Development of the mathematical model for design and verification of acoustic modal analysis methods
NASA Astrophysics Data System (ADS)
Siner, Alexander; Startseva, Maria
2016-10-01
To reduce the turbofan noise it is necessary to develop methods for the analysis of the sound field generated by the blade machinery called modal analysis. Because modal analysis methods are very difficult and their testing on the full scale measurements are very expensive and tedious it is necessary to construct some mathematical models allowing to test modal analysis algorithms fast and cheap. At this work the model allowing to set single modes at the channel and to analyze generated sound field is presented. Modal analysis of the sound generated by the ring array of point sound sources is made. Comparison of experimental and numerical modal analysis results is presented at this work.
Dual ant colony operational modal analysis parameter estimation method
NASA Astrophysics Data System (ADS)
Sitarz, Piotr; Powałka, Bartosz
2018-01-01
Operational Modal Analysis (OMA) is a common technique used to examine the dynamic properties of a system. Contrary to experimental modal analysis, the input signal is generated in object ambient environment. Operational modal analysis mainly aims at determining the number of pole pairs and at estimating modal parameters. Many methods are used for parameter identification. Some methods operate in time while others in frequency domain. The former use correlation functions, the latter - spectral density functions. However, while some methods require the user to select poles from a stabilisation diagram, others try to automate the selection process. Dual ant colony operational modal analysis parameter estimation method (DAC-OMA) presents a new approach to the problem, avoiding issues involved in the stabilisation diagram. The presented algorithm is fully automated. It uses deterministic methods to define the interval of estimated parameters, thus reducing the problem to optimisation task which is conducted with dedicated software based on ant colony optimisation algorithm. The combination of deterministic methods restricting parameter intervals and artificial intelligence yields very good results, also for closely spaced modes and significantly varied mode shapes within one measurement point.
An operational modal analysis method in frequency and spatial domain
NASA Astrophysics Data System (ADS)
Wang, Tong; Zhang, Lingmi; Tamura, Yukio
2005-12-01
A frequency and spatial domain decomposition method (FSDD) for operational modal analysis (OMA) is presented in this paper, which is an extension of the complex mode indicator function (CMIF) method for experimental modal analysis (EMA). The theoretical background of the FSDD method is clarified. Singular value decomposition is adopted to separate the signal space from the noise space. Finally, an enhanced power spectrum density (PSD) is proposed to obtain more accurate modal parameters by curve fitting in the frequency domain. Moreover, a simulation case and an application case are used to validate this method.
Operational modal analysis applied to the concert harp
NASA Astrophysics Data System (ADS)
Chomette, B.; Le Carrou, J.-L.
2015-05-01
Operational modal analysis (OMA) methods are useful to extract modal parameters of operating systems. These methods seem to be particularly interesting to investigate the modal basis of string instruments during operation to avoid certain disadvantages due to conventional methods. However, the excitation in the case of string instruments is not optimal for OMA due to the presence of damped harmonic components and low noise in the disturbance signal. Therefore, the present study investigates the least-square complex exponential (LSCE) and the modified least-square complex exponential methods in the case of a string instrument to identify modal parameters of the instrument when it is played. The efficiency of the approach is experimentally demonstrated on a concert harp excited by some of its strings and the two methods are compared to a conventional modal analysis. The results show that OMA allows us to identify modes particularly present in the instrument's response with a good estimation especially if they are close to the excitation frequency with the modified LSCE method.
Identification of modal parameters including unmeasured forces and transient effects
NASA Astrophysics Data System (ADS)
Cauberghe, B.; Guillaume, P.; Verboven, P.; Parloo, E.
2003-08-01
In this paper, a frequency-domain method to estimate modal parameters from short data records with known input (measured) forces and unknown input forces is presented. The method can be used for an experimental modal analysis, an operational modal analysis (output-only data) and the combination of both. A traditional experimental and operational modal analysis in the frequency domain starts respectively, from frequency response functions and spectral density functions. To estimate these functions accurately sufficient data have to be available. The technique developed in this paper estimates the modal parameters directly from the Fourier spectra of the outputs and the known input. Instead of using Hanning windows on these short data records the transient effects are estimated simultaneously with the modal parameters. The method is illustrated, tested and validated by Monte Carlo simulations and experiments. The presented method to process short data sequences leads to unbiased estimates with a small variance in comparison to the more traditional approaches.
Noise elimination algorithm for modal analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, X. X., E-mail: baoxingxian@upc.edu.cn; Li, C. L.; Xiong, C. B.
2015-07-27
Modal analysis is an ongoing interdisciplinary physical issue. Modal parameters estimation is applied to determine the dynamic characteristics of structures under vibration excitation. Modal analysis is more challenging for the measured vibration response signals are contaminated with noise. This study develops a mathematical algorithm of structured low rank approximation combined with the complex exponential method to estimate the modal parameters. Physical experiments using a steel cantilever beam with ten accelerometers mounted, excited by an impulse load, demonstrate that this method can significantly eliminate noise from measured signals and accurately identify the modal frequencies and damping ratios. This study provides amore » fundamental mechanism of noise elimination using structured low rank approximation in physical fields.« less
Strain Modal Analysis of Small and Light Pipes Using Distributed Fibre Bragg Grating Sensors
Huang, Jun; Zhou, Zude; Zhang, Lin; Chen, Juntao; Ji, Chunqian; Pham, Duc Truong
2016-01-01
Vibration fatigue failure is a critical problem of hydraulic pipes under severe working conditions. Strain modal testing of small and light pipes is a good option for dynamic characteristic evaluation, structural health monitoring and damage identification. Unique features such as small size, light weight, and high multiplexing capability enable Fibre Bragg Grating (FBG) sensors to measure structural dynamic responses where sensor size and placement are critical. In this paper, experimental strain modal analysis of pipes using distributed FBG sensors ispresented. Strain modal analysis and parameter identification methods are introduced. Experimental strain modal testing and finite element analysis for a cantilever pipe have been carried out. The analysis results indicate that the natural frequencies and strain mode shapes of the tested pipe acquired by FBG sensors are in good agreement with the results obtained by a reference accelerometer and simulation outputs. The strain modal parameters of a hydraulic pipe were obtained by the proposed strain modal testing method. FBG sensors have been shown to be useful in the experimental strain modal analysis of small and light pipes in mechanical, aeronautic and aerospace applications. PMID:27681728
Asymptotic modal analysis of a rectangular acoustic cavity excited by wall vibration
NASA Technical Reports Server (NTRS)
Peretti, Linda F.; Dowell, Earl H.
1992-01-01
Asymptotic modal analysis, a method that has recently been developed for structural dynamical systems, has been applied to a rectangular acoustic cavity. The cavity had a flexible vibrating portion on one wall, and the other five walls were rigid. Banded white noise was transmitted through the flexible portion (plate) only. Both the location along the wall and the size of the plate were varied. The mean square pressure levels of the cavity interior were computed as a ratio of the result obtained from classical modal analysis to that obtained from asymptotic modal analysis for the various plate configurations. In general, this ratio converged to 1.0 as the number of responding modes increased. Intensification effects were found due to both the excitation location and the response location. The asymptotic modal analysis method was both efficient and accurate in solving the given problem. The method has advantages over the traditional methods that are used for solving dynamics problems with a large number of responding modes.
Analysis of flexible aircraft longitudinal dynamics and handling qualities. Volume 2: Data
NASA Technical Reports Server (NTRS)
Waszak, M. R.; Schmidt, D. K.
1985-01-01
Two analysis methods are applied to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop modal analysis technique. This method considers the effect of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Both analyses indicated that dynamic aeroelastic effects caused a degradation in vehicle tracking performance, based on the evaluation of some simulation results. Volume 2 consists of the presentation of the state variable models of the flexible aircraft configurations used in the analysis applications mode shape plots for the structural modes, numerical results from the modal analysis frequency response plots from the pilot in the loop analysis and a listing of the modal analysis computer program.
Quasi-modal vibration control by means of active control bearings
NASA Technical Reports Server (NTRS)
Nonami, K.; Fleming, D. P.
1986-01-01
This paper investigates a design method of an active control bearing system with only velocity feedback. The study provides a new quasi-modal control method for a control system design of an active control bearing system in which feedback coefficients are determined on the basis of a modal analysis. Although the number of sensors and actuators is small, this quasi-modal control method produces a control effect close to an ideal modal control.
Comparison of Modal Analysis Methods Applied to a Vibro-Acoustic Test Article
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn; Pappa, Richard; Buehrle, Ralph; Grosveld, Ferdinand
2001-01-01
Modal testing of a vibro-acoustic test article referred to as the Aluminum Testbed Cylinder (ATC) has provided frequency response data for the development of validated numerical models of complex structures for interior noise prediction and control. The ATC is an all aluminum, ring and stringer stiffened cylinder, 12 feet in length and 4 feet in diameter. The cylinder was designed to represent typical aircraft construction. Modal tests were conducted for several different configurations of the cylinder assembly under ambient and pressurized conditions. The purpose of this paper is to present results from dynamic testing of different ATC configurations using two modal analysis software methods: Eigensystem Realization Algorithm (ERA) and MTS IDEAS Polyreference method. The paper compares results from the two analysis methods as well as the results from various test configurations. The effects of pressurization on the modal characteristics are discussed.
Asymptotic modal analysis and statistical energy analysis
NASA Technical Reports Server (NTRS)
Dowell, Earl H.
1992-01-01
Asymptotic Modal Analysis (AMA) is a method which is used to model linear dynamical systems with many participating modes. The AMA method was originally developed to show the relationship between statistical energy analysis (SEA) and classical modal analysis (CMA). In the limit of a large number of modes of a vibrating system, the classical modal analysis result can be shown to be equivalent to the statistical energy analysis result. As the CMA result evolves into the SEA result, a number of systematic assumptions are made. Most of these assumptions are based upon the supposition that the number of modes approaches infinity. It is for this reason that the term 'asymptotic' is used. AMA is the asymptotic result of taking the limit of CMA as the number of modes approaches infinity. AMA refers to any of the intermediate results between CMA and SEA, as well as the SEA result which is derived from CMA. The main advantage of the AMA method is that individual modal characteristics are not required in the model or computations. By contrast, CMA requires that each modal parameter be evaluated at each frequency. In the latter, contributions from each mode are computed and the final answer is obtained by summing over all the modes in the particular band of interest. AMA evaluates modal parameters only at their center frequency and does not sum the individual contributions from each mode in order to obtain a final result. The method is similar to SEA in this respect. However, SEA is only capable of obtaining spatial averages or means, as it is a statistical method. Since AMA is systematically derived from CMA, it can obtain local spatial information as well.
Sensitivity Analysis for Coupled Aero-structural Systems
NASA Technical Reports Server (NTRS)
Giunta, Anthony A.
1999-01-01
A novel method has been developed for calculating gradients of aerodynamic force and moment coefficients for an aeroelastic aircraft model. This method uses the Global Sensitivity Equations (GSE) to account for the aero-structural coupling, and a reduced-order modal analysis approach to condense the coupling bandwidth between the aerodynamic and structural models. Parallel computing is applied to reduce the computational expense of the numerous high fidelity aerodynamic analyses needed for the coupled aero-structural system. Good agreement is obtained between aerodynamic force and moment gradients computed with the GSE/modal analysis approach and the same quantities computed using brute-force, computationally expensive, finite difference approximations. A comparison between the computational expense of the GSE/modal analysis method and a pure finite difference approach is presented. These results show that the GSE/modal analysis approach is the more computationally efficient technique if sensitivity analysis is to be performed for two or more aircraft design parameters.
Modal analysis applied to circular, rectangular, and coaxial waveguides
NASA Technical Reports Server (NTRS)
Hoppe, D. J.
1988-01-01
Recent developments in the analysis of various waveguide components and feedhorns using Modal Analysis (Mode Matching Method) are summarized. A brief description of the theory is presented, and the important features of the method are pointed out. Specific examples in circular, rectangular, and coaxial waveguides are included, with comparisons between the theory and experimental measurements. Extensions to the methods are described.
A tri-modality image fusion method for target delineation of brain tumors in radiotherapy.
Guo, Lu; Shen, Shuming; Harris, Eleanor; Wang, Zheng; Jiang, Wei; Guo, Yu; Feng, Yuanming
2014-01-01
To develop a tri-modality image fusion method for better target delineation in image-guided radiotherapy for patients with brain tumors. A new method of tri-modality image fusion was developed, which can fuse and display all image sets in one panel and one operation. And a feasibility study in gross tumor volume (GTV) delineation using data from three patients with brain tumors was conducted, which included images of simulation CT, MRI, and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) examinations before radiotherapy. Tri-modality image fusion was implemented after image registrations of CT+PET and CT+MRI, and the transparency weight of each modality could be adjusted and set by users. Three radiation oncologists delineated GTVs for all patients using dual-modality (MRI/CT) and tri-modality (MRI/CT/PET) image fusion respectively. Inter-observer variation was assessed by the coefficient of variation (COV), the average distance between surface and centroid (ADSC), and the local standard deviation (SDlocal). Analysis of COV was also performed to evaluate intra-observer volume variation. The inter-observer variation analysis showed that, the mean COV was 0.14(± 0.09) and 0.07(± 0.01) for dual-modality and tri-modality respectively; the standard deviation of ADSC was significantly reduced (p<0.05) with tri-modality; SDlocal averaged over median GTV surface was reduced in patient 2 (from 0.57 cm to 0.39 cm) and patient 3 (from 0.42 cm to 0.36 cm) with the new method. The intra-observer volume variation was also significantly reduced (p = 0.00) with the tri-modality method as compared with using the dual-modality method. With the new tri-modality image fusion method smaller inter- and intra-observer variation in GTV definition for the brain tumors can be achieved, which improves the consistency and accuracy for target delineation in individualized radiotherapy.
NASA Astrophysics Data System (ADS)
Brewick, Patrick T.; Smyth, Andrew W.
2016-12-01
The authors have previously shown that many traditional approaches to operational modal analysis (OMA) struggle to properly identify the modal damping ratios for bridges under traffic loading due to the interference caused by the driving frequencies of the traffic loads. This paper presents a novel methodology for modal parameter estimation in OMA that overcomes the problems presented by driving frequencies and significantly improves the damping estimates. This methodology is based on finding the power spectral density (PSD) of a given modal coordinate, and then dividing the modal PSD into separate regions, left- and right-side spectra. The modal coordinates were found using a blind source separation (BSS) algorithm and a curve-fitting technique was developed that uses optimization to find the modal parameters that best fit each side spectra of the PSD. Specifically, a pattern-search optimization method was combined with a clustering analysis algorithm and together they were employed in a series of stages in order to improve the estimates of the modal damping ratios. This method was used to estimate the damping ratios from a simulated bridge model subjected to moving traffic loads. The results of this method were compared to other established OMA methods, such as Frequency Domain Decomposition (FDD) and BSS methods, and they were found to be more accurate and more reliable, even for modes that had their PSDs distorted or altered by driving frequencies.
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-03-01
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. The proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.
NASA Astrophysics Data System (ADS)
Kovalovs, A.; Rucevskis, S.; Akishin, P.; Kolupajevs, J.
2017-10-01
The paper presents numerical results of loss of prestress in the reinforced prestressed precast hollow core slabs by modal analysis. Loss of prestress is investigated by the 3D finite element method, using ANSYS software. In the numerical examples, variables initial stresses were introduced into seven-wire stress-relieved strands of the concrete slabs. The effects of span and material properties of concrete on the modal frequencies of the concrete structure under initial stress were studied. Modal parameters computed from the finite element models were compared. Applicability and effectiveness of the proposed method was investigated.
Ares I-X In-Flight Modal Identification
NASA Technical Reports Server (NTRS)
Bartkowicz, Theodore J.; James, George H., III
2011-01-01
Operational modal analysis is a procedure that allows the extraction of modal parameters of a structure in its operating environment. It is based on the idealized premise that input to the structure is white noise. In some cases, when free decay responses are corrupted by unmeasured random disturbances, the response data can be processed into cross-correlation functions that approximate free decay responses. Modal parameters can be computed from these functions by time domain identification methods such as the Eigenvalue Realization Algorithm (ERA). The extracted modal parameters have the same characteristics as impulse response functions of the original system. Operational modal analysis is performed on Ares I-X in-flight data. Since the dynamic system is not stationary due to propellant mass loss, modal identification is only possible by analyzing the system as a series of linearized models over short periods of time via a sliding time-window of short time intervals. A time-domain zooming technique was also employed to enhance the modal parameter extraction. Results of this study demonstrate that free-decay time domain modal identification methods can be successfully employed for in-flight launch vehicle modal extraction.
NASA Astrophysics Data System (ADS)
Emge, Darren K.; Adalı, Tülay
2014-06-01
As the availability and use of imaging methodologies continues to increase, there is a fundamental need to jointly analyze data that is collected from multiple modalities. This analysis is further complicated when, the size or resolution of the images differ, implying that the observation lengths of each of modality can be highly varying. To address this expanding landscape, we introduce the multiset singular value decomposition (MSVD), which can perform a joint analysis on any number of modalities regardless of their individual observation lengths. Through simulations, the inter modal relationships across the different modalities which are revealed by the MSVD are shown. We apply the MSVD to forensic fingerprint analysis, showing that MSVD joint analysis successfully identifies relevant similarities for further analysis, significantly reducing the processing time required. This reduction, takes this technique from a laboratory method to a useful forensic tool with applications across the law enforcement and security regimes.
NASA Astrophysics Data System (ADS)
Potter, Jennifer L.
2011-12-01
Noise and vibration has long been sought to be reduced in major industries: automotive, aerospace and marine to name a few. Products must be tested and pass certain levels of federally regulated standards before entering the market. Vibration measurements are commonly acquired using accelerometers; however limitations of this method create a need for alternative solutions. Two methods for non-contact vibration measurements are compared: Laser Vibrometry, which directly measures the surface velocity of the aluminum plate, and Nearfield Acoustic Holography (NAH), which measures sound pressure in the nearfield, and using Green's Functions, reconstructs the surface velocity at the plate. The surface velocity from each method is then used in modal analysis to determine the comparability of frequency, damping and mode shapes. Frequency and mode shapes are also compared to an FEA model. Laser Vibrometry is a proven, direct method for determining surface velocity and subsequently calculating modal analysis results. NAH is an effective method in locating noise sources, especially those that are not well separated spatially. Little work has been done in incorporating NAH into modal analysis.
Constrained maximum likelihood modal parameter identification applied to structural dynamics
NASA Astrophysics Data System (ADS)
El-Kafafy, Mahmoud; Peeters, Bart; Guillaume, Patrick; De Troyer, Tim
2016-05-01
A new modal parameter estimation method to directly establish modal models of structural dynamic systems satisfying two physically motivated constraints will be presented. The constraints imposed in the identified modal model are the reciprocity of the frequency response functions (FRFs) and the estimation of normal (real) modes. The motivation behind the first constraint (i.e. reciprocity) comes from the fact that modal analysis theory shows that the FRF matrix and therefore the residue matrices are symmetric for non-gyroscopic, non-circulatory, and passive mechanical systems. In other words, such types of systems are expected to obey Maxwell-Betti's reciprocity principle. The second constraint (i.e. real mode shapes) is motivated by the fact that analytical models of structures are assumed to either be undamped or proportional damped. Therefore, normal (real) modes are needed for comparison with these analytical models. The work done in this paper is a further development of a recently introduced modal parameter identification method called ML-MM that enables us to establish modal model that satisfies such motivated constraints. The proposed constrained ML-MM method is applied to two real experimental datasets measured on fully trimmed cars. This type of data is still considered as a significant challenge in modal analysis. The results clearly demonstrate the applicability of the method to real structures with significant non-proportional damping and high modal densities.
Bayesian operational modal analysis with asynchronous data, part I: Most probable value
NASA Astrophysics Data System (ADS)
Zhu, Yi-Chen; Au, Siu-Kui
2018-01-01
In vibration tests, multiple sensors are used to obtain detailed mode shape information about the tested structure. Time synchronisation among data channels is required in conventional modal identification approaches. Modal identification can be more flexibly conducted if this is not required. Motivated by the potential gain in feasibility and economy, this work proposes a Bayesian frequency domain method for modal identification using asynchronous 'output-only' ambient data, i.e. 'operational modal analysis'. It provides a rigorous means for identifying the global mode shape taking into account the quality of the measured data and their asynchronous nature. This paper (Part I) proposes an efficient algorithm for determining the most probable values of modal properties. The method is validated using synthetic and laboratory data. The companion paper (Part II) investigates identification uncertainty and challenges in applications to field vibration data.
NASA Technical Reports Server (NTRS)
Trubert, M.; Salama, M.
1979-01-01
Unlike an earlier shock spectra approach, generalization permits an accurate elastic interaction between the spacecraft and launch vehicle to obtain accurate bounds on the spacecraft response and structural loads. In addition, the modal response from a previous launch vehicle transient analysis with or without a dummy spacecraft - is exploited to define a modal impulse as a simple idealization of the actual forcing function. The idealized modal forcing function is then used to derive explicit expressions for an estimate of the bound on the spacecraft structural response and forces. Greater accuracy is achieved with the present method over the earlier shock spectra, while saving much computational effort over the transient analysis.
Multi-disciplinary optimization of aeroservoelastic systems
NASA Technical Reports Server (NTRS)
Karpel, Mordechay
1991-01-01
New methods were developed for efficient aeroservoelastic analysis and optimization. The main target was to develop a method for investigating large structural variations using a single set of modal coordinates. This task was accomplished by basing the structural modal coordinates on normal modes calculated with a set of fictitious masses loading the locations of anticipated structural changes. The following subject areas are covered: (1) modal coordinates for aeroelastic analysis with large local structural variations; and (2) time simulation of flutter with large stiffness changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; ...
2016-12-05
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less
Direct system parameter identification of mechanical structures with application to modal analysis
NASA Technical Reports Server (NTRS)
Leuridan, J. M.; Brown, D. L.; Allemang, R. J.
1982-01-01
In this paper a method is described to estimate mechanical structure characteristics in terms of mass, stiffness and damping matrices using measured force input and response data. The estimated matrices can be used to calculate a consistent set of damped natural frequencies and damping values, mode shapes and modal scale factors for the structure. The proposed technique is attractive as an experimental modal analysis method since the estimation of the matrices does not require previous estimation of frequency responses and since the method can be used, without any additional complications, for multiple force input structure testing.
NASA Astrophysics Data System (ADS)
Araújo, Iván Gómez; Sánchez, Jesús Antonio García; Andersen, Palle
2018-05-01
Transmissibility-based operational modal analysis is a recent and alternative approach used to identify the modal parameters of structures under operational conditions. This approach is advantageous compared with traditional operational modal analysis because it does not make any assumptions about the excitation spectrum (i.e., white noise with a flat spectrum). However, common methodologies do not include a procedure to extract closely spaced modes with low signal-to-noise ratios. This issue is relevant when considering that engineering structures generally have closely spaced modes and that their measured responses present high levels of noise. Therefore, to overcome these problems, a new combined method for modal parameter identification is proposed in this work. The proposed method combines blind source separation (BSS) techniques and transmissibility-based methods. Here, BSS techniques were used to recover source signals, and transmissibility-based methods were applied to estimate modal information from the recovered source signals. To achieve this combination, a new method to define a transmissibility function was proposed. The suggested transmissibility function is based on the relationship between the power spectral density (PSD) of mixed signals and the PSD of signals from a single source. The numerical responses of a truss structure with high levels of added noise and very closely spaced modes were processed using the proposed combined method to evaluate its ability to identify modal parameters in these conditions. Colored and white noise excitations were used for the numerical example. The proposed combined method was also used to evaluate the modal parameters of an experimental test on a structure containing closely spaced modes. The results showed that the proposed combined method is capable of identifying very closely spaced modes in the presence of noise and, thus, may be potentially applied to improve the identification of damping ratios.
An investigation into NVC characteristics of vehicle behaviour using modal analysis
NASA Astrophysics Data System (ADS)
Hanouf, Zahir; Faris, Waleed F.; Ahmad, Kartini
2017-03-01
NVC characterizations of vehicle behavior is one essential part of the development targets in automotive industries. Therefore understanding dynamic behavior of each structural part of the vehicle is a major requirement in improving the NVC characteristics of a vehicle. The main focus of this research is to investigate structural dynamic behavior of a passenger car using modal analysis part by part technique and apply this method to derive the interior noise sources. In the first part of this work computational modal analysis part by part tests were carried out to identify the dynamic parameters of the passenger car. Finite elements models of the different parts of the car are constructed using VPG 3.2 software. Ls-Dyna pre and post processing was used to identify and analyze the dynamic behavior of each car components panels. These tests had successfully produced natural frequencies and their associated mode shapes of such panels like trunk, hood, roof and door panels. In the second part of this research, experimental modal analysis part by part is performed on the selected car panels to extract modal parameters namely frequencies and mode shapes. The study establishes the step-by-step procedures to carry out experimental modal analysis on the car structures, using single input excitation and multi-output responses (SIMO) technique. To ensure the validity of the results obtained by the previous method an inverse method was done by fixing the response and moving the excitation and the results found were absolutely the same. Finally, comparison between results obtained from both analyses showed good similarity in both frequencies and mode shapes. Conclusion drawn from this part of study was that modal analysis part-by-part can be strongly used to establish the dynamic characteristics of the whole car. Furthermore, the developed method is also can be used to show the relationship between structural vibration of the car panels and the passengers’ noise comfort inside the cabin.
Polynomial modal analysis of lamellar diffraction gratings in conical mounting.
Randriamihaja, Manjakavola Honore; Granet, Gérard; Edee, Kofi; Raniriharinosy, Karyl
2016-09-01
An efficient numerical modal method for modeling a lamellar grating in conical mounting is presented. Within each region of the grating, the electromagnetic field is expanded onto Legendre polynomials, which allows us to enforce in an exact manner the boundary conditions that determine the eigensolutions. Our code is successfully validated by comparison with results obtained with the analytical modal method.
NASA Technical Reports Server (NTRS)
Peretti, Linda F.; Dowell, Earl H.
