurospher II 100-3 C-18 column (100 mm × 3 mm) and also 2 pumps. The mean retention time, standard deviation, flow rate, and repeatability of analytical results were compared by using 2 methods. Routine runtimes in HPLC and UHPLC took 40 and 15 minutes, respectively. Changes in mobile phase composition of the 2 methods were not required. Flow rate and solvent consumption in UHPLC decreased. Diazepam and flurazepam were detected more frequently in biological samples. In UHPLC, small particle size and short length of column cause effective separation of BZs in a very short time. Reduced flow rate, solvent consumption, and injection volume cause more efficiency and less analysis costs. Thus, in the detection of BZs, UHPLC is an accurate, sensitive, and fast method with less cost of analysis.
Comparison of UHPLC and HPLC in Benzodiazepines Analysis of Postmortem Samples
Behnoush, Behnam; Sheikhazadi, Ardeshir; Bazmi, Elham; Fattahi, Akbar; Sheikhazadi, Elham; Saberi Anary, Seyed Hossein
2015-01-01
Abstract The aim of this study was to compare system efficiency and analysis duration regarding the solvent consumption and system maintenance in high-pressure liquid chromatography (HPLC) and ultra high-pressure liquid chromatography (UHPLC). In a case–control study, standard solutions of 7 benzodiazepines (BZs) and 73 biological samples such as urine, tissue, stomach content, and bile that screened positive for BZs were analyzed by HPLC and UHPLC in laboratory of forensic toxicology during 2012 to 2013. HPLC analysis was performed using a Knauer by 100-5 C-18 column (250 mm × 4.6 mm) and Knauer photodiode array detector (PAD). UHPLC analysis was performed using Knauer PAD detector with cooling autosampler and Eurospher II 100-3 C-18 column (100 mm × 3 mm) and also 2 pumps. The mean retention time, standard deviation, flow rate, and repeatability of analytical results were compared by using 2 methods. Routine runtimes in HPLC and UHPLC took 40 and 15 minutes, respectively. Changes in mobile phase composition of the 2 methods were not required. Flow rate and solvent consumption in UHPLC decreased. Diazepam and flurazepam were detected more frequently in biological samples. In UHPLC, small particle size and short length of column cause effective separation of BZs in a very short time. Reduced flow rate, solvent consumption, and injection volume cause more efficiency and less analysis costs. Thus, in the detection of BZs, UHPLC is an accurate, sensitive, and fast method with less cost of analysis. PMID:25860209
Cyclic Solvent Vapor Annealing for Rapid, Robust Vertical Orientation of Features in BCP Thin Films
NASA Astrophysics Data System (ADS)
Paradiso, Sean; Delaney, Kris; Fredrickson, Glenn
2015-03-01
Methods for reliably controlling block copolymer self assembly have seen much attention over the past decade as new applications for nanostructured thin films emerge in the fields of nanopatterning and lithography. While solvent assisted annealing techniques are established as flexible and simple methods for achieving long range order, solvent annealing alone exhibits a very weak thermodynamic driving force for vertically orienting domains with respect to the free surface. To address the desire for oriented features, we have investigated a cyclic solvent vapor annealing (CSVA) approach that combines the mobility benefits of solvent annealing with selective stress experienced by structures oriented parallel to the free surface as the film is repeatedly swollen with solvent and dried. Using dynamical self-consistent field theory (DSCFT) calculations, we establish the conditions under which the method significantly outperforms both static and cyclic thermal annealing and implicate the orientation selection as a consequence of the swelling/deswelling process. Our results suggest that CSVA may prove to be a potent method for the rapid formation of highly ordered, vertically oriented features in block copolymer thin films.
Investigations on the role of mixed-solvent for improved efficiency in perovskite solar cell
NASA Astrophysics Data System (ADS)
Singh, Ranbir; Suranagi, Sanjaykumar R.; Kumar, Manish; Shukla, Vivek Kumar
2017-12-01
The morphology of the spin-coated photoactive layer is one of the major factors affecting the performance of perovskite solar cells. In this work, we have employed a mixed-solvent strategy to obtain a high quality MAPbI3 (MA = CH3NH3) perovskite film, without pinholes and reduced grain boundaries. Perovskite films formed with single and mixed-solvents are systematically characterized for their optical, structural, and morphological properties using UV-vis absorption, photoluminescence (PL), X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) tools. The power conversion efficiency (PCE) of the devices fabricated using the mixed-solvent showed better performance than the devices made using the single solvent. The best-optimized mixed-solvent perovskite film exhibited a PCE of 15.2% with uniform film coverage on the substrate, better charge generation, and a high hole mobility of 1.16 × 10-4cm2/V s. The disparities in photovoltaic properties have been analyzed with the intensity dependent current density-voltage (J-V), transient photovoltage (TPV), and relationship between photocurrent (Jph) and effective voltage (Veff).
An, Yujin; Long, Dang Xuan; Kim, Yiho; Noh, Yong-Young; Yang, Changduk
2016-05-14
To determine the role played by the choice of processing solvents in governing the photophysics, microstructure, and charge carrier transport in naphthalenediimide (NDI)-based polymers, we have prepared two new NDI-bithiophene (T2)- and NDI-thienothiophene (TTh)-containing polymers with hybrid siloxane pentyl chains (SiC5) (P(NDI2SiC5-T2) and P(NDI2SiC5-TTh)). Among the various processing solvents studied here, the films prepared using chloroform exhibited far better electron mobilities (0.16 ± 0.1-0.21 ± 0.05 cm(2) V(-1) s(-1)) than the corresponding samples prepared from different solvents, exceeding one order of magnitude higher, indicating the significant influence of the processing solvent on the charge transport. Upon thin-film analysis using atomic force microscopy and grazing incidence X-ray diffraction, we discovered that molecular ordering and orientation are affected by the choice of the processing solvent, which is responsible for the change in the transport characteristics of this class of polymers.
Solvent coarsening around colloids driven by temperature gradients
NASA Astrophysics Data System (ADS)
Roy, Sutapa; Dietrich, Siegfried; Maciolek, Anna
2018-04-01
Using mesoscopic numerical simulations and analytical theory, we investigate the coarsening of the solvent structure around a colloidal particle emerging after a temperature quench of the colloid surface. Qualitative differences in the coarsening mechanisms are found, depending on the composition of the binary liquid mixture forming the solvent and on the adsorption preferences of the colloid. For an adsorptionwise neutral colloid, the phase next to its surface alternates as a function of time. This behavior sets in on the scale of the relaxation time of the solvent and is absent for colloids with strong adsorption preferences. A Janus colloid, with a small temperature difference between its two hemispheres, reveals an asymmetric structure formation and surface enrichment around it, even if the solvent is within its one-phase region and if the temperature of the colloid is above the critical demixing temperature Tc of the solvent. Our phenomenological model turns out to capture recent experimental findings according to which, upon laser illumination of a Janus colloid and due to the ensuing temperature gradient between its two hemispheres, the surrounding binary liquid mixture develops a concentration gradient.
High p-type doping, mobility, and photocarrier lifetime in arsenic-doped CdTe single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagaoka, Akira; Kuciauskas, Darius; McCoy, Jedidiah
Here, Group-V element doping is promising for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe for thin film solar cells, but there are roadblocks concerning point defects including the possibility of self-compensation by AX metastability. Herein, we report on doping, lifetime, and mobility of CdTe single crystals doped with As between 10 16 and 10 20 cm –3 grown from the Cd solvent by the travelling heater method. Evidence consistent with AX instability as a major contributor to compensation in samples doped below 10 17 cm –3 is presented, while for higher-doped samples, precipitation of a secondmore » phase on planar structural defects is also observed and may explain spatial variation in properties such as lifetime. Rapid cooling after crystal growth increases doping efficiency and mobility for times up to 20–30 days at room temperature with the highest efficiencies observed close to 45% and a hole mobility of 70 cm 2/Vs at room temperature. A doping limit in the low 10 17/cm 3 range is observed for samples quenched at 200–300 °C/h. Bulk minority carrier lifetimes exceeding 20 ns are observed for samples doped near 10 16 cm –3 relaxed in the dark and for unintentionally doped samples, while a lifetime of nearly 5 ns is observed for 10 18 cm –3 As doping. These results help us to establish limits on properties expected for group-V doped CdTe polycrystalline thin films for use in photovoltaics.« less
Application of ion mobility-mass spectrometry to microRNA analysis.
