Sample records for mobility transistor structures

  1. Temperature dependence of ballistic mobility in a metamorphic InGaAs/InAlAs high electron mobility transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jongkyong; Gang, Suhyun; Jo, Yongcheol

    We have investigated the temperature dependence of ballistic mobility in a 100 nm-long InGaAs/InAlAs metamorphic high-electron-mobility transistor designed for millimeter-wavelength RF applications. To extract the temperature dependence of quasi-ballistic mobility, our experiment involves measurements of the effective mobility in the low-bias linear region of the transistor and of the collision-dominated Hall mobility using a gated Hall bar of the same epitaxial structure. The data measured from the experiment are consistent with that of modeled ballistic mobility based on ballistic transport theory. These results advance the understanding of ballistic transport in various transistors with a nano-scale channel length that is comparable tomore » the carrier's mean free path in the channel.« less

  2. High Electron Mobility Transistor Structures on Sapphire Substrates Using CMOS Compatible Processing Techniques

    NASA Technical Reports Server (NTRS)

    Mueller, Carl; Alterovitz, Samuel; Croke, Edward; Ponchak, George

    2004-01-01

    System-on-a-chip (SOC) processes are under intense development for high-speed, high frequency transceiver circuitry. As frequencies, data rates, and circuit complexity increases, the need for substrates that enable high-speed analog operation, low-power digital circuitry, and excellent isolation between devices becomes increasingly critical. SiGe/Si modulation doped field effect transistors (MODFETs) with high carrier mobilities are currently under development to meet the active RF device needs. However, as the substrate normally used is Si, the low-to-modest substrate resistivity causes large losses in the passive elements required for a complete high frequency circuit. These losses are projected to become increasingly troublesome as device frequencies progress to the Ku-band (12 - 18 GHz) and beyond. Sapphire is an excellent substrate for high frequency SOC designs because it supports excellent both active and passive RF device performance, as well as low-power digital operations. We are developing high electron mobility SiGe/Si transistor structures on r-plane sapphire, using either in-situ grown n-MODFET structures or ion-implanted high electron mobility transistor (HEMT) structures. Advantages of the MODFET structures include high electron mobilities at all temperatures (relative to ion-implanted HEMT structures), with mobility continuously improving to cryogenic temperatures. We have measured electron mobilities over 1,200 and 13,000 sq cm/V-sec at room temperature and 0.25 K, respectively in MODFET structures. The electron carrier densities were 1.6 and 1.33 x 10(exp 12)/sq cm at room and liquid helium temperature, respectively, denoting excellent carrier confinement. Using this technique, we have observed electron mobilities as high as 900 sq cm/V-sec at room temperature at a carrier density of 1.3 x 10(exp 12)/sq cm. The temperature dependence of mobility for both the MODFET and HEMT structures provides insights into the mechanisms that allow for enhanced electron mobility as well as the processes that limit mobility, and will be presented.

  3. Comparative studies of Ge and Si p-channel metal-oxide-semiconductor field-effect-transistors with HfSiON dielectric and TaN metal gate

    NASA Astrophysics Data System (ADS)

    Hu, Ai-Bin; Xu, Qiu-Xia

    2010-05-01

    Ge and Si p-channel metal-oxide-semiconductor field-effect-transistors (p-MOSFETs) with hafnium silicon oxynitride (HfSiON) gate dielectric and tantalum nitride (TaN) metal gate are fabricated. Self-isolated ring-type transistor structures with two masks are employed. W/TaN metal stacks are used as gate electrode and shadow masks of source/drain implantation separately. Capacitance-voltage curve hysteresis of Ge metal-oxide-semiconductor (MOS) capacitors may be caused by charge trapping centres in GeO2 (1 < x < 2). Effective hole mobilities of Ge and Si transistors are extracted by using a channel conductance method. The peak hole mobilities of Si and Ge transistors are 33.4 cm2/(V · s) and 81.0 cm2/(V · s), respectively. Ge transistor has a hole mobility 2.4 times higher than that of Si control sample.

  4. High-mobility field-effect transistor based on crystalline ZnSnO3 thin films

    NASA Astrophysics Data System (ADS)

    Minato, Hiroya; Fujiwara, Kohei; Tsukazaki, Atsushi

    2018-05-01

    We propose crystalline ZnSnO3 as a new channel material for field-effect transistors. By molecular-beam epitaxy on LiNbO3(0001) substrates, we synthesized films of ZnSnO3, which crystallizes in the LiNbO3-type polar structure. Field-effect transistors on ZnSnO3 exhibit n-type operation with field-effect mobility of as high as 45 cm2V-1s-1 at room temperature. Systematic examination of the transistor operation for channels with different Zn/Sn compositional ratios revealed that the observed high-mobility reflects the nature of stoichiometric ZnSnO3 phase. Moreover, we found an indication of coupling of transistor characteristics with intrinsic spontaneous polarization in ZnSnO3, potentially leading to a distinct type of polarization-induced conduction.

  5. Dithiopheneindenofluorene (TIF) Semiconducting Polymers with Very High Mobility in Field-Effect Transistors.

    PubMed

    Chen, Hu; Hurhangee, Michael; Nikolka, Mark; Zhang, Weimin; Kirkus, Mindaugas; Neophytou, Marios; Cryer, Samuel J; Harkin, David; Hayoz, Pascal; Abdi-Jalebi, Mojtaba; McNeill, Christopher R; Sirringhaus, Henning; McCulloch, Iain

    2017-09-01

    The charge-carrier mobility of organic semiconducting polymers is known to be enhanced when the energetic disorder of the polymer is minimized. Fused, planar aromatic ring structures contribute to reducing the polymer conformational disorder, as demonstrated by polymers containing the indacenodithiophene (IDT) repeat unit, which have both a low Urbach energy and a high mobility in thin-film-transistor (TFT) devices. Expanding on this design motif, copolymers containing the dithiopheneindenofluorene repeat unit are synthesized, which extends the fused aromatic structure with two additional phenyl rings, further rigidifying the polymer backbone. A range of copolymers are prepared and their electrical properties and thin-film morphology evaluated, with the co-benzothiadiazole polymer having a twofold increase in hole mobility when compared to the IDT analog, reaching values of almost 3 cm 2 V -1 s -1 in bottom-gate top-contact organic field-effect transistors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Pixel structures to compensate nonuniform threshold voltage and mobility of polycrystalline silicon thin-film transistors using subthreshold current for large-size active matrix organic light-emitting diode displays

    NASA Astrophysics Data System (ADS)

    Na, Jun-Seok; Kwon, Oh-Kyong

    2014-01-01

    We propose pixel structures for large-size and high-resolution active matrix organic light-emitting diode (AMOLED) displays using a polycrystalline silicon (poly-Si) thin-film transistor (TFT) backplane. The proposed pixel structures compensate the variations of the threshold voltage and mobility of the driving TFT using the subthreshold current. The simulated results show that the emission current error of the proposed pixel structure B ranges from -2.25 to 2.02 least significant bit (LSB) when the variations of the threshold voltage and mobility of the driving TFT are ±0.5 V and ±10%, respectively.

  7. Evaluation of Anisotropic Biaxial Stress Induced Around Trench Gate of Si Power Transistor Using Water-Immersion Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Suzuki, Takahiro; Yokogawa, Ryo; Oasa, Kohei; Nishiwaki, Tatsuya; Hamamoto, Takeshi; Ogura, Atsushi

    2018-05-01

    The trench gate structure is one of the promising techniques to reduce on-state resistance (R on) for silicon power devices, such as insulated gate bipolar transistors and power metal-oxide-semiconductor field-effect transistors. In addition, it has been reported that stress is induced around the trench gate area, modifying the carrier mobilities. We evaluated the one-dimensional distribution and anisotropic biaxial stress by quasi-line excitation and water-immersion Raman spectroscopy, respectively. The results clearly confirmed anisotropic biaxial stress in state-of-the-art silicon power devices. It is theoretically possible to estimate carrier mobility using piezoresistance coefficients and anisotropic biaxial stress. The electron mobility was increased while the hole mobility was decreased or remained almost unchanged in the silicon (Si) power device. The stress significantly modifies the R on of silicon power transistors. Therefore, their performance can be improved using the stress around the trench gate.

  8. Organic Power Electronics: Transistor Operation in the kA/cm2 Regime

    PubMed Central

    Klinger, Markus P.; Fischer, Axel; Kaschura, Felix; Widmer, Johannes; Kheradmand-Boroujeni, Bahman; Ellinger, Frank; Leo, Karl

    2017-01-01

    In spite of interesting features as flexibility, organic thin-film transistors have commercially lagged behind due to the low mobilities of organic semiconductors associated with hopping transport. Furthermore, organic transistors usually have much larger channel lengths than their inorganic counterparts since high-resolution structuring is not available in low-cost production schemes. Here, we present an organic permeable-base transistor (OPBT) which, despite extremely simple processing without any high-resolution structuring, achieve a performance beyond what has so far been possible using organic semiconductors. With current densities above 1 kA cm−2 and switching speeds towards 100 MHz, they open the field of organic power electronics. Finding the physical limits and an effective mobility of only 0.06 cm2 V−1 s−1, this OPBT device architecture has much more potential if new materials optimized for its geometry will be developed. PMID:28303924

  9. Organic Power Electronics: Transistor Operation in the kA/cm2 Regime.

    PubMed

    Klinger, Markus P; Fischer, Axel; Kaschura, Felix; Widmer, Johannes; Kheradmand-Boroujeni, Bahman; Ellinger, Frank; Leo, Karl

    2017-03-17

    In spite of interesting features as flexibility, organic thin-film transistors have commercially lagged behind due to the low mobilities of organic semiconductors associated with hopping transport. Furthermore, organic transistors usually have much larger channel lengths than their inorganic counterparts since high-resolution structuring is not available in low-cost production schemes. Here, we present an organic permeable-base transistor (OPBT) which, despite extremely simple processing without any high-resolution structuring, achieve a performance beyond what has so far been possible using organic semiconductors. With current densities above 1 kA cm -2 and switching speeds towards 100 MHz, they open the field of organic power electronics. Finding the physical limits and an effective mobility of only 0.06 cm 2  V -1  s -1 , this OPBT device architecture has much more potential if new materials optimized for its geometry will be developed.

  10. Artificial semiconductor/insulator superlattice channel structure for high-performance oxide thin-film transistors

    PubMed Central

    Ahn, Cheol Hyoun; Senthil, Karuppanan; Cho, Hyung Koun; Lee, Sang Yeol

    2013-01-01

    High-performance thin-film transistors (TFTs) are the fundamental building blocks in realizing the potential applications of the next-generation displays. Atomically controlled superlattice structures are expected to induce advanced electric and optical performance due to two-dimensional electron gas system, resulting in high-electron mobility transistors. Here, we have utilized a semiconductor/insulator superlattice channel structure comprising of ZnO/Al2O3 layers to realize high-performance TFTs. The TFT with ZnO (5 nm)/Al2O3 (3.6 nm) superlattice channel structure exhibited high field effect mobility of 27.8 cm2/Vs, and threshold voltage shift of only < 0.5 V under positive/negative gate bias stress test during 2 hours. These properties showed extremely improved TFT performance, compared to ZnO TFTs. The enhanced field effect mobility and stability obtained for the superlattice TFT devices were explained on the basis of layer-by-layer growth mode, improved crystalline nature of the channel layers, and passivation effect of Al2O3 layers. PMID:24061388

  11. Recent progress in high-mobility thin-film transistors based on multilayer 2D materials

    NASA Astrophysics Data System (ADS)

    Hong, Young Ki; Liu, Na; Yin, Demin; Hong, Seongin; Kim, Dong Hak; Kim, Sunkook; Choi, Woong; Yoon, Youngki

    2017-04-01

    Two-dimensional (2D) layered semiconductors are emerging as promising candidates for next-generation thin-film electronics because of their high mobility, relatively large bandgap, low-power switching, and the availability of large-area growth methods. Thin-film transistors (TFTs) based on multilayer transition metal dichalcogenides or black phosphorus offer unique opportunities for next-generation electronic and optoelectronic devices. Here, we review recent progress in high-mobility transistors based on multilayer 2D semiconductors. We describe the theoretical background on characterizing methods of TFT performance and material properties, followed by their applications in flexible, transparent, and optoelectronic devices. Finally, we highlight some of the methods used in metal-semiconductor contacts, hybrid structures, heterostructures, and chemical doping to improve device performance.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelinck, G. H., E-mail: Gerwin.Gelinck@tno.nl; Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven; Breemen, A. J. J. M. van

    Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.

  13. Amplified Emission and Field-Effect Transistor Characteristics of One-Dimensionally Structured 2,5-Bis(4-biphenylyl)thiophene Crystals.

    PubMed

    Hashimoto, Kazumasa; Sasaki, Fumio; Hotta, Shu; Yanagi, Hisao

    2016-04-01

    One-dimensional (1D) structures of 2,5-bis(4-biphenylyl)thiophene (BP1T) crystals are fabricated for light amplification and field-effect transistor (FET) measurements. A strip-shaped 1D structure (10 µm width) made by photolitography of a vapor-deposited polycrystalline film shows amplified spontaneous emission and lasing oscillations under optical pumping. An FET fabricated with this 1D structure exhibits hole-conduction with a mobility of µh = 8.0 x 10(-3) cm2/Vs. Another 1 D-structured FET is fabricated with epitaxially grown needle-like crystals of BP1T. This needle-crystal FET exhibits higher mobility of µh = 0.34 cm2/Vs. This improved hole mobility is attributed to the single-crystal channel of epitaxial needles while the grain boudaries in the polycrystalline 1 D-structure decrease the carrier transport.

  14. Low nonalloyed Ohmic contact resistance to nitride high electron mobility transistors using N-face growth

    NASA Astrophysics Data System (ADS)

    Wong, Man Hoi; Pei, Yi; Palacios, Tomás; Shen, Likun; Chakraborty, Arpan; McCarthy, Lee S.; Keller, Stacia; DenBaars, Steven P.; Speck, James S.; Mishra, Umesh K.

    2007-12-01

    Nonalloyed Ohmic contacts on Ga-face n+-GaN/AlGaN/GaN high electron mobility transistor (HEMT) structures typically have significant contact resistance to the two-dimensional electron gas (2DEG) due to the AlGaN barrier. By growing the HEMT structure inverted on the N-face, electrons from the contacts were able to access the 2DEG without going through an AlGaN layer. A low contact resistance of 0.16Ωmm and specific contact resistivity of 5.5×10-7Ωcm2 were achieved without contact annealing on the inverted HEMT structure.

  15. Comprehensive review on the development of high mobility in oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Choi, Jun Young; Lee, Sang Yeol

    2017-11-01

    Oxide materials are one of the most advanced key technology in the thin film transistors (TFTs) for the high-end of device applications. Amorphous oxide semiconductors (AOSs) have leading technique for flat panel display (FPD), active matrix organic light emitting display (AMOLED) and active matrix liquid crystal display (AMLCD) due to their excellent electrical characteristics, such as field effect mobility ( μ FE ), subthreshold swing (S.S) and threshold voltage ( V th ). Covalent semiconductor like amorphous silicon (a-Si) is attributed to the anti-bonding and bonding states of Si hybridized orbitals. However, AOSs have not grain boundary and excellent performances originated from the unique characteristics of AOS which is the direct orbital overlap between s orbitals of neighboring metal cations. High mobility oxide TFTs have gained attractive attention during the last few years and today in display industries. It is progressively developed to increase the mobility either by exploring various oxide semiconductors or by adopting new TFT structures. Mobility of oxide thin film transistor has been rapidly increased from single digit to higher than 100 cm2/V·s in a decade. In this review, we discuss on the comprehensive review on the mobility of oxide TFTs in a decade and propose bandgap engineering and novel structure to enhance the electrical characteristics of oxide TFTs.

  16. Thin-film transistors based on poly(3,3‴-dialkyl-quarterthiophene) and zinc oxide nanowires with improved ambient stability

    NASA Astrophysics Data System (ADS)

    Vieira, Sara M. C.; Hsieh, Gen-Wen; Unalan, Husnu E.; Dag, Sefa; Amaratunga, Gehan A. J.; Milne, William I.

    2011-03-01

    The ambient stability of thin-film transistors (TFTs) based on zinc oxide (ZnO) nanowires embedded in poly(3,3‴-dialkyl-quarterthiophene) was monitored through time dependence of electrical characteristics over a period of 16 months. The hybrid-based TFT showed an initial hole mobility in the linear regime of 4.2×10-4 cm2/V s. After 16 months storage in ambient conditions (exposed to air, moisture, and light) the mobility decreased to 2.3×10-5 cm2/V s. Comparatively the organic-based TFT lost total carrier mobility after one month storage making the hybrid-based TFTs more suitable for transistor applications when improved stability combined with structural flexibility are required.

  17. Structured-gate organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Aljada, Muhsen; Pandey, Ajay K.; Velusamy, Marappan; Burn, Paul L.; Meredith, Paul; Namdas, Ebinazar B.

    2012-06-01

    We report the fabrication and electrical characteristics of structured-gate organic field-effect transistors consisting of a gate electrode patterned with three-dimensional pillars. The pillar gate electrode was over-coated with a gate dielectric (SiO2) and solution processed organic semiconductors producing both unipolar p-type and bipolar behaviour. We show that this new structured-gate architecture delivers higher source-drain currents, higher gate capacitance per unit equivalent linear channel area, and enhanced charge injection (electrons and/or holes) versus the conventional planar structure in all modes of operation. For the bipolar field-effect transistor (FET) the maximum source-drain current enhancements in p- and n-channel mode were >600% and 28%, respectively, leading to p and n charge mobilities with the same order of magnitude. Thus, we have demonstrated that it is possible to use the FET architecture to manipulate and match carrier mobilities of material combinations where one charge carrier is normally dominant. Mobility matching is advantageous for creating organic logic circuit elements such as inverters and amplifiers. Hence, the method represents a facile and generic strategy for improving the performance of standard organic semiconductors as well as new materials and blends.

  18. A III-V nanowire channel on silicon for high-performance vertical transistors.

    PubMed

    Tomioka, Katsuhiro; Yoshimura, Masatoshi; Fukui, Takashi

    2012-08-09

    Silicon transistors are expected to have new gate architectures, channel materials and switching mechanisms in ten years' time. The trend in transistor scaling has already led to a change in gate structure from two dimensions to three, used in fin field-effect transistors, to avoid problems inherent in miniaturization such as high off-state leakage current and the short-channel effect. At present, planar and fin architectures using III-V materials, specifically InGaAs, are being explored as alternative fast channels on silicon because of their high electron mobility and high-quality interface with gate dielectrics. The idea of surrounding-gate transistors, in which the gate is wrapped around a nanowire channel to provide the best possible electrostatic gate control, using InGaAs channels on silicon, however, has been less well investigated because of difficulties in integrating free-standing InGaAs nanostructures on silicon. Here we report the position-controlled growth of vertical InGaAs nanowires on silicon without any buffering technique and demonstrate surrounding-gate transistors using InGaAs nanowires and InGaAs/InP/InAlAs/InGaAs core-multishell nanowires as channels. Surrounding-gate transistors using core-multishell nanowire channels with a six-sided, high-electron-mobility transistor structure greatly enhance the on-state current and transconductance while keeping good gate controllability. These devices provide a route to making vertically oriented transistors for the next generation of field-effect transistors and may be useful as building blocks for wireless networks on silicon platforms.

  19. Printing Semiconductor-Insulator Polymer Bilayers for High-Performance Coplanar Field-Effect Transistors.

    PubMed

    Bu, Laju; Hu, Mengxing; Lu, Wanlong; Wang, Ziyu; Lu, Guanghao

    2018-01-01

    Source-semiconductor-drain coplanar transistors with an organic semiconductor layer located within the same plane of source/drain electrodes are attractive for next-generation electronics, because they could be used to reduce material consumption, minimize parasitic leakage current, avoid cross-talk among different devices, and simplify the fabrication process of circuits. Here, a one-step, drop-casting-like printing method to realize a coplanar transistor using a model semiconductor/insulator [poly(3-hexylthiophene) (P3HT)/polystyrene (PS)] blend is developed. By manipulating the solution dewetting dynamics on the metal electrode and SiO 2 dielectric, the solution within the channel region is selectively confined, and thus make the top surface of source/drain electrodes completely free of polymers. Subsequently, during solvent evaporation, vertical phase separation between P3HT and PS leads to a semiconductor-insulator bilayer structure, contributing to an improved transistor performance. Moreover, this coplanar transistor with semiconductor-insulator bilayer structure is an ideal system for injecting charges into the insulator via gate-stress, and the thus-formed PS electret layer acts as a "nonuniform floating gate" to tune the threshold voltage and effective mobility of the transistors. Effective field-effect mobility higher than 1 cm 2 V -1 s -1 with an on/off ratio > 10 7 is realized, and the performances are comparable to those of commercial amorphous silicon transistors. This coplanar transistor simplifies the fabrication process of corresponding circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Vertical organic transistors.

    PubMed

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-11-11

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted.

  1. A Unique Blend of 2-Fluorenyl-2-anthracene and 2-Anthryl-2-anthracence Showing White Emission and High Charge Mobility.

    PubMed

    Chen, Mengyun; Zhao, Yang; Yan, Lijia; Yang, Shuai; Zhu, Yanan; Murtaza, Imran; He, Gufeng; Meng, Hong; Huang, Wei

    2017-01-16

    White-light-emitting materials with high mobility are necessary for organic white-light-emitting transistors, which can be used for self-driven OLED displays or OLED lighting. In this study, we combined two materials with similar structures-2-fluorenyl-2-anthracene (FlAnt) with blue emission and 2-anthryl-2-anthracence (2A) with greenish-yellow emission-to fabricate OLED devices, which showed unusual solid-state white-light emission with the CIE coordinates (0.33, 0.34) at 10 V. The similar crystal structures ensured that the OTFTs based on mixed FlAnt and 2A showed high mobility of 1.56 cm 2  V -1  s -1 . This simple method provides new insight into the design of high-performance white-emitting transistor materials and structures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Low electron mobility of field-effect transistor determined by modulated magnetoresistance

    NASA Astrophysics Data System (ADS)

    Tauk, R.; Łusakowski, J.; Knap, W.; Tiberj, A.; Bougrioua, Z.; Azize, M.; Lorenzini, P.; Sakowicz, M.; Karpierz, K.; Fenouillet-Beranger, C.; Cassé, M.; Gallon, C.; Boeuf, F.; Skotnicki, T.

    2007-11-01

    Room temperature magnetotransport experiments were carried out on field-effect transistors in magnetic fields up to 10 T. It is shown that measurements of the transistor magnetoresistance and its first derivative with respect to the gate voltage allow the derivation of the electron mobility in the gated part of the transistor channel, while the access/contact resistances and the transistor gate length need not be known. We demonstrate the potential of this method using GaN and Si field-effect transistors and discuss its importance for mobility measurements in transistors with nanometer gate length.

  3. Effective mobility enhancement of amorphous In-Ga-Zn-O thin-film transistors by holographically generated periodic conductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Jaewook; Kim, Joonwoo; Jeong, Soon Moon

    In this study, we demonstrate a mobility enhancement structure for fully transparent amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs) by embedding a holographically generated periodic nano-conductor in the back-channel regions. The intrinsic field-effect mobility was enhanced up to 2 times compared to that of a reference sample. The enhancement originated from a decrease in the effective channel length due to the highly conductive nano-conductor region. By combining conventional and holographic lithography, the performance of the a-IGZO TFT can be effectively improved without varying the composition of the channel layer.

  4. Effective mobility enhancement of amorphous In-Ga-Zn-O thin-film transistors by holographically generated periodic conductor

    NASA Astrophysics Data System (ADS)

    Jeong, Jaewook; Kim, Joonwoo; Kim, Donghyun; Jeon, Heonsu; Jeong, Soon Moon; Hong, Yongtaek

    2016-08-01

    In this study, we demonstrate a mobility enhancement structure for fully transparent amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs) by embedding a holographically generated periodic nano-conductor in the back-channel regions. The intrinsic field-effect mobility was enhanced up to 2 times compared to that of a reference sample. The enhancement originated from a decrease in the effective channel length due to the highly conductive nano-conductor region. By combining conventional and holographic lithography, the performance of the a-IGZO TFT can be effectively improved without varying the composition of the channel layer.

  5. High Mobility SiGe/Si Transistor Structures on Sapphire Substrates Using Ion Implantation

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Mueller, C. H.; Croke, E. T.

    2003-01-01

    High mobility n-type SiGe/Si transistor structures have been fabricated on sapphire substrates by ion implanting phosphorus ions into strained 100 Angstrom thick silicon channels for the first time. The strained Si channels were sandwiched between Si(sub 0.7)Ge(sub 0.3) layers, which, in turn, were deposited on Si(sub 0.7)Ge(sub 0.3) virtual substrates and graded SiGe buffer layers. After the molecular beam epitaxy (MBE) film growth process was completed, ion thick silicon channels implantation and post-annealing were used to introduce donors. The phosphorous ions were preferentially located in the Si channel at a peak concentration of approximately 1x10(exp 18)/cu cm. Room temperature electron mobilities exceeding 750 sq cm/V-sec at carrier densities of 1x10(exp 12)/sq cm were measured. Electron concentration appears to be the key factor that determines mobility, with the highest mobility observed for electron densities in the 1 - 2x10(exp 12)/sq cm range.

  6. Low leakage current gate dielectrics prepared by ion beam assisted deposition for organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Chang Su; Jo, Sung Jin; Kim, Jong Bok; Ryu, Seung Yoon; Noh, Joo Hyon; Baik, Hong Koo; Lee, Se Jong; Kim, Youn Sang

    2007-12-01

    This communication reports on the fabrication of low operating voltage pentacene thin-film transistors with high-k gate dielectrics by ion beam assisted deposition (IBAD). These densely packed dielectric layers by IBAD show a much lower level of leakage current than those created by e-beam evaporation. These results, from the fact that those thin films deposited with low adatom mobility, have an open structure, consisting of spherical grains with pores in between, that acts as a significant path for leakage current. By contrast, our results demonstrate the potential to limit this leakage. The field effect mobility, on/off current ratio, and subthreshold slope obtained from pentacene thin-film transistors (TFTs) were 1.14 cm2/V s, 105, and 0.41 V/dec, respectively. Thus, the high-k gate dielectrics obtained by IBAD show promise in realizing low leakage current, low voltage, and high mobility pentacene TFTs.

  7. Vacuum-processed polyethylene as a dielectric for low operating voltage organic field effect transistors

    PubMed Central

    Kanbur, Yasin; Irimia-Vladu, Mihai; Głowacki, Eric D.; Voss, Gundula; Baumgartner, Melanie; Schwabegger, Günther; Leonat, Lucia; Ullah, Mujeeb; Sarica, Hizir; Erten-Ela, Sule; Schwödiauer, Reinhard; Sitter, Helmut; Küçükyavuz, Zuhal; Bauer, Siegfried; Sariciftci, Niyazi Serdar

    2012-01-01

    We report on the fabrication and performance of vacuum-processed organic field effect transistors utilizing evaporated low-density polyethylene (LD-PE) as a dielectric layer. With C60 as the organic semiconductor, we demonstrate low operating voltage transistors with field effect mobilities in excess of 4 cm2/Vs. Devices with pentacene showed a mobility of 0.16 cm2/Vs. Devices using tyrian Purple as semiconductor show low-voltage ambipolar operation with equal electron and hole mobilities of ∼0.3 cm2/Vs. These devices demonstrate low hysteresis and operational stability over at least several months. Grazing-angle infrared spectroscopy of evaporated thin films shows that the structure of the polyethylene is similar to solution-cast films. We report also on the morphological and dielectric properties of these films. Our experiments demonstrate that polyethylene is a stable dielectric supporting both hole and electron channels. PMID:23483783

  8. Carrier mobility in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Benwadih, Mohamed; Gwoziecki, Romain; Coppard, Romain; Minari, Takeo; Liu, Chuan; Tsukagoshi, Kazuhito; Chroboczek, Jan; Balestra, Francis; Ghibaudo, Gerard

    2011-11-01

    A study of carrier transport in top-gate and bottom-contact TIPS-pentacene organic field-effect transistors (OFETs) based on mobility is presented. Among three mobilities extracted by different methods, the low-field mobility obtained by the Y function exhibits the best reliability and ease for use, whereas the widely applied field-effect mobility is not reliable, particularly in short-channel transistors and at low temperatures. A detailed study of contact transport reveals its strong impact on short-channel transistors, suggesting that a more intrinsic transport analysis is better implemented in relatively longer-channel devices. The observed temperature dependences of mobility are well explained by a transport model with Gaussian-like diffusivity band tails, different from diffusion in localized states band tails. This model explicitly interprets the non-zero constant mobility at low temperatures and clearly demonstrates the effects of disorder and hopping transport on temperature and carrier density dependences of mobility in organic transistors.

  9. Effect of mesa structure formation on the electrical properties of zinc oxide thin film transistors.

    PubMed

    Singh, Shaivalini; Chakrabarti, P

    2014-05-01

    ZnO based bottom-gate thin film transistor (TFT) with SiO2 as insulating layer has been fabricated with two different structures. The effect of formation of mesa structure on the electrical characteristics of the TFTs has been studied. The formation of mesa structure of ZnO channel region can definitely result in better control over channel region and enhance value of channel mobility of ZnO TFT. As a result, by fabricating a mesa structured TFT, a better value of mobility and on-state current are achieved at low voltages. A typical saturation current of 1.85 x 10(-7) A under a gate bias of 50 V is obtained for non mesa structure TFT while for mesa structured TFT saturation current of 5 x 10(-5) A can be obtained at comparatively very low gate bias of 6.4 V.

  10. Si{sub 3}N{sub 4} layers for the in-situ passivation of GaN-based HEMT structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunin, P. A., E-mail: yunin@ipmras.ru; Drozdov, Yu. N.; Drozdov, M. N.

    2015-11-15

    A method for the in situ passivation of GaN-based structures with silicon nitride in the growth chamber of a metal organic vapor phase epitaxy (MOVPE) reactor is described. The structural and electrical properties of the obtained layers are investigated. The in situ and ex situ passivation of transistor structures with silicon nitride in an electron-beam-evaporation device are compared. It is shown that ex situ passivation changes neither the initial carrier concentration nor the mobility. In situ passivation makes it possible to protect the structure surface against uncontrollable degradation upon the finishing of growth and extraction to atmosphere. In the inmore » situ passivated structure, the carrier concentration increases and the mobility decreases. This effect should be taken into account when manufacturing passivated GaN-based transistor structures.« less

  11. Superlattice structure modeling and simulation of High Electron Mobility Transistor for improved performance

    NASA Astrophysics Data System (ADS)

    Munusami, Ravindiran; Yakkala, Bhaskar Rao; Prabhakar, Shankar

    2013-12-01

    Magnetic tunnel junction were made by inserting the magnetic materials between the source, channel and the drain of the High Electron Mobility Transistor (HEMT) to enhance the performance. Material studio software package was used to design the superlattice layers. Different cases were analyzed to optimize the performance of the device by placing the magnetic material at different positions of the device. Simulation results based on conductivity reveals that the device has a very good electron transport due to the magnetic materials and will amplify very low frequency signals.

  12. Ferroelectric switching of poly(vinylidene difluoride-trifluoroethylene) in metal-ferroelectric-semiconductor non-volatile memories with an amorphous oxide semiconductor

    NASA Astrophysics Data System (ADS)

    Gelinck, G. H.; van Breemen, A. J. J. M.; Cobb, B.

    2015-03-01

    Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.

  13. Solution-Processed Transistors Using Colloidal Nanocrystals with Composition-Matched Molecular "Solders": Approaching Single Crystal Mobility.

    PubMed

    Jang, Jaeyoung; Dolzhnikov, Dmitriy S; Liu, Wenyong; Nam, Sooji; Shim, Moonsub; Talapin, Dmitri V

    2015-10-14

    Crystalline silicon-based complementary metal-oxide-semiconductor transistors have become a dominant platform for today's electronics. For such devices, expensive and complicated vacuum processes are used in the preparation of active layers. This increases cost and restricts the scope of applications. Here, we demonstrate high-performance solution-processed CdSe nanocrystal (NC) field-effect transistors (FETs) that exhibit very high carrier mobilities (over 400 cm(2)/(V s)). This is comparable to the carrier mobilities of crystalline silicon-based transistors. Furthermore, our NC FETs exhibit high operational stability and MHz switching speeds. These NC FETs are prepared by spin coating colloidal solutions of CdSe NCs capped with molecular solders [Cd2Se3](2-) onto various oxide gate dielectrics followed by thermal annealing. We show that the nature of gate dielectrics plays an important role in soldered CdSe NC FETs. The capacitance of dielectrics and the NC electronic structure near gate dielectric affect the distribution of localized traps and trap filling, determining carrier mobility and operational stability of the NC FETs. We expand the application of the NC soldering process to core-shell NCs consisting of a III-V InAs core and a CdSe shell with composition-matched [Cd2Se3](2-) molecular solders. Soldering CdSe shells forms nanoheterostructured material that combines high electron mobility and near-IR photoresponse.

  14. Fabrication of eco-friendly PNP transistor using RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kumar, B. Santhosh; Harinee, N.; Purvaja, K.; Shanker, N. Praveen; Manikandan, M.; Aparnadevi, N.; Mukilraj, T.; Venkateswaran, C.

    2018-05-01

    An effort has been made to fabricate a thin film transistor using eco-friendly oxide semiconductor materials. Oxide semiconductor materials are cost - effective, thermally and chemically stable with high electron/hole mobility. Copper (II) oxide is a p-type semiconductor and zinc oxide is an n-type semiconductor. A pnp thin film transistor was fabricated using RF magnetron sputtering. The films deposited have been subjected to structural characterization using AFM. I-V characterization of the fabricated device, Ag/CuO/ZnO/CuO/Ag, confirms transistor behaviour. The mechanism of electron/hole transport of the device is discussed below.

  15. Thermal Analysis of AlGaN/GaN High-Electron-Mobility Transistor and Its RF Power Efficiency Optimization with Source-Bridged Field-Plate Structure.

    PubMed

    Kwak, Hyeon-Tak; Chang, Seung-Bo; Jung, Hyun-Gu; Kim, Hyun-Seok

    2018-09-01

    In this study, we consider the relationship between the temperature in a two-dimensional electron gas (2-DEG) channel layer and the RF characteristics of an AlGaN/GaN high-electron-mobility transistor by changing the geometrical structure of the field-plate. The final goal is to achieve a high power efficiency by decreasing the channel layer temperature. First, simulations were performed to compare and contrast the experimental data of a conventional T-gate head structure. Then, a source-bridged field-plate (SBFP) structure was used to obtain the lower junction temperature in the 2-DEG channel layer. The peak electric field intensity was reduced, and a decrease in channel temperature resulted in an increase in electron mobility. Furthermore, the gate-to-source capacitance was increased by the SBFP structure. However, under the large current flow condition, the SBFP structure had a lower maximum temperature than the basic T-gate head structure, which improved the device electron mobility. Eventually, an optimum position of the SBFP was used, which led to higher frequency responses and improved the breakdown voltages. Hence, the optimized SBFP structure can be a promising candidate for high-power RF devices.

  16. Strain-effect transistors: Theoretical study on the effects of external strain on III-nitride high-electron-mobility transistors on flexible substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shervin, Shahab; Asadirad, Mojtaba; Materials Science and Engineering Program, University of Houston, Houston, Texas 77204

    This paper presents strain-effect transistors (SETs) based on flexible III-nitride high-electron-mobility transistors (HEMTs) through theoretical calculations. We show that the electronic band structures of InAlGaN/GaN thin-film heterostructures on flexible substrates can be modified by external bending with a high degree of freedom using polarization properties of the polar semiconductor materials. Transfer characteristics of the HEMT devices, including threshold voltage and transconductance, are controlled by varied external strain. Equilibrium 2-dimensional electron gas (2DEG) is enhanced with applied tensile strain by bending the flexible structure with the concave-side down (bend-down condition). 2DEG density is reduced and eventually depleted with increasing compressive strainmore » in bend-up conditions. The operation mode of different HEMT structures changes from depletion- to enchantment-mode or vice versa depending on the type and magnitude of external strain. The results suggest that the operation modes and transfer characteristics of HEMTs can be engineered with an optimum external bending strain applied in the device structure, which is expected to be beneficial for both radio frequency and switching applications. In addition, we show that drain currents of transistors based on flexible InAlGaN/GaN can be modulated only by external strain without applying electric field in the gate. The channel conductivity modulation that is obtained by only external strain proposes an extended functional device, gate-free SETs, which can be used in electro-mechanical applications.« less

  17. AlGaAs/InGaAs/AlGaAs double pulse doped pseudomorphic high electron mobility transistor structures on InGaAs substrates

    NASA Astrophysics Data System (ADS)

    Hoke, W. E.; Lyman, P. S.; Mosca, J. J.; McTaggart, R. A.; Lemonias, P. J.; Beaudoin, R. M.; Torabi, A.; Bonner, W. A.; Lent, B.; Chou, L.-J.; Hsieh, K. C.

    1997-10-01

    Double pulse doped AlGaAs/InGaAs/AlGaAs pseudomorphic high electron mobility transistor (PHEMT) structures have been grown on InxGa1-xAs (x=0.025-0.07) substrates using molecular beam epitaxy. A strain compensated, AlGaInAs/GaAs superlattice was used for improved resistivity and breakdown. Excellent electrical and optical properties were obtained for 110-Å-thick InGaAs channel layers with indium concentrations up to 31%. A room temperature mobility of 6860 cm2/V s with 77 K sheet density of 4.0×1012cm-2 was achieved. The InGaAs channel photoluminescence intensity was equivalent to an analogous structure on a GaAs substrate. To reduce strain PHEMT structures with a composite InGaP/AlGaAs Schottky layer were also grown. The structures also exhibited excellent electrical and optical properties. Transmission electron micrographs showed planar channel interfaces for highly strained In0.30Ga0.70As channel layers.

  18. Electrical characteristics of organic perylene single-crystal-based field-effect transistors

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Woo; Kang, Han-Saem; Kim, Min-Ki; Kim, Kihyun; Cho, Mi-Yeon; Kwon, Young-Wan; Joo, Jinsoo; Kim, Jae-Il; Hong, Chang-Seop

    2007-12-01

    We report on the fabrication of organic field-effect transistors (OFETs) using perylene single crystal as the active material and their electrical characteristics. Perylene single crystals were directly grown from perylene powder in a furnace using a relatively short growth time of 1-3 h. The crystalline structure of the perylene single crystals was characterized by means of a single-crystal x-ray diffractometer. In order to place the perylene single crystal onto the Au electrodes of the field-effect transistor, a polymethlymethacrylate thin layer was spin-coated on top of the crystal surface. The OFETs fabricated using the perylene single crystal showed a typical p-type operating mode. The field-effect mobility of the perylene crystal based OFETs was measured to be ˜9.62×10-4 cm2/V s at room temperature. The anisotropy of the mobility implying the existence of different mobilities when applying currents in different directions was observed for the OFETs, and the existence of traps in the perylene crystal was found through the measurements of the temperature-dependent mobility at various operating drain voltages.

  19. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method.

    PubMed

    Yuan, Yongbo; Giri, Gaurav; Ayzner, Alexander L; Zoombelt, Arjan P; Mannsfeld, Stefan C B; Chen, Jihua; Nordlund, Dennis; Toney, Michael F; Huang, Jinsong; Bao, Zhenan

    2014-01-01

    Organic semiconductors with higher carrier mobility and better transparency have been actively pursued for numerous applications, such as flat-panel display backplane and sensor arrays. The carrier mobility is an important figure of merit and is sensitively influenced by the crystallinity and the molecular arrangement in a crystal lattice. Here we describe the growth of a highly aligned meta-stable structure of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from a blended solution of C8-BTBT and polystyrene by using a novel off-centre spin-coating method. Combined with a vertical phase separation of the blend, the highly aligned, meta-stable C8-BTBT films provide a significantly increased thin film transistor hole mobility up to 43 cm(2) Vs(-1) (25 cm(2) Vs(-1) on average), which is the highest value reported to date for all organic molecules. The resulting transistors show high transparency of >90% over the visible spectrum, indicating their potential for transparent, high-performance organic electronics.

  20. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors

    PubMed

    Kagan; Mitzi; Dimitrakopoulos

    1999-10-29

    Organic-inorganic hybrid materials promise both the superior carrier mobility of inorganic semiconductors and the processability of organic materials. A thin-film field-effect transistor having an organic-inorganic hybrid material as the semiconducting channel was demonstrated. Hybrids based on the perovskite structure crystallize from solution to form oriented molecular-scale composites of alternating organic and inorganic sheets. Spin-coated thin films of the semiconducting perovskite (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4) form the conducting channel, with field-effect mobilities of 0.6 square centimeters per volt-second and current modulation greater than 10(4). Molecular engineering of the organic and inorganic components of the hybrids is expected to further improve device performance for low-cost thin-film transistors.

  1. Strained InGaAs/InAlAs Quantum Wells for Complementary III-V Transistors

    DTIC Science & Technology

    2014-01-01

    GaAs substrates for low power and high frequency applications, J. Appl. Phys. 109 (2011) 033706. [28] A. Ali, H. Madan , A. Agrawal, I. Ramirez, R...Growth of InAsSb-channel high electron mobility transistor structures, J. Vac. Sci. Technol. B 23 (2005) 1441–1444. [30] A. Ali, H. Madan , M.J

  2. High Mobility SiGe/Si n-Type Structures and Field Effect Transistors on Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Ponchak, George E.; Mueller, Carl H.; Croke, Edward T.

    2004-01-01

    SiGe/Si n-type modulation doped field effect transistors (MODFETs) fabricated on sapphire substrates have been characterized at microwave frequencies for the first time. The highest measured room temperature electron mobility is 1380 sq cm/V-sec at a carrier density of 1.8 x 10(exp 12)/sq cm for a MODFET structure, and 900 sq cm/V-sec at a carrier density of 1.3 x 10/sq cm for a phosphorus ion implanted sample. A two finger, 2 x 200 micron gate n-MODFET has a peak transconductance of 37 mS/mm at a drain to source voltage of 2.5 V and a transducer gain of 6.4 dB at 1 GHz.

  3. Indium antimonide quantum well structures for electronic device applications

    NASA Astrophysics Data System (ADS)

    Edirisooriya, Madhavie

    The electron effective mass is smaller in InSb than in any other III-V semiconductor. Since the electron mobility depends inversely on the effective mass, InSb-based devices are attractive for field effect transistors, magnetic field sensors, ballistic transport devices, and other applications where the performance depends on a high mobility or a long mean free path. In addition, electrons in InSb have a large g-factor and strong spin orbit coupling, which makes them well suited for certain spin transport devices. The first n-channel InSb high electron mobility transistor (HEMT) was produced in 2005 with a power-delay product superior to HEMTs with a channel made from any other III-V semiconductor. The high electron mobility in the InSb quantum-well channel increases the switching speed and lowers the required supply voltage. This dissertation focuses on several materials challenges that can further increase the appeal of InSb quantum wells for transistors and other electronic device applications. First, the electron mobility in InSb quantum wells, which is the highest for any semiconductor quantum well, can be further increased by reducing scattering by crystal defects. InSb-based heteroepitaxy is usually performed on semi-insulating GaAs (001) substrates due to the lack of a lattice matched semi-insulating substrate. The 14.6% mismatch between the lattice parameters of GaAs and InSb results in the formation of structural defects such as threading dislocations and microtwins which degrade the electrical and optical properties of InSb-based devices. Chapter 1 reviews the methods and procedures for growing InSb-based heterostructures by molecular beam epitaxy. Chapters 2 and 3 introduce techniques for minimizing the crystalline defects in InSb-based structures grown on GaAs substrates. Chapter 2 discusses a method of reducing threading dislocations by incorporating AlyIn1-ySb interlayers in an AlxIn1-xSb buffer layer and the reduction of microtwin defects by growth on GaAs substrates that are oriented 2° away from the [011] direction. Chapter 3 discusses designing InSb QW layer structures that are strain balanced. By applying these defect-reducing techniques, the electron mobility in InSb quantum wells at room temperature was significantly increased. For complementary logic technology, p-channel transistors with high mobility are equally as important as n-channel transistors. However, achieving a high hole mobility in III-V semiconductors is challenging. A controlled introduction of strain in the quantum-well material is an effective technique for enhancing the hole mobility beyond its value in bulk material. The strain reduces the hole effective mass by splitting the heavy hole and light hole valence bands. Chapter 4 discusses a successful attempt to realize p-type InSb quantum well structures. The biaxial strain applied via a relaxed metamorphic buffer resulted in a significantly higher room-temperature hole mobility and a record high low-temperature hole mobility. To demonstrate the usefulness of high mobility in a device structure, magnetoresistive devices were fabricated from remotely doped InSb QWs. Such devices have numerous practical applications such as position and speed sensors and as read heads in magnetic storage systems. In a magnetoresistive device composed of a series of shorted Hall bars, the magnetoresistance is proportional to the electron mobility squared for small magnetic fields. Hence, the high electron mobility in InSb QWs makes them highly preferable for geometrical magnetoresistors. Chapter 5 reports the fabrication and characterization of InSb quantum-well magnetoresistors. The excellent transport properties of the InSb QWs resulted in high room-temperature sensitivity to applied magnetic fields. Finally, Chapter 6 provides the conclusions obtained during this research effort, and makes suggestions for future work.

  4. High Electron Mobility SiGe/Si Transistor Structures on Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Mueller, Carl H.; Croke, Edward T.; Ponchak, George E.

    2003-01-01

    SiGe/Si n-type modulation doped field effect structures and transistors (n-MODFETs) have been fabricated on r-plane sapphire substrates. The structures were deposited using molecular beam epitaxy, and antimony dopants were incorporated via a delta doping process. Secondary ion mass spectroscopy (SIMS) indicates that the peak antimony, concentration was approximately 4 x 10(exp19) per cubic cm. The electron mobility was over 1,200 and 13,000 sq cm/V-sec at room temperature and 0.25 K, respectively. At these two temperatures, the electron carrier densities were 1.6 and 1.33 x 10(exp 12) per sq cm, thus demonstrating that carrier confinement was excellent. Shubnikov-de Haas oscillations were observed at 0.25 K, thus confirming the two-dimensional nature of the carriers. Transistors, with gate lengths varying from 1 micron to 5 microns, were fabricated using these structures and dc characterization was performed at room temperature. The saturated drain current region extended over a wide source-to-drain voltage (V(sub DS)) range, with (V(sub DS)) knee voltages of approximately 0.5 V and increased leakage starting at voltages slightly higher than 4 V.

  5. Microwave Integrated Circuit Amplifier Designs Submitted to Qorvo for Fabrication with 0.09-micron High Electron Mobility Transistors (HEMTs) using 2-mil Gallium Nitride (GaN) on Silicon Carbide (SiC)

    DTIC Science & Technology

    2016-03-01

    Fabrication with 0.09-µm High-Electron-Mobility Transistors (HEMTs) Using 2-mil Gallium Nitride (GaN) on Silicon Carbide (SiC) by John E Penn...for Fabrication with 0.09-µm High-Electron-Mobility Transistors (HEMTs) using 2-mil Gallium Nitride (GaN) on Silicon Carbide by John E Penn...µm High-Electron-Mobility Transistors (HEMTs) using 2-mil Gallium Nitride (GaN) on Silicon Carbide 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  6. High Performance 50 nm InAlAs/In0.75GaAs Metamorphic High Electron Mobility Transistors with Si3N4 Passivation on Thin InGaAs Layer

    NASA Astrophysics Data System (ADS)

    Yeon, Seongjin; Seo, Kwangseok

    2008-04-01

    We fabricated 50 nm InAlAs/InGaAs metamorphic high electron mobility transistors (HEMTs) with a very thin barrier. Through the reduction of the gate-channel distance (dGC) in the epitaxial structure, a channel aspect ratio (ARC) of over three was achieved when Lg was 50 nm. We inserted a thin InGaAs layer as a protective layer, and tested various gate structures to reduce surface problems induced by barrier shrinkage and to optimize the device characteristics. Through the optimization of the gate structure with the thin InGaAs layer, the fabricated 50 nm metamorphic HEMT exhibited high DC and RF characteristics, Gm of 1.5 S/mm, and fT of 490 GHz.

  7. Ultrawide electrical tuning of light matter interaction in a high electron mobility transistor structure

    PubMed Central

    Pal, Shovon; Nong, Hanond; Markmann, Sergej; Kukharchyk, Nadezhda; Valentin, Sascha R.; Scholz, Sven; Ludwig, Arne; Bock, Claudia; Kunze, Ulrich; Wieck, Andreas D.; Jukam, Nathan

    2015-01-01

    The interaction between intersubband resonances (ISRs) and metamaterial microcavities constitutes a strongly coupled system where new resonances form that depend on the coupling strength. Here we present experimental evidence of strong coupling between the cavity resonance of a terahertz metamaterial and the ISR in a high electron mobility transistor (HEMT) structure. The device is electrically switched from an uncoupled to a strongly coupled regime by tuning the ISR with epitaxially grown transparent gate. The asymmetric potential in the HEMT structure enables ultrawide electrical tuning of ISR, which is an order of magnitude higher as compared to an equivalent square well. For a single heterojunction with a triangular confinement, we achieve an avoided splitting of 0.52 THz, which is a significant fraction of the bare intersubband resonance at 2 THz. PMID:26578287

  8. Effect of In Situ Annealing Treatment on the Mobility and Morphology of TIPS-Pentacene-Based Organic Field-Effect Transistors.

    PubMed

    Yang, Fuqiang; Wang, Xiaolin; Fan, Huidong; Tang, Ying; Yang, Jianjun; Yu, Junsheng

    2017-08-23

    In this work, organic field-effect transistors (OFETs) with a bottom gate top contact structure were fabricated by using a spray-coating method, and the influence of in situ annealing treatment on the OFET performance was investigated. Compared to the conventional post-annealing method, the field-effect mobility of OFET with 60 °C in situ annealing treatment was enhanced nearly four times from 0.056 to 0.191 cm 2 /Vs. The surface morphologies and the crystallization of TIPS-pentacene films were characterized by optical microscope, atomic force microscope, and X-ray diffraction. We found that the increased mobility was mainly attributed to the improved crystallization and highly ordered TIPS-pentacene molecules.

  9. Effect of In Situ Annealing Treatment on the Mobility and Morphology of TIPS-Pentacene-Based Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Yang, Fuqiang; Wang, Xiaolin; Fan, Huidong; Tang, Ying; Yang, Jianjun; Yu, Junsheng

    2017-08-01

    In this work, organic field-effect transistors (OFETs) with a bottom gate top contact structure were fabricated by using a spray-coating method, and the influence of in situ annealing treatment on the OFET performance was investigated. Compared to the conventional post-annealing method, the field-effect mobility of OFET with 60 °C in situ annealing treatment was enhanced nearly four times from 0.056 to 0.191 cm2/Vs. The surface morphologies and the crystallization of TIPS-pentacene films were characterized by optical microscope, atomic force microscope, and X-ray diffraction. We found that the increased mobility was mainly attributed to the improved crystallization and highly ordered TIPS-pentacene molecules.

  10. High Mobility Conjugated Polymers

    DTIC Science & Technology

    2007-10-20

    will act as a trap for opposite charge carriers; the electron affinities were 4.0 eV (BBL) and 2.7 eV (PTHQx) and ionization potentials were 6.0 eV...transistors (OFETs), photovoltaic cells, and photodetectors, is limited primarily by the low charge carrier mobilities of current materials. To address this...showing a maximum mobility with hexyl. Fundamental insights into the structural factors that govern high mobility charge transport and recombination in

  11. Enhanced mobility in vertically scaled N-polar high-electron-mobility transistors using GaN/InGaN composite channels

    NASA Astrophysics Data System (ADS)

    Li, Haoran; Wienecke, Steven; Romanczyk, Brian; Ahmadi, Elaheh; Guidry, Matthew; Zheng, Xun; Keller, Stacia; Mishra, Umesh K.

    2018-02-01

    A GaN/InGaN composite channel design for vertically scaled N-polar high-electron-mobility transistor (HEMT) structures is proposed and demonstrated by metal-organic chemical vapor deposition. In a conventional N-polar HEMT structure, as the channel thickness (tch) decreases, the sheet charge density (ns) decreases, the electric field in the channel increases, and the centroid of the two-dimensional electron gas (2DEG) moves towards the back-barrier/channel interface, resulting in stronger scattering and lower electron mobility (μ). In this study, a thin InGaN layer was introduced in-between the channel and the AlGaN cap to increase the 2DEG density and reduce the electric field in the channel and therefore increase the electron mobility. The dependence of μ on the InGaN thickness (tInGaN) and the indium composition (xIn) was investigated for different channel thicknesses. With optimized tInGaN and xIn, significant improvements in electron mobility were observed. For a 6 nm channel HEMT structure, the electron mobility increased from 606 to 1141 cm2/(V.s) when the 6 nm thick pure GaN channel was replaced by the 4 nm GaN/2 nm In0.1Ga0.9N composite channel.

  12. Enhancement of field effect mobility of poly(3-hexylthiophene) thin film transistors by soft-lithographical nanopatterning on the gate-dielectric surface

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Ho; Kang, Seok-Ju; Park, Jeong-Woo; Lim, Bogyu; Kim, Dong-Yu

    2007-11-01

    The submicroscaled octadecyltrichlorosilane (OTS) line patterns on gate-dielectric surfaces were introduced into the fabrication of organic field effect transistors (OFETs). These spin-cast regioregular poly(3-hexylthiophene) films on soft-lithographically patterned SiO2 surfaces yielded a higher hole mobility (˜0.072cm2/Vs ) than those of unpatterned (˜0.015cm2/Vs) and untreated (˜5×10-3cm2/Vs) OFETs. The effect of mobility enhancement as a function of the patterned line pitch was investigated in structural and geometric characteristics. The resulting improved mobility is likely attributed to the formation of efficient π-π stacking as a result of guide-assisted, local self-organization-involved molecular interactions between the poly(3-hexylthiophene) polymer and the geometrical OTS patterns.

  13. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets

    NASA Astrophysics Data System (ADS)

    Kelly, Adam G.; Hallam, Toby; Backes, Claudia; Harvey, Andrew; Esmaeily, Amir Sajad; Godwin, Ian; Coelho, João; Nicolosi, Valeria; Lauth, Jannika; Kulkarni, Aditya; Kinge, Sachin; Siebbeles, Laurens D. A.; Duesberg, Georg S.; Coleman, Jonathan N.

    2017-04-01

    All-printed transistors consisting of interconnected networks of various types of two-dimensional nanosheets are an important goal in nanoscience. Using electrolytic gating, we demonstrate all-printed, vertically stacked transistors with graphene source, drain, and gate electrodes, a transition metal dichalcogenide channel, and a boron nitride (BN) separator, all formed from nanosheet networks. The BN network contains an ionic liquid within its porous interior that allows electrolytic gating in a solid-like structure. Nanosheet network channels display on:off ratios of up to 600, transconductances exceeding 5 millisiemens, and mobilities of >0.1 square centimeters per volt per second. Unusually, the on-currents scaled with network thickness and volumetric capacitance. In contrast to other devices with comparable mobility, large capacitances, while hindering switching speeds, allow these devices to carry higher currents at relatively low drive voltages.

  14. Organic High Electron Mobility Transistors Realized by 2D Electron Gas.

    PubMed

    Zhang, Panlong; Wang, Haibo; Yan, Donghang

    2017-09-01

    A key breakthrough in inorganic modern electronics is the energy-band engineering that plays important role to improve device performance or develop novel functional devices. A typical application is high electron mobility transistors (HEMTs), which utilizes 2D electron gas (2DEG) as transport channel and exhibits very high electron mobility over traditional field-effect transistors (FETs). Recently, organic electronics have made very rapid progress and the band transport model is demonstrated to be more suitable for explaining carrier behavior in high-mobility crystalline organic materials. Therefore, there emerges a chance for applying energy-band engineering in organic semiconductors to tailor their optoelectronic properties. Here, the idea of energy-band engineering is introduced and a novel device configuration is constructed, i.e., using quantum well structures as active layers in organic FETs, to realize organic 2DEG. Under the control of gate voltage, electron carriers are accumulated and confined at quantized energy levels, and show efficient 2D transport. The electron mobility is up to 10 cm 2 V -1 s -1 , and the operation mechanisms of organic HEMTs are also argued. Our results demonstrate the validity of tailoring optoelectronic properties of organic semiconductors by energy-band engineering, offering a promising way for the step forward of organic electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Proton irradiation effects on gallium nitride-based devices

    NASA Astrophysics Data System (ADS)

    Karmarkar, Aditya P.

    Proton radiation effects on state-of-the-art gallium nitride-based devices were studied using Schottky diodes and high electron-mobility transistors. The device degradation was studied over a wide range of proton fluences. This study allowed for a correlation between proton irradiation effects between different types of devices and enhanced the understanding of the mechanisms responsible for radiation damage in GaN-based devices. Proton irradiation causes reduced carrier concentration and increased series resistance and ideality factor in Schottky diodes. 1.0-MeV protons cause greater degradation than 1.8-MeV protons because of their higher non-ionizing energy loss. The displacement damage in Schottky diodes recovers during annealing. High electron-mobility transistors exhibit extremely high radiation tolerance, continuing to perform up to a fluence of ˜1014 cm-2 of 1.8-MeV protons. Proton irradiation creates defect complexes in the thin-film structure. Decreased sheet carrier mobility due to increased carrier scattering and decreased sheet carrier density due to carrier removal by the defect centers are the primary damage mechanisms. Interface disorder at either the Schottky or the Ohmic contact plays a relatively unimportant part in overall device degradation in both Schottky diodes and high electron-mobility transistors.

  16. A study of electrically active traps in AlGaN/GaN high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Cui, Sharon; Ma, T. P.; Hung, Ting-Hsiang; Nath, Digbijoy; Krishnamoorthy, Sriram; Rajan, Siddharth

    2013-10-01

    We have studied electron conduction mechanisms and the associated roles of the electrically active traps in the AlGaN layer of an AlGaN/GaN high electron mobility transistor structure. By fitting the temperature dependent I-V (Current-Voltage) curves to the Frenkel-Poole theory, we have identified two discrete trap energy levels. Multiple traces of I-V measurements and constant-current injection experiment all confirm that the main role of the traps in the AlGaN layer is to enhance the current flowing through the AlGaN barrier by trap-assisted electron conduction without causing electron trapping.

  17. Ambipolar pentacene field-effect transistor with double-layer organic insulator

    NASA Astrophysics Data System (ADS)

    Kwak, Jeong-Hun; Baek, Heume-Il; Lee, Changhee

    2006-08-01

    Ambipolar conduction in organic field-effect transistor is very important feature to achieve organic CMOS circuitry. We fabricated an ambipolar pentacene field-effect transistors consisted of gold source-drain electrodes and double-layered PMMA (Polymethylmethacrylate) / PVA (Polyvinyl Alcohol) organic insulator on the ITO(Indium-tin-oxide)-patterned glass substrate. These top-contact geometry field-effect transistors were fabricated in the vacuum of 10 -6 Torr and minimally exposed to atmosphere before its measurement and characterized in the vacuum condition. Our device showed reasonable p-type characteristics of field-effect hole mobility of 0.2-0.9 cm2/Vs and the current ON/OFF ratio of about 10 6 compared to prior reports with similar configurations. For the n-type characteristics, field-effect electron mobility of 0.004-0.008 cm2/Vs and the current ON/OFF ratio of about 10 3 were measured, which is relatively high performance for the n-type conduction of pentacene field-effect transistors. We attributed these ambipolar properties mainly to the hydroxyl-free PMMA insulator interface with the pentacene active layer. In addition, an increased insulator capacitance due to double-layer insulator structure with high-k PVA layer also helped us to observe relatively good n-type characteristics.

  18. Low Temperature Photoluminescence (PL) from High Electron Mobility Transistors (HEMTs)

    DTIC Science & Technology

    2015-03-01

    Photoluminescence Form InxAl1-xN Films Deposited by Plasma-Assisted Molecular Beam Epitaxy ,” Submitted to Applied Physics Letters, July 2014. 8 LIST OF...TECHNICAL REPORT RDMR-WD-14-55 LOW TEMPERATURE PHOTOLUMINESCENCE (PL) FROM HIGH ELECTRON MOBILITY TRANSISTORS ( HEMTS ...Mobility Transistors ( HEMTs ) 5. FUNDING NUMBERS 6. AUTHOR(S) Adam T. Roberts and Henry O. Everitt 7. PERFORMING ORGANIZATION NAME(S

  19. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng

    2015-01-01

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm2/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

  20. High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper

    NASA Astrophysics Data System (ADS)

    Kim, Minkyu; Jeong, Jong Han; Lee, Hun Jung; Ahn, Tae Kyung; Shin, Hyun Soo; Park, Jin-Seong; Jeong, Jae Kyeong; Mo, Yeon-Gon; Kim, Hye Dong

    2007-05-01

    The authors report on the fabrication of thin film transistors (TFTs), which use an amorphous indium gallium zinc oxide (a-IGZO) channel, by rf sputtering at room temperature and for which the channel length and width are patterned by photolithography and dry etching. To prevent plasma damage to the active channel, a 100-nm-thick SiOx layer deposited by plasma enhanced chemical vapor deposition was adopted as an etch stopper structure. The a-IGZO TFT (W /L=10μm/50μm) fabricated on glass exhibited a high field-effect mobility of 35.8cm2/Vs, a subthreshold gate swing value of 0.59V/decade, a thrseshold voltage of 5.9V, and an Ion/off ratio of 4.9×106, which is acceptable for use as the switching transistor of an active-matrix TFT backplane.

  1. Effect of atomic layer deposition temperature on the performance of top-down ZnO nanowire transistors

    PubMed Central

    2014-01-01

    This paper studies the effect of atomic layer deposition (ALD) temperature on the performance of top-down ZnO nanowire transistors. Electrical characteristics are presented for 10-μm ZnO nanowire field-effect transistors (FETs) and for deposition temperatures in the range 120°C to 210°C. Well-behaved transistor output characteristics are obtained for all deposition temperatures. It is shown that the maximum field-effect mobility occurs for an ALD temperature of 190°C. This maximum field-effect mobility corresponds with a maximum Hall effect bulk mobility and with a ZnO film that is stoichiometric. The optimized transistors have a field-effect mobility of 10 cm2/V.s, which is approximately ten times higher than can typically be achieved in thin-film amorphous silicon transistors. Furthermore, simulations indicate that the drain current and field-effect mobility extraction are limited by the contact resistance. When the effects of contact resistance are de-embedded, a field-effect mobility of 129 cm2/V.s is obtained. This excellent result demonstrates the promise of top-down ZnO nanowire technology for a wide variety of applications such as high-performance thin-film electronics, flexible electronics, and biosensing. PMID:25276107

  2. Addition of ferrocene controls polymorphism and enhances charge mobilities in poly(3-hexylthiophene) thin-film transistors

    NASA Astrophysics Data System (ADS)

    Smith, Brandon; Clark, Michael; Grieco, Christopher; Larsen, Alec; Asbury, John; Gomez, Enrique

    2015-03-01

    Crystalline organic molecules often exhibit the ability to form multiple crystal structures depending on the processing conditions. Exploiting this polymorphism to optimize molecular orbital overlap between adjacent molecules within the unit lattice of conjugated polymers is an approach to enhance charge transport within the material. We have demonstrated the formation of tighter π- π stacking poly(3-hexylthiophene-2,5-diyl) polymorphs in films spin coated from ferrocene-containing solutions using grazing incident X-ray diffraction. As a result, we found that the addition of ferrocene to casting solutions yields thin-film transistors which exhibit significantly higher source-drain current and charge mobilities than neat polymer devices. Insights gleaned from ferrocene/poly(3-hexylthiophene) mixtures can serve as a template for selection and optimization of next generation small molecule/polymer systems possessing greater baseline charge mobilities. Ultimately, the development of such techniques to enhance the characteristics of organic transistors without imparting high costs or loss of advantageous properties will be a critical factor determining the future of organic components within the electronics market.

  3. P-doping-free III-nitride high electron mobility light-emitting diodes and transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Baikui; Tang, Xi; Chen, Kevin J., E-mail: eekjchen@ust.hk

    2014-07-21

    We report that a simple metal-AlGaN/GaN Schottky diode is capable of producing GaN band-edge ultraviolet emission at 3.4 eV at a small forward bias larger than ∼2 V at room temperature. Based on the surface states distribution of AlGaN, a mature impact-ionization-induced Fermi-level de-pinning model is proposed to explain the underlying mechanism of the electroluminescence (EL) process. By experimenting with different Schottky metals, Ni/Au and Pt/Au, we demonstrated that this EL phenomenon is a “universal” property of metal-AlGaN/GaN Schottky diodes. Since this light-emitting Schottky diode shares the same active structure and fabrication processes as the AlGaN/GaN high electron mobility transistors, straight-forward andmore » seamless integration of photonic and electronic functional devices has been demonstrated on doping-free III-nitride heterostructures. Using a semitransparent Schottky drain electrode, an AlGaN/GaN high electron mobility light-emitting transistor is demonstrated.« less

  4. Surface morphology of Al0.3Ga0.7N/Al2O3-high electron mobility transistor structure.

    PubMed

    Cörekçi, S; Usanmaz, D; Tekeli, Z; Cakmak, M; Ozçelik, S; Ozbay, E

    2008-02-01

    We present surface properties of buffer films (AIN and GaN) and Al0.3Gao.zN/Al2O3-High Electron Mobility Transistor (HEMT) structures with/without AIN interlayer grown on High Temperature (HT)-AIN buffer/Al2O3 substrate and Al2O3 substrate. We have found that the GaN surface morphology is step-flow in character and the density of dislocations was about 10(8)-10(9) cm(-2). The AFM measurements also exhibited that the presence of atomic steps with large lateral step dimension and the surface of samples was smooth. The lateral step sizes are in the range of 100-250 nm. The typical rms values of HEMT structures were found as 0.27, 0.30, and 0.70 nm. HT-AIN buffer layer can have a significant impact on the surface morphology of Al0.3Ga0.7N/Al2O3-HEMT structures.