1989-01-01
Asymptotic modal analysis (AMA) is used to study a rectangular cavity with a flexible vibrating portion on one wall and five rigid walls. The agreement between mean square pressure levels of the cavity interior calculated from classical modal analysis and from the AMA method improved as the number of responding modes increased. It is shown that intensification effects were due to both the excitation location and the response location.
A Review of Multivariate Methods for Multimodal Fusion of Brain Imaging Data
Adali, Tülay; Yu, Qingbao; Calhoun, Vince D.
2011-01-01
The development of various neuroimaging techniques is rapidly improving the measurements of brain function/structure. However, despite improvements in individual modalities, it is becoming increasingly clear that the most effective research approaches will utilize multi-modal fusion, which takes advantage of the fact that each modality provides a limited view of the brain. The goal of multimodal fusion is to capitalize on the strength of each modality in a joint analysis, rather than a separate analysis of each. This is a more complicated endeavor that must be approached more carefully and efficient methods should be developed to draw generalized and valid conclusions from high dimensional data with a limited number of subjects. Numerous research efforts have been reported in the field based on various statistical approaches, e.g. independent component analysis (ICA), canonical correlation analysis (CCA) and partial least squares (PLS). In this review paper, we survey a number of multivariate methods appearing in previous reports, which are performed with or without prior information and may have utility for identifying potential brain illness biomarkers. We also discuss the possible strengths and limitations of each method, and review their applications to brain imaging data. PMID:22108139
Completely automated modal analysis procedure based on the combination of different OMA methods
NASA Astrophysics Data System (ADS)
Ripamonti, Francesco; Bussini, Alberto; Resta, Ferruccio
2018-03-01
In this work a completely automated output-only Modal Analysis procedure is presented and all its benefits are listed. Based on the merging of different Operational Modal Analysis methods and a statistical approach, the identification process has been improved becoming more robust and giving as results only the real natural frequencies, damping ratios and mode shapes of the system. The effect of the temperature can be taken into account as well, leading to the creation of a better tool for automated Structural Health Monitoring. The algorithm has been developed and tested on a numerical model of a scaled three-story steel building present in the laboratories of Politecnico di Milano.
Venkat, R; Gopichander, N; Vasantakumar, M
2010-01-01
Obstructive sleep apnea is the most frequent cause for insomnia in the populace. Snoring is mulled over as the potential factor that can lead the sequel to obstructive sleep apnea. Although the etiology and deterrence measures for snoring are yet to be undoubtedly clarified by our scientific sorority, various means of surgical corrections have been affirmed and put into practice, with a substantial degree of success. Despite this, it is implicit that a noninvasive method of managing obstructive sleep apnea is more relevant for overcoming this condition. This manuscript intends to establish how snoring can be controlled prosthodontically by different modalities of scientifically defensible approaches. The most effective among the modalities was affirmed as the investigative analyses of the treatment outcomes with each modality. NOVEL METHODS: Four new methods of managing obstructive sleep apnea--uvula lift appliance, uvula and velopharynx lift appliance, nasopharyngeal aperture guard, and soft palate lift appliance were demonstrated through this article. The four new modalities stated and one conventional modality of mandibular advancement appliance for managing obstructive sleep apnea, a total of five types of appliance therapies, were described with case reports for each. Five individuals undergoing the appliance therapy were chosen for each modality. The treatment outcome with each modality was examined by analysis of clinical predictors and also by means of standard investigation, with nasal and oral endoscopic analyses. Among the five types of appliance therapies, the nasopharyngeal aperture guard provided the best treatment outcome in terms of clinical predictors and endoscopic analyses. Nasopharyngeal aperture guard, the novel method stated in this article is the better modality for managing obstructive sleep apnea, among the five different appliance therapies.
Ulloa, Alvaro; Jingyu Liu; Vergara, Victor; Jiayu Chen; Calhoun, Vince; Pattichis, Marios
2014-01-01
In the biomedical field, current technology allows for the collection of multiple data modalities from the same subject. In consequence, there is an increasing interest for methods to analyze multi-modal data sets. Methods based on independent component analysis have proven to be effective in jointly analyzing multiple modalities, including brain imaging and genetic data. This paper describes a new algorithm, three-way parallel independent component analysis (3pICA), for jointly identifying genomic loci associated with brain function and structure. The proposed algorithm relies on the use of multi-objective optimization methods to identify correlations among the modalities and maximally independent sources within modality. We test the robustness of the proposed approach by varying the effect size, cross-modality correlation, noise level, and dimensionality of the data. Simulation results suggest that 3p-ICA is robust to data with SNR levels from 0 to 10 dB and effect-sizes from 0 to 3, while presenting its best performance with high cross-modality correlations, and more than one subject per 1,000 variables. In an experimental study with 112 human subjects, the method identified links between a genetic component (pointing to brain function and mental disorder associated genes, including PPP3CC, KCNQ5, and CYP7B1), a functional component related to signal decreases in the default mode network during the task, and a brain structure component indicating increases of gray matter in brain regions of the default mode region. Although such findings need further replication, the simulation and in-vivo results validate the three-way parallel ICA algorithm presented here as a useful tool in biomedical data decomposition applications.
NASA Astrophysics Data System (ADS)
Unnikrishnan, Madhusudanan; Rajan, Akash; Basanthvihar Raghunathan, Binulal; Kochupillai, Jayaraj
2017-08-01
Experimental modal analysis is the primary tool for obtaining the fundamental dynamic characteristics like natural frequency, mode shape and modal damping ratio that determine the behaviour of any structure under dynamic loading conditions. This paper discusses about a carefully designed experimental method for calculating the dynamic characteristics of a pre-stretched horizontal flexible tube made of polyurethane material. The factors that affect the modal parameter estimation like the application time of shaker excitation, pause time between successive excitation cycles, averaging and windowing of measured signal, as well as the precautions to be taken during the experiment are explained in detail. The modal parameter estimation is done using MEscopeVESTM software. A finite element based pre-stressed modal analysis of the flexible tube is also done using ANSYS ver.14.0 software. The experimental and analytical results agreed well. The proposed experimental methodology may be extended for carrying out the modal analysis of many flexible structures like inflatables, tires and membranes.
Transient analysis mode participation for modal survey target mode selection using MSC/NASTRAN DMAP
NASA Technical Reports Server (NTRS)
Barnett, Alan R.; Ibrahim, Omar M.; Sullivan, Timothy L.; Goodnight, Thomas W.
1994-01-01
Many methods have been developed to aid analysts in identifying component modes which contribute significantly to component responses. These modes, typically targeted for dynamic model correlation via a modal survey, are known as target modes. Most methods used to identify target modes are based on component global dynamic behavior. It is sometimes unclear if these methods identify all modes contributing to responses important to the analyst. These responses are usually those in areas of hardware design concerns. One method used to check the completeness of target mode sets and identify modes contributing significantly to important component responses is mode participation. With this method, the participation of component modes in dynamic responses is quantified. Those modes which have high participation are likely modal survey target modes. Mode participation is most beneficial when it is used with responses from analyses simulating actual flight events. For spacecraft, these responses are generated via a structural dynamic coupled loads analysis. Using MSC/NASTRAN DMAP, a method has been developed for calculating mode participation based on transient coupled loads analysis results. The algorithm has been implemented to be compatible with an existing coupled loads methodology and has been used successfully to develop a set of modal survey target modes.
Integration of Multi-Modal Biomedical Data to Predict Cancer Grade and Patient Survival.
Phan, John H; Hoffman, Ryan; Kothari, Sonal; Wu, Po-Yen; Wang, May D
2016-02-01
The Big Data era in Biomedical research has resulted in large-cohort data repositories such as The Cancer Genome Atlas (TCGA). These repositories routinely contain hundreds of matched patient samples for genomic, proteomic, imaging, and clinical data modalities, enabling holistic and multi-modal integrative analysis of human disease. Using TCGA renal and ovarian cancer data, we conducted a novel investigation of multi-modal data integration by combining histopathological image and RNA-seq data. We compared the performances of two integrative prediction methods: majority vote and stacked generalization. Results indicate that integration of multiple data modalities improves prediction of cancer grade and outcome. Specifically, stacked generalization, a method that integrates multiple data modalities to produce a single prediction result, outperforms both single-data-modality prediction and majority vote. Moreover, stacked generalization reveals the contribution of each data modality (and specific features within each data modality) to the final prediction result and may provide biological insights to explain prediction performance.
Model mismatch analysis and compensation for modal phase measuring deflectometry
Huang, Lei; Xue, Junpeng; Gao, Bo; ...
2017-01-11
The correspondence residuals due to the discrepancy between the reality and the shape model in use are analyzed for the modal phase measuring deflectometry. Slope residuals are calculated from these discrepancies between the modal estimation and practical acquisition. Since the shape mismatch mainly occurs locally, zonal integration methods which are good at dealing with local variations are used to reconstruct the height residual for compensation. Finally, results of both simulation and experiment indicate the proposed height compensation method is effective, which can be used as a post-complement for the modal phase measuring deflectometry.
A generalized modal shock spectra method for spacecraft loads analysis
NASA Technical Reports Server (NTRS)
Trubert, M.; Salama, M.
1979-01-01
Unlike the traditional shock spectra approach, the generalization presented in this paper permits elastic interaction between the spacecraft and launch vehicle in order to obtain accurate bounds on the spacecraft response and structural loads. In addition, the modal response from a previous launch vehicle transient analysis - with or without a dummy spacecraft - is exploited in order to define a modal impulse as a simple idealization of the actual forcing function. The idealized modal forcing function is then used to derive explicit expressions for an estimate of the bound on the spacecraft structural response and forces.
NASA Astrophysics Data System (ADS)
Arunkumar, S.; Baskaralal, V. P. M.; Muthuraman, V.
2017-03-01
The rudimentary steps of the modal analysis and simulation are carried out. The modal analysis is carried out on the different Aluminum Alloys cantilever beam. The cantilever beam is designed in the graphical environment of the ANSYS. The cantilever beam was fine-tuned on one end with all degree of liberation on this end were taken, beam cannot move and rotate. Mode shapes and natural frequencies are premeditated in platforms ANSYS with arithmetical formulation of the direct solver including the block Lanczos method. Aluminum alloys are widely utilized in much application due to their estimable weight to vigor property. Many examination works have been distributed out to make developments the mechanical properties of aluminum alloys. The composition of alloying elements plays a consequential role in deciding the properties of an alloy. In this study a numerical analysis implement i.e., finite element analysis (FEA) is utilized. The work obtainable in this paper is aimed at the study of effect of modal analysis of different aluminum alloys. The modeling and analysis is carried out utilizing ANSYS FEA software. A modal analysis is carried out to understand the modes of frequency demeanor of the material considered. The modal analysis play a vital role in the design of components subjected to high vibration.
Development of higher-order modal methods for transient thermal and structural analysis
NASA Technical Reports Server (NTRS)
Camarda, Charles J.; Haftka, Raphael T.
1989-01-01
A force-derivative method which produces higher-order modal solutions to transient problems is evaluated. These higher-order solutions converge to an accurate response using fewer degrees-of-freedom (eigenmodes) than lower-order methods such as the mode-displacement or mode-acceleration methods. Results are presented for non-proportionally damped structural problems as well as thermal problems modeled by finite elements.
Alternative Modal Basis Selection Procedures For Reduced-Order Nonlinear Random Response Simulation
NASA Technical Reports Server (NTRS)
Przekop, Adam; Guo, Xinyun; Rizi, Stephen A.
2012-01-01
Three procedures to guide selection of an efficient modal basis in a nonlinear random response analysis are examined. One method is based only on proper orthogonal decomposition, while the other two additionally involve smooth orthogonal decomposition. Acoustic random response problems are employed to assess the performance of the three modal basis selection approaches. A thermally post-buckled beam exhibiting snap-through behavior, a shallowly curved arch in the auto-parametric response regime and a plate structure are used as numerical test articles. The results of a computationally taxing full-order analysis in physical degrees of freedom are taken as the benchmark for comparison with the results from the three reduced-order analyses. For the cases considered, all three methods are shown to produce modal bases resulting in accurate and computationally efficient reduced-order nonlinear simulations.
A modal parameter extraction procedure applicable to linear time-invariant dynamic systems
NASA Technical Reports Server (NTRS)
Kurdila, A. J.; Craig, R. R., Jr.
1985-01-01
Modal analysis has emerged as a valuable tool in many phases of the engineering design process. Complex vibration and acoustic problems in new designs can often be remedied through use of the method. Moreover, the technique has been used to enhance the conceptual understanding of structures by serving to verify analytical models. A new modal parameter estimation procedure is presented. The technique is applicable to linear, time-invariant systems and accommodates multiple input excitations. In order to provide a background for the derivation of the method, some modal parameter extraction procedures currently in use are described. Key features implemented in the new technique are elaborated upon.
Harmonic analysis of electrified railway based on improved HHT
NASA Astrophysics Data System (ADS)
Wang, Feng
2018-04-01
In this paper, the causes and harms of the current electric locomotive electrical system harmonics are firstly studied and analyzed. Based on the characteristics of the harmonics in the electrical system, the Hilbert-Huang transform method is introduced. Based on the in-depth analysis of the empirical mode decomposition method and the Hilbert transform method, the reasons and solutions to the endpoint effect and modal aliasing problem in the HHT method are explored. For the endpoint effect of HHT, this paper uses point-symmetric extension method to extend the collected data; In allusion to the modal aliasing problem, this paper uses the high frequency harmonic assistant method to preprocess the signal and gives the empirical formula of high frequency auxiliary harmonic. Finally, combining the suppression of HHT endpoint effect and modal aliasing problem, an improved HHT method is proposed and simulated by matlab. The simulation results show that the improved HHT is effective for the electric locomotive power supply system.
Linked independent component analysis for multimodal data fusion.
Groves, Adrian R; Beckmann, Christian F; Smith, Steve M; Woolrich, Mark W
2011-02-01
In recent years, neuroimaging studies have increasingly been acquiring multiple modalities of data and searching for task- or disease-related changes in each modality separately. A major challenge in analysis is to find systematic approaches for fusing these differing data types together to automatically find patterns of related changes across multiple modalities, when they exist. Independent Component Analysis (ICA) is a popular unsupervised learning method that can be used to find the modes of variation in neuroimaging data across a group of subjects. When multimodal data is acquired for the subjects, ICA is typically performed separately on each modality, leading to incompatible decompositions across modalities. Using a modular Bayesian framework, we develop a novel "Linked ICA" model for simultaneously modelling and discovering common features across multiple modalities, which can potentially have completely different units, signal- and contrast-to-noise ratios, voxel counts, spatial smoothnesses and intensity distributions. Furthermore, this general model can be configured to allow tensor ICA or spatially-concatenated ICA decompositions, or a combination of both at the same time. Linked ICA automatically determines the optimal weighting of each modality, and also can detect single-modality structured components when present. This is a fully probabilistic approach, implemented using Variational Bayes. We evaluate the method on simulated multimodal data sets, as well as on a real data set of Alzheimer's patients and age-matched controls that combines two very different types of structural MRI data: morphological data (grey matter density) and diffusion data (fractional anisotropy, mean diffusivity, and tensor mode). Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Zhisai; Liu, Li; Zhou, Sida; Naets, Frank; Heylen, Ward; Desmet, Wim
2017-03-01
The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stability-preserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam experimental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides a new way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.
Using Response Surface Methods to Correlate the Modal Test of an Inflatable Test Article
NASA Technical Reports Server (NTRS)
Gupta, Anju
2013-01-01
This paper presents a practical application of response surface methods (RSM) to correlate a finite element model of a structural modal test. The test article is a quasi-cylindrical inflatable structure which primarily consists of a fabric weave, with an internal bladder and metallic bulkheads on either end. To mitigate model size, the fabric weave was simplified by representing it with shell elements. The task at hand is to represent the material behavior of the weave. The success of the model correlation is measured by comparing the four major modal frequencies of the analysis model to the four major modal frequencies of the test article. Given that only individual strap material properties were provided and material properties of the overall weave were not available, defining the material properties of the finite element model became very complex. First it was necessary to determine which material properties (modulus of elasticity in the hoop and longitudinal directions, shear modulus, Poisson's ratio, etc.) affected the modal frequencies. Then a Latin Hypercube of the parameter space was created to form an efficiently distributed finite case set. Each case was then analyzed with the results input into RSM. In the resulting response surface it was possible to see how each material parameter affected the modal frequencies of the analysis model. If the modal frequencies of the analysis model and its corresponding parameters match the test with acceptable accuracy, it can be said that the model correlation is successful.
Modal analysis using a Fourier analyzer, curve-fitting, and modal tuning
NASA Technical Reports Server (NTRS)
Craig, R. R., Jr.; Chung, Y. T.
1981-01-01
The proposed modal test program differs from single-input methods in that preliminary data may be acquired using multiple inputs, and modal tuning procedures may be employed to define closely spaced frquency modes more accurately or to make use of frequency response functions (FRF's) which are based on several input locations. In some respects the proposed modal test proram resembles earlier sine-sweep and sine-dwell testing in that broadband FRF's are acquired using several input locations, and tuning is employed to refine the modal parameter estimates. The major tasks performed in the proposed modal test program are outlined. Data acquisition and FFT processing, curve fitting, and modal tuning phases are described and examples are given to illustrate and evaluate them.
Harmonic component detection: Optimized Spectral Kurtosis for operational modal analysis
NASA Astrophysics Data System (ADS)
Dion, J.-L.; Tawfiq, I.; Chevallier, G.
2012-01-01
This work is a contribution in the field of Operational Modal Analysis to identify the modal parameters of mechanical structures using only measured responses. The study deals with structural responses coupled with harmonic components amplitude and frequency modulated in a short range, a common combination for mechanical systems with engines and other rotating machines in operation. These harmonic components generate misleading data interpreted erroneously by the classical methods used in OMA. The present work attempts to differentiate maxima in spectra stemming from harmonic components and structural modes. The detection method proposed is based on the so-called Optimized Spectral Kurtosis and compared with others definitions of Spectral Kurtosis described in the literature. After a parametric study of the method, a critical study is performed on numerical simulations and then on an experimental structure in operation in order to assess the method's performance.
Finite element analysis of damped vibrations of laminated composite plates
NASA Astrophysics Data System (ADS)
Hu, Baogang
1992-11-01
Damped free vibrations of composite laminates are subjected to macromechanical analysis. Two models are developed: a viscoelastic damping model and a specific damping capacity model. The important symmetry property of the damping matrix is retained in both models. A modified modal strain energy method is proposed for evaluating modal damping in the viscoelastic model using a real (instead of a complex) eigenvalue problem solution. Numerical studies of multidegree of freedom systems are conducted to illustrate the improved accuracy of the method compared to the modal strain energy method. The experimental data reported in the literature for damped free vibrations in both polymer matrix and metal matrix composites were used in finite element analysis to test and compare the damping models. The natural frequencies and modal damping were obtained using both the viscoelastic and specific models. Results from both models are in satisfactory agreement with experimental data. Both models were found to be reasonably accurate for systems with low damping. Parametric studies were conducted to examine the effects on damping of the side to thickness ratio, the principal moduli ratio, the total number of layers, the ply angle, and the boundary conditions.
Computer-Assisted Traffic Engineering Using Assignment, Optimal Signal Setting, and Modal Split
DOT National Transportation Integrated Search
1978-05-01
Methods of traffic assignment, traffic signal setting, and modal split analysis are combined in a set of computer-assisted traffic engineering programs. The system optimization and user optimization traffic assignments are described. Travel time func...
Fiber facet gratings for high power fiber lasers
NASA Astrophysics Data System (ADS)
Vanek, Martin; Vanis, Jan; Baravets, Yauhen; Todorov, Filip; Ctyroky, Jiri; Honzatko, Pavel
2017-12-01
We numerically investigated the properties of diffraction gratings designated for fabrication on the facet of an optical fiber. The gratings are intended to be used in high-power fiber lasers as mirrors either with a low or high reflectivity. The modal reflectance of low reflectivity polarizing grating has a value close to 3% for TE mode while it is significantly suppressed for TM mode. Such a grating can be fabricated on laser output fiber facet. The polarizing grating with high modal reflectance is designed as a leaky-mode resonant diffraction grating. The grating can be etched in a thin layer of high index dielectric which is sputtered on fiber facet. We used refractive index of Ta2O5 for such a layer. We found that modal reflectance can be close to 0.95 for TE polarization and polarization extinction ratio achieves 18 dB. Rigorous coupled wave analysis was used for fast optimization of grating parameters while aperiodic rigorous coupled wave analysis, Fourier modal method and finite difference time domain method were compared and used to compute modal reflectance of designed gratings.
Simulation Analysis of Helicopter Ground Resonance Nonlinear Dynamics
NASA Astrophysics Data System (ADS)
Zhu, Yan; Lu, Yu-hui; Ling, Ai-min
2017-07-01
In order to accurately predict the dynamic instability of helicopter ground resonance, a modeling and simulation method of helicopter ground resonance considering nonlinear dynamic characteristics of components (rotor lead-lag damper, landing gear wheel and absorber) is presented. The numerical integral method is used to calculate the transient responses of the body and rotor, simulating some disturbance. To obtain quantitative instabilities, Fast Fourier Transform (FFT) is conducted to estimate the modal frequencies, and the mobile rectangular window method is employed in the predictions of the modal damping in terms of the response time history. Simulation results show that ground resonance simulation test can exactly lead up the blade lead-lag regressing mode frequency, and the modal damping obtained according to attenuation curves are close to the test results. The simulation test results are in accordance with the actual accident situation, and prove the correctness of the simulation method. This analysis method used for ground resonance simulation test can give out the results according with real helicopter engineering tests.
NASA Astrophysics Data System (ADS)
Cheng, Liangliang; Busca, Giorgio; Cigada, Alfredo
2017-07-01
Modal analysis is commonly considered as an effective tool to obtain the intrinsic characteristics of structures including natural frequencies, modal damping ratios, and mode shapes, which are significant indicators for monitoring the health status of engineering structures. The complex mode indicator function (CMIF) can be regarded as an effective numerical tool to perform modal analysis. In this paper, experimental strain modal analysis based on the CMIF has been introduced. Moreover, a distributed fiber-optic sensor, as a dense measuring device, has been applied to acquire strain data along a beam surface. Thanks to the dense spatial resolution of the distributed fiber optics, more detailed mode shapes could be obtained. In order to test the effectiveness of the method, a mass lump—considered as a linear damage component—has been attached to the surface of the beam, and damage detection based on strain mode shape has been carried out. The results manifest that strain modal parameters can be estimated effectively by utilizing the CMIF based on the corresponding simulations and experiments. Furthermore, damage detection based on strain mode shapes benefits from the accuracy of strain mode shape recognition and the excellent performance of the distributed fiber optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhenyu; Zhou, Ning; Tuffner, Francis K.
Small signal stability problems are one of the major threats to grid stability and reliability in the U.S. power grid. An undamped mode can cause large-amplitude oscillations and may result in system breakups and large-scale blackouts. There have been several incidents of system-wide oscillations. Of those incidents, the most notable is the August 10, 1996 western system breakup, a result of undamped system-wide oscillations. Significant efforts have been devoted to monitoring system oscillatory behaviors from measurements in the past 20 years. The deployment of phasor measurement units (PMU) provides high-precision, time-synchronized data needed for detecting oscillation modes. Measurement-based modal analysis,more » also known as ModeMeter, uses real-time phasor measurements to identify system oscillation modes and their damping. Low damping indicates potential system stability issues. Modal analysis has been demonstrated with phasor measurements to have the capability of estimating system modes from both oscillation signals and ambient data. With more and more phasor measurements available and ModeMeter techniques maturing, there is yet a need for methods to bring modal analysis from monitoring to actions. The methods should be able to associate low damping with grid operating conditions, so operators or automated operation schemes can respond when low damping is observed. The work presented in this report aims to develop such a method and establish a Modal Analysis for Grid Operation (MANGO) procedure to aid grid operation decision making to increase inter-area modal damping. The procedure can provide operation suggestions (such as increasing generation or decreasing load) for mitigating inter-area oscillations.« less
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Baumeister, Joseph F.
1994-01-01
An analytical procedure is presented, called the modal element method, that combines numerical grid based algorithms with eigenfunction expansions developed by separation of variables. A modal element method is presented for solving potential flow in a channel with two-dimensional cylindrical like obstacles. The infinite computational region is divided into three subdomains; the bounded finite element domain, which is characterized by the cylindrical obstacle and the surrounding unbounded uniform channel entrance and exit domains. The velocity potential is represented approximately in the grid based domain by a finite element solution and is represented analytically by an eigenfunction expansion in the uniform semi-infinite entrance and exit domains. The calculated flow fields are in excellent agreement with exact analytical solutions. By eliminating the grid surrounding the obstacle, the modal element method reduces the numerical grid size, employs a more precise far field boundary condition, as well as giving theoretical insight to the interaction of the obstacle with the mean flow. Although the analysis focuses on a specific geometry, the formulation is general and can be applied to a variety of problems as seen by a comparison to companion theories in aeroacoustics and electromagnetics.
ERIC Educational Resources Information Center
Kosko, Karl W.; Herbst, Patricio
2012-01-01
Analysis of teacher-to-teacher talk provides researchers with useful information regarding the teaching profession and teachers' perspectives. This article provides a description of a method, with accompanying example, examining teacher-to-teacher talk by incorporating semantic modality and examining trends of its usage in a quantitative manner.…
Determination of orthotropic material properties by modal analysis
NASA Astrophysics Data System (ADS)
Lai, Junpeng
The methodology for determination of orthotropic material properties in plane stress condition will be presented. It is applied to orthotropic laminated plates like printed wiring boards. The first part of the thesis will focus on theories and methodologies. The static beam model and vibratory plate model is presented. The methods are validated by operating a series of test on aluminum. In the static tests, deflection and two directions of strain are measured, thus four of the properties will be identified: Ex, Ey, nuxy, nuyx. Moving on to dynamic test, the first ten modes' resonance frequencies are obtained. The technique of modal analysis is adopted. The measured data is processed by FFT and analyzed by curve fitting to extract natural frequencies and mode shapes. With the last material property to be determined, a finite element method using ANSYS is applied. Along with the identified material properties in static tests, and proper initial guess of the unknown shear modulus, an iterative process creates finite element model and conducts modal analysis with the updating model. When the modal analysis result produced by ANSYS matches the natural frequencies acquired by dynamic test, the process will halt. Then we obtained the last material property in plane stress condition.