Takebayashi, Kosuke; Hirose, Kenji; Izumi, Yoshihiro; Bamba, Takeshi; Fukusaki, Eiichiro
2013-03-01
Liquid chromatography/mass spectrometry is widely used for studying sequence determination and modification analysis of small RNAs. However, the efficiency of liquid chromatography-based separation of intact small RNA species is insufficient, since the physiochemical properties among small RNAs are very similar. In this study, we focused on ion mobility-mass spectrometry (IM-MS), which is a gas-phase separation technique coupled with mass spectrometry; we have evaluated the utility of IM-MS for microRNA (miRNA) analysis. A multiply charged deprotonated ion derived from an 18-24-nt-long miRNA was formed by electrospray ionization, and then the time, called the "drift time", taken by each ion to migrate through a buffer gas was measured. Each multivalent ion was temporally separated on the basis of the charge state and structural formation; 3 types of unique mass-mobility correlation patterns (i.e., chainlike-form, hairpin-form, and dimer-form) were present on the two-dimensional mobility-mass spectrum. Moreover, we found that the ion size (sequence length) and the secondary structures of the small RNAs strongly contributed to the IM-MS-based separation, although solvent conditions such as pH had no effect. Therefore, sequence isomers could also be discerned by the selection of each specific charged ion, i.e., the 6(-) charged ion reflected a majority among chainlike-, hairpin-, and other structures. We concluded that the IM-MS provides additional capability for separation; thus, this analytical method will be a powerful tool for comprehensive small RNA analysis. Copyright © 2012. Published by Elsevier B.V.
High p-type doping, mobility, and photocarrier lifetime in arsenic-doped CdTe single crystals
Nagaoka, Akira; Kuciauskas, Darius; McCoy, Jedidiah; ...
2018-05-07
Here, Group-V element doping is promising for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe for thin film solar cells, but there are roadblocks concerning point defects including the possibility of self-compensation by AX metastability. Herein, we report on doping, lifetime, and mobility of CdTe single crystals doped with As between 10 16 and 10 20 cm –3 grown from the Cd solvent by the travelling heater method. Evidence consistent with AX instability as a major contributor to compensation in samples doped below 10 17 cm –3 is presented, while for higher-doped samples, precipitation of a secondmore » phase on planar structural defects is also observed and may explain spatial variation in properties such as lifetime. Rapid cooling after crystal growth increases doping efficiency and mobility for times up to 20–30 days at room temperature with the highest efficiencies observed close to 45% and a hole mobility of 70 cm 2/Vs at room temperature. A doping limit in the low 10 17/cm 3 range is observed for samples quenched at 200–300 °C/h. Bulk minority carrier lifetimes exceeding 20 ns are observed for samples doped near 10 16 cm –3 relaxed in the dark and for unintentionally doped samples, while a lifetime of nearly 5 ns is observed for 10 18 cm –3 As doping. These results help us to establish limits on properties expected for group-V doped CdTe polycrystalline thin films for use in photovoltaics.« less
Method for separating mono- and di-octylphenyl phosphoric acid esters
Arnold, Jr., Wesley D.
1977-01-01
A method for separating mono-octylphenyl phosphoric acid ester and di-octylphenyl phosphoric acid ester from a mixture thereof comprises reacting the ester mixture with a source of lithium or sodium ions to form a mixture of the phosphate salts; contacting the salt mixture with an organic solvent which causes the dioctylphenyl phosphate salt to be dissolved in the organic solvent phase and the mono-octylphenyl phosphate salt to exist in a solid phase; separating the phases; recovering the phosphate salts from their respective phases; and acidifying the recovered salts to form the original phosphoric acid esters.
How does low-molecular-weight polystyrene dissolve: osmotic swelling vs. surface dissolution.
Marcon, Valentina; van der Vegt, Nico F A
2014-12-07
By means of multiscale hierarchical modeling we study the real time evolution of low-molecular-weight polystyrene, below the glass transition temperature, in contact with its solvent, toluene. We observe two concurrent phenomena taking place: (1) the solvent diffuses into the polymer by a Case II mechanism, leading to osmotic driven swelling and progressive chain dilution (inside-out mechanism); (2) polymer chains are solvated, detach from the interface and move into the solvent before the film is completely swollen (outside-in mechanism). From our simulations we conclude that, below the entanglement length, a thin swollen layer, also observed in previous experiments, forms almost instantaneously, which allows for the outside-in mechanism to start a few tens of nanoseconds after the polymer-solvent initial contact. After this initial transient time the two mechanisms are concurrent. We furthermore observe that the presence of the solvent significantly enhances the mobility of the polymer chains of the surface layer, but only in the direction parallel to the interface.
Chen, Xinxia; Zhang, Liyan; Wan, Jinzhi; Liang, Bin; Xie, Yu
2010-08-01
To isolate and purify gallic acid and brevifolincarboxylic acid simultaneously by high-speed counter-current chromatography (HSCCC) from a crude extract of Polygonum capitatum. The biphasic solvent system composed of ethyl acetate-n-butanol-0.44% acetic acid (3:1:5) was used at a flow rate of 2.0 mL x min(-1), while the aqueous phase was selected as the mobile phase and the apparatus was rotated at 860 r x min(-1). The effluent was detected at 272 nm. 51.5 mg of gallic acid and 5.9 mg of brevifolincarboxylic acid were separated from 1.07 g of the crude extract with the purities of 99.7% and 97.5%, respectively, while brevifolincarboxylic acid was obtained firstly from the genus Polygonum. The structures of the compounds were identified by ultraviolet spectrometry (UV), infra-red spectrometry (IR), liquid chromatography/mass spectrometry (LC/MS), time-of-flight mass spectrometry( TOF-MS), 1H-nuclear magnetic resonance (NMR) and 13C-NMR. This method is feasible and rapid for isolation and purification of gallice acid and brevifolincarboxylil acid.
Gallistl, Christoph; Vetter, Walter
2016-04-15
Polybrominated dibenzofurans (PBDFs) are a class of highly toxic environmental contaminants which comprises 135 structurally different congeners. While the gas chromatographic separation and analysis of the most polychlorinated dibenzofurans (PCDFs) are well-documented, comparably little data is currently available in the case of PBDFs. In this study dibenzofuran was brominated to give a mixture of ∼40 PBDFs with one to seven bromine atoms. This synthesis mixture was fractionated by both countercurrent chromatography (CCC) with the solvent system n-hexane/toluene/acetonitrile and non-aqueous reversed-phase high performance liquid chromatography (RP-HPLC) with acetonitrile as the mobile phase. All together 80 consecutive CCC fractions and 40 HPLC fractions were taken and analyzed for PBDFs by gas chromatography coupled to mass spectrometry (GC/MS). CCC and RP-HPLC offered orthogonal separation of the PBDF mixture. As a consequence, selected CCC fractions were further fractionated by RP-HPLC. In this way, eight PBDFs could be isolated and the structures of twelve PBDFs were elucidated by proton magnetic resonance spectroscopy ((1)H NMR). Copyright © 2016 Elsevier B.V. All rights reserved.
Separation of delta-, gamma- and alpha-tocopherols by CEC.
Fanali, Salvatore; Catarcini, Paolo; Quaglia, Maria Giovanna; Camera, Emanuela; Rinaldi, Mariarosa; Picardo, Mauro
2002-08-01
In this study capillary electrochromatography (CEC) was used for the separation of three tocopherols (TOHs), namely delta-, gamma- and alpha-TOH and the antioxidant compound, butylated hydroxytoluene (BHT). The CEC experiments were carried out using an octadecylsilica (ODS) stationary phase packed, in our laboratory, in a fused-silica capillary (100 microm I.D., 365 microm O.D. x 33 cm of total length and 24.6 or 8.4 cm effective length). The mobile phase was composed by a mixture of methanol (MeOH) and acetonitrile (ACN), at different concentrations and 0.01% (w/v) of ammonium acetate. Retention time (t(R)), retention factor (k), resolution (R(s)) of the three TOHs were strongly influenced by the organic solvent composition of the run buffer and by the effective length of the capillary. Optimum experimental conditions were found even employing the short effective length of the capillary achieving the baseline separation of the studied analytes in a relatively short time (less than 5 min). The optimized method was applied to the qualitative analysis of vitamin E (alpha-TOH) present in a human serum extract.