  5. Reduced mobility and PPC in In(.20)Ga(.80)As / Al(.23)Ga(.77)As HEMT structure

    NASA Technical Reports Server (NTRS)

    Schacham, S. E.; Mena, Rafael A.; Haugland, Edward J.; Alterovitz, Samuel A.

    1992-01-01

    Transport properties of a pseudomorphic In(.20)Ga(.80)As/Al(.23)Ga(.77)As High Electron Mobility Transistor (HEMT) structure were measured by Hall and SdH techniques. Two samples of identical structures but with different doping levels were compared. Low temperature mobility measurements as a function of concentration coincides with the onset of second subband occupancy, indicating that the decrease in mobility is due to intersubband scattering. In spite of the low Al content (23 percent), large persistent photoconductivity (PPC) was observed in the highly doped sample only, showing a direct correlation between the PPC and doping concentration of the barrier layer.

  6. SnO2-gated AlGaN/GaN high electron mobility transistors based oxygen sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, S.T.; Chung, Chi-Jung; Chen, Chin Ching

    2012-01-01

    Hydrothermally grown SnO2 was integrated with AlGaN/GaN high electron mobility transistor (HEMT) sensor as the gate electrode for oxygen detection. The crystalline of the SnO2 was improved after annealing at 400 C. The grain growth kinetics of the SnO2 nanomaterials, together with the O2 gas sensing properties and sensing mechanism of the SnO2 gated HEMT sensors were investigated. Detection of 1% oxygen in nitrogen at 100 C was possible. A low operation temperature and low power consumption oxygen sensor can be achieved by combining the SnO2 films with the AlGaN/GaN HEMT structure

  7. Nanocrystalline ZnON; High mobility and low band gap semiconductor material for high performance switch transistor and image sensor application

    PubMed Central

    Lee, Eunha; Benayad, Anass; Shin, Taeho; Lee, HyungIk; Ko, Dong-Su; Kim, Tae Sang; Son, Kyoung Seok; Ryu, Myungkwan; Jeon, Sanghun; Park, Gyeong-Su

    2014-01-01

    Interest in oxide semiconductors stems from benefits, primarily their ease of process, relatively high mobility (0.3–10 cm2/vs), and wide-bandgap. However, for practical future electronic devices, the channel mobility should be further increased over 50 cm2/vs and wide-bandgap is not suitable for photo/image sensor applications. The incorporation of nitrogen into ZnO semiconductor can be tailored to increase channel mobility, enhance the optical absorption for whole visible light and form uniform micro-structure, satisfying the desirable attributes essential for high performance transistor and visible light photo-sensors on large area platform. Here, we present electronic, optical and microstructural properties of ZnON, a composite of Zn3N2 and ZnO. Well-optimized ZnON material presents high mobility exceeding 100 cm2V−1s−1, the band-gap of 1.3 eV and nanocrystalline structure with multiphase. We found that mobility, microstructure, electronic structure, band-gap and trap properties of ZnON are varied with nitrogen concentration in ZnO. Accordingly, the performance of ZnON-based device can be adjustable to meet the requisite of both switch device and image-sensor potentials. These results demonstrate how device and material attributes of ZnON can be optimized for new device strategies in display technology and we expect the ZnON will be applicable to a wide range of imaging/display devices. PMID:24824778

  8. Effects of channel thickness on oxide thin film transistor with double-stacked channel layer

    NASA Astrophysics Data System (ADS)

    Lee, Kimoon; Kim, Yong-Hoon; Yoon, Sung-Min; Kim, Jiwan; Oh, Min Suk

    2017-11-01

    To improve the field effect mobility and control the threshold voltage ( V th ) of oxide thin film transistors (TFTs), we fabricated the oxide TFTs with double-stacked channel layers which consist of thick Zn-Sn-O (ZTO) and very thin In-Zn-O (IZO) layers. We investigated the effects of the thickness of thin conductive layer and the conductivity of thick layer on oxide TFTs with doublestacked channel layer. When we changed the thickness of thin conductive IZO channel layer, the resistivity values were changed. This resistivity of thin channel layer affected on the saturation field effect mobility and the off current of TFTs. In case of the thick ZTO channel layer which was deposited by sputtering in Ar: O2 = 10: 1, the device showed better performances than that which was deposited in Ar: O2 = 1: 1. Our TFTs showed high mobility ( μ FE ) of 40.7 cm2/Vs and V th of 4.3 V. We assumed that high mobility and the controlled V th were caused by thin conductive IZO layer and thick stable ZTO layer. Therefore, this double-stacked channel structure can be very promising way to improve the electrical characteristics of various oxide thin film transistors.

  9. T-gate geometric (solution for submicrometer gate length) HEMT: Physical analysis, modeling and implementation as parasitic elements and its usage as dual gate for variable gain amplifiers

    NASA Astrophysics Data System (ADS)

    Gupta, Ritesh; Rathi, Servin; Kaur, Ravneet; Gupta, Mridula; Gupta, R. S.

    2009-03-01

    In order to achieve superior RF performance, short gate length is required for the compound semiconductor field effect transistors, but the limitation in lithography for submicrometer gate lengths leads to the formation of various metal-insulator geometries like T-gate [Sandeep R. Bahl, Jesus A. del Alamo, Physics of breakdown in InAlAs/ n +-InGaAs heterostructure field-effect transistors, IEEE Trans. Electron Devices 41 (12) (1994) 2268-2275]. These geometries are the combination of various Metal-Semiconductor (MS)/Metal-Air-Semiconductor (MAS) contacts. Moreover, field plates [S. Karmalkar, M.S. Shur, G. Simin, M. Asif Khan, Field-plate engineering for HFETs, IEEE Trans. Electron Devices 52 (2005) 2534-2540] are also being fabricated these days, mainly at the drain end ( Γ-gate) having Metal-Insulator-Semiconductor (MIS) instead of MAS contact with the intention of increasing the breakdown voltage of the device. To realize the effect of upper gate electrode in the T-gate structure and field plates, an analytical model has been proposed in the present article by dividing the whole structure into MS/MIS contact regions, applying current continuity among them and solving iteratively. The model proposed for Metal-Insulator Semiconductor High Electron Mobility Transistor (MISHEMT) [R. Gupta, S.K. Aggarwal, M. Gupta, R.S. Gupta, Analytical model for metal insulator semiconductor high electron mobility transistor (MISHEMT) for its high frequency and high power applications, J. Semicond. Technol. Sci. 6 (3) (2006) 189-198], is equally applicable to High Electron Mobility Transistors (HEMT) and has been used to formulate this model. In this paper, various structures and geometries have been compared to anticipate the need of T-gate modeling. The effect of MIS contacts has been implemented as parasitic resistance and capacitance and has also been studied to control the middle conventional gate as in dual gate technology by applying separate voltages across it. The results obtained using the proposed analytical scheme has been compared with simulated and experimental results, to prove the validity of our model.

  10. Analysis of Proton Radiation Effects on Gallium Nitride High Electron Mobility Transistors

    DTIC Science & Technology

    2017-03-01

    energy levels on a GaN-on-silicon high electron mobility transistor was created. Based on physical results of 2.0-MeV protons irradiation to fluence...and the physical device at 2.0-MeV proton irradiation , predictions were made for 5.0, 10.0, 20.0 and 40.0-MeV proton irradiation . The model generally...nitride, high electron mobility transistor, electronics, 2 MeV proton irradiation , radiation effects 15. NUMBER OF PAGES 87 16. PRICE CODE 17. SECURITY

  11. Significance of the gate voltage-dependent mobility in the electrical characterization of organic field effect transistors

    NASA Astrophysics Data System (ADS)

    Kim, Jong Beom; Lee, Dong Ryeol

    2018-04-01

    We studied the effect of the addition of free hole- and electron-rich organic molecules to organic semiconductors (OSCs) in organic field effect transistors (OFETs) on the gate voltage-dependent mobility. The drain current versus gate voltage characteristics were quantitatively analyzed using an OFET mobility model of power law behavior based on hopping transport in an OSC. This analysis distinguished the threshold voltage shifts, depending on the materials and structures of the OFET device, and properly estimated the hopping transport of the charge carriers induced by the gate bias within the OSC from the power law exponent parameter. The addition of pentacene or C60 molecules to a one-monolayer pentacene-based OFET shifted the threshold voltages negatively or positively, respectively, due to the structural changes that occurred in the OFET device. On the other hand, the power law parameters revealed that the addition of charge carriers of the same or opposite polarity enhanced or hindered hopping transport, respectively. This study revealed the need for a quantitative analysis of the gate voltage-dependent mobility while distinguishing this effect from the threshold voltage effect in order to understand OSC hopping transport in OFETs.

  12. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Vacuum relaxation and annealing-induced enhancement of mobility of regioregular poly (3-hexylthiophene) field-effect transistors

    NASA Astrophysics Data System (ADS)

    Tian, Xue-Yan; Xu, Zheng; Zhao, Su-Ling; Zhang, Fu-Jun; Xu, Xu-Rong; Yuan, Guang-Cai; Li, Jing; Sun, Qin-Jun; Wang, Ying

    2009-11-01

    In order to enhance the performance of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs), RR-P3HT FETs are prepared by the spin-coating method followed by vacuum placement and annealing. This paper reports that the crystal structure, the molecule interconnection, the surface morphology, and the charge carrier mobility of RR-P3HT films are affected by vacuum relaxation and annealing. The results reveal that the field-effect mobility of RR-P3HT FETs can reach 4.17 × 10-2 m2/(V · s) by vacuum relaxation at room temperature due to an enhanced local self-organization. Furthermore, it reports that an appropriate annealing temperature can facilitate the crystal structure, the orientation and the interconnection of polymer molecules. These results show that the field-effect mobility of device annealed at 150 °C for 10 minutes in vacuum at atmosphere and followed by placement for 20 hours in vacuum at room temperature is enhanced dramatically to 9.00 × 10-2 cm2/(V · s).

  13. Thickness-dependent electron mobility of single and few-layer MoS{sub 2} thin-film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji Heon; Kim, Tae Ho; Lee, Hyunjea

    We investigated the dependence of electron mobility on the thickness of MoS{sub 2} nanosheets by fabricating bottom-gate single and few-layer MoS{sub 2} thin-film transistors with SiO{sub 2} gate dielectrics and Au electrodes. All the fabricated MoS{sub 2} transistors showed on/off-current ratio of ∼10{sup 7} and saturated output characteristics without high-k capping layers. As the MoS{sub 2} thickness increased from 1 to 6 layers, the field-effect mobility of the fabricated MoS{sub 2} transistors increased from ∼10 to ∼18 cm{sup 2}V{sup −1}s{sup −1}. The increased subthreshold swing of the fabricated transistors with MoS{sub 2} thickness suggests that the increase of MoS{sub 2}more » mobility with thickness may be related to the dependence of the contact resistance and the dielectric constant of MoS{sub 2} layer on its thickness.« less

  14. Calculation of the electron wave function in a graded-channel double-heterojunction modulation-doped field-effect transistor

    NASA Technical Reports Server (NTRS)

    Mui, D. S. L.; Patil, M. B.; Morkoc, H.

    1989-01-01

    Three double-heterojunction modulation-doped field-effect transistor structures with different channel composition are investigated theoretically. All of these transistors have an In(x)Ga(1-x)As channel sandwiched between two doped Al(0.3)Ga(0.7)As barriers with undoped spacer layers. In one of the structures, x varies from 0 from either heterojunction to 0.15 at the center of the channel quadratically; in the other two, constant values of x of 0 and 0.15 are used. The Poisson and Schroedinger equations are solved self-consistently for the electron wave function in all three cases. The results showed that the two-dimensional electron gas (2DEG) concentration in the channel of the quadratically graded structure is higher than the x = 0 one and slightly lower than the x = 0.15 one, and the mean distance of the 2DEG is closer to the center of the channel for this transistor than the other two. These two effects have important implications on the electron mobility in the channel.

  15. High-frequency self-aligned graphene transistors with transferred gate stacks.

    PubMed

    Cheng, Rui; Bai, Jingwei; Liao, Lei; Zhou, Hailong; Chen, Yu; Liu, Lixin; Lin, Yung-Chen; Jiang, Shan; Huang, Yu; Duan, Xiangfeng

    2012-07-17

    Graphene has attracted enormous attention for radio-frequency transistor applications because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. Herein we report a new approach for the scalable fabrication of high-performance graphene transistors with transferred gate stacks. Specifically, arrays of gate stacks are first patterned on a sacrificial substrate, and then transferred onto arbitrary substrates with graphene on top. A self-aligned process, enabled by the unique structure of the transferred gate stacks, is then used to position precisely the source and drain electrodes with minimized access resistance or parasitic capacitance. This process has therefore enabled scalable fabrication of self-aligned graphene transistors with unprecedented performance including a record-high cutoff frequency up to 427 GHz. Our study defines a unique pathway to large-scale fabrication of high-performance graphene transistors, and holds significant potential for future application of graphene-based devices in ultra-high-frequency circuits.

  16. Transport Mechanisms in Organic Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Fung, A. W. P.

    1996-03-01

    Recent success in fabricating field-effect transistors with polycrystalline α-sexithiophene (α-6T) has allowed us to study charge transport in this organic semiconductor. The appealing structural property that the oligomer chains are seated almost perpendicular to the substrate provides a model π-conjugated system which we find exhibits band transport at low temperatures. We observe a behavioral transition around 50K which is consistent with the metal-insulator transition in Holstein's small-polaron theory. The fact that we can observe intrinsic behavior means that the ambient-temperature mobility obtained in these transistors is optimal for α-6T. Agreement with the Holstein theory provides us with a prescription for rational design of materials for organic transistor applications. Work done in collaboration with L. Torsi, A. Dodabalapur, L. J. Rothberg and H. E. Katz.

  17. Resonant tunneling assisted propagation and amplification of plasmons in high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, Shubhendu; Sensale-Rodriguez, Berardi; Xing, Huili Grace

    A rigorous theoretical and computational model is developed for the plasma-wave propagation in high electron mobility transistor structures with electron injection from a resonant tunneling diode at the gate. We discuss the conditions in which low-loss and sustainable plasmon modes can be supported in such structures. The developed analytical model is used to derive the dispersion relation for these plasmon-modes. A non-linear full-wave-hydrodynamic numerical solver is also developed using a finite difference time domain algorithm. The developed analytical solutions are validated via the numerical solution. We also verify previous observations that were based on a simplified transmission line model. Itmore » is shown that at high levels of negative differential conductance, plasmon amplification is indeed possible. The proposed rigorous models can enable accurate design and optimization of practical resonant tunnel diode-based plasma-wave devices for terahertz sources, mixers, and detectors, by allowing a precise representation of their coupling when integrated with other electromagnetic structures.« less

  18. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Wei; Han, Shijiao; Huang, Wei

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role inmore » enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.« less

  19. AlGaN/GaN high electron mobility transistor grown on GaN template substrate by molecule beam epitaxy system

    NASA Astrophysics Data System (ADS)

    Tsai, Jenn-Kai; Chen, Y. L.; Gau, M. H.; Pang, W. Y.; Hsu, Y. C.; Lo, Ikai; Hsieh, C. H.

    2008-03-01

    In this study, AlGaN/GaN high electron mobility transistor (HEMT) structure was grow on GaN template substrate radio frequency plasma assisted molecular beam epitaxy (MBE) equipped with an EPI UNI-Bulb nitrogen plasma source. The undoped GaN template substrate was grown on c-sapphire substrate by metal organic vapor phase epitaxy system (MOPVD). After growth of MOVPE and MBE, the samples are characterized by double crystal X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (SEM), atomic force microscopy (AFM), and Hall effect measurements. We found that the RMS roughness of template substrate play the major role in got the high value of mobility on AlGaN/GaN HEMT. When the roughness was lower than 0.77 nm in a 25 μm x 25 μm area, the mobility of HEMT at the temperature of 77 K was over 10000 cm^2/Vs.

  20. Noise characteristics of single-walled carbon nanotube network transistors.

    PubMed

    Kim, Un Jeong; Kim, Kang Hyun; Kim, Kyu Tae; Min, Yo-Sep; Park, Wanjun

    2008-07-16

    The noise characteristics of randomly networked single-walled carbon nanotubes grown directly by plasma enhanced chemical vapor deposition (PECVD) are studied with field effect transistors (FETs). Due to the geometrical complexity of nanotube networks in the channel area and the large number of tube-tube/tube-metal junctions, the inverse frequency, 1/f, dependence of the noise shows a similar level to that of a single single-walled carbon nanotube transistor. Detailed analysis is performed with the parameters of number of mobile carriers and mobility in the different environment. This shows that the change in the number of mobile carriers resulting in the mobility change due to adsorption and desorption of gas molecules (mostly oxygen molecules) to the tube surface is a key factor in the 1/f noise level for carbon nanotube network transistors.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanheusden, K.; Warren, W.L.; Devine, R.A.B.

    It is shown how mobile H{sup +} ions can be generated thermally inside the oxide layer of Si/SiO{sub 2}/Si structures. The technique involves only standard silicon processing steps: the nonvolatile field effect transistor (NVFET) is based on a standard MOSFET with thermally grown SiO{sub 2} capped with a poly-silicon layer. The capped thermal oxide receives an anneal at {approximately}1100 C that enables the incorporation of the mobile protons into the gate oxide. The introduction of the protons is achieved by a subsequent 500-800 C anneal in a hydrogen-containing ambient, such as forming gas (N{sub 2}:H{sub 2} 95:5). The mobile protonsmore » are stable and entrapped inside the oxide layer, and unlike alkali ions, their space-charge distribution can be controlled and rapidly rearranged at room temperature by an applied electric field. Using this principle, a standard MOS transistor can be converted into a nonvolatile memory transistor that can be switched between normally on and normally off. Switching speed, retention, endurance, and radiation tolerance data are presented showing that this non-volatile memory technology can be competitive with existing Si-based non-volatile memory technologies such as the floating gate technologies (e.g. Flash memory).« less

  2. Numerical simulation of offset-drain amorphous oxide-based thin-film transistors

    NASA Astrophysics Data System (ADS)

    Jeong, Jaewook

    2016-11-01

    In this study, we analyzed the electrical characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with an offset-drain structure by technology computer aided design (TCAD) simulation. When operating in a linear region, an enhancement-type TFT shows poor field-effect mobility because most conduction electrons are trapped in acceptor-like defects in an offset region when the offset length (L off) exceeds 0.5 µm, whereas a depletion-type TFT shows superior field-effect mobility owing to the high free electron density in the offset region compared with the trapped electron density. When operating in the saturation region, both types of TFTs show good field-effect mobility comparable to that of a reference TFT with a large gate overlap. The underlying physics of the depletion and enhancement types of offset-drain TFTs are systematically analyzed.

  3. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrownmore » n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.« less

  4. Intrinsic delay of permeable base transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wenchao; Guo, Jing; So, Franky

    2014-07-28

    Permeable base transistors (PBTs) fabricated by vacuum deposition or solution process have the advantages of easy fabrication and low power operation and are a promising device structure for flexible electronics. Intrinsic delay of PBT, which characterizes the speed of the transistor, is investigated by solving the three-dimensional Poisson equation and drift-diffusion equation self-consistently using finite element method. Decreasing the emitter thickness lowers the intrinsic delay by improving on-current, and a thinner base is also preferred for low intrinsic delay because of fewer carriers in the base region at off-state. The intrinsic delay exponentially decreases as the emitter contact Schottky barriermore » height decreases, and it linearly depends on the carrier mobility. With an optimized emitter contact barrier height and device geometry, a sub-nano-second intrinsic delay can be achieved with a carrier mobility of ∼10 cm{sup 2}/V/s obtainable in solution processed indium gallium zinc oxide, which indicates the potential of solution processed PBTs for GHz operations.« less

  5. 25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon

    PubMed Central

    Sirringhaus, Henning

    2014-01-01

    Over the past 25 years, organic field-effect transistors (OFETs) have witnessed impressive improvements in materials performance by 3–4 orders of magnitude, and many of the key materials discoveries have been published in Advanced Materials. This includes some of the most recent demonstrations of organic field-effect transistors with performance that clearly exceeds that of benchmark amorphous silicon-based devices. In this article, state-of-the-art in OFETs are reviewed in light of requirements for demanding future applications, in particular active-matrix addressing for flexible organic light-emitting diode (OLED) displays. An overview is provided over both small molecule and conjugated polymer materials for which field-effect mobilities exceeding > 1 cm2 V–1 s–1 have been reported. Current understanding is also reviewed of their charge transport physics that allows reaching such unexpectedly high mobilities in these weakly van der Waals bonded and structurally comparatively disordered materials with a view towards understanding the potential for further improvement in performance in the future. PMID:24443057

  6. A stable solution-processed polymer semiconductor with record high-mobility for printed transistors

    PubMed Central

    Li, Jun; Zhao, Yan; Tan, Huei Shuan; Guo, Yunlong; Di, Chong-An; Yu, Gui; Liu, Yunqi; Lin, Ming; Lim, Suo Hon; Zhou, Yuhua; Su, Haibin; Ong, Beng S.

    2012-01-01

    Microelectronic circuits/arrays produced via high-speed printing instead of traditional photolithographic processes offer an appealing approach to creating the long-sought after, low-cost, large-area flexible electronics. Foremost among critical enablers to propel this paradigm shift in manufacturing is a stable, solution-processable, high-performance semiconductor for printing functionally capable thin-film transistors — fundamental building blocks of microelectronics. We report herein the processing and optimisation of solution-processable polymer semiconductors for thin-film transistors, demonstrating very high field-effect mobility, high on/off ratio, and excellent shelf-life and operating stabilities under ambient conditions. Exceptionally high-gain inverters and functional ring oscillator devices on flexible substrates have been demonstrated. This optimised polymer semiconductor represents a significant progress in semiconductor development, dispelling prevalent skepticism surrounding practical usability of organic semiconductors for high-performance microelectronic devices, opening up application opportunities hitherto functionally or economically inaccessible with silicon technologies, and providing an excellent structural framework for fundamental studies of charge transport in organic systems. PMID:23082244

  7. High Electron Mobility SiGe/Si Transistor Structures on Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Mueller, Carl H.; Croke, Edward T.; Ponchak, George E.

    2004-01-01

    SiGe/Si n-type modulation doped field effect structures and transistors (n-MODFETs) have been fabricated on r-plane sapphire substrates. The structures were deposited using molecular beam epitaxy, and antimony dopants were incorporated via a delta doping process. Secondary ion mass spectroscopy (SIMS) indicates that the peak antimony concentration was approximately 4 x 10(exp 19) per cubic centimeter. At these two temperatures, the electron carrier densities were 1.6 and 1.33 x 10(exp 12) per square centimeter, thus demonstrating that carrier confinement was excellent. Shubnikov-de Haas oscillations were observed at 0.25 K, thus confirming the two-dimensional nature of the carriers. Transistors, with gate lengths varying from 1 micron to 5 microns, were fabricated using these structures and dc characterization was performed at room temperature. The saturated drain current region extended over a wide source-to-drain voltage (V (sub DS)) range, with V (sub DS) knee voltages of approximately 0.5 V and increased leakage starting at voltages slightly higher than 4 V.

  8. Epitaxial Growth of Cubic Crystalline Semiconductor Alloys on Basal Plane of Trigonal or Hexagonal Crystal

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor)

    2011-01-01

    Hetero-epitaxial semiconductor materials comprising cubic crystalline semiconductor alloys grown on the basal plane of trigonal and hexagonal substrates, in which misfit dislocations are reduced by approximate lattice matching of the cubic crystal structure to underlying trigonal or hexagonal substrate structure, enabling the development of alloyed semiconductor layers of greater thickness, resulting in a new class of semiconductor materials and corresponding devices, including improved hetero-bipolar and high-electron mobility transistors, and high-mobility thermoelectric devices.

  9. Emission and detection of surface acoustic waves by AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Shao, Lei; Zhang, Meng; Banerjee, Animesh; Bhattacharya, Pallab; Pipe, Kevin P.

    2011-12-01

    Using integrated interdigital transducers (IDTs), we demonstrate the emission of surface acoustic waves (SAWs) by AlGaN/GaN high electron mobility transistors (HEMTs) under certain bias conditions through dynamic screening of the HEMTs vertical field by modulation of its two-dimensional electron gas. We show that a strong SAW signal can be detected if the IDT geometry replicates the HEMT electrode geometry at which RF bias is applied. In addition to characterizing SAW emission during both gate-source and drain-source modulation, we demonstrate SAW detection by HEMTs. Integrated HEMT-IDT structures could enable real-time evaluation of epitaxial degradation as well as high-speed, amplified detection of SAWs.

  10. Modeling of high composition AlGaN channel high electron mobility transistors with large threshold voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajaj, Sanyam, E-mail: bajaj.10@osu.edu; Hung, Ting-Hsiang; Akyol, Fatih

    2014-12-29

    We report on the potential of high electron mobility transistors (HEMTs) consisting of high composition AlGaN channel and barrier layers for power switching applications. Detailed two-dimensional (2D) simulations show that threshold voltages in excess of 3 V can be achieved through the use of AlGaN channel layers. We also calculate the 2D electron gas mobility in AlGaN channel HEMTs and evaluate their power figures of merit as a function of device operating temperature and Al mole fraction in the channel. Our models show that power switching transistors with AlGaN channels would have comparable on-resistance to GaN-channel based transistors for the samemore » operation voltage. The modeling in this paper shows the potential of high composition AlGaN as a channel material for future high threshold enhancement mode transistors.« less

  11. 77 FR 3386 - Export and Reexport License Requirements for Certain Microwave and Millimeter Wave Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... electronic components. The two components are packaged high electron mobility transistors and packaged..., 2012, FR Doc. 2012- 135). The two components are packaged high electron mobility transistors (HEMT) and...

  12. Molecular gated-AlGaN/GaN high electron mobility transistor for pH detection.

    PubMed

    Ding, Xiangzhen; Yang, Shuai; Miao, Bin; Gu, Le; Gu, Zhiqi; Zhang, Jian; Wu, Baojun; Wang, Hong; Wu, Dongmin; Li, Jiadong

    2018-04-18

    A molecular gated-AlGaN/GaN high electron mobility transistor has been developed for pH detection. The sensing surface of the sensor was modified with 3-aminopropyltriethoxysilane to provide amphoteric amine groups, which would play the role of receptors for pH detection. On modification with 3-aminopropyltriethoxysilane, the transistor exhibits good chemical stability in hydrochloric acid solution and is sensitive for pH detection. Thus, our molecular gated-AlGaN/GaN high electron mobility transistor acheived good electrical performances such as chemical stability (remained stable in hydrochloric acid solution), good sensitivity (37.17 μA/pH) and low hysteresis. The results indicate a promising future for high-quality sensors for pH detection.

  13. High Stability Pentacene Transistors Using Polymeric Dielectric Surface Modifier.

    PubMed

    Wang, Xiaohong; Lin, Guangqing; Li, Peng; Lv, Guoqiang; Qiu, Longzhen; Ding, Yunsheng

    2015-08-01

    1,6-bis(trichlorosilyl)hexane (C6Cl), polystyrene (PS), and cross-linked polystyrene (CPS) were investigated as gate dielectric modified layers for high performance organic transistors. The influence of the surface energy, roughness and morphology on the charge transport of the organic thin-film transistors (OTFTs) was investigated. The surface energy and roughness both affect the grain size of the pentacene films which will control the charge carrier mobility of the devices. Pentacene thin-film transistors fabricated on the CPS modified dielectric layers exhibited charge carrier mobility as high as 1.11 cm2 V-1 s-1. The bias stress stability for the CPS devices shows that the drain current only decays 1% after 1530 s and the mobility never decreases until 13530 s.

  14. Chemical Vapor-Deposited Hexagonal Boron Nitride as a Scalable Template for High-Performance Organic Field-Effect Transistors

    DOE PAGES

    Lee, Tae Hoon; Kim, Kwanpyo; Kim, Gwangwoo; ...

    2017-02-27

    Organic field-effect transistors have attracted much attention because of their potential use in low-cost, large-area, flexible electronics. High-performance organic transistors require a low density of grain boundaries in their organic films and a decrease in the charge trap density at the semiconductor–dielectric interface for efficient charge transport. In this respect, the role of the dielectric material is crucial because it primarily determines the growth of the film and the interfacial trap density. Here, we demonstrate the use of chemical vapor-deposited hexagonal boron nitride (CVD h-BN) as a scalable growth template/dielectric for high-performance organic field-effect transistors. The field-effect transistors based onmore » C60 films grown on single-layer CVD h-BN exhibit an average mobility of 1.7 cm 2 V –1 s –1 and a maximal mobility of 2.9 cm 2 V –1 s –1 with on/off ratios of 10 7. The structural and morphology analysis shows that the epitaxial, two-dimensional growth of C 60 on CVD h-BN is mainly responsible for the superior charge transport behavior. In conclusion, we believe that CVD h-BN can serve as a growth template for various organic semiconductors, allowing the development of large-area, high-performance flexible electronics.« less

  15. Chemical Vapor-Deposited Hexagonal Boron Nitride as a Scalable Template for High-Performance Organic Field-Effect Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Tae Hoon; Kim, Kwanpyo; Kim, Gwangwoo

    Organic field-effect transistors have attracted much attention because of their potential use in low-cost, large-area, flexible electronics. High-performance organic transistors require a low density of grain boundaries in their organic films and a decrease in the charge trap density at the semiconductor–dielectric interface for efficient charge transport. In this respect, the role of the dielectric material is crucial because it primarily determines the growth of the film and the interfacial trap density. Here, we demonstrate the use of chemical vapor-deposited hexagonal boron nitride (CVD h-BN) as a scalable growth template/dielectric for high-performance organic field-effect transistors. The field-effect transistors based onmore » C60 films grown on single-layer CVD h-BN exhibit an average mobility of 1.7 cm 2 V –1 s –1 and a maximal mobility of 2.9 cm 2 V –1 s –1 with on/off ratios of 10 7. The structural and morphology analysis shows that the epitaxial, two-dimensional growth of C 60 on CVD h-BN is mainly responsible for the superior charge transport behavior. In conclusion, we believe that CVD h-BN can serve as a growth template for various organic semiconductors, allowing the development of large-area, high-performance flexible electronics.« less

  16. Charge transport and trapping in organic field effect transistors exposed to polar analytes

    NASA Astrophysics Data System (ADS)

    Duarte, Davianne; Sharma, Deepak; Cobb, Brian; Dodabalapur, Ananth

    2011-03-01

    Pentacene based organic thin-film transistors were used to study the effects of polar analytes on charge transport and trapping behavior during vapor sensing. Three sets of devices with differing morphology and mobility (0.001-0.5 cm2/V s) were employed. All devices show enhanced trapping upon exposure to analyte molecules. The organic field effect transistors with different mobilities also provide evidence for morphology dependent partition coefficients. This study helps provide a physical basis for many reports on organic transistor based sensor response.

  17. High-mobility pyrene-based semiconductor for organic thin-film transistors.

    PubMed

    Cho, Hyunduck; Lee, Sunyoung; Cho, Nam Sung; Jabbour, Ghassan E; Kwak, Jeonghun; Hwang, Do-Hoon; Lee, Changhee

    2013-05-01

    Numerous conjugated oligoacenes and polythiophenes are being heavily studied in the search for high-mobility organic semiconductors. Although many researchers have designed fused aromatic compounds as organic semiconductors for organic thin-film transistors (OTFTs), pyrene-based organic semiconductors with high mobilities and on-off current ratios have not yet been reported. Here, we introduce a new pyrene-based p-type organic semiconductor showing liquid crystal behavior. The thin film characteristics of this material are investigated by varying the substrate temperature during the deposition and the gate dielectric condition using the surface modification with a self-assembled monolayer, and systematically studied in correlation with the performances of transistor devices with this compound. OTFT fabricated under the optimum deposition conditions of this compound, namely, 1,6-bis(5'-octyl-2,2'-bithiophen-5-yl)pyrene (BOBTP) shows a high-performance transistor behavior with a field-effect mobility of 2.1 cm(2) V(-1) s(-1) and an on-off current ratio of 7.6 × 10(6) and enhanced long-term stability compared to the pentacene thin-film transistor.

  18. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator.

    PubMed

    Zhu, Weinan; Yogeesh, Maruthi N; Yang, Shixuan; Aldave, Sandra H; Kim, Joon-Seok; Sonde, Sushant; Tao, Li; Lu, Nanshu; Akinwande, Deji

    2015-03-11

    High-mobility two-dimensional (2D) semiconductors are desirable for high-performance mechanically flexible nanoelectronics. In this work, we report the first flexible black phosphorus (BP) field-effect transistors (FETs) with electron and hole mobilities superior to what has been previously achieved with other more studied flexible layered semiconducting transistors such as MoS2 and WSe2. Encapsulated bottom-gated BP ambipolar FETs on flexible polyimide afforded maximum carrier mobility of about 310 cm(2)/V·s with field-effect current modulation exceeding 3 orders of magnitude. The device ambipolar functionality and high-mobility were employed to realize essential circuits of electronic systems for flexible technology including ambipolar digital inverter, frequency doubler, and analog amplifiers featuring voltage gain higher than other reported layered semiconductor flexible amplifiers. In addition, we demonstrate the first flexible BP amplitude-modulated (AM) demodulator, an active stage useful for radio receivers, based on a single ambipolar BP transistor, which results in audible signals when connected to a loudspeaker or earphone. Moreover, the BP transistors feature mechanical robustness up to 2% uniaxial tensile strain and up to 5000 bending cycles.

  19. Photocurrent spectroscopy of pentacene thin film transistors

    NASA Astrophysics Data System (ADS)

    Breban, Mihaela

    We demonstrate the application of photocurrent modulation spectroscopy in characterizing the performance of organic thin-film transistors. A parallel analysis of the direct current and photocurrent voltage characteristics provides a model free determination of the field-effect mobility and the density of free carriers in the transistor channel as a function of the applied gate voltage. Applying this technique to pentacene thin-film transistors demonstrates that the mobility increases as V1/3g . The free-carrier density is approximately 1/10 of the expected capacitive charge, and the mobility increases monotonically with the free carrier density, consistent with the trap and release model of transport. Also, the modulated photocurrent spectroscopy can be used as a probe of defect states in pentacene thin film transistors, measuring simultaneously the magnitude and the phase of the photocurrent as a function of the modulation frequency. This is accomplished by modeling the photo-carrier generation process as exciton dissociation via interaction with localized traps. Experimental data reveal a Gaussian distribution of localized states centered around 0.3 eV above the highest occupied molecular orbital. We also investigated the effect of the gate dielectric material with our probe and found that the position of the extracted Gaussian slightly shifts, consistent with the expected image charge effect for Pn through the dielectric substrate. Also shifts in the Gaussian position for samples fabricated with variable deposition conditions are correlated with changes in Pn morphology. The morphological differences between Pn films were also detected in current-voltage characteristics and photocurrent spectra. However, the origin of the ubiquitous 0.3 eV defect in Pn seems to be unrelated to structural differences in Pn films.

  20. Experimental evidence of mobility enhancement in short-channel ultra-thin body double-gate MOSFETs by magnetoresistance technique

    NASA Astrophysics Data System (ADS)

    Chaisantikulwat, W.; Mouis, M.; Ghibaudo, G.; Cristoloveanu, S.; Widiez, J.; Vinet, M.; Deleonibus, S.

    2007-11-01

    Double-gate transistor with ultra-thin body (UTB) has proved to offer advantages over bulk device for high-speed, low-power applications. There is thus a strong need to obtain an accurate understanding of carrier transport and mobility in such device. In this work, we report for the first time an experimental evidence of mobility enhancement in UTB double-gate (DG) MOSFETs using magnetoresistance mobility extraction technique. Mobility in planar DG transistor operating in single- and double-gate mode is compared. The influence of different scattering mechanisms in the channel is also investigated by obtaining mobility values at low temperatures. The results show a clear mobility improvement in double-gate mode compared to single-gate mode mobility at the same inversion charge density. This is explained by the role of volume inversion in ultra-thin body transistor operating in DG mode. Volume inversion is found to be especially beneficial in terms of mobility gain at low-inversion densities.

  1. Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations.

    PubMed

    Lee, H-P; Perozek, J; Rosario, L D; Bayram, C

    2016-11-21

    AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {Al x Ga 1-x N}/AlN, (b) Thin-GaN/3 × {Al x Ga 1-x N}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm 2 /V∙s) and 2DEG carrier concentration (>1.0 × 10 13  cm -2 ) on Si(111) substrates.

  2. Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations

    PubMed Central

    Lee, H.-P.; Perozek, J.; Rosario, L. D.; Bayram, C.

    2016-01-01

    AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {AlxGa1−xN}/AlN, (b) Thin-GaN/3 × {AlxGa1−xN}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm2/V∙s) and 2DEG carrier concentration (>1.0 × 1013 cm−2) on Si(111) substrates. PMID:27869222

  3. Effects of self-assembled monolayer structural order, surface homogeneity and surface energy on pentacene morphology and thin film transistor device performance.

    PubMed

    Hutchins, Daniel Orrin; Weidner, Tobias; Baio, Joe; Polishak, Brent; Acton, Orb; Cernetic, Nathan; Ma, Hong; Jen, Alex K-Y

    2013-01-04

    A systematic study of six phosphonic acid (PA) self-assembled monolayers (SAMs) with tailored molecular structures is performed to evaluate their effectiveness as dielectric modifying layers in organic field-effect transistors (OFETs) and determine the relationship between SAM structural order, surface homogeneity, and surface energy in dictating device performance. SAM structures and surface properties are examined by near edge X-ray absorption fine structure (NEXAFS) spectroscopy, contact angle goniometry, and atomic force microscopy (AFM). Top-contact pentacene OFET devices are fabricated on SAM modified Si with a thermally grown oxide layer as a dielectric. For less ordered methyl- and phenyl-terminated alkyl ~(CH 2 ) 12 PA SAMs of varying surface energies, pentacene OFETs show high charge carrier mobilities up to 4.1 cm 2 V -1 s -1 . It is hypothesized that for these SAMs, mitigation of molecular scale roughness and subsequent control of surface homogeneity allow for large pentacene grain growth leading to high performance pentacene OFET devices. PA SAMs that contain bulky terminal groups or are highly crystalline in nature do not allow for a homogenous surface at a molecular level and result in charge carrier mobilities of 1.3 cm 2 V -1 s -1 or less. For all molecules used in this study, no causal relationship between SAM surface energy and charge carrier mobility in pentacene FET devices is observed.

  4. Effects of self-assembled monolayer structural order, surface homogeneity and surface energy on pentacene morphology and thin film transistor device performance

    PubMed Central

    Hutchins, Daniel Orrin; Weidner, Tobias; Baio, Joe; Polishak, Brent; Acton, Orb; Cernetic, Nathan; Ma, Hong; Jen, Alex K.-Y.

    2013-01-01

    A systematic study of six phosphonic acid (PA) self-assembled monolayers (SAMs) with tailored molecular structures is performed to evaluate their effectiveness as dielectric modifying layers in organic field-effect transistors (OFETs) and determine the relationship between SAM structural order, surface homogeneity, and surface energy in dictating device performance. SAM structures and surface properties are examined by near edge X-ray absorption fine structure (NEXAFS) spectroscopy, contact angle goniometry, and atomic force microscopy (AFM). Top-contact pentacene OFET devices are fabricated on SAM modified Si with a thermally grown oxide layer as a dielectric. For less ordered methyl- and phenyl-terminated alkyl ~(CH2)12 PA SAMs of varying surface energies, pentacene OFETs show high charge carrier mobilities up to 4.1 cm2 V−1 s−1. It is hypothesized that for these SAMs, mitigation of molecular scale roughness and subsequent control of surface homogeneity allow for large pentacene grain growth leading to high performance pentacene OFET devices. PA SAMs that contain bulky terminal groups or are highly crystalline in nature do not allow for a homogenous surface at a molecular level and result in charge carrier mobilities of 1.3 cm2 V−1 s−1 or less. For all molecules used in this study, no causal relationship between SAM surface energy and charge carrier mobility in pentacene FET devices is observed. PMID:24086795

  5. An AlGaN/GaN high-electron-mobility transistor with an AlN sub-buffer layer

    NASA Astrophysics Data System (ADS)

    Shealy, J. R.; Kaper, V.; Tilak, V.; Prunty, T.; Smart, J. A.; Green, B.; Eastman, L. F.

    2002-04-01

    The AlGaN/GaN high-electron-mobility transistor requires a thermally conducting, semi-insulating substrate to achieve the best possible microwave performance. The semi-insulating SiC substrate is currently the best choice for this device technology; however, fringing fields which penetrate the GaN buffer layer at pinch-off introduce significant substrate conduction at modest drain bias if channel electrons are not well confined to the nitride structure. The addition of an insulating AlN sub-buffer on the semi-insulating SiC substrate suppresses this parasitic conduction, which results in dramatic improvements in the AlGaN/GaN transistor performance. A pronounced reduction in both the gate-lag and the gate-leakage current are observed for structures with the AlN sub-buffer layer. These structures operate up to 50 V drain bias under drive, corresponding to a peak voltage of 80 V, for a 0.30 µm gate length device. The devices have achieved high-efficiency operation at 10 GHz (>70% power-added efficiency in class AB mode at 15 V drain bias) and the highest output power density observed thus far (11.2 W mm-1). Large-periphery devices (1.5 mm gate width) deliver 10 W (continuous wave) of maximum saturated output power at 10 GHz. The growth, processing, and performance of these devices are briefly reviewed.

  6. High Electron Mobility in SiGe/Si n-MODFET Structures on Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; Croke, Edward T.; Alterovitz, Samuel A.

    2003-01-01

    For the first time, SiGe/Si n-Modulation Doped Field Effect Transistors (n-MODFET) structures have been grown on sapphire substrates. Room temperature electron mobility value of 1271 square centimeters N-sec at an electron carrier density (n(sub e) = 1.33x10(exp 12) per square centimeter)) of 1.6 x 10(exp 12) per square centimeter was obtained. At 250 mK, the mobility increases to 13,313 square centimeters/V-sec (n(sub e)=1.33x10(exp 12) per square centimeter)) and Shubnikov-de Haas oscillations appear, showing excellent confinement of the two-dimensional electron gas.

  7. High performance n-channel thin-film transistors with an amorphous phase C60 film on plastic substrate

    NASA Astrophysics Data System (ADS)

    Na, Jong H.; Kitamura, M.; Arakawa, Y.

    2007-11-01

    We fabricated high mobility, low voltage n-channel transistors on plastic substrates by combining an amorphous phase C60 film and a high dielectric constant gate insulator titanium silicon oxide (TiSiO2). The transistors exhibited high performance with a threshold voltage of 1.13V, an inverse subthreshold swing of 252mV/decade, and a field-effect mobility up to 1cm2/Vs at an operating voltage as low as 5V. The amorphous phase C60 films can be formed at room temperature, implying that this transistor is suitable for corresponding n-channel transistors in flexible organic logic devices.

  8. Temperature Dependence of Field-Effect Mobility in Organic Thin-Film Transistors: Similarity to Inorganic Transistors.

    PubMed

    Okada, Jun; Nagase, Takashi; Kobayashi, Takashi; Naito, Hiroyoshi

    2016-04-01

    Carrier transport in solution-processed organic thin-film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8-BTBT) has been investigated in a wide temperature range from 296 to 10 K. The field-effect mobility shows thermally activated behavior whose activation energy becomes smaller with decreasing temperature. The temperature dependence of field-effect mobility found in C8-BTBT is similar to that of others materials: organic semiconducting polymers, amorphous oxide semiconductors and hydrogenated amorphous silicon. These results indicate that hopping transport between isoenergetic localized states becomes dominated in a low temperature regime in these materials.

  9. Effects of Various Passivation Layers on Electrical Properties of Multilayer MoS₂ Transistors.

    PubMed

    Ma, Jiyeon; Yoo, Geonwook

    2018-09-01

    So far many of research on transition metal dichalcogenides (TMDCs) are based on a bottomgate device structure due to difficulty with depositing a dielectric film on top of TMDs channel layer. In this work, we study different effects of various passivation layers on electrical properties of multilayer MoS2 transistors: spin-coated CYTOP, SU-8, and thermal evaporated MoOX. The SU-8 passivation layer alters device performance least significantly, and MoOX induces positive threshold voltage shift of ~8.0 V due to charge depletion at the interface, and the device with CYTOP layer exhibits decreased field-effect mobility by ~50% due to electric dipole field effect of C-F bonds in the end groups. Our results imply that electrical properties of the multilayer MoS2 transistors can be modulated using a passivation layer, and therefore a proper passivation layer should be considered for MoS2 device structures.

  10. Transport properties of field-effect transistor with Langmuir-Blodgett films of C60 dendrimer and estimation of impurity levels

    NASA Astrophysics Data System (ADS)

    Kawasaki, Naoko; Nagano, Takayuki; Kubozono, Yoshihiro; Sako, Yuuki; Morimoto, Yu; Takaguchi, Yutaka; Fujiwara, Akihiko; Chu, Chih-Chien; Imae, Toyoko

    2007-12-01

    Field-effect transistor (FET) device has been fabricated with Langmuir-Blodgett films of C60 dendrimer. The device showed n-channel normally off characteristics with the field-effect mobility of 2.7×10-3cm2V-1s-1 at 300K, whose value is twice as high as that (1.4×10-3cm2V-1s-1) for the FET with spin-coated films of C60 dendrimer. This originates from the formation of ordered π-conduction network of C60 moieties. From the temperature dependence of field-effect mobility, a structural phase transition has been observed at around 300K. Furthermore, the density of states for impurity levels was estimated in the Langmuir-Blodgett films.

  11. Enhancement mode GaN-based multiple-submicron channel array gate-recessed fin metal-oxide-semiconductor high-electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Wang, Chun-Chi

    2018-04-01

    To study the function of channel width in multiple-submicron channel array, we fabricated the enhancement mode GaN-based gate-recessed fin metal-oxide-semiconductor high-electron mobility transistors (MOS-HEMTs) with a channel width of 450 nm and 195 nm, respectively. In view of the enhanced gate controllability in a narrower fin-channel structure, the transconductance was improved from 115 mS/mm to 151 mS/mm, the unit gain cutoff frequency was improved from 6.2 GHz to 6.8 GHz, and the maximum oscillation frequency was improved from 12.1 GHz to 13.1 GHz of the devices with a channel width of 195 nm, compared with the devices with a channel width of 450 nm.

  12. The effect of nitrous oxide plasma treatment on the bias temperature stress of metal oxide thin film transistors with high mobility

    NASA Astrophysics Data System (ADS)

    Tseng, Wei-Hao; Fang, Shao-Wei; Lu, Chia-Yang; Chuang, Hung-Yang; Chang, Fan-Wei; Lin, Guan-Yu; Chen, Tsu-Wei; Ma, Kang-Hung; Chen, Hong-Syu; Chen, Teng-Ke; Chen, Yu-Hung; Lee, Jen-Yu; Shih, Tsung-Hsiang; Ting, Hung-Che; Chen, Chia-Yu; Lin, Yu-Hsin; Hong, Hong-Jye

    2015-01-01

    In this work, the effects of nitrous oxide plasma treatment on the negative bias temperature stress of indium tin zinc oxide (ITZO) and indium gallium zinc oxide (IGZO) thin film transistors (TFTs) were reported. ITZO TFTs were more suitable for the back channel etched-type device structure because they could withstand both Al- and Cu-acid damage. The initial threshold voltage range could be controlled to within 1 V. The root cause of poor negative bias temperature stress for ITZO was likely due to a higher mobility (∼3.3 times) and more carbon related contamination bonds (∼5.9 times) relative to IGZO. Finally, 65″ active-matrix organic light-emitting diode televisions using the ITZO and IGZO TFTs were fabricated.

  13. High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure.

    PubMed

    Chen, Szu-Hung; Liao, Wen-Shiang; Yang, Hsin-Chia; Wang, Shea-Jue; Liaw, Yue-Gie; Wang, Hao; Gu, Haoshuang; Wang, Mu-Chun

    2012-08-01

    A three-dimensional (3D) fin-shaped field-effect transistor structure based on III-V metal-oxide-semiconductor field-effect transistor (MOSFET) fabrication has been demonstrated using a submicron GaAs fin as the high-mobility channel. The fin-shaped channel has a thickness-to-width ratio (TFin/WFin) equal to 1. The nano-stacked high-k Al2O3 dielectric was adopted as a gate insulator in forming a metal-oxide-semiconductor structure to suppress gate leakage. The 3D III-V MOSFET exhibits outstanding gate controllability and shows a high Ion/Ioff ratio > 105 and a low subthreshold swing of 80 mV/decade. Compared to a conventional Schottky gate metal-semiconductor field-effect transistor or planar III-V MOSFETs, the III-V MOSFET in this work exhibits a significant performance improvement and is promising for future development of high-performance n-channel devices based on III-V materials.

  14. High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure

    PubMed Central

    2012-01-01

    A three-dimensional (3D) fin-shaped field-effect transistor structure based on III-V metal-oxide-semiconductor field-effect transistor (MOSFET) fabrication has been demonstrated using a submicron GaAs fin as the high-mobility channel. The fin-shaped channel has a thickness-to-width ratio (TFin/WFin) equal to 1. The nano-stacked high-k Al2O3 dielectric was adopted as a gate insulator in forming a metal-oxide-semiconductor structure to suppress gate leakage. The 3D III-V MOSFET exhibits outstanding gate controllability and shows a high Ion/Ioff ratio > 105 and a low subthreshold swing of 80 mV/decade. Compared to a conventional Schottky gate metal–semiconductor field-effect transistor or planar III-V MOSFETs, the III-V MOSFET in this work exhibits a significant performance improvement and is promising for future development of high-performance n-channel devices based on III-V materials. PMID:22853458

  15. AlGaN/GaN High Electron Mobility Transistor Grown and Fabricated on ZrTi Metallic Alloy Buffer Layers

    DOE PAGES

    Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun; ...

    2017-09-26

    AlGaN/GaN high electron mobility transistors (HEMTs) were demonstrated for structures grown on ZrTi metallic alloy buffer layers, which provided lattice matching of the in-plane lattice parameter (“a-parameter”) to hexagonal GaN. The quality of the GaN buffer layer and HEMT structure were confirmed with X-ray 2θ and rocking scans as well as cross-section transmission electron microscopy (TEM) images. The X-ray 2θ scans showed full widths at half maximum (FWHM) of 0.06°, 0.05° and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM of the lower section of the HEMT structure containing the GaN buffer layer andmore » the AlN/ZrTi/AlN stack on the Si substrate showed that it was important to grow AlN on the top of ZrTi prior to growing the GaN buffer layer. Finally, the estimated threading dislocation (TD) density in the GaN channel layer of the HEMT structure was in the 10 8 cm -2 range.« less

  16. High-frequency self-aligned graphene transistors with transferred gate stacks

    PubMed Central

    Cheng, Rui; Bai, Jingwei; Liao, Lei; Zhou, Hailong; Chen, Yu; Liu, Lixin; Lin, Yung-Chen; Jiang, Shan; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Graphene has attracted enormous attention for radio-frequency transistor applications because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. Herein we report a new approach for the scalable fabrication of high-performance graphene transistors with transferred gate stacks. Specifically, arrays of gate stacks are first patterned on a sacrificial substrate, and then transferred onto arbitrary substrates with graphene on top. A self-aligned process, enabled by the unique structure of the transferred gate stacks, is then used to position precisely the source and drain electrodes with minimized access resistance or parasitic capacitance. This process has therefore enabled scalable fabrication of self-aligned graphene transistors with unprecedented performance including a record-high cutoff frequency up to 427 GHz. Our study defines a unique pathway to large-scale fabrication of high-performance graphene transistors, and holds significant potential for future application of graphene-based devices in ultra–high-frequency circuits. PMID:22753503

  17. Influence of polymer dielectrics on C60-based field-effect transistors

    NASA Astrophysics Data System (ADS)

    Zhou, Jianlin; Zhang, Fujia; Lan, Lifeng; Wen, Shangsheng; Peng, Junbiao

    2007-12-01

    Fullerene C60 organic field-effect transistors (OFETs) have been fabricated based on two different polymer dielectric materials, poly(methylmethacrylate) (PMMA) and cross-linkable poly(4-vinylphenol). The large grain size of C60 film and small number of traps at the interface of PMMA /C60 were obtained with high electron mobility of 0.66cm2/Vs in the PMMA transistor. The result suggests that the C60 semiconductor cooperating with polymer dielectric is a promising application in the fabrication of n-type organic transistors because of low threshold voltage and high electron mobility.

  18. Enhanced carrier mobility of multilayer MoS2 thin-film transistors by Al2O3 encapsulation

    NASA Astrophysics Data System (ADS)

    Kim, Seong Yeoul; Park, Seonyoung; Choi, Woong

    2016-10-01

    We report the effect of Al2O3 encapsulation on the carrier mobility and contact resistance of multilayer MoS2 thin-film transistors by statistically investigating 70 devices with SiO2 bottom-gate dielectric. After Al2O3 encapsulation by atomic layer deposition, calculation based on Y-function method indicates that the enhancement of carrier mobility from 24.3 cm2 V-1 s-1 to 41.2 cm2 V-1 s-1 occurs independently from the reduction of contact resistance from 276 kΩ.μm to 118 kΩ.μm. Furthermore, contrary to the previous literature, we observe a negligible effect of thermal annealing on contact resistance and carrier mobility during the atomic layer deposition of Al2O3. These results demonstrate that Al2O3 encapsulation is a useful method of improving the carrier mobility of multilayer MoS2 transistors, providing important implications on the application of MoS2 and other two-dimensional materials into high-performance transistors.

  19. High-power flexible AlGaN/GaN heterostructure field-effect transistors with suppression of negative differential conductance

    NASA Astrophysics Data System (ADS)

    Oh, Seung Kyu; Cho, Moon Uk; Dallas, James; Jang, Taehoon; Lee, Dong Gyu; Pouladi, Sara; Chen, Jie; Wang, Weijie; Shervin, Shahab; Kim, Hyunsoo; Shin, Seungha; Choi, Sukwon; Kwak, Joon Seop; Ryou, Jae-Hyun

    2017-09-01

    We investigate thermo-electronic behaviors of flexible AlGaN/GaN heterostructure field-effect transistors (HFETs) for high-power operation of the devices using Raman thermometry, infrared imaging, and current-voltage characteristics. A large negative differential conductance observed in HFETs on polymeric flexible substrates is confirmed to originate from the decreasing mobility of the two-dimensional electron gas channel caused by the self-heating effect. We develop high-power transistors by suppressing the negative differential conductance in the flexible HFETs using chemical lift-off and modified Ti/Au/In metal bonding processes with copper (Cu) tapes for high thermal conductivity and low thermal interfacial resistance in the flexible hybrid structures. Among different flexible HFETs, the ID of the HFETs on Cu with Ni/Au/In structures decreases only by 11.3% with increasing drain bias from the peak current to the current at VDS = 20 V, which is close to that of the HFETs on Si (9.6%), solving the problem of previous flexible AlGaN/GaN transistors.

  20. Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors.

    PubMed

    Zhang, Fengjiao; Dai, Xiaojuan; Zhu, Weikun; Chung, Hyunjoong; Diao, Ying

    2017-07-01

    Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C 8 -benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This paper further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor-acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengjiao; Dai, Xiaojuan; Zhu, Weikun

    Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C8-benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This papermore » further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor–acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall.« less

  2. High Performance 0.1 μm GaAs Pseudomorphic High Electron Mobility Transistors with Si Pulse-Doped Cap Layer for 77 GHz Car Radar Applications

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon; Noh, Hunhee; Jang, Kyoungchul; Lee, JaeHak; Seo, Kwangseok

    2005-04-01

    In this study, 0.1 μm double-recessed T-gate GaAs pseudomorphic high electron mobility transistors (PHEMT’s), in which an InGaAs layer and a Si pulse-doped layer in the cap structure are inserted, have been successfully fabricated. This cap structure improves ohmic contact. The ohmic contact resistance is as small as 0.07 Ωmm, consequently the source resistance is reduced by about 20% compared to that of a conventional cap structure. This device shows good DC and microwave performance such as an extrinsic transconductance of 620 mS/mm, a maximum saturated drain current of 780 mA/mm, a cut-off frequency fT of 140 GHz and a maximum oscillation frequency of 260 GHz. The reverse breakdown is 5.7 V at a gate current density of 1 mA/mm. The maximum available gain is about 7 dB at 77 GHz. It is well suited for car radar monolithic microwave integrated circuits (MMICs).

  3. Effects of floating gate structures on the two-dimensional electron gas density and electron mobility in AlGaN/AlN/GaN heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Zhao, Jingtao; Zhao, Zhenguo; Chen, Zidong; Lin, Zhaojun; Xu, Fukai

    2017-12-01

    In this study, we have investigated the electrical properties of the AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with floating gate structures using the measured capacitancevoltage (C-V) and current-voltage (I-V) characteristics. It is found that the two-dimensional electron gas (2DEG) density under the central gate cannot be changed by the floating gate structures. However, the floating gate structures can cause the strain variation in the barrier layer, which lead to the non-uniform distribution of the polarization charges, then induce a polarization Coulomb field and scatter the 2DEG. More floating gate structures and closer distance between the floating gates and the central gate will result in stronger scattering effect of the 2DEG.

  4. Microcrystalline silicon thin-film transistors for large area electronic applications

    NASA Astrophysics Data System (ADS)

    Chan, Kah-Yoong; Bunte, Eerke; Knipp, Dietmar; Stiebig, Helmut

    2007-11-01

    Thin-film transistors (TFTs) based on microcrystalline silicon (µc-Si:H) exhibit high charge carrier mobilities exceeding 35 cm2 V-1 s-1. The devices are fabricated by plasma-enhanced chemical vapor deposition at substrate temperatures below 200 °C. The fabrication process of the µc-Si:H TFTs is similar to the low temperature fabrication of amorphous silicon TFTs. The electrical characteristics of the µc-Si:H-based transistors will be presented. As the device charge carrier mobility of short channel TFTs is limited by the contacts, the influence of the drain and source contacts on the device parameters including the device charge carrier mobility and the device threshold voltage will be discussed. The experimental data will be described by a modified standard transistor model which accounts for the contact effects. Furthermore, the transmission line method was used to extract the device parameters including the contact resistance. The modified standard transistor model and the transmission line method will be compared in terms of the extracted device parameters and contact resistances.

  5. Organic Field-Effect Transistors Based on a Liquid-Crystalline Polymeric Semiconductor using SU-8 Gate Dielectrics on Flexible Substrates

    PubMed Central

    Tetzner, Kornelius; Bose, Indranil R.; Bock, Karlheinz

    2014-01-01

    In this work, the insulating properties of poly(4-vinylphenol) (PVP) and SU-8 (MicroChem, Westborough, MA, USA) dielectrics are analyzed and compared with each other. We further investigate the performance behavior of organic field-effect transistors based on a semiconducting liquid-crystal polymer (LCP) using both dielectric materials and evaluate the results regarding the processability. Due to the lower process temperature needed for the SU-8 deposition, the realization of organic transistors on flexible substrates is demonstrated showing comparable charge carrier mobilities to devices using PVP on glass. In addition, a µ-dispensing procedure of the LCP on SU-8 is presented, improving the switching behavior of the organic transistors, and the promising stability data of the SU-8/LCP stack are verified after storing the structures for 60 days in ambient air showing negligible irreversible degradation of the organic semiconductor. PMID:28788243

  6. High-performance a-IGZO thin-film transistor with conductive indium-tin-oxide buried layer

    NASA Astrophysics Data System (ADS)

    Ahn, Min-Ju; Cho, Won-Ju

    2017-10-01

    In this study, we fabricated top-contact top-gate (TCTG) structure of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with a thin buried conductive indium-tin oxide (ITO) layer. The electrical performance of a-IGZO TFTs was improved by inserting an ITO buried layer under the IGZO channel. Also, the effect of the buried layer's length on the electrical characteristics of a-IGZO TFTs was investigated. The electrical performance of the transistors improved with increasing the buried layer's length: a large on/off current ratio of 1.1×107, a high field-effect mobility of 35.6 cm2/Vs, a small subthreshold slope of 116.1 mV/dec, and a low interface trap density of 4.2×1011 cm-2eV-1 were obtained. The buried layer a-IGZO TFTs exhibited enhanced transistor performance and excellent stability against the gate bias stress.

  7. Ultrasound-Induced Organogel Formation Followed by Thin Film Fabrication via Simple Doctor Blading Technique for Field-Effect Transistor Applications.

    PubMed

    Xu, Jiaju; Wang, Yulong; Shan, Haiquan; Lin, Yiwei; Chen, Qian; Roy, V A L; Xu, Zongxiang

    2016-07-27

    We demonstrate doctor blading technique to fabricate high performance transistors made up of printed small molecular materials. In this regard, we synthesize a new soluble phthalocyanine, tetra-n-butyl peripheral substituted copper(II) phthalocaynine (CuBuPc), that can easily undergo gel formation upon ultrasonic irradiation, leading to the formation of three-dimensional (3D) network composed of one-dimensional (1D) nanofibers structure. Finally, taking the advantage of thixotropic nature of the CuBuPc organogel, we use the doctor blade processing technique that limits the material wastage for the fabrication of transistor devices. Due to the ultrasound induced stronger π-π interaction, the transistor fabricated by doctor blading based on CuBuPc organogel exhibits significant increase in charge carrier mobility in comparison with other solution process techniques, thus paving a way for a simple and economically viable preparation of electronic circuits.

  8. Organic Field-Effect Transistors Based on a Liquid-Crystalline Polymeric Semiconductor using SU-8 Gate Dielectrics onFlexible Substrates.

    PubMed

    Tetzner, Kornelius; Bose, Indranil R; Bock, Karlheinz

    2014-10-29

    In this work, the insulating properties of poly(4-vinylphenol) (PVP) and SU-8 (MicroChem, Westborough, MA, USA) dielectrics are analyzed and compared with each other. We further investigate the performance behavior of organic field-effect transistors based on a semiconducting liquid-crystal polymer (LCP) using both dielectric materials and evaluate the results regarding the processability. Due to the lower process temperature needed for the SU-8 deposition, the realization of organic transistors on flexible substrates is demonstrated showing comparable charge carrier mobilities to devices using PVP on glass. In addition, a µ-dispensing procedure of the LCP on SU-8 is presented, improving the switching behavior of the organic transistors, and the promising stability data of the SU-8/LCP stack are verified after storing the structures for 60 days in ambient air showing negligible irreversible degradation of the organic semiconductor.

  9. Mobility overestimation due to gated contacts in organic field-effect transistors

    PubMed Central

    Bittle, Emily G.; Basham, James I.; Jackson, Thomas N.; Jurchescu, Oana D.; Gundlach, David J.

    2016-01-01

    Parameters used to describe the electrical properties of organic field-effect transistors, such as mobility and threshold voltage, are commonly extracted from measured current–voltage characteristics and interpreted by using the classical metal oxide–semiconductor field-effect transistor model. However, in recent reports of devices with ultra-high mobility (>40 cm2 V−1 s−1), the device characteristics deviate from this idealized model and show an abrupt turn-on in the drain current when measured as a function of gate voltage. In order to investigate this phenomenon, here we report on single crystal rubrene transistors intentionally fabricated to exhibit an abrupt turn-on. We disentangle the channel properties from the contact resistance by using impedance spectroscopy and show that the current in such devices is governed by a gate bias dependence of the contact resistance. As a result, extracted mobility values from d.c. current–voltage characterization are overestimated by one order of magnitude or more. PMID:26961271

  10. N-Heterocyclic-Carbene-Treated Gold Surfaces in Pentacene Organic Field-Effect Transistors: Improved Stability and Contact at the Interface.

    PubMed

    Lv, Aifeng; Freitag, Matthias; Chepiga, Kathryn M; Schäfer, Andreas H; Glorius, Frank; Chi, Lifeng

    2018-04-16

    N-Heterocyclic carbenes (NHCs), which react with the surface of Au electrodes, have been successfully applied in pentacene transistors. With the application of NHCs, the charge-carrier mobility of pentacene transistors increased by five times, while the contact resistance at the pentacene-Au interface was reduced by 85 %. Even after annealing the NHC-Au electrodes at 200 °C for 2 h before pentacene deposition, the charge-carrier mobility of the pentacene transistors did not decrease. The distinguished performance makes NHCs as excellent alternatives to thiols as metal modifiers for the application in organic field-effect transistors (OFETs). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon.

    PubMed

    Sirringhaus, Henning

    2014-03-05

    Over the past 25 years, organic field-effect transistors (OFETs) have witnessed impressive improvements in materials performance by 3-4 orders of magnitude, and many of the key materials discoveries have been published in Advanced Materials. This includes some of the most recent demonstrations of organic field-effect transistors with performance that clearly exceeds that of benchmark amorphous silicon-based devices. In this article, state-of-the-art in OFETs are reviewed in light of requirements for demanding future applications, in particular active-matrix addressing for flexible organic light-emitting diode (OLED) displays. An overview is provided over both small molecule and conjugated polymer materials for which field-effect mobilities exceeding > 1 cm(2) V(-1) s(-1) have been reported. Current understanding is also reviewed of their charge transport physics that allows reaching such unexpectedly high mobilities in these weakly van der Waals bonded and structurally comparatively disordered materials with a view towards understanding the potential for further improvement in performance in the future. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Suppression of surface-originated gate lag by a dual-channel AlN/GaN high electron mobility transistor architecture

    NASA Astrophysics Data System (ADS)

    Deen, David A.; Storm, David F.; Scott Katzer, D.; Bass, R.; Meyer, David J.

