MOD silver metallization for photovoltaics
NASA Technical Reports Server (NTRS)
Vest, G. M.; Vest, R. W.
1984-01-01
The development of flat plate solar arrays is reported. Photovoltaic cells require back side metallization and a collector grid system on the front surface. Metallo-organic decomposition (MOD) silver films can eliminate most of the present problems with silver conductors. The objectives are to: (1) identify and characterize suitable MO compounds; (2) develop generic synthesis procedures for the MO compounds; (3) develop generic fabrication procedures to screen printable MOD silver inks; (4) optimize processing conditions to produce grid patterns and photovoltaic cells; and (5) develop a model which describes the adhesion between the fired silver film and the silicon surface.
MOD silver metallization for photovoltaics
NASA Technical Reports Server (NTRS)
Vest, G. M.; Vest, R. W.
1985-01-01
The feasibility of utilizing metallo-organic decomposition (MOD) silver inks were investigated for front contact metallization of solar cells. Generic synthesis procedures were developed for all metallo-organic compounds investigated. Silver neodecanoate was found to be the most suitable silver metallo-organic compound for use in thick film inks, but the quality of the inks was found to be highly dependent on its purity. Although neither the process nor inks were completely optimized for solar cell front contact metallization, they show great promise for this application.
Metallo-organic decomposition films
NASA Technical Reports Server (NTRS)
Gallagher, B. D.
1985-01-01
A summary of metallo-organic deposition (MOD) films for solar cells was presented. The MOD materials are metal ions compounded with organic radicals. The technology is evolving quickly for solar cell metallization. Silver compounds, especially silver neodecanoate, were developed which can be applied by thick-film screening, ink-jet printing, spin-on, spray, or dip methods. Some of the advantages of MOD are: high uniform metal content, lower firing temperatures, decomposition without leaving a carbon deposit or toxic materials, and a film that is stable under ambient conditions. Molecular design criteria were explained along with compounds formulated to date, and the accompanying reactions for these compounds. Phase stability and the other experimental and analytic results of MOD films were presented.
Method for forming hermetic seals
NASA Technical Reports Server (NTRS)
Gallagher, Brian D.
1987-01-01
The firmly adherent film of bondable metal, such as silver, is applied to the surface of glass or other substrate by decomposing a layer of solution of a thermally decomposable metallo-organic deposition (MOD) compound such as silver neodecanoate in xylene. The MOD compound thermally decomposes into metal and gaseous by-products. Sealing is accomplished by depositing a layer of bonding metal, such as solder or a brazing alloy, on the metal film and then forming an assembly with another high melting point metal surface such as a layer of Kovar. When the assembly is heated above the temperature of the solder, the solder flows, wets the adjacent surfaces and forms a hermetic seal between the metal film and metal surface when the assembly cools.
Ink-jet printing of silver metallization for photovoltaics
NASA Technical Reports Server (NTRS)
Vest, R. W.
1986-01-01
The status of the ink-jet printing program at Purdue University is described. The drop-on-demand printing system was modified to use metallo-organic decomposition (MOD) inks. Also, an IBM AT computer was integrated into the ink-jet printer system to provide operational functions and contact pattern configuration. The integration of the ink-jet printing system, problems encountered, and solutions derived were described in detail. The status of ink-jet printing using a MOD ink was discussed. The ink contained silver neodecanate and bismuth 2-ethylhexanoate dissolved in toluene; the MOD ink decomposition products being 99 wt% AG, and 1 wt% Bi.
Ultrasonically spray coated silver layers from designed precursor inks for flexible electronics.
Marchal, W; Vandevenne, G; D'Haen, J; Calmont de Andrade Almeida, A; Durand Sola, M A; van den Ham, E J; Drijkoningen, J; Elen, K; Deferme, W; Van Bael, M K; Hardy, A
2017-05-26
Integration of electronic circuit components onto flexible materials such as plastic foils, paper and textiles is a key challenge for the development of future smart applications. Therefore, conductive metal features need to be deposited on temperature sensitive substrates in a fast and straightforward way. The feasibility of these emerging (nano-) electronic technologies depends on the availability of well-designed deposition techniques and on novel functional metal inks. As ultrasonic spray coating (USSC) is one of the most promising techniques to meet the above requirements, innovative metal organic decomposition (MOD) inks are designed to deposit silver features on plastic foils. Various amine ligands were screened and their influence on the ink stability and the characteristics of the resulting metal depositions were evaluated to determine the optimal formulation. Eventually, silver layers with excellent performance in terms of conductivity (15% bulk silver conductivity), stability, morphology and adhesion could be obtained, while operating in a very low temperature window of 70 °C-120 °C. Moreover, the optimal deposition conditions were determined via an in-depth analysis of the ultrasonically sprayed silver layers. Applying these tailored MOD inks, the USSC technique enabled smooth, semi-transparent silver layers with a tunable thickness on large areas without time-consuming additional sintering steps after deposition. Therefore, this novel combination of nanoparticle-free Ag-inks and the USSC process holds promise for high throughput deposition of highly conductive silver features on heat sensitive substrates and even 3D objects.
Ultrasonically spray coated silver layers from designed precursor inks for flexible electronics
NASA Astrophysics Data System (ADS)
Marchal, W.; Vandevenne, G.; D'Haen, J.; Almeida, A. Calmont de Andrade; Durand Sola, M. A., Jr.; van den Ham, E. J.; Drijkoningen, J.; Elen, K.; Deferme, W.; Van Bael, M. K.; Hardy, A.
2017-05-01
Integration of electronic circuit components onto flexible materials such as plastic foils, paper and textiles is a key challenge for the development of future smart applications. Therefore, conductive metal features need to be deposited on temperature sensitive substrates in a fast and straightforward way. The feasibility of these emerging (nano-) electronic technologies depends on the availability of well-designed deposition techniques and on novel functional metal inks. As ultrasonic spray coating (USSC) is one of the most promising techniques to meet the above requirements, innovative metal organic decomposition (MOD) inks are designed to deposit silver features on plastic foils. Various amine ligands were screened and their influence on the ink stability and the characteristics of the resulting metal depositions were evaluated to determine the optimal formulation. Eventually, silver layers with excellent performance in terms of conductivity (15% bulk silver conductivity), stability, morphology and adhesion could be obtained, while operating in a very low temperature window of 70 °C-120 °C. Moreover, the optimal deposition conditions were determined via an in-depth analysis of the ultrasonically sprayed silver layers. Applying these tailored MOD inks, the USSC technique enabled smooth, semi-transparent silver layers with a tunable thickness on large areas without time-consuming additional sintering steps after deposition. Therefore, this novel combination of nanoparticle-free Ag-inks and the USSC process holds promise for high throughput deposition of highly conductive silver features on heat sensitive substrates and even 3D objects.
MOD silver metallization for photovoltaics
NASA Technical Reports Server (NTRS)
Vest, G. M.; Vest, R. W.
1984-01-01
Photovoltaic cells require back side metallization and a collector grid system on the front surface. Both front and back surface metallizations should have good adhesion, low contact resistance, low sheet resistance, long term stability, and their deposition methods should not degrade the n-p junction. Advantages and disadvantages of different deposition methods are discussed.
Mod silver metallization: Screen printing and ink-jet printing
NASA Technical Reports Server (NTRS)
Vest, R. W.; Vest, G. M.
1985-01-01
Basic material efforts have proven to be very successful. Adherent and conductive films were achieved. A silver neodecanoate/bismuth 2-ethylhexanoate mixture has given the best results in both single and double layer applications. Another effort is continuing to examine the feasibility of applying metallo-organic deposition films by use of an ink jet printer. Direct line writing would result in a saving of process time and materials. So far, some well defined lines have been printed.
Noble metal superparticles and methods of preparation thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yugang; Hu, Yongxing
A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution ismore » cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.« less
NASA Technical Reports Server (NTRS)
Vanbronkhorst, J.
1979-01-01
The design, development, fabrication, testing, and transport of two 100 foot metal blades for the MOD-1 WTS are summarized. Because the metal blade design was started late in the MOD-1 system development, many of the design requirements (allocations) were restrictive for the metal blade concept, particularly the maximum weight requirement. The design solutions required to achieve the weight goal resulted in a labor intensive (expensive) fabrication, particularly for a quantity of only two blades manufactured using minimal tooling.
Operational Range Assessment Program (ORAP) Phase II Overview for Active Installations
2011-05-01
Dissolved Metals by EPA 1638M • Isotopic Uranium by EML A-01-R Mod Sediment Analysis • None Benthic Macroinvertebrates • Diversity Indices...Metals by EPA 200.8 • Dissolved Metals by EPA 200.8 (if turbid) • Isotopic Uranium by EML A-01- R Mod (if total U is > action limit) Groundwater
NASA Astrophysics Data System (ADS)
Ikeda, Ai; Manabe, Takaaki; Naito, Michio
2014-10-01
We report the synthesis of perovskite RENiO3 films (RE = La, Pr, Nd, Sm, and Eu) by metal organic decomposition (MOD). The RENiO3 family is an ideal system for studying the metal-insulator transition due to the simplicity of the materials. One of the drawbacks is that the bulk synthesis of the RENiO3 requires processing at high oxygen pressures to stabilize Ni3+. Fundamentally, MOD is similar to solid-state reaction, but it turned out that the MOD synthesis tends to stabilize RENiO3 without the need for high oxygen pressure. The films prepared by MOD show high crystallinity and low resistivity. Furthermore, we have investigated the epitaxial strain effect and observed a dramatic effect in PrNiO3 and NdNiO3 films on LaAlO3 substrates. The metal-insulator transition in the PrNiO3 films on LaAlO3 is fully suppressed, whereas the metal-insulator transition temperature is considerably lowered in the NdNiO3 films on LaAlO3.
Sintered silver joints via controlled topography of electronic packaging subcomponents
Wereszczak, Andrew A.
2014-09-02
Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.
Engineered Escherichia coli Silver-Binding Periplasmic Protein That Promotes Silver Tolerance
Hall Sedlak, Ruth; Hnilova, Marketa; Grosh, Carolynn; Fong, Hanson; Baneyx, Francois; Schwartz, Dan; Sarikaya, Mehmet; Tamerler, Candan
2012-01-01
Silver toxicity is a problem that microorganisms face in medical and environmental settings. Through exposure to silver compounds, some bacteria have adapted to growth in high concentrations of silver ions. Such adapted microbes may be dangerous as pathogens but, alternatively, could be potentially useful in nanomaterial-manufacturing applications. While naturally adapted isolates typically utilize efflux pumps to achieve metal resistance, we have engineered a silver-tolerant Escherichia coli strain by the use of a simple silver-binding peptide motif. A silver-binding peptide, AgBP2, was identified from a combinatorial display library and fused to the C terminus of the E. coli maltose-binding protein (MBP) to yield a silver-binding protein exhibiting nanomolar affinity for the metal. Growth experiments performed in the presence of silver nitrate showed that cells secreting MBP-AgBP2 into the periplasm exhibited silver tolerance in a batch culture, while those expressing a cytoplasmic version of the fusion protein or MBP alone did not. Transmission electron microscopy analysis of silver-tolerant cells revealed the presence of electron-dense silver nanoparticles. This is the first report of a specifically engineered metal-binding peptide exhibiting a strong in vivo phenotype, pointing toward a novel ability to manipulate bacterial interactions with heavy metals by the use of short and simple peptide motifs. Engineered metal-ion-tolerant microorganisms such as this E. coli strain could potentially be used in applications ranging from remediation to interrogation of biomolecule-metal interactions in vivo. PMID:22286990
Process for making silver metal filaments
Bamberger, Carlos E.
1997-01-01
A process for making silver metal particles from silver salt particles having the same morphology. Precursor silver salt particles selected from the group consisting of silver acetate and silver sulfide having a selected morphology are contained in a reactor vessel having means for supporting the particles in an air suspension to prevent the agglomeration of the particles. Air is flowed through the reactor vessel at a flow rate sufficient to suspend the particles in the reactor vessel. The suspended precursor silver salt particles are heated to a processing temperature and at a heating rate below which the physical deterioration of the suspended precursor silver salt particles takes place. The suspended precursor silver salt particles are maintained at the processing temperature for a period of time sufficient to convert the particles into silver metal particles having the same morphology as the precursor silver salt particles.
Giddings, Elis M.P.; Hornberger, Michelle I.; Hadley, Heidi K.
2001-01-01
The spatial distribution of metals in streambed sediment and surface water of Silver Creek, McLeod Creek, Kimball Creek, Spring Creek, and part of the Weber River, near Park City, Utah, was examined. From the mid-1800s through the 1970s, this region was extensively mined for silver and lead ores. Although some remediation has occurred, residual deposits of tailing wastes remain in place along large sections of Silver Creek. These tailings are the most likely source of metals to this system. Bed sediment samples were collected in 1998, 1999, and 2000 and analyzed using two extraction techniques: a total extraction that completely dissolves all forms of metals in minerals and trace elements associated with the sediment; and a weak-acid extraction that extracts the metals and trace elements that are only weakly adsorbed onto the sediment surface. This latter method is used to determine the more biologically relevant fraction of metal complexed onto the sediment. Water samples were collected in March and August 2000 and were analyzed for total and dissolved trace metals.Concentrations of silver, cadmium, copper, lead, mercury, and zinc in the streambed sediment of Silver Creek greatly exceeded background concentrations. These metals also exceeded established aquatic life criteria at most sites. In the Weber River, downstream of the confluence with Silver Creek, concentrations of cadmium, lead, zinc, and total mercury in streambed sediment also exceeded aquatic life guidelines, however, concentrations of metals in streambed sediment of McLeod and Kimball Creeks were lower than Silver Creek. Water-column concentrations of zinc, total mercury, and methylmercury in Silver Creek were high relative to unimpacted sites, and exceeded water quality criteria for the protection of aquatic organisms. Qualitative measurements of the macroinvertebrate community in Silver Creek were compared to the spatial distribution of metals in streambed sediment. The data indicate that impairment related to metal concentration exists in Silver Creek.
NASA Technical Reports Server (NTRS)
Adam, Niklas M.
2009-01-01
The stability of silver biocide, used to keep drinking water on the CEV potable water sterile, is unknown as the system design is still in progress. Silver biocide in water can deplete rapidly when exposed to various metal surfaces. Additionally, silver depletion rates may be affected by the surface-area-to-volume (SA/V) ratios in the water system. Therefore, to facilitate the CEV water system design, it would be advantageous to know the biocide depletion rates in water exposed to the surfaces of these candidate metals at various SA/V ratios. Certain surface treatments can be employed to reduce the depletion rates of silver compared to the base metal. The purpose of this work is to determine the compatibility of specific spaceflight-certified metals that could used in the design of the CEV potable water system with silver biocide as well as understand the effect of surface are to volume ratios of metals used in the construction of the potable water system on the silver concentration.
Reflective Silvered Polyimide Films Via In Situ Thermal Reduction Silver (I) Complexes
NASA Technical Reports Server (NTRS)
Southward, Robin E. (Inventor); Thompson, David W. (Inventor); St.Clair, Anne K. (Inventor); Stoakley, Diane M. (Inventor)
2000-01-01
Self-metallizing. flexible polyimide films with highly reflective surfaces are prepared by an in situ self-metallization procedure involving thermally initiated reduction of polymer-soluble silver(I) complexes. Polyamic acid solutions are doped with silver(I) acetate and solubilizing agents. Thermally curing the silver(I) doped resins leads to flexible. metallized films which have reflectivities as high as 100%. abrasion-resistant surfaces. thermal stability and, in some cases, electrical conductivity, rendering them useful for space applications.
Method for Reduction of Silver Biocide Plating on Metal Surfaces
NASA Technical Reports Server (NTRS)
Steele, John; Nalette, Timothy; Beringer, Durwood
2013-01-01
Silver ions in aqueous solutions (0.05 to 1 ppm) are used for microbial control in water systems. The silver ions remain in solution when stored in plastic containers, but the concentration rapidly decreases to non-biocidal levels when stored in metal containers. The silver deposits onto the surface and is reduced to non-biocidal silver metal when it contacts less noble metal surfaces, including stainless steel, titanium, and nickel-based alloys. Five methods of treatment of contact metal surfaces to deter silver deposition and reduction are proposed: (1) High-temperature oxidation of the metal surface; (2) High-concentration silver solution pre-treatment; (3) Silver plating; (4) Teflon coat by vapor deposition (titanium only); and (5) A combination of methods (1) and (2), which proved to be the best method for the nickel-based alloy application. The mechanism associated with surface treatments (1), (2), and (5) is thought to be the development of a less active oxide layer that deters ionic silver deposition. Mechanism (3) is an attempt to develop an equilibrium ionic silver concentration via dissolution of metallic silver. Mechanism (4) provides a non-reactive barrier to deter ionic silver plating. Development testing has shown that ionic silver in aqueous solution was maintained at essentially the same level of addition (0.4 ppm) for up to 15 months with method (5) (a combination of methods (1) and (2)), before the test was discontinued for nickel-based alloys. Method (1) resulted in the maintenance of a biocidal level (approximately 0.05 ppm) for up to 10 months before that test was discontinued for nickel-based alloys. Methods (1) and (2) used separately were able to maintain ionic silver in aqueous solution at essentially the same level of addition (0.4 ppm) for up to 10 months before the test was discontinued for stainless steel alloys. Method (3) was only utilized for titanium alloys, and was successful at maintaining ionic silver in aqueous solution at essentially the same level of addition (0.4 ppm) for up to 10 months before the test was discontinued for simple flat geometries, but not for geometries that are difficult to Teflon coat.
Method for the recovery of silver from silver zeolite
Reimann, G.A.
1985-03-05
High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.
Method for the recovery of silver from silver zeolite
Reimann, George A.
1986-01-01
High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.
NASA Astrophysics Data System (ADS)
Izumi, T.; Nakaoka, K.
2018-07-01
The metal-organic deposition (MOD) process using metal trifluoroacetate salts (TFA) has the advantages of low-cost and high-scalability for the fabrication of REBa2Cu3O y (REBCO, RE: rare earth elements) superconducting coated conductors (CCs) with high critical current density, in principle, because of its non-vacuum process. For the magnetic applications of CCs such as motors, magnetic resonance imaging and superconducting magnetic energy storage, further improvement of superconducting performance under magnetic fields is required. However, the in-field superconducting performance of REBCO CCs derived from the TFA-MOD process had been inferior to those derived from the vapor-phase process. In order to improve the in-field performance, the size control of the artificial pinning centers has been known as an effective way. In the early stage, the BaZrO3 (BZO) material, which was one of the effective materials in the CCs by the vapor-phase process, was also introduced in the TFA-MOD-derived CCs. The unique feature of the BZO material in the TFA-MOD process is the shape. The BZO in the TFA-MOD process formed the particle shape, although in the vapor-phase process it has a rod shape with a long axis elongating along the thickness direction. In addition, a special heat treatment for refining the BZO particles was developed, which is called the ‘interim heat treatment’. This heating profile made the in-field characteristics higher, although they were still lower than those of the vapor-phase process. Then, the new MOD process including ‘ultra-thin once coating’ was recently developed for further refinement of the BZO particles. The characteristics of the new TFA-MOD-derived CCs in magnetic fields have become compatible with those of the CCs derived from the vapor-phase process.
Silver plating ensures reliable diffusion bonding of dissimilar metals
NASA Technical Reports Server (NTRS)
1967-01-01
Dissimilar metals are reliably joined by diffusion bonding when the surfaces are electroplated with silver. The process involves cleaning and etching, anodization, silver striking, and silver plating with a conventional plating bath. It minimizes the formation of detrimental intermetallic phases and provides greater tolerance of processing parameters.
Pazos, Elena; Sleep, Eduard; Rubert Pérez, Charles M; Lee, Sungsoo S; Tantakitti, Faifan; Stupp, Samuel I
2016-05-04
Silver nanoparticles have been of great interest as plasmonic substrates for sensing and imaging, catalysts, or antimicrobial systems. Their physical properties are strongly dependent on parameters that remain challenging to control such as size, chemical composition, and spatial distribution. We report here on supramolecular assemblies of a novel peptide amphiphile containing aldehyde functionality in order to reduce silver ions and subsequently nucleate silver metal nanoparticles in water. This system spontaneously generates monodisperse silver particles at fairly regular distances along the length of the filamentous organic assemblies. The metal-organic hybrid structures exhibited antimicrobial activity and significantly less toxicity toward eukaryotic cells. Metallized organic nanofibers of the type described here offer the possibility to create hydrogels, which integrate the useful functions of silver nanoparticles with controllable metallic content.
Deposition of hermetic silver shells onto copper flakes.
Njagi, John I; Netzband, Christopher M; Goia, Dan V
2017-02-15
Continuous silver shells were deposited on copper flakes using a two-stage precipitation process. A tightly packed layer of silver nanoparticles was first formed on the surface of the base metal by galvanic displacement. The size of the noble metal particles and their distribution on the substrate were controlled using complexing agents and dispersants. A continuous Ag deposit was subsequently grown by reducing slowly [Ag(NH 3 ) 2 ] + ions with glucose. The final shell thickness was controlled by varying the amount of metal deposited in the second step. The electrical properties of resulting silver coated copper flakes are comparable to those measured for silver flakes of similar size and aspect ratio. By preventing the oxidation of copper cores up to 400°C, the hermetic noble metal shell dramatically extends the temperature range in which Ag/Cu flakes can successfully replace pure silver. Copyright © 2016 Elsevier Inc. All rights reserved.
Protection of Metal Artifacts with the Formation of Metal–Oxalates Complexes by Beauveria bassiana
Joseph, Edith; Cario, Sylvie; Simon, Anaële; Wörle, Marie; Mazzeo, Rocco; Junier, Pilar; Job, Daniel
2012-01-01
Several fungi present high tolerance to toxic metals and some are able to transform metals into metal–oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g L−1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid as sole metal chelator. The production of metal–oxalates can be used in the restoration and conservation of archeological and modern metal artifacts. The production of copper oxalates was confirmed directly using metallic pieces (both archeological and modern). The conversion of corrosion products into copper oxalates was demonstrated as well. In order to assess whether the capability of B. bassiana to produce metal–oxalates could be applied to other metals, iron and silver were tested as well. Iron appears to be directly sequestered in the wall of the fungal hyphae forming oxalates. However, the formation of a homogeneous layer on the object is not yet optimal. On silver, a co-precipitation of copper and silver oxalates occurred. As this greenish patina would not be acceptable on silver objects, silver reduction was explored as a tarnishing remediation. First experiments showed the transformation of silver nitrate into nanoparticles of elemental silver by an unknown extracellular mechanism. The production of copper oxalates is immediately applicable for the conservation of copper-based artifacts. For iron and silver this is not yet the case. However, the vast ability of B. bassiana to transform toxic metals using different immobilization mechanisms seems to offer considerable possibilities for industrial applications, such as the bioremediation of contaminated soils or the green synthesis of chemicals. PMID:22291684
METAL COATED ARTICLES AND METHOD OF MAKING
Eubank, L.D.
1958-08-26
A method for manufacturing a solid metallic uranium body having an integral multiple layer protective coating, comprising an inner uranium-aluminum alloy firmly bonded to the metallic uranium is presented. A third layer of silver-zinc alloy is bonded to the zinc-aluiminum layer and finally a fourth layer of lead-silver alloy is firmly bonded to the silver-zinc layer.
NASA Astrophysics Data System (ADS)
Hirai, Toshiro; Yoshioka, Yasuo; Izumi, Natsumi; Ichihashi, Ko-Ichi; Handa, Takayuki; Nishijima, Nobuo; Uemura, Eiichiro; Sagami, Ko-Ichi; Takahashi, Hideki; Yamaguchi, Manami; Nagano, Kazuya; Mukai, Yohei; Kamada, Haruhiko; Tsunoda, Shin-Ichi; Ishii, Ken J.; Higashisaka, Kazuma; Tsutsumi, Yasuo
2016-09-01
Many people suffer from metal allergy, and the recently demonstrated presence of naturally occurring metal nanoparticles in our environment could present a new candidate for inducing metal allergy. Here, we show that mice pretreated with silver nanoparticles (nAg) and lipopolysaccharides, but not with the silver ions that are thought to cause allergies, developed allergic inflammation in response to the silver. nAg-induced acquired immune responses depended on CD4+ T cells and elicited IL-17A-mediated inflammation, similar to that observed in human metal allergy. Nickel nanoparticles also caused sensitization in the mice, whereas gold and silica nanoparticles, which are minimally ionizable, did not. Quantitative analysis of the silver distribution suggested that small nAg (≤10 nm) transferred to the draining lymph node and released ions more readily than large nAg (>10 nm). These results suggest that metal nanoparticles served as ion carriers to enable metal sensitization. Our data demonstrate a potentially new trigger for metal allergy.
Kimball, Briant A.; Johnson, Kevin K.; Runkel, Robert L.; Steiger, Judy I.
2004-01-01
The Silver Maple Claims area along Silver Creek, near Park City, Utah, is administered by the Bureau of Land Management. To quantify possible sources of elevated zinc concentrations in Silver Creek that exceed water-quality standards, the U.S. Geological Survey conducted a mass-loading study in May 2002 along a 1,400-meter reach of Silver Creek that included the Silver Maple Claims area. Additional samples were collected upstream and downstream from the injection reach to investigate other possible sources of zinc and other metals to the stream. Many metals were investigated in the study, but zinc is of particular concern for water-quality standards. The total loading of zinc along the study reach from Park City to Wanship, Utah, was about 49 kilograms per day. The Silver Maple Claims area contributed about 38 percent of this load. The Silver Creek tailings discharge pipe, which empties just inside the Silver Maple Claims area, contributed more than half the load of the Silver Maple Claims area. Substantial zinc loads also were added to Silver Creek downstream from the Silver Maple Claims area. Ground-water discharge upstream from the waste-water treatment plant contributed 20 percent of the total zinc load, and another 17 percent was contributed near the waste-water treatment plant. By identifying the specific areas where zinc and other metal loads are contributed to Silver Creek, it is possible to assess the needs of a remediation plan. For example, removing the tailings from the Silver Maple Claims area could contribute to lowering the zinc concentration in Silver Creek, but without also addressing the loading from the Silver Creek tailings discharge pipe and the ground-water discharge farther downstream, the zinc concentration could not be lowered enough to meet water-quality standards. Additional existing sources of zinc loading downstream from the Silver Maple Claims area could complicate the process of lowering zinc concentration to meet water-quality standards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collin, Blaise P.; Demkowicz, Paul A.; Baldwin, Charles A.
2016-11-01
The PARFUME (PARticle FUel ModEl) code was used to predict silver release from tristructural isotropic (TRISO) coated fuel particles and compacts during the second irradiation experiment (AGR-2) of the Advanced Gas Reactor Fuel Development and Qualification program. The PARFUME model for the AGR-2 experiment used the fuel compact volume average temperature for each of the 559 days of irradiation to calculate the release of fission product silver from a representative particle for a select number of AGR-2 compacts and individual fuel particles containing either mixed uranium carbide/oxide (UCO) or 100% uranium dioxide (UO2) kernels. Post-irradiation examination (PIE) measurements were performedmore » to provide data on release of silver from these compacts and individual fuel particles. The available experimental fractional releases of silver were compared to their corresponding PARFUME predictions. Preliminary comparisons show that PARFUME under-predicts the PIE results in UCO compacts and is in reasonable agreement with experimental data for UO2 compacts. The accuracy of PARFUME predictions is impacted by the code limitations in the modeling of the temporal and spatial distributions of the temperature across the compacts. Nevertheless, the comparisons on silver release lie within the same order of magnitude.« less
Isotopic Ag–Cu–Pb record of silver circulation through 16th–18th century Spain
Desaulty, Anne-Marie; Telouk, Philippe; Albalat, Emmanuelle; Albarède, Francis
2011-01-01
Estimating global fluxes of precious metals is key to understanding early monetary systems. This work adds silver (Ag) to the metals (Pb and Cu) used so far to trace the provenance of coinage through variations in isotopic abundances. Silver, copper, and lead isotopes were measured in 91 coins from the East Mediterranean Antiquity and Roman world, medieval western Europe, 16th–18th century Spain, Mexico, and the Andes and show a great potential for provenance studies. Pre-1492 European silver can be distinguished from Mexican and Andean metal. European silver dominated Spanish coinage until Philip III, but had, 80 y later after the reign of Philip V, been flushed from the monetary mass and replaced by Mexican silver. PMID:21606351
NASA Astrophysics Data System (ADS)
Gleitsmann, T.; Bernhardt, T. M.; Wöste, L.
2006-01-01
Strong visible luminescence is observed from silver clusters generated by femtosecond-laser-induced reduction of silver oxide nanoparticles embedded in a polymeric gelatin matrix. Light emission from the femtosecond-laser-activated matrix areas considerably exceeds the luminescence intensity of similarly activated bare silver oxide nanoparticle films. Optical spectroscopy of the activated polymer films supports the assignment of the emissive properties to the formation of small silver clusters under focused femtosecond-laser irradiation. The size of the photogenerated clusters is found to sensitively depend on the laser exposure time, eventually leading to the formation of areas of metallic silver in the biopolymer matrix. In this case, luminescence can still be observed in the periphery of the metallic silver structures, emphasizing the importance of the organic matrix for the stabilization of the luminescent nanocluster structures at the metal matrix interface.
XPS characterization of silver exchanged ETS-10 and mordenite molecular sieves.
Anson, A; Maham, Y; Lin, C C H; Kuznicki, T M; Kuznicki, S M
2009-05-01
Silver exchanged molecular sieves ETS-10 (Ag-ETS-10) and mordenite (Ag-mordenite) were dehydrated under vacuum at temperatures between 100 degrees C-350 degrees C. Changes in the state of the silver were studied using X-ray photoelectron spectroscopy (XPS). Silver cations in titanosilicate Ag-ETS-10 are fully reduced to Ag(0) at temperatures as low as 150 degrees C. The characteristic features of the XPS spectrum of silver in this Ag-ETS-10 species correspond to only metallic silver. The signal for metallic silver is not observed in the XPS spectrum of aluminosilicate Ag-mordenite, indicating that silver cations are not reduced, even after heating to 350 degrees C.
Recovery of Silver and Gold from Copper Anode Slimes
NASA Astrophysics Data System (ADS)
Chen, Ailiang; Peng, Zhiwei; Hwang, Jiann-Yang; Ma, Yutian; Liu, Xuheng; Chen, Xingyu
2015-02-01
Copper anode slimes, produced from copper electrolytic refining, are important industrial by-products containing several valuable metals, particularly silver and gold. This article provides a comprehensive overview of the development of the extraction processes for recovering silver and gold from conventional copper anode slimes. Existing processes, namely pyrometallurgical processes, hydrometallurgical processes, and hybrid processes involving the combination of pyrometallurgical and hydrometallurgical technologies, are discussed based in part on a review of the form and characteristics of silver and gold in copper anode slimes. The recovery of silver and gold in pyrometallurgical processes is influenced in part by the slag and matte/metal chemistry and related characteristics, whereas the extraction of these metals in hydrometallurgical processes depends on the leaching reagents used to break the structure of the silver- and gold-bearing phases, such as selenides. By taking advantage of both pyrometallurgical and hydrometallurgical techniques, high extraction yields of silver and gold can be obtained using such combined approaches that appear promising for efficient extraction of silver and gold from copper anode slimes.
An environmentally benign antimicrobial nanoparticle based ...
Silver nanoparticles have antibacterial properties but their use has been a cause for concern because they persist in the environment. Here we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and together with silver ions can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies showed that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles
UV-light assisted patterned metallization of textile fabrics
NASA Astrophysics Data System (ADS)
Bahners, Thomas; Gebert, Beate; Prager, Andrea; Hartmann, Nils; Hagemann, Ulrich; Gutmann, Jochen S.
2018-04-01
A UV-assisted process allows full-faced or local deposition of silver domains on textiles made of natural as well as synthetic fibers, which act as nuclei for subsequent galvanic metallization. SEM and XPS analyses indicate that the process generates particulate depositions - particles, aggregates - of elementary silver. Masking the UV irradiation confines silver deposition strictly to the exposed areas thus allowing patterning. Adhesion of the deposited silver is high on the studied natural fiber cotton and polyamide fibers. Adhesion on smooth and chemically inert synthethic fibers such as, e.g., poly(ethylene terephthalate) or para- and meta-aramids could be enhanced by finishing with poly(vinylamine) thus providing complex-forming amino groups. Although the process does not deposit a closed, electrically conducting layer, all studied samples could be metallized by galvanization. The resulting metal coatings exhibit high conductivity and wash stability. Following a patterned silver deposition, the subsequent galvanic metallization produced conductive patterns of identical geometry thus opening an avenue towards printed circuits on textile fabrics.
Durable metallized polymer mirror
Schissel, Paul O.; Kennedy, Cheryl E.; Jorgensen, Gary J.; Shinton, Yvonne D.; Goggin, Rita M.
1994-01-01
A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pazos, Elena; Sleep, Eduard; Rubert Perez, Charles M.
Here, silver nanoparticles have been of great interest as plasmonic substrates for sensing and imaging, catalysts, or antimicrobial systems. Their physical properties are strongly dependent on parameters that remain challenging to control such as size, chemical composition, and spatial distribution. We report here on supramolecular assemblies of a novel peptide amphiphile containing aldehyde functionality in order to reduce silver ions and subsequently nucleate silver metal nanoparticles in water. This system spontaneously generates monodisperse silver particles at fairly regular distances along the length of the filamentous organic assemblies. The metal–organic hybrid structures exhibited antimicrobial activity and significantly less toxicity toward eukaryoticmore » cells. Metallized organic nanofibers of the type described here offer the possibility to create hydrogels, which integrate the useful functions of silver nanoparticles with controllable metallic content.« less
Pazos, Elena; Sleep, Eduard; Rubert Perez, Charles M.; ...
2016-04-22
Here, silver nanoparticles have been of great interest as plasmonic substrates for sensing and imaging, catalysts, or antimicrobial systems. Their physical properties are strongly dependent on parameters that remain challenging to control such as size, chemical composition, and spatial distribution. We report here on supramolecular assemblies of a novel peptide amphiphile containing aldehyde functionality in order to reduce silver ions and subsequently nucleate silver metal nanoparticles in water. This system spontaneously generates monodisperse silver particles at fairly regular distances along the length of the filamentous organic assemblies. The metal–organic hybrid structures exhibited antimicrobial activity and significantly less toxicity toward eukaryoticmore » cells. Metallized organic nanofibers of the type described here offer the possibility to create hydrogels, which integrate the useful functions of silver nanoparticles with controllable metallic content.« less
Production of silver ions from colloidal silver by nanoparticle iontophoresis system.
Tseng, Kuo-Hsiung; Liao, Chih-Yu
2011-03-01
Metal ions, especially the silver ion, were used to treat infection before the initiation of antibiotic therapy. Unfortunately, there is a lack of research on the metallic nanoparticle suspension as a reservoir for metal ion release application. For medical purposes, conversion of colloidal silver into an ionic form is necessary, but not using silver salts (e.g., AgNO3, Ag2SO4), due to the fact that the counter-ion of silver salts may cause problems to the body as the silver ion (Ag+) is consumed. The goal of this research is to develop a silver nanoparticle iontophoresis system (NIS) which can provide a relatively safe bactericidal silver ion solution with a controllable electric field. In this study, ion-selective electrodes were used to identify and observe details of the system's activity. Both qualitative and quantitative data analyses were performed. The experimental results show that the ion releasing peak time (R(PT)) has an inversely proportional relationship with the applied current and voltage. The ion releasing maximum level (R(ML)) and dosage (R(D)) are proportional to the current density and inversely proportional to the voltage, respectively. These results reveal that the nanoparticle iontophoresis system (NIS) is an alternative method for the controlled release of a metal ion and the ion's concentration profile, by controlling the magnitude of current density (1 microA/cm2 equal to 1 ppm/hour) and applied voltage.
Metal-water reaction and cladding deformation models for RELAP5/MOD3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caraher, D.L.; Shumway, R.W.
1989-06-01
A model for calculating the reaction of zirconium with steam according to the Cathcart-Pawel correlation has been incorporated into RELAP5/MOD3. A cladding deformation model which computes swelling and rupture of the cladding according to the empirical correlations for Powers and Meyer has also been incorporated into RELAP5/MOD3. This report gives the background of the models, documents their implantation into the RELAP5 subroutines, and reports the developmental assessment done on the models. 4 refs., 9 figs., 9 tabs.
Durable metallized polymer mirror
Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.
1994-11-01
A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.
Advances in Surface-Enhanced Fluorescence
Lakowicz, Joseph R.; Geddes, Chris D.; Gryczynski, Ignacy; Malicka, Joanna; Gryczynski, Zygmunt; Aslan, Kadir; Lukomska, Joanna; Matveeva, Evgenia; Zhang, Jian; Badugu, Ramachandram; Huang, Jun
2009-01-01
We report recent achievements in metal-enhanced fluorescence from our laboratory. Several fluorophore systems have been studied on metal particle-coated surfaces and in colloid suspensions. In particular, we describe a distance dependent enhancement on silver island films (SIFs), release of self-quenching of fluorescence near silver particles, and the applications of fluorescence enhancement near metalized surfaces to bioassays. We discuss a number of methods for various shaped silver particle deposition on surfaces. PMID:15617385
Controlled atmosphere for fabrication of cermet electrodes
Ray, Siba P.; Woods, Robert W.
1998-01-01
A process for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750.degree. C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5-3000 ppm in order to obtain a desired composition in the resulting composite.
Controlled atmosphere for fabrication of cermet electrodes
Ray, S.P.; Woods, R.W.
1998-08-11
A process is disclosed for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750 C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5--3000 ppm in order to obtain a desired composition in the resulting composite. 2 figs.
Screen-Cage Ion Plating Of Silver On Polycrystalline Alumina
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis; Sliney, Harold E.; Deadmore, Daniel L.
1995-01-01
Screen-cage ion plating (SCIP) cost-effective technique offering high throwing power for deposition of adherent metal films on ceramic substrates. Applies silver films to complexly shaped substrates of polycrystalline alumina. Silver adheres tenaciously and reduces friction. SCIP holds promise for applying lubricating soft metallic films to high-temperature ceramic components of advanced combustion engines. Other potential uses include coating substrates with metal for protection against corrosion, depositing electrical conductors on dielectric substrates, making optically reflective or electrically or thermally conductive surface layers, and applying decorative metal coats to ceramic trophies or sculptures.
Silver decorated polymer supported semiconductor thin films by UV aided metalized laser printing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halbur, Jonathan C.; Padbury, Richard P.; Jur, Jesse S., E-mail: jsjur@ncsu.edu
2016-05-15
A facile ultraviolet assisted metalized laser printing technique is demonstrated through the ability to control selective photodeposition of silver on flexible substrates after atomic layer deposition pretreatment with zinc oxide and titania. The photodeposition of noble metals such as silver onto high surface area, polymer supported semiconductor metal oxides exhibits a new route for nanoparticle surface modification of photoactive enhanced substrates. Photodeposited silver is subsequently characterized using low voltage secondary electron microscopy, x-ray diffraction, and time of flight secondary ion mass spectroscopy. At the nanoscale, the formation of specific morphologies, flake and particle, is highlighted after silver is photodeposited onmore » zinc oxide and titania coated substrates, respectively. The results indicate that the morphology and composition of the silver after photodeposition has a strong dependency on the morphology, crystallinity, and impurity content of the underlying semiconductor oxide. At the macroscale, this work demonstrates how the nanoscale features rapidly coalesce into a printed pattern through the use of masks or an X-Y gantry stage with virtually unlimited design control.« less
Poppe, L.J.; Commeau, J.A.; Pense, G.M.
1989-01-01
Silver metal-membrane filters are commonly used as substrates in the preparation of oriented clay-mineral specimens for X-ray powder diffraction (XRD). They are relatively unaffected by organic solvent treatments and specimens can be prepared rapidly. The filter mounts are adaptable to automatic sample changers, have few discrete reflections at higher 20 angles, and, because of the high atomic number of silver, produce a relatively low overall background compared with other membrane filters, such as cellulose (Poppe and Hathaway, 1979). The silver metal-membrane filters, however, present some problems after heat treatment if either the filters or the samples contain significant amounts of chlorine. At elevated temperature, the chloride ions react with the silver substrate to form crystalline compounds. These compounds change the mass-absorption coefficient of the sample, reducing peak intensities and areas and, therefore, complicating the semiquantitative estimation of clay minerals. A simple procedure that eliminates most of the chloride from a sample and the silver metal-membrane substrate is presented here.
Automotive Stirling engine development program
NASA Technical Reports Server (NTRS)
Ernst, W.; Richey, A.; Farrell, R.; Riecke, G.; Smith, G.; Howarth, R.; Cronin, M.; Simetkosky, M.; Meacher, J.
1986-01-01
The major accomplishments were the completion of the Basic Stirling Engine (BSE) and the Stirling Engine System (SES) designs on schedule, the approval and acceptance of those designs by NASA, and the initiation of manufacture of BSE components. The performance predictions indicate the Mod II engine design will meet or exceed the original program goals of 30% improvement in fuel economy over a conventional Internal Combustion (IC) powered vehicle, while providing acceptable emissions. This was accomplished while simultaneously reducing Mod II engine weight to a level comparable with IC engine power density, and packaging the Mod II in a 1985 Celebrity with no external sheet metal changes. The projected mileage of the Mod II Celebrity for the combined urban and highway CVS cycle is 40.9 mpg which is a 32% improvement over the IC Celebrity. If additional potential improvements are verified and incorporated in the Mod II, the mileage could increase to 42.7 mpg.
Metal ion release from silver soldering and laser welding caused by different types of mouthwash.
Erdogan, Ayse Tuygun; Nalbantgil, Didem; Ulkur, Feyza; Sahin, Fikrettin
2015-07-01
To compare metal ion release from samples welded with silver soldering and laser welding when immersed into mouthwashes with different ingredients. A total of 72 samples were prepared: 36 laser welded and 36 silver soldered. Four samples were chosen from each subgroup to study the morphologic changes on their surfaces via scanning electron microscopy (SEM). Each group was further divided into four groups where the samples were submerged into mouthwash containing sodium fluoride (NaF), mouthwash containing sodium fluoride + alcohol (NaF + alcohol), mouthwash containing chlorhexidine (CHX), or artificial saliva (AS) for 24 hours and removed thereafter. Subsequently, the metal ion release from the samples was measured with inductively coupled plasma mass spectrometry (ICP-MS). The metal ion release among the solutions and the welding methods were compared. The Kruskal-Wallis and analysis of variance (ANOVA) tests were used for the group comparisons, and post hoc Dunn multiple comparison test was utilized for the two group comparisons. The level of metal ion release from samples of silver soldering was higher than from samples of laser welding. Furthermore, greater amounts of nickel, chrome, and iron were released from silver soldering. With regard to the mouthwash solutions, the lowest amounts of metal ions were released in CHX, and the highest amounts of metal ions were released in NaF + alcohol. SEM images were in accord with these findings. The laser welding should be preferred over silver soldering. CHX can be recommended for patients who have welded appliances for orthodontic reasons.
Metal and Non-Metal Inorganic Coatings. Methods of Checking
1979-07-20
base metal (15) Copper (16) Steel (17) Zinc alloy (18) Nickel (19) Copper and its alloys (20) Nickel (21) Chromium (22) Silver (23) Copper and its alloys... Silver (9) Copper-tine alloy (for solution #6)1 NOTE,. The value (H )is given for the ninc coatings from cyanide, sulfateo ammoniat4, and zincate...fluoborlc; silver from cyanide and thiocyanic acid; dull chromium - from sulfate; copper -from sulfate and cyanide electrolytes (for solution 06). -Q -gp
The Empirical Formula of Silver Sulfide: An Experiment for Introductory Chemistry
ERIC Educational Resources Information Center
Trujillo, Carlos Alexander
2007-01-01
An experiment is described that allows students to experimentally determine an empirical formula for silver sulfide. At elevated temperatures, silver sulfide reacts in air to form silver, silver sulfate, and sulfur dioxide. At higher temperatures (960 [degree]C) silver sulfate decomposes to produce metallic silver. (Contains 1 figure and 1 table.)
The Effects of Toxic Particles in Human Lung Cells - Research Area 8. Life Sciences
2016-01-05
Characterization of Metal Nanoparticles 2.1. Synthesis and Characterization of Nanoparticles We generated and tested a silver colloid solution with a mean... silver and gold nanoparticle -induced effects; and 6) Assess metal levels in whale skin biopsies in the Gulf of Mexico. The first five aims focused...We found that silver , gold and titanium dioxide nanoparticles were relatively non-toxic. Only silver 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND
Lewis, Jennifer A [Urbana, IL; Ahn, Bok Yeop [Champaign, IL; Duoss, Eric B [Urbana, IL
2011-04-12
Stabilized silver particles comprise particles comprising silver, a short-chain capping agent adsorbed on the particles, and a long-chain capping agent adsorbed on the particles. The short-chain capping agent is a first anionic polyelectrolyte having a molecular weight (Mw) of at most 10,000, and the long-chain capping agent is a second anionic polyelectrolyte having a molecular weight (Mw) of at least 25,000. The stabilized silver particles have a solid loading of metallic silver of at least 50 wt %.
Geethalakshmi, R; Sarada, DVL
2012-01-01
Background There is an increasing commercial demand for nanoparticles due to their wide applicability in various markets, including medicine, catalysis, electronics, chemistry, and energy. In this report, a simple and ecofriendly chemical reaction for the synthesis of gold and silver nanoparticles from Trianthema decandra (Aizoaceae) has been developed. Methods and results On treatment of aqueous solutions containing chloroauric acid or silver nitrate with root extract of T. decandra, stable gold or silver nanoparticles were rapidly formed. The kinetics of reduction of gold and silver ions during the reaction was analyzed by ultraviolet-visible spectroscopy. Field emission-scanning electron microscopy showed formation of gold nanoparticles in various shapes, including spherical, cubical, triangular, and hexagonal, while silver nanoparticles were spherical. The size of the gold nanoparticles was 33–65 nm and that of the silver nanoparticles was 36–74 nm. Energy dispersive x-ray and Fourier transform infrared spectroscopy confirmed the presence of metallic gold and metallic silver in the respective nanoparticles. The antimicrobial properties of the synthesized nanoparticles were analyzed using the Kirby-Bauer method. The results show varied susceptibility of microorganisms to the gold and silver nanoparticles. Conclusion It is believed that phytochemicals present in T. decandra extract reduce the silver and gold ions into metallic nanoparticles. This strategy reduces the cost of production and the environmental impact. The silver and gold nanoparticles formed showed strong activity against all microorganisms tested. PMID:23091381
Aslan, Kadir; Lakowicz, Joseph R; Geddes, Chris D
2005-04-07
A simple and rapid wet-chemical technique for the deposition of silver triangles on conventional glass substrates, which alleviates the need for lithography, has been developed. The technique is based on the seed-mediated cetyltrimethylammonium-bromide-directed growth of silver triangles on glass surfaces, where smaller spherical silver seeds that were attached to the surface were subsequently converted and grown into silver triangles in the presence of a cationic surfactant and silver ions. The size of the silver triangles was controlled by sequential immersion of silver seed-coated glass substrates into a growth solution and by the duration time of immersion. Atomic force microscopy studies revealed that the size of the silver triangles ranged between 100 and 500 nm. Interestingly, these new surfaces are a significant improvement over traditional silver island films for applications in metal-enhanced fluorescence. A routine 16-fold enhancement in emission intensity was typically observed, for protein-immobilized indocyanine green, with a relatively very low loading density of silver triangles on the glass surface.
USDA-ARS?s Scientific Manuscript database
Starch-stabilized silver nanoparticles were prepared from amylose-sodium palmitate complexes by first converting sodium palmitate to silver palmitate by reaction with silver nitrate and then reducing the silver ion to metallic silver. This process produced water solutions that could be dried and the...
Exposure-related health effects of silver and silver compounds: a review.
Drake, Pamela L; Hazelwood, Kyle J
2005-10-01
A critical review of studies examining exposures to the various forms of silver was conducted to determine if some silver species are more toxic than others. The impetus behind conducting this review is that several occupational exposure limits and guidelines exist for silver, but the values for each depend on the form of silver as well as the individual agency making the recommendations. For instance, the American Conference of Governmental Industrial Hygienists has established separate threshold limit values for metallic silver (0.1 mg/m3) and soluble compounds of silver (0.01 mg/m3). On the other hand, the permissible exposure limit (PEL) recommended by the Occupational Safety and Health Administration and the Mine Safety and Health Administration and the recommended exposure limit set by the National Institute for Occupational Safety and Health is 0.01 mg/m3 for all forms of silver. The adverse effects of chronic exposure to silver are a permanent bluish-gray discoloration of the skin (argyria) or eyes (argyrosis). Most studies discuss cases of argyria and argyrosis that have resulted primarily from exposure to the soluble forms of silver. Besides argyria and argyrosis, exposure to soluble silver compounds may produce other toxic effects, including liver and kidney damage, irritation of the eyes, skin, respiratory, and intestinal tract, and changes in blood cells. Metallic silver appears to pose minimal risk to health. The current occupational exposure limits do not reflect the apparent difference in toxicities between soluble and metallic silver; thus, many researchers have recommended that separate PELs be established.
Surface plasmon-enhanced photovoltaic device
Kostecki, Robert; Mao, Samuel
2014-10-07
Photovoltaic devices are driven by intense photoemission of "hot" electrons from a suitable nanostructured metal. The metal should be an electron source with surface plasmon resonance within the visible and near-visible spectrum range (near IR to near UV (about 300 to 1000 nm)). Suitable metals include silver, gold, copper and alloys of silver, gold and copper with each other. Silver is particularly preferred for its advantageous opto-electronic properties in the near UV and visible spectrum range, relatively low cost, and simplicity of processing.
A new strain for recovering precious metals from waste printed circuit boards.
Ruan, Jujun; Zhu, Xingjiong; Qian, Yiming; Hu, Jian
2014-05-01
A new strain, Pseudomonas Chlororaphis (PC), was found for dissolving gold, silver, and copper from the metallic particles of crushed waste printed circuit boards (PCBs). The optimized conditions that greatly improved the ability of producing CN- (for dissolving metals) were obtained. Dissolving experiments of pure gold, silver, and copper showed that the metals could be changed into Au+, Ag+, and Cu2+. PC cells and their secreta would adsorb metallic ions. Meanwhile, metallic ions destroyed the growth of PC. Dissolving experiments of metallic particles from crushed waste PCBs were performed by PC. The results indicated that 8.2% of the gold, 12.1% silver, and 52.3% copper were dissolved into solution. This paper contributed significance information to recovering precious metals from waste PCBs by bioleaching. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jian-Yang; Hsueh, Yu-Lee; Huang, Jung-Jie, E-mail: jjhuang@mdu.edu.tw
2014-06-01
Silver nanowires were synthesized by the polyol method employing ethylene glycol, Poly(N-vinylpyrrolidone) (PVP) and silver nitrate (AgNO{sub 3}) as the precursors. Most of the studies used metal salts (PtCl{sub 2}, NaCl) as seed precursor to synthesize the silver nanowires. In the study, the metal salts were not used and the concentration of capping agent was changed to observe the aspect ratio of silver nanowires. The experimental results showed that controlling synthesis temperature, Poly(N-vinylpyrrolidone) (PVP) molecular weight, reactant concentrations, and addition rates of AgNO{sub 3} affects the growth characteristics of silver nanowires. Field-emission scanning electron microscopy, UV–vis spectrophotometry, and X-ray diffractometrymore » were employed to characterize the silver nanowires. As increasing the concentration of PVP, the silver nanowire diameter widened and resulted in a smaller aspect ratio. We successfully prepared silver nanowires (diameter: 170 nm, length: 20 μm). The silver nanowire thin film suspension showed high transmittance, low sheet resistance, and may be used for transparent conductive film applications. - Graphical abstract: The FE-SEM image shows that nanostructures with considerable quantities of silver nanowires can also be produced when the PVP (Mw=360 K)/AgNO{sub 3} molar ratio was 2.5. - Highlights: • The polyol method was used to synthesize of silver nanowire. • The metal seed precursors were not used before synthesizing the silver nanowires. • The silver nanowire diameter and length was 170 nm and 20 μm, respectively. • Silver nanowire film with high transmittance (>85%) and low sheet resistance (<110 Ω/sq)« less
Formation mechanisms of metal colloids
NASA Astrophysics Data System (ADS)
Halaciuga, Ionel
Highly dispersed uniform metallic particles are widely used in various areas of technology and medicine and are likely to be incorporated into many other applications in the future. It is commonly accepted that size, shape and composition of the particles represent critical factors in most applications. Thus, understanding the mechanisms of formation of metal particles and the ways to control the physical (e.g. shape, size) and chemical (e.g. composition) properties is of great importance. In the current research, the formation of uniform silver spheres is investigated experimentally. The parameters that influence the formation of silver particles when concentrated iso-ascorbic acid and silver-polyamine complex solutions are rapidly mixed were studied in the absence of dispersants. We found that by varying the nature of the amine, temperature, concentration of reactants, silver/amine molar ratio, and the nature of the silver salt, the size of the resulting silver particles can be varied in a wide range (0.08--1.5 microm). The silver particles were formed by aggregation of nanosize subunits as substantiated by both electron microscopy and X-ray diffraction techniques and by the vivid rapid color changes during the chemical precipitation process. From the practical standpoint, the goal of this research was to prepare well dispersed spherical silver particles having a relatively smooth surface and a diameter of about 1 microm to satisfy the demands of the current electronic materials market. A two stage particle growth model previously developed to explain the narrow size distribution occurring in synthesis of gold spheres was applied to the present experimental system, and the parameters that control the size distribution characteristics were identified. The kinetic parameter required to match the final particle size was found to be in agreement with the one used previously in modeling formation of gold spheres, suggesting that similar kinetics governs the aggregation process. Furthermore, the two-stage particle growth model was used to account for the effects of solvent viscosity and temperature on the particle properties, particularly their size. As an application of the above mentioned study, the aggregation process that led to the formation of large silver spheres was used to deposit in a controlled manner layers of silver and other metals (Ni, Au) onto various metallic and non-metallic substrates. In the final section of this thesis methods to form nanosized primary particle strictly through diffusional growth are described. The highly crystalline metallic particles of various sizes and composition prepared provide performance characteristics that are complementary to the polycrystalline metallic particles described in the preceding sections.
Room-temperature ductile inorganic semiconductor.
Shi, Xun; Chen, Hongyi; Hao, Feng; Liu, Ruiheng; Wang, Tuo; Qiu, Pengfei; Burkhardt, Ulrich; Grin, Yuri; Chen, Lidong
2018-05-01
Ductility is common in metals and metal-based alloys, but is rarely observed in inorganic semiconductors and ceramic insulators. In particular, room-temperature ductile inorganic semiconductors were not known until now. Here, we report an inorganic α-Ag 2 S semiconductor that exhibits extraordinary metal-like ductility with high plastic deformation strains at room temperature. Analysis of the chemical bonding reveals systems of planes with relatively weak atomic interactions in the crystal structure. In combination with irregularly distributed silver-silver and sulfur-silver bonds due to the silver diffusion, they suppress the cleavage of the material, and thus result in unprecedented ductility. This work opens up the possibility of searching for ductile inorganic semiconductors/ceramics for flexible electronic devices.
Room-temperature ductile inorganic semiconductor
NASA Astrophysics Data System (ADS)
Shi, Xun; Chen, Hongyi; Hao, Feng; Liu, Ruiheng; Wang, Tuo; Qiu, Pengfei; Burkhardt, Ulrich; Grin, Yuri; Chen, Lidong
2018-05-01
Ductility is common in metals and metal-based alloys, but is rarely observed in inorganic semiconductors and ceramic insulators. In particular, room-temperature ductile inorganic semiconductors were not known until now. Here, we report an inorganic α-Ag2S semiconductor that exhibits extraordinary metal-like ductility with high plastic deformation strains at room temperature. Analysis of the chemical bonding reveals systems of planes with relatively weak atomic interactions in the crystal structure. In combination with irregularly distributed silver-silver and sulfur-silver bonds due to the silver diffusion, they suppress the cleavage of the material, and thus result in unprecedented ductility. This work opens up the possibility of searching for ductile inorganic semiconductors/ceramics for flexible electronic devices.
Method for extracting copper, silver and related metals
Moyer, B.A.; McDowell, W.J.
1987-10-23
A process for selectively extracting precious metals such as silver and gold concurrent with copper extraction from aqueous solutions containing the same. The process utilizes tetrathiamacrocycles and high molecular weight organic acids that exhibit a synergistic relationship when complexing with certain metal ions thereby removing them from ore leach solutions.
Method for extracting copper, silver and related metals
Moyer, Bruce A.; McDowell, W. J.
1990-01-01
A process for selectively extracting precious metals such as silver and gold concurrent with copper extraction from aqueous solutions containing the same. The process utilizes tetrathiamacrocycles and high molecular weight organic acids that exhibit a synergistic relationship when complexing with certain metal ions thereby removing them from ore leach solutions.
NASA Astrophysics Data System (ADS)
Ferraris, S.; Miola, M.; Cochis, A.; Azzimonti, B.; Rimondini, L.; Prenesti, E.; Vernè, E.
2017-02-01
The realization of surfaces with antibacterial properties due to silver nanoparticles loaded through a green approach is a promising research challenge of the biomaterial field. In this research work, two bioactive glasses have been doubly surface functionalized with polyphenols (gallic acid or natural polyphenols extracted from red grape skins and green tea leaves) and silver nanoparticles deposited by in situ reduction from a silver nitrate aqueous solution. The presence of biomolecules - showing reducing ability to directly obtain in situ metallic silver - and silver nanoparticles was investigated by means of UV-vis spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM). The antibacterial activity of the modified surfaces was tested against a multidrug resistant Staphylococcus aureus bacterial strain.
NASA Astrophysics Data System (ADS)
Shams, Gholamabbas; Ranjbar, Morteza; Amiri, Aliasghar
2013-05-01
The tremendous progress on nanoparticle research area has been made significant effects on the economy, society, and the environment. Silver nanoparticle is one of the most important particles in these categories. Silver nanoparticles can be converted to the heavy silver metal in water by oxidation. Moreover, in the high amounts of silver concentration, they will be accumulated in different parts of the plant. However, by changing the morphology of the plant, the production will be harmful for human consumptions. In this study, nano-powders with average 50 nm silver particles are mixed with deionized distilled water in a completely randomized design. Seven treatments with various concentrations of suspension silver nanoparticles were prepared and repeated in four different parts of the plant in a regular program of spraying. Samples were analyzed to study the growth indexes and concentration of silver in different parts of the plant. It was observed that with increasing concentration of silver nanoparticles on cucumber, the growth indexes (except pH fruit), and the concentration of silver heavy metal are increased significantly. The incremental concentration had the linear relationship with correlation coefficient 0.95 and an average of 0.617 PPM by increasing of each unit in one thousand concentration of nanosilver. Although, by increasing concentration of silver nanoparticles as spraying form, the plant morphological characteristics were improved, the concentration of silver heavy metal in various plant organs was increased. These results open a new pathway to consider the effect of nanoparticles on plant's productions for human consumptions.