Vibration signature analysis of multistage gear transmission
NASA Technical Reports Server (NTRS)
Choy, F. K.; Tu, Y. K.; Savage, M.; Townsend, D. P.
1989-01-01
An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system.
Repressing the effects of variable speed harmonic orders in operational modal analysis
NASA Astrophysics Data System (ADS)
Randall, R. B.; Coats, M. D.; Smith, W. A.
2016-10-01
Discrete frequency components such as machine shaft orders can disrupt the operation of normal Operational Modal Analysis (OMA) algorithms. With constant speed machines, they have been removed using time synchronous averaging (TSA). This paper compares two approaches for varying speed machines. In one method, signals are transformed into the order domain, and after the removal of shaft speed related components by a cepstral notching method, are transformed back to the time domain to allow normal OMA. In the other simpler approach an exponential shortpass lifter is applied directly in the time domain cepstrum to enhance the modal information at the expense of other disturbances. For simulated gear signals with speed variations of both ±5% and ±15%, the simpler approach was found to give better results The TSA method is shown not to work in either case. The paper compares the results with those obtained using a stationary random excitation.
A prospective programmatic cost analysis of Fuel Your Life: A worksite translation of DPP
Walcott, Rebecca L; Wilson, Mark G; Corso, Phaedra S; Padilla, Heather; Zuercher, Heather; DeJoy, David M.; Vandenberg, Robert J.
2018-01-01
Objective An accounting of the resources necessary for implementation of efficacious programs is important for economic evaluations and dissemination. Methods A programmatic costs analysis was conducted prospectively in conjunction with an efficacy trial of Fuel Your Life (FYL), a worksite translation of the Diabetes Prevention Program. FYL was implemented through three different modalities, Group, Phone, and Self-study, using a micro-costing approach from both the employer and societal perspectives. Results The Phone modality was the most costly at $354.6 per participant, compared to $154.6 and $75.5 for the Group and Self-study modalities, respectively. With the inclusion of participant-related costs, the Phone modality was still more expensive than the Group modality but with a smaller incremental difference ($461.4 vs. $368.1). Conclusions This level of cost-related detail for a preventive intervention is rare, and our analysis can aid in the transparency of future economic evaluations. PMID:27820760
Thermal modal analysis of novel non-pneumatic mechanical elastic wheel based on FEM and EMA
NASA Astrophysics Data System (ADS)
Zhao, Youqun; Zhu, Mingmin; Lin, Fen; Xiao, Zhen; Li, Haiqing; Deng, Yaoji
2018-01-01
A combination of Finite Element Method (FEM) and Experiment Modal Analysis (EMA) have been employed here to characterize the structural dynamic response of mechanical elastic wheel (ME-Wheel) operating under a specific thermal environment. The influence of high thermal condition on the structural dynamic response of ME-Wheel is investigated. The obtained results indicate that the EMA results are in accordance with those obtained using the proposed Finite Element (FE) model, indicting the high reliability of this FE model applied in analyzing the modal of ME-Wheel working under practical thermal environment. It demonstrates that the structural dynamic response of ME-Wheel operating under a specific thermal condition can be predicted and evaluated using the proposed analysis method, which is beneficial for the dynamic optimization design of the wheel structure to avoid tire temperature related vibration failure and improve safety of tire.
Modal Traffic Impacts of Waterway User Charges : Volume 2. Distribution Systems Analysis.
DOT National Transportation Integrated Search
1977-08-01
The report has considered waterway user charges, which have been proposed as a method of cost recovery of Federal expenditures. The report has examined possible modal carrier and traffic impacts due to user charges on the inland river system, and pot...
Bayesian operational modal analysis with asynchronous data, Part II: Posterior uncertainty
NASA Astrophysics Data System (ADS)
Zhu, Yi-Chen; Au, Siu-Kui
2018-01-01
A Bayesian modal identification method has been proposed in the companion paper that allows the most probable values of modal parameters to be determined using asynchronous ambient vibration data. This paper investigates the identification uncertainty of modal parameters in terms of their posterior covariance matrix. Computational issues are addressed. Analytical expressions are derived to allow the posterior covariance matrix to be evaluated accurately and efficiently. Synthetic, laboratory and field data examples are presented to verify the consistency, investigate potential modelling error and demonstrate practical applications.
Modal vector estimation for closely spaced frequency modes
NASA Technical Reports Server (NTRS)
Craig, R. R., Jr.; Chung, Y. T.; Blair, M.
1982-01-01
Techniques for obtaining improved modal vector estimates for systems with closely spaced frequency modes are discussed. In describing the dynamical behavior of a complex structure modal parameters are often analyzed: undamped natural frequency, mode shape, modal mass, modal stiffness and modal damping. From both an analytical standpoint and an experimental standpoint, identification of modal parameters is more difficult if the system has repeated frequencies or even closely spaced frequencies. The more complex the structure, the more likely it is to have closely spaced frequencies. This makes it difficult to determine valid mode shapes using single shaker test methods. By employing band selectable analysis (zoom) techniques and by employing Kennedy-Pancu circle fitting or some multiple degree of freedom (MDOF) curve fit procedure, the usefulness of the single shaker approach can be extended.
Detection of rebar delamination using modal analysis
NASA Astrophysics Data System (ADS)
Blodgett, David W.
2003-08-01
A non-destructive method for early detection of reinforcement steel bars (re-bar) delamination in concrete structures has been developed. This method, termed modal analysis, has been shown effective in both laboratory and field experiments. In modal analysis, an audio speaker is used to generate flexural resonant modes in the re-bar in reinforced concrete structures. Vibrations associated with these modes are coupled to the surrounding concrete and propagate to the surface where they are detected using a laser vibrometer and/or accelerometer. Monitoring both the frequency and amplitude of these vibrations provides information on the bonding state of the embedded re-bar. Laboratory measurements were performed on several specially prepared concrete blocks with re-bar of varying degrees of simulated corrosion. Field measurements were performed on an old bridge about to be torn down in Howard County, Maryland and the results compared with those obtained using destructive analysis of the bridge after demolition. Both laboratory and field test results show this technique to be sensitive to re-bar delamination.
Modal density of rectangular structures in a wide frequency range
NASA Astrophysics Data System (ADS)
Parrinello, A.; Ghiringhelli, G. L.
2018-04-01
A novel approach to investigate the modal density of a rectangular structure in a wide frequency range is presented. First, the modal density is derived, in the whole frequency range of interest, on the basis of sound transmission through the infinite counterpart of the structure; then, it is corrected by means of the low-frequency modal behavior of the structure, taking into account actual size and boundary conditions. A statistical analysis reveals the connection between the modal density of the structure and the transmission of sound through its thickness. A transfer matrix approach is used to compute the required acoustic parameters, making it possible to deal with structures having arbitrary stratifications of different layers. A finite element method is applied on coarse grids to derive the first few eigenfrequencies required to correct the modal density. Both the transfer matrix approach and the coarse grids involved in the finite element analysis grant high efficiency. Comparison with alternative formulations demonstrates the effectiveness of the proposed methodology.
Large Margin Multi-Modal Multi-Task Feature Extraction for Image Classification.
Yong Luo; Yonggang Wen; Dacheng Tao; Jie Gui; Chao Xu
2016-01-01
The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We, therefore, propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features, so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization, and each subproblem can be efficiently solved. Experiments on two challenging real-world image data sets demonstrate the effectiveness and superiority of the proposed method.
Turbine design using complex modes and substructuring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olausson, H.L.; Torby, B.J.
1988-10-01
A complex modal-analysis method for studying the behavior of a turbine near its design speed is presented. The modal calculations account for gyroscopic moments as well as nonsymmetric bearing effects. Results of calculations performed for a 650 MW ASEA STAL turbine installation are presented. 12 references.
Vibration of carbon nanotubes with defects: order reduction methods
NASA Astrophysics Data System (ADS)
Hudson, Robert B.; Sinha, Alok
2018-03-01
Order reduction methods are widely used to reduce computational effort when calculating the impact of defects on the vibrational properties of nearly periodic structures in engineering applications, such as a gas-turbine bladed disc. However, despite obvious similarities these techniques have not yet been adapted for use in analysing atomic structures with inevitable defects. Two order reduction techniques, modal domain analysis and modified modal domain analysis, are successfully used in this paper to examine the changes in vibrational frequencies, mode shapes and mode localization caused by defects in carbon nanotubes. The defects considered are isotope defects and Stone-Wales defects, though the methods described can be extended to other defects.
NASA Astrophysics Data System (ADS)
Ege, Kerem; Boutillon, Xavier; Rébillat, Marc
2013-03-01
The piano soundboard transforms the string vibration into sound and therefore, its vibrations are of primary importance for the sound characteristics of the instrument. An original vibro-acoustical method is presented to isolate the soundboard nonlinearity from that of the exciting device (here: a loudspeaker) and to measure it. The nonlinear part of the soundboard response to an external excitation is quantitatively estimated for the first time, at ≈-40 dB below the linear part at the ff nuance. Given this essentially linear response, a modal identification is performed up to 3 kHz by means of a novel high resolution modal analysis technique [K. Ege, X. Boutillon, B. David, High-resolution modal analysis, Journal of Sound and Vibration 325 (4-5) (2009) 852-869]. Modal dampings (which, so far, were unknown for the piano in this frequency range) are determined in the mid-frequency domain where FFT-based methods fail to evaluate them with an acceptable precision. They turn out to be close to those imposed by wood. A finite-element modelling of the soundboard is also presented. The low-order modal shapes and the comparison between the corresponding experimental and numerical modal frequencies suggest that the boundary conditions can be considered as blocked, except at very low frequencies. The frequency-dependency of the estimated modal densities and the observation of modal shapes reveal two well-separated regimes. Below ≈1 kHz, the soundboard vibrates more or less like a homogeneous plate. Above that limit, the structural waves are confined by ribs, as already noticed by several authors, and localised in restricted areas (one or a few inter-rib spaces), presumably due to a slightly irregular spacing of the ribs across the soundboard.
Baros, Duka Ninković; Gajanin, Vesna S; Gajanin, Radoslav B; Zrnić, Bogdan
2014-01-01
Psoriasis is a chronic, inflammatory, immune-mediated skin disease. In addition to standard therapeutic modalities (antibiotics, cytostatics, phototherapy, photochemotherapy and retinoids), nonstandard methods can be used in the treatment of psoriasis. This includes balneotherapy which is most commonly used in combination with therapeutic resources. The aim of this research was to determine the length of remission of psoriasis in patients treated with standard therapeutic modalities, balneotherapy, and combined treatment (standard therapeutic modalities and balneotherapy). The study analyzed 60 adult patients, of both sexes, with different clinical forms of psoriasis, who were divided into three groups according to the applied therapeutic modalities: the first group (treated with standard therapeutic modalities), the second group (treated with balneotherapy) and the third group (treated with combined therapy-standard methods therapy and balneotherapy). The Psoriasis Area and Severity Index was determined in first, third and sixth week of treatment for all patients. The following laboratory analysis were performed and monitored: C reactive protein, iron with total iron binding capacity, unsaturated iron binding capacity and ferritin, uric acid, rheumatoid factors and antibodies to streptolysin O in the first and sixth week of treatment. The average length of remission in patients treated with standard therapeutic modalities and in those treated with balneotherapy was 1.77 +/- 0.951 months and 1.79 +/- 0.918 months, respectively. There was a statistically significant difference in the duration of remission between the patients treated with combination therapy and patients treated with standard therapeutic modalities (p = 0.019) and balneotherapy (p = 0.032). The best results have been achieved when the combination therapy was administered.
A new method to extract modal parameters using output-only responses
NASA Astrophysics Data System (ADS)
Kim, Byeong Hwa; Stubbs, Norris; Park, Taehyo
2005-04-01
This work proposes a new output-only modal analysis method to extract mode shapes and natural frequencies of a structure. The proposed method is based on an approach with a single-degree-of-freedom in the time domain. For a set of given mode-isolated signals, the un-damped mode shapes are extracted utilizing the singular value decomposition of the output energy correlation matrix with respect to sensor locations. The natural frequencies are extracted from a noise-free signal that is projected on the estimated modal basis. The proposed method is particularly efficient when a high resolution of mode shape is essential. The accuracy of the method is numerically verified using a set of time histories that are simulated using a finite-element method. The feasibility and practicality of the method are verified using experimental data collected at the newly constructed King Storm Water Bridge in California, United States.
Automated SEM Modal Analysis Applied to the Diogenites
NASA Technical Reports Server (NTRS)
Bowman, L. E.; Spilde, M. N.; Papike, James J.
1996-01-01
Analysis of volume proportions of minerals, or modal analysis, is routinely accomplished by point counting on an optical microscope, but the process, particularly on brecciated samples such as the diogenite meteorites, is tedious and prone to error by misidentification of very small fragments, which may make up a significant volume of the sample. Precise volume percentage data can be gathered on a scanning electron microscope (SEM) utilizing digital imaging and an energy dispersive spectrometer (EDS). This form of automated phase analysis reduces error, and at the same time provides more information than could be gathered using simple point counting alone, such as particle morphology statistics and chemical analyses. We have previously studied major, minor, and trace-element chemistry of orthopyroxene from a suite of diogenites. This abstract describes the method applied to determine the modes on this same suite of meteorites and the results of that research. The modal abundances thus determined add additional information on the petrogenesis of the diogenites. In addition, low-abundance phases such as spinels were located for further analysis by this method.
Alternative Modal Basis Selection Procedures for Nonlinear Random Response Simulation
NASA Technical Reports Server (NTRS)
Przekop, Adam; Guo, Xinyun; Rizzi, Stephen A.
2010-01-01
Three procedures to guide selection of an efficient modal basis in a nonlinear random response analysis are examined. One method is based only on proper orthogonal decomposition, while the other two additionally involve smooth orthogonal decomposition. Acoustic random response problems are employed to assess the performance of the three modal basis selection approaches. A thermally post-buckled beam exhibiting snap-through behavior, a shallowly curved arch in the auto-parametric response regime and a plate structure are used as numerical test articles. The results of the three reduced-order analyses are compared with the results of the computationally taxing simulation in the physical degrees of freedom. For the cases considered, all three methods are shown to produce modal bases resulting in accurate and computationally efficient reduced-order nonlinear simulations.
Data dependent systems approach to modal analysis Part 1: Theory
NASA Astrophysics Data System (ADS)
Pandit, S. M.; Mehta, N. P.
1988-05-01
The concept of Data Dependent Systems (DDS) and its applicability in the context of modal vibration analysis is presented. The ability of the DDS difference equation models to provide a complete representation of a linear dynamic system from its sampled response data forms the basis of the approach. The models are decomposed into deterministic and stochastic components so that system characteristics are isolated from noise effects. The modelling strategy is outlined, and the method of analysis associated with modal parameter identification is described in detail. Advantages and special features of the DDS methodology are discussed. Since the correlated noise is appropriately and automatically modelled by the DDS, the modal parameters are shown to be estimated very accurately and hence no preprocessing of the data is needed. Complex mode shapes and non-classical damping are as easily analyzed as the classical normal mode analysis. These features are illustrated by using simulated data in this Part I and real data on a disc-brake rotor in Part II.
Turbulence excited frequency domain damping measurement and truncation effects
NASA Technical Reports Server (NTRS)
Soovere, J.
1976-01-01
Existing frequency domain modal frequency and damping analysis methods are discussed. The effects of truncation in the Laplace and Fourier transform data analysis methods are described. Methods for eliminating truncation errors from measured damping are presented. Implications of truncation effects in fast Fourier transform analysis are discussed. Limited comparison with test data is presented.
NASA Astrophysics Data System (ADS)
Ferhatoglu, Erhan; Cigeroglu, Ender; Özgüven, H. Nevzat
2018-07-01
In this paper, a new modal superposition method based on a hybrid mode shape concept is developed for the determination of steady state vibration response of nonlinear structures. The method is developed specifically for systems having nonlinearities where the stiffness of the system may take different limiting values. Stiffness variation of these nonlinear systems enables one to define different linear systems corresponding to each value of the limiting equivalent stiffness. Moreover, the response of the nonlinear system is bounded by the confinement of these linear systems. In this study, a modal superposition method utilizing novel hybrid mode shapes which are defined as linear combinations of the modal vectors of the limiting linear systems is proposed to determine periodic response of nonlinear systems. In this method the response of the nonlinear system is written in terms of hybrid modes instead of the modes of the underlying linear system. This provides decrease of the number of modes that should be retained for an accurate solution, which in turn reduces the number of nonlinear equations to be solved. In this way, computational time for response calculation is directly curtailed. In the solution, the equations of motion are converted to a set of nonlinear algebraic equations by using describing function approach, and the numerical solution is obtained by using Newton's method with arc-length continuation. The method developed is applied on two different systems: a lumped parameter model and a finite element model. Several case studies are performed and the accuracy and computational efficiency of the proposed modal superposition method with hybrid mode shapes are compared with those of the classical modal superposition method which utilizes the mode shapes of the underlying linear system.
Scaling of mode shapes from operational modal analysis using harmonic forces
NASA Astrophysics Data System (ADS)
Brandt, A.; Berardengo, M.; Manzoni, S.; Cigada, A.
2017-10-01
This paper presents a new method for scaling mode shapes obtained by means of operational modal analysis. The method is capable of scaling mode shapes on any structure, also structures with closely coupled modes, and the method can be used in the presence of ambient vibration from traffic or wind loads, etc. Harmonic excitation can be relatively easily accomplished by using general-purpose actuators, also for force levels necessary for driving large structures such as bridges and highrise buildings. The signal processing necessary for mode shape scaling by the proposed method is simple and the method can easily be implemented in most measurement systems capable of generating a sine wave output. The tests necessary to scale the modes are short compared to typical operational modal analysis test time. The proposed method is thus easy to apply and inexpensive relative to some other methods for scaling mode shapes that are available in literature. Although it is not necessary per se, we propose to excite the structure at, or close to, the eigenfrequencies of the modes to be scaled, since this provides better signal-to-noise ratio in the response sensors, thus permitting the use of smaller actuators. An extensive experimental activity on a real structure was carried out and the results reported demonstrate the feasibility and accuracy of the proposed method. Since the method utilizes harmonic excitation for the mode shape scaling, we propose to call the method OMAH.
Does the modality effect exist? And if so, which modality effect?
Reinwein, Joachim
2012-02-01
The modality effect is a central issue in multimedia learning [see Mayer (Cambridge University Press, 2005a), for a review]. Sweller's Cognitive Load Theory (CLT), for example, presumes that an illustrated text is better understood when presented visually rather than orally. The predictive power of CLT lies in how it links in to Baddeley's (1986) model of working memory and Penney's (Mem Cognit 17:398-442, 1989) Separate-Streams Hypothesis. Ginns's (Learn Instr 4:313-331, 2005) recent meta-analysis also supports the modality effect (d = 0.72, based on 43 independent effects). This article replicates the meta-analysis of the modality effect based on 86 independent effects (with within-study subgroups as the unit of analysis and with mean of the outcomes as the dependent measure), with results showing a reduction of the overall effect size by almost half (d = 0.38), and even more when Duval and Tweedie's Trim and Fill method is used to correct publication bias (d = 0.20). This article also widens the scope of the analysis of moderator variables (e.g. Pace of presentation, Type of visualization, Research group) as well as their potentially confounded effects. Finally, it is argued that, for theoretical reasons, the so-called modality effect cannot be based on Penney's or Baddeley's theories and must be explained in a different way.
Bharath, Rose D; Panda, Rajanikant; Reddam, Venkateswara Reddy; Bhaskar, M V; Gohel, Suril; Bhardwaj, Sujas; Prajapati, Arvind; Pal, Pramod Kumar
2017-01-01
Background and Purpose : Repetitive transcranial magnetic stimulation (rTMS) induces widespread changes in brain connectivity. As the network topology differences induced by a single session of rTMS are less known we undertook this study to ascertain whether the network alterations had a small-world morphology using multi-modal graph theory analysis of simultaneous EEG-fMRI. Method : Simultaneous EEG-fMRI was acquired in duplicate before (R1) and after (R2) a single session of rTMS in 14 patients with Writer's Cramp (WC). Whole brain neuronal and hemodynamic network connectivity were explored using the graph theory measures and clustering coefficient, path length and small-world index were calculated for EEG and resting state fMRI (rsfMRI). Multi-modal graph theory analysis was used to evaluate the correlation of EEG and fMRI clustering coefficients. Result : A single session of rTMS was found to increase the clustering coefficient and small-worldness significantly in both EEG and fMRI ( p < 0.05). Multi-modal graph theory analysis revealed significant modulations in the fronto-parietal regions immediately after rTMS. The rsfMRI revealed additional modulations in several deep brain regions including cerebellum, insula and medial frontal lobe. Conclusion : Multi-modal graph theory analysis of simultaneous EEG-fMRI can supplement motor physiology methods in understanding the neurobiology of rTMS in vivo . Coinciding evidence from EEG and rsfMRI reports small-world morphology for the acute phase network hyper-connectivity indicating changes ensuing low-frequency rTMS is probably not "noise".
NASA Astrophysics Data System (ADS)
Sun, Limin; Chen, Lin
2017-10-01
Residual mode correction is found crucial in calibrating linear resonant absorbers for flexible structures. The classic modal representation augmented with stiffness and inertia correction terms accounting for non-resonant modes improves the calibration accuracy and meanwhile avoids complex modal analysis of the full system. This paper explores the augmented modal representation in calibrating control devices with nonlinearity, by studying a taut cable attached with a general viscous damper and its Equivalent Dynamic Systems (EDSs), i.e. the augmented modal representations connected to the same damper. As nonlinearity is concerned, Frequency Response Functions (FRFs) of the EDSs are investigated in detail for parameter calibration, using the harmonic balance method in combination with numerical continuation. The FRFs of the EDSs and corresponding calibration results are then compared with those of the full system documented in the literature for varied structural modes, damper locations and nonlinearity. General agreement is found and in particular the EDS with both stiffness and inertia corrections (quasi-dynamic correction) performs best among available approximate methods. This indicates that the augmented modal representation although derived from linear cases is applicable to a relatively wide range of damper nonlinearity. Calibration of nonlinear devices by this means still requires numerical analysis while the efficiency is largely improved owing to the system order reduction.
Morgenstern, Hai; Rafaely, Boaz
2018-02-01
Spatial analysis of room acoustics is an ongoing research topic. Microphone arrays have been employed for spatial analyses with an important objective being the estimation of the direction-of-arrival (DOA) of direct sound and early room reflections using room impulse responses (RIRs). An optimal method for DOA estimation is the multiple signal classification algorithm. When RIRs are considered, this method typically fails due to the correlation of room reflections, which leads to rank deficiency of the cross-spectrum matrix. Preprocessing methods for rank restoration, which may involve averaging over frequency, for example, have been proposed exclusively for spherical arrays. However, these methods fail in the case of reflections with equal time delays, which may arise in practice and could be of interest. In this paper, a method is proposed for systems that combine a spherical microphone array and a spherical loudspeaker array, referred to as multiple-input multiple-output systems. This method, referred to as modal smoothing, exploits the additional spatial diversity for rank restoration and succeeds where previous methods fail, as demonstrated in a simulation study. Finally, combining modal smoothing with a preprocessing method is proposed in order to increase the number of DOAs that can be estimated using low-order spherical loudspeaker arrays.
Serag, Ahmed; Blesa, Manuel; Moore, Emma J; Pataky, Rozalia; Sparrow, Sarah A; Wilkinson, A G; Macnaught, Gillian; Semple, Scott I; Boardman, James P
2016-03-24
Accurate whole-brain segmentation, or brain extraction, of magnetic resonance imaging (MRI) is a critical first step in most neuroimage analysis pipelines. The majority of brain extraction algorithms have been developed and evaluated for adult data and their validity for neonatal brain extraction, which presents age-specific challenges for this task, has not been established. We developed a novel method for brain extraction of multi-modal neonatal brain MR images, named ALFA (Accurate Learning with Few Atlases). The method uses a new sparsity-based atlas selection strategy that requires a very limited number of atlases 'uniformly' distributed in the low-dimensional data space, combined with a machine learning based label fusion technique. The performance of the method for brain extraction from multi-modal data of 50 newborns is evaluated and compared with results obtained using eleven publicly available brain extraction methods. ALFA outperformed the eleven compared methods providing robust and accurate brain extraction results across different modalities. As ALFA can learn from partially labelled datasets, it can be used to segment large-scale datasets efficiently. ALFA could also be applied to other imaging modalities and other stages across the life course.
Zhao, Huajun; Yuan, Dairong
2010-02-10
Examples of optimal designs for a fused-silica transmitted grating with high-intensity tolerance are discussed. It has the potential of placing up to 99% incident polarized light in a single diffraction order. The modal method has been used to analyze the effective indices for TE and TM polarization propagating through the grating region, and the eigenvalue equation of the modal method is transformed to a new form. It is shown that the effective indices of the first two modes depend on the value of the period under Littrow mounting with filling factor f=0.5. The polarization properties of the polarizing beam splitter are analyzed by rigorous coupled-wave analysis (RCWA) at the wavelength of 1.064 microm. The optimal design perfectly matches the RCWA simulation result.