    2016-08-01

    A dual-channel AlN/GaN high electron mobility transistor (HEMT) architecture is demonstrated that leverages ultra-thin epitaxial layers to suppress surface-related gate lag. Two high-density two-dimensional electron gas (2DEG) channels are utilized in an AlN/GaN/AlN/GaN heterostructure wherein the top 2DEG serves as a quasi-equipotential that screens potential fluctuations resulting from distributed surface and interface states. The bottom channel serves as the transistor's modulated channel. Dual-channel AlN/GaN heterostructures were grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. HEMTs fabricated with 300 nm long recessed gates demonstrated a gate lag ratio (GLR) of 0.88 with no degradation in drain current after bias stressed in subthreshold. These structures additionally achieved small signal metrics ft/fmax of 27/46 GHz. These performance results are contrasted with the non-recessed gate dual-channel HEMT with a GLR of 0.74 and 82 mA/mm current collapse with ft/fmax of 48/60 GHz.

  13. AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors using Sc2O3 as the gate oxide and surface passivation

    NASA Astrophysics Data System (ADS)

    Mehandru, R.; Luo, B.; Kim, J.; Ren, F.; Gila, B. P.; Onstine, A. H.; Abernathy, C. R.; Pearton, S. J.; Gotthold, D.; Birkhahn, R.; Peres, B.; Fitch, R.; Gillespie, J.; Jenkins, T.; Sewell, J.; Via, D.; Crespo, A.

    2003-04-01

    We demonstrated that Sc2O3 thin films deposited by plasma-assisted molecular-beam epitaxy can be used simultaneously as a gate oxide and as a surface passivation layer on AlGaN/GaN high electron mobility transistors (HEMTs). The maximum drain source current, IDS, reaches a value of over 0.8 A/mm and is ˜40% higher on Sc2O3/AlGaN/GaN transistors relative to conventional HEMTs fabricated on the same wafer. The metal-oxide-semiconductor HEMTs (MOS-HEMTs) threshold voltage is in good agreement with the theoretical value, indicating that Sc2O3 retains a low surface state density on the AlGaN/GaN structures and effectively eliminates the collapse in drain current seen in unpassivated devices. The MOS-HEMTs can be modulated to +6 V of gate voltage. In particular, Sc2O3 is a very promising candidate as a gate dielectric and surface passivant because it is more stable on GaN than is MgO.

  14. Field-induced strain degradation of AlGaN/GaN high electron mobility transistors on a nanometer scale

    NASA Astrophysics Data System (ADS)

    Lin, Chung-Han; Doutt, D. R.; Mishra, U. K.; Merz, T. A.; Brillson, L. J.

    2010-11-01

    Nanoscale Kelvin probe force microscopy and depth-resolved cathodoluminescence spectroscopy reveal an electronic defect evolution inside operating AlGaN/GaN high electron mobility transistors with degradation under electric-field-induced stress. Off-state electrical stress results in micron-scale areas within the extrinsic drain expanding and decreasing in electric potential, midgap defects increasing by orders-of-magnitude at the AlGaN layer, and local Fermi levels lowering as gate-drain voltages increase above a characteristic stress threshold. The pronounced onset of defect formation, Fermi level movement, and transistor degradation at the threshold gate-drain voltage of J. A. del Alamo and J. Joh [Microelectron. Reliab. 49, 1200 (2009)] is consistent with crystal deformation and supports the inverse piezoelectric model of high electron mobility transistor degradation.

  15. Electrical and Optical Characteristics of Undoped and Se-Doped Bi2S3 Transistors

    NASA Astrophysics Data System (ADS)

    Kilcoyne, Colin; Alsaqqa, Ali; Rahman, Ajara A.; Whittaker-Brooks, Luisa; Sambandamurthy, G.

    Semiconducting chalcogenides have been drawing increased attention due to their interesting physical properties, especially in low dimensional structures. Bi2S3 has demonstrated a high optical absorption coefficient, a large bulk mobility, small bandgap, high Seebeck coefficient, and low thermal conductivity. These properties make it a good candidate for optical, electric and thermoelectric applications. However, control over the electrical properties for enhanced thermoelectric performance and optical applications is desired. We present electrical transport and optical properties from individual nanowire and few-layer transistors of single crystalline undoped and Se-doped Bi2S3-xSex. All devices exhibit n-type semiconducting behavior and the ON/OFF ratio, mobility, and conductivity noise behavior are studied as functions of dopant concentration, temperature, and charge carrier density in different conduction regimes. The roles of dopant driven scattering mechanisms and mobility/carrier density fluctuations will be discussed. The potential for this series of materials as optical and electrical switches will be presented. NSF DMR.

  16. Low-voltage back-gated atmospheric pressure chemical vapor deposition based graphene-striped channel transistor with high-κ dielectric showing room-temperature mobility > 11,000 cm(2)/V·s.

    PubMed

    Smith, Casey; Qaisi, Ramy; Liu, Zhihong; Yu, Qingkai; Hussain, Muhammad Mustafa

    2013-07-23

    Utilization of graphene may help realize innovative low-power replacements for III-V materials based high electron mobility transistors while extending operational frequencies closer to the THz regime for superior wireless communications, imaging, and other novel applications. Device architectures explored to date suffer a fundamental performance roadblock due to lack of compatible deposition techniques for nanometer-scale dielectrics required to efficiently modulate graphene transconductance (gm) while maintaining low gate capacitance-voltage product (CgsVgs). Here we show integration of a scaled (10 nm) high-κ gate dielectric aluminum oxide (Al2O3) with an atmospheric pressure chemical vapor deposition (APCVD)-derived graphene channel composed of multiple 0.25 μm stripes to repeatedly realize room-temperature mobility of 11,000 cm(2)/V·s or higher. This high performance is attributed to the APCVD graphene growth quality, excellent interfacial properties of the gate dielectric, conductivity enhancement in the graphene stripes due to low tox/Wgraphene ratio, and scaled high-κ dielectric gate modulation of carrier density allowing full actuation of the device with only ±1 V applied bias. The superior drive current and conductance at Vdd = 1 V compared to other top-gated devices requiring undesirable seed (such as aluminum and poly vinyl alcohol)-assisted dielectric deposition, bottom gate devices requiring excessive gate voltage for actuation, or monolithic (nonstriped) channels suggest that this facile transistor structure provides critical insight toward future device design and process integration to maximize CVD-based graphene transistor performance.

  17. Understanding channel and contact effects on transport in 1-dimensional nanotransistors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartzentruber, Brian S.; Delker, Collin James; Yoo, Jinkyoung

    Nanowire transistors are generally formed by metal contacts to a uniformly doped nanowire. The transistor can be modeled as a series combination of resistances from both the channel and the contacts. In this study, a simple model is proposed consisting of a resistive channel in series with two Schottky metal-semiconductor contacts modeled using the WKB approximation. This model captures several phenomena commonly observed in nanowire transistor measurements, including the mobility as a function of gate potential, mobility reduction with respect to bulk mobility, and non-linearities in output characteristics. For example, the maximum measured mobility as a function of gate voltagemore » in a nanowire transistor can be predicted based on the semiconductor bulk mobility in addition to barrier height and other properties of the contact. The model is then extended to nanowires with axial p-n junctions having an inde- pendent gate over each wire segment by splitting the channel resistance into a series component for each doping segment. Finally, the contact-channel model is applied to low-frequency noise analysis in nanowire devices, where the noise can be generated in both the channel and the contacts. Because contacts play a major, yet often neglected, role in nanowire transistor operation, they must be accounted for in order to extract meaningful parameters from I-V and noise measurements.« less

  18. Device Physics of Contact Issues for the Overestimation and Underestimation of Carrier Mobility in Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Liu, Chuan; Li, Gongtan; Di Pietro, Riccardo; Huang, Jie; Noh, Yong-Young; Liu, Xuying; Minari, Takeo

    2017-09-01

    Very high values of carrier mobility have been recently reported in newly developed materials for field-effect transistors (FETs) or thin-film transistors (TFTs). However, there is an increasing concern of whether the values are overestimated. In this paper, we investigate how much contact resistance a FET or TFT can tolerate to allow the conventional current-voltage equations, which is derived for no contact resistance. We contend that mobility in transistors with resistive contact can be underestimated with the presence of the injection barrier, whereas mobility in transistors with gated Schottky contact can be overestimated by more than 10 times. The latter phenomenon occurs even in long-channel devices, and it becomes more severe when using low-k dielectrics. This is because the band bending and injection barrier experience a complicated evolution on account of electrostatic doping in the semiconducting layer; thus, they do not follow a capacitance approximation. When the band bending is weak, the accumulation is as weak as that in the subthreshold regime. Accordingly, the carrier concentration nonlinearly increases with the gate field. This mechanism can occur with or without exhibiting the "kink" feature in the transfer curves, which has been suggested as the signature of overestimation. For precision, carrier mobility should be presented against gate voltage and should be examined by other recommended extraction methods.

  19. Electrical and Structural Origin of Self-Healing Phenomena in Pentacene Thin Films.

    PubMed

    Kang, Evan S H; Zhang, Hongbin; Donner, Wolfgang; von Seggern, Heinz

    2017-04-01

    Self-healing induced by structural phase transformation is demonstrated using pentacene field-effect transistors. During the self-healing process, the electrical properties at the pentacene interfaces improve due to the phase transformation from monolayer phase to thin-film phase. Enhanced mobility is confirmed by first-principles calculations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effect of mechanical strain on mobility of polycrystalline silicon thin-film transistors fabricated on stainless steel foil

    NASA Astrophysics Data System (ADS)

    Kuo, Po-Chin; Jamshidi-Roudbari, Abbas; Hatalis, Miltiadis

    2007-12-01

    The effect of uniaxial tensile strain parallel to the channel on mobility of polycrystalline silicon thin-film transistors (TFTs) on stainless steel foil has been investigated. The electron mobility increases by 20% while the hole mobility decreases by 6% as the strain increases to 0.5%, and both followed by saturation as the strain increases further. The off current decreases for both types of TFTs under strain. All TFTs remained functional at the applied strain of 1.13%.

  1. Fabrication and characterization of high mobility spin-coated zinc oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Singh, Shaivalini; Chakrabarti, P.

    2012-10-01

    A ZnO based thin film transistor (TFT) with bottom-gate configuration and SiO2 as insulating layer has been fabricated and characterized. The ZnO thin film was prepared by spin coating the sol-gel solution on the p-type Si wafers. The optical and structural properties of ZnO films were investigated using UV measurements and scanning electron microscope (SEM). The result of UV-visible study confirms that the films have a good absorbance in UV region and relatively low absorbance in the visible region. The TFT exhibited an off-current of 2.5×10-7 A. The values of field effect channel mobility and on/off current ratio extracted for the device, measured 11 cm2/V.s and ~102 respectively. The value of threshold voltage was found to be 1.3 V.

  2. Progressive failure site generation in AlGaN/GaN high electron mobility transistors under OFF-state stress: Weibull statistics and temperature dependence

    NASA Astrophysics Data System (ADS)

    Sun, Huarui; Bajo, Miguel Montes; Uren, Michael J.; Kuball, Martin

    2015-01-01

    Gate leakage degradation of AlGaN/GaN high electron mobility transistors under OFF-state stress is investigated using a combination of electrical, optical, and surface morphology characterizations. The generation of leakage "hot spots" at the edge of the gate is found to be strongly temperature accelerated. The time for the formation of each failure site follows a Weibull distribution with a shape parameter in the range of 0.7-0.9 from room temperature up to 120 °C. The average leakage per failure site is only weakly temperature dependent. The stress-induced structural degradation at the leakage sites exhibits a temperature dependence in the surface morphology, which is consistent with a surface defect generation process involving temperature-associated changes in the breakdown sites.

  3. Proton irradiation of MgO- or Sc 2O 3 passivated AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Luo, B.; Ren, F.; Allums, K. K.; Gila, B. P.; Onstine, A. H.; Abernathy, C. R.; Pearton, S. J.; Dwivedi, R.; Fogarty, T. N.; Wilkins, R.; Fitch, R. C.; Gillespie, J. K.; Jenkins, T. J.; Dettmer, R.; Sewell, J.; Via, G. D.; Crespo, A.; Baca, A. G.; Shul, R. J.

    2003-06-01

    AlGaN/GaN high electron mobility transistors with either MgO or Sc 2O 3 surface passivation were irradiated with 40 MeV protons at a dose of 5×10 9 cm -2. While both forward and reverse bias current were decreased in the devices as a result of decreases in channel doping and introduction of generation-recombination centers, there was no significant change observed in gate lag measurements. By sharp contrast, unpassivated devices showed significant decreases in drain current under pulsed conditions for the same proton dose. These results show the effectiveness of the oxide passivation in mitigating the effects of surface states present in the as-grown structures and also of surface traps created by the proton irradiation.

  4. Charge carrier mobility in thin films of organic semiconductors by the gated van der Pauw method

    PubMed Central

    Rolin, Cedric; Kang, Enpu; Lee, Jeong-Hwan; Borghs, Gustaaf; Heremans, Paul; Genoe, Jan

    2017-01-01

    Thin film transistors based on high-mobility organic semiconductors are prone to contact problems that complicate the interpretation of their electrical characteristics and the extraction of important material parameters such as the charge carrier mobility. Here we report on the gated van der Pauw method for the simple and accurate determination of the electrical characteristics of thin semiconducting films, independently from contact effects. We test our method on thin films of seven high-mobility organic semiconductors of both polarities: device fabrication is fully compatible with common transistor process flows and device measurements deliver consistent and precise values for the charge carrier mobility and threshold voltage in the high-charge carrier density regime that is representative of transistor operation. The gated van der Pauw method is broadly applicable to thin films of semiconductors and enables a simple and clean parameter extraction independent from contact effects. PMID:28397852

  5. Study on GaN buffer leakage current in AlGaN/GaN high electron mobility transistor structures grown by ammonia-molecular beam epitaxy on 100-mm Si(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravikiran, L.; Radhakrishnan, K., E-mail: ERADHA@e.ntu.edu.sg; Ng, G. I.

    2015-06-28

    The effect of carbon doping on the structural and electrical properties of GaN buffer layer of AlGaN/GaN high electron mobility transistor (HEMT) structures has been studied. In the undoped HEMT structures, oxygen was identified as the dominant impurity using secondary ion mass spectroscopy and photoluminescence (PL) measurements. In addition, a notable parallel conduction channel was identified in the GaN buffer at the interface. The AlGaN/GaN HEMT structures with carbon doped GaN buffer using a CBr{sub 4} beam equivalent pressure of 1.86 × 10{sup −7} mTorr showed a reduction in the buffer leakage current by two orders of magnitude. Carbon doped GaN buffersmore » also exhibited a slight increase in the crystalline tilt with some pits on the growth surface. PL and Raman measurements indicated only a partial compensation of donor states with carbon acceptors. However, AlGaN/GaN HEMT structures with carbon doped GaN buffer with 200 nm thick undoped GaN near the channel exhibited good 2DEG characteristics.« less

  6. A new expression of Ns versus Ef to an accurate control charge model for AlGaAs/GaAs

    NASA Astrophysics Data System (ADS)

    Bouneb, I.; Kerrour, F.

    2016-03-01

    Semi-conductor components become the privileged support of information and communication, particularly appreciation to the development of the internet. Today, MOS transistors on silicon dominate largely the semi-conductors market, however the diminution of transistors grid length is not enough to enhance the performances and respect Moore law. Particularly, for broadband telecommunications systems, where faster components are required. For this reason, alternative structures proposed like hetero structures IV-IV or III-V [1] have been.The most effective components in this area (High Electron Mobility Transistor: HEMT) on IIIV substrate. This work investigates an approach for contributing to the development of a numerical model based on physical and numerical modelling of the potential at heterostructure in AlGaAs/GaAs interface. We have developed calculation using projective methods allowed the Hamiltonian integration using Green functions in Schrodinger equation, for a rigorous resolution “self coherent” with Poisson equation. A simple analytical approach for charge-control in quantum well region of an AlGaAs/GaAs HEMT structure was presented. A charge-control equation, accounting for a variable average distance of the 2-DEG from the interface was introduced. Our approach which have aim to obtain ns-Vg characteristics is mainly based on: A new linear expression of Fermi-level variation with two-dimensional electron gas density in high electron mobility and also is mainly based on the notion of effective doping and a new expression of AEc

  7. Polymer/metal oxide hybrid dielectrics for low voltage field-effect transistors with solution-processed, high-mobility semiconductors

    NASA Astrophysics Data System (ADS)

    Held, Martin; Schießl, Stefan P.; Miehler, Dominik; Gannott, Florentina; Zaumseil, Jana

    2015-08-01

    Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfOx) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states at the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100-300 nF/cm2) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfOx dielectrics.

  8. Percolative effects on noise in pentacene transistors

    NASA Astrophysics Data System (ADS)

    Conrad, B. R.; Cullen, W. G.; Yan, W.; Williams, E. D.

    2007-12-01

    Noise in pentacene thin film transistors has been measured as a function of device thickness from well above the effective conduction channel thickness to only two conducting layers. Over the entire thickness range, the spectral noise form is 1/f, and the noise parameter varies inversely with gate voltage, confirming that the noise is due to mobility fluctuations, even in the thinnest films. Hooge's parameter varies as an inverse power law with conductivity for all film thicknesses. The magnitude and transport characteristics of the spectral noise are well explained in terms of percolative effects arising from the grain boundary structure.

  9. Flexible bottom-gate graphene transistors on Parylene C substrate and the effect of current annealing

    PubMed Central

    Kim, Hyungsoo; Bong, Jihye; Mikael, Solomon; Kim, Tong June; Williams, Justin C.; Ma, Zhenqiang

    2016-01-01

    Flexible graphene transistors built on a biocompatible Parylene C substrate would enable active circuitry to be integrated into flexible implantable biomedical devices. An annealing method to improve the performance of a flexible transistor without damaging the flexible substrate is also desirable. Here, we present a fabrication method of a flexible graphene transistor with a bottom-gate coplanar structure on a Parylene C substrate. Also, a current annealing method and its effect on the device performance have been studied. The localized heat generated by the current annealing method improves the drain current, which is attributed to the decreased contact resistance between graphene and S/D electrodes. A maximum current annealing power in the Parylene C-based graphene transistor has been extracted to provide a guideline for an appropriate current annealing. The fabricated flexible graphene transistor shows a field-effect mobility, maximum transconductance, and a Ion/Ioff ratio of 533.5 cm2/V s, 58.1 μS, and 1.76, respectively. The low temperature process and the current annealing method presented here would be useful to fabricate two-dimensional materials-based flexible electronics. PMID:27795570

  10. A comparative study on top-gated and bottom-gated multilayer MoS2 transistors with gate stacked dielectric of Al2O3/HfO2.

    PubMed

    Zou, Xiao; Xu, Jingping; Huang, Hao; Zhu, Ziqang; Wang, Hongjiu; Li, Borui; Liao, Lei; Fang, Guojia

    2018-06-15

    Top-gated and bottom-gated transistors with multilayer MoS 2 channel fully encapsulated by stacked Al 2 O 3 /HfO 2 (9 nm/6 nm) were fabricated and comparatively studied. Excellent electrical properties are demonstrated for the TG transistors with high on-off current ratio of 10 8 , high field-effect mobility of 10 2 cm 2 V -1 s -1 , and low subthreshold swing of 93 mV dec -1 . Also, enhanced reliability has been achieved for the TG transistors with threshold voltage shift of 10 -3 -10 -2 V MV -1 cm -1 after 6 MV cm -1 gate-biased stressing. All improvement for the TG device can be ascribed to the formed device structure and dielectric environment. Degradation of the performance for the BG transistors should be attributed to reduced gate capacitance density and deteriorated interface properties related to vdW gap with a thickness about 0.4 nm. So, the TG transistor with MoS 2 channel fully encapsulated by stacked Al 2 O 3 /HfO 2 is a promising way to fabricate high-performance ML MoS 2 field-effect transistors for practical electron device applications.

  11. A comparative study on top-gated and bottom-gated multilayer MoS2 transistors with gate stacked dielectric of Al2O3/HfO2

    NASA Astrophysics Data System (ADS)

    Zou, Xiao; Xu, Jingping; Huang, Hao; Zhu, Ziqang; Wang, Hongjiu; Li, Borui; Liao, Lei; Fang, Guojia

    2018-06-01

    Top-gated and bottom-gated transistors with multilayer MoS2 channel fully encapsulated by stacked Al2O3/HfO2 (9 nm/6 nm) were fabricated and comparatively studied. Excellent electrical properties are demonstrated for the TG transistors with high on–off current ratio of 108, high field-effect mobility of 102 cm2 V‑1 s‑1, and low subthreshold swing of 93 mV dec–1. Also, enhanced reliability has been achieved for the TG transistors with threshold voltage shift of 10‑3–10‑2 V MV–1 cm–1 after 6 MV cm‑1 gate-biased stressing. All improvement for the TG device can be ascribed to the formed device structure and dielectric environment. Degradation of the performance for the BG transistors should be attributed to reduced gate capacitance density and deteriorated interface properties related to vdW gap with a thickness about 0.4 nm. So, the TG transistor with MoS2 channel fully encapsulated by stacked Al2O3/HfO2 is a promising way to fabricate high-performance ML MoS2 field-effect transistors for practical electron device applications.

  12. Thermal Gradient During Vacuum-Deposition Dramatically Enhances Charge Transport in Organic Semiconductors: Toward High-Performance N-Type Organic Field-Effect Transistors.

    PubMed

    Kim, Joo-Hyun; Han, Singu; Jeong, Heejeong; Jang, Hayeong; Baek, Seolhee; Hu, Junbeom; Lee, Myungkyun; Choi, Byungwoo; Lee, Hwa Sung

    2017-03-22

    A thermal gradient distribution was applied to a substrate during the growth of a vacuum-deposited n-type organic semiconductor (OSC) film prepared from N,N'-bis(2-ethylhexyl)-1,7-dicyanoperylene-3,4:9,10-bis(dicarboxyimide) (PDI-CN2), and the electrical performances of the films deployed in organic field-effect transistors (OFETs) were characterized. The temperature gradient at the surface was controlled by tilting the substrate, which varied the temperature one-dimensionally between the heated bottom substrate and the cooled upper substrate. The vacuum-deposited OSC molecules diffused and rearranged on the surface according to the substrate temperature gradient, producing directional crystalline and grain structures in the PDI-CN2 film. The morphological and crystalline structures of the PDI-CN2 thin films grown under a vertical temperature gradient were dramatically enhanced, comparing with the structures obtained from either uniformly heated films or films prepared under a horizontally applied temperature gradient. The field effect mobilities of the PDI-CN2-FETs prepared using the vertically applied temperature gradient were as high as 0.59 cm 2 V -1 s -1 , more than a factor of 2 higher than the mobility of 0.25 cm 2 V -1 s -1 submitted to conventional thermal annealing and the mobility of 0.29 cm 2 V -1 s -1 from the horizontally applied temperature gradient.

  13. Room Temperature Silicene Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Akinwande, Deji

    Silicene, a buckled Si analogue of graphene, holds significant promise for future electronics beyond traditional CMOS. In our predefined experiments via encapsulated delamination with native electrodes approach, silicene devices exhibit an ambipolar charge transport behavior, corroborating theories on Dirac band in Ag-free silicene. Monolayer silicene device has extracted field-effect mobility within the theoretical expectation and ON/OFF ratio greater than monolayer graphene, while multilayer silicene devices show decreased mobility and gate modulation. Air-stability of silicene devices depends on the number of layers of silicene and intrinsic material structure determined by growth temperature. Few or multi-layer silicene devices maintain their ambipolar behavior for days in contrast to minutes time scale for monolayer counterparts under similar conditions. Multilayer silicene grown at different temperatures below 300oC possess different intrinsic structures and yield different electrical property and air-stability. This work suggests a practical prospect to enable more air-stable silicene devices with layer and growth condition control, which can be leveraged for other air-sensitive 2D materials. In addition, we describe quantum and classical transistor device concepts based on silicene and related buckled materials that exploit the 2D topological insulating phenomenon. The transistor device physics offer the potential for ballistic transport that is robust against scattering and can be employed for both charge and spin transport. This work was supported by the ARO.

  14. Equivalent input spectrum and drain current spectrum for 1/ƒ noise in short channel MOS transistors

    NASA Astrophysics Data System (ADS)

    Gentil, P.; Mounib, A.

    1981-05-01

    Flicker noise in MOS transistors can be evaluated by measuring the spectrum SID of the drain current fluctuation or the spectrum Sve of an equivalent gate fluctuation. We show here that experimental variations of {S I D}/{Sve} are in good agreement with gm2 by considering a model of the transconductance gm which takes into account the variations of the channel carriers mobility with the surface electric field. The model agrees with the experimental results obtained on short channel MOS transistors which exhibit large variations of mobility with the gate voltage. The validity of physical interpretations of noise data on MOS transistors is examined.

  15. Electric bistability induced by incorporating self-assembled monolayers/aggregated clusters of azobenzene derivatives in pentacene-based thin-film transistors.

    PubMed

    Tseng, Chiao-Wei; Huang, Ding-Chi; Tao, Yu-Tai

    2012-10-24

    Composite films of pentacene and a series of azobenzene derivatives are prepared and used as the active channel material in top-contact, bottom-gate field-effect transistors. The transistors exhibit high field-effect mobility as well as large I-V hysteresis as a function of the gate bias history. The azobenzene moieties, incorporated either in the form of self-assembled monolayer or discrete multilayer clusters at the dielectric surface, result in electric bistability of the pentacene-based transistor either by photoexcitation or gate biasing. The direction of threshold voltage shifts, size of hysteresis, response time, and retention characteristics all strongly depend on the substituent on the benzene ring. The results show that introducing a monolayer of azobenzene moieties results in formation of charge carrier traps responsible for slower switching between the bistable states and longer retention time. With clusters of azobenzene moieties as the trap sites, the switching is faster but the retention is shorter. Detailed film structure analyses and correlation with the transistor/memory properties of these devices are provided.

  16. Extraction of mobility and Degradation coefficients in double gate junctionless transistors

    NASA Astrophysics Data System (ADS)

    Bhuvaneshwari, Y. V.; Kranti, Abhinav

    2017-12-01

    In this work, we use the modified McLarty function to understand and extract accumulation (μ acc) and bulk (μ bulk) mobility in Double Gate (DG) Junctionless (JL) MOSFETs over a wide range of doping concentration (N d) and temperature range (250 K to 520 K). The approach enables the estimation of mobility and its attenuation factors (θ 1 and θ 2) by a single method. The extracted results indicate that μ acc can reach higher values than μ bulk due to the screening effect. Results also show that θ 2 extracted in the accumulation regime of JL transistors exhibit relatively low values in comparison to inversion and accumulation mode devices. It is shown that the attenuation factor (θ 1) in JL devices designed with higher N d (≥1019 cm-3) is mainly affected by series resistance (R sd) whereas, in inversion mode (IM) and Accumulation mode (AM) devices, θ 1 factor is governed by both the intrinsic mobility reduction factor (θ 10) and R sd. Additionally, the impact of variation in oxide thickness (T ox), gate length (L g), N d and temperature on θ 1 and θ 2 has been investigated for JL transistor. The weak dependence of μ bulk and μ acc on temperature shows the prevalence of coulomb scattering over phonon scattering for heavily doped JL transistors. The work provides insights into different modes of operation, extraction of mobility and attenuation factors which will be useful for the development of compact models for JL transistors.

  17. Growth front nucleation of rubrene thin films for high mobility organic transistors

    NASA Astrophysics Data System (ADS)

    Hsu, C. H.; Deng, J.; Staddon, C. R.; Beton, P. H.

    2007-11-01

    We demonstrate a mode of thin film growth in which amorphous islands crystallize into highly oriented platelets. A cascade of crystallization is observed, in which platelets growing outward from a central nucleation point impinge on neighboring amorphous islands and provide a seed for further nucleation. Through control of growth parameters, it is possible to produce high quality thin films which are well suited to the formation of organic transistors. We demonstrate this through the fabrication of rubrene thin film transistors with high carrier mobility.

  18. Controlling Chain Conformations of High-k Fluoropolymer Dielectrics to Enhance Charge Mobilities in Rubrene Single-Crystal Field-Effect Transistors.

    PubMed

    Adhikari, Jwala M; Gadinski, Matthew R; Li, Qi; Sun, Kaige G; Reyes-Martinez, Marcos A; Iagodkine, Elissei; Briseno, Alejandro L; Jackson, Thomas N; Wang, Qing; Gomez, Enrique D

    2016-12-01

    A novel photopatternable high-k fluoropolymer, poly(vinylidene fluoride-bromotrifluoroethylene) P(VDF-BTFE), with a dielectric constant (k) between 8 and 11 is demonstrated in thin-film transistors. Crosslinking P(VDF-BTFE) reduces energetic disorder at the dielectric-semiconductor interface by controlling the chain conformations of P(VDF-BTFE), thereby leading to approximately a threefold enhancement in the charge mobility of rubrene single-crystal field-effect transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enhanced electrical properties of dual-layer channel ZnO thin film transistors prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Li, Huijin; Han, Dedong; Dong, Junchen; Yu, Wen; Liang, Yi; Luo, Zhen; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2018-05-01

    The thin film transistors (TFTs) with a dual-layer channel structure combing ZnO thin layer grown at 200 °C and ZnO film grown at 120 °C by atomic layer deposition are fabricated. The dual-layer channel TFT exhibits a low leakage current of 2.8 × 10-13 A, Ion/Ioff ratio of 3.4 × 109, saturation mobility μsat of 12 cm2 V-1 s-1, subthreshold swing (SS) of 0.25 V/decade. The SS value decreases to 0.18 V/decade after the annealing treatment in O2 due to the reduction of the trap states at the channel/dielectric interface and in the bulk channel layer. The enhanced performance obtained from the dual-layer channel TFTs is due to the ability of maintaining high mobility and suppressing the increase in the off-current at the same time.

  20. Progressive failure site generation in AlGaN/GaN high electron mobility transistors under OFF-state stress: Weibull statistics and temperature dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Huarui, E-mail: huarui.sun@bristol.ac.uk; Bajo, Miguel Montes; Uren, Michael J.

    2015-01-26

    Gate leakage degradation of AlGaN/GaN high electron mobility transistors under OFF-state stress is investigated using a combination of electrical, optical, and surface morphology characterizations. The generation of leakage “hot spots” at the edge of the gate is found to be strongly temperature accelerated. The time for the formation of each failure site follows a Weibull distribution with a shape parameter in the range of 0.7–0.9 from room temperature up to 120 °C. The average leakage per failure site is only weakly temperature dependent. The stress-induced structural degradation at the leakage sites exhibits a temperature dependence in the surface morphology, which ismore » consistent with a surface defect generation process involving temperature-associated changes in the breakdown sites.« less

  1. Soluble fullerene derivatives: The effect of electronic structure on transistor performance and air stability

    NASA Astrophysics Data System (ADS)

    Ball, James M.; Bouwer, Ricardo K. M.; Kooistra, Floris B.; Frost, Jarvist M.; Qi, Yabing; Domingo, Ester Buchaca; Smith, Jeremy; de Leeuw, Dago M.; Hummelen, Jan C.; Nelson, Jenny; Kahn, Antoine; Stingelin, Natalie; Bradley, Donal D. C.; Anthopoulos, Thomas D.

    2011-07-01

    The family of soluble fullerene derivatives comprises a widely studied group of electron transporting molecules for use in organic electronic and optoelectronic devices. For electronic applications, electron transporting (n-channel) materials are required for implementation into organic complementary logic circuit architectures. To date, few soluble candidate materials have been studied that fulfill the stringent requirements of high carrier mobility and air stability. Here we present a study of three soluble fullerenes with varying electron affinity to assess the impact of electronic structure on device performance and air stability. Through theoretical and experimental analysis of the electronic structure, characterization of thin-film structure, and characterization of transistor device properties we find that the air stability of the present series of fullerenes not only depends on the absolute electron affinity of the semiconductor but also on the disorder within the thin-film.

  2. Thermal Investigation of Three-Dimensional GaN-on-SiC High Electron Mobility Transistors

    DTIC Science & Technology

    2017-07-01

    AFRL-RY-WP-TR-2017-0143 THERMAL INVESTIGATION OF THREE- DIMENSIONAL GaN-on-SiC HIGH ELECTRON MOBILITY TRANSISTORS Qing Hao The University of Arizona...To) July 2017 Final 08 April 2015 – 10 April 2017 4. TITLE AND SUBTITLE THERMAL INVESTIGATION OF THREE-DIMENSIONAL GaN-on-SiC HIGH ELECTRON MOBILITY...used in many DoD applications, including integrated radio frequency (RF) amplifiers and power electronics . However, inherent inefficiencies in

  3. New Material Transistor with Record-High Field-Effect Mobility among Wide-Band-Gap Semiconductors.

    PubMed

    Shih, Cheng Wei; Chin, Albert

    2016-08-03

    At an ultrathin 5 nm, we report a new high-mobility tin oxide (SnO2) metal-oxide-semiconductor field-effect transistor (MOSFET) exhibiting extremely high field-effect mobility values of 279 and 255 cm(2)/V-s at 145 and 205 °C, respectively. These values are the highest reported mobility values among all wide-band-gap semiconductors of GaN, SiC, and metal-oxide MOSFETs, and they also exceed those of silicon devices at the aforementioned elevated temperatures. For the first time among existing semiconductor transistors, a new device physical phenomenon of a higher mobility value was measured at 45-205 °C than at 25 °C, which is due to the lower optical phonon scattering by the large SnO2 phonon energy. Moreover, the high on-current/off-current of 4 × 10(6) and the positive threshold voltage of 0.14 V at 25 °C are significantly better than those of a graphene transistor. This wide-band-gap SnO2 MOSFET exhibits high mobility in a 25-205 °C temperature range, a wide operating voltage of 1.5-20 V, and the ability to form on an amorphous substrate, rendering it an ideal candidate for multifunctional low-power integrated circuit (IC), display, and brain-mimicking three-dimensional IC applications.

  4. Development of Cryogenic Enhancement-Mode Pseudomorphic High-Electron-Mobility Transistor Amplifier

    NASA Astrophysics Data System (ADS)

    Hirata, T.; Okazaki, T.; Obara, K.; Yano, H.; Ishikawa, O.

    2017-06-01

    This paper reports the technical details of the development of a low-temperature amplifier for nuclear magnetic resonance measurements of superfluid {}^3He in very confined geometries. The amplifier consists of commercially available enhancement-mode pseudomorphic high-electron-mobility transistor devices and temperature-insensitive passive components with an operating frequency range of 0.2-6 MHz.

  5. High mobility n-type organic thin-film transistors deposited at room temperature by supersonic molecular beam deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiarella, F., E-mail: fabio.chiarella@spin.cnr.it; Barra, M.; Ciccullo, F.

    In this paper, we report on the fabrication of N,N′-1H,1H-perfluorobutil dicyanoperylenediimide (PDIF-CN{sub 2}) organic thin-film transistors by Supersonic Molecular Beam Deposition. The devices exhibit mobility up to 0.2 cm{sup 2}/V s even if the substrate is kept at room temperature during the organic film growth, exceeding by three orders of magnitude the electrical performance of those grown at the same temperature by conventional Organic Molecular Beam Deposition. The possibility to get high-mobility n-type transistors avoiding thermal treatments during or after the deposition could significantly extend the number of substrates suitable to the fabrication of flexible high-performance complementary circuits by using this compound.

  6. Hydrogen-induced reversible changes in drain current in Sc2O3/AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Kang, B. S.; Mehandru, R.; Kim, S.; Ren, F.; Fitch, R. C.; Gillespie, J. K.; Moser, N.; Jessen, G.; Jenkins, T.; Dettmer, R.; Via, D.; Crespo, A.; Gila, B. P.; Abernathy, C. R.; Pearton, S. J.

    2004-06-01

    Pt contacted AlGaN/GaN high electron mobility transistors with Sc2O3 gate dielectrics show reversible changes in drain-source current upon exposure to H2-containing ambients, even at room temperature. The changes in current (as high as 3 mA for relatively low gate voltage and drain-source voltage) are approximately an order of magnitude larger than for Pt/GaN Schottky diodes and a factor of 5 larger than Sc2O3/AlGaN/GaN metal-oxide-semiconductor (MOS) diodes exposed under the same conditions. This shows the advantage of using a transistor structure in which the gain produces larger current changes upon exposure to hydrogen-containing ambients. The increase in current is the result of a decrease in effective barrier height of the MOS gate of 30-50 mV at 25 °C for 10% H2/90% N2 ambients relative to pure N2 and is due to catalytic dissociation of the H2 on the Pt contact, followed by diffusion to the Sc2O3/AlGaN interface.

  7. Suppression of surface-originated gate lag by a dual-channel AlN/GaN high electron mobility transistor architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deen, David A., E-mail: david.deen@alumni.nd.edu; Storm, David F.; Scott Katzer, D.

    A dual-channel AlN/GaN high electron mobility transistor (HEMT) architecture is demonstrated that leverages ultra-thin epitaxial layers to suppress surface-related gate lag. Two high-density two-dimensional electron gas (2DEG) channels are utilized in an AlN/GaN/AlN/GaN heterostructure wherein the top 2DEG serves as a quasi-equipotential that screens potential fluctuations resulting from distributed surface and interface states. The bottom channel serves as the transistor's modulated channel. Dual-channel AlN/GaN heterostructures were grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. HEMTs fabricated with 300 nm long recessed gates demonstrated a gate lag ratio (GLR) of 0.88 with no degradation in drain currentmore » after bias stressed in subthreshold. These structures additionally achieved small signal metrics f{sub t}/f{sub max} of 27/46 GHz. These performance results are contrasted with the non-recessed gate dual-channel HEMT with a GLR of 0.74 and 82 mA/mm current collapse with f{sub t}/f{sub max} of 48/60 GHz.« less

  8. Electron delocalization and charge mobility as a function of reduction in a metal-organic framework.

    PubMed

    Aubrey, Michael L; Wiers, Brian M; Andrews, Sean C; Sakurai, Tsuneaki; Reyes-Lillo, Sebastian E; Hamed, Samia M; Yu, Chung-Jui; Darago, Lucy E; Mason, Jarad A; Baeg, Jin-Ook; Grandjean, Fernande; Long, Gary J; Seki, Shu; Neaton, Jeffrey B; Yang, Peidong; Long, Jeffrey R

    2018-06-04

    Conductive metal-organic frameworks are an emerging class of three-dimensional architectures with degrees of modularity, synthetic flexibility and structural predictability that are unprecedented in other porous materials. However, engendering long-range charge delocalization and establishing synthetic strategies that are broadly applicable to the diverse range of structures encountered for this class of materials remain challenging. Here, we report the synthesis of K x Fe 2 (BDP) 3 (0 ≤ x ≤ 2; BDP 2-  = 1,4-benzenedipyrazolate), which exhibits full charge delocalization within the parent framework and charge mobilities comparable to technologically relevant polymers and ceramics. Through a battery of spectroscopic methods, computational techniques and single-microcrystal field-effect transistor measurements, we demonstrate that fractional reduction of Fe 2 (BDP) 3 results in a metal-organic framework that displays a nearly 10,000-fold enhancement in conductivity along a single crystallographic axis. The attainment of such properties in a K x Fe 2 (BDP) 3 field-effect transistor represents the realization of a general synthetic strategy for the creation of new porous conductor-based devices.

  9. S,N-Heteroacene-Based Copolymers for Highly Efficient Organic Field Effect Transistors and Organic Solar Cells: Critical Impact of Aromatic Subunits in the Ladder π-System.

    PubMed

    Chung, Chin-Lung; Chen, Hsieh-Chih; Yang, Yun-Siou; Tung, Wei-Yao; Chen, Jian-Wei; Chen, Wen-Chang; Wu, Chun-Guey; Wong, Ken-Tsung

    2018-02-21

    Three novel donor-acceptor alternating polymers containing ladder-type pentacyclic heteroacenes (PBo, PBi, and PT) are synthesized, characterized, and further applied to organic field effect transistors (OFETs) and polymer solar cells. Significant aspects of quinoidal characters, electrochemical properties, optical absorption, frontier orbitals, backbone coplanarity, molecular orientation, charge carrier mobilities, morphology discrepancies, and the corresponding device performances are notably different with various heteroarenes. PT exhibits a stronger quinoidal mesomeric structure, linear and coplanar conformation, smooth surface morphology, and better bimodal crystalline structures, which is beneficial to extend the π-conjugation and promotes charge transport via 3-D transport pathways and in consequence improves overall device performances. Organic photovoltaics based on the PT polymer achieve a power conversion efficiency of 6.04% along with a high short-circuit current density (J SC ) of 14.68 mA cm -2 , and a high hole mobility of 0.1 cm 2 V -1 s -1 is fulfilled in an OFET, which is superior to those of its counterparts, PBi and PBo.

  10. Solution-processed gadolinium doped indium-oxide thin-film transistors with oxide passivation

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Hun; Kim, Taehun; Lee, Jihun; Avis, Christophe; Jang, Jin

    2017-03-01

    We studied the effect of Gd doping on the structural properties of solution processed, crystalline In2O3 for thin-film transistor (TFT) application. With increasing Gd in In2O3 up to 20%, the material structure changes into amorphous phase, and the oxygen vacancy concentration decreases from 15.4 to 8.4%, and M-OH bonds from 33.5 to 23.7%. The field-effect mobility for the Gd doped In2O3 TFTs decreases and threshold voltage shifts to the positive voltage with increasing Gd concentration. In addition, the stability of the solution processed TFTs can also be improved by increasing Gd concentration. As a result, the optimum Gd concentration is found to be ˜5% in In2O3 and the 5% Gd doped In2O3 TFTs with the Y2O3 passivation layer exhibit the linear mobility of 9.74 cm2/V s, the threshold voltage of -0.27 V, the subthreshold swing of 79 mV/dec., and excellent bias stability.

  11. Plasma-assisted Molecular Beam Epitaxy of N-polar InAlN-barrier High-electron-mobility Transistors.

    PubMed

    Hardy, Matthew T; Storm, David F; Katzer, D Scott; Downey, Brian P; Nepal, Neeraj; Meyer, David J

    2016-11-24

    Plasma-assisted molecular beam epitaxy is well suited for the epitaxial growth of III-nitride thin films and heterostructures with smooth, abrupt interfaces required for high-quality high-electron-mobility transistors (HEMTs). A procedure is presented for the growth of N-polar InAlN HEMTs, including wafer preparation and growth of buffer layers, the InAlN barrier layer, AlN and GaN interlayers and the GaN channel. Critical issues at each step of the process are identified, such as avoiding Ga accumulation in the GaN buffer, the role of temperature on InAlN compositional homogeneity, and the use of Ga flux during the AlN interlayer and the interrupt prior to GaN channel growth. Compositionally homogeneous N-polar InAlN thin films are demonstrated with surface root-mean-squared roughness as low as 0.19 nm and InAlN-based HEMT structures are reported having mobility as high as 1,750 cm 2 /V∙sec for devices with a sheet charge density of 1.7 x 10 13 cm -2 .

  12. Impact of SiNx capping on the formation of source/drain contact for In-Ga-Zn-O thin film transistor with self-aligned gate

    NASA Astrophysics Data System (ADS)

    Oh, Himchan; Pi, Jae-Eun; Hwang, Chi-Sun; Kwon, Oh-Sang

    2017-12-01

    Self-aligned gate structures are preferred for faster operation and scaling down of thin film transistors by reducing the overlapped region between source/drain and gate electrodes. Doping on source/drain regions is essential to fabricate such a self-aligned gate thin film transistor. For oxide semiconductors such as In-Ga-Zn-O, SiNx capping readily increases their carrier concentration. We report that the SiNx deposition temperature and thickness significantly affect the device properties, including threshold voltage, field effect mobility, and contact resistance. The reason for these variations in device characteristics mainly comes from the extension of the doped region to the gated area after the SiNx capping step. Analyses on capacitance-voltage and transfer length characteristics support this idea.

  13. Solution-Processable Balanced Ambipolar Field-Effect Transistors Based on Carbonyl-Regulated Copolymers.

    PubMed

    Yang, Chengdong; Fang, Renren; Yang, Xiongfa; Chen, Ru; Gao, Jianhua; Fan, Hanghong; Li, Hongxiang; Hu, Wenping

    2018-04-04

    It is very important to develop ambipolar field effect transistors to construct complementary circuits. To obtain balanced hole- and electron-transport properties, one of the key issues is to regulate the energy levels of the frontier orbitals of the semiconductor materials by structural tailoring, so that they match well with the electrode Fermi levels. Five conjugated copolymers were synthesized and exhibited low LUMO energy levels and narrow bandgaps on account of the strong electron-withdrawing effect of the carbonyl groups. Polymer thin film transistors were prepared by using a solution method and exhibited high and balanced hole and electron mobility of up to 0.46 cm 2  V -1  s -1 , which suggested that these copolymers are promising ambipolar semiconductor materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Using in-process measurements of open-gate structures to evaluate threshold voltage of normally-off GaN-based high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Bin; Ma, Xiao-Hua, E-mail: xhma@xidian.edu.cn, E-mail: yhao@xidian.edu.cn; Chen, Wei-Wei

    The parameters of open-gate structures treated with different etching time were monitored during the gate recess process, and their impacts on the threshold voltage (V{sub th}) of final fabricated AlGaN/GaN high electron mobility transistors (HEMTs) based on open-gate structures were discussed in this paper. It is found that V{sub th} can exceed 0 V when channel resistance in the recessed region (R{sub on-open}) increases over ∼275 Ω mm, maximum current (I{sub Dmax}) decreases below ∼29 mA/mm, or recessed barrier thickness (t{sub RB}) is below ∼7.5 nm. In addition, t{sub RB} obtained by atomic force microscopy measurements and C-V measurements are also compared. Finally,more » theoretical common criteria based on the experimental results of this work for t{sub RB} and R{sub on-open} were established to evaluate the V{sub th} of a regular normally-off AlGaN/GaN HEMTs. The results indicate that these parameters of open-gate structure can be utilized to achieve normally-off HEMTs with controllable V{sub th}.« less

  15. Electron density and currents of AlN/GaN high electron mobility transistors with thin GaN/AlN buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bairamis, A.; Zervos, Ch.; Georgakilas, A., E-mail: alexandr@physics.uoc.gr

    2014-09-15

    AlN/GaN high electron mobility transistor (HEMT) structures with thin GaN/AlN buffer layer have been analyzed theoretically and experimentally, and the effects of the AlN barrier and GaN buffer layer thicknesses on two-dimensional electron gas (2DEG) density and transport properties have been evaluated. HEMT structures consisting of [300 nm GaN/ 200 nm AlN] buffer layer on sapphire were grown by plasma-assisted molecular beam epitaxy and exhibited a remarkable agreement with the theoretical calculations, suggesting a negligible influence of the crystalline defects that increase near the heteroepitaxial interface. The 2DEG density varied from 6.8 × 10{sup 12} to 2.1 × 10{sup 13} cm{sup −2} as themore » AlN barrier thickness increased from 2.2 to 4.5 nm, while a 4.5 nm AlN barrier would result to 3.1 × 10{sup 13} cm{sup −2} on a GaN buffer layer. The 3.0 nm AlN barrier structure exhibited the highest 2DEG mobility of 900 cm{sup 2}/Vs for a density of 1.3 × 10{sup 13} cm{sup −2}. The results were also confirmed by the performance of 1 μm gate-length transistors. The scaling of AlN barrier thickness from 1.5 nm to 4.5 nm could modify the drain-source saturation current, for zero gate-source voltage, from zero (normally off condition) to 0.63 A/mm. The maximum drain-source current was 1.1 A/mm for AlN barrier thickness of 3.0 nm and 3.7 nm, and the maximum extrinsic transconductance was 320 mS/mm for 3.0 nm AlN barrier.« less

  16. Rational Design of ZnO:H/ZnO Bilayer Structure for High-Performance Thin-Film Transistors.

    PubMed

    Abliz, Ablat; Huang, Chun-Wei; Wang, Jingli; Xu, Lei; Liao, Lei; Xiao, Xiangheng; Wu, Wen-Wei; Fan, Zhiyong; Jiang, Changzhong; Li, Jinchai; Guo, Shishang; Liu, Chuansheng; Guo, Tailiang

    2016-03-01

    The intriguing properties of zinc oxide-based semiconductors are being extensively studied as they are attractive alternatives to current silicon-based semiconductors for applications in transparent and flexible electronics. Although they have promising properties, significant improvements on performance and electrical reliability of ZnO-based thin film transistors (TFTs) should be achieved before they can be applied widely in practical applications. This work demonstrates a rational and elegant design of TFT, composed of poly crystalline ZnO:H/ZnO bilayer structure without using other metal elements for doping. The field-effect mobility and gate bias stability of the bilayer structured devices have been improved. In this device structure, the hydrogenated ultrathin ZnO:H active layer (∼3 nm) could provide suitable carrier concentration and decrease the interface trap density, while thick pure-ZnO layer could control channel conductance. Based on this novel structure, a high field-effect mobility of 42.6 cm(2) V(-1) s(-1), a high on/off current ratio of 10(8) and a small subthreshold swing of 0.13 V dec(-1) have been achieved. Additionally, the bias stress stability of the bilayer structured devices is enhanced compared to the simple single channel layer ZnO device. These results suggest that the bilayer ZnO:H/ZnO TFTs have a great potential for low-cost thin-film electronics.

  17. Polymer/metal oxide hybrid dielectrics for low voltage field-effect transistors with solution-processed, high-mobility semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Held, Martin; Schießl, Stefan P.; Gannott, Florentina

    Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfO{sub x}) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states atmore » the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100–300 nF/cm{sup 2}) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfO{sub x} dielectrics.« less

  18. Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Gao, Xu; Lin, Meng-Fang; Mao, Bao-Hua; Shimizu, Maki; Mitoma, Nobuhiko; Kizu, Takio; Ou-Yang, Wei; Nabatame, Toshihide; Liu, Zhi; Tsukagoshi, Kazuhito; Wang, Sui-Dong

    2017-01-01

    Decreasing the active layer thickness has been recently reported as an alternative way to achieve fully depleted oxide thin-film transistors for the realization of low-voltage operations. However, the correlation between the active layer thickness and device resistivity to environmental changes is still unclear, which is important for the optimized design of oxide thin-film transistors. In this work, the ambient gas stability of IGZO thin-film transistors is found to be strongly correlated to the IGZO thickness. The TFT with the thinnest IGZO layer shows the highest intrinsic electron mobility in a vacuum, which is greatly reduced after exposure to O2/air. The device with a thick IGZO layer shows similar electron mobility in O2/air, whereas the mobility variation measured in the vacuum is absent. The thickness dependent ambient gas stability is attributed to a high-mobility region in the IGZO surface vicinity with less sputtering-induced damage, which will become electron depleted in O2/air due to the electron transfer to adsorbed gas molecules. The O2 adsorption and deduced IGZO surface band bending is demonstrated by the ambient-pressure x-ray photoemission spectroscopy results.

  19. Solution-processed small molecule-polymer blend organic thin-film transistors with hole mobility greater than 5 cm2/Vs.

    PubMed

    Smith, Jeremy; Zhang, Weimin; Sougrat, Rachid; Zhao, Kui; Li, Ruipeng; Cha, Dongkyu; Amassian, Aram; Heeney, Martin; McCulloch, Iain; Anthopoulos, Thomas D

    2012-05-08

    Using phase-separated organic semiconducting blends containing a small molecule, as the hole transporting material, and a conjugated amorphous polymer, as the binder material, we demonstrate solution-processed organic thin-film transistors with superior performance characteristics that include; hole mobility >5 cm(2) /Vs, current on/off ratio ≥10(6) and narrow transistor parameter spread. These exceptional characteristics are attributed to the electronic properties of the binder polymer and the advantageous nanomorphology of the blend film. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Facile fabrication of high-performance InGaZnO thin film transistor using hydrogen ion irradiation at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Byung Du; Park, Jin-Seong; Chung, K. B., E-mail: kbchung@dongguk.edu

    Device performance of InGaZnO (IGZO) thin film transistors (TFTs) are investigated as a function of hydrogen ion irradiation dose at room temperature. Field effect mobility is enhanced, and subthreshold gate swing is improved with the increase of hydrogen ion irradiation dose, and there is no thermal annealing. The electrical device performance is correlated with the electronic structure of IGZO films, such as chemical bonding states, features of the conduction band, and band edge states below the conduction band. The decrease of oxygen deficient bonding and the changes in electronic structure of the conduction band leads to the improvement of devicemore » performance in IGZO TFT with an increase of the hydrogen ion irradiation dose.« less

  1. Performance improvement for solution-processed high-mobility ZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Sha Li, Chen; Li, Yu Ning; Wu, Yi Liang; Ong, Beng S.; Loutfy, Rafik O.

    2008-06-01

    The fabrication technology of stable, non-toxic, transparent, high performance zinc oxide (ZnO) thin-film semiconductors via the solution process was investigated. Two methods, which were, respectively, annealing a spin-coated precursor solution and annealing a drop-coated precursor solution, were compared. The prepared ZnO thin-film semiconductor transistors have well-controlled, preferential crystal orientation and exhibit superior field-effect performance characteristics. But the ZnO thin-film transistor (TFT) fabricated by annealing a drop-coated precursor solution has a distinctly elevated linear mobility, which further approaches the saturated mobility, compared with that fabricated by annealing a spin-coated precursor solution. The performance of the solution-processed ZnO TFT was further improved when substituting the spin-coating process by the drop-coating process.

  2. Fabrication and electrical properties of MoS2 nanodisc-based back-gated field effect transistors.

    PubMed

    Gu, Weixia; Shen, Jiaoyan; Ma, Xiying

    2014-02-28

    Two-dimensional (2D) molybdenum disulfide (MoS2) is an attractive alternative semiconductor material for next-generation low-power nanoelectronic applications, due to its special structure and large bandgap. Here, we report the fabrication of large-area MoS2 nanodiscs and their incorporation into back-gated field effect transistors (FETs) whose electrical properties we characterize. The MoS2 nanodiscs, fabricated via chemical vapor deposition (CVD), are homogeneous and continuous, and their thickness of around 5 nm is equal to a few layers of MoS2. In addition, we find that the MoS2 nanodisc-based back-gated field effect transistors with nickel electrodes achieve very high performance. The transistors exhibit an on/off current ratio of up to 1.9 × 105, and a maximum transconductance of up to 27 μS (5.4 μS/μm). Moreover, their mobility is as high as 368 cm2/Vs. Furthermore, the transistors have good output characteristics and can be easily modulated by the back gate. The electrical properties of the MoS2 nanodisc transistors are better than or comparable to those values extracted from single and multilayer MoS2 FETs.

  3. AlGaSb Buffer Layers for Sb-Based Transistors

    DTIC Science & Technology

    2010-01-01

    transistor ( HEMT ), molecular beam epitaxy (MBE), field-effect transistor (FET), buffer layer INTRODUCTION High-electron-mobility transistors ( HEMTs ) with InAs...monolayers/s. The use of thinner buffer layers reduces molecular beam epitaxial growth time and source consumption. The buffer layers also exhibit...source. In addition, some of the flux from an Sb cell in a molecular beam epitaxy (MBE) system will deposit near the mouth of the cell, eventually

  4. Surface Modulation of Graphene Field Effect Transistors on Periodic Trench Structure.

    PubMed

    Jin, Jun Eon; Choi, Jun Hee; Yun, Hoyeol; Jang, Ho-Kyun; Lee, Byung Chul; Choi, Ajeong; Joo, Min-Kyu; Dettlaff-Weglikowska, Urszula; Roth, Siegmar; Lee, Sang Wook; Lee, Jae Woo; Kim, Gyu Tae

    2016-07-20

    In this work, graphene field effect transistors (FETs) were fabricated on a trench structure made by carbonized poly(methylmethacrylate) to modify the graphene surface. The trench-structured devices showed different characteristics depending on the channel orientation and the pitch size of the trenches as well as channel area in the FETs. Periodic corrugations and barriers of suspended graphene on the trench structure were measured by atomic force microscopy and electrostatic force microscopy. Regular barriers of 160 mV were observed for the trench structure with graphene. To confirm the transfer mechanism in the FETs depending on the channel orientation, the ratio of experimental mobility (3.6-3.74) was extracted from the current-voltage characteristics using equivalent circuit simulation. It is shown that the number of barriers increases as the pitch size decreases because the number of corrugations increases from different trench pitches. The noise for the 140 nm pitch trench is 1 order of magnitude higher than that for the 200 nm pitch trench.

  5. OP-AMPS on Flexible Substrates with Printable Materials

    DTIC Science & Technology

    2011-08-10

    Zinc Tin Oxide Thin - Film - Transistor Enhancement...II196, 2010. [3] D. Geng, D. H. Kang, and J. Jang, "High-Performance Amorphous Indium-Gallium- Zinc - Oxide Thin - Film Transistor With a Self-Aligned...B., Dodabalapur, A., “Band transport and mobility edge in amorphous solution-processed zinc tin oxide thin - film transistors ”, Applied

  6. Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors

    PubMed Central

    Lei, Yanlian; Deng, Ping; Li, Jun; Lin, Ming; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Ong, Beng S.

    2016-01-01

    Organic field-effect transistors (OFETs) represent a low-cost transistor technology for creating next-generation large-area, flexible and ultra-low-cost electronics. Conjugated electron donor-acceptor (D-A) polymers have surfaced as ideal channel semiconductor candidates for OFETs. However, high-molecular weight (MW) D-A polymer semiconductors, which offer high field-effect mobility, generally suffer from processing complications due to limited solubility. Conversely, the readily soluble, low-MW D-A polymers give low mobility. We report herein a facile solution process which transformed a lower-MW, low-mobility diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene (I) into a high crystalline order and high-mobility semiconductor for OFETs applications. The process involved solution fabrication of a channel semiconductor film from a lower-MW (I) and polystyrene blends. With the help of cooperative shifting motion of polystyrene chain segments, (I) readily self-assembled and crystallized out in the polystyrene matrix as an interpenetrating, nanowire semiconductor network, providing significantly enhanced mobility (over 8 cm2V−1s−1), on/off ratio (107), and other desirable field-effect properties that meet impactful OFET application requirements. PMID:27091315

  7. Morphological Influence of Solution-Processed Zinc Oxide Films on Electrical Characteristics of Thin-Film Transistors.

    PubMed

    Lee, Hyeonju; Zhang, Xue; Hwang, Jaeeun; Park, Jaehoon

    2016-10-19

    We report on the morphological influence of solution-processed zinc oxide (ZnO) semiconductor films on the electrical characteristics of ZnO thin-film transistors (TFTs). Different film morphologies were produced by controlling the spin-coating condition of a precursor solution, and the ZnO films were analyzed using atomic force microscopy, X-ray diffraction, X-ray photoemission spectroscopy, and Hall measurement. It is shown that ZnO TFTs have a superior performance in terms of the threshold voltage and field-effect mobility, when ZnO crystallites are more densely packed in the film. This is attributed to lower electrical resistivity and higher Hall mobility in a densely packed ZnO film. In the results of consecutive TFT operations, a positive shift in the threshold voltage occurred irrespective of the film morphology, but the morphological influence on the variation in the field-effect mobility was evident. The field-effect mobility in TFTs having a densely packed ZnO film increased continuously during consecutive TFT operations, which is in contrast to the mobility decrease observed in the less packed case. An analysis of the field-effect conductivities ascribes these results to the difference in energetic traps, which originate from structural defects in the ZnO films. Consequently, the morphological influence of solution-processed ZnO films on the TFT performance can be understood through the packing property of ZnO crystallites.

  8. Morphological Influence of Solution-Processed Zinc Oxide Films on Electrical Characteristics of Thin-Film Transistors

    PubMed Central

    Lee, Hyeonju; Zhang, Xue; Hwang, Jaeeun; Park, Jaehoon

    2016-01-01

    We report on the morphological influence of solution-processed zinc oxide (ZnO) semiconductor films on the electrical characteristics of ZnO thin-film transistors (TFTs). Different film morphologies were produced by controlling the spin-coating condition of a precursor solution, and the ZnO films were analyzed using atomic force microscopy, X-ray diffraction, X-ray photoemission spectroscopy, and Hall measurement. It is shown that ZnO TFTs have a superior performance in terms of the threshold voltage and field-effect mobility, when ZnO crystallites are more densely packed in the film. This is attributed to lower electrical resistivity and higher Hall mobility in a densely packed ZnO film. In the results of consecutive TFT operations, a positive shift in the threshold voltage occurred irrespective of the film morphology, but the morphological influence on the variation in the field-effect mobility was evident. The field-effect mobility in TFTs having a densely packed ZnO film increased continuously during consecutive TFT operations, which is in contrast to the mobility decrease observed in the less packed case. An analysis of the field-effect conductivities ascribes these results to the difference in energetic traps, which originate from structural defects in the ZnO films. Consequently, the morphological influence of solution-processed ZnO films on the TFT performance can be understood through the packing property of ZnO crystallites. PMID:28773973

  9. Recent Progress in Obtaining Semiconducting Single-Walled Carbon Nanotubes for Transistor Applications.

    PubMed

    Islam, Ahmad E; Rogers, John A; Alam, Muhammad A

    2015-12-22

    High purity semiconducting single-walled carbon nanotubes (s-SWCNTs) with a narrow diameter distribution are required for high-performance transistors. Achieving this goal is extremely challenging because the as-grown material contains mixtures of s-SWCNTs and metallic- (m-) SWCNTs with wide diameter distributions, typically inadequate for integrated circuits. Since 2000, numerous ex situ methods have been proposed to improve the purity of the s-SWCNTs. The majority of these techniques fail to maintain the quality and integrity of the s-SWCNTs with a few notable exceptions. Here, the progress in realizing high purity s-SWCNTs in as-grown and post-processed materials is highlighted. A comparison of transistor parameters (such as on/off ratio and field-effect mobility) obtained from test structures establishes the effectiveness of various methods and suggests opportunities for future improvements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Removing the current-limit of vertical organic field effect transistors

    NASA Astrophysics Data System (ADS)

    Sheleg, Gil; Greenman, Michael; Lussem, Bjorn; Tessler, Nir

    2017-11-01

    The reported Vertical Organic Field Effect Transistors (VOFETs) show either superior current and switching speeds or well-behaved transistor performance, especially saturation in the output characteristics. Through the study of the relationship between the device architecture or dimensions and the device performance, we find that achieving a saturation regime in the output characteristics requires that the device operates in the injection limited regime. In current structures, the existence of the injection limited regime depends on the source's injection barrier as well as on the buried semiconductor layer thickness. To overcome the injection limit imposed by the necessity of injection barrier, we suggest a new architecture to realize VOFETs. This architecture shows better gate control and is independent of the injection barrier at the source, thus allowing for several A cm-2 for a semiconductor having a mobility value of 0.1 cm2 V-1 s-1.

  11. Pursuing High-Mobility n-Type Organic Semiconductors by Combination of "Molecule-Framework" and "Side-Chain" Engineering.

    PubMed

    Zhang, Cheng; Zang, Yaping; Zhang, Fengjiao; Diao, Ying; McNeill, Christopher R; Di, Chong-An; Zhu, Xiaozhang; Zhu, Daoben

    2016-10-01

    "Molecule-framework" and "side-chain" engineering is powerful for the design of high-performance organic semiconductors. Based on 2DQTTs, the relationship between molecular structure, film microstructure, and charge-transport property in organic thin-film transistors (OTFTs) is studied. 2DQTT-o-B exhibits outstanding electron mobilities of 5.2 cm 2 V -1 s -1 , which is a record for air-stable solution-processable n-channel small-molecule OTFTs to date. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Understanding mobility degeneration mechanism in organic thin-film transistors (OTFT)

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wang, Long; Xu, Guangwei; Gao, Nan; Wang, Lingfei; Ji, Zhuoyu; Lu, Congyan; Lu, Nianduan; Li, Ling; Liu, Miwng

    2017-08-01

    Mobility degradation at high gate bias is often observed in organic thin film transistors. We propose a mechanism for this confusing phenomenon, based on the percolation theory with the presence of disordered energy landscape with an exponential density of states. Within a simple model we show how the surface states at insulator/organic interface trap a portion of channel carriers, and result in decrease of mobility as well as source/drain current with gate voltage. Depending on the competition between the carrier accumulation and surface trapping effect, two different carrier density dependences of mobility are obtained, in excellent agreement with experiment data.

  13. Air-Flow Navigated Crystal Growth for TIPS Pentacene-Based Organic Thin-Film Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhengran; Chen, Jihua; Sun, Zhenzhong

    2012-01-01

    6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) is a promising active channel material of organic thin-film transistors (OTFTs) due to its solubility, stability, and high mobility. However, the growth of TIPS pentacene crystals is intrinsically anisotropic and thus leads to significant variation in the performance of OTFTs. In this paper, air flow is utilized to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs, and the resulted films are examined with optical microscopy, grazing-incidence X-ray diffraction, and thin-film transistor measurements. Under air-flow navigation (AFN), TIPS pentacene drop-cast from toluene solution has been observed to form thin films with improved crystalmore » orientation and increased areal coverage on substrates, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency defined by the ratio of average mobility to the standard deviation of the field-effect mobilities.« less

  14. Improved electrical performance and bias stability of solution-processed active bilayer structure of indium zinc oxide based TFT.