Nakamura, Shinichiro; Murakami, Shinsuke; Nakajima, Kenichi; Nagasaka, Tetsuya
2008-05-15
The production process of metals such as copper, lead, and zinc is characterized by mutual interconnections and interdependence, as well as by the occurrence of a large number of byproducts, which include precious or rare metals, such as gold, silver, bismuth, and indium. On the basis of the framework of waste input-output (WIO), we present a hybrid 10 model that takes full account of the mutual interdependence among the metal production processes and the interdependence between them and all the other production sectors of the economy as well. The combination of a comprehensive representation of the whole national economy and the introduction of process knowledge of metal production allows for a detailed analysis of different materials-use scenarios under the consideration of full supply chain effects. For illustration, a hypothetical case study of the introduction of lead-free solder involving the production of silver as a byproduct of copper and lead smelting processes was developed and implemented using Japanese data. To meet the increased demand for the recovery and recycling of silver resources from end-of-life products, the final destination of metal silver in terms of products and user categories was estimated, and the target components with the highest silver concentration were identified.
MOD-1 Wind Turbine Generator Analysis and Design Report, Volume 2
NASA Technical Reports Server (NTRS)
1979-01-01
The MOD-1 detail design is appended. The supporting analyses presented include a parametric system trade study, a verification of the computer codes used for rotor loads analysis, a metal blade study, and a definition of the design loads at each principal wind turbine generator interface for critical loading conditions. Shipping and assembly requirements, composite blade development, and electrical stability are also discussed.
Acid anhydrides: a simple route to highly pure organometallic solutions for superconducting films
NASA Astrophysics Data System (ADS)
Roma, N.; Morlens, S.; Ricart, S.; Zalamova, K.; Moreto, J. M.; Pomar, A.; Puig, T.; Obradors, X.
2006-06-01
The presence of impurities in the precursor metal carboxylate solutions for the preparation of epitaxial thin films by metal organic decomposition (MOD) is substantially avoided by the use of acid anhydrides. In particular, trifluoroacetic anhydride (TFAA) was used for the synthesis of the starting Y, Ba and Cu trifluoroacetates used in YBa2Cu3O7-x (YBCO) preparation by the MOD process. In this way, highly stable organometallic precursors and a short pyrolysis process could be used leading to YBCO films with high critical currents (Jc >=2-4 MA cm-2 at 77 K). Furthermore, the reproducibility of the results has been ascertained.
Shukla, Shashi P; Roy, Mainak; Mukherjee, Poulomi; Das, Laboni; Neogy, Suman; Srivastava, Dinesh; Adhikari, Soumyakanti
2016-03-01
In view of potential biomedical application of the noble metal nanoparticles, we report a size controlled yet simple and green synthesis of resveratrol stabilized silver and gold nanoparticles having low polydispersity of size. Here, resveratrol plays two simultaneous roles, reducing the metal ions and providing efficient capping of the small nanoparticles. This gives rise to specific size of silver and gold nanoparticles at specific ratios of metal to resveratrol. The particles have been characterized by XRD and transmission electron microscopy. The nanoparticle sols are stable for months. The UV Visible absorption spectra of the silver sol show the plasmon peak of spherical nanoparticles, presence of which is further reflected in the TEM images. Size of the silver particles obtained is in between 11 to 21 nm depending on the ratio of resveratrol to metal ion used. Resveratrol capped silver nanoparticles exhibit high antibacterial activity against Gram negative wild type E coli BW (25113). The minimum inhibitory concentration (MIC) of nano-silver against the bacterium has been estimated to be 6.48 μg/ml, which is significantly lower than that reported in some earlier as well as recent publications. Reaction of gold ions with resveratrol, on the other hand, produces gold nanoparticles of sizes varying from 7 to 29 nm at different ratios of resveratrol to the metal ions. Particles with higher size and aspect ratio are formed at lower concentration of the capping agent whereas particles with very small size and pseudo-spherical morphology are formed at higher capping concentration. Difference in the formation kinetics of silver and gold nanoparticles has been attributed to the different growth mechanisms in the two cases. Possible modes of anchorage of resveratrol to silver nanoparticles have been investigated using surface enhanced resonance Raman spectroscopy (SERS) which shows that the silver nanoparticles are capped by resveratrol molecule primarily through O-Ag linkages of the p-OH aromatic ring. This, in turn, demonstrates the feasibility of using these nanoparticles as SERS templates.
Chung, Wan-Ho; Hwang, Yeon-Taek; Lee, Seung-Hyun; Kim, Hak-Sung
2016-05-20
In this work, combined silver/copper nanoparticles were fabricated by the electrical explosion of a metal wire. In this method, a high electrical current passes through the metal wire with a high voltage. Consequently, the metal wire evaporates and metal nanoparticles are formed. The diameters of the silver and copper nanoparticles were controlled by changing the voltage conditions. The fabricated silver and copper nano-inks were printed on a flexible polyimide (PI) substrate and sintered at room temperature via a flash light process, using a xenon lamp and varying the light energy. The microstructures of the sintered silver and copper films were observed using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). To investigate the crystal phases of the flash-light-sintered silver and copper films, x-ray diffraction (XRD) was performed. The absorption wavelengths of the silver and copper nano-inks were measured using ultraviolet-visible spectroscopy (UV-vis). Furthermore, the resistivity of the sintered silver and copper films was measured using the four-point probe method and an alpha step. As a result, the fabricated Cu/Ag film shows a high electrical conductivity (4.06 μΩcm), which is comparable to the resistivity of bulk copper (1.68 μΩcm). In addition, the fabricated Cu/Ag nanoparticle film shows superior oxidation stability compared to the Cu nanoparticle film.
Protective Gel Composition for Treating White Phosphorus Burn Wounds.
Water soluble hydrogels of alkali metal alginate and glycerin containing 0.01% to 1% cupric ( copper ) sulfate pentahydrate or silver salts such as...burns. Cupric sulfate pentahydrate of silver salts such as silver acetate, silver lactate monohydrate and silver nitrate in the gel reacts with the
NASA Technical Reports Server (NTRS)
Easter, R. W.
1974-01-01
Simplified design concepts were used to estimate gravimetric and volumetric energy densities for metal hydrogen battery cells for assessing the characteristics of cells containing metal hydrides as compared to gaseous storage cells, and for comparing nickel cathode and silver cathode systems. The silver cathode was found to yield superior energy densities in all cases considered. The inclusion of hydride forming materials yields cells with very high volumetric energy densities that also retain gravimetric energy densities nearly as high as those of gaseous storage cells.
Optical Properties of Silver Nanoparticulate Glasses
NASA Astrophysics Data System (ADS)
Evans, Rachel N.; Cannavino, Sarah A.; King, Christy A.; Lamartina, Joseph A.; Magruder, Robert H.; Ferrara, Davon W.
The ion exchange method of embedding metal nanoparticles (NPs) into float glass is an often used technique of fabricating colored glasses and graded-index waveguides. The depth and size of NP formation in the glass depends on the concentration and temperature of metal ions in the molten bath. In this study we explore the dichroic properties of silver metal ion exchange restricted to only one side of a glass microscope slide using reflection and transmission spectroscopy and its dependence on temperature, concentration of silver ions, and length of time in the molten bath.
Dextran templating for the synthesis of metallic and metal oxide sponges
NASA Astrophysics Data System (ADS)
Walsh, Dominic; Arcelli, Laura; Ikoma, Toshiyuki; Tanaka, Junzo; Mann, Stephen
2003-06-01
Silver or gold-containing porous frameworks have been used extensively in catalysis, electrochemistry, heat dissipation and biofiltration. These materials are often prepared by thermal reduction of metal-ion-impregnated porous insoluble supports (such as alumina and pumice), and have surface areas of about 1 m2 g-1, which is typically higher than that obtained for pure metal powders or foils prepared electrolytically or by infiltration and thermal decomposition of insoluble cellulose supports. Starch gels have been used in association with zeolite nanoparticles to produce porous inorganic materials with structural hierarchy, but the use of soft sacrificial templates in the synthesis of metallic sponges has not been investigated. Here we demonstrate that self-supporting macroporous frameworks of silver, gold and copper oxide, as well as composites of silver/copper oxide or silver/titania can be routinely prepared by heating metal-salt-containing pastes of the polysaccharide, dextran, to temperatures between 500 and 900 °C. Magnetic sponges were similarly prepared by replacing the metal salt precursor with preformed iron oxide (magnetite) nanoparticles. The use of dextran as a sacrificial template for the fabrication of metallic and metal oxide sponges should have significant benefits over existing technologies because the method is facile, inexpensive, environmentally benign, and amenable to scale-up and processing.
How metalliferous brines line Mexican epithermal veins with silver
Wilkinson, Jamie J.; Simmons, Stuart F.; Stoffell, Barry
2013-01-01
We determined the composition of ~30-m.y.-old solutions extracted from fluid inclusions in one of the world's largest and richest silver ore deposits at Fresnillo, Mexico. Silver concentrations average 14 ppm and have a maximum of 27 ppm. The highest silver, lead and zinc concentrations correlate with salinity, consistent with transport by chloro-complexes and confirming the importance of brines in ore formation. The temporal distribution of these fluids within the veins suggests mineralization occurred episodically when they were injected into a fracture system dominated by low salinity, metal-poor fluids. Mass balance shows that a modest volume of brine, most likely of magmatic origin, is sufficient to supply the metal found in large Mexican silver deposits. The results suggest that ancient epithermal ore-forming events may involve fluid packets not captured in modern geothermal sampling and that giant ore deposits can form rapidly from small volumes of metal-rich fluid. PMID:23792776
Single Cell Fluorescence Imaging Using Metal Plasmon-Coupled Probe
Zhang, Jian; Fu, Yi; Lakowicz, Joseph R.
2009-01-01
This work constitutes the first fluorescent imaging of cells using metal plasmon-coupled probes (PCPs) at single cell resolution. N-(2-Mercapto-propionyl)glycine-coated silver nanoparticles were synthesized by reduction of silver nitrate using sodium borohyride and then succinimidylated via ligand exchange. Alexa Fluor 647-labeled concanavalin A (con A) was chemically bound to the silver particles to make the fluorescent metal plasmon-coupled probes. The fluorescence images were collected using a scanning confocal microscopy. The fluorescence intensity was observed to enhance 7-fold when binding the labeled con A on a single silver particle. PCPs were conjugated on HEK 293 A cells. Imaging results demonstrate that cells labeled by PCPs were 20-fold brighter than those by free labeled con A. PMID:17375898
NASA Astrophysics Data System (ADS)
Slamet, Bachtiar, B. M.; Wulan, P. P. D. K.; Setiadi, Sari, D. P.
2017-05-01
The development of Ti6Al4V based anti bacterial dental implant, modified with dopanted silver metal (Ag) TiO2 nanotube arrays (TiNTAs), is studied in this research. The condition inside the mouth is less foton energy, the dental implant material need to be modified with silver metal (Ag) dopanted TiNTAs. Modified TiNTAs used silver metal dopanted with Photo Assisted Deposition (PAD) method can be used as an electron trapper and produced hydroxyl radical, therefore it has antibacterial properties. The verification of antibacterial properties developed with biofilm static test using Streptococcus mutans bacteria model within 3 and 16 hours incubation, was characterized with XRD and SEM-EDX. Properties test result that resisting the biofilm growth effectively is TiNTAs/Ag/0,15, with 97,62 % disinfection bacteria sampel.
An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core.
Richter, Alexander P; Brown, Joseph S; Bharti, Bhuvnesh; Wang, Amy; Gangwal, Sumit; Houck, Keith; Cohen Hubal, Elaine A; Paunov, Vesselin N; Stoyanov, Simeon D; Velev, Orlin D
2015-09-01
Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles.
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1979-01-01
Sliding friction experiments were conducted with the noble metals copper, silver, and gold and two binary alloys of these metals contacting iron in the presence of various adsorbates including, oxygen, methyl mercaptan, and methyl chloride. A pin on disk specimen configuration was used with a load of 100 grams, sliding velocity of 60 mm/min; at 25 C with the surfaces saturated with the adsorbates. Auger emission spectroscopy was used to monitor surface films. Results of the experiments indicate that friction and transfer characteristics are highly specific with respect to both the noble metal and surface film present. With all three metals and films transfer of the noble metal to iron occurred very rapidly. With all metals and films transfer of the noble metal to iron continuously increased with repeated passes except for silver and copper sliding on iron sulfide.
Self-limiting atomic layer deposition of conformal nanostructured silver films
NASA Astrophysics Data System (ADS)
Golrokhi, Zahra; Chalker, Sophia; Sutcliffe, Christopher J.; Potter, Richard J.
2016-02-01
The controlled deposition of ultra-thin conformal silver nanoparticle films is of interest for applications including anti-microbial surfaces, plasmonics, catalysts and sensors. While numerous techniques can produce silver nanoparticles, few are able to produce highly conformal coatings on high aspect ratio surfaces, together with sub-nanometre control and scalability. Here we develop a self-limiting atomic layer deposition (ALD) process for the deposition of conformal metallic silver nanoparticle films. The films have been deposited using direct liquid injection ALD with ((hexafluoroacetylacetonato)silver(I)(1,5-cyclooctadiene)) and propan-1-ol. An ALD temperature window between 123 and 128 °C is identified and within this range self-limiting growth is confirmed with a mass deposition rate of ∼17.5 ng/cm2/cycle. The effects of temperature, precursor dose, co-reactant dose and cycle number on the deposition rate and on the properties of the films have been systematically investigated. Under self-limiting conditions, films are metallic silver with a nano-textured surface topography and nanoparticle size is dependent on the number of ALD cycles. The ALD reaction mechanisms have been elucidated using in-situ quartz crystal microbalance (QCM) measurements, showing chemisorption of the silver precursor, followed by heterogeneous catalytic dehydrogenation of the alcohol to form metallic silver and an aldehyde.
Peng, Peng; Hu, Anming; Gerlich, Adrian P.; Liu, Yangai; Zhou, Y. Norman
2015-01-01
Metallic bonding at an interface is determined by the application of heat and/or pressure. The means by which these are applied are the most critical for joining nanoscale structures. The present study considers the feasibility of room-temperature pressureless joining of copper wires using water-based silver nanowire paste. A novel mechanism of self-generated local heating within the silver nanowire paste and copper substrate system promotes the joining of silver-to-silver and silver-to-copper without any external energy input. The localized heat energy was delivered in-situ to the interfaces to promote atomic diffusion and metallic bond formation with the bulk component temperature stays near room-temperature. This local heating effect has been detected experimentally and confirmed by calculation. The joints formed at room-temperature without pressure achieve a tensile strength of 5.7 MPa and exhibit ultra-low resistivity in the range of 101.3 nOhm·m. The good conductivity of the joint is attributed to the removal of organic compounds in the paste and metallic bonding of silver-to-copper and silver-to-silver. The water-based silver nanowire paste filler material is successfully applied to various flexible substrates for room temperature bonding. The use of chemically generated local heating may become a potential method for energy in-situ delivery at micro/nanoscale. PMID:25788019
Macroscopic character of composite high-temperature superconducting wires
NASA Astrophysics Data System (ADS)
Kivelson, S. A.; Spivak, B.
2015-11-01
The "d -wave" symmetry of the superconducting order in the cuprate high temperature superconductors is a well established fact [J. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 (2000), 10.1103/RevModPhys.72.969 and D. J. Vanharlingen, Rev. Mod. Phys. 67, 515 (1995), 10.1103/RevModPhys.67.515], and one which identifies them as "unconventional." However, in macroscopic contexts—including many potential applications (i.e., superconducting "wires")—the material is a composite of randomly oriented superconducting grains in a metallic matrix, in which Josephson coupling between grains mediates the onset of long-range phase coherence. [See, e.g., D. C. Larbalestier et al., Nat. Mater. 13, 375 (2014), 10.1038/nmat3887, A. P. Malozemoff, MRS Bull. 36, 601 (2011), 10.1557/mrs.2011.160, and K. Heine et al., Appl. Phys. Lett. 55, 2441 (1989), 10.1063/1.102295] Here we analyze the physics at length scales that are large compared to the size of such grains, and in particular the macroscopic character of the long-range order that emerges. While X Y -superconducting glass order and macroscopic d -wave superconductivity may be possible, we show that under many circumstances—especially when the d -wave superconducting grains are embedded in a metallic matrix—the most likely order has global s -wave symmetry.
ERIC Educational Resources Information Center
School Science Review, 1982
1982-01-01
Discusses laboratory procedures, classroom materials, and demonstrations including: a model for metallic/ionic structures; Friedel-Crafts acylation reaction; aids to teaching crystal structure; a metal displacement project; silver recovery from fixer and silver residues; iodine sublimation; nature of acids; card models for teaching bonding; and…
Copper-silver-titanium filler metal for direct brazing of structural ceramics
Moorhead, Arthur J.
1987-01-01
A method of joining ceramics and metals to themselves and to one another is described using a brazing filler metal consisting essentially of 35 to 50 atomic percent copper, 15 to 50 atomic percent silver and 10 to 45 atomic percent titanium. This method produces strong joints that can withstand high service temperatures and oxidizing environments.
Swain, Basudev; Shin, Dongyoon; Joo, So Yeong; Ahn, Nak Kyoon; Lee, Chan Gi; Yoon, Jin-Ho
2018-03-01
The current study focuses on the understanding of leaching kinetics of metal in the LTCC in general and silver leaching in particular along with wet chemical reduction involving silver nanoparticle synthesis. Followed by metal leaching, the silver was selectively precipitated using HCl as AgCl. The precipitated AgCl was dissolved in ammonium hydroxide and reduced to pure silver metal nanopowder (NPs) using hydrazine as a reductant. Polyvinylpyrrolidone (PVP) used as a stabilizer and Polyethylene glycol (PEG) used as reducing reagent as well as stabilizing reagent to control size and shape of the Ag NPs. An in-depth investigation indicated a first-order kinetics model fits well with high accuracy among all possible models. Activation energy required for the first order reaction was 21.242 kJ mol -1 for Silver. PVP and PEG 1% each together provide better size control over silver nanoparticle synthesis using 0.4 M hydrazine as reductant, which provides relatively regular morphology in comparison to their individual application. The investigation revealed that the waste LTCC (an industrial e-waste) can be recycled through the reported process even in industrial scale. The novelty of reported recycling process is simplicity, versatile and eco-efficiency through which waste LTCC recycling can address various issues like; (i) industrial waste disposal (ii) synthesis of silver nanoparticles from waste LTCC (iii) circulate metal economy within a closed loop cycle in the industrial economies where resources are scarce, altogether. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pandita, Surya D.; Lim, Hyoung Tae; Yoo, Youngtai; Park, Hoon Cheol
2006-03-01
Manufacturing and characterization of ionic polymer metal composites (IPMCs) with silver as electrodes have been investigated. Tollen's reagent that contains ion Ag(NH 3) II + was used as a raw material for silver deposition on the surfaces of the polymer membrane Nafion"R". Two types of inner solvents, namely common water based electrolyte solution (LiOH 1N) and ionic liquid were used and investigated. Compared to IPMCs with platinum electrodes, silver-plated IPMCs with water electrolyte showed higher conductivity. The actuation response of silver-plated IPMCs with the water based electrolyte was faster than that of platinum IPMCs. However, the silver electrode was too brittle and severely damaged during the solvent exchange process from water to ionic liquid, resulted in high resistance and hence very low actuation behavior.
NASA Astrophysics Data System (ADS)
Kaskow, Iveta; Decyk, Piotr; Sobczak, Izabela
2018-06-01
The goal of this work was to use ZnO as a support for gold and copper (Au-Cu system) or gold and silver (Au-Ag system) and comparison of the effect of copper and silver on the properties of gold and its activity in glycerol oxidation with oxygen in the liquid phase. The samples prepared were fully characterized by XRD, TEM techniques and UV-vis, XPS, ESR spectroscopic methods. It was found that the introduction of copper and silver changed the electronic state of gold loaded on ZnO by the electron transfer between metals. Three different metallic gold species were identified in calcined catalysts: (Au°)δ- (Au-ZnO), (Au°)η- (AuCu-ZnO) and (Au°)γ- (AuAg-ZnO), where δ-,η-,γ- indicate a different partial negative charge on metallic gold and γ > δ > η. The results showed that (Au°)η- centers (metallic gold with the lowest negative charge) formed on AuCu-ZnO were the most active in glycerol oxidation. The increase in the negative charge on metallic gold loaded on AuAg-ZnO reduced the gold activity in silver containing sample. The glyceric acid adsorption and desorption rate influenced the selectivity of the catalysts.
Mineral commodity profiles: Silver
Butterman, W.C.; Hilliard, Henry E.
2005-01-01
Overview -- Silver is one of the eight precious, or noble, metals; the others are gold and the six platinum-group metals (PGM). World mine production in 2001 was 18,700 metric tons (t) and came from mines in 60 countries; the 10 leading producing countries accounted for 86 percent of the total. The largest producer was Mexico, followed by Peru, Australia, and the United States. About 25 percent of the silver mined in the world in 2001 came from silver ores; 15 percent, from gold ores and the remaining 60 percent, from copper, lead, and zinc ores. In the United States, 14 percent of the silver mined in 2001 came from silver ores; 39 percent, from gold ores; 10 percent, from copper and copper-molybdenum ores; and 37 percent, from lead, zinc, and lead-zinc ores. The precious metal ores (gold and silver) came from 30 lode mines and 10 placer mines; the base-metal ores (copper, lead, molybdenum, and zinc) came from 24 lode mines. Placer mines yielded less than 1 percent of the national silver production. Silver was mined in 12 States, of which Nevada was by far the largest producer; it accounted for nearly one-third of the national total. The production of silver at domestic mines generated employment for about 1,100 mine and mill workers. The value of mined domestic silver was estimated to be $290 million. Of the nearly 27,000 t of world silver that was fabricated in 2001, about one-third went into jewelry and silverware, one-fourth into the light-sensitive compounds used in photography, and nearly all the remainder went for industrial uses, of which there were 7 substantial uses and many other small-volume uses. By comparison, 85 percent of the silver used in the United States went to photography and industrial uses, 8 percent to jewelry and silverware, and 7 percent to coins and medals. The United States was the largest consumer of silver followed by India, Japan, and Italy; the 13 largest consuming countries accounted for nearly 90 percent of the world total. In the United States, about 30 companies accounted for more than 90 percent of the silver fabricated. The consumption of silver for all fabrication uses is expected to grow slowly through the decade ending in 2010 at about 1.3 percent per year for the world and 2.4 percent per year for the United States. World and U.S. reserves and reserve bases are more than adequate to satisfy the demand for newly mined silver through 2010. The other components of supply will be silver recovered from scrap, silver from industrial stocks, and silver bullion that is sold into the market from commodity exchange and private stocks.
Hyk, Wojciech; Kitka, Konrad
2017-02-01
A system composed of persulfate salt and ammonia in highly alkaline aqueous solution is developed and examined for leaching metallic silver from elements of the electronic waste materials (e-scrap). Strong base activates persulfate ions providing in situ generation of highly reactive oxygen molecules. The oxidized metal forms then well soluble complex ions with ammonia ligands. The kinetic studies of the leaching process were performed for pure metallic silver. They revealed that the efficiency of the process is affected by the type of the persulfate salt. By employing potassium persulfate one obtains significantly (more than 50% for silver plates and more than 100% for silver powder) increased efficiency of silver dissolution compared to the solution composed of either sodium or ammonium persulfates. In the range of persulfate concentrations between 0.02 and 0.23mol/L the apparent reaction order with respect to the persulfate concentration was similar for all persulfate salts and was estimated to be around 0.5. The room temperature (22±2°C) seems to be an optimal temperature for the leaching process. An increase in the temperature resulted in the significant drop in the silver dissolution rate due to the decreased solubility of oxygen. Based on these results a possible mechanism of dissolving silver is discussed and the optimal composition of the leaching solution is formulated. The obtained formulation of the leaching solution was applied for the extraction of silver coatings of Cu-based e-waste scrap and the obtained results revealed an important effect of copper in the mechanism of the leaching process. The regression analysis of the leaching curve indicated that each gram of base-activated potassium persulfate under the specified conditions may leach almost 100mg of silver coatings in a form of well soluble diamminesilver (I) complex. The silver complex can be relatively easy reduced to metallic silver. The method developed is relatively cheap, low toxic and does not produce harmful by-products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hansson, M; Abedi-Valugerdi, M
2003-01-01
Xenobiotic-metals such as mercury (Hg) and silver (Ag) induce an H-2 linked antinucleolar autoantibody (ANolA) production in susceptible mice. The mechanism for induction of ANolA synthesis is not well understood. However, it has been suggested that both metals interact with nucleolar proteins and reveal cryptic self-peptides to nontolerant autoreactive T cells, which in turn stimulate specific autoreactive B cells. In this study, we considered this suggestion and asked if mercury and silver display, if not identical, similar cryptic self-peptides, they would induce comparable ANolA responses in H-2 susceptible mice. We analysed the development of ANolA production in mercury- and/or silver-treated mice of H-2s, H-2q and H-2f genotypes. We found that while mercury stimulated ANolA synthesis in all strains tested, silver induced ANolA responses of lower magnitudes in only H-2s and H-2q mice, but not in H-2f mice. Resistance to silver in H-2f mice was independent of the dosage/time-period of silver-treatment and non-H-2 genes. Further studies showed that F1 hybrid crosses between silver-susceptible A.SW (H-2s) and -resistant A.CA (H-2f) mice were resistant to silver, but not mercury with regard to ANolA production. Additionally, the magnitudes of mercury-induced ANolA responses in the F1 hybrids were lower than those of their parental strains. The above differential ANolA responses to mercury and silver can be explained by various factors, including the different display of nucleolar cryptic peptides by these xenobiotics, determinant capture and coexistence of different MHC molecules. Our findings also suggest that the ability of a xenobiotic metal merely to create cryptic self-peptides may not be sufficient for the induction of an ANolA response. PMID:12605692
Thompson, Karen J; Harley, Cynthia M; Barthel, Grant M; Sanders, Mark A; Mesce, Karen A
2015-01-01
The staining of neurons with silver began in the 1800s, but until now the great resolving power of the laser scanning confocal microscope has not been utilized to capture the in-focus and three-dimensional cytoarchitecture of metal-impregnated cells. Here, we demonstrate how spectral confocal microscopy, typically reserved for fluorescent imaging, can be used to visualize metal-labeled tissues. This imaging does not involve the reflectance of metal particles, but rather the excitation of silver (or gold) nanoparticles and their putative surface plasmon resonance. To induce such resonance, silver or gold particles were excited with visible-wavelength laser lines (561 or 640 nm), and the maximal emission signal was collected at a shorter wavelength (i.e., higher energy state). Because the surface plasmon resonances of noble metal nanoparticles offer a superior optical signal and do not photobleach, our novel protocol holds enormous promise of a rebirth and further development of silver- and gold-based cell labeling protocols. DOI: http://dx.doi.org/10.7554/eLife.09388.001 PMID:26670545
Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity.
Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S
2015-01-05
Green synthesis of silver nanoparticles has been achieved using environmentally acceptable plant extract. It is observed that Abutilon indicum leaf extract can reduce silver ions into silver nanoparticles within 15 min of reaction time. The formation and stability of the reduced silver nanoparticles in the colloidal solution were monitored by UV-Vis spectrophotometer analysis. The mean particle diameter of silver nanoparticles was calculated from the XRD pattern. FT-IR spectra of the leaf extract after the development of nanoparticles are determined to allow identification of possible functional groups responsible for the conversion of metal ions to metal nanoparticles. The AgNPs thus obtained showed highly potent antibacterial activity toward Gram-positive (Staphyloccocus aureus and Bacillus subtilis) and Gram-negative (Salmonella typhi and Escherichia coli) microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Principal Locations of Metal Loading from Flood-Plain Tailings, Lower Silver Creek, Utah, April 2004
Kimball, Briant A.; Runkel, Robert L.; Walton-Day, Katherine
2007-01-01
Because of the historical deposition of mill tailings in flood plains, the process of determining total maximum daily loads for streams in an area like the Park City mining district of Utah is complicated. Understanding the locations of metal loading to Silver Creek and the relative importance of these locations is necessary to make science-based decisions. Application of tracer-injection and synoptic-sampling techniques provided a means to quantify and rank the many possible source areas. A mass-loading study was conducted along a 10,000-meter reach of Silver Creek, Utah, in April 2004. Mass-loading profiles based on spatially detailed discharge and chemical data indicated five principal locations of metal loading. These five locations contributed more than 60 percent of the cadmium and zinc loads to Silver Creek along the study reach and can be considered locations where remediation efforts could have the greatest effect upon improvement of water quality in Silver Creek.
Vats, M C; Singh, S K
2015-11-01
Demand for gold and silver has been escalating with increasing usage of electronic equipment globally. Around 267.3 MT of gold and 7275 MT of silver are being consumed annually for manufacturing mobile phones, laptops and other electronic equipment. However, only 15% is recuperated from these equipment; the remainder lies in the storage yards or landfills. The waste comprise glass, plastics, wires, batteries, PCBs, metal casing, etc. The PCB is composed of precious metals, which creates immense purpose for recycling and recovery. This paper characterises and assesses the recoverable metallic fraction of gold and silver from PCBs of mobile phones. The methodology is based on dismantling of the mobile handset and subjecting the PCBs to roasting and acid digestion. The digested samples were analysed by atomic absorption spectroscopy and the content of gold and silver in the PCBs was to be found in the range of 0.009-0.017% and 0.25-0.79% by weight respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Buchko, I. V.; Buchko, Ir. V.; Sorokin, A. A.; Ponomarchuk, V. A.; Travin, A. V.
2014-03-01
The results of studying the Mogot silver-base-metal deposit located in the Dzhugdzhur-Stanovoi Superterrane are discussed in this paper. The main ore-controlling structural elements of the studied district are near-latitudinal and NE-trending faults, which are accompanied by zones of hydrothermal metasomatic potassic, propylitic, and argillic alterations, breccias with quartz and quartz-carbonate cement replacing metamorphic rocks and granitoids of the Late Stanovoi Complex. The total sulfide content in ore is 2-3%. The high Ag, Pb, and Zn contents in ore allow us to consider the Mogot deposit as silver-base-metal, since except of orebody 4, there are no silver minerals proper. This indicates that silver is incorporated into crystalline lattice of sulfides. The results of 40Ar/39Ar geochronological investigations show that the hydrothermal ore deposition dated at 127-125 Ma was related to emplacement of intrusions pertaining to the Tynda-Bakaran Complex.
Hohenberger, Erik; Freitag, Nathan; Rosenmann, Daniel; ...
2017-04-19
Here, we present a facile method for fabricating nanostructured silver films containing a high density of nanoscopic gap features through a surface directed phenomenon utilizing nanoporous scaffolds rather than through traditional lithographic patterning processes. This method enables tunability of the silver film growth by simply adjusting the formulation and processing conditions of the nanoporous film prior to metallization. We further demonstrate that this process can produce nanoscopic gaps in thick (100 nm) silver films supporting localized surface plasmon resonance with large field amplification within the gaps while enabling launching of propagating surface plasmons within the silver grains. These enhanced fieldsmore » provide metal enhanced fluorescence with enhancement factors as high as 21 times compared to glass, as well as enable visualization of single fluorophore emission. This work provides a low-cost rapid approach for producing novel nanostructures capable of broadband fluorescence amplification, with potential applications including plasmonic and fluorescence based optical sensing and imaging applications.« less
Betula pendula: A Promising Candidate for Phytoremediation of TCE in Northern Climates.
Lewis, Jeffrey; Qvarfort, Ulf; Sjöström, Jan
2015-01-01
Betula pendula (Silver birch) trees growing on two contaminated sites were evaluated to assess their capacity to phytoscreen and phytoremediate chlorinated aliphatic compounds and heavy metals. Both locations are industrially-contaminated properties in central Sweden. The first was the site of a trichloroethylene (TCE) spill in the 1980s while the second was polluted with heavy metals by burning industrial wastes. In both cases, sap and sapwood from Silver birch trees were collected and analyzed for either chlorinated aliphatic compounds or heavy metals. These results were compared to analyses of the surface soil, vadose zone pore air and groundwater. Silver birch demonstrated the potential to phytoscreen and possibly phytoremediate TCE and related compounds, but it did not demonstrate the ability to effectively phytoextract heavy metals when compared with hyperaccumulator plants. The capacity of Silver birch to phytoremediate TCE appears comparable to tree species that have been employed in field-scale TCE phytoremediation efforts, such as Populus spp. and Eucalyptus sideroxylon rosea.
Kim, Jun-Hyun; Bryan, William W; Lee, T Randall
2008-10-07
This report describes the structural and optical properties of a series of spherical shell/core nanoparticles in which the shell is comprised of a thin layer of gold, silver, or gold-silver alloy, and the core is comprised of a monodispersed silica nanoparticle. The silica core particles were prepared using the Stöber method, functionalized with terminal amine groups, and then seeded with small gold nanoparticles (approximately 2 nm in diameter). The gold-seeded silica particles were coated with a layer of gold, silver, or gold-silver alloy via solution-phase reduction of an appropriate metal ion or mixture of metal ions. The size, morphology, and elemental composition of the composite nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermal gravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The optical properties of the nanoparticles were analyzed by UV-vis spectroscopy, which showed strong absorptions ranging from 400 nm into the near-IR region, where the position of the plasmon band reflected not only the thickness of the metal shell, but also the nature of the metal comprising the shell. Importantly, the results demonstrate a new strategy for tuning the position of the plasmon resonance without having to vary the core diameter or the shell thickness.
Brogliato, Ariane R; Borges, Paula A; Barros, Janaina F; Lanzetti, Manuela; Valença, Samuel; Oliveira, Nesser C; Izário-Filho, Hélcio J; Benjamim, Claudia F
2014-04-01
Silver is used worldwide in dressings for wound management. Silver has demonstrated great efficacy against a broad range of microorganisms, but there is very little data about the systemic absorption and toxicity of silver in vivo. In this study, the antimicrobial effect of the silver-coated dressing (SilverCoat(®)) was evaluated in vitro against the most common microorganisms found in wounds, including Pseudomonas aeruginosa, Candida albicans, Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus and Klebsiella pneumoniae. We also performed an excisional skin lesion assay in mice to evaluate wound healing after 14 days of treatment with a silver-coated dressing, and we measured the amount of silver in the blood, the kidneys and the liver after treatment. Our data demonstrated that the nylon threads coated with metallic silver have a satisfactory antimicrobial effect in vitro, and the prolonged use of these threads did not lead to systemic silver absorption, did not induce toxicity in the kidneys and the liver and were not detrimental to the normal wound-healing process. © 2012 The Authors. International Wound Journal © 2012 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Undercoat prevents blistering of silver plating at elevated temperatures
NASA Technical Reports Server (NTRS)
Kuster, C. A.
1967-01-01
Gold undercoat prevents blistering in the silver plating of Inconel 718 seals from steam at high temperatures. The undercoat is diffused into the surface of the parent metal by baking prior to silver plating.
Metal-enhanced fluorescence exciplex emission.
Zhang, Yongxia; Mali, Buddha L; Geddes, Chris D
2012-01-01
In this letter, we report the first observation of metal-enhanced exciplex fluorescence, observed from anthracene in the presence of diethylaniline. Anthracene in the presence of diethylaniline in close proximity to Silver Island Films (SIFs) shows enhanced monomer and exciplex emission as compared to a non-silvered control sample containing no silver nanoparticles. Our findings suggest two complementary methods for the enhancement: (i) surface plasmons can radiate coupled monomer and exciplex fluorescence efficiently, and (ii) enhanced absorption (enhanced electric near-field) further facilitates enhanced emission. Our exciplex studies help us to further understand the complex photophysics of the metal-enhanced fluorescence technology. Copyright © 2011 Elsevier B.V. All rights reserved.
Bare and protected sputtered-noble-metal films for surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Talaga, David; Bonhommeau, Sébastien
2014-11-01
Sputtered silver and gold films with different surface morphologies have been prepared and coated with a benzenethiol self-assembled monolayer. Rough noble metal films showed strong Raman features assigned to adsorbed benzenethiol molecules upon irradiation over a wide energy range in the visible spectrum, which disclosed the occurrence of a significant surface-enhanced Raman scattering with maximal enhancement factors as high as 6 × 106. In addition, the adsorption of ethanethiol onto silver surfaces hinders their corrosion over days while preserving mostly intact enhancement properties of naked silver. This study may be applied to develop stable and efficient metalized probes for tip-enhanced Raman spectroscopy.
Antifungal activity of fabrics knitted by metalized Silver/Polyester composite yarn
NASA Astrophysics Data System (ADS)
Özkan, İ.; Duru Baykal, P.
2017-10-01
In this study, antifungal properties of fabric knitted from metalized silver/polyester composite yarn were investigated. Intermingling is an alternative technique for yarn blending process. Yarns having different features can be combined by feeding the same intermingling jet. This process is defined as commingling. In the study, intermingling process was used to produce metalized silver/polyester composite yarn. Commingled yarns were knitted to single jersey fabrics by IPM brand sample type circular knitting machine. Antifungal activity test was applied to samples against Aspergillus Niger according to AATCC 30 test procedure. It has been identified that the application provides antifungal activity to fabric.
Copper-silver-titanium-tin filler metal for direct brazing of structural ceramics
Moorhead, Arthur J.
1988-04-05
A method of joining ceramics and metals to themselves and to one another at about 800.degree. C. is described using a brazing filler metal consisting essentially of 35 to 50 at. % copper, 40 to 50 at. % silver, 1 to 15 at. % titanium, and 2 to 8 at. % tin. This method produces strong joints that can withstand high service temperatures and oxidizing environments.
The interference of metals with the determination of arsenic by the silver diethyldithiocarbamate (SDDC) Method was investigated. Low recoveries of arsenic are obtained when cobalt, chromium, molybdenum, nitrate, nickel or phosphate are at concentrations of 7 mg/l or above (indiv...
Role of Anions Associated with the Formation and Properties of Silver Clusters.
Wang, Quan-Ming; Lin, Yu-Mei; Liu, Kuan-Guan
2015-06-16
Metal clusters have been very attractive due to their aesthetic structures and fascinating properties. Different from nanoparticles, each cluster of a macroscopic sample has a well-defined structure with identical composition, size, and shape. As the disadvantages of polydispersity are ruled out, informative structure-property relationships of metal clusters can be established. The formation of a high-nuclearity metal cluster involves the organization of metal ions into a complex entity in an ordered way. To achieve controllable preparation of metal clusters, it is helpful to introduce a directing agent in the formation process of a cluster. To this end, anion templates have been used to direct the formation of high nuclearity clusters. In this Account, the role of anions played in the formation of a variety of silver clusters has been reviewed. Silver ions are positively charged, so anionic species could be utilized to control the formation of silver clusters on the basis of electrostatic interactions, and the size and shape of the resulted clusters can be dictated by the templating anions. In addition, since the anion is an integral component in the silver clusters described, the physical properties of the clusters can be modulated by functional anions. The templating effects of simple inorganic anions and polyoxometales are shown in silver alkynyl clusters and silver thiolate clusters. Intercluster compounds are also described regarding the importance of anions in determining the packing of the ion pairs and making contribution to electron communications between the positive and negative counterparts. The role of the anions is threefold: (a) an anion is advantageous in stabilizing a cluster via balancing local positive charges of the metal cations; (b) an anion template could help control the size and shape of a cluster product; (c) an anion can be a key factor in influencing the function of a cluster through bringing in its intrinsic properties. Properties including electron communication, luminescent thermochromism, single-molecule magnet, and intercluster charge transfer associated with anion-directed silver clusters have been discussed. We intend to attract chemists' attention to the role that anions could play in determining the structures and properties of metal complexes, especially clusters. We hope that this Account will stimulate more efforts in exploiting new role of anions in various metal cluster systems. Anions can do much more than counterions for charge balance, and they should be considered in the design and synthesis of cluster-based functional materials.
NASA Astrophysics Data System (ADS)
Muradov, A. D.; Mukashev, K. M.; Yar-Mukhamedova, G. Sh.; Korobova, N. E.
2017-11-01
The impact of silver metallization and electron irradiation on the physical and mechanical properties of polyimide films has been studied. The metal that impregnated the structure of the polyimide substrate was 1-5 μm. The surface coatings contained 80-97% of the relative silver mirror in the visible and infrared regions. Irradiation was performed at the ELU-6 linear accelerator with an average beam electron energy of 2 MeV, an integral current of up to 1000 μA, a pulse repetition rate of 200 Hz, and a pulse duration of 5 μs. The absorbed dose in the samples was 10, 20, 30, and 40 MGy. The samples were deformed at room temperature under uniaxial tension on an Instron 5982 universal testing system. The structural changes in the composite materials that result from the impact of the physical factors were studied using an X-ray diffractometer DRON-2M in air at 293 K using Cu K α radiation (λαCu = 1.5418 Å). A substantial growth of mechanical characteristics resulting from the film metallization, as compared to the pure film, was observed. The growth of the ultimate strength by Δσ = 105 MPa and the plasticity by Δɛ = 75% is connected with the characteristics of the change of structure of the metallized films and the chemical etching conditions. The electron irradiation of the metallized polyimide film worsens its elastic and strength characteristics due to the formation of new phases in the form of silver oxide in the coating. The concentration of these phases increased with increasing dose, which was also the result of the violation of the ordered material structure, namely, the rupture of polyimide macromolecule bonds and the formation of new phases of silver in the coating. A mathematical model was obtained that predicts the elastic properties of silver metallized polyimide films. This model agrees with the experimental data.
NASA Astrophysics Data System (ADS)
Chauhan, Ritika; Reddy, Arpita; Abraham, Jayanthi
2015-01-01
The development of eco-friendly alternative to chemical synthesis of metal nanoparticles is of great challenge among researchers. The present study aimed to investigate the biological synthesis, characterization, antimicrobial study and synergistic effect of silver and zinc oxide nanoparticles against clinical pathogens using Pichia fermentans JA2. The extracellular biosynthesis of silver and zinc oxide nanoparticles was investigated using Pichia fermentans JA2 isolated from spoiled fruit pulp bought in Vellore local market. The crystalline and stable metallic nanoparticles were characterized evolving several analytical techniques including UV-visible spectrophotometer, X-ray diffraction pattern analysis and FE-scanning electron microscope with EDX-analysis. The biosynthesized metallic nanoparticles were tested for their antimicrobial property against medically important Gram positive, Gram negative and fungal pathogenic microorganisms. Furthermore, the biosynthesized nanoparticles were also evaluated for their increased antimicrobial activities with various commercially available antibiotics against clinical pathogens. The biosynthesized silver nanoparticles inhibited most of the Gram negative clinical pathogens, whereas zinc oxide nanoparticles were able to inhibit only Pseudomonas aeruginosa. The combined effect of standard antibiotic disc and biosynthesized metallic nanoparticles enhanced the inhibitory effect against clinical pathogens. The biological synthesis of silver and zinc oxide nanoparticles is a novel and cost-effective approach over harmful chemical synthesis techniques. The metallic nanoparticles synthesized using Pichia fermentans JA2 possess potent inhibitory effect that offers valuable contribution to pharmaceutical associations.
Phase Evolution of YBa2Cu3O7-x films by all-chemical solution deposition route for coated conductors
NASA Astrophysics Data System (ADS)
Zhao, Yue; Tang, Xiao; Wu, Wei; Grivel, Jean-Claude
2014-05-01
In order to understand the all-chemical-solution-deposition (CSD) processes for manufacturing coated conductors, we investigated the phase evolution of YBa2Cu3O7 (YBCO) films deposited by a low-fluorine metal-organic solution deposition (LF-MOD) method on CSD derived Ce0.9La0.1O2/Gd2Zr2O7/NiW. It is shown that the phase transition from the pyrolyzed film to fully converted YBCO film in the LF-MOD process is similar to that in typical trifluoroacetates-metal organic deposition (TFA-MOD) processes even though the amount of TFA in the solution is reduced by almost one half compared with typical TFA-MOD cases. Moreover, we found that the formation of impurities (mainly BaCeO3, NiWO4 and NiO) is strongly related to the annealing temperature, i.e., the diffusion controlled reactions become intensive from 760 oC, which might be connected with the poor structural and superconducting properties of the films deposited at high sintering temperatures. Based on these results, the optimized growth conditions of YBCO films were established, and a high critical current density (Jc) of about 2 MA/cm2 (77 K, self field) is achieved in a 200 nm thick YBCO film in the architecture made by our all CSD route.
Sediment quality in Burlington Harbor, Lake Champlain, U.S.A.
Lacey, E.M.; King, J.W.; Quinn, J.G.; Mecray, E.L.; Appleby, P.G.; Hunt, A.S.
2001-01-01
Surface samples and cores were collected in 1993 from the Burlington Harbor region of Lake Champlain. Sediment samples were analyzed for trace metals (cadmium, copper, lead, nickel, silver and zinc), simultaneously extracted metal/acid volatile sulfide (SEM-AVS), grain size, nutrients (carbon and nitrogen) and organic contaminants (polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)). The concentrations of cadmium, copper, silver and zinc from the partial sediment digestion of the surface samples correlated well with each other (r2 > 0.60) indicating that either a common process, or group of processes determined the sediment concentrations of these metals. In an analysis of the spatial distribution of the trace metals and PAHs, high surficial concentrations were present in the southern portion of the Harbor. The trace metal trend was strengthened when the concentrations were normalized by grain size. A sewage treatment plant outfall discharge was present in the southeastern portion of the Harbor at the time of this study and is the major source of trace metal and PAH contamination. Evaluation of sediment cores provides a proxy record of historical trace metal and organic inputs. The peak accumulation rate for copper, cadmium, lead, and zinc was in the late 1960s and the peak silver accumulation rate was later. The greatest accumulation of trace metals occurred in the late 1960s after discharges from the STP began. Subsequent declines in trace metal concentrations may be attributed to increased water and air regulations. The potential toxicity of trace metals and organic contaminants was predicted by comparing contaminant concentrations to benchmark concentrations and potential trace metal bioavailability was predicted with SEM-AVS results. Surface sample results indicate lead, silver, ???PAHs and ???PCBs are potentially toxic and/or bioavailable. These predictions were supported by studies of biota in the Burlington Harbor watershed. There is a clear trend of decreasing PAH and trace metal contaminant concentrations with distance from the STP outfall.Surface samples and cores were collected in 1993 from the Burlington Harbor region of Lake Champlain. Sediment samples were analyzed for trace metals (cadmium, copper, lead, nickel, silver and zinc), simultaneously extracted metal/acid volatile sulfide (SEM-AVS), grain size, nutrients (carbon and nitrogen) and organic contaminants (polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)). The concentrations of cadmium, copper, silver and zinc from the partial sediment digestion of the surface samples correlated well with each other (r2>0.60) indicating that either a common process, or group of processes determined the sediment concentrations of these metals. In an analysis of the spatial distribution of the trace metals and PAHs, high surficial concentrations were present in the southern portion of the Harbor. The trace metal trend was strengthened when the concentrations were normalized by grain size. A sewage treatment plant outfall discharge was present in the southeastern portion of the Harbor at the time of this study and is the major source of trace metal and PAH contamination. Evaluation of sediment cores provides a proxy record of historical trace metal and organic inputs. The peak accumulation rate for copper, cadmium, lead, and zinc was in the late 1960s and the peak silver accumulation rate was later. The greatest accumulation of trace metals occurred in the late 1960s after discharges from the STP began. Subsequent declines in trace metal concentrations may be attributed to increased water and air regulations. The potential toxicity of trace metals and organic contaminants was predicted by comparing contaminant concentrations to benchmark concentrations and potential trace metal bioavailability was predicted with SEM-AVS results. Surface sample results indicate lead, silver, ??PAHs and ??PCBs are potentially toxic and/or bi
Zhang, Jian; Lakowicz, Joseph R.
2013-01-01
It has been suggested that narrow gaps between metallic nanostructures can be practical for producing large field enhancement. We design a hybrid silver nanostructure geometry in which fluorescent emitters are sandwiched between silver nanoparticles and silver island film (SIF). A desired number of polyelectrolyte layers are deposited on the SIF surface before the self-assembly of a second silver nanoparticle layer. Layer-by-layer configuration provides a well-defined dye position. It allows us to study the photophyical behaviors of fluorophores in the resulting gap at the single molecule level. The enhancement factor of a fluorophore located in the gap is much higher than those on silver surfaces alone and on glass. These effects may be used for increased detectability of single molecules bound to surfaces which contain metallic structures for either biophysical studies or high sensitivity assays. PMID:23373787
Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan; Roeffaers, Maarten B J; De Vos, Dirk E
2016-05-21
Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal-organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4'-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications.
Twenty Years of Research on the Alcator C-Mod Tokamak
NASA Astrophysics Data System (ADS)
Greenwald, Martin
2013-10-01
Alcator C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since its start in 1993, contributing data that extended tests of critical physical models into new parameter ranges and into new regimes. Using only RF for heating and current drive with innovative launching structures, C-Mod operates routinely at very high power densities. Research highlights include direct experimental observation of ICRF mode-conversion, ICRF flow drive, demonstration of Lower-Hybrid current drive at ITER-like densities and fields and, using a set of powerful new diagnostics, extensive validation of advanced RF codes. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components--an approach adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and EDA H-mode regimes which have high performance without large ELMs and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and found that self-generated flow shear can be strong enough to significantly modify transport. C-Mod made the first quantitative link between pedestal temperature and H-mode performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. Work supported by U.S. DoE
NASA Astrophysics Data System (ADS)
Araki, Takeshi; Hirabayashi, Izumi
2003-11-01
Large-area, uniform, high critical current density (Jc) YBa2Cu3O7-x (YBCO) superconductor films are now routinely obtained by metalorganic deposition using trifluoroacetates (TFA-MOD). This method does not require any expensive vacuum apparatus at any time during the whole process. Thus, TFA-MOD is regarded as one of the most suitable candidates for fabricating a YBCO tape for many high-power applications. This method originated from an electron beam process using BaF2 developed by Mankiewich et al. Afterwards, Gupta et al reported using TFA-MOD to prepare a similar precursor film. These two ex situ processes used fluorides instead of BaCO3 to avoid the fatal deterioration in Jc, which is caused in the resulting films through metal carboxylic groups. Fluorides not only avoid such deterioration but also lead to perfectly c-axis-oriented epitaxial crystal growth. In conventional metalorganic deposition, nucleation in the precursor film causes random orientation in the resulting film. However, in TFA-MOD, nanocrystallites in the precursor film never cause such disorder. Furthermore, during the firing process of TFA-MOD, water and HF gas diffuse quickly between the film surface and growth front of the YBCO layer. This diffusion never limits the growth rate of YBCO. What distinguishes TFA-MOD from conventional metalorganic deposition? What happens during heat treatment? In this paper, we discuss all the TFA-MOD processes and the peculiar growth scheme of the YBCO layer in TFA-MOD using the model of a quasi-liquid network. In addition, we review the history of TFA-MOD and recent results and discuss the prospects of future applications.
USDA-ARS?s Scientific Manuscript database
Metal nanoparticles obtained from green route are gaining significant prominence as a result of their potential applications in nanomedicine and material engineering. Overall metal nanoparticles studied, silver nanoparticles (AgNPs) clutch prominent place in nanoparticles research field. Herein, we ...
Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanoparticles
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Lee, Kunik (Inventor); Kim, Hyun-Jung (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor)
2014-01-01
Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.
Zhang, Junmei; Brodbelt, Jennifer S
2005-03-15
For detection and differentiation of isomeric flavonoids, electrospray ionization mass spectrometry is used to generate silver complexes of the type (Ag + flavonoid)+. Collisionally activated dissociation (CAD) of the resulting 1:1 silver/flavonoid complexes allows isomer differentiation of flavonoids. Eighteen flavonoid diglycosides constituting seven isomeric series are distinguishable from each other based on the CAD patterns of their silver complexes. Characteristic dissociation pathways allow identification of the site of glycosylation, the type of disaccharide (rutinose versus neohesperidose), and the type of aglycon (flavonol versus flavone versus flavanone). This silver complexation method is more universal than previous metal complexation methods, as intense silver complexes are observed even for flavonoids that lack the typical metal chelation sites. To demonstrate the feasibility of using silver complexation and tandem mass spectrometry to characterize flavonoids in complex mixtures, flavonoids extracted from grapefruit juice are separated by high-performance liquid chromatography and analyzed via a postcolumn complexation ESI-MS/MS strategy. Diagnostic fragmentation pathways of the silver complexes of the individual eluting flavonoids allow successful identification of the six flavonoids in the extract.
TMV Disk Scaffolds for Making sub-30 nm Silver Nanorings.
Bayram, Serene; Zahr, Omar; Del Re, Julia; Blum, Amy Szuchmacher
2018-01-01
Nanosized bioscaffolds can be utilized to tackle the challenge of size reduction of metallic rings owing to their miniature features as well as their well-known biomineralization capacity. The tobacco mosaic virus coat protein is used as a command surface to grow and assemble silver nanoparticles into sub-30 nm rings. The versatility of TMV allows the formation of both solid silver rings and rings consisting of discrete silver nanoparticles. The pH-dependent coulombic surface map along with the annular geometry of the protein aggregate allow the generation of rings with or without a central nanoparticle. Our silver rings are believed to be the smallest to date, and they can offer a test material for existing theories on metallic nanorings of this heretofore unreached size scale.
Hossen, Md Mir; Bendickson, Lee; Palo, Pierre E; Yao, Zhiqi; Nilsen-Hamilton, Marit; Hillier, Andrew C
2018-08-31
DNA origami can be used to create a variety of complex and geometrically unique nanostructures that can be further modified to produce building blocks for applications such as in optical metamaterials. We describe a method for creating metal-coated nanostructures using DNA origami templates and a photochemical metallization technique. Triangular DNA origami forms were fabricated and coated with a thin metal layer by photochemical silver reduction while in solution or supported on a surface. The DNA origami template serves as a localized photosensitizer to facilitate reduction of silver ions directly from solution onto the DNA surface. The metallizing process is shown to result in a conformal metal coating, which grows in height to a self-limiting value with increasing photoreduction steps. Although this coating process results in a slight decrease in the triangle dimensions, the overall template shape is retained. Notably, this coating method exhibits characteristics of self-limiting and defect-filling growth, which results in a metal nanostructure that maps the shape of the original DNA template with a continuous and uniform metal layer and stops growing once all available DNA sites are exhausted.
Electronic Devices With Diffusion Barrier and Process for Making Same
2000-05-03
components. Diffusion is also a problem with other high 10 conductivity metallization materials such as gold , silver, and platinum. As can be...those of subgroup IB of the Periodic Table (i.e., copper, silver, gold ), as well as platinum. These metals are highly attractive 10 for...the metal halide molecules of the desired thickness, is formed upon the monolayer portion of the barrier -7- material. The monolayer ( monoatomic
Method of bonding silver to glass and mirrors produced according to this method
Pitts, J.R.; Thomas, T.M.; Czanderna, A.W.
1984-07-31
A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.
Method of bonding silver to glass and mirrors produced according to this method
Pitts, John R.; Thomas, Terence M.; Czanderna, Alvin W.
1985-01-01
A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.
Electrodeposition of platinum and silver into chemically modified microporous silicon electrodes
2012-01-01
Electrodeposition of platinum and silver into hydrophobic and hydrophilic microporous silicon layers was investigated using chemically modified microporous silicon electrodes. Hydrophobic microporous silicon enhanced the electrodeposition of platinum in the porous layer. Meanwhile, hydrophilic one showed that platinum was hardly deposited within the porous layer, and a film of platinum on the top of the porous layer was observed. On the other hand, the electrodeposition of silver showed similar deposition behavior between these two chemically modified electrodes. It was also found that the electrodeposition of silver started at the pore opening and grew toward the pore bottom, while a uniform deposition from the pore bottom was observed in platinum electrodeposition. These electrodeposition behaviors are explained on the basis of the both effects, the difference in overpotential for metal deposition on silicon and on the deposited metal, and displacement deposition rate of metal. PMID:22720690
Disinfection of Spacecraft Potable Water Systems by Passivation with Ionic Silver
NASA Technical Reports Server (NTRS)
Birmele, Michele N.; McCoy, LaShelle e.; Roberts, Michael S.
2011-01-01
Microbial growth is common on wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and physical disinfection methods. Advanced control technologies are needed to limit microorganisms and increase the reliability of life support systems required for long-duration human missions. Silver ions and compounds are widely used as antimicrobial agents for medical applications and continue to be used as a residual biocide in some spacecraft water systems. The National Aeronautics and Space Administration (NASA) has identified silver fluoride for use in the potable water system on the next generation spacecraft. Due to ionic interactions between silver fluoride in solution and wetted metallic surfaces, ionic silver is rapidly depleted from solution and loses its antimicrobial efficacy over time. This report describes research to prolong the antimicrobial efficacy of ionic silver by maintaining its solubility. Three types of metal coupons (lnconel 718, Stainless Steel 316, and Titanium 6AI-4V) used in spacecraft potable water systems were exposed to either a continuous flow of water amended with 0.4 mg/L ionic silver fluoride or to a static, pre-treatment passivation in 50 mg/L ionic silver fluoride with or without a surface oxidation pre-treatment. Coupons were then challenged in a high-shear, CDC bioreactor (BioSurface Technologies) by exposure to six bacteria previously isolated from spacecraft potable water systems. Continuous exposure to 0.4 mg/L ionic silver over the course of 24 hours during the flow phase resulted in a >7-log reduction. The residual effect of a 24-hour passivation treatment in 50 mg/L of ionic silver resulted in a >3-log reduction, whereas a two-week treatment resulted in a >4-log reduction. Results indicate that 0.4 mg/L ionic silver is an effective biocide against many bacteria and that a prepassivation of metal surfaces with silver can provide additional microbial control.
Printed silver nanowire antennas with low signal loss at high-frequency radio
NASA Astrophysics Data System (ADS)
Komoda, Natsuki; Nogi, Masaya; Suganuma, Katsuaki; Kohno, Kazuo; Akiyama, Yutaka; Otsuka, Kanji
2012-05-01
Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those obtained using etched copper foil antennas, because their surfaces were much smoother than those of etched copper foil antennas. This was the case even though the resistivity of silver nanowire lines was 43-71 μΩ cm, which is much higher than that of etched copper foil (2 μΩ cm). When printed silver nanowire antennas were heated at 100 °C, they achieved signal losses that were much lower than those of silver paste antennas comprising microparticles, nanoparticles, and flakes. Furthermore, using a low temperature process, we succeeded in remotely controlling a commercialized radio-controlled car by transmitting a 2.45 GHz signal via a silver nanowire antenna printed on a polyethylene terephthalate film.Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those obtained using etched copper foil antennas, because their surfaces were much smoother than those of etched copper foil antennas. This was the case even though the resistivity of silver nanowire lines was 43-71 μΩ cm, which is much higher than that of etched copper foil (2 μΩ cm). When printed silver nanowire antennas were heated at 100 °C, they achieved signal losses that were much lower than those of silver paste antennas comprising microparticles, nanoparticles, and flakes. Furthermore, using a low temperature process, we succeeded in remotely controlling a commercialized radio-controlled car by transmitting a 2.45 GHz signal via a silver nanowire antenna printed on a polyethylene terephthalate film. Electronic supplementary information (ESI) available: Operation of R/C car with a silver nanowire monopole antenna. See DOI: 10.1039/c2nr30485f
Ligand exchange in ionic systems and its effect on silver nucleation and growth.