NASA Astrophysics Data System (ADS)
Poggi, Valerio; Ermert, Laura; Burjanek, Jan; Michel, Clotaire; Fäh, Donat
2015-01-01
Frequency domain decomposition (FDD) is a well-established spectral technique used in civil engineering to analyse and monitor the modal response of buildings and structures. The method is based on singular value decomposition of the cross-power spectral density matrix from simultaneous array recordings of ambient vibrations. This method is advantageous to retrieve not only the resonance frequencies of the investigated structure, but also the corresponding modal shapes without the need for an absolute reference. This is an important piece of information, which can be used to validate the consistency of numerical models and analytical solutions. We apply this approach using advanced signal processing to evaluate the resonance characteristics of 2-D Alpine sedimentary valleys. In this study, we present the results obtained at Martigny, in the Rhône valley (Switzerland). For the analysis, we use 2 hr of ambient vibration recordings from a linear seismic array deployed perpendicularly to the valley axis. Only the horizontal-axial direction (SH) of the ground motion is considered. Using the FDD method, six separate resonant frequencies are retrieved together with their corresponding modal shapes. We compare the mode shapes with results from classical standard spectral ratios and numerical simulations of ambient vibration recordings.
Compendium of Methods for Applying Measured Data to Vibration and Acoustic Problems
1985-10-01
statistical energy analysis , finite element models, transfer function...Procedures for the Modal Analysis Method .............................................. 8-22 8.4 Summary of the Procedures for the Statistical Energy Analysis Method... statistical energy analysis . 8-1 • o + . . i... "_+,A" L + "+..• •+A ’! i, + +.+ +• o.+ -ore -+. • -..- , .%..% ". • 2 -".-2- ;.-.’, . o . It is helpful
Application of the Probabilistic Dynamic Synthesis Method to the Analysis of a Realistic Structure
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1998-01-01
The Probabilistic Dynamic Synthesis method is a new technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. A previous work verified the feasibility of the PDS method on a simple seven degree-of-freedom spring-mass system. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.
Guan, Cheng; Zhang, Houjiang; Wang, Xiping; Miao, Hu; Zhou, Lujing; Liu, Fenglu
2017-01-01
Key elastic properties of full-sized wood composite panels (WCPs) must be accurately determined not only for safety, but also serviceability demands. In this study, the modal parameters of full-sized WCPs supported on four nodes were analyzed for determining the modulus of elasticity (E) in both major and minor axes, as well as the in-plane shear modulus of panels by using a vibration testing method. The experimental modal analysis was conducted on three full-sized medium-density fiberboard (MDF) and three full-sized particleboard (PB) panels of three different thicknesses (12, 15, and 18 mm). The natural frequencies and mode shapes of the first nine modes of vibration were determined. Results from experimental modal testing were compared with the results of a theoretical modal analysis. A sensitivity analysis was performed to identify the sensitive modes for calculating E (major axis: Ex and minor axis: Ey) and the in-plane shear modulus (Gxy) of the panels. Mode shapes of the MDF and PB panels obtained from modal testing are in a good agreement with those from theoretical modal analyses. A strong linear relationship exists between the measured natural frequencies and the calculated frequencies. The frequencies of modes (2, 0), (0, 2), and (2, 1) under the four-node support condition were determined as the characteristic frequencies for calculation of Ex, Ey, and Gxy of full-sized WCPs. The results of this study indicate that the four-node support can be used in free vibration test to determine the elastic properties of full-sized WCPs. PMID:28773043
Perturbation solutions of combustion instability problems
NASA Technical Reports Server (NTRS)
Googerdy, A.; Peddieson, J., Jr.; Ventrice, M.
1979-01-01
A method involving approximate modal analysis using the Galerkin method followed by an approximate solution of the resulting modal-amplitude equations by the two-variable perturbation method (method of multiple scales) is applied to two problems of pressure-sensitive nonlinear combustion instability in liquid-fuel rocket motors. One problem exhibits self-coupled instability while the other exhibits mode-coupled instability. In both cases it is possible to carry out the entire linear stability analysis and significant portions of the nonlinear stability analysis in closed form. In the problem of self-coupled instability the nonlinear stability boundary and approximate forms of the limit-cycle amplitudes and growth and decay rates are determined in closed form while the exact limit-cycle amplitudes and growth and decay rates are found numerically. In the problem of mode-coupled instability the limit-cycle amplitudes are found in closed form while the growth and decay rates are found numerically. The behavior of the solutions found by the perturbation method are in agreement with solutions obtained using complex numerical methods.
NASA Astrophysics Data System (ADS)
Reynders, Edwin; Maes, Kristof; Lombaert, Geert; De Roeck, Guido
2016-01-01
Identified modal characteristics are often used as a basis for the calibration and validation of dynamic structural models, for structural control, for structural health monitoring, etc. It is therefore important to know their accuracy. In this article, a method for estimating the (co)variance of modal characteristics that are identified with the stochastic subspace identification method is validated for two civil engineering structures. The first structure is a damaged prestressed concrete bridge for which acceleration and dynamic strain data were measured in 36 different setups. The second structure is a mid-rise building for which acceleration data were measured in 10 different setups. There is a good quantitative agreement between the predicted levels of uncertainty and the observed variability of the eigenfrequencies and damping ratios between the different setups. The method can therefore be used with confidence for quantifying the uncertainty of the identified modal characteristics, also when some or all of them are estimated from a single batch of vibration data. Furthermore, the method is seen to yield valuable insight in the variability of the estimation accuracy from mode to mode and from setup to setup: the more informative a setup is regarding an estimated modal characteristic, the smaller is the estimated variance.
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-02-01
Experimental or operational modal analysis traditionally requires physically-attached wired or wireless sensors for vibration measurement of structures. This instrumentation can result in mass-loading on lightweight structures, and is costly and time-consuming to install and maintain on large civil structures, especially for long-term applications (e.g., structural health monitoring) that require significant maintenance for cabling (wired sensors) or periodic replacement of the energy supply (wireless sensors). Moreover, these sensors are typically placed at a limited number of discrete locations, providing low spatial sensing resolution that is hardly sufficient for modal-based damage localization, or model correlation and updating for larger-scale structures. Non-contact measurement methods such as scanning laser vibrometers provide high-resolution sensing capacity without the mass-loading effect; however, they make sequential measurements that require considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation, optical flow), video camera based measurements have been successfully used for vibration measurements and subsequent modal analysis, based on techniques such as the digital image correlation (DIC) and the point-tracking. However, they typically require speckle pattern or high-contrast markers to be placed on the surface of structures, which poses challenges when the measurement area is large or inaccessible. This work explores advanced computer vision and video processing algorithms to develop a novel video measurement and vision-based operational (output-only) modal analysis method that alleviate the need of structural surface preparation associated with existing vision-based methods and can be implemented in a relatively efficient and autonomous manner with little user supervision and calibration. First a multi-scale image processing method is applied on the frames of the video of a vibrating structure to extract the local pixel phases that encode local structural vibration, establishing a full-field spatiotemporal motion matrix. Then a high-spatial dimensional, yet low-modal-dimensional, over-complete model is used to represent the extracted full-field motion matrix using modal superposition, which is physically connected and manipulated by a family of unsupervised learning models and techniques, respectively. Thus, the proposed method is able to blindly extract modal frequencies, damping ratios, and full-field (as many points as the pixel number of the video frame) mode shapes from line of sight video measurements of the structure. The method is validated by laboratory experiments on a bench-scale building structure and a cantilever beam. Its ability for output (video measurements)-only identification and visualization of the weakly-excited mode is demonstrated and several issues with its implementation are discussed.
Dynamic test/analysis correlation using reduced analytical models
NASA Technical Reports Server (NTRS)
Mcgowan, Paul E.; Angelucci, A. Filippo; Javeed, Mehzad
1992-01-01
Test/analysis correlation is an important aspect of the verification of analysis models which are used to predict on-orbit response characteristics of large space structures. This paper presents results of a study using reduced analysis models for performing dynamic test/analysis correlation. The reduced test-analysis model (TAM) has the same number and orientation of DOF as the test measurements. Two reduction methods, static (Guyan) reduction and the Improved Reduced System (IRS) reduction, are applied to the test/analysis correlation of a laboratory truss structure. Simulated test results and modal test data are used to examine the performance of each method. It is shown that selection of DOF to be retained in the TAM is critical when large structural masses are involved. In addition, the use of modal test results may provide difficulties in TAM accuracy even if a large number of DOF are retained in the TAM.
Modal energy analysis for mechanical systems excited by spatially correlated loads
NASA Astrophysics Data System (ADS)
Zhang, Peng; Fei, Qingguo; Li, Yanbin; Wu, Shaoqing; Chen, Qiang
2018-10-01
MODal ENergy Analysis (MODENA) is an energy-based method, which is proposed to deal with vibroacoustic problems. The performance of MODENA on the energy analysis of a mechanical system under spatially correlated excitation is investigated. A plate/cavity coupling system excited by a pressure field is studied in a numerical example, in which four kinds of pressure fields are involved, which include the purely random pressure field, the perfectly correlated pressure field, the incident diffuse field, and the turbulent boundary layer pressure fluctuation. The total energies of subsystems differ to reference solution only in the case of purely random pressure field and only for the non-excited subsystem (the cavity). A deeper analysis on the scale of modal energy is further conducted via another numerical example, in which two structural modes excited by correlated forces are coupled with one acoustic mode. A dimensionless correlation strength factor is proposed to determine the correlation strength between modal forces. Results show that the error on modal energy increases with the increment of the correlation strength factor. A criterion is proposed to establish a link between the error and the correlation strength factor. According to the criterion, the error is negligible when the correlation strength is weak, in this situation the correlation strength factor is less than a critical value.
Using experimental modal analysis to assess the behaviour of timber elements
NASA Astrophysics Data System (ADS)
Kouroussis, Georges; Fekih, Lassaad Ben; Descamps, Thierry
2018-03-01
Timber frameworks are one of the most important and widespread types of structures. Their configurations and joints are usually complex and require a high level of craftsmanship to assemble. In the field of restoration, a good understanding of the structural behaviour is necessary and is often based on assessment techniques dedicated to wood characterisation. This paper presents the use of experimental modal analysis for finite element updating. To do this, several timber beams in a free supported condition were analysed in order to extract their bending natural characteristics (frequency, damping and mode shapes). Corresponding ABAQUS finite element models were derived which included the effects of local defects (holes, cracks and wood nodes), moisture and structural decay. To achieve the modal updating, additional simulations were performed in order to study the sensitivity of the mechanical parameters. With the intent to estimate their mechanical properties, a procedure of modal updating was carried out in MatLab with a Python script. This was created to extract the modal information from the ABAQUS modal analysis results to be compared with the experimental results. The updating was based on a minimum of unconstrained multivariable function using a derivative-free method. The objective function was selected from the conventional comparison tools (absolute or relative frequency difference, and/or modal assurance criterion). This testing technique was used to determine the dynamic mechanical properties of timber beams, such as the anisotropic Young's Moduli and damping ratio. To verify the modulus, a series of static 4-point bending tests and STS04 classifications were conducted. The results also revealed that local defects have a negligible influence on natural frequencies. The results demonstrate that this assessment tool offers an effective method to obtain the mechanical properties of timber elements, especially when on-site and non-destructive techniques are needed, for example when retrofitting an existing structure.
Identification of Historical Veziragasi Aqueduct Using the Operational Modal Analysis
Ercan, E.; Nuhoglu, A.
2014-01-01
This paper describes the results of a model updating study conducted on a historical aqueduct, called Veziragasi, in Turkey. The output-only modal identification results obtained from ambient vibration measurements of the structure were used to update a finite element model of the structure. For the purposes of developing a solid model of the structure, the dimensions of the structure, defects, and material degradations in the structure were determined in detail by making a measurement survey. For evaluation of the material properties of the structure, nondestructive and destructive testing methods were applied. The modal analysis of the structure was calculated by FEM. Then, a nondestructive dynamic test as well as operational modal analysis was carried out and dynamic properties were extracted. The natural frequencies and corresponding mode shapes were determined from both theoretical and experimental modal analyses and compared with each other. A good harmony was attained between mode shapes, but there were some differences between natural frequencies. The sources of the differences were introduced and the FEM model was updated by changing material parameters and boundary conditions. Finally, the real analytical model of the aqueduct was put forward and the results were discussed. PMID:24511287
Dynamic analysis of flexible rotor-bearing systems using a modal approach
NASA Technical Reports Server (NTRS)
Choy, K. C.; Gunter, E. J.; Barrett, L. E.
1978-01-01
The generalized dynamic equations of motion were obtained by the direct stiffness method for multimass flexible rotor-bearing systems. The direct solution of the equations of motion is illustrated on a simple 3-mass system. For complex rotor-bearing systems, the direct solution of the equations becomes very difficult. The transformation of the equations of motion into modal coordinates can greatly simplify the computation for the solution. The use of undamped and damped system mode shapes in the transformation are discussed. A set of undamped critical speed modes is used to transform the equations of motion into a set of coupled modal equations of motion. A rapid procedure for computing stability, steady state unbalance response, and transient response of the rotor-bearing system is presented. Examples of the application of this modal approach are presented. The dynamics of the system is further investigated with frequency spectrum analysis of the transient response.
Experimental Modal Analysis and Dynamic Component Synthesis. Volume 3. Modal Parameter Estimation
1987-12-01
residues as well as poles is achieved. A singular value decomposition method has been used to develop a complex mode indicator function ( CMIF )[70...which can be used to help determine the number of poles before the analysis. The CMIF is formed by performing a singular value decomposition of all of...servo systems which can include both low and high damping modes. "• CMIF can be used to indicate close or repeated eigenvalues before the parameter
Joint modality fusion and temporal context exploitation for semantic video analysis
NASA Astrophysics Data System (ADS)
Papadopoulos, Georgios Th; Mezaris, Vasileios; Kompatsiaris, Ioannis; Strintzis, Michael G.
2011-12-01
In this paper, a multi-modal context-aware approach to semantic video analysis is presented. Overall, the examined video sequence is initially segmented into shots and for every resulting shot appropriate color, motion and audio features are extracted. Then, Hidden Markov Models (HMMs) are employed for performing an initial association of each shot with the semantic classes that are of interest separately for each modality. Subsequently, a graphical modeling-based approach is proposed for jointly performing modality fusion and temporal context exploitation. Novelties of this work include the combined use of contextual information and multi-modal fusion, and the development of a new representation for providing motion distribution information to HMMs. Specifically, an integrated Bayesian Network is introduced for simultaneously performing information fusion of the individual modality analysis results and exploitation of temporal context, contrary to the usual practice of performing each task separately. Contextual information is in the form of temporal relations among the supported classes. Additionally, a new computationally efficient method for providing motion energy distribution-related information to HMMs, which supports the incorporation of motion characteristics from previous frames to the currently examined one, is presented. The final outcome of this overall video analysis framework is the association of a semantic class with every shot. Experimental results as well as comparative evaluation from the application of the proposed approach to four datasets belonging to the domains of tennis, news and volleyball broadcast video are presented.
NASA Astrophysics Data System (ADS)
Li, Zhijun; Feng, Maria Q.; Luo, Longxi; Feng, Dongming; Xu, Xiuli
2018-01-01
Uncertainty of modal parameters estimation appear in structural health monitoring (SHM) practice of civil engineering to quite some significant extent due to environmental influences and modeling errors. Reasonable methodologies are needed for processing the uncertainty. Bayesian inference can provide a promising and feasible identification solution for the purpose of SHM. However, there are relatively few researches on the application of Bayesian spectral method in the modal identification using SHM data sets. To extract modal parameters from large data sets collected by SHM system, the Bayesian spectral density algorithm was applied to address the uncertainty of mode extraction from output-only response of a long-span suspension bridge. The posterior most possible values of modal parameters and their uncertainties were estimated through Bayesian inference. A long-term variation and statistical analysis was performed using the sensor data sets collected from the SHM system of the suspension bridge over a one-year period. The t location-scale distribution was shown to be a better candidate function for frequencies of lower modes. On the other hand, the burr distribution provided the best fitting to the higher modes which are sensitive to the temperature. In addition, wind-induced variation of modal parameters was also investigated. It was observed that both the damping ratios and modal forces increased during the period of typhoon excitations. Meanwhile, the modal damping ratios exhibit significant correlation with the spectral intensities of the corresponding modal forces.
Ground Vibration Test Planning and Pre-Test Analysis for the X-33 Vehicle
NASA Technical Reports Server (NTRS)
Bedrossian, Herand; Tinker, Michael L.; Hidalgo, Homero
2000-01-01
This paper describes the results of the modal test planning and the pre-test analysis for the X-33 vehicle. The pre-test analysis included the selection of the target modes, selection of the sensor and shaker locations and the development of an accurate Test Analysis Model (TAM). For target mode selection, four techniques were considered, one based on the Modal Cost technique, one based on Balanced Singular Value technique, a technique known as the Root Sum Squared (RSS) method, and a Modal Kinetic Energy (MKE) approach. For selecting sensor locations, four techniques were also considered; one based on the Weighted Average Kinetic Energy (WAKE), one based on Guyan Reduction (GR), one emphasizing engineering judgment, and one based on an optimum sensor selection technique using Genetic Algorithm (GA) search technique combined with a criteria based on Hankel Singular Values (HSV's). For selecting shaker locations, four techniques were also considered; one based on the Weighted Average Driving Point Residue (WADPR), one based on engineering judgment and accessibility considerations, a frequency response method, and an optimum shaker location selection based on a GA search technique combined with a criteria based on HSV's. To evaluate the effectiveness of the proposed sensor and shaker locations for exciting the target modes, extensive numerical simulations were performed. Multivariate Mode Indicator Function (MMIF) was used to evaluate the effectiveness of each sensor & shaker set with respect to modal parameter identification. Several TAM reduction techniques were considered including, Guyan, IRS, Modal, and Hybrid. Based on a pre-test cross-orthogonality checks using various reduction techniques, a Hybrid TAM reduction technique was selected and was used for all three vehicle fuel level configurations.
Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy
NASA Astrophysics Data System (ADS)
Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol
2017-10-01
A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification.
Application of USNRC NUREG/CR-6661 and draft DG-1108 to evolutionary and advanced reactor designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang 'Apollo', Chen
2006-07-01
For the seismic design of evolutionary and advanced nuclear reactor power plants, there are definite financial advantages in the application of USNRC NUREG/CR-6661 and draft Regulatory Guide DG-1108. NUREG/CR-6661, 'Benchmark Program for the Evaluation of Methods to Analyze Non-Classically Damped Coupled Systems', was by Brookhaven National Laboratory (BNL) for the USNRC, and Draft Regulatory Guide DG-1108 is the proposed revision to the current Regulatory Guide (RG) 1.92, Revision 1, 'Combining Modal Responses and Spatial Components in Seismic Response Analysis'. The draft Regulatory Guide DG-1108 is available at http://members.cox.net/apolloconsulting, which also provides a link to the USNRC ADAMS site to searchmore » for NUREG/CR-6661 in text file or image file. The draft Regulatory Guide DG-1108 removes unnecessary conservatism in the modal combinations for closely spaced modes in seismic response spectrum analysis. Its application will be very helpful in coupled seismic analysis for structures and heavy equipment to reduce seismic responses and in piping system seismic design. In the NUREG/CR-6661 benchmark program, which investigated coupled seismic analysis of structures and equipment or piping systems with different damping values, three of the four participants applied the complex mode solution method to handle different damping values for structures, equipment, and piping systems. The fourth participant applied the classical normal mode method with equivalent weighted damping values to handle differences in structural, equipment, and piping system damping values. Coupled analysis will reduce the equipment responses when equipment, or piping system and structure are in or close to resonance. However, this reduction in responses occurs only if the realistic DG-1108 modal response combination method is applied, because closely spaced modes will be produced when structure and equipment or piping systems are in or close to resonance. Otherwise, the conservatism in the current Regulatory Guide 1.92, Revision 1, will overshadow the advantage of coupled analysis. All four participants applied the realistic modal combination method of DG-1108. Consequently, more realistic and reduced responses were obtained. (authors)« less
A new procedure of modal parameter estimation for high-speed digital image correlation
NASA Astrophysics Data System (ADS)
Huňady, Róbert; Hagara, Martin
2017-09-01
The paper deals with the use of 3D digital image correlation in determining modal parameters of mechanical systems. It is a non-contact optical method, which for the measurement of full-field spatial displacements and strains of bodies uses precise digital cameras with high image resolution. Most often this method is utilized for testing of components or determination of material properties of various specimens. In the case of using high-speed cameras for measurement, the correlation system is capable of capturing various dynamic behaviors, including vibration. This enables the potential use of the mentioned method in experimental modal analysis. For that purpose, the authors proposed a measuring chain for the correlation system Q-450 and developed a software application called DICMAN 3D, which allows the direct use of this system in the area of modal testing. The created application provides the post-processing of measured data and the estimation of modal parameters. It has its own graphical user interface, in which several algorithms for the determination of natural frequencies, mode shapes and damping of particular modes of vibration are implemented. The paper describes the basic principle of the new estimation procedure which is crucial in the light of post-processing. Since the FRF matrix resulting from the measurement is usually relatively large, the estimation of modal parameters directly from the FRF matrix may be time-consuming and may occupy a large part of computer memory. The procedure implemented in DICMAN 3D provides a significant reduction in memory requirements and computational time while achieving a high accuracy of modal parameters. Its computational efficiency is particularly evident when the FRF matrix consists of thousands of measurement DOFs. The functionality of the created software application is presented on a practical example in which the modal parameters of a composite plate excited by an impact hammer were determined. For the verification of the obtained results a verification experiment was conducted during which the vibration responses were measured using conventional acceleration sensors. In both cases MIMO analysis was realized.
ERIC Educational Resources Information Center
Kalogjera, Damir; Vilke, Mirjana
Part of a 20-year Yugoslav Serbocroatian-English Contrastive Project, this study is intended to make students, teachers, textbook writers, and scholars aware of elements in the system of English modals that might cause difficulties to the native Serbocroatian-speaking learner of English. An eclectic method of contrastive analysis consisting of…
Modal characteristics of a simplified brake rotor model using semi-analytical Rayleigh Ritz method
NASA Astrophysics Data System (ADS)
Zhang, F.; Cheng, L.; Yam, L. H.; Zhou, L. M.
2006-10-01
Emphasis of this paper is given to the modal characteristics of a brake rotor which is utilized in automotive disc brake system. The brake rotor is modeled as a combined structure comprising an annular plate connected to a segment of cylindrical shell by distributed artificial springs. Modal analysis shows the existence of three types of modes for the combined structure, depending on the involvement of each substructure. A decomposition technique is proposed, allowing each mode of the combined structure to be decomposed into a linear combination of the individual substructure modes. It is shown that the decomposition coefficients provide a direct and systematic means to carry out modal classification and quantification.
NASA Astrophysics Data System (ADS)
Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.
2018-05-01
A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.
The Shock and Vibration Bulletin. Part 2. Invited Papers, Structural Dynamics
1974-08-01
VIKING LANDER DYNAMICS 41 Mr. Joseph C. Pohlen, Martin Marietta Aerospace, Denver, Colorado Structural Dynamics PERFORMANCE OF STATISTICAL ENERGY ANALYSIS 47...aerospace structures. Analytical prediction of these environments is beyond the current scope of classical modal techniques. Statistical energy analysis methods...have been developed that circumvent the difficulties of high-frequency nodal analysis. These statistical energy analysis methods are evaluated
The Propagation and Scattering of EM Waves in Electrically Large Ducts
NASA Astrophysics Data System (ADS)
Khan, Saeed Mahmood
The electromagnetic scattering from large arbitrarily shaped ducts with complex termination is studied here by a hybrid technique. The propagation of electromagnetic waves in the duct is analyzed in terms of an approximate modal solution. A finite difference technique is employed for computing the reflection characteristics of the complex terminations. Both solutions are combined using the unimoment method. The analysis here is carried out for monostatic RCS and considers only fields backscattered from inside the cavity. Rim-diffraction has been left out. The procedure offers such advantages as in that it is not necessary to find complicated Green's functions, which may not be readily available, when compared with the integral equation method. Hybridization performed by combining an approximate modal technique with a finite difference one makes the scheme numerically efficient. From a computational EM point of view, it brings together a whole spectrum of techniques associated with high frequency modal analysis, Fourier Methods, Radar Cross Section and Scattering, finite difference solution and the Unimoment Method. The practical application of this technique may range from the study of RCS scattered from jet inlets of radar evasive aircraft to submarine communication waveguides.
Correlation of analytical and experimental hot structure vibration results
NASA Technical Reports Server (NTRS)
Kehoe, Michael W.; Deaton, Vivian C.
1993-01-01
High surface temperatures and temperature gradients can affect the vibratory characteristics and stability of aircraft structures. Aircraft designers are relying more on finite-element model analysis methods to ensure sufficient vehicle structural dynamic stability throughout the desired flight envelope. Analysis codes that predict these thermal effects must be correlated and verified with experimental data. Experimental modal data for aluminum, titanium, and fiberglass plates heated at uniform, nonuniform, and transient heating conditions are presented. The data show the effect of heat on each plate's modal characteristics, a comparison of predicted and measured plate vibration frequencies, the measured modal damping, and the effect of modeling material property changes and thermal stresses on the accuracy of the analytical results at nonuniform and transient heating conditions.
NASA Astrophysics Data System (ADS)
Avitabile, Peter; O'Callahan, John
2009-01-01
Generally, response analysis of systems containing discrete nonlinear connection elements such as typical mounting connections require the physical finite element system matrices to be used in a direct integration algorithm to compute the nonlinear response analysis solution. Due to the large size of these physical matrices, forced nonlinear response analysis requires significant computational resources. Usually, the individual components of the system are analyzed and tested as separate components and their individual behavior may essentially be linear when compared to the total assembled system. However, the joining of these linear subsystems using highly nonlinear connection elements causes the entire system to become nonlinear. It would be advantageous if these linear modal subsystems could be utilized in the forced nonlinear response analysis since much effort has usually been expended in fine tuning and adjusting the analytical models to reflect the tested subsystem configuration. Several more efficient techniques have been developed to address this class of problem. Three of these techniques given as: equivalent reduced model technique (ERMT);modal modification response technique (MMRT); andcomponent element method (CEM); are presented in this paper and are compared to traditional methods.
Simple design of slanted grating with simplified modal method.