    PubMed

    Seo, Jin-Suk; Bae, Byeong-Soo

    2014-09-10

    We fabricated active single- and bilayer structure thin film transistors (TFTs) with aluminum or gallium doped (IZO:Al or IZO:Ga) and undoped indium zinc oxide (IZO) thin film layers using an aqueous solution process. The electrical performance and bias stability of these active single- and bilayer structure TFTs were investigated and compared to reveal the effects of Al/Gal doping and bilayer structure. The single-layer structure IZO TFT shows a high mobility of 19 cm(2)/V · s with a poor positive bias stability (PBS) of ΔVT + 3.4 V. However, Al/Ga doped in IZO TFT reduced mobility to 8.5-9.9 cm(2)/V · s but improved PBS to ΔVT + 1.6-1.7 V due to the reduction of oxygen vacancy. Thus, it is found the bilayer structure TFTs with a combination of bottom- and top-layer compositions modify both the mobility and bias stability of the TFTs to be optimized. The bilayer structure TFT with an IZO:X bottom layer possess high mobility and an IZO bottom layer improves the PBS.

  15. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors.

    PubMed

    Yang, Shengxue; Tongay, Sefaattin; Li, Yan; Yue, Qu; Xia, Jian-Bai; Li, Shun-Shen; Li, Jingbo; Wei, Su-Huai

    2014-07-07

    The ability to control the appropriate layer thickness of transition metal dichalcogenides (TMDs) affords the opportunity to engineer many properties for a variety of applications in possible technological fields. Here we demonstrate that band-gap and mobility of ReSe2 nanosheet, a new member of the TMDs, increase when the layer number decreases, thus influencing the performances of ReSe2 transistors with different layers. A single-layer ReSe2 transistor shows much higher device mobility of 9.78 cm(2) V(-1) s(-1) than few-layer transistors (0.10 cm(2) V(-1) s(-1)). Moreover, a single-layer device shows high sensitivity to red light (633 nm) and has a light-improved mobility of 14.1 cm(2) V(-1) s(-1). Molecular physisorption is used as "gating" to modulate the carrier density of our single-layer transistors, resulting in a high photoresponsivity (Rλ) of 95 A W(-1) and external quantum efficiency (EQE) of 18 645% in O2 environment. This work highlights the fact that the properties of ReSe2 can be tuned in terms of the number of layers and gas molecule gating, and single-layer ReSe2 with appropriate band-gap is a promising material for future functional device applications.

  16. Structure-Property Relationships of Semiconducting Polymers for Flexible and Durable Polymer Field-Effect Transistors.

    PubMed

    Kim, Min Je; Jung, A-Ra; Lee, Myeongjae; Kim, Dongjin; Ro, Suhee; Jin, Seon-Mi; Nguyen, Hieu Dinh; Yang, Jeehye; Lee, Kyung-Koo; Lee, Eunji; Kang, Moon Sung; Kim, Hyunjung; Choi, Jong-Ho; Kim, BongSoo; Cho, Jeong Ho

    2017-11-22

    We report high-performance top-gate bottom-contact flexible polymer field-effect transistors (FETs) fabricated by flow-coating diketopyrrolopyrrole (DPP)-based and naphthalene diimide (NDI)-based polymers (P(DPP2DT-T2), P(DPP2DT-TT), P(DPP2DT-DTT), P(NDI2OD-T2), P(NDI2OD-F2T2), and P(NDI2OD-Se2)) as semiconducting channel materials. All of the polymers displayed good FET characteristics with on/off current ratios exceeding 10 7 . The highest hole mobility of 1.51 cm 2 V -1 s -1 and the highest electron mobility of 0.85 cm 2 V -1 s -1 were obtained from the P(DPP2DT-T2) and P(NDI2OD-Se2) polymer FETs, respectively. The impacts of the polymer structures on the FET performance are well-explained by the interplay between the crystallinity, the tendency of the polymer backbone to adopt an edge-on orientation, and the interconnectivity of polymer fibrils in the film state. Additionally, we demonstrated that all of the flexible polymer-based FETs were highly resistant to tensile stress, with negligible changes in their carrier mobilities and on/off ratios after a bending test. Conclusively, these high-performance, flexible, and durable FETs demonstrate the potential of semiconducting conjugated polymers for use in flexible electronic applications.

  17. Dependence of mobility on shallow localized gap states in single-crystal organic field-effect-transistors

    NASA Astrophysics Data System (ADS)

    Butko, V. Y.; So, W.; Lang, D. V.; Chi, X.; Lashley, J. C.; Ramirez, A. P.

    2009-12-01

    In order to optimize the performance of molecular organic electronic devices it is important to study the intermolecular density of states and charge transport mechanisms in the environment of crystalline organic material. Using this approach in Field Effect Transistors (FETs) we show that material purification improves carrier mobility and decreases density of the deep localized electronic state. We also report a general exponential energy dependence of the density of localized states in a vicinity of the mobility edge (Fermi energies up to ∼7 times higher than the thermal energy (kT)) in a variety of the extensively purified molecular organic crystal FETs. This observation and the low activation energy of the order of ∼kT suggest that molecular structural misplacements of the sizes that are comparable with thermal molecular modes rather than impurity deep traps play a role in formation of these shallow states. We find that the charge carrier mobility in the FET nanochannels, μeff, is parameterized by two factors, the free-carrier mobility, μ0, and the ratio of the free carrier density to the total carrier density induced by gate bias. Crystalline FETs fabricated from rubrene, pentacene, and tetracene have a high free-carrier mobility, μ0∼50 cm2/Vs, at 300 K with lower device μeff dominated by localized shallow gap states. This relationship suggests that further improvements in electronic performance could be possible with enhanced device quality.

  18. A room temperature strategy towards enhanced performance and bias stability of oxide thin film transistor with a sandwich structure channel layer

    NASA Astrophysics Data System (ADS)

    Zeng, Yong; Ning, Honglong; Zheng, Zeke; Zhang, Hongke; Fang, Zhiqiang; Yao, Rihui; Xu, Miao; Wang, Lei; Lan, Linfeng; Peng, Junbiao; Lu, Xubing

    2017-04-01

    Thermal annealing is a conventional and effective way to improve the bias stress stability of oxide thin film transistors (TFT) on solid substrates. However, it is still a challenge for enhancing the bias stress stability of oxide TFTs on flexible substrates by high-temperature post-treatment due to the thermal sensitivity of flexible substrates. Here, a room temperature strategy is presented towards enhanced performance and bias stability of oxide TFTs by intentionally engineering a sandwich structure channel layer consisting of a superlattice with aluminum doped zinc oxide (AZO) and Al2O3 thin films. The Al2O3/AZO/Al2O3-TFTs not only exhibit a saturation mobility of 9.27 cm2 V-1 s-1 and a linear mobility of 11.38 cm2 V-1 s-1 but also demonstrate a better bias stress stability than AZO/Al2O3-TFT. Moreover, the underlying mechanism of this enhanced electrical performance of TFTs with a sandwich structure channel layer is that the bottom Al2O3 thin films can obviously improve the crystalline phase of AZO films while decreasing electrical trapping centers and adsorption sites for undesirable molecules such as water and oxygen.

  19. Nonlinear Transport in Organic Thin Film Transistors with Soluble Small Molecule Semiconductor.

    PubMed

    Kim, Hyeok; Song, Dong-Seok; Kwon, Jin-Hyuk; Jung, Ji-Hoon; Kim, Do-Kyung; Kim, SeonMin; Kang, In Man; Park, Jonghoo; Tae, Heung-Sik; Battaglini, Nicolas; Lang, Philippe; Horowitz, Gilles; Bae, Jin-Hyuk

    2016-03-01

    Nonlinear transport is intensively explained through Poole-Frenkel (PF) transport mechanism in organic thin film transistors with solution-processed small molecules, which is, 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene. We outline a detailed electrical study that identifies the source to drain field dependent mobility. Devices with diverse channel lengths enable the extensive exhibition of field dependent mobility due to thermal activation of carriers among traps.

  20. Black Phosphorus Based Field Effect Transistors with Simultaneously Achieved Near Ideal Subthreshold Swing and High Hole Mobility at Room Temperature.

    PubMed

    Liu, Xinke; Ang, Kah-Wee; Yu, Wenjie; He, Jiazhu; Feng, Xuewei; Liu, Qiang; Jiang, He; Dan Tang; Wen, Jiao; Lu, Youming; Liu, Wenjun; Cao, Peijiang; Han, Shun; Wu, Jing; Liu, Wenjun; Wang, Xi; Zhu, Deliang; He, Zhubing

    2016-04-22

    Black phosphorus (BP) has emerged as a promising two-dimensional (2D) material for next generation transistor applications due to its superior carrier transport properties. Among other issues, achieving reduced subthreshold swing and enhanced hole mobility simultaneously remains a challenge which requires careful optimization of the BP/gate oxide interface. Here, we report the realization of high performance BP transistors integrated with HfO2 high-k gate dielectric using a low temperature CMOS process. The fabricated devices were shown to demonstrate a near ideal subthreshold swing (SS) of ~69 mV/dec and a room temperature hole mobility of exceeding >400 cm(2)/Vs. These figure-of-merits are benchmarked to be the best-of-its-kind, which outperform previously reported BP transistors realized on traditional SiO2 gate dielectric. X-ray photoelectron spectroscopy (XPS) analysis further reveals the evidence of a more chemically stable BP when formed on HfO2 high-k as opposed to SiO2, which gives rise to a better interface quality that accounts for the SS and hole mobility improvement. These results unveil the potential of black phosphorus as an emerging channel material for future nanoelectronic device applications.

  1. Self-aligned top-gate amorphous indium zinc oxide thin-film transistors exceeding low-temperature poly-Si transistor performance.

    PubMed

    Park, Jae Chul; Lee, Ho-Nyeon; Im, Seongil

    2013-08-14

    Thin-film transistor (TFT) is a key component of active-matrix flat-panel displays (AMFPDs). These days, the low-temperature poly silicon (LTPS) TFTs are to match with advanced AMFPDs such as the active matrix organic light-emitting diode (AMOLED) display, because of their high mobility for fast pixel switching. However, the manufacturing process of LTPS TFT is quite complicated, costly, and scale-limited. Amorphous oxide semiconductor (AOS) TFT technology is another candidate, which is as simple as that of conventioanl amorphous (a)-Si TFTs in fabrication but provides much superior device performances to those of a-Si TFTs. Hence, various AOSs have been compared with LTPS for active channel layer of the advanced TFTs, but have always been found to be relatively inferior to LTPS. In the present work, we clear the persistent inferiority, innovating the device performaces of a-IZO TFT by adopting a self-aligned coplanar top-gate structure and modifying the surface of a-IZO material. Herein, we demonstrate a high-performance simple-processed a-IZO TFT with mobility of ∼157 cm(2) V(-1) s(-1), SS of ∼190 mV dec(-1), and good bias/photostabilities, which overall surpass the performances of high-cost LTPS TFTs.

  2. Combinatorial study of zinc tin oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    McDowell, M. G.; Sanderson, R. J.; Hill, I. G.

    2008-01-01

    Groups of thin-film transistors using a zinc tin oxide semiconductor layer have been fabricated via a combinatorial rf sputtering technique. The ZnO :SnO2 ratio of the film varies as a function of position on the sample, from pure ZnO to SnO2, allowing for a study of zinc tin oxide transistor performance as a function of channel stoichiometry. The devices were found to have mobilities ranging from 2to12cm2/Vs, with two peaks in mobility in devices at ZnO fractions of 0.80±0.03 and 0.25±0.05, and on/off ratios as high as 107. Transistors composed predominantly of SnO2 were found to exhibit light sensitivity which affected both the on/off ratios and threshold voltages of these devices.

  3. Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals

    NASA Astrophysics Data System (ADS)

    Wei Shih, Chen; Chin, Albert; Fu Lu, Chun; Fang Su, Wei

    2016-01-01

    High mobility channel thin-film-transistor (TFT) is crucial for both display and future generation integrated circuit. We report a new metal-oxide TFT that has an ultra-thin 4.5 nm SnO2 thickness for both active channel and source-drain regions, very high 147 cm2/Vs field-effect mobility, high ION/IOFF of 2.3 × 107, small 110 mV/dec sub-threshold slope, and a low VD of 2.5 V for low power operation. This mobility is already better than chemical-vapor-deposition grown multi-layers MoS2 TFT. From first principle quantum-mechanical calculation, the high mobility TFT is due to strongly overlapped orbitals.

  4. Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals

    PubMed Central

    Wei Shih, Chen; Chin, Albert; Fu Lu, Chun; Fang Su, Wei

    2016-01-01

    High mobility channel thin-film-transistor (TFT) is crucial for both display and future generation integrated circuit. We report a new metal-oxide TFT that has an ultra-thin 4.5 nm SnO2 thickness for both active channel and source-drain regions, very high 147 cm2/Vs field-effect mobility, high ION/IOFF of 2.3 × 107, small 110 mV/dec sub-threshold slope, and a low VD of 2.5 V for low power operation. This mobility is already better than chemical-vapor-deposition grown multi-layers MoS2 TFT. From first principle quantum-mechanical calculation, the high mobility TFT is due to strongly overlapped orbitals. PMID:26744240

  5. Solution-processed field-effect transistors based on dihexylquaterthiophene films with performances exceeding those of vacuum-sublimed films.

    PubMed

    Leydecker, Tim; Trong Duong, Duc; Salleo, Alberto; Orgiu, Emanuele; Samorì, Paolo

    2014-12-10

    Solution-processable oligothiophenes are model systems for charge transport and fabrication of organic field-effect transistors (OFET) . Herein we report a structure vs function relationship study focused on the electrical characteristics of solution-processed dihexylquaterthiophene (DH4T)-based OFET. We show that by combining the tailoring of all interfaces in the bottom-contact bottom-gate transistor, via chemisorption of ad hoc molecules on electrodes and dielectric, with suitable choice of the film preparation conditions (including solvent type, concentration, volume, and deposition method), it is possible to fabricate devices exhibiting field-effect mobilities exceeding those of vacuum-processed DH4T transistors. In particular, the evaporation rate of the solvent, the processing temperature, as well as the concentration of the semiconducting material were found to hold a paramount importance in driving the self-assembly toward the formation of highly ordered and low-dimensional supramolecular architectures, confirming the kinetically governed nature of the self-assembly process. Among the various architectures, hundreds-of-micrometers long and thin DH4T crystallites exhibited enhanced charge transport.

  6. Technology and characterization of Thin-Film Transistors (TFTs) with a-IGZO semiconductor and high-k dielectric layer

    NASA Astrophysics Data System (ADS)

    Mroczyński, R.; Wachnicki, Ł.; Gierałtowska, S.

    2016-12-01

    In this work, we present the design of the technology and fabrication of TFTs with amorphous IGZO semiconductor and high-k gate dielectric layer in the form of hafnium oxide (HfOx). In the course of this work, the IGZO fabrication was optimized by means of Taguchi orthogonal tables approach in order to obtain an active semiconductor with reasonable high concentration of charge carriers, low roughness and relatively high mobility. The obtained Thin-Film Transistors can be characterized by very good electrical parameters, i.e., the effective mobility (μeff ≍ 12.8 cm2V-1s-1) significantly higher than that for a-Si TFTs (μeff ≍ 1 cm2V-1s-1). However, the value of sub-threshold swing (i.e., 640 mV/dec) points that the interfacial properties of IGZO/HfOx stack is characterized by high value of interface states density (Dit) which, in turn, demands further optimization for future applications of the demonstrated TFT structures.

  7. Electrical characteristics of high-power AlGaN-GaN high electron mobility transistors irradiated with protons and heavy ions

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Bonsall, Jeremy; Lingley, Zachary; Brodie, Miles; Mason, Maribeth

    2017-02-01

    High electron mobility transistors (HEMTs) based on AlGaN-GaN hetero-structures are finding an increasing number of commercial and military applications that require high voltage, high power, and high efficiency operation. In recent years, leading GaN HEMT manufacturers have reported excellent RF power characteristics and encouraging reliability, but long-term reliability in the space environment still remains a major concern due to a large number of defects and traps present both in the bulk as well as at the surface, leading to undesirable characteristics including current collapse. Furthermore, degradation mechanisms in GaN HEMTs are still not well understood. Thus, reliability and radiation effects of GaN HEMTs should be studied before solid state power amplifiers (SSPAs) based on GaN HEMT technology are successfully deployed in space satellite systems. For the present study, we investigated electrical characteristics of high-power GaN HEMTs irradiated with protons and heavy ions under various irradiation and biasing conditions.

  8. Novel model of a AlGaN/GaN high electron mobility transistor based on an artificial neural network

    NASA Astrophysics Data System (ADS)

    Cheng, Zhi-Qun; Hu, Sha; Liu, Jun; Zhang, Qi-Jun

    2011-03-01

    In this paper we present a novel approach to modeling AlGaN/GaN high electron mobility transistor (HEMT) with an artificial neural network (ANN). The AlGaN/GaN HEMT device structure and its fabrication process are described. The circuit-based Neuro-space mapping (neuro-SM) technique is studied in detail. The EEHEMT model is implemented according to the measurement results of the designed device, which serves as a coarse model. An ANN is proposed to model AlGaN/GaN HEMT based on the coarse model. Its optimization is performed. The simulation results from the model are compared with the measurement results. It is shown that the simulation results obtained from the ANN model of AlGaN/GaN HEMT are more accurate than those obtained from the EEHEMT model. Project supported by the National Natural Science Foundation of China (Grant No. 60776052).

  9. Effect of Al doping on performance of ZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Dong, Junchen; Han, Dedong; Li, Huijin; Yu, Wen; Zhang, Shendong; Zhang, Xing; Wang, Yi

    2018-03-01

    In this work, we investigate the Aluminum-doped Zinc Oxide (AZO) thin films and their feasibility as the active layer for thin film transistors (TFTs). A comparison on performance is made between the AZO TFTs and ZnO TFTs. The electrical properties such as saturation mobility, subthreshold swing, and on-to-off current ratio are improved when AZO is utilized as the active layer. Oxygen component of the thin film materials indicates that Al is the suppressor for oxygen defect in active layer, which improves the subthreshold swing. Moreover, based on band structure analyzation, we observe that the carrier concentration of AZO is higher than ZnO, leading to the enhancement of saturation mobility. The microstructure of the thin films convey that the AZO films exhibit much smaller grain boundaries than ZnO films, which results in the lower off-state current and higher on-to-off current ratio of AZO TFTs. The AZO thin films show huge potential to be the active layer of TFTs.

  10. Doping Nitrogen in InGaZnO Thin Film Transistor with Double Layer Channel Structure.

    PubMed

    Chang, Sheng-Po; Shan, Deng

    2018-04-01

    This paper presents the electrical characteristics of doping nitrogen in an amorphous InGaZnO thin film transistor. The IGZO:N film, which acted as a channel layer, was deposited using RF sputtering with a nitrogen and argon gas mixture at room temperature. The optimized parameters of the IGZO:N/IGZO TFT are as follows: threshold voltage is 0.5 V, field effect mobility is 14.34 cm2V-1S-1. The on/off current ratio is 106 and subthreshold swing is 1.48 V/decade. The positive gate bias stress stability of InGaZnO doping with nitrogen shows improvement compared to doping with oxygen.

  11. Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors, and Structure-Property Relationships

    PubMed Central

    Jiang, Hui; Ye, Jun; Hu, Peng; Wei, Fengxia; Du, Kezhao; Wang, Ning; Ba, Te; Feng, Shuanglong; Kloc, Christian

    2014-01-01

    The fluorination of p-type metal phthalocyanines produces n-type semiconductors, allowing the design of organic electronic circuits that contain inexpensive heterojunctions made from chemically and thermally stable p- and n-type organic semiconductors. For the evaluation of close to intrinsic transport properties, high-quality centimeter-sized single crystals of F16CuPc, F16CoPc and F16ZnPc have been grown. New crystal structures of F16CuPc, F16CoPc and F16ZnPc have been determined. Organic single-crystal field-effect transistors have been fabricated to study the effects of the central metal atom on their charge transport properties. The F16ZnPc has the highest electron mobility (~1.1 cm2 V−1 s−1). Theoretical calculations indicate that the crystal structure and electronic structure of the central metal atom determine the transport properties of fluorinated metal phthalocyanines. PMID:25524460

  12. High mobility, dual layer, c-axis aligned crystalline/amorphous IGZO thin film transistor

    NASA Astrophysics Data System (ADS)

    Chung, Chen-Yang; Zhu, Bin; Greene, Raymond G.; Thompson, Michael O.; Ast, Dieter G.

    2015-11-01

    We demonstrate a dual layer IGZO thin film transistor (TFT) consisting of a 310 °C deposited c-axis aligned crystal (CAAC) 20 nm thick channel layer capped by a second, 30 nm thick, 260 °C deposited amorphous IGZO layer. The TFT exhibits a saturation field-effect mobility of ˜20 cm2/V s, exceeding the mobility of 50 nm thick single layer reference TFTs fabricated with either material. The deposition temperature of the second layer influences the mobility of the underlying transport layer. When the cap layer is deposited at room temperature (RT), the mobility in the 310 °C deposited CAAC layer is initially low (6.7 cm2/V s), but rises continuously with time over 58 days to 20.5 cm2/V s, i.e., to the same value as when the second layer is deposited at 260 °C. This observation indicates that the two layers equilibrate at RT with a time constant on the order of 5 × 106 s. An analysis based on diffusive transport indicates that the room temperature diffusivity must be of the order of 1 × 10-18 cm2 s-1 with an activation enthalpy EA < 0.2 eV for the mobility limiting species. The findings are consistent with a hypothesis that the amorphous layer deposited on top of the CAAC has a higher solubility for impurities and/or structural defects than the underlying nanocrystalline transport layer, and that the equilibration of the mobility limiting species is rate limited by hydrogen diffusion, whose known diffusivity fits these estimates.

  13. Charge Transport in Semiconductor Nanocrystal Solids

    NASA Astrophysics Data System (ADS)

    Talapin, Dmitri; Shevchenko, Elena; Lee, Jong Soo; Urban, Jeffrey; Mitzi, David; Murray, Christopher

    2007-03-01

    Self-assembly of chemically-synthesized nanocrystals can yield complex long-range ordered structures which can be used as model systems for studying transport phenomena in low-dimensional materials [1]. Treatment of close-packed PbSe nanocrystal arrays with hydrazine enhanced exchange coupling between the nanocrystals and improved conductance by more than ten orders of magnitude compared to native nanocrystal films [2]. The conductivity of PbSe nanocrystal solids can be switched between n- and p-type transports by controlling the saturation of electronic states at nanocrystal surfaces. Nanocrystal arrays form the n- and p-channels of field-effect transistors with electron and hole mobilities of 2.5 cm^2V-1s-1 and 0.3 cm^2V-1s-1, respectively, and current modulation Ion/Ioff˜10^3-10^4. The field-effect mobility in PbSe nanocrystal arrays is higher than the mobility of organic transistors while the easy switch between n- and p-transport allows realization of complimentary circuits and p-n junctions for nanocrystal-based solar cells and thermoelectric devices. [1] E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, C. B. Murray. Nature 439, 55 (2006). [2] D. V. Talapin, C. B. Murray. Science 310, 86 (2005).

  14. Improved Mobility and Bias Stability of Thin Film Transistors Using the Double-Layer a-InGaZnO/a-InGaZnO:N Channel.

    PubMed

    Yu, H; Zhang, L; Li, X H; Xu, H Y; Liu, Y C

    2016-04-01

    The amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) were demonstrated based on a double-layer channel structure, where the channel is composed of an ultrathin nitro-genated a-IGZO (a-IGZO:N) layer and an undoped a-IGZO layer. The double-layer channel device showed higher saturation mobility and lower threshold-voltage shift (5.74 cm2/Vs, 2.6 V) compared to its single-layer counterpart (0.17 cm2/Vs, 7.23 V). The improvement can be attributed to three aspects: (1) improved carrier transport properties of the channel by the a-IGZO:N layer with high carrier mobility and the a-IGZO layer with high carrier concentration, (2) reduced interfacial trap density between the active channel and the gate insulator, and (3) higher surface flatness of the double-layer channel. Our study reveals key insights into double-layer channel, involving selecting more suitable electrical property for back-channel layer and more suitable interface modification for active layer. Meanwhile, room temperature fabrication amorphous TFTs offer certain advantages on better flexibility and higher uniformity over a large area.

  15. Experimental and numerical investigation of contact-area-limited doping for top-contact pentacene thin-film transistors with Schottky contact.

    PubMed

    Noda, Kei; Wada, Yasuo; Toyabe, Toru

    2015-10-28

    Effects of contact-area-limited doping for pentacene thin-film transistors with a bottom-gate, top-contact configuration were investigated. The increase in the drain current and the effective field-effect mobility was achieved by preparing hole-doped layers underneath the gold contact electrodes by coevaporation of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), confirmed by using a thin-film organic transistor advanced simulator (TOTAS) incorporating Schottky contact with a thermionic field emission (TFE) model. Although the simulated electrical characteristics fit the experimental results well only in the linear regime of the transistor operation, the barrier height for hole injection and the gate-voltage-dependent hole mobility in the pentacene transistors were evaluated with the aid of the device simulation. This experimental data analysis with the simulation indicates that the highly-doped semiconducting layers prepared in the contact regions can enhance the charge carrier injection into the active semiconductor layer and concurrent trap filling in the transistor channel, caused by the mitigation of a Schottky energy barrier. This study suggests that both the contact-area-limited doping and the device simulation dealing with Schottky contact are indispensable in designing and developing high-performance organic thin-film transistors.

  16. Nature of size effects in compact models of field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torkhov, N. A., E-mail: trkf@mail.ru; Scientific-Research Institute of Semiconductor Devices, Tomsk 634050; Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050

    Investigations have shown that in the local approximation (for sizes L < 100 μm), AlGaN/GaN high electron mobility transistor (HEMT) structures satisfy to all properties of chaotic systems and can be described in the language of fractal geometry of fractional dimensions. For such objects, values of their electrophysical characteristics depend on the linear sizes of the examined regions, which explain the presence of the so-called size effects—dependences of the electrophysical and instrumental characteristics on the linear sizes of the active elements of semiconductor devices. In the present work, a relationship has been established for the linear model parameters of themore » equivalent circuit elements of internal transistors with fractal geometry of the heteroepitaxial structure manifested through a dependence of its relative electrophysical characteristics on the linear sizes of the examined surface areas. For the HEMTs, this implies dependences of their relative static (A/mm, mA/V/mm, Ω/mm, etc.) and microwave characteristics (W/mm) on the width d of the sink-source channel and on the number of sections n that leads to a nonlinear dependence of the retrieved parameter values of equivalent circuit elements of linear internal transistor models on n and d. Thus, it has been demonstrated that the size effects in semiconductors determined by the fractal geometry must be taken into account when investigating the properties of semiconductor objects on the levels less than the local approximation limit and designing and manufacturing field effect transistors. In general, the suggested approach allows a complex of problems to be solved on designing, optimizing, and retrieving the parameters of equivalent circuits of linear and nonlinear models of not only field effect transistors but also any arbitrary semiconductor devices with nonlinear instrumental characteristics.« less

  17. Proton Irradiation-Induced Metal Voids in Gallium Nitride High Electron Mobility Transistors

    DTIC Science & Technology

    2015-09-01

    13. ABSTRACT (maximum 200 words) Gallium nitride/aluminum gallium nitride high electron mobility transistors with nickel/ gold (Ni/Au) and...platinum/ gold (Pt/Au) gating are irradiated with 2 MeV protons. Destructive physical analysis revealed material voids underneath the gate finger of the...nickel/ gold (Ni/Au) and platinum/ gold (Pt/Au) gating are irradiated with 2 MeV protons. Destructive physical analysis revealed material voids underneath

  18. DC and small-signal physical models for the AlGaAs/GaAs high electron mobility transistor

    NASA Technical Reports Server (NTRS)

    Sarker, J. C.; Purviance, J. E.

    1991-01-01

    Analytical and numerical models are developed for the microwave small-signal performance, such as transconductance, gate-to-source capacitance, current gain cut-off frequency and the optimum cut-off frequency of the AlGaAs/GaAs High Electron Mobility Transistor (HEMT), in both normal and compressed transconductance regions. The validated I-V characteristics and the small-signal performances of four HeMT's are presented.

  19. High Mobility Flexible Amorphous IGZO Thin-Film Transistors with a Low Thermal Budget Ultra-Violet Pulsed Light Process.

    PubMed

    Benwadih, M; Coppard, R; Bonrad, K; Klyszcz, A; Vuillaume, D

    2016-12-21

    Amorphous, sol-gel processed, indium gallium zinc oxide (IGZO) transistors on plastic substrate with a printable gate dielectric and an electron mobility of 4.5 cm 2 /(V s), as well as a mobility of 7 cm 2 /(V s) on solid substrate (Si/SiO 2 ) are reported. These performances are obtained using a low temperature pulsed light annealing technique. Ultraviolet (UV) pulsed light system is an innovative technique compared to conventional (furnace or hot-plate) annealing process that we successfully implemented on sol-gel IGZO thin film transistors (TFTs) made on plastic substrate. The photonic annealing treatment has been optimized to obtain IGZO TFTs with significant electrical properties. Organic gate dielectric layers deposited on this pulsed UV light annealed films have also been optimized. This technique is very promising for the development of amorphous IGZO TFTs on plastic substrates.

  20. FAST TRACK COMMUNICATION High mobility and low operating voltage ZnGaO and ZnGaLiO transistors with spin-coated Al2O3 as gate dielectric

    NASA Astrophysics Data System (ADS)

    Xia, D. X.; Xu, J. B.

    2010-11-01

    Spin-coated alumina serving as a gate dielectric in thin film transistors shows interesting dielectric properties for low-voltage applications, despite a moderate capacitance. With Ga singly doped and Ga, Li co-doped ZnO as the active channel layers, typical mobilities of 4.7 cm2 V-1 s-1 and 2.1 cm2 V-1 s-1 are achieved, respectively. At a given gate bias, the operation current is much smaller than the previously reported values in low-voltage thin film transistors, primarily relying on the giant-capacitive dielectric. The reported devices combine advantages of high mobility, low power consumption, low cost and ease of fabrication. In addition to the transparent nature of both the dielectric and semiconducting active channels, the superior electrical properties of the devices may provide a new avenue for future transparent electronics.

  1. Effect of grain boundary on the field-effect mobility of microrod single crystal organic transistors.

    PubMed

    Kim, Jaekyun; Kang, Jingu; Cho, Sangho; Yoo, Byungwook; Kim, Yong-Hoon; Park, Sung Kyu

    2014-11-01

    High-performance microrod single crystal organic transistors based on a p-type 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) semiconductor are fabricated and the effects of grain boundaries on the carrier transport have been investigated. The spin-coating of C8-BTBT and subsequent solvent vapor annealing process enabled the formation of organic single crystals with high aspect ratio in the range of 10 - 20. It was found that the organic field-effect transistors (OFETs) based on these single crystals yield a field-effect mobility and an on/off current ratio of 8.04 cm2/Vs and > 10(5), respectively. However, single crystal OFETs with a kink, in which two single crystals are fused together, exhibited a noticeable drop of field-effect mobility, and we claim that this phenomenon results from the carrier scattering at the grain boundary.

  2. Experimental study of uniaxial stress effects on Coulomb-limited mobility in p-type metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shigeki; Saitoh, Masumi; Nakabayashi, Yukio; Uchida, Ken

    2007-11-01

    Uniaxial stress effects on Coulomb-limited mobility (μCoulomb) in Si metal-oxide-semiconductor field-effect transistors (MOSFETs) are investigated experimentally. By using the four-point bending method, uniaxial stress corresponding to 0.1% strain is applied to MOSFETs along the channel direction. It is found that μCoulomb in p-type MOSFETs is enhanced greatly by uniaxial stress; μCoulomb is as sensitive as phonon-limited mobility. The high sensitivity of μCoulomb in p-type MOSFETs to stress arises from the stress-induced change of hole effective mass.

  3. High-mobility low-temperature ZnO transistors with low-voltage operation

    NASA Astrophysics Data System (ADS)

    Bong, Hyojin; Lee, Wi Hyoung; Lee, Dong Yun; Kim, Beom Joon; Cho, Jeong Ho; Cho, Kilwon

    2010-05-01

    Low voltage high mobility n-type thin film transistors (TFTs) based on sol-gel processed zinc oxide (ZnO) were fabricated using a high capacitance ion gel gate dielectric. The ion gel gated solution-processed ZnO TFTs were found to exhibit excellent electrical properties. TFT carrier mobilities were 13 cm2/V s, ON/OFF current ratios were 105, regardless of the sintering temperature used for the preparation of the ZnO thin films. Ion gel gated ZnO TFTs are successfully demonstrated on plastic substrates for the large area flexible electronics.

  4. The role of polarization coulomb field scattering in the electron mobility of AlGaN/AlN/GaN heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Lin, Zhaojun; Zhao, Jingtao; Yang, Ming; Shi, Wenjing; Lv, Yuanjie; Feng, Zhihong

    2016-04-01

    The electron mobility for the prepared AlGaN/AlN/GaN heterostructure field-effect transistor (HFET) with the ratio of the gate length to the drain-to-source distance being less than 1/2 has been studied by comparing the measured electron mobility with the theoretical value. The measured electron mobility is derived from the measured capacitance-voltage (C-V) and current-voltage (I-V) characteristics, and the theoretical mobility is determined by using Matthiessen's law, involving six kinds of important scattering mechanisms. For the prepared device at room temperature, longitudinal optical phonon scattering (LO scattering) was found to have a remarkable effect on the value of the electron mobility, and polarization Coulomb field scattering (PCF scattering ) was found to be important to the changing trend of the electron mobility versus the two-dimensional electron gas (2DEG) density.

  5. Synthesis of ZnO nanowires for thin film network transistors

    NASA Astrophysics Data System (ADS)

    Dalal, S. H.; Unalan, H. E.; Zhang, Y.; Hiralal, Pritesh; Gangloff, L.; Flewitt, Andrew J.; Amaratunga, Gehan A. J.; Milne, William I.

    2008-08-01

    Zinc oxide nanowire networks are attractive as alternatives to organic and amorphous semiconductors due to their wide bandgap, flexibility and transparency. We demonstrate the fabrication of thin film transistors (TFT)s which utilize ZnO nanowires as the semiconducting channel. These thin film transistors can be transparent and flexible and processed at low temperatures on to a variety of substrates. The nanowire networks are created using a simple contact transfer method that is easily scalable. Apparent nanowire network mobility values can be as high as 3.8 cm2/Vs (effective thin film mobility: 0.03 cm2/Vs) in devices with 20μm channel lengths and ON/OFF ratios of up to 104.

  6. Charge delocalization characteristics of regioregular high mobility polymers

    DOE PAGES

    Coughlin, J. E.; Zhugayevych, A.; Wang, M.; ...

    2017-01-01

    Controlling the regioregularity among the structural units of narrow bandgap conjugated polymer backbones has led to improvements in optoelectronic properties, for example in the mobilities observed in field effect transistor devices. To investigate how the regioregularity affects quantities relevant to hole transport, regioregular and regiorandom oligomers representative of polymeric structures were studied using density functional theory. Several structural and electronic characteristics of the oligomers were compared, including chain planarity, cation spin density, excess charges on molecular units and internal reorganizational energy. The main difference between the regioregular and regiorandom oligomers is found to be the conjugated backbone planarity, while themore » reorganizational energies calculated are quite similar across the molecular family. Lastly, this work constitutes the first step on understanding the complex interplay of atomistic changes and an oligomer backbone structure toward modeling the charge transport properties.« less

  7. High-mobility ambipolar ZnO-graphene hybrid thin film transistors.

    PubMed

    Song, Wooseok; Kwon, Soon Yeol; Myung, Sung; Jung, Min Wook; Kim, Seong Jun; Min, Bok Ki; Kang, Min-A; Kim, Sung Ho; Lim, Jongsun; An, Ki-Seok

    2014-02-11

    In order to combine advantages of ZnO thin film transistors (TFTs) with a high on-off ratio and graphene TFTs with extremely high carrier mobility, we present a facile methodology for fabricating ZnO thin film/graphene hybrid two-dimensional TFTs. Hybrid TFTs exhibited ambipolar behavior, an outstanding electron mobility of 329.7 ± 16.9 cm(2)/V·s, and a high on-off ratio of 10(5). The ambipolar behavior of the ZnO/graphene hybrid TFT with high electron mobility could be due to the superimposed density of states involving the donor states in the bandgap of ZnO thin films and the linear dispersion of monolayer graphene. We further established an applicable circuit model for understanding the improvement in carrier mobility of ZnO/graphene hybrid TFTs.

  8. Graphene/Pentacene Barristor with Ion-Gel Gate Dielectric: Flexible Ambipolar Transistor with High Mobility and On/Off Ratio.

    PubMed

    Oh, Gwangtaek; Kim, Jin-Soo; Jeon, Ji Hoon; Won, EunA; Son, Jong Wan; Lee, Duk Hyun; Kim, Cheol Kyeom; Jang, Jingon; Lee, Takhee; Park, Bae Ho

    2015-07-28

    High-quality channel layer is required for next-generation flexible electronic devices. Graphene is a good candidate due to its high carrier mobility and unique ambipolar transport characteristics but typically shows a low on/off ratio caused by gapless band structure. Popularly investigated organic semiconductors, such as pentacene, suffer from poor carrier mobility. Here, we propose a graphene/pentacene channel layer with high-k ion-gel gate dielectric. The graphene/pentacene device shows both high on/off ratio and carrier mobility as well as excellent mechanical flexibility. Most importantly, it reveals ambipolar behaviors and related negative differential resistance, which are controlled by external bias. Therefore, our graphene/pentacene barristor with ion-gel gate dielectric can offer various flexible device applications with high performances.

  9. Kinase detection with gallium nitride based high electron mobility transistors

    PubMed Central

    Makowski, Matthew S.; Bryan, Isaac; Sitar, Zlatko; Arellano, Consuelo; Xie, Jinqiao; Collazo, Ramon; Ivanisevic, Albena

    2013-01-01

    A label-free kinase detection system was fabricated by the adsorption of gold nanoparticles functionalized with kinase inhibitor onto AlGaN/GaN high electron mobility transistors (HEMTs). The HEMTs were operated near threshold voltage due to the greatest sensitivity in this operational region. The Au NP/HEMT biosensor system electrically detected 1 pM SRC kinase in ionic solutions. These results are pertinent to drug development applications associated with kinase sensing. PMID:23918992

  10. Effect of Al2O3 encapsulation on multilayer MoSe2 thin-film transistors

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Ah; Yeoul Kim, Seong; Kim, Jiyoung; Choi, Woong

    2017-03-01

    We report the effect of Al2O3 encapsulation on the device performance of multilayer MoSe2 thin-film transistors based on statistical investigation of 29 devices with a SiO2 bottom-gate dielectric. On average, Al2O3 encapsulation by atomic layer deposition increased the field-effect mobility from 10.1 cm2 V-1 s-1 to 14.8 cm2 V-1 s-1, decreased the on/off-current ratio from 8.5  ×  105 to 2.3  ×  105 and negatively shifted the threshold voltage from  -1.1 V to  -8.1 V. Calculation based on the Y-function method indicated that the enhancement of intrinsic carrier mobility occurred independently of the reduction of contact resistance after Al2O3 encapsulation. Furthermore, contrary to previous reports in the literature, we observe a negligible effect of thermal annealing on contact resistance and carrier mobility during the atomic layer deposition of Al2O3. These results demonstrate that Al2O3 encapsulation is a useful method for improving the carrier mobility of multilayer MoSe2 transistors, providing important implications on the application of MoSe2 and other 2D materials into high-performance transistors.

  11. Novel Field-Effect Schottky Barrier Transistors Based on Graphene-MoS2 Heterojunctions

    PubMed Central

    Tian, He; Tan, Zhen; Wu, Can; Wang, Xiaomu; Mohammad, Mohammad Ali; Xie, Dan; Yang, Yi; Wang, Jing; Li, Lain-Jong; Xu, Jun; Ren, Tian-Ling

    2014-01-01

    Recently, two-dimensional materials such as molybdenum disulphide (MoS2) have been demonstrated to realize field effect transistors (FET) with a large current on-off ratio. However, the carrier mobility in backgate MoS2 FET is rather low (typically 0.5–20 cm2/V·s). Here, we report a novel field-effect Schottky barrier transistors (FESBT) based on graphene-MoS2 heterojunction (GMH), where the characteristics of high mobility from graphene and high on-off ratio from MoS2 are properly balanced in the novel transistors. Large modulation on the device current (on/off ratio of 105) is achieved by adjusting the backgate (through 300 nm SiO2) voltage to modulate the graphene-MoS2 Schottky barrier. Moreover, the field effective mobility of the FESBT is up to 58.7 cm2/V·s. Our theoretical analysis shows that if the thickness of oxide is further reduced, a subthreshold swing (SS) of 40 mV/decade can be maintained within three orders of drain current at room temperature. This provides an opportunity to overcome the limitation of 60 mV/decade for conventional CMOS devices. The FESBT implemented with a high on-off ratio, a relatively high mobility and a low subthreshold promises low-voltage and low-power applications for future electronics. PMID:25109609

  12. Current Collapse Induced in AlGaN/GaN High-Electron-Mobility Transistors by Bias Stress

    DTIC Science & Technology

    2003-08-25

    structure where the traps causing current collapse can be passivated by forming H-defect complexes. Hierro et al.7 have shown, for example, that deep...Lett. 75, 4016 ~1999!. 7 A. Hierro , S. A. Ringel, M. Hansen, J. S. Speck, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 77, 1499 ~2000!. 8 S. J

  13. Heterostructured semiconductor single-walled carbon nanotube films for solution-processed high-performance field-effect transistors

    NASA Astrophysics Data System (ADS)

    Park, Noh-Hwal; Lee, Seung-Hoon; Jeong, Seung-Hyeon; Khim, Dongyoon; Kim, Yun Ho; Yoo, Sungmi; Noh, Yong-Young; Kim, Jang-Joo

    2018-03-01

    In this paper, we report a simple and effective method to simultaneously achieve a high charge-carrier mobility and low off current in conjugated polymer-wrapped semiconducting single-walled carbon nanotube (s-SWNT) transistors by applying a SWNT bilayer. To achieve the high mobility and low off current, highly purified and less purified s-SWNTs are successively coated to form the semiconducting layer consisting of poly (3-dodecylthiophene-2,5-diyl) (P3DDT)-wrapped high-pressure carbon mono oxide (HiPCO) SWNT (P3DDT-HiPCO) and poly (9, 9-di-n-dodecylfluorene) (PFDD)-wrapped plasma discharge (PD) SWNT (PFDD-PD). The SWNT transistors with bilayer SWNT networked film showed highly improved hole field-effect mobility (6.18 ± 0.85 cm2V-1s-1 average), on/off current ratio (107), and off current (˜1 pA). Thus, the combination of less purified PFDD-PD (98%-99%) charge-injection layer and highly purified s-P3DDT-HiPCO (>99%) charge-transport layer as the bi-layered semiconducting film achieved high mobility and low off current simultaneously.

  14. Strategies for Improving the Performance of Sensors Based on Organic Field-Effect Transistors.

    PubMed

    Wu, Xiaohan; Mao, Shun; Chen, Junhong; Huang, Jia

    2018-04-01

    Organic semiconductors (OSCs) have been extensively studied as sensing channel materials in field-effect transistors due to their unique charge transport properties. Stimulation caused by its environmental conditions can readily change the charge-carrier density and mobility of OSCs. Organic field-effect transistors (OFETs) can act as both signal transducers and signal amplifiers, which greatly simplifies the device structure. Over the past decades, various sensors based on OFETs have been developed, including physical sensors, chemical sensors, biosensors, and integrated sensor arrays with advanced functionalities. However, the performance of OFET-based sensors still needs to be improved to meet the requirements from various practical applications, such as high sensitivity, high selectivity, and rapid response speed. Tailoring molecular structures and micro/nanofilm structures of OSCs is a vital strategy for achieving better sensing performance. Modification of the dielectric layer and the semiconductor/dielectric interface is another approach for improving the sensor performance. Moreover, advanced sensory functionalities have been achieved by developing integrated device arrays. Here, a brief review of strategies used for improving the performance of OFET sensors is presented, which is expected to inspire and provide guidance for the design of future OFET sensors for various specific and practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fabrication of Stretchable Organic-Inorganic Hybrid Thin-Film Transistors on Polyimide Stiff-Island Structures.

    PubMed

    Jung, Soon-Won; Koo, Jae Bon; Park, Chan Woo; Na, Bock Soon; Oh, Ji-Young; Lee, Sang Seok

    2015-10-01

    In this study, stretchable organic-inorganic hybrid thin-film transistors (TFTs) are fabricated on a polyimide (PI) stiff-island/elastomer substrate using blends of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] and poly(methyl methacrylate) (PMMA) and oxide semiconductor In-Ga-Zn-O as the gate dielectric and semiconducting layer, respectively. Carrier mobility, Ion/Ioff ratio, and subthreshold swing (SS) values of 6.1 cm2 V(-1) s(-1), 10(7), and 0.2 V/decade, respectively, were achieved. For the hybrid TFTs, the endurable maximum strain without degradation of electrical properties was approximately 49%. These results correspond to those obtained in the first study on fabrication of stretchable hybrid-type TFTs on elastomer substrate using an organic gate insulator and oxide semiconducting active channel structure, thus indicating the feasibility of a promising device for stretchable electronic systems.

  16. Effects of Electron Beam Irradiation and Thiol Molecule Treatment on the Properties of MoS2 Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Choi, Barbara Yuri; Cho, Kyungjune; Pak, Jinsu; Kim, Tae-Young; Kim, Jae-Keun; Shin, Jiwon; Seo, Junseok; Chung, Seungjun; Lee, Takhee

    2018-05-01

    We investigated the effects of the structural defects intentionally created by electron-beam irradiation with an energy of 30 keV on the electrical properties of monolayer MoS2 field effect transistors (FETs). We observed that the created defects by electron beam irradiation on the MoS2 surface working as trap sites deteriorated the carrier mobility and carrier concentration with increasing the subthreshold swing value and shifting the threshold voltage in MoS2 FETs. The electrical properties of electron-beam irradiated MoS2 FETs were slightly improved by treating the devices with thiol-terminated molecules which presumably passivated the structural defects of MoS2. The results of this study may enhance the understanding of the electrical properties of MoS2 FETs in terms of creating and passivating defect sites.

  17. Top-gate organic depletion and inversion transistors with doped channel and injection contact

    NASA Astrophysics Data System (ADS)

    Liu, Xuhai; Kasemann, Daniel; Leo, Karl

    2015-03-01

    Organic field-effect transistors constitute a vibrant research field and open application perspectives in flexible electronics. For a commercial breakthrough, however, significant performance improvements are still needed, e.g., stable and high charge carrier mobility and on-off ratio, tunable threshold voltage, as well as integrability criteria such as n- and p-channel operation and top-gate architecture. Here, we show pentacene-based top-gate organic transistors operated in depletion and inversion regimes, realized by doping source and drain contacts as well as a thin layer of the transistor channel. By varying the doping concentration and the thickness of the doped channel, we control the position of the threshold voltage without degrading on-off ratio or mobility. Capacitance-voltage measurements show that an inversion channel can indeed be formed, e.g., an n-doped channel can be inverted to a p-type inversion channel with highly p-doped contacts. The Cytop polymer dielectric minimizes hysteresis, and the transistors can be biased for prolonged cycles without a shift of threshold voltage, indicating excellent operation stability.

  18. A study on the high temperature-dependence of the electrical properties in a solution-deposited zinc-tin-oxide thin-film transistor operated in the saturation region

    NASA Astrophysics Data System (ADS)

    Yu, Kyeong Min; Bae, Byung Seong; Jung, Myunghee; Yun, Eui-Jung

    2016-06-01

    We investigate the effects of high temperatures in the range of 292 - 393 K on the electrical properties of solution-processed amorphous zinc-tin-oxide (a-ZTO) thin-film transistors (TFTs) operated in the saturation region. The fabricated a-ZTO TFTs have a non-patterned bottom gate and top contact structure, and they use a heavily-doped Si wafer and SiO2 as a gate electrode and a gate insulator layer, respectively. In a-ZTO TFTs, the trap release energy ( E TR ) was deduced by using Maxwell-Boltzmann statistics. The decreasing E TR toward zero with increasing gate voltage (the density of trap states ( n s )) in the a-ZTO active layer can be attributed to a shift of the Fermi level toward the mobility edge with increasing gate voltage. The TFTs with low gate voltage (low n s ) exhibit multiple trap and release characteristics and show thermally-activated behavior. In TFTs with a high gate voltage (high n s ), however, we observe decreasing mobility and conductivity with increasing temperature at temperatures ranging from 303 to 363 K. This confirms that the E TR can drop to zero, indicating a shift of the Fermi level beyond the mobility edge. Hence, the mobility edge is detected at the cusp between thermally-activated transport and band transport.

  19. Electrical instability of high-mobility zinc oxynitride thin-film transistors upon water exposure

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hwan; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-03-01

    We investigate the effects of water absorption on the electrical performance and stability in high-mobility zinc oxynitride (ZnON) thin-film transistors (TFTs). The ZnON TFT exhibits a smaller field-effect mobility, lower turn-on voltage, and higher subthreshold slope with a deteriorated electrical stability under positive gate bias stresses after being exposed to water. From the Hall measurements, an increase of the electron concentration and a decrease of the Hall mobility are observed in the ZnON thin film after water absorption. The observed phenomena are mainly attributed to the water molecule-induced increase of the defective ZnXNY bond and the oxygen vacancy inside the ZnON thin film based on the x-ray photoelectron spectroscopy analysis.

  20. Fabrication of field-effect transistor utilizing oriented thin film of octahexyl-substituted phthalocyanine and its electrical anisotropy based on columnar structure

    NASA Astrophysics Data System (ADS)

    Ohmori, Masashi; Nakatani, Mitsuhiro; Kajii, Hirotake; Miyamoto, Ayano; Yoneya, Makoto; Fujii, Akihiko; Ozaki, Masanori

    2018-03-01

    Field-effect transistors with molecularly oriented thin films of metal-free non-peripherally octahexyl-substituted phthalocyanine (C6PcH2), which characteristically form a columnar structure, have been fabricated, and the electrical anisotropy of C6PcH2 has been investigated. The molecularly oriented thin films of C6PcH2 were prepared by the bar-coating technique, and the uniform orientation in a large area and the surface roughness at a molecular level were observed by polarized spectroscopy and atomic force microscopy, respectively. The field effect mobilities parallel and perpendicular to the column axis of C6PcH2 were estimated to be (1.54 ± 0.24) × 10-2 and (2.10 ± 0.23) × 10-3 cm2 V-1 s-1, respectively. The electrical anisotropy based on the columnar structure has been discussed by taking the simulated results obtained by density functional theory calculation into consideration.

  1. Influence of gate width on gate-channel carrier mobility in AlGaN/GaN heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Ji, Qizheng; Gao, Zhiliang; Zhang, Shufeng; Lin, Zhaojun; Yuan, Yafei; Song, Bo; Mei, Gaofeng; Lu, Ziwei; He, Jihao

    2017-11-01

    For the fabricated AlGaN/GaN heterostructure field-effect transistors (HFETs) with different gate widths, the gate-channel carrier mobility is experimentally obtained from the measured current-voltage and capacitance-voltage curves. Under each gate voltage, the mobility gets lower with gate width increasing. Analysis shows that the phenomenon results from the polarization Coulomb field (PCF) scattering, which originates from the irregularly distributed polarization charges at the AlGaN/GaN interface. The device with a larger gate width is with a larger PCF scattering potential and a stronger PCF scattering intensity. As a function of gate width, PCF scattering potential shows a same trend with the mobility variation. And the theoretically calculated mobility values fits well with the experimentally obtained values. Varying gate widths will be a new perspective for the improvement of device characteristics by modulating the gate-channel carrier mobility.

  2. A possible high-mobility signal in bulk MoTe2: Temperature independent weak phonon decay

    NASA Astrophysics Data System (ADS)

    Li, Titao; Zhang, Zhaojun; Zheng, Wei; Lv, Yangyang; Huang, Feng

    2016-11-01

    Layered transition metal dichalcogenides (TMDs) have attracted great attention due to their non-zero bandgap for potential application in high carrier mobility devices. Recent studies demonstrate that the carrier mobility of MoTe2 would decrease by orders of magnitude when used for few-layer transistors. As phonon scattering has a significant influence on carrier mobility of layered material, here, we first reported temperature-dependent Raman spectra of bulk 2H-MoTe2 from 80 to 300 K and discovered that the phonon lifetime of both E12g and A1g vibration modes are independent with temperature. These results were explained by the weak phonon decay in MoTe2. Our results imply the existence of a carrier mobility higher than the theoretical value in intrinsic bulk 2H-MoTe2 and the feasibility to obtain MoTe2-based transistors with sufficiently high carrier mobility.

  3. Determination of intrinsic mobility of a bilayer oxide thin-film transistor by pulsed I-V method

    NASA Astrophysics Data System (ADS)

    Woo, Hyunsuk; Kim, Taeho; Hur, Jihyun; Jeon, Sanghun

    2017-04-01

    Amorphous oxide semiconductor thin-film transistors (TFT) have been considered as outstanding switch devices owing to their high mobility. However, because of their amorphous channel material with a certain level of density of states, a fast transient charging effect in an oxide TFT occurs, leading to an underestimation of the mobility value. In this paper, the effects of the fast charging of high-performance bilayer oxide semiconductor TFTs on mobility are examined in order to determine an accurate mobility extraction method. In addition, an approach based on a pulse I D -V G measurement method is proposed to determine the intrinsic mobility value. Even with the short pulse I D -V G measurement, a certain level of fast transient charge trapping cannot be avoided as long as the charge-trap start time is shorter than the pulse rising time. Using a pulse-amplitude-dependent threshold voltage characterization method, we estimated a correction factor for the apparent mobility, thus allowing us to determine the intrinsic mobility.

  4. Intrinsically stretchable and healable semiconducting polymer for organic transistors

    NASA Astrophysics Data System (ADS)

    Oh, Jin Young; Rondeau-Gagné, Simon; Chiu, Yu-Cheng; Chortos, Alex; Lissel, Franziska; Wang, Ging-Ji Nathan; Schroeder, Bob C.; Kurosawa, Tadanori; Lopez, Jeffrey; Katsumata, Toru; Xu, Jie; Zhu, Chenxin; Gu, Xiaodan; Bae, Won-Gyu; Kim, Yeongin; Jin, Lihua; Chung, Jong Won; Tok, Jeffrey B.-H.; Bao, Zhenan

    2016-11-01

    Thin-film field-effect transistors are essential elements of stretchable electronic devices for wearable electronics. All of the materials and components of such transistors need to be stretchable and mechanically robust. Although there has been recent progress towards stretchable conductors, the realization of stretchable semiconductors has focused mainly on strain-accommodating engineering of materials, or blending of nanofibres or nanowires into elastomers. An alternative approach relies on using semiconductors that are intrinsically stretchable, so that they can be fabricated using standard processing methods. Molecular stretchability can be enhanced when conjugated polymers, containing modified side-chains and segmented backbones, are infused with more flexible molecular building blocks. Here we present a design concept for stretchable semiconducting polymers, which involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain is applied, while retaining high charge transport abilities. As a result, our polymer is able to recover its high field-effect mobility performance (more than 1 square centimetre per volt per second) even after a hundred cycles at 100 per cent applied strain. Organic thin-film field-effect transistors fabricated from these materials exhibited mobility as high as 1.3 square centimetres per volt per second and a high on/off current ratio exceeding a million. The field-effect mobility remained as high as 1.12 square centimetres per volt per second at 100 per cent strain along the direction perpendicular to the strain. The field-effect mobility of damaged devices can be almost fully recovered after a solvent and thermal healing treatment. Finally, we successfully fabricated a skin-inspired stretchable organic transistor operating under deformations that might be expected in a wearable device.

  5. Intrinsically stretchable and healable semiconducting polymer for organic transistors.

    PubMed

    Oh, Jin Young; Rondeau-Gagné, Simon; Chiu, Yu-Cheng; Chortos, Alex; Lissel, Franziska; Wang, Ging-Ji Nathan; Schroeder, Bob C; Kurosawa, Tadanori; Lopez, Jeffrey; Katsumata, Toru; Xu, Jie; Zhu, Chenxin; Gu, Xiaodan; Bae, Won-Gyu; Kim, Yeongin; Jin, Lihua; Chung, Jong Won; Tok, Jeffrey B-H; Bao, Zhenan

    2016-11-17

    Thin-film field-effect transistors are essential elements of stretchable electronic devices for wearable electronics. All of the materials and components of such transistors need to be stretchable and mechanically robust. Although there has been recent progress towards stretchable conductors, the realization of stretchable semiconductors has focused mainly on strain-accommodating engineering of materials, or blending of nanofibres or nanowires into elastomers. An alternative approach relies on using semiconductors that are intrinsically stretchable, so that they can be fabricated using standard processing methods. Molecular stretchability can be enhanced when conjugated polymers, containing modified side-chains and segmented backbones, are infused with more flexible molecular building blocks. Here we present a design concept for stretchable semiconducting polymers, which involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain is applied, while retaining high charge transport abilities. As a result, our polymer is able to recover its high field-effect mobility performance (more than 1 square centimetre per volt per second) even after a hundred cycles at 100 per cent applied strain. Organic thin-film field-effect transistors fabricated from these materials exhibited mobility as high as 1.3 square centimetres per volt per second and a high on/off current ratio exceeding a million. The field-effect mobility remained as high as 1.12 square centimetres per volt per second at 100 per cent strain along the direction perpendicular to the strain. The field-effect mobility of damaged devices can be almost fully recovered after a solvent and thermal healing treatment. Finally, we successfully fabricated a skin-inspired stretchable organic transistor operating under deformations that might be expected in a wearable device.

  6. Structures and properties of poly(3-alkylthiophene) thin-films fabricated though vapor-phase polymerization.

    PubMed

    Back, Ji-Woong; Song, Eun-Ah; Lee, Keum-Joo; Lee, Youn-Kyung; Hwang, Chae-Ryong; Jo, Sang-Hyun; Jung, Woo-Gwang; Kim, Jin-Yeol

    2012-02-01

    Organic semiconducting polymer thin-films of 3-hexylthiophene, 3-octylthiophene, 3-decylthiophene, containing highly oriented crystal were fabricated by gas-phase polymerization using the CVD technique. These poly(3-alkylthiophene) films had a crystallinity up to 80%, and possessed a Hall mobility up to 10 cm2/Vs. The degree of crystalinity and the mobility values increased as the alkyl chain length increased. The crystal structure of the polymers was composed of stacked layers constructed by a side-by-side arrangement of alkyl chains and in-plane pi-pi stacking. These thin films are capable of being applied to organic electronics as the active materials used in thin-film transistors and organic photovoltaic cells.

  7. Polycrystalline silicon thin-film transistors with location-controlled crystal grains fabricated by excimer laser crystallization

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Chien; Lee, Yao-Jen; Chiang, Ko-Yu; Wang, Jyh-Liang; Lee, I.-Che; Chen, Hsu-Hsin; Wei, Kai-Fang; Chang, Ting-Kuo; Chen, Bo-Ting; Cheng, Huang-Chung

    2007-11-01

    In this paper, location-controlled silicon crystal grains are fabricated by the excimer laser crystallization method which employs amorphous silicon spacer structure and prepatterned thin films. The amorphous silicon spacer in nanometer-sized width formed using spacer technology is served as seed crystal to artificially control superlateral growth phenomenon during excimer laser irradiation. An array of 1.8-μm-sized disklike silicon grains is formed, and the n-channel thin-film transistors whose channels located inside the artificially-controlled crystal grains exhibit higher performance of field-effect-mobility reaching 308cm2/Vs as compared with the conventional ones. This position-manipulated silicon grains are essential to high-performance and good uniformity devices.

  8. Dual-Gate p-GaN Gate High Electron Mobility Transistors for Steep Subthreshold Slope.

    PubMed

    Bae, Jong-Ho; Lee, Jong-Ho

    2016-05-01

    A steep subthreshold slope characteristic is achieved through p-GaN gate HEMT with dual-gate structure. Obtained subthreshold slope is less than 120 μV/dec. Based on the measured and simulated data obtained from single-gate device, breakdown of parasitic floating-base bipolar transistor and floating gate charged with holes are responsible to increase abruptly in drain current. In the dual-gate device, on-current degrades with high temperature but subthreshold slope is not changed. To observe the switching speed of dual-gate device and transient response of drain current are measured. According to the transient responses of drain current, switching speed of the dual-gate device is about 10(-5) sec.

  9. Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhaojun; Ma, Jun; Huang, Tongde

    2014-03-03

    In this Letter, we report selective epitaxial growth of monolithically integrated GaN-based light emitting diodes (LEDs) with AlGaN/GaN high-electron-mobility transistor (HEMT) drivers. A comparison of two integration schemes, selective epitaxial removal (SER), and selective epitaxial growth (SEG) was made. We found the SER resulted in serious degradation of the underlying LEDs in a HEMT-on-LED structure due to damage of the p-GaN surface. The problem was circumvented using the SEG that avoided plasma etching and minimized device degradation. The integrated HEMT-LEDs by SEG exhibited comparable characteristics as unintegrated devices and emitted modulated blue light by gate biasing.

  10. Performance improvement of organic thin film transistors by using active layer with sandwich structure

    NASA Astrophysics Data System (ADS)

    Ni, Yao; Zhou, Jianlin; Kuang, Peng; Lin, Hui; Gan, Ping; Hu, Shengdong; Lin, Zhi

    2017-08-01

    We report organic thin film transistors (OTFTs) with pentacene/fluorinated copper phthalo-cyanine (F16CuPc)/pentacene (PFP) sandwich configuration as active layers. The sandwich devices not only show hole mobility enhancement but also present a well control about threshold voltage and off-state current. By investigating various characteristics, including current-voltage hysteresis, organic film morphology, capacitance-voltage curve and resistance variation of active layers carefully, it has been found the performance improvement is mainly attributed to the low carrier traps and the higher conductivity of the sandwich active layer due to the additional induced carriers in F16CuPc/pentacene. Therefore, using proper multiple active layer is an effective way to gain high performance OTFTs.

  11. α,ω-dihexyl-sexithiophene thin films for solution-gated organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Schamoni, Hannah; Noever, Simon; Nickel, Bert; Stutzmann, Martin; Garrido, Jose A.

    2016-02-01

    While organic semiconductors are being widely investigated for chemical and biochemical sensing applications, major drawbacks such as the poor device stability and low charge carrier mobility in aqueous electrolytes have not yet been solved to complete satisfaction. In this work, solution-gated organic field-effect transistors (SGOFETs) based on the molecule α,ω-dihexyl-sexithiophene (DH6T) are presented as promising platforms for in-electrolyte sensing. Thin films of DH6T were investigated with regard to the influence of the substrate temperature during deposition on the grain size and structural order. The performance of SGOFETs can be improved by choosing suitable growth parameters that lead to a two-dimensional film morphology and a high degree of structural order. Furthermore, the capability of the SGOFETs to detect changes in the pH or ionic strength of the gate electrolyte is demonstrated and simulated. Finally, excellent transistor stability is confirmed by continuously operating the device over a period of several days, which is a consequence of the low threshold voltage of DH6T-based SGOFETs. Altogether, our results demonstrate the feasibility of high performance and highly stable organic semiconductor devices for chemical or biochemical applications.

  12. In-situ SiN{sub x}/InN structures for InN field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zervos, Ch., E-mail: hzervos@physics.uoc.gr; Georgakilas, A.; Department of Physics, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete

    Critical aspects of InN channel field-effect transistors (FETs) have been investigated. SiN{sub x} dielectric layers were deposited in-situ, in the molecular beam epitaxy system, on the surface of 2 nm InN layers grown on GaN (0001) buffer layers. Metal-insulator-semiconductor Ni/SiN{sub x}/InN capacitors were analyzed by capacitance-voltage (C-V) and current-voltage measurements and were used as gates in InN FET transistors (MISFETs). Comparison of the experimental C-V results with self-consistent Schrödinger-Poisson calculations indicates the presence of a positive charge at the SiN{sub x}/InN interface of Q{sub if} ≈ 4.4 – 4.8 × 10{sup 13 }cm{sup −2}, assuming complete InN strain relaxation. Operation of InN MISFETs was demonstrated, but their performancemore » was limited by a catastrophic breakdown at drain-source voltages above 2.5–3.0 V, the low electron mobility, and high series resistances of the structures.« less

  13. Low temperature mobility in hafnium-oxide gated germanium p-channel metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Beer, Chris; Whall, Terry; Parker, Evan; Leadley, David; De Jaeger, Brice; Nicholas, Gareth; Zimmerman, Paul; Meuris, Marc; Szostak, Slawomir; Gluszko, Grzegorz; Lukasiak, Lidia

    2007-12-01

    Effective mobility measurements have been made at 4.2K on high performance high-k gated germanium p-type metal-oxide-semiconductor field effect transistors with a range of Ge/gate dielectric interface state densities. The mobility is successfully modelled by assuming surface roughness and interface charge scattering at the SiO2 interlayer/Ge interface. The deduced interface charge density is approximately equal to the values obtained from the threshold voltage and subthreshold slope measurements on each device. A hydrogen anneal reduces both the interface state density and the surface root mean square roughness by 20%.

  14. 25th anniversary article: key points for high-mobility organic field-effect transistors.