Abbott, Andrew P; Azam, Muhammad; Frisch, Gero; Hartley, Jennifer; Ryder, Karl S; Saleem, Saima
2013-10-28
The electrodeposition of metals from ionic solutions is intrinsically linked to the reactivity of the solute ions. When metal salts dissolve, the exchange of the anion with the molecular and ionic components from solution affects the speciation and therefore the characteristics of metal reduction. This study investigates the nucleation mechanism, deposition kinetics, metal speciation and diffusion coefficients of silver salts dissolved in Deep Eutectic Solvents. The electrochemical reduction of AgCl, AgNO3 and Ag2O is studied in 1 : 2 choline chloride : ethylene glycol and 1 : 2 choline chloride : urea. Cyclic voltammetry is used to evaluate electrochemical kinetics. Detailed analysis of chronoamperometric data shows that silver deposits form via multiple 3D nucleation with mass transport controlled hemispherical growth. The nucleation mechanism was found to be potential dependent, varying from progressive to instantaneous as the reduction potential becomes more cathodic. Diffusion coefficients are determined using three different methods. Trends are rationalised in terms of solvent viscosity and silver speciation analysis with EXAFS. The morphology of electroreduced silver is investigated with scanning electron microscopy and shows that deposits from the urea based liquid form more dense morphologies than those from the ethylene glycol based liquid.
NASA Astrophysics Data System (ADS)
Padovani, S.; Borgia, I.; Brunetti, B.; Sgamellotti, A.; Giulivi, A.; D'Acapito, F.; Mazzoldi, P.; Sada, C.; Battaglin, G.
Lustre is one of the most important decorative techniques of the Medieval and Renaissance pottery of the Mediterranean basin, capable of producing brilliant metallic reflections and iridescence. Following the recent finding that the colour of lustre decorations is mainly determined by copper and silver nanoclusters dispersed in the glaze layer, the local environment of copper and silver atoms has been studied by extended X-ray absorption fine structure (EXAFS) spectroscopy on original samples of gold and red lustre. It has been found that, in gold lustre, whose colour is attributed mainly to the silver nanocluster dispersion, silver is only partially present in the metallic form and copper is almost completely oxidised. In the red lustre, whose colour is attributed mainly to the copper nanocluster dispersion, only a fraction of copper is present in the metallic form. EXAFS measurements on red lustre, carried out in the total electron yield mode to probe only the first 150 nm of the glaze layer, indicated that in some cases lustre nanoclusters may be confined in a very thin layer close to the surface.
Silver-catalyzed synthesis of amides from amines and aldehydes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madix, Robert J; Zhou, Ling; Xu, Bingjun
The invention provides a method for producing amides via the reaction of aldehydes and amines with oxygen adsorbed on a metallic silver or silver alloy catalyst. An exemplary reaction is shown in Scheme 1: (I), (II), (III). ##STR00001##
Over-current carrying characteristics of rectangular-shaped YBCO thin films prepared by MOD method
NASA Astrophysics Data System (ADS)
Hotta, N.; Yokomizu, Y.; Iioka, D.; Matsumura, T.; Kumagai, T.; Yamasaki, H.; Shibuya, M.; Nitta, T.
2008-02-01
A fault current limiter (FCL) may be manufactured at competitive qualities and prices by using rectangular-shaped YBCO films which are prepared by metal-organic deposition (MOD) method, because the MOD method can produce large size elements with a low-cost and non-vacuum technique. Prior to constructing a superconducting FCL (SFCL), AC over-current carrying experiments were conducted for 120 mm long elements where YBCO thin film of about 200 nm in thickness was coated on sapphire substrate with cerium oxide (CeO2) interlayer. In the experiments, only single cycle of the ac damping current of 50 Hz was applied to the pure YBCO element without protective metal coating or parallel resistor and the magnitude of the current was increased step by step until the breakdown phenomena occurred in the element. In each experiment, current waveforms flowing through the YBCO element and voltage waveform across the element were measured to get the voltage-current characteristics. The allowable over-current and generated voltage were successfully estimated for the pure YBCO films. It can be pointed out that the lower n-value trends to bring about the higher allowable over-current and the higher withstand voltage more than tens of volts. The YBCO film having higher n-value is sensitive to the over-current. Thus, some protective methods such as a metal coating should be employed for applying to the fault current limiter.
An assessment of the CORCON-MOD3 code. Part 1: Thermal-hydraulic calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strizhov, V.; Kanukova, V.; Vinogradova, T.
1996-09-01
This report deals with the subject of CORCON-Mod3 code validation (thermal-hydraulic modeling capability only) based on MCCI (molten core concrete interaction) experiments conducted under different programs in the past decade. Thermal-hydraulic calculations (i.e., concrete ablation, melt temperature, melt energy, concrete temperature, and condensible and non-condensible gas generation) were performed with the code, and compared with the data from 15 experiments, conducted at different scales using both simulant (metallic and oxidic) and prototypic melt materials, using different concrete types, and with and without an overlying water pool. Sensitivity studies were performed in a few cases involving, for example, heat transfer frommore » melt to concrete, condensed phase chemistry, etc. Further, special analysis was performed using the ACE L8 experimental data to illustrate the differences between the experimental and the reactor conditions, and to demonstrate that with proper corrections made to the code, the calculated results were in better agreement with the experimental data. Generally, in the case of dry cavity and metallic melts, CORCON-Mod3 thermal-hydraulic calculations were in good agreement with the test data. For oxidic melts in a dry cavity, uncertainties in heat transfer models played an important role for two melt configurations--a stratified geometry with segregated metal and oxide layers, and a heterogeneous mixture. Some discrepancies in the gas release data were noted in a few cases.« less
Li, Weiping; Li, Long; Li, Meng; Yu, Jinghua; Ge, Shenguang; Yan, Mei; Song, Xianrang
2013-10-25
A simple and sensitive 3D microfluidic origami multiplex electrochemical immunodevice was developed for the first time using a novel nanoporous silver modified paper working electrode as a sensor platform and different metal ion functionalized nanoporous gold-chitosan as a tracer.
USDA-ARS?s Scientific Manuscript database
A novel nanocomposite of silver/titanium dioxide/chitosan adipate (Ag/TiO2/CS) was developed through photochemical reduction using a chitosan adipate template. Chitosan served as a reducing agent for the metal ions, and anchored metal ions by forming Ag–N coordination bonds and electrostatic attract...
Low-energy ion beam synthesis of Ag endotaxial nanostructures in silicon
NASA Astrophysics Data System (ADS)
Nagarajappa, Kiran; Guha, Puspendu; Thirumurugan, Arun; Satyam, Parlapalli V.; Bhatta, Umananda M.
2018-06-01
Coherently, embedded metal nanostructures (endotaxial) are known to have potential applications concerning the areas of plasmonics, optoelectronics and thermoelectronics. Incorporating appropriate concentrations of metal atoms into crystalline silicon is critical for these applications. Therefore, choosing proper dose of low-energy ions, instead of depositing thin film as a source of metal atoms, helps in avoiding surplus concentration of metal atoms that diffuses into the silicon crystal. In this work, 30 keV silver negative ions are implanted into a SiO x /Si(100) at two different fluences: 1 × 1015 and 2.5 × 1015 Ag- ions/cm2. Later, the samples are annealed at 700 °C for 1 h in Ar atmosphere. Embedded silver nanostructures have been characterized using planar and cross-sectional TEM (XTEM) analysis. Planar TEM analysis shows the formation of mostly rectangular silver nanostructures following the fourfold symmetry of the substrate. XTEM analysis confirms the formation of prism-shaped silver nanostructures embedded inside crystalline silicon. Endotaxial nature of the embedded crystals has been discussed using selected area electron diffraction analysis.
Evaluation of Encapsulant Adhesion to Surface Metallization of Photovoltaic Cells: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tracy, Jared; Dauskardt, Reinhold; Bosco, Nick
Delamination of encapsulant materials from PV cell surfaces often appears to originate at regions with metallization. Using a fracture mechanics based metrology, the adhesion of EVA encapsulant to screen printed silver metallization was evaluated. At room temperature, the fracture energy, Gc [J/m2], of the EVA/silver interface (952 J/m2) was ~70% lower than that of the EVA/AR coating (>2900 J/m2) and ~60% lower than that of the EVA to the surface of cell (2265 J/m2). After only 300 hours of damp heat aging, the adhesion energy of the silver interface dropped to and plateaued at ~50-60 J/m2, while that of themore » EVA/AR coating and EVA/cell remained mostly unchanged. Elemental surface analysis showed that the EVA separates from the silver in a purely adhesive manner, indicating that bonds at the interface were likely displaced in the presence of humidity and elevated temperature, and may explain the propensity for delamination to occur at metallized surfaces in the field.« less
Encapsulant Adhesion to Surface Metallization on Photovoltaic Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tracy, Jared; Bosco, Nick; Dauskardt, Reinhold
Delamination of encapsulant materials from PV cell surfaces often appears to originate at regions with metallization. Using a fracture mechanics based metrology, the adhesion of ethylene vinyl acetate (EVA) encapsulant to screen-printed silver metallization was evaluated. At room temperature, the fracture energy Gc [J/m2] of the EVA/silver interface (952 J/m2) was ~70% lower than that of the EVA/antireflective (AR) coating (>2900 J/m2) and ~60% lower than that of the EVA to the surface of cell (2265 J/m2). After only 300 h of damp heat aging, the adhesion energy of the silver interface dropped to and plateaued at ~50-60 J/m2 whilemore » that of the EVA/AR coating and EVA/cell remained mostly unchanged. Elemental surface analysis showed that the EVA separates from the silver in a purely adhesive manner, indicating that bonds at the interface were likely displaced in the presence of humidity and chemical byproducts at elevated temperature, which in part accounts for the propensity of metalized surfaces to delaminate in the field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.
The plasmonic responses of silver nanoparticles extracted from silver halide based electron microscope film are investigated. Photo-reduction process is carried out to convert the silver halide grains into the metallic silver. The centrifuge technique is used for separating the silver nanoparticles from the residual solution. Morphological study performed by field emission scanning electron microscope (FESEM) shows that all the nanoparticles have an average diameter of ~120 nm with a high degree of mono dispersion in size. The localized surface plasmon resonance (LSPR) absorption peak at ~537 nm confirms the presence of large size silver nanoparticles.
Plasmonic particles of colloidal silver in high-resolution recording media
NASA Astrophysics Data System (ADS)
Andreeva, O. V.; Andreeva, N. V.; Kuzmina, T. B.
2017-01-01
The optical properties of colloidal silver particles formed photographically in high-resolution silver halide photographic materials have been considered. The conditions that allow one to obtain exposed and developed light-sensitive silver halide particles in the form of colloidal particles of metallic silver having the properties of localized plasmons have been described. The results of the studies of the developed silver particles in traditional photographic materials for image holography and in nanoporous silver halide photographic materials for volume holography have been presented. The perspectives of using plasmonic silver nanoparticles produced photographically have been discussed.
Durable silver coating for mirrors
Wolfe, Jesse D.; Thomas, Norman L.
2000-01-01
A durable multilayer mirror includes reflective layers of aluminum and silver and has high reflectance over a broad spectral range from ultraviolet to visible to infrared. An adhesion layer of a nickel and/or chromium alloy or nitride is deposited on an aluminum surface, and a thin layer of silver is then deposited on the adhesion layer. The silver layer is protected by a passivation layer of a nickel and/or chromium alloy or nitride and by one or more durability layers made of metal oxides and typically a first layer of metal nitride. The durability layers may include a composite silicon aluminum nitride and an oxinitride transition layer to improve bonding between nitride and oxide layers.
Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.
2003-12-16
A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.
Huque, Roksana; Munshi, M. Kamruzzaman; Khatun, Afifa; Islam, Mahfuza; Hossain, Afzal; Hossain, Arzina; Akter, Shirin; Kabir, Jamiul; Nahar Jolly, Yeasmin; Islam, Ashraful
2014-01-01
Trace metals concentration and proximate composition of raw and boiled silver pomfret (Pampus argenteus) from coastal area and retail market were determined to gain the knowledge of the risk and benefits associated with indiscriminate consumption of marine fishes. The effects of cooking (boiling) on trace metal and proximate composition of silver pomfret fish were also investigated. Trace element results were determined by the Energy Dispersive X-ray Fluorescence (EDXRF) Spectrometer wherein fish samples from both areas exceeded the standard limits set by FAO/WHO for manganese, lead, cadmiumm and chromium and boiling has no significant effects on these three metal concentrations. Long-term intake of these contaminated fish samples can pose a health risk to humans who consume them. PMID:26904650
Formation of metallic silver and copper in non-aqueous media by ultrasonic radiation.
Pilloni, Martina; Kumar, Vijay Bhooshan; Ennas, Guido; Porat, Ze'ev; Scano, Alessandra; Cabras, Valentina; Gedanken, Aharon
2018-10-01
Concentrated suspensions of silver and copper salts in silicone oil were heated to 200 °C and irradiated with ultrasonic energy for different time durations. Characterization of the products was done using X-ray powder diffraction. In most cases, metallic Ag or Cu were obtained, together with their oxide forms Ag 2 O and Cu 2 O. The salts, used as precursors, do not dissolve in silicone oil but rather form a heterogeneous system, and we assume that local heating, caused by the acoustic cavitation, enhanced their thermal decomposition and the formation of metallic particles. It was found that the presence of silver particles enhances the formation of metallic copper. This phenomenon was observed in the experiment with the acetate salts mixture. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Qiu, T.; Wu, X. L.; Mei, Y. F.; Chu, P. K.; Siu, G. G.
2005-09-01
Unique silver dendritic nanostructures, with stems, branches, and leaves, were synthesized with self-organization via a simple electroless metal deposition method in a conventional autoclave containing aqueous HF and AgNO3 solution. Their growth mechanisms are discussed in detail on the basis of a self-assembled localized microscopic electrochemical cell model. A process of diffusion-limited aggregation is suggested for the formation of the silver dendritic nanostructures. This nanostructured material is of great potential to be building blocks for assembling mini-functional devices of the next generation.
Processing and property evaluation of metal matrix superconducting materials
NASA Technical Reports Server (NTRS)
Rao, Appajosula S.
1995-01-01
Metal - superconductor (YBCO) systems have been prepared and characterized by resistivity, ac susceptibility and dc SQUID magnetic moment measurements. The silver composites showed superconducting transition for all the composites processed and the superconducting transition temperature tends to depend upon the concentration of the silver in the composite. Aluminum composites showed an unusual resistivity results with two transitions around 90 K and 120 K. The superconducting property of silver composites can be explained qualitatively in terms of the proximity theory that has been suggested for the low temperature superconductors.
The role of silver in self-lubricating coatings for use at extreme temperatures
NASA Technical Reports Server (NTRS)
Sliney, H. E.
1985-01-01
The advantages and disadvantages of elemental silver as a tribological material are discussed. It is demonstrated that the relatively high melting point of 961 deg C, softness, marked plasticity, and thermochemical stability of silver combine to make this metal useful in thin film solid lubricant coatings over a wide temperature range. Disadvantages of silver during sliding, except when used as a thin film, are shown to be gross ploughing due to plastic deformation under load with associated high friction and excessive transfer to counterface surfaces. This transfer generates an irregular surface topography with consequent undesirable changes in bearing clearance distribution. Research to overcome these disadvantages of element silver is described. A comparison is made of the tribological behavior of pure silver with that of silver formulated with other metals and high-temperature solid lubricants. The composite materials are prepared by co-depositing the powdered components with an airbrush followed by furnace heat treatment or by plasma-spraying. Composite coatings were formulated which are shown to be self-lubricating over repeated, temperature cycles from low temperature to about 900 deg C.
The use of silver in self-lubricating coatings for extreme temperatures
NASA Technical Reports Server (NTRS)
Sliney, H. E.
1986-01-01
The advantages and disadvantages of elemental silver as a tribological material are discussed. It is demonstrated that the relatively high melting point of 961 deg C, softness, marked plasticity, and thermochemical stability of silver combine to make this metal useful in thin film solid lubricant coatings over a wide temperature range. Disadvantages of silver during sliding, except when used as a thin film, are shown to be gross ploughing due to plastic deformation under load with associated high friction and excessive transfer to counterface surfaces. This transfer generates an irregular surface topography with consequent undesirable changes in bearing clearance distribution. Research to overcome these disadvantages of element silver is described. A comparison is made of the tribological behavior of pure silver with that of silver formulated with other metals and high-temperature solid lubricants. The composite materials are prepared by co-depositing the powdered components with an airbrush followed by furnace heat treatment or by plasma-spraying. Composite coatings were formulated which are shown to be self-lubricating over repeated, temperature cycles from low temperature to about 900 deg C.
Advanced fabrication of single-crystalline silver nanopillar on SiO{sub 2} substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Tomohiro, E-mail: tomohiro-mori@wakayama-kg.jp, E-mail: kenzo@eng.kagawa-u.ac.jp; Industrial Technology Center of Wakayama Prefecture, Ogura 60, Wakayama 649-6261; Tanaka, Yasuhiro
2016-01-25
Nanoscale crystallographic textures have received very little attention in research on surface plasmons using metallic nanostructures. A single-crystalline metallic nanostructure with a controlled crystallographic texture is expected to reduce optical losses. We elucidated the grain growth mechanism in silver thin films deposited on a highly transparent SiO{sub 2} substrate by electron backscatter diffraction methods with nanoscale resolution. At higher substrate temperatures, the grain growth was facilitated but the preferred orientation was not achieved. Moreover, we fabricated a single-crystalline silver nanopillar in a (111)-oriented large growing grain, which was controlled by varying the substrate temperature during film deposition by focused ion-beammore » milling. Furthermore, the light intensity of the scattering spectrum was measured for a single-crystalline silver nanopillar (undersurface diameter: 200 nm) for which surface plasmon resonance was observed. The single-crystalline silver nanopillar exhibits a stronger and sharper spectrum than the polycrystalline silver nanopillar. These results can be applied to the direct fabrication of a single-crystalline silver nanopillar using only physical processing.« less
SERS and DFT study of p-hydroxybenzoic acid adsorbed on colloidal silver particles.
Chen, Y; Chen, S J; Li, S; Wei, J J
2015-10-16
In this study, normal Raman spectra of p—hydroxybenzoic acid (PHBA) powder and its surface—enhanced Raman scattering (SERS) spectra in silver colloidal solutions were measured under near infrared excitation conditions. In theoretical calculation, two models of PHBA adsorbed on the surfaces of silver nanoparticles were established. The Raman frequencies of these two models using density functional theory (DFT) method were calculated, and compared with the experimental results. It was found that the calculated Raman frequencies were in good agreement with experimental values, which indicates that there are two enhanced mechanism physical (electromagnetic, EM) enhancement and chemical (charge—transfer, CT) enhancement, in silver colloidal solutions regarding SERS effect. Furthermore, from high—quality SERS spectrum of PHBA obtained in silver colloids, we inferred that PHBA molecules in silver colloids adsorb onto the metal surfaces through carboxyl at a perpendicular orientation. The combination of SERS spectra and DFT calculation is thus useful for studies of the adsorption—orientation of a molecule on a metal colloid.
Raut, Rajesh Warluji; Mendhulkar, Vijay Damodhar; Kashid, Sahebrao Balaso
2014-03-05
The metal nanoparticle synthesis is highly explored field of nanotechnology. The biological methods seem to be more effective; however, due to slow reduction rate and polydispersity of the resulting products, they are less preferred. In the present study, we report rapid and facile synthesis of silver nanoparticles at room temperature. The exposure of reaction mixtures containing silver nitrate and dried leaf powder of Withania somnifera Linn to direct sunlight resulted in reduction of metal ions within five minutes whereas, the dark exposure took almost 12h. Further studies using different light filters reveal the role of blue light in reduction of silver ions. The synthesized silver nanoparticles were characterized by UV-Vis, Infrared spectroscopy (IR), Transmission Electron Microscopy (TEM), X-ray Diffraction studies (XRD), Nanoparticle Tracking Analysis (NTA), Energy Dispersive Spectroscopy (EDS), and Cyclic Voltammetry (CV). The Antibacterial and antifungal studies showed significant activity as compared to their respective standards. Copyright © 2014 Elsevier B.V. All rights reserved.
Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue
2016-01-01
To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars–van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes. PMID:27406595
CONTROL ROD ALLOY CONTAINING NOBLE METAL ADDITIONS
Anderson, W.K.; Ray, W.E.
1960-05-01
Silver-base alloys suitable for use in the fabrication of control rods for neutronic reactors are given. The alloy consists of from 0.5 wt.% to about 1.5 wt.% of a noble metal of platinum, ruthenium, rhodium, osmium, or palladium, up to 10 wt.% of cadmium, from 2 to 20 wt.% indium, the balance being silver.
NASA Astrophysics Data System (ADS)
Winardi, Y.; Triyono; Wijayanta, A. T.
2017-02-01
In this study, the effect of filler and heat treatment on the physical and mechanical properties of the brazed joint carbide tip and steel was investigated. Tip carbide YG6 and low carbon steel (SS400) is joining by torch brazing with two filler metals, silver, and copper filler. Heat treatment was performed in induction furnace. Microstructure and shear strength of the brazed joint have been investigated. Many silver filler layer are formed on the surface of the base metal rather then using copper filler. The highest shear strength is achieved using a silver filler metal at temperatur 725°C. The highest shear load is 18.62 kN.
A review of silver-rich mineral deposits and their metallogeny
Graybeal, Frederick T.; Vikre, Peter
2010-01-01
Mineral deposits with large inventories or high grades of silver are found in four genetic groups: (1) volcanogenic massive sulfide (VMS), (2) sedimentary exhalative (SEDEX), (3) lithogene, and, (4) magmatichydrothermal. Principal differences between the four groups relate to source rocks and regions, metal associations, process and timing of mineralization, and tectonic setting. These four groups may be subdivided into specific metal associations on ternary diagrams based on relative metal contents. The VMS deposits rarely contain more than 15,600 t Ag (500 Moz). Grades average 33 g/t Ag. Variable Ag- Pb-Zn-Cu-Au ± Sn concentrations are interpreted as having been derived both from shallow plutons and by leaching of the volcanic rock pile in regions of thin or no continental crust and the mineralization is syngenetic. Higher silver grades are associated with areas of abundant felsic volcanic rocks. The SEDEX deposits rarely contain more than 15,600 t Ag (500 Moz). Grades average 46 g/t Ag. Silver, lead, and zinc in relatively consistent proportions are leached from sedimentary rocks filling rift-related basins, where the continental crust is thin, and deposited as syngenetic to diagenetic massive sulfides. Pre-mineral volcanic rocks and their detritus may occur deep within the basin and gold is typically absent. Lithogene silver-rich deposits are epigenetic products of varying combinations of compaction, dewatering, meteoric water recharge, and metamorphism of rift basin-related clastic sedimentary and interbedded volcanic rocks. Individual deposits may contain more than 15,600 t Ag (500 Moz) at high grades. Ores are characterized by four well-defined metal associations, including Ag, Ag-Pb-Zn, Ag-Cu, and Ag-Co-Ni-U. Leaching, transport, and deposition of metals may occur both in specific sedimentary strata and other rock types adjacent to the rift. Multiple mineralizing events lasting 10 to 15 m.y., separated by as much as 1 b.y., may occur in a single basin. Gold is absent at economic levels. The magmatic-hydrothermal silver-rich deposits are epigenetic and related to cordilleran igneous and volcanic suites. Six magmatic-hydrothermal districts each contain more than 31,000 t Ag (1,000 Moz) with grades of veins >600 g/t Ag. Mineralization occurs as veins, massive sulfides in carbonate rocks, and disseminated deposits including porphyry silver deposits, a proposed exploration model. Most deposits are epithermal with low-sulfidation alteration assemblages. Deposits are often telescoped and well-zoned. All large and high-grade magmatic-hydrothermal deposits appear confined to regions of relatively thick continental crust above Cenozoic consuming plate margins on the eastern side of the Pacific Rim. Silver in these deposits may be partly derived by hydrothermal leaching of rocks under or adjacent to the deposits.Specific metal associations in SEDEX and lithogene deposits may reflect confinement of fluid flow to and derivation of metals from specific source rock types. Variable metal associations in VMS and magmatichydrothermal deposits may reflect derivation of metals from a more diverse suite of rocks by convecting hydrothermal systems and processes related to the generation of magma. The discovery rate for silver-rich deposits has accelerated during the past decade, with new deposit types, metal associations, and exploration models being identified that provide numerous exploration and research opportunities.
Oestreicher, A; Röhrich, T; Lerch, M
2012-12-01
Organic silver complexes are introduced where silver is linked either with a carboxyl group or with an amino group. Upon heating, nanoparticles are generated if the respective ligands are long enough to act as stabilizing agents in the nanoparticulate regime. With decomposition and volatilization of the organic material, the sintering of silver occurs. The thermal characteristics of the carboxylates silver-n-octanoate, silver-n-decanoate, and AgOOC(CH2OCH2)2CH2OCH3 are compared with silver-n-alkylamines (n = 8, 9, and 12), and their thermal behavior is discussed based on thermogravimetry (TG) measurements. The consecutive stages of a metallization process are addressed based on the properties of AgOOC(CH2OCH2)2CH2OCH3, and the usable effects of the individual phases of this metal organic compound are analyzed by cross-sectional scanning electron microscope (SEM) images of silver joints. Selection criteria are addressed based on the thermal behavior. A mechanism for the joining process is proposed, considering formation and sintering of the nanoparticles. It was found that the bulk material can be used for low-temperature joining processes. Strong adherence to copper as a basic material can be achieved.
FDTD analysis of Aluminum/a-Si:H surface plasmon waveguides
NASA Astrophysics Data System (ADS)
Lourenço, Paulo; Fantoni, Alessandro; Fernandes, Miguel; Vygranenko, Yuri; Vieira, Manuela
2018-02-01
The large majority of surface plasmon resonance based devices use noble metals, namely gold or silver, in their manufacturing process. These metals present low resistivity, which leads to low optical losses in the visible and near infrared spectrum ranges. Gold shows high environmental stability, which is essential for long-term operation, and silver's lower stability can be overcome through the deposition of an alumina layer, for instance. However, their high cost is a limiting factor if the intended target is large scale manufacturing. In this work, it is considered a cost-effective approach through the selection of aluminum as the plasmonic material and hydrogenated amorphous silicon instead of its crystalline counterpart. This surface plasmon resonance device relies on Fano resonance to improve its response to refractive index deviations of the surrounding environment. Fano resonance is highly sensitive to slight changes of the medium, hence the reason we incorporated this interference phenomenon in the proposed device. We report the results obtained when conducting Finite-Difference Time Domain algorithm based simulations on this metal-dielectric-metal structure when the active metal is aluminum, gold and silver. Then, we evaluate their sensitivity, detection accuracy and resolution, and the obtained results for our proposed device show good linearity and similar parameter performance as the ones obtained when using gold or silver as plasmonic materials.
UV laser deposition of metal films by photogenerated free radicals
NASA Technical Reports Server (NTRS)
Montgomery, R. K.; Mantei, T. D.
1986-01-01
A novel photochemical method for liquid-phase deposition of metal films is described. In the liquid phase deposition scheme, a metal containing compound and a metal-metal bonded carbonyl complex are dissolved together in a polar solvent and the mixture is irradiated using a UV laser. The optical arrangement consists of a HeCd laser which provides 7 mW of power at a wavelength of 325 nm in the TEM(OO) mode. The beam is attenuated and may be expanded to a diameter of 5-20 mm. Experiments with photochemical deposition of silver films onto glass and quartz substrates are described in detail. Mass spectrometric analysis of deposited silver films indicated a deposition rate of about 1 A/s at incident power levels of 0.01 W/sq cm. UV laser-induced copper and palladium films have also been obtained. A black and white photograph showing the silver Van Der Pauw pattern of a solution-deposited film is provided.
NASA Astrophysics Data System (ADS)
Wegscheider, S.; Steinlechner, S.; Leuchtenmüller, M.
2017-02-01
Industrial wastes such as slags, dust, or precipitation residues contain significant amounts of valuable metals like zinc, lead, and copper as well as precious metals like silver and indium. Nevertheless, a lot of these waste materials are not recycled, and therefore, many valuable metals end up being sent to landfills. Because of harmful components in the waste, it is often necessary to send it to specialized landfills for hazardous wastes, which leads to environmental problems as well as additional costs. Consequently, the recovery of the valuable metals from the residues represents a sensible task to decrease the negative impact on the environment and to reduce costs for maintaining a landfill. In addition, recycling helps to decrease the dependency from primary resources. The present study deals with the behavior of different metals in a pyro-metallurgical treatment for a mixture of jarosite and electric arc furnace dust with a special focus on indium and silver.
Silver in medicine: a brief history BC 335 to present.
Barillo, David J; Marx, David E
2014-12-01
Silver is a naturally occurring element. Similar to other metals, the ionized form of silver (Ag(+1)) has known antimicrobial properties. A number of wound dressings incorporating silver ion or silver compounds have recently been developed and marketed. In addition, the antimicrobial effects of silver are currently being promoted in consumer products such as clothing and household appliances. The present use of silver in medical and consumer products has prompted concerns for potential toxicity and ecological effects, including induction of microbial resistance to antibiotics. These concerns ignore the fact that silver has been used for medicinal purposes for several thousand years. A historical review of the uses of silver in medicine is presented.
Antitumor Activity of Alloy and Core-Shell-Type Bimetallic AgAu Nanoparticles
NASA Astrophysics Data System (ADS)
Shmarakov, Igor; Mukha, Iuliia; Vityuk, Nadiia; Borschovetska, Vira; Zhyshchynska, Nelya; Grodzyuk, Galyna; Eremenko, Anna
2017-05-01
Nanoparticles (NPs) of noble metals, namely gold and silver, remain promising anticancer agents capable of enhancing current surgery- and chemotherapeutic-based approaches in cancer treatment. Bimetallic AgAu composition can be used as a more effective agent due to the synergetic effect. Among the physicochemical parameters affecting gold and silver nanoparticle biological activity, a primary concern relates to their size, shape, composition, charge, etc. However, the impact of metal components/composition as well as metal topological distribution within NPs is incompletely characterized and remains to be further elucidated and clarified. In the present work, we tested a series of colloidal solutions of AgAu NPs of alloy and core-shell type for an antitumor activity depending on metal molar ratios (Ag:Au = 1:1; 1:3; 3:1) and topological distribution of gold and silver within NPs (AucoreAgshell; AgcoreAushell). The efficacy at which an administration of the gold and silver NPs inhibits mouse Lewis lung carcinoma (LLC) growth in vivo was compared. The data suggest that in vivo antitumor activity of the studied NPs strongly depends on gold and silver interaction arising from their ordered topological distribution. NPs with Ag core covered by Au shell were the most effective among the NPs tested towards LLC tumor growth and metastasizing inhibition. Our data show that among the NPs tested in this study, AgcoreAushell NPs may serve as a suitable anticancerous prototype.
Ylide Ligands as Building Blocks for Bioactive Group 11 Metal Complexes.
Gimeno, M Concepción; Johnson, Alice; Marzo, Isabel
2018-05-22
The reactivity of the phosphonium salt, (cyanomethyl)triphenylphosphonium chloride, and the ylide, triphenylphosphoniumcyanomethylide, towards group eleven metal complexes is described. Mononuclear neutral gold(I) and gold(III) complexes of the type [AuX{CH(CN)PPh3}] or [AuX3{CH(CN)PPh3}], and cationic derivatives such as [AuL{CH(CN)PPh3}]X have been prepared. Surprisingly the cationic gold species could only be prepared with ligands with a large steric hindrance such as bulky NHCs or the JohnPhos phosphine, in contrast with silver and copper derivatives which have dimeric structures with coordination to the cyano group of the ylide. Bis(ylide)metal complexes have been synthesised in which a different structure is observed for gold compared to copper and silver. While gold shows mononuclear species, the silver complex presents a bidimensional polymeric structure as a result of further coordination of the silver centre to the nitrogen of the cyano group. These complexes possess two chiral centres and the gold compound is obtained as a mixture of diastereoisomers, whereas the copper and silver derivatives afford only one diastereroisomer. These compounds were screened for the in vitro cytotoxic activity against the human lung carcinoma cell line (A549). The IC50 values reveal an excellent cytotoxic activity for these metal complexes compared with cisplatin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Viets, J.G.
1978-01-01
Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.
Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy
Davidson, R. Andrew; Anderson, Donald S.; Van Winkle, Laura S.; ...
2014-12-16
Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurementsmore » taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. Furthermore, we found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period.« less
Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, R. Andrew; Anderson, Donald S.; Van Winkle, Laura S.
Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurementsmore » taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. Furthermore, we found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period.« less
Mineral resource of the month: silver
Brooks, William E.
2007-01-01
Silver has been used for thousands of years as ornaments and utensils, for trade and as the basis of many monetary systems. The metal has played an important part in world history. Silver from the mines at Laurion, Greece, for example, financed the Greek victory over the Persians in 480 B.C. Silver from Potosi, Bolivia, helped Spain become a world power in the 16th and 17th centuries. And silver from the gold-silver ores at the Comstock Lode in Virginia City, Nev., helped keep the Union solvent during the Civil War.
Xing, Weibing; Buettner-Garrett, Josh
2017-04-18
This disclosure relates generally to cathode materials for electrochemical energy cells, more particularly to metal/air electrochemical energy cell cathode materials containing silver vanadium oxide and methods of making and using the same. The metal/air electrochemical energy cell can be a lithium/air electrochemical energy cell. Moreover the silver vanadium oxide can be a catalyst for one or more of oxidation and reduction processes of the electrochemical energy cell.
Comparison of nanosilver and ionic silver toxicity in Daphnia magna and Pimephales promelas
This work evaluates the relative contribution of soluble (Ag+) silver and and nano-scale silver particles (n-Ag) and thus addresses an important issue relative to potential ecological risk of n-Ag and of other partially-soluble metal nanoparticles. We used acute to chronic (based...
Exposure risk to silver and metal oxide nanoparticles (NPs) continues to increase due to their widespread use in products and applications. In vivo studies have shown Ag, TiO2 and CeO2 NPs translocate to the heart following various routes of exposure. Thus, it is critical to asse...
Sankova, Tatiana P.; Orlov, Iurii A.; Saveliev, Andrey N.; Kirilenko, Demid A.; Babich, Polina S.; Brunkov, Pavel N.; Puchkova, Ludmila V.
2017-01-01
There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST) and the N-terminal domain (ectodomain) of human high affinity copper transporter CTR1 (hNdCTR1), which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell’s copper metabolism and its chelating properties are discussed. PMID:29099786
Sankova, Tatiana P; Orlov, Iurii A; Saveliev, Andrey N; Kirilenko, Demid A; Babich, Polina S; Brunkov, Pavel N; Puchkova, Ludmila V
2017-11-03
There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST) and the N-terminal domain (ectodomain) of human high affinity copper transporter CTR1 (hNdCTR1), which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell's copper metabolism and its chelating properties are discussed.
NASA Astrophysics Data System (ADS)
Sankar, Renu; Rahman, Pattanathu K. S. M.; Varunkumar, Krishnamoorthy; Anusha, Chidambaram; Kalaiarasi, Arunachalam; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan
2017-02-01
Nanomaterials based fluorescent agents are rapidly becoming significant and promising transformative tools for improving medical diagnostics for extensive in vivo imaging modalities. Compared with conventional fluorescent agents, nano-fluorescence has capabilities to improve the in vivo detection and enriched targeting efficiencies. In our laboratory we synthesized fluorescent metal nanoparticles of silver, copper and iron using Curcuma longa tuber powder by simple reduction. The physicochemical properties of the synthesized metal nanoparticles were attained using UV-visible spectrophotometry, scanning electron microscopy with EDAX spectroscopy, dynamic light scattering, Fourier-transform infrared spectroscopy and X-ray diffraction. The Curcuma longa tuber powder has one of the bioactive compound Curcumin might act as a capping agent during the synthesis of nanoparticles. The synthesized metal nanoparticles fluorescence property was confirmed by spectrofluorometry. When compared with copper and iron nanoparticles the silver nanoparticles showed high fluorescence intensity under spectrofluorometry. Moreover, in vitro cell images of the silver nanoparticles in A549 cell lines also correlated with the results of spectrofluorometry. These silver nanoparticles show inspiring cell-imaging applications. They enter into cells without any further modifications, and the fluorescence property can be utilized for fluorescence-based cell imaging applications.
Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G
2015-03-24
The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.
Archer, Stephen Lawrence
2008-01-01
A case of left bundle branch block and a dilated, nonhypertrophic cardiomyopathy associated with ingestion of colloidal gold and silver as an ‘energy tonic’ is described. The cardiac disease was reversed within two months by a course of dimercaprol (Akorn Inc, USA) (British antiLewisite) and vitamin E. This is the first case of gold and silver cardiomyopathy in humans, and highlights the risks of these colloidal metal ‘health supplements’. PMID:18464946
Addition of platinum and silver nanoparticles to toughen dental porcelain.
Fujieda, Tokushi; Uno, Mitsunori; Ishigami, Hajime; Kurachi, Masakazu; Wakamatsu, Nobukazu; Doi, Yutaka
2012-01-01
Several studies have investigated toughening porcelain that is layered over a frame or a core. The introduction of residual compressive stress to the surface of porcelain has been shown to be effective to strengthen it. In the present study, nanoparticles of precious metals of silver and platinum (rather than non-precious metals) were used to evaluate if they could increase the fracture resistance of porcelain. The addition of silver and platinum nanoparticles was found to improve the mechanical properties of porcelain since it increased both the Young's modulus and the fracture toughness of commercial porcelain.
Color selectivity of surface-plasmon holograms illuminated with white light.
Ozaki, Miyu; Kato, Jun-ichi; Kawata, Satoshi
2013-09-20
By using the optical frequency dependence of surface-plasmon polaritons, color images can be reconstructed from holograms illuminated with white light. We report details on the color selectivity of the color holograms. The selectivity is tuned by the thickness of a dielectric film covering a plasmonic metal film. When the dielectric is SiO(2) and the metal is silver, the appropriate thicknesses are 25 and 55 nm, respectively. In terms of spatial color uniformity, holograms made of silver-film corrugations are better than holograms recorded on photographic film on a flat silver surface.
NASA Astrophysics Data System (ADS)
Priyamvada, V. C.; Radhakrishnan, P.
2017-06-01
Fiber optic evanescent wave sensors are used for studying the absorption properties of biochemical samples. The studies give precise information regarding the actual ingredients of the samples. Recent studies report the corrosion of silver in the presence glucose dissolved in water and heated to a temperature of 70°C. Based on this report evanescent absorption studies are carried out in hibiscus herbal tea floral extracts in the presence of silver metal complexes. These studies can also lead to the evaluation of the purity of the herbal tea extract.
Susceptibility of Halobacteria to Heavy Metals
Nieto, J. J.; Ventosa, A.; Ruiz-Berraquero, F.
1987-01-01
Sixty-eight halobacteria, including both culture collection strains and fresh isolates from widely differing geographical areas, were tested for susceptibility to arsenate, cadmium, chromium, cobalt, copper, lead, mercury, nickel, silver, and zinc ions by an agar dilution technique. The culture collection strains showed different susceptibilities, clustering into five groups. Halobacterium mediterranei and Halobacterium volcanii were the most metal tolerant, whereas Haloarcula californiae and Haloarcula sinaiiensis had the highest susceptibilities of the culture collection strains. Different patterns of metal susceptibility were found for all the halobacteria tested, and there was a uniform susceptibility to mercury and silver. All strains tested were multiply metal tolerant. PMID:16347350
Devi, Guruviah Karthiga; Sathishkumar, Kannaiyan
2017-03-01
The present investigation reveals the in vitro cytotoxic effect of the biosynthesised metal nanoparticles on the MCF 7 breast cancer cell lines. The gold and silver nanoparticles were synthesised through an environmentally admissible route using the Mukia Maderaspatna plant extract. Initially, the biomolecules present in the plant extract were analysed using phytochemical analysis. Further, these biomolecules reduce the metal ion solution resulting from the formation of metal nanoparticles. The reaction parameters were optimised to control the size of nanoparticles which were confirmed by UV visible spectroscopy. Various instrumental techniques such as Fourier transform-infrared spectroscopy, high resolution transmission electron microscopy, energy dispersive X-ray and scanning electron microscopy were employed to characterise the synthesised gold and silver nanoparticles. The synthesised gold and silver nanoparticles were found to be 20-50 nm and were of different shapes including spherical, triangle and hexagonal. MTT and dual staining assays were carried out with different concentrations (1, 10, 25, 50 and 100 µg/ml) of gold and silver nanoparticles. The results show that the nanoparticles exhibited significant cytotoxic effects with IC 50 value of 44.8 µg/g for gold nanoparticles and 51.3 µg/g for silver nanoparticles. The observations in this study show that this can be developed as a promising nanomaterial in pharmaceutical and healthcare sector.
NASA Astrophysics Data System (ADS)
Che, Franklin; Grabtchak, Serge; Whelan, William M.; Ponomarenko, Sergey A.; Cada, Michael
We have experimentally measured the surface second-harmonic generation (SHG) of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver.
Printed silver nanowire antennas with low signal loss at high-frequency radio.
Komoda, Natsuki; Nogi, Masaya; Suganuma, Katsuaki; Kohno, Kazuo; Akiyama, Yutaka; Otsuka, Kanji
2012-05-21
Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those obtained using etched copper foil antennas, because their surfaces were much smoother than those of etched copper foil antennas. This was the case even though the resistivity of silver nanowire lines was 43-71 μΩ cm, which is much higher than that of etched copper foil (2 μΩ cm). When printed silver nanowire antennas were heated at 100 °C, they achieved signal losses that were much lower than those of silver paste antennas comprising microparticles, nanoparticles, and flakes. Furthermore, using a low temperature process, we succeeded in remotely controlling a commercialized radio-controlled car by transmitting a 2.45 GHz signal via a silver nanowire antenna printed on a polyethylene terephthalate film.
NASA Astrophysics Data System (ADS)
Ye, Shu-qin; Zhu, Chen-guang; Wang, Li-hong; Ou'yang, De-hua; Pan, Gong-pei
2016-10-01
Copper-plated and silver-plated cellulose nitrate flakes, which were prepared by using chemical plating technology, were used to jam infrared detector and millimeter-wave radar. It was tested for the conductivity and infrared jamming performance of plating and also the RCS (Radar Cross Section) performance of millimeter-wave radar. Test results showed that the prepared metal-plated cellulose nitrate flakes have obvious conductivity, and infrared total radiation energy of silver plating and copper plating had approximately increased 32% and 21% respectively. Through determination, the millimeter-wave reflecting property and RCS of silver-plated cellulose nitrate flakes were higher than that of copper-plated cellulose nitrate flakes. Therefore, silver-plated cellulose nitrate flakes can be used as an effective infrared / millimeter wave composite jamming material.
Antibacterial performance on plasma polymerized heptylamine films loaded with silver nanoparticles
NASA Astrophysics Data System (ADS)
Lin, Yu-Chun; Lin, Chia-Chun; Lin, Chih-Hao; Wang, Meng-Jiy
2017-01-01
The antibacterial performance of the plasma-polymerized (pp) heptylamine thin films loaded with silver nanoparticles was evaluated against the colonization of Escherichia coli and Staphylococcus aureus. The properties including the thickness and chemical composition of the as deposited HApp films were modulated by adjusting plasma parameters. The acquired results showed that the film thickness was controlled in the range of 20 to 400 nm by adjusting deposition time. The subsequent immersion of the HApp thin films in silver nitrate solutions result in the formation of amine-metal complexes, in which the silver nanoparticles were reduced directly on the matrices to form Ag@HApp. The reduction reaction of silver was facilitated by applying NaBH4 as a reducing agent. The results of physicochemical analyses including morphological analysis and ellipsometry revealed that the silver nanoparticles were successfully reduced on the HApp films, and the amount of reduced silver was closely associated which the thickness of the plasma-polymerized films, the concentration of applied metal ions solutions, and the time of immobilization. Regarding the antibacterial performance, the Ag@HApp films reduced by NaBH4 showed antibacterial abilities of 70.1 and 68.2% against E. coli and S. aureus, respectively.
Survey of metal tolerance in moderately halophilic eubacteria.
Nieto, J J; Fernández-Castillo, R; Márquez, M C; Ventosa, A; Quesada, E; Ruiz-Berraquero, F
1989-09-01
The tolerance patterns, expressed as MICs, for 250 moderately halophilic eubacteria to 10 heavy metals were surveyed by using an agar dilution method. The moderate halophiles tested included 12 culture collection strains and fresh isolates representative of Deleya halophila (37 strains), Acinetobacter sp. (24 strains), Flavobacterium sp. (28 strains), and 149 moderately halophilic gram-positive cocci included in the genera Marinococcus, Sporosarcina, Micrococcus, and Staphylococcus. On the basis of the MICs, the collection strains showed, overall, similar responses to silver, cobalt, mercury, nickel, lead, and zinc. All were sensitive to silver, mercury, and zinc and tolerant of lead. The response to arsenate, cadmium, chromium, and copper was very heterogeneous. The metal susceptibility levels of the 238 freshly isolated strains were, in general, very heterogeneous among the four taxonomic groups as well as within the strains included in each group. The highest toxicities were found with mercury, silver, and zinc, while arsenate showed the lowest activity. All these strains were tolerant of nickel, lead, and chromium and sensitive to silver and mercury. Acinetobacter sp. strains were the most heavy-metal tolerant, with the majority of them showing tolerance of eight different metal ions. In contrast, Flavobacterium sp. strains were the most metal sensitive. The influence of salinity and yeast extract concentrations of the culture medium on the toxicity of the heavy metals tested for some representative strains was also studied. Lowering the salinity, in general, led to enhanced sensitivity to cadmium and, in some cases, to cobalt and copper. However, increasing the salinity resulted in only a slight decrease in the cadmium, copper, and nickel toxicities.(ABSTRACT TRUNCATED AT 250 WORDS)
B Kleja, Dan; Nakata, Satomi; Persson, Ingmar; Gustafsson, Jon Petter
2016-07-19
The solubility of silver(I) in many soils is controlled by complexation reactions with organic matter. In this work we have compared the ability of isolated humic and fulvic acids to bind silver(I) with that of mor and peat materials. One new data set for Suwannee River Fulvic Acid was produced, which was consistent with published data sets for isolated fulvic and humic acids. The ability of soil materials to bind silver(I) was studied as a function of pH in the range 2.5-5.0, at a wide range of silver(I)-to-soil ratios (10(-4.2) - 10(-1.9) mol kg(-1)). By calibrating the Stockholm Humic Model on the humic and fulvic acids data sets, we showed that binding of silver(I) to both types of soil materials was much stronger (up to 2 orders of magnitude) than predicted from the silver(I) binding properties of the isolated humic materials. Thus, the approach taken for many other metals, that is, to model solubility in soils by using metal and proton binding parameters derived from isolated humic and fulvic acids, cannot be used for silver(I). One possible explanation for the discrepancy could be that silver(I) predominately interacted with various biomolecules in the soil samples, instead of humic- and fulvic-acid type materials.
NASA Astrophysics Data System (ADS)
Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.
2017-02-01
Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.
Luminescent Properties of Eu(III) Chelates on Metal Nanorods
Zhang, Jian; Fu, Yi; Ray, Krishanu; Wang, Yuan; Lakowicz, Joseph. R.
2013-01-01
In this article, we report the change of optical properties for europium chelates on silver nanorods by near-field interactions. The silver rods were fabricated in a seed-growth method followed by depositing thin layers of silica on the surfaces. The europium chelates were physically absorbed in the silica layers on the silver rods. The silver rods were observed to exhibit two plasmon absorption bands from longitudinal and transverse directions, respectively, centered at 394 and 675 nm, close to absorption and emission bands from the Eu(III) chelates. As a result, the immobilized Eu(III) chelates on the silver rods should have strong interactions with the silver nanorods and lead to greatly improved optical properties. The Eu–Ag rod complexes were observed to have enhanced emission intensity up to 240-fold in comparison with the Eu(III) chelates in the metal-free silica templates. This enhancement is much larger than the value for the Eu(III) chelates on the gold rods or silver spheres indicating the presence of stronger interactions for the Eu(III) chelates with the silver rods. The interactions of Eu(III) chelates with the silver rods were also proven by extremely reduced lifetime. Moreover, the Eu–Ag rod complexes exhibited a polarized emission, which was also due to strong interactions of the Eu(III) chelates with the silver rods. All of these features may promise that the Eu(III)–Ag rod complexes have great potential for use as fluorescence imaging agents in biological assays. PMID:24363816
Code of Federal Regulations, 2011 CFR
2011-07-01
... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...
Corrosion protection for silver reflectors
Arendt, Paul N.; Scott, Marion L.
1991-12-31
A method of protecting silver reflectors from damage caused by contact with gaseous substances which are often present in the atmosphere and a silver reflector which is so protected. The inventive method comprises at least partially coating a reflector with a metal oxide such as aluminum oxide to a thickness of 15 .ANG. or less.
2015-02-01
nanoparticles, , multifunction porous metal oxide -silica composites, porous silicon - Titania and PSi-silver heterojunctions ) have been successfully...nanoparticles, multifunctional porous metal oxide -silica composites, porous silicon -Titania and PSi-silver heterojunctions ) have been successfully...generated charge separation and enhance the photocatalytic oxidation . In the PSi-Ag heterojunctions , Ag can not only act as time-honored antibacterial
Aluicio-Sarduy, Eduardo; Callegari, Simone; Figueroa del Valle, Diana Gisell; Desii, Andrea; Kriegel, Ilka
2016-01-01
Summary An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches. PMID:27826514
Aluicio-Sarduy, Eduardo; Callegari, Simone; Figueroa Del Valle, Diana Gisell; Desii, Andrea; Kriegel, Ilka; Scotognella, Francesco
2016-01-01
An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches.
Protein-Modified-Paramagnetic-Particles as a Tool for Detection of Silver(I) Ions
NASA Astrophysics Data System (ADS)
Kizek, R.; Krizkova, S.; Adam, V.; Huska, D.; Hubalek, J.; Trnkova, L.
2009-04-01
In a number of published articles the toxic effect of silver(I) ions on aquatic organisms is described. Silver(I) ions in aquatic environment are stable in a wide range of pH. Under alkali pH AgOH and Ag(OH)2- can be formed. However, in water environment there are many compounds to interact with silver(I) ions. The most important ones are chloride anions, which forms insoluble precipitate with silver(I) ions (AgCl). The insoluble silver containing compounds do not pose any threat to aquatic organisms. Toxicity of silver ions is probably caused by their very good affinity to nucleic acids and also proteins. The binding into active enzyme site leads to the expressive enzyme reaction inhibition. Silver(I) ions are into living environment introduced thanks to anthropogenic activities. They easily contaminate atmosphere as well as aquatic environment or soils. Several authors described using of carbon electrode as working electrode for determination of silver. Recently, we have suggested heavy metal biosensor based on interaction of metal ions with low molecular mass protein called metallothionein (MT), which was adsorbed on the surface of hanging mercury drop electrode (HMDE). The biosensor was successfully used for detection of cadmium(II) and zinc(II) ions, cisplatin, cisplatin-DNA adducts and palladium(II) ions. Due to the convincing results with MT as biological component we report on suggesting of heavy metal biosensor based on immobilization of metallothionein (MT) on the surface of carbon paste electrode (CPE) via MT-antibodies. Primarily we studied of basic electrochemical behaviour of MT at surface of carbon paste electrode by using of square wave voltammetry (SWV). Detection limit (3 S/N) for MT was evaluated as 0.1 μg/ml. After that we have evaluated the electroactivity of MT at surface of SWV, we aimed our attention on the way of capturing of MT on the surface of CPE. We choose antibody against MT obtained from chicken eggs for these purposes. Antibodies incorporated mixed with carbon paste were stable. Even after 14 days we did not determine change in the peak height higher than 5 %. Further linkage of MT with polyclonal chicken antibodies incorporated in carbon paste electrode was determined by SWV. Two signals were observed in voltammograms, cysMT corresponding to -SH moieties of MT and Wa corresponding to tryptophan residues of chicken antibodies. We optimized time of interaction (300 s) and concentration of MT (125 µg/ml) to suggest silver(I) ions biosensor. Biosensor (MT-antibody-modified CPE) prepared under the optimized conditions was utilized for silver(I) ions detection. The detection limit (3 S/N) for silver(I) ions were estimated as 100 nM. The proposed biosensor was tested by detection of silver(I) ions spiked in various water samples (from very pure distilled water to rainwater). Recoveries varied from 74 to 104 %. MT, low molecular mass proteins rich cysteine, play important role in the processes of heavy metals ions metabolism. Due to their unique physico-chemical properties they are able to bind heavy metals with high affinity. We used this feature to suggest simple biosensor based on immobilization of MT on the surface of carbon paste electrode via chicken antibodies against MT. The suggested biosensor was further successfully employed to detect silver(I) ions. The main advantage of the biosensor is that it can be easily miniaturized, whereas carbon nanostructures with immobilized MT should be used as working electrodes. Acknowledgements Financial support from INCHEMBIOL MSMT 0021622412 and GA CR 526/07/0674 is highly acknowledged.
High rate capability of a BaTiO3-decorated LiCoO2 cathode prepared via metal organic decomposition
NASA Astrophysics Data System (ADS)
Teranishi, Takashi; Katsuji, Naoto; Yoshikawa, Yumi; Yoneda, Mika; Hayashi, Hidetaka; Kishimoto, Akira; Yoda, Koji; Motobayashi, Hidefumi; Tasaki, Yuzo
2016-10-01
Metal organic decomposition (MOD) using octylic acid salts was applied to synthesize a BaTiO3-LiCoO2 (BT-LC) composite powder. The Ba and Ti octylates were utilized as metal precursors, in an attempt to synthesize homogeneous BT nanoparticles on the LC matrix. The BT-LC composite, having a phase-separated composite structure without any impurity phase, was successfully obtained by optimizing the MOD procedure. The composite prepared using octylate precursors exhibited a sharper distribution and better dispersibility of decorated BT particles. Additionally, the average particle size of the decorated BTs using metal octylate was reduced to 23.3 nm, compared to 44.4 nm from conventional processes using Ba acetate as well as Ti alkoxide as precursors. The composite cathode displayed better cell performance than its conventional counterpart; the discharge capacity of the metal octylate-derived specimen was 55.6 mAh/g at a 50C rate, corresponding to 173% of the capacity of the conventional specimen (32.2 mAh/g). The notable improvement in high rate capability obtained in this study, compared with the conventional route, was attributed to the higher density of the triple junction formed by the BT-LC-electrolyte interface.
Shamuyarira, Kudakwashe K.; Gumbo, Jabulani R.
2014-01-01
Heavy metals in high concentrations can cause health and environmental damage. Nanosilver is an emerging heavy metal which has a bright future of use in many applications. Here we report on the levels of silver and other heavy metals in municipal sewage sludge. Five towns in Limpopo province of South Africa were selected and the sludge from their wastewater treatment plants (WWTPs) was collected and analysed. The acid digested sewage sludge samples were analysed using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) methods. The concentrations of silver found were low, but significant, in the range 0.22 to 21.93 mg/kg dry mass. The highest concentration of silver was found in Louis Trichardt town with a concentration of 21.93 ± 0.38 mg/kg dry mass while the lowest was Thohoyandou with a concentration of 6.13 ± 0.12 mg/kg dry mass. A control sludge sample from a pit latrine had trace levels of silver at 0.22 ± 0.01 mg/kg dry mass. The result showed that silver was indeed present in the wastewater sewage sludge and at present there is no DWAF guideline standard. The average Cd concentration was 3.10 mg/kg dry mass for Polokwane municipality. Polokwane and Louis Trichardt municipalities exhibited high levels of Pb, in excess DWAF guidelines, in sludge at 102.83 and 171.87 mg/kg respectfully. In all the WWTPs the zinc and copper concentrations were in excess of DWAF guidelines. The presence of heavy metals in the sewage sludge in excess of DWAF guidelines presents environmental hazards should the sludge be applied as a soil ameliorant. PMID:24595211
Analyzing silver concentration in soil using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Prasetyo, S.; Isnaeni; Zaitun; Mitchell, K.; Suliyanti, M. M.; Herbani, Y.
2018-03-01
Determination of concentration of heavy metal ions in soil, such as silver, is very important to study soil pollution levels. Several techniques have been developed to determine silver ion concentration in soil. In this paper, we utilized laser-induced breakdown spectroscopy (LIBS) to study silver concentration in soil. We used four different data analysis methods to calculate silver concentration. In this case, we prepared soil samples with different silver ion concentrations from 400 ppm to 1000 ppm. Our analysis was focused on the 843.15 nm silver atomic absorption line. We found that plasma intensity increased as silver concentration increased. Our findings were based on our analysis using four different analysis methods. We believe that these analysis methods are able to calculate silver concentration in soil using LIBS.
Chervinskii, S.; Drevinskas, R.; Karpov, D. V.; Beresna, M.; Lipovskii, A. A.; Svirko, Yu. P.; Kazansky, P. G.
2015-01-01
We studied a femtosecond laser shaping of silver nanoparticles embedded in soda-lime glass. Comparing experimental absorption spectra with the modeling based on Maxwell Garnett approximation modified for spheroidal inclusions, we obtained the mean aspect ratio of the re-shaped silver nanoparticles as a function of the laser fluence. We demonstrated that under our experimental conditions the spherical shape of silver nanoparticles changed to a prolate spheroid with the aspect ratio as high as 3.5 at the laser fluence of 0.6 J/cm2. The developed approach can be employed to control the anisotropy of the glass-metal composites. PMID:26348691
Farrah, S R; Erdos, G W
1991-06-01
Two procedures were used to modify gauze bandages, polyester sutures, silicone tubing, and polyvinyl chloride tubing. In one procedure, the materials were first modified by in situ precipitation of metallic hydroxides and then used to adsorb silver ions. In the second procedure, the materials were soaked in sodium pyrophosphate or sodium chloride, dried, and then soaked in silver nitrate. These procedures produced materials with silver deposited on the surface of the tubing and sutures and both on the surface and within the gauze fibers. The modified materials inhibited the growth of Pseudomonas aeruginosa. Escherichia coli, and Staphylococcus aureus in vitro.
NASA Astrophysics Data System (ADS)
Carreño-Fuentes, Liliana; Ascencio, Jorge A.; Medina, Ariosto; Aguila, Sergio; Palomares, Laura A.; Ramírez, Octavio T.