Rao, Dantu Durga; Satyanarayana, N V; Malleswara Reddy, A; Sait, Shakil S; Chakole, Dinesh; Mukkanti, K
2010-02-05
A novel stability-indicating gradient reverse phase ultra-performance liquid chromatographic (RP-UPLC) method was developed for the determination of purity of desloratadine in presence of its impurities and forced degradation products. The method was developed using Waters Aquity BEH C18 column with mobile phase containing a gradient mixture of solvents A and B. The eluted compounds were monitored at 280nm. The run time was 8min within which desloratadine and its five impurities were well separated. Desloratadine was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. Desloratadine was found to degrade significantly in oxidative and thermal stress conditions and stable in acid, base, hydrolytic and photolytic degradation conditions. The degradation products were well resolved from main peak and its impurities, thus proved the stability-indicating power of the method. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. This method was also suitable for the assay determination of desloratadine in pharmaceutical dosage forms.
Recent applications of hydrophilic interaction liquid chromatography in pharmaceutical analysis.
Zhang, Qian; Yang, Feng-Qing; Ge, Liya; Hu, Yuan-Jia; Xia, Zhi-Ning
2017-01-01
Hydrophilic interaction liquid chromatography, an alternative liquid chromatography mode, is of particular interest in separating hydrophilic and polar ionic compounds. Compared with traditional liquid chromatography techniques, hydrophilic interaction liquid chromatography offers specific advantages mainly including: (1) relatively green and water-soluble mobile phase composition, which enhances the solubility of hydrophilic and polar ionic compounds; (2) no need for ion-pairing reagents and high content of organic solvent, which benefits mass spectrometry detection; (3) high orthogonality to reverse-phase liquid chromatography, well adapted to two-dimensional liquid chromatography for complicated samples. Therefore, hydrophilic interaction liquid chromatography has been rapidly developed in many areas over the past decades. This review summarizes the recent progress (from 2012 to July 2016) of hydrophilic interaction liquid chromatography in pharmaceutical analysis, with the focus on detecting chemical drugs in various matrices, charactering active compounds of natural products and assessing biotherapeutics through typical structure unit. Moreover, the retention mechanism and behavior of analytes in hydrophilic interaction liquid chromatography as well as some novel hydrophilic interaction liquid chromatography columns used for pharmaceutical analysis are also described. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Luo, Xu-Biao; Chen, Bo; Yao, Shou-Zhuo
2006-01-01
An isocratic high-performance liquid chromatographic method coupled with electrospray mass spectrometry was developed to determine protopine, allocryptopine, sanguinarine and chelerythrine in fruits of Macleaya cordata. The sample was extracted with hydrochloric acid aqueous solution using microwave-assisted extraction method. The extracts were separated on a C8 reversed-phase HPLC column with acetonitrile:acetate buffer as mobile phase, and full elution of all analytes was realized isocratically within 10 min. The abundance of pseudomolecule ions was recorded using selected ion recording at m/z 354.4, 370.1, 332.5, 348.5 and 338.5 for protopine, allocryptopine, sanguinarine, chelerythrine and the internal standard, jatrorrhizine, respectively. Internal standard curves were used for the quantification of protopine, allocryptopine, sanguinarine and chelerythrine, which showed a linear range of 0.745-74.5, 0.610-61.0, 0.525-105 and 0.375-75 microg/mL, respectively, with correlation coefficients of 0.9995, 0.9992, 0.9993 and 0.9989, and limits of detection of 3.73, 3.05, 1.60 and 1.11 ng/mL, respectively.
Model forecasting of phase composition of electrolytic alloys Co-Ni-Mn (part 1)
NASA Astrophysics Data System (ADS)
Schmidt, V. V.; Zhikhareva, I. G.
2018-03-01
With the help of four criteria for phase formation, a model forecasting of the phase composition of electrolytic alloy Co-Ni-Mn was carried out; the expected phases were calculated. The boundaries of the chemical content of the metal-solvent (Co) in these phases are determined, depending on the ratio of metal ions in the electrolyte of deposition. Model forecasting of the phase composition of Co-Ni-Mn alloys makes it possible to predict the type and number of Co phases (hexagonal close-packed - HCP-α-Co, face-centered cubic - FCC-β-Co) depending on the mole fraction of the solvent metal (Co). In the first approximation, the forecast allows one to determine the phase and chemical composition of the coating, which corresponds to the specified operational properties.
Wu, Yi-Hsiu; Lo, Ting-Ya; She, Ming-Shiuan; Ho, Rong-Ming
2015-08-05
In this study, we aim to examine the morphological evolution of block copolymer (BCP) nanostructured thin films through solvent evaporation at different rates for solvent swollen polystyrene-block-poly(l-lactide) (PS-PLLA). Interesting phase transitions from disorder to perpendicular cylinder and then gyroid can be found while using a partially selective solvent for PS to swell PS-PLLA thin film followed by solvent evaporation. During the transitions, gyroid-forming BCP thin film with characteristic crystallographic planes of (111)G, (110)G, and (211)G parallel to air surface can be observed, and will gradually transform into coexisting (110)G and (211)G planes, and finally transforms to (211)G plane due to the preferential segregation of constituted block to the surface (i.e., the thermodynamic origin for self-assembly) that affects the relative amount of each component at the air surface. With the decrease on the evaporation rate, the disorder phase will transform to parallel cylinder and then directly to (211)G without transition to perpendicular cylinder phase. Most importantly, the morphological evolution of PS-PLLA thin films is strongly dependent upon the solvent removal rate only in the initial stage of the evaporation process due to the anisotropy of cylinder structure. Once the morphology is transformed back to the isotropic gyroid structure after long evaporation, the morphological evolution will only relate to the variation of the surface composition. Similar phase transitions at the substrate can also be obtained by controlling the ratio of PLLA-OH to PS-OH homopolymers to functionalize the substrate. As a result, the fabrication of well-defined nanostructured thin films with controlled orientation can be achieved by simple swelling and deswelling with controlled evaporation rate.
Nforneh, Benjamen; Warncke, Kurt
2017-12-14
Electron paramagnetic resonance spectroscopy of the spin probe, TEMPOL, is used to resolve solvent phases that surround the ethanolamine ammonia-lyase (EAL) protein from Salmonella typhimurium at low temperature (T) in frozen, globally polycrystalline aqueous solution and to report on the T dependence of their detectably rigid and fluid states. EAL plays a role in human gut microbiome-based disease conditions, and physicochemical studies provide insight into protein structure and mechanism, toward potential therapeutics. Temperature dependences of the rotational correlation times (τ c ; detection range, 10 -11 ≤ τ c ≤ 10 -7 s) and the corresponding weights of TEMPOL tumbling components from 200 to 265 K in the presence of EAL are measured in two frozen systems: (1) water-only and (2) 1% v/v dimethyl sulfoxide (DMSO). In the water-only condition, a protein-vicinal solvent component detectably fluidizes at 230 K and melts the surrounding ice-crystalline region with increasing T, creating a bounded, relatively high-viscosity aqueous solvent domain, up to 265 K. In the EAL, 1% v/v DMSO condition, two distinct concentric solvent phases are resolved around EAL: protein-associated domain (PAD) and mesodomain. The DMSO aqueous mesodomain fluidizes at 200 K, followed by PAD fluidization at 210 K. The interphase dynamical coupling is consistent with the spatial arrangement and significant contact areas of the phases, indicated by the experimentally determined mean volume ratio, V(mesodomain)/V(PAD)/V(protein) = 0.5:0.3:1.0. The results provide a rationale for native chemical reactions of EAL at T < 250 K and an advance toward precise control of solvent dynamics as a tunable parameter for quantifying the coupling between solvent and protein fluctuations and chemical reaction steps in EAL and other enzymes.