Li, Shubin; Zhou, Changhe; Cao, Hongchao; Wu, Jun
2014-02-15
A simplified modal method (SMM) is presented that offers a clear physical image for subwavelength slanted grating. The diffraction characteristic of the slanted grating under Littrow configuration is revealed by the SMM as an equivalent rectangular grating, which is in good agreement with rigorous coupled-wave analysis. Based on the equivalence, we obtained an effective analytic solution for simplifying the design and optimization of a slanted grating. It offers a new approach for design of the slanted grating, e.g., a 1×2 beam splitter can be easily designed. This method should be helpful for designing various new slanted grating devices.
Estimation of Sonic Fatigue by Reduced-Order Finite Element Based Analyses
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam
2006-01-01
A computationally efficient, reduced-order method is presented for prediction of sonic fatigue of structures exhibiting geometrically nonlinear response. A procedure to determine the nonlinear modal stiffness using commercial finite element codes allows the coupled nonlinear equations of motion in physical degrees of freedom to be transformed to a smaller coupled system of equations in modal coordinates. The nonlinear modal system is first solved using a computationally light equivalent linearization solution to determine if the structure responds to the applied loading in a nonlinear fashion. If so, a higher fidelity numerical simulation in modal coordinates is undertaken to more accurately determine the nonlinear response. Comparisons of displacement and stress response obtained from the reduced-order analyses are made with results obtained from numerical simulation in physical degrees-of-freedom. Fatigue life predictions from nonlinear modal and physical simulations are made using the rainflow cycle counting method in a linear cumulative damage analysis. Results computed for a simple beam structure under a random acoustic loading demonstrate the effectiveness of the approach and compare favorably with results obtained from the solution in physical degrees-of-freedom.
OMA analysis of a launcher under operational conditions with time-varying properties
NASA Astrophysics Data System (ADS)
Eugeni, M.; Coppotelli, G.; Mastroddi, F.; Gaudenzi, P.; Muller, S.; Troclet, B.
2018-05-01
The objective of this paper is the investigation of the capability of operational modal analysis approaches to deal with time-varying system in the low-frequency domain. Specifically, the problem of the identification of the dynamic properties of a launch vehicle, working under actual operative conditions, is studied. Two OMA methods are considered: the frequency-domain decomposition and the Hilbert transform method. It is demonstrated that both OMA approaches allow the time-tracking of modal parameters, namely, natural frequencies, damping ratios, and mode shapes, from the response accelerations only recorded during actual flight tests of a launcher characterized by a large mass variation due to fuel burning typical of the first phase of the flight.
NASA Astrophysics Data System (ADS)
Molina-Viedma, Ángel J.; López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.
2017-10-01
In recent years, many efforts have been made to exploit full-field measurement optical techniques for modal identification. Three-dimensional digital image correlation using high-speed cameras has been extensively employed for this purpose. Modal identification algorithms are applied to process the frequency response functions (FRF), which relate the displacement response of the structure to the excitation force. However, one of the most common tests for modal analysis involves the base motion excitation of a structural element instead of force excitation. In this case, the relationship between response and excitation is typically based on displacements, which are known as transmissibility functions. In this study, a methodology for experimental modal analysis using high-speed 3D digital image correlation and base motion excitation tests is proposed. In particular, a cantilever beam was excited from its base with a random signal, using a clamped edge join. Full-field transmissibility functions were obtained through the beam and converted into FRF for proper identification, considering a single degree-of-freedom theoretical conversion. Subsequently, modal identification was performed using a circle-fit approach. The proposed methodology facilitates the management of the typically large amounts of data points involved in the DIC measurement during modal identification. Moreover, it was possible to determine the natural frequencies, damping ratios and full-field mode shapes without requiring any additional tests. Finally, the results were experimentally validated by comparing them with those obtained by employing traditional accelerometers, analytical models and finite element method analyses. The comparison was performed by using the quantitative indicator modal assurance criterion. The results showed a high level of correspondence, consolidating the proposed experimental methodology.
NASA Astrophysics Data System (ADS)
Serra, Roger; Lopez, Lautaro
2018-05-01
Different approaches on the detection of damages based on dynamic measurement of structures have appeared in the last decades. They were based, amongst others, on changes in natural frequencies, modal curvatures, strain energy or flexibility. Wavelet analysis has also been used to detect the abnormalities on modal shapes induced by damages. However the majority of previous work was made with non-corrupted by noise signals. Moreover, the damage influence for each mode shape was studied separately. This paper proposes a new methodology based on combined modal wavelet transform strategy to cope with noisy signals, while at the same time, able to extract the relevant information from each mode shape. The proposed methodology will be then compared with the most frequently used and wide-studied methods from the bibliography. To evaluate the performance of each method, their capacity to detect and localize damage will be analyzed in different cases. The comparison will be done by simulating the oscillations of a cantilever steel beam with and without defect as a numerical case. The proposed methodology proved to outperform classical methods in terms of noisy signals.
Damage Identification of Piles Based on Vibration Characteristics
Zhang, Xiaozhong; Yao, Wenjuan; Chen, Bo; Liu, Dewen
2014-01-01
A method of damage identification of piles was established by using vibration characteristics. The approach focused on the application of the element strain energy and sensitive modals. A damage identification equation of piles was deduced using the structural vibration equation. The equation contained three major factors: change rate of element modal strain energy, damage factor of pile, and sensitivity factor of modal damage. The sensitive modals of damage identification were selected by using sensitivity factor of modal damage firstly. Subsequently, the indexes for early-warning of pile damage were established by applying the change rate of strain energy. Then the technology of computational analysis of wavelet transform was used to damage identification for pile. The identification of small damage of pile was completely achieved, including the location of damage and the extent of damage. In the process of identifying the extent of damage of pile, the equation of damage identification was used in many times. Finally, a stadium project was used as an example to demonstrate the effectiveness of the proposed method of damage identification for piles. The correctness and practicability of the proposed method were verified by comparing the results of damage identification with that of low strain test. The research provided a new way for damage identification of piles. PMID:25506062
Seismic damage diagnosis of a masonry building using short-term damping measurements
NASA Astrophysics Data System (ADS)
Kouris, Leonidas Alexandros S.; Penna, Andrea; Magenes, Guido
2017-04-01
It is of considerable importance to perform dynamic identification and detect damage in existing structures. This paper describes a new and practical method for damage diagnosis of masonry buildings requiring minimum computational effort. The method is based on the relative variation of modal damping and validated against experimental data from a full scale two storey shake table test. The experiment involves a building subjected to uniaxial vibrations of progressively increasing intensity at the facilities of EUCENTRE laboratory (Pavia, Italy) up to a near collapse damage state. Five time-histories are applied scaling the Montenegro (1979) accelerogram. These strong motion tests are preceded by random vibration tests (RVT's) which are used to perform modal analysis. Two deterministic methods are applied: the single degree of freedom (SDOF) assumption together with the peak-picking method in the discrete frequency domain and the Eigen realisation algorithm with data correlations (ERA-DC) in the discrete time domain. Regarding the former procedure, some improvements are incorporated to locate rigorously the natural frequencies and estimate the modal damping. The progressive evolution of the modal damping is used as a key indicator to characterise damage on the building. Modal damping is connected to the structural mass and stiffness. A square integrated but only with two components expression for proportional (classical) damping is proposed to fit better with the experimental measurements of modal damping ratios. Using this Rayleigh order formulation the contribution of each of the damping components is evaluated. The stiffness component coefficient is proposed as an effective index to detect damage and quantify its intensity.
The Shock and Vibration Digest, Volume 17, Number 8
1985-08-01
ate, transmit, and radiate audible sound. dures are based on acoustic power flow, statistical energy analysis (SEA), and modal methods [22-283. A...modified partition area. features of the acoustic field. I.--1 85-1642 Statistical Energy Analysis , Structural Reso- nances, and Beam Networks BUILDING...energy methods, Structural resonance L.J. Lee Heriot-Watt Univ., Chambers St., Edinburgh The statistical energy analysis method is EHI 1HX, Scotland
Song, Do Seon; Nam, Soon Woo; Bae, Si Hyun; Kim, Jin Dong; Jang, Jeong Won; Song, Myeong Jun; Lee, Sung Won; Kim, Hee Yeon; Lee, Young Joon; Chun, Ho Jong; You, Young Kyoung; Choi, Jong Young; Yoon, Seung Kew
2015-01-01
AIM: To investigate the efficacy and safety of transarterial chemoembolization (TACE)-based multimodal treatment in patients with large hepatocellular carcinoma (HCC). METHODS: A total of 146 consecutive patients were included in the analysis, and their medical records and radiological data were reviewed retrospectively. RESULTS: In total, 119 patients received TACE-based multi-modal treatments, and the remaining 27 received conservative management. Overall survival (P < 0.001) and objective tumor response (P = 0.003) were significantly better in the treatment group than in the conservative group. After subgroup analysis, survival benefits were observed not only in the multi-modal treatment group compared with the TACE-only group (P = 0.002) but also in the surgical treatment group compared with the loco-regional treatment-only group (P < 0.001). Multivariate analysis identified tumor stage (P < 0.001) and tumor type (P = 0.009) as two independent pre-treatment factors for survival. After adjusting for significant pre-treatment prognostic factors, objective response (P < 0.001), surgical treatment (P = 0.009), and multi-modal treatment (P = 0.002) were identified as independent post-treatment prognostic factors. CONCLUSION: TACE-based multi-modal treatments were safe and more beneficial than conservative management. Salvage surgery after successful downstaging resulted in long-term survival in patients with large, unresectable HCC. PMID:25741147
Comparison of sine dwell and broadband methods for modal testing
NASA Technical Reports Server (NTRS)
Chen, Jay-Chung
1989-01-01
The objectives of modal tests for large complex spacecraft structural systems are outlined. The comparison criteria for the modal test methods, namely, the broadband excitation and the sine dwell methods, are established. Using the Galileo spacecraft modal test and the Centaur G Prime upper stage vehicle modal test as examples, the relative advantage or disadvantage of each method is examined. The usefulness or shortcomings of the methods are given from a practical engineering viewpoint.
Big data sharing and analysis to advance research in post-traumatic epilepsy.
Duncan, Dominique; Vespa, Paul; Pitkanen, Asla; Braimah, Adebayo; Lapinlampi, Nina; Toga, Arthur W
2018-06-01
We describe the infrastructure and functionality for a centralized preclinical and clinical data repository and analytic platform to support importing heterogeneous multi-modal data, automatically and manually linking data across modalities and sites, and searching content. We have developed and applied innovative image and electrophysiology processing methods to identify candidate biomarkers from MRI, EEG, and multi-modal data. Based on heterogeneous biomarkers, we present novel analytic tools designed to study epileptogenesis in animal model and human with the goal of tracking the probability of developing epilepsy over time. Copyright © 2017. Published by Elsevier Inc.
Modal analysis of wave propagation in dispersive media
NASA Astrophysics Data System (ADS)
Abdelrahman, M. Ismail; Gralak, B.
2018-01-01
Surveys on wave propagation in dispersive media have been limited since the pioneering work of Sommerfeld [Ann. Phys. 349, 177 (1914), 10.1002/andp.19143491002] by the presence of branches in the integral expression of the wave function. In this article a method is proposed to eliminate these critical branches and hence to establish a modal expansion of the time-dependent wave function. The different components of the transient waves are physically interpreted as the contributions of distinct sets of modes and characterized accordingly. Then, the modal expansion is used to derive a modified analytical expression of the Sommerfeld precursor improving significantly the description of the amplitude and the oscillating period up to the arrival of the Brillouin precursor. The proposed method and results apply to all waves governed by the Helmholtz equations.
Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy.
Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol
2017-10-01
A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohd, Shukri; Holford, Karen M.; Pullin, Rhys
2014-02-12
Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup usingmore » H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure.« less
Multibody model reduction by component mode synthesis and component cost analysis
NASA Technical Reports Server (NTRS)
Spanos, J. T.; Mingori, D. L.
1990-01-01
The classical assumed-modes method is widely used in modeling the dynamics of flexible multibody systems. According to the method, the elastic deformation of each component in the system is expanded in a series of spatial and temporal functions known as modes and modal coordinates, respectively. This paper focuses on the selection of component modes used in the assumed-modes expansion. A two-stage component modal reduction method is proposed combining Component Mode Synthesis (CMS) with Component Cost Analysis (CCA). First, each component model is truncated such that the contribution of the high frequency subsystem to the static response is preserved. Second, a new CMS procedure is employed to assemble the system model and CCA is used to further truncate component modes in accordance with their contribution to a quadratic cost function of the system output. The proposed method is demonstrated with a simple example of a flexible two-body system.
Rosa, Maria J; Mehta, Mitul A; Pich, Emilio M; Risterucci, Celine; Zelaya, Fernando; Reinders, Antje A T S; Williams, Steve C R; Dazzan, Paola; Doyle, Orla M; Marquand, Andre F
2015-01-01
An increasing number of neuroimaging studies are based on either combining more than one data modality (inter-modal) or combining more than one measurement from the same modality (intra-modal). To date, most intra-modal studies using multivariate statistics have focused on differences between datasets, for instance relying on classifiers to differentiate between effects in the data. However, to fully characterize these effects, multivariate methods able to measure similarities between datasets are needed. One classical technique for estimating the relationship between two datasets is canonical correlation analysis (CCA). However, in the context of high-dimensional data the application of CCA is extremely challenging. A recent extension of CCA, sparse CCA (SCCA), overcomes this limitation, by regularizing the model parameters while yielding a sparse solution. In this work, we modify SCCA with the aim of facilitating its application to high-dimensional neuroimaging data and finding meaningful multivariate image-to-image correspondences in intra-modal studies. In particular, we show how the optimal subset of variables can be estimated independently and we look at the information encoded in more than one set of SCCA transformations. We illustrate our framework using Arterial Spin Labeling data to investigate multivariate similarities between the effects of two antipsychotic drugs on cerebral blood flow.
On sine dwell or broadband methods for modal testing
NASA Technical Reports Server (NTRS)
Chen, Jay-Chung; Wada, Ben K.
1987-01-01
For large, complex spacecraft structural systems, the objectives of the modal test are outlined. Based on these objectives, the comparison criteria for the modal test methods, namely, the broadband excitation and the sine dwell methods are established. Using the Galileo spacecraft modal test and the Centaur G Prime upper stage vehicle modal test as examples, the relative advantages or disadvantages of each method are examined. The usefulness or shortcoming of the methods are given from a practicing engineer's view point.
Modal Survey of ETM-3, A 5-Segment Derivative of the Space Shuttle Solid Rocket Booster
NASA Technical Reports Server (NTRS)
Nielsen, D.; Townsend, J.; Kappus, K.; Driskill, T.; Torres, I.; Parks, R.
2005-01-01
The complex interactions between internal motor generated pressure oscillations and motor structural vibration modes associated with the static test configuration of a Reusable Solid Rocket Motor have potential to generate significant dynamic thrust loads in the 5-segment configuration (Engineering Test Motor 3). Finite element model load predictions for worst-case conditions were generated based on extrapolation of a previously correlated 4-segment motor model. A modal survey was performed on the largest rocket motor to date, Engineering Test Motor #3 (ETM-3), to provide data for finite element model correlation and validation of model generated design loads. The modal survey preparation included pretest analyses to determine an efficient analysis set selection using the Effective Independence Method and test simulations to assure critical test stand component loads did not exceed design limits. Historical Reusable Solid Rocket Motor modal testing, ETM-3 test analysis model development and pre-test loads analyses, as well as test execution, and a comparison of results to pre-test predictions are discussed.
Analysis of swept-sine runs during modal identification
NASA Astrophysics Data System (ADS)
Gloth, G.; Sinapius, M.
2004-11-01
Experimental modal analysis of large aerospace structures in Europe combine nowadays the benefits of the very reliable but time-consuming phase resonance method and the application of phase separation techniques evaluating frequency response functions (FRF). FRFs of a test structure can be determined by a variety of means. Applied excitation signal waveforms include harmonic signals like stepped-sine excitation, periodic signals like multi-sine excitation, transient signals like impulse and swept-sine excitation, and stochastic signals like random. The current article focuses on slow swept-sine excitation which is a good trade-off between magnitude of excitation level needed for large aircraft and testing time. However, recent ground vibration tests (GVTs) brought up that reliable modal data from swept-sine test runs depend on a proper data processing. The article elucidates the strategy of modal analysis based on swept-sine excitation. The standards for the application of slowly swept sinusoids defined by the international organisation for standardisation in ISO 7626 part 2 are critically reviewed. The theoretical background of swept-sine testing is expounded with particular emphasis to the transition through structural resonances. The effect of different standard procedures of data processing like tracking filter, fast Fourier transform (FFT), and data reduction via averaging are investigated with respect to their influence on the FRFs and modal parameters. Particular emphasis is given to FRF distortions evoked by unsuitable data processing. All data processing methods are investigated on a numerical example. Their practical usefulness is demonstrated on test data taken from a recent GVT on a large aircraft. The revision of ISO 7626 part 2 is suggested regarding the application of slow swept-sine excitation. Recommendations about the proper FRF estimation from slow swept-sine excitation are given in order to enable the optimisation on these applications for future modal survey tests of large aerospace structures.
NASA Technical Reports Server (NTRS)
Pines, S.
1981-01-01
The methods used to compute the mass, structural stiffness, and aerodynamic forces in the form of influence coefficient matrices as applied to a flutter analysis of the Drones for Aerodynamic and Structural Testing (DAST) Aeroelastic Research Wing. The DAST wing was chosen because wind tunnel flutter test data and zero speed vibration data of the modes and frequencies exist and are available for comparison. A derivation of the equations of motion that can be used to apply the modal method for flutter suppression is included. A comparison of the open loop flutter predictions with both wind tunnel data and other analytical methods is presented.
NASA Astrophysics Data System (ADS)
Shih, C. Y.; Tsuei, Y. G.; Allemang, R. J.; Brown, D. L.
1988-10-01
A method of using the matrix Auto-Regressive Moving Average (ARMA) model in the Laplace domain for multiple-reference global parameter identification is presented. This method is particularly applicable to the area of modal analysis where high modal density exists. The method is also applicable when multiple reference frequency response functions are used to characterise linear systems. In order to facilitate the mathematical solution, the Forsythe orthogonal polynomial is used to reduce the ill-conditioning of the formulated equations and to decouple the normal matrix into two reduced matrix blocks. A Complex Mode Indicator Function (CMIF) is introduced, which can be used to determine the proper order of the rational polynomials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pullum, Laura L; Symons, Christopher T
2011-01-01
Machine learning is used in many applications, from machine vision to speech recognition to decision support systems, and is used to test applications. However, though much has been done to evaluate the performance of machine learning algorithms, little has been done to verify the algorithms or examine their failure modes. Moreover, complex learning frameworks often require stepping beyond black box evaluation to distinguish between errors based on natural limits on learning and errors that arise from mistakes in implementation. We present a conceptual architecture, failure model and taxonomy, and failure modes and effects analysis (FMEA) of a semi-supervised, multi-modal learningmore » system, and provide specific examples from its use in a radiological analysis assistant system. The goal of the research described in this paper is to provide a foundation from which dependability analysis of systems using semi-supervised, multi-modal learning can be conducted. The methods presented provide a first step towards that overall goal.« less
Integration of heterogeneous data for classification in hyperspectral satellite imagery
NASA Astrophysics Data System (ADS)
Benedetto, J.; Czaja, W.; Dobrosotskaya, J.; Doster, T.; Duke, K.; Gillis, D.
2012-06-01
As new remote sensing modalities emerge, it becomes increasingly important to nd more suitable algorithms for fusion and integration of dierent data types for the purposes of target/anomaly detection and classication. Typical techniques that deal with this problem are based on performing detection/classication/segmentation separately in chosen modalities, and then integrating the resulting outcomes into a more complete picture. In this paper we provide a broad analysis of a new approach, based on creating fused representations of the multi- modal data, which then can be subjected to analysis by means of the state-of-the-art classiers or detectors. In this scenario we shall consider the hyperspectral imagery combined with spatial information. Our approach involves machine learning techniques based on analysis of joint data-dependent graphs and their associated diusion kernels. Then, the signicant eigenvectors of the derived fused graph Laplace operator form the new representation, which provides integrated features from the heterogeneous input data. We compare these fused approaches with analysis of integrated outputs of spatial and spectral graph methods.
Performing a Large-Scale Modal Test on the B2 Stand Crane at NASA's Stennis Space Center
NASA Technical Reports Server (NTRS)
Stasiunas, Eric C.; Parks, Russel A.; Sontag, Brendan D.
2018-01-01
A modal test of NASA's Space Launch System (SLS) Core Stage is scheduled to occur at the Stennis Space Center B2 test stand. A derrick crane with a 150-ft long boom, located at the top of the stand, will be used to suspend the Core Stage in order to achieve defined boundary conditions. During this suspended modal test, it is expected that dynamic coupling will occur between the crane and the Core Stage. Therefore, a separate modal test was performed on the B2 crane itself, in order to evaluate the varying dynamic characteristics and correlate math models of the crane. Performing a modal test on such a massive structure was challenging and required creative test setup and procedures, including implementing both AC and DC accelerometers, and performing both classical hammer and operational modal analysis. This paper describes the logistics required to perform this large-scale test, as well as details of the test setup, the modal test methods used, and an overview and application of the results.
Performing a Large-Scale Modal Test on the B2 Stand Crane at NASA's Stennis Space Center
NASA Technical Reports Server (NTRS)
Stasiunas, Eric C.; Parks, Russel A.
2018-01-01
A modal test of NASA’s Space Launch System (SLS) Core Stage is scheduled to occur prior to propulsion system verification testing at the Stennis Space Center B2 test stand. A derrick crane with a 180-ft long boom, located at the top of the stand, will be used to suspend the Core Stage in order to achieve defined boundary conditions. During this suspended modal test, it is expected that dynamic coupling will occur between the crane and the Core Stage. Therefore, a separate modal test was performed on the B2 crane itself, in order to evaluate the varying dynamic characteristics and correlate math models of the crane. Performing a modal test on such a massive structure was challenging and required creative test setup and procedures, including implementing both AC and DC accelerometers, and performing both classical hammer and operational modal analysis. This paper describes the logistics required to perform this large-scale test, as well as details of the test setup, the modal test methods used, and an overview of the results.
Modal-Power-Based Haptic Motion Recognition
NASA Astrophysics Data System (ADS)
Kasahara, Yusuke; Shimono, Tomoyuki; Kuwahara, Hiroaki; Sato, Masataka; Ohnishi, Kouhei
Motion recognition based on sensory information is important for providing assistance to human using robots. Several studies have been carried out on motion recognition based on image information. However, in the motion of humans contact with an object can not be evaluated precisely by image-based recognition. This is because the considering force information is very important for describing contact motion. In this paper, a modal-power-based haptic motion recognition is proposed; modal power is considered to reveal information on both position and force. Modal power is considered to be one of the defining features of human motion. A motion recognition algorithm based on linear discriminant analysis is proposed to distinguish between similar motions. Haptic information is extracted using a bilateral master-slave system. Then, the observed motion is decomposed in terms of primitive functions in a modal space. The experimental results show the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Hong, W.; Wu, Z. S.; Yang, C. Q.; Wan, C. F.; Wu, G.; Zhang, Y. F.
2012-06-01
A new condition assessment strategy of reinforced concrete (RC) beams is proposed in this paper. This strategy is based on frequency analysis of the dynamic data measured with distributed long-gage macro-stain sensors. After extracting modal macro-strain, the reference-based damage index is theoretically deducted in which the variations of modal flexural rigidity and modal neutral axis height are considered. The reference-free damage index is also presented for comparison. Both finite element simulation and experiment investigations were carried out to verify the proposed method. The manufacturing procedure of long-gage fiber Bragg grating (FBG) sensor chosen in the experiment is firstly presented, followed by an experimental study on the essential sensing properties of the long-gage macro-strain sensors and the results verify the excellent sensing properties, in particular the measurement accuracy and dynamic measuring capacity. Modal analysis results of a concrete beam show that the damage appearing in the beam can be well identified by the damage index while the vibration testing results of a RC beam show that the proposed method can not only capture small crack initiation but its propagation. It can be concluded that distributed long-gage dynamic macro-strain sensing technique has great potential for the condition assessment of RC structures subjected to dynamic loading.
Development and evaluation of the impulse transfer function technique
NASA Technical Reports Server (NTRS)
Mantus, M.
1972-01-01
The development of the test/analysis technique known as the impulse transfer function (ITF) method is discussed. This technique, when implemented with proper data processing systems, should become a valuable supplement to conventional dynamic testing and analysis procedures that will be used in the space shuttle development program. The method can relieve many of the problems associated with extensive and costly testing of the shuttle for transient loading conditions. In addition, the time history information derived from impulse testing has the potential for being used to determine modal data for the structure under investigation. The technique could be very useful in determining the time-varying modal characteristics of structures subjected to thermal transients, where conventional mode surveys are difficult to perform.
Development of Composite Materials with High Passive Damping Properties
2006-05-15
frequency response function analysis. Sound transmission through sandwich panels was studied using the statistical energy analysis (SEA). Modal density...2.2.3 Finite element models 14 2.2.4 Statistical energy analysis method 15 CHAPTER 3 ANALYSIS OF DAMPING IN SANDWICH MATERIALS. 24 3.1 Equation of...sheets and the core. 2.2.4 Statistical energy analysis method Finite element models are generally only efficient for problems at low and middle frequencies
Determining the effective system damping of highway bridges.
DOT National Transportation Integrated Search
2009-06-01
This project investigates four methods for modeling modal damping ratios of short-span and isolated : concrete bridges subjected to strong ground motion, which can be used for bridge seismic analysis : and design based on the response spectrum method...