2013-06-01
Biological molecules that self-assemble in the nanoscale range are useful multifunctional materials. Rotavirus VP6 protein self-assembles into tubular structures in the absence of other rotavirus proteins. Here, we present strategies for selectively directing metal functionalization to the lumen of VP6 nanotubes. The specific in situ metal reduction in the inner surface of nanotube walls was achieved by the simple modification of a method previously reported to functionalize the nanotube outer surface. Silver nanorods and nanowires as long as 1.5 μm were formed inside the nanotubes by coalescence of nanoparticles. Such one-dimensional structures were longer than others previously obtained using bioscaffolds. The interactions between silver ions and the nanotube were simulated to understand the conditions that allowed nanowire formation. Molecular docking showed that a naturally occurring arrangement of aspartate residues enabled the stabilization of silver ions on the internal surface of the VP6 nanotubes. This is the first time that such a spatial arrangement has been proposed for the nucleation of silver nanoparticles, opening the possibility of using such an array to direct functionalization of other biomolecules. These results demonstrate the natural capabilities of VP6 nanotubes to function as a versatile biotemplate for nanomaterials.
Méndez-Arriaga, José M; Maldonado, Carmen R; Dobado, José A; Galindo, Miguel A
2018-03-26
DNA sequences comprising noncanonical 7-deazaguanine ( 7C G) and canonical cytosine (C) are capable of forming Watson-Crick base pairs via hydrogen bonds as well as silver(I)-mediated base pairs by coordination to central silver(I) ions. Duplexes I and II containing 7C G and C have been synthesized and characterized. The incorporation of silver(I) ions into these duplexes has been studied by means of temperature-dependent UV spectroscopy, circular dichroism, and DFT calculations. The results suggest the formation of DNA molecules comprising contiguous metallated 7C G-Ag I -C Watson-Crick base pairs that preserve the original B-type conformation. Furthermore, additional studies performed on duplex III indicated that, in the presence of Ag I ions, 7C G-C and 7C A-T Watson-Crick base pairs ( 7C A, 7-deazadenine; T, thymine) can be converted to metallated 7C G-Ag I -C and 7C A-Ag I -T base pairs inside the same DNA molecule whilst maintaining its initial double helix conformation. These findings are very important for the development of customized silver-DNA nanostructures based on a Watson-Crick complementarity pattern. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendoza-Lopez, M.L.; Centro de Fisica Aplicada y Tecnologia Avanzada, Departamento de Nanotecnologia, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Apdo. Postal 1-1010, Queretaro Qro. C.P. 76230; Perez-Bueno, J.J.
This paper presents a complete methodology for the characterization of silver alloys used in modern coin production. Mexican coins with a nominal silver concentration from 10% to 99.99% were used in this study. Calibrated Glow Discharge Optical Emission Spectrometers were used to determine the chemical composition of the alloys as a function of the depth, while inductively coupled plasma was used to determine the total element composition in bulk. Scanning Electron Microscope was used to study the phase distributions in the different silver coins. According to Glow Discharge Optical Emission Spectrometers and inductively coupled plasma, the silver content found inmore » the studied samples was consistently greater than that of the nominal silver content reported by the Mexican mint. This may lead to a review of the new methods of analysis used nowadays in contemporary coin minting. This result is very important because silver is increasing in value as metal and, considering the volume of production of silver coins, this may increase further as a consequence of a growing popular confidence in silver currency. In the case of silver studies, an advantage of the absence of silver detector in the Glow Discharge Optical Emission Spectrometers system is that it allows for the recalibration to have a better range of detection of other metals present in the alloys. A calibration curve using the copper content obtained by inductively coupled plasma (bulk) and Glow Discharge Optical Emission Spectrometers (depth profile) was performed. The relevance of control in modern silver coin minting was clarified, especially in minimizing the discrepancy between the nominal and the core fineness. The physical and chemical properties of the alloys studied are defined, revealing important variations in silver and copper contents. A new methodology and metrology for the control of coinage are suggested.« less
NASA Astrophysics Data System (ADS)
Zanna, S.; Saulou, C.; Mercier-Bonin, M.; Despax, B.; Raynaud, P.; Seyeux, A.; Marcus, P.
2010-09-01
Nanocomposite thin films (˜170 nm), composed of silver nanoparticles enclosed in an organosilicon matrix, were deposited onto stainless steel, with the aim of preventing biofilm formation. The film deposition was carried out under cold plasma conditions, combining radiofrequency (RF) glow discharge fed with argon and hexamethyldisiloxane and simultaneous silver sputtering. XPS and ToF-SIMS were used to characterize Ag-organosilicon films in native form and after ageing in saline solution (NaCl 0.15 M), in order to further correlate their lifetime with their anti-fouling properties. Two coatings with significantly different silver contents (7.5% and 20.3%) were tested. Surface analysis confirmed the presence of metallic silver in the pristine coating and revealed significant modifications after immersion in the saline solution. Two different ageing mechanisms were observed, depending on the initial silver concentration in the film. For the sample exhibiting the low silver content (7.5%), the metal amount decreased at the surface in contact with the solution, due to the release of silver from the coating. As a result, after a 2-day exposure, silver nanoparticles located at the extreme surface were entirely released, whereas silver is still present in the inner part of the film. The coating thickness was not modified during ageing. In contrast, for the high silver content film (20.3%), the thickness decreased with immersion time, due to significant silver release and matrix erosion, assigned to a percolation-like effect. However, after 18 days of immersion, the delamination process stopped and a thin strongly bounded layer remained on the stainless steel surface.
Safavi, Afsaneh; Tohidi, Maryam
2014-09-01
Microwave-assisted ionic liquid method was used for synthesis of various noble metals, such as gold, silver, platinum and palladium nanomaterials. This route does not employ any template agent, surface capping agents or reducing agents. The process is fast, simple and of high yield. Different metal precursors in various ionic liquids media (1-butyl-3-methylimidazolium tetrafluoroborate, octyl pyridinium hexaflurophosphate and 1-octyl-3-methylimidazolium hexaflurophosphate) were applied to produce metal nanomaterials. Silver, platinium and palladium nanoparticles exhibit spherical morphology while nanosheets with high aspect ratio were obtained for gold. These metal nanostructures were incorporated into a carbon ionic liquid electrode to investigate their electrocatalytic properties. It was found that synthesis in different ionic liquids result in different activity. Excellent electrocatalytic effects toward adenine, hydrazine, formaldehyde and ethanol were observed for the modified electrodes with different nanoparticles synthesized in 1-butyl-3-methylimidazolium tetrafluoroborate. The high conductivity, large surface-to-volume ratio and active sites of nanosized metal particles are responsible for their electrocatalytic activity. In contrast, the carbon ionic liquid electrode modified with synthesized metal nanoparticles in octyl pyridinium hexaflurophosphate and 1-octyl-3-methylimidazolium hexaflurophosphate showed negligible activity for detection of these probes.
Rainbow, P S; Blackmore, G
2001-06-01
The use of selected organisms as biomonitors of trace metal bioavailabilities allows comparisons to be made over space and time. The concentrations of 11 trace metals (arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, nickel, silver, zinc) were measured in the bodies of two barnacle species, Balanus amphitrite and Tetraclita squamosa, from up to 18 littoral sites from Hong Kong coastal waters in April 1998. These data provide evidence on the geographical variation in metal bioavailabilities at this time, and are compared selectively against historical data sets for 1986 and 1989. Geographical variation in bioavailabilities is clear for several metals, with hotspots for arsenic, copper, nickel and silver at Chai Wan Kok, and for lead in Junk Bay. Victoria Harbour sites head the rankings for silver and arsenic, and Tolo Harbour sites exhibit relatively elevated cobalt, manganese and zinc. Many bioavailabilities of trace metals to barnacles are lower in Hong Kong coastal waters in 1998 than in 1986. The two barnacle species are widespread and the extensive data set presented is a benchmark which can be compared to the results of similar biomonitoring programmes elsewhere in the Indo-Pacific and beyond.
Label-free immunosensor based on gold nanoparticle silver enhancement.
Yang, Minghui; Wang, Cunchang
2009-02-01
A label-free immunosensor for the sensitive detection of human immunoglobulin G (IgG) was prepared based on gold nanoparticle-silver enhancement detection with a simple charge-coupled device (CCD) detector. The gold nanoparticles, which were used as nuclei for the deposit of metallic silver and also for the adsorption of antibodies, were immobilized into wells of a 9-well chip. With the addition of silver enhancement buffer, metallic silver will deposit onto gold nanoparticles, causing darkness that can be optically measured by the CCD camera and quantified using ImageJ software. When antibody was immobilized onto the gold nanoparticles and antigen was captured, the formed immunocomplex resulted in a decrease of the darkness and the intensity of the darkness was in line with IgG concentrations from 0.05 to 10 ng/ml. The CCD detector is simple and portable, and the reported method has many desirable merits such as sensitivity and accuracy, making it a promising technique for protein detection.
Theoretical study of surface plasmon resonance sensors based on 2D bimetallic alloy grating
NASA Astrophysics Data System (ADS)
Dhibi, Abdelhak; Khemiri, Mehdi; Oumezzine, Mohamed
2016-11-01
A surface plasmon resonance (SPR) sensor based on 2D alloy grating with a high performance is proposed. The grating consists of homogeneous alloys of formula MxAg1-x, where M is gold, copper, platinum and palladium. Compared to the SPR sensors based a pure metal, the sensor based on angular interrogation with silver exhibits a sharper (i.e. larger depth-to-width ratio) reflectivity dip, which provides a big detection accuracy, whereas the sensor based on gold exhibits the broadest dips and the highest sensitivity. The detection accuracy of SPR sensor based a metal alloy is enhanced by the increase of silver composition. In addition, the composition of silver which is around 0.8 improves the sensitivity and the quality of SPR sensor of pure metal. Numerical simulations based on rigorous coupled wave analysis (RCWA) show that the sensor based on a metal alloy not only has a high sensitivity and a high detection accuracy, but also exhibits a good linearity and a good quality.
The surface structure of silver-coated gold nanocrystals and its influence on shape control
Padmos, J. Daniel; Personick, Michelle L.; Tang, Qing; ...
2015-07-08
Understanding the surface structure of metal nanocrystals with specific facet indices is important due to its impact on controlling nanocrystal shape and functionality. However, this is particularly challenging for halide-adsorbed nanocrystals due to the difficulty in analysing interactions between metals and light halides (for example, chloride). Here we uncover the surface structures of chloride-adsorbed, silver-coated gold nanocrystals with {111}, {110}, {310} and {720} indexed facets by X-ray absorption spectroscopy and density functional theory modelling. The silver–chloride, silver–silver and silver–gold bonding structures are markedly different between the nanocrystal surfaces, and are sensitive to their formation mechanism and facet type. A uniquemore » approach of combining the density functional theory and experimental/simulated X-ray spectroscopy further verifies the surface structure models and identifies the previously indistinguishable valence state of silver atoms on the nanocrystal surfaces. Overall, this work elucidates the thus-far unknown chloride–metal nanocrystal surface structures and sheds light onto the halide-induced growth mechanism of anisotropic nanocrystals.« less
NASA Astrophysics Data System (ADS)
García-Ramos, J. V.; Sánchez-Cortés, S.
1997-03-01
Silver, gold and copper colloids have been employed in the study of the nucleic bases cytosine, guanine, their alkyl derivatives 1-methylcytosine, 5-methylcytosine, 1,5-dimethylcytosine, 7-methylcytosine and 9-ethylguanosine. Cytidine, 5'-cytidinemonophosphate and 5'-adenosinemonophosphate have been also studied using silver and copper colloids. The interaction and orientation of these compounds on the metal colloids are interpreted on the basis of the SER spectra obtained, and further compared with interactions with the corresponding metallic ions in aqueous solution. Transmission electronic microscopy and ultraviolet-visible absorption spectroscopy were also employed to characterize the silver and copper colloids before and after aggregation by 1,5-dimethylcytosine. Information on the aggregation process is presented. The activation effect of chloride, perchlorate and nitrate anions on the silver colloids employed is studied for both the visible and near-infrared regions. An assessment of the effectiveness of each colloid is made at different excitation lines. Finally, an explanation of the mechanism through which these anions exert their activation effect is given on the basis of the morphologies of the particles contained in the colloid.
Metal thin-film optical polarizers for space applications, phase 2
NASA Technical Reports Server (NTRS)
Slocum, Robert E.
1991-01-01
A light polarizing material was developed for wavelengths in the visible and near infrared spectral band (400 to 3,000 nm). The material is comprised of ellipsoidal silver particles uniformly distributed and aligned on the surface of an optical material. A method is set forth for making polarizing material by evaporatively coating a smooth glass surface with ellipsoidal silver particles. The wavelength of peak absorption is chosen by selecting the aspect ratio of the ellipsoidal metal particles and the refractive index of the material surrounding the metal particles. The wavelength of peak absorption can be selected to fall at a desired wavelength in the range from 400 to 3,000 nm by control of the deposition process. This method is demonstrated by evaporative deposition of silver particles directly on to a smooth optical surface. By applying a multilayer silver coating of a glass disc, a contrast of greater than 40,000 was achieved at 590 nm. A polarizing filter was designed, fabricated, and assembled which achieved contrast of 100,00 at 59 nm and can serve as a replacement for crystal polarizers.
Water Quality Conditions in the Missouri River Mainstem System: 2008 Report
2009-09-01
aluminum, arsenic, cadmium , chromium, copper, cyanide, lead, nickel, selenium, silver, and zinc . The acute and chronic water quality standards criteria for... adipose , etc.) tend to accumulate toxicants at different rates. Therefore, when used as an indicator, fish tissue analysis typically uses whole...for metals (i.e., cadmium , chromium, copper, lead, nickel, silver, and zinc ) are based on hardness. Criteria shown for those metals were calculated
Yung, Lai Chin; Fei, Cheong Choke; Mandeep, JS; Binti Abdullah, Huda; Wee, Lai Khin
2014-01-01
The success of printing technology in the electronics industry primarily depends on the availability of metal printing ink. Various types of commercially available metal ink are widely used in different industries such as the solar cell, radio frequency identification (RFID) and light emitting diode (LED) industries, with limited usage in semiconductor packaging. The use of printed ink in semiconductor IC packaging is limited by several factors such as poor electrical performance and mechanical strength. Poor adhesion of the printed metal track to the epoxy molding compound is another critical factor that has caused a decline in interest in the application of printing technology to the semiconductor industry. In this study, two different groups of adhesion promoters, based on metal and polymer groups, were used to promote adhesion between the printed ink and the epoxy molding substrate. The experimental data show that silver ink with a metal oxide adhesion promoter adheres better than silver ink with a polymer adhesion promoter. This result can be explained by the hydroxyl bonding between the metal oxide promoter and the silane grouping agent on the epoxy substrate, which contributes a greater adhesion strength compared to the polymer adhesion promoter. Hypotheses of the physical and chemical functions of both adhesion promoters are described in detail. PMID:24830317
[Exposure to metal compounds in occupational galvanic processes].
Surgiewicz, Jolanta; Domański, Wojciech
2006-01-01
Occupational galvanic processes are provided in more than 600 small and medium enterprises in Poland. Workers who deal with galvanic coating are exposed to heavy metal compounds: tin, silver, copper and zinc. Some of them are carcinogenic, for example, hexavalent chromium compounds, nickel and cadmium compounds. Research covered several tens of workstations involved in chrome, nickel, zinc, tin, silver, copper and cadmium plating. Compounds of metals present in the air were determined: Cr, Ni, Cd, Sn, Ag--by atomic absorption spectrometry with electrothermal atomization (ET-AAS) and Zn--by atomic absorption spectrometry with flame atomization (F-AAS). The biggest metal concentrations--of silver and copper--were found at workstations of copper, brass, cadmium, nickel and chrome plating, conducted at the same time. Significant concentrations of copper were found at workstations of maintenance bathing and neutralizing of sewage. The concentrations of metals did not exceed Polish MAC values. MAC values were not exceeded for carcinogenic chromium(VI), nickel or cadmium, either. In galvanic processes there was no hazard related to single metals or their compounds, even carcinogenic ones. Combined exposure indicators for metals at each workstation did not exceed 1, either. However, if there are even small quantities of carcinogenic agents, health results should always be taken into consideration.
Yung, Lai Chin; Fei, Cheong Choke; Mandeep, Js; Binti Abdullah, Huda; Wee, Lai Khin
2014-01-01
The success of printing technology in the electronics industry primarily depends on the availability of metal printing ink. Various types of commercially available metal ink are widely used in different industries such as the solar cell, radio frequency identification (RFID) and light emitting diode (LED) industries, with limited usage in semiconductor packaging. The use of printed ink in semiconductor IC packaging is limited by several factors such as poor electrical performance and mechanical strength. Poor adhesion of the printed metal track to the epoxy molding compound is another critical factor that has caused a decline in interest in the application of printing technology to the semiconductor industry. In this study, two different groups of adhesion promoters, based on metal and polymer groups, were used to promote adhesion between the printed ink and the epoxy molding substrate. The experimental data show that silver ink with a metal oxide adhesion promoter adheres better than silver ink with a polymer adhesion promoter. This result can be explained by the hydroxyl bonding between the metal oxide promoter and the silane grouping agent on the epoxy substrate, which contributes a greater adhesion strength compared to the polymer adhesion promoter. Hypotheses of the physical and chemical functions of both adhesion promoters are described in detail.
Precursor composites for oxygen dispersion hardened silver sheathed superconductor composites
Podtburg, E.R.
1999-06-22
An oxide superconductor composite having improved texture and durability is disclosed. The oxide superconductor composite includes an oxide superconductor phase substantially surrounded with/by a noble metal matrix, the noble metal matrix comprising a metal oxide in an amount effective to form metal oxide domains that increase hardness of the composite. The composite is characterized by a degree of texture at least 10% greater than a comparable oxide superconductor composite lacking metal oxide domains. An oxide superconducting composite may be prepared by oxidizing the precursor composite under conditions effective to form solute metal oxide domains within the silver matrix and to form a precursor oxide in the precursor alloy phase; subjecting the oxidized composite to a softening anneal under conditions effective to relieve stress within the noble metal phase; and converting the oxide precursor into an oxide superconductor. 1 fig.
Precursor composites for oxygen dispersion hardened silver sheathed superconductor composites
Podtburg, Eric R.
1999-01-01
An oxide superconductor composite having improved texture and durability. The oxide superconductor composite includes an oxide superconductor phase substantially surrounded with/by a noble metal matrix, the noble metal matrix comprising a metal oxide in an amount effective to form metal oxide domains that increase hardness of the composite. The composite is characterized by a degree of texture at least 10% greater than a comparable oxide superconductor composite lacking metal oxide domains. An oxide superconducting composite may be prepared by oxidizing the precursor composite under conditions effective to form solute metal oxide domains within the silver matrix and to form a precursor oxide in the precursor alloy phase; subjecting the oxidized composite to a softening anneal under conditions effective to relieve stress within the noble metal phase; and converting the oxide precursor into an oxide superconductor.
Survey of metal tolerance in moderately halophilic eubacteria.
Nieto, J J; Fernández-Castillo, R; Márquez, M C; Ventosa, A; Quesada, E; Ruiz-Berraquero, F
1989-01-01
The tolerance patterns, expressed as MICs, for 250 moderately halophilic eubacteria to 10 heavy metals were surveyed by using an agar dilution method. The moderate halophiles tested included 12 culture collection strains and fresh isolates representative of Deleya halophila (37 strains), Acinetobacter sp. (24 strains), Flavobacterium sp. (28 strains), and 149 moderately halophilic gram-positive cocci included in the genera Marinococcus, Sporosarcina, Micrococcus, and Staphylococcus. On the basis of the MICs, the collection strains showed, overall, similar responses to silver, cobalt, mercury, nickel, lead, and zinc. All were sensitive to silver, mercury, and zinc and tolerant of lead. The response to arsenate, cadmium, chromium, and copper was very heterogeneous. The metal susceptibility levels of the 238 freshly isolated strains were, in general, very heterogeneous among the four taxonomic groups as well as within the strains included in each group. The highest toxicities were found with mercury, silver, and zinc, while arsenate showed the lowest activity. All these strains were tolerant of nickel, lead, and chromium and sensitive to silver and mercury. Acinetobacter sp. strains were the most heavy-metal tolerant, with the majority of them showing tolerance of eight different metal ions. In contrast, Flavobacterium sp. strains were the most metal sensitive. The influence of salinity and yeast extract concentrations of the culture medium on the toxicity of the heavy metals tested for some representative strains was also studied. Lowering the salinity, in general, led to enhanced sensitivity to cadmium and, in some cases, to cobalt and copper. However, increasing the salinity resulted in only a slight decrease in the cadmium, copper, and nickel toxicities.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2802612
The mechanism of metal nanoparticle formation in plants: limits on accumulation
NASA Astrophysics Data System (ADS)
Haverkamp, R. G.; Marshall, A. T.
2009-08-01
Metal nanoparticles have many potential technological applications. Biological routes to the synthesis of these particles have been proposed including production by vascular plants, known as phytoextraction. While many studies have looked at metal uptake by plants, particularly with regard to phytoremediation and hyperaccumulation, few have distinguished between metal deposition and metal salt accumulation. This work describes the uptake of AgNO3, Na3Ag(S2O3)2, and Ag(NH3)2NO3 solutions by hydroponically grown Brassica juncea and the quantitative measurement of the conversion of these salts to silver metal nanoparticles. Using X-ray absorption near edge spectroscopy (XANES) to determine the metal speciation within the plants, combined with atomic absorption spectroscopy (AAS) for total Ag, the quantity of reduction of AgI to Ag0 is reported. Transmission electron microscopy (TEM) showed Ag particles of 2-35 nm. The factors controlling the amount of silver accumulated are revealed. It is found that there is a limit on the amount of metal nanoparticles that may be deposited, of about 0.35 wt.% Ag on a dry plant basis, and that higher levels of silver are obtained only by the concentration of metal salts within the plant, not by deposition of metal. The limit on metal nanoparticle accumulation, across a range of metals, is proposed to be controlled by the total reducing capacity of the plant for the reduction potential of the metal species and limited to reactions occurring at an electrochemical potential greater than 0 V (verses the standard hydrogen electrode).
Wang, Zheng; Sun, Yan; Wang, Dongzhou; Liu, Hong; Boughton, Robert I
2013-01-01
A silver nanoparticle (AgNP)-filled hydrogen titanate nanotube layer was synthesized in situ on a metallic titanium substrate. In the synthesis approach, a layer of sodium titanate nanotubes is first prepared on the titanium surface by using a hydrothermal method. Silver nitrate solution is absorbed into the nanotube channels by immersing a dried nanotube layer in silver nitrate solution. Finally, silver ions are reduced by glucose, leading to the in situ growth of AgNPs in the hydrogen titanate nanotube channels. Long-term silver release and bactericidal experiments demonstrated that the effective silver release and effective antibacterial period of the titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface can extend to more than 15 days. This steady and prolonged release characteristic is helpful to promote a long-lasting antibacterial capability for the prevention of severe infection after surgery. A series of antimicrobial and biocompatible tests have shown that the sandwich nanostructure with a low level of silver loading exhibits a bacteriostatic rate as high as 99.99%, while retaining low toxicity for cells and possessing high osteogenic potential. Titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface that is fabricated with low-cost surface modification methods is a promising implantable material that will find applications in artificial bones, joints, and dental implants. PMID:23966780
Fabrication Of Biogenic Silver Nanoparticles Using Agricultural Crop Plant Leaf Extracts
NASA Astrophysics Data System (ADS)
Rajani, P.; SriSindhura, K.; Prasad, T. N. V. K. V.; Hussain, O. M.; Sudhakar, P.; Latha, P.; Balakrishna, M.; Kambala, V.; Reddy, K. Raja
2010-10-01
Nanoparticles are being viewed as fundamental building blocks of nanotechnology. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. Use of agricultural crop plant extracts for synthesis of metal nanoparticles would add a new dimension to the agricultural sector in the utilization of crop waste. Silver has long been recognized as having an inhibitory effect towards many bacterial strains and microorganisms commonly present in medical and industrial processes. Four pulse crop plants and three cereal crop plants (Vigna radiata, Arachis hypogaea, Cyamopsis tetragonolobus, Zea mays, Pennisetum glaucum, Sorghum vulgare) were used and compared for their extra cellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO3 with the plant leaf extracts as reducing agent at temperatures 50 °C-95 °C. UV-Visible spectroscopy was utilized to monitor the formation of silver nanoparticles. XRD analysis of formed silver nanoparticles revealed face centered cubic structure with (111), (200), (220) and (311) planes. SEM and EDAX analysis confirm the size of the formed silver nanoparticles to be in the range of 50-200 nm. Our proposed work offers a enviro-friendly method for biogenic silver nanoparticles production. This could provide a faster synthesis rate comparable to those of chemical methods and potentially be used in areas such as cosmetics, food and medical applications.
Aerobic granulation in a modified oxidation ditch with an adjustable volume intraclarifier.
Li, Jun; Cai, Ang; Wang, Miao; Ding, Libin; Ni, Yongjiong
2014-04-01
A modified oxidation ditch (MOD) with an adjustable volume intraclarifier was proposed and used to achieve aerobic sludge granulation in continuous flow process. This MOD with working volume of 60L treated onsite wastewater from a town. Excellent aerobic granules with mean diameter of 600μm and sludge volume index (SVI) of 44mL/g were obtained in 120day. Bacterial community analysis revealed that most species from seed sludge were preserved in both MOD and granule SBR (G-SBR) except bacteria (Bacteroidetes) might be easily washed out during granulation. Some different bacterial communities were found in sludges from sequencing batch and continuous flow reactors. Presence of metal ions and inorganics in raw wastewater had positive effect on granule formation, but an adjustable volume intraclarifier for controlling selection pressure and deleting return sludge pump played a key role in aerobic sludge granulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Advanced development of TFA-MOD coated conductors
NASA Astrophysics Data System (ADS)
Rupich, M. W.; Li, X.; Sathyamurthy, S.; Thieme, C.; Fleshler, S.
2011-11-01
American Superconductor is manufacturing 2G wire for initial commercial applications. The 2G wire properties satisfy the requirements for these initial projects; however, improvements in the critical current, field performance and cost are required to address the broad range of potential commercial and military applications. In order to meet the anticipated the performance and cost requirements, AMSC's R&D effort is focused on two major areas: (1) higher critical current and (2) enhanced flux pinning. AMSC's current 2G production wire, designed around a 0.8 μm thick YBCO layer deposited by a Metal Organic Deposition (MOD) process, carries a critical current in the range of 200-300 A/cm-w (77 K, sf). Achieving higher critical current requires increasing the thickness of the YBCO layer. This paper describes recent progress at AMSC on increasing the critical current of MOD-YBCO films using processes compatible with low-cost, high-rate manufacturing.
McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.
2004-09-28
A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.
NASA Astrophysics Data System (ADS)
Onggar, T.; Häntzsche, E.; Nocke, A.; Hund, R. D.; Cherif, Ch
2017-04-01
High-performance textile yarns such as glass filament (GF) yarn will be used as the base material for the development of sensor yarns because glass filament yarns offer both high tensile strengths and moduli of elasticity, as well as high melting temperatures and elongation. A new continuous wet-chemical metallization process has been developed for GF yarns on a laboratory scale to achieve special properties such as electrical conductivity. The aim of the work is to develop a continuous wet-chemical silver plating process for the GF-filament yarn in order to achieve electrical conductivity on the GF-surface. The process was carried out continuously in order to metallize the GF, which is sensitive to the shear force. A homogeneous, completely covered and adhered silver layer on the GF yarn surfaces was obtained by the application of this technology. The surface morphology was been determined by light and scanning electron microscopy to assess the silver layer properties such as structure, homogeneity, and cracking. The chemical structure of the surfaces was analyzed by means of energy dispersive x-ray spectroscopy. For structural analysis, GF yarns were investigated using a Fourier transform infrared spectrometer. The dispersive and polar component of the surface energy of the sized and silvered GF yarn was measured by using a single fiber Tensiometer K100. The silver layer thickness and the silver content were determined after the metallization. Textile physical tests of the tensile strength, elasticity modulus, elongation at break, and yarn fineness of the single GF yarns as well as GF bundle were carried out.
Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate.
Liu, Yi-Kai; Lee, Ming-Tsang
2014-08-27
This study presents a novel approach for the rapid fabrication of conductive nano/microscale metal structures on flexible polymer substrate (polyimide). Silver film is simultaneously synthesized and patterned on the polyimide substrate using an advanced continuous wave (CW) laser direct writing technology and a transparent, particle-free reactive silver ion ink. The location and shape of the resulting silver patterns are written by a laser beam from a digitally controlled micromirror array device. The silver patterns fabricated by this laser direct synthesis and patterning (LDSP) process exhibit the remarkably low electrical resistivity of 2.1 μΩ cm, which is compatible to the electrical resistivity of bulk silver. This novel LDSP process requires no vacuum chamber or photomasks, and the steps needed for preparation of the modified reactive silver ink are simple and straightforward. There is none of the complexity and instability associated with the synthesis of the nanoparticles that are encountered for the conventional laser direct writing technology which involves nanoparticle sintering process. This LDSP technology is an advanced method of nano/microscale selective metal patterning on flexible substrates that is fast and environmentally benign and shows potential as a feasible process for the roll-to-roll manufacturing of large area flexible electronic devices.
Increased bioassay sensitivity of bioactive molecule discovery using metal-enhanced bioluminescence
NASA Astrophysics Data System (ADS)
Golberg, Karina; Elbaz, Amit; McNeil, Ronald; Kushmaro, Ariel; Geddes, Chris D.; Marks, Robert S.
2014-12-01
We report the use of bioluminescence signal enhancement via proximity to deposited silver nanoparticles for bioactive compound discovery. This approach employs a whole-cell bioreporter harboring a plasmid-borne fusion of a specific promoter incorporated with a bioluminescence reporter gene. The silver deposition process was first optimized to provide optimal nanoparticle size in the reaction time dependence with fluorescein. The use of silver deposition of 350 nm particles enabled the doubling of the bioluminescent signal amplitude by the bacterial bioreporter when compared to an untouched non-silver-deposited microtiter plate surface. This recording is carried out in the less optimal but necessary far-field distance. SEM micrographs provided a visualization of the proximity of the bioreporter to the silver nanoparticles. The electromagnetic field distributions around the nanoparticles were simulated using Finite Difference Time Domain, further suggesting a re-excitation of non-chemically excited bioluminescence in addition to metal-enhanced bioluminescence. The possibility of an antiseptic silver effect caused by such a close proximity was eliminated disregarded by the dynamic growth curves of the bioreporter strains as seen using viability staining. As a highly attractive biotechnology tool, this silver deposition technique, coupled with whole-cell sensing, enables increased bioluminescence sensitivity, making it especially useful for cases in which reporter luminescence signals are very weak.
Synthesis of Silver Polymer Nanocomposites and Their Antibacterial Activity
NASA Astrophysics Data System (ADS)
Gavade, Chaitali; Shah, Sunil; Singh, N. L.
2011-07-01
PVA (Polyvinyl Alcohol) silver nanocomposites of different sizes were prepared by chemical reduction method. Silver nitrate was taken as the metal precursor and amine hydrazine as a reducing agent. The formation of the silver nanoparticles was noticed using UV- visible absorption spectroscopy. The UV-visible spectroscopy revealed the formation of silver nanoparticles by exhibiting the surface plasmon resonance. The bactericidal activity due to silver release from the surface was determined by the modification of conventional diffusion method. Salmonella typhimurium, Serratia sps and Shigella sps were used as test bacteria which are gram-negative type bacteria. Effect of the different sizes of silver nano particles on antibacterial efficiency was discussed. Zones of inhibition were measured after 24 hours of incubation at 37 °C which gave 20 mm radius for high concentration of silver nanoparticles.
Aslan, Kadir; Leonenko, Zoya; Lakowicz, Joseph R; Geddes, Chris D
2005-09-01
The effects of thermally annealed silver island films have been studied with regard to their potential applicability in applications of metal-enhanced fluorescence, an emerging tool in nano-biotechnology. Silver island films were thermally annealed between 75 and 250 degrees C for several hours. As a function of both time and annealing temperature, the surface plasmon band at approximately 420 nm both diminished and was blue shifted. These changes in plasmon resonance have been characterized using both absorption measurements, as well as topographically using Atomic Force Microscopy. Subsequently, the net changes in plasmon absorption are interpreted as the silver island films becoming spherical and growing in height, as well as an increased spacing between the particles. Interestingly, when the annealed surfaces are coated with a fluorescein-labeled protein, significant enhancements in fluorescence are observed, scaling with annealing temperature and time. These observations strongly support our recent hypothesis that the extent of metal-enhanced fluorescence is due to the ability of surface plasmons to radiate coupled fluorophore fluorescence. Given that the extinction spectrum of the silvered films is comprised of both an absorption and scattering component, and that these components are proportional to the diameter cubed and to the sixth power, respectively, then larger structures are expected to have a greater scattering contribution to their extinction spectrum and, therefore, more efficiently radiate coupled fluorophore emission. Subsequently, we have been able to correlate our increases in fluorescence emission with an increased particle size, providing strong experiment evidence for our recently reported metal-enhanced fluorescence, facilitated by radiating plasmons hypothesis.
NASA Astrophysics Data System (ADS)
Yang, Tianzu; Xiao, Hui; Chen, Lin; Chen, Wei; Liu, Weifeng; Zhang, Duchao
2018-03-01
Oxygen-rich side-blow bath smelting (OSBS) technology offers an efficient method for processing complex bismuth-lead concentrates; however, the element distributions in the process remain unclear. This work determined the distributions of elements, i.e., bismuth, lead, silver, copper, arsenic and antimony, in an industrial-scale OSBS process. The feed, oxidized slag and final products were collected from the respective sampling points and analyzed. For the oxidative smelting process, 65% of bismuth and 76% of silver in the concentrate report to the metal alloy, whereas less lead reports to the metal ( 31%) than the oxidized slag ( 44%). Approximately 50% of copper enters the matte, while more than 63% of arsenic and antimony report to the slag. For the reductive smelting process, less than 4.5% of bismuth, lead, silver and copper in the oxidized slag enter the reduced slag, indicating high recoveries of these metal values.
NASA Astrophysics Data System (ADS)
Murashov, Alexander A.; Sidorov, Alexander I.; Shakhverdov, Teimur A.; Stolyarchuk, Maxim V.
2017-11-01
It is shown, experimentally, that in silver- and copper-containing zinc-phosphate glasses, metal molecular clusters are formed during the glass synthesis. X-ray irradiation of these glasses led to the considerable increase of its luminescence in visible spectral range. This effect is caused by the transformation of the charged metal molecular clusters into the neutral state. Luminescence and excitation spectra of the glass, doped with silver and copper simultaneously, change significantly in comparison with the spectra of glasses doped with one metal. The reason for this can be the formation of hybrid AgnCum molecular clusters. The computer simulation of the structure and optical properties of such clusters by the time-dependent density functional theory method is presented. It is shown that the optimal luminescent material for photonics application, in comparison with other studied materials, is glass, containing hybrid molecular clusters.
NASA Astrophysics Data System (ADS)
Yang, Tianzu; Xiao, Hui; Chen, Lin; Chen, Wei; Liu, Weifeng; Zhang, Duchao
2018-06-01
Oxygen-rich side-blow bath smelting (OSBS) technology offers an efficient method for processing complex bismuth-lead concentrates; however, the element distributions in the process remain unclear. This work determined the distributions of elements, i.e., bismuth, lead, silver, copper, arsenic and antimony, in an industrial-scale OSBS process. The feed, oxidized slag and final products were collected from the respective sampling points and analyzed. For the oxidative smelting process, 65% of bismuth and 76% of silver in the concentrate report to the metal alloy, whereas less lead reports to the metal ( 31%) than the oxidized slag ( 44%). Approximately 50% of copper enters the matte, while more than 63% of arsenic and antimony report to the slag. For the reductive smelting process, less than 4.5% of bismuth, lead, silver and copper in the oxidized slag enter the reduced slag, indicating high recoveries of these metal values.
Metal nanoparticle-graphene oxide composites: Photophysical properties and sensing applications
NASA Astrophysics Data System (ADS)
Murphy, Sean J.
Composite nanomaterials allow for attractive properties of multiple functional components to be combined. Fundamental understanding of the interaction between different nanomaterials, their surroundings, and nearby molecular species is pertinent for implementation into devices. Metal nanoparticles have been used for their optical properties in many applications including stained glass, cancer therapy, solar steam generation, surface enhanced Raman spectroscopy (SERS), and catalysis. Carbon-based nanomaterials such as graphene and carbon nanotubes show potential for a wide variety of applications including solar energy harvesting, chemical sensors, and electronics. Combining useful and in some cases new properties of composite nanomaterials offers exciting opportunities in fundamental science and device development. In this dissertation, I aim to address understanding photoinduced interaction between porphyrin and silver nanoparticles, inter-sheet interaction between stacked graphene oxide (GO) sheets in thin films, complexation of reduced GO with Raman active target molecule in SERS applications, and efficacy of graphene-metal nanoparticle composites for sensing applications. Molecule-metal nanoparticle composite material made up of photoactive porphyrin and silver nanoparticles was studied using various spectroscopic tools. UV-visible absorption and surface enhanced Raman spectroscopic results suggest formation of a charge-transfer complex for porphyrin-silver nanoparticle composite. Ultrafast transient absorption and fluorescence upconversion spectroscopies further corroborate electronic interaction by providing evidence for excited state electron transfer between porphyrin and silver nanoparticles. Understanding electronic interaction between adsorbed photoactive molecules and metal nanoparticles may be of use for applications in photocatalysis or light-energy harvesting. Graphene oxide (GO) thin films have been prepared and studied using transient absorption microscopy (TAM). Transient absorption microscopy correlated with atomic force microscope allows for the morphological properties of GO thin film to be related to optical properties, namely dynamics of photoexcited carriers in GO. Results suggest short-timescale (ps -- ˜1 ns) dynamics of charge carriers in GO are affected very little by interaction with the glass substrate on which GO is placed. Also, the stack thickness or number of stacked GO sheets does not play a large role in the short-timescale dynamics of GO charge carriers. GO or reduced GO (RGO)-silver nanoparticles composites were produced using different methods: (1) chemical reduction of silver ion precursor and (2) photocatalytic reduction of GO and silver ion using TiO2 nanoparticles. Optical and morphological properties of composites were studied using spectroscopy and electron microscopy revealing a degree of control in metal nanoparticle growth and loading on the surface of RGO. Nanocomposites were shown to be capable of complexing with or adsorbing target molecular species. Complexation and adsorption are corroborated with demonstration that the composite nanomaterials act as effective SERRS sensors taking advantage of localized surface plasmon resonance of metal nanoparticles and the ability of RGO to interact with molecular and ionic species.
Preparation of thin film silver fluoride electrodes from constituent elements
NASA Technical Reports Server (NTRS)
Odonnell, P. M.
1972-01-01
The feasibility of preparing thin-film metal fluoride electrodes from the elemental constituents has been demonstrated. Silver fluoride cathodes were prepared by deposition of silver on a conducting graphite substrate followed by fluorination under controlled conditions using elemental fluorine. The resulting electrodes were of high purity, and the variables such as size, shape, and thickness were easily controlled.
Femtosecond laser direct writing of monocrystalline hexagonal silver prisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vora, Kevin; Kang, SeungYeon; Moebius, Michael
Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundredsmore » of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.« less
Accessing quadratic nonlinearities of metals through metallodielectric photonic-band-gap structures.
D'Aguanno, Giuseppe; Mattiucci, Nadia; Bloemer, Mark J; Scalora, Michael
2006-09-01
We study second harmonic generation in a metallodielectric photonic-band-gap structure made of alternating layers of silver and a generic, dispersive, linear, dielectric material. We find that under ideal conditions the conversion efficiency can be more than two orders of magnitude greater than the maximum conversion efficiency achievable in a single layer of silver. We interpret this enhancement in terms of the simultaneous availability of phase matching conditions over the structure and good field penetration into the metal layers. We also give a realistic example of a nine-period, Si3/N4Ag stack, where the backward conversion efficiency is enhanced by a factor of 50 compared to a single layer of silver.
Holmström, Petter; Yuan, Jun; Qiu, Min; Thylén, Lars; Bratkovsky, Alexander M
2011-04-11
The properties of integrated-photonics directional couplers composed of near-field-coupled arrays of metal nanoparticles are analyzed theoretically. It is found that it is possible to generate very compact, submicron length, high field-confinement and functionality devices with very low switch energies. The analysis is carried out for a hypothetical lossless silver to demonstrate the potential of this type of circuits for applications in telecom and interconnects. Employing losses of real silver, standalone devices with the above properties are still feasible in optimized metal nanoparticle structures. © 2011 Optical Society of America
Silver nanoparticles: Synthesis methods, bio-applications and properties.
Abbasi, Elham; Milani, Morteza; Fekri Aval, Sedigheh; Kouhi, Mohammad; Akbarzadeh, Abolfazl; Tayefi Nasrabadi, Hamid; Nikasa, Parisa; Joo, San Woo; Hanifehpour, Younes; Nejati-Koshki, Kazem; Samiei, Mohammad
2016-01-01
Silver nanoparticles size makes wide range of new applications in various fields of industry. Synthesis of noble metal nanoparticles for applications such as catalysis, electronics, optics, environmental and biotechnology is an area of constant interest. Two main methods for Silver nanoparticles are the physical and chemical methods. The problem with these methods is absorption of toxic substances onto them. Green synthesis approaches overcome this limitation. Silver nanoparticles size makes wide range of new applications in various fields of industry. This article summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations with respect to the biomedical applicability and regulatory requirements concerning silver nanoparticles.
Warner, Benjamin P.
2003-06-24
The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.
Durable silver mirror with ultra-violet thru far infra-red reflection
Wolfe, Jesse D.
2010-11-23
A durable highly reflective silver mirror characterized by high reflectance in a broad spectral range of about 300 nm in the UV to the far infrared (.about.10000 nm), as well as exceptional environmental durability. A high absorptivity metal underlayer is used which prevents the formation of a galvanic cell with a silver layer while increasing the reflectance of the silver layer. Environmentally durable overcoat layers are provided to enhance mechanical and chemical durability and protect the silver layer from corrosion and tarnishing, for use in a wide variety of surroundings or climates, including harsh or extreme environments.
NASA Astrophysics Data System (ADS)
Marcoux, Éric; Wadjinny, Ahmed
2005-12-01
The Zgounder ore deposit (Anti-Atlas, Morocco), is hosted in a PII-PIII Proterozoic volcanosedimentary series. Disseminated mineralization is dominated by mercuriferous native silver (2 to 30 wt.% Hg), with few silver sulfosalts (acanthite, pearceite), arsenopyrite and base-metal sulfides. Arsenic grade of arsenopyrite and homogenisation temperatures of fluid inclusions indicate initial conditions of high temperature (above 400 °C). Lead isotope compositions comfort a Late-Proterozoic age and a crustal origin for metals. Similarities are obvious with the neighbouring silver ore deposit of Imiter and lead to consider Zgounder as another example of Neoproterozoic epithermal deposit in the Anti-Atlas of Morocco, a region that appears more and more as a silver metallogenic province. To cite this article: É. Marcoux, A. Wadjinny, C. R. Geoscience 337 (2005).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohenberger, Erik; Freitag, Nathan; Rosenmann, Daniel
Here, we present a facile method for fabricating nanostructured silver films containing a high density of nanoscopic gap features through a surface directed phenomenon utilizing nanoporous scaffolds rather than through traditional lithographic patterning processes. This method enables tunability of the silver film growth by simply adjusting the formulation and processing conditions of the nanoporous film prior to metallization. We further demonstrate that this process can produce nanoscopic gaps in thick (100 nm) silver films supporting localized surface plasmon resonance with large field amplification within the gaps while enabling launching of propagating surface plasmons within the silver grains. These enhanced fieldsmore » provide metal enhanced fluorescence with enhancement factors as high as 21 times compared to glass, as well as enable visualization of single fluorophore emission. This work provides a low-cost rapid approach for producing novel nanostructures capable of broadband fluorescence amplification, with potential applications including plasmonic and fluorescence based optical sensing and imaging applications.« less
Sadeghi, Babak; Gholamhoseinpoor, F
2015-01-05
Biomolecules present in plant extracts can be used to reduce metal ions to nanoparticles in a single-step green synthesis process. This biogenic reduction of metal ion to base metal is quite rapid, readily conducted at room temperature and pressure, and easily scaled up. Mediated Synthesis by plant extracts is environmentally benign. The involved reducing agents include the various water soluble plant metabolites (e.g. alkaloids, phenolic compounds, terpenoids) and co-enzymes. Silver (Ag) nanoparticles have the particular focus of plant-based syntheses. Extracts of a diverse range of Ziziphora tenuior (Zt) have been successfully used in making nanoparticles. The aim of this study was to investigate the antioxidant properties of this plant and its ability to synthesize silver nanoparticles. Z.tenuior leaves were used to prepare the aqueous extract for this study. Silver nanoparticles were characterized with different techniques such as UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 8 to 40 nm. FT-IR spectroscopy revealed that silver nanoparticles were functionalized with biomolecules that have primary amine group (NH₂), carbonyl group, -OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of silver nanoparticles with size of 38 nm. In addition to plant extracts, live plants can be used for the synthesis. Here were view the methods of making nanoparticles using plant extracts. The scanning electron microscopy (SEM) implies the right of forming silver nanoparticles. The results of TEM, SEM, FT-IR, UV-VIS and XRD confirm that the leaves extract of Zt can synthesis silver nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.
48 CFR 245.607-2 - Recovering precious metals.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Recovering precious metals... Disposal of Contractor Inventory 245.607-2 Recovering precious metals. (b) Precious metals are silver, gold... office with disposition instructions for certain categories of precious metals-bearing property...
Antimicrobial Polymers with Metal Nanoparticles
Palza, Humberto
2015-01-01
Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. PMID:25607734
Khmaj, Mofida R; Khmaj, Abdulfatah B; Brantley, William A; Johnston, William M; Dasgupta, Tridib
2014-11-01
New noble alloys for metal ceramic restorations introduced by manufacturers are generally lower-cost alternatives to traditional higher-gold alloys. Information about the metal-to-ceramic bond strength for these alloys, which is needed for rational clinical selection, is often lacking. The purpose of this study was to evaluate the bond strength of 4 recently introduced noble alloys by using 2 techniques for porcelain application. Aquarius Hard (high-gold: 86.1 gold, 8.5 platinum, 2.6 palladium, 1.4 indium; values in wt. %), Evolution Lite (reduced-gold: 40.3 gold, 39.3 palladium, 9.3 indium, 9.2 silver, 1.8 gallium), Callisto 75 Pd (palladium-silver containing gold: 75.2 palladium, 7.1 silver, 2.5 gold, 9.3 tin, 1.0 indium), and Aries, (conventional palladium-silver: 63.7 palladium, 26.0 silver, 7.0 tin, 1.8 gallium, 1.5 indium) were selected for bonding to leucite-containing veneering porcelains. Ten metal ceramic specimens that met dimensional requirements for International Organization for Standardization (ISO) Standard 9693 were prepared for each alloy by using conventional porcelain layering and press-on-metal methods. The 3-point bending test in ISO Standard 9693 was used to determine bond strength. Values were compared with 2-way ANOVA (maximum likelihood analysis, SAS Mixed Procedure) and the Tukey test (α=.05). Means (standard deviations) for bond strength with conventional porcelain layering were as follows: Aquarius Hard (50.7 ±5.5 MPa), Evolution Lite (40.2 ±3.3 MPa), Callisto 75 Pd (37.2 ±3.9 MPa), and Aries (34.0 ±4.9 MPa). For the press-on-metal technique, bond strength results were as follows: Aquarius Hard (33.7 ±11.5 MPa), Evolution Lite (34.9 ±4.5 MPa), Callisto 75 Pd (37.2 ±11.9 MPa), and Aries (30.7 ±10.8 MPa). From statistical analyses, the following 3 significant differences were found for metal-to-ceramic bond strength: the bond strength for Aquarius Hard was significantly higher for conventional porcelain layers compared with the press-on-metal technique; the bond strength for Aquarius Hard with conventional porcelain layers was significantly higher than the bond strengths for the other 3 alloys with conventional porcelain layers; and the bond strength for Aquarius Hard with conventional porcelain layers was significantly higher than the bond strength for Callisto 75 Pd with conventional porcelain layers and the other 3 alloys with the press-on-metal technique. For both conventional layering and press-on-metal techniques, all 4 noble alloys had a mean metal-to-ceramic bond strength that substantially exceeded the 25 MPa minimum in the ISO Standard 9693. The results for Aries support the manufacturer's recommendation not to use the press-on-metal technique for alloys that contain more than 10% silver. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
20 years of research on the Alcator C-Mod tokamaka)
NASA Astrophysics Data System (ADS)
Greenwald, M.; Bader, A.; Baek, S.; Bakhtiari, M.; Barnard, H.; Beck, W.; Bergerson, W.; Bespamyatnov, I.; Bonoli, P.; Brower, D.; Brunner, D.; Burke, W.; Candy, J.; Churchill, M.; Cziegler, I.; Diallo, A.; Dominguez, A.; Duval, B.; Edlund, E.; Ennever, P.; Ernst, D.; Faust, I.; Fiore, C.; Fredian, T.; Garcia, O.; Gao, C.; Goetz, J.; Golfinopoulos, T.; Granetz, R.; Grulke, O.; Hartwig, Z.; Horne, S.; Howard, N.; Hubbard, A.; Hughes, J.; Hutchinson, I.; Irby, J.; Izzo, V.; Kessel, C.; LaBombard, B.; Lau, C.; Li, C.; Lin, Y.; Lipschultz, B.; Loarte, A.; Marmar, E.; Mazurenko, A.; McCracken, G.; McDermott, R.; Meneghini, O.; Mikkelsen, D.; Mossessian, D.; Mumgaard, R.; Myra, J.; Nelson-Melby, E.; Ochoukov, R.; Olynyk, G.; Parker, R.; Pitcher, S.; Podpaly, Y.; Porkolab, M.; Reinke, M.; Rice, J.; Rowan, W.; Schmidt, A.; Scott, S.; Shiraiwa, S.; Sierchio, J.; Smick, N.; Snipes, J. A.; Snyder, P.; Sorbom, B.; Stillerman, J.; Sung, C.; Takase, Y.; Tang, V.; Terry, J.; Terry, D.; Theiler, C.; Tronchin-James, A.; Tsujii, N.; Vieira, R.; Walk, J.; Wallace, G.; White, A.; Whyte, D.; Wilson, J.; Wolfe, S.; Wright, G.; Wright, J.; Wukitch, S.; Zweben, S.
2014-11-01
The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental observation of ion cyclotron range of frequency (ICRF) mode-conversion, ICRF flow drive, demonstration of lower-hybrid current drive at ITER-like densities and fields and, using a set of novel diagnostics, extensive validation of advanced RF codes. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. A summary of important achievements and discoveries are included.
Metal tissue levels in Steller sea lion (Eumetopias jubatus) pups.
Holmes, Amie L; Wise, Sandra S; Goertz, Caroline E C; Dunn, J Lawrence; Gulland, Frances M D; Gelatt, Tom; Beckmen, Kimberlee B; Burek, Kathy; Atkinson, Shannon; Bozza, Mary; Taylor, Robert; Zheng, Tongzhang; Zhang, Yawei; Aboueissa, Abouel-Makarim; Wise, John Pierce
2008-08-01
The endangered Western population of the Steller sea lion declined for three decades for uncertain reasons. We present baseline data of metal concentrations in pups as a first step towards investigating the potential threat of developmental exposures to contaminants. Seven metals were investigated: arsenic, cadmium, silver, aluminum, mercury, lead and vanadium. Vanadium was detected in only a single blubber sample. Mercury appears to be the most toxicologically significant metal with concentrations in the liver well above the current action level for mercury in fish. The concentrations of aluminum, arsenic, silver, cadmium and lead were present in one-fourth to two-thirds of all samples and were at either comparable or below concentrations previously reported. Neither gender nor region had a significant effect on metal burdens. Future work should consider metal concentrations in juveniles and adults and toxicological studies need to be performed to begin to assess the toxicity of these metals.
Yun, Gyeongwon; Pan, Shuaijun; Wang, Ting-Yi; Guo, Junling; Richardson, Joseph J; Caruso, Frank
2018-03-01
The synthesis of metal nanoparticle (NP)-coated textiles (nanotextiles) is achieved by a dipping process in water without toxic chemicals or complicated synthetic procedures. By taking advantage of the unique nature of tannic acid, metal-phenolic network-coated textiles serve as reducing and stabilizing sites for the generation of metal nanoparticles of controllable size. The textiles can be decorated with various metal nanoparticles, including palladium, silver, or gold, and exhibit properties derived from the presence of the metal nanoparticles, for example, catalytic activity in water (>96% over five cycles using palladium nanoparticles) and antibacterial activity against Gram-negative bacteria (inhibition of Escherichia coli using silver nanoparticles) that outperforms a commercial bandage. The reported strategy offers opportunities for the development of hybrid nanomaterials that may have application in fields outside of catalysis and antimicrobials, such as sensing and smart clothing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Metal-in-metal localized surface plasmon resonance
NASA Astrophysics Data System (ADS)
Smith, G. B.; Earp, A. A.
2010-01-01
Anomalous strong resonances in silver and gold nanoporous thin films which conduct are found to arise from isolated metal nano-islands separated from the surrounding percolating metal network by a thin loop of insulator. This observed resonant optical response is modelled. The observed peak position is in agreement with the observed average dimensions of the silver core and insulator shell. As the insulating ring thickness shrinks, the resonance moves to longer wavelengths and strengthens. This structure is the Babinet's principle counterpart of dielectric core-metal shell nanoparticles embedded in dielectric. Like for the latter, tuning of resonant absorption is possible, but here the matrix reflects rather than transmits, and tuning to longer wavelengths is more practical. A new class of metal mirror occurring as a single thin layer is identified using the same resonances in dense metal mirrors. Narrow band deep localized dips in reflectance result.
Silver-free Metallization Technology for Producing High Efficiency, Industrial Silicon Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaelson, Lynne M.; Munoz, Krystal; Karas, Joseph
The goal of this project is to provide a commercially viable Ag-free metallization technology that will both reduce cost and increase efficiency of standard silicon solar cells. By removing silver from the front grid metallization and replacing it with lower cost nickel, copper, and tin metal, the front grid direct materials costs will decrease. This reduction in material costs should provide a path to meeting the Sunshot 2020 goal of 1 dollar / W DC. As of today, plated contacts are not widely implemented in large scale manufacturing. For organizations that wish to implement pilot scale manufacturing, only two equipmentmore » choices exist. These equipment manufacturers do not supply plating chemistry. The main goal of this project is to provide a chemistry and equipment solution to the industry that enables reliable manufacturing of plated contacts marked by passing reliability results and higher efficiencies than silver paste front grid contacts. To date, there have been several key findings that point to plated contacts performing equal to or better than the current state of the art silver paste contacts. Poor adhesion and reliability concerns are a few of the hurdles for plated contacts, specifically plated nickel directly on silicon. A key finding of the Phase 1 budget period is that the plated contacts have the same adhesion as the silver paste controls. This is a huge win for plated contacts. With very little optimization work, state of the art electrical results for plated contacts on laser ablated lines have been demonstrated with efficiencies up to 19.1% and fill factors ~80% on grid lines 40-50 um wide. The silver paste controls with similar line widths demonstrate similar electrical results. By optimizing the emitter and grid design for the plated contacts, it is expected that the electrical performance will exceed the silver paste controls. In addition, cells plated using Technic chemistry and equipment pass reliability testing; i.e. 1000 hours damp heat and 200 thermal cycles, with results similar to silver paste control cells. 100 cells have been processed through Technic’s novel demo plating tool built and installed during budget period 2. This plating tool performed consistently from cell to cell, providing gentle handling for the solar cells. An agreement has been signed with a cell manufacturer to process their cells through our plating chemistry and equipment. Their main focus for plated contacts is to reduce the direct materials cost by utilizing nickel, copper, and tin in place of silver paste. Based on current market conditions and cost model calculations, the overall savings offered by plated contacts is only 3.5% dollar/W versus silver paste contacts; however, the direct materials savings depend on the silver market. If silver prices increase, plated contacts may find a wider adoption in the solar industry in order to keep the direct materials costs down for front grid contacts.« less
Interaction of bilirubin with Ag and Au ions: green synthesis of bilirubin-stabilized nanoparticles
NASA Astrophysics Data System (ADS)
Shukla, Shashi P.; Roy, Mainak; Mukherjee, Poulomi; Tyagi, A. K.; Mukherjee, Tulsi; Adhikari, Soumyakanti
2012-07-01
We report a simple green chemistry to synthesize and stabilize monodispersed silver and gold nanoparticles sols by reducing aqueous solution of the respective metal salts in the presence of bilirubin (BR). No additional capping agent was used in the process of stabilization of the nanoparticles. As a completely new finding, we have observed that BR known to be toxic at higher concentration in one hand and conversely an antioxidant at physiological concentration reduces these metal ions to form the respective metal nanoparticles. Moreover, BR and its oxidized products also serve as capping agents to the nanoparticles. The particles were characterized by transmission electron microscopy. BR and its oxidized products capped nanoparticles are stable for months. The UV-Vis absorption spectra of the silver sol show the plasmon peak of symmetric spherical particles which was further reflected in the TEM images. The sizes of the silver particles were about 5 nm. These silver particles showed reasonably high antibacterial activity in Gram negative wild type E. coli. In the case of interaction of BR with gold ions, we could obtain cubic gold nanoparticles of average sizes 20-25 nm. Possible modes of anchorage of BR and/its oxidized products to silver nanoparticles were demonstrated by surface-enhanced resonance Raman spectroscopy (SERS) that in turn demonstrated the feasibility of using these nanoparticles as SERS substrates.
Dark plasmonic mode based perfect absorption and refractive index sensing.
Yang, W H; Zhang, C; Sun, S; Jing, J; Song, Q; Xiao, S
2017-07-06
Dark plasmonic resonances in metallic nanostructures are essential for many potential applications such as refractive index sensing, single molecule detection, nanolasers etc. However, it is difficult to excite the dark modes in optical experiments and thus the practical applications are severely limited. Herein, we demonstrate a simple method to experimentally excite the quadrupolar and higher-order plasmonic modes with normal incident light. By directionally depositing silver films onto the sidewalls of metal-covered one-dimensional grating, we have experimentally observed a series of asymmetrical resonances at the plasmonic ranges of silver gratings. Interestingly, both of the reflection and transmission coefficients of high-order plasmonic modes are reduced to around zero, demonstrating the perfect absorption very well. The corresponding numerical simulations show that these resonances are the well-known dark modes. Different from the conventional dark modes in plasmonic dimers, here the dark modes are the electric oscillations (as standing waves) within the silver sidewalls that are excited by charge accumulation via the bright plasmonic resonance of the top silver strips. In addition to the simple realization of perfect absorption, the dark modes are found to be quite sensitive to the environmental changes. The experimentally measured reflective index sensitivity is around 458 nm per RIU (refractive index unit), which is much higher than the sensitivity of the metal-covered grating without silver sidewalls. This research shall pave new routes to practical applications of dark surface plasmons.