    PubMed

    Dong, Huanli; Fu, Xiaolong; Liu, Jie; Wang, Zongrui; Hu, Wenping

    2013-11-20

    Remarkable progress has been made in developing high performance organic field-effect transistors (OFETs) and the mobility of OFETs has been approaching the values of polycrystalline silicon, meeting the requirements of various electronic applications from electronic papers to integrated circuits. In this review, the key points for development of high mobility OFETs are highlighted from aspects of molecular engineering, process engineering and interface engineering. The importance of other factors, such as impurities and testing conditions is also addressed. Finally, the current challenges in this field for practical applications of OFETs are further discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Ma, Nan; Jena, Debdeep

    2015-03-01

    In this work, the consequence of the high band-edge density of states on the carrier statistics and quantum capacitance in transition metal dichalcogenide two-dimensional semiconductor devices is explored. The study questions the validity of commonly used expressions for extracting carrier densities and field-effect mobilities from the transfer characteristics of transistors with such channel materials. By comparison to experimental data, a new method for the accurate extraction of carrier densities and mobilities is outlined. The work thus highlights a fundamental difference between these materials and traditional semiconductors that must be considered in future experimental measurements.

  16. Codoping of zinc and tungsten for practical high-performance amorphous indium-based oxide thin film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kizu, Takio, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Tsukagoshi, Kazuhito, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp

    2015-09-28

    Using practical high-density sputtering targets, we investigated the effect of Zn and W codoping on the thermal stability of the amorphous film and the electrical characteristics in thin film transistors. zinc oxide is a potentially conductive component while W oxide is an oxygen vacancy suppressor in oxide films. The oxygen vacancy from In-O and Zn-O was suppressed by the W additive because of the high oxygen bond dissociation energy. With controlled codoping of W and Zn, we demonstrated a high mobility with a maximum mobility of 40 cm{sup 2}/V s with good stability under a negative bias stress in InWZnO thinmore » film transistors.« less

  17. Evaluation of AlGaN/GaN high electron mobility transistors grown on ZrTi buffer layers with sapphire substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun

    Here, AlGaN/GaN high electron mobility transistors (HEMTs) have been grown on sapphire substrates, using ZrTi buffer layers to provide in-plane lattice-matching to hexagonal GaN. X-ray diffraction (XRD) as well as cross-section transmission electron microscopy (TEM) were used to assess the quality of the HEMT structure. The XRD 2θ scans showed full-width-at-half-maximum values of 0.16°, 0.07°, and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM studies of the GaN buffer layer and the AlN/ZrTi/AlN stack showed the importance of growing thin AlN buffer layers on the ZrTi layer prior to growth of the GaN buffermore » layer. The density of threading dislocations in the GaN channel layer of the HEMT structure was estimated to be in the 10 8 cm –2 range. The HEMT device exhibited a saturation drain current density of 820 mA/mm, and the channel of the fabricated HEMTs could be well modulated. A cutoff frequency (f T) of 8.9 GHz and a maximum frequency of oscillation (f max) of 17.3 GHz were achieved for HEMTs with gate dimensions of 1 × 200 μm.« less

  18. Evaluation of AlGaN/GaN high electron mobility transistors grown on ZrTi buffer layers with sapphire substrates

    DOE PAGES

    Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun; ...

    2016-09-21

    Here, AlGaN/GaN high electron mobility transistors (HEMTs) have been grown on sapphire substrates, using ZrTi buffer layers to provide in-plane lattice-matching to hexagonal GaN. X-ray diffraction (XRD) as well as cross-section transmission electron microscopy (TEM) were used to assess the quality of the HEMT structure. The XRD 2θ scans showed full-width-at-half-maximum values of 0.16°, 0.07°, and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM studies of the GaN buffer layer and the AlN/ZrTi/AlN stack showed the importance of growing thin AlN buffer layers on the ZrTi layer prior to growth of the GaN buffermore » layer. The density of threading dislocations in the GaN channel layer of the HEMT structure was estimated to be in the 10 8 cm –2 range. The HEMT device exhibited a saturation drain current density of 820 mA/mm, and the channel of the fabricated HEMTs could be well modulated. A cutoff frequency (f T) of 8.9 GHz and a maximum frequency of oscillation (f max) of 17.3 GHz were achieved for HEMTs with gate dimensions of 1 × 200 μm.« less

  19. Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene/Guanine Interface - A Proposal for High Mobility, Organic Graphene Field Effect Transistors

    DTIC Science & Technology

    2015-07-01

    AFRL-AFOSR-UK-TR-2015-0034 Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene /Guanine...Interface – A Proposal for High Mobility, Organic Graphene Field Effect Transistors Eva Campo BANGOR UNIVERSITY COLLEGE ROAD BANGOR...April 2015 4. TITLE AND SUBTITLE Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene /Guanine Interface - A

  20. Electromechanical Displacement Detection With an On-Chip High Electron Mobility Transistor Amplifier

    NASA Astrophysics Data System (ADS)

    Oda, Yasuhiko; Onomitsu, Koji; Kometani, Reo; Warisawa, Shin-ichi; Ishihara, Sunao; Yamaguchi, Hiroshi

    2011-06-01

    We developed a highly sensitive displacement detection scheme for a GaAs-based electromechanical resonator using an integrated high electron mobility transistor (HEMT). Piezoelectric voltage generated by the vibration of the resonator is applied to the gate of the HEMT, resulting in the on-chip amplification of the signal voltage. This detection scheme achieves a displacement sensitivity of ˜9 pm·Hz-1/2, which is one of the highest among on-chip purely electrical displacement detection schemes at room temperature.

  1. Sensitive Precise p H Measurement with Large-Area Graphene Field-Effect Transistors at the Quantum-Capacitance Limit

    NASA Astrophysics Data System (ADS)

    Fakih, Ibrahim; Mahvash, Farzaneh; Siaj, Mohamed; Szkopek, Thomas

    2017-10-01

    A challenge for p H sensing is decreasing the minimum measurable p H per unit bandwidth in an economical fashion. Minimizing noise to reach the inherent limit imposed by charge fluctuation remains an obstacle. We demonstrate here graphene-based ion-sensing field-effect transistors that saturate the physical limit of sensitivity, defined here as the change in electrical response with respect to p H , and achieve a precision limited by charge-fluctuation noise at the sensing layer. We present a model outlining the necessity for maximizing the device carrier mobility, active sensing area, and capacitive coupling in order to minimize noise. We encapsulate large-area graphene with an ultrathin layer of parylene, a hydrophobic polymer, and deposit an ultrathin, stoichiometric p H -sensing layer of either aluminum oxide or tantalum pentoxide. With these structures, we achieve gate capacitances ˜0.6 μ F /cm2 , approaching the quantum-capacitance limit inherent to graphene, along with a near-Nernstian p H response of ˜55 ±2 mV /p H . We observe field-effect mobilities as high as 7000 cm2 V-1 s-1 with minimal hysteresis as a result of the parylene encapsulation. A detection limit of 0.1 m p H in a 60-Hz electrical bandwidth is observed in optimized graphene transistors.

  2. High mobility emissive organic semiconductor

    PubMed Central

    Liu, Jie; Zhang, Hantang; Dong, Huanli; Meng, Lingqiang; Jiang, Longfeng; Jiang, Lang; Wang, Ying; Yu, Junsheng; Sun, Yanming; Hu, Wenping; Heeger, Alan J.

    2015-01-01

    The integration of high charge carrier mobility and high luminescence in an organic semiconductor is challenging. However, there is need of such materials for organic light-emitting transistors and organic electrically pumped lasers. Here we show a novel organic semiconductor, 2,6-diphenylanthracene (DPA), which exhibits not only high emission with single crystal absolute florescence quantum yield of 41.2% but also high charge carrier mobility with single crystal mobility of 34 cm2 V−1 s−1. Organic light-emitting diodes (OLEDs) based on DPA give pure blue emission with brightness up to 6,627 cd m−2 and turn-on voltage of 2.8 V. 2,6-Diphenylanthracene OLED arrays are successfully driven by DPA field-effect transistor arrays, demonstrating that DPA is a high mobility emissive organic semiconductor with potential in organic optoelectronics. PMID:26620323

  3. High-mobility ambipolar ZnO-graphene hybrid thin film transistors

    PubMed Central

    Song, Wooseok; Kwon, Soon Yeol; Myung, Sung; Jung, Min Wook; Kim, Seong Jun; Min, Bok Ki; Kang, Min-A; Kim, Sung Ho; Lim, Jongsun; An, Ki-Seok

    2014-01-01

    In order to combine advantages of ZnO thin film transistors (TFTs) with a high on-off ratio and graphene TFTs with extremely high carrier mobility, we present a facile methodology for fabricating ZnO thin film/graphene hybrid two-dimensional TFTs. Hybrid TFTs exhibited ambipolar behavior, an outstanding electron mobility of 329.7 ± 16.9 cm2/V·s, and a high on-off ratio of 105. The ambipolar behavior of the ZnO/graphene hybrid TFT with high electron mobility could be due to the superimposed density of states involving the donor states in the bandgap of ZnO thin films and the linear dispersion of monolayer graphene. We further established an applicable circuit model for understanding the improvement in carrier mobility of ZnO/graphene hybrid TFTs. PMID:24513629

  4. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, Albert G.; Drummond, Timothy J.; Robertson, Perry J.; Zipperian, Thomas E.

    1995-01-01

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits.

  5. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.

    1995-12-26

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.

  6. High-performance carbon nanotube thin-film transistors on flexible paper substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Na; Yun, Ki Nam; Yu, Hyun-Yong

    Single-walled carbon nanotubes (SWCNTs) are promising materials as active channels for flexible transistors owing to their excellent electrical and mechanical properties. However, flexible SWCNT transistors have never been realized on paper substrates, which are widely used, inexpensive, and recyclable. In this study, we fabricated SWCNT thin-film transistors on photo paper substrates. The devices exhibited a high on/off current ratio of more than 10{sup 6} and a field-effect mobility of approximately 3 cm{sup 2}/V·s. The proof-of-concept demonstration indicates that SWCNT transistors on flexible paper substrates could be applied as low-cost and recyclable flexible electronics.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun, E-mail: lijun_yt@163.com; Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072; Huang, Chuan-Xin

    Graphical abstract: This work reports the Ba content on thin film transistor based on a novel BaZnSnO semiconductor using solution process. - Highlights: • No reports about BaZnSnO thin film using solution process. • BaZnSnO thin film transistor (TFT) was firstly fabricated. • BaZnSnO-TFT shows a acceptable performace. • Influence of Ba content on BaZnSnO-TFT. - Abstract: A novel BaZnSnO semiconductor is fabricated using solution process and the influence of Ba addition on the structure, the chemical state of oxygen and electrical performance of BaZnSnO thin films are investigated. A high performance BaZnSnO-based thin film transistor with 15 mol% Bamore » is obtained, showing a saturation mobility of 1.94 cm{sup 2}/V s, a threshold voltage of 3.6 V, an on/off current ratio of 6.2 × 10{sup 6}, a subthreshold swing of 0.94 V/decade, and a good bias stability. Transistors with solution processed BaZnSnO films are promising candidates for the development of future large-area, low-cost and high-performance electronic devices.« less

  8. Rational In Silico Design of an Organic Semiconductor with Improved Electron Mobility.

    PubMed

    Friederich, Pascal; Gómez, Verónica; Sprau, Christian; Meded, Velimir; Strunk, Timo; Jenne, Michael; Magri, Andrea; Symalla, Franz; Colsmann, Alexander; Ruben, Mario; Wenzel, Wolfgang

    2017-11-01

    Organic semiconductors find a wide range of applications, such as in organic light emitting diodes, organic solar cells, and organic field effect transistors. One of their most striking disadvantages in comparison to crystalline inorganic semiconductors is their low charge-carrier mobility, which manifests itself in major device constraints such as limited photoactive layer thicknesses. Trial-and-error attempts to increase charge-carrier mobility are impeded by the complex interplay of the molecular and electronic structure of the material with its morphology. Here, the viability of a multiscale simulation approach to rationally design materials with improved electron mobility is demonstrated. Starting from one of the most widely used electron conducting materials (Alq 3 ), novel organic semiconductors with tailored electronic properties are designed for which an improvement of the electron mobility by three orders of magnitude is predicted and experimentally confirmed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Hall effect mobility for SiC MOSFETs with increasing dose of nitrogen implantation into channel region

    NASA Astrophysics Data System (ADS)

    Noguchi, Munetaka; Iwamatsu, Toshiaki; Amishiro, Hiroyuki; Watanabe, Hiroshi; Kita, Koji; Yamakawa, Satoshi

    2018-04-01

    The Hall effect mobility (μHall) of the Si-face 4H-SiC metal–oxide–semiconductor field effect transistor (MOSFET) with a nitrogen (N)-implanted channel region was investigated by increasing the N dose. The μHall in the channel region was systematically examined regarding channel structures, that is, the surface and buried channels. It was experimentally demonstrated that increasing the N dose results in an improvement in μHall in the channel region due to the formation of the buried channel. However, further increase in N dose was found to decrease the μHall in the channel region, owing to the decrease in the electron mobility in the N-implanted bulk region.

  10. Low-frequency (1/f) noise in nanocrystal field-effect transistors.

    PubMed

    Lai, Yuming; Li, Haipeng; Kim, David K; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2014-09-23

    We investigate the origins and magnitude of low-frequency noise in high-mobility nanocrystal field-effect transistors and show the noise is of 1/f-type. Sub-band gap states, in particular, those introduced by nanocrystal surfaces, have a significant influence on the 1/f noise. By engineering the device geometry and passivating nanocrystal surfaces, we show that in the linear and saturation regimes the 1/f noise obeys Hooge's model of mobility fluctuations, consistent with transport of a high density of accumulated carriers in extended electronic states of the NC thin films. In the subthreshold regime, the Fermi energy moves deeper into the mobility gap and sub-band gap trap states give rise to a transition to noise dominated by carrier number fluctuations as described in McWhorter's model. CdSe nanocrystal field-effect transistors have a Hooge parameter of 3 × 10(-2), comparable to other solution-deposited, thin-film devices, promising high-performance, low-cost, low-noise integrated circuitry.

  11. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring

    NASA Astrophysics Data System (ADS)

    Schwartz, Gregor; Tee, Benjamin C.-K.; Mei, Jianguo; Appleton, Anthony L.; Kim, Do Hwan; Wang, Huiliang; Bao, Zhenan

    2013-05-01

    Flexible pressure sensors are essential parts of an electronic skin to allow future biomedical prostheses and robots to naturally interact with humans and the environment. Mobile biomonitoring in long-term medical diagnostics is another attractive application for these sensors. Here we report the fabrication of flexible pressure-sensitive organic thin film transistors with a maximum sensitivity of 8.4 kPa-1, a fast response time of <10 ms, high stability over >15,000 cycles and a low power consumption of <1 mW. The combination of a microstructured polydimethylsiloxane dielectric and the high-mobility semiconducting polyisoindigobithiophene-siloxane in a monolithic transistor design enabled us to operate the devices in the subthreshold regime, where the capacitance change upon compression of the dielectric is strongly amplified. We demonstrate that our sensors can be used for non-invasive, high fidelity, continuous radial artery pulse wave monitoring, which may lead to the use of flexible pressure sensors in mobile health monitoring and remote diagnostics in cardiovascular medicine.

  12. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring.

    PubMed

    Schwartz, Gregor; Tee, Benjamin C-K; Mei, Jianguo; Appleton, Anthony L; Kim, Do Hwan; Wang, Huiliang; Bao, Zhenan

    2013-01-01

    Flexible pressure sensors are essential parts of an electronic skin to allow future biomedical prostheses and robots to naturally interact with humans and the environment. Mobile biomonitoring in long-term medical diagnostics is another attractive application for these sensors. Here we report the fabrication of flexible pressure-sensitive organic thin film transistors with a maximum sensitivity of 8.4 kPa(-1), a fast response time of <10 ms, high stability over >15,000 cycles and a low power consumption of <1 mW. The combination of a microstructured polydimethylsiloxane dielectric and the high-mobility semiconducting polyisoindigobithiophene-siloxane in a monolithic transistor design enabled us to operate the devices in the subthreshold regime, where the capacitance change upon compression of the dielectric is strongly amplified. We demonstrate that our sensors can be used for non-invasive, high fidelity, continuous radial artery pulse wave monitoring, which may lead to the use of flexible pressure sensors in mobile health monitoring and remote diagnostics in cardiovascular medicine.

  13. Remarkable reduction in the threshold voltage of pentacene-based thin film transistors with pentacene/CuPc sandwich configuration

    NASA Astrophysics Data System (ADS)

    Li, Yi; Liu, Qi; Cai, Jing; Li, Yun; Shi, Yi; Wang, Xizhang; Hu, Zheng

    2014-06-01

    This study investigates the remarkable reduction in the threshold voltage (VT) of pentacene-based thin film transistors with pentacene/copper phthalocyanine (CuPc) sandwich configuration. This reduction is accompanied by increased mobility and lowered sub-threshold slope (S). Sandwich devices coated with a 5 nm layer of CuPc layer are compared with conventional top-contact devices, and results indicate that VT decreased significantly from -20.4 V to -0.2 V, that mobility increased from 0.18 cm2/Vs to 0.51 cm2/Vs, and that S was reduced from 4.1 V/dec to 2.9 V/dec. However, the on/off current ratio remains at 105. This enhanced performance could be attributed to the reduction in charge trap density by the incorporated CuPc layer. Results suggest that this method is simple and effectively generates pentacene-based organic thin film transistors with high mobility and low VT.

  14. High Electron Mobility Thin‐Film Transistors Based on Solution‐Processed Semiconducting Metal Oxide Heterojunctions and Quasi‐Superlattices

    PubMed Central

    Lin, Yen‐Hung; Faber, Hendrik; Labram, John G.; Stratakis, Emmanuel; Sygellou, Labrini; Kymakis, Emmanuel; Hastas, Nikolaos A.; Li, Ruipeng; Zhao, Kui; Amassian, Aram; Treat, Neil D.; McLachlan, Martyn

    2015-01-01

    High mobility thin‐film transistor technologies that can be implemented using simple and inexpensive fabrication methods are in great demand because of their applicability in a wide range of emerging optoelectronics. Here, a novel concept of thin‐film transistors is reported that exploits the enhanced electron transport properties of low‐dimensional polycrystalline heterojunctions and quasi‐superlattices (QSLs) consisting of alternating layers of In2O3, Ga2O3, and ZnO grown by sequential spin casting of different precursors in air at low temperatures (180–200 °C). Optimized prototype QSL transistors exhibit band‐like transport with electron mobilities approximately a tenfold greater (25–45 cm2 V−1 s−1) than single oxide devices (typically 2–5 cm2 V−1 s−1). Based on temperature‐dependent electron transport and capacitance‐voltage measurements, it is argued that the enhanced performance arises from the presence of quasi 2D electron gas‐like systems formed at the carefully engineered oxide heterointerfaces. The QSL transistor concept proposed here can in principle extend to a range of other oxide material systems and deposition methods (sputtering, atomic layer deposition, spray pyrolysis, roll‐to‐roll, etc.) and can be seen as an extremely promising technology for application in next‐generation large area optoelectronics such as ultrahigh definition optical displays and large‐area microelectronics where high performance is a key requirement. PMID:27660741

  15. A Novel Multi-Finger Gate Structure of AlGaN/GaN High Electron Mobility Transistor

    NASA Astrophysics Data System (ADS)

    Cui, Lei; Wang, Quan; Wang, Xiao-Liang; Xiao, Hong-Ling; Wang, Cui-Mei; Jiang, Li-Juan; Feng, Chun; Yin, Hai-Bo; Gong, Jia-Min; Li, Bai-Quan; Wang, Zhan-Guo

    2015-05-01

    Not Available Supported by the Knowledge Innovation Engineering of the Chinese Academy of Sciences under Grant No YYY-0701-02, the National Nature Science Foundation of China under Grant Nos 61106014, 61204017 and 61334002, the State Key Development Program for Basic Research of China under Grant No 2010CB327503, and the National Science and Technology Major Project of China.

  16. A novel low temperature soft reflow process for the fabrication of deep-submicron (<0.35 μm) T-gate pseudomorphic high electron mobility transistor structures

    NASA Astrophysics Data System (ADS)

    Ian, Ka Wa; Exarchos, Michael; Missous, Mohamed

    2013-02-01

    We report a new and simple low temperature soft reflow process using solvent vapour. The combination of this soft reflow and conventional i-line lithography enables low cost, highly efficient fabrication at the deep-submicron scale. Compared to the conventional thermal reflow process, the key benefits of the new soft reflow process are its low temperature operation (<50 °C), greater shrinkage of the structure size (up to 75%) and better controllability. Gate openings reflowed from 1 μm to 250 nm have been routinely and reproducibly achieved by utilizing the saturation characteristics of the process. The feasibility of this soft reflow process is demonstrated in the fabrication of a 350 nm T-gate pseudomorphic high electron mobility transistor. By shrinking the gate length by a factor of three (from a 1 μm initial opening), the output current is improved by 60% (500 mA mm-1 from 300 mA mm-1) and fT and fMAX are increased to 70 GHz (from 20 GHz) and 120 GHz (from 40 GHz) respectively. The proposed soft reflow could potentially be applied on other compatible substrates such as polymer based material for organic or thin film devices, potentially leading to many new possible applications.

  17. Comparative study of mobility extraction methods in p-type polycrystalline silicon thin film transistors

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Liu, Yuan; Liu, Yu-Rong; En, Yun-Fei; Li, Bin

    2017-07-01

    Channel mobility in the p-type polycrystalline silicon thin film transistors (poly-Si TFTs) is extracted using Hoffman method, linear region transconductance method and multi-frequency C-V method. Due to the non-negligible errors when neglecting the dependence of gate-source voltage on the effective mobility, the extracted mobility results are overestimated using linear region transconductance method and Hoffman method, especially in the lower gate-source voltage region. By considering of the distribution of localized states in the band-gap, the frequency independent capacitance due to localized charges in the sub-gap states and due to channel free electron charges in the conduction band were extracted using multi-frequency C-V method. Therefore, channel mobility was extracted accurately based on the charge transport theory. In addition, the effect of electrical field dependent mobility degradation was also considered in the higher gate-source voltage region. In the end, the extracted mobility results in the poly-Si TFTs using these three methods are compared and analyzed.

  18. Low temperature fabrication of CuxO thin-film transistors and investigation on the origin of low field effect mobility

    NASA Astrophysics Data System (ADS)

    Shijeesh, M. R.; Jayaraj, M. K.

    2018-04-01

    Cuprous (Cu2O) and cupric (CuO) oxide thin films have been deposited by radio frequency magnetron sputtering with two different oxygen partial pressures. The as-deposited copper oxide films were subjected to post-annealing at 300 °C for 30 min to improve the microstructural, morphological, and optical properties of thin films. Optical absorption studies revealed the existence of a large number of subgap states inside CuO films than Cu2O films. Cu2O and CuO thin film transistors (TFTs) were fabricated in an inverted staggered structure by using a post-annealed channel layer. The field effect mobility values of Cu2O and CuO TFTs were 5.20 × 10-4 cm2 V-1 s-1 and 2.33 × 10-4 cm2 V-1 s-1, respectively. The poor values of subthreshold swing, threshold voltage, and field effect mobility of the TFTs were due to the charge trap density at the copper oxide/dielectric interface as well as defect induced trap states originated from the oxygen vacancies inside the bulk copper oxide. In order to study the distribution of the trap states in the Cu2O and CuO active layer, the temperature dependent transfer characteristics of transistors in the temperature range between 310 K and 340 K were studied. The observed subgap states were found to be decreasing exponentially inside the bandgap, with CuO TFT showing higher subgap states than Cu2O TFT. The high-density hole trap states in the CuO channel are one of the plausible reasons for the lower mobility in CuO TFT than in Cu2O TFT. The origin of these subgap states was attributed to the impurities or oxygen vacancies present in the CuO channel layer.

  19. High-Performance, Solution-Processed Quantum Dot Light-Emitting Field-Effect Transistors with a Scandium-Incorporated Indium Oxide Semiconductor.

    PubMed

    He, Penghui; Jiang, Congbiao; Lan, Linfeng; Sun, Sheng; Li, Yizhi; Gao, Peixiong; Zhang, Peng; Dai, Xingqiang; Wang, Jian; Peng, Junbiao; Cao, Yong

    2018-05-22

    Light-emitting field-effect transistors (LEFETs) have attained great attention due to their special characteristics of both the switching capacity and the electroluminescence capacity. However, high-performance LEFETs with high mobility, high brightness, and high efficiency have not been realized due to the difficulty in developing high electron and hole mobility materials with suitable band structures. In this paper, quantum dot hybrid LEFETs (QD-HLEFETs) combining high-luminous-efficiency quantum dots (QDs) and a solution-processed scandium-incorporated indium oxide (Sc:In 2 O 3 ) semiconductor were demonstrated. The red QD-HLEFET showed high electrical and optical performance with an electron mobility of 0.8 cm 2 V -1 s -1 , a maximum brightness of 13 400 cd/m 2 , and a maximum external quantum efficiency of 8.7%. The high performance of the QD-HLEFET is attributed to the good energy band matching between Sc:In 2 O 3 and QDs and the balanced hole and electron injection (less exciton nonradiative recombination). In addition, incorporation of Sc into In 2 O 3 can suppress the oxygen vacancy and free carrier generation and brings about excellent current and optical modulation (the on/off current ratio is 10 5 and the on/off brightness ratio is 10 6 ).

  20. Mobility enhancement in graphene transistors on low temperature pulsed laser deposited boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uddin, Md Ahsan, E-mail: uddin2@email.sc.edu, E-mail: gkoley@clemson.edu; Koley, Goutam, E-mail: uddin2@email.sc.edu, E-mail: gkoley@clemson.edu; Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208

    2015-11-16

    Low temperature pulsed laser deposited (PLD) ultrathin boron nitride (BN) on SiO{sub 2} was investigated as a dielectric for graphene electronics, and a significant enhancement in electrical transport properties of graphene/PLD BN compared to graphene/SiO{sub 2} has been observed. Graphene synthesized by chemical vapor deposition and transferred on PLD deposited and annealed BN exhibited up to three times higher field effect mobility compared to graphene on the SiO{sub 2} substrate. Graphene field effect transistor devices fabricated on 5 nm BN/SiO{sub 2} (300 nm) yielded maximum hole and electron mobility of 4980 and 4200 cm{sup 2}/V s, respectively. In addition, significant improvement in carriermore » homogeneity and reduction in extrinsic doping in graphene on BN has been observed. An average Dirac point of 3.5 V and residual carrier concentration of 7.65 × 10{sup 11 }cm{sup −2} was observed for graphene transferred on 5 nm BN at ambient condition. The overall performance improvement on PLD BN can be attributed to dielectric screening of charged impurities, similar crystal structure and phonon modes, and reduced substrate induced doping.« less

  1. Space Environment Effects on Flexible, Low-Voltage Organic Thin-Film Transistors.

    PubMed

    Basiricò, Laura; Basile, Alberto Francesco; Cosseddu, Piero; Gerardin, Simone; Cramer, Tobias; Bagatin, Marta; Ciavatti, Andrea; Paccagnella, Alessandro; Bonfiglio, Annalisa; Fraboni, Beatrice

    2017-10-11

    Organic electronic devices fabricated on flexible substrates are promising candidates for applications in environments where flexible, lightweight, and radiation hard materials are required. In this work, device parameters such as threshold voltage, charge mobility, and trap density of 13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene)-based organic thin-film transistors (OTFTs) have been monitored for performing electrical measurements before and after irradiation by high-energy protons. The observed reduction of charge carrier mobility following irradiation can be only partially ascribed to the increased trap density. Indeed, we used other techniques to identify additional effects induced by proton irradiation in such devices. Atomic force microscopy reveals morphological defects occurring in the organic dielectric layer induced by the impinging protons, which, in turn, induce a strain on the TIPS-pentacene crystallites lying above. The effects of this strain are investigated by density functional theory simulations of two model structures, which describe the TIPS-pentacene crystalline films at equilibrium and under strain. The two different density of states distributions in the valence band have been correlated with the photocurrent spectra acquired before and after proton irradiation. We conclude that the degradation of the dielectric layer and the organic semiconductor sensitivity to strain are the two main phenomena responsible for the reduction of OTFT mobility after proton irradiation.

  2. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Effects of concentration and annealing on the performance of regioregular poly(3-hexylthiophene) field-effect transistors

    NASA Astrophysics Data System (ADS)

    Tian, Xue-Yan; Xu, Zheng; Zhao, Su-Ling; Zhang, Fu-Jun; Yuan, Guang-Cai; Xu, Xu-Rong

    2009-08-01

    This paper investigates the effects of concentration on the crystalline structure, the morphology, and the charge carrier mobility of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs). The RR-P3HT FETs with RR-P3HT as an active layer with different concentrations of RR-P3HT solution from 0.5 wt% to 2 wt% are prepared. The results indicate that the performance of RR-P3HT FETs improves drastically with the increase of RR-P3HT weight percentages in chloroform solution due to the formation of more microcrystalline lamellae and bigger nanoscale islands. It finds that the field-effect mobility of RR-P3HT FET with 2 wt% can reach 5.78 × 10-3 cm2/Vs which is higher by a factor of 13 than that with 0.5 wt%. Further, an appropriate thermal annealing is adopted to improve the performance of RR-P3HT FETs. The field-effect mobility of RR-P3HT FETs increases drastically to 0.09 cm2/Vs by thermal annealing at 150 °C, and the value of on/off current ratio can reach 104.

  3. Synthesis, properties, crystal structures, and semiconductor characteristics of naphtho[1,2-b:5,6-b']dithiophene and -diselenophene derivatives.

    PubMed

    Shinamura, Shoji; Miyazaki, Eigo; Takimiya, Kazuo

    2010-02-19

    In this paper we present the synthesis, structures, characterization, and applications to field-effect transistors (FETs) of naphtho[1,2-b:5,6-b']dithiophene (NDT) and -diselenophene (NDS) derivatives. Treatment of 1,5-dichloro-2,6-diethynylnaphthalenes, easily derived from commercially available 2,6-dihydroxynaphthalene, with sodium chalcogenide afforded a straightforward access to NDTs and NDSs including the parent and dioctyl and diphenyl derivatives. Physicochemical evaluations of NDT and NDS derivatives showed that these heteroarenes have a similar electronic structure with isomeric [1]benzothieno[2,3-b][1]benzothiophene (BTBT) and [1]benzoselenopheneno[2,3-b][1]benzoselenophene (BSBS) derivatives, respectively. Although attempts to fabricate solution-processed field-effect transistors (FETs) with soluble dioctyl-NDT (C(8)-NDT) and -NDS (C(8)-NDS) failed, diphenyl derivatives (DPh-NDT and DPh-NDS) afforded vapor-processed FETs showing field-effect mobility as high as 0.7 cm(2) V(-1) s(-1). These results indicated that NDT and NDS are new potential heteroarene core structures for organic semiconducting materials.

  4. Current crowding mediated large contact noise in graphene field-effect transistors

    PubMed Central

    Karnatak, Paritosh; Sai, T. Phanindra; Goswami, Srijit; Ghatak, Subhamoy; Kaushal, Sanjeev; Ghosh, Arindam

    2016-01-01

    The impact of the intrinsic time-dependent fluctuations in the electrical resistance at the graphene–metal interface or the contact noise, on the performance of graphene field-effect transistors, can be as adverse as the contact resistance itself, but remains largely unexplored. Here we have investigated the contact noise in graphene field-effect transistors of varying device geometry and contact configuration, with carrier mobility ranging from 5,000 to 80,000 cm2 V−1 s−1. Our phenomenological model for contact noise because of current crowding in purely two-dimensional conductors confirms that the contacts dominate the measured resistance noise in all graphene field-effect transistors in the two-probe or invasive four-probe configurations, and surprisingly, also in nearly noninvasive four-probe (Hall bar) configuration in the high-mobility devices. The microscopic origin of contact noise is directly linked to the fluctuating electrostatic environment of the metal–channel interface, which could be generic to two-dimensional material-based electronic devices. PMID:27929087

  5. Improving yield and performance in ZnO thin-film transistors made using selective area deposition.

    PubMed

    Nelson, Shelby F; Ellinger, Carolyn R; Levy, David H

    2015-02-04

    We describe improvements in both yield and performance for thin-film transistors (TFTs) fabricated by spatial atomic layer deposition (SALD). These improvements are shown to be critical in forming high-quality devices using selective area deposition (SAD) as the patterning method. Selective area deposition occurs when the precursors for the deposition are prevented from reacting with some areas of the substrate surface. Controlling individual layer quality and the interfaces between layers is essential for obtaining good-quality thin-film transistors and capacitors. The integrity of the gate insulator layer is particularly critical, and we describe a method for forming a multilayer dielectric using an oxygen plasma treatment between layers that improves crossover yield. We also describe a method to achieve improved mobility at the important interface between the semiconductor and the gate insulator by, conversely, avoiding oxygen plasma treatment. Integration of the best designs results in wide design flexibility, transistors with mobility above 15 cm(2)/(V s), and good yield of circuits.

  6. Current crowding mediated large contact noise in graphene field-effect transistors

    NASA Astrophysics Data System (ADS)

    Karnatak, Paritosh; Sai, T. Phanindra; Goswami, Srijit; Ghatak, Subhamoy; Kaushal, Sanjeev; Ghosh, Arindam

    2016-12-01

    The impact of the intrinsic time-dependent fluctuations in the electrical resistance at the graphene-metal interface or the contact noise, on the performance of graphene field-effect transistors, can be as adverse as the contact resistance itself, but remains largely unexplored. Here we have investigated the contact noise in graphene field-effect transistors of varying device geometry and contact configuration, with carrier mobility ranging from 5,000 to 80,000 cm2 V-1 s-1. Our phenomenological model for contact noise because of current crowding in purely two-dimensional conductors confirms that the contacts dominate the measured resistance noise in all graphene field-effect transistors in the two-probe or invasive four-probe configurations, and surprisingly, also in nearly noninvasive four-probe (Hall bar) configuration in the high-mobility devices. The microscopic origin of contact noise is directly linked to the fluctuating electrostatic environment of the metal-channel interface, which could be generic to two-dimensional material-based electronic devices.

  7. Rapid detection of cardiac troponin I using antibody-immobilized gate-pulsed AlGaN/GaN high electron mobility transistor structures

    NASA Astrophysics Data System (ADS)

    Yang, Jiancheng; Carey, Patrick; Ren, Fan; Wang, Yu-Lin; Good, Michael L.; Jang, Soohwan; Mastro, Michael A.; Pearton, S. J.

    2017-11-01

    We report a comparison of two different approaches to detecting cardiac troponin I (cTnI) using antibody-functionalized AlGaN/GaN High Electron Mobility Transistors (HEMTs). If the solution containing the biomarker has high ionic strength, there can be difficulty in detection due to charge-screening effects. To overcome this, in the first approach, we used a recently developed method involving pulsed biases applied between a separate functionalized electrode and the gate of the HEMT. The resulting electrical double layer produces charge changes which are correlated with the concentration of the cTnI biomarker. The second approach fabricates the sensing area on a glass slide, and the pulsed gate signal is externally connected to the nitride HEMT. This produces a larger integrated change in charge and can be used over a broader range of concentrations without suffering from charge-screening effects. Both approaches can detect cTnI at levels down to 0.01 ng/ml. The glass slide approach is attractive for inexpensive cartridge-type sensors.

  8. Detection of prostate-specific antigen with biomolecule-gated AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Li, Jia-dong; Cheng, Jun-jie; Miao, Bin; Wei, Xiao-wei; Xie, Jie; Zhang, Jin-cheng; Zhang, Zhi-qiang; Wu, Dong-min

    2014-07-01

    In order to improve the sensitivity of AlGaN/GaN high electron mobility transistor (HEMT) biosensors, a simple biomolecule-gated AlGaN/GaN HEMT structure was designed and successfully fabricated for prostate specific antigen (PSA) detection. UV/ozone was used to oxidize the GaN surface and then a 3-aminopropyl trimethoxysilane (APTES) self-assembled monolayer was bound to the sensing region. This monolayer serves as a binding layer for attachment of the prostate specific antibody (anti-PSA). The biomolecule-gated AlGaN/GaN HEMT sensor shows a rapid and sensitive response when the target prostate-specific antigen in buffer solution was added to the antibody-immobilized sensing area. The current change showed a logarithm relationship against the PSA concentration from 0.1 pg/ml to 0.993 ng/ml. The sensitivity of 0.215% is determined for 0.1 pg/ml PSA solution. The above experimental result of the biomolecule-gated AlGaN/GaN HEMT biosensor suggested that this biosensor might be a useful tool for prostate cancer screening.

  9. Undoped polythiophene field-effect transistors with mobility of 1 cm2 V-1 s-1

    NASA Astrophysics Data System (ADS)

    Hamadani, B. H.; Gundlach, D. J.; McCulloch, I.; Heeney, M.

    2007-12-01

    We report on charge transport in organic field-effect transistors based on poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) as the active polymer layer with saturation field-effect mobilities as large as 1cm2V-1s-1. This is achieved by employing Pt instead of the commonly used Au as the contacting electrode and allows for a significant reduction in the metal/polymer contact resistance. The mobility increases as a function of decreasing channel length, consistent with a Poole-Frenkel model of charge transport, and reaches record mobilities of 1cm2V-1s-1 or more at channel lengths on the order of few microns in an undoped solution-processed polymer cast on an oxide gate dielectric.

  10. Flexible low-voltage organic transistors with high thermal stability at 250 °C.

    PubMed

    Yokota, Tomoyuki; Kuribara, Kazunori; Tokuhara, Takeyoshi; Zschieschang, Ute; Klauk, Hagen; Takimiya, Kazuo; Sadamitsu, Yuji; Hamada, Masahiro; Sekitani, Tsuyoshi; Someya, Takao

    2013-07-19

    Low-operating-voltage flexible organic thin-film transistors with high thermal stability using DPh-DNTT and SAM gate dielectrics are reported. The mobility of the transistors are decreased by 23% after heating to 250 °C for 30 min. Furthermore, flexible organic pseudo-CMOS inverter circuits, which are functional after heating to 200 °C, are demonstrated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High-Mobility 6,13-Bis(triisopropylsilylethynyl) Pentacene Transistors Using Solution-Processed Polysilsesquioxane Gate Dielectric Layers.

    PubMed

    Matsuda, Yu; Nakahara, Yoshio; Michiura, Daisuke; Uno, Kazuyuki; Tanaka, Ichiro

    2016-04-01

    Polysilsesquioxane (PSQ) is a low-temperature curable polymer that is compatible with low-cost plastic substrates. We cured PSQ gate dielectric layers by irradiation with ultraviolet light at ~60 °C, and used them for 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) thin film transistors (TFTs). The fabricated TFTs have shown the maximum and average hole mobility of 1.3 and 0.78 ± 0.3 cm2V-1s-1, which are comparable to those of the previously reported transistors using single-crystalline TIPS-pentacene micro-ribbons for their active layers and thermally oxidized SiO2 for their gate dielectric layers. Itis therefore demonstrated that PSQ is a promising polymer gate dielectric material for low-cost organic TFTs.

  12. Tuning charge transport in pentacene thin-film transistors using the strain-induced electron-phonon coupling modification

    NASA Astrophysics Data System (ADS)

    Lin, Yow-Jon; Chang, Hsing-Cheng; Liu, Day-Shan

    2015-03-01

    Tuning charge transport in the bottom-contact pentacene-based organic thin-film transistors (OTFTs) using a MoO x capping layer that serves to the electron-phonon coupling modification is reported. For OTFTs with a MoO x front gate, the enhanced field-effect carrier mobility is investigated. The time domain data confirm the electron-trapping model. To understand the origin of a mobility enhancement, an analysis of the temperature-dependent Hall-effect characteristics is presented. Similarly, the Hall-effect carrier mobility was dramatically increased by capping a MoO x layer on the pentacene front surface. However, the carrier concentration is not affected. The Hall-effect carrier mobility exhibits strong temperature dependence, indicating the dominance of tunneling (hopping) at low (high) temperatures. A mobility enhancement is considered to come from the electron-phonon coupling modification that results from the contribution of long-lifetime electron trapping.

  13. Carrier Propagation Dependence on Applied Potentials in Pentacene Organic Field Effect Transistors Investigated by Impedance Spectroscopy and Electrical Time-of-Flight Techniques

    NASA Astrophysics Data System (ADS)

    Lin, Jack; Weis, Martin; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2011-04-01

    Transient measurements of impedance spectroscopy and electrical time-of-flight (TOF) techniques were used for the evaluation of carrier propagation dependence on applied potentials in a pentacene organic field effect transistor (OFET). These techniques are based on carrier propagation, thus isolates the effect of charge density. The intrinsic mobility which is free from contact resistance effects was obtained by measurement of various channel lengths. The obtained intrinsic mobility shows good correspondence with steady-state current-voltage measurement's saturation mobility. However, their power law relations on mobility vs applied potential resulted in different exponents, suggesting different carrier propagation mechanisms, which is attributable to filling of traps or space charge field in the channel region. The hypothesis was verified by a modified electrical TOF experiment which demonstrated how the accumulated charges in the channel influence the effective mobility.

  14. Cycle of charge carrier states with formation and extinction of a floating gate in an ambipolar tetracyanoquaterthienoquinoid-based field-effect transistor

    NASA Astrophysics Data System (ADS)

    Itoh, Takuro; Toyota, Taro; Higuchi, Hiroyuki; Matsushita, Michio M.; Suzuki, Kentaro; Sugawara, Tadashi

    2017-03-01

    A tetracyanoquaterthienoquinoid (TCT4Q)-based field effect transistor is characterized by the ambipolar transfer characteristics and the facile shift of the threshold voltage induced by the bias stress. The trapping and detrapping kinetics of charge carriers was investigated in detail by the temperature dependence of the decay of source-drain current (ISD). We found a repeatable formation of a molecular floating gate is derived from a 'charge carrier-and-gate' cycle comprising four stages, trapping of mobile carriers, formation of a floating gate, induction of oppositely charged mobile carriers, and recombination between mobile and trapped carriers to restore the initial state.

  15. Metal-induced crystallization of amorphous zinc tin oxide semiconductors for high mobility thin-film transistors

    NASA Astrophysics Data System (ADS)

    Hwang, Ah Young; Kim, Sang Tae; Ji, Hyuk; Shin, Yeonwoo; Jeong, Jae Kyeong

    2016-04-01

    Transition tantalum induced crystallization of amorphous zinc tin oxide (a-ZTO) was observed at low temperature annealing of 300 °C. Thin-film transistors (TFTs) with an a-ZTO channel layer exhibited a reasonable field-effect mobility of 12.4 cm2/V s, subthreshold swing (SS) of 0.39 V/decade, threshold voltage (VTH) of 1.5 V, and ION/OFF ratio of ˜107. A significant improvement in the field-effect mobility (up to ˜33.5 cm2/V s) was achieved for crystallized ZTO TFTs: this improvement was accomplished without compromising the SS, VTH, or ION/OFF ratio due to the presence of a highly ordered microstructure.

  16. Printed thin film transistors and CMOS inverters based on semiconducting carbon nanotube ink purified by a nonlinear conjugated copolymer

    NASA Astrophysics Data System (ADS)

    Xu, Wenya; Dou, Junyan; Zhao, Jianwen; Tan, Hongwei; Ye, Jun; Tange, Masayoshi; Gao, Wei; Xu, Weiwei; Zhang, Xiang; Guo, Wenrui; Ma, Changqi; Okazaki, Toshiya; Zhang, Kai; Cui, Zheng

    2016-02-01

    Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge SWCNTs according to their chiralities with high selectivity. With the sorted sc-SWCNTs ink, thin film transistors (TFTs) have been fabricated by aerosol jet printing. The TFTs displayed good uniformity, low operating voltage (+/-2 V) and subthreshold swing (SS) (122-161 mV dec-1), high effective mobility (up to 17.6-37.7 cm2 V-1 s-1) and high on/off ratio (104-107). With the printed TFTs, a CMOS inverter was constructed, which is based on the p-type TFT and ambipolar TFT instead of the conventional p-type and n-type TFTs. Compared with other recently reported inverters fabricated by printing, the printed CMOS inverters demonstrated a better noise margin (74% 1/2 Vdd) and was hysteresis free. The inverter has a voltage gain of up to 16 at an applied voltage of only 1 V and low static power consumption.Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge SWCNTs according to their chiralities with high selectivity. With the sorted sc-SWCNTs ink, thin film transistors (TFTs) have been fabricated by aerosol jet printing. The TFTs displayed good uniformity, low operating voltage (+/-2 V) and subthreshold swing (SS) (122-161 mV dec-1), high effective mobility (up to 17.6-37.7 cm2 V-1 s-1) and high on/off ratio (104-107). With the printed TFTs, a CMOS inverter was constructed, which is based on the p-type TFT and ambipolar TFT instead of the conventional p-type and n-type TFTs. Compared with other recently reported inverters fabricated by printing, the printed CMOS inverters demonstrated a better noise margin (74% 1/2 Vdd) and was hysteresis free. The inverter has a voltage gain of up to 16 at an applied voltage of only 1 V and low static power consumption. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00015k

  17. Maskless writing of a flexible nanoscale transistor with Au-contacted carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Dockendorf, Cedric P. R.; Poulikakos, Dimos; Hwang, Gilgueng; Nelson, Bradley J.; Grigoropoulos, Costas P.

    2007-12-01

    A flexible polymer field effect transistor with a nanoscale carbon nanotube channel is conceptualized and realized herein. Carbon nanotubes (CNTs) were dispersed on a polyimide substrate and marked in an scanning electron microscope with focused ion beam such that they could be contacted with gold nanoink. The CNTs were divided into two parts forming the source and drain of the transistor. A micropipette writing method was used to contact the carbon nanotube electrodes with gold nanoink and to deposit the poly(3-hexylthiophene) as an active layer. The mobility of the transistors is of the order of 10-5cm/Vs. After fabrication, the flexible transistors can be peeled off the substrate.

  18. MMIC DHBT Common-Base Amplifier for 172 GHz

    NASA Technical Reports Server (NTRS)

    Paidi, Vamsi; Griffith, Zack; Wei, Yun; Dahlstrom, Mttias; Urteaga, Miguel; Rodwell, Mark; Samoska, Lorene; Fung, King Man; Schlecht, Erich

    2006-01-01

    Figure 1 shows a single-stage monolithic microwave integrated circuit (MMIC) power amplifier in which the gain element is a double-heterojunction bipolar transistor (DHBT) connected in common-base configuration. This amplifier, which has been demonstrated to function well at a frequency of 172 GHz, is part of a continuing effort to develop compact, efficient amplifiers for scientific instrumentation, wide-band communication systems, and radar systems that will operate at frequencies up to and beyond 180 GHz. The transistor is fabricated from a layered structure formed by molecular beam epitaxy in the InP/InGaAs material system. A highly doped InGaAs base layer and a collector layer are fabricated from the layered structure in a triple mesa process. The transistor includes two separate emitter fingers, each having dimensions of 0.8 by 12 m. The common-base configuration was chosen for its high maximum stable gain in the frequency band of interest. The input-matching network is designed for high bandwidth. The output of the transistor is matched to a load line for maximum saturated output power under large-signal conditions, rather than being matched for maximum gain under small-signal conditions. In a test at a frequency of 172 GHz, the amplifier was found to generate an output power of 7.5 mW, with approximately 5 dB of large-signal gain (see Figure 2). Moreover, the amplifier exhibited a peak small-signal gain of 7 dB at a frequency of 176 GHz. This performance of this MMIC single-stage amplifier containing only a single transistor represents a significant advance in the state of the art, in that it rivals the 170-GHz performance of a prior MMIC three-stage, four-transistor amplifier. [The prior amplifier was reported in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11 (November 2003), page 49.] This amplifier is the first heterojunction- bipolar-transistor (HBT) amplifier built for medium power operation in this frequency band. The performance of the amplifier as measured in the aforementioned tests suggests that InP/InGaAs HBTs may be superior to high-electron-mobility (HEMT) transistors in that the HBTs may offer more gain per stage and more output power per transistor.

  19. A striking mobility improvement of C60 OFET by inserting diindenoperylene layer between C60 and SiO2 gate insulator

    NASA Astrophysics Data System (ADS)

    Yang, Jin-peng; Yonezawa, Keiichiro; Hinderhofer, Alexander; Bussolotti, Fabio; Kera, Satoshi; Ueno, Nobuo

    2014-09-01

    Gap states in organic semiconductors play a crucial role in determining Energy-Level Alignment and in many cases they act as charge trapping centers to result in serious lowering of charge mobility. Thus origin of gap states has gained increasing attention in order to realize higher mobility organic devises [1-4]. Bussolotti et al. have demonstrated recently that gap states in a pentacene thin film increase even by exposing the film to inert gas and confirmed that the gas exposure mediates structural defects in the film thus gap states [4]. The results have also indicated that preparation of highly-ordered organic thin film is necessary to improve the device performance, namely to decrease trapping states. To improve the ordering of molecule in the film, deposition of a template molecular underlayer is one of the simplest methods to increase the domain size of overlayer film and its crystallinity, and thus we expect improvement of the charge mobility [5]. Hinderhofer et al. reported recently that diindenoperylene (DIP; Figure 1a) could be used as a template layer to grow highly ordered and oriented C60 film with its (111) plane parallel to the SiO2 substrate [6]. Considering the hole mobility of DIP single crystal, which is quite low (~0.005 cm2 V-1S-1 at room temperature [7]), it is expected for the DIP template C60 thin film system that lower drain current would be achieved to improve the on/off ratios based on n type C60 transistor and its electron mobility (especially on the negative Vgs region, compared to PEN modified C60 transistors [8]).

  20. High-sensitivity two-terminal magnetoresistance devices using InGaAs/AlGaAs two-dimensional channel on GaAs substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di-Cheng; Pan, You-Wei; Lin, Shih-Wei

    2016-04-25

    We demonstrate experimentally the two-terminal magnetic sensors exhibiting an extraordinary magneto-resistance effect by using an InGaAs quantum well channel with a metal-shunting structure. A high magneto-resistance of 17.3% and a sensitivity of 488.1 Ω/T have been obtained at 1 T and room temperature with our geometrical design. The two-contact configuration and the high-mobility electron transistor-compatible epitaxy structure make the devices promising for high-sensitivity magnetic sensing integration and applications.

  1. Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed N-channel organic thin-film transistors with mobility of up to 3.50 cm² V(-1) s(-1).

    PubMed

    Zhang, Fengjiao; Hu, Yunbin; Schuettfort, Torben; Di, Chong-an; Gao, Xike; McNeill, Christopher R; Thomsen, Lars; Mannsfeld, Stefan C B; Yuan, Wei; Sirringhaus, Henning; Zhu, Daoben

    2013-02-13

    Substituted side chains are fundamental units in solution processable organic semiconductors in order to achieve a balance of close intermolecular stacking, high crystallinity, and good compatibility with different wet techniques. Based on four air-stable solution-processed naphthalene diimides fused with 2-(1,3-dithiol-2-ylidene)malononitrile groups (NDI-DTYM2) that bear branched alkyl chains with varied side-chain length and different branching position, we have carried out systematic studies on the relationship between film microstructure and charge transport in their organic thin-film transistors (OTFTs). In particular synchrotron measurements (grazing incidence X-ray diffraction and near-edge X-ray absorption fine structure) are combined with device optimization studies to probe the interplay between molecular structure, molecular packing, and OTFT mobility. It is found that the side-chain length has a moderate influence on thin-film microstructure but leads to only limited changes in OTFT performance. In contrast, the position of branching point results in subtle, yet critical changes in molecular packing and leads to dramatic differences in electron mobility ranging from ~0.001 to >3.0 cm(2) V(-1) s(-1). Incorporating a NDI-DTYM2 core with three-branched N-alkyl substituents of C(11,6) results in a dense in-plane molecular packing with an unit cell area of 127 Å(2), larger domain sizes of up to 1000 × 3000 nm(2), and an electron mobility of up to 3.50 cm(2) V(-1) s(-1), which is an unprecedented value for ambient stable n-channel solution-processed OTFTs reported to date. These results demonstrate that variation of the alkyl chain branching point is a powerful strategy for tuning of molecular packing to enable high charge transport mobilities.

  2. New method for the extraction of bulk channel mobility and flat-band voltage in junctionless transistors

    NASA Astrophysics Data System (ADS)

    Jeon, Dae-Young; Park, So Jeong; Mouis, Mireille; Barraud, Sylvain; Kim, Gyu-Tae; Ghibaudo, Gérard

    2013-11-01

    A new and simple method for the extraction of electrical parameters in junctionless transistors (JLTs) is presented. The bulk channel mobility (μbulk) and flat-band voltage (Vfb) were successfully extracted from the new method, based on a linear dependence between the inverse of transconductance squared (1/gm2) vs gate voltage in the partially depleted operation regime (Vth < Vg < Vfb). The validity of the new method is also proved by 2D numerical simulation and newly defined Maserjian's-like function for gm of JLT devices.

  3. Ultra-low noise high electron mobility transistors for high-impedance and low-frequency deep cryogenic readout electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Q.; Liang, Y. X.; Ferry, D.

    2014-07-07

    We report on the results obtained from specially designed high electron mobility transistors at 4.2 K: the gate leakage current can be limited lower than 1 aA, and the equivalent input noise-voltage and noise-current at 1 Hz can reach 6.3 nV/Hz{sup 1∕2} and 20 aA/Hz{sup 1∕2}, respectively. These results open the way to realize high performance low-frequency readout electronics under very low-temperature conditions.

  4. Deposition of tetracene thin films on SiO2/Si substrates by rapid expansion of supercritical solutions using carbon dioxide

    NASA Astrophysics Data System (ADS)

    Fujii, Tatsuya; Takahashi, Yuta; Uchida, Hirohisa

    2015-03-01

    We report on a novel deposition technique of tetracene (naphthacene) thin films on SiO2/Si substrates by rapid expansion of supercritical solutions (RESS) using CO2. Optical microscopy and scanning electron microscopy show that the thin films consist of a high density of submicron-sized grains. The growth mode of the grains followed the Volmer-Weber mode. X-ray diffraction shows that the thin films have regularly arranged structures in both the horizontal and vertical directions of the substrate. A fabricated top-contacted organic thin-film transistor with the tetracene active layer showed p-type transistor characteristics with a field-effect mobility of 5.1 × 10-4 cm2 V-1 s-1.

  5. ZnO thin-film transistors with a polymeric gate insulator built on a polyethersulfone substrate

    NASA Astrophysics Data System (ADS)

    Hyung, Gun Woo; Park, Jaehoon; Koo, Ja Ryong; Choi, Kyung Min; Kwon, Sang Jik; Cho, Eou Sik; Kim, Yong Seog; Kim, Young Kwan

    2012-03-01

    Zinc oxide (ZnO) thin-film transistors (TFTs) with a cross-linked poly(vinyl alcohol) (c-PVA) insulator are fabricated on a polyethersulfone substrate. The ZnO film, formed by atomic layer deposition, shows a polycrystalline hexagonal structure with a band gap energy of about 3.37 eV. The fabricated ZnO TFT exhibits a field-effect mobility of 0.38 cm2/Vs and a threshold voltage of 0.2 V. The hysteresis of the device is mainly caused by trapped electrons at the c-PVA/ZnO interface, whereas the positive threshold voltage shift occurs as a consequence of constant positive gate bias stress after 5000 s due to an electron injection from the ZnO film into the c-PVA insulator.

  6. Quantum structures for recombination control in the light-emitting transistor

    NASA Astrophysics Data System (ADS)

    Chen, Kanuo; Hsiao, Fu-Chen; Joy, Brittany; Dallesasse, John M.

    2017-02-01

    Recombination of carriers in the direct-bandgap base of a transistor-injected quantum cascade laser (TI-QCL) is shown to be controllable through the field applied across the quantum cascade region located in the transistor's base-collector junction. The influence of the electric field on the quantum states in the cascade region's superlattice allows free flow of electrons out of the transistor base only for field values near the design field that provides optimal QCL gain. Quantum modulation of base recombination in the light-emitting transistor is therefore observed. In a GaAs-based light-emitting transistor, a periodic superlattice is grown between the p-type base and the n-type collector. Under different base-collector biasing conditions the distribution of quantum states, and as a consequence transition probabilities through the wells and barriers forming the cascade region, leads to strong field-dependent mobility for electrons in transit through the base-collector junction. The radiative base recombination, which is influenced by minority carrier transition lifetime, can be modulated through the quantum states alignment in the superlattice. A GaAs-based transistor-injected quantum cascade laser with AlGaAs/GaAs superlattice is designed and fabricated. Radiative base recombination is measured under both common-emitter and common-base configuration. In both configurations the optical output from the base is proportional to the emitter injection. When the quantum states in the superlattice are aligned the optical output in the base is reduced as electrons encounter less impedance entering the collector; when the quantum states are misaligned electrons have longer lifetime in the base and the radiative base recombination process is enhanced.

  7. Electron mobility of two-dimensional electron gas in InGaN heterostructures: Effects of alloy disorder and random dipole scatterings

    NASA Astrophysics Data System (ADS)

    Hoshino, Tomoki; Mori, Nobuya

    2018-04-01

    InGaN has a smaller electron effective mass and is expected to be used as a channel material for high-electron-mobility transistors. However, it is an alloy semiconductor with a random distribution of atoms, which introduces additional scattering mechanisms: alloy disorder and random dipole scatterings. In this work, we calculate the electron mobility in InGaN- and GaN-channel high-electron-mobility transistors (HEMTs) while taking into account acoustic deformation potential, polar optical phonon, alloy disorder, and random dipole scatterings. For InGaN-channel HEMTs, we find that not only alloy disorder but also random dipole scattering has a strong impact on the electron mobility and it significantly decreases as the In mole fraction of the channel increases. Our calculation also shows that the channel thickness w dependence of the mobility is rather weak when w > 1 nm for In0.1Ga0.9N-channel HEMTs.

  8. High-frequency noise characterization of graphene field effect transistors on SiC substrates

    NASA Astrophysics Data System (ADS)

    Yu, C.; He, Z. Z.; Song, X. B.; Liu, Q. B.; Dun, S. B.; Han, T. T.; Wang, J. J.; Zhou, C. J.; Guo, J. C.; Lv, Y. J.; Cai, S. J.; Feng, Z. H.

    2017-07-01

    Considering its high carrier mobility and high saturation velocity, a low-noise amplifier is thought of as being the most attractive analogue application of graphene field-effect transistors. The noise performance of graphene field-effect transistors at frequencies in the K-band remains unknown. In this work, the noise parameters of a graphene transistor are measured from 10 to 26 GHz and noise models are built with the data. The extrinsic minimum noise figure for a graphene transistor reached 1.5 dB, and the intrinsic minimum noise figure was as low as 0.8 dB at a frequency of 10 GHz, which were comparable with the results from tests on Si CMOS and started to approach those for GaAs and InP transistors. Considering the short development time, the current results are a significant step forward for graphene transistors and show their application potential in high-frequency electronics.

  9. Temperature independent quantum well FET with delta channel doping

    NASA Technical Reports Server (NTRS)

    Young, P. G.; Mena, R. A.; Alterovitz, S. A.; Schacham, S. E.; Haugland, E. J.

    1992-01-01

    A temperature independent device is presented which uses a quantum well structure and delta doping within the channel. The device requires a high delta doping concentration within the channel to achieve a constant Hall mobility and carrier concentration across the temperature range 300-1.4 K. Transistors were RF tested using on-wafer probing and a constant G sub max and F sub max were measured over the temperature range 300-70 K.

  10. Electrostatic modulation of the electronic properties of Dirac semimetal Na3Bi thin films

    NASA Astrophysics Data System (ADS)

    Hellerstedt, Jack; Yudhistira, Indra; Edmonds, Mark T.; Liu, Chang; Collins, James; Adam, Shaffique; Fuhrer, Michael S.

    2017-10-01

    Large-area thin films of topological Dirac semimetal Na3Bi are grown on amorphous SiO2:Si substrates to realize a field-effect transistor with the doped Si acting as a back gate. As-grown films show charge carrier mobilities exceeding 7 000 cm2/V s and carrier densities below 3 ×1018cm-3 , comparable to the best thin-film Na3Bi . An ambipolar field effect and minimum conductivity are observed, characteristic of Dirac electronic systems. The results are quantitatively understood within a model of disorder-induced charge inhomogeneity in topological Dirac semimetals. The hole mobility is significantly larger than the electron mobility in Na3Bi which we ascribe to the inverted band structure. When present, these holes dominate the transport properties.

  11. Increase the threshold voltage of high voltage GaN transistors by low temperature atomic hydrogen treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erofeev, E. V., E-mail: erofeev@micran.ru; Fedin, I. V.; Kutkov, I. V.

    High-electron-mobility transistors (HEMTs) based on AlGaN/GaN epitaxial heterostructures are a promising element base for the fabrication of high voltage electronic devices of the next generation. This is caused by both the high mobility of charge carriers in the transistor channel and the high electric strength of the material, which makes it possible to attain high breakdown voltages. For use in high-power switches, normally off-mode GaN transistors operating under enhancement conditions are required. To fabricate normally off GaN transistors, one most frequently uses a subgate region based on magnesium-doped p-GaN. However, optimization of the p-GaN epitaxial-layer thickness and the doping levelmore » makes it possible to attain a threshold voltage of GaN transistors close to V{sub th} = +2 V. In this study, it is shown that the use of low temperature treatment in an atomic hydrogen flow for the p-GaN-based subgate region before the deposition of gate-metallization layers makes it possible to increase the transistor threshold voltage to V{sub th} = +3.5 V. The effects under observation can be caused by the formation of a dipole layer on the p-GaN surface induced by the effect of atomic hydrogen. The heat treatment of hydrogen-treated GaN transistors in a nitrogen environment at a temperature of T = 250°C for 12 h reveals no degradation of the transistor’s electrical parameters, which can be caused by the formation of a thermally stable dipole layer at the metal/p-GaN interface as a result of hydrogenation.« less

  12. Defect healing at room temperature in pentacene thin films and improved transistor performance

    NASA Astrophysics Data System (ADS)

    Kalb, Wolfgang L.; Meier, Fabian; Mattenberger, Kurt; Batlogg, Bertram

    2007-11-01

    We report on a healing of defects at room temperature in the organic semiconductor pentacene. This peculiar effect is a direct consequence of the weak intermolecular interaction which is characteristic of organic semiconductors. Pentacene thin-film transistors were fabricated and characterized by in situ gated four-terminal measurements. Under high vacuum conditions (base pressure of order 10-8mbar ), the device performance is found to improve with time. The effective field-effect mobility increases by as much as a factor of 2 and mobilities up to 0.45cm2/Vs were achieved. In addition, the contact resistance decreases by more than an order of magnitude and there is a significant reduction in current hysteresis. Oxygen and nitrogen exposure as well as annealing experiments show the improvement of the electronic parameters to be driven by a thermally promoted process and not by chemical doping. In order to extract the spectral density of trap states from the transistor characteristics, we have implemented a powerful scheme which allows for a calculation of the trap densities with high accuracy in a straightforward fashion. We show the performance improvement to be due to a reduction in the density of shallow traps ⩽0.15eV from the valence band edge, while the energetically deeper traps are essentially unaffected. This work contributes to an understanding of the shallow traps in organic semiconductors and identifies structural point defects within the grains of the polycrystalline thin films as a major cause.

  13. Effect of Hydrogen in Zinc Oxide Thin-Film Transistor Grown by Metal Organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Jo, Jungyol; Seo, Ogweon; Jeong, Euihyuk; Seo, Hyunseok; Lee, Byeongon; Choi, Yearn-Ik

    2007-04-01

    We studied the transport characteristics of ZnO grown by metal organic chemical vapor deposition (MOCVD) at temperatures between 200 and 500 °C. The crystal quality, measured by X-ray diffraction, improved as the growth temperature increased. However, the mobility measured in the thin-film transistor (TFT) decreased in films grown at higher temperatures. In our experiments, a ZnO TFT grown at 250 °C showed good electrical characteristics, with a 13 cm2 V-1 s-1 mobility and a 103 on/off ratio. We conclude that hydrogen incorporated during MOCVD growth plays an important role in determining the transistor characteristics. This was supported by results of secondary ion mass spectroscopy (SIMS), where a higher hydrogen concentration was observed in films grown at lower temperatures.

  14. Hopping and trapping mechanisms in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Konezny, S. J.; Bussac, M. N.; Zuppiroli, L.

    2010-01-01

    A charge carrier in the channel of an organic field-effect transistor (OFET) is coupled to the electric polarization of the gate in the form of a surface Fröhlich polaron [N. Kirova and M. N. Bussac, Phys. Rev. B 68, 235312 (2003)]. We study the effects of the dynamical field of polarization on both small-polaron hopping and trap-limited transport mechanisms. We present numerical calculations of polarization energies, band-narrowing effects due to polarization, hopping barriers, and interface trap depths in pentacene and rubrene transistors as functions of the dielectric constant of the gate insulator and demonstrate that a trap-and-release mechanism more appropriately describes transport in high-mobility OFETs. For mobilities on the order 0.1cm2/Vs and below, all states are highly localized and hopping becomes the predominant mechanism.