5-ALA induced fluorescent image analysis of actinic keratosis
NASA Astrophysics Data System (ADS)
Cho, Yong-Jin; Bae, Youngwoo; Choi, Eung-Ho; Jung, Byungjo
2010-02-01
In this study, we quantitatively analyzed 5-ALA induced fluorescent images of actinic keratosis using digital fluorescent color and hyperspectral imaging modalities. UV-A was utilized to induce fluorescent images and actinic keratosis (AK) lesions were demarcated from surrounding the normal region with different methods. Eight subjects with AK lesion were participated in this study. In the hyperspectral imaging modality, spectral analysis method was utilized for hyperspectral cube image and AK lesions were demarcated from the normal region. Before image acquisition, we designated biopsy position for histopathology of AK lesion and surrounding normal region. Erythema index (E.I.) values on both regions were calculated from the spectral cube data. Image analysis of subjects resulted in two different groups: the first group with the higher fluorescence signal and E.I. on AK lesion than the normal region; the second group with lower fluorescence signal and without big difference in E.I. between two regions. In fluorescent color image analysis of facial AK, E.I. images were calculated on both normal and AK lesions and compared with the results of hyperspectral imaging modality. The results might indicate that the different intensity of fluorescence and E.I. among the subjects with AK might be interpreted as different phases of morphological and metabolic changes of AK lesions.
Nonlinear Reduced Order Random Response Analysis of Structures with Shallow Curvature
NASA Technical Reports Server (NTRS)
Przekop, Adam; Rizzi, Stephen A.
2006-01-01
The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures with shallow curvature under random loadings. For reduced order analysis, the modal basis selection must be capable of reflecting the coupling in both the linear and nonlinear stiffness. For the symmetric shallow arch under consideration, four categories of modal basis functions are defined. Those having symmetric transverse displacements (ST modes) can be designated as transverse dominated (ST-T) modes and in-plane dominated (ST-I) modes. Those having anti-symmetric transverse displacements (AT modes) can similarly be designated as transverse dominated (AT-T) modes and in-plane dominated (AT-I) modes. The response of an aluminum arch under a uniformly distributed transverse random loading is investigated. Results from nonlinear modal simulations made using various modal bases are compared with those obtained from a numerical simulation in physical degrees-of-freedom. While inclusion of ST-T modes is important for all response regimes, it is found that the ST-I modes become increasingly important in the nonlinear response regime, and that AT-T and AT-I modes are critical in the autoparametric regime.
Nonlinear Reduced Order Random Response Analysis of Structures With Shallow Curvature
NASA Technical Reports Server (NTRS)
Przekop, Adam; Rizzi, Stephen A.
2005-01-01
The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures with shallow curvature under random loadings. For reduced order analysis, the modal basis selection must be capable of reflecting the coupling in both the linear and nonlinear stiffness. For the symmetric shallow arch under consideration, four categories of modal basis functions are defined. Those having symmetric transverse displacements (ST modes) can be designated as transverse dominated (ST-T) modes and in-plane dominated (ST-I) modes. Those having anti-symmetric transverse displacements (AT modes) can similarly be designated as transverse dominated (AT-T) modes and in-plane dominated (AT-I) modes. The response of an aluminum arch under a uniformly distributed transverse random loading is investigated. Results from nonlinear modal simulations made using various modal bases are compared with those obtained from a numerical simulation in physical degrees-of-freedom. While inclusion of ST-T modes is important for all response regimes, it is found that the ST-I modes become increasingly important in the nonlinear response regime, and that AT-T and AT-I modes are critical in the autoparametric regime.
Zhao, W; Busto, R; Truettner, J; Ginsberg, M D
2001-07-30
The analysis of pixel-based relationships between local cerebral blood flow (LCBF) and mRNA expression can reveal important insights into brain function. Traditionally, LCBF and in situ hybridization studies for genes of interest have been analyzed in separate series. To overcome this limitation and to increase the power of statistical analysis, this study focused on developing a double-label method to measure local cerebral blood flow (LCBF) and gene expressions simultaneously by means of a dual-autoradiography procedure. A 14C-iodoantipyrine autoradiographic LCBF study was first performed. Serial brain sections (12 in this study) were obtained at multiple coronal levels and were processed in the conventional manner to yield quantitative LCBF images. Two replicate sections at each bregma level were then used for in situ hybridization. To eliminate the 14C-iodoantipyrine from these sections, a chloroform-washout procedure was first performed. The sections were then processed for in situ hybridization autoradiography for the probes of interest. This method was tested in Wistar rats subjected to 12 min of global forebrain ischemia by two-vessel occlusion plus hypotension, followed by 2 or 6 h of reperfusion (n=4-6 per group). LCBF and in situ hybridization images for heat shock protein 70 (HSP70) were generated for each rat, aligned by disparity analysis, and analyzed on a pixel-by-pixel basis. This method yielded detailed inter-modality correlation between LCBF and HSP70 mRNA expressions. The advantages of this method include reducing the number of experimental animals by one-half; and providing accurate pixel-based correlations between different modalities in the same animals, thus enabling paired statistical analyses. This method can be extended to permit correlation of LCBF with the expression of multiple genes of interest.
Comparison of modal superposition methods for the analytical solution to moving load problems.
DOT National Transportation Integrated Search
1994-01-01
The response of bridge structures to moving loads is investigated using modal superposition methods. Two distinct modal superposition methods are available: the modedisplacement method and the mode-acceleration method. While the mode-displacement met...
Modal kinematics for multisection continuum arms.
Godage, Isuru S; Medrano-Cerda, Gustavo A; Branson, David T; Guglielmino, Emanuele; Caldwell, Darwin G
2015-05-13
This paper presents a novel spatial kinematic model for multisection continuum arms based on mode shape functions (MSF). Modal methods have been used in many disciplines from finite element methods to structural analysis to approximate complex and nonlinear parametric variations with simple mathematical functions. Given certain constraints and required accuracy, this helps to simplify complex phenomena with numerically efficient implementations leading to fast computations. A successful application of the modal approximation techniques to develop a new modal kinematic model for general variable length multisection continuum arms is discussed. The proposed method solves the limitations associated with previous models and introduces a new approach for readily deriving exact, singularity-free and unique MSF's that simplifies the approach and avoids mode switching. The model is able to simulate spatial bending as well as straight arm motions (i.e., pure elongation/contraction), and introduces inverse position and orientation kinematics for multisection continuum arms. A kinematic decoupling feature, splitting position and orientation inverse kinematics is introduced. This type of decoupling has not been presented for these types of robotic arms before. The model also carefully accounts for physical constraints in the joint space to provide enhanced insight into practical mechanics and impose actuator mechanical limitations onto the kinematics thus generating fully realizable results. The proposed method is easily applicable to a broad spectrum of continuum arm designs.
NASA Astrophysics Data System (ADS)
Cancelli, Alessandro; Micheli, Laura; Laflamme, Simon; Alipour, Alice; Sritharan, Sri; Ubertini, Filippo
2017-04-01
Stochastic subspace identification (SSID) is a first-order linear system identification technique enabling modal analysis through the time domain. Research in the field of structural health monitoring has demonstrated that SSID can be used to successfully retrieve modal properties, including modal damping ratios, using output-only measurements. In this paper, the utilization of SSID for indirectly retrieving structures' stiffness matrix was investigated, through the study of a simply supported reinforced concrete beam subjected to dynamic loads. Hence, by introducing a physical model of the structure, a second-order identification method is achieved. The reconstruction is based on system condensation methods, which enables calculation of reduced order stiffness, damping, and mass matrices for the structural system. The methods compute the reduced order matrices directly from the modal properties, obtained through the use of SSID. Lastly, the reduced properties of the system are used to reconstruct the stiffness matrix of the beam. The proposed approach is first verified through numerical simulations and then validated using experimental data obtained from a full-scale reinforced concrete beam that experienced progressive damage. Results show that the SSID technique can be used to diagnose, locate, and quantify damage through the reconstruction of the stiffness matrix.
Stability analysis of a liquid fuel annular combustion chamber. M.S. Thesis
NASA Technical Reports Server (NTRS)
Mcdonald, G. H.
1978-01-01
High frequency combustion instability problems in a liquid fuel annular combustion chamber are examined. A modified Galerkin method was used to produce a set of modal amplitude equations from the general nonlinear partial differential acoustic wave equation in order to analyze the problem of instability. From these modal amplitude equations, the two variable perturbation method was used to develop a set of approximate equations of a given order of magnitude. These equations were modeled to show the effects of velocity sensitive combustion instabilities by evaluating the effects of certain parameters in the given set of equations.
Establishment and analysis of coupled dynamic model for dual-mass silicon micro-gyroscope
NASA Astrophysics Data System (ADS)
Wang, Zhanghui; Qiu, Anping; Shi, Qin; Zhang, Taoyuan
2017-12-01
This paper presents a coupled dynamic model for a dual-mass silicon micro-gyroscope (DMSG). It can quantitatively analyze the influence of left-right stiffness difference on the natural frequencies, modal matrix and modal coupling coefficient of the DMSG. The analytic results are verified by using the finite element method (FEM) simulation. The model shows that with the left-right stiffness difference of 1%, the modal coupling coefficient is 12% in the driving direction and 31% in the sensing direction. It also shows that in order to achieve good separation, the stiffness of base beam should be small enough in both the driving and sensing direction.
Application of Approximate Unsteady Aerodynamics for Flutter Analysis
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Li, Wesley W.
2010-01-01
A technique for approximating the modal aerodynamic influence coefficient (AIC) matrices by using basis functions has been developed. A process for using the resulting approximated modal AIC matrix in aeroelastic analysis has also been developed. The method requires the unsteady aerodynamics in frequency domain, and this methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root locus et cetera. The unsteady aeroelastic analysis using unsteady subsonic aerodynamic approximation is demonstrated herein. The technique presented is shown to offer consistent flutter speed prediction on an aerostructures test wing (ATW) 2 and a hybrid wing body (HWB) type of vehicle configuration with negligible loss in precision. This method computes AICs that are functions of the changing parameters being studied and are generated within minutes of CPU time instead of hours. These results may have practical application in parametric flutter analyses as well as more efficient multidisciplinary design and optimization studies.
NASA Technical Reports Server (NTRS)
Barnett, Alan R.; Widrick, Timothy W.; Ludwiczak, Damian R.
1996-01-01
Solving for dynamic responses of free-free launch vehicle/spacecraft systems acted upon by buffeting winds is commonly performed throughout the aerospace industry. Due to the unpredictable nature of this wind loading event, these problems are typically solved using frequency response random analysis techniques. To generate dynamic responses for spacecraft with statically-indeterminate interfaces, spacecraft contractors prefer to develop models which have response transformation matrices developed for mode acceleration data recovery. This method transforms spacecraft boundary accelerations and displacements into internal responses. Unfortunately, standard MSC/NASTRAN modal frequency response solution sequences cannot be used to combine acceleration- and displacement-dependent responses required for spacecraft mode acceleration data recovery. External user-written computer codes can be used with MSC/NASTRAN output to perform such combinations, but these methods can be labor and computer resource intensive. Taking advantage of the analytical and computer resource efficiencies inherent within MS C/NASTRAN, a DMAP Alter has been developed to combine acceleration- and displacement-dependent modal frequency responses for performing spacecraft mode acceleration data recovery. The Alter has been used successfully to efficiently solve a common aerospace buffeting wind analysis.
Bae, Youngwoo; Son, Taeyoon; Nelson, J. Stuart; Kim, Jae-Hong; Choi, Eung Ho; Jung, Byungjo
2010-01-01
Background/Purpose Digital color image analysis is currently considered as a routine procedure in dermatology. In our previous study, a multimodal facial color imaging modality (MFCIM), which provides a conventional, parallel- and cross-polarization, and fluorescent color image, was introduced for objective evaluation of various facial skin lesions. This study introduces a commercial version of MFCIM, DermaVision-PRO, for routine clinical use in dermatology and demonstrates its dermatological feasibility for cross-evaluation of skin lesions. Methods/Results Sample images of subjects with actinic keratosis or non-melanoma skin cancers were obtained at four different imaging modes. Various image analysis methods were applied to cross-evaluate the skin lesion and, finally, extract valuable diagnostic information. DermaVision-PRO is potentially a useful tool as an objective macroscopic imaging modality for quick prescreening and cross-evaluation of facial skin lesions. Conclusion DermaVision-PRO may be utilized as a useful tool for cross-evaluation of widely distributed facial skin lesions and an efficient database management of patient information. PMID:20923462
NASA Astrophysics Data System (ADS)
Huang, Hongbin; Li, Jingzhen; Gong, Xiangdong; Sun, Fengshan; He, Tiefeng
2007-01-01
The methods of numerical analysis for the strength and vibration modals of rotating mirrors were presented based respectively on the three-dimensional elastic mechanics and dynamics. On strength computation, the finite element models of rotating mirror were established according to the real structure of mirror, and the rotating three-faced aluminous and beryllium mirrors were analysed contrastively. Results display that the surface deformation quantity of the aluminous mirror is approximately 20 times as large as beryllium one, and the maximum stress is 1.6 times against the latter. Then, the three-faced aluminous mirrors were analyzed at variedly fit between shaft and axle hole. One conclusion is gotten out that the mirror strength is foreign to fits, but it is weaken by the axle hole obviously. On the modal analysis of vibration, this method can simulates accurately the natural frequencies and corresponding modalities of mirror. And the results from three-face aluminous mirror indicate that the resonance points of a new mirror may be guaranteed existing in selected speed range.
NASA Astrophysics Data System (ADS)
Kessler, Seth S.; Spearing, S. Mark
2002-07-01
Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents the conclusions of an experimental and analytical survey of candidate methods for in-situ damage detection in composite structures. Experimental results are presented for the application of modal analysis and Lamb wave techniques to quasi-isotropic graphite/epoxy test specimens containing representative damage. Piezoelectric patches were used as actuators and sensors for both sets of experiments. Modal analysis methods were reliable for detecting small amounts of global damage in a simple composite structure. By comparison, Lamb wave methods were sensitive to all types of local damage present between the sensor and actuator, provided useful information about damage presence and severity, and present the possibility of estimating damage type and location. Analogous experiments were also performed for more complex built-up structures. These techniques are suitable for structural health monitoring applications since they can be applied with low power conformable sensors and can provide useful information about the state of a structure during operation. Piezoelectric patches could also be used as multipurpose sensors to detect damage by a variety of methods such as modal analysis, Lamb wave, acoustic emission and strain based methods simultaneously, by altering driving frequencies and sampling rates. This paper present guidelines and recommendations drawn from this research to assist in the design of a structural health monitoring system for a vehicle. These systems will be an important component in future designs of air and spacecraft to increase the feasibility of their missions.
NASA Astrophysics Data System (ADS)
Cara, Javier
2016-05-01
Modal parameters comprise natural frequencies, damping ratios, modal vectors and modal masses. In a theoretic framework, these parameters are the basis for the solution of vibration problems using the theory of modal superposition. In practice, they can be computed from input-output vibration data: the usual procedure is to estimate a mathematical model from the data and then to compute the modal parameters from the estimated model. The most popular models for input-output data are based on the frequency response function, but in recent years the state space model in the time domain has become popular among researchers and practitioners of modal analysis with experimental data. In this work, the equations to compute the modal parameters from the state space model when input and output data are available (like in combined experimental-operational modal analysis) are derived in detail using invariants of the state space model: the equations needed to compute natural frequencies, damping ratios and modal vectors are well known in the operational modal analysis framework, but the equation needed to compute the modal masses has not generated much interest in technical literature. These equations are applied to both a numerical simulation and an experimental study in the last part of the work.
NASA Technical Reports Server (NTRS)
Hidalgo, Homero, Jr.
2000-01-01
An innovative methodology for determining structural target mode selection and mode selection based on a specific criterion is presented. An effective approach to single out modes which interact with specific locations on a structure has been developed for the X-33 Launch Vehicle Finite Element Model (FEM). We presented Root-Sum-Square (RSS) displacement method computes resultant modal displacement for each mode at selected degrees of freedom (DOF) and sorts to locate modes with highest values. This method was used to determine modes, which most influenced specific locations/points on the X-33 flight vehicle such as avionics control components, aero-surface control actuators, propellant valve and engine points for use in flight control stability analysis and for flight POGO stability analysis. Additionally, the modal RSS method allows for primary or global target vehicle modes to also be identified in an accurate and efficient manner.
Integrated trimodal SSEP experimental setup for visual, auditory and tactile stimulation
NASA Astrophysics Data System (ADS)
Kuś, Rafał; Spustek, Tomasz; Zieleniewska, Magdalena; Duszyk, Anna; Rogowski, Piotr; Suffczyński, Piotr
2017-12-01
Objective. Steady-state evoked potentials (SSEPs), the brain responses to repetitive stimulation, are commonly used in both clinical practice and scientific research. Particular brain mechanisms underlying SSEPs in different modalities (i.e. visual, auditory and tactile) are very complex and still not completely understood. Each response has distinct resonant frequencies and exhibits a particular brain topography. Moreover, the topography can be frequency-dependent, as in case of auditory potentials. However, to study each modality separately and also to investigate multisensory interactions through multimodal experiments, a proper experimental setup appears to be of critical importance. The aim of this study was to design and evaluate a novel SSEP experimental setup providing a repetitive stimulation in three different modalities (visual, tactile and auditory) with a precise control of stimuli parameters. Results from a pilot study with a stimulation in a particular modality and in two modalities simultaneously prove the feasibility of the device to study SSEP phenomenon. Approach. We developed a setup of three separate stimulators that allows for a precise generation of repetitive stimuli. Besides sequential stimulation in a particular modality, parallel stimulation in up to three different modalities can be delivered. Stimulus in each modality is characterized by a stimulation frequency and a waveform (sine or square wave). We also present a novel methodology for the analysis of SSEPs. Main results. Apart from constructing the experimental setup, we conducted a pilot study with both sequential and simultaneous stimulation paradigms. EEG signals recorded during this study were analyzed with advanced methodology based on spatial filtering and adaptive approximation, followed by statistical evaluation. Significance. We developed a novel experimental setup for performing SSEP experiments. In this sense our study continues the ongoing research in this field. On the other hand, the described setup along with the presented methodology is a considerable improvement and an extension of methods constituting the state-of-the-art in the related field. Device flexibility both with developed analysis methodology can lead to further development of diagnostic methods and provide deeper insight into information processing in the human brain.
A multimodal image sensor system for identifying water stress in grapevines
NASA Astrophysics Data System (ADS)
Zhao, Yong; Zhang, Qin; Li, Minzan; Shao, Yongni; Zhou, Jianfeng; Sun, Hong
2012-11-01
Water stress is one of the most common limitations of fruit growth. Water is the most limiting resource for crop growth. In grapevines, as well as in other fruit crops, fruit quality benefits from a certain level of water deficit which facilitates to balance vegetative and reproductive growth and the flow of carbohydrates to reproductive structures. A multi-modal sensor system was designed to measure the reflectance signature of grape plant surfaces and identify different water stress levels in this paper. The multi-modal sensor system was equipped with one 3CCD camera (three channels in R, G, and IR). The multi-modal sensor can capture and analyze grape canopy from its reflectance features, and identify the different water stress levels. This research aims at solving the aforementioned problems. The core technology of this multi-modal sensor system could further be used as a decision support system that combines multi-modal sensory data to improve plant stress detection and identify the causes of stress. The images were taken by multi-modal sensor which could output images in spectral bands of near-infrared, green and red channel. Based on the analysis of the acquired images, color features based on color space and reflectance features based on image process method were calculated. The results showed that these parameters had the potential as water stress indicators. More experiments and analysis are needed to validate the conclusion.
Neurolinguistics Programming: Method or Myth?
ERIC Educational Resources Information Center
Gumm, W. B.; And Others
1982-01-01
The preferred modality by which 50 right-handed female college students encoded experience was assessed by recordings of conjugate eye movements, content analysis of the subject's verbal report, and the subject's self-report. Kappa analyses failed to reveal any agreement of the three assessment methods. (Author)
Analysis of structural response data using discrete modal filters. M.S. Thesis
NASA Technical Reports Server (NTRS)
Freudinger, Lawrence C.
1991-01-01
The application of reciprocal modal vectors to the analysis of structural response data is described. Reciprocal modal vectors are constructed using an existing experimental modal model and an existing frequency response matrix of a structure, and can be assembled into a matrix that effectively transforms the data from the physical space to a modal space within a particular frequency range. In other words, the weighting matrix necessary for modal vector orthogonality (typically the mass matrix) is contained within the reciprocal model matrix. The underlying goal of this work is mostly directed toward observing the modal state responses in the presence of unknown, possibly closed loop forcing functions, thus having an impact on both operating data analysis techniques and independent modal space control techniques. This study investigates the behavior of reciprocol modal vectors as modal filters with respect to certain calculation parameters and their performance with perturbed system frequency response data.
On the feasibility of a transient dynamic design analysis
NASA Astrophysics Data System (ADS)
Cunniff, Patrick F.; Pohland, Robert D.
1993-05-01
The Dynamic Design Analysis Method has been used for the past 30 years as part of the Navy's efforts to shock-harden heavy shipboard equipment. This method which has been validated several times employs normal mode theory and design shock values. This report examines the degree of success that may be achieved by using simple equipment-vehicle models that produce time history responses which are equivalent to the responses that would be achieved using spectral design values employed by the Dynamic Design Analysis Method. These transient models are constructed by attaching the equipment's modal oscillators to the vehicle which is composed of rigid masses and elastic springs. Two methods have been developed for constructing these transient models. Each method generates the parameters of the vehicles so as to approximate the required damaging effects, such that the transient model is excited by an idealized impulse applied to the vehicle mass to which the equipment modal oscillators are attached. The first method called the Direct Modeling Method, is limited to equipment with at most three-degrees of freedom and the vehicle consists of a single lumped mass and spring. The Optimization Modeling Method, which is based on the simplex method for optimization, has been used successfully with a variety of vehicle models and equipment sizes.
NASA Technical Reports Server (NTRS)
Papadopoulos, Michael; Tolson, Robert H.
1993-01-01
The Modal Identification Experiment (MIE) is a proposed experiment to define the dynamic characteristics of Space Station Freedom. Previous studies emphasized free-decay modal identification. The feasibility of using a forced response method (Observer/Kalman Filter Identification (OKID)) is addressed. The interest in using OKID is to determine the input mode shape matrix which can be used for controller design or control-structure interaction analysis, and investigate if forced response methods may aid in separating closely spaced modes. A model of the SC-7 configuration of Space Station Freedom was excited using simulated control system thrusters to obtain acceleration output. It is shown that an 'optimum' number of outputs exists for OKID. To recover global mode shapes, a modified method called Global-Local OKID was developed. This study shows that using data from a long forced response followed by free-decay leads to the 'best' modal identification. Twelve out of the thirteen target modes were identified for such an output.
Topological and kinetic determinants of the modal matrices of dynamic models of metabolism
2017-01-01
Large-scale kinetic models of metabolism are becoming increasingly comprehensive and accurate. A key challenge is to understand the biochemical basis of the dynamic properties of these models. Linear analysis methods are well-established as useful tools for characterizing the dynamic response of metabolic networks. Central to linear analysis methods are two key matrices: the Jacobian matrix (J) and the modal matrix (M-1) arising from its eigendecomposition. The modal matrix M-1 contains dynamically independent motions of the kinetic model near a reference state, and it is sparse in practice for metabolic networks. However, connecting the structure of M-1 to the kinetic properties of the underlying reactions is non-trivial. In this study, we analyze the relationship between J, M-1, and the kinetic properties of the underlying network for kinetic models of metabolism. Specifically, we describe the origin of mode sparsity structure based on features of the network stoichiometric matrix S and the reaction kinetic gradient matrix G. First, we show that due to the scaling of kinetic parameters in real networks, diagonal dominance occurs in a substantial fraction of the rows of J, resulting in simple modal structures with clear biological interpretations. Then, we show that more complicated modes originate from topologically-connected reactions that have similar reaction elasticities in G. These elasticities represent dynamic equilibrium balances within reactions and are key determinants of modal structure. The work presented should prove useful towards obtaining an understanding of the dynamics of kinetic models of metabolism, which are rooted in the network structure and the kinetic properties of reactions. PMID:29267329
Librarian instruction-delivery modality preferences for professional continuing education
Lynn, Valerie A.; Bose, Arpita; Boehmer, Susan J.
2010-01-01
Objectives: Attending professional continuing education (CE) is an important component of librarianship. This research study identified librarians' preferences in delivery modalities of instruction for professional CE. The study also identified influential factors associated with attending CE classes. Methods: Five instruction-delivery modalities and six influential factors were identified for inclusion in an online survey. The survey completed by members of the American Library Association (ALA), Special Libraries Association (SLA), and Medical Library Association (MLA) provided the data for analysis of librarian preferences and influential factors. Results: The majority of respondents were MLA members, followed by ALA and SLA members. Librarians from all three library associations preferred the face-to-face instructional modality. The most influential factor associated with the decision to attend a professional CE class was cost. Conclusions: All five instruction-delivery modalities present useful structures for imparting professional CE. As librarians' experience with different modalities increases and as technology improves, preferences in instruction delivery may shift. But at present, face-to-face remains the most preferred modality. Based on the results of this study, cost was the most influential factor associated with attending a CE class. This may change as additional influential factors are identified and analyzed in future studies. PMID:20098656
Spatial Analysis of Case-Mix and Dialysis Modality Associations
Phirtskhalaishvili, Tamar; Bayer, Florian; Edet, Stephane; Bongiovanni, Isabelle; Hogan, Julien; Couchoud, Cécile
2016-01-01
♦ Background: Health-care systems must attempt to provide appropriate, high-quality, and economically sustainable care that meets the needs and choices of patients with end-stage renal disease (ESRD). France offers 9 different modalities of dialysis, each characterized by dialysis technique, the extent of professional assistance, and the treatment site. The aim of this study was 1) to describe the various dialysis modalities in France and the patient characteristics associated with each of them, and 2) to analyze their regional patterns to identify possible unexpected associations between case-mixes and dialysis modalities. ♦ Methods: The clinical characteristics of the 37,421 adult patients treated by dialysis were described according to their treatment modality. Agglomerative hierarchical cluster analysis was used to aggregate the regions into clusters according to their use of these modalities and the characteristics of their patients. ♦ Result: The gradient of patient characteristics was similar from home hemodialyis (HD) to in-center HD and from non-assisted automated peritoneal dialysis (APD) to assisted continuous ambulatory peritoneal dialysis (CAPD). Analyzing their spatial distribution, we found differences in the patient case-mix on dialysis across regions but also differences in the health-care provided for them. The classification of the regions into 6 different clusters allowed us to detect some unexpected associations between case-mixes and treatment modalities. ♦ Conclusions: The 9 modalities of treatment available make it theoretically possible to adapt treatment to patients' clinical characteristics and abilities. However, although we found an overall appropriate association of dialysis modalities to the case-mix, major inter-region heterogeneity and the low rate of peritoneal dialysis (PD) and home HD suggest that factors besides patients' clinical conditions impact the choice of dialysis modality. The French organization should now be evaluated in terms of patients' quality of life, satisfaction, survival, and global efficiency. PMID:26475843
NASA Astrophysics Data System (ADS)
Sellami, Takwa; Jelassi, Sana; Darcherif, Abdel Moumen; Berriri, Hanen; Mimouni, Med Faouzi
2018-04-01
With the advancement of wind turbines towards complex structures, the requirement of trusty structural models has become more apparent. Hence, the vibration characteristics of the wind turbine components, like the blades and the tower, have to be extracted under vibration constraints. Although extracting the modal properties of blades is a simple task, calculating precise modal data for the whole wind turbine coupled to its tower/foundation is still a perplexing task. In this framework, this paper focuses on the investigation of the structural modeling approach of modern commercial micro-turbines. Thus, the structural model a complex designed wind turbine, which is Rutland 504, is established based on both experimental and numerical methods. A three-dimensional (3-D) numerical model of the structure was set up based on the finite volume method (FVM) using the academic finite element analysis software ANSYS. To validate the created model, experimental vibration tests were carried out using the vibration test system of TREVISE platform at ECAM-EPMI. The tests were based on the experimental modal analysis (EMA) technique, which is one of the most efficient techniques for identifying structures parameters. Indeed, the poles and residues of the frequency response functions (FRF), between input and output spectra, were calculated to extract the mode shapes and the natural frequencies of the structure. Based on the obtained modal parameters, the numerical designed model was up-dated.