One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix
NASA Astrophysics Data System (ADS)
Kang, SeungYeon; Vora, Kevin; Mazur, Eric
2015-03-01
Developing an ability to fabricate high-resolution, 3D metal nanostructures in a stretchable 3D matrix is a critical step to realizing novel optoelectronic devices such as tunable bulk metal-dielectric optical devices and THz metamaterial devices that are not feasible with alternative techniques. We report a new chemistry method to fabricate high-resolution, 3D silver nanostructures using a femtosecond-laser direct metal writing technique. Previously, only fabrication of 3D polymeric structures or single-/few-layer metal structures was possible. Our method takes advantage of unique gelatin properties to overcome such previous limitations as limited freedom in 3D material design and short sample lifetime. We fabricate more than 15 layers of 3D silver nanostructures with a resolution of less than 100 nm in a stable dielectric matrix that is flexible and has high large transparency that is well-matched for potential applications in the optical and THz metamaterial regimes. This is a single-step process that does not require any further processing. This work will be of interest to those interested in fabrication methods that utilize nonlinear light-matter interactions and the realization of future metamaterials.
NASA Astrophysics Data System (ADS)
Dumée, Ludovic F.; Yi, Zhifeng; Tardy, Blaise; Merenda, Andrea; Des Ligneris, Elise; Dagastine, Ray R.; Kong, Lingxue
2017-03-01
Nano-porous metallic matrixes (NMMs) offer superior surface to volume ratios as well as enhanced optical, photonic, and electronic properties to bulk metallic materials. Such behaviours are correlated to the nano-scale inter-grain metal domains that favour the presence of electronic vacancies. In this work, continuous 3D NMMs were synthesized for the first time through a simple diffusion-reduction process whereby the aerogel matrix was functionalized with (3-Mercaptopropyl)trimethoxysilane. The surface energy of the silica monolith templates was tuned to improve the homogeneity of the reduction process while thiol functionalization facilitated the formation of a high density of seeding points for metal ions to reduce. The diameter of NMMs was between 2 and 1000 nm, corresponding to a silver loading between 1.23 and 41.16 at.%. A rates of catalytic degradation kinetics of these NMMS which is three orders of magnitude higher than those of the non-functionalized silver-silica structures. Furthermore, the enhancement in mechanical stability at nanoscale which was evaluated by Atomic Force Microscopy force measurements, electronic density and chemical inertness was assessed and critically correlated to their catalytic potential. This strategy opens up new avenues for design of complex architectures of either single or multi-metal alloy NMMs with enhanced surface properties for various applications.
Dumée, Ludovic F.; Yi, Zhifeng; Tardy, Blaise; Merenda, Andrea; des Ligneris, Elise; Dagastine, Ray R.; Kong, Lingxue
2017-01-01
Nano-porous metallic matrixes (NMMs) offer superior surface to volume ratios as well as enhanced optical, photonic, and electronic properties to bulk metallic materials. Such behaviours are correlated to the nano-scale inter-grain metal domains that favour the presence of electronic vacancies. In this work, continuous 3D NMMs were synthesized for the first time through a simple diffusion-reduction process whereby the aerogel matrix was functionalized with (3-Mercaptopropyl)trimethoxysilane. The surface energy of the silica monolith templates was tuned to improve the homogeneity of the reduction process while thiol functionalization facilitated the formation of a high density of seeding points for metal ions to reduce. The diameter of NMMs was between 2 and 1000 nm, corresponding to a silver loading between 1.23 and 41.16 at.%. A rates of catalytic degradation kinetics of these NMMS which is three orders of magnitude higher than those of the non-functionalized silver-silica structures. Furthermore, the enhancement in mechanical stability at nanoscale which was evaluated by Atomic Force Microscopy force measurements, electronic density and chemical inertness was assessed and critically correlated to their catalytic potential. This strategy opens up new avenues for design of complex architectures of either single or multi-metal alloy NMMs with enhanced surface properties for various applications. PMID:28332602
Tien, Der-Chi; Tseng, Kuo-Hsiung; Liao, Chih-Yu; Tsung, Tsing-Tshih
2008-10-01
Nanoscale techniques for silver production may assist the resurgence of the medical use of silver, especially given that pathogens are showing increasing resistance to antibiotics. Traditional chemical synthesis methods for colloidal silver (CS) may lead to the presence of toxic chemical species or chemical residues, which may inhibit the effectiveness of CS as an antibacterial agent. To counter these problems a spark discharge system (SDS) was used to fabricate a suspension of colloidal silver in deionized water with no added chemical surfactants. SDS-CS contains both metallic silver nanoparticles (Ag(0)) and ionic silver forms (Ag(+)). The antimicrobial affect of SDS-CS on Staphylococcus aureus was studied. The results show that CS solutions with an ionic silver concentration of 30 ppm or higher are strong enough to destroy S. aureus. In addition, it was found that a solution's antimicrobial potency is directly related to its level of silver ion concentration.
Microwave-Assisted Green Synthesis of Silver Nanostructures
This account summarizes a microwave (MW)-assisted synthetic approach for producing silver nanostructures. The rapid and in-core MW heating has received considerable attention as a promising new method for the one-pot synthesis of metallic nanostructures in solutions. Conceptually...
Carbide/fluoride/silver self-lubricating composite
NASA Technical Reports Server (NTRS)
Sliney, Harold E. (Inventor)
1988-01-01
A self-lubricating, friction and wear reducing composite material for use over a wide temperature spectrum from cryogenic temperature to about 900.degree. C. in a chemically reactive environment comprising silver, barium fluoride/calcium fluoride eutectic, and metal bonded chromium carbide.
Hu, Pengfei; Cao, Yali
2012-08-07
The room-temperature solid-state chemical reaction technique has been used to synthesize the silver nanoparticle-loaded semiconductor silver@silver chloride for the first time. It has the advantages of convenient operation, lower cost, less pollution, and mass production. This simple technique created a wide array of nanosized silver particles which had a strong surface plasmon resonance effect in the visible region, and built up an excellent composite structure of silver@silver chloride hybrid which exhibited high photocatalytic activity and stability towards decomposition of organic methyl orange under visible-light illumination. Moreover, this work achieved the control of composition of the silver@silver chloride composite simply by adjusting the feed ratio of reactants. It offers an alternative method for synthesising metal@semiconductor composites.
1992-01-01
except TPH, which was detected at 0.06 mg/l in Monitor Well 01-MW-02. Some metals (arsenic, cadmium , chromium, lead, silver, and zinc ) were detected at...extraction. Trace quantities of some priority pollutant metals were detected in the surface water samples. Arsenic, cadmium , and zinc were detected at...storage tank. TPH was detected in all five groundwater samples. Arsenic, beryllium, cadmium , chromium, copper, lead, nickel, silver, and zinc were also
Co-percolation to tune conductive behaviour in dynamical metallic nanowire networks.
Fairfield, J A; Rocha, C G; O'Callaghan, C; Ferreira, M S; Boland, J J
2016-11-03
Nanowire networks act as self-healing smart materials, whose sheet resistance can be tuned via an externally applied voltage stimulus. This memristive response occurs due to modification of junction resistances to form a connectivity path across the lowest barrier junctions in the network. While most network studies have been performed on expensive noble metal nanowires like silver, networks of inexpensive nickel nanowires with a nickel oxide coating can also demonstrate resistive switching, a common feature of metal oxides with filamentary conduction. However, networks made from solely nickel nanowires have high operation voltages which prohibit large-scale material applications. Here we show, using both experiment and simulation, that a heterogeneous network of nickel and silver nanowires allows optimization of the activation voltage, as well as tuning of the conduction behavior to be either resistive switching, memristive, or a combination of both. Small percentages of silver nanowires, below the percolation threshold, induce these changes in electrical behaviour, even for low area coverage and hence very transparent films. Silver nanowires act as current concentrators, amplifying conductivity locally as shown in our computational dynamical activation framework for networks of junctions. These results demonstrate that a heterogeneous nanowire network can act as a cost-effective adaptive material with minimal use of noble metal nanowires, without losing memristive behaviour that is essential for smart sensing and neuromorphic applications.
Roman sophisticated surface modification methods to manufacture silver counterfeited coins
NASA Astrophysics Data System (ADS)
Ingo, G. M.; Riccucci, C.; Faraldi, F.; Pascucci, M.; Messina, E.; Fierro, G.; Di Carlo, G.
2017-11-01
By means of the combined use of X-ray photoelectron spectroscopy (XPS), optical microscopy (OM) and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) the surface and subsurface chemical and metallurgical features of silver counterfeited Roman Republican coins are investigated to decipher some aspects of the manufacturing methods and to evaluate the technological ability of the Roman metallurgists to produce thin silver coatings. The results demonstrate that over 2000 ago important advances in the technology of thin layer deposition on metal substrates were attained by Romans. The ancient metallurgists produced counterfeited coins by combining sophisticated micro-plating methods and tailored surface chemical modification based on the mercury-silvering process. The results reveal that Romans were able systematically to chemically and metallurgically manipulate alloys at a micro scale to produce adherent precious metal layers with a uniform thickness up to few micrometers. The results converge to reveal that the production of forgeries was aimed firstly to save expensive metals as much as possible allowing profitable large-scale production at a lower cost. The driving forces could have been a lack of precious metals, an unexpected need to circulate coins for trade and/or a combinations of social, political and economic factors that requested a change in money supply. Finally, some information on corrosion products have been achieved useful to select materials and methods for the conservation of these important witnesses of technology and economy.
Zhang, Jian; Fu, Yi; Lakowicz, Joseph R
2007-02-08
Labeled silica beads with an average diameter of 100 nm were synthesized by incorporating with 20-600 μM Ru(bpy)(3) (2+) complexes. Silver shells were deposited on the beads layer-by-layer with the shell thickness of 5-50 nm. The emission band became narrower and the intensity was enhanced depending on the shell thickness. Self-quenching of the probe was observed at high concentration. Poisson statistics were employed to analyze self-quenching of the fluorophores. The estimated quenching distance was extended from 6 to 16 nm with shell growth from 0 to 50 nm. Moreover, the silver shells were also labeled with Rhodamine 6G. Fluorescence enhancement and reduced lifetime were also observed for silver-silica shell containing R6G. We found that by adjustment of probe concentration and silver shell thickness, a Ru(bpy)(3) (2+)-labeled particle could be 600 times brighter than an isolated Ru(bpy)(3) (2+) molecule. We expect labeled metal core-shell structures can become useful probes for high sensitivity and/or single particle assay.
Optical properties and crystallinity of silver mirrors under a 35 krad cobalt-60 radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Po-Kai, E-mail: pkchiu@itrc.narl.org.tw; Chiang, Donyau; Lee, Chao-Te
2015-09-15
This study addresses the effects of thin film optical design and environmental radiation on the optical properties of silver mirrors. Different experimental thin film optical designs are selected, and the film stack is built using Macleod's approach. Mirror elements are exposed to the same dose of radiation and their properties are characterized using a spectrophotometer equipped with an integration sphere and an x-ray diffractometer. Spectrophotometric analyses of mirrors exposed to about 35 krad of {sup 60}Co radiations overall show that the B270 glass substrates coated with titanium oxide (TiO{sub 2}), silicon dioxide (SiO{sub 2}), pure chrome, and pure silver effectivelymore » reduces radiation damage. The absorption spectrum of the TiO{sub 2} film in the visible region decreases after radiation and displays drifting. As thin metal films comparison, the silver thin film exhibits higher radiation resistance than the chrome thin film. The x-ray diffraction analysis on metal film layers reveals that crystallinity slightly increases when the silver thin film is irradiated.« less
Ahmed, Shakeel; Ahmad, Mudasir; Swami, Babu Lal; Ikram, Saiqa
2015-01-01
Metallic nanoparticles are being utilized in every phase of science along with engineering including medical fields and are still charming the scientists to explore new dimensions for their respective worth which is generally attributed to their corresponding small sizes. The up-and-coming researches have proven their antimicrobial significance. Among several noble metal nanoparticles, silver nanoparticles have attained a special focus. Conventionally silver nanoparticles are synthesized by chemical method using chemicals as reducing agents which later on become accountable for various biological risks due to their general toxicity; engendering the serious concern to develop environment friendly processes. Thus, to solve the objective; biological approaches are coming up to fill the void; for instance green syntheses using biological molecules derived from plant sources in the form of extracts exhibiting superiority over chemical and/or biological methods. These plant based biological molecules undergo highly controlled assembly for making them suitable for the metal nanoparticle syntheses. The present review explores the huge plant diversity to be utilized towards rapid and single step protocol preparatory method with green principles over the conventional ones and describes the antimicrobial activities of silver nanoparticles. PMID:26843966
NASA Astrophysics Data System (ADS)
Nikhila, P. S.; Satheesh, Namitha; Sreejitha, V. S.; Pillai, Anandu R.; Saritha, A.; Smitha Chandran, S.
2018-02-01
Green synthesis of nanoparticles has become a prominent zone of attention in the field of nanotechnology, as it is a nontoxic, economically feasible and green approach. In the present work we have developed an eco-friendly and zero cost method for the synthesis of silver nanoparticles using common a bio waste banana blossom peel. The well-known characteristic phenomenon of surface Plasmon resonance (SPR) has been exploited towards the characterization of the green synthesized nanoparticles. The aforementioned nanoparticles were characterized by UV spectroscopy and the behaviour of these particles towards naked eye detection of metal ions were observed. The sensitivity of the nanoparticles towards the detection of metal ions was carefully monitored by the shift in the SPR band. Moreover the larvicidal potential of these green synthesized silver nanoparticles were evaluated as per WHO standards. The synthesized silver nanoparticles were found to be an effective antibacterial agent against Gram negative bacteria-E.coli. The method we followed for the synthesis of silver nanoparticles is economically feasible as well as environment friendly and also capable of rapid synthesis of nanoparticles at ambient conditions.
Flotation of traces of silver and copper(II) ions with a methyl cellosolve solution of dithizone.
Hiraide, M; Mizuike, A
1975-06-01
Microgram quantities of silver and copper(II) ions in aqueous solutions are collected on dithizone precipitates, which are then floated with the aid of small nitrogen bubbles. This separation technique has been successfully applied to the atomic-absorption spectrophotometric determination of down to a tenth ppm of silver and copper in high-purity lead and zinc metals.
Nanoscale patterning of two metals on silicon surfaces using an ABC triblock copolymer template.
Aizawa, Masato; Buriak, Jillian M
2006-05-03
Patterning technologically important semiconductor interfaces with nanoscale metal films is important for applications such as metallic interconnects and sensing applications. Self-assembling block copolymer templates are utilized to pattern an aqueous metal reduction reaction, galvanic displacement, on silicon surfaces. Utilization of a triblock copolymer monolayer film, polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO), with two blocks capable of selective transport of different metal complexes to the surface (PEO and P2VP), allows for chemical discrimination and nanoscale patterning. Different regions of the self-assembled structure discriminate between metal complexes at the silicon surface, at which time they undergo the spontaneous reaction at the interface. Gold deposition from gold(III) compounds such as HAuCl4(aq) in the presence of hydrofluoric acid mirrors the parent block copolymer core structure, whereas silver deposition from Ag(I) salts such as AgNO3(aq) does the opposite, localizing exclusively under the corona. By carrying out gold deposition first and silver second, sub-100-nm gold features surrounded by silver films can be produced. The chemical selectivity was extended to other metals, including copper, palladium, and platinum. The interfaces were characterized by a variety of methods, including scanning electron microscopy, scanning Auger microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy.
Microchemical investigation on Renaissance coins minted at Gubbio (Central Italy)
NASA Astrophysics Data System (ADS)
Ingo, G. M.; de Caro, T.; Padeletti, G.; Chiozzini, G.
The bulk and surface chemical composition of Renaissance coins minted at Gubbio (Central Italy) from 1508 to 1516 and from 1521 to 1538 by Francesco Maria della Rovere is investigated by means of the combined use of different analytical techniques such as scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and optical microscopy (OM). The aim of the work is to determine the bulk chemical composition of these commonly used coins at Gubbio, to ascertain their surface nature and if they were coated by a thin film of silver or other white metals similar to silver. The results indicate that the coins were produced by coating a copper core with a thin film of silver and antimony, and also with lead whose thickness is of a few microns which is now scarcely present because the original silvered surface was almost entirely removed by degradation phenomena. Furthermore, the SEM+EDS results show that the surface content of silver and antimony cannot be attributed to long-term selective corrosion phenomena leaving the coin slightly silver or antimony enriched. Therefore, the presence of silver or apparently silver-like metals i.e. antimony and lead, could be considered as a deliberate surface finishing of the coins obtained via inverse segregation or intentional selective corrosion based on pickling solutions or a combination of them. From a historical point of view the presence of a Ag or Sb film on the surface of the coins discloses the occurrence of a period of economic difficulties.
NASA Astrophysics Data System (ADS)
Liu, Suwen; Wehmschulte, Rudolf J.; Lian, Guoda; Burba, Christopher M.
2006-03-01
Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD).
Solid state diffusion bonded damascus steel and its role within custom knifemaking
NASA Astrophysics Data System (ADS)
Horne, Grace
This thesis describes practice-based research that applied new technology to an ancient process of laminating metals for blades and explored the application of the new possibilities to a craft context. This research built on work by Ferguson on solid-state diffusion bonded Mokume Gane by moving from metal combinations suitable for vessel-making to metal combinations suitable for knife-making. Solid-state diffusion bonding1 is well established within industry. This research applied the industrial process to a craft based setting, and explored the bonding of metals with very dissimilar properties; ferrous and non-ferrous metals, hard and soft, high and low melting points. The materials included in this study were stainless and carbon steel, iron, nickel, vanadium and silver. The characteristics of the carbon steel and silver laminates were explored further by knifemakers, including heat-treating, forging, machining, flex and pattern creation. Analysis of the knifemakers feedback showed that the steel/silver metal was of interest to makers who machined or ground their blades rather than relying on forging.The study used a multi-method approach. The two broad researchquestions were; Is it possible to make a damascus steel using solid-state diffusion bonding that would be impossible using traditional techniques? And would the results be worth the work? Although carried out mainly within a craft setting the investigation is highly metallurgical in subject matter. The methodology was developed to reflect this crossing of subject areas and answer the research questions outlined above. The results are communicated through this thesis and a documentation of an exhibition of the work produced by the researcher and other selected knifemakers.The research produced a coherent composite of steel and pure silver and successfully produced a number of knives using the material.
48 CFR 945.607-2 - Recovering precious metals.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MANAGEMENT GOVERNMENT PROPERTY Reporting, Redistribution, and Disposal of Contractor Inventory 945.607-2 Recovering precious metals. (b) Contractors generating contractor inventory containing precious metals shall... silver should be reported to the precious metals pool. The Oak Ridge Operations Office is responsible for...
Ultralight Conductive Silver Nanowire Aerogels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Fang; Lan, Pui Ching; Freyman, Megan C.
Low-density metal foams have many potential applications in electronics, energy storage, catalytic supports, fuel cells, sensors, and medical devices. Here in this work, we report a new method for fabricating ultralight, conductive silver aerogel monoliths with predictable densities using silver nanowires. Silver nanowire building blocks were prepared by polyol synthesis and purified by selective precipitation. Silver aerogels were produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to weld the nanowire junctions. As-prepared silver aerogels have unique anisotropic microporous structures, with density precisely controlled by the nanowire concentration, down to 4.8 mg/cm 3 and an electrical conductivity up tomore » 51 000 S/m. Lastly, mechanical studies show that silver nanowire aerogels exhibit “elastic stiffening” behavior with a Young’s modulus up to 16 800 Pa.« less
Ultralight Conductive Silver Nanowire Aerogels
Qian, Fang; Lan, Pui Ching; Freyman, Megan C.; ...
2017-09-05
Low-density metal foams have many potential applications in electronics, energy storage, catalytic supports, fuel cells, sensors, and medical devices. Here in this work, we report a new method for fabricating ultralight, conductive silver aerogel monoliths with predictable densities using silver nanowires. Silver nanowire building blocks were prepared by polyol synthesis and purified by selective precipitation. Silver aerogels were produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to weld the nanowire junctions. As-prepared silver aerogels have unique anisotropic microporous structures, with density precisely controlled by the nanowire concentration, down to 4.8 mg/cm 3 and an electrical conductivity up tomore » 51 000 S/m. Lastly, mechanical studies show that silver nanowire aerogels exhibit “elastic stiffening” behavior with a Young’s modulus up to 16 800 Pa.« less
NASA Astrophysics Data System (ADS)
Choudhary, Manoj Kumar; Kataria, Jyoti; Cameotra, Swaranjit Singh; Singh, Jagdish
2016-01-01
The significant antibacterial activity of silver nanoparticles draws the major attention toward the present nanobiotechnology. Also, the use of plant material for the synthesis of metal nanoparticles is considered as a green technology. In this context, a non-toxic, eco-friendly, and cost-effective method has been developed for the synthesis of silver nanoparticles using seed extract of mung beans ( Vigna radiata). The synthesized nanoparticles have been characterized by UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS), and X-ray diffraction (XRD). The UV-visible spectrum showed an absorption peak at around 440 nm. The different types of phytochemicals present in the seed extract synergistically reduce the Ag metal ions, as each phytochemical is unique in terms of its structure and antioxidant function. The colloidal silver nanoparticles were observed to be highly stable, even after 5 months. XRD analysis showed that the silver nanoparticles are crystalline in nature with face-centered cubic geometry and the TEM micrographs showed spherical particles with an average size of 18 nm. Further, the antibacterial activity of silver nanoparticles was evaluated by well-diffusion method and it was observed that the biogenic silver nanoparticles have an effective antibacterial activity against Escherichia coli and Staphylococcus aureus. The outcome of this study could be useful for nanotechnology-based biomedical applications.
Carbide-fluoride-silver self-lubricating composite
NASA Technical Reports Server (NTRS)
Sliney, Harold E. (Inventor)
1987-01-01
A self-lubricating, friction and wear reducing composite material is described for use over a wide temperature spectrum from cryogenic temperature to about 900 C in a chemically reactive environment comprising silver, barium fluoride/calcium fluoride eutectic, and metal bonded chromium carbide.
Distribution of copper, silver and gold during thermal treatment with brominated flame retardants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oleszek, Sylwia, E-mail: sylwia_oleszek@yahoo.com; Institute of Environmental Engineering of the Polish Academy of Sciences, 34 M. Sklodowska-Curie St., 41-819 Zabrze; Grabda, Mariusz, E-mail: mariusz@mail.tagen.tohoku.ac.jp
2013-09-15
Highlights: • Copper, silver and gold during thermal treatment with brominated flame retardants. • Distribution of copper, silver and gold during thermal processing. • Thermodynamic considerations of the bromination reactions. - Abstract: The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose themore » plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition. In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000 °C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin. Gold is resistant to HBr and remains unchanged in the residue.« less
Electrically Conductive Silver Paste Obtained by Use of Silver Neodecanoate as Precursor
NASA Astrophysics Data System (ADS)
Shen, Longguang; Liu, Jianguo; Zeng, Xiaoyan; Ren, Zhao
2015-02-01
An electrically conductive silver paste has been prepared from an organometallic compound, silver neodecanoate, as silver precursor. The precursor was highly soluble in organic solvents and decomposed into metallic silver at low sintering temperatures (<200°C). Thermogravimetric analysis showed the silver content of the paste was approximately 25 wt.%. Viscosity studies indicated the paste was a pseudoplastic liquid with viscosity in the range 6.5-9 Pa s. The paste was compatible with the micro-pen direct-writing process, enabling production of silver lines on a substrate. The electrical resistivity of the silver lines was 9 × 10-6 Ω cm after sintering at 115°C for 60 min, 5.8 × 10-6 Ω cm when sintered at 150°C for 60 min, and 3 × 10-6 Ω cm when sintered above 300°C, values which are similar to those of bulk silver. Hence, the prepared paste can be successfully used on flexible substrates such as polymers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Suwen; Wehmschulte, Rudolf J.; Lian Guoda
2006-03-15
Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 {mu}m, some even more than 100 {mu}m, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silvermore » nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD)« less
Coordination Chemistry of Cyclic Disilylated Germylenes and Stannylenes with Group 11 Metals
2014-01-01
Reactions of Et3P adducts of bissilylated germylenes and stannylenes with gold, silver, and copper cyanides led to cyanogermyl or -stannyl complexes of the respective metals. In the course of the reaction the phosphine moved to the metal, while the cyanide migrated to the low-coordinate group 14 element. The respective gold complexes were found to be monomeric, whereas the silver and copper complexes exhibited a tendency to dimerize in the solid state. Attempts to abstract the phosphine ligand with B(C6F5)3 led only to the formation of adducts with the borane coordinating to the cyanide nitrogen atom. PMID:25550678
Rapid laser sintering of metal nano-particles inks.
Ermak, Oleg; Zenou, Michael; Toker, Gil Bernstein; Ankri, Jonathan; Shacham-Diamand, Yosi; Kotler, Zvi
2016-09-23
Fast sintering is of importance in additive metallization processes and especially on sensitive substrates. This work explores the mechanisms which set limits to the laser sintering rate of metal nano-particle inks. A comparison of sintering behavior of three different ink compositions with laser exposure times from micro-seconds to seconds reveals the dominant factor to be the organic content (OC) in the ink. With a low OC silver ink, of 2% only, sintering time falls below 100 μs with resistivity <×4 bulk silver. Still shorter exposure times result in line delamination and deformation with a similar outcome when the OC is increased.
Closed end regeneration method
Yang, Arthur Jing-Min; Zhang, Yuehua
2006-06-27
A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g. metal, enzyme, etc. particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as irons, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.
Silver-Catalyzed Cyclopropanation of Alkenes Using N-Nosylhydrazones as Diazo Surrogates.
Liu, Zhaohong; Zhang, Xinyu; Zanoni, Giuseppe; Bi, Xihe
2017-12-15
An efficient silver-catalyzed [2 + 1] cyclopropanation of sterically hindered internal alkenes with diazo compounds in which room-temperature-decomposable N-nosylhydrazones are used as diazo surrogates is reported. The unexpected unique catalytic activity of silver was ascribed to its dual role as a Lewis acid activating alkene substrates and as a transition metal forming silver carbenoids. A wide range of internal alkenes, including challenging diarylethenes, were suitable for this protocol, thereby affording a variety of cyclopropanes with high efficiency in a stereoselective manner under mild conditions.
3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles.
Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana
2016-05-01
Coupling the photoreduction of a metal precursor with 3D-printing technology is shown to allow the fabrication of conductive 3D hybrid structures consisting of metal nanoparticles and organic polymers shaped in complex multilayered architectures. 3D conductive structures are fabricated incorporating silver nitrate into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Catalysts to reduce NO.sub.x in an exhaust gas stream and methods of preparation
Castellano, Christopher R [Ringoes, NJ; Moini, Ahmad [Princeton, NJ; Koermer, Gerald S [Basking Ridge, NJ; Furbeck, Howard [Hamilton, NJ; Schmieg, Steven J [Troy, MI; Blint, Richard J [Shelby Township, MI
2011-05-17
Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having a catalyst comprising silver and a platinum group metal on a particulate alumina support, the atomic fraction of the platinum group metal being less than or equal to about 0.25. Methods of manufacturing catalysts are described in which silver is impregnated on alumina particles.
NASA Astrophysics Data System (ADS)
Madrigal, R. F.; Blaya, L. Carretero S.; Ulibarrena, M.; Beléndez, A.; Fimia, A.
2002-01-01
In this paper we present the theoretical and experimental study of diffraction efficiency of unbleached holograms, showing that the volume fraction of metallic silver inside the gelatin after development ( q) is the main parameter in the behavior of the holographic grating properties. Using this fact, and the obtained relationship between pH and q, we have found values of diffraction efficiencies near 30% with a developing time of 3 min without bleaching step.
NASA Astrophysics Data System (ADS)
Kawai, Koji; Narushima, Takashi; Kaneko, Kotaro; Kawakami, Hayato; Matsumoto, Miyuki; Hyono, Atsushi; Nishihara, Hiroshi; Yonezawa, Tetsu
2012-12-01
The synthesis of 4-diazoniumcarboxylbenzene fluoroborate, a new water-soluble stabilizer for metal nanoparticles (NPs), is described. A stable dispersion of Ag NPs in water was successfully produced by a simultaneous aqueous reduction of this diazonium salt and silver nitrate by NaBH4. UV-vis spectra, TEM images, XRD patterns, and XPS spectra of the obtained Ag NPs revealed that they were stabilized by Ag-C σ-bonds. These NPs showed excellent antimicrobial properties against Staphylococcus aureus.
Nakamura, Maki; Oyane, Ayako; Shimizu, Yoshiki; Miyata, Saori; Saeki, Ayumi; Miyaji, Hirofumi
2016-12-01
We achieved rapid, surfactant-free, and one-pot fabrication of antibacterial calcium phosphate (CaP) submicrospheres containing silver nanoparticles by combining physical laser and chemical coprecipitation processes. In this physicochemical process, weak pulsed laser irradiation (20min) was performed on a labile CaP reaction mixture supplemented with silver ions as a light-absorbing agent. The silver content in the submicrospheres was controlled for a wide range (Ag/P elemental ratio varied from 0.60 to 62.0) by tuning the initial concentration of silver ions (from 5 to 20mM) in the CaP reaction mixture. At the silver concentration of 5mM, we obtained unique nanocomposite particles: CaP submicrospheres (average diameter of approximately 500nm) containing metallic silver nanoparticles dispersed throughout, as a result of CaP and silver coprecipitation with simultaneous photoreduction of silver ions and spheroidization of the coprecipitates. These CaP submicrospheres containing silver nanoparticles (ca. 0.3mg silver per 1mg submicrospheres) exhibited antibacterial activity against major pathogenic oral bacteria, i.e., Streptococcus mutans, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis. Moreover, the CaP submicrospheres dissolved and neutralized the acidic environment generated by Streptococcus mutans, demonstrating their potential as acid-neutralizing and remineralizing agents. The present process and resulting antibacterial CaP-based submicrospheres are expected to be useful in dental healthcare and infection control. Nano- and microsized spheres of calcium phosphate (CaP) containing silver nanoparticles have great potential in dental applications. Conventional fabrication processes were time-consuming or weak regarding the size/shape control of the spheres. In this study, we achieved a simple (one-pot), rapid (20-min irradiation), and surfactant-free fabrication of CaP submicrospheres containing silver nanoparticles by pulsed laser irradiation to a mixture of calcium, phosphate, and silver ion solutions. The resulting CaP submicrospheres contained metallic silver nanoparticles dispersed throughout in a sequence of reactions: CaP and silver coprecipitation, laser-induced melting and spheroidization of the coprecipitates, and photoreduction of silver ions. These submicrospheres showed antibacterial activity against oral bacteria and acid-neutralizing property in the bacterial suspension, and hence are worth considering for dental applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Gorup, Luiz F; Longo, Elson; Leite, Edson R; Camargo, Emerson R
2011-08-15
A new method to stabilize silver nanoparticles by the addition of ammonia is proposed. Colloidal dispersions of silver nanoparticles were synthesized by the Turkevich method using sodium citrate to reduce silver nitrate at high pH and at 90 °C. After approximately 12 min, a diluted ammonia solution was added to the reaction flask to form soluble diamine silver (I) complexes that played an important growth moderating role, making it possible to stabilize metallic silver nanoparticles with sizes as small as 1.6 nm after 17 min of reaction. Colloidal dispersions were characterized by UV-visible absorption spectroscopy, X-ray diffraction, and transmission electronic microscopy. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nelson, Peter N.; Ellis, Henry A.; White, Nicole A. S.
2015-06-01
A comparative study of the molecular packing, lattice structures and phase behaviors of the homologous series of some mono-valent metal carboxylates (Li, Na, K and Ag) is carried out via solid state FT-infrared and 13C-NMR spectroscopes, X-rays powder diffraction, density measurements, differential scanning calorimetry, polarizing light microscopy and variable temperature infrared spectroscopy. It is proposed that, for lithium, sodium and potassium carboxylates, metal-carboxyl coordination is via asymmetric chelating bidentate bonding with extensive intermolecular interactions to form tetrahedral metal centers, irrespective of chain length. However, for silver n-alkanoates, carboxyl moieties are bound to silver ions via syn-syn type bridging bidentate coordination to form dimeric units held together by extensive head group inter-molecular interactions. Furthermore, the fully extended hydrocarbon chains which are crystallized in the all-trans conformation are tilted at ca. 30°, 27°, 15° and 31° with respect to a normal to the metal plane, for lithium, sodium, silver and potassium carboxylates, respectively. All compounds are packed as lamellar bilayer structures, however, lithium compounds are crystallized in a triclinic crystal system whilst silver, sodium and potassium n-alkanoates are all monoclinic with possible P1 bravais lattice. Odd-even alternation observed in various physical features is associated with different inter-planar spacing between closely packed layers in the bilayer which are not in the same plane; a phenomenon controlled by lattice packing symmetry requirements. All compounds, except silver carboxylates, show partially reversibly first order pre-melting transitions; the number of which increases with increasing chain length. These transitions are associated, for the most part, with lamellar collapse followed by increased gauche-trans isomerism in the methylene group assembly, irrespective of chain length. It is proposed that the absence of mesomorphic transitions in their phase sequences is due to a lack of sufficient balance between attractive and repulsive electrostatic and van der Waals forces during phase change. The evidence presented in this study shows that phase behaviors of mono-valent metal carboxylates are controlled, mainly, by head group bonding.
Metal Nanoshells for Plasmonically Enhanced Solar to Fuel Photocatalytic Conversion
2016-05-18
but are still under development. Scheme 2. Strategy for the Synthesis of Tin Oxide-Coated Gold- Silver Nanoshells Publication List: 1. Li, C.-H...DISTRIBUTION/AVAILABILITY STATEMENT A DISTRIBUTION UNLIMITED: PB Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT First thrust: Gold- silver nanoshells...interlayer of ~17 nm generated a rate of hydrogen production 2.6 times higher than that of unmodified ZIS. Second thrust: Tin oxide-coated gold- silver
Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract
Khan, Mujeeb; Khan, Merajuddin; Adil, Syed Farooq; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Alkhathlan, Hamad Z; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H
2013-01-01
The green synthesis of metallic nanoparticles (NPs) has attracted tremendous attention in recent years because these protocols are low cost and more environmentally friendly than standard methods of synthesis. In this article, we report a simple and eco-friendly method for the synthesis of silver NPs using an aqueous solution of Pulicaria glutinosa plant extract as a bioreductant. The as-prepared silver NPs were characterized using ultraviolet–visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. Moreover, the effects of the concentration of the reductant (plant extract) and precursor solution (silver nitrate), the temperature on the morphology, and the kinetics of reaction were investigated. The results indicate that the size of the silver NPs varied as the plant extract concentration increased. The as-synthesized silver NPs were phase pure and well crystalline with a face-centered cubic structure. Further, Fourier-transform infrared spectroscopy analysis confirmed that the plant extract not only acted as a bioreductant but also functionalized the NPs’ surfaces to act as a capping ligand to stabilize them in the solvent. The developed eco-friendly method for the synthesis of NPs could prove a better substitute for the physical and chemical methods currently used to prepare metallic NPs commonly used in cosmetics, foods, and medicines. PMID:23620666
Preparation and characterization of silver nanoparticles homogenous thin films
NASA Astrophysics Data System (ADS)
Hegazy, Maroof A.; Borham, E.
2018-06-01
The wet chemical method by metal salt reduction has been widely used to synthesize nanoparticles. Accordingly the silver nitrate used as silver precursor and sodium borohydrate as reduction agent. The silver nanoparticles were characterized by different characterization techniques including UV-VIS spectrometry, Transmission electron microscope (TEM), and Zeta potential technique. Thin films of the colloidal solution were fabricated using direct precipitation technique on ITO glass, silicon substrate and commercial glass substrate and characterized by imaging technique. The absorption peak of the silver nanoparticles colloidal solution was around 400 nm. The TEM images indicate that the silver nanoparticles had spherical shape and their sizes were from 10 to 17 nm. The particle size of the silver nanoparticles was confirmed by Zeta potential technique. The imaging technique indicated that the homogeneous distribution of the colloidal silver solution thin film on the silicon substrate was stronger than the ITO glass and inhomogeneous film was emerged on the commercial glass.
Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basavaraja, S.; Balaji, S.D.; Department of Chemistry, Gulbarga University, Gulbarga 585106, Karnataka
2008-05-06
Development of environmental friendly procedures for the synthesis of metal nanoparticles through biological processes is evolving into an important branch of nanobiotechnology. In this paper, we report on the use of fungus 'Fusarium semitectum' for the extracellular synthesis of silver nanoparticles from silver nitrate solution (i.e. through the reduction of Ag{sup +} to Ag{sup 0}). Highly stable and crystalline silver nanoparticles are produced in solution by treating the filtrate of the fungus F. semitectum with the aqueous silver nitrate solution. The formations of nanoparticles are understood from the UV-vis and X-ray diffraction studies. Transmission electron microscopy of the silver particlesmore » indicated that they ranged in size from 10 to 60 nm and are mostly spherical in shape. Interestingly the colloidal suspensions of silver nanoparticles are stable for many weeks. Possible medicinal applications of these silver nanoparticles are envisaged.« less
40 CFR 437.1 - General applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... centralized silver recovery from used photographic or x-ray materials activities. The discharge resulting from centralized silver recovery from used photographic or x-ray materials that is treated at a CWT facility along... Nickel Subcategory), Subpart X (Secondary Precious Metals Subcategory), Subpart Z (Secondary Tantalum...
40 CFR 437.1 - General applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... centralized silver recovery from used photographic or x-ray materials activities. The discharge resulting from centralized silver recovery from used photographic or x-ray materials that is treated at a CWT facility along... Nickel Subcategory), subpart X (Secondary Precious Metals Subcategory), subpart Z (Secondary Tantalum...
CONTROL ID: 1850472 CONTACT (NAME ONLY): Timothy Shafer Abstract Details PRESENTATION TYPE: Platform or Poster CURRENT CATEGORY: Nanotoxicology, In Vitro | Neurotoxicity, General | Neurotoxicity, Metals KEYWORDS: Nanoparticle, Neurotoxicity, microelectrode array. DATE/TIME LAST...
Neutralization by Metal Ions of the Toxicity of Sodium Selenide
Dauplais, Marc; Lazard, Myriam; Blanquet, Sylvain; Plateau, Pierre
2013-01-01
Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i) metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag+, Cd2+, Cu2+, Hg2+, Pb2+ and Zn2+), (ii) metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co2+ and Ni2+) and, finally, (iii) metal ions which do not afford protection and do not interact (Ca2+, Mg2+, Mn2+) or weakly interact (Fe2+) with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds. PMID:23342137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tadjarodi, Azadeh, E-mail: tajarodi@iust.ac.ir; Zabihi, Fatemeh; Chemistry and Nanotechnology Laboratory, National Center for Laser Science and Technology, Tehran
2013-10-15
Graphical abstract: - Highlights: • Metallic silver was decorated in mSiO{sub 2} with grafted hemiaminal functional groups. • Synthesized nanoparticles were used for preparation of glycerol based nanofluids. • The effect of temperature, weight fraction of mSiO{sub 2} and concentration of silver nanoparticles on thermal conductivity of nanofluids was investigated. - Abstract: In the present study, the mesoporous structure of silica (mSiO{sub 2}) nanoparticles as well as hemiaminal grafted mSiO{sub 2} decorated by metallic silver (Ag/mSiO{sub 2}) has been used for the preparation of glycerol based nanofluids. Structural and morphological characterization of the synthesized products have been carried out usingmore » Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), UV–vis spectroscopy, inductively coupled plasma (ICP) and N{sub 2} adsorption–desorption isotherms. The thermal conductivity and viscosity of the nanofluids have been measured as a function of temperature for various weight fractions and silver concentrations of mSiO{sub 2} and Ag/mSiO{sub 2} nanoparticles, respectively. The results show that the thermal conductivity of the nanofluids increase up to 9.24% as the weight fraction of mSiO{sub 2} increases up to 4 wt%. Also, increasing the percent of the silver decorated mSiO{sub 2} (Ag/mSiO{sub 2}) up to 2.98% caused an enhancement in the thermal conductivity of the base fluid up to 10.95%. Furthermore, the results show that the nanofluids have Newtonian behavior in the tested temperature range for various concentrations of nanoparticles.« less
Mechanically robust silver coatings prepared by electroless plating on thermoplastic polyurethane
NASA Astrophysics Data System (ADS)
Vasconcelos, B.; Vediappan, K.; Oliveira, J. C.; Fonseca, C.
2018-06-01
A simple and low-cost surface functionalization method is proposed to activate a thermoplastic polyurethane (TPU) for the electroless deposition of a silver coating with excellent adhesion and low resistivity. The TPU surface functionalization was performed in solution and consisted in forming a physical interpenetrating network at the TPU surface, involving TPU and polyvinylpyrrolidone (PVP), a polymer displaying a strong affinity for metals. The presence of PVP on the TPU surface and its stability in aqueous solution were assessed by ATR-FTIR and contact angle measurements as a function of the PVP concentration and treatment time. A modified Tollens solution was used to grow a silver film on the TPU substrate, by using the electroless plating method. Compact silver films with an average thickness of 12.5 μm and a resistivity of 8.57 mΩ·cm were obtained for a 24 h plating time. The adhesion strength of the silver film proved to be higher than 8.5 N/cm. The resistance to fatigue of the silver films was studied by performing series of compression/stretching tests (150 cycles). It was concluded that the films kept low resistance values, although displaying a higher sensitivity to compression than to stretching. Furthermore, the films keep a good conductivity for strains up to 400%. The excellent electrical and mechanical properties of the films make them suitable candidates for the coating of multipin dry bioelectrodes. Owing to the high affinity of many metals for PVP, this activation technique has the potential to be extended to the deposition of other metals and other polymers as well, provided a suitable solvent is used.
Metal/ceramic composites with high hydrogen permeability
Dorris, Stephen E.; Lee, Tae H.; Balachandran, Uthamalingam
2003-05-27
A membrane for separating hydrogen from fluids is provided comprising a sintered homogenous mixture of a ceramic composition and a metal. The metal may be palladium, niobium, tantalum, vanadium, or zirconium or a binary mixture of palladium with another metal such as niobium, silver, tantalum, vanadium, or zirconium.
NASA Astrophysics Data System (ADS)
Xiong, Shenghu; Yuan, Xiao; Tong, Hua; Yang, Yunxia; Liu, Cui; Ye, Xiaojun; Li, Yongsheng; Wang, Xianhao; Luo, Lan
2018-04-01
Circular transmission line model (CTLM) measurements were applied to study the contact formation mechanism of the silver paste metallization on n-type emitter of crystalline silicon solar cells. The electrical performance parameters ρc,Rsk , and Lt , which are related to the physical and chemical states of the multiphase materials at the interface, were extracted from the CTLM measurements, and were found to be sensitive to sintering temperature. As the temperature increased from 585 °C to 780 °C, initially the ρc value decreased rapidly, then flattened out and increased slightly. The order of resistivity magnitude was restricted by the SiNx passivation layer in the early sintering stages, and relied on the carrier tunneling probability affected by the precipitated silver crystallites or colloids, emitter doping concentration and molten glass layer. Based on the calculations that the sheet resistance underneath the electrode was reduced form 110 Ω / □ to 0.186 Ω / □ , it could be inferred that there was formation of a highly conductive layer of silver crystallites and colloids contained glass on the emitter. The transfer length Lt exhibited a U-shaped variation along with the temperature, reflecting the variation of the interfacial electrical properties. Overall, this article shows that the CTLM method can become a new powerful tool for researchers to meet the challenges of silver paste metallization innovation for manufacturing high-efficiency silicon solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huie, Matthew M.; Bock, David C.; Zhong, Zhong
Ag 0.50VOPO 4·1.8H 2O (silver vanadium phosphate, SVOP) demonstrates a counterintuitive higher initial loaded voltage under higher discharge current. Energy dispersive X-ray diffraction (EDXRD) from synchrotron radiation was used to create tomographic profiles of cathodes at various depths of discharge for two discharge rates. SVOP displays two reduction mechanisms, reduction of a vanadium center accompanied by lithiation of the structure, or reduction-displacement of a silver cation to form silver metal. In-situ EDXRD provides the opportunity to observe spatially resolved changes to the parent SVOP crystal and formation of Ag 0 during reduction. At a C/170 discharge rate V 5+ reductionmore » is the preferred initial reaction resulting in higher initial loaded voltage. At a discharge rate of C/400 reduction of Ag + with formation of conductive Ag 0 occurs earlier during discharge. Discharge rate also affects the spatial location of reduction products. The faster discharge rate initiates reduction close to the current collector with non-uniform distribution of silver metal resulting in isolated cathode areas. The slower rate develops a more homogenous distribution of reduced SVOP and silver metal. This study illuminates the roles of electronic and ionic conductivity limitations within a cathode at the mesoscale and how they impact the course of reduction processes and loaded voltage.« less
Huie, Matthew M.; Bock, David C.; Zhong, Zhong; ...
2016-09-01
Ag 0.50VOPO 4·1.8H 2O (silver vanadium phosphate, SVOP) demonstrates a counterintuitive higher initial loaded voltage under higher discharge current. Energy dispersive X-ray diffraction (EDXRD) from synchrotron radiation was used to create tomographic profiles of cathodes at various depths of discharge for two discharge rates. SVOP displays two reduction mechanisms, reduction of a vanadium center accompanied by lithiation of the structure, or reduction-displacement of a silver cation to form silver metal. In-situ EDXRD provides the opportunity to observe spatially resolved changes to the parent SVOP crystal and formation of Ag 0 during reduction. At a C/170 discharge rate V 5+ reductionmore » is the preferred initial reaction resulting in higher initial loaded voltage. At a discharge rate of C/400 reduction of Ag + with formation of conductive Ag 0 occurs earlier during discharge. Discharge rate also affects the spatial location of reduction products. The faster discharge rate initiates reduction close to the current collector with non-uniform distribution of silver metal resulting in isolated cathode areas. The slower rate develops a more homogenous distribution of reduced SVOP and silver metal. This study illuminates the roles of electronic and ionic conductivity limitations within a cathode at the mesoscale and how they impact the course of reduction processes and loaded voltage.« less
21 CFR 872.3060 - Noble metal alloy.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver, that...
21 CFR 872.3060 - Noble metal alloy.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver, that...
Silver nanoparticles-coated glass frits for silicon solar cells
NASA Astrophysics Data System (ADS)
Li, Yingfen; Gan, Weiping; Li, Biyuan
2016-04-01
Silver nanoparticles-coated glass frit composite powders for silicon solar cells were prepared by electroless plating. Silver colloids were used as the activating agent of glass frits. The products were characterized by X-ray diffraction, scanning electron microscopy, and differential scanning calorimetry. The characterization results indicated that silver nanoparticles with the melting temperature of 838 °C were uniformly deposited on glass frit surface. The particle size of silver nanoparticles could be controlled by adjusting the [Ag(NH3)2]NO3 concentration. The as-prepared composite powders were applied in the front side metallization of silicon solar cells. Compared with those based on pure glass frits, the solar cells containing the composite powders had the denser silver electrodes and the better silver-silicon ohmic contacts. Furthermore, the photovoltaic performances of solar cells were improved after the electroless plating.
USDA-ARS?s Scientific Manuscript database
Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers were prepared by atmospheric plasma treatment and electrospinning. Atmospheric helium plasma treatment was first used to reduce the silver nitrate precursor in pre-electrospinning solutions into metallic silver nanoparticles, foll...
SERS+MEF of the anti-tumoral drug emodin adsorbed on silver nanoparticles
NASA Astrophysics Data System (ADS)
Sevilla, Paz; De Llanos, Raquel; Domingo, Concepción; Sánchez-Cortés, Santiago; García-Ramos, José V.
2010-02-01
Metal nanostructures are known to amplify the spontaneous emission of fluorescent molecules by resonant coupling to external electromagnetic fields. We have used spectroscopy to characterize the structural properties of emodin molecules, a natural anthraquinone dye, and bovine serum albumin, the most abundant protein in plasma, in the presence of silver nanoparticles. Aggregation of emodin at pH=10 and pH=6 gives rise to SERS and MEF effects in silver colloid. We have obtained MEF spectra at acidic pH=2.9 using two different silver nanostructures. We have also studied the change in the secondary structure of bovine serum albumin adsorbed on metal nanoparticles surface. Circular dichroism, fluorescence emission and fluorescence lifetime measurements indicate an increase in the alfa-helical content of the protein and a change in the environment of the tryptophan residues that bury in the interior of the biomolecule. This variation on the secondary structure could have further influence in the binding of the drug to form transport and regulatory complexes.
Siejak, Przemysław; Frackowiak, Danuta
2007-09-25
Changes in the yield of the fluorescence emitted by pigments of photosynthetic organisms could be used for the establishment of the presence of some toxic substances. The presence of colloidal metals can be indicated by enhancement of pigments' emission as a result of plasmons generation. The spectra of the pigments of cyanobacterium Synechocystis located in the bacterium fragments and in solutions with and without colloidal silver additions have been measured. The quantum yield of the pigments' fluorescence in solution has been observed to increase at some wavelength of excitation, while the fluorescence of the pigments in the bacteria fragments has been only quenched as a consequence of interactions with colloidal silver particles. Close contact between pigment molecules located in bacteria fragments and silver particles is probably not possible. We plan in future to investigate the influence of other, more typical metal pollutants of water, using similar spectral methods and several other photosynthetic bacteria pigments, in solution, in cell fragments and in the whole bacteria organisms.
NASA Astrophysics Data System (ADS)
Moradi, Zhaleh; Akhbari, Kamran; Phuruangrat, Anukorn; Costantino, Ferdinando
2017-04-01
Micro and nano-structures of [Ag2(μ2-dcpa)2]n (1), [Hdcpa = 2,4-dichlorophenoxyacetic acid] which is a one-dimensional coordination polymer with corrugated tape chains, were synthesized as the bulk sample (1B), by sonochemical process (1S) and from mechanochemical reaction (1M). These three samples have been used as new precursors for fabricating silver nanoparticles via direct calcination at 300 °C and also thermal decomposition in oleic acid (OA) as a surfactant at 180 °C. In the presence of OA less agglomerated nanostructures were formed. It seems that the size, dispersion, morphology and agglomeration of initial precursor have direct influence on size, dispersion, morphology and agglomeration of metallic silver. This coordination polymer with various micro and nano morphologies were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Thermal stability of these samples were studied and compared with each other, too.
Feng, Xingli; Ma, Houyi; Huang, Shaoxin; Pan, Wei; Zhang, Xiaokai; Tian, Fang; Gao, Caixia; Cheng, Yingwen; Luo, Jingli
2006-06-29
A simple but effective aqueous-organic phase-transfer method for gold, silver, and platinum nanoparticles was developed on the basis of the decrease of the PVP's solubility in water with the temperature increase. The present method is superior in the transfer efficiency of highly stable nanoparticles to the common phase-transfer methods. The gold, silver, and platinum nanoparticles transferred to the 1-butanol phase dispersed well, especially silver and platinum particles almost kept the previous particle size. Electrochemical synthesis of gold nanoparticles in an oil-water system was achieved by controlling the reaction temperature at 80 degrees C, which provides great conveniences for collecting metal particles at the oil/water interface and especially for fabricating dense metal nanoparticle films. A technique to fabricate gold nanofilms on solid supports was also established. The shapes and sizes of gold nanoparticles as the building blocks may be controllable through changing reaction conditions.
Utilization of hydroxypropyl carboxymethyl cellulose in synthesis of silver nanoparticles.
Abdel-Halim, E S; Alanazi, Humaid H; Al-Deyab, Salem S
2015-04-01
Hydroxypropyl carboxymethyl cellulose samples having varying degrees of substitution and varying degrees of polymerization were used to reduce silver nitrate to silver nanoparticles. UV spectral analysis of silver nanoparticles colloidal solution reveal that increasing the pH of the reduction solution leads to improvement in the intensity of the absorption band for silver nanoparticles, to be maximum at pH 11. The absorption peak intensity also enhanced upon prolonging the reaction duration up to 60 min. The conversion of silver ions to metallic silver nanoparticles was found to be temperature-dependent and maximum transformation occurs at 60 °C. The reduction efficiency of hydroxypropyl carboxymethyl cellulose was found to be affected by its degree of polymerization. Colloidal solutions of silver nanoparticles having concentration up to 1000 ppm can be prepared upon fixing the ratio between silver nitrate and hydroxypropyl carboxymethyl cellulose at 0.017-0.3g per each 100ml of the reduction solution. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shittu, K. O.; Ihebunna, O.
2017-12-01
Synthesis of nanoparticles from various biological systems has been reported, but among all such systems, biosynthesis of nanoparticles from plants is considered the most suitable method. The use of plant material not only makes the process eco-friendly, but also the abundance makes it more economical. The aim of this study was to biologically synthesize silver nanoparticle using Piliostigma thonningii aqueous leaf extract and applied in the purification of laboratory stimulated waste with optimization using the different conditions of silver nanoparticle production such as time, temperature, pH, concentration of silver nitrate and volume of the aqueous extract. The biosynthesized silver nanoparticles were characterized by UV-visible spectrophotometry, nanosizer, energy dispersive x-ray analysis (EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. The time intervals for the reaction with aqueous silver nitrate solution shows an increase in the absorbance with time and became constant giving a maximum absorbance at 415 nm at 60 min of incubation. The pH of 6.5, temperature 65 °C, 1.25 mM of silver nitrate and 5 ml of plant extract was the best condition with maximum absorbance. The results from nanosizer, UV-vis and TEM suggested the biosynthesis silver nanoparticle to be spherical ranging from 50 nm to 114 nm. The EDX confirmed the elemental synthesis of silver at 2.60 keV and FTIR suggested the capping agent to be hydroxyl (OH) group with -C=C stretching vibrations. The synthesized silver nanoparticle also shows heavy metal removal activity in laboratory simulated waste water. The safety toxicity studies show no significant difference between the orally administered silver nanoparticles treated water group and control group, while the histopathological studies show well preserved hepatic architecture for the orally administered silver nanoparticle treated waste water group when compared with the control group. Therefore, it can be concluded that the biosynthesized silver nanoparticles have efficient ability in heavy metal removal without sub chronic adverse effects in experimental rats.
Strategies to Reduce Tin and Other Metals in Electronic Cigarette Aerosol
Williams, Monique; To, An; Bozhilov, Krassimir; Talbot, Prue
2015-01-01
Background Metals are present in electronic cigarette (EC) fluid and aerosol and may present health risks to users. Objective The objective of this study was to measure the amounts of tin, copper, zinc, silver, nickel and chromium in the aerosol from four brands of EC and to identify the sources of these metals by examining the elemental composition of the atomizer components. Methods Four brands of popular EC were dissected and the cartomizers were examined microscopically. Elemental composition of cartomizer components was determined using integrated energy dispersive X-ray microanalysis, and the concentrations of the tin, copper, zinc silver, nickel, and chromium in the aerosol were determined for each brand using inductively coupled plasma optical emission spectroscopy. Results All filaments were made of nickel and chromium. Thick wires were copper coated with either tin or silver. Wires were joined to each other by tin solder, brazing, or by brass clamps. High concentrations of tin were detected in the aerosol when tin solder joints were friable. Tin coating on copper wires also contributed to tin in the aerosol. Conclusions Tin concentrations in EC aerosols varied both within and between brands. Tin in aerosol was reduced by coating the thick wire with silver rather than tin, placing stable tin solder joints outside the atomizing chamber, joining wires with brass clamps or by brazing rather than soldering wires. These data demonstrate the feasibility of removing tin and other unwanted metals from EC aerosol by altering designs and using materials of suitable quality. PMID:26406602
48 CFR 945.607-2 - Recovering precious metals.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Recovering precious metals. (b) Contractors generating contractor inventory containing precious metals shall... silver should be reported to the precious metals pool. The Oak Ridge Operations Office is responsible for... Martin Marietta Energy Systems, M.S. 8207, P.O. Box 2009, Oak Ridge, TN 37831. [54 FR 27648, June 30...
Saller, H.A.; Keeler, J.R.
1959-07-14
The bonding to uranium of sheathing of iron or cobalt, or nickel, or alloys thereof is described. The bonding is accomplished by electro-depositing both surfaces to be joined with a coating of silver and amalgamating or alloying the silver layer with mercury or indium. Then the silver alloy is homogenized by exerting pressure on an assembly of the uranium core and the metal jacket, reducing the area of assembly and heating the assembly to homogenize by diffusion.
Whitehouse, Michael; Butters, Desley; Vernon-Roberts, Barrie
2013-08-01
This article discusses the bizarre and contrary effects of thiocyanate, the major detoxication product of hydrogen cyanide inhaled from tobacco smoke or liberated from cyanogenic foods, e.g. cassava. Thiocyanate both (1) promotes inflammatory disease in rats and (2) facilitates the anti-inflammatory action of historic metal therapies based on gold (Au) or silver (Ag) in three models of chronic polyarthritis in rats. Low doses of nanoparticulate metallic silver (NMS) preparations, i.e. zerovalent silver (Ag°) administered orally, suppressed the mycobacterial ('adjuvant')-induced arthritis (MIA) in rats. Similar doses of cationic silver, Ag(I), administered orally as silver oxide or soluble silver salts were inactive. By contrast, NMS only inhibited the development of the collagen-induced arthritis (CIA) and pristane-induced arthritis (PIA) in rats when thiocyanate was also co-administered in drinking water. These (a) arthritis-selective and (b) thiocyanate-inducible effects of Ag° were also observed in some previous, and now extended, studies with the classic anti-arthritic drug, sodium aurothiomalate (ATM, Myocrisin(®)) and its silver analogue (STM), administered subcutaneously to rats developing the same three forms of polyarthritis. In the absence of either Ag° or ATM, thiocyanate considerably increased the severity of the MIA, CIA and PIA, i.e. acting as a pro-pathogen. Hitherto, thiocyanate was considered relatively harmless. This may not be true in rats/people with immuno-inflammatory stress and concomitant leukocyte activation. Collectively, these findings show how the drug action of a xenobiotic might be determined by the nature (and severity) of the experimental inflammation, as an example of conditional pharmacology. They also suggest that an incipient toxicity, even of normobiotics such as thiocyanate, might likewise be modulated beneficially by well-chosen xenobiotics (drugs, nutritional supplements, etc.), i.e. conditional toxicology (Powanda 1995). Thus, both the disease and the environment may determine (1) the therapeutic action and/or (2) adverse effect(s) of xenobiotics--and even some normobiotics.
Effect of Gold on the Microstructural Evolution and Integrity of a Sintered Silver Joint
NASA Astrophysics Data System (ADS)
Muralidharan, Govindarajan; Leonard, Donovan N.; Meyer, Harry M.