  15. Depth-resolved ultra-violet spectroscopic photo current-voltage measurements for the analysis of AlGaN/GaN high electron mobility transistor epilayer deposited on Si

    NASA Astrophysics Data System (ADS)

    Ozden, Burcu; Yang, Chungman; Tong, Fei; Khanal, Min P.; Mirkhani, Vahid; Sk, Mobbassar Hassan; Ahyi, Ayayi Claude; Park, Minseo

    2014-10-01

    We have demonstrated that the depth-dependent defect distribution of the deep level traps in the AlGaN/GaN high electron mobility transistor (HEMT) epi-structures can be analyzed by using the depth-resolved ultra-violet (UV) spectroscopic photo current-voltage (IV) (DR-UV-SPIV). It is of great importance to analyze deep level defects in the AlGaN/GaN HEMT structure, since it is recognized that deep level defects are the main source for causing current collapse phenomena leading to reduced device reliability. The AlGaN/GaN HEMT epi-layers were grown on a 6 in. Si wafer by metal-organic chemical vapor deposition. The DR-UV-SPIV measurement was performed using a monochromatized UV light illumination from a Xe lamp. The key strength of the DR-UV-SPIV is its ability to provide information on the depth-dependent electrically active defect distribution along the epi-layer growth direction. The DR-UV-SPIV data showed variations in the depth-dependent defect distribution across the wafer. As a result, rapid feedback on the depth-dependent electrical homogeneity of the electrically active defect distribution in the AlGaN/GaN HEMT epi-structure grown on a Si wafer with minimal sample preparation can be elucidated from the DR-UV-SPIV in combination with our previously demonstrated spectroscopic photo-IV measurement with the sub-bandgap excitation.

  16. Synaptic behaviors of thin-film transistor with a Pt/HfO x /n-type indium-gallium-zinc oxide gate stack.

    PubMed

    Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-07-20

    We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium-gallium-zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>10 4 ). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.

  17. Synaptic behaviors of thin-film transistor with a Pt/HfO x /n-type indium–gallium–zinc oxide gate stack

    NASA Astrophysics Data System (ADS)

    Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-07-01

    We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium–gallium–zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>104). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.

  18. Length separation of single-walled carbon nanotubes and its impact on structural and electrical properties of wafer-level fabricated carbon nanotube-field-effect transistors

    NASA Astrophysics Data System (ADS)

    Böttger, Simon; Hermann, Sascha; Schulz, Stefan E.; Gessner, Thomas

    2016-10-01

    For an industrial realization of devices based on single-walled carbon nanotube (SWCNTs) such as field-effect transistors (FETs) it becomes increasingly important to consider technological aspects such as intrinsic device structure, integration process controllability as well as yield. From the perspective of a wafer-level integration technology, the influence of SWCNT length on the performance of short-channel CNT-FETs is demonstrated by means of a statistical and comparative study. Therefore, a methodological development of a length separation process based on size-exclusion chromatography was conducted in order to extract well-separated SWCNT dispersions with narrowed length distribution. It could be shown that short SWCNTs adversely affect integrability and reproducibility, underlined by a 25% decline of the integration yield with respect to long SWCNTs. Furthermore, it turns out that the significant changes in electrical performance are directly linked to a SWCNT chain formation in the transistor channel. In particular, CNT-FETs with long SWCNTs outperform reference and short SWCNTs with respect to hole mobility and subthreshold controllability by up to 300% and up to 140%, respectively. As a whole, this study provides a statistical and comparative analysis towards chain-less CNT-FETs fabricated with a wafer-level technology.

  19. A delta-doped amorphous silicon thin-film transistor with high mobility and stability

    NASA Astrophysics Data System (ADS)

    Kim, Pyunghun; Lee, Kyung Min; Lee, Eui-Wan; Jo, Younjung; Kim, Do-Hyung; Kim, Hong-jae; Yang, Key Young; Son, Hyunji; Choi, Hyun Chul

    2012-12-01

    Ultrathin doped layers, known as delta-doped layers, were introduced within the intrinsic amorphous silicon (a-Si) active layer to fabricate hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) with enhanced field-effect mobility. The performance of the delta-doped a-Si:H TFTs depended on the phosphine (PH3) flow rate and the distance from the n+ a-Si to the deltadoping layer. The delta-doped a-Si:H TFTs fabricated using a commercial manufacturing process exhibited an enhanced field-effect mobility of approximately ˜0.23 cm2/Vs (compared to a conventional a-Si:H TFT with 0.15 cm2/Vs) and a desirable stability under a bias-temperature stress test.

  20. Air-stable n-channel organic thin-film transistors with high field-effect mobility based on N ,N'-bis(heptafluorobutyl)-3,4:9,10-perylene diimide

    NASA Astrophysics Data System (ADS)

    Oh, Joon Hak; Liu, Shuhong; Bao, Zhenan; Schmidt, Rüdiger; Würthner, Frank

    2007-11-01

    The thin-film transistor characteristics of n-channel organic semiconductor, N ,N'-bis(2,2,3,3,4,4,4-heptafluorobutyl)-perylene tetracarboxylic diimide, are described. The slip-stacked face-to-face molecular packing allows a very dense parallel arrangement of the molecules, leading to field-effect mobility as high as 0.72cm2V-1s-1. The mobility only slightly decreased after exposure to air and remained stable for more than 50days. Our results reveal that molecular packing effects such as close stacking of perylene diimide units and segregation effects imparted by the fluorinated side chains are crucial for the air stability.

  1. Silicon-compatible high-hole-mobility transistor with an undoped germanium channel for low-power application

    NASA Astrophysics Data System (ADS)

    Cho, Seongjae; Man Kang, In; Rok Kim, Kyung; Park, Byung-Gook; Harris, James S.

    2013-11-01

    In this work, Ge-based high-hole-mobility transistor with Si compatibility is designed, and its performance is evaluated. A 2-dimensional hole gas is effectively constructed by a AlGaAs/Ge/Si heterojunction with a sufficiently large valence band offset. Moreover, an intrinsic Ge channel is exploited so that high hole mobility is preserved without dopant scattering. Effects of design parameters such as gate length, Ge channel thickness, and aluminum fraction in the barrier material on device characteristics are thoroughly investigated through device simulations. A high on-current above 30 μA/μm along with a low subthreshold swing was obtained from an optimized planar device for low-power applications.

  2. Low-Temperature Band Transport and Impact of Contact Resistance in Organic Field-Effect Transistors Based on Single-Crystal Films of Ph-BTBT-C10

    NASA Astrophysics Data System (ADS)

    Cho, Joung-min; Mori, Takehiko

    2016-06-01

    Transistors based on single-crystal films of 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) fabricated using the blade-coating method are investigated by the four-probe method down to low temperatures. The four-probe mobility is as large as 18 cm2/V s at room temperature, and increases to 45 cm2/V s at 80 K. At 60 K the two-probe mobility drops abruptly by about 50%, but the mobility drop is mostly attributed to the increase of the source resistance. The carrier transport in the present single-crystal film is regarded as essentially bandlike down to 30 K.

  3. Cumulative effects of electrode and dielectric surface modifications on pentacene-based transistors

    NASA Astrophysics Data System (ADS)

    Devynck, Mélanie; Tardy, Pascal; Wantz, Guillaume; Nicolas, Yohann; Vellutini, Luc; Labrugère, Christine; Hirsch, Lionel

    2012-01-01

    Surface modifications of the dielectric and the metal of pentacene-based field effect transistors using self-assembled monolayer (SAM) were studied. First, a low interfacial trap density and pentacene 2D-growth were favored by the nonpolar and low surface energy of octadecyltrichlorosilane-based SAM. This treatment leaded to increased mobility up to 0.4 cm2 V-1 s-1 and no observable hysteresis on transfer curves. Second, reduced hole injection barrier and contact resistance were achieved by fluorinated thiols deposited on gold contacts resulting in an increased mobility up to 0.6 cm2 V-1 s-1. Finally, a high mobility of 2.6 cm2 V-1 s-1 was achieved by cumulative effects of both treatments.

  4. Structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics for a-IGZO thin-film transistors

    PubMed Central

    2013-01-01

    In this letter, we investigated the structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics on the amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) devices. Compared with the Er2O3 dielectric, the a-IGZO TFT device incorporating an Er2TiO5 gate dielectric exhibited a low threshold voltage of 0.39 V, a high field-effect mobility of 8.8 cm2/Vs, a small subthreshold swing of 143 mV/decade, and a high Ion/Ioff current ratio of 4.23 × 107, presumably because of the reduction in the oxygen vacancies and the formation of the smooth surface roughness as a result of the incorporation of Ti into the Er2TiO5 film. Furthermore, the reliability of voltage stress can be improved using an Er2TiO5 gate dielectric. PMID:23294730

  5. Structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics for a-IGZO thin-film transistors.

    PubMed

    Chen, Fa-Hsyang; Her, Jim-Long; Shao, Yu-Hsuan; Matsuda, Yasuhiro H; Pan, Tung-Ming

    2013-01-08

    In this letter, we investigated the structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics on the amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) devices. Compared with the Er2O3 dielectric, the a-IGZO TFT device incorporating an Er2TiO5 gate dielectric exhibited a low threshold voltage of 0.39 V, a high field-effect mobility of 8.8 cm2/Vs, a small subthreshold swing of 143 mV/decade, and a high Ion/Ioff current ratio of 4.23 × 107, presumably because of the reduction in the oxygen vacancies and the formation of the smooth surface roughness as a result of the incorporation of Ti into the Er2TiO5 film. Furthermore, the reliability of voltage stress can be improved using an Er2TiO5 gate dielectric.

  6. Benzo[ d ][1,2,3]thiadiazole (isoBT): Synthesis, Structural Analysis, and Implementation in Semiconducting Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhihua; Brown, Jennifer; Drees, Martin

    2016-09-13

    Benzo[d][2,1,3]thiadiazole (BT) is a markedly electron-deficient heterocycle widely employed in the realization of organic semiconductors for applications spanning transistors, solar cells, photodetectors, and thermoelectrics. In this contribution, we implement the corresponding isomer, benzo[d][1,2,3]thiadiazole (isoBT), along with new 6-fluoroisoBT and 5,6-difluoro-isoBT units as synthons for constructing alternating copolymers with tetrathiophene (P1-P3). New isoBT-based small molecules as well as the corresponding BTquaterthiophene based polymers (P4-P6) are synthesized and characterized to probe architectural, electronic structural, and device performance differences between the two families. The results demonstrate that isoBT complements BT in enabling highperformance optoelectronic semiconductors with P3 exhibiting hole mobilities surpassing 0.7 cmmore » 2/(V s) in field-effect transistors and power conversion efficiencies of 9% in bulk-heterojunction solar cells.« less

  7. Crystallization behavior of amorphous indium-gallium-zinc-oxide films and its effects on thin-film transistor performance

    NASA Astrophysics Data System (ADS)

    Suko, Ayaka; Jia, JunJun; Nakamura, Shin-ichi; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki; Shigesato, Yuzo

    2016-03-01

    Amorphous indium-gallium-zinc oxide (a-IGZO) films were deposited by DC magnetron sputtering and post-annealed in air at 300-1000 °C for 1 h to investigate the crystallization behavior in detail. X-ray diffraction, electron beam diffraction, and high-resolution electron microscopy revealed that the IGZO films showed an amorphous structure after post-annealing at 300 °C. At 600 °C, the films started to crystallize from the surface with c-axis preferred orientation. At 700-1000 °C, the films totally crystallized into polycrystalline structures, wherein the grains showed c-axis preferred orientation close to the surface and random orientation inside the films. The current-gate voltage (Id-Vg) characteristics of the IGZO thin-film transistor (TFT) showed that the threshold voltage (Vth) and subthreshold swing decreased markedly after the post-annealing at 300 °C. The TFT using the totally crystallized films also showed the decrease in Vth, whereas the field-effect mobility decreased considerably.

  8. Ideal Channel Field Effect Transistors

    DTIC Science & Technology

    2010-03-01

    well as on /?-GaAs/w-GaAs homojunctions grown by molecular beam epitaxy (MBE). The diode I-Vs at reverse bias are plotted below. The measured breakdown...transistors and composite channel InAlAs/InGaAs/lnP/InAlAs high electron mobility transistors ( HEMTs ), which have taken the full advantage of the matched...result in a large number of dislocations in GaAs films epitaxially grown on wurtzite GaN. In this work, we have successfully integrated GaAs with GaN

  9. The role of contact resistance in graphene field-effect devices

    NASA Astrophysics Data System (ADS)

    Giubileo, Filippo; Di Bartolomeo, Antonio

    2017-08-01

    The extremely high carrier mobility and the unique band structure, make graphene very useful for field-effect transistor applications. According to several works, the primary limitation to graphene based transistor performance is not related to the material quality, but to extrinsic factors that affect the electronic transport properties. One of the most important parasitic element is the contact resistance appearing between graphene and the metal electrodes functioning as the source and the drain. Ohmic contacts to graphene, with low contact resistances, are necessary for injection and extraction of majority charge carriers to prevent transistor parameter fluctuations caused by variations of the contact resistance. The International Technology Roadmap for Semiconductors, toward integration and down-scaling of graphene electronic devices, identifies as a challenge the development of a CMOS compatible process that enables reproducible formation of low contact resistance. However, the contact resistance is still not well understood despite it is a crucial barrier towards further improvements. In this paper, we review the experimental and theoretical activity that in the last decade has been focusing on the reduction of the contact resistance in graphene transistors. We will summarize the specific properties of graphene-metal contacts with particular attention to the nature of metals, impact of fabrication process, Fermi level pinning, interface modifications induced through surface processes, charge transport mechanism, and edge contact formation.

  10. Deformable Organic Nanowire Field-Effect Transistors.

    PubMed

    Lee, Yeongjun; Oh, Jin Young; Kim, Taeho Roy; Gu, Xiaodan; Kim, Yeongin; Wang, Ging-Ji Nathan; Wu, Hung-Chin; Pfattner, Raphael; To, John W F; Katsumata, Toru; Son, Donghee; Kang, Jiheong; Matthews, James R; Niu, Weijun; He, Mingqian; Sinclair, Robert; Cui, Yi; Tok, Jeffery B-H; Lee, Tae-Woo; Bao, Zhenan

    2018-02-01

    Deformable electronic devices that are impervious to mechanical influence when mounted on surfaces of dynamically changing soft matters have great potential for next-generation implantable bioelectronic devices. Here, deformable field-effect transistors (FETs) composed of single organic nanowires (NWs) as the semiconductor are presented. The NWs are composed of fused thiophene diketopyrrolopyrrole based polymer semiconductor and high-molecular-weight polyethylene oxide as both the molecular binder and deformability enhancer. The obtained transistors show high field-effect mobility >8 cm 2 V -1 s -1 with poly(vinylidenefluoride-co-trifluoroethylene) polymer dielectric and can easily be deformed by applied strains (both 100% tensile and compressive strains). The electrical reliability and mechanical durability of the NWs can be significantly enhanced by forming serpentine-like structures of the NWs. Remarkably, the fully deformable NW FETs withstand 3D volume changes (>1700% and reverting back to original state) of a rubber balloon with constant current output, on the surface of which it is attached. The deformable transistors can robustly operate without noticeable degradation on a mechanically dynamic soft matter surface, e.g., a pulsating balloon (pulse rate: 40 min -1 (0.67 Hz) and 40% volume expansion) that mimics a beating heart, which underscores its potential for future biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Characterization and Fabrication of High k dielectric-High Mobility Channel Transistors

    NASA Astrophysics Data System (ADS)

    Sun, Xiao

    As the conventional scaling of Si-based MOSFETs would bring negligible or even negative merits for IC's beyond the 7-nm CMOS technology node, many perceive the use of high-mobility channels to be one of the most likely principle changes, in order to achieve higher performance and lower power. However, interface and oxide traps have become a major obstacle for high-mobility semiconductors (such as Ge, InGaAs, GaSb, GaN...) to replace Si CMOS technology. In this thesis, the distinct properties of the traps in the high-k dielectric/high-mobility substrate system is discussed, as well as the challenges to characterize and passivate them. By modifying certain conventional gate admittance methods, both the fast and slow traps in Ge MOS gate stacks is investigated. In addition, a novel ac-transconductance method originated at Yale is introduced and demonstrated with several advanced transistors provided by collaborating groups, such as ultra-thin-body & box SO1 MOSFETs (CEA-LETI), InGaAs MOSFETs (IMEC, UT Austin, Purdue), and GaN MOS-HEMT (MIT). By use of the aforementioned characterization techniques, several effective passivation techniques on high mobility substrates (Ge, InGaAs, GaSb, GeSn, etc.) are evaluated, including a novel Ba sub-monolayer passivation of Ge surface. The key factors that need to be considered in passivating high mobility substrates are revealed. The techniques that we have established for characterizing traps in advanced field-effect transistors, as well as the knowledge gained about these traps by the use of these techniques, have been applied to the study of ionizing radiation effects in high-mobility-channel transistors, because it is very important to understand such effects as these devices are likely to be exposed to radiation-harsh environments, such as in outer space, nuclear plants, and during X-ray or UHV lithography. In this thesis, the total ionizing dose (TD) radiation effects of InGaAs-based MOSFETs and GaN-based MOS-HEMT are studied, and the results help to reveal the underlying mechanisms and inspire ideas for minimizing the TID radiation effects.

  12. Electronics Devices and Materials

    DTIC Science & Technology

    2008-03-17

    Molecular -bea epitaxy MCNPX ............... Software code Misse6 ................. Satellite expected to carry ORMatE-I Misse7...patterning using electron beam lithography), spaces (class 1000 clean benches), and skills (appropriate mix of skilled technicians and professionals...34 Process samples for various projects such as Antimode Base High Electron Mobility Transistors ( HEMT ) and Double Heterojuction Bipolar Transistors

  13. High-temperature performance of MoS2 thin-film transistors: Direct current and pulse current-voltage characteristics

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Rumyantsev, S. L.; Samnakay, R.; Shur, M. S.; Balandin, A. A.

    2015-02-01

    We report on fabrication of MoS2 thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS2 devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS2 thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a "memory step," was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS2 thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS2 thin-film transistors in extreme-temperature electronics and sensors.

  14. Two dimensional simulation of patternable conducting polymer electrode based organic thin film transistor

    NASA Astrophysics Data System (ADS)

    Nair, Shiny; Kathiresan, M.; Mukundan, T.

    2018-02-01

    Device characteristics of organic thin film transistor (OTFT) fabricated with conducting polyaniline:polystyrene sulphonic acid (PANi-PSS) electrodes, patterned by the Parylene lift-off method are systematically analyzed by way of two dimensional numerical simulation. The device simulation was performed taking into account field-dependent mobility, low mobility layer at the electrode-semiconductor interface, trap distribution in pentacene film and trapped charge at the organic/insulator interface. The electrical characteristics of bottom contact thin film transistor with PANi-PSS electrodes and pentacene active material is superior to those with palladium electrodes due to a lower charge injection barrier. Contact resistance was extracted in both cases by the transfer line method (TLM). The extracted charge concentration and potential profile from the two dimensional numerical simulation was used to explain the observed electrical characteristics. The simulated device characteristics not only matched the experimental electrical characteristics, but also gave an insight on the charge injection, transport and trap properties of the OTFTs as a function of different electrode materials from the perspectives of transistor operation.

  15. Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution.

    PubMed

    Faber, Hendrik; Das, Satyajit; Lin, Yen-Hung; Pliatsikas, Nikos; Zhao, Kui; Kehagias, Thomas; Dimitrakopulos, George; Amassian, Aram; Patsalas, Panos A; Anthopoulos, Thomas D

    2017-03-01

    Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In 2 O 3 /ZnO heterojunction. We find that In 2 O 3 /ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In 2 O 3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In 2 O 3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications.

  16. Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution

    PubMed Central

    Faber, Hendrik; Das, Satyajit; Lin, Yen-Hung; Pliatsikas, Nikos; Zhao, Kui; Kehagias, Thomas; Dimitrakopulos, George; Amassian, Aram; Patsalas, Panos A.; Anthopoulos, Thomas D.

    2017-01-01

    Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In2O3/ZnO heterojunction. We find that In2O3/ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In2O3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In2O3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications. PMID:28435867

  17. Balanced Ambipolar Organic Field-Effect Transistors by Polymer Preaggregation.

    PubMed

    Janasz, Lukasz; Luczak, Adam; Marszalek, Tomasz; Dupont, Bertrand G R; Jung, Jaroslaw; Ulanski, Jacek; Pisula, Wojciech

    2017-06-21

    Ambipolar organic field-effect transistors (OFETs) based on heterojunction active films still suffer from an imbalance in the transport of electrons and holes. This problem is related to an uncontrolled phase separation between the donor and acceptor organic semiconductors in the thin films. In this work, we have developed a concept to improve the phase separation in heterojunction transistors to enhance their ambipolar performance. This concept is based on preaggregation of the donor polymer, in this case poly(3-hexylthiophene) (P3HT), before solution mixing with the small-molecular-weight acceptor, phenyl-C61-butyric acid methyl ester (PCBM). The resulting heterojunction transistor morphology consists of self-assembled P3HT fibers embedded in a PCBM matrix, ensuring balanced mobilities reaching 0.01 cm 2 /V s for both holes and electrons. These are the highest mobility values reported so far for ambipolar OFETs based on P3HT/PCBM blends. Preaggregation of the conjugated polymer before fabricating binary blends can be regarded as a general concept for a wider range of semiconducting systems applicable in organic electronic devices.

  18. Graphene Oxide/Poly(3-hexylthiophene) Nanocomposite Thin-Film Phototransistor for Logic Circuit Applications

    NASA Astrophysics Data System (ADS)

    Mansouri, S.; Coskun, B.; El Mir, L.; Al-Sehemi, Abdullah G.; Al-Ghamdi, Ahmed; Yakuphanoglu, F.

    2018-04-01

    Graphene is a sheet-structured material that lacks a forbidden band, being a good candidate for use in radiofrequency applications. We have elaborated graphene-oxide-doped poly(3-hexylthiophene) nanocomposite to increase the interlayer distance and thereby open a large bandgap for use in the field of logic circuits. Graphene oxide/poly(3-hexylthiophene) (GO/P3HT) nanocomposite thin-film transistors (TFTs) were fabricated on silicon oxide substrate by spin coating method. The current-voltage ( I- V) characteristics of TFTs with various P3HT compositions were studied in the dark and under light illumination. The photocurrent, charge carrier mobility, subthreshold voltage, density of interface states, density of occupied states, and I ON/ I OFF ratio of the devices strongly depended on the P3HT weight ratio in the composite. The effects of white-light illumination on the electrical parameters of the transistors were investigated. The results indicated that GO/P3HT nanocomposite thin-film transistors have high potential for use in radiofrequency applications, and their feasibility for use in digital applications has been demonstrated.

  19. Degradation Mechanisms for GaN and GaAs High Speed Transistors

    PubMed Central

    Cheney, David J.; Douglas, Erica A.; Liu, Lu; Lo, Chien-Fong; Gila, Brent P.; Ren, Fan; Pearton, Stephen J.

    2012-01-01

    We present a review of reliability issues in AlGaN/GaN and AlGaAs/GaAs high electron mobility transistors (HEMTs) as well as Heterojunction Bipolar Transistors (HBTs) in the AlGaAs/GaAs materials systems. Because of the complex nature and multi-faceted operation modes of these devices, reliability studies must go beyond the typical Arrhenius accelerated life tests. We review the electric field driven degradation in devices with different gate metallization, device dimensions, electric field mitigation techniques (such as source field plate), and the effect of device fabrication processes for both DC and RF stress conditions. We summarize the degradation mechanisms that limit the lifetime of these devices. A variety of contact and surface degradation mechanisms have been reported, but differ in the two device technologies: For HEMTs, the layers are thin and relatively lightly doped compared to HBT structures and there is a metal Schottky gate that is directly on the semiconductor. By contrast, the HBT relies on pn junctions for current modulation and has only Ohmic contacts. This leads to different degradation mechanisms for the two types of devices.

  20. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Bhansali, Unnat. S.; Alshareef, H. N.

    2012-06-01

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility of 8.7 cm2/Vs was obtained along with an Ion/Ioff ratio of 106. The ferroelectric thin film transistors showed a low sub-threshold swing value of 0.19 V/dec and a significantly reduced device operating voltage (±4 V) compared to the reported hetero-junction ferroelectric transistors, which is very promising for low-power non-volatile memory applications.

  1. In situ preparation, electrical and surface analytical characterization of pentacene thin film transistors

    PubMed Central

    Lassnig, R.; Striedinger, B.; Hollerer, M.; Fian, A.; Stadlober, B.; Winkler, A.

    2015-01-01

    The fabrication of organic thin film transistors with highly reproducible characteristics presents a very challenging task. We have prepared and analyzed model pentacene thin film transistors under ultra-high vacuum conditions, employing surface analytical tools and methods. Intentionally contaminating the gold contacts and SiO2 channel area with carbon through repeated adsorption, dissociation, and desorption of pentacene proved to be very advantageous in the creation of devices with stable and reproducible parameters. We mainly focused on the device properties, such as mobility and threshold voltage, as a function of film morphology and preparation temperature. At 300 K, pentacene displays Stranski-Krastanov growth, whereas at 200 K fine-grained, layer-like film growth takes place, which predominantly influences the threshold voltage. Temperature dependent mobility measurements demonstrate good agreement with the established multiple trapping and release model, which in turn indicates a predominant concentration of shallow traps in the crystal grains and at the oxide-semiconductor interface. Mobility and threshold voltage measurements as a function of coverage reveal that up to four full monolayers contribute to the overall charge transport. A significant influence on the effective mobility also stems from the access resistance at the gold contact-semiconductor interface, which is again strongly influenced by the temperature dependent, characteristic film growth mode. PMID:25814770

  2. In situ preparation, electrical and surface analytical characterization of pentacene thin film transistors

    NASA Astrophysics Data System (ADS)

    Lassnig, R.; Striedinger, B.; Hollerer, M.; Fian, A.; Stadlober, B.; Winkler, A.

    2014-09-01

    The fabrication of organic thin film transistors with highly reproducible characteristics presents a very challenging task. We have prepared and analyzed model pentacene thin film transistors under ultra-high vacuum conditions, employing surface analytical tools and methods. Intentionally contaminating the gold contacts and SiO2 channel area with carbon through repeated adsorption, dissociation, and desorption of pentacene proved to be very advantageous in the creation of devices with stable and reproducible parameters. We mainly focused on the device properties, such as mobility and threshold voltage, as a function of film morphology and preparation temperature. At 300 K, pentacene displays Stranski-Krastanov growth, whereas at 200 K fine-grained, layer-like film growth takes place, which predominantly influences the threshold voltage. Temperature dependent mobility measurements demonstrate good agreement with the established multiple trapping and release model, which in turn indicates a predominant concentration of shallow traps in the crystal grains and at the oxide-semiconductor interface. Mobility and threshold voltage measurements as a function of coverage reveal that up to four full monolayers contribute to the overall charge transport. A significant influence on the effective mobility also stems from the access resistance at the gold contact-semiconductor interface, which is again strongly influenced by the temperature dependent, characteristic film growth mode.

  3. Perpendicular transport in superlattice bipolar transistors (SBT)

    NASA Astrophysics Data System (ADS)

    Sibille, A.; Palmier, J. F.; Minot, C.; Harmand, J. C.; Dubon-Chevallier, C.

    Diffusion-limited electron transport in superlattices is studied by gain measurements on heterojunction bipolar transistors with a {GaAs}/{GaAlAs} superlattice base. In the case of thin barriers, Bloch conduction is observed, while hopping between localized levels prevails for large barriers. A transition occurs between these two regimes, localization being achieved when the energy broadening induced by the electron-phonon coupling added to the disorder due to imperfect growth is of the order of the miniband width. This interpretation is supported by temperature dependence measurements of the perpendicular mobilities in relation with theoretical calculations of these mobilities.

  4. Electrical and structural characterization of IZO (indium oxide-zinc oxide) thin films for device applications

    NASA Astrophysics Data System (ADS)

    Yaglioglu, Burag

    Materials for oxide-based transparent electronics have been recently reported in the literature. These materials include various amorphous and crystalline compounds based on multi-component oxides and many of them offer useful combinations of transparency, controllable carrier concentrations, and reasonable n-carrier mobility. In this thesis, the properties of amorphous and crystalline In2O3-10wt%ZnO, IZO, thin films were investigated for their potential use in oxide electronics. The room temperature deposition of this material using DC magnetron sputtering results in the formation of amorphous films. Annealing amorphous IZO films at 500°C in air produces a previously unknown crystalline compound. Using electron diffraction experiments, it is reported that the crystal structure of this compound is based on the high-pressure rhombohedral phase of In2O3. Electrical properties of different phases of IZO were explored and it was concluded that amorphous films offer most promising characteristics for device applications. Therefore, thin film transistors (TFT) were fabricated based on amorphous IZO films where both the channel and metallization layers were deposited from the same target. The carrier densities in the channel and source-drain layers were adjusted by changing the oxygen content in the sputter chamber during deposition. The resulting transistors operate as depletion mode n-channel field effect devices with high saturation mobilities.

  5. Structure characterization of MHEMT heterostructure elements with In0.4Ga0.6As quantum well grown by molecular beam epitaxy on GaAs substrate using reciprocal space mapping

    NASA Astrophysics Data System (ADS)

    Aleshin, A. N.; Bugaev, A. S.; Ermakova, M. A.; Ruban, O. A.

    2016-03-01

    The crystallographic parameters of elements of a metamorphic high-electron-mobility transistor (MHEMT) heterostructure with In0.4Ga0.6As quantum well are determined using reciprocal space mapping. The heterostructure has been grown by molecular-beam epitaxy (MBE) on the vicinal surface of a GaAs substrate with a deviation angle of 2° from the (001) plane. The structure consists of a metamorphic step-graded buffer (composed of six layers, including an inverse step), a high-temperature buffer of constant composition, and active high-electron-mobility transistor (HEMT) layers. The InAs content in the metamorphic buffer layers varies from 0.1 to 0.48. Reciprocal space mapping has been performed for the 004 and 224 reflections (the latter in glancing exit geometry). Based on map processing, the lateral and vertical lattice parameters of In x Ga1- x As ternary solid solutions of variable composition have been determined. The degree of layer lattice relaxation and the compressive stress are found within the linear elasticity theory. The high-temperature buffer layer of constant composition (on which active MHEMT layers are directly formed) is shown to have the highest (close to 100%) degree of relaxation in comparison with all other heterostructure layers and a minimum compressive stress.

  6. Modeling and Design of GaN High Electron Mobility Transistors and Hot Electron Transistors through Monte Carlo Particle-based Device Simulations

    NASA Astrophysics Data System (ADS)

    Soligo, Riccardo

    In this work, the insight provided by our sophisticated Full Band Monte Carlo simulator is used to analyze the behavior of state-of-art devices like GaN High Electron Mobility Transistors and Hot Electron Transistors. Chapter 1 is dedicated to the description of the simulation tool used to obtain the results shown in this work. Moreover, a separate section is dedicated the set up of a procedure to validate to the tunneling algorithm recently implemented in the simulator. Chapter 2 introduces High Electron Mobility Transistors (HEMTs), state-of-art devices characterized by highly non linear transport phenomena that require the use of advanced simulation methods. The techniques for device modeling are described applied to a recent GaN-HEMT, and they are validated with experimental measurements. The main techniques characterization techniques are also described, including the original contribution provided by this work. Chapter 3 focuses on a popular technique to enhance HEMTs performance: the down-scaling of the device dimensions. In particular, this chapter is dedicated to lateral scaling and the calculation of a limiting cutoff frequency for a device of vanishing length. Finally, Chapter 4 and Chapter 5 describe the modeling of Hot Electron Transistors (HETs). The simulation approach is validated by matching the current characteristics with the experimental one before variations of the layouts are proposed to increase the current gain to values suitable for amplification. The frequency response of these layouts is calculated, and modeled by a small signal circuit. For this purpose, a method to directly calculate the capacitance is developed which provides a graphical picture of the capacitative phenomena that limit the frequency response in devices. In Chapter 5 the properties of the hot electrons are investigated for different injection energies, which are obtained by changing the layout of the emitter barrier. Moreover, the large signal characterization of the HET is shown for different layouts, where the collector barrier was scaled.

  7. Fundamental and future prospects of printed ambipolar fluorene-type polymer light-emitting transistors for improved external quantum efficiency, mobility, and emission pattern

    NASA Astrophysics Data System (ADS)

    Kajii, Hirotake

    2018-05-01

    In this review, we focus on the improved external quantum efficiency, field-effect mobility, and emission pattern of top-gate-type polymer light-emitting transistors (PLETs) based on ambipolar fluorene-type polymers. A low-temperature, high-efficiency, printable red phosphorescent PLET based on poly(alkylfluorene) with modified alkyl side chains fabricated by a film transfer process is demonstrated. Device fabrication based on oriented films leads to an improved EL intensity owing to the increase in field-effect mobility. There are three factors that affect the transport of carriers, i.e., the energy level, threshold voltage, and mobility of each layer for heterostructure PLETs, which result in various emission patterns such as the line-shaped, multicolor and in-plane emission pattern in the full-channel area between source and drain electrodes. Fundamentals and future prospects in heterostructure devices are discussed and reviewed.

  8. Boost Up Carrier Mobility for Ferroelectric Organic Transistor Memory via Buffering Interfacial Polarization Fluctuation

    PubMed Central

    Sun, Huabin; Wang, Qijing; Li, Yun; Lin, Yen-Fu; Wang, Yu; Yin, Yao; Xu, Yong; Liu, Chuan; Tsukagoshi, Kazuhito; Pan, Lijia; Wang, Xizhang; Hu, Zheng; Shi, Yi

    2014-01-01

    Ferroelectric organic field-effect transistors (Fe-OFETs) have been attractive for a variety of non-volatile memory device applications. One of the critical issues of Fe-OFETs is the improvement of carrier mobility in semiconducting channels. In this article, we propose a novel interfacial buffering method that inserts an ultrathin poly(methyl methacrylate) (PMMA) between ferroelectric polymer and organic semiconductor layers. A high field-effect mobility (μFET) up to 4.6 cm2 V−1 s−1 is obtained. Subsequently, the programming process in our Fe-OFETs is mainly dominated by the switching between two ferroelectric polarizations rather than by the mobility-determined charge accumulation at the channel. Thus, the “reading” and “programming” speeds are significantly improved. Investigations show that the polarization fluctuation at semiconductor/insulator interfaces, which affect the charge transport in conducting channels, can be suppressed effectively using our method. PMID:25428665

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomai, S.; Graduate School of Material Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 6300192; Terai, K.

    We have developed a high-mobility and high-uniform oxide semiconductor using poly-crystalline semiconductor material composed of indium and zinc (p-IZO). A typical conduction mechanism of p-IZO film was demonstrated by the grain boundary scattering model as in polycrystalline silicon. The grain boundary potential of the 2-h-annealed IZO film was calculated to be 100 meV, which was comparable to that of the polycrystalline silicon. However, the p-IZO thin film transistor (TFT) measurement shows rather uniform characteristics. It denotes that the mobility deterioration around the grain boundaries is lower than the case for low-temperature polycrystalline silicon. This assertion was made based on the differencemore » of the mobility between the polycrystalline and amorphous IZO film being much smaller than is the case for silicon transistors. Therefore, we conclude that the p-IZO is a promising material for a TFT channel, which realizes high drift mobility and uniformity simultaneously.« less

  10. Heterogeneous Integration of Epitaxial Ge on Si using AlAs/GaAs Buffer Architecture: Suitability for Low-power Fin Field-Effect Transistors

    PubMed Central

    Hudait, Mantu K.; Clavel, Michael; Goley, Patrick; Jain, Nikhil; Zhu, Yan

    2014-01-01

    Germanium-based materials and device architectures have recently appeared as exciting material systems for future low-power nanoscale transistors and photonic devices. Heterogeneous integration of germanium (Ge)-based materials on silicon (Si) using large bandgap buffer architectures could enable the monolithic integration of electronics and photonics. In this paper, we report on the heterogeneous integration of device-quality epitaxial Ge on Si using composite AlAs/GaAs large bandgap buffer, grown by molecular beam epitaxy that is suitable for fabricating low-power fin field-effect transistors required for continuing transistor miniaturization. The superior structural quality of the integrated Ge on Si using AlAs/GaAs was demonstrated using high-resolution x-ray diffraction analysis. High-resolution transmission electron microscopy confirmed relaxed Ge with high crystalline quality and a sharp Ge/AlAs heterointerface. X-ray photoelectron spectroscopy demonstrated a large valence band offset at the Ge/AlAs interface, as compared to Ge/GaAs heterostructure, which is a prerequisite for superior carrier confinement. The temperature-dependent electrical transport properties of the n-type Ge layer demonstrated a Hall mobility of 370 cm2/Vs at 290 K and 457 cm2/Vs at 90 K, which suggests epitaxial Ge grown on Si using an AlAs/GaAs buffer architecture would be a promising candidate for next-generation high-performance and energy-efficient fin field-effect transistor applications. PMID:25376723

  11. Proton-Induced Conductivity Enhancement in AlGaN/GaN HEMT Devices

    NASA Astrophysics Data System (ADS)

    Lee, In Hak; Lee, Chul; Choi, Byoung Ki; Yun, Yeseul; Chang, Young Jun; Jang, Seung Yup

    2018-04-01

    We investigated the influence of proton irradiation on the AlGaN/GaN high-electron-mobility transistor (HEMT) devices. Unlike previous studies on the degradation behavior upon proton irradiation, we observed improvements in their electrical conductivity and carrier concentration of up to 25% for the optimal condition. As we increased the proton dose, the carrier concentration and the mobility showed a gradual increase and decrease, respectively. From the photoluminescence measurements, we observed a reduction in the near-band-edge peak of GaN ( 366 nm), which correlate on the observed electrical properties. However, neither the Raman nor the X-ray diffraction analysis showed any changes, implying a negligible influence of protons on the crystal structures. We demonstrated that high-energy proton irradiation could be utilized to modify the transport properties of HEMT devices without damaging their crystal structures.

  12. Remarkably High Mobility Thin-Film Transistor on Flexible Substrate by Novel Passivation Material.

    PubMed

    Shih, Cheng Wei; Chin, Albert

    2017-04-25

    High mobility thin-film transistor (TFT) is crucial for future high resolution and fast response flexible display. Remarkably high performance TFT, made at room temperature on flexible substrate, is achieved with record high field-effect mobility (μ FE ) of 345 cm 2 /Vs, small sub-threshold slope (SS) of 103 mV/dec, high on-current/off-current (I ON /I OFF ) of 7 × 10 6 , and a low drain-voltage (V D ) of 2 V for low power operation. The achieved mobility is the best reported data among flexible electronic devices, which is reached by novel HfLaO passivation material on nano-crystalline zinc-oxide (ZnO) TFT to improve both I ON and I OFF . From X-ray photoelectron spectroscopy (XPS) analysis, the non-passivated device has high OH-bonding intensity in nano-crystalline ZnO, which damage the crystallinity, create charged scattering centers, and form potential barriers to degrade mobility.

  13. Extracting the field-effect mobilities of random semiconducting single-walled carbon nanotube networks: A critical comparison of methods

    NASA Astrophysics Data System (ADS)

    Schießl, Stefan P.; Rother, Marcel; Lüttgens, Jan; Zaumseil, Jana

    2017-11-01

    The field-effect mobility is an important figure of merit for semiconductors such as random networks of single-walled carbon nanotubes (SWNTs). However, owing to their network properties and quantum capacitance, the standard models for field-effect transistors cannot be applied without modifications. Several different methods are used to determine the mobility with often very different results. We fabricated and characterized field-effect transistors with different polymer-sorted, semiconducting SWNT network densities ranging from low (≈6 μm-1) to densely packed quasi-monolayers (≈26 μm-1) with a maximum on-conductance of 0.24 μS μm-1 and compared four different techniques to evaluate the field-effect mobility. We demonstrate the limits and requirements for each method with regard to device layout and carrier accumulation. We find that techniques that take into account the measured capacitance on the active device give the most reliable mobility values. Finally, we compare our experimental results to a random-resistor-network model.

  14. Novel hole transport materials for organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Shi, Jianmin; Forsythe, Eric; Morton, David

    2008-08-01

    Organic electronic devices generally have a layered structure with organic materials sandwiched between an anode and a cathode, such organic electronic devices of organic light-emitting diode (OLED), organic photovoltaic (OPV), organic thin-film transistor (OTFT). There are many advantages of these organic electronic devices as compared to silicon-based devices. However, one of key challenge for an organic electronic device is to minimize the charge injection barrier from electrodes to organic materials and improve the charge transport mobility. In order to overcome these circumstances, there are many approaches including, designing organic materials with minimum energy barriers and improving charge transport mobility. Ideally organic materials or complex with Ohmic contact will be the most desired.

  15. Mixed Carrier Conduction in Modulation-doped Field Effect Transistors

    NASA Technical Reports Server (NTRS)

    Schacham, S. E.; Haugland, E. J.; Mena, R. A.; Alterovitz, S. A.

    1995-01-01

    The contribution of more than one carrier to the conductivity in modulation-doped field effect transistors (MODFET) affects the resultant mobility and complicates the characterization of these devices. Mixed conduction arises from the population of several subbands in the two-dimensional electron gas (2DEG), as well as the presence of a parallel path outside the 2DEG. We characterized GaAs/AlGaAs MODFET structures with both delta and continuous doping in the barrier. Based on simultaneous Hall and conductivity analysis we conclude that the parallel conduction is taking place in the AlGaAs barrier, as indicated by the carrier freezeout and activation energy. Thus, simple Hall analysis of these structures may lead to erroneous conclusions, particularly for real-life device structures. The distribution of the 2D electrons between the various confined subbands depends on the doping profile. While for a continuously doped barrier the Shubnikov-de Haas analysis shows superposition of two frequencies for concentrations below 10(exp 12) cm(exp -2), for a delta doped structure the superposition is absent even at 50% larger concentrations. This result is confirmed by self-consistent analysis, which indicates that the concentration of the second subband hardly increases.

  16. Single shot spin readout using a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures

    NASA Astrophysics Data System (ADS)

    Tracy, L. A.; Luhman, D. R.; Carr, S. M.; Bishop, N. C.; Ten Eyck, G. A.; Pluym, T.; Wendt, J. R.; Lilly, M. P.; Carroll, M. S.

    2016-02-01

    We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ˜9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ˜ 2.7 × 10 3 , the power dissipation of the amplifier is 13 μW, the bandwidth is ˜ 1.3 MHz, and for frequencies above 300 kHz the current noise referred to input is ≤ 70 fA/ √{ Hz } . With this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.

  17. Inkjet-Printed In-Ga-Zn Oxide Thin-Film Transistors with Laser Spike Annealing

    NASA Astrophysics Data System (ADS)

    Huang, Hang; Hu, Hailong; Zhu, Jingguang; Guo, Tailiang

    2017-07-01

    Inkjet-printed In-Ga-Zn oxide (IGZO) thin-film transistors (TFTs) have been fabricated at low temperature using laser spike annealing (LSA) treatment. Coffee-ring effects during the printing process were eliminated to form uniform IGZO films by simply increasing the concentration of solute in the ink. The impact of LSA on the TFT performance was studied. The field-effect mobility, threshold voltage, and on/off current ratio were greatly influenced by the LSA treatment. With laser scanning at 1 mm/s for 40 times, the 30-nm-thick IGZO TFT baked at 200°C showed mobility of 1.5 cm2/V s, threshold voltage of -8.5 V, and on/off current ratio >106. Our findings demonstrate the feasibility of rapid LSA treatment of low-temperature inkjet-printed oxide semiconductor transistors, being comparable to those obtained by conventional high-temperature annealing.

  18. GaN-on-silicon high-electron-mobility transistor technology with ultra-low leakage up to 3000 V using local substrate removal and AlN ultra-wide bandgap

    NASA Astrophysics Data System (ADS)

    Dogmus, Ezgi; Zegaoui, Malek; Medjdoub, Farid

    2018-03-01

    We report on extremely low off-state leakage current in AlGaN/GaN-on-silicon metal–insulator–semiconductor high-electron-mobility transistors (MISHEMTs) up to a high blocking voltage. Remarkably low off-state gate and drain leakage currents below 1 µA/mm up to 3 kV have been achieved owing to the use of a thick in situ SiN gate dielectric under the gate, and a local Si substrate removal technique combined with a cost effective 15-µm-thick AlN dielectric layer followed by a Cu deposition. This result establishes a manufacturable state-of-the-art high-voltage GaN-on-silicon power transistors while maintaining a low specific on-resistance of approximately 10 mΩ·cm2.

  19. Organic transistors manufactured using inkjet technology with subfemtoliter accuracy

    PubMed Central

    Sekitani, Tsuyoshi; Noguchi, Yoshiaki; Zschieschang, Ute; Klauk, Hagen; Someya, Takao

    2008-01-01

    A major obstacle to the development of organic transistors for large-area sensor, display, and circuit applications is the fundamental compromise between manufacturing efficiency, transistor performance, and power consumption. In the past, improving the manufacturing efficiency through the use of printing techniques has inevitably resulted in significantly lower performance and increased power consumption, while attempts to improve performance or reduce power have led to higher process temperatures and increased manufacturing cost. Here, we lift this fundamental limitation by demonstrating subfemtoliter inkjet printing to define metal contacts with single-micrometer resolution on the surface of high-mobility organic semiconductors to create high-performance p-channel and n-channel transistors and low-power complementary circuits. The transistors employ an ultrathin low-temperature gate dielectric based on a self-assembled monolayer that allows transistors and circuits on rigid and flexible substrates to operate with very low voltages. PMID:18362348

  20. 25th anniversary article: progress in chemistry and applications of functional indigos for organic electronics.

    PubMed

    Głowacki, Eric Daniel; Voss, Gundula; Sariciftci, Niyazi Serdar

    2013-12-17

    Indigo and its derivatives are dyes and pigments with a long and distinguished history in organic chemistry. Recently, applications of this 'old' structure as a functional organic building block for organic electronics applications have renewed interest in these molecules and their remarkable chemical and physical properties. Natural-origin indigos have been processed in fully bio-compatible field effect transistors, operating with ambipolar mobilities up to 0.5 cm(2) /Vs and air-stability. The synthetic derivative isoindigo has emerged as one of the most successful building-blocks for semiconducting polymers for plastic solar cells with efficiencies > 5%. Another isomer of indigo, epindolidione, has also been shown to be one of the best reported organic transistor materials in terms of mobility (∼2 cm(2) /Vs) and stability. This progress report aims to review very recent applications of indigoids in organic electronics, but especially to logically bridge together the hereto independent research directions on indigo, isoindigo, and other materials inspired by historical dye chemistry: a field which was the root of the development of modern chemistry in the first place. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Surface-directed molecular assembly of pentacene on monolayer graphene for high-performance organic transistors.

    PubMed

    Lee, Wi Hyoung; Park, Jaesung; Sim, Sung Hyun; Lim, Soojin; Kim, Kwang S; Hong, Byung Hee; Cho, Kilwon

    2011-03-30

    Organic electronic devices that use graphene electrodes have received considerable attention because graphene is regarded as an ideal candidate electrode material. Transfer and lithographic processes during fabrication of patterned graphene electrodes typically leave polymer residues on the graphene surfaces. However, the impact of these residues on the organic semiconductor growth mechanism on graphene surface has not been reported yet. Here, we demonstrate that polymer residues remaining on graphene surfaces induce a stand-up orientation of pentacene, thereby controlling pentacene growth such that the molecular assembly is optimal for charge transport. Thus, pentacene field-effect transistors (FETs) using source/drain monolayer graphene electrodes with polymer residues show a high field-effect mobility of 1.2 cm(2)/V s. In contrast, epitaxial growth of pentacene having molecular assembly of lying-down structure is facilitated by π-π interaction between pentacene and the clean graphene electrode without polymer residues, which adversely affects lateral charge transport at the interface between electrode and channel. Our studies provide that the obtained high field-effect mobility in pentacene FETs using monolayer graphene electrodes arises from the extrinsic effects of polymer residues as well as the intrinsic characteristics of the highly conductive, ultrathin two-dimensional monolayer graphene electrodes.

  2. Cyclopentadithiophene-Benzothiadiazole Donor-Acceptor Polymers as Prototypical Semiconductors for High-Performance Field-Effect Transistors.

    PubMed

    Li, Mengmeng; An, Cunbin; Pisula, Wojciech; Müllen, Klaus

    2018-05-15

    Donor-acceptor (D-A) conjugated polymers are of great interest as organic semiconductors, because they offer a rational tailoring of the electronic properties by modification of the donor and acceptor units. Nowadays, D-A polymers exhibit field-effect mobilities on the order of 10 -2 -10 0 cm 2 V -1 s -1 , while several examples showed a mobility over 10 cm 2 V -1 s -1 . The development of cyclopentadithiophene-benzothiadiazole (CDT-BTZ) copolymers one decade ago represents an important step toward high-performance organic semiconductors for field-effect transistors. The significant rise in field-effect mobility of CDT-BTZ in comparison to the existing D-A polymers at that time opened the door to a new research field with a large number of novel D-A systems. From this point, the device performance of CDT-BTZ was gradually improved by a systematic optimization of the synthesis and polymer structure as well as by an efficient solution processing into long-range ordered thin films. The key aspect was a comprehensive understanding of the relation between polymer structure and solid-state organization. Due to their fundamental role for the field of D-A polymers in general, this Account will for the first time explicitly focus on prototypical CDT-BTZ polymers, while other reviews provide an excellent general overview on D-A polymers. The first part of this Account discusses strategies for improving the charge carrier transport, focusing on chemical aspects. Improved synthesis as an essential stage toward high purity, and high molecular weight is a prerequisite for molecular order. The modification of substituents is a further crucial feature to tune the CDT-BTZ packing and self-assembly. Linear alkyl side chains facilitate intermolecular π-stacking interactions, while branched ones increase solubility and alter the polymer packing. Additional control over the supramolecular organization of CDT-BTZ polymers is introduced by alkenyl substituents via their cis-trans isomerization. The last discussed chemical concept is based on heteroatom variation within the CDT unit. The relationships found experimentally for CDT-BTZ between polymer chemical structure, solid-state organization, and charge carrier transport are explained by means of theoretical simulations. Besides the effects of molecular design, the second part of this Account discusses the processing conditions from solution. The film microstructure, defined as a mesoscopic domain organization, is critically affected by solution processing. Suitable processing techniques allow the formation of a long-range order and a uniaxial orientation of the CDT-BTZ chains, thus lowering the trapping density of grain boundaries for charge carriers. For instance, alignment of the CDT-BTZ polymer by dip-coating yields films with a pronounced structural and electrical anisotropy and favors a fast migration of charge carriers along the conjugated backbones in the deposition direction. By using film compression with the assistance of an ionic liquid, one even obtains CDT-BTZ films with a band-like transport and a transistor hole mobility of 10 cm 2 V -1 s -1 . This device performance is attributed to large domains in the compressed films being formed by CDT-BTZ with longer alkyl chains, which establish a fine balance between polymer interactions and growth kinetics during solvent evaporation. On the basis of the prototypical semiconductor CDT-BTZ, this Account provides general guidelines for achieving high-performance polymer transistors by taking into account the subtle balance of synthetic protocol, molecular design, and processing.

  3. The zinc-loss effect and mobility enhancement of DUV-patterned sol-gel IGZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Wang, Kuan-Hsun; Zan, Hsiao-Wen; Soppera, Olivier

    2018-03-01

    We investigate the composition of the DUV-patterned sol-gel indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) and observe a significant zinc loss effect during developing when the DUV exposure is insufficient. The zinc loss, however, is beneficial for increasing the mobility. Reducing zinc to indium composition ratio from 0.5 to 0.02 can effectively increase mobility from 0.27 to 7.30 cm2 V-1 s-1 when the gallium to indium ratio is fixed as 0.25 and the post annealing process is fixed as 300 °C for 2 h. On the other hand, an IGO TFT fails to deliver a uniform film and a reproducible TFT performance, revealing the critical role of zinc in forming homogeneous IGZO TFTs.

  4. Metal-induced crystallization of amorphous zinc tin oxide semiconductors for high mobility thin-film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Ah Young; Ji, Hyuk; Kim, Sang Tae

    2016-04-11

    Transition tantalum induced crystallization of amorphous zinc tin oxide (a-ZTO) was observed at low temperature annealing of 300 °C. Thin-film transistors (TFTs) with an a-ZTO channel layer exhibited a reasonable field-effect mobility of 12.4 cm{sup 2}/V s, subthreshold swing (SS) of 0.39 V/decade, threshold voltage (V{sub TH}) of 1.5 V, and I{sub ON/OFF} ratio of ∼10{sup 7}. A significant improvement in the field-effect mobility (up to ∼33.5 cm{sup 2}/V s) was achieved for crystallized ZTO TFTs: this improvement was accomplished without compromising the SS, V{sub TH}, or I{sub ON/OFF} ratio due to the presence of a highly ordered microstructure.

  5. Current-voltage characteristics in organic field-effect transistors. Effect of interface dipoles

    NASA Astrophysics Data System (ADS)

    Sworakowski, Juliusz

    2015-07-01

    The role of polar molecules present at dielectric/semiconductor interfaces of organic field-effect transistors (OFETs) has been assessed employing the electrostatic model put forward in a recently published paper (Sworakowski et al., 2014). The interface dipoles create dipolar traps in the surface region of the semiconductor, their depths decreasing with the distance from the interface. This feature results in appearance of mobility gradients in the direction perpendicular to the dielectric/semiconductor interface, manifesting themselves in modification of the shapes of current-voltage characteristics. The effect may account for differences in carrier mobilities determined from the same experimental data using methods scanning different ranges of channel thicknesses (e.g., transconductances vs. transfer characteristics), differences between turn-on voltages and threshold voltages, and gate voltage dependence of mobility.

  6. Development of a Self Aligned CMOS Process for Flash Lamp Annealed Polycrystalline Silicon TFTs

    NASA Astrophysics Data System (ADS)

    Bischoff, Paul

    The emerging active matrix liquid crystal (AMLCD) display market requires a high performing semiconductor material to meet rising standards of operation. Currently amorphous silicon (a-Si) dominates the market but it does not have the required mobility for it to be used in AMLCD manufacturing. Other materials have been developed including crystallizing a-Si into poly-silicon. A new approach to crystallization through the use of flash lamp annealing (FLA) decreases manufacturing time and greatly improves carrier mobility. Previous work on FLA silicon for the use in CMOS transistors revealed significant lateral dopant diffusion into the channel greatly increasing the minimum channel length required for a working device. This was further confounded by the gate overlap due to misalignment during lithography patterning steps. Through the use of furnace dopant activation instead of FLA dopant activation and a self aligned gate the minimum size transistor can be greatly reduced. A new lithography mask and process flow were developed for the furnace annealing and self aligned gate. Fabrication of the self aligned devices resulted in oxidation of the Molybdenum self aligned gate. Further development is needed to successfully manufacture these devices. Non-self aligned transistors were made simultaneously with self aligned devices and used the furnace activation. These devices showed an increase in sheet resistance from 250 O to 800 O and lower mobility from 380 to 40.2 V/cm2s. The lower mobility can be contributed to an increase in implanted trap density indicating furnace annealing is an inferior activation method over FLA. The minimum transistor size however was reduced from 20 to 5 mum. With improvements in the self aligned process high performing small devices can be manufactured.

  7. 77 FR 1017 - Export and Reexport License Requirements for Certain Microwave and Millimeter Wave Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ... * * * * * Related Controls: * * * (3) See ECCN 3A982.a for discrete microwave transistors not controlled by...) power amplifiers other than those controlled by this entry. (2) See ECCN 3A001.b.3 for discrete... mobility transistors that are solid state semiconductor switches, diodes or modules rather than discrete...

  8. Organic-inorganic field effect transistor with SnI-based perovskite channel layer using vapor phase deposition technique

    NASA Astrophysics Data System (ADS)

    Matsushima, Toshinori; Yasuda, Takeshi; Fujita, Katsuhiko; Tsutsui, Tetsuo

    2003-11-01

    High field-effect hole mobility of (formula available in paper)and threshold voltage is -3.2 V) in organic-inorganic layered perovskite film (formula available in paper)prepared by a vapor phase deposition technique have been demonstrated through the octadecyltrichlorosilane treatment of substrate. Previously, the (formula available in paper)films prepared on the octadecyltrichlorosilane-covered substrates using a vapor evaporation showed not only intense exciton absorption and photoluminescence in the optical spectroscopy but also excellent crystallinity and large grain structure in X-ray and atomic force microscopic studies. Especially, the (formula available in paper)structure in the region below few nm closed to the surface of octadecyltrichlorosilane monolayer was drastically improved in comparison with that on the non-covered substrate. Though our initial (formula available in paper)films via a same sequence of preparation of (formula available in paper)and octadecyltrichlorosilane monolayer did not show the field-effect properties because of a lack of spectral, structural, and morphological features. The unformation of favorable (formula available in paper)structure in the very thin region, that is very important for the field-effect transistors to transport electrons or holes, closed to the surface of non-covered (formula available in paper)dielectric layer was also one of the problems for no observation of them. By adding further optimization and development, such as deposition rate of perovskite, substrate heating during deposition, and tuning device architecture, with hydrophobic treatment, the vacuum-deposited (formula available in paper)have achieved above-described high performance in organic-inorganic hybrid transistors.

  9. Trap density of states in small-molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals

    NASA Astrophysics Data System (ADS)

    Kalb, Wolfgang L.; Haas, Simon; Krellner, Cornelius; Mathis, Thomas; Batlogg, Bertram

    2010-04-01

    We show that it is possible to reach one of the ultimate goals of organic electronics: producing organic field-effect transistors with trap densities as low as in the bulk of single crystals. We studied the spectral density of localized states in the band gap [trap density of states (trap DOS)] of small-molecule organic semiconductors as derived from electrical characteristics of organic field-effect transistors or from space-charge-limited current measurements. This was done by comparing data from a large number of samples including thin-film transistors (TFT’s), single crystal field-effect transistors (SC-FET’s) and bulk samples. The compilation of all data strongly suggests that structural defects associated with grain boundaries are the main cause of “fast” hole traps in TFT’s made with vacuum-evaporated pentacene. For high-performance transistors made with small-molecule semiconductors such as rubrene it is essential to reduce the dipolar disorder caused by water adsorbed on the gate dielectric surface. In samples with very low trap densities, we sometimes observe a steep increase in the trap DOS very close (<0.15eV) to the mobility edge with a characteristic slope of 10-20 meV. It is discussed to what degree band broadening due to the thermal fluctuation of the intermolecular transfer integral is reflected in this steep increase in the trap DOS. Moreover, we show that the trap DOS in TFT’s with small-molecule semiconductors is very similar to the trap DOS in hydrogenated amorphous silicon even though polycrystalline films of small-molecules with van der Waals-type interaction on the one hand are compared with covalently bound amorphous silicon on the other hand.

  10. Charge transfer at organic-organic heterojunctions, and remote doping of a pentacene transistor

    NASA Astrophysics Data System (ADS)

    Zhao, Wei

    Organic-organic heterojunctions (OOHs) are the fundamental building blocks of organic devices, such as organic light-emitting diodes, organic photovoltaic cells, and photo detectors. Transport of free electrons and holes, exciton formation, recombination or dissociation, and various other physical processes all take place in OOHs. Understanding the electronic structures of OOH is critical for studying device physics and further improving the performance of organic devices. This work focuses on the electronic structure, i.e., the energy level alignment, at OOHs, investigated by ultraviolet and inverse photoemission spectroscopy (UPS and IPES). The weak interaction that generally prevails at OOH interfaces leads to small interface dipoles of 0˜0.5eV. The experimental observations on the majority of OOHs studied can be semi-quantitatively predicted by the model derived from the induced density of interface states and charge neutrality level (IDIS/CNL). However, we also find that the electronic structure of interfaces between two small-band-gap semiconductors, e.g., using copper phthalocyanine (CuPc) as the donor and a tris(thieno)-hexaazatriphenylene derivative (THAP) as the acceptor, is strongly influenced by changes in the substrate work function. In these cases, the charge transfer that takes place at the interface is governed by thermodynamic equilibrium, dominating any subtle interaction due to IDIS/CNL. The impact of doping on the energy level alignment of OOHs is also studied. The charges donated by the dopant molecules transfer from the parent doped layer to the adjacent undoped layer, taking advantage of the molecular level offset, and are then spatially separated from the dopant molecules. Remote doping, based on this charge transfer mechanism, is demonstrated with the heterojunction formed between pentacene and N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'bisphenyl-4,4'diazine (alpha-NPD) p-doped with tris[1,2-bis(trifluoromethyl) ethane-1,2-dithiolene] (Mo(tfd)3). A remotely doped pentacene transistor, based on this type of hetero-structure, exhibits increased conductivity, decreased activation energy for carrier hopping, and enhanced mobility, compared to an undoped transistor. Another featured improvement of the remotely doped transistor is that it can be reasonably switched off by placing an undoped interlayer in the structure. Our preliminary results show chemical doping technology can potentially benefit the organic thin film transistors.

  11. Ordered polymer nanofibers enhance output brightness in bilayer light-emitting field-effect transistors.

    PubMed

    Hsu, Ben B Y; Seifter, Jason; Takacs, Christopher J; Zhong, Chengmei; Tseng, Hsin-Rong; Samuel, Ifor D W; Namdas, Ebinazar B; Bazan, Guillermo C; Huang, Fei; Cao, Yong; Heeger, Alan J

    2013-03-26

    Polymer light emitting field effect transistors are a class of light emitting devices that reveal interesting device physics. Device performance can be directly correlated to the most fundamental polymer science. Control over surface properties of the transistor dielectric can dramatically change the polymer morphology, introducing ordered phase. Electronic properties such as carrier mobility and injection efficiency on the interface can be promoted by ordered nanofibers in the polymer. Moreover, by controlling space charge in the polymer interface, the recombination zone can be spatially extended and thereby enhance the optical output.

  12. Conjugated polymers and their use in optoelectronic devices

    DOEpatents

    Marks, Tobin J.; Guo, Xugang; Zhou, Nanjia; Chang, Robert P. H.; Drees, Martin; Facchetti, Antonio

    2016-10-18

    The present invention relates to certain polymeric compounds and their use as organic semiconductors in organic and hybrid optical, optoelectronic, and/or electronic devices such as photovoltaic cells, light emitting diodes, light emitting transistors, and field effect transistors. The present compounds can provide improved device performance, for example, as measured by power conversion efficiency, fill factor, open circuit voltage, field-effect mobility, on/off current ratios, and/or air stability when used in photovoltaic cells or transistors. The present compounds can have good solubility in common solvents enabling device fabrication via solution processes.

  13. Electron transporting water-gated thin film transistors

    NASA Astrophysics Data System (ADS)

    Al Naim, Abdullah; Grell, Martin

    2012-10-01

    We demonstrate an electron-transporting water-gated thin film transistor, using thermally converted precursor-route zinc-oxide (ZnO) intrinsic semiconductors with hexamethyldisilazene (HMDS) hydrophobic surface modification. Water gated HMDS-ZnO thin film transistors (TFT) display low threshold and high electron mobility. ZnO films constitute an attractive alternative to organic semiconductors for TFT transducers in sensor applications for waterborne analytes. Despite the use of an electrolyte as gate medium, the gate geometry (shape of gate electrode and distance between gate electrode and TFT channel) is relevant for optimum performance of water-gated TFTs.

  14. Electron mobility in InGaN channel heterostructure field effect transistor structures with different barriers

    NASA Astrophysics Data System (ADS)

    Xie, J.; Leach, J. H.; Ni, X.; Wu, M.; Shimada, R.; Özgür, Ü.; Morkoç, H.

    2007-12-01

    InGaN possesses higher electron mobility and velocity than GaN, and therefore is expected to lead to relatively better performances for heterostructure field effect transistors (HFETs). However, the reported mobilities for AlGaN /InGaN HFETs are lower than GaN channel HFETs. To address this issue, we studied the effect of different barriers on the Hall mobility for InGaN channel HFETs grown by metal organic chemical vapor deposition. Unlike the conventional AlGaN barrier, the AlInN barrier can be grown at the same temperature as the InGaN channel layer, alleviating some of the technological roadblocks. Specifically, this avoids possible degradation of the thin InGaN channel during AlGaN growth at high temperatures; and paves the way for better interfaces. An undoped In0.18Al0.82N/AlN/In0.04Ga0.96N HFET structure exhibited a μH=820cm2/Vs, with a ns=2.12×1013cm-2 at room temperature. Moreover, with an In-doped AlGaN barrier, namely, Al0.24In0.01Ga0.75N, grown at 900°C, the μH increased to 1230cm2/Vs with a ns of 1.09×1013cm-2 for a similar InGaN channel. Furthermore, when the barrier was replaced by Al0.25Ga0.75N grown at 1030°C, μH dropped to 870cm2/Vs with ns of 1.26×1013cm-2 at room temperature. Our results suggest that to fully realize the potential of the InGaN channel HFETs, AlInN or AlInGaN should be used as the barrier instead of the conventional AlGaN barrier.

  15. Atomistic modeling and HAADF investigations of misfit and threading dislocations in GaSb/GaAs hetero-structures for applications in high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruterana, Pierre, E-mail: pierre.ruterana@ensicaen.fr; Wang, Yi, E-mail: pierre.ruterana@ensicaen.fr; Chen, Jun, E-mail: pierre.ruterana@ensicaen.fr

    A detailed investigation on the misfit and threading dislocations at GaSb/GaAs interface has been carried out using molecular dynamics simulation and quantitative electron microscopy techniques. The sources and propagation of misfit dislocations have been elucidated. The nature and formation mechanisms of the misfit dislocations as well as the role of Sb on the stability of the Lomer configuration have been explained.

  16. Gateless AlGaN/GaN HEMT response to block co-polymers

    NASA Astrophysics Data System (ADS)

    Kang, B. S.; Louche, G.; Duran, R. S.; Gnanou, Y.; Pearton, S. J.; Ren, F.