A new scenario-based approach to damage detection using operational modal parameter estimates
NASA Astrophysics Data System (ADS)
Hansen, J. B.; Brincker, R.; López-Aenlle, M.; Overgaard, C. F.; Kloborg, K.
2017-09-01
In this paper a vibration-based damage localization and quantification method, based on natural frequencies and mode shapes, is presented. The proposed technique is inspired by a damage assessment methodology based solely on the sensitivity of mass-normalized experimental determined mode shapes. The present method differs by being based on modal data extracted by means of Operational Modal Analysis (OMA) combined with a reasonable Finite Element (FE) representation of the test structure and implemented in a scenario-based framework. Besides a review of the basic methodology this paper addresses fundamental theoretical as well as practical considerations which are crucial to the applicability of a given vibration-based damage assessment configuration. Lastly, the technique is demonstrated on an experimental test case using automated OMA. Both the numerical study as well as the experimental test case presented in this paper are restricted to perturbations concerning mass change.
Advances in Modal Analysis Using a Robust and Multiscale Method
NASA Astrophysics Data System (ADS)
Picard, Cécile; Frisson, Christian; Faure, François; Drettakis, George; Kry, Paul G.
2010-12-01
This paper presents a new approach to modal synthesis for rendering sounds of virtual objects. We propose a generic method that preserves sound variety across the surface of an object at different scales of resolution and for a variety of complex geometries. The technique performs automatic voxelization of a surface model and automatic tuning of the parameters of hexahedral finite elements, based on the distribution of material in each cell. The voxelization is performed using a sparse regular grid embedding of the object, which permits the construction of plausible lower resolution approximations of the modal model. We can compute the audible impulse response of a variety of objects. Our solution is robust and can handle nonmanifold geometries that include both volumetric and surface parts. We present a system which allows us to manipulate and tune sounding objects in an appropriate way for games, training simulations, and other interactive virtual environments.
Nonlinear hybrid modal synthesis based on branch modes for dynamic analysis of assembled structure
NASA Astrophysics Data System (ADS)
Huang, Xing-Rong; Jézéquel, Louis; Besset, Sébastien; Li, Lin; Sauvage, Olivier
2018-01-01
This paper describes a simple and fast numerical procedure to study the steady state responses of assembled structures with nonlinearities along continuous interfaces. The proposed strategy is based on a generalized nonlinear modal superposition approach supplemented by a double modal synthesis strategy. The reduced nonlinear modes are derived by combining a single nonlinear mode method with reduction techniques relying on branch modes. The modal parameters containing essential nonlinear information are determined and then employed to calculate the stationary responses of the nonlinear system subjected to various types of excitation. The advantages of the proposed nonlinear modal synthesis are mainly derived in three ways: (1) computational costs are considerably reduced, when analyzing large assembled systems with weak nonlinearities, through the use of reduced nonlinear modes; (2) based on the interpolation models of nonlinear modal parameters, the nonlinear modes introduced during the first step can be employed to analyze the same system under various external loads without having to reanalyze the entire system; and (3) the nonlinear effects can be investigated from a modal point of view by analyzing these nonlinear modal parameters. The proposed strategy is applied to an assembled system composed of plates and nonlinear rubber interfaces. Simulation results have proven the efficiency of this hybrid nonlinear modal synthesis, and the computation time has also been significantly reduced.
Analysis of spurious oscillation modes for the shallow water and Navier-Stokes equations
Walters, R.A.; Carey, G.F.
1983-01-01
The origin and nature of spurious oscillation modes that appear in mixed finite element methods are examined. In particular, the shallow water equations are considered and a modal analysis for the one-dimensional problem is developed. From the resulting dispersion relations we find that the spurious modes in elevation are associated with zero frequency and large wave number (wavelengths of the order of the nodal spacing) and consequently are zero-velocity modes. The spurious modal behavior is the result of the finite spatial discretization. By means of an artificial compressibility and limiting argument we are able to resolve the similar problem for the Navier-Stokes equations. The relationship of this simpler analysis to alternative consistency arguments is explained. This modal approach provides an explanation of the phenomenon in question and permits us to deduce the cause of the very complex behavior of spurious modes observed in numerical experiments with the shallow water equations and Navier-Stokes equations. Furthermore, this analysis is not limited to finite element formulations, but is also applicable to finite difference formulations. ?? 1983.
Gao, Zhong-Ke; Dang, Wei-Dong; Li, Shan; Yang, Yu-Xuan; Wang, Hong-Tao; Sheng, Jing-Ran; Wang, Xiao-Fan
2017-07-14
Numerous irregular flow structures exist in the complicated multiphase flow and result in lots of disparate spatial dynamical flow behaviors. The vertical oil-water slug flow continually attracts plenty of research interests on account of its significant importance. Based on the spatial transient flow information acquired through our designed double-layer distributed-sector conductance sensor, we construct multilayer modality-based network to encode the intricate spatial flow behavior. Particularly, we calculate the PageRank versatility and multilayer weighted clustering coefficient to quantitatively explore the inferred multilayer modality-based networks. Our analysis allows characterizing the complicated evolution of oil-water slug flow, from the opening formation of oil slugs, to the succedent inter-collision and coalescence among oil slugs, and then to the dispersed oil bubbles. These properties render our developed method particularly powerful for mining the essential flow features from the multilayer sensor measurements.
Muthuraman, Muthuraman; Hellriegel, Helge; Hoogenboom, Nienke; Anwar, Abdul Rauf; Mideksa, Kidist Gebremariam; Krause, Holger; Schnitzler, Alfons; Deuschl, Günther; Raethjen, Jan
2014-01-01
Electroencephalography (EEG) and magnetoencephalography (MEG) are the two modalities for measuring neuronal dynamics at a millisecond temporal resolution. Different source analysis methods, to locate the dipoles in the brain from which these dynamics originate, have been readily applied to both modalities alone. However, direct comparisons and possible advantages of combining both modalities have rarely been assessed during voluntary movements using coherent source analysis. In the present study, the cortical and sub-cortical network of coherent sources at the finger tapping task frequency (2-4 Hz) and the modes of interaction within this network were analysed in 15 healthy subjects using a beamformer approach called the dynamic imaging of coherent sources (DICS) with subsequent source signal reconstruction and renormalized partial directed coherence analysis (RPDC). MEG and EEG data were recorded simultaneously allowing the comparison of each of the modalities separately to that of the combined approach. We found the identified network of coherent sources for the finger tapping task as described in earlier studies when using only the MEG or combined MEG+EEG whereas the EEG data alone failed to detect single sub-cortical sources. The signal-to-noise ratio (SNR) level of the coherent rhythmic activity at the tapping frequency in MEG and combined MEG+EEG data was significantly higher than EEG alone. The functional connectivity analysis revealed that the combined approach had more active connections compared to either of the modalities during the finger tapping (FT) task. These results indicate that MEG is superior in the detection of deep coherent sources and that the SNR seems to be more vital than the sensitivity to theoretical dipole orientation and the volume conduction effect in the case of EEG.
Muthuraman, Muthuraman; Hellriegel, Helge; Hoogenboom, Nienke; Anwar, Abdul Rauf; Mideksa, Kidist Gebremariam; Krause, Holger; Schnitzler, Alfons; Deuschl, Günther; Raethjen, Jan
2014-01-01
Electroencephalography (EEG) and magnetoencephalography (MEG) are the two modalities for measuring neuronal dynamics at a millisecond temporal resolution. Different source analysis methods, to locate the dipoles in the brain from which these dynamics originate, have been readily applied to both modalities alone. However, direct comparisons and possible advantages of combining both modalities have rarely been assessed during voluntary movements using coherent source analysis. In the present study, the cortical and sub-cortical network of coherent sources at the finger tapping task frequency (2–4 Hz) and the modes of interaction within this network were analysed in 15 healthy subjects using a beamformer approach called the dynamic imaging of coherent sources (DICS) with subsequent source signal reconstruction and renormalized partial directed coherence analysis (RPDC). MEG and EEG data were recorded simultaneously allowing the comparison of each of the modalities separately to that of the combined approach. We found the identified network of coherent sources for the finger tapping task as described in earlier studies when using only the MEG or combined MEG+EEG whereas the EEG data alone failed to detect single sub-cortical sources. The signal-to-noise ratio (SNR) level of the coherent rhythmic activity at the tapping frequency in MEG and combined MEG+EEG data was significantly higher than EEG alone. The functional connectivity analysis revealed that the combined approach had more active connections compared to either of the modalities during the finger tapping (FT) task. These results indicate that MEG is superior in the detection of deep coherent sources and that the SNR seems to be more vital than the sensitivity to theoretical dipole orientation and the volume conduction effect in the case of EEG. PMID:24618596
Mao, Nini; Liu, Yunting; Chen, Kewei; Yao, Li; Wu, Xia
2018-06-05
Multiple neuroimaging modalities have been developed providing various aspects of information on the human brain. Used together and properly, these complementary multimodal neuroimaging data integrate multisource information which can facilitate a diagnosis and improve the diagnostic accuracy. In this study, 3 types of brain imaging data (sMRI, FDG-PET, and florbetapir-PET) were fused in the hope to improve diagnostic accuracy, and multivariate methods (logistic regression) were applied to these trimodal neuroimaging indices. Then, the receiver-operating characteristic (ROC) method was used to analyze the outcomes of the logistic classifier, with either each index, multiples from each modality, or all indices from all 3 modalities, to investigate their differential abilities to identify the disease. With increasing numbers of indices within each modality and across modalities, the accuracy of identifying Alzheimer disease (AD) increases to varying degrees. For example, the area under the ROC curve is above 0.98 when all the indices from the 3 imaging data types are combined. Using a combination of different indices, the results confirmed the initial hypothesis that different biomarkers were potentially complementary, and thus the conjoint analysis of multiple information from multiple sources would improve the capability to identify diseases such as AD and mild cognitive impairment. © 2018 S. Karger AG, Basel.
Multimodality medical image database for temporal lobe epilepsy
NASA Astrophysics Data System (ADS)
Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost
2003-05-01
This paper presents the development of a human brain multi-modality database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted and FLAIR MRI and ictal/interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as non-verbal Wechsler memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication matches the neurosurgeons expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.
Modal Analysis of Space-rocket Equipment Components
NASA Astrophysics Data System (ADS)
Igolkin, A. A.; Safin, A. I.; Prokofiev, A. B.
2018-01-01
In order to prevent vibration damage an analysis of natural frequencies and mode shapes of elements of rocket and space technology should be developed. This paper discusses technique of modal analysis on the example of the carrier platform. Modal analysis was performed by using mathematical modeling and laser vibrometer. Experimental data was clarified by using Test.Lab software. As a result of modal analysis amplitude-frequency response of carrier platform was obtained and the parameters of the elasticity was clarified.
Dynamic analysis for shuttle design verification
NASA Technical Reports Server (NTRS)
Fralich, R. W.; Green, C. E.; Rheinfurth, M. H.
1972-01-01
Two approaches that are used for determining the modes and frequencies of space shuttle structures are discussed. The first method, direct numerical analysis, involves finite element mathematical modeling of the space shuttle structure in order to use computer programs for dynamic structural analysis. The second method utilizes modal-coupling techniques of experimental verification made by vibrating only spacecraft components and by deducing modes and frequencies of the complete vehicle from results obtained in the component tests.
Object discrimination using optimized multi-frequency auditory cross-modal haptic feedback.
Gibson, Alison; Artemiadis, Panagiotis
2014-01-01
As the field of brain-machine interfaces and neuro-prosthetics continues to grow, there is a high need for sensor and actuation mechanisms that can provide haptic feedback to the user. Current technologies employ expensive, invasive and often inefficient force feedback methods, resulting in an unrealistic solution for individuals who rely on these devices. This paper responds through the development, integration and analysis of a novel feedback architecture where haptic information during the neural control of a prosthetic hand is perceived through multi-frequency auditory signals. Through representing force magnitude with volume and force location with frequency, the feedback architecture can translate the haptic experiences of a robotic end effector into the alternative sensory modality of sound. Previous research with the proposed cross-modal feedback method confirmed its learnability, so the current work aimed to investigate which frequency map (i.e. frequency-specific locations on the hand) is optimal in helping users distinguish between hand-held objects and tasks associated with them. After short use with the cross-modal feedback during the electromyographic (EMG) control of a prosthetic hand, testing results show that users are able to use audial feedback alone to discriminate between everyday objects. While users showed adaptation to three different frequency maps, the simplest map containing only two frequencies was found to be the most useful in discriminating between objects. This outcome provides support for the feasibility and practicality of the cross-modal feedback method during the neural control of prosthetics.
Incremental dynamical downscaling for probabilistic analysis based on multiple GCM projections
NASA Astrophysics Data System (ADS)
Wakazuki, Y.
2015-12-01
A dynamical downscaling method for probabilistic regional scale climate change projections was developed to cover an uncertainty of multiple general circulation model (GCM) climate simulations. The climatological increments (future minus present climate states) estimated by GCM simulation results were statistically analyzed using the singular vector decomposition. Both positive and negative perturbations from the ensemble mean with the magnitudes of their standard deviations were extracted and were added to the ensemble mean of the climatological increments. The analyzed multiple modal increments were utilized to create multiple modal lateral boundary conditions for the future climate regional climate model (RCM) simulations by adding to an objective analysis data. This data handling is regarded to be an advanced method of the pseudo-global-warming (PGW) method previously developed by Kimura and Kitoh (2007). The incremental handling for GCM simulations realized approximated probabilistic climate change projections with the smaller number of RCM simulations. Three values of a climatological variable simulated by RCMs for a mode were used to estimate the response to the perturbation of the mode. For the probabilistic analysis, climatological variables of RCMs were assumed to show linear response to the multiple modal perturbations, although the non-linearity was seen for local scale rainfall. Probability of temperature was able to be estimated within two modes perturbation simulations, where the number of RCM simulations for the future climate is five. On the other hand, local scale rainfalls needed four modes simulations, where the number of the RCM simulations is nine. The probabilistic method is expected to be used for regional scale climate change impact assessment in the future.
Correa, Nicolle M; Li, Yi-Ou; Adalı, Tülay; Calhoun, Vince D
2008-12-01
Typically data acquired through imaging techniques such as functional magnetic resonance imaging (fMRI), structural MRI (sMRI), and electroencephalography (EEG) are analyzed separately. However, fusing information from such complementary modalities promises to provide additional insight into connectivity across brain networks and changes due to disease. We propose a data fusion scheme at the feature level using canonical correlation analysis (CCA) to determine inter-subject covariations across modalities. As we show both with simulation results and application to real data, multimodal CCA (mCCA) proves to be a flexible and powerful method for discovering associations among various data types. We demonstrate the versatility of the method with application to two datasets, an fMRI and EEG, and an fMRI and sMRI dataset, both collected from patients diagnosed with schizophrenia and healthy controls. CCA results for fMRI and EEG data collected for an auditory oddball task reveal associations of the temporal and motor areas with the N2 and P3 peaks. For the application to fMRI and sMRI data collected for an auditory sensorimotor task, CCA results show an interesting joint relationship between fMRI and gray matter, with patients with schizophrenia showing more functional activity in motor areas and less activity in temporal areas associated with less gray matter as compared to healthy controls. Additionally, we compare our scheme with an independent component analysis based fusion method, joint-ICA that has proven useful for such a study and note that the two methods provide complementary perspectives on data fusion.
Optimal Location of Piezoelectric Patch on Composite Structure using Viewing Method
NASA Astrophysics Data System (ADS)
Samyal, Rahul; Bagha, Ashok K.
2017-08-01
A useful material which is manufactured by mixing of two or three different materials in homogeneous level is termed as composite material. In now day’s composite materials are used in wide area such as aerospace, automobiles, satellite, bullet proof jackets, rotor blades etc. In this paper modal analysis of composite material, mixture of polyester as matrix and glass as fiber, is carried out by using ABAQUS software. The modal analysis of composite material for fiber orientation 450 is carried out. In this paper by viewing the different mode shapes of the composite material, the optimal location of piezoelectric patch is carried out.
Application of the Probabilistic Dynamic Synthesis Method to Realistic Structures
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1998-01-01
The Probabilistic Dynamic Synthesis method is a technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. In previous work, the feasibility of the PDS method applied to a simple seven degree-of-freedom spring-mass system was verified. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.
Wu, F; Mo, M; Qin, X X; Fang, H; Zhao, G M; Liu, G Y; Chen, Y Y; Cao, Z G; Yan, Y J; Lyu, L L; Xu, W H; Shao, Z M
2017-12-10
Objective: To determine the most cost-effective modality for breast cancer screening in women living in Shanghai. Methods: A Markov model for breast cancer was redeveloped based on true effect which was derived from a project for detection of women at high risk of breast cancer and an organized breast cancer screening program conducted simultaneously in Minhang district, Shanghai, during 2008 to 2012. Parameters of the model were derived from literatures. General principles related to cost-effectiveness analysis were used to compare the costs and effects of 12 different screening modalities in a simulated cohort involving 100 000 women aged 45 years. Incremental cost-effectiveness ratio (ICER) was used to determine the most cost-effective modality. Sensitivity analysis was conducted to evaluate how these factors affected the estimated cost-effectiveness. Results: The modality of biennial CBE followed by ultrasonic and mammography among those with positive CBE was observed as the most cost-effective one. The costs appeared as 182 526 Yuan RMB per life year gained and 144 386 Yuan RMB per quality adjusted life-year (QALY) saved, which were within the threshold of 2-3 times of local per capita Gross Domestic Product. Results from sensitivity analysis showed that, due to higher incidence rate of breast cancer in Shanghai, the cost per QALY would be 64 836 Yuan RMB lower in Shanghai than the average level in China. Conclusion: Our research findings showed that the biennial CBE program followed by ultrasonic and mammography for those with positive CBE results might serve as the optimal breast cancer screening modality for Chinese women living in Shanghai, and thus be widely promoted in this population elsewhere.
Modal cost analysis for simple continua
NASA Technical Reports Server (NTRS)
Hu, A.; Skelton, R. E.; Yang, T. Y.
1988-01-01
The most popular finite element codes are based upon appealing theories of convergence of modal frequencies. For example, the popularity of cubic elements for beam-like structures is due to the rapid convergence of modal frequencies and stiffness properties. However, for those problems in which the primary consideration is the accuracy of response of the structure at specified locations, it is more important to obtain accuracy in the modal costs than in the modal frequencies. The modal cost represents the contribution of a mode in the norm of the response vector. This paper provides a complete modal cost analysis for simple continua such as beam-like structures. Upper bounds are developed for mode truncation errors in the model reduction process and modal cost analysis dictates which modes to retain in order to reduce the model for control design purposes.
NASA Astrophysics Data System (ADS)
Omar, R.; Rani, M. N. Abdul; Yunus, M. A.; Mirza, W. I. I. Wan Iskandar; Zin, M. S. Mohd
2018-04-01
A simple structure with bolted joints consists of the structural components, bolts and nuts. There are several methods to model the structures with bolted joints, however there is no reliable, efficient and economic modelling methods that can accurately predict its dynamics behaviour. Explained in this paper is an investigation that was conducted to obtain an appropriate modelling method for bolted joints. This was carried out by evaluating four different finite element (FE) models of the assembled plates and bolts namely the solid plates-bolts model, plates without bolt model, hybrid plates-bolts model and simplified plates-bolts model. FE modal analysis was conducted for all four initial FE models of the bolted joints. Results of the FE modal analysis were compared with the experimental modal analysis (EMA) results. EMA was performed to extract the natural frequencies and mode shapes of the test physical structure with bolted joints. Evaluation was made by comparing the number of nodes, number of elements, elapsed computer processing unit (CPU) time, and the total percentage of errors of each initial FE model when compared with EMA result. The evaluation showed that the simplified plates-bolts model could most accurately predict the dynamic behaviour of the structure with bolted joints. This study proved that the reliable, efficient and economic modelling of bolted joints, mainly the representation of the bolting, has played a crucial element in ensuring the accuracy of the dynamic behaviour prediction.
NASA Astrophysics Data System (ADS)
Rainieri, Carlo; Fabbrocino, Giovanni
2015-08-01
In the last few decades large research efforts have been devoted to the development of methods for automated detection of damage and degradation phenomena at an early stage. Modal-based damage detection techniques are well-established methods, whose effectiveness for Level 1 (existence) and Level 2 (location) damage detection is demonstrated by several studies. The indirect estimation of tensile loads in cables and tie-rods is another attractive application of vibration measurements. It provides interesting opportunities for cheap and fast quality checks in the construction phase, as well as for safety evaluations and structural maintenance over the structure lifespan. However, the lack of automated modal identification and tracking procedures has been for long a relevant drawback to the extensive application of the above-mentioned techniques in the engineering practice. An increasing number of field applications of modal-based structural health and performance assessment are appearing after the development of several automated output-only modal identification procedures in the last few years. Nevertheless, additional efforts are still needed to enhance the robustness of automated modal identification algorithms, control the computational efforts and improve the reliability of modal parameter estimates (in particular, damping). This paper deals with an original algorithm for automated output-only modal parameter estimation. Particular emphasis is given to the extensive validation of the algorithm based on simulated and real datasets in view of continuous monitoring applications. The results point out that the algorithm is fairly robust and demonstrate its ability to provide accurate and precise estimates of the modal parameters, including damping ratios. As a result, it has been used to develop systems for vibration-based estimation of tensile loads in cables and tie-rods. Promising results have been achieved for non-destructive testing as well as continuous monitoring purposes. They are documented in the last sections of the paper.
NASA Astrophysics Data System (ADS)
Crâştiu, I.; Nyaguly, E.; Deac, S.; Gozman-Pop, C.; Bârgău, A.; Bereteu, L.
2018-01-01
The purpose of this paper is the development and validation of an impulse excitation technique to determine flexural critical speeds of a single rotor shaft and multy-rotor shaft. The experimental measurement of the vibroacoustic response is carried out by using a condenser microphone as a transducer. By the means of Modal Analysis using Finite Element Method (FEM), the natural frequencies and shape modes of one rotor and three rotor specimens are determined. The vibration responses of the specimens, in simple supported conditions, are carried out using algorithms based on Fast Fourier Transform (FFT). To validate the results of the modal parameters estimated using Finite Element Analysis (FEA) these are compared with experimental ones.
Modal Ring Method for the Scattering of Electromagnetic Waves
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1993-01-01
The modal ring method for electromagnetic scattering from perfectly electric conducting (PEC) symmetrical bodies is presented. The scattering body is represented by a line of finite elements (triangular) on its outer surface. The infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The modal ring method effectively reduces the two dimensional scattering problem to a one-dimensional problem similar to the method of moments. The modal element method is capable of handling very high frequency scattering because it has a highly banded solution matrix.
Mathematical correlation of modal-parameter-identification methods via system-realization theory
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan
1987-01-01
A unified approach is introduced using system-realization theory to derive and correlate modal-parameter-identification methods for flexible structures. Several different time-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal-parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research toward the unification of the many possible approaches for modal-parameter identification.
Acta Aeronautica et Astronautica Sinica,
1983-07-28
substructural analysis in modal synthesis - two improved substructural assembling techniques 49 9-node quadrilateral isoparametric element 64 Application of laser...Time from Service Data, J. Aircraft, Vol. 15, No. 11, 1978. 48 MULTI-LEVEL SUBSTRUCTURAL ANALYSIS IN MODAL SYNTHESIS -- TWO IMPROVED SUBSTRUCTURAL...34 Modal Synthesis in Structural Dynamic Analysis ," Naching Institute of Aeronautics and Astronautics, 1979. 62a 8. Chang Te-wen, "Free-Interface Modal
NASA Astrophysics Data System (ADS)
Le, Thien-Phu
2017-10-01
The frequency-scale domain decomposition technique has recently been proposed for operational modal analysis. The technique is based on the Cauchy mother wavelet. In this paper, the approach is extended to the Morlet mother wavelet, which is very popular in signal processing due to its superior time-frequency localization. Based on the regressive form and an appropriate norm of the Morlet mother wavelet, the continuous wavelet transform of the power spectral density of ambient responses enables modes in the frequency-scale domain to be highlighted. Analytical developments first demonstrate the link between modal parameters and the local maxima of the continuous wavelet transform modulus. The link formula is then used as the foundation of the proposed modal identification method. Its practical procedure, combined with the singular value decomposition algorithm, is presented step by step. The proposition is finally verified using numerical examples and a laboratory test.