2017-07-01
There is a need for next-generation, high-performance power electronic packages and systems employing wide-bandgap devices to operate at high temperatures in automotive and electric grid applications. Sintered silver joints are currently being evaluated as an alternative to Pb-free solder joints. Of particular interest is the development of joints based on silver paste consisting of nano- or micron-scale particles that can be processed without application of external pressure. The microstructural evolution at the interface of a pressureless-sintered silver joint formed between a SiC die with Ti/Ni/Au metallization and an active metal brazed (AMB) substrate with Ag metallization at 250°C has been evaluated using scanning electron microscopy (SEM), x-ray microanalysis, and x-ray photoelectron spectroscopy (XPS). Results from focused ion beam (FIB) cross-sections show that, during sintering, pores in the sintered region near to the Au layer tend to be narrow and elongated with long axis oriented parallel to the interface. Further densification results in formation of many small, relatively equiaxed pores aligned parallel to the interface, creating a path for easy crack propagation. X-ray microanalysis results confirm interdiffusion between Au and Ag and that a region with poor mechanical strength is formed at the edge of this region of interdiffusion.
Osborne, Olivia J; Johnston, Blair D; Moger, Julian; Balousha, Mohammed; Lead, Jamie R; Kudoh, Tetsuhiro; Tyler, Charles R
2013-12-01
Manufactured metal (oxide) nanoparticles are entering the aquatic environment with little understanding on their potential health impacts for exposed organisms. Adopting an integrative approach, we investigated effects of particle size and coating on biological responses for two of the most commonly used metal (oxide) nanoscale particles, silver (Ag) and titanium dioxide (TiO₂) in zebrafish embryos. Titanium dioxide nanoparticles (nominally, 4 nm, 10 nm, 30 nm and 134 nm) had little or no toxicity on the endpoints measured. Ag both in nano form (10 nm and 35 nm) and its larger counterpart (600-1600 nm) induced dose-dependent lethality and morphological defects, occurring predominantly during gastrula stage. Of the silver material tested 10 nm nanoparticles appeared to be the most toxic. Coating Ag nanoparticles with citrate or fulvic acid decreased toxicity significantly. In situ hybridisation analysis identified the yolk syncytial layer (YSL) as a target tissue for Ag-nano toxicity where there was a significant induction of the heavy metal stress response gene, metallothionein 2 (Mt2) at sub-lethal exposures. Coherent Anti-stroke Raman Scattering (CARS) microscopy provided no evidence for silver particles crossing the chorionic membrane in exposed embryos. Collectively, our data suggest that silver ions play a major role in the toxicity of Ag nanoparticles.
Geology of the Barite Hill gold-silver deposit in the southern Carolina slate belt
Clark, S.H.B.; Gray, K.J.; Back, J.M.
1999-01-01
Barite Hill is a stratiform gold-silver deposit associated with base metal sulfides and barite in greenschist facies rocks. The deposit, southernmost of four recently mined gold deposits in the Carolina slate belt, is located in the Lincolnton-McCormick district of Georgia and South Carolina, which includes several known gold-silver and base metal deposits in a Kuroko-type geological setting along with deposits of kyanite and manganese. Approximately 1,835,000 g of gold was produced mainly from oxidized ores in the Main and Rainsford pits from 1990 until their closing in 1994. Ore is hosted by sericitically altered felsic metavolcanic and metasedimentary rocks of the Late Proterozoic Persimmon Fork Formation. The deposit is stratigraphically below an overturned contact between upper and lower pyroclastic units, which overlie the Lincolnton metarhyolite, an intrusive unit. Gold-silver-rich zones in the Main pit are partly coincident with lenses of siliceous barite rock, but not confined to them, and occur more commonly in pyrite-quartz-altered fragmental rock. The Main pit ore is stratigraphically overlain by a zone of base metal and barite enrichment, which is, in turn, overlain by a talc-tremolite alteration zone locally. Siliceous barite zones are absent in the Rainsford pit, and gold-silver minerals are associated with silicified rocks and chert. The Barite Hill deposit is interpreted to be the result of Kuroko-type, volcanogenic, base metal sulfide mineralization, followed by gold-silver mineralization under epithermal conditions with the following stages of evolution: (1) massive sulfides, barite, and fine-grained siliceous exhalites were deposited during Late Proterozoic to Cambrian submarine volcanism, which was related to plate convergence and subduction in a microcontinental or island-arc setting distant from the North American continental plate; (2) Au-Ag-Te and base and precious metal Te-Se-Bi minerals were deposited either during waning stages of hydrothermal activity in a failed massive sulfide system or in a separate event; (3) sulfides and silica-barite rock recrystallized during regional deformation and greenschist facies metamorphism related to the Middle to Late Ordovician collision of the Carolina terrane with the North American continental plate; (4) quartz, barite, and gold were remobilized and formed veins that cut across cleavage; (5) orebodies were offset along high-angle faults; and (6) during weathering, base metal sulfides and barite dissolved and reprecipitated as supergene euhedral barite crystals that line ferric iron oxide-hydroxide gossans.
NASA Astrophysics Data System (ADS)
Martínez-Bernett, D.; Silva-Granados, A.; Correa-Torres, S. N.; Herrera, A.
2016-02-01
It was studied the green synthesis of silver nanoparticles (AgNPs) from the reduction of a silver nitrate solution (1 and 10mM) in the presence of an extract of mangifera indica leaves. Phytochemicals components present in extracts of mango leaves were determined using a GC-MS chromatograph. The results showed the presence of the phenolic compound pyrogallol (26.9% wt/5mL of extract) and oleic acid (29.1% wt/5mL of extract), which are useful for the reduction of the metallic salt AgNO3 and the stabilization of silver nanoparticles. The synthesized nanoparticles were characterized by UV visible spectroscopy (UV-vis), evidencing absorbances at wavelengths of 417nm (AgNPs-1) and 414nm (AgNPs- 10), which are characteristic peaks of this metallic nanoparticles. Scanning Electron Microscopy (SEM) was used to determine the size of the synthesized nanoparticles. A particle size of about 28±7nm was observed for the AgNPs-1 sample and 26±5nm for the AgNPs-10. This suggests the advantages of green chemistry to obtain silver nanoparticles with a narrow size distribution.
Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder
Shameli, Kamyar; Ahmad, Mansor Bin; Zamanian, Ali; Sangpour, Parvanh; Shabanzadeh, Parvaneh; Abdollahi, Yadollah; Zargar, Mohsen
2012-01-01
Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries. PMID:23341739
NASA Astrophysics Data System (ADS)
Tuduri, Johann; Chauvet, Alain; Ennaciri, Aomar; Barbanson, Luc
2006-03-01
Based on a combined geometrical and mineralogical analysis, a three-stage model of formation of the mineralized veins of the giant Imiter silver deposit (Anti-Atlas, Morocco) is herein proposed. A first episode is characterized by the development of quartz, pink dolomite and Ag-rich minerals veins formed during a dextral transpressive event. The second episode is associated with a normal left-lateral motion that re-opens previous structures, filled by pink dolomite gangue. Alteration stages contribute to a local Ag enrichment. To cite this article: J. Tuduri et al., C. R. Geoscience 338 (2005).
Specific composition of native silver from the Rogovik Au-Ag deposit, Northeastern Russia
NASA Astrophysics Data System (ADS)
Kravtsova, R. G.; Tauson, V. L.; Palyanova, G. A.; Makshakov, A. S.; Pavlova, L. A.
2017-09-01
The first data on native silver from the Rogovik Au-Ag deposit in northeastern Russia are presented. The deposit is situated in central part of the Okhotsk-Chukchi Volcanic Belt (OCVB) in the territory of the Omsukchan Trough, unique in its silver resources. Native silver in the studied ore makes up finely dispersed inclusions no larger than 50 μm in size, which are hosted in quartz; fills microfractures and interstices in association with küstelite, electrum, acanthite, silver sulfosalts and selenides, argyrodite, and pyrite. It has been shown that the chemical composition of native silver, along with its typomorphic features, is a stable indication of the various stages of deposit formation and types of mineralization: gold-silver (Au-Ag), silver-base metal (Ag-Pb), and gold-silver-base metal (Au-Ag-Pb). The specificity of native silver is expressed in the amount of trace elements and their concentrations. In Au-Ag ore, the following trace elements have been established in native silver (wt %): up to 2.72 S, up to 1.86 Au, up to 1.70 Hg, up to 1.75 Sb, and up to 1.01 Se. Native silver in Ag-Pb ore is characterized by the absence of Au, high Hg concentrations (up to 12.62 wt %), and an increase in Sb, Se, and S contents; the appearance of Te, Cu, Zn, and Fe is notable. All previously established trace elements—Hg, Au, Sb, Se, Te, Cu, Zn, Fe, and S—are contained in native silver of Au-Ag-Pb ore. In addition, Pb appears, and silver and gold amalgams are widespread, as well as up to 24.61 wt % Hg and 11.02 wt % Au. Comparison of trace element concentrations in native silver at the Rogovik deposit with the literature data, based on their solubility in solid silver, shows that the content of chalcogenides (S, Se, Te) exceeds saturated concentrations. Possible mechanisms by which elevated concentrations of these elements are achieved in native silver are discussed. It is suggested that the appearance of silver amalgams, which is unusual for Au-Ag mineralization not only in the Omsukchan Trough, but also in OCVB as a whole, is caused by superposition of the younger Dogda-Erikit Hg-bearing belt on the older Ag-bearing Omsukchan Trough. In practice, the results can be used to determine the general line of prospecting and geological exploration at objects of this type.
Photobiogeochemical reactions involving metal species can be a source of naturally occurring nanoscale materials in the aquatic environment. This study demonstrates that, under simulated sunlight exposure, ionic Ag is photoreduced in river water or synthetic natural water samples...
Separation and measurement of silver nanoparticles and silver ions using magnetic particles
The recent surge in consumer products and applications using metallic nanoparticles has increased the possibility of human or ecosystem exposure due to unintentional release into the environment. To protect consumer health and the environment, there is an urgent need to develop t...
Size-dependent Hamaker constants for silver and gold nanoparticles
NASA Astrophysics Data System (ADS)
Pinchuk, Pavlo; Jiang, Ke
2015-08-01
Hamaker-Lifshitz constants are material specific constants that are used to calculate van der Waals interaction forces between small particles in solution. Typically, these constants are size-independent and material specific. According to the Lifshitz theory, the Hamaker-Lifshitz constants can be calculated by taking integrals that include the dielectric permittivity, as a function of frequency, of the interacting particles and the medium around particles. The dielectric permittivity of interacting metal nanoparticles can be calculated using the Drude model, which is based on the assumption of motion of free conducting electrons. For bulk metals, the Drude model does not predict any sizedependence of the dielectric permittivity. However, the conducting electrons in small noble metal nanoparticles (R ~ 10nm) exhibit surface scattering, which changes the complex permittivity function. In this work, we show theoretically that scattering of the free conducting electrons inside silver and gold nanoparticles with the size of 1 - 50 nm leads to size-dependent dielectric permittivity and Hamaker-Lifshitz constants. We calculate numerically the Hamaker-Lifshitz constants for silver and gold nanoparticles with different diameters. The results of the study might be of interests for understanding colloidal stability of metal nanoparticles.
NASA Astrophysics Data System (ADS)
Tanaka, Teruya; Muroga, Takeo
2014-12-01
An Er2O3 ceramic coating fabricated using the metal-organic decomposition (MOD) method on a Cr2O3-covered low-activation ferritic steel JLF-1 substrate was examined to improve hydrogen permeation barrier performance of the coating. The Cr2O3 layer was obtained before coating by heat treating the substrate at 700 °C under reduced pressures of <5 × 10-3 Pa and 5 Pa. The Cr2O3 layer was significantly stable even with heat treatment at 700 °C in air. This layer prevented further production of Fe2O3, which has been considered to degrade coating performance. An MOD Er2O3 coating with a smooth surface was successfully obtained on a Cr2O3-covered JLF-1 substrate by dip coating followed by drying and baking. Preprocessing to obtain a Cr2O3 layer would provide flexibility in the coating process for blanket components and ducts. Moreover, the Cr2O3 layer suppressed hydrogen permeation through the JLF-1 substrate. While further optimization of the coating fabrication process is required, it would be possible to suppress hydrogen permeation significantly by multilayers of Cr2O3 and MOD oxide ceramic.
Novel high volumetric energy density nanostructured electrode materials for biomedical applications
NASA Astrophysics Data System (ADS)
Tong, Wei
A definitive focus is being made to develop cathode materials of higher energy and good power for primary and rechargeable lithium batteries upon the development of implantable biomedical devices (cardiac defibrillators). In this thesis, novel electroactive nanostructured silver metal oxyfluoride perovskites, Ag1+3Mo6+(O3F 3) and Ag1+3Nb5+(O2F 4) have been successfully synthesized by a mechanochemical reaction. The formation of these perovskites was investigated throughout the Ag-Mo / Nb composition range with the use of either Ag1+ or Ag 2+ in the form of AgF and AgF2 as the reactant, respectively. The compositional study combined with XRD and extensive Raman investigation was utilized to determine structure and cation distribution and infer oxidation state. An electrochemical characterization of these silver metal oxyfluoride perovskite positive electrodes for Li batteries was investigated for the first time as a function of synthesis condition, stoichiometry and effect of Mo and Ag derived second phases. A detailed in-situ electrochemical study by XAS, Raman and XRD was performed, revealing a 3 electron silver displacement or conversion reaction at > 3 V and a 2 electron reduction of Mo6+ to Mo4+ in the region < 3 V. To further improve the rate capability of silver metal oxyfluorides, metallic Ag2F phase has been successfully synthesized through the mechanochemical reaction of Ag and AgF. Its unique metallic character within Ag layers lead to a very good electronic conductivity (7.89x10 -2 S/cm). The efficacy of SMOF composites consisting of conducting matrix (carbon black, Ag2F and Ag phase) for lithium battery was investigated through discharge rate studies. Results indicated that Ag 2F phase could be utilized as an alternative conductive additive with exceptional density.
Monte Carlo simulation of elongating metallic nanowires in the presence of surfactants
NASA Astrophysics Data System (ADS)
Gimenez, M. Cecilia; Reinaudi, Luis; Leiva, Ezequiel P. M.
2015-12-01
Nanowires of different metals undergoing elongation were studied by means of canonical Monte Carlo simulations and the embedded atom method representing the interatomic potentials. The presence of a surfactant medium was emulated by the introduction of an additional stabilization energy, represented by a parameter Q. Several values of the parameter Q and temperatures were analyzed. In general, it was observed for all studied metals that, as Q increases, there is a greater elongation before the nanowire breaks. In the case of silver, linear monatomic chains several atoms long formed at intermediate values of Q and low temperatures. Similar observations were made for the case of silver-gold alloys when the medium interacted selectively with Ag.
Silver metal nanoparticles study for biomedical and green house applications
NASA Astrophysics Data System (ADS)
Rauwel, E.; Simón-Gracia, L.; Guha, M.; Rauwel, P.; Kuunal, S.; Wragg, D.
2017-02-01
Metallic nanoparticles (MNP) with diameters ranging from 2 to 100nm have received extensive attention during the past decades due to their many potential applications. This paper presents a structural and cytotoxicity study of silver metal nanoparticles targeted towards biomedical applications. Spherical Ag MNPs of diameter from 20 to 50 nm have been synthesized. The encapsulation of Ag MNPs inside pH-sensitive polymersomes has been also studied for the development of biomedical applications. A cytotoxicity study of the Ag MNPs against primary prostatic cancer cell line (PPC-1) has demonstrated a high mortality rate for concentrations ranging from 100 to 200mg/L. The paper will discuss the potential for therapeutic treatments of these Ag MNPs.
Nanopore reactive adsorbents for the high-efficiency removal of waste species
Yang, Arthur Jing-Min; Zhang, Yuehua
2005-01-04
A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g., metal, enzyme, etc., particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as ions, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.
NASA Astrophysics Data System (ADS)
Swanson, Kenneth D.; Spencer, Sandra E.; Glish, Gary L.
2017-06-01
Extractive electrospray ionization is an ambient ionization technique that allows real-time sampling of liquid samples, including organic aerosols. Similar to electrospray ionization, the composition of the electrospray solvent used in extractive electrospray ionization can easily be altered to form metal cationized molecules during ionization simply by adding a metal salt to the electrospray solvent. An increase in sensitivity is observed for some molecules that are lithium, sodium, or silver cationized compared with the protonated molecule formed in extractive electrospray ionization with an acid additive. Tandem mass spectrometry of metal cationized molecules can also significantly improve the ability to identify a compound. Tandem mass spectrometry of lithium and silver cationized molecules can result in an increase in the number and uniqueness of dissociation pathways relative to [M + H]+. These results highlight the potential for extractive electrospray ionization with metal cationization in analyzing complex aerosol mixtures. [Figure not available: see fulltext.
Parasitic corrosion resistant anode for use in metal/air or metal/O.sub.2 cells
Joy, Richard W.; Smith, David F.
1983-01-01
A consumable metal anode which is used in refuelable electrochemical cells and wherein at least a peripheral edge portion of the anode is protected against a corrosive alkaline environment of the cell by the application of a thin metal coating, the coating being formed of metals such as nickel, silver, and gold.
Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium.
Vigneshwaran, Nadanathangam; Kathe, Arati A; Varadarajan, P V; Nachane, Rajan P; Balasubramanya, R H
2006-11-01
Extracellular synthesis of silver nanoparticles by a white rot fungus, Phaenerochaete chrysosporium is reported in this paper. Incubation of P. chrysosporium mycelium with silver nitrate solution produced silver nanoparticles in 24h. These silver nanoparticles were characterized by means of UV-vis spectroscopy, X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The synthesized silver nanoparticles absorbed maximum at 470 nm in the visible region. XRD spectrum of the silver nanoparticles confirmed the formation of metallic silver. The SEM characterization of the fungus reacted on the Ag+ indicated that the protein might be responsible for the stabilization of silver nanoparticles. This result was further supported by the TEM examination. Though shape variation was noticed, majority of the nanoparticles were found to be of pyramidal shape as seen under TEM. Photoluminescence spectrum showed a broad emission peak of silver nanoparticles at 423 nm when excited at 350 nm. Apart from eco-friendliness, fungus as bio-manufacturing unit will give us an added advantage in ease of handling when compared to other classes of microorganisms.
Capsaicin-capped silver nanoparticles: its kinetics, characterization and biocompatibility assay
NASA Astrophysics Data System (ADS)
Amruthraj, Nagoth Joseph; Preetam Raj, John Poonga; Lebel, Antoine
2015-04-01
Capsaicin was used as a bio-reductant for the reduction of silver nitrate to form silver nanoparticles. The formation of the silver nanoparticles was initially confirmed by color change and Tyndall effect of light scattering. It was characterized with UV-visible spectroscopy, FTIR and TEM. Hemagglutination (H) test and H-inhibition assay were performed in the presence of AgNPs-capsaicin conjugates. The silver colloid solution after complete reduction turned into pale gray color. The characteristic surface plasmon resonance of silver nanoparticles (SNPs) was observed at 450 nm. Time taken for complete bio-reduction of silver nitrate and capping was found to be 16 hours. The amount of capsaicin required to reduce 20 ml of 1 mM silver nitrate solution was found to be 40 μg approximately. The FTIR results confirmed the capping of capsaicin on the silver metal. The particle size was within the range of 20-30 nm. The hemagglutination and H-inhibition test was negative for all the blood groups. The capsaicin-capped silver nanoparticles were compatible with blood cells in hemagglutination test implying biocompatibility as future therapeutic drug.
Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana
2016-05-01
On page 3712, E. Fantino, A. Chiappone, and co-workers fabricate conductive 3D hybrid structures by coupling the photo-reduction of metal precursors with 3D printing technology. The generated structures consist of metal nanoparticles embedded in a polymer matrix shaped into complex multilayered architectures. 3D conductive structures are fabricated with a digital light-processing printer incorporating silver salt into photocurable formulations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1949-09-01
ON LOAN FROM 7k a. **+dU fefeÄtüiÄ: .<*-#=« Investigation of Electrodeposited Alloys and Pure Metals as Substitutes for Zinc and Cadmium for...graphs Eight alloys, selected as being superior to pure zinc or cadmium for protecting steel, were evaluated on the basis of static and dynamic... zinc -silver alloy of 25% silver. A tabulated summary of the testing program on all cast and electrodeposited alloys tested is included. * and
In situ synthesis of metal nanoparticles in polymer matrix and their optical limiting applications.
Porel, S; Venkatram, N; Rao, D Narayana; Radhakrishnan, T P
2007-06-01
We present an overview of the simple and environmentally benign protocol we have developed recently, for the in situ generation of metal nanoparticles inside polymer films by mild thermal annealing, leading to free-standing as well as supported thin films of nanoparticle-embedded polymer. The fabrication chemistry is discussed and spectroscopic/microscopic characterizations of silver and gold nanoparticles in poly(vinyl alcohol) film are presented. Optical limiting characteristics of the silver-polymer system are investigated in detail and preliminary results for the gold-polymer system are reported.
NASA Astrophysics Data System (ADS)
Vetrimurugan, E.; Brindha, K.; Elango, L.; Ndwandwe, Osman Muzi
2017-10-01
Drinking water containing heavy metals above the maximum permissible limits cause potential risk to human health. The aim of this study was to determine the groundwater suitability for drinking use based on heavy metal concentration and the associated human exposure risk in an intensively irrigated part of the Cauvery river basin, Tamil Nadu, India. Sixteen heavy metals analysed were in the order of dominance of chromium < zinc < copper < cadmium < cobalt < iron < aluminium < nickel < titanium < zirconium < boron < silver < manganese < lead < lithium < silicon in groundwater. Chromium and zinc were within permissible limits of the Bureau of Indian Standards for drinking water quality, and silver, lead and nickel were above limits in all the groundwater samples. In less than 50 % of the groundwater samples, aluminium, boron, cadmium, copper, iron and manganese exceeded their individual permissible limits. Heavy metal pollution index based on 11 heavy metals indicated that groundwater quality of this area is poor-to-unsuitable. Non-carcinogenic risk for humans due to ingestion of groundwater through drinking water pathway was very high for infants, children and adults. Silver, lead, nickel, cadmium and manganese largely contributed to the health hazard. Sources of heavy metals were identified to be geological and from human activities, i.e., application of fertilizers in agricultural fields, seawater intrusion due to intensive pumping for agriculture and wastewater from industries. Groundwater and surface water in this area pose large threat due to high levels of heavy metals, and it is necessary to avoid this water for drinking due to potential risk of health hazard. This study also demonstrated the application of HPI and human exposure hazard index to study the groundwater quality based on heavy metals' concentration.
Significant deposits of gold, silver, copper, lead, and zinc in the United States
Long, K.R.; DeYoung, J.H.; Ludington, S.
2000-01-01
Approximately 99 percent of past production and remaining identified resources of gold, silver, copper, lead, and zinc in the United States are accounted for by deposits that originally contained at least 2 metric tonnes (t) gold, 85 t silver, 50,000 t copper, 30,000 t lead, or 50,000 t zinc. The U.S. Geological Survey, beginning with the 1996 National Mineral Resource Assessment, is systematically compiling data on these deposits, collectively known as 'significant' deposits. As of December 31, 1996, the significant deposits database contained 1,118 entries corresponding to individual deposits or mining districts. Maintaining, updating and analyzing a database of this size is much easier than managing the more than 100,000 records in the Mineral Resource Data System and Minerals Availability System/Minerals Industry Location System, yet the significant deposits database accounts for almost all past production and remaining identified resources of these metals in the United States. About 33 percent of gold, 22 percent of silver, 42 percent of copper, 39 percent of lead, and 46 percent of zinc are contained in or were produced from deposits discovered after World War II. Even within a database of significant deposits, a disproportionate share of past production and remaining resources is accounted for by a very small number of deposits. The largest 10 producers for each metal account for one third of the gold, 60 percent of the silver, 68 percent of the copper, 85 percent of the lead, and 75 percent of the zinc produced in the United States. The 10 largest deposits in terms of identified remaining resources of each of the five metals contain 43 percent of the gold, 56 percent of the silver, 48 percent of the copper, 94 percent of the lead, and 72 percent of the zinc. Identified resources in significant deposits for each metal are less than the mean estimates of resources in undiscovered deposits from the 1996 U.S. National Mineral Resource Assessment. Identified resources are roughly the same magnitude as cumulative past production. Assuming that roughly the same proportion of resources in undiscovered deposits will occur in significant deposits, a substantial number of significant deposits remain to be discovered.
Photonic structures based on hybrid nanocomposites
NASA Astrophysics Data System (ADS)
Husaini, Saima
In this thesis, photonic structures embedded with two types of nanomaterials, (i) quantum dots and (ii) metal nanoparticles are studied. Both of these exhibit optical and electronic properties different from their bulk counterpart due to their nanoscale physical structure. By integrating these nanomaterials into photonic structures, in which the electromagnetic field can be confined and controlled via modification of geometry and composition, we can enhance their linear and nonlinear optical properties to realize functional photonic structures. Before embedding quantum dots into photonic structures, we study the effect of various host matrices and fabrication techniques on the optical properties of the colloidal quantum dots. The two host matrices of interest are SU8 and PMMA. It is shown that the emission properties of the quantum dots are significantly altered in these host matrices (especially SU8) and this is attributed to a high rate of nonradiative quenching of the dots. Furthermore, the effects of fabrication techniques on the optical properties of quantum dots are also investigated. Finally a microdisk resonator embedded with quantum dots is fabricated using soft lithography and luminescence from the quantum dots in the disk is observed. We investigate the absorption and effective index properties of silver nanocomposite films. It is shown that by varying the fill factor of the metal nanoparticles and fabrication parameters such as heating time, we can manipulate the optical properties of the metal nanocomposite. Optimizing these parameters, a silver nanocomposite film with a 7% fill factor is prepared. A one-dimensional photonic crystal consisting of alternating layers of the silver nanocomposite and a polymer (Polymethyl methacrylate) is fabricated using spin coating and its linear and nonlinear optical properties are investigated. Using reflectivity measurements we demonstrate that the one-dimensional silver-nanocomposite-dielectric photonic crystal exhibits a 200% enhancement of the reflection band which is attributed to the interplay between the plasmon resonance of the silver nanoparticles and the Bloch modes of the photonic crystal. Nonlinear optical studies on this one-dimensional silver-nanocomposite-dielectric structure using z-scan measurements are conducted. These measurements indicate a three-fold enhancement in the nonlinear absorption coefficient when compared to a single film of comparable metal composite thickness.
Rehan, I; Gondal, M A; Rehan, K
2018-04-20
Laser-induced breakdown spectroscopy (LIBS) was applied as a potential tool for the determination of xenobiotic metal in monosodium glutamate (MSG). In order to achieve a high-sensitivity LIBS system required to determine trace amounts of metallic silver in MSG and to attain the best detection limit, the parameters used in our experiment (impact of focusing laser energy on the intensity of LIBS emission signals, the influence of focusing lens distance on the intensity of LIBS signals, and time responses of the plasma emissions) were optimized. The spectra of MSG were obtained in air using a suitable detector with an optical resolution of 0.06 nm, covering a spectral region from 220 to 720 nm. Along with the detection of xenobiotic silver, other elements such as Ca, Mg, S, and Na were also detected in MSG. To determine the concentration of xenobiotic silver in MSG, the calibration curve was plotted by preparing standard samples having different silver abundances in an MSG matrix. The LIBS results of each sample were cross-verified by analyzing with a standard analytical technique such as inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Both (LIBS and ICP-AES) results were in mutual agreement. The limit of detection of the LIBS setup was found to be 0.57 ppm for silver present in MSG samples.
Schade, Ronald; Rothe, Holger; Müller, Sören; Liefeith, Klaus
2017-01-01
Implantation is a frequent procedure in orthopedic surgery, particularly in the aging population. However, it possesses the risk of infection and biofilm formation at the surgical site. This can cause unnecessary suffering to patients and burden on the healthcare system. Pure Mg, as a promising metal for biodegradable orthopedic implants, exhibits some antibacterial effects due to the alkaline pH produced during degradation. However, this antibacterial effect may not be sufficient in a dynamic environment, for example, the human body. The aim of this study was to increase the antibacterial properties under harsh and dynamic conditions by alloying silver metal with pure Mg as much as possible. Meanwhile, the Mg-Ag alloys should not show obvious cytotoxicity to human primary osteoblasts. Therefore, we studied the influence of the microstructure and the silver content on the degradation behavior, cytocompatibility, and antibacterial properties of Mg-Ag alloys in vitro. The results indicated that a higher silver content can increase the degradation rate of Mg-Ag alloys. However, the degradation rate could be reduced by eliminating the precipitates in the Mg-Ag alloys via T4 treatment. By controlling the microstructure and increasing the silver content, Mg-Ag alloys obtained good antibacterial properties in harsh and dynamic conditions but had almost equivalent cytocompatibility to human primary osteoblasts as pure Mg. PMID:28717409
Liu, Zhidan; Schade, Ronald; Luthringer, Bérengère; Hort, Norbert; Rothe, Holger; Müller, Sören; Liefeith, Klaus; Willumeit-Römer, Regine; Feyerabend, Frank
2017-01-01
Implantation is a frequent procedure in orthopedic surgery, particularly in the aging population. However, it possesses the risk of infection and biofilm formation at the surgical site. This can cause unnecessary suffering to patients and burden on the healthcare system. Pure Mg, as a promising metal for biodegradable orthopedic implants, exhibits some antibacterial effects due to the alkaline pH produced during degradation. However, this antibacterial effect may not be sufficient in a dynamic environment, for example, the human body. The aim of this study was to increase the antibacterial properties under harsh and dynamic conditions by alloying silver metal with pure Mg as much as possible. Meanwhile, the Mg-Ag alloys should not show obvious cytotoxicity to human primary osteoblasts. Therefore, we studied the influence of the microstructure and the silver content on the degradation behavior, cytocompatibility, and antibacterial properties of Mg-Ag alloys in vitro. The results indicated that a higher silver content can increase the degradation rate of Mg-Ag alloys. However, the degradation rate could be reduced by eliminating the precipitates in the Mg-Ag alloys via T4 treatment. By controlling the microstructure and increasing the silver content, Mg-Ag alloys obtained good antibacterial properties in harsh and dynamic conditions but had almost equivalent cytocompatibility to human primary osteoblasts as pure Mg.
Surface enhanced raman spectroscopy technique in rapid detection of live and dead salmonella cells
USDA-ARS?s Scientific Manuscript database
Many research proved that Surface Enhanced Raman Spectroscopy (SERS) can detect pathogens rapidly and accurately. In this study, a silver metal substrate was used for the selected common food pathogen Salmonella typhimurium bacteria. Nano silver rods were deposited on a thin titanium coating over t...
41 CFR 109-45.1003 - Recovery of silver from precious metals bearing materials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Recovery of silver from... Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS UTILIZATION AND DISPOSAL 45-SALE, ABANDONMENT, OR DESTRUCTION OF PERSONAL PROPERTY 45.10-Recovery...
41 CFR 109-45.1003 - Recovery of silver from precious metals bearing materials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Recovery of silver from... Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS UTILIZATION AND DISPOSAL 45-SALE, ABANDONMENT, OR DESTRUCTION OF PERSONAL PROPERTY 45.10-Recovery...
Silver doped catalysts for treatment of exhaust
Park, Paul Worn; Hester, Virgil Raymond; Ragle, Christie Susan; Boyer, Carrie L.
2009-06-02
A method of making an exhaust treatment element includes washcoating a substrate with a slurry that includes a catalyst support material. At least some of the catalyst support material from the slurry may be transferred to the substrate, and silver metal (Ag) is dispersed within the catalyst support material.
ERIC Educational Resources Information Center
Gilbert, George L., Ed.
1981-01-01
Provides procedures for demonstrations: (1) the ferrioxalate actinometer, which demonstrates a photochemical reaction; and (2) the silver mirror, which demonstrates the reduction of a metal salt to the metal and/or the reducing power of sugars. (CS)
NASA Astrophysics Data System (ADS)
Vankar, Padma S.; Shukla, Dhara
2012-06-01
Preparation of silver nanoparticles have been carried out using aqueous extract of lemon leaves ( Citrus limon) which acts as reducing agent and encapsulating cage for the silver nanoparticles. These silver nanoparticles have been used for durable textile finish on cotton and silk fabrics. Remarkable antifungal activity has been observed in the treated fabrics. The antimicrobial activity of silver nanoparticles derived from lemon leaves showed enhancement in activity due to synergistic effect of silver and essential oil components of lemon leaves. The present investigation shows the extracellular synthesis of highly stable silver nanoparticles by biotransformation using the extract of lemon leaves by controlled reduction of the Ag+ ion to Ag0. Further the silver nanoparticles were used for antifungal treatment of fabrics which was tested by antifungal activity assessment of textile material by Agar diffusion method against Fusarium oxysporum and Alternaria brassicicola. Formation of the metallic nanoparticles was established by FT-IR, UV-Visible spectroscopy, transmission electron microscopy, scanning electron microscopy, atomic force microscopy.
Zhou, Weiping; Bai, Shi; Ma, Ying; Ma, Delong; Hou, Tingxiu; Shi, Xiaomin; Hu, Anming
2016-09-21
We demonstrate a novel approach to rapidly fabricate conductive silver electrodes on transparent flexible substrates with high-bonding strength by laser-direct writing. A new type of silver ink composed of silver nitrate, sodium citrate, and polyvinylpyrrolidone (PVP) was prepared in this work. The role of PVP was elucidated for improving the quality of silver electrodes. Silver nanoparticles and sintered microstructures were simultaneously synthesized and patterned on a substrate using a focused 405 nm continuous wave laser. The writing was completed through the transparent flexible substrate with a programmed 2D scanning sample stage. Silver electrodes fabricated by this approach exhibit a remarkable bonding strength, which can withstand an adhesive tape test at least 50 times. After a 1500 time bending test, the resistance only increased 5.2%. With laser-induced in-situ synthesis, sintering, and simultaneous patterning of silver nanoparticles, this technology is promising for the facile fabrication of conducting electronic devices on flexible substrates.
Andrade, Leonardo N; Siqueira, Thiago E S; Martinez, Roberto; Darini, Ana Lucia C
2018-01-01
Bacterial resistance to antibiotics is concern in healthcare-associated infections. On the other hand, bacterial tolerance to other antimicrobials, like heavy metals, has been neglected and underestimated in hospital pathogens. Silver has long been used as an antimicrobial agent and it seems to be an important indicator of heavy metal tolerance. To explore this perspective, we searched for the presence of acquired silver resistance genes ( sil operon: silE, silS, silR, silC, silF, silB, silA , and silP ) and acquired extended-spectrum cephalosporin and carbapenem resistance genes ( bla CTX-M and bla KPC ) in Enterobacter cloacae Complex (EcC) ( n = 27) and Enterobacter aerogenes ( n = 8) isolated from inpatients at a general hospital. Moreover, the genetic background of the silA (silver-efflux pump) and the presence of other acquired heavy metal tolerance genes, pcoD (copper-efflux pump), arsB (arsenite-efflux pump), terF (tellurite resistance protein), and merA (mercuric reductase) were also investigated. Outstandingly, 21/27 (78%) EcC isolates harbored silA gene located in the chromosome. Complete sil operon was found in 19/21 silA -positive EcC isolates. Interestingly, 8/20 (40%) E. hormaechei and 5/6 (83%) E. asburiae co-harbored silA/pcoD genes and bla CTX-M-(15,2,or9) and/or bla KPC-2 genes. Frequent occurrences of arsB, terF , and merA genes were detected, especially in silA/pcoD -positive, multidrug-resistant (MDR) and/or CTX-M-producing isolates. Our study showed co-presence of antibiotic and heavy metal tolerance genes in MDR EcC isolates. In our viewpoint, there are few studies regarding to bacterial heavy metal tolerance and we call attention for more investigations and discussion about this issue in different hospital pathogens.
Andrade, Leonardo N.; Siqueira, Thiago E. S.; Martinez, Roberto; Darini, Ana Lucia C.
2018-01-01
Bacterial resistance to antibiotics is concern in healthcare-associated infections. On the other hand, bacterial tolerance to other antimicrobials, like heavy metals, has been neglected and underestimated in hospital pathogens. Silver has long been used as an antimicrobial agent and it seems to be an important indicator of heavy metal tolerance. To explore this perspective, we searched for the presence of acquired silver resistance genes (sil operon: silE, silS, silR, silC, silF, silB, silA, and silP) and acquired extended-spectrum cephalosporin and carbapenem resistance genes (blaCTX−M and blaKPC) in Enterobacter cloacae Complex (EcC) (n = 27) and Enterobacter aerogenes (n = 8) isolated from inpatients at a general hospital. Moreover, the genetic background of the silA (silver-efflux pump) and the presence of other acquired heavy metal tolerance genes, pcoD (copper-efflux pump), arsB (arsenite-efflux pump), terF (tellurite resistance protein), and merA (mercuric reductase) were also investigated. Outstandingly, 21/27 (78%) EcC isolates harbored silA gene located in the chromosome. Complete sil operon was found in 19/21 silA-positive EcC isolates. Interestingly, 8/20 (40%) E. hormaechei and 5/6 (83%) E. asburiae co-harbored silA/pcoD genes and blaCTX−M−(15,2,or9) and/or blaKPC−2 genes. Frequent occurrences of arsB, terF, and merA genes were detected, especially in silA/pcoD-positive, multidrug-resistant (MDR) and/or CTX-M-producing isolates. Our study showed co-presence of antibiotic and heavy metal tolerance genes in MDR EcC isolates. In our viewpoint, there are few studies regarding to bacterial heavy metal tolerance and we call attention for more investigations and discussion about this issue in different hospital pathogens. PMID:29628916
Signal intensity enhancement of laser ablated volume holograms
NASA Astrophysics Data System (ADS)
Versnel, J. M.; Williams, C.; Davidson, C. A. B.; Wilkinson, T. D.; Lowe, C. R.
2017-11-01
Conventional volume holographic gratings (VHGs) fabricated in photosensitive emulsions such as gelatin containing silver salts enable the facile visualization of the holographic image in ambient lighting. However, for the fabrication of holographic sensors, which require more defined and chemically-functionalised polymer matrices, laser ablation has been introduced to create the VHGs and thereby broaden their applications, although the replay signal can be challenging to detect in ambient lighting. When traditional photochemical bleaching solutions used to reduce light scattering and modulate refractive index within the VHG are applied to laser ablated volume holographic gratings, these procedures decrease the holographic peak intensity. This is postulated to occur because both light and dark fringes contain a proportion of metal particles, which upon solubilisation are converted immediately to silver iodide, yielding no net refractive index modulation. This research advances a hypothesis that the reduced intensity of holographic replay signals is linked to a gradient of different sized metal particles within the emulsion, which reduces the holographic signal and may explain why traditional bleaching processes result in a reduction in intensity. In this report, a novel experimental protocol is provided, along with simulations based on an effective medium periodic 1D stack, that offers a solution to increase peak signal intensity of holographic sensors by greater than 200%. Nitric acid is used to etch the silver nanoparticles within the polymer matrix and is thought to remove the smaller particles to generate more defined metal fringes containing a soluble metal salt. Once the grating efficiency has been increased, this salt can be converted to a silver halide, to modulate the refractive index and increase the intensity of the holographic signal. This new protocol has been tested in a range of polymer chemistries; those containing functional groups that help to stabilize the metal nanoparticles within the matrix yield more intense holographic signals as the integrity of the fringe is more protected with increasing metal solubility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suresh, Anil K; Wang, Wei; Pelletier, Dale A
Microorganisms have long been known to develop resistance to metal ions either by sequestering metals inside the cell or by effluxing them into the extracellular media. Here we report the biosynthesis of extracellular silver based single nanocrystallites of well-defined composition and homogeneous morphology utilizing the -proteobacterium, Shewanella oneidensis strain MR-1, upon incubation with an aqueous solution of silver nitrate. Further characterization of these particles revealed that the crystals consist of small, reasonably monodispersed spheres in the size range 2 11 nm (with an average of 4 1.5 nm). The bactericidal effect of these biologically synthesized silver nanoparticles (biogenic-Ag) are comparedmore » to similar chemically synthesized nanoparticles (colloidal silver [colloidal-Ag] and oleate capped silver [oleate-Ag]). The determination of the bactericidal effect of these different silver nanoparticles was assessed using both Gram-negative (E. coli) and Gram-positive (B. subtilis) bacteria and based on the diameter of the inhibition zone in disc diffusion tests, minimum inhibitory concentrations, Live/Dead staining assays, and atomic force microscopy. From a toxicity perspective, a clear synthesis procedure, and a surface coat- and strain-dependent inhibition were observed for silver nanoparticles. Biogenic-Ag was found to be of higher toxicity when compared to colloidal-Ag for both E. coli and B. subtilis. E. coli was found to be more resistant to either of these nanoparticles than B. subtilis. In contrast, Oleate-Ag was not toxic to either of the bacteria. These findings have important implications for the potential uses of Ag nanomaterials and for their fate in biological and environmental systems.« less
NASA Astrophysics Data System (ADS)
Paulkumar, Kanniah; Gnanajobitha, Gnanadhas; Vanaja, Mahendran; Pavunraj, Manickam; Annadurai, Gurusamy
2017-09-01
Synthesis of nanoparticles and nanocomposites using green route is a major focus of modern nanotechnology. Herein we demonstrate the synthesis of silver nanoparticle and silver based chitosan bionanocomposite using the stem extract of Saccharum officinarum. The absorbance peak at 460 nm in the UV-Vis spectrum reveals the synthesis of silver nanoparticles using the stem extract of Saccharum officinarum. The size of the synthesized silver nanoparticle was in the range of 10-60 nm obtained from transmission electron microscope (TEM) analysis. The presence of silver nanoparticles on the chitosan suspension was identified by scanning electron microscope (SEM) and energy dispersive x-ray spectroscopy (EDS). The presence of possible functional group involved in the reduction of silver metal ions into silver nanoparticles was identified by Fourier transform infrared spectroscopy (FTIR) analysis. The antibacterial activity of the synthesized silver based chitosan bionanocomposite was evaluated against Bacillus subtilis (MTCC 3053), Klebsiella planticola (MTCC 2277), Streptococcus faecalis (ATCC 8043), Pseudomonas aeruginosa (ATCC 9027) and Escherichia coli (ATCC 8739). The antibacterial activity of silver based chitosan bionanocomposite has remarkable scope in medicine, food packaging, textile and pharmaceuticals.
Swain, Basudev; Shin, Dongyoon; Joo, So Yeong; Ahn, Nak Kyoon; Lee, Chan Gi; Yoon, Jin-Ho
2017-11-01
Considering the value of silver metal and silver nanoparticles, the waste generated during manufacturing of low temperature co-fired ceramic (LTCC) were recycled through the simple yet cost effective process by chemical-metallurgy. Followed by leaching optimization, silver was selectively recovered through precipitation. The precipitated silver chloride was valorized though silver nanoparticle synthesis by a simple one-pot greener synthesis route. Through leaching-precipitation optimization, quantitative selective recovery of silver chloride was achieved, followed by homogeneous pure silver nanoparticle about 100nm size were synthesized. The reported recycling process is a simple process, versatile, easy to implement, requires minimum facilities and no specialty chemicals, through which semiconductor manufacturing industry can treat the waste generated during manufacturing of LTCC and reutilize the valorized silver nanoparticles in manufacturing in a close loop process. Our reported process can address issues like; (i) waste disposal, as well as value-added silver recovery, (ii) brings back the material to production stream and address the circular economy, and (iii) can be part of lower the futuristic carbon economy and cradle-to-cradle technology management, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hayashi, Mariko; Araki, Takeshi; Ishii, Hirotaka; Nishijima, Gen; Matsumoto, Akiyoshi
2018-05-01
Metal organic deposition using trifluoroacetates (TFA-MOD) provides many uniform superconductors on long metal tapes. The large numbers of long wires have been applied for power grids or superconducting fault current limiters. The related applications worked for a long time without fatal trouble. The quasi-liquid produced during the firing process assisted the perfectly uniform structure in TFA-MOD. On the other hand, when it was desired to introduce artificial pinning centers, the quasi-liquid also enlarged the diameter of the artificial pinning centers to several tens of nanometers. In other words, due to the nature of TFA-MOD, there is very little chance of using TFA-MOD to prepare several nm-sized artificial pinning centers. By proposing atom-replaced pins (ARPs), we aim to overcome the impasse. ARPs are realized by replacing yttrium (Y) with praseodymium (Pr) whose valence number changes from 3+ to approximately 4+. Analytical results suggested that Pr makes pinning centers on a PrBa2Cu3O7‑x (PrBCO) unit cell, and the weak-linked superconductivity derived from PrBCO extends to the adjacent unit cells in the a/b-plane. J c decrease by Pr is five times as large as the volume fraction of Pr in the Y-site of the perovskite structure. On the other hand, T c does not show large degradation in YBCO including 10% PrBCO. These results suggest that PrBCO unit cells are fully dispersed in YBa2Cu3O7‑y matrix. With regard to J c in the magnetic field, (Y0.98, Pr0.02)BCO has been slightly improved compared with pure YBCO only in the region of high temperature and low magnetic field of less than 1 T.
Evaluation of gold and silver leaching from printed circuit board of cellphones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petter, P.M.H., E-mail: patymhp@yahoo.com.br; Veit, H.M.; Bernardes, A.M.
2014-02-15
Highlights: • Printed circuit boards (PCB) of mobile phones have large amounts of metals with high economic value such as gold and silver. • Dissolution of gold was done with a cyanide-based reagent and silver with nitric acid. • Leaching of PCB with Na{sub 2}S{sub 2}O{sub 3} and (NH{sub 4}){sub 2}S{sub 2}O{sub 3} to examine the feasibility of using these reagents was done. - Abstract: Electronic waste has been increasing proportionally with the technology. So, nowadays, it is necessary to consider the useful life, recycling, and final disposal of these equipment. Metals, such as Au, Ag, Cu, Sn and Nimore » can be found in the printed circuit boards (PCB). According to this, the aims of this work is to characterize the PCBs of mobile phones with aqua regia; obtaining “reference” values of leaching, to gold and silver, with cyanide and nitric acid, respectively; and study the process of leaching of these metals in alternative leaching with sodium thiosulfate and ammonium thiosulfate. The metals were characterized by digesting the sample with aqua regia for 1 and 2 h at 60 °C and 80 °C. The leaching of Au with a commercial reagent (cyanide) and the Ag with HNO{sub 3}were made. The leaching of Au and Ag with alternative reagents: Na{sub 2}S{sub 2}O{sub 3,} and (NH{sub 4}){sub 2}S{sub 2}O{sub 3} in 0.1 M concentration with the addition of CuSO{sub 4}, NH{sub 4}OH, and H{sub 2}O{sub 2}, was also studied. The results show that the digestion with aqua regia was efficient to characterize the metals present in the PCBs of mobile phones. However, the best method to solubilize silver was by digesting the sample with nitric acid. The leaching process using sodium thiosulfate was more efficient when an additional concentration of 0.015 and 0.030 M of the CuSO{sub 4} was added.« less
NASA Astrophysics Data System (ADS)
Firdaus, M.; Andriana, S.; Elvinawati; Alwi, W.; Swistoro, E.; Ruyani, A.; Sundaryono, A.
2017-04-01
We have successfully synthesized silver nanoparticles (AgNPs) by using aqueous extract of papaya (Carica papaya) fruit as bioreductant under sunlight irradiation without additional capping agent. Characterizations were done using UV-Visible spectrophotometry and Fourier Transform Infrared Spectroscopy (FTIR). The synthesized AgNPs have yellowish-brown color with surface plasmon resonance peak at 410 nm. Good selectivity of the AgNPs towards hazardous heavy metal of mercury ions in aqueous solution has been developed as a green environmental sensor. The presence of Hg(II) ions in the mixture changed the yellowish-brown color of AgNPs to colorless due to oxidation of Ag(O) in AgNPs to Ag(I) ions. Effect of samples matrix such as alkali metal, alkaline earth metal and transition metal ions were evaluated.
Speciation and Characterization of E-Waste, Using Analytical Techniques
NASA Astrophysics Data System (ADS)
López, C. Cortés; Cruz, V. E. Reyes; Rodríguez, M. A. Veloz; Ávila, J. Hernández; Badillo, J. Flores; Murcia, J. A. Cobos
Electronic waste (e-waste), have a high potential as a source of precious metals, since they can contain metals like silver, gold, platinum, copper, zinc, nickel, tin and others. In this paper some e-waste were characterized using several analytical techniques as Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and inductively coupled plasma (ICP) in addition to the thermodynamic study by Pourbaix diagrams of silver (Ag), gold (Au), platinum (Pt), copper (Cu), nickel (Ni), tin (Sn) and zinc (Zn); considering an average low concentration of HNO3 (10% v/v). With results of the characterization was determined that the e-waste is an ideal source for the recovery of valuable metals. Similarly, the thermodynamic studies showed that it is possible to obtain all metallic species except Pt, in a potential window of 1.45V to 2.0V vs SCE.
Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes
NASA Astrophysics Data System (ADS)
Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M. Arif
2016-05-01
We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.
Parasitic corrosion-resistant anode for use in metal/air or metal/O/sub 2/ cells
Joy, R.W.; Smith, D.F.
1982-09-20
A consumable metal anode is described which is used in refuelable electrochemical cells and wherein at least a peripheral edge portion of the anode is protected against a corrosive alkaline environment of the cell by the application of a thin metal coating, the coating being formed of metals such as nickel, silver, and gold.
Multimode Surface Plasmon Excitations on Organic Thin Film/Metallic Diffraction Grating
NASA Astrophysics Data System (ADS)
Baba, Akira; Kanda, Kenji; Ohno, Tsutomu; Ohdaira, Yasuo; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao
2010-01-01
In this work, we demonstrate multimode surface plasmon (SP) excitations by white light irradiation on metallic diffraction grating/plastic substrates. Recordable compact discs were used as the diffraction grating substrates on which silver films were deposited by vacuum evaporation. Since the grating pitch (1.6 µm) was larger than that of diffraction gratings commonly used for the excitation of SPs, multimode SP excitations due to several diffraction orders were observed simultaneously in the wavelength region from 400 to 800 nm. The obtained SP excitations were then compared with the calculated SP dispersion on the grating. The multimode SP excitations were further studied on spin-coated poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) thin film/silver grating substrates. An increased photoluminescence intensity due to SP excitations was observed on MEH-PPV/silver grating surfaces.
NASA Astrophysics Data System (ADS)
Zhong, Linlin; Wang, Xiaohua; Cressault, Yann; Teulet, Philippe; Rong, Mingzhe
2016-09-01
The metallic vapours (i.e., copper, iron, and silver in this paper) resulting from walls and/or electrode surfaces can significantly affect the characteristics of air plasma. Different from the previous works assuming local thermodynamic equilibrium, this paper investigates the influence of metallic vapours on two-temperature (2 T) air plasma. The 2 T compositions of air contaminated by Cu, Fe, and Ag are first determined based on Saha's and Guldberg-Waage's laws. The thermodynamic properties (including mass density, specific enthalpy, and specific heat) are then calculated according to their definitions. After determining the collision integrals for each pair of species in air-metal mixtures using the newly published methods and source data, the transport coefficients (including electrical conductivity, viscosity, and thermal conductivity) are calculated for air-Cu, air-Fe, and air-Ag plasmas with different non-equilibrium degree θ (Te/Th). The influences of metallic contamination as well as non-equilibrium degree are discussed. It is found that copper, iron, and silver exist mainly in the form of Cu2, FeO, and AgO at low temperatures. Generally, the metallic vapours increase mass density at most temperatures, reduce the specific enthalpy and specific heat in the whole temperature range, and affect the transport properties remarkably from 5000 K to 20 000 K. The effect arising from the type of metals is little except for silver at certain temperatures. Besides, the departure from thermal equilibrium results in the delay of dissociation and ionization reactions, leading to the shift of thermodynamic and transport properties towards a higher temperature.
NASA Astrophysics Data System (ADS)
Choi, Eun-Young; Lee, Jeong; Heo, Dong Hyun; Lee, Sang Kwon; Jeon, Min Ku; Hong, Sun Seok; Kim, Sung-Wook; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok
2017-06-01
Ten electrolytic reduction or oxide reduction (OR) runs of a 0.6 kg scale-simulated oxide fuel in a Li2O-LiCl molten salt at 650 °C were conducted using metal anode shrouds. During this procedure, an anode shroud surrounds a platinum anode and discharges hot oxygen gas from the salt to outside of the OR apparatus, thereby preventing corrosion of the apparatus. In this study, a number of anode shrouds made of various metals were tested. Each metallic anode shroud consisted of a lower porous shroud for the salt phase and an upper nonporous shroud for the gas phase. A stainless steel (STS) wire mesh with five-ply layer was a material commonly used for the lower porous shroud for the OR runs. The metals tested for the upper nonporous shroud in the different OR runs are STS, nickel, and platinum- or silver-lined nickel. The lower porous shroud showed no significant damage during two consecutive OR runs, but exhibited signs of damage from three or more runs due to thermal stress. The upper nonporous shrouds made up of either platinum- or silver-lined nickel showed excellent corrosion resistance to hot oxygen gas while STS or nickel without any platinum or silver lining exhibited poor corrosion resistance.
Nelson, Peter N; Ellis, Henry A; White, Nicole A S
2015-06-15
A comparative study of the molecular packing, lattice structures and phase behaviors of the homologous series of some mono-valent metal carboxylates (Li, Na, K and Ag) is carried out via solid state FT-infrared and (13)C-NMR spectroscopes, X-rays powder diffraction, density measurements, differential scanning calorimetry, polarizing light microscopy and variable temperature infrared spectroscopy. It is proposed that, for lithium, sodium and potassium carboxylates, metal-carboxyl coordination is via asymmetric chelating bidentate bonding with extensive intermolecular interactions to form tetrahedral metal centers, irrespective of chain length. However, for silver n-alkanoates, carboxyl moieties are bound to silver ions via syn-syn type bridging bidentate coordination to form dimeric units held together by extensive head group inter-molecular interactions. Furthermore, the fully extended hydrocarbon chains which are crystallized in the all-trans conformation are tilted at ca. 30°, 27°, 15° and 31° with respect to a normal to the metal plane, for lithium, sodium, silver and potassium carboxylates, respectively. All compounds are packed as lamellar bilayer structures, however, lithium compounds are crystallized in a triclinic crystal system whilst silver, sodium and potassium n-alkanoates are all monoclinic with possible P1 bravais lattice. Odd-even alternation observed in various physical features is associated with different inter-planar spacing between closely packed layers in the bilayer which are not in the same plane; a phenomenon controlled by lattice packing symmetry requirements. All compounds, except silver carboxylates, show partially reversibly first order pre-melting transitions; the number of which increases with increasing chain length. These transitions are associated, for the most part, with lamellar collapse followed by increased gauche-trans isomerism in the methylene group assembly, irrespective of chain length. It is proposed that the absence of mesomorphic transitions in their phase sequences is due to a lack of sufficient balance between attractive and repulsive electrostatic and van der Waals forces during phase change. The evidence presented in this study shows that phase behaviors of mono-valent metal carboxylates are controlled, mainly, by head group bonding. Copyright © 2015 Elsevier B.V. All rights reserved.
Reflective Self-Metallizing Polyimide Films
NASA Technical Reports Server (NTRS)
Thompson, David W. (Inventor); Caplan, Maggie L. (Inventor); St.Clair, Anne (Inventor)
1997-01-01
A silver organic complex, such as silver acetate, is solubilized in a polyamic acid resin or soluble polyimide solution using a suitable solvent such as hexafluoroacetyl acetone. The mixture is stable and can be applied to both flat and contoured surfaces. Application can be performed by casting, dip-coating, spraying, or other suitable techniques. In addition, the mixture can be cast or extruded as a polyimide film which is not applied to an underlying substrate. Upon curing, a flexible silver coated polyimide film is produced.
Aziz-Alrahman, A M; Headridge, J B
1978-07-01
The silver contents of 17 irons and steels have been determined by dropping 0.5-20mg of millings or turnings of the metals into an induction furnace situated within an atomic-absorption spectrophotometer. The limit of detection was 0.005 mug/g and the relative standard deviations were 12% or better for silver contents of not less than 0.05 mug/g. Samples are added to the furnace at 4-5 min intervals.
Electroless silver plating of the surface of organic semiconductors.
Campione, Marcello; Parravicini, Matteo; Moret, Massimo; Papagni, Antonio; Schröter, Bernd; Fritz, Torsten
2011-10-04
The integration of nanoscale processes and devices demands fabrication routes involving rapid, cost-effective steps, preferably carried out under ambient conditions. The realization of the metal/organic semiconductor interface is one of the most demanding steps of device fabrication, since it requires mechanical and/or thermal treatments which increment costs and are often harmful in respect to the active layer. Here, we provide a microscopic analysis of a room temperature, electroless process aimed at the deposition of a nanostructured metallic silver layer with controlled coverage atop the surface of single crystals and thin films of organic semiconductors. This process relies on the reaction of aqueous AgF solutions with the nonwettable crystalline surface of donor-type organic semiconductors. It is observed that the formation of a uniform layer of silver nanoparticles can be accomplished within 20 min contact time. The electrical characterization of two-terminal devices performed before and after the aforementioned treatment shows that the metal deposition process is associated with a redox reaction causing the p-doping of the semiconductor. © 2011 American Chemical Society
Pressure tuning the lattice and optical response of silver sulfide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Zhao, E-mail: zhaozhao@stanford.edu; Wei, Hua; Mao, Wendy L.
2016-06-27
Binary transition metal chalcogenides have attracted increasing attention for their unique structural and electronic properties. High pressure is a powerful tool for tuning the lattice and electronic structure of transition metal chalcogenides away from their pristine states. In this work, we systematically studied the in situ structural and optical behavior of silver sulfide (Ag{sub 2}S) under pressure by synchrotron X-ray diffraction and infrared spectroscopy measurements in a diamond anvil cell. Upon compression, Ag{sub 2}S undergoes structural symmetrization accompanied by a series of structural transitions while the crystallographic inequivalence of the two Ag sites is maintained. Electronically, pressure effectively tunes themore » ambient semiconducting Ag{sub 2}S into a metal at ∼22 GPa. Drude model analysis shows that the optical conductivity evolves significantly, reaching the highest value of 100 Ω{sup −1} cm{sup −1} at ∼40 GPa. Our results highlight the structural and electronic tunability of silver chalcogenides as a function of pressure and suggest the potential of Ag{sub 2}S as a platform for developing optical and opto-electronic applications.« less
Aspects of forming metal-clad melt-processed Y-Ba-Cu-O tapes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlowski, G.; Oberly, C.E.; Ho, J.