Tankiewicz, Maciej; Fenik, Jolanta; Biziuk, Marek
2011-10-30
The intensification of agriculture means that increasing amounts of toxic organic and inorganic compounds are entering the environment. The pesticides generally applied nowadays are regarded as some of the most dangerous contaminants of the environment. Their presence in the environment, especially in water, is hazardous because they cause human beings to become more susceptible to disease. For these reasons, it is essential to monitor pesticide residues in the environment with the aid of all accessible analytical methods. The analysis of samples for the presence of pesticides is problematic, because of the laborious and time-consuming operations involved in preparing samples for analysis, which themselves may be a source of additional contaminations and errors. To date, it has been standard practice to use large quantities of organic solvents in the sample preparation process; but as these solvents are themselves hazardous, solventless and solvent-minimized techniques are coming into use. This paper discusses the most commonly used over the last 15 years sample preparation techniques for monitoring organophosphorus and organonitrogen pesticides residue in water samples. Furthermore, a significant trend in sample preparation, in accordance with the principles of 'Green Chemistry' is the simplification, miniaturization and automation of analytical techniques. In view of this aspect, several novel techniques are being developed in order to reduce the analysis step, increase the sample throughput and to improve the quality and the sensitivity of analytical methods. The paper describes extraction techniques requiring the use of solvents - liquid-liquid extraction (LLE) and its modifications, membrane extraction techniques, hollow fibre-protected two-phase solvent microextraction, liquid phase microextraction based on the solidification of a floating organic drop (LPME-SFO), solid-phase extraction (SPE) and single-drop microextraction (SDME) - as well as solvent-free techniques - solid phase microextraction (SPME) and stir bar sorptive extraction (SBSE). The advantages and drawbacks of these techniques are also discussed, and some solutions to their limitations are proposed. Copyright © 2011 Elsevier B.V. All rights reserved.
Suo, Tongchuan; Whitmore, Mark D
2014-11-28
We examine end-tethered polymers in good solvents, using one- and three-dimensional self-consistent field theory, and strong stretching theories. We also discuss different tethering scenarios, namely, mobile tethers, fixed but random ones, and fixed but ordered ones, and the effects and important limitations of including only binary interactions (excluded volume terms). We find that there is a "mushroom" regime in which the layer thickness is independent of the tethering density, σ, for systems with ordered tethers, but we argue that there is no such plateau for mobile or disordered anchors, nor is there one in the 1D theory. In the other limit of brushes, all approaches predict that the layer thickness scales linearly with N. However, the σ(1/3) scaling is a result of keeping only excluded volume interactions: when the full potential is included, the dependence is faster and more complicated than σ(1/3). In fact, there does not appear to be any regime in which the layer thickness scales in the combination Nσ(1/3). We also compare the results for two different solvents with each other, and with earlier Θ solvent results.
Solid-phase microextraction of hydrocarbons from water in a centrifuge
NASA Astrophysics Data System (ADS)
Ryabov, A. Yu.; Chuikin, A. V.; Velikov, A. A.
2016-06-01
The results of our study of solid-phase microextraction of substances using a centrifuge for determining the microquantities of hydrocarbon impurities in water are presented. The cartridge diameter, sorbent mass, and solvent volume were shown to affect the percent extraction of substances and the analytical signal intensity. The relationship between the cartridge geometry, the sorbent mass, and the solvent volume was considered.
Wang, Zhibing; He, Mengyu; Jiang, Chunzhu; Zhang, Fengqing; Du, Shanshan; Feng, Wennan; Zhang, Hanqi
2015-12-01
Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High-performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid-phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid-phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion-pairing agent (NH4 PF6 ), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3-13.4 μg/kg. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Leis, Dorothea; Lauß, Bernhard; Macher-Ambrosch, Robert; Pfennig, Andreas; Nidetzky, Bernd; Kratzer, Regina
2017-09-10
Product isolation from aqueous-organic reaction mixtures that contain high concentrations of whole cells constitutes a challenging task in bioprocessing. Stirring of the biphasic reaction media leads to the formation of solvent droplets coated by cells and other surface active components and an emulsion forms. We used an early focus on phase separation to simplify a whole-cell bioreduction. Octanol, heptanol, hexanol, hexane and dipropylether were tested as co-solvents in the E. coli catalyzed reduction of o-chloroacetophenone. All solvents showed very similar performance in bioreductions and highest yields were obtained with low organic-to-aqueous phase ratios. Reaction mixtures were directly investigated for organic-phase recovery. Phase separation was optimized in small-scale settling experiments and confirmed by the isolation of 20.4g (S)-1-(2-chlorophenyl)ethanol from a 0.5L batch reduction containing 40g CDW /L whole-cell catalyst. Solvent consumption during product isolation could be halved by the simple addition of sodium hydroxide prior to product extraction. Basification to pH 13.5 and three extraction steps with a total of 1.2v/v hexane led to an isolated yield of 87% (97% reduction yield). A general emulsion destabilizing effect under harsh conditions, as extreme pH values and presence of toxic reactants, was observed. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Quirino, Joselito P; Aranas, Agnes T
2011-10-14
The on-line sample concentration technique, micelle to solvent stacking (MSS), was studied for small organic cations (quaternary ammonium herbicides, β-blocker drugs, and tricyclic antidepressant drugs) in reversed migration micellar electrokinetic chromatography. Electrokinetic chromatography was carried out in fused silica capillaries with a background solution of sodium dodecyl sulfate (SDS) in a low pH phosphate buffer. MSS was performed using anionic SDS micelles in the sample solution for analyte transport and methanol or acetonitrile as organic solvent in the background solution for analyte effective electrophoretic mobility reversal. The solvent also allowed for the separation of the analyte test mixtures. A model for focusing and separation was developed and the mobility reversal that involved micelle collapse was experimentally verified. The effect of analyte retention factor was observed by changing the % organic solvent in the background solution or the concentration of SDS in the sample matrix. With an injection length of 31.9 cm (77% of effective capillary length) for the 7 test drugs, the LODs (S/N=3) of 5-14 ng/mL were 101-346-fold better when compared to typical injection. The linearity (R(2), range=0.025-0.8 μg/mL), intraday and interday repeatability (%RSD, n=10) were ≥0.988, <6.0% and <8.5%, respectively. In addition, analysis of spiked urine samples after 10-fold dilution with the sample matrix yielded LODs=0.02-0.10 μg/mL. These LODs are comparable to published electrophoretic methods that required off-line sample concentration. However, the practicality of the technique for more complex samples will rely on dedicated sample preparation schemes. Copyright © 2011 Elsevier B.V. All rights reserved.