    2004-05-01

    Gateless AlGaN/GaN high electron mobility transistor (HEMT) structures exhibit large changes in source-drain current upon exposing the gate region to various block co-polymer solutions. The polar nature of some of these polymer chains lead to a change of surface charges in gate region on the HEMT, producing a change in surface potential at the semiconductor/liquid interface. The nitride sensors appear to be promising for a wide range of chemical gas, combustion gas, liquid and strain sensing.

  17. Graphene field-effect devices

    NASA Astrophysics Data System (ADS)

    Echtermeyer, T. J.; Lemme, M. C.; Bolten, J.; Baus, M.; Ramsteiner, M.; Kurz, H.

    2007-09-01

    In this article, graphene is investigated with respect to its electronic properties when introduced into field effect devices (FED). With the exception of manual graphene deposition, conventional top-down CMOS-compatible processes are applied. Few and monolayer graphene sheets are characterized by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The electrical properties of monolayer graphene sandwiched between two silicon dioxide films are studied. Carrier mobilities in graphene pseudo-MOS structures are compared to those obtained from double-gated Graphene-FEDs and silicon metal-oxide-semiconductor field-effect-transistors (MOSFETs).

  18. Highly soluble [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors.

    PubMed

    Ebata, Hideaki; Izawa, Takafumi; Miyazaki, Eigo; Takimiya, Kazuo; Ikeda, Masaaki; Kuwabara, Hirokazu; Yui, Tatsuto

    2007-12-26

    2,7-Dialkyl[1]benzothieno[3,2-b]benzothiophenes were tested as solution-processible molecular semiconductors. Thin films of the organic semiconductors deposited on Si/SiO2 substrates by spin coating have well-ordered structures as confirmed by XRD analysis. Evaluations of the devices under ambient conditions showed typical p-channel FET responses with the field-effect mobility higher than 1.0 cm2 V-1 s-1 and Ion/Ioff of approximately 10(7).

  19. InAs-based Hterostructure Barrier Varactor Diodes with In0.3Al0.7As0.4Sb0.6 as the Barrier Material

    DTIC Science & Technology

    2008-08-01

    discussed. 2. Device growth and fabrication HBV diode samples were grown by solid-source molecular beam epitaxy (MBE). The layer structure consisted of...defined simultaneously using optical lithography, and Ti:Pt:Au (100:50:2500 Å) unannealed, Ohmic contacts were depos- ited by e- beam evaporation. The diode...behavior of a doped-channel high-electron mobility transistor ( HEMT ). Device physics simula- tions of the 200 Å HBV (using ATLAS from Silvaco

  20. Interface-Dependent Effective Mobility in Graphene Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Ahlberg, Patrik; Hinnemo, Malkolm; Zhang, Shi-Li; Olsson, Jörgen

    2018-03-01

    By pretreating the substrate of a graphene field-effect transistor (G-FET), a stable unipolar transfer characteristic, instead of the typical V-shape ambipolar behavior, has been demonstrated. This behavior is achieved through functionalization of the SiO2/Si substrate that changes the SiO2 surface from hydrophilic to hydrophobic, in combination with postdeposition of an Al2O3 film by atomic layer deposition (ALD). Consequently, the back-gated G-FET is found to have increased apparent hole mobility and suppressed apparent electron mobility. Furthermore, with addition of a top-gate electrode, the G-FET is in a double-gate configuration with independent top- or back-gate control. The observed difference in mobility is shown to also be dependent on the top-gate bias, with more pronounced effect at higher electric field. Thus, the combination of top and bottom gates allows control of the G-FET's electron and hole mobilities, i.e., of the transfer behavior. Based on these observations, it is proposed that polar ligands are introduced during the ALD step and, depending on their polarization, result in an apparent increase of the effective hole mobility and an apparent suppressed effective electron mobility.

  1. Microstructural control of charge transport in organic blend thin-film transistors

    DOE PAGES

    Hunter, Simon; Chen, Jihua; Anthopoulos, Thomas D.

    2014-07-17

    In this paper, the charge-transport processes in organic p-channel transistors based on the small-molecule 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES ADT), the polymer poly(triarylamine)(PTAA) and blends thereof are investigated. In the case of blend films, lateral conductive atomic force microscopy in combination with energy filtered transmission electron microscopy are used to study the evolution of charge transport as a function of blends composition, allowing direct correlation of the film's elemental composition and morphology with hole transport. Low-temperature transport measurements reveal that optimized blend devices exhibit lower temperature dependence of hole mobility than pristine PTAA devices while also providing a narrower bandgap trap distribution thanmore » pristine diF-TES ADT devices. These combined effects increase the mean hole mobility in optimized blends to 2.4 cm 2/Vs; double the value measured for best diF-TES ADT-only devices. The bandgap trap distribution in transistors based on different diF-TES ADT:PTAA blend ratios are compared and the act of blending these semiconductors is seen to reduce the trap distribution width yet increase the average trap energy compared to pristine diF-TES ADT-based devices. In conclusion, our measurements suggest that an average trap energy of <75 meV and a trap distribution of <100 meV is needed to achieve optimum hole mobility in transistors based on diF-TES ADT:PTAA blends.« less

  2. A study of effects of electrode contacts on performance of organic-based light-emitting field-effect transistors

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Kyu; Choi, Jong-Ho

    2018-02-01

    Herein is presented a comparative performance analysis of heterojunction organic-based light-emitting field-effect transistors (OLEFETs) with symmetric (Au only) and asymmetric (Au and LiF/Al) electrode contacts. The devices had a top source-drain contact with long-channel geometry and were produced by sequentially depositing p-type pentacene and n-type N,N‧-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13) using a neutral cluster beam deposition apparatus. The spectroscopic, structural and morphological properties of the organic thin films were examined using photoluminescence (PL) spectroscopy, X-ray diffraction (XRD) method, laser scanning confocal and atomic force microscopy (LSCM, AFM). Based upon the growth of high-quality, well-packed crystalline thin films, the devices demonstrated ambipolar field-effect characteristics, stress-free operational stability, and light emission under ambient conditions. Various device parameters were derived from the fits of the observed characteristics. The hole mobilities were nearly equal irrespective of the electrode contacts, whereas the electron mobilities of the transistors with LiF/Al drain electrodes were higher due to the low injection barrier. For the OLEFETs with symmetric electrodes, electroluminescence (EL) occurred only in the vicinity of the hole-injecting electrode, whereas for the OLEFETs with asymmetric electrodes, the emission occurred in the vicinity of both hole- and electron-injecting electrodes. By tuning the carrier injection and transport through high- and low-work function metals, the hole-electron recombination sites could be controlled. The operating conduction and light emission mechanism are discussed with the aid of EL images obtained using a charge-coupled device (CCD) camera.

  3. Cryogenic, low-noise high electron mobility transistor amplifiers for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.

    1993-01-01

    The rapid advances recently achieved by cryogenically cooled high electron mobility transistor (HEMT) low-noise amplifiers (LNA's) in the 1- to 10-GHz range are making them extremely competitive with maser amplifiers. In order to address future spacecraft navigation, telemetry, radar, and radio science needs, the Deep Space Network is investing both maser and HEMT amplifiers for its Ka-band (32-GHz) downlink capability. This article describes the current state cryogenic HEMT LNA development at Ka-band for the DSN. Noise performance results at S-band (2.3 GHz) and X-band (8.5 GHz) for HEMT's and masers are included for completeness.

  4. Ester-free cross-linker molecules for ultraviolet-light-cured polysilsesquioxane gate dielectric layers of organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Okada, Shuichi; Nakahara, Yoshio; Uno, Kazuyuki; Tanaka, Ichiro

    2018-04-01

    Pentacene thin-film transistors (TFTs) were fabricated with ultraviolet-light (UV)-cured polysilsesquioxane (PSQ) gate dielectric layers using cross-linker molecules with or without ester groups. To polymerize PSQ without ester groups, thiol-ene reaction was adopted. The TFTs fabricated with PSQ layers comprising ester-free cross-linkers showed a higher carrier mobility than the TFTs with PSQ layers cross-linked with ester groups, which had large electric dipole moments that limited the carrier mobility. It was demonstrated that the thiol-ene reaction is more suitable than the conventional radical reaction for UV-cured PSQ with small dielectric constant.

  5. Low-voltage organic field effect transistors with a 2-tridecyl[1]benzothieno[3,2-b][1]benzothiophene semiconductor layer.

    PubMed

    Amin, Atefeh Y; Khassanov, Artoem; Reuter, Knud; Meyer-Friedrichsen, Timo; Halik, Marcus

    2012-10-10

    An asymmetric n-alkyl substitution pattern was realized in 2-tridecyl[1]benzothieno[3,2-b][1]benzothiophene (C(13)-BTBT) in order to improve the charge transport properties in organic thin-film transistors. We obtained large hole mobilities up to 17.2 cm(2)/(V·s) in low-voltage operating devices. The large mobility is related to densely packed layers of the BTBT π-systems at the channel interface dedicated to the substitution motif and confirmed by X-ray reflectivity measurements. The devices exhibit promising stability in continuous operation for several hours in ambient air.

  6. Degradation and annealing effects caused by oxygen in AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Jiang, R.; Shen, X.; Chen, J.; Duan, G. X.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; Kaun, S. W.; Kyle, E. C. H.; Speck, J. S.; Pantelides, S. T.

    2016-07-01

    Hot-carrier degradation and room-temperature annealing effects are investigated in unpassivated ammonia-rich AlGaN/GaN high electron mobility transistors. Devices exhibit a fast recovery when annealed after hot carrier stress with all pins grounded. The recovered peak transconductance can exceed the original value, an effect that is not observed in control passivated samples. Density functional theory calculations suggest that dehydrogenation of pre-existing ON-H defects in AlGaN plays a significant role in the observed hot carrier degradation, and the resulting bare ON can naturally account for the "super-recovery" in the peak transconductance.

  7. Botulinum toxin detection using AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Lin; Chu, B. H.; Chen, K. H.; Chang, C. Y.; Lele, T. P.; Tseng, Y.; Pearton, S. J.; Ramage, J.; Hooten, D.; Dabiran, A.; Chow, P. P.; Ren, F.

    2008-12-01

    Antibody-functionalized, Au-gated AlGaN /GaN high electron mobility transistors (HEMTs) were used to detect botulinum toxin. The antibody was anchored to the gate area through immobilized thioglycolic acid. The AlGaN /GaN HEMT drain-source current showed a rapid response of less than 5s when the target toxin in a buffer was added to the antibody-immobilized surface. We could detect a range of concentrations from 1to10ng/ml. These results clearly demonstrate the promise of field-deployable electronic biological sensors based on AlGaN /GaN HEMTs for botulinum toxin detection.

  8. Rylene and related diimides for organic electronics.

    PubMed

    Zhan, Xiaowei; Facchetti, Antonio; Barlow, Stephen; Marks, Tobin J; Ratner, Mark A; Wasielewski, Michael R; Marder, Seth R

    2011-01-11

    Organic electron-transporting materials are essential for the fabrication of organic p-n junctions, photovoltaic cells, n-channel field-effect transistors, and complementary logic circuits. Rylene diimides are a robust, versatile class of polycyclic aromatic electron-transport materials with excellent thermal and oxidative stability, high electron affinities, and, in many cases, high electron mobilities; they are, therefore, promising candidates for a variety of organic electronics applications. In this review, recent developments in the area of high-electron-mobility diimides based on rylenes and related aromatic cores, particularly perylene- and naphthalene-diimide-based small molecules and polymers, for application in high-performance organic field-effect transistors and photovoltaic cells are summarized and analyzed.

  9. Flip-flop logic circuit based on fully solution-processed organic thin film transistor devices with reduced variations in electrical performance

    NASA Astrophysics Data System (ADS)

    Takeda, Yasunori; Yoshimura, Yudai; Adib, Faiz Adi Ezarudin Bin; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2015-04-01

    Organic reset-set (RS) flip-flop logic circuits based on pseudo-CMOS inverters have been fabricated using full solution processing at a relatively low process temperatures of 150 °C or less. The work function for printed silver electrodes was increased from 4.7 to 5.4 eV through surface modification with a self-assembled monolayer (SAM) material. A bottom-gate, bottom-contact organic thin-film transistor (OTFT) device using a solution-processable small-molecular semiconductor material exhibited field-effect mobility of 0.40 cm2 V-1 s-1 in the saturation region and a threshold voltage (VTH) of -2.4 V in ambient air operation conditions. In order to reduce the variations in mobility and VTH, we designed a circuit with six transistors arranged in parallel, in order to average out their electrical characteristics. As a result, we have succeeded in reducing these variations without changing the absolute values of the mobility and VTH. The fabricated RS flip-flop circuits were functioned well and exhibited short delay times of 3.5 ms at a supply voltage of 20 V.

  10. AlGaN/GaN HEMT grown on large size silicon substrates by MOVPE capped with in-situ deposited Si 3N 4

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Leys, M.; Derluyn, J.; Degroote, S.; Xiao, D. P.; Lorenz, A.; Boeykens, S.; Germain, M.; Borghs, G.

    2007-01-01

    AlGaN/GaN high electron mobility transistors (HEMTs) have been grown on 4 and 6 in Si(1 1 1) substrates by metal organic vapor phase epitaxy (MOVPE). A record sheet resistance of 256 Ω/□ has been measured by contactless eddy current mapping on 4 in silicon substrates. The wafer also shows an excellent uniformity and the standard variation is 3.6 Ω/□ over the whole wafer. These values were confirmed by Hall-Van der Pauw measurements. In the 2DEG at the AlGaN/GaN interface, the electron mobility is in the range of 1500-1800 cm 2/Vs and the electron density is between 1.3×10 13 and 1.7×10 13 cm -2. The key step in obtaining these results is an in-situ deposited Si 3N 4 passivation layer. This in-situ Si 3N 4, deposited directly after AlGaN top layer growth in the MOVPE reactor chamber, not only prevents the stress relaxation in AlGaN/GaN hetero-structures but also passivates the surface states of the AlGaN cap layer. HEMT transistors have been processed on the epitaxial structures and the maximum source-drain current density is 1.1 A/mm for a gate-source voltage of 2 V. The current collapse is minimized thanks to in-situ Si 3N 4. First results on AlGaN/GaN structures grown on 6 in Si(1 1 1) are also presented.

  11. Novel organic semiconductors and a high capacitance gate dielectric for organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Cai, Xiuyu

    2007-12-01

    Organic semiconductors are attracting more and more interest as a promising set of materials in the field of electronics research. This thesis focused on several new organic semiconductors and a novel high-kappa dielectric thin film (SrTiO3), which are two essential parts in Organic Thin Film Transistors (OTFTs). Structure and morphology of thin films of tricyanovinyl capped oligothiophenes were studied using atomic force microscopy and x-ray diffraction. Thin film transistors of one compound exhibited a reasonable electron mobility of 0.02 cm2/Vs. Temperature dependent measurements on the thin film transistor based on this compound revealed shallow trap states that were interpreted in terms of a multiple trap and release model. Moreover, inversion of the majority charge carrier type from electrons to holes was observed when the number of oligothiophene rings increased to six and ambipolar transport behavior was observed for tricyanovinyl sexithiophene. Another interesting organic semiconductor compound is the fluoalkylquarterthiophene, which showed ambipolar transport and large hysteresis in the transfer curve. Due to the bistable state at floating gate, the thin film transistor was exploited to study non-volatile floating gate memory effects. The temperature dependence of the retention time for this memory device revealed that the electron trapping was an activated process. Following the earlier work on hybrid acene-thiophene organic semiconductors, new compounds with similar structure were studied to reveal the mechanism of the air-stability exhibited by some compounds. They all formed highly crystalline thin films and showed reasonable device performances which are well correlated with the molecular structures, thin film microstructures, and solid state packing. The most air-stable compound had no observable degradation with exposure to air for 15 months. SrTiO3 was developed to be employed in OTFTs. Optimization of thin film growth was performed using reactive sputtering growth. Excellent SrTiO3 epitaixal thin film growth was revealed on conductive SrTiO 3:Nb substrates. A maximum charge carrier density of 1014 cm-2 was obtained based on pentacene and perylene diimide thin film transistors. Some new physical phenomena, such as step-like transfer characteristic curve and negative transconductance, were observed at such high field effect induced charge carrier density.

  12. Organic integrated circuits for information storage based on ambipolar polymers and charge injection engineering

    NASA Astrophysics Data System (ADS)

    Dell'Erba, Giorgio; Luzio, Alessandro; Natali, Dario; Kim, Juhwan; Khim, Dongyoon; Kim, Dong-Yu; Noh, Yong-Young; Caironi, Mario

    2014-04-01

    Ambipolar semiconducting polymers, characterized by both high electron (μe) and hole (μh) mobility, offer the advantage of realizing complex complementary electronic circuits with a single semiconducting layer, deposited by simple coating techniques. However, to achieve complementarity, one of the two conduction paths in transistors has to be suppressed, resulting in unipolar devices. Here, we adopt charge injection engineering through a specific interlayer in order to tune injection into frontier energy orbitals of a high mobility donor-acceptor co-polymer. Starting from field-effect transistors with Au contacts, showing a p-type unbalanced behaviour with μh = 0.29 cm2/V s and μe = 0.001 cm2/V s, through the insertion of a caesium salt interlayer with optimized thickness, we obtain an n-type unbalanced transistor with μe = 0.12 cm2/V s and μh = 8 × 10-4 cm2/V s. We applied this result to the development of the basic pass-transistor logic building blocks such as inverters, with high gain and good noise margin, and transmission-gates. In addition, we developed and characterized information storage circuits like D-Latches and D-Flip-Flops consisting of 16 transistors, demonstrating both their static and dynamic performances and thus the suitability of this technology for more complex circuits such as display addressing logic.

  13. Material Synthesis and Device Aspects of Monolayer Tungsten Diselenide.

    PubMed

    Yao, Zihan; Liu, Jialun; Xu, Kai; Chow, Edmond K C; Zhu, Wenjuan

    2018-03-27

    In this paper, we investigate the synthesis of WSe 2 by chemical vapor deposition and study the current transport and device scaling of monolayer WSe 2 . We found that the device characteristics of the back-gated WSe 2 transistors with thick oxides are very sensitive to the applied drain bias, especially for transistors in the sub-micrometer regime. The threshold voltage, subthreshold swing, and extracted field-effect mobility vary with the applied drain bias. The output characteristics in the long-channel transistors show ohmic-like behavior, while that in the short-channel transistors show Schottky-like behavior. Our investigation reveals that these phenomena are caused by the drain-induced barrier lowering (short-channel effect). For back-gated WSe 2 transistors with 280 nm oxide, the short-channel effect appears when the channel length is shorter than 0.4 µm. This extremely long electrostatic scaling length is due to the thick back-gate oxides. In addition, we also found that the hydrogen flow rate and the amount of WO 3 precursor play an important role in the morphology of the WSe 2 . The hole mobility of the monolayer WSe 2 is limited by Columbic scattering below 250 K, while it is limited by phonon scattering above 250 K. These findings are very important for the synthesis of WSe 2 and accurate characterization of the electronic devices based on 2D materials.

  14. Nonvolatile Ferroelectric Memory Circuit Using Black Phosphorus Nanosheet-Based Field-Effect Transistors with P(VDF-TrFE) Polymer.

    PubMed

    Lee, Young Tack; Kwon, Hyeokjae; Kim, Jin Sung; Kim, Hong-Hee; Lee, Yun Jae; Lim, Jung Ah; Song, Yong-Won; Yi, Yeonjin; Choi, Won-Kook; Hwang, Do Kyung; Im, Seongil

    2015-10-27

    Two-dimensional van der Waals (2D vdWs) materials are a class of new materials that can provide important resources for future electronics and materials sciences due to their unique physical properties. Among 2D vdWs materials, black phosphorus (BP) has exhibited significant potential for use in electronic and optoelectronic applications because of its allotropic properties, high mobility, and direct and narrow band gap. Here, we demonstrate a few-layered BP-based nonvolatile memory transistor with a poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric top gate insulator. Experiments showed that our BP-based ferroelectric transistors operate satisfactorily at room temperature in ambient air and exhibit a clear memory window. Unlike conventional ambipolar BP transistors, our ferroelectric transistors showed only p-type characteristics due to the carbon-fluorine (C-F) dipole effect of the P(VDF-TrFE) layer, as well as the highest linear mobility value of 1159 cm(2) V(-1) s(-1) with a 10(3) on/off current ratio. For more advanced memory applications beyond unit memory devices, we implemented two memory inverter circuits, a resistive-load inverter circuit and a complementary inverter circuit, combined with an n-type molybdenum disulfide (MoS2) nanosheet. Our memory inverter circuits displayed a clear memory window of 15 V and memory output voltage efficiency of 95%.

  15. Correlating Charge Transport with Structure in Deconstructed Diketopyrrolopyrrole Oligomers: A Case Study of a Monomer in Field-Effect Transistors.

    PubMed

    Pickett, Alec; Torkkeli, Mika; Mukhopadhyay, Tushita; Puttaraju, Boregowda; Laudari, Amrit; Lauritzen, Andreas E; Bikondoa, Oier; Kjelstrup-Hansen, Jakob; Knaapila, Matti; Patil, Satish; Guha, Suchismita

    2018-06-13

    Copolymers based on diketopyrrolopyrrole (DPP) cores have attracted a lot of attention because of their high p-type as well as n-type carrier mobilities in organic field-effect transistors (FETs) and high power conversion efficiencies in solar cell structures. We report the structural and charge transport properties of n-dialkyl side-chain-substituted thiophene DPP end-capped with a phenyl group (Ph-TDPP-Ph) monomer in FETs which were fabricated by vacuum deposition and solvent coating. Grazing-incidence X-ray diffraction (GIXRD) from bottom-gate, bottom-contact FET architectures was measured with and without biasing. Ph-TDPP-Ph reveals a polymorphic structure with π-conjugated stacking direction oriented in-plane. The unit cell comprises either one monomer with a = 20.89 Å, b = 13.02 Å, c = 5.85 Å, α = 101.4°, β = 90.6°, and γ = 94.7° for one phase (TR1) or two monomers with a = 24.92 Å, b = 25.59 Å, c = 5.42 Å, α = 80.3°, β = 83.5°, and γ = 111.8° for the second phase (TR2). The TR2 phase thus signals a shift from a coplanar to herringbone orientation of the molecules. The device performance is sensitive to the ratio of the two triclinic phases found in the film. Some of the best FET performances with p-type carrier mobilities of 0.1 cm 2 /V s and an on/off ratio of 10 6 are for films that comprise mainly the TR1 phase. GIXRD from in operando FETs demonstrates the crystalline stability of Ph-TDPP-Ph.

  16. Comparison between Field Effect Transistors and Bipolar Junction Transistors as Transducers in Electrochemical Sensors

    NASA Astrophysics Data System (ADS)

    Zafar, Sufi; Lu, Minhua; Jagtiani, Ashish

    2017-01-01

    Field effect transistors (FET) have been widely used as transducers in electrochemical sensors for over 40 years. In this report, a FET transducer is compared with the recently proposed bipolar junction transistor (BJT) transducer. Measurements are performed on two chloride electrochemical sensors that are identical in all details except for the transducer device type. Comparative measurements show that the transducer choice significantly impacts the electrochemical sensor characteristics. Signal to noise ratio is 20 to 2 times greater for the BJT sensor. Sensitivity is also enhanced: BJT sensing signal changes by 10 times per pCl, whereas the FET signal changes by 8 or less times. Also, sensor calibration curves are impacted by the transducer choice. Unlike a FET sensor, the calibration curve of the BJT sensor is independent of applied voltages. Hence, a BJT sensor can make quantitative sensing measurements with minimal calibration requirements, an important characteristic for mobile sensing applications. As a demonstration for mobile applications, these BJT sensors are further investigated by measuring chloride levels in artificial human sweat for potential cystic fibrosis diagnostic use. In summary, the BJT device is demonstrated to be a superior transducer in comparison to a FET in an electrochemical sensor.

  17. Comparison between Field Effect Transistors and Bipolar Junction Transistors as Transducers in Electrochemical Sensors

    PubMed Central

    Zafar, Sufi; Lu, Minhua; Jagtiani, Ashish

    2017-01-01

    Field effect transistors (FET) have been widely used as transducers in electrochemical sensors for over 40 years. In this report, a FET transducer is compared with the recently proposed bipolar junction transistor (BJT) transducer. Measurements are performed on two chloride electrochemical sensors that are identical in all details except for the transducer device type. Comparative measurements show that the transducer choice significantly impacts the electrochemical sensor characteristics. Signal to noise ratio is 20 to 2 times greater for the BJT sensor. Sensitivity is also enhanced: BJT sensing signal changes by 10 times per pCl, whereas the FET signal changes by 8 or less times. Also, sensor calibration curves are impacted by the transducer choice. Unlike a FET sensor, the calibration curve of the BJT sensor is independent of applied voltages. Hence, a BJT sensor can make quantitative sensing measurements with minimal calibration requirements, an important characteristic for mobile sensing applications. As a demonstration for mobile applications, these BJT sensors are further investigated by measuring chloride levels in artificial human sweat for potential cystic fibrosis diagnostic use. In summary, the BJT device is demonstrated to be a superior transducer in comparison to a FET in an electrochemical sensor. PMID:28134275

  18. High-performance air-stable n-channel organic thin film transistors based on halogenated perylene bisimide semiconductors.

    PubMed

    Schmidt, Rüdiger; Oh, Joon Hak; Sun, Ya-Sen; Deppisch, Manuela; Krause, Ana-Maria; Radacki, Krzysztof; Braunschweig, Holger; Könemann, Martin; Erk, Peter; Bao, Zhenan; Würthner, Frank

    2009-05-06

    The syntheses and comprehensive characterization of 14 organic semiconductors based on perylene bisimide (PBI) dyes that are equipped with up to four halogen substituents in the bay area of the perylene core and five different highly fluorinated imide substituents are described. The influence of the substituents on the LUMO level and the solid state packing of PBIs was examined by cyclic voltammetry and single crystal structure analyses of seven PBI derivatives, respectively. Top-contact/bottom-gate organic thin film transistor (OTFT) devices were constructed by vacuum deposition of these PBIs on SiO(2) gate dielectrics that had been pretreated with n-octadecyl triethoxysilane in vapor phase (OTS-V) or solution phase (OTS-S). The electrical characterization of all devices was accomplished in a nitrogen atmosphere as well as in air, and the structural features of thin films were explored by grazing incidence X-ray diffraction (GIXD) and atomic force microscopy (AFM). Several of those PBIs that bear only hydrogen or up to two fluorine substitutents at the concomitantly flat PBI core afforded excellent n-channel transistors, in particular, on OTS-S substrate and even in air (mu > 0.5 cm(2) V(-1) s(-1); I(on)/I(off) > 10(6)). The best OTFTs were obtained for 2,2,3,3,4,4,4-heptafluorobutyl-substituted PBI 1a ("PTCDI-C4F7") on OTS-S with n-channel field effect mobilities consistently >1 cm(2) V(-1) s(-1) and on-to-off current rations of 10(6) in a nitrogen atmosphere and in air. For distorted core-tetrahalogenated (fluorine, chlorine, or bromine) PBIs, less advantageous solid state packing properties were found and high performance OTFTs were obtained from only one tetrachlorinated derivative (2d on OTS-S). The excellent on-to-off current modulation combined with high mobility in air makes these PBIs suitable for a wide range of practical applications.

  19. High-Mobility, Ultrathin Organic Semiconducting Films Realized by Surface-Mediated Crystallization.

    PubMed

    Vladimirov, I; Kellermeier, M; Geßner, T; Molla, Zarah; Grigorian, S; Pietsch, U; Schaffroth, L S; Kühn, M; May, F; Weitz, R T

    2018-01-10

    The functionality of common organic semiconductor materials is determined by their chemical structure and crystal modification. While the former can be fine-tuned via synthesis, a priori control over the crystal structure has remained elusive. We show that the surface tension is the main driver for the plate-like crystallization of a novel small organic molecule n-type semiconductor at the liquid-air interface. This interface provides an ideal environment for the growth of millimeter-sized semiconductor platelets that are only few nanometers thick and thus highly attractive for application in transistors. On the basis of the novel high-performance perylene diimide, we show in as-grown, only 3 nm thin crystals electron mobilities of above 4 cm 2 /(V s) and excellent bias stress stability. We suggest that the established systematics on solvent parameters can provide the basis of a general framework for a more deterministic crystallization of other small molecules.

  20. The electrical performance and gate bias stability of an amorphous InGaZnO thin-film transistor with HfO2 high-k dielectrics

    NASA Astrophysics Data System (ADS)

    Wang, Ruo Zheng; Wu, Sheng Li; Li, Xin Yu; Zhang, Jin Tao

    2017-07-01

    In this study, we set out to fabricate an amorphous indium gallium zinc oxide (a-IGZO) thin-film transistor (TFT) with SiNx/HfO2/SiNx (SHS) sandwiched dielectrics. The J-V and C-V of this SHS film were extracted by the Au/p-Si/SHS/Ti structure. At room temperature the a-IGZO with SHS dielectrics showed the following electrical properties: a threshold voltage of 2.9 V, a subthreshold slope of 0.35 V/decade, an on/off current ratio of 3.5 × 107, and a mobility of 12.8 cm2 V-1 s-1. Finally, we tested the influence of gate bias stress on the TFT, and the result showed that the threshold voltage shifted to a positive voltage when applying a positive gate voltage to the TFT.

  1. Rare-metal-free high-performance Ga-Sn-O thin film transistor

    NASA Astrophysics Data System (ADS)

    Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi

    2017-03-01

    Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm2/Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds.

  2. Rare-metal-free high-performance Ga-Sn-O thin film transistor

    PubMed Central

    Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi

    2017-01-01

    Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm2/Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds. PMID:28290547

  3. A Self-Aligned a-IGZO Thin-Film Transistor Using a New Two-Photo-Mask Process with a Continuous Etching Scheme.

    PubMed

    Fan, Ching-Lin; Shang, Ming-Chi; Li, Bo-Jyun; Lin, Yu-Zuo; Wang, Shea-Jue; Lee, Win-Der

    2014-08-11

    Minimizing the parasitic capacitance and the number of photo-masks can improve operational speed and reduce fabrication costs. Therefore, in this study, a new two-photo-mask process is proposed that exhibits a self-aligned structure without an etching-stop layer. Combining the backside-ultraviolet (BUV) exposure and backside-lift-off (BLO) schemes can not only prevent the damage when etching the source/drain (S/D) electrodes but also reduce the number of photo-masks required during fabrication and minimize the parasitic capacitance with the decreasing of gate overlap length at same time. Compared with traditional fabrication processes, the proposed process yields that thin-film transistors (TFTs) exhibit comparable field-effect mobility (9.5 cm²/V·s), threshold voltage (3.39 V), and subthreshold swing (0.3 V/decade). The delay time of an inverter fabricated using the proposed process was considerably decreased.

  4. Rare-metal-free high-performance Ga-Sn-O thin film transistor.

    PubMed

    Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi

    2017-03-14

    Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm 2 /Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds.

  5. A Self-Aligned a-IGZO Thin-Film Transistor Using a New Two-Photo-Mask Process with a Continuous Etching Scheme

    PubMed Central

    Fan, Ching-Lin; Shang, Ming-Chi; Li, Bo-Jyun; Lin, Yu-Zuo; Wang, Shea-Jue; Lee, Win-Der

    2014-01-01

    Minimizing the parasitic capacitance and the number of photo-masks can improve operational speed and reduce fabrication costs. Therefore, in this study, a new two-photo-mask process is proposed that exhibits a self-aligned structure without an etching-stop layer. Combining the backside-ultraviolet (BUV) exposure and backside-lift-off (BLO) schemes can not only prevent the damage when etching the source/drain (S/D) electrodes but also reduce the number of photo-masks required during fabrication and minimize the parasitic capacitance with the decreasing of gate overlap length at same time. Compared with traditional fabrication processes, the proposed process yields that thin-film transistors (TFTs) exhibit comparable field-effect mobility (9.5 cm2/V·s), threshold voltage (3.39 V), and subthreshold swing (0.3 V/decade). The delay time of an inverter fabricated using the proposed process was considerably decreased. PMID:28788159

  6. High performance organic transistor active-matrix driver developed on paper substrate

    NASA Astrophysics Data System (ADS)

    Peng, Boyu; Ren, Xiaochen; Wang, Zongrong; Wang, Xinyu; Roberts, Robert C.; Chan, Paddy K. L.

    2014-09-01

    The fabrication of electronic circuits on unconventional substrates largely broadens their application areas. For example, green electronics achieved through utilization of biodegradable or recyclable substrates, can mitigate the solid waste problems that arise at the end of their lifespan. Here, we combine screen-printing, high precision laser drilling and thermal evaporation, to fabricate organic field effect transistor (OFET) active-matrix (AM) arrays onto standard printer paper. The devices show a mobility and on/off ratio as high as 0.56 cm2V-1s-1 and 109 respectively. Small electrode overlap gives rise to a cut-off frequency of 39 kHz, which supports that our AM array is suitable for novel practical applications. We demonstrate an 8 × 8 AM light emitting diode (LED) driver with programmable scanning and information display functions. The AM array structure has excellent potential for scaling up.

  7. The improvement of retention time of metal-ferroelectric (PbZr0.53Ti0.47O3)-insulator (ZrO2)-semiconductor transistors and capacitors by leakage current reduction using surface treatment

    NASA Astrophysics Data System (ADS)

    Shih, Wen-Chieh; Kang, Kun-Yung; Lee, Joseph Ya-Min

    2007-11-01

    Metal-ferroelectric-insulator-semiconductor transistors (MFISFETs) and capacitors with the structure of Al /Pb (Zr0.53,Ti0.47) O3/ZrO2/Si were fabricated. The wafers were pretreated with H2O2 before ZrO2 deposition and/or post-treated with HCl after ZrO2 deposition. The leakage current density at 5V is reduced from 10-1to5×10-6A /cm2. The subthreshold slope was improved to 91mV/decade. The MFISFETs maintain a threshold voltage window of about 1.1V after an elapsed time of 3000s. The mobility is 267cm2/Vs. The improvements are most likely due to the reduction of interfacial layer thickness and the interface states at the ZrO2/Si interface.

  8. Oxide Semiconductor-Based Flexible Organic/Inorganic Hybrid Thin-Film Transistors Fabricated on Polydimethylsiloxane Elastomer.

    PubMed

    Jung, Soon-Won; Choi, Jeong-Seon; Park, Jung Ho; Koo, Jae Bon; Park, Chan Woo; Na, Bock Soon; Oh, Ji-Young; Lim, Sang Chul; Lee, Sang Seok; Chu, Hye Yong

    2016-03-01

    We demonstrate flexible organic/inorganic hybrid thin-film transistors (TFTs) on a polydimethysilox- ane (PDMS) elastomer substrate. The active channel and gate insulator of the hybrid TFT are composed of In-Ga-Zn-O (IGZO) and blends of poly(vinylidene fluoride-trifluoroethylene) [P(VDF- TrFE)] with poly(methyl methacrylate) (PMMA), respectively. It has been confirmed that the fabri- cated TFT display excellent characteristics: the recorded field-effect mobility, sub-threshold voltage swing, and I(on)/I(off) ratio were approximately 0.35 cm2 V(-1) s(-1), 1.5 V/decade, and 10(4), respectively. These characteristics did not experience any degradation at a bending radius of 15 mm. These results correspond to the first demonstration of a hybrid-type TFT using an organic gate insulator/oxide semiconducting active channel structure fabricated on PDMS elastomer, and demonstrate the feasibility of a promising device in a flexible electronic system.

  9. Correlation between Ti source/drain contact and performance of InGaZnO-based thin film transistors

    NASA Astrophysics Data System (ADS)

    Choi, Kwang-Hyuk; Kim, Han-Ki

    2013-02-01

    Ti contact properties and their electrical contribution to an amorphous InGaZnO (a-IGZO) semiconductor-based thin film transistor (TFT) were investigated in terms of chemical, structural, and electrical considerations. TFT device parameters were quantitatively studied by a transmission line method. By comparing various a-IGZO TFT parameters with those of different Ag and Ti source/drain electrodes, Ti S/D contact with an a-IGZO channel was found to lead to a negative shift in VT (-Δ 0.52 V). This resulted in higher saturation mobility (8.48 cm2/Vs) of a-IGZO TFTs due to effective interfacial reaction between Ti and an a-IGZO semiconducting layer. Based on transmission electron microcopy, x-ray photoelectron depth profile analyses, and numerical calculation of TFT parameters, we suggest a possible Ti contact mechanism on semiconducting a-IGZO channel layers for TFTs.

  10. Directionally Aligned Amorphous Polymer Chains via Electrohydrodynamic-Jet Printing: Analysis of Morphology and Polymer Field-Effect Transistor Characteristics.

    PubMed

    Kim, Yebyeol; Bae, Jaehyun; Song, Hyun Woo; An, Tae Kyu; Kim, Se Hyun; Kim, Yun-Hi; Park, Chan Eon

    2017-11-15

    Electrohydrodynamic-jet (EHD-jet) printing provides an opportunity to directly assembled amorphous polymer chains in the printed pattern. Herein, an EHD-jet printed amorphous polymer was employed as the active layer for fabrication of organic field-effect transistors (OFETs). Under optimized conditions, the field-effect mobility (μ FET ) of the EHD-jet printed OFETs was 5 times higher than the highest μ FET observed in the spin-coated OFETs, and this improvement was achieved without the use of complex surface templating or additional pre- or post-deposition processing. As the chain alignment can be affected by the surface energy of the dielectric layer in EHD-jet printed OFETs, dielectric layers with varying wettability were examined. Near-edge X-ray absorption fine structure measurements were performed to compare the amorphous chain alignment in OFET active layers prepared by EHD-jet printing and spin coating.

  11. A Self-Aligned InGaAs Quantum-Well Metal-Oxide-Semiconductor Field-Effect Transistor Fabricated through a Lift-Off-Free Front-End Process

    NASA Astrophysics Data System (ADS)

    Lin, Jianqiang; Kim, Tae-Woo; Antoniadis, Dimitri A.; del Alamo, Jesús A.

    2012-06-01

    We present a novel n-type InGaAs quantum-well metal-oxide-semiconductor field-effect transistor (QW-MOSFET) fabricated by a self-aligned gate-last process and investigate relevant Si-like manufacturing issues in future III-V MOSFETs. The device structure features a composite InP/Al2O3 gate barrier with a capacitance equivalent thickness (CET) of 3 nm and non alloyed Mo ohmic contacts. We have found that RIE introduces significant damage to the intrinsic device resulting in poor current drive and subthreshold swing. The effect is largely removed through a thermal annealing step. Thermally annealed QW-MOSFETs exhibit a subthreshold swing of 95 mV/dec, indicative of excellent interfacial characteristics. The peak mobility of the MOSFET is 2780 cm2 V-1 s-1.

  12. High performance organic transistor active-matrix driver developed on paper substrate

    PubMed Central

    Peng, Boyu; Ren, Xiaochen; Wang, Zongrong; Wang, Xinyu; Roberts, Robert C.; Chan, Paddy K. L.

    2014-01-01

    The fabrication of electronic circuits on unconventional substrates largely broadens their application areas. For example, green electronics achieved through utilization of biodegradable or recyclable substrates, can mitigate the solid waste problems that arise at the end of their lifespan. Here, we combine screen-printing, high precision laser drilling and thermal evaporation, to fabricate organic field effect transistor (OFET) active-matrix (AM) arrays onto standard printer paper. The devices show a mobility and on/off ratio as high as 0.56 cm2V−1s−1 and 109 respectively. Small electrode overlap gives rise to a cut-off frequency of 39 kHz, which supports that our AM array is suitable for novel practical applications. We demonstrate an 8 × 8 AM light emitting diode (LED) driver with programmable scanning and information display functions. The AM array structure has excellent potential for scaling up. PMID:25234244

  13. GaN metal-oxide-semiconductor field-effect transistors on AlGaN/GaN heterostructure with recessed gate

    NASA Astrophysics Data System (ADS)

    Wang, Qingpeng; Ao, Jin-Ping; Wang, Pangpang; Jiang, Ying; Li, Liuan; Kawaharada, Kazuya; Liu, Yang

    2015-04-01

    GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) on AlGaN/GaN heterostructure with a recess gate were fabricated and characterized. The device showed good pinch-off characteristics and a maximum field-effect mobility of 145.2 cm2·V-1·s-1. The effects of etching gas of Cl2 and SiCl4 were investigated in the gate recess process. SiCl4-etched devices showed higher channel mobility and lower threshold voltage. Atomic force microscope measurement was done to investigate the etching profile with different etching protection mask. Compared with photoresist, SiO2-masked sample showed lower surface roughness and better profile with stepper sidewall and weaker trenching effect resulting in higher channel mobility in the MOSFET.

  14. Improved performance of InSe field-effect transistors by channel encapsulation

    NASA Astrophysics Data System (ADS)

    Liang, Guangda; Wang, Yiming; Han, Lin; Yang, Zai-Xing; Xin, Qian; Kudrynskyi, Zakhar R.; Kovalyuk, Zakhar D.; Patanè, Amalia; Song, Aimin

    2018-06-01

    Due to the high electron mobility and photo-responsivity, InSe is considered as an excellent candidate for next generation electronics and optoelectronics. In particular, in contrast to many high-mobility two-dimensional (2D) materials, such as phosphorene, InSe is more resilient to oxidation in air. Nevertheless, its implementation in future applications requires encapsulation techniques to prevent the adsorption of gas molecules on its surface. In this work, we use a common lithography resist, poly(methyl methacrylate) (PMMA) to encapsulate InSe-based field-effect transistors (FETs). The encapsulation of InSe by PMMA improves the electrical stability of the FETs under a gate bias stress, and increases both the drain current and electron mobility. These findings indicate the effectiveness of the PMMA encapsulation method, which could be applied to other 2D materials.

  15. Engineering the mobility increment in pentacene-based field-effect transistors by fast cooling of polymeric modification layer

    NASA Astrophysics Data System (ADS)

    Ling, Haifeng; Zhang, Chenxi; Chen, Yan; Shao, Yaqing; Li, Wen; Li, Huanqun; Chen, Xudong; Yi, Mingdong; Xie, Linghai; Huang, Wei

    2017-06-01

    In this work, we investigate the effect of the cooling rate of polymeric modification layers (PMLs) on the mobility improvement of pentacene-based organic field-effect transistors (OFETs). In contrast to slow cooling (SC), the OFETs fabricated through fast cooling (FC) with PMLs containing side chain-phenyl rings, such as polystyrene (PS) and poly (4-vinylphenol) (PVP), show an obvious mobility incensement compared with that of π-group free polymethylmethacrylate (PMMA). Atomic force microscopy (AFM) images and x-ray diffraction (XRD) characterizations have showed that fast-cooled PMLs could effectively enhance the crystallinity of pentacene, which might be related to the optimized homogeneity of surface energy on the surface of polymeric dielectrics. Our work has demonstrated that FC treatment could be a potential strategy for performance modulation of OFETs.

  16. Increased mobility and on/off ratio in organic field-effect transistors using low-cost guanine-pentacene multilayers

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Zheng, Yifan; Taylor, André D.; Yu, Junsheng; Katz, Howard E.

    2017-07-01

    Layer-by-layer deposited guanine and pentacene in organic field-effect transistors (OFETs) is introduced. Through adjusting the layer thickness ratio of guanine and pentacene, the tradeoff of two electronic parameters in OFETs, charge carrier mobility and current on/off ratio, was controlled. The charge mobility was enhanced by depositing pentacene over and between guanine layers and by increasing the proportion of pentacene in the layer-by-layer system, while the current on/off ratio was increased via the decreased off current induced by the guanine layers. The tunable device performance was mainly ascribed to the trap and dopant neutralizing properties of the guanine layers, which would decrease the density of free hydroxyl groups in the OFETs. Furthermore, the cost of the devices could be reduced remarkably via the adoption of low-cost guanine.

  17. Dependence of interface charge trapping on channel engineering in pentacene field effect transistors.

    PubMed

    Lee, Sunwoo; Park, Junghyuck; Park, In-Sung; Ahn, Jinho

    2014-07-01

    We investigate the dependence of charge carrier mobility by trap states at various interface regions through channel engineering. Prior to evaluation of interface trap density, the electrical performance in pentaene field effect transistors (FET) with high-k gate oxide are also investigated depending on four channel engineering. As a channel engineering, gas treatment, coatings of thin polymer layer, and chemical surface modification using small molecules were carried out. After channel engineering, the performance of device as well as interface trap density calculated by conductance method are remarkably improved. It is found that the reduced interface trap density is closely related to decreasing the sub-threshold swing and improving the mobility. Particularly, we also found that performance of device such as mobility, subthreshold swing, and interface trap density after gas same is comparable to those of OTS.

  18. Remarkable Enhancement of the Hole Mobility in Several Organic Small-Molecules, Polymers, and Small-Molecule:Polymer Blend Transistors by Simple Admixing of the Lewis Acid p-Dopant B(C6F5)3.

    PubMed

    Panidi, Julianna; Paterson, Alexandra F; Khim, Dongyoon; Fei, Zhuping; Han, Yang; Tsetseris, Leonidas; Vourlias, George; Patsalas, Panos A; Heeney, Martin; Anthopoulos, Thomas D

    2018-01-01

    Improving the charge carrier mobility of solution-processable organic semiconductors is critical for the development of advanced organic thin-film transistors and their application in the emerging sector of printed electronics. Here, a simple method is reported for enhancing the hole mobility in a wide range of organic semiconductors, including small-molecules, polymers, and small-molecule:polymer blends, with the latter systems exhibiting the highest mobility. The method is simple and relies on admixing of the molecular Lewis acid B(C 6 F 5 ) 3 in the semiconductor formulation prior to solution deposition. Two prototypical semiconductors where B(C 6 F 5 ) 3 is shown to have a remarkable impact are the blends of 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene:poly(triarylamine) (diF-TESADT:PTAA) and 2,7-dioctyl[1]-benzothieno[3,2-b][1]benzothiophene:poly(indacenodithiophene-co-benzothiadiazole) (C8-BTBT:C16-IDTBT), for which hole mobilities of 8 and 11 cm 2 V -1 s -1 , respectively, are obtained. Doping of the 6,13-bis(triisopropylsilylethynyl)pentacene:PTAA blend with B(C 6 F 5 ) 3 is also shown to increase the maximum hole mobility to 3.7 cm 2 V -1 s -1 . Analysis of the single and multicomponent materials reveals that B(C 6 F 5 ) 3 plays a dual role, first acting as an efficient p-dopant, and secondly as a microstructure modifier. Semiconductors that undergo simultaneous p-doping and dopant-induced long-range crystallization are found to consistently outperform transistors based on the pristine materials. Our work underscores Lewis acid doping as a generic strategy towards high performance printed organic microelectronics.

  19. Mobility Enhancement in Amorphous In-Ga-Zn-O Thin-Film Transistor by Induced Metallic in Nanoparticles and Cu Electrodes.

    PubMed

    Hu, Shiben; Ning, Honglong; Lu, Kuankuan; Fang, Zhiqiang; Li, Yuzhi; Yao, Rihui; Xu, Miao; Wang, Lei; Peng, Junbiao; Lu, Xubing

    2018-03-27

    In this work, we fabricated a high-mobility amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) based on alumina oxide (Al 2 O 3 ) passivation layer (PVL) and copper (Cu) source/drain electrodes (S/D). The mechanism of the high mobility for a-IGZO TFT was proposed and experimentally demonstrated. The conductivity of the channel layer was significantly improved due to the formation of metallic In nanoparticles on the back channel during Al 2 O 3 PVL sputtering. In addition, Ar atmosphere annealing induced the Schottky contact formation between the Cu S/D and the channel layer caused by Cu diffusion. In conjunction with high conductivity channel and Schottky contact, the a-IGZO TFT based on Cu S/D and Al 2 O 3 PVL exhibited remarkable mobility of 33.5-220.1 cm 2 /Vs when channel length varies from 60 to 560 μ m. This work presents a feasible way to implement high mobility and Cu electrodes in a-IGZO TFT, simultaneously.

  20. Mobility Enhancement in Amorphous In-Ga-Zn-O Thin-Film Transistor by Induced Metallic in Nanoparticles and Cu Electrodes

    PubMed Central

    Lu, Kuankuan; Li, Yuzhi; Xu, Miao; Wang, Lei; Peng, Junbiao; Lu, Xubing

    2018-01-01

    In this work, we fabricated a high-mobility amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) based on alumina oxide (Al2O3) passivation layer (PVL) and copper (Cu) source/drain electrodes (S/D). The mechanism of the high mobility for a-IGZO TFT was proposed and experimentally demonstrated. The conductivity of the channel layer was significantly improved due to the formation of metallic In nanoparticles on the back channel during Al2O3 PVL sputtering. In addition, Ar atmosphere annealing induced the Schottky contact formation between the Cu S/D and the channel layer caused by Cu diffusion. In conjunction with high conductivity channel and Schottky contact, the a-IGZO TFT based on Cu S/D and Al2O3 PVL exhibited remarkable mobility of 33.5–220.1 cm2/Vs when channel length varies from 60 to 560 μm. This work presents a feasible way to implement high mobility and Cu electrodes in a-IGZO TFT, simultaneously. PMID:29584710

  1. High performance thin film transistor with ZnO channel layer deposited by DC magnetron sputtering.

    PubMed

    Moon, Yeon-Keon; Moon, Dae-Yong; Lee, Sang-Ho; Jeong, Chang-Oh; Park, Jong-Wan

    2008-09-01

    Research in large area electronics, especially for low-temperature plastic substrates, focuses commonly on limitations of the semiconductor in thin film transistors (TFTs), in particular its low mobility. ZnO is an emerging example of a semiconductor material for TFTs that can have high mobility, while a-Si and organic semiconductors have low mobility (<1 cm2/Vs). ZnO-based TFTs have achieved high mobility, along with low-voltage operation low off-state current, and low gate leakage current. In general, ZnO thin films for the channel layer of TFTs are deposited with RF magnetron sputtering methods. On the other hand, we studied ZnO thin films deposited with DC magnetron sputtering for the channel layer of TFTs. After analyzing the basic physical and chemical properties of ZnO thin films, we fabricated a TFT-unit cell using ZnO thin films for the channel layer. The field effect mobility (micro(sat)) of 1.8 cm2/Vs and threshold voltage (Vth) of -0.7 V were obtained.

  2. Surface engineering of ferroelectric polymer for the enhanced electrical performance of organic transistor memory

    NASA Astrophysics Data System (ADS)

    Kim, Do-Kyung; Lee, Gyu-Jeong; Lee, Jae-Hyun; Kim, Min-Hoi; Bae, Jin-Hyuk

    2018-05-01

    We suggest a viable surface control method to improve the electrical properties of organic nonvolatile memory transistors. For viable surface control, the surface of the ferroelectric insulator in the memory field-effect transistors was modified using a smooth-contact-curing process. For the modification of the ferroelectric polymer, during the curing of the ferroelectric insulators, the smooth surface of a soft elastomer contacts intimately with the ferroelectric surface. This smooth-contact-curing process reduced the surface roughness of the ferroelectric insulator without degrading its ferroelectric properties. The reduced roughness of the ferroelectric insulator increases the mobility of the organic field-effect transistor by approximately eight times, which results in a high memory on–off ratio and a low-voltage reading operation.

  3. A Klein-tunneling transistor with ballistic graphene

    NASA Astrophysics Data System (ADS)

    Wilmart, Quentin; Berrada, Salim; Torrin, David; Nguyen, V. Hung; Fève, Gwendal; Berroir, Jean-Marc; Dollfus, Philippe; Plaçais, Bernard

    2014-06-01

    Today, the availability of high mobility graphene up to room temperature makes ballistic transport in nanodevices achievable. In particular, p-n-p transistors in the ballistic regime give access to Klein tunneling physics and allow the realization of devices exploiting the optics-like behavior of Dirac Fermions (DFs) as in the Veselago lens or the Fabry-Pérot cavity. Here we propose a Klein tunneling transistor based on the geometrical optics of DFs. We consider the case of a prismatic active region delimited by a triangular gate, where total internal reflection may occur, which leads to the tunable suppression of transistor transmission. We calculate the transmission and the current by means of scattering theory and the finite bias properties using non-equilibrium Green's function (NEGF) simulation.

  4. Fully transparent conformal organic thin-film transistor array and its application as LED front driving.

    PubMed

    Cui, Nan; Ren, Hang; Tang, Qingxin; Zhao, Xiaoli; Tong, Yanhong; Hu, Wenping; Liu, Yichun

    2018-02-22

    A fully transparent conformal organic thin-film field-effect transistor array is demonstrated based on a photolithography-compatible ultrathin metallic grid gate electrode and a solution-processed C 8 -BTBT film. The resulting organic field-effect transistor array exhibits a high optical transparency of >80% over the visible spectrum, mobility up to 2 cm 2 V -1 s -1 , on/off ratio of 10 5 -10 6 , switching current of >0.1 mA, and excellent light stability. The transparent conformal transistor array is demonstrated to adhere well to flat and curved LEDs as front driving. These results present promising applications of the solution-processed wide-bandgap organic semiconductor thin films in future large-scale transparent conformal active-matrix displays.

  5. Accurate on-chip measurement of the Seebeck coefficient of high mobility small molecule organic semiconductors

    NASA Astrophysics Data System (ADS)

    Warwick, C. N.; Venkateshvaran, D.; Sirringhaus, H.

    2015-09-01

    We present measurements of the Seebeck coefficient in two high mobility organic small molecules, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and 2,9-didecyl-dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (C10-DNTT). The measurements are performed in a field effect transistor structure with high field effect mobilities of approximately 3 cm2/V s. This allows us to observe both the charge concentration and temperature dependence of the Seebeck coefficient. We find a strong logarithmic dependence upon charge concentration and a temperature dependence within the measurement uncertainty. Despite performing the measurements on highly polycrystalline evaporated films, we see an agreement in the Seebeck coefficient with modelled values from Shi et al. [Chem. Mater. 26, 2669 (2014)] at high charge concentrations. We attribute deviations from the model at lower charge concentrations to charge trapping.

  6. Electron and hole transport in ambipolar, thin film pentacene transistors

    NASA Astrophysics Data System (ADS)

    Saudari, Sangameshwar R.; Kagan, Cherie R.

    2015-01-01

    Solution-processed, ambipolar, thin-film pentacene field-effect transistors were employed to study both electron and hole transport simultaneously in a single, organic solid-state device. Electron and hole mobilities were extracted from the respective unipolar saturation regimes and show thermally activated behavior and gate voltage dependence. We fit the gate voltage dependent saturation mobility to a power law to extract the characteristic Meyer-Neldel (MN) energy, a measure of the width of the exponential distribution of localized states extending into the energy gap of the organic semiconductor. The MN energy is ˜78 and ˜28 meV for electrons and holes, respectively, which reflects a greater density of localized tail states for electrons than holes. This is consistent with the lower measured electron than hole mobility. For holes, the well-behaved linear regime allows for four-point probe measurement of the contact resistance independent mobility and separate characterization of the width of the localized density of states, yielding a consistent MN energy of 28 meV.

  7. Structure characterization of MHEMT heterostructure elements with In{sub 0.4}Ga{sub 0.6}As quantum well grown by molecular beam epitaxy on GaAs substrate using reciprocal space mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleshin, A. N., E-mail: a.n.aleshin@mail.ru; Bugaev, A. S.; Ermakova, M. A.

    2016-03-15

    The crystallographic parameters of elements of a metamorphic high-electron-mobility transistor (MHEMT) heterostructure with In{sub 0.4}Ga{sub 0.6}As quantum well are determined using reciprocal space mapping. The heterostructure has been grown by molecular-beam epitaxy (MBE) on the vicinal surface of a GaAs substrate with a deviation angle of 2° from the (001) plane. The structure consists of a metamorphic step-graded buffer (composed of six layers, including an inverse step), a high-temperature buffer of constant composition, and active high-electron-mobility transistor (HEMT) layers. The InAs content in the metamorphic buffer layers varies from 0.1 to 0.48. Reciprocal space mapping has been performed for themore » 004 and 224 reflections (the latter in glancing exit geometry). Based on map processing, the lateral and vertical lattice parameters of In{sub x}Ga{sub 1–x}As ternary solid solutions of variable composition have been determined. The degree of layer lattice relaxation and the compressive stress are found within the linear elasticity theory. The high-temperature buffer layer of constant composition (on which active MHEMT layers are directly formed) is shown to have the highest (close to 100%) degree of relaxation in comparison with all other heterostructure layers and a minimum compressive stress.« less

  8. Bi-layer channel structure-based oxide thin-film transistors consisting of ZnO and Al-doped ZnO with different Al compositions and stacking sequences

    NASA Astrophysics Data System (ADS)

    Cho, Sung Woon; Yun, Myeong Gu; Ahn, Cheol Hyoun; Kim, So Hee; Cho, Hyung Koun

    2015-03-01

    Zinc oxide (ZnO)-based bi-layers, consisting of ZnO and Al-doped ZnO (AZO) layers grown by atomic layer deposition, were utilized as the channels of oxide thin-film transistors (TFTs). Thin AZO layers (5 nm) with different Al compositions (5 and 14 at. %) were deposited on top of and beneath the ZnO layers in a bi-layer channel structure. All of the bi-layer channel TFTs that included the AZO layers showed enhanced stability (Δ V Th ≤ 3.2 V) under a positive bias stress compared to the ZnO single-layer channel TFT (Δ V Th = 4.0 V). However, the AZO/ZnO bi-layer channel TFTs with an AZO interlayer between the gate dielectric and the ZnO showed a degraded field effect mobility (0.3 cm2/V·s for 5 at. % and 1.8 cm2/V·s for 14 at. %) compared to the ZnO single-layer channel TFT (5.5 cm2/V·s) due to increased scattering caused by Al-related impurities near the gate dielectric/channel interface. In contrast, the ZnO/AZO bi-layer channel TFTs with an AZO layer on top of the ZnO layer exhibited an improved field effect mobility (7.8 cm2/V·s for 14 at. %) and better stability. [Figure not available: see fulltext.

  9. Structure and properties of small molecule-polymer blend semiconductors for organic thin film transistors.

    PubMed

    Kang, Jihoon; Shin, Nayool; Jang, Do Young; Prabhu, Vivek M; Yoon, Do Y

    2008-09-17

    A comprehensive structural and electrical characterization of solution-processed blend films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) semiconductor and poly(alpha-methylstyrene) (PalphaMS) insulator was performed to understand and optimize the blend semiconductor films, which are very attractive as the active layer in solution-processed organic thin-film transistors (OTFTs). Our study, based on careful measurements of specular neutron reflectivity and grazing-incidence X-ray diffraction, showed that the blends with a low molecular-mass PalphaMS exhibited a strong segregation of TIPS-pentacene only at the air interface, but surprisingly the blends with a high molecular-mass PalphaMS showed a strong segregation of TIPS-pentacene at both air and bottom substrate interfaces with high crystallinity and desired orientation. This finding led to the preparation of a TIPS-pentacene/PalphaMS blend active layer with superior performance characteristics (field-effect mobility, on/off ratio, and threshold voltage) over those of neat TIPS-pentacene, as well as the solution-processability of technologically attractive bottom-gate/bottom-contact OTFT devices.

  10. Study on copper phthalocyanine and perylene-based ambipolar organic light-emitting field-effect transistors produced using neutral beam deposition method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dae-Kyu; Oh, Jeong-Do; Shin, Eun-Sol

    2014-04-28

    The neutral cluster beam deposition (NCBD) method has been applied to the production and characterization of ambipolar, heterojunction-based organic light-emitting field-effect transistors (OLEFETs) with a top-contact, multi-digitated, long-channel geometry. Organic thin films of n-type N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic diimide and p-type copper phthalocyanine were successively deposited on the hydroxyl-free polymethyl-methacrylate (PMMA)-coated SiO{sub 2} dielectrics using the NCBD method. Characterization of the morphological and structural properties of the organic active layers was performed using atomic force microscopy and X-ray diffraction. Various device parameters such as hole- and electron-carrier mobilities, threshold voltages, and electroluminescence (EL) were derived from the fits of the observed current-voltage andmore » current-voltage-light emission characteristics of OLEFETs. The OLEFETs demonstrated good field-effect characteristics, well-balanced ambipolarity, and substantial EL under ambient conditions. The device performance, which is strongly correlated with the surface morphology and the structural properties of the organic active layers, is discussed along with the operating conduction mechanism.« less

  11. A mixed solution-processed gate dielectric for zinc-tin oxide thin-film transistor and its MIS capacitance

    NASA Astrophysics Data System (ADS)

    Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop

    2016-09-01

    Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm2/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 105, and a subthreshold slope of 0.10 V/dec.

  12. Experimental study of the minority-carrier transport at the polysilicon-monosilicon interface

    NASA Astrophysics Data System (ADS)

    Neugroschel, A.; Arienzo, M.; Isaac, R. D.; Komem, Y.

    1985-04-01

    This paper presents the results of an experimental study designed to explore both qualitatively and quantitatively the mechanism of the improved current gain in bipolar transistors with polysilicon emitter contacts. Polysilicon contacts were deposited and heat treated at different conditions. The electrical properties were measured using p-n junction test structures that are much more sensitive to the contact properties than are bipolar transistors. A simple phenomenological model was used to correlate the structural properties with electrical measurements. Possible transport mechanisms are examined and estimates are made about upper bounds on transport parameters in the principal regions of the devices. The main conclusion of this study is that the minority-carrier transport in the polycrystalline silicon is dominated by a highly disordered layer at the polysilicon-monosilicon interface characterized by very low minority-carrier mobility. The effective recombination velocity at the n(+) polysilicon-n(+) monosilicon interface was found to be a strong function of fabrication conditions. The results indicate that the recombination velocity can be much smaller than 10,000 cm/s.

  13. High-Resolution Inkjet-Printed Oxide Thin-Film Transistors with a Self-Aligned Fine Channel Bank Structure.

    PubMed

    Zhang, Qing; Shao, Shuangshuang; Chen, Zheng; Pecunia, Vincenzo; Xia, Kai; Zhao, Jianwen; Cui, Zheng

    2018-05-09

    A self-aligned inkjet printing process has been developed to construct small channel metal oxide (a-IGZO) thin-film transistors (TFTs) with independent bottom gates on transparent glass substrates. Poly(methylsilsesquioxane) was used to pattern hydrophobic banks on the transparent substrate instead of commonly used self-assembled octadecyltrichlorosilane. Photolithographic exposure from backside using bottom-gate electrodes as mask formed hydrophilic channel areas for the TFTs. IGZO ink was selectively deposited by an inkjet printer in the hydrophilic channel region and confined by the hydrophobic bank structure, resulting in the precise deposition of semiconductor layers just above the gate electrodes. Inkjet-printed IGZO TFTs with independent gate electrodes of 10 μm width have been demonstrated, avoiding completely printed channel beyond the broad of the gate electrodes. The TFTs showed on/off ratios of 10 8 , maximum mobility of 3.3 cm 2 V -1 s -1 , negligible hysteresis, and good uniformity. This method is conductive to minimizing the area of printed TFTs so as to the development of high-resolution printing displays.

  14. A mixed solution-processed gate dielectric for zinc-tin oxide thin-film transistor and its MIS capacitance

    PubMed Central

    Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop

    2016-01-01

    Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm2/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 105, and a subthreshold slope of 0.10 V/dec. PMID:27641430

  15. The trap DOS in small molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals

    NASA Astrophysics Data System (ADS)

    Kalb, Wolfgang; Haas, Simon; Pernstich, Kurt; Mathis, Thomas; Batlogg, Bertram

    2010-03-01

    Our study shows that it is possible to reach one of the ultimate goals of organic electronics: organic field-effect transistors can be produced with trap densities as low as in the bulk of single crystals. Several analytical methods to calculate the spectral density of localized states in the band gap (trap DOS) from measured data were used to clarify, if the different methods lead to similar results. We then compared quantitatively trap DOS information from the literature, correcting for differences due to different calculation methods. In the bulk of single crystals the trap DOS is lower by several orders of magnitude than in thin films. The compilation of all data strongly suggests that structural defects at grain boundaries are the main cause of ``fast'' traps in TFT's made with vacuum-evaporated pentacene. For high-performance transistors made with small molecule semiconductors such as rubrene it is essential to reduce the dipolar disorder caused by water adsorbed on the gate dielectric. We will discuss to what degree band broadening due to the thermal fluctuations of the intermolecular transfer integral is reflected in the trap DOS very close (<0.15 eV) to the mobility edge.

  16. Enhanced electron mobility at the two-dimensional metallic surface of BaSnO3 electric-double-layer transistor at low temperatures

    NASA Astrophysics Data System (ADS)

    Fujiwara, Kohei; Nishihara, Kazuki; Shiogai, Junichi; Tsukazaki, Atsushi

    2017-05-01

    Wide-bandgap oxides exhibiting high electron mobility hold promise for the development of useful electronic and optoelectronic devices as well as for basic research on two-dimensional electron transport phenomena. A perovskite-type tin oxide, BaSnO3, is currently one of such targets owing to distinctly high mobility at room temperature. The challenge to overcome towards the use of BaSnO3 thin films in applications is suppression of dislocation scattering, which is one of the dominant scattering origins for electron transport. Here, we show that the mobility of the BaSnO3 electric-double-layer transistor reaches 300 cm2 V-1 s-1 at 50 K. The improved mobility indicates that charged dislocation scattering is effectively screened by electrostatically doped high-density charge carriers. We also observed metallic conduction persisting down to 2 K, which is attributed to the transition to the degenerate semiconductor. The experimental verification of bulk-level mobility at the densely accumulated surface sheds more light on the importance of suppression of dislocation scattering by interface engineering in doped BaSnO3 thin films for transparent electrode applications.

  17. Contact-metal dependent current injection in pentacene thin-film transistors

    NASA Astrophysics Data System (ADS)

    Wang, S. D.; Minari, T.; Miyadera, T.; Tsukagoshi, K.; Aoyagi, Y.