1991-03-01
This paper reports on melt-processing of Y-Ba-Cu-O superconductor in a usable form for magnet winding which requires the development of a cladding with demanding properties. Numerous recent efforts in cold forming Bi-based superconductor tapes have been successful because a silver tube can be used to constrain the ceramic material, which is sintered at much lower temperature than the Y-Ba-Cu-O. Typical high temperature metals which can be used to encase Y-Ba-Cu-O during sintering do not permit ready diffusion of oxygen as silver does. Recently, the full or partial recovery of superconductivity has been achieved in transition-metal- doped Y-Ba-Cu-O due to themore » partial-melt processing.« less
Monte Carlo simulation of elongating metallic nanowires in the presence of surfactants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gimenez, M. Cecilia; Reinaudi, Luis, E-mail: luis.reinaudi@unc.edu.ar; Leiva, Ezequiel P. M.
2015-12-28
Nanowires of different metals undergoing elongation were studied by means of canonical Monte Carlo simulations and the embedded atom method representing the interatomic potentials. The presence of a surfactant medium was emulated by the introduction of an additional stabilization energy, represented by a parameter Q. Several values of the parameter Q and temperatures were analyzed. In general, it was observed for all studied metals that, as Q increases, there is a greater elongation before the nanowire breaks. In the case of silver, linear monatomic chains several atoms long formed at intermediate values of Q and low temperatures. Similar observations weremore » made for the case of silver-gold alloys when the medium interacted selectively with Ag.« less
Bharill, Shashank; Chen, Chunlai; Stevens, Benjamin; Kaur, Jaskiran; Smilansky, Zeev; Mandecki, Wlodek; Gryczynski, Ignacy; Gryczynski, Zygmunt; Cooperman, Barry S.; Goldman, Yale E.
2011-01-01
Metal enhanced fluorescence (MEF) increased total photon emission of Cy3- and Cy5-labeled ribosomal initiation complexes near 50 nm silver particles 4- and 5.5-fold respectively. Fluorescence intensity fluctuations above shot noise, at 0.1 – 5 Hz, were greater on silver particles. Overall signal to noise ratio was similar or slightly improved near the particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosome, and tRNA translocation induced by elongation factor G. PMID:21158483
Bharill, Shashank; Chen, Chunlai; Stevens, Benjamin; Kaur, Jaskiran; Smilansky, Zeev; Mandecki, Wlodek; Gryczynski, Ignacy; Gryczynski, Zygmunt; Cooperman, Barry S; Goldman, Yale E
2011-01-25
Metal-enhanced fluorescence (MEF) increased total photon emission of Cy3- and Cy5-labeled ribosomal initiation complexes near 50 nm silver particles 4- and 5.5-fold, respectively. Fluorescence intensity fluctuations above shot noise, at 0.1-5 Hz, were greater on silver particles. Overall signal-to-noise ratio was similar or slightly improved near the particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosome, and tRNA translocation induced by elongation factor G.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paeng, Dongwoo; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu; Lee, Daeho
2014-08-18
In-situ optical probing has been performed to analyze and compare the characteristic coalescence time scales of silver ion-doped polyvinylalcohol nanocomposite (Ag-PVA NC) and polyvinylpyrrolidone-capped silver nanoparticle (Ag-PVP NP) films subjected to continuous wave laser irradiation. The Ag-PVA NC yielded conductive metallic patterns by photothermal reduction of PVA, formation of nanoparticles from silver ions and their subsequent coalescence. On the other hand, Ag-PVP NP thin films produced conductive patterns through only coalescence of nanoparticles. Upon laser irradiation, Ag-PVA NC and Ag-PVP NP films exhibited different coalescence characteristics.
Just What Is It That Makes Silver Nanoprisms So Different, So Appealing?
ERIC Educational Resources Information Center
Panzarasa, Guido
2015-01-01
Thanks to their unique physicochemical properties (e.g., surface plasmon resonance), noble metal nanoparticles are at the cornerstone of nanotechnology. Silver triangular nanoprisms are presented here as an ideal playground to introduce students to nanochemistry concepts such as the formation of shape-controlled nanostructures. Not only a reliable…
Why Gold and Copper Are Colored but Silver Is Not.
ERIC Educational Resources Information Center
Guerrero, Ariel H.; Fasoli, Hector J.; Costa, Jose Luis
1999-01-01
Explains why silver, which has the same external electronic configuration as copper and gold, does not appear yellow: white light reflects on most metals without color absorption or change to the naked eye; however, copper and gold appear yellow because they absorb "blue" and "red" photons during electron transitions between…
Heat-Conducting Anchors for Thermocouples
NASA Technical Reports Server (NTRS)
Macdavid, Kenton S.
1987-01-01
Metal particles in adhesive aid heat transfer. Aluminum caps containing silver-filled epoxy used as high-thermal-conductance anchors for thermocouples, epoxy providing thermal path between mounting surfaces and thermocouple measuring junctions. Normally, epoxy-filled aluminum caps used when measuring steady-state temperatures. Silver-filled epoxy used when thermocouple not isolated electrically from surface measured.
An extremely simple green approach that generates bulk quantities of nanocrystals of noble metals such as silver (Ag) and palladium (Pd) using coffee and tea extract at room temperature is described. The single-pot method uses no surfactant, capping agent, and/or template. The ob...
NASA Astrophysics Data System (ADS)
Zhao, Jie; Song, Man; Wen, Chenyu; Majee, Subimal; Yang, Dong; Wu, Biao; Zhang, Shi-Li; Zhang, Zhi-Bin
2018-03-01
We present a method for fabricating highly conductive graphene-silver composite films with a tunable microstructure achieved by means of an inkjet printing process and low temperature annealing. This is implemented by starting from an aqueous ink formulation using a reactive silver solution mixed with graphene nanoplatelets (GNPs), followed by inkjet printing deposition and annealing at 100 °C for silver formation. Due to the hydrophilic surfaces and the aid of a polymer stabilizer in an aqueous solution, the GNPs are uniformly covered with a silver layer. Simply by adjusting the content of GNPs in the inks, highly conductive GNP/Ag composites (>106 S m-1), with their microstructure changed from a large-area porous network to a compact film, is formed. In addition, the printed composite films show superior quality on a variety of unconventional substrates compared to its counterpart without GNPs. The availability of composite films paves the way to the metallization in different printed devices, e.g. interconnects in printed circuits and electrodes in energy storage devices.
Microbial Biosynthesis of Silver Nanoparticles in Different Culture Media.
Luo, Ke; Jung, Samuel; Park, Kyu-Hwan; Kim, Young-Rok
2018-01-31
Microbial biosynthesis of metal nanoparticles has been extensively studied for the applications in biomedical sciences and engineering. However, the mechanism for their synthesis through microorganism is not completely understood. In this study, several culture media were investigated for their roles in the microbial biosynthesis of silver nanoparticles (AgNPs). The size and morphology of the synthesized AgNPs were analyzed by UV-vis spectroscopy, Fourier-transform-infrared (FT-IR), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The results demonstrated that nutrient broth (NB) and Mueller-Hinton broth (MHB) among tested media effectively reduced silver ions to form AgNPs with different particle size and shape. Although the involved microorganism enhanced the reduction of silver ions, the size and shape of the particles were shown to mainly depend on the culture media. Our findings suggest that the growth media of bacterial culture play an important role in the synthesis of metallic nanoparticles with regard to their size and shape. We believe our findings would provide useful information for further exploration of microbial biosynthesis of AgNPs and their biomedical applications.
Heterogeneous precipitation of silver nanoparticles on kaolinite plates
NASA Astrophysics Data System (ADS)
Cabal, B.; Torrecillas, R.; Malpartida, F.; Moya, J. S.
2010-11-01
Two different methods to obtain silver nanoparticles supported on kaolin crystals have been performed: the first one followed a thermal reduction and the second one a chemical reduction. In both cases, the silver nanoparticles with two different average particles size (ca.12 and 30 nm) were perfectly isolated and attached to the surface of the kaolin plates. The silver nanoparticles were localized mainly at the edge of the single crystal plates, the hydroxyl groups being the main centres of adsorption. The samples were fully characterized by XRD, UV-vis spectroscopy and TEM. The antimicrobial benefits of the composites were evaluated as antibacterial against common Gram-positive and Gram-negative bacteria, and antifungal activity against yeast. The results indicated a high antimicrobial activity for Escherichia coli JM 110 and Micrococcus luteus, while being inactive against yeast under our experimental conditions. The chemical analysis of Ag in the fermentation broths show that only a small portion of metal (<9 ppm) is released from the kaolin/metakaolin particles. Therefore, the risk of toxicity due to a high concentration of metal in the medium is minimized.
Versatile Molecular Silver Ink Platform for Printed Flexible Electronics.
Kell, Arnold J; Paquet, Chantal; Mozenson, Olga; Djavani-Tabrizi, Iden; Deore, Bhavana; Liu, Xiangyang; Lopinski, Gregory P; James, Robert; Hettak, Khelifa; Shaker, Jafar; Momciu, Adrian; Ferrigno, Julie; Ferrand, Olivier; Hu, Jian Xiong; Lafrenière, Sylvie; Malenfant, Patrick R L
2017-05-24
A silver molecular ink platform formulated for screen, inkjet, and aerosol jet printing is presented. A simple formulation comprising silver neodecanoate, ethyl cellulose, and solvent provides improved performance versus that of established inks, yet with improved economics. Thin, screen-printed traces with exceptional electrical (<10 mΩ/□/mil or 12 μΩ·cm) and mechanical properties are achieved following thermal or photonic sintering, the latter having never been demonstrated for silver-salt-based inks. Low surface roughness, submicron thicknesses, and line widths as narrow as 41 μm outperform commercial ink benchmarks based on flakes or nanoparticles. These traces are mechanically robust to flexing and creasing (less than 10% change in resistance) and bind strongly to epoxy-based adhesives. Thin traces are remarkably conformal, enabling fully printed metal-insulator-metal band-pass filters. The versatility of the molecular ink platform enables an aerosol jet-compatible ink that yields conductive features on glass with 2× bulk resistivity and strong adhesion to various plastic substrates. An inkjet formulation is also used to print top source/drain contacts and demonstrate printed high-mobility thin film transistors (TFTs) based on semiconducting single-walled carbon nanotubes. TFTs with mobility values of ∼25 cm 2 V -1 s -1 and current on/off ratios >10 4 were obtained, performance similar to that of evaporated metal contacts in analogous devices.
Effect of Gold on the Microstructural Evolution and Integrity of a Sintered Silver Joint
Muralidharan, Govindarajan; Leonard, Donovan N.; Meyer, Harry M.
2017-01-05
There is a need for next-generation, high-performance power electronic packages and systems employing wide band gap devices to operate at high temperatures in automotive and electric grid applications. Sintered silver joints are currently being evaluated as an alternative to Pb-free solder joints. Of particular interest is the development of joints based on silver paste consisting of nanoscale or micron scale particles that can be processed without the application of an external pressure. Microstructural evolution at the interface of a pressureless sintered silver joint formed between a SiC die with a Ti/Ni/Au metallization and an Active Metal Brazed substrate with Agmore » metallization at 250 °C was evaluated using Scanning Electron Microscopy, X-ray microanalysis, and X-ray Photo Electron Spectroscopy. Results from Focused Ion Beam cross-sections show that during sintering, the pores in the sintered region close to the Au layer tend to be smaller and are oriented predominantly with their longer dimension oriented parallel to the interface. With further densification, this results in the alignment of small pores parallel to the interface, creating a path for easy crack propagation. Lastly, X-ray microchemical analyses results confirm interdiffusion between Au and Ag and that a region with poor mechanical strength is formed at the edge of this region of interdiffusion.« less
New method of metallization for silicon solar cells. Final report, December 1978-September 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, Milo
1979-12-01
Research on a new metallization process based on the Mo-Sn system is described. MoO/sub 3/ is used as the source of Mo, since its relatively low melting point and ease of reduction to metallic molybdenum. The tasks performed during this study include: (1) establishing the reduction cycle for MoO/sub 3/; (2) determining the reaction mechanism for MoO/sub 3/-Sn mixture; (3) establishing the ratio of MoO/sub 3/-Sn for the ink composition; (4) formulation of screenable ink; (5) evaluation of photovoltaic cells metallized with the ink; (6) comparison of the Mo-Sn metallization with nickel plated and silk screened silver contacts; (7) environmentalmore » test of metallized cells; (8) metallization of N/P cells with BSF and comparison with cells metallized with evaporated Ti-Ag contact; and (9) cost analysis of the process. The reaction mechanism study of MoO/sub 3/ and its mixture with Sn was conducted in an experimental station consisting of a graphite strip-heater and a Pyrex belljar under close control of temperature-atmosphere-time while allowing visual observations of the reactions. The metallization of the cells was done in a diffusion tube furnace. In order to obtain a low ohmic contact to the cell, the basic ink composition was modified with a small addition of titanium in the form of titanium resinate. The electrical characteristics of the cells were comparable with the existing metallization processes. The cost analysis was based on projected production output of one MegaWatt per year, using 2''diam. Silicon crystal wafers and the current material costs. In comparison with the standard processes using silver as the contacting metal, the saving obtained by the use of this new process is a direct result of the price difference between silver and molybdenum oxide with tin.« less
48 CFR 252.208-7000 - Intent to furnish precious metals as Government-furnished material.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Offeror shall cite the type (silver, gold, platinum, palladium, iridium, rhodium, and ruthenium) and... metal* Quantity Deliverable item (NSN and nomenclature)!!rs *If platinum or palladium, specify whether...
48 CFR 252.208-7000 - Intent to furnish precious metals as Government-furnished material.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Offeror shall cite the type (silver, gold, platinum, palladium, iridium, rhodium, and ruthenium) and... metal* Quantity Deliverable item (NSN and nomenclature)!!rs *If platinum or palladium, specify whether...
48 CFR 252.208-7000 - Intent to furnish precious metals as Government-furnished material.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Offeror shall cite the type (silver, gold, platinum, palladium, iridium, rhodium, and ruthenium) and... metal* Quantity Deliverable item (NSN and nomenclature)!!rs *If platinum or palladium, specify whether...
48 CFR 252.208-7000 - Intent to furnish precious metals as Government-furnished material.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Offeror shall cite the type (silver, gold, platinum, palladium, iridium, rhodium, and ruthenium) and... metal* Quantity Deliverable item (NSN and nomenclature)!!rs *If platinum or palladium, specify whether...
Process for the Production of Star Tracklng [Tracking] Reticles
NASA Technical Reports Server (NTRS)
Smith, Wade O. (Inventor); Toft, Albert R. (Inventor)
1972-01-01
A method for the production of reticles, particularly those for use in outer space, wherein the product is a quartz base coated with highly adherent layers of chromium, chromium-silver, and silver vacuum deposited through a mask, and then coated with an electrodeposit of copper from a copper sulfate solution followed by an electrodeposit of black chromium. The masks are produced by coating a beryllium-copper alloy substrate with a positive working photoresist, developing the photoresist according to a pattern to leave a positive mask, plating uncoated areas with gold, removing the photoresist, coating the substrate with a negative working photoresist, developing the negative working photoresist to expose the base metal of the pattern, and chemically etching the unplated side of the pattern to produce the mask. The mask produced is then used in the vacuum deposition of: (1) chromium metal on the surface of a quartz base to obtain a highly adherent quartz-chromium interface; (2) silver on the chromium deposit, during the final stage of chromium deposit, to produce a silver chromium alloy layer; and (3) silver onto the surface of the alloy layer. The coated quartz base is then coated by electroplating utilizing an acid copper deposit followed by a black chromium electrodeposit to produce the product of the present invention.
Structure and decomposition of the silver formate Ag(HCO{sub 2})
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puzan, Anna N., E-mail: anna_puzan@mail.ru; Baumer, Vyacheslav N.; Mateychenko, Pavel V.
Crystal structure of the silver formate Ag(HCO{sub 2}) has been determined (orthorhombic, sp.gr. Pccn, a=7.1199(5), b=10.3737(4), c=6.4701(3)Å, V=477.88(4) Å{sup 3}, Z=8). The structure contains isolated formate ions and the pairs Ag{sub 2}{sup 2+} which form the layers in (001) planes (the shortest Ag–Ag distances is 2.919 in the pair and 3.421 and 3.716 Å between the nearest Ag atoms of adjacent pairs). Silver formate is unstable compound which decompose spontaneously vs time. Decomposition was studied using Rietveld analysis of the powder diffraction patterns. It was concluded that the diffusion of Ag atoms leads to the formation of plate-like metal particlesmore » as nuclei in the (100) planes which settle parallel to (001) planes of the silver formate matrix. - Highlights: • Silver formate Ag(HCO{sub 2}) was synthesized and characterized. • Layered packing of Ag-Ag pairs in the structure was found. • Decomposition of Ag(HCO{sub 2}) and formation of metal phase were studied. • Rietveld-refined micro-structural characteristics during decomposition reveal the space relationship between the matrix structure and forming Ag phase REPLACE with: Space relationship between the matrix structure and forming Ag phase.« less
Paulkumar, Kanniah; Gnanajobitha, Gnanadhas; Vanaja, Mahendran; Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Pandian, Kannaiyan; Annadurai, Gurusamy
2014-01-01
Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray analysis (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7-50 nm and 9-30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology.
2017-01-01
ABSTRACT The biological synthesis of metal nanoparticles has been examined in a wide range of organisms, due to increased interest in green synthesis and environmental remediation applications involving heavy metal ion contamination. Deinococcus radiodurans is particularly attractive for environmental remediation involving metal reduction, due to its high levels of resistance to radiation and other environmental stresses. However, few studies have thoroughly examined the relationships between environmental stresses and the resulting effects on nanoparticle biosynthesis. In this work, we demonstrate cell-free nanoparticle production and study the effects of metal stressor concentrations and identity, temperature, pH, and oxygenation on the production of extracellular silver nanoparticles by D. radiodurans R1. We also report the synthesis of bimetallic silver and gold nanoparticles following the addition of a metal stressor (silver or gold), highlighting how production of these particles is enabled through the application of environmental stresses. Additionally, we found that both the morphology and size of monometallic and bimetallic nanoparticles were dependent on the environmental stresses imposed on the cells. The nanoparticles produced by D. radiodurans exhibited antimicrobial activity comparable to that of pure silver nanoparticles and displayed catalytic activity comparable to that of pure gold nanoparticles. Overall, we demonstrate that biosynthesized nanoparticle properties can be partially controlled through the tuning of applied environmental stresses, and we provide insight into how their application may affect nanoparticle production in D. radiodurans during bioremediation. IMPORTANCE Biosynthetic production of nanoparticles has recently gained prominence as a solution to rising concerns regarding increased bacterial resistance to antibiotics and a desire for environmentally friendly methods of bioremediation and chemical synthesis. To date, a range of organisms have been utilized for nanoparticle formation. The extremophile D. radiodurans, which can withstand significant environmental stresses and therefore is more robust for metal reduction applications, has yet to be exploited for this purpose. Thus, this work improves our understanding of the impact of environmental stresses on biogenic nanoparticle morphology and composition during metal reduction processes in this organism. This work also contributes to enhancing the controlled synthesis of nanoparticles with specific attributes and functions using biological systems. PMID:28687649
Chen, Angela; Contreras, Lydia M; Keitz, Benjamin K
2017-09-15
The biological synthesis of metal nanoparticles has been examined in a wide range of organisms, due to increased interest in green synthesis and environmental remediation applications involving heavy metal ion contamination. Deinococcus radiodurans is particularly attractive for environmental remediation involving metal reduction, due to its high levels of resistance to radiation and other environmental stresses. However, few studies have thoroughly examined the relationships between environmental stresses and the resulting effects on nanoparticle biosynthesis. In this work, we demonstrate cell-free nanoparticle production and study the effects of metal stressor concentrations and identity, temperature, pH, and oxygenation on the production of extracellular silver nanoparticles by D. radiodurans R1. We also report the synthesis of bimetallic silver and gold nanoparticles following the addition of a metal stressor (silver or gold), highlighting how production of these particles is enabled through the application of environmental stresses. Additionally, we found that both the morphology and size of monometallic and bimetallic nanoparticles were dependent on the environmental stresses imposed on the cells. The nanoparticles produced by D. radiodurans exhibited antimicrobial activity comparable to that of pure silver nanoparticles and displayed catalytic activity comparable to that of pure gold nanoparticles. Overall, we demonstrate that biosynthesized nanoparticle properties can be partially controlled through the tuning of applied environmental stresses, and we provide insight into how their application may affect nanoparticle production in D. radiodurans during bioremediation. IMPORTANCE Biosynthetic production of nanoparticles has recently gained prominence as a solution to rising concerns regarding increased bacterial resistance to antibiotics and a desire for environmentally friendly methods of bioremediation and chemical synthesis. To date, a range of organisms have been utilized for nanoparticle formation. The extremophile D. radiodurans , which can withstand significant environmental stresses and therefore is more robust for metal reduction applications, has yet to be exploited for this purpose. Thus, this work improves our understanding of the impact of environmental stresses on biogenic nanoparticle morphology and composition during metal reduction processes in this organism. This work also contributes to enhancing the controlled synthesis of nanoparticles with specific attributes and functions using biological systems. Copyright © 2017 American Society for Microbiology.
40 CFR 421.250 - Applicability: Description of the primary precious metals and mercury subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... applicable to discharges resulting from the production of gold, silver, or mercury by primary precious metals... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability: Description of the... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING...
Organic SIMS: the influence of time on the ion yield enhancement by silver and gold deposition
NASA Astrophysics Data System (ADS)
Adriaensen, L.; Vangaever, F.; Gijbels, R.
2004-06-01
A series of organic dyes and pharmaceuticals was used to study the secondary ion yield enhancement by metal deposition. The molecules were dissolved in methanol and spincasted on silicon substrates. Subsequently, silver or gold was evaporated on the samples to produce a very thin coating. The coated samples, when measured with TOF-SIMS, showed a considerable increase in characteristic secondary ion intensity. Gold-evaporated samples appear to exhibit the highest signal enhancement. These observations apply to organic samples in general, an advantage that allows to use the technique of metal deposition on real-world samples. However, the observed signal increase does not occur at any given moment. The time between metal deposition on the sample surface and the measuring of the sample with TOF-SIMS appears to have an important influence on the enhancement of the secondary ion intensities. In consideration of these observations several experiments were carried out, in which the spincasted samples were measured at different times after sample preparation, i.e., after gold or silver was deposited on the sample surface. The results show that, depending on the sample and the metal deposited, the secondary ion signals reach their maximum at different times. Further study will be necessary to detect the mechanism responsible for the observed enhancement effect.
Conductive pathway on cotton fabric created using solution with silver organometallic compound
NASA Astrophysics Data System (ADS)
Campbell, Eric E.; He, Ruijian; Mayer, Michael
2017-10-01
A knitted cotton fabric is made conductive by thermal deposition of an organometallic silver compound (OSC). For the thermal process, the fabric was soaked with the OSC liquid and heated to 225 °C for 4 min. The cured state of the OSC is determined by the stabilization in the electrical resistance. The resulting silver metallization is shaped as nanoparticles and a continuous film. A typical resistance of a 10 cm × 1.5 cm metallized strip made with 1.9 ml OSC is 1.70 Ω. Various other resistance levels were achieved. A higher volume of OSC provided a lower electrical resistance for the metallized conductive path but increased its stiffness. Lower resistance was achieved by increasing the number of repeat coatings while keeping the OSC volume constant. The resistance decreased when the OSC coated fabric was elongated, an effect similar to negative piezoresistivity. A resistance of initially 0.34 Ω decreased to a minimum of 0.29 Ω at 10% elongation under repeated stretching and relaxation cycling. The metallization method reported here can be suitable for applications in the field know as technical textiles, electronic textiles (e-textiles), wearable electronics, functional garments, or smart fabrics.
Molecular organic crystalline matrix for hybrid organic-inorganic (nano) composite materials
NASA Astrophysics Data System (ADS)
Stanculescu, A.; Tugulea, L.; Alexandru, H. V.; Stanculescu, F.; Socol, M.
2005-02-01
Metal-doped benzil crystals have been grown by thermal gradient solidification in a vertical transparent growth configuration to investigate the effect of metallic guest on the ordered organic host. We have identified the conditions for growing homogeneous, optically good crystals of benzil doped with sodium and silver, limiting the effect of supercooling, low thermal conductivity and anisotropy of the growth speed (temperature gradient at the liquid-solid interface: 10-25 °C, moving speed of the growth interface 2.0 mm/h). The nature and concentration of the dopant are parameters affecting, through the growth process, the crystalline perfection and the optical properties of the organic matrix. Bulk optical characterisation, by spectrophotometrical methods, has offered details on some intrinsic properties of the system metal particles/benzil crystalline matrix. Analytical processing of the experimental data emphasised that benzil is a wide optical band gap organic semiconductor Eg=2.65 eV. We also have investigated the effect of sodium and silver on the properties of benzil crystal as potential transparent semiconductor matrix for (nano)composite metal/molecular organic material. With the increase of sodium concentration from c=1 to 6 wt%, a small narrowing of the band gap has been remarked. The same behaviour has been found for benzil doped with silver (c=2 wt%) compared to pure benzil.
NASA Astrophysics Data System (ADS)
Kavetskyy, T.; Iida, K.; Nagashima, Y.; Kuczumow, A.; Šauša, O.; Nuzhdin, V.; Valeev, V.; Stepanov, A. L.
2017-01-01
The Doppler broadening slow positron beam spectroscopy (SPBS) data for the previously observed effect of carbonization in high-dose (>1016 ion/cm2) 40 keV boron-ion-implanted polymethylmethacrylate (B:PMMA) and another one obtained for the effect of formation of metal nanoparticles in high-dose 30 keV silver-ion-implanted polymer (Ag:PMMA) are compared. Following to the Doppler broadening SPBS results, a difference in the high-dose ion-irradiation-induced processes in B:PMMA and Ag:PMMA is detected.
NASA Technical Reports Server (NTRS)
Brombacher, W G; Melton, E R
1931-01-01
Experimental data are presented on the variation of the modulus of rigidity in the temperature range -20 to +50 degrees C. of a number of metals which are of possible use for elastic elements for aircraft and other instruments. The methods of the torsional pendulum was used to determine the modulus of rigidity and its temperature coefficient for aluminum, duralumin, monel metal, brass, phosphor bronze, coin silver, nickel silver, three high carbon steels, and three alloy steels. It was observed that tensile stress affected the values of the modulus by amounts of 1 per cent or less.
2012-01-01
We have developed a method for obtaining a direct pattern of silver nanoparticles (NPs) on porous silicon (p-Si) by means of inkjet printing (IjP) of a silver salt. Silver NPs were obtained by p-Si mediated in-situ reduction of Ag+ cations using solutions based on AgNO3 which were directly printed on p-Si according to specific geometries and process parameters. The main difference with respect to existing literature is that normally, inkjet printing is applied to silver (metal) NP suspensions, while in our experiment the NPs are formed after jetting the solution on the reactive substrate. We performed both optical and scanning electron microscopes on the NPs traces, correlating the morphology features with the IjP parameters, giving an insight on the synthesis kinetics. The patterned NPs show good performances as SERS substrates. PMID:22953722
Preparation and application of silver nanopaste as thermal interface materials
NASA Astrophysics Data System (ADS)
Zou, Lianfeng
The power densities in electronic devices have increased dramatically; heat dissipation has become a major challenge in high performance electronics applications. We have investigated a new type of resin-free hybrid silver nanopastes, which contain silver micro-flakes with particle sizes of 1 - 10 um and silver nanoparticles with diameters of 3 - 8 nm. The assemble temperature can be as low as 150oC due to the low sintering temperature of silver nanoparticles. The fused silver micro-and nanoparticles in TIM form continuous metallic networks, resulting in good thermal, electrical and mechanical bonding. The steady-state thermal gradient measurement show the bulk thermal conductivity between 20W/ (m*K) and 100 W/ (m*K), which is higher than commercial product in the market. The application specific performance of the nanopaste has been using LED lamp on heat sinks as model test vehicle.
NASA Astrophysics Data System (ADS)
Kemp, Melissa M.; Kumar, Ashavani; Mousa, Shaymaa; Dyskin, Evgeny; Yalcin, Murat; Ajayan, Pulickel; Linhardt, Robert J.; Mousa, Shaker A.
2009-11-01
Silver and gold nanoparticles display unique physical and biological properties that have been extensively studied for biological and medical applications. Typically, gold and silver nanoparticles are prepared by chemical reductants that utilize excess toxic reactants, which need to be removed for biological purposes. We utilized a clean method involving a single synthetic step to prepare metal nanoparticles for evaluating potential effects on angiogenesis modulation. These nanoparticles were prepared by reducing silver nitrate and gold chloride with diaminopyridinyl (DAP)-derivatized heparin (HP) polysaccharides. Both gold and silver nanoparticles reduced with DAPHP exhibited effective inhibition of basic fibroblast growth factor (FGF-2)-induced angiogenesis, with an enhanced anti-angiogenesis efficacy with the conjugation to DAPHP (P<0.01) as compared to glucose conjugation. These results suggest that DAPHP-reduced silver nanoparticles and gold nanoparticles have potential in pathological angiogenesis accelerated disorders such as cancer and inflammatory diseases.
Barakat, Nasser A M; Woo, Kee-Do; Kanjwal, Muzafar A; Choi, Kyung Eun; Khil, Myung Seob; Kim, Hak Yong
2008-10-21
In the present study, silver metal nanofibers have been successfully prepared by using the electrospinning technique. Silver nanofibers have been produced by electrospinning a sol-gel consisting of poly(vinyl alcohol) and silver nitrate. The dried nanofiber mats have been calcined at 850 degrees C in an argon atmosphere. The produced nanofibers do have distinct plasmon resonance compared with the reported silver nanoparticles. Contrary to the introduced shapes of silver nanoparticles, the nanofibers have a blue-shifted plasmon resonance at 330 nm. Moreover, the optical properties study indicated that the synthesized nanofibers have two band gap energies of 0.75 and 2.34 eV. An investigation of the electrical conductivity behavior of the obtained nanofibers shows thermal hystersis. These privileged physical features greatly widen the applications of the prepared nanofibers in various fields.
The electrodeposition of silver composites using deep eutectic solvents.
Abbott, Andrew P; El Ttaib, Khalid; Frisch, Gero; Ryder, Karl S; Weston, David
2012-02-21
Silver is an important metal for electronic connectors, however, it is extremely soft and wear can be a significant issue. This paper describes how improved wear resistant silver coatings can be obtained from the electrolytic deposition of silver from a solution of AgCl in an ethylene glycol/choline chloride based Deep Eutectic Solvent. An up to 10-fold decrease in the wear volume is observed by the incorporation of SiC or Al(2)O(3) particles. The work also addresses the fundamental aspect of speciation of silver chloride in solution using EXAFS to probe solution structure. The size but not the nature of the composite particles is seen to change the morphology and grain size of the silver deposit. Grain sizes are shown to be consistent with previous nucleation studies. The addition of LiF is found to significantly affect the deposit morphology and improve wear resistance.
Zhou, Zhenpeng; Li, Tian; Huang, Hongduan; Chen, Yang; Liu, Feng; Huang, Chengzhi; Li, Na
2014-11-11
Silver-enhanced fluorescence was coupled with a bio-barcode assay to facilitate a dual amplification assay to demonstrate a non-enzymatic approach for simple and sensitive detection of DNA. In the assay design, magnetic nanoparticles seeded with silver nanoparticles were modified with the capture DNA, and silver nanoparticles were modified with the binding of ssDNA and the fluorescently labeled barcode dsDNA. Upon introduction of the target DNA, a sandwich structure was formed because of the hybridization reaction. By simple magnetic separation, silver-enhanced fluorescence of barcode DNAs could be readily measured without the need of a further step to liberate barcode DNAs from silver nanoparticles, endowing the method with simplicity and high sensitivity with a detection limit of 1 pM.
NASA Astrophysics Data System (ADS)
Lu, Haifei; Sun, Jingsong; Zhang, Hong; Lu, Shunmian; Choy, Wallace C. H.
2016-03-01
The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies.The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00011h
NASA Astrophysics Data System (ADS)
Marambio-Jones, Catalina; Hoek, Eric M. V.
2010-06-01
Here, we present a review of the antibacterial effects of silver nanomaterials, including proposed antibacterial mechanisms and possible toxicity to higher organisms. For purpose of this review, silver nanomaterials include silver nanoparticles, stabilized silver salts, silver-dendrimer, polymer and metal oxide composites, and silver-impregnated zeolite and activated carbon materials. While there is some evidence that silver nanoparticles can directly damage bacteria cell membranes, silver nanomaterials appear to exert bacteriocidal activity predominantly through release of silver ions followed (individually or in combination) by increased membrane permeability, loss of the proton motive force, inducing de-energization of the cells and efflux of phosphate, leakage of cellular content, and disruption DNA replication. Eukaryotic cells could be similarly impacted by most of these mechanisms and, indeed, a small but growing body of literature supports this concern. Most antimicrobial studies are performed in simple aquatic media or cell culture media without proper characterization of silver nanomaterial stability (aggregation, dissolution, and re-precipitation). Silver nanoparticle stability is governed by particle size, shape, and capping agents as well as solution pH, ionic strength, specific ions and ligands, and organic macromolecules—all of which influence silver nanoparticle stability and bioavailability. Although none of the studies reviewed definitively proved any immediate impacts to human health or the environment by a silver nanomaterial containing product, the entirety of the science reviewed suggests some caution and further research are warranted given the already widespread and rapidly growing use of silver nanomaterials.
Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, odorless liquid. If ... with other elements to form powders or crystals. Mercury is in many products. Metallic mercury is used ...
Use of termite mounds in geochemical exploration in North Ethiopia [rapid communication
NASA Astrophysics Data System (ADS)
Kebede, Fassil
2004-09-01
The geochemistry of the termite mounds was studied in lower Giba River basin, Kolla Tambien district, northern Ethiopia to show that they are useful in searching for metals. Specimens from the termite mounds and parent materials were collected to quantify gold, silver, copper, zinc, cobalt, manganese, iron and nickel. The results of the geochemical analysis of the samples indicated that these metals exist both in the termite mound and the parent material in the surrounding area. Correlation analysis shows that termite mounds and the parent materials are positively correlated for gold ( r = 0.75∗), copper ( r = 0.77∗), silver ( r = 0.56∗) and manganese ( r = 0.72). This positive correlation leads to the conclusion that there is a direct relation between the concentration of metals in termite mound and the parent rocks. Termite mounds can therefore be used as tools in exploring for these metals.
Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes.
Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M Arif
2016-05-15
We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vinod Kumar, V.; Anbarasan, S.; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu
2014-08-01
Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg2+, Cd2+ and Pb2+ metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology.
Gonzales, Melissa; Shah, Vallabh; Bobelu, Arlene; Qualls, Clifford; Natachu, Kathy; Bobelu, Jeanette; Jamon, Eunice; Neha, Donica; Paine, Susan; Zager, Philip
2013-01-01
This pilot study was conducted to identify the metals used by home-based Native American jewelry makers, to quantify the metals in dust samples taken from jewelers’ homes, and to compare these concentrations with background levels from control homes in which jewelry was not made. Participants were recruited from Zuni Pueblo, New Mexico. Surface dust samples were collected from the work and living areas of 20 jewelers’ homes, and from the living areas of 20 control homes. Silver, copper, tin, boron, nickel, zinc, lead, and cadmium were significantly higher in work areas than in living areas of jewelry-making homes (p≤ 0.02). Silver, copper, nickel, and antimony were significantly higher in living areas of jewelers’ homes compared with control homes (p ≤ 0.04). Ventilation measures did not effectively reduce metal concentrations in jewelers’ homes; concentrations in nonwork areas remained elevated. PMID:16201670
Plasmonic platforms of self-assembled silver nanostructures in application to fluorescence
Luchowski, Rafal; Calander, Nils; Shtoyko, Tanya; Apicella, Elisa; Borejdo, Julian; Gryczynski, Zygmunt; Gryczynski, Ignacy
2011-01-01
Fluorescence intensity changes were investigated theoretically and experimentally using self-assembled colloidal structures on silver semitransparent mirrors. Using a simplified quasi-static model and finite element method, we demonstrate that near-field interactions of metallic nanostructures with a continuous metallic surface create conditions that produce enormously enhanced surface plasmon resonances. The results were used to explain the observed enhancements and determine the optimal conditions for the experiment. The theoretical parts of the studies are supported with reports on detailed emission intensity changes which provided multiple fluorescence hot spots with 2–3 orders of enhancements. We study two kinds of the fluorophores: dye molecules and fluorescent nanospheres characterized with similar spectral emission regions. Using a lifetime-resolved fluorescence/reflection confocal microscopy technique, we find that the largest rate for enhancement (~1000-fold) comes from localized areas of silver nanostructures. PMID:21403765
Gases and trace elements in soils at the North Silver Bell deposit, Pima County, Arizona
Hinkle, M.E.; Dilbert, C.A.
1984-01-01
Soil samples were collected over the North Silver Bell porphyry copper deposit near Tucson, Arizona. Volatile elements and compounds in gases derived from the soils and metallic elements in the soils were analyzed in order: (1) to see which volatile constituents of the soils might be indicative of the ore body or the alteration zones; and (2) to distinguish the ore and alteration zones by comparison of trace elements in the soil. Plots of analytical data on trace elements in soils indicated a typical distribution pattern for metals around a porphyry copper deposit, with copper, molybdenum, and arsenic concentrations higher over the ore body, and zinc, lead, and silver concentrations higher over the alteration zones. Higher than average concentrations of helium, carbon disulfide, and sulfur dioxide adsorbed on soils were found over the ore body, whereas higher concentrations of carbon dioxide and carbonyl sulfide were found over the alteration zones. ?? 1984.
A study on the recycling of scrap integrated circuits by leaching.
Lee, Ching-Hwa; Tang, Li-Wen; Popuri, Srinivasa R
2011-07-01
In order to minimize the problem of pollution and to conserve limited natural resources, a method to recover the valuable metals such as gold, silver and copper) present in the scrap integrated circuits (ICs) was developed in the present study. Roasting, grinding, screening, magnetic separation, melting and leaching were adopted to investigate the efficiency of recovery of gold, silver and copper from scrap ICs. The collected scrap IC samples were roasted at 850 °C to destroy their plastic resin sealing material, followed by screening and magnetic separation to separate the metals from the resin residue. The non-ferrous materials (0.840 mm) were mainly composed of copper and could be melted into a copper alloy. Non-ferrous materials containing gold (860.05 ppm), silver (1323.12 ppm) and copper (37259.7 ppm) (size less than 50 mesh) were recovered 100% by a leaching process and thiourea was used as a leaching reagent.
Kumari, Rima; Barsainya, Manjari; Singh, Devendra Pratap
2017-02-01
Biogenic synthesis of silver nanoparticles (AgNPs) using extracellular metabolites from the bacterium Pseudomonas aeruginosa DM1 offers an eco-friendly and sustainable way of metal nanoparticle synthesis. The present work highlights the biotransformation of silver nitrate solution into AgNP, mediated by extracellular secondary metabolite pyoverdine, a siderophore produced by P. aeruginosa. The bioreduction of silver ions into AgNPs by using pyoverdine was recorded in terms of Fourier transform infrared spectroscopy (FTIR) analysis and color change in the reaction mixture (AgNO 3 + pyoverdine) from pale yellow to dark brown with absorption maxima at 415 nm. The results of X-ray diffraction (XRD) analysis of AgNPs showed its crystalline face-centered cubic structure. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) pictures of AgNPs showed spherical morphology of AgNP in the range of 45-100 nm, with tendency of agglomerations. The energy-dispersive X-ray (EDX) analysis of particles provided strong signal of elemental silver with few minor peaks of other impurities. The present approach offers a unique in vitro method of metal nanoparticle synthesis by exogenously produced bacterial secondary metabolites, where direct contact between the toxic metal and biological resource material can be avoided. The biologically synthesized AgNPs are found to have anti-algal effects against two species of Chlorella (Chlorella vulgaris and Chlorella pyenoidosa), as indicated by zone of growth inhibition on algal culture plates. Further results exhibit concentration-dependent progressive inhibition of chlorophyll content in the algal cells by AgNPs, confirming the algicidal effect of AgNPs.
Velmurugan, Palanivel; Park, Jung-Hee; Lee, Sang-Myeong; Jang, Jum-Suk; Yi, Young-Joo; Han, Sang-Sub; Lee, Sang-Hyun; Cho, Kwang-Min; Cho, Min; Oh, Byung-Taek
2015-11-20
In this current study, we report on the reduction of noble metal silver into silver nanoparticles using defatted cashew nut shell (CNS) starch as both the reducing and capping agents. Furthermore, it was compared with commercially available silver nanopowder for the first time. Color changes, ultraviolet-visible spectra (433.76nm), X-ray diffraction peaks (2θ=37.8, 46.3, 66.2, and 77.92) revealed the face-centered cubic (fcc) geometry of silver nanoparticles, scanning electron microscopy-energy dispersive spectroscopy confirmed the presence of elemental silver nanoparticles and the defatted CNS starch silver nanoparticle structures was in accordance to commercial silver nanopowder. The size of both the nanoparticles was found to be similar in the range of 10-50nm as analyzed using high resolution-transmission electron micrographs. The FT-IR spectroscopy revealed the shifting of NH and OH of defatted CNS starch, starch based silver nanoparticle and commercial silver nanopowder has parallel functional groups. The use of environmentally benign and renewable materials like defatted CNS starch offers an alternative to large scale synthesis of silver nanoparticle and includes numerous benefits like eco-friendly and compatibility for pharmaceutical and biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Electroless growth of silver nanoparticles into mesostructured silica block copolymer films.
Bois, Laurence; Chassagneux, Fernand; Desroches, Cédric; Battie, Yann; Destouches, Nathalie; Gilon, Nicole; Parola, Stéphane; Stéphan, Olivier
2010-06-01
Silver nanoparticles and silver nanowires have been grown inside mesostructured silica films obtained from block copolymers using two successive reduction steps: the first one involves a sodium borohydride reduction or a photoreduction of silver nitrate contained in the film, and the second one consists of a silver deposit on the primary nanoparticles, carried out by silver ion solution reduction with hydroxylamine chloride. We have demonstrated that the F127 block copolymer ((PEO)(106)(PPO)(70)(PEO)(106)), "F type", mesostructured silica film is a suitable "soft" template for the fabrication of spherical silver nanoparticles arrays. Silver spheres grow from 7 to 11 nm upon the second reduction step. As a consequence, a red shift of the surface plasmon resonance associated with metallic silver has been observed and attributed to plasmonic coupling between particles. Using a P123 block copolymer ((PEO)(20)(PPO)(70)(PEO)(20)), "P type", mesostructured silica film, we have obtained silver nanowires with typical dimension of 10 nm x 100 nm. The corresponding surface plasmon resonance is blue-shifted. The hydroxylamine chloride treatment appears to be efficient only when a previous chemical reduction is performed, assuming that the first sodium borohydride reduction induces a high concentration of silver nuclei in the first layer of the porous silica (film/air interface), which explains their reactivity for further growth.
Wani, Irshad A; Khatoon, Sarvari; Ganguly, Aparna; Ahmed, Jahangeer; Ahmad, Tokeer; Manzoor, Nikhat
2013-01-01
Silver nanoparticles have been synthesized in the inverse microemulsions formed using three different surfactants viz., cetyl-trimethyl ammonium bromide (CTAB), Tergitol and Triton X-100. We have done a systematic study of the effect of the surfactants on the particle size and properties of the silver nanoparticles. Microscopic studies show the formation of spheres, cubes and discs shaped silver nanostructures with the size in the range from 8 to 40 nm. Surface plasmon resonance (SPR) peak was observed around 400 nm and 500 nm. In addition to SPR some extra peaks have also been observed due to the formation of silver metal clusters. The surface area increases from 3.45 to 15.06 m(2)/g with decreasing the size of silver nanoparticles (40-8 nm). To investigate the antimicrobial activity of silver nanoparticles, the nanoparticles were tested against the yeast, Candida albicans and the bacterium, E. coli. The results suggest very good antimicrobial activity of the silver nanoparticles against the test microbes. The mode of action of the antimicrobial activity was also proposed. Copyright © 2012 Elsevier B.V. All rights reserved.
Method of bonding metals to ceramics
Maroni, Victor A.
1991-01-01
A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, An and alloys thereof.
ERIC Educational Resources Information Center
González-Sánchez, María-Isabel; Gómez-Monedero, Beatriz; Agrisuelas, Jerónimo; Valero, Edelmira
2018-01-01
A laboratory experiment in which students recycle silver and platinum selectively from spent screen-printed platinum electrodes is described. The recovered silver in solution is used to show its spontaneous redox reaction with a copper sheet. The recovered platinum is electrodeposited onto a screen-printed carbon electrode to develop a sensor for…
25 CFR 213.23 - Royalty rates for minerals other than oil and gas.
Code of Federal Regulations, 2013 CFR
2013-04-01
... substances other than gold, silver, copper, lead, zinc, tungsten, coal, asphaltum and allied substances, oil... than 10 percent of the value, at the nearest shipping point, of all ores, metals, or minerals marketed. (b) For gold and silver the lessee shall pay quarterly or as otherwise provided in the lease, a...
25 CFR 213.23 - Royalty rates for minerals other than oil and gas.
Code of Federal Regulations, 2014 CFR
2014-04-01
... substances other than gold, silver, copper, lead, zinc, tungsten, coal, asphaltum and allied substances, oil... than 10 percent of the value, at the nearest shipping point, of all ores, metals, or minerals marketed. (b) For gold and silver the lessee shall pay quarterly or as otherwise provided in the lease, a...
Hot carrier dynamics in plasmonic transition metal nitrides
NASA Astrophysics Data System (ADS)
Habib, Adela; Florio, Fred; Sundararaman, Ravishankar
2018-06-01
Extraction of non-equilibrium hot carriers generated by plasmon decay in metallic nano-structures is an increasingly exciting prospect for utilizing plasmonic losses, but the search for optimum plasmonic materials with long-lived carriers is ongoing. Transition metal nitrides are an exciting class of new plasmonic materials with superior thermal and mechanical properties compared to conventional noble metals, but their suitability for plasmonic hot carrier applications remains unknown. Here, we present fully first principles calculations of the plasmonic response, hot carrier generation and subsequent thermalization of all group IV, V and VI transition metal nitrides, fully accounting for direct and phonon-assisted transitions as well as electron–electron and electron–phonon scattering. We find the largest frequency ranges for plasmonic response in ZrN, HfN and WN, between those of gold and silver, while we predict strongest absorption in the visible spectrum for the VN, NbN and TaN. Hot carrier generation is dominated by direct transitions for most of the relevant energy range in all these nitrides, while phonon-assisted processes dominate only below 1 eV plasmon energies primarily for the group IV nitrides. Finally, we predict the maximum hot carrier lifetimes to be around 10 fs for group IV and VI nitrides, a factor of 3–4 smaller than noble metals, due to strong electron–phonon scattering. However, we find longer carrier lifetimes for group V nitrides, comparable to silver for NbN and TaN, while exceeding 100 fs (twice that of silver) for VN, making them promising candidates for efficient hot carrier extraction.
SR-XRD and SR-FTIR study of the alteration of silver foils in medieval paintings.
Salvadó, Nati; Butí, Salvador; Labrador, Ana; Cinque, Gianfelice; Emerich, Hermann; Pradell, Trinitat
2011-03-01
Altarpieces and polychrome carved wood from the fifteenth century AD usually exhibit golden and silvery areas by the application of a very thin foil of metal. The metal foils were normally protected from the atmosphere by a varnish or resin which maybe either preserved or absent. Moreover, they were glued to the background surface by adhesive substances (egg yolk, drying oil or animal glue). The high proportion of the glueing substances often renders the development of reaction compounds. With time, silver alters blacken or simply disappear completely. In this paper, we study the alterations to metal foils from a selection of fifteenth century artworks showing different glueing agents, organic coatings and several degrees of conservation of the organic coatings and metal leafs. The submillimetric layered structure and the high variability and low amount of most of the compounds present in the different layers, as well as their differing nature (organic and inorganic) make the use of micron-sensitive high-resolution techniques essential for their study. In particular, the high resolution, high brilliance and small footprint renders synchrotron radiation most adequate for their study. SR-XRD was performed to identify the reaction compounds formed in the different layers; μFTIR was used at to identify the silver protecting organic coatings, the metal foil glueing layers and the corresponding reaction compounds. The results obtained suggest that atmospheric corrosion is the dominant mechanism, and therefore that the degree of corrosion of the metal foils is mainly related to the conservation state of the protecting coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhter, Perveen; Huang, Mengbing, E-mail: mhuang@albany.edu; Spratt, William
Plasmonic effects associated with metal nanostructures are expected to hold the key to tailoring light emission/propagation and harvesting solar energy in materials including single crystal silicon which remains the backbone in the microelectronics and photovoltaics industries but unfortunately, lacks many functionalities needed for construction of advanced photonic and optoelectronics devices. Currently, silicon plasmonic structures are practically possible only in the configuration with metal nanoparticles or thin film arrays on a silicon surface. This does not enable one to exploit the full potential of plasmonics for optical engineering in silicon, because the plasmonic effects are dominant over a length of ∼50 nm,more » and the active device region typically lies below the surface much beyond this range. Here, we report on a novel method for the formation of silver nanoparticles embedded within a silicon crystal through metal gettering from a silver thin film deposited at the surface to nanocavities within the Si created by hydrogen ion implantation. The refractive index of the Ag-nanostructured layer is found to be 3–10% lower or higher than that of silicon for wavelengths below or beyond ∼815–900 nm, respectively. Around this wavelength range, the optical extinction values increase by a factor of 10–100 as opposed to the pure silicon case. Increasing the amount of gettered silver leads to an increased extinction as well as a redshift in wavelength position for the resonance. This resonance is attributed to the surface plasmon excitation of the resultant silver nanoparticles in silicon. Additionally, we show that the profiles for optical constants in silicon can be tailored by varying the position and number of nanocavity layers. Such silicon crystals with embedded metal nanostructures would offer novel functional base structures for applications in silicon photonics, optoelectronics, photovoltaics, and plasmonics.« less
Sowani, Harshada; Mohite, Pallavi; Damale, Shailesh; Kulkarni, Mohan; Zinjarde, Smita
2016-12-01
The Actinomycete Gordonia amicalis HS-11 produced orange pigments when cultivated on n-hexadecane as the sole carbon source. When cells of this pigmented bacterium were incubated with 1mM chloroauric acid (HAuCl 4 ) or silver nitrate (AgNO 3 ), pH 9.0, at 25°C, gold and silver nanoparticles, respectively, were obtained in a cell associated manner. It was hypothesized that the pigments present in the cells may be mediating metal reduction reactions. After solvent extraction and High Performance Liquid Chromatography, two major pigments displaying UV-vis spectra characteristic of carotenoids were isolated. These were identified on the basis of Atmospheric Pressure Chemical Ionization Mass Spectrometry (APCI-MS) in the positive mode as 1'-OH-4-keto-γ-carotene (Carotenoid K) and 1'-OH-γ-carotene (Carotenoid B). The hydroxyl groups present in the carotenoids were eliminated under alkaline conditions and provided the reducing equivalents necessary for synthesizing nanoparticles. Cell associated and carotenoid stabilized nanoparticles were characterized by different analytical techniques. In vitro free radical scavenging activities of cells (control, gold and silver nanoparticle loaded), purified carotenoids and carotenoid stabilized gold and silver nanoparticles were evaluated. Silver nanoparticle loaded cells and carotenoid stabilized silver nanoparticles exhibited improved nitric oxide (NO) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activities compared to their control and gold counterparts. This paper thus reports cell associated nanoparticle synthesis by G. amicalis, describes for the first time the role of carotenoid pigments in metal reduction processes and demonstrates enhanced free radical scavenging activities of the carotenoid stabilized nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.
Mineral resource potential map of the Benton Range Roadless Area, Mono County, California
Donahoe, James L.; McKee, Edwin D.; Rains, Richard L.; Barnes, Donald J.; Campbell, Harry W.; Denton, David K.; Iverson, Stephen R.; Jeske, Rodney E.; Stebbins, Scott A.
1983-01-01
Tungsten-bearing rocks in the Benton Range Roadless Area occur in tactite lenses within the Paleozoic metasedimentary units that surround and are intruded by Triassic granodiorite of the Benton Range. High anomalous tungsten values were found in the southern part of the study area. Quartz-vein deposits with copper, lead, zinc, and silver may occur within the Jurassic granitic rock in the northwestern part of the area. Stream-sediment and panned-concentrate samples from the northwestern part of the roadless area, reveal anomalous values in a number of elements. Some of these elements are indicative of mineral suites that form by hydrothermal alteration and are potential metallic-ore producers. Metals having anomalous values are antimony, copper, lead, molybdenum, tin, and zinc; their presence suggests the potential for deposits of the lead-zinc-silver or copper-molybdenum type. Molybdenum and lead were identified by geochemical sampling as having low to moderate potential in the roadless area. An estimated 190,000 tons (172,000 t) of subeconomic gold and silver resources are inside the roadless area at the Gold Crown, Gold Webb, and Gold Wedge mines; another 60,000 tons (54,000 t) of subeconomic gold and silver resources are just outside the area at the Tower, Gold Webb, and Gold Wedge mines (table 1). Most of the lode gold and silver deposits are in quartz veins and shear zones. Minor amounts of copper, lead, and zinc occur in some gold deposits. About 2,240 oz (70 kg) of gold, 8,450 oz (260 kg) of silver, and 4,600 lb of lead (2,090 kg) have been produced from the roadless area. In addition, 7,257 oz (226 kg) of gold and 350 oz (11 kg) silver were produced at the Tower mine, near the area.
Rogers, Kim R; Navratilova, Jana; Stefaniak, Aleksandr; Bowers, Lauren; Knepp, Alycia K; Al-Abed, Souhail R; Potter, Phillip; Gitipour, Alireza; Radwan, Islam; Nelson, Clay; Bradham, Karen D
2018-04-01
Given the potential for human exposure to silver nanoparticles from spray disinfectants and dietary supplements, we characterized the silver-containing nanoparticles in 22 commercial products that advertised the use of silver or colloidal silver as the active ingredient. Characterization parameters included: total silver, fractionated silver (particulate and dissolved), primary particle size distribution, hydrodynamic diameter, particle number, and plasmon resonance absorbance. A high degree of variability between claimed and measured values for total silver was observed. Only 7 of the products showed total silver concentrations within 20% of their nominally reported values. In addition, significant variations in the relative percentages of particulate vs. soluble silver were also measured in many of these products reporting to be colloidal. Primary silver particle size distributions by transmission electron microscopy (TEM) showed two populations of particles - smaller particles (<5nm) and larger particles between 20 and 40nm. Hydrodynamic diameter measurements using nanoparticle tracking analysis (NTA) correlated well with TEM analysis for the larger particles. Z-average (Z-Avg) values measured using dynamic light scattering (DLS); however, were typically larger than both NTA or TEM particle diameters. Plasmon resonance absorbance signatures (peak absorbance at around 400nm indicative of metallic silver nanoparticles) were only noted in 4 of the 9 yellow-brown colored suspensions. Although the total silver concentrations were variable among products, ranging from 0.54mg/L to 960mg/L, silver containing nanoparticles were identified in all of the product suspensions by TEM. Published by Elsevier B.V.
Efficient incorporation of silver to improve superconducting fibers
Gleixner, Richard A.; LaCount, Dale F.; Finnemore, Douglas K.
1994-04-26
An improved method for the efficient incorporation of a metal such as silver in a superconducting material includes blending the metal with a high temperature superconductor or precursor powder and consolidating the same into pellets. The pellets are charged directly into a heating assembly where it is melted and heated sufficiently to a uniform temperature prior to fiberization. Droplets of the melted blend fall through a collar into a nozzle where they are subjected to a high velocity gas to break the melted material into ligaments which solidify into improved flexible fibers having the metal homogeneously dis This invention was made with Government support under a contract with the Department of Energy (DOE) and Ames Laboratory, Contract No. SC-91-225, our reference No. CRD-1272. The Government has certain rights in this invention.
Duan, Chao; Meng, Jingru; Wang, Xinqi; Meng, Xin; Sun, Xiaole; Xu, Yongjian; Zhao, Wei; Ni, Yonghao
2018-08-01
A novel cellulose-based antibacterial material, namely silver nanoparticles@ metal-organic frameworks@ carboxymethylated fibers composites (Ag NPs@ HKUST-1@ CFs), was synthesized. The results showed that the metal-organic frameworks (HKUST-1) were uniformly anchored on the fiber's surfaces by virtue of complexation between copper ions in HKUST-1 and carboxyl groups on the carboxymethylated fibers (CFs). The silver nanoparticles (Ag NPs) were immobilized and well-dispersed into the pores and/or onto the surfaces of HKUST-1 via in situ microwave reduction, resulting in the formation of novel Ag NPs@ HKUST-1@ CFs composites. The antibacterial assays showed that the as-prepared composites exhibited a much higher antibacterial activity than Ag NPs@ CFs or HKUST-1@ CFs samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
An extracellular enzyme synthesizes narrow-sized silver nanoparticles in both water and methanol
NASA Astrophysics Data System (ADS)
Rai, Tripti; Panda, Debashis
2015-03-01
Cellulase reduces silver ions in both aqueous and methanolic media yielding stable narrow-sized silver nanoparticles (Ag-NP) at room temperature. The synthesized nanoparticles have been characterized by various spectroscopic, microscopic methods. The redox potentials of tyrosine residues and protein backbone play an instrumental role to reduce the metal ions. The average size of nanoparticles formed in aqueous medium is of 5.04 ± 3.50 nm. Post-synthesis of Ag-NP secondary structure of enzyme is completely lost whereas upon incubation with chemically synthesized Ag-NP a significant gain in secondary structure is observed. Cellulase as a capping ligand stabilizes the silver nanoparticles even in methanol.
Chai, Shi-Hong; Wang, Yating; Qiao, Yinghong; Wang, Pei; Li, Qiang; Xia, Chaofeng; Ju, Man
2018-01-01
Nowadays biological mediated syntheses of metal nanoparticles were utilized for various life caring applications. Our research group utilized Delonix elata leaf aqueous extract for the synthesis of silver nanoparticles. Further the synthesized silver nanoparticles were subjected for various characterization techniques which resulted in spherically agglomerated with biological components entrapped in it and also with average particle size of 36nm were studied and reported. Later the synthesized silver nanoparticles were subjected for wound healing property by size of measured lessions and body weight which results in better wound healing property were studied and discussed. Copyright © 2017. Published by Elsevier B.V.
48 CFR 252.208-7000 - Intent to furnish precious metals as Government-furnished material.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-furnished silver is mandatory when the quantity required is one hundred troy ounces or more. The precious... quantity in whole troy ounces of precious metals required in the performance of this contract (including...
Preparation of nanoporous metal foam from high nitrogen transition metal complexes
Tappan, Bryce C.; Huynh, My Hang V.; Hiskey, Michael A.; Son, Steven F.; Oschwald, David M.; Chavez, David E.; Naud, Darren L.
2006-11-28
Nanoporous metal foams are prepared by ignition of high nitrogen transition metal complexes. The ammonium salts of iron(III) tris[bi(tetrazolato)-amine], cobalt(III) tris(bi(tetrazolato)amine), and high nitrogen compounds of copper and silver were prepared as loose powders, pressed into pellets and wafers, and ignited under an inert atmosphere to form nanoporous metal foam monoliths having very high surface area and very low density.