Hammons, Joshua A.; Ilavsky, Jan
2017-01-18
Nanoparticle electrodeposition is a simple and scalable approach to synthesizing supported nanoparticles. Used with a deep eutectic solvent (DES), surface nanoparticles can be assembled and exhibit unique surface charge separation when the DES is adsorbed on the nanoparticle surface. Key to understanding and controlling the assembly and the capacitance is a thorough understanding of surface particle mobility and charge screening, which requires an in-situ approach. In this study, Pb particle formation, size, shape and capacitance are resolved in a 1:2 choline Cl –: urea deep eutectic solvent whilst sweeping the cell potential in the range: 0.2 V to –1.2 Vmore » (vs. Ag/AgCl). These system parameters were resolved using a complementary suite of sample-rotated small angle X-ray scattering (SR-SAXS) and electrochemical impedance spectroscopy (EIS), which are presented and discussed in detail. This approach is able to show that both particle and ion transport are impeded in the DES, as aggregation occurs over the course of 6 minutes, and dissolved Pb ions accumulate and remain near the surface after a nucleation pulse is applied. The DES-Pb interactions strongly depend on the cell potential as evidenced by the specific differential capacitance of the Pb deposit, which has a maximum value of 2.5 +/– 0.5 F g –1 at –1.0 V vs. Ag/AgCl. Together, the SR-SAXS-EIS approach is able to characterize the unique nanoparticle capacitance, mobility and ion mobility in a DES and can be used to study a wide range of nanoparticle deposition systems in-situ.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammons, Joshua A.; Ilavsky, Jan
Nanoparticle electrodeposition is a simple and scalable approach to synthesizing supported nanoparticles. Used with a deep eutectic solvent (DES), surface nanoparticles can be assembled and exhibit unique surface charge separation when the DES is adsorbed on the nanoparticle surface. Key to understanding and controlling the assembly and the capacitance is a thorough understanding of surface particle mobility and charge screening, which requires an in-situ approach. In this study, Pb particle formation, size, shape and capacitance are resolved in a 1:2 choline Cl –: urea deep eutectic solvent whilst sweeping the cell potential in the range: 0.2 V to –1.2 Vmore » (vs. Ag/AgCl). These system parameters were resolved using a complementary suite of sample-rotated small angle X-ray scattering (SR-SAXS) and electrochemical impedance spectroscopy (EIS), which are presented and discussed in detail. This approach is able to show that both particle and ion transport are impeded in the DES, as aggregation occurs over the course of 6 minutes, and dissolved Pb ions accumulate and remain near the surface after a nucleation pulse is applied. The DES-Pb interactions strongly depend on the cell potential as evidenced by the specific differential capacitance of the Pb deposit, which has a maximum value of 2.5 +/– 0.5 F g –1 at –1.0 V vs. Ag/AgCl. Together, the SR-SAXS-EIS approach is able to characterize the unique nanoparticle capacitance, mobility and ion mobility in a DES and can be used to study a wide range of nanoparticle deposition systems in-situ.« less
Effect of Aprotic Solvents on the Dynamics of a Room Temperature Ionic Liquid
NASA Astrophysics Data System (ADS)
Osti, Naresh; van Aken, Katherine; Thompson, Matthew; Tiet, Felix; Jiang, De-En; Cummings, Peter; Gogotsi, Yury; Mamontov, Eugene
Room temperature ionic liquids (RTILs) have attracted much attention as electrolytes in energy storage devices because of their peculiar physical and chemical characteristics. However, their remarkably high viscosity, which results in low conductivity and diffusivity, may adversely affect the charging and discharging rates. Despite changing molecular configurations, use of aprotic solvent allows to enhance the transport properties of ionic liquids by disrupting the cation-anion interactions. We explore the impact of dipole moment of aprotic solvents on the cation-anion interaction and transport in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [BMIM +][Tf2N-], RTIL using molecular dynamics (MD) simulations and quasi-elastic neutrons scattering (QENS) measurements. We observed an increase in cation diffusivity with the increasing dipole moment of the solvent. This effect is due to a decrease in the solvation free energy induced by the increasing solvent polarity. A clear nano-phase separation into ionic liquid-rich and ionic liquid-poor phases as observed by QENS will be also discussed.
Ruggiero, Flavia; Netti, Paolo Antonio; Torino, Enza
2015-12-01
Fundamental understanding of thermodynamic of phase separation plays a key role in tuning the desired features of biomedical devices. In particular, phase separation of ternary solution is of remarkable interest in processes to obtain biodegradable and biocompatible architectures applied as artificial devices to repair, replace, or support damaged tissues or organs. In these perspectives, thermally induced phase separation (TIPS) is the most widely used technique to obtained porous morphologies and, in addition, among different ternary systems, polylactic acid (PLLA)/dioxane/water has given promising results and has been largely studied. However, to increase the control of TIPS-based processes and architectures, an investigation of the basic energetic phenomena occurring during phase separation is still required. Here we propose an experimental investigation of the selected ternary system by using isothermal titration calorimetric approach at different solvent/antisolvent ratio and a thermodynamic explanation related to the polymer-solvents interactions in terms of energetic contribution to the phase separation process. Furthermore, relevant information about the phase diagrams and interaction parameters of the studied systems are furnished in terms of liquid-liquid miscibility gap. Indeed, polymer-solvents interactions are responsible for the mechanism of the phase separation process and, therefore, of the final features of the morphologies; the knowledge of such data is fundamental to control processes for the production of membranes, scaffolds and several nanostructures. The behavior of the polymer at different solvent/nonsolvent ratios is discussed in terms of solvation mechanism and a preliminary contribution to the understanding of the role of the hydrogen bonding in the interface phenomena is also reported. It is the first time that thermodynamic data of a ternary system are collected by mean of nano-isothermal titration calorimetry (nano-ITC). Supporting Information is available.
Beilke, Michael C; Beres, Martin J; Olesik, Susan V
2016-03-04
A "green" hydrophilic interaction liquid chromatography (HILIC) technique for separating the components of mixtures with a broad range of polarities is illustrated using enhanced-fluidity liquid mobile phases. Enhanced-fluidity liquid chromatography (EFLC) involves the addition of liquid CO2 to conventional liquid mobile phases. Decreased mobile phase viscosity and increased analyte diffusivity results when a liquefied gas is dissolved in common liquid mobile phases. The impact of CO2 addition to a methanol:water (MeOH:H2O) mobile phase was studied to optimize HILIC gradient conditions. For the first time a fast separation of 16 ribonucleic acid (RNA) nucleosides/nucleotides was achieved (16min) with greater than 1.3 resolution for all analyte pairs. By using a gradient, the analysis time was reduced by over 100% compared to similar separations conducted under isocratic conditions. The optimal separation using MeOH:H2O:CO2 mobile phases was compared to MeOH:H2O and acetonitrile:water (ACN:H2O) mobile phases. Based on chromatographic performance parameters (efficiency, resolution and speed of analysis) and an assessment of the environmental impact of the mobile phase mixtures, MeOH:H2O:CO2 mixtures are preferred over ACN:H2O or MeOH:H2O mobile phases for the separation of mixtures of RNA nucleosides and nucleotides. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higashi, T.; Ohmori, M.; Ramananarivo, M. F.
2015-12-01
The effects of solvent vapor on spin-coated films of a polymorphic phthalocyanine derivative were investigated. Growth of single crystal films via redissolving organic films under solvent vapor was revealed by in situ microscopic observations of the films. X-ray diffraction measurement of the films after exposing to solvent vapor revealed the phase transition of polymorphs under solvent vapor. The direction of crystal growth was clarified by measuring the crystal orientation in a grown monodomain film. The mechanism of crystal growth based on redissolving organic films under solvent vapor was discussed in terms of the different solubilities of the polymorphs.
Electro Spray Method for Flexible Display
2016-05-12
conditions which expensive and complicated.8-9) Kim et al. reported the fabrication of IZO thin films via combustion processing and obtained mobility values...metal nitrates as metal sources in solutions. Through the high self-generated energies by the combustion of acetylacetone or urea in solution...barrier to increase the mobility of solution-process-derived TFTs. Therefore, we used H2O as the solvent in our precursor solution. The use of H2O
Semiconductor liquid crystal composition and methods for making the same
Alivisatos, A. Paul; Li, Liang-shi
2005-04-26
Semiconductor liquid crystal compositions and methods for making such compositions are disclosed. One embodiment of the invention is directed to a liquid crystal composition including a solvent and semiconductor particles in the solvent. The solvent and the semiconductor particles are in an effective amount in the liquid crystal composition to form a liquid crystal phase.
NASA Technical Reports Server (NTRS)
Haggerty, John S.; Lightfoot, A.; Sigalovsky, J.
1993-01-01
The topics discussed include the following: effects of solvent and polymer exposures on nitriding kinetics of high purity Si powders and on resulting phase distributions; effects of solvent and polymer exposures on Si Surface Chemistry; effects of solvent and polymeric exposures on nitriding kinetics; and fabrication of flexural test samples.