    2007-11-01

    Contact-metal dependent current injection in top-contact pentacene thin-film transistors is analyzed, and the local mobility in the contact region was found to follow the Meyer-Neldel rule. An exponential trap distribution, rather than the metal/organic hole injection barrier, is proposed to be the dominant factor of the contact resistance in pentacene thin-film transistors. The variable temperature measurements revealed a much narrower trap distribution in the copper contact compared with the corresponding gold contact, and this is the origin of the smaller contact resistance for copper despite a lower work function.

  18. Fused thiophene-based conjugated polymers and their use in optoelectronic devices

    DOEpatents

    Facchetti, Antonio; Marks, Tobin J; Takai, Atsuro; Seger, Mark; Chen, Zhihua

    2015-11-03

    The present teachings relate to certain polymeric compounds and their use as organic semiconductors in organic and hybrid optical, optoelectronic, and/or electronic devices such as photovoltaic cells, light emitting diodes, light emitting transistors, and field effect transistors. The disclosed compounds can provide improved device performance, for example, as measured by power conversion efficiency, fill factor, open circuit voltage, field-effect mobility, on/off current ratios, and/or air stability when used in photovoltaic cells or transistors. The disclosed compounds can have good solubility in common solvents enabling device fabrication via solution processes.

  19. Low-voltage self-assembled monolayer field-effect transistors on flexible substrates.

    PubMed

    Schmaltz, Thomas; Amin, Atefeh Y; Khassanov, Artoem; Meyer-Friedrichsen, Timo; Steinrück, Hans-Georg; Magerl, Andreas; Segura, Juan José; Voitchovsky, Kislon; Stellacci, Francesco; Halik, Marcus

    2013-08-27

    Self-assembled monolayer field-effect transistors (SAMFETs) of BTBT functionalized phosphonic acids are fabricated. The molecular design enables device operation with charge carrier mobilities up to 10(-2) cm(2) V(-1) s(-1) and for the first time SAMFETs which operate on rough, flexible PEN substrates even under mechanical substrate bending. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Stacked Quantum Wire AlN/GaN HEMTs

    DTIC Science & Technology

    2012-04-27

    Zimmermann, Debdeep Jena and Huili Xing. Molecular beam epitaxy regrowth of ohmics in metal-face AlN/GaN transistors. International Conference on...mobility transistors with regrown ohmic contacts by molecular beam epitaxy . Physica Status Solidi (a), 208(7), 1617-1619, (2011). [9] Debdeep Jena...high Si doping concentrations grown by molecular beam epitaxy . Submitted, (2012). [14] Guowang Li, Ronghua Wang, Jai Verma, Yu Cao, Satyaki Ganguly

  1. Highly Bendable In-Ga-ZnO Thin Film Transistors by Using a Thermally Stable Organic Dielectric Layer

    PubMed Central

    Kumaresan, Yogeenth; Pak, Yusin; Lim, Namsoo; kim, Yonghun; Park, Min-Ji; Yoon, Sung-Min; Youn, Hyoc-Min; Lee, Heon; Lee, Byoung Hun; Jung, Gun Young

    2016-01-01

    Flexible In-Ga-ZnO (IGZO) thin film transistor (TFT) on a polyimide substrate is produced by employing a thermally stable SA7 organic material as the multi-functional barrier and dielectric layers. The IGZO channel layer was sputtered at Ar:O2 gas flow rate of 100:1 sccm and the fabricated TFT exhibited excellent transistor performances with a mobility of 15.67 cm2/Vs, a threshold voltage of 6.4 V and an on/off current ratio of 4.5 × 105. Further, high mechanical stability was achieved by the use of organic/inorganic stacking of dielectric and channel layers. Thus, the IGZO transistor endured unprecedented bending strain up to 3.33% at a bending radius of 1.5 mm with no significant degradation in transistor performances along with a superior reliability up to 1000 cycles. PMID:27876893

  2. Highly Bendable In-Ga-ZnO Thin Film Transistors by Using a Thermally Stable Organic Dielectric Layer.

    PubMed

    Kumaresan, Yogeenth; Pak, Yusin; Lim, Namsoo; Kim, Yonghun; Park, Min-Ji; Yoon, Sung-Min; Youn, Hyoc-Min; Lee, Heon; Lee, Byoung Hun; Jung, Gun Young

    2016-11-23

    Flexible In-Ga-ZnO (IGZO) thin film transistor (TFT) on a polyimide substrate is produced by employing a thermally stable SA7 organic material as the multi-functional barrier and dielectric layers. The IGZO channel layer was sputtered at Ar:O 2 gas flow rate of 100:1 sccm and the fabricated TFT exhibited excellent transistor performances with a mobility of 15.67 cm 2 /Vs, a threshold voltage of 6.4 V and an on/off current ratio of 4.5 × 10 5 . Further, high mechanical stability was achieved by the use of organic/inorganic stacking of dielectric and channel layers. Thus, the IGZO transistor endured unprecedented bending strain up to 3.33% at a bending radius of 1.5 mm with no significant degradation in transistor performances along with a superior reliability up to 1000 cycles.

  3. Liquid crystals for organic transistors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hanna, Jun-ichi; Iino, Hiroaki

    2016-09-01

    Liquid crystals are a new type of organic semiconductors exhibiting molecular orientation in self-organizing manner, and have high potential for device applications. In fact, various device applications have been proposed so far, including photosensors, solar cells, light emitting diodes, field effect transistors, and so on.. However, device performance in those fabricated with liquid crystals is less than those of devices fabricated with conventional materials in spite of unique features of liquid crystals. Here we discuss how we can utilize the liquid crystallinity in organic transistors and how we can overcome conventional non-liquid crystalline organic transistor materials. Then, we demonstrate high performance organic transistors fabricated with a smectic E liquid crystal of Ph-BTBT-10, which show high mobility of over 10cm2/Vs and high thermal durability of over 200oC in OFETs fabricated with its spin-coated polycrystalline thin films.

  4. Light programmable organic transistor memory device based on hybrid dielectric

    NASA Astrophysics Data System (ADS)

    Ren, Xiaochen; Chan, Paddy K. L.

    2013-09-01

    We have fabricated the transistor memory devices based on SiO2 and polystyrene (PS) hybrid dielectric. The trap states densities with different semiconductors have been investigated and a maximum 160V memory window between programming and erasing is realized. For DNTT based transistor, the trapped electron density is limited by the number of mobile electrons in semiconductor. The charge transport mechanism is verified by light induced Vth shift effect. Furthermore, in order to meet the low operating power requirement of portable electronic devices, we fabricated the organic memory transistor based on AlOx/self-assembly monolayer (SAM)/PS hybrid dielectric, the effective capacitance of hybrid dielectric is 210 nF cm-2 and the transistor can reach saturation state at -3V gate bias. The memory window in transfer I-V curve is around 1V under +/-5V programming and erasing bias.

  5. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics

    NASA Astrophysics Data System (ADS)

    Ju, Sanghyun; Facchetti, Antonio; Xuan, Yi; Liu, Jun; Ishikawa, Fumiaki; Ye, Peide; Zhou, Chongwu; Marks, Tobin J.; Janes, David B.

    2007-06-01

    The development of optically transparent and mechanically flexible electronic circuitry is an essential step in the effort to develop next-generation display technologies, including `see-through' and conformable products. Nanowire transistors (NWTs) are of particular interest for future display devices because of their high carrier mobilities compared with bulk or thin-film transistors made from the same materials, the prospect of processing at low temperatures compatible with plastic substrates, as well as their optical transparency and inherent mechanical flexibility. Here we report fully transparent In2O3 and ZnO NWTs fabricated on both glass and flexible plastic substrates, exhibiting high-performance n-type transistor characteristics with ~82% optical transparency. These NWTs should be attractive as pixel-switching and driving transistors in active-matrix organic light-emitting diode (AMOLED) displays. The transparency of the entire pixel area should significantly enhance aperture ratio efficiency in active-matrix arrays and thus substantially decrease power consumption.

  6. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics.

    PubMed

    Ju, Sanghyun; Facchetti, Antonio; Xuan, Yi; Liu, Jun; Ishikawa, Fumiaki; Ye, Peide; Zhou, Chongwu; Marks, Tobin J; Janes, David B

    2007-06-01

    The development of optically transparent and mechanically flexible electronic circuitry is an essential step in the effort to develop next-generation display technologies, including 'see-through' and conformable products. Nanowire transistors (NWTs) are of particular interest for future display devices because of their high carrier mobilities compared with bulk or thin-film transistors made from the same materials, the prospect of processing at low temperatures compatible with plastic substrates, as well as their optical transparency and inherent mechanical flexibility. Here we report fully transparent In(2)O(3) and ZnO NWTs fabricated on both glass and flexible plastic substrates, exhibiting high-performance n-type transistor characteristics with approximately 82% optical transparency. These NWTs should be attractive as pixel-switching and driving transistors in active-matrix organic light-emitting diode (AMOLED) displays. The transparency of the entire pixel area should significantly enhance aperture ratio efficiency in active-matrix arrays and thus substantially decrease power consumption.

  7. Contact Resistance and Channel Conductance of Graphene Field-Effect Transistors under Low-Energy Electron Irradiation

    PubMed Central

    Giubileo, Filippo; Di Bartolomeo, Antonio; Martucciello, Nadia; Romeo, Francesco; Iemmo, Laura; Romano, Paola; Passacantando, Maurizio

    2016-01-01

    We studied the effects of low-energy electron beam irradiation up to 10 keV on graphene-based field effect transistors. We fabricated metallic bilayer electrodes to contact mono- and bi-layer graphene flakes on SiO2, obtaining specific contact resistivity ρc≈19 kΩ·µm2 and carrier mobility as high as 4000 cm2·V−1·s−1. By using a highly doped p-Si/SiO2 substrate as the back gate, we analyzed the transport properties of the device and the dependence on the pressure and on the electron bombardment. We demonstrate herein that low energy irradiation is detrimental to the transistor current capability, resulting in an increase in contact resistance and a reduction in carrier mobility, even at electron doses as low as 30 e−/nm2. We also show that irradiated devices recover their pristine state after few repeated electrical measurements. PMID:28335335

  8. Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum.

    PubMed

    Chu, Chia-Ho; Sarangadharan, Indu; Regmi, Abiral; Chen, Yen-Wen; Hsu, Chen-Pin; Chang, Wen-Hsin; Lee, Geng-Yen; Chyi, Jen-Inn; Chen, Chih-Chen; Shiesh, Shu-Chu; Lee, Gwo-Bin; Wang, Yu-Lin

    2017-07-12

    In this study, a new type of field-effect transistor (FET)-based biosensor is demonstrated to be able to overcome the problem of severe charge-screening effect caused by high ionic strength in solution and detect proteins in physiological environment. Antibody or aptamer-immobilized AlGaN/GaN high electron mobility transistors (HEMTs) are used to directly detect proteins, including HIV-1 RT, CEA, NT-proBNP and CRP, in 1X PBS (with 1%BSA) or human sera. The samples do not need any dilution or washing process to reduce the ionic strength. The sensor shows high sensitivity and the detection takes only 5 minutes. The designs of the sensor, the methodology of the measurement, and the working mechanism of the sensor are discussed and investigated. A theoretical model is proposed based on the finding of the experiments. This sensor is promising for point-of-care, home healthcare, and mobile diagnostic device.

  9. Improvement in top-gate MoS2 transistor performance due to high quality backside Al2O3 layer

    NASA Astrophysics Data System (ADS)

    Bolshakov, Pavel; Zhao, Peng; Azcatl, Angelica; Hurley, Paul K.; Wallace, Robert M.; Young, Chadwin D.

    2017-07-01

    A high quality Al2O3 layer is developed to achieve high performance in top-gate MoS2 transistors. Compared with top-gate MoS2 field effect transistors on a SiO2 layer, the intrinsic mobility and subthreshold slope were greatly improved in high-k backside layer devices. A forming gas anneal is found to enhance device performance due to a reduction in the charge trap density of the backside dielectric. The major improvements in device performance are ascribed to the forming gas anneal and the high-k dielectric screening effect of the backside Al2O3 layer. Top-gate devices built upon these stacks exhibit a near-ideal subthreshold slope of ˜69 mV/dec and a high Y-Function extracted intrinsic carrier mobility (μo) of 145 cm2/V.s, indicating a positive influence on top-gate device performance even without any backside bias.

  10. High-mobility solution-processed copper phthalocyanine-based organic field-effect transistors.

    PubMed

    Chaure, Nandu B; Cammidge, Andrew N; Chambrier, Isabelle; Cook, Michael J; Cain, Markys G; Murphy, Craig E; Pal, Chandana; Ray, Asim K

    2011-04-01

    Solution-processed films of 1,4,8,11,15,18,22,25-octakis(hexyl) copper phthalocyanine (CuPc 6 ) were utilized as an active semiconducting layer in the fabrication of organic field-effect transistors (OFETs) in the bottom-gate configurations using chemical vapour deposited silicon dioxide (SiO 2 ) as gate dielectrics. The surface treatment of the gate dielectric with a self-assembled monolayer of octadecyltrichlorosilane (OTS) resulted in values of 4×10 -2 cm 2 V -1 s -1 and 10 6 for saturation mobility and on/off current ratio, respectively. This improvement was accompanied by a shift in the threshold voltage from 3 V for untreated devices to -2 V for OTS treated devices. The trap density at the interface between the gate dielectric and semiconductor decreased by about one order of magnitude after the surface treatment. The transistors with the OTS treated gate dielectrics were more stable over a 30-day period in air than untreated ones.

  11. High-mobility solution-processed copper phthalocyanine-based organic field-effect transistors

    PubMed Central

    Chaure, Nandu B; Cammidge, Andrew N; Chambrier, Isabelle; Cook, Michael J; Cain, Markys G; Murphy, Craig E; Pal, Chandana; Ray, Asim K

    2011-01-01

    Solution-processed films of 1,4,8,11,15,18,22,25-octakis(hexyl) copper phthalocyanine (CuPc6) were utilized as an active semiconducting layer in the fabrication of organic field-effect transistors (OFETs) in the bottom-gate configurations using chemical vapour deposited silicon dioxide (SiO2) as gate dielectrics. The surface treatment of the gate dielectric with a self-assembled monolayer of octadecyltrichlorosilane (OTS) resulted in values of 4×10−2 cm2 V−1 s−1 and 106 for saturation mobility and on/off current ratio, respectively. This improvement was accompanied by a shift in the threshold voltage from 3 V for untreated devices to -2 V for OTS treated devices. The trap density at the interface between the gate dielectric and semiconductor decreased by about one order of magnitude after the surface treatment. The transistors with the OTS treated gate dielectrics were more stable over a 30-day period in air than untreated ones. PMID:27877383

  12. Single shot spin readout with a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tracy, Lisa A.; Luhman, Dwight R.; Carr, Stephen M.

    We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ~9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ~2.7 x 10 3 the power dissipation of the amplifier is 13 μW, the bandwidth is ~1.3 MHz, and for frequencies abovemore » 300 kHz the current noise referred to input is ≤ 70 fA/√Hz. Furthermore, with this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.« less

  13. Single shot spin readout with a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures

    DOE PAGES

    Tracy, Lisa A.; Luhman, Dwight R.; Carr, Stephen M.; ...

    2016-02-08

    We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ~9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ~2.7 x 10 3 the power dissipation of the amplifier is 13 μW, the bandwidth is ~1.3 MHz, and for frequencies abovemore » 300 kHz the current noise referred to input is ≤ 70 fA/√Hz. Furthermore, with this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.« less

  14. Heteroepitaxial growth of In{sub 0.30}Ga{sub 0.70}As high-electron mobility transistor on 200 mm silicon substrate using metamorphic graded buffer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohen, David, E-mail: david.kohen@asm.com; Nguyen, Xuan Sang; Made, Riko I

    We report on the growth of an In{sub 0.30}Ga{sub 0.70}As channel high-electron mobility transistor (HEMT) on a 200 mm silicon wafer by metal organic vapor phase epitaxy. By using a 3 μm thick buffer comprising a Ge layer, a GaAs layer and an InAlAs compositionally graded strain relaxing buffer, we achieve threading dislocation density of (1.0 ± 0.3) × 10{sup 7} cm{sup −2} with a surface roughness of 10 nm RMS. No phase separation was observed during the InAlAs compositionally graded buffer layer growth. 1.4 μm long channel length transistors are fabricated from the wafer with I{sub DS} of 70more » μA/μm and g{sub m} of above 60 μS/μm, demonstrating the high quality of the grown materials.« less

  15. Large contact noise in graphene field-effect transistors

    NASA Astrophysics Data System (ADS)

    Karnatak, Paritosh; Sai, Phanindra; Goswami, Srijit; Ghatak, Subhamoy; Kaushal, Sanjeev; Ghosh, Arindam

    Fluctuations in the electrical resistance at the interface of atomically thin materials and metals, or the contact noise, can adversely affect the device performance but remains largely unexplored. We have investigated contact noise in graphene field effect transistors of varying device geometry and contact configuration, with channel carrier mobility ranging from 5,000 to 80,000 cm2V-1s-1. A phenomenological model developed for contact noise due to current crowding for two dimensional conductors, shows a dominant contact contribution to the measured resistance noise in all graphene field effect transistors when measured in the two-probe or invasive four probe configurations, and surprisingly, also in nearly noninvasive four probe (Hall bar) configuration in the high mobility devices. We identify the fluctuating electrostatic environment of the metal-channel interface as the major source of contact noise, which could be generic to two dimensional material-based electronic devices. The work was financially supported by the Department of Science and Technology, India and Tokyo Electron Limited.

  16. Intrinsic Electron Mobility Exceeding 10³ cm²/(V s) in Multilayer InSe FETs.

    PubMed

    Sucharitakul, Sukrit; Goble, Nicholas J; Kumar, U Rajesh; Sankar, Raman; Bogorad, Zachary A; Chou, Fang-Cheng; Chen, Yit-Tsong; Gao, Xuan P A

    2015-06-10

    Graphene-like two-dimensional (2D) materials not only are interesting for their exotic electronic structure and fundamental electronic transport or optical properties but also hold promises for device miniaturization down to atomic thickness. As one material belonging to this category, InSe, a III-VI semiconductor, not only is a promising candidate for optoelectronic devices but also has potential for ultrathin field effect transistor (FET) with high mobility transport. In this work, various substrates such as PMMA, bare silicon oxide, passivated silicon oxide, and silicon nitride were used to fabricate multilayer InSe FET devices. Through back gating and Hall measurement in four-probe configuration, the device's field effect mobility and intrinsic Hall mobility were extracted at various temperatures to study the material's intrinsic transport behavior and the effect of dielectric substrate. The sample's field effect and Hall mobilities over the range of 20-300 K fall in the range of 0.1-2.0 × 10(3) cm(2)/(V s), which are comparable or better than the state of the art FETs made of widely studied 2D transition metal dichalcogenides.

  17. High Stability Performance of Quinary Indium Gallium Zinc Aluminum Oxide Films and Thin-Film Transistors Deposited Using Vapor Cooling Condensation Method

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Hao; Lee, Ching-Ting

    2017-08-01

    High-quality indium gallium zinc aluminum oxide (IGZAO) thin films with various Al contents have been deposited using the vapor cooling condensation method. The electron mobility of the IGZAO films was improved by 89.4% on adding Al cation to IGZO film. The change in the electron concentration and mobility of the IGZAO films was 7.3% and 7.0%, respectively, when the temperature was changed from 300 K to 225 K. These experimental results confirm the high performance and stability of the IGZAO films. The performance stability mechanisms of IGZAO thin-film transistors (TFTs) were investigated in comparison with IGZO TFTs.

  18. Pentacene-based low voltage organic field-effect transistors with anodized Ta2O5 gate dielectric

    NASA Astrophysics Data System (ADS)

    Jeong, Yeon Taek; Dodabalapur, Ananth

    2007-11-01

    Pentacene-based low voltage organic field-effect transistors were realized using an anodized Ta2O5 gate dielectric. The Ta2O5 gate dielectric layer with a surface roughness of 1.3Å was obtained by anodizing an e-beam evaporated Ta film. The device exhibited values of saturation mobility, threshold voltage, and Ion/Ioff ratio of 0.45cm2/Vs, 0.56V, and 7.5×101, respectively. The gate leakage current was reduced by more than 70% with a hexamethyldisilazane (HMDS) treatment on the Ta2O5 layer. The HMDS treatment also resulted in enhanced mobility values and a larger pentacene grain size.

  19. Investigation of Ultraviolet Light Curable Polysilsesquioxane Gate Dielectric Layers for Pentacene Thin Film Transistors.

    PubMed

    Shibao, Hideto; Nakahara, Yoshio; Uno, Kazuyuki; Tanaka, Ichiro

    2016-04-01

    Polysilsesquioxane (PSQ) comprising 3-methacryloxypropyl groups was investigated as an ultraviolet (UV)-light curable gate dielectric-material for pentacene thin film transistors (TFTs). The surface of UV-light cured PSQ films was smoother than that of thermally cured ones, and the pentacene layers deposited on the UV-Iight cured PSQ films consisted of larger grains. However, carrier mobility of the TFTs using the UV-light cured PSQ films was lower than that of the TFTs using the thermally cured ones. It was shown that the cross-linker molecules, which were only added to the UV-light cured PSQ films, worked as a major mobility-limiting factor for the TFTs.

  20. Degradation and annealing effects caused by oxygen in AlGaN/GaN high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, R., E-mail: rong.jiang@vanderbilt.edu; Chen, J.; Duan, G. X.

    Hot-carrier degradation and room-temperature annealing effects are investigated in unpassivated ammonia-rich AlGaN/GaN high electron mobility transistors. Devices exhibit a fast recovery when annealed after hot carrier stress with all pins grounded. The recovered peak transconductance can exceed the original value, an effect that is not observed in control passivated samples. Density functional theory calculations suggest that dehydrogenation of pre-existing O{sub N}-H defects in AlGaN plays a significant role in the observed hot carrier degradation, and the resulting bare O{sub N} can naturally account for the “super-recovery” in the peak transconductance.

  1. New GaN based HEMT with Si3N4 or un-doped region in the barrier for high power applications

    NASA Astrophysics Data System (ADS)

    Razavi, S. M.; Tahmasb Pour, S.; Najari, P.

    2018-06-01

    New AlGaN/GaN high electron mobility transistors (HEMTs) that their barrier layers under the gate are divided into two regions horizontally are presented in this work. Upper region is Si3N4 (SI-HEMT) or un-doped AlGaN (UN-HEMT) and lower region is AlGaN with heavier doping compared to barrier layer. Upper region in SI-HEMT and UN-HEMT reduces peak electric field in the channel and then improves breakdown voltage considerably. Lower region increases electron density in the two dimensional electron gas (2-DEG) and enhances drain current significantly. For instance, saturated drain current in SI-HEMT is about 100% larger than that in the conventional one. Moreover, the maximum breakdown voltage in the proposed structures is 65 V. This value is about 30% larger than that in the conventional transistor (50 V). Also, suggested structure reduces short channel effect such as DIBL. The maximum gm is obtained in UN-HEMT and conventional devices. Proposed structures improve breakdown voltage and saturated drain current and then enhance maximum output power density. Maximum output power density in the new structures is about 150% higher than that in the conventional.

  2. Thomson backscattering diagnostics of nanosecond electron bunches in high space charge regime

    NASA Astrophysics Data System (ADS)

    Plachinda, Pavel

    The trend over the last 50 years of down-scaling the silicon transistor to achieve faster computations has led to doubling of the number of transistors and computation speed over about every two years. However, this trend cannot be maintained due to the fundamental limitations of silicon as the main material for the semiconducting industry. Therefore, there is an active search for exploration of alternate materials. Among the possible candidates that can may be able to replace silicon is graphene which has recently gained the most attention. Unique properties of graphene include exceedingly high carrier mobility, tunable band gap, huge optical density of a monolayer, anomalous quantum Hall effect, and many others. To be suitable for microelectronic applications the material should be semiconductive, i.e. have a non-zero band gap. Pristine graphene is a semimetal, but by the virtue of doping the graphene surface with different molecules and radicals a band gap can be opened. Because the electronic properties of all materials are intimately related to their atomic structure, characterization of molecular and electronic structure of functionalizing groups is of high interest. The ab-inito (from the first principles) calculations provide a unique opportunity to study the influence of the dopants and thus allow exploration of the physical phenomena in functionalized graphene structures. This ability paves the road to probe the properties based on the intuitive structural information only. A great advantage of this approach lies in the opportunity for quick screening of various atomic structures. We conducted a series of ab-inito investigations of graphene functionalized with covalently and hapticly bound groups, and demonstrated possible practical usage of functionalized graphene for microelectronic and optical applications. This investigation showed that it is possible produce band gaps in graphene (i.e., produce semiconducting graphene) of about 1 eV, without degrading the carrier mobility. This was archived by considering the influence of those adducts on electronic band structure and conductivity properties.

  3. A drain current model for amorphous InGaZnO thin film transistors considering temperature effects

    NASA Astrophysics Data System (ADS)

    Cai, M. X.; Yao, R. H.

    2018-03-01

    Temperature dependent electrical characteristics of amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) are investigated considering the percolation and multiple trapping and release (MTR) conduction mechanisms. Carrier-density and temperature dependent carrier mobility in a-IGZO is derived with the Boltzmann transport equation, which is affected by potential barriers above the conduction band edge with Gaussian-like distributions. The free and trapped charge densities in the channel are calculated with Fermi-Dirac statistics, and the field effective mobility of a-IGZO TFTs is then deduced based on the MTR theory. Temperature dependent drain current model for a-IGZO TFTs is finally derived with the obtained low field mobility and free charge density, which is applicable to both non-degenerate and degenerate conductions. This physical-based model is verified by available experiment results at various temperatures.

  4. Quantum transport properties of carbon nanotube field-effect transistors with electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji

    2007-11-01

    We investigated the electron-phonon coupling effects on the electronic transport properties of metallic (5,5)- and semiconducting (10,0)-carbon nanotube devices. We calculated the conductance and mobility of the carbon nanotubes with micron-order lengths at room temperature, using the time-dependent wave-packet approach based on the Kubo-Greenwood formula within a tight-binding approximation. We investigated the scattering effects of both longitudinal acoustic and optical phonon modes on the transport properties. The electron-optical phonon coupling decreases the conductance around the Fermi energy for the metallic carbon nanotubes, while the conductance of semiconductor nanotubes is decreased around the band edges by the acoustic phonons. Furthermore, we studied the Schottky-barrier effects on the mobility of the semiconducting carbon nanotube field-effect transistors for various gate voltages. We clarified how the electron mobilities of the devices are changed by the acoustic phonon.

  5. Atomically engineered epitaxial anatase TiO2 metal-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Kim, Brian S. Y.; Minohara, Makoto; Hikita, Yasuyuki; Bell, Christopher; Hwang, Harold Y.

    2018-03-01

    Anatase TiO2 is a promising material for a vast array of electronic, energy, and environmental applications, including photocatalysis, photovoltaics, and sensors. A key requirement for these applications is the ability to modulate its electrical properties without dominant dopant scattering and while maintaining high carrier mobility. Here, we demonstrate the room temperature field-effect modulation of the conducting epitaxial interface between anatase TiO2 and LaAlO3 (001), which arises for LaO-terminated LaAlO3, while the AlO2-terminated interface is insulating. This approach, together with the metal-semiconductor field-effect transistor geometry, naturally bypasses the gate/channel interface traps, resulting in a high field-effect mobility μ FE of 3.14 cm2 (V s)-1 approaching 98% of the corresponding Hall mobility μ Hall . Accordingly, the channel conductivity is modulated over 6 orders of magnitude over a gate voltage range of ˜4 V.

  6. Effective passivation of exfoliated black phosphorus transistors against ambient degradation.

    PubMed

    Wood, Joshua D; Wells, Spencer A; Jariwala, Deep; Chen, Kan-Sheng; Cho, EunKyung; Sangwan, Vinod K; Liu, Xiaolong; Lauhon, Lincoln J; Marks, Tobin J; Hersam, Mark C

    2014-12-10

    Unencapsulated, exfoliated black phosphorus (BP) flakes are found to chemically degrade upon exposure to ambient conditions. Atomic force microscopy, electrostatic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy are employed to characterize the structure and chemistry of the degradation process, suggesting that O2 saturated H2O irreversibly reacts with BP to form oxidized phosphorus species. This interpretation is further supported by the observation that BP degradation occurs more rapidly on hydrophobic octadecyltrichlorosilane self-assembled monolayers and on H-Si(111) versus hydrophilic SiO2. For unencapsulated BP field-effect transistors, the ambient degradation causes large increases in threshold voltage after 6 h in ambient, followed by a ∼ 10(3) decrease in FET current on/off ratio and mobility after 48 h. Atomic layer deposited AlOx overlayers effectively suppress ambient degradation, allowing encapsulated BP FETs to maintain high on/off ratios of ∼ 10(3) and mobilities of ∼ 100 cm(2) V(-1) s(-1) for over 2 weeks in ambient conditions. This work shows that the ambient degradation of BP can be managed effectively when the flakes are sufficiently passivated. In turn, our strategy for enhancing BP environmental stability will accelerate efforts to implement BP in electronic and optoelectronic applications.

  7. Isoindigo-Based Small Molecules with Varied Donor Components for Solution-Processable Organic Field Effect Transistor Devices.

    PubMed

    Patil, Hemlata; Chang, Jingjing; Gupta, Akhil; Bilic, Ante; Wu, Jishan; Sonar, Prashant; Bhosale, Sheshanath V

    2015-09-18

    Two solution-processable small organic molecules, (E)-6,6'-bis(4-(diphenylamino)phenyl)-1,1'-bis(2-ethylhexyl)-(3,3'-biindolinylidene)-2,2'-dione (coded as S10) and (E)-6,6'-di(9H-carbazol-9-yl)-1,1'-bis(2-ethylhexyl)-(3,3'-biindolinylidene)-2,2'-dione (coded as S11) were successfully designed, synthesized and fully characterized. S10 and S11 are based on a donor-acceptor-donor structural motif and contain a common electron accepting moiety, isoindigo, along with different electron donating functionalities, triphenylamine and carbazole, respectively. Ultraviolet-visible absorption spectra revealed that the use of triphenylamine donor functionality resulted in an enhanced intramolecular charge transfer transition and reduction of optical band gap, when compared with its carbazole analogue. Both of these materials were designed to be donor semiconducting components, exerted excellent solubility in common organic solvents, showed excellent thermal stability, and their promising optoelectronic properties encouraged us to scrutinize charge-carrier mobilities using solution-processable organic field effect transistors. Hole mobilities of the order of 2.2 × 10(-4) cm²/Vs and 7.8 × 10(-3) cm²/Vs were measured using S10 and S11 as active materials, respectively.

  8. Investigation of plasmonic resonances in the two-dimensional electron gas of an InGaAs/InP high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Cleary, Justin W.; Peale, Robert E.; Saxena, Himanshu; Buchwald, Walter R.

    2011-05-01

    The observation of THz regime transmission resonances in an InGaAs/InP high electron mobility transistor (HEMT) can be attributed to excitation of plasmons in its two-dimensional electron gas (2DEG). Properties of grating-based, gate-voltage tunable resonances are shown to be adequately modeled using commercial finite element method (FEM) software when the HEMT layer structure, gate geometry and sheet charge concentration are taken into account. The FEM results are shown to produce results consistent with standard analytical theories in the 10-100 cm-1 wavenumber range. An original analytic formula presented here describes how the plasmonic resonance may change in the presence of a virtual gate, or region of relatively high free charge carriers that lies in the HEMT between the physical grating gate and the 2DEG. The virtual gate and corresponding analytic formulation are able to account for the red-shifting experimentally observed in plasmonic resonances. The calculation methods demonstrated here have the potential to greatly aid in the design of future detection devices that require specifically tuned plasmonic modes in the 2DEG of a HEMT, as well as giving new insights to aid in the development of more complete analytic theories.

  9. Laser Direct Writing Process for Making Electrodes and High-k Sol-Gel ZrO2 for Boosting Performances of MoS2 Transistors.

    PubMed

    Kwon, Hyuk-Jun; Jang, Jaewon; Grigoropoulos, Costas P

    2016-04-13

    A series of two-dimensional (2D) transition metal dichalcogenides (TMDCs), including molybdenum disulfide (MoS2), can be attractive materials for photonic and electronic applications due to their exceptional properties. Among these unique properties, high mobility of 2D TMDCs enables realization of high-performance nanoelectronics based on a thin film transistor (TFT) platform. In this contribution, we report highly enhanced field effect mobility (μ(eff) = 50.1 cm(2)/(V s), ∼2.5 times) of MoS2 TFTs through the sol-gel processed high-k ZrO2 (∼22.0) insulator, compared to those of typical MoS2/SiO2/Si structures (μ(eff) = 19.4 cm(2)/(V s)) because a high-k dielectric layer can suppress Coulomb electron scattering and reduce interface trap concentration. Additionally, in order to avoid costly conventional mask based photolithography and define the patterns, we employ a simple laser direct writing (LDW) process. This process allows precise and flexible control with reasonable resolution (up to ∼10 nm), depending on the system, and enables fabrication of arbitrarily patterned devices. Taking advantage of continuing developments in laser technology offers a substantial cost decrease, and LDW may emerge as a promising technology.

  10. Effects of HfO2 encapsulation on electrical performances of few-layered MoS2 transistor with ALD HfO2 as back-gate dielectric.

    PubMed

    Xu, Jingping; Wen, Ming; Zhao, Xinyuan; Liu, Lu; Song, Xingjuan; Lai, Pui-To; Tang, Wing-Man

    2018-08-24

    The carrier mobility of MoS 2 transistors can be greatly improved by the screening role of high-k gate dielectric. In this work, atomic-layer deposited (ALD) HfO 2 annealed in NH 3 is used to replace SiO 2 as the gate dielectric to fabricate back-gated few-layered MoS 2 transistors, and good electrical properties are achieved with field-effect mobility (μ) of 19.1 cm 2 V -1 s -1 , subthreshold swing (SS) of 123.6 mV dec -1 and on/off ratio of 3.76 × 10 5 . Furthermore, enhanced device performance is obtained when the surface of the MoS 2 channel is coated by an ALD HfO 2 layer with different thicknesses (10, 15 and 20 nm), where the transistor with a 15 nm HfO 2 encapsulation layer exhibits the best overall electrical properties: μ = 42.1 cm 2 V -1 s -1 , SS = 87.9 mV dec -1 and on/off ratio of 2.72 × 10 6 . These improvements should be associated with the enhanced screening effect on charged-impurity scattering and protection from absorption of environmental gas molecules by the high-k encapsulation. The capacitance equivalent thickness of the back-gate dielectric (HfO 2 ) is only 6.58 nm, which is conducive to scaling of the MoS 2 transistors.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dell'Erba, Giorgio; Natali, Dario; Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano

    Ambipolar semiconducting polymers, characterized by both high electron (μ{sub e}) and hole (μ{sub h}) mobility, offer the advantage of realizing complex complementary electronic circuits with a single semiconducting layer, deposited by simple coating techniques. However, to achieve complementarity, one of the two conduction paths in transistors has to be suppressed, resulting in unipolar devices. Here, we adopt charge injection engineering through a specific interlayer in order to tune injection into frontier energy orbitals of a high mobility donor-acceptor co-polymer. Starting from field-effect transistors with Au contacts, showing a p-type unbalanced behaviour with μ{sub h} = 0.29 cm{sup 2}/V s and μ{sub e} = 0.001more » cm{sup 2}/V s, through the insertion of a caesium salt interlayer with optimized thickness, we obtain an n-type unbalanced transistor with μ{sub e} = 0.12 cm{sup 2}/V s and μ{sub h} = 8 × 10{sup −4} cm{sup 2}/V s. We applied this result to the development of the basic pass-transistor logic building blocks such as inverters, with high gain and good noise margin, and transmission-gates. In addition, we developed and characterized information storage circuits like D-Latches and D-Flip-Flops consisting of 16 transistors, demonstrating both their static and dynamic performances and thus the suitability of this technology for more complex circuits such as display addressing logic.« less

  12. Nanoscale MOS devices: device parameter fluctuations and low-frequency noise (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Wong, Hei; Iwai, Hiroshi; Liou, J. J.

    2005-05-01

    It is well-known in conventional MOS transistors that the low-frequency noise or flicker noise is mainly contributed by the trapping-detrapping events in the gate oxide and the mobility fluctuation in the surface channel. In nanoscale MOS transistors, the number of trapping-detrapping events becomes less important because of the large direct tunneling current through the ultrathin gate dielectric which reduces the probability of trapping-detrapping and the level of leakage current fluctuation. Other noise sources become more significant in nanoscale devices. The source and drain resistance noises have greater impact on the drain current noise. Significant contribution of the parasitic bipolar transistor noise in ultra-short channel and channel mobility fluctuation to the channel noise are observed. The channel mobility fluctuation in nanoscale devices could be due to the local composition fluctuation of the gate dielectric material which gives rise to the permittivity fluctuation along the channel and results in gigantic channel potential fluctuation. On the other hand, the statistical variations of the device parameters across the wafer would cause the noise measurements less accurate which will be a challenge for the applicability of analytical flicker noise model as a process or device evaluation tool for nanoscale devices. Some measures for circumventing these difficulties are proposed.

  13. Optical Probe of the Density of Defect States in Organic Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Breban, Mihaela; Romero, Danilo; Ballarotto, Vincent; Williams, Ellen

    2006-03-01

    We investigate the role of defect states associated with different gate dielectric materials on charge transport in organic thin film transistors. Using a modulation technique we measure the magnitude and the phase of the photocurrent^1 in pentacene thin film transistors as a function of the modulation frequency. The photocurrent generation process is modeled as exciton dissociation due to interaction with localized traps. A time domain analyses of this multi-step process allows us to extract the density of defect states. We use this technique to compare the physical mechanism underlying performances of pentacene devices fabricated with different dielectric materials. *Supported by the Laboratory for Physical Science ^1 M. Breban, et al. ``Photocurrent probe of field-dependent mobility in organic thin-film transistors'' Appl. Phys. Letts. 87, 203503 (2005)

  14. Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate.

    PubMed

    Salvatore, Giovanni A; Münzenrieder, Niko; Barraud, Clément; Petti, Luisa; Zysset, Christoph; Büthe, Lars; Ensslin, Klaus; Tröster, Gerhard

    2013-10-22

    Recently, transition metal dichalcogenides (TMDCs) have attracted interest thanks to their large field effective mobility (>100 cm(2)/V · s), sizable band gap (around 1-2 eV), and mechanical properties, which make them suitable for high performance and flexible electronics. In this paper, we present a process scheme enabling the fabrication and transfer of few-layers MoS2 thin film transistors from a silicon template to any arbitrary organic or inorganic and flexible or rigid substrate or support. The two-dimensional semiconductor is mechanically exfoliated from a bulk crystal on a silicon/polyvinyl alcohol (PVA)/polymethyl methacrylane (PMMA) stack optimized to ensure high contrast for the identification of subnanometer thick flakes. Thin film transistors (TFTs) with structured source/drain and gate electrodes are fabricated following a designed procedure including steps of UV lithography, wet etching, and atomic layer deposited (ALD) dielectric. Successively, after the dissolution of the PVA sacrificial layer in water, the PMMA film, with the devices on top, can be transferred to another substrate of choice. Here, we transferred the devices on a polyimide plastic foil and studied the performance when tensile strain is applied parallel to the TFT channel. We measured an electron field effective mobility of 19 cm(2)/(V s), an I(on)/I(off)ratio greater than 10(6), a gate leakage current as low as 0.3 pA/μm, and a subthreshold swing of about 250 mV/dec. The devices continue to work when bent to a radius of 5 mm and after 10 consecutive bending cycles. The proposed fabrication strategy can be extended to any kind of 2D materials and enable the realization of electronic circuits and optical devices easily transferrable to any other support.

  15. Hydrogen sensors based on Sc2O3/AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Kang, B. S.; Mehandru, R.; Kim, S.; Ren, F.; Fitch, R. C.; Gillespie, J. K.; Moser, N.; Jessen, G.; Jenkins, T.; Dettmer, R.; Via, D.; Crespo, A.; Baik, K. H.; Gila, B. P.; Abernathy, C. R.; Pearton, S. J.

    2005-05-01

    Pt contacted AlGaN/GaN high electron mobility transistors with Sc2O3 gate dielectrics show reversible changes in drain-source current upon exposure to H2-containing ambients, even at room temperature. The changes in current (as high as 3 mA for relatively low gate voltage and drain-source voltage at 25 °C for the HEMTs and a change in forward current of 40 μA at a bias of 2.5 V was obtained for the MOS-diodes in response to a change in ambient from pure N2 to 10% H2/90% N2. The current changes in the latter case are almost linearly proportional to the testing temperature and reach around 400 μA at 400 °C. These signals are approximately an order of magnitude larger than for Pt /GaN Schottky diodes and a factor of 5 larger than Sc2O3/AlGaN/GaN metal-oxide semiconductor (MOS) diodes exposed under the same conditions. This shows the advantage of using a transistor structure in which the gain produces larger current changes upon exposure to hydrogen-containing ambients. The increase in current is the result of a decrease in effective barrier height of the MOS gate of 30-50 mV at 25 °C for 10%H2/90%N2 ambients relative to pure N2 and is due to catalytic dissociation of the H2 on the Pt contact, followed by diffusion to the Sc2O3/AlGaN interface.

  16. A comparative study of spin coated and floating film transfer method coated poly (3-hexylthiophene)/poly (3-hexylthiophene)-nanofibers based field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Shashi; Balasubramanian, S. K.; Takashima, Wataru

    2014-09-07

    A comparative study on electrical performance, optical properties, and surface morphology of poly(3-hexylthiophene) (P3HT) and P3HT-nanofibers based “normally on” type p-channel field effect transistors (FETs), fabricated by two different coating techniques has been reported here. Nanofibers are prepared in the laboratory with the approach of self-assembly of P3HT molecules into nanofibers in an appropriate solvent. P3HT (0.3 wt. %) and P3HT-nanofibers (∼0.25 wt. %) are used as semiconductor transport materials for deposition over FETs channel through spin coating as well as through our recently developed floating film transfer method (FTM). FETs fabricated using FTM show superior performance compared to spin coated devices;more » however, the mobility of FTM films based FETs is comparable to the mobility of spin coated one. The devices based on P3HT-nanofibers (using both the techniques) show much better performance in comparison to P3HT FETs. The best performance among all the fabricated organic field effect transistors are observed for FTM coated P3HT-nanofibers FETs. This improved performance of nanofiber-FETs is due to ordering of fibers and also due to the fact that fibers offer excellent charge transport facility because of point to point transmission. The optical properties and structural morphologies (P3HT and P3HT-nanofibers) are studied using UV-visible absorption spectrophotometer and atomic force microscopy , respectively. Coating techniques and effect of fiber formation for organic conductors give information for fabrication of organic devices with improved performance.« less

  17. Synthesis of organosilicon derivatives of [1]benzothieno[3,2-b][1]-benzothiophene for efficient monolayer Langmuir-Blodgett organic field effect transistors.

    PubMed

    Borshchev, O V; Sizov, A S; Agina, E V; Bessonov, A A; Ponomarenko, S A

    2017-01-16

    For the first time, the synthesis of organosilicon derivatives of dialkyl[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) capable of forming a semiconducting monolayer at the water-air interface is reported. Self-assembled monolayer organic field-effect transistors prepared from these materials using the Langmuir-Blodgett technique showed high hole mobilities and excellent air stability.

  18. InAs-based Heterostructure Barrier Varactor Diodes with the In0.3Al0.7As0.4Sb0.6 as the Barrier Material

    DTIC Science & Technology

    2008-08-01

    discussed. 2. Device growth and fabrication HBV diode samples were grown by solid-source molecular beam epitaxy (MBE). The layer structure consisted of...defined simultaneously using optical lithography, and Ti:Pt:Au (100:50:2500 Å) unannealed, Ohmic contacts were depos- ited by e- beam evaporation. The diode...behavior of a doped-channel high-electron mobility transistor ( HEMT ). Device physics simula- tions of the 200 Å HBV (using ATLAS from Silvaco

  19. Electrical properties of solution-deposited ZnO thin-film transistors by low-temperature annealing.

    PubMed

    Lim, Chul; Oh, Ji Young; Koo, Jae Bon; Park, Chan Woo; Jung, Soon-Won; Na, Bock Soon; Chu, Hye Yong

    2014-11-01

    Flexible oxide thin-film transistors (Oxide-TFTs) have emerged as next generation transistors because of their applicability in electronic device. In particular, the major driving force behind solution-processed zinc oxide film research is its prospective use in printing for electronics. A low-temperature process to improve the performance of solution-processed n-channel ZnO thin-film transistors (TFTs) fabricated via spin-coating and inkjet-printing is introduced here. ZnO nanoparticles were synthesized using a facile sonochemical method that was slightly modified based on a previously reported method. The influence of the annealing atmosphere on both nanoparticle-based TFT devices fabricated via spin-coating and those created via inkjet printing was investigated. For the inkjet-printed TFTs, the characteristics were improved significantly at an annealing temperature of 150 degrees C. The field effect mobility, V(th), and the on/off current ratios were 3.03 cm2/Vs, -3.3 V, and 10(4), respectively. These results indicate that annealing at 150 degrees C 1 h is sufficient to obtain a mobility (μ(sat)) as high as 3.03 cm2/Vs. Also, the active layer of the solution-based ZnO nanoparticles allowed the production of high-performance TFTs for low-cost, large-area electronics and flexible devices.

  20. Organic Ferroelectric-Based 1T1T Random Access Memory Cell Employing a Common Dielectric Layer Overcoming the Half-Selection Problem.

    PubMed

    Zhao, Qiang; Wang, Hanlin; Ni, Zhenjie; Liu, Jie; Zhen, Yonggang; Zhang, Xiaotao; Jiang, Lang; Li, Rongjin; Dong, Huanli; Hu, Wenping

    2017-09-01

    Organic electronics based on poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) dielectric is facing great challenges in flexible circuits. As one indispensable part of integrated circuits, there is an urgent demand for low-cost and easy-fabrication nonvolatile memory devices. A breakthrough is made on a novel ferroelectric random access memory cell (1T1T FeRAM cell) consisting of one selection transistor and one ferroelectric memory transistor in order to overcome the half-selection problem. Unlike complicated manufacturing using multiple dielectrics, this system simplifies 1T1T FeRAM cell fabrication using one common dielectric. To achieve this goal, a strategy for semiconductor/insulator (S/I) interface modulation is put forward and applied to nonhysteretic selection transistors with high performances for driving or addressing purposes. As a result, high hole mobility of 3.81 cm 2 V -1 s -1 (average) for 2,6-diphenylanthracene (DPA) and electron mobility of 0.124 cm 2 V -1 s -1 (average) for N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN 2 ) are obtained in selection transistors. In this work, we demonstrate this technology's potential for organic ferroelectric-based pixelated memory module fabrication. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    PubMed Central

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-01-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing. PMID:26349444

  2. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-09-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.

  3. Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines.

    PubMed

    Law, Matt; Luther, Joseph M; Song, Qing; Hughes, Barbara K; Perkins, Craig L; Nozik, Arthur J

    2008-05-07

    We describe the structural, optical, and electrical properties of films of spin-cast, oleate-capped PbSe nanocrystals that are treated thermally or chemically in solutions of hydrazine, methylamine, or pyridine to produce electronically coupled nanocrystal solids. Postdeposition heat treatments trigger nanocrystal sintering at approximately 200 degrees C, before a substantial fraction of the oleate capping group evaporates or pyrolyzes. The sintered nanocrystal films have a large hole density and are highly conductive. Most of the amine treatments preserve the size of the nanocrystals and remove much of the oleate, decreasing the separation between nanocrystals and yielding conductive films. X-ray scattering, X-ray photoelectron and optical spectroscopy, electron microscopy, and field-effect transistor electrical measurements are used to compare the impact of these chemical treatments. We find that the concentration of amines adsorbed to the NC films is very low in all cases. Treatments in hydrazine in acetonitrile remove only 2-7% of the oleate yet result in high-mobility n-type transistors. In contrast, ethanol-based hydrazine treatments remove 85-90% of the original oleate load. Treatments in pure ethanol strip 20% of the oleate and create conductive p-type transistors. Methylamine- and pyridine-treated films are also p-type. These chemically treated films oxidize rapidly in air to yield, after short air exposures, highly conductive p-type nanocrystal solids. Our results aid in the rational development of solar cells based on colloidal nanocrystal films.

  4. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array.

    PubMed

    Wang, Sihong; Xu, Jie; Wang, Weichen; Wang, Ging-Ji Nathan; Rastak, Reza; Molina-Lopez, Francisco; Chung, Jong Won; Niu, Simiao; Feig, Vivian R; Lopez, Jeffery; Lei, Ting; Kwon, Soon-Ki; Kim, Yeongin; Foudeh, Amir M; Ehrlich, Anatol; Gasperini, Andrea; Yun, Youngjun; Murmann, Boris; Tok, Jeffery B-H; Bao, Zhenan

    2018-03-01

    Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable-like human skin-would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a general platform for incorporating other intrinsically stretchable polymer materials, enabling the fabrication of next-generation stretchable skin electronic devices.

  5. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array

    NASA Astrophysics Data System (ADS)

    Wang, Sihong; Xu, Jie; Wang, Weichen; Wang, Ging-Ji Nathan; Rastak, Reza; Molina-Lopez, Francisco; Chung, Jong Won; Niu, Simiao; Feig, Vivian R.; Lopez, Jeffery; Lei, Ting; Kwon, Soon-Ki; Kim, Yeongin; Foudeh, Amir M.; Ehrlich, Anatol; Gasperini, Andrea; Yun, Youngjun; Murmann, Boris; Tok, Jeffery B.-H.; Bao, Zhenan

    2018-03-01

    Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable—like human skin—would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a general platform for incorporating other intrinsically stretchable polymer materials, enabling the fabrication of next-generation stretchable skin electronic devices.

  6. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors.

    PubMed

    Kim, David K; Lai, Yuming; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2012-01-01

    Colloidal semiconductor nanocrystals are emerging as a new class of solution-processable materials for low-cost, flexible, thin-film electronics. Although these colloidal inks have been shown to form single, thin-film field-effect transistors with impressive characteristics, the use of multiple high-performance nanocrystal field-effect transistors in large-area integrated circuits has not been shown. This is needed to understand and demonstrate the applicability of these discrete nanocrystal field-effect transistors for advanced electronic technologies. Here we report solution-deposited nanocrystal integrated circuits, showing nanocrystal integrated circuit inverters, amplifiers and ring oscillators, constructed from high-performance, low-voltage, low-hysteresis CdSe nanocrystal field-effect transistors with electron mobilities of up to 22 cm(2) V(-1) s(-1), current modulation >10(6) and subthreshold swing of 0.28 V dec(-1). We fabricated the nanocrystal field-effect transistors and nanocrystal integrated circuits from colloidal inks on flexible plastic substrates and scaled the devices to operate at low voltages. We demonstrate that colloidal nanocrystal field-effect transistors can be used as building blocks to construct complex integrated circuits, promising a viable material for low-cost, flexible, large-area electronics.

  7. A High-Performance Optical Memory Array Based on Inhomogeneity of Organic Semiconductors.

    PubMed

    Pei, Ke; Ren, Xiaochen; Zhou, Zhiwen; Zhang, Zhichao; Ji, Xudong; Chan, Paddy Kwok Leung

    2018-03-01

    Organic optical memory devices keep attracting intensive interests for diverse optoelectronic applications including optical sensors and memories. Here, flexible nonvolatile optical memory devices are developed based on the bis[1]benzothieno[2,3-d;2',3'-d']naphtho[2,3-b;6,7-b']dithiophene (BBTNDT) organic field-effect transistors with charge trapping centers induced by the inhomogeneity (nanosprouts) of the organic thin film. The devices exhibit average mobility as high as 7.7 cm 2 V -1 s -1 , photoresponsivity of 433 A W -1 , and long retention time for more than 6 h with a current ratio larger than 10 6 . Compared with the standard floating gate memory transistors, the BBTNDT devices can reduce the fabrication complexity, cost, and time. Based on the reasonable performance of the single device on a rigid substrate, the optical memory transistor is further scaled up to a 16 × 16 active matrix array on a flexible substrate with operating voltage less than 3 V, and it is used to map out 2D optical images. The findings reveal the potentials of utilizing [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivatives as organic semiconductors for high-performance optical memory transistors with a facile structure. A detailed study on the charge trapping mechanism in the derivatives of BTBT materials is also provided, which is closely related to the nanosprouts formed inside the organic active layer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fabrication and characterization of low temperature polycrystalline silicon thin film transistors

    NASA Astrophysics Data System (ADS)

    Krishnan, Anand Thiruvengadathan

    2000-10-01

    The proliferation of devices with built-in displays, such as personal digital assistants and cellular phones has created a demand for rugged light-weight displays. Polymeric substrates could be suited for these applications, and they offer the possibility of flexible displays also. However, driver circuitry needs to be integrated in the display if the cost is to be reduced. Low temperature (<350°C) polycrystalline silicon (poly-Si) thin film transistors, if developed, offer driver circuitry integration during pixel transistor fabrication on top of flexible substrates. This thesis addresses several issues related to the fabrication of thin film transistors at low temperatures on glass substrates. A high-density plasma (electron cyclotron resonance (ECR)) based approach was adopted for deposition of thin films. A process for deposition of n-type doped silicon (n-type doped Si) at T < 350°C and having resistivity <1 ohm/cm has been developed. Intrinsic poly-Si was deposited under different conditions of microwave power, RF bias and deposition times. The properties of n-type doped Si and intrinsic poly-Si were correlated with the structure and the deposition conditions. A novel TFT structure has been proposed and implemented in this work. This top gate TFT structure uses n-type doped Si and utilizes only two masks and one alignment step. There are no critical etch steps and good interface quality could be obtained even without post-processing hydrogenation as the poly-Si surface was not exposed to air before deposition of the gate dielectric. TFTs using this top gate structure were fabricated with no process step exceeding 340°C electrode temperature (surface temperature <300°C). These TFTs show ON/OFF ratios in excess of 105. Their sub-threshold swing is ˜0.5 V/decade and mobility is 1--10 cm2/V-s. Several TFTs were also fabricated using alternative dielectrics such as oxide deposited from tetramethyl silane in an RFPECVD chamber and silicon nitride deposited in the ECR and these TFTs also show reasonable device characteristics. TFTs processed using this high-density plasma based approach show great potential for use in applications such as driver circuitry integration on low temperature substrates.

  9. Imperceptible and Ultraflexible p-Type Transistors and Macroelectronics Based on Carbon Nanotubes.

    PubMed

    Cao, Xuan; Cao, Yu; Zhou, Chongwu

    2016-01-26

    Flexible thin-film transistors based on semiconducting single-wall carbon nanotubes are promising for flexible digital circuits, artificial skins, radio frequency devices, active-matrix-based displays, and sensors due to the outstanding electrical properties and intrinsic mechanical strength of carbon nanotubes. Nevertheless, previous research effort only led to nanotube thin-film transistors with the smallest bending radius down to 1 mm. In this paper, we have realized the full potential of carbon nanotubes by making ultraflexible and imperceptible p-type transistors and circuits with a bending radius down to 40 μm. In addition, the resulted transistors show mobility up to 12.04 cm(2) V(-1) S(-1), high on-off ratio (∼10(6)), ultralight weight (<3 g/m(2)), and good mechanical robustness (accommodating severe crumpling and 67% compressive strain). Furthermore, the nanotube circuits can operate properly with 33% compressive strain. On the basis of the aforementioned features, our ultraflexible p-type nanotube transistors and circuits have great potential to work as indispensable components for ultraflexible complementary electronics.

  10. Top-Contact Self-Aligned Printing for High-Performance Carbon Nanotube Thin-Film Transistors with Sub-Micron Channel Length.

    PubMed

    Cao, Xuan; Wu, Fanqi; Lau, Christian; Liu, Yihang; Liu, Qingzhou; Zhou, Chongwu

    2017-02-28

    Semiconducting single-wall carbon nanotubes are ideal semiconductors for printed thin-film transistors due to their excellent electrical performance and intrinsic printability with solution-based deposition. However, limited by resolution and registration accuracy of current printing techniques, previously reported fully printed nanotube transistors had rather long channel lengths (>20 μm) and consequently low current-drive capabilities (<0.2 μA/μm). Here we report fully inkjet printed nanotube transistors with dramatically enhanced on-state current density of ∼4.5 μA/μm by downscaling the devices to a sub-micron channel length with top-contact self-aligned printing and employing high-capacitance ion gel as the gate dielectric. Also, the printed transistors exhibited a high on/off ratio of ∼10 5 , low-voltage operation, and good mobility of ∼15.03 cm 2 V -1 s -1 . These advantageous features of our printed transistors are very promising for future high-definition printed displays and sensing systems, low-power consumer electronics, and large-scale integration of printed electronics.

  11. Electron mobility enhancement in metalorganic-vapor-phase-epitaxy-grown InAlN high-electron-mobility transistors by control of surface morphology of spacer layer

    NASA Astrophysics Data System (ADS)

    Yamada, Atsushi; Ishiguro, Tetsuro; Kotani, Junji; Nakamura, Norikazu

    2018-01-01

    We demonstrated low-sheet-resistance metalorganic-vapor-phase-epitaxy-grown InAlN high-electron-mobility transistors using AlGaN spacers with excellent surface morphology. We systematically investigated the effects of AlGaN spacer growth conditions on surface morphology and electron mobility. We found that the surface morphology of InAlN barriers depends on that of AlGaN spacers. Ga desorption from AlGaN spacers was suppressed by increasing the trimethylaluminum (TMA) supply rate, resulting in the small surface roughnesses of InAlN barriers and AlGaN spacers. Moreover, we found that an increase in the NH3 supply rate also improved the surface morphologies of InAlN barriers and AlGaN spacers as long as the TMA supply rate was high enough to suppress the degradation of GaN channels. Finally, we realized a low sheet resistance of 185.5 Ω/sq with a high electron mobility of 1210 cm2 V-1 s-1 by improving the surface morphologies of AlGaN spacers and InAlN barriers.

  12. Effect of direct current sputtering power on the behavior of amorphous indium-gallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Jun Tae; Kim, Dong Myong; Choi, Sung-Jin

    The effect of direct current sputtering power of indium-gallium-zinc-oxide (IGZO) on the performance and stability of the corresponding thin-film transistor devices was studied. The field effect mobility increases as the IGZO sputter power increases, at the expense of device reliability under negative bias illumination stress (NBIS). Device simulation based on the extracted sub-gap density of states indicates that the field effect mobility is improved as a result of the number of acceptor-like states decreasing. The degradation by NBIS is suggested to be induced by the formation of peroxides in IGZO rather than charge trapping.

  13. Impact of rounded electrode corners on breakdown characteristics of AlGaN/GaN high-electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Yamazaki, Taisei; Asubar, Joel T.; Tokuda, Hirokuni; Kuzuhara, Masaaki

    2018-05-01

    We investigated the impact of rounded electrode corners on the breakdown characteristics of AlGaN/GaN high-electron mobility transistors. For standard reference devices, catastrophic breakdown occurred predominantly near the sharp electrode corners. By introducing a rounded-electrode architecture, premature breakdown at the corners was mitigated. Moreover, the rate of breakdown voltage (V BR) degradation with an increasing gate width (W G) was significantly lower for devices with rounded corners. When W G was increased from 100 µm to 10 mm, the V BR of the reference device dropped drastically, from 1,200 to 300 V, whereas that of the rounded-electrode device only decreased to a respectable value of 730 V.

  14. The nature and role of trap states in a dendrimer-based organic field-effect transistor explosive sensor

    NASA Astrophysics Data System (ADS)

    Tang, Guoqiang; Chen, Simon S. Y.; Lee, Kwan H.; Pivrikas, Almantas; Aljada, Muhsen; Burn, Paul L.; Meredith, Paul; Shaw, Paul E.

    2013-06-01

    We report the fabrication and charge transport characterization of carbazole dendrimer-based organic field-effect transistors (OFETs) for the sensing of explosive vapors. After exposure to para-nitrotoluene (pNT) vapor, the OFET channel carrier mobility decreases due to trapping induced by the absorbed pNT. The influence of trap states on transport in devices before and after exposure to pNT vapor has been determined using temperature-dependent measurements of the field-effect mobility. These data clearly show that the absorption of pNT vapor into the dendrimer active layer results in the formation of additional trap states. Such states inhibit charge transport by decreasing the density of conducting states.

  15. Measurement of brightness temperature of two-dimensional electron gas in channel of a high electron mobility transistor at ultralow dissipation power

    NASA Astrophysics Data System (ADS)

    Korolev, A. M.; Shulga, V. M.; Turutanov, O. G.; Shnyrkov, V. I.

    2016-07-01

    A technically simple and physically clear method is suggested for direct measurement of the brightness temperature of two-dimensional electron gas (2DEG) in the channel of a high electron mobility transistor (HEMT). The usage of the method was demonstrated with the pseudomorphic HEMT as a specimen. The optimal HEMT dc regime, from the point of view of the "back action" problem, was found to belong to the unsaturated area of the static characteristics possibly corresponding to the ballistic electron transport mode. The proposed method is believed to be a convenient tool to explore the ballistic transport, electron diffusion, 2DEG properties and other electrophysical processes in heterostructures.

  16. Recessed Slant Gate AlGaN/GaN High Electron Mobility Transistors with 20.9 W/mm at 10 GHz

    NASA Astrophysics Data System (ADS)

    Pei, Yi; Chu, Rongming; Fichtenbaum, Nicholas A.; Chen, Zhen; Brown, David; Shen, Likun; Keller, Stacia; DenBaars, Steven P.; Mishra, Umesh K.

    2007-12-01

    A recessed slant gate processing has been used in AlGaN/GaN high electron mobility transistors (HEMTs) to mitigate the electric field, minimize the dispersion and increase the breakdown voltage. More than one order of magnitude of decrease in gate leakage has been observed by recessing the slant gate. For a 0.65 μm gate-length device, an extrinsic fT of 18 GHz and extrinsic fMAX of 52 GHz at a drain bias of 25 V were achieved. At 10 GHz, a state-of-the-art power density of 20.9 W/mm, with a power-added efficiency (PAE) of 40% at a drain bias of 83 V, was demonstrated.

  17. Electron tunneling spectroscopy study of electrically active traps in AlGaN/GaN high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jie, E-mail: jie.yang@yale.edu; Cui, Sharon; Ma, T. P.

    2013-11-25

    We investigate the energy levels of electron traps in AlGaN/GaN high electron mobility transistors by the use of electron tunneling spectroscopy. Detailed analysis of a typical spectrum, obtained in a wide gate bias range and with both bias polarities, suggests the existence of electron traps both in the bulk of AlGaN and at the AlGaN/GaN interface. The energy levels of the electron traps have been determined to lie within a 0.5 eV band below the conduction band minimum of AlGaN, and there is strong evidence suggesting that these traps contribute to Frenkel-Poole conduction through the AlGaN barrier.

  18. Two-dimensional numerical model for the high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Loret, Dany

    1987-11-01

    A two-dimensional numerical drift-diffusion model for the High Electron Mobility Transistor (HEMT) is presented. Special attention is paid to the modeling of the current flow over the heterojunction. A finite difference scheme is used to solve the equations, and a variable mesh spacing was implemented to cope with the strong variations of functions near the heterojunction. Simulation results are compared to experimental data for a 0.7 μm gate length device. Small-signal transconductances and cut-off frequency obtained from the 2-D model agree well with the experimental values from S-parameter measurements. It is shown that the numerical models give good insight into device behaviour, including important parasitic effects such as electron injection into the bulk GaAs.

  19. Synthesis of bilayer MoS2 and corresponding field effect characteristics

    NASA Astrophysics Data System (ADS)

    Fang, Mingxu; Feng, Yulin; Wang, Fang; Yang, Zhengchun; Zhang, Kailiang

    2017-06-01

    Two-dimensional transition-metal dichalcogenides such as MoS2 are promising materials for next-generation nano-electronic devices. The physical properties of MoS2 are determined by layer number according to the variation of band-gap. Here, we synthesize large-size bilayer-MoS2 with triangle and hexagonal nanosheets in one step by chemical vapor deposition, Monolayer and bilayer-MoS2 back-gate field effect transistors are also fabricated and the performance including mobility and on/off ratios are compared. The bilayer-MoS2 back-gate field effect transistor shows superior performance with field effect mobility of ∼21.27cm2V-1s-1, and Ion/Ioff ratio of ∼3.9×107.

  20. Solution-processed high-mobility neodymium-substituted indium oxide thin-film transistors formed by facile patterning based on aqueous precursors

    NASA Astrophysics Data System (ADS)

    Lin, Zhenguo; Lan, Linfeng; Sun, Sheng; Li, Yuzhi; Song, Wei; Gao, Peixiong; Song, Erlong; Zhang, Peng; Li, Meiling; Wang, Lei; Peng, Junbiao

    2017-03-01

    Solution-processed neodymium-substituted indium oxide (InNdO) thin-film transistors (TFTs) based on gel-like aqueous precursors were fabricated with a surface-selective deposition technique associated with ultraviolet irradiation. The Nd concentration can be easily tuned by changing the ratio of Nd2O3 to In2O3 precursors. It was found that Nd played roles of suppressing grain growth, suppressing oxygen vacancy formation, and increasing the electrical stability of TFTs. The InNdO TFT with a Nd:In ratio of 0.02:1 exhibited a mobility of as high as 15.6 cm2 V-1 s-1 with improved stability under gate-bias stress.

Top