NASA Technical Reports Server (NTRS)
Chambers, G.
1966-01-01
Metal boot splices hard sheathed instrumentation cables used with high temperature strain gages and thermocouples. Silver brazing the conductors together, hermetically seals the splice. This boot is a highly reliable sealed splice which is equally effective at cryogenic temperatures, high temperatures, nuclear environments, and combinations of the above.
Transparent, conducting films based on metal/dielectric photonic band gaps
NASA Astrophysics Data System (ADS)
Bloemer, Mark J.; Scalora, Michael; D'Aguanno, G.; Bowden, Charles M.; Baglio, Salvatore; Sibilia, Concita; Centini, Marco; Bertolotti, Mario
1999-07-01
A transparent conductor has been developed based on 1D metal/dielectric photonic band gap structures. Laminated metal/dielectric filters containing 100 nm of silver have been fabricated with > 50% transmittance. Applications for transparent, conducting films include antennas embedded in windshields, electrodes on flat panel displays, electromagnetic shielding, and solar window panes.
A Pharmacological and Toxicological Profile of Silver as an Antimicrobial Agent in Medical Devices
Lansdown, Alan B. G.
2010-01-01
Silver is used widely in wound dressings and medical devices as a broad-spectrum antibiotic. Metallic silver and most inorganic silver compounds ionise in moisture, body fluids, and secretions to release biologically active Ag+. The ion is absorbed into the systemic circulation from the diet and drinking water, by inhalation and through intraparenteral administration. Percutaneous absorption of Ag+ through intact or damaged skin is low. Ag+ binds strongly to metallothionein, albumins, and macroglobulins and is metabolised to all tissues other than the brain and the central nervous system. Silver sulphide or silver selenide precipitates, bound lysosomally in soft tissues, are inert and not associated with an irreversible toxic change. Argyria and argyrosis are the principle effects associated with heavy deposition of insoluble silver precipitates in the dermis and cornea/conjunctiva. Whilst these changes may be profoundly disfiguring and persistent, they are not associated with pathological damage in any tissue. The present paper discusses the mechanisms of absorption and metabolism of silver in the human body, presumed mechanisms of argyria and argyrosis, and the elimination of silver-protein complexes in the bile and urine. Minimum blood silver levels consistent with early signs of argyria or argyrosis are not known. Silver allergy does occur but the extent of the problem is not known. Reference values for silver exposure are discussed. PMID:21188244
NASA Astrophysics Data System (ADS)
Jiang, Bin; He, Chunnian; Zhao, Naiqin; Nash, Philip; Shi, Chunsheng; Wang, Zejun
2015-09-01
Ultralight (<10 mg/cm3) cellular materials are desirable for thermal insulation; battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. However, most of these ultralight materials, especially ultralight metal foams, are fabricated using either expensive materials or complicated procedures, which greatly limit their large-scale production and practical applications. Here we report a simple and versatile method to obtain ultralight monolithic metal foams. These materials are fabricated with a low-cost polymeric template and the method is based on the traditional silver mirror reaction and electroless plating. We have produced ultralight monolithic metal foams, such as silver, nickel, cobalt, and copper via this method. The resultant ultralight monolithic metal foams have remarkably low densities down to 7.4 mg/cm3 or 99.9% porosity. The metal foams have a long flat stress-train curve in compression tests and the densification strain ɛD of the Ni/Ag foam with a porosity of 99.8% can reach 82%. The plateau stress σpl was measured and found to be in agreement with the value predicted by the cellular solids theory.
Jiang, Bin; He, Chunnian; Zhao, Naiqin; Nash, Philip; Shi, Chunsheng; Wang, Zejun
2015-09-08
Ultralight (<10 mg/cm3) cellular materials are desirable for thermal insulation; battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. However, most of these ultralight materials, especially ultralight metal foams, are fabricated using either expensive materials or complicated procedures, which greatly limit their large-scale production and practical applications. Here we report a simple and versatile method to obtain ultralight monolithic metal foams. These materials are fabricated with a low-cost polymeric template and the method is based on the traditional silver mirror reaction and electroless plating. We have produced ultralight monolithic metal foams, such as silver, nickel, cobalt, and copper via this method. The resultant ultralight monolithic metal foams have remarkably low densities down to 7.4 mg/cm3 or 99.9% porosity. The metal foams have a long flat stress-train curve in compression tests and the densification strain εD of the Ni/Ag foam with a porosity of 99.8% can reach 82%. The plateau stress σpl was measured and found to be in agreement with the value predicted by the cellular solids theory.
Silver doped catalysts for treatment of exhaust
Park, Paul Worn [Peoria, IL; Boyer, Carrie L [Shiloh, IL
2006-12-26
A method of making an exhaust treatment catalyst includes dispersing a metal-based material in a first solvent to form a first slurry and allowing polymerization of the first slurry to occur. Polymerization of the first slurry may be quenched and the first slurry may be allowed to harden into a solid. This solid may be redistributed in a second solvent to form a second slurry. The second slurry may be loaded with a silver-based material, and a silver-loaded powder may be formed from the second slurry.
Quirós, Jennifer; Gonzalo, Soledad; Jalvo, Blanca; Boltes, Karina; Perdigón-Melón, José Antonio; Rosal, Roberto
2016-09-01
Electrospun cellulose acetate composites containing silver and copper nanoparticles supported in sepiolite and mesoporous silica were prepared and tested as fungistatic membranes against the fungus Aspergillus niger. The nanoparticles were in the 3-50nm range for sepiolite supported materials and limited by the size of mesopores (5-8nm) in the case of mesoporous silica. Sepiolite and silica were well dispersed within the fibers, with larger aggregates in the micrometer range, and allowed a controlled release of metals to create a fungistatic environment. The effect was assessed using digital image analysis to evaluate fungal growth rate and fluorescence readings using a viability stain. The results showed that silver and copper nanomaterials significantly impaired the growth of fungi when the spores were incubated either in direct contact with particles or included in cellulose acetate composite membranes. The fungistatic effect took place on germinating spores before hyphae growth conidiophore formation. After 24h the cultures were separated from fungistatic materials and showed growth impairment only due to the prior exposure. Growth reduction was important for all the particles and membranes with respect to non-exposed controls. The effect of copper and silver loaded materials was not significantly different from each other with average reductions around 70% for bare particles and 50% for membranes. Copper on sepiolite was particularly efficient with a decrease of metabolic activity of up to 80% with respect to controls. Copper materials induced rapid maturation and conidiation with fungi splitting in sets of subcolonies. Metal-loaded nanomaterials acted as reservoirs for the controlled release of metals. The amount of silver or copper released daily by composite membranes represented roughly 1% of their total load of metals. Supported nanomaterials encapsulated in nanofibers allow formulating active membranes with high antifungal performance at the same time minimizing the risk of nanoparticle release into the environment. Copyright © 2015 Elsevier B.V. All rights reserved.
Epitaxial-Growth-Induced Junction Welding of Silver Nanowire Network Electrodes.
Kang, Hyungseok; Song, Sol-Ji; Sul, Young Eun; An, Byeong-Seon; Yin, Zhenxing; Choi, Yongsuk; Pu, Lyongsun; Yang, Cheol-Woong; Kim, Youn Sang; Cho, Sung Min; Kim, Jung-Gu; Cho, Jeong Ho
2018-05-22
In this study, we developed a roll-to-roll Ag electroplating process for metallic nanowire electrodes using a galvanostatic mode. Electroplating is a low-cost and facile method for deposition of metal onto a target surface with precise control of both the composition and the thickness. Metallic nanowire networks [silver nanowires (AgNWs) and copper nanowires (CuNWs)] coated onto a polyethylene terephthalate (PET) film were immersed directly in an electroplating bath containing AgNO 3 . Solvated silver ions (Ag + ions) were deposited onto the nanowire surface through application of a constant current via an external circuit between the nanowire networks (cathode) and a Ag plate (anode). The amount of electroplated Ag was systematically controlled by changing both the applied current density and the electroplating time, which enabled precise control of the sheet resistance and optical transmittance of the metallic nanowire networks. The optimized Ag-electroplated AgNW (Ag-AgNW) films exhibited a sheet resistance of ∼19 Ω/sq at an optical transmittance of 90% (550 nm). A transmission electron microscopy study confirmed that Ag grew epitaxially on the AgNW surface, but a polycrystalline Ag structure was formed on the CuNW surface. The Ag-electroplated metallic nanowire electrodes were successfully applied to various electronic devices such as organic light-emitting diodes, triboelectric nanogenerators, and a resistive touch panel. The proposed roll-to-roll Ag electroplating process provides a simple, low-cost, and scalable method for the fabrication of enhanced transparent conductive electrode materials for next-generation electronic devices.
Paulkumar, Kanniah; Gnanajobitha, Gnanadhas; Vanaja, Mahendran; Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Pandian, Kannaiyan; Annadurai, Gurusamy
2014-01-01
Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray analysis (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7–50 nm and 9–30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology. PMID:24558336
NASA Astrophysics Data System (ADS)
Ho, N. A. D.; Babel, S.
2017-06-01
Silver has valuable features and limited availability, and thus recovery from wastewater or aqueous solutions plays an important role in environmental protection and economic profits. In this study, silver recovery along with power generation and COD removal were investigated in a bio-electrochemical system (BES). The BES comprised of an anode and a cathode chamber which were separated by a cation exchange membrane to prevent the cross-over of electrolytes. During the biological oxidation of acetate as an electron donor in the anode chamber, the reduction of ammonia chelated silver ions as electron acceptors in the cathode side occurred spontaneously. Results showed that a silver recovery of 99% and COD removal efficiency of 60% were achieved at the initial silver concentration of 1,000 mg/L after 48 hours of operation. The power generation improved 4.66%, from 3,618 to 3,795 mW/m3, by adding NaNO3 of 850 mg/L to the catholyte containing 2,000 mg/L of silver ions. Deposits on the cathode surface were characterized using scanning electron microscope (SEM) and energy dispersive X-ray (EDX). Metallic silver with dendritic structures and high purity were detected. This study demonstrated that BES technology can be employed to recover silver from complex chelating solution, produce electricity, and treat wastewater.
Jo, Yun Kee; Seo, Jeong Hyun; Choi, Bong-Hyuk; Kim, Bum Jin; Shin, Hwa Hui; Hwang, Byeong Hee; Cha, Hyung Joon
2014-11-26
During implant surgeries, antibacterial agents are needed to prevent bacterial infections, which can cause the formation of biofilms between implanted materials and tissue. Mussel adhesive proteins (MAPs) derived from marine mussels are bioadhesives that show strong adhesion and coating ability on various surfaces even in wet environment. Here, we proposed a novel surface-independent antibacterial coating strategy based on the fusion of MAP to a silver-binding peptide, which can synthesize silver nanoparticles having broad antibacterial activity. This sticky recombinant fusion protein enabled the efficient coating on target surface and the easy generation of silver nanoparticles on the coated-surface under mild condition. The biosynthesized silver nanoparticles showed excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria and also revealed good cytocompatibility with mammalian cells. In this coating strategy, MAP-silver binding peptide fusion proteins provide hybrid environment incorporating inorganic silver nanoparticle and simultaneously mediate the interaction of silver nanoparticle with surroundings. Moreover, the silver nanoparticles were fully synthesized on various surfaces including metal, plastic, and glass by a simple, surface-independent coating manner, and they were also successfully synthesized on a nanofiber surface fabricated by electrospinning of the fusion protein. Thus, this facile surface-independent silver nanoparticle-generating antibacterial coating has great potential to be used for the prevention of bacterial infection in diverse biomedical fields.
Evaluation of Osseous Integration of PVD-Silver-Coated Hip Prostheses in a Canine Model
Hauschild, Gregor; Hardes, Jendrik; Gosheger, Georg; Blaske, Franziska; Wehe, Christoph; Karst, Uwe; Höll, Steffen
2015-01-01
Infection associated with biomaterials used for orthopedic prostheses remains a serious complication in orthopedics, especially tumor surgery. Silver-coating of orthopedic (mega)prostheses proved its efficiency in reducing infections but has been limited to surface areas exposed to soft tissues due to concerns of silver inhibiting osseous integration of cementless stems. To close this gap in the bactericidal capacity of silver-coated orthopedic prostheses extension of the silver-coating on surface areas intended for osseous integration seems to be inevitable. Our study reports about a PVD- (physical-vapor-deposition-) silver-coated cementless stem in a canine model for the first time and showed osseous integration of a silver-coated titanium surface in vivo. Radiological, histological, and biomechanical analysis revealed a stable osseous integration of four of nine stems implanted. Silver trace elemental concentrations in serum did not exceed 1.82 parts per billion (ppb) and can be considered as nontoxic. Changes in liver and kidney functions associated with the silver-coating could be excluded by blood chemistry analysis. This was in accordance with very limited metal displacement from coated surfaces observed by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) 12 months after implantation. In conclusion our results represent a step towards complete bactericidal silver-coating of orthopedic prostheses. PMID:25695057
Photocatalytic silver enhancement reaction for gravimetric immunosensors.
Seo, Hyejung; Joo, Jinmyoung; Ko, Wooree; Jung, Namchul; Jeon, Sangmin
2010-12-17
A novel microgravimetric immunosensor has been developed using TiO(2) nanoparticle-modified immunoassay and silver enhancement reaction. An antibody-conjugated TiO(2) nanoparticle is bound to the AFP antigen immobilized on a quartz resonator. When the nanoparticles are exposed to UV light in a silver nitrate solution, the photocatalytic reduction of silver ions results in the formation of metallic silver onto the nanoparticles and induces a decrease in the resonance frequency. The frequency change by this photocatalytic reduction reaction is three orders of magnitude larger than the change by antigen binding alone. The efficiency of the photocatalytic reaction has been found to increase with the fraction of anatase crystallites in the nanoparticles and the concentration of the AgNO(3) solution. The results highlight the potential of the photocatalytic nanoparticles for the detection of low concentrations of target molecules using gravimetric sensors.
NASA Astrophysics Data System (ADS)
Egorova, E. M.
2011-04-01
This paper presents several examples of the biological effects of small-sized silver nanoparticles (10.5±3.5nm) observed in experiments on bacteria, slim mold, unicellular alga and plant seeds. The nanoparticles were prepared by the biochemical synthesis, based on the reduction of metal ions in reverse vicelles by biological reductants - natural plant pigments (flavonoids). It is found that, except for the plant seeds, silver nanoparticles (SNP) act as a strong toxic agent, both in water solution and as part of liquid-phase material. It is shown also that the biological action of silver nanoparticles can not be reduced to the toxic action of silver ions in equivalent concentrations or to that of the surfactant (the SNP stabilizer) present in the SNP water solution. Possible SNP applications are suggested.
Gomathi Devi, LakshmipathiNaik; Nagaraj, Basavalingaiah
2014-01-01
The antibacterial activity of silver deposited TiO2 (Ag-TiO2 ) against Gram negative Escherichia coli bacteria was investigated by varying the Ag metal content from 0.10 to 0.50% on the surface of TiO2 . Ag depositions by the photoreduction method were found to be stable. Surface silver metallization was confirmed by EDAX and XPS studies. Photoluminescence studies show that the charge carrier recombination is less for 0.1% Ag-TiO2 and this catalyst shows superior bactericidal activity under solar light irradiation compared to Sol gel TiO2 (SG-TiO2 ) due to the surface plasmon effect. The energy levels of deposited Ag are dependent on the Ag content and it varies from -4.64 eV to -1.30 eV with respect to the vacuum energy level based on atomic silver to bulk silver deposits. The ability of electron transfer from Ag deposit to O2 depends on the position of the energy levels. The 0.25% and 0.50% Ag depositions showed detrimental effect on bactericidal activity due to the mismatch of energy levels. The effect of the EROS (External generation of the Reactive Oxygen Species by 0.1% Ag-TiO2 ) and IROS (Interior generation of Reactive Oxygen Species within the bacteria) on the bactericidal inactivation is discussed in detail. © 2014 The American Society of Photobiology.
Method of bonding metals to ceramics
Maroni, V.A.
1991-04-23
A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof is disclosed. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, Au and alloys thereof. 3 figures.
Norton, Rhy; Austin, Cindy; Mitchell, Amber; Zank, Sara; Durham, Paul
2015-01-01
Increased utilization of inorganic silver as an adjunctive to many medical devices has raised concerns of emergent silver resistance in clinical bacteria. Although the molecular basis for silver resistance has been previously characterized, to date, significant phenotypic expression of these genes in clinical settings is yet to be observed. Here, we identified the first strains of clinical bacteria expressing silver resistance at a level that could significantly impact wound care and the use of silver-based dressings. Screening of 859 clinical isolates confirmed 31 harbored at least 1 silver resistance gene. Despite the presence of these genes, MIC testing revealed most of the bacteria displayed little or no increase in resistance to ionic silver (200 to 300 μM Ag+). However, 2 isolates (Klebsiella pneumonia and Enterobacter cloacae) were capable of robust growth at exceedingly high silver concentrations, with MIC values reaching 5,500 μM Ag+. DNA sequencing of these two strains revealed the presence of genes homologous to known genetic determinants of heavy metal resistance. Darkening of the bacteria's pigment was observed after exposure to high silver concentrations. Scanning electron microscopy images showed the presence of silver nanoparticles embedded in the extracellular polymeric substance of both isolates. This finding suggested that the isolates may neutralize ionic silver via reduction to elemental silver. Antimicrobial testing revealed both organisms to be completely resistant to many commercially available silver-impregnated burn and wound dressings. Taken together, these findings provide the first evidence of clinical bacteria capable of expressing silver resistance at levels that could significantly impact wound management. PMID:26014954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agasti, Nityananda, E-mail: nnagasti@gmail.com; Singh, Vinay K.; Kaushik, N.K.
Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO{sub 3} with NaBH{sub 4} in aqueous solution under atmospheric air in themore » presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility.« less
Nagy, Amber; Harrison, Alistair; Sabbani, Supriya; Munson, Robert S; Dutta, Prabir K; Waldman, W James
2011-01-01
Background The focus of this study is on the antibacterial properties of silver nanoparticles embedded within a zeolite membrane (AgNP-ZM). Methods and Results These membranes were effective in killing Escherichia coli and were bacteriostatic against methicillin-resistant Staphylococcus aureus. E. coli suspended in Luria Bertani (LB) broth and isolated from physical contact with the membrane were also killed. Elemental analysis indicated slow release of Ag+ from the AgNP-ZM into the LB broth. The E. coli killing efficiency of AgNP-ZM was found to decrease with repeated use, and this was correlated with decreased release of silver ions with each use of the support. Gene expression microarrays revealed upregulation of several antioxidant genes as well as genes coding for metal transport, metal reduction, and ATPase pumps in response to silver ions released from AgNP-ZM. Gene expression of iron transporters was reduced, and increased expression of ferrochelatase was observed. In addition, upregulation of multiple antibiotic resistance genes was demonstrated. The expression levels of multicopper oxidase, glutaredoxin, and thioredoxin decreased with each support use, reflecting the lower amounts of Ag+ released from the membrane. The antibacterial mechanism of AgNP-ZM is proposed to be related to the exhaustion of antioxidant capacity. Conclusion These results indicate that AgNP-ZM provide a novel matrix for gradual release of Ag+. PMID:21931480
Tyrk, Mateusz A; Zolotovskaya, Svetlana A; Gillespie, W Allan; Abdolvand, Amin
2015-09-07
Radially and azimuthally polarized picosecond (~10 ps) pulsed laser irradiation at 532 nm wavelength led to the permanent reshaping of spherical silver nanoparticles (~30 - 40 nm in diameter) embedded in a thin layer of soda-lime glass. The observed peculiar shape modifications consist of a number of different orientations of nano-ellipsoids in the cross-section of each written line by laser. A Second Harmonic Generation cross-sectional scan method from silver nanoparticles in transmission geometry was adopted for characterization of the samples after laser modification. The presented approach may lead to sophisticated marking of information in metal-glass nanocomposites.
NASA Technical Reports Server (NTRS)
Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.
2005-01-01
We report the demonstration of a terahertz quantum-cascade laser that operates up to 164 K in pulsed mode and 117 K in continuous-wave mod e at approximately 3.0 THz. The active region was based on a resonant -phonon depopulation scheme and a metal-metal waveguide was used for modal confinement. Copper to copper thermocompression wafer bonding w as used to fabricate the waveguide, which displayed improved thermal properties compared to a previous indium-gold bonding method.
Rapid detection of salmonella using SERS with silver nano-substrate
NASA Astrophysics Data System (ADS)
Sundaram, J.; Park, B.; Hinton, A., Jr.; Windham, W. R.; Yoon, S. C.; Lawrence, K. C.
2011-06-01
Surface Enhanced Raman Scattering (SERS) can detect the pathogen in rapid and accurate. In SERS weak Raman scattering signals are enhanced by many orders of magnitude. In this study silver metal with biopolymer was used. Silver encapsulated biopolymer polyvinyl alcohol nano-colloid was prepared and deposited on stainless steel plate. This was used as metal substrate for SERS. Salmonella typhimurium a common food pathogen was selected for this study. Salmonella typhimurium bacteria cells were prepared in different concentrations in cfu/mL. Small amount of these cells were loaded on the metal substrate individually, scanned and spectra were recorded using confocal Raman microscope. The cells were exposed to laser diode at 785 nm excitation and object 50x was used to focus the laser light on the sample. Raman shifts were obtained from 400 to 2400 cm-1. Multivariate data analysis was carried to predict the concentration of unknown sample using its spectra. Concentration prediction gave an R2 of 0.93 and standard error of prediction of 0.21. The results showed that it could be possible to find out the Salmonella cells present in a low concentration in food samples using SERS.
NASA Astrophysics Data System (ADS)
Nazeruddin, G. M.; Prasad, N. R.; Prasad, S. R.; Garadkar, K. M.; Nayak, Arpan Kumar
2014-07-01
It is well known that on treating the metallic salt solution with some plant extracts, a rapid reduction occurs leading to the formation of highly stable metal nanoparticles. Extracellular synthesis of metal nanoparticles using extracts of plants like Azadirachta indica (Neem), and Zingiber officinale (Ginger) has been reported to be successfully carried out. In this study we have developed a novel method to synthesize silver nanoparticles by mixing silver salt solution with leaf extract of Adhathoda vasica (Adulsa) without using any surfactant or external energy. By this method physiologically stable, bio-compatible Ag nanoparticles were formed which could be used for a variety of applications such as targeted drug delivery which ensures enhanced therapeutic efficacy and minimal side effects. With this method rapid synthesis of nanoparticles was observed to occur; i.e. reaction time was 1-2 h as compared to 2-4 days required by microorganisms. These nanoparticles were analyzed by various characterization techniques to reveal their morphology, chemical composition, and antimicrobial activity. TEM image of these NPs indicated the formation of spherical, non-uniform, poly-dispersed nanoparticles. A detailed study of anti-microbial activity of nanoparticles was carried out.
Green Synthesis of Metal Nanoparticles Using Sprout Plants: Pros and Cons.
Park, Sungmook; Sung, Hwa Kyung; Kim, Younghun
2016-05-01
A critical need in the field of nanotechnology is the development of a sustainable and eco-friendly process for the synthesis of metallic nanoparticles (NPs). To accomplish this, the use of live plants becomes essential for the production of low-cost, energy-efficient, and nontoxic metallic NPs. In this study, we tried in-vivo synthesis (green synthesis) of silver and gold NPs using seeds of bean, radish, and alfalfa, which were grown hydroponically in aqueous solutions containing metal salts, 20-25 nm sized NPs were found on the inner surfaces of the plants' vascular cylinders and cortex. The amounts of NPs taken up by the intracellular systems were clearly dependent on the exposure time and concentration of the metal salts. Although these results regarding the green synthesis of NPs on the growth of plant species are somewhat interesting and effective, metal salts adversely affected the root growth of the plants. Silver ions in the growth media showed a more negative impact on root growth compared to gold ions. Therefore, even though biosynthesis of metal NPs using live plants is considered as green synthesis, we have to consider their phytotoxicity on plant growth.
40 CFR 471.45 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... Cyanide 0.179 0.074 Silver 0.253 0.105 (p) Alkaline cleaning spent baths. Subpart D—PSNS Pollutant or...-pounds) of precious metals alkaline cleaned Cadmium 0.021 0.009 Copper 0.114 0.060 Cyanide 0.018 0.007 Silver 0.025 0.010 (q) Alkaline cleaning rinse. Subpart D—PSNS Pollutant or pollutant property Maximum...
40 CFR 471.45 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... Cyanide 0.179 0.074 Silver 0.253 0.105 (p) Alkaline cleaning spent baths. Subpart D—PSNS Pollutant or...-pounds) of precious metals alkaline cleaned Cadmium 0.021 0.009 Copper 0.114 0.060 Cyanide 0.018 0.007 Silver 0.025 0.010 (q) Alkaline cleaning rinse. Subpart D—PSNS Pollutant or pollutant property Maximum...
40 CFR 471.45 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... Cyanide 0.179 0.074 Silver 0.253 0.105 (p) Alkaline cleaning spent baths. Subpart D—PSNS Pollutant or...-pounds) of precious metals alkaline cleaned Cadmium 0.021 0.009 Copper 0.114 0.060 Cyanide 0.018 0.007 Silver 0.025 0.010 (q) Alkaline cleaning rinse. Subpart D—PSNS Pollutant or pollutant property Maximum...
40 CFR 471.45 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... Cyanide 0.179 0.074 Silver 0.253 0.105 (p) Alkaline cleaning spent baths. Subpart D—PSNS Pollutant or...-pounds) of precious metals alkaline cleaned Cadmium 0.021 0.009 Copper 0.114 0.060 Cyanide 0.018 0.007 Silver 0.025 0.010 (q) Alkaline cleaning rinse. Subpart D—PSNS Pollutant or pollutant property Maximum...
ERIC Educational Resources Information Center
Fernández, Alberto; López-Torres, Margarita; Fernández, Jesús J.; Vázquez-García, Digna; Marcos, Ismael
2017-01-01
A laboratory experiment for students in advanced inorganic chemistry is described. In this experiment, students prepare two metal complexes with a potentially bidentate-carbene ligand. The complexes are synthesized by reaction of a bisimidazolium salt with silver(I) oxide or palladium(II) acetate. Silver and palladium complexes are binuclear and…
NASA Astrophysics Data System (ADS)
Purusottam Reddy, B.; Mallikarjuna, K.; Narasimha, G.; Park, Si-Hyun
2017-08-01
Bio-based green nanotechnology aims to characterize compounds from natural sources and establish efficient routes for the preparation of nontoxic materials that have applicability in biodegradable and biocompatible devices. The present study has investigated the use of Plectranthus amboinicus leaf extracts as reducing and capping materials for the green fabrication of silver, gold, and silver-gold (Ag, Au, and Ag/Au) metal and bimetallic nanoparticles. The catalytic behavior of these phyto-inspired nanoparticles was then assessed in terms of the reduction of 4-nitrophenol. Transmission electron microscopy was used to investigate the shape, morphology, distribution, and diameter of the phytomolecules capped with Ag, Au, and Ag/Au metal nanoparticles. The nature of the crystallinity of the nanoparticles was studied by small area electron diffraction (SAED) and x-ray diffraction analysis (XRD), and Fourier transform infrared (FTIR) spectroscopy was used to study the reduction and stabilizing involvement of the phyto-organic moieties in aqueous medium. The phyto-inspired Ag and Ag/Au nanoparticles demonstrated good antibacterial properties toward Gram-negative Escherichia coli and Pseudomonas spp. and Gram-positive Bacillus spp. and Staphylococcus spp. microorganisms using the well diffusion method. Notably, the Ag nanoparticles were shown to possess effective antibacterial properties.
Narayanan, Kannan Badri; Park, Hyun Ho; Sakthivel, Natarajan
2013-12-01
Green synthesis of extracellular mycogenic silver nanoparticles using the fungus, Cylindrocladium floridanum is reported. The synthesized mycogenic silver nanoparticles were characterized using UV-Vis absorption spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) techniques. The nanoparticles exhibit fcc structure with Bragg's reflections of (111), (200), (220) and (311) was evidenced by XRD pattern, high-resolution TEM lattice fringes and circular rings in selected-area electron diffraction (SAED) pattern. The morphology of nanoparticles was roughly spherical in shape with an average size of ca. 25 nm. From FTIR spectrum, it was found that the biomolecules with amide I and II band were involved in the stabilization of nanoparticles. These mycogenic silver nanoparticles exhibited the homogeneous catalytic potential in the reduction of pollutant, 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using sodium borohydride, which followed a pseudo-first-order kinetic model. Thus, the synthesis of metal nanoparticles using sustainable microbial approach opens up possibilities in the usage of mycogenic metal nanoparticles as catalysts in various chemical reactions. Copyright © 2013 Elsevier B.V. All rights reserved.
Solairaj, Dhanasekaran; Rameshthangam, Palanivel; Arunachalam, Gnanapragasam
2017-12-01
Chitin is a natural biopolymer widely used in biomedical and environmental applications due to its distinctive physical, chemical and mechanical properties. Although the anticancer property of chitin nanoforms and chitin derivatives against various cancers were studied earlier, there is no report in the chitin nanostructure incorporated metal nanocomposite. The present study was aimed to investigate the cytotoxicity of chitin incorporated silver and copper nanocomposite against human breast cancer (MCF-7) cells. Cytotoxicity of chitin nanoparticles (CNP), silver nanoparticles (AgNP), copper nanoparticles (CuNP), chitin/silver nanocomposite (CNP/AgNP) and chitin/copper nanocomposite (CNP/CuNP) was evaluated. Among all the above, CNP/AgNP has shown a lower of 31 mg as inhibitory concentration (IC 50 ) value. Our study further showed the increased generation of reactive oxygen species with decreased activity of antioxidant enzymes and damage in the membrane integrity, thus confirms the cellular cytotoxic action of CNP/AgNP. In conclusion, the present study validates that, incorporating chitin nanoparticles with metallic nanostructure could be an effective and promising therapeutic agent against breast cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
Optical properties of embedded metal nanoparticles at low temperatures
NASA Astrophysics Data System (ADS)
Heilmann, A.; Kreibig, U.
2000-06-01
Metal nanoparticles (gold, silver, copper) that are embedded in an insulating organic host material exhibit optical plasma resonance absorption in the visible and near-infrared region. The spectral position, the half width and the intensity of the plasma resonance absorption all depend on the particle size, the particle shape, and the optical behavior of the cluster and the host material. The optical extinction of various gold, silver or copper particle assemblies embedded in plasma polymer or gelatin was measured at 4.2 K and 1.2 K as well as at room temperature. The packing density of several samples was high enough to resolve a reversible increase of the plasma resonance absorption intensity towards lower temperatures. Additionally, at larger silver particles D_m > 50 nm a significant blue shift of the plasma resonance absorption was measured. Particle size and shape distribution were determined by transmission electron microscopy (TEM). For the first time, simultaneous measurements of the electrical and optical properties at one and the same particle assembly were performed at low temperatures. Contrary to the increasing optical extinction, the d.c. conductivity decreased to two orders of magnitude. At silver particles embedded in a plasma polymer made from thiophene a significant photocurrent was measured.
Directed Self-Assembly of Diblock Copolymer Thin Films on Prepatterned Metal Nanoarrays.
Chang, Tongxin; Huang, Haiying; He, Tianbai
2016-01-01
The sequential layer by layer self-assembly of block copolymer (BCP) nanopatterns is an effective approach to construct 3D nanostructures. Here large-scale highly ordered metal nano-arrays prepared from solvent annealed thin films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer are used to direct the assembly of the same BCP. The influence of initial loading concentration of metal precursor, the type of metal nanoparticle (gold, platinum, and silver), and the nanoparticle-substrate interaction on the directed assembly behavior of the upper BCP layer have been focused. It is found that the upper BCP film can be completely directed by the gold nanoarray with P2VP domain exclusively located between two adjacent gold nanowires or nanodots, which behaves the same way as on the platinum nanoarray. While the silver nanoarray can be destroyed during the upper BCP self-assembly with the silver nanoparticles assembled into the P2VP domain. Based on the discussions of the surface energy of nanoparticles and the interplay between nanoparticle-substrate interaction and nanoparticle-polymer interaction, it is concluded that the effect of immobilization of nanoparticles on the substrate, together with entropy effect to minimize the energetically unfavorable chain stretching contributes to the most effective alignment between each layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sergiienko, Sergii; Moor, Kamila; Gudun, Kristina; Yelemessova, Zarina; Bukasov, Rostislav
2017-02-08
We used a combination of Raman microscopy, AFM and TEM to quantify the influence of dimerization on the surface enhanced Raman spectroscopy (SERS) signal for gold and silver nanoparticles (NPs) modified with Raman reporters and situated on gold, silver, and aluminum films and a silicon wafer. The overall increases in the mean SERS enhancement factor (EF) upon dimerization (up by 43% on average) and trimerisation (up by 96% on average) of AuNPs and AgNPs on the studied metal films are within a factor of two, which is moderate when compared to most theoretical models. However, the maximum ratio of EFs for some dimers to the mean EF of monomers can be as high as 5.5 for AgNPs on a gold substrate. In contrast, for dimerization and trimerization of gold and silver NPs on silicon, the mean EF increases by 1-2 orders of magnitude relative to the mean EF of single NPs. Therefore, hot spots in the interparticle gap between gold nanoparticles rather than hot spots between Au nanoparticles and the substrate dominate SERS enhancement for dimers and trimers on a silicon substrate. However, Raman labeled noble metal nanoparticles on plasmonic metal films generate on average SERS enhancement of the same order of magnitude for both types of hot spot zones (e.g. NP/NP and NP/metal film).
Silver(I) ion-selective membrane based on Schiff base-p-tert-butylcalix[4]arene.
Mahajan, R K; Kumar, M; Sharma, V; Kaur, I
2001-04-01
A PVC membrane electrode for silver(I) ion based on Schiff base-p-tert-butylcalix[4]arene is reported. The electrode works well over a wide range of concentration (1.0 x 10(-5)-1.0 x 10(-1) mol dm-3) with a Nernstian slope of 59.7 mV per decade. The electrode shows a fast response time of 20 s and operates in the pH range 1.0-5.6. The sensor can be used for more than 6 months without any divergence in the potential. The selectivity of the electrode was studied and it was found that the electrode exhibits good selectivity for silver ion over some alkali, alkaline earth and transition metal ions. The silver ion-selective electrode was used as an indicator electrode for the potentiometric titration of silver ion in solution using a standard solution of sodium chloride; a sharp potential change occurs at the end-point. The applicability of the sensor to silver(I) ion measurement in water samples spiked with silver nitrate is illustrated.
A Combined Theoretical and Experimental Study for Silver Electroplating
Liu, Anmin; Ren, Xuefeng; An, Maozhong; Zhang, Jinqiu; Yang, Peixia; Wang, Bo; Zhu, Yongming; Wang, Chong
2014-01-01
A novel method combined theoretical and experimental study for environmental friendly silver electroplating was introduced. Quantum chemical calculations and molecular dynamic (MD) simulations were employed for predicting the behaviour and function of the complexing agents. Electronic properties, orbital information, and single point energies of the 5,5-dimethylhydantoin (DMH), nicotinic acid (NA), as well as their silver(I)-complexes were provided by quantum chemical calculations based on density functional theory (DFT). Adsorption behaviors of the agents on copper and silver surfaces were investigated using MD simulations. Basing on the data of quantum chemical calculations and MD simulations, we believed that DMH and NA could be the promising complexing agents for silver electroplating. The experimental results, including of electrochemical measurement and silver electroplating, further confirmed the above prediction. This efficient and versatile method thus opens a new window to study or design complexing agents for generalized metal electroplating and will vigorously promote the level of this research region. PMID:24452389
TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry.
Verleysen, E; Van Doren, E; Waegeneers, N; De Temmerman, P-J; Abi Daoud Francisco, M; Mast, J
2015-04-08
Metallic silver is an EU approved food additive referred to as E174. It is generally assumed that silver is only present in bulk form in the food chain. This work demonstrates that a simple treatment with water of "silver pearls", meant for decoration of pastry, results in the release of a subfraction of silver nanoparticles. The number-based size and shape distributions of the single, aggregated, and/or agglomerated particles released from the silver pearls were determined by combining conventional bright-field TEM imaging with semiautomatic particle detection and analysis. In addition, the crystal structure of the particles was studied by electron diffraction and chemical information was obtained by combining HAADF-STEM imaging with EDX spectroscopy and mapping. The TEM results were confirmed by SP-ICP-MS. The representative Ag test nanomaterial NM-300 K was used as a positive control to determine the uncertainty on the measurement of the size and shape of the particles.
Steinberg, Spencer; Hodge, Vernon; Schumacher, Brian; Sovocool, Wayne
2017-03-01
Amendment of a carbon paste electrode consisting of graphite and Nujol®, with a variety of organic and inorganic materials, allows direct adsorption of silver nanoparticles (AgNPs) from aqueous solution in either open or close circuit modes. The adsorbed AgNPs are detected by stripping voltammetry. Detection limits of less than 1 ppb Ag are achievable with a rotating disk system. More than one silver peak was apparent in many of the stripping voltammograms. The appearance of multiple peaks could be due to different species of silver formed upon stripping or variation in the state of aggregation or size of nanoparticles. With most of these packing materials, dissolved Ag + was also extracted from aqueous solution, but, with a packing material made with Fe(II,III) oxide nanoparticles, only AgNPs were extracted. Therefore, it is the best candidate for determination of metallic AgNPs in aqueous environmental samples without interference from Ag + .
Size dependent studies of metal nanoparticles with bio-fluorophores
NASA Astrophysics Data System (ADS)
Patil, Ajeetkumar; Ballary, Steffy; George, Sajan D.; Chidangil, Santhosh
2017-06-01
Interaction of noble metal nanoparticles (NPs) with fluorophores has been an important research area in the field of material science and biomedical field. In the proximity of a metal nanoparticle, there is a quenching or enhancement in the intrinsic fluorescence of the fluorophore . The conditional quenching of the fluorescence can be used for negative sensing whereas enhancement in the fluorescence can be used to gain greater sensitivity and high signal to noise ratio in the molecular sensing/imaging. The current work deals with the systematic studies to understand the fluorescence quenching for few bio-fluorophores (NADH and FAD) when interacted with different sized silver nano-particles of (10nm, 40nm and 100nm). Home assembled Laser Induced Fluorescence (LIF) set-up was used to study the fluorescence quenching of NADH and FAD for different sized silver nanoparticles.
Effects of surface tension and viscosity on gold and silver sputtered onto liquid substrates
NASA Astrophysics Data System (ADS)
De Luna, Mark M.; Gupta, Malancha
2018-05-01
In this paper, we study DC magnetron sputtering of gold and silver onto liquid substrates of varying viscosities and surface tensions. We were able to separate the effects of viscosity from surface tension by depositing the metals onto silicone oils with a range of viscosities. The effects of surface tension were studied by depositing the metals onto squalene, poly(ethylene glycol), and glycerol. It was found that dispersed nanoparticles were formed on liquids with low surface tension and low viscosity whereas dense films were formed on liquids with low surface tension and high viscosity. Nanoparticles were formed on both the liquid surface and within the bulk liquid for high surface tension liquids. Our results can be used to tailor the metal and liquid interaction to fabricate particles and films for various applications in optics, electronics, and catalysis.
Dealloying of gold–copper alloy nanowires: From hillocks to ring-shaped nanopores
Chauvin, Adrien; Delacôte, Cyril; Boujtita, Mohammed; Angleraud, Benoit; Ding, Junjun; Choi, Chang-Hwan; Tessier, Pierre-Yves
2016-01-01
Summary We report on a novel fabrication approach of metal nanowires with complex surface. Taking advantage of nodular growth triggered by the presence of surface defects created intentionally on the substrate as well as the high tilt angle between the magnetron source axis and the normal to the substrate, metal nanowires containing hillocks emerging out of the surface can be created. The approach is demonstrated for several metals and alloys including gold, copper, silver, gold–copper and gold–silver. We demonstrate that applying an electrochemical dealloying process to the gold–copper alloy nanowire arrays allows for transforming the hillocks into ring-like shaped nanopores. The resulting porous gold nanowires exhibit a very high roughness and high specific surface making of them a promising candidate for the development of SERS-based sensors. PMID:27826510
Synthesis and characterization of silver nanoparticle composite with poly(p-Br-phenylsilane).
Kim, Myoung-Hee; Lee, Jun; Mo, Soo-Yong; Woo, Hee-Gweon; Yang, Kap Seung; Kim, Bo-Hye; Lee, Byeong-Gweon; Sohn, Honglae
2012-05-01
The one-pot synthesis and characterization of silver nanoparticle-poly(p-Br-phenylsilane) composites have been carried out. The conversion of silver(+1) salt to stable silver(0) nanoparticles is promoted by poly(p-Br-phenylsilane), Br-PPS possessing both possible reactive Si-H bonds in the polymer backbone and C-Br bonds in the substituents. The composites were characterized using XRD, TEM, FE-SEM, and solid-state UV-vis analytical techniques. TEM and FE-SEM data show the formation of the composites where large number of silver nanoparticles (less than 30 nm of size) are well dispersed throughout the Br-PPS matrix. XRD patterns are consistent with that for fcc-typed silver. The elemental analysis for Br atom and the polymer solubility confirm that the cleavage of C-Br bond and the Si-Br dative bonding were not occurred appreciably at ambient temperature. Nonetheless, TGA data suggest that some sort of cross-linking was occurred at high temperature. The size and processability of such nanoparticles depend on the ratio of metal to Br-PPS. In the absence of Br-PPS, most of the silver particles undergo macroscopic aggregation, which indicates that the polysilane is necessary for stabilizing the silver nanoparticles.
Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective
Behra, Renata; Sigg, Laura; Clift, Martin J. D.; Herzog, Fabian; Minghetti, Matteo; Johnston, Blair; Petri-Fink, Alke; Rothen-Rutishauser, Barbara
2013-01-01
Owing to their antimicrobial properties, silver nanoparticles (NPs) are the most commonly used engineered nanomaterial for use in a wide array of consumer and medical applications. Many discussions are currently ongoing as to whether or not exposure of silver NPs to the ecosystem (i.e. plants and animals) may be conceived as harmful or not. Metallic silver, if released into the environment, can undergo chemical and biochemical conversion which strongly influence its availability towards any biological system. During this process, in the presence of moisture, silver can be oxidized resulting in the release of silver ions. To date, it is still debatable as to whether any biological impact of nanosized silver is relative to either its size, or to its ionic constitution. The aim of this review therefore is to provide a comprehensive, interdisciplinary overview—for biologists, chemists, toxicologists as well as physicists—regarding the production of silver NPs, its (as well as in their ionic form) chemical and biochemical behaviours towards/within a multitude of relative and realistic biological environments and also how such interactions may be correlated across a plethora of different biological organisms. PMID:23883950
Zhang, Yiman; Kirshenbaum, Kevin C.; Marschilok, Amy C.; ...
2017-05-11
The formation of conductive metallic silver upon electrochemical reduction and lithiation of Ag 7Fe 3(P 2O 7) 4 is investigated. Alternating current impedance spectroscopy measurements show a 34% decrease in charge transfer resistance upon one electron equivalent (ee) of reduction, which is coincident with the formation of a Ag metal conductive network evidenced by both ex situ and operando X-ray diffraction. Quantitative assessment of Ag metal formation derived from operando XRD shows that only Ag + ions are reduced during the first 3ee, followed by simultaneous reduction of Ag + and Fe 3+ reduction for the next 5ee (3ee tomore » 8ee), culminating in reduction of the remaining Ag +. Scanning electron microscopy images show smaller Ag metal crystallite size and shorter nearest neighbor distance between and among Ag particles with higher depth of discharge. A high rate intermittent pulsatile discharge test is conducted where the cell delivers 12 total pulses during full discharge to probe the effect of Ag metal formation on the Li/Ag 7Fe 3(P 2O 7) 4 cell electrochemistry. The Ohmic resistance is derived from the voltage drop of each pulse. The resistance is 65 Ω initially, reaches its minimum of 26 Ω at 4.5 ee discharge, and levels off at 35 Ω after 7.0 ee reduction. In conclusion, the initial Ag reduction is more significant for the conductive network formation indicated by the decrease of both R ct and Ohmic resistance, which facilitates the high power output of the cell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yiman; Kirshenbaum, Kevin C.; Marschilok, Amy C.
The formation of conductive metallic silver upon electrochemical reduction and lithiation of Ag 7Fe 3(P 2O 7) 4 is investigated. Alternating current impedance spectroscopy measurements show a 34% decrease in charge transfer resistance upon one electron equivalent (ee) of reduction, which is coincident with the formation of a Ag metal conductive network evidenced by both ex situ and operando X-ray diffraction. Quantitative assessment of Ag metal formation derived from operando XRD shows that only Ag + ions are reduced during the first 3ee, followed by simultaneous reduction of Ag + and Fe 3+ reduction for the next 5ee (3ee tomore » 8ee), culminating in reduction of the remaining Ag +. Scanning electron microscopy images show smaller Ag metal crystallite size and shorter nearest neighbor distance between and among Ag particles with higher depth of discharge. A high rate intermittent pulsatile discharge test is conducted where the cell delivers 12 total pulses during full discharge to probe the effect of Ag metal formation on the Li/Ag 7Fe 3(P 2O 7) 4 cell electrochemistry. The Ohmic resistance is derived from the voltage drop of each pulse. The resistance is 65 Ω initially, reaches its minimum of 26 Ω at 4.5 ee discharge, and levels off at 35 Ω after 7.0 ee reduction. In conclusion, the initial Ag reduction is more significant for the conductive network formation indicated by the decrease of both R ct and Ohmic resistance, which facilitates the high power output of the cell.« less
NASA Astrophysics Data System (ADS)
Hamal, Dambar B.
For solar environmental remediation, a new generation of nanosized (< 10 nm) titanium dioxide photocatalysts codoped with metals and nonmetals, or metals only were prepared by the xero-gel and aero-gel methods. For silver or cobalt-based xero-gel titanium dioxide photocatalysts, photoactivities tests revealed that codoping of titanium dioxide with a metal (1% Ag or 2% Co) and nonmetals (carbon and sulfur) is necessary to achieve high-activities for acetaldehyde degradation under visible light (wavelength > 420 nm). It was concluded that high visible-light-activities for acetaldehyde degradation over codoped titanium dioxide were attributed to an interplay of anatase crystallinity, high-surface area, reduced band-gap (< 3.0 eV), uniform dispersion of doped metal ions, and suppressed recombination rate of photogenerated electronhole pairs. Moreover, the nature and amount of codoped metals play a significant role in visible-light-induced photocatalysis. Metals (Al, Ga, and In) doped/codoped titanium dioxide photocatalysts were prepared by the aero-gel method. The photocatalytic studies showed that activities of metal doped/codoped photocatalysts under UV light (wavelength < 400 nm) were found to be dependent on pollutants. Indium demonstrated beneficial effects in both textural and photocatalytic properties. Gallium and indium codoped titanium dioxide photocatalysts displayed even better performance in the CO oxidation reaction under UV light. Notably, titanium dioxide codoped with Ga, In, and Pt, exhibited unique photoactivities for the CO oxidation under both UV and visible light irradiation, indicating that this system could have promise for the water-gas shift reaction for hydrogen production. Silver-based nanostructured titanium dioxide samples were developed for killing human pathogens (Escherichia coli cells and Bacillus subtilis spores). Biocidal tests revealed that silver, carbon, and sulfur codoped titanium dioxide nanoparticles (< 10 nm) possess very strong antimicrobial actions on both E. coli (logarithmic kill > 8) and B. subtilis spores (logarithmic kill > 5) for 30 minute exposures in dark conditions compared with Degussa P25. It was believed that the carbon and sulfur codoped titanium dioxide support and Ag species acted synergistically during deactivation of both E. coli and B. subtilis spores. Thus, titanium dioxide codoped with silver, carbon, sulfur can serve as a multifunctional generic biocide and a visible-light-active photocatalyst.
Antimicrobial properties of metal and metal-halide nanoparticles and their potential applications
NASA Astrophysics Data System (ADS)
Torrey, Jason Robert
Heavy metals, including silver and copper, have been known to possess antimicrobial properties against bacterial, fungal, and viral pathogens. Metal nanoparticles (aggregations of metal atoms 1-200 nm in size) have recently become the subject of intensive study for their increased antimicrobial properties. In the current studies, metal and metal-halide nanoparticles were evaluated for their antibacterial efficacy. Silver (Ag), silver bromide (AgBr), silver iodide (AgI), and copper iodide (CuI) nanoparticles significantly reduced bacterial numbers of the Gram-negative Pseudomonas aeruginosa and the Gram-positive Staphylococcus aureus within 24 hours and were more effective against P. aeruginosa. CuI nanoparticles were found to be highly effective, reducing both organisms by >4.43 log 10 within 15 minutes at 60 ppm Cu. CuI nanoparticles formulated with different stabilizers (sodium dodecyl sulfate, SDS; polyvinyl pyrrolidone, PVP) were further tested against representative Gram-positive and Gram-negative bacteria, Mycobacteria, a fungus (Candida albicans ), and a non-enveloped virus (poliovirus). Both nanoparticles caused significant reductions in most of the Gram-negative bacteria within five minutes (>5.09-log10). The Gram-positive bacterial species and C. albicans were more sensitive to the CuI-SDS than the CuI-PVP nanoparticles. In contrast, the acid-fast Mycobacterium smegmatis was more resistant to CuI-SDS than CuI-PVP nanoparticles. Poliovirus was more resistant than the other organisms tested except for Mycobacterium fortuitum, which displayed the greatest resistance to CuI nanoparticles. As an example of a real world antimicrobial application, polymer coatings embedded with various concentrations of CuI nanoparticles were tested for antibacterial efficacy against P. aeruginosa and S. aureus. Polyester-epoxy powder coatings were found to display superior uniformity, stability and antimicrobial properties against both organisms (>4.92 log 10 after six hours at 0.25% Cu). These surfaces were negatively impacted when tested under dry conditions with high organic content. At 0.25% Cu, the antibacterial activity of the powder coatings was not impacted by washing with several commercial cleaners; however, at concentrations of 0.05% Cu, antibacterial activity was reduced by washing with water, WindexRTM , and Pine SolRTM. Ultrasonic cleaning of the coatings appeared to decrease their antimicrobial efficacy. Despite this, CuI nanoparticles were found in all studies to have great potential as a new class of fast-acting, broad-spectrum antimicrobial.
Newkirk, Catherine E; Gagnon, Zofia E; Pavel Sizemore, Ioana E
2014-01-01
Research was conducted to examine the hematological effects of heavy metals (platinum (Pt ((IV))), palladium (Pd ((II))), rhodium (Rh ((III))), antimony (Sb ((III)) and Sb ((V))), and silver nanoparticles (AgNPs)) on white blood cells in mammalian (rat) and avian (chick embryo) models. These metals are used in many everyday products and are accumulating in our environment. Six-week old Sprague-Dawley female rats were treated daily by gavage and six-day old, fertile, specific pathogen-free white leghorn strain chick embryos' eggs were injected on days 7 and 14 of incubation with 0.0, 1.0, 5.0 or 10.0 ppm concentrations of Pt ((IV)) and a platinum group metal (PGM) mix of Pt ((IV)), Pd ((II)) and Rh ((III)). Chick embryos were also tested with 1.0 or 5.0 ppm of antimony compounds (Sb ((III)) and Sb ((V))) and 0.0, 15.0, 30.0, 60.0, or 100.0 ppm of silver nanoparticles (AgNPs). After 8 weeks of treatment, blood was obtained from the rats by jugular cut down and from chick embryos on day 20 of incubation by heart puncture. Blood smears were made and stained and a differential white cell count was performed on each. Examination of the smears revealed unconventional dose responses, stimulation of the immune response, and decreases in leukocyte production with various metals and concentrations. Chick embryos responded differently than rats to Pt and the PGM mix; suggesting that species differences and/or stage of development are important components of response to heavy metals. Route of administration of the metals might also influence the response. All of the heavy metals tested affected the immune responses of the tested animals as demonstrated by changes in the types and numbers of leukocytes. Our findings warrant further research to determine the mechanism of these effects and to understand and prevent toxicological effects in humans and other living organisms.
Electronic Devices with Diffusion Barrier and Process for Making Same
2001-05-09
conductivity metallization materials such as gold , silver, and platinum. As can be appreciated from the foregoing, a barrier film is needed which... gold ), as well as platinum. These metals are highly attractive 10 for interconnect strategies on account of there intrinsic low resistivity and...the monolayer portion of the barrier -7- material. The monolayer ( monoatomic ) layer of metal atoms and the homoepitaxial film of metal halide
Oxidation Catalysts in the Dark and the Light
2010-01-01
TiO2 with added silver, chromium, vanadium, manganese, carbon, and/or sulfur (selected transition metal ions and selected non- metals ) are very...Ranjit, Koodali T.; Klabunde, Kenneth J.; “ Catalysis by Metal Oxides,” Surface and Nanomolecular Catalysis , ed. Ryan Richards, CRC Press, NY, Ch. 2, pgs...REPORT Oxidation Catalysts in the Dark and the Light--Final Report 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Extensive research on mixed metal oxide
A visible light-induced photocatalytic silver enhancement reaction for gravimetric biosensors.
Ko, Wooree; Yim, Changyong; Jung, Namchul; Joo, Jinmyoung; Jeon, Sangmin; Seo, Hyejung; Lee, Soo Suk; Park, Jae Chan
2011-10-07
We have developed a novel microgravimetric immunosensor using a WO(3) nanoparticle-modified immunoassay and a silver enhancement reaction. When the nanoparticles in silver ion solution (i.e. AgNO(3)) are exposed to visible light, the silver ions are photocatalytically reduced and form a metallic silver coating on the nanoparticles. This silver coating consequently induces changes in the mass and light absorption spectrum. Although photocatalytic reduction reactions can be achieved using ultraviolet (UV) light and TiO(2) nanoparticles as described in our previous publication (Seo et al 2010 Nanotechnology 21 505502), the use of UV light in biosensing applications has drawbacks in that UV light can damage proteins. In addition, conventional quartz crystal substrates must be passivated to prevent undesirable silver ion reduction on their gold-coated sensing surfaces. We addressed these problems by adopting a visible light-induced photocatalytic silver enhancement method using WO(3) nanoparticles and lateral field excited (LFE) quartz crystals. As a proof-of-concept demonstration of the technique, streptavidin was adsorbed onto an LFE quartz crystal, and its mass was enhanced with biotinylated WO(3) nanoparticles, this being followed by a photocatalytic silver enhancement reaction. The mass change due to the enhancement was found to be > 30 times greater than the mass change obtained with the streptavidin alone.
Ueberrueck, T; Meyer, L; Zippel, R; Nestler, G; Wahlers, T; Gastinger, I
2005-02-01
To investigate the intraluminal and extraluminal healing behaviour of a new metallic silver coated, gelatine impregnated vascular graft. Comparative animal experimental investigation with randomisation of the animals to control and experimental groups. 24 pigs were assigned to two control and two experimental groups. The prostheses were interposed in the pigs' infrarenal aorta. For the evaluation, macroscopic, histological and immunohistochemical criteria were applied. The macroscopic evaluation after explantation of the prosthesis revealed similar healing characteristics in the control and experimental groups. The microscopic determination of neo-intimal thickness showed no significant differences between the groups; nor did the immunohistochemical investigations show any significant difference between the control group and the silver-coated prosthesis group. No disadvantage of the silver coating in terms of healing and graft patency was found. A possible advantage in terms of the antibacterial effect of the silver coating must be investigated in the clinical setting.
Evaluation of non-specular reflecting silvered Teflon and filled adhesives
NASA Technical Reports Server (NTRS)
Bourland, G.; Cox, R. L.
1981-01-01
A non-specular silver-Teflon tape thermal control coating was tested to provide the data necessary to qualify it for use on the Space Shuttle Orbiter radiators. Effects of cure cycle temperature and pressure on optical and mechanical properties on the silver-Teflon tape were evaluated. The baseline Permacel P-223 adhesive, used with the specular silver-Teflon tape initially qualified for the Orbiter radiators, and four alternate metal-filled and unfilled adhesives were evaluated. Tests showed the cure process has no effect on the silver-Teflon optical properties, and that the baseline adhesive cure cycle gives best results. In addition the P-223 adhesive bond is more reproducible than the alternates, and the non-specular tape meets both the mechanical and the optical requirements of the Orbiter radiator coating specification. Existing Orbiter coating techniques were demonstrated to be effective in aplying the non-specular tape to a curved panel simulating the radiators. Author
Antimicrobial silver: An unprecedented anion effect
Swathy, J. R.; Sankar, M. Udhaya; Chaudhary, Amrita; Aigal, Sahaja; Anshup; Pradeep, T.
2014-01-01
Silver is an indispensable metal but its use has to be minimised for sustainable growth. Much of the silver lost during use is unrecoverable; an example being its use as an antimicrobial agent, a property known since ages. While developing methods to create an affordable drinking water purifier especially for the developing world, we discovered that 50 parts per billion (ppb) of Ag+ released continuously from silver nanoparticles confined in nanoscale cages is enough to cause antimicrobial activity in conditions of normal water. Here we show that the antibacterial and antiviral activities of Ag+ can be enhanced ~1,000 fold, selectively, in presence of carbonate ions whose concentration was maintained below the drinking water norms. The protective layers of the organisms were affected during the carbonate-assisted antimicrobial activity. It is estimated that ~1,300 tons of silver can be saved annually using this new way to enhance its antimicrobial activity. PMID:25418185
The strange case of the earliest silver extraction by European colonists in the New World
Thibodeau, A. M.; Killick, D. J.; Ruiz, J.; Chesley, J. T.; Deagan, K.; Cruxent, J. M.; Lyman, W.
2007-01-01
La Isabela, the first European town in the New World, was established in 1494 by the second expedition of Christopher Columbus but was abandoned by 1498. The main motive for settlement was to find and exploit deposits of precious metals. Archaeological evidence of silver extraction at La Isabela seemed to indicate that the expedition had located and tested deposits of silver-bearing lead ore in the Caribbean. Lead isotope analysis refutes this hypothesis but provides new evidence of the desperation of the inhabitants of La Isabela just before its abandonment. PMID:17360699
Analysis of metals with luster: Roman brass and silver
NASA Astrophysics Data System (ADS)
Fajfar, H.; Rupnik, Z.; Šmit, Ž.
2015-11-01
Non-destructive PIXE analysis using in-air proton beam was used for the studies of earliest brass coins issued during the 1st century BC by Greek cities in Asia Minor, Romans and Celts, and for the studies of plated low grade silver coins of the 3rd century AD. The analysis determined the levels of zinc and important trace elements, notably selenium, which confirms spread of selenium-marked copper from the east. For plating, combined tinning and silvering was identified by the mapping technique for the mid 3rd century AD, which evolved into mere plating by 270 AD.