Knight, Martha; Finn, Thomas M; Zehmer, John; Clayton, Adam; Pilon, Aprile
2011-09-09
An important advance in countercurrent chromatography (CCC) carried out in open flow-tubing coils, rotated in planetary centrifuges, is the new design to spread out the tubing in spirals. More spacing between the tubing was found to significantly increase the stationary phase retention, such that now all types of two-phase solvent systems can be used for liquid-liquid partition chromatography in the J-type planetary centrifuges. A spiral tubing support (STS) frame with circular channels was constructed by laser sintering technology into which FEP tubing was placed in 4 spiral loops per layer from the bottom to the top and a cover affixed allowing the tubing to connect to flow-tubing of the planetary centrifuge. The rotor was mounted and run in a P.C. Inc. type instrument. Examples of compounds of molecular weights ranging from <300 to approximately 15,000 were chromatographed in appropriate two-phase solvent systems to assess the capability for separation and purification. A mixture of small molecules including aspirin was completely separated in hexane-ethyl acetate-methanol-water. Synthetic peptides including a very hydrophobic peptide were each purified to a very high purity level in a sec-butanol solvent system. In the STS rotor high stationary phase retention was possible with the aqueous sec-butanol solvent system at a normal flow rate. Finally, the two-phase aqueous polyethylene glycol-potassium phosphate solvent system was applied to separate a protein from a lysate of an Escherichia coli expression system. These experiments demonstrate the versatility of spiral CCC using the STS rotor. Copyright © 2011 Elsevier B.V. All rights reserved.
Bi, Sheng; He, Zhengran; Chen, Jihua; ...
2015-07-24
Drop casting of small-molecule organic semiconductors typically forms crystals with random orientation and poor areal coverage, which leads to significant performance variations of organic thin-film transistors (OTFTs). In this study, we utilize the controlled evaporative self-assembly (CESA) method combined with binary solvent system to control the crystal growth. A small-molecule organic semiconductor,2,5-Di-(2-ethylhexyl)-3,6-bis(5"-n-hexyl-2,2',5',2"]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH), is used as an example to demonstrate the effectiveness of our approach. By optimizing the double solvent ratios, well-aligned SMDPPEH crystals with significantly improved areal coverage were achieved. As a result, the SMDPPEH based OTFTs exhibit a mobility of 1.6 × 10 -2 cm 2/V s, whichmore » is the highest mobility from SMDPPEH ever reported.« less
Tuning aggregation of microemulsion droplets and silica nanoparticles using solvent mixtures.
Salabat, Alireza; Eastoe, Julian; Mutch, Kevin J; Tabor, Rico F
2008-02-15
The effect of solvent on stability of water-in-oil microemulsions has been studied with AOT (sodium bis(2-ethylhexyl)sulfosuccinate) and different solvent mixtures of n-heptane, toluene and dodecane. Dynamic light scattering DLS was used to monitor the apparent diffusion coefficient D(A) and effective microemulsion droplet diameter on changing composition of the solvent. Interdroplet attractive interactions, as indicated by variations in D(A), can be tuned by formulation of appropriate solvent mixtures using heptane, toluene, and dodecane. In extreme cases, solvent mixtures can be used to induce phase transitions in the microemulsions. Aggregation and stability of model AOT-stabilized silica nanoparticles in different solvents were also investigated to explore further these solvent effects. For both systems the state of aggregation can be correlated with the effective molecular volume of the solvent V(mol)(eff) mixture.
Müller, Marco; Englert, Michael; Earle, Martyn J; Vetter, Walter
2017-03-10
Solvent systems are not readily available for the separation of very nonpolar compounds by countercurrent chromatography (CCC). In this study we therefore evaluated the suitability of room temperature ionic liquids (IL) in organic solvents for the CCC separation of the extremely nonpolar lipid compounds tripalmitin (PPP) and cholesteryl stearate (CS). The four IL tested were [C 10 mim][OTf], [C 2 mim][NTf 2 ], [P66614][NTf 2 ], and [P66614][Cl]. Search for a CCC-suited solvent system started with solubility studies with fourteen organic solvents. Following this, combinations were made with one organic solvent miscible and one organic solvent immiscible with IL (147 combinations). Twenty-four initially monophasic mixtures of two organic solvents became biphasic by adding IL. Several unexpected results could be observed. For instance, n-hexane and n-heptane became biphasic with [P66614][Cl]. Further nine systems became biphasic although the IL was not miscible in any of the two components. These 33 solvent systems were investigated with regard to phase ratio, settling time, share of IL in the upper phase and last not least the K U/L values of PPP and CS, which were 8.1 and 7.7 respectively. The most promising system, n-heptane/chloroform/[C 10 mim][OTf] (3:3:1, v/v/v) allowed a partial separation of PPP and CS by CCC which was not achieved beforehand. Copyright © 2017 Elsevier B.V. All rights reserved.
In Situ Thermal Treatment of Chlorinated Solvents: Fundamentals and Field Applications
This report contains information about the use of in situ thermal treatment technologies to treat chlorinated solvents in source zones containing free-phase contamination or high concentrations of contaminants.
Brownian motion probe for water-ethanol inhomogeneous mixtures
NASA Astrophysics Data System (ADS)
Furukawa, Kazuki; Judai, Ken
2017-12-01
Brownian motion provides information regarding the microscopic geometry and motion of molecules, insofar as it occurs as a result of molecular collisions with a colloid particle. We found that the mobility of polystyrene beads from the Brownian motion in a water-ethanol mixture is larger than that predicted from the liquid shear viscosity. This indicates that mixing water and ethanol is inhomogeneous in micron-sized probe beads. The discrepancy between the mobility of Brownian motion and liquid mobility can be explained by the way the rotation of the beads in an inhomogeneous viscous solvent converts the translational movement.
Brownian motion probe for water-ethanol inhomogeneous mixtures.
Furukawa, Kazuki; Judai, Ken
2017-12-28
Brownian motion provides information regarding the microscopic geometry and motion of molecules, insofar as it occurs as a result of molecular collisions with a colloid particle. We found that the mobility of polystyrene beads from the Brownian motion in a water-ethanol mixture is larger than that predicted from the liquid shear viscosity. This indicates that mixing water and ethanol is inhomogeneous in micron-sized probe beads. The discrepancy between the mobility of Brownian motion and liquid mobility can be explained by the way the rotation of the beads in an inhomogeneous viscous solvent converts the translational movement.
Birnbaum, D T; Kosmala, J D; Henthorn, D B; Brannon-Peppas, L
2000-04-03
To determine the effect of the organic solvent used during microparticle preparation on the in vitro release of beta-estradiol, a number of formulations were evaluated in terms of size, shape and drug delivery performance. Biodegradable microparticles of poly(lactide-co-glycolide) were prepared containing beta-estradiol that utilized dichloromethane, ethyl acetate or a mixture of dichloromethane and methanol as the organic phase solvent during the particle preparation. The drug delivery behavior from the microparticles was studied and comparisons were made of their physical properties for different formulations. The varying solubilities of beta-estradiol and poly(lactide-co-glycolide) in the solvents studied resulted in biodegradable microparticles with very different physical characteristics. Microparticles prepared from solid suspensions of beta-estradiol using dichloromethane as the organic phase solvent were similar in appearance to microparticles prepared without drug. Microparticles prepared from dichloromethane/methanol solutions appeared transparent to translucent depending on the initial amount of drug used in the formulation. Microparticles prepared using ethyl acetate appeared to have the most homogeneous encapsulation of beta-estradiol, appearing as solid white spheres regardless of initial drug content. Studies showed that microparticles prepared from either ethyl acetate or a mixture of dichloromethane and methanol gave a more constant release profile of beta-estradiol than particles prepared using dichloromethane alone. For all formulations, an initial burst of release increased with increasing drug loading, regardless of the organic solvent used.
Separation of Gadolinium (Gd) using Synergic Solvent Mixed Topo-D2EHPA with Extraction Method.
NASA Astrophysics Data System (ADS)
Effendy, N.; Basuki, K. T.; Biyantoro, D.; Perwira, N. K.
2018-04-01
The main problem to obtain Gd with high purity is the similarity of chemical properties and physical properties with the other rare earth elements (REE) such as Y and Dy, it is necessary to do separation by the extraction process. The purpose of this research to determine the best solvent type, amount of solvent, feed and solvent ratio in the Gd extraction process, to determine the rate order and the value of the rate constant of Gd concentration based on experimental data of aqueous phase concentration as a function of time and to know the effect of temperature on the reaction speed constant. This research was conducted on variation of solvent, amount of solvent, feed and solvent ratio in the extraction process of Gd separation, extraction time to determine the order value and the rate constant of Gd concentration in extraction process based on the aqueous phase concentration data as a function of time, to the rate constant of decreasing concentration of Gd. Based on the calculation results, the solvent composition was obtained with the best feed to separate the rare earth elements Gd in the extraction process is 1 : 4 with 15% concentration of TOPO and 10% concentration of D2EHPA. The separation process of Gd using extraction method by solvent TOPO-D2EHPA 2 : 1 comparison is better than single solvent D2EHPA / TOPO because of the synergistic effect. The rate order of separation process of Gd follows order 1. The Arrhenius Gd equation becomes k = 1.46 x 10-7 exp (-6.96 kcal / mol / RT).
Chen, Junhui; Li, Wenlong; Yang, Baijuan; Guo, Xiuchun; Lee, Frank Sen-Chun; Wang, Xiaoru
2007-07-23
A new method based on accelerated solvent extraction (ASE) followed by a reliable high-performance liquid chromatography-diode array detector (HPLC-DAD) and positive ion electrospray-time of flight mass spectrometry (ESI-TOF/MS) analysis has been developed for the characterization and quantification of four major saponins in extracts of the seeds of Aesculus chinensis Bunge (semen aesculi). The saponins escin Ia, escin Ib, isoescin Ia and isoescin Ib were extracted from seeds of A. chinesis Bunge via ASE, and the operational parameters of ASE were optimized, such as extraction solvent, extraction temperature, static extraction time and extraction cycles. The optimized procedure employed 70% MeOH as extraction solvent, 120 degrees C of extraction temperature, 7 min of static extraction time, 60% flush volume and the extraction recoveries of the four compounds were nearly to 100% for two cycles. The HPLC conditions are as follows: SinoChrom ODS BP C18 (4.6 mm x 200 mm, 5 microm) column, acetonitrile and 0.10% phosphoric acid solution as mobile phase, flow rate is 1.0 mL min(-1), detection length of UV is 203 nm, injection volume is 10 microL. The results indicated that the developed HPLC method is simple, sensitive and reliable for the determination of four major saponins in seeds of A. chinesis Bunge with a good linearity (r2 > 0.9994), precision (relative standard deviation (R.S.D.) < 1.5%) and the recovery ranges of 95.2-97.3%. The limits of detection (LOD) of the four compounds were in the range of 0.40-0.75 microg mL(-1). This assay can be readily utilized as a quality control method for semen aesculi and other related medicinal plants.
Tejada-Casado, Carmen; Del Olmo-Iruela, Monsalud; García-Campaña, Ana M; Lara, Francisco J
2018-08-01
A green and simple multiresidue method using capillary liquid chromatography (CLC) with UV-diode array detection (DAD) has been developed for the determination of sixteen benzimidazoles (BZs) and its metabolites in milk samples. The separation was achieved in <32 min, using a Zorbax XDB-C18 column (150 mm × 0.5 mm I.D, 5 μm), with a mobile phase consisting of 50 mM ammonium acetate (solvent A) and a mixture of acetonitrile/methanol (1:1 v/v) (solvent B), at a flow rate of 9 μL min -1 . The temperature of the column was 20 °C and 6 μL of sample were injected. In spite of the complexity of milk samples, an effective, simple and fast sample preparation method called salting out-assisted liquid-liquid extraction (SALLE) was developed for the analysis of these compounds in cow milk samples. To obtain satisfactory extraction efficiencies for the studied analytes, several parameters affecting the SALLE procedure were optimized including the amount of sample, type and volume of the extraction solvent, and the nature and amount of the salt. Good linearity was obtained (R 2 > 0.9985 for all BZs) with limits of detection (LOD) between 1.0 and 2.8 μg kg -1 . Relative standard deviations of repeatability and intermediate precision were below 1.6 and 14.2%, respectively. Satisfactory recoveries between 79.1 and 99.6% were also obtained for three types of milk samples (cow, sheep and goat). The advantages of a miniaturized technique such as CLC in terms of better efficiencies and reduced solvent consumption, combined with the simplicity of the SALLE procedure, make this method a useful alternative for the monitoring of these residues at trace level. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Yuping; Ma, Yao; Deng, Mengyu; Shang, Hongxing; Liang, Chunshuang; Jiang, Shimei
2015-07-07
Two novel low molecular weight organogelators (LMOGs) 1 and 2 composed of a cholesteryl group, an amide group and various terminal cyanostilbene moieties were synthesized. They could form stable gels in p-xylene. In particular, 2 with more extended π-conjugation length showed remarkable gelation ability in many aromatic solvents, chloroform and chloroform-containing mixed solvents at a relatively low concentration. FT-IR and XRD spectra indicated that the difference between 1 and 2 in the gelation properties may result from the deviation of the intermolecular hydrogen bonding and π–π stacking as driving forces for the formation of the gels. Significantly, 2 can function as an efficient room-temperature phase-selective gelator (PSG) for potential application in the separation and recovery of various aromatic solvents from its mixture with water. Meanwhile, the gelator can be easily recovered and reused several times. Furthermore, the phase-selective gelation properties of 2 can provide a simple and feasible approach for the removal of the rhodamine B (RhB) dye from water.
Comparison of twin-cell centrifugal partition chromatographic columns with different cell volume.
Goll, Johannes; Audo, Gregoire; Minceva, Mirjana
2015-08-07
Two twin-cell centrifugal partition chromatographic columns (SCPC 250 and SCPE-250-BIO, Armen Instrument, France) with the same column volume but different cell size and number were compared in terms of stationary phase retention and column efficiency. The columns were tested with two types of solvent systems: a commonly used organic solvent based biphasic system from the ARIZONA solvent system family and a polymer/salt based aqueous two phase system (ATPS). The efficiency of the columns was evaluated by pulse injection experiments of two benzenediols (pyrocatechol and hydroquinone) in the case of the ARIZONA system and a protein mixture (myoglobin and lysozyme) in the case of the ATPS. As result of high stationary phase retention, the column with the lower number of larger twin-cells (SCPE-250-BIO) is suitable for protein separations using ATPS. On the other hand, due to higher column efficiency, the column with the greater number of smaller cells (SCPC 250) is superior for batch elution separations performed with standard liquid-liquid chromatography organic solvent based biphasic systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Antisolvent membrane crystallization of pharmaceutical compounds.
Di Profio, Gianluca; Stabile, Carmen; Caridi, Antonella; Curcio, Efrem; Drioli, Enrico
2009-12-01
This article describes a modification of the conventional membrane crystallization technique in which a membrane is used to dose the solvent/antisolvent composition to generate supersaturation and induce crystallization in a drug solution. Two operative configurations are proposed: (a) solvent/antisolvent demixing crystallization, where the solvent is removed in at higher flow rate than the antisolvent so that phase inversion promotes supersaturation and (b) antisolvent addition, in which the antisolvent is dosed into the crystallizing drug solution. In both cases, solvent/antisolvent migration occurs in vapor phase and it is controlled by the porous membrane structure, acting on the operative process parameters. This mechanism is different than that observed when forcing the liquid phases through the pores and the more finely controllable supersaturated environment would generate crystals with the desired characteristics. Two organic molecules of relevant industrial implication, like paracetamol and glycine, were used to test the new systems. Experiments demonstrated that, by using antisolvent membrane crystallization in both configurations, accurate control of solution composition at the crystallization point has been achieved with effects on crystals morphology. 2009 Wiley-Liss, Inc. and the American Pharmacists Association
Jiang, Hao; Bacić, Zlatko
2005-06-22
We present a theoretical study of the quantum solvation of the HF molecule by a small number of parahydrogen molecules, having n = 1-13 solvent particles. The minimum-energy cluster structures determined for n = 1-12 have all of the H(2) molecules in the first solvent shell. The first solvent shell closes at n = 12 and its geometry is icosahedral, with the HF molecule at the center. The quantum-mechanical ground-state properties of the clusters are calculated exactly using the diffusion Monte Carlo method. The zero-point energy of (p-H(2))(n)HF clusters is unusually large, amounting to 86% of the potential well depth for n > 7. The radial probability distribution functions (PDFs) confirm that the first solvent shell is complete for n = 12, and that the 13th p-H(2) molecule begins to fill the second solvent shell. The p-H(2) molecules execute large-amplitude motions and are highly mobile, making the solvent cage exceptionally fluxional. The anisotropy of the solvent, very pronounced for small clusters, decreases rapidly with increasing n, so that for n approximately 8-9 the solvent environment is practically isotropic. The analysis of the pair angular PDF reveals that for a given n, the parahydrogen solvent density around the HF is modulated in a pattern which clearly reflects the lowest-energy cluster configuration. The rigidity of the solvent clusters displays an interesting size dependence, increasing from n = 6 to 9, becoming floppier for n = 10, and increasing again up to n = 12, as the solvent shell is filled. The rigidity of the solvent cage appears to reach its maximum for n = 12, the point at which the first solvent shell is closed.
Xia, Zhaoyang; Li, Dongdong; Li, Qing; Zhang, Yan; Kang, Wenyi
2017-11-13
The conditions of heating, ionic liquid-based ultrasonic-assisted extraction combined with reverse-phase high performance liquid chromatography were optimized to simultaneously isolate and determinate brazilin and protosappanin B in Caesalpinia sappan. Ionic liquids, including [BMIM]Br, [BMIM]BF 4 , [BMIM]PF 6 and [HMIM]PF 6 , were selected as extraction solvents while methanol, acetone, acetonitrile, ethanol and water were selected as dispersants. The chromatographic column was Purospher star RP-C 18 (250 mm × 4.6 mm, 5 μm), a mixture of methanol and 0.2% phosphoric acid-water was used as mobile phase at a flow rate 0.65 mL/min. The result displayed that the extraction yields of brazilin and protosappanin B were highest when the concentration of [BMIM]Br methanol solution as extraction solvent was 0.5 mol/L and the solid-liquid ratio was 1:50 (g/mL). Under the optimal extraction conditions, the contents of brazilin showed a good linearity (r = 1.0000) within the range of 1.25-7.50 μg with the average recovery of 99.33%, the contents of protosappanin B also showed a good linearity (r = 0.9999) within the range of 0.50-3.00 μg with the average recovery of 98.31%. This experiment, which adopted environmentally friendly reagent as extraction solvent, not only improved the extraction efficiency, but also avoided the environmental pollution caused by organic solvent. Moreover, it was simple and reliable, and can be of important significance in the study of Traditional Chinese Medicine active ingredient extraction methods. The antibacterial activities of the ionic liquids and methanol extracts were determined using the paper disc diffusion method. The ionic liquid extract was found to possess antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus (MIC value of 37.5 mg crude drug/mL), β-Lactamase producing S. aureus (MIC values of 18.8 mg crude drug/mL), but not against E. coli, Extended spectrum β-Lactamases E. coli and P. aeruginosa. Compared with the ionic liquid extract, the methanol extract was found to have antibacterial activity against S. aureus and methicillin-resistant S. aureus (MIC value of 75.0 mg crude drug/mL), β-Lactamase producing S. aureus (MIC values of 150.0 mg crude drug/mL). However, the same, the methanol extract did not have antibacterial activity against E. coli, Extended spectrum β-Lactamases E. coli and P. aeruginosa.
Wolfe, W.J.; Haugh, C.J.; Webbers, Ank; Diehl, T.H.
1997-01-01
Published and unpublished reports and data from 22 contaminated sites in Tennessee were reviewed to develop preliminary conceptual models of the behavior of chlorinated solvents in karst aquifers. Chlorinated solvents are widely used in many industrial operations. High density and volatility, low viscosity, and solubilities that are low in absolute terms but high relative to drinkingwater standards make chlorinated solvents mobile and persistent contaminants that are difficult to find or remove when released into the groundwater system. The major obstacle to the downward migration of chlorinated solvents in the subsurface is the capillary pressure of small openings. In karst aquifers, chemical dissolution has enlarged joints, bedding planes, and other openings that transmit water. Because the resulting karst conduits are commonly too large to develop significant capillary pressures, chlorinated solvents can migrate to considerable depth in karst aquifers as dense nonaqueous-phase liquids (DNAPL?s). Once chlorinated DNAPL accumulates in a karst aquifer, it becomes a source for dissolved-phase contamination of ground water. A relatively small amount of chlorinated DNAPL has the potential to contaminate ground water over a significant area for decades or longer. Conceptual models are needed to assist regulators and site managers in characterizing chlorinated-solvent contamination in karst settings and in evaluating clean-up alternatives. Five preliminary conceptual models were developed, emphasizing accumulation sites for chlorinated DNAPL in karst aquifers. The models were developed for the karst regions of Tennessee, but are intended to be transferable to similar karst settings elsewhere. The five models of DNAPL accumulation in karst settings are (1) trapping in regolith, (2) pooling at the top of bedrock, (3) pooling in bedrock diffuse-flow zones, (4) pooling in karst conduits, and (5) pooling in isolation from active ground-water flow. More than one conceptual model of DNAPL accumulation may be applicable to a given site, depending on details of the contaminant release and geologic setting. Trapping in regolith is most likely to occur where the regolith is thick and relatively impermeable with few large cracks, fissures, or macropores. Accumulation at the top of rock is favored by flat-lying strata with few fractures or karst features near the bedrock surface. Fractures or karst features near the bedrock surface encourage migration of chlorinated DNAPL into karst conduits or diffuse-flow zones in bedrock. DNAPL can migrate through one bedrock flow regime into an underlying flow regime with different characteristics or into openings that are isolated from significant ground-water flow. As a general rule, the difficulty of finding and removing DNAPL increases with depth, lateral distance from the source, and complexity of the ground-water flow system. The prospects for mitigation are generally best for DNAPL accumulation in the regolith or at the bedrock surface. However, many such accumulations are likely to be difficult to find or remove. Accumulations in bedrock diffuse-flow zones or in fractures isolated from flow may be possible to find and partially mitigate, but will likely leave significant amounts of contaminant in small fractures or as solute diffused into primary pores.
Zhu, He; Ding, Li; Shakya, Shailendra; Qi, Xiemin; Hu, Linlin; Yang, Xiaolin; Yang, Zhonglin
2011-11-15
A new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method operated in the positive/negative electrospray ionization (ESI) switching mode has been developed and validated for the simultaneous determination of asperosaponin VI and its active metabolite hederagenin in rat plasma. After addition of internal standards diazepam (for asperosaponin VI) and glycyrrhetic acid (for hederagenin), the plasma sample was deproteinized with acetonitrile, and separated on a reversed phase C18 column with a mobile phase of methanol (solvent A)-0.05% glacial acetic acid containing 10 mM ammonium acetate and 30 μM sodium acetate (solvent B) using gradient elution. The detection of target compounds was done in multiple reaction monitoring (MRM) mode using a tandem mass spectrometry equipped with positive/negative ion-switching ESI source. At the first segment, the MRM detection was operated in the positive ESI mode using the transitions of m/z 951.5 ([M+Na](+))→347.1 for asperosaponin VI and m/z 285.1 ([M+H](+))→193.1 for diazepam for 4 min, then switched to the negative ESI mode using the transitions of m/z 471.3 ([M-H](-))→471.3 for hederagenin and m/z 469.4 ([M-H](-))→425.4 for glycyrrhetic acid, respectively. The sodiated molecular ion [M+Na](+) at m/z 951.5 was selected as the precursor ion for asperosaponin VI, since it provided better sensitivity compared to the deprotonated and protonated molecular ions. Sodium acetate was added to the mobile phase to make sure that abundant amount of the sodiated molecular ion of asperosaponin VI could be produced, and more stable and intensive mass response of the product ion could be obtained. For the detection of hederagenin, since all of the mass responses of the fragment ions were very weak, the deprotonated molecular ion [M-H](-)m/z 471.3 was employed as both the precursor ion and the product ion. But the collision energy was still used for the MRM, in order to eliminate the influences induced by the interference substances from the rat plasma. The validated method was successfully applied to study the pharmacokinetics of asperosaponin VI and its active metabolite hederagenin in rat plasma after oral administration of asperosaponin VI at a dose of 90 mg/kg. Copyright © 2011 Elsevier B.V. All rights reserved.