Ray Tracing and Modal Methods for Modeling Radio Propagation in Tunnels With Rough Walls
Zhou, Chenming
2017-01-01
At the ultrahigh frequencies common to portable radios, tunnels such as mine entries are often modeled by hollow dielectric waveguides. The roughness condition of the tunnel walls has an influence on radio propagation, and therefore should be taken into account when an accurate power prediction is needed. This paper investigates how wall roughness affects radio propagation in tunnels, and presents a unified ray tracing and modal method for modeling radio propagation in tunnels with rough walls. First, general analytical formulas for modeling the influence of the wall roughness are derived, based on the modal method and the ray tracing method, respectively. Second, the equivalence of the ray tracing and modal methods in the presence of wall roughnesses is mathematically proved, by showing that the ray tracing-based analytical formula can converge to the modal-based formula through the Poisson summation formula. The derivation and findings are verified by simulation results based on ray tracing and modal methods. PMID:28935995
Multimodal Image Alignment via Linear Mapping between Feature Modalities.
Jiang, Yanyun; Zheng, Yuanjie; Hou, Sujuan; Chang, Yuchou; Gee, James
2017-01-01
We propose a novel landmark matching based method for aligning multimodal images, which is accomplished uniquely by resolving a linear mapping between different feature modalities. This linear mapping results in a new measurement on similarity of images captured from different modalities. In addition, our method simultaneously solves this linear mapping and the landmark correspondences by minimizing a convex quadratic function. Our method can estimate complex image relationship between different modalities and nonlinear nonrigid spatial transformations even in the presence of heavy noise, as shown in our experiments carried out by using a variety of image modalities.
NASA Technical Reports Server (NTRS)
Waszak, M. R.; Schmidt, D. S.
1985-01-01
As aircraft become larger and lighter due to design requirements for increased payload and improved fuel efficiency, they will also become more flexible. For highly flexible vehicles, the handling qualities may not be accurately predicted by conventional methods. This study applies two analysis methods to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop model analysis technique. This method considers the effects of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Volume 1 consists of the development and application of the two analysis methods described above.
Kashif, Amer S; Lotz, Thomas F; Heeren, Adrianus M W; Chase, James G
2013-11-01
It is estimated that every year, 1 × 10(6) women are diagnosed with breast cancer, and more than 410,000 die annually worldwide. Digital Image Elasto Tomography (DIET) is a new noninvasive breast cancer screening modality that induces mechanical vibrations in the breast and images its surface motion with digital cameras to detect changes in stiffness. This research develops a new automated approach for diagnosing breast cancer using DIET based on a modal analysis model. The first and second natural frequency of silicone phantom breasts is analyzed. Separate modal analysis is performed for each region of the phantom to estimate the modal parameters using imaged motion data over several input frequencies. Statistical methods are used to assess the likelihood of a frequency shift, which can indicate tumor location. Phantoms with 5, 10, and 20 mm stiff inclusions are tested, as well as a homogeneous (healthy) phantom. Inclusions are located at four locations with different depth. The second natural frequency proves to be a reliable metric with the potential to clearly distinguish lesion like inclusions of different stiffness, as well as providing an approximate location for the tumor like inclusions. The 10 and 20 mm inclusions are always detected regardless of depth. The 5 mm inclusions are only detected near the surface. The homogeneous phantom always yields a negative result, as expected. Detection is based on a statistical likelihood analysis to determine the presence of significantly different frequency response over the phantom, which is a novel approach to this problem. The overall results show promise and justify proof of concept trials with human subjects.
Cross contrast multi-channel image registration using image synthesis for MR brain images.
Chen, Min; Carass, Aaron; Jog, Amod; Lee, Junghoon; Roy, Snehashis; Prince, Jerry L
2017-02-01
Multi-modal deformable registration is important for many medical image analysis tasks such as atlas alignment, image fusion, and distortion correction. Whereas a conventional method would register images with different modalities using modality independent features or information theoretic metrics such as mutual information, this paper presents a new framework that addresses the problem using a two-channel registration algorithm capable of using mono-modal similarity measures such as sum of squared differences or cross-correlation. To make it possible to use these same-modality measures, image synthesis is used to create proxy images for the opposite modality as well as intensity-normalized images from each of the two available images. The new deformable registration framework was evaluated by performing intra-subject deformation recovery, intra-subject boundary alignment, and inter-subject label transfer experiments using multi-contrast magnetic resonance brain imaging data. Three different multi-channel registration algorithms were evaluated, revealing that the framework is robust to the multi-channel deformable registration algorithm that is used. With a single exception, all results demonstrated improvements when compared against single channel registrations using the same algorithm with mutual information. Copyright © 2016 Elsevier B.V. All rights reserved.
Bayesian analysis of the flutter margin method in aeroelasticity
Khalil, Mohammad; Poirel, Dominique; Sarkar, Abhijit
2016-08-27
A Bayesian statistical framework is presented for Zimmerman and Weissenburger flutter margin method which considers the uncertainties in aeroelastic modal parameters. The proposed methodology overcomes the limitations of the previously developed least-square based estimation technique which relies on the Gaussian approximation of the flutter margin probability density function (pdf). Using the measured free-decay responses at subcritical (preflutter) airspeeds, the joint non-Gaussain posterior pdf of the modal parameters is sampled using the Metropolis–Hastings (MH) Markov chain Monte Carlo (MCMC) algorithm. The posterior MCMC samples of the modal parameters are then used to obtain the flutter margin pdfs and finally the fluttermore » speed pdf. The usefulness of the Bayesian flutter margin method is demonstrated using synthetic data generated from a two-degree-of-freedom pitch-plunge aeroelastic model. The robustness of the statistical framework is demonstrated using different sets of measurement data. In conclusion, it will be shown that the probabilistic (Bayesian) approach reduces the number of test points required in providing a flutter speed estimate for a given accuracy and precision.« less
Vibration control of rotor shaft
NASA Technical Reports Server (NTRS)
Nonami, K.
1985-01-01
Suppression of flexural forced vibration or the self-excited vibration of a rotating shaft system not by passive elements but by active elements is described. The distinctive feature of this method is not to dissipate the vibration energy but to provide the force cancelling the vibration displacement and the vibration velocity through the bearing housing in rotation. Therefore the bearings of this kind are appropriately named Active Control Bearings. A simple rotor system having one disk at the center of the span on flexible supports is investigated in this paper. The actuators of the electrodynamic transducer are inserted in the sections of the bearing housing. First, applying the optimal regulator of optimal control theory, the flexural vibration control of the rotating shaft and the vibration control of support systems are performed by the optimal state feedback system using these actuators. Next, the quasi-modal control based on a modal analysis is applied to this rotor system. This quasi-modal control system is constructed by means of optimal velocity feedback loops. The differences between optimal control and quasi-modal control are discussed and their merits and demerits are made clear. Finally, the experiments are described concerning only the optimal regulator method.
Neugebauer, R; Werner, M; Voigt, C; Steinke, H; Scholz, R; Scherer, S; Quickert, M
2011-05-17
To provide a close-to-reality simulation model, such as for improved surgery planning, this model has to be experimentally verified. The present article describes the use of a 3D laser vibrometer for determining modal parameters of human pelvic bones that can be used for verifying a finite elements model. Compared to previously used sensors, such as acceleration sensors or strain gauges, the laser vibrometric procedure used here is a non-contact and non-interacting measuring method that allows a high density of measuring points and measurement in a global coordinate system. Relevant modal parameters were extracted from the measured data and provided for verifying the model. The use of the 3D laser vibrometer allowed the establishment of a process chain for experimental examination of the pelvic bones that was optimized with respect to time and effort involved. The transfer functions determined feature good signal quality. Furthermore, a comparison of the results obtained from pairs of pelvic bones showed that repeatable measurements can be obtained with the method used. Copyright © 2011 Elsevier Ltd. All rights reserved.
Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix
NASA Technical Reports Server (NTRS)
Li, Wesley Waisang; Pak, Chan-Gi
2010-01-01
A technique for approximating the modal aerodynamic influence coefficients [AIC] matrices by using basis functions has been developed and validated. An application of the resulting approximated modal AIC matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO(TradeMark) flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing [ATW] 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle
Modal-pushover-based ground-motion scaling procedure
Kalkan, Erol; Chopra, Anil K.
2011-01-01
Earthquake engineering is increasingly using nonlinear response history analysis (RHA) to demonstrate the performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. This paper presents a modal-pushover-based scaling (MPS) procedure to scale ground motions for use in a nonlinear RHA of buildings. In the MPS method, the ground motions are scaled to match to a specified tolerance, a target value of the inelastic deformation of the first-mode inelastic single-degree-of-freedom (SDF) system whose properties are determined by the first-mode pushover analysis. Appropriate for first-mode dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-mode SDF systems in selecting a subset of the scaled ground motions. Based on results presented for three actual buildings-4, 6, and 13-story-the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.
Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix
NASA Technical Reports Server (NTRS)
Li, Wesley W.; Pak, Chan-gi
2011-01-01
A technique for approximating the modal aerodynamic influence coefficients matrices by using basis functions has been developed and validated. An application of the resulting approximated modal aerodynamic influence coefficients matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle.
Adali, Tülay; Levin-Schwartz, Yuri; Calhoun, Vince D.
2015-01-01
Fusion of information from multiple sets of data in order to extract a set of features that are most useful and relevant for the given task is inherent to many problems we deal with today. Since, usually, very little is known about the actual interaction among the datasets, it is highly desirable to minimize the underlying assumptions. This has been the main reason for the growing importance of data-driven methods, and in particular of independent component analysis (ICA) as it provides useful decompositions with a simple generative model and using only the assumption of statistical independence. A recent extension of ICA, independent vector analysis (IVA) generalizes ICA to multiple datasets by exploiting the statistical dependence across the datasets, and hence, as we discuss in this paper, provides an attractive solution to fusion of data from multiple datasets along with ICA. In this paper, we focus on two multivariate solutions for multi-modal data fusion that let multiple modalities fully interact for the estimation of underlying features that jointly report on all modalities. One solution is the Joint ICA model that has found wide application in medical imaging, and the second one is the the Transposed IVA model introduced here as a generalization of an approach based on multi-set canonical correlation analysis. In the discussion, we emphasize the role of diversity in the decompositions achieved by these two models, present their properties and implementation details to enable the user make informed decisions on the selection of a model along with its associated parameters. Discussions are supported by simulation results to help highlight the main issues in the implementation of these methods. PMID:26525830
Estimation of blade airloads from rotor blade bending moments
NASA Technical Reports Server (NTRS)
Bousman, William G.
1987-01-01
A method is developed to estimate the blade normal airloads by using measured flap bending moments; that is, the rotor blade is used as a force balance. The blade's rotation is calculated in vacuum modes and the airloads are then expressed as an algebraic sum of the mode shapes, modal amplitudes, mass distribution, and frequency properties. The modal amplitudes are identified from the blade bending moments using the Strain Pattern Analysis Method. The application of the method is examined using simulated flap bending moment data that have been calculated for measured airloads for a full-scale rotor in a wind tunnel. The estimated airloads are compared with the wind tunnel measurements. The effects of the number of measurements, the number of modes, and errors in the measurements and the blade properties are examined, and the method is shown to be robust.
Mathematical correlation of modal parameter identification methods via system realization theory
NASA Technical Reports Server (NTRS)
Juang, J. N.
1986-01-01
A unified approach is introduced using system realization theory to derive and correlate modal parameter identification methods for flexible structures. Several different time-domain and frequency-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research towards the unification of the many possible approaches for modal parameter identification.
Anwar, Abdul Rauf; Muthalib, Makii; Perrey, Stephane; Galka, Andreas; Granert, Oliver; Wolff, Stephan; Deuschl, Guenther; Raethjen, Jan; Heute, Ulrich; Muthuraman, Muthuraman
2013-01-01
Brain activity can be measured using different modalities. Since most of the modalities tend to complement each other, it seems promising to measure them simultaneously. In to be presented research, the data recorded from Functional Magnetic Resonance Imaging (fMRI) and Near Infrared Spectroscopy (NIRS), simultaneously, are subjected to causality analysis using time-resolved partial directed coherence (tPDC). Time-resolved partial directed coherence uses the principle of state space modelling to estimate Multivariate Autoregressive (MVAR) coefficients. This method is useful to visualize both frequency and time dynamics of causality between the time series. Afterwards, causality results from different modalities are compared by estimating the Spearman correlation. In to be presented study, we used directionality vectors to analyze correlation, rather than actual signal vectors. Results show that causality analysis of the fMRI correlates more closely to causality results of oxy-NIRS as compared to deoxy-NIRS in case of a finger sequencing task. However, in case of simple finger tapping, no clear difference between oxy-fMRI and deoxy-fMRI correlation is identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis Schmitt; Daniel Olsen
2005-09-30
Three methods were utilized to analyze key components of slow-speed, large-bore, natural gas integral engines. These three methods included the application of computational fluid dynamics (CFD), dynamic modal analysis using finite element analysis (FEA), and a stress analysis method also using FEA. The CFD analysis focuses primarily on the fuel mixing in the combustion chamber of a TLA engine. Results indicate a significant increase in the homogeneity of the air and fuel using high-pressure fuel injection (HPFI) instead of standard low-pressure mechanical gas admission valve (MGAV). A modal analysis of three engine crankshafts (TLA-6, HBA-6, and GMV-10) is developed andmore » presented. Results indicate that each crankshaft has a natural frequency and corresponding speed that is well away from the typical engine operating speed. A frame stress analysis method is also developed and presented. Two different crankcases are examined. A TLA-6 crankcase is modeled and a stress analysis is performed. The method of dynamic load determination, model setup, and the results from the stress analysis are discussed. Preliminary results indicate a 10%-15% maximum increase in frame stress due to a 20% increase in HP. However, the high stress regions were localized. A new hydraulically actuated mechanical fuel valve is also developed and presented. This valve provides equivalent high-energy (supersonic) fuel injection comparable to a HPFI system, at 1/5th of the natural gas fuel pressure. This valve was developed in cooperation with the Dresser-Rand Corporation.« less
Dual modal endoscopic cancer detection based on optical pH sensing and Raman spectroscopy
NASA Astrophysics Data System (ADS)
Kim, Soogeun; Kim, ByungHyun; Sohn, Won Bum; Byun, Kyung Min; Lee, Soo Yeol
2017-02-01
To discriminate between normal and cancerous tissue, a dual modal approach using Raman spectroscopy and pH sensor was designed and applied. Raman spectroscopy has demonstrated the possibility of using as diagnostic method for the early detection of precancerous and cancerous lesions in vivo. It also can be used in identifying markers associated with malignant change. However, Raman spectroscopy lacks sufficient sensitivity due to very weak Raman scattering signal or less distinctive spectral pattern. A dual modal approach could be one of the solutions to solve this issue. The level of extracellular pH in cancer tissue is lower than that in normal tissue due to increased lactic acid production, decreased interstitial fluid buffering and decreased perfusion. High sensitivity and specificity required for accurate cancer diagnosis could be achieved by combining the chemical information from Raman spectrum with metabolic information from pH level. Raman spectra were acquired by using a fiber optic Raman probe, a cooled CCD camera connected to a spectrograph and 785 nm laser source. Different transmission spectra depending on tissue pH were measured by a lossy-mode resonance sensor based on fiber optic. The discriminative capability of pH-Raman dual modal method was evaluated using principal component analysis (PCA). The obtained results showed that the pH-Raman dual modal approach can improve discriminative capability between normal and cancerous tissue, which can lead to very high sensitivity and specificity. The proposed method for cancer detection is expected to be used in endoscopic diagnosis later.
NASA Astrophysics Data System (ADS)
Xu, Si-Liu; He, Jun-Rong; Xue, Li; Belić, Milivoj R.
2018-02-01
We demonstrate three-dimensional (3D) vector solitary waves in the coupled (3 + 1)-D nonlinear Gross-Pitaevskii equations with variable nonlinearity coefficients. The analysis is carried out in spherical coordinates, providing novel localized solutions that depend on three modal numbers, l, m, and n. Using the similarity transformation (ST) method in 3D, vector solitary waves are built with the help of a combination of harmonic and trapping potentials, including multipole solutions and necklace rings. In general, the solutions found are stable for low values of the modal numbers; for values larger than 2, the solutions are found to be unstable. Variable nonlinearity allows the utilization of soliton management methods.
Methodologies for Verification and Validation of Space Launch System (SLS) Structural Dynamic Models
NASA Technical Reports Server (NTRS)
Coppolino, Robert N.
2018-01-01
Responses to challenges associated with verification and validation (V&V) of Space Launch System (SLS) structural dynamics models are presented in this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA), which has gained acceptance by various principals in the NASA community, defines efficient and accurate FEM modal sensitivity models that are useful in test-analysis correlation and reconciliation and parametric uncertainty studies. (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976), developed to remedy difficulties encountered with the widely used Classical Guyan Reduction (CGR) method, are presented. MGR and HR are particularly relevant for estimation of "body dominant" target modes of shell-type SLS assemblies that have numerous "body", "breathing" and local component constituents. Realities associated with configuration features and "imperfections" cause "body" and "breathing" mode characteristics to mix resulting in a lack of clarity in the understanding and correlation of FEM- and test-derived modal data. (3) Mode Consolidation (MC) is a newly introduced procedure designed to effectively "de-feature" FEM and experimental modes of detailed structural shell assemblies for unambiguous estimation of "body" dominant target modes. Finally, (4) Experimental Mode Verification (EMV) is a procedure that addresses ambiguities associated with experimental modal analysis of complex structural systems. Specifically, EMV directly separates well-defined modal data from spurious and poorly excited modal data employing newly introduced graphical and coherence metrics.
Prediction of light aircraft interior noise
NASA Technical Reports Server (NTRS)
Howlett, J. T.; Morales, D. A.
1976-01-01
At the present time, predictions of aircraft interior noise depend heavily on empirical correction factors derived from previous flight measurements. However, to design for acceptable interior noise levels and to optimize acoustic treatments, analytical techniques which do not depend on empirical data are needed. This paper describes a computerized interior noise prediction method for light aircraft. An existing analytical program (developed for commercial jets by Cockburn and Jolly in 1968) forms the basis of some modal analysis work which is described. The accuracy of this modal analysis technique for predicting low-frequency coupled acoustic-structural natural frequencies is discussed along with trends indicating the effects of varying parameters such as fuselage length and diameter, structural stiffness, and interior acoustic absorption.
Component mode synthesis and large deflection vibrations of complex structures. [beams and trusses
NASA Technical Reports Server (NTRS)
Mei, C.
1984-01-01
The accuracy of the NASTRAN modal synthesis analysis was assessed by comparing it with full structure NASTRAN and nine other modal synthesis results using a nine-bay truss. A NASTRAN component mode transient response analysis was also performed on the free-free truss structure. A finite element method was developed for nonlinear vibration of beam structures subjected to harmonic excitation. Longitudinal deformation and inertia are both included in the formula. Tables show the finite element free vibration results with and without considering the effects of longitudinal deformation and inertia as well as the frequency ratios for a simply supported and a clamped beam subjected to a uniform harmonic force.
Modal Survey Test of the SOTV 2X3 Meter Off-Axis Inflatable Concentrator
NASA Technical Reports Server (NTRS)
Engberg, Robert C.; Lassiter, John O.; McGee, Jennie K.
2000-01-01
NASA's Marshall Space Flight Center has had several projects involving inflatable space structures. Projects in solar thermal propulsion have had the most involvement, primarily inflatable concentrators. A flight project called Shooting Star Experiment initiated the first detailed design, analysis and testing effort involving an inflatable concentrator that supported a Fresnel lens. The lens was to concentrate the sun's rays to provide an extremely large heat transfer for an experimental solar propulsion engine. Since the conclusion of this experiment, research and development activities for solar propulsion at Marshall Space Flight Center have continued both in the solar propulsion engine technology as well as inflatable space structures. Experience gained in conducting modal survey tests of inflatable structures for the Shooting Star Experiment has been used by dynamic test engineers at Marshall Space Flight Center to conduct a modal survey test on a Solar Orbital Transfer Vehicle (SOTV) off-axis inflatable concentrator. This paper describes how both previously learned test methods and new test methods that address the unique test requirements for inflatable structures were used. Effects of the inherent nonlinear response of the inflatable concentrator on test methods and test results are noted as well. Nine analytical mode shapes were successfully correlated to test mode shapes. The paper concludes with several "lessons learned" applicable to future dynamics testing and shows how Marshall Space Flight Center has utilized traditional and new methods for modal survey testing of inflatable space structures.
An EGO-like optimization framework for sensor placement optimization in modal analysis
NASA Astrophysics Data System (ADS)
Morlier, Joseph; Basile, Aniello; Chiplunkar, Ankit; Charlotte, Miguel
2018-07-01
In aircraft design, ground/flight vibration tests are conducted to extract aircraft’s modal parameters (natural frequencies, damping ratios and mode shapes) also known as the modal basis. The main problem in aircraft modal identification is the large number of sensors needed, which increases operational time and costs. The goal of this paper is to minimize the number of sensors by optimizing their locations in order to reconstruct a truncated modal basis of N mode shapes with a high level of accuracy in the reconstruction. There are several methods to solve sensors placement optimization (SPO) problems, but for this case an original approach has been established based on an iterative process for mode shapes reconstruction through an adaptive Kriging metamodeling approach so called efficient global optimization (EGO)-SPO. The main idea in this publication is to solve an optimization problem where the sensors locations are variables and the objective function is defined by maximizing the trace of criteria so called AutoMAC. The results on a 2D wing demonstrate a reduction of sensors by 30% using our EGO-SPO strategy.
Structural-change localization and monitoring through a perturbation-based inverse problem.
Roux, Philippe; Guéguen, Philippe; Baillet, Laurent; Hamze, Alaa
2014-11-01
Structural-change detection and characterization, or structural-health monitoring, is generally based on modal analysis, for detection, localization, and quantification of changes in structure. Classical methods combine both variations in frequencies and mode shapes, which require accurate and spatially distributed measurements. In this study, the detection and localization of a local perturbation are assessed by analysis of frequency changes (in the fundamental mode and overtones) that are combined with a perturbation-based linear inverse method and a deconvolution process. This perturbation method is applied first to a bending beam with the change considered as a local perturbation of the Young's modulus, using a one-dimensional finite-element model for modal analysis. Localization is successful, even for extended and multiple changes. In a second step, the method is numerically tested under ambient-noise vibration from the beam support with local changes that are shifted step by step along the beam. The frequency values are revealed using the random decrement technique that is applied to the time-evolving vibrations recorded by one sensor at the free extremity of the beam. Finally, the inversion method is experimentally demonstrated at the laboratory scale with data recorded at the free end of a Plexiglas beam attached to a metallic support.
1998-05-01
Mission Research Corporation MRC/WDC-R-424 COMPARISON OF HELIX TWT SIMULATION USING 2-D PIC ( MAGIC ), 2-D MODAL (GATOR), AND 1-D MODAL (CHRISTINE...BRILLOUIN RUN 9 3.4 OUTLIER ELECTRON EFFECT IN GATOR 12 3.5 EMISSION CONDITION AND NONLAMINAR FLOW IN MAGIC 12 3.6 RADIAL SHEAR 13 SECTION 4. PPM B...Simulation using 2-D PIC ( MAGIC ), 2-D Modal (GATOR) and 1-D Modal (CHRISTINE) methods * D.N. Smithe(a), H. Freund(b), T. M. Antonsen Jr.,(b)’(c), E
ERIC Educational Resources Information Center
Baker-Doyle, Kira J.
2015-01-01
Social network research on teachers and schools has risen exponentially in recent years as an innovative method to reveal the role of social networks in education. However, scholars are still exploring ways to incorporate traditional quantitative methods of Social Network Analysis (SNA) with qualitative approaches to social network research. This…
Oncotripsy: Targeting cancer cells selectively via resonant harmonic excitation
NASA Astrophysics Data System (ADS)
Heyden, S.; Ortiz, M.
2016-07-01
We investigate a method of selectively targeting cancer cells by means of ultrasound harmonic excitation at their resonance frequency, which we refer to as oncotripsy. The geometric model of the cells takes into account the cytoplasm, nucleus and nucleolus, as well as the plasma membrane and nuclear envelope. Material properties are varied within a pathophysiologically-relevant range. A first modal analysis reveals the existence of a spectral gap between the natural frequencies and, most importantly, resonant growth rates of healthy and cancerous cells. The results of the modal analysis are verified by simulating the fully-nonlinear transient response of healthy and cancerous cells at resonance. The fully nonlinear analysis confirms that cancerous cells can be selectively taken to lysis by the application of carefully tuned ultrasound harmonic excitation while simultaneously leaving healthy cells intact.
Recent advances in statistical energy analysis
NASA Technical Reports Server (NTRS)
Heron, K. H.
1992-01-01
Statistical Energy Analysis (SEA) has traditionally been developed using modal summation and averaging approach, and has led to the need for many restrictive SEA assumptions. The assumption of 'weak coupling' is particularly unacceptable when attempts are made to apply SEA to structural coupling. It is now believed that this assumption is more a function of the modal formulation rather than a necessary formulation of SEA. The present analysis ignores this restriction and describes a wave approach to the calculation of plate-plate coupling loss factors. Predictions based on this method are compared with results obtained from experiments using point excitation on one side of an irregular six-sided box structure. Conclusions show that the use and calculation of infinite transmission coefficients is the way forward for the development of a purely predictive SEA code.
A method to identify the main mode of machine tool under operating conditions
NASA Astrophysics Data System (ADS)
Wang, Daming; Pan, Yabing
2017-04-01
The identification of the modal parameters under experimental conditions is the most common procedure when solving the problem of machine tool structure vibration. However, the influence of each mode on the machine tool vibration in real working conditions remains unknown. In fact, the contributions each mode makes to the machine tool vibration during machining process are different. In this article, an active excitation modal analysis is applied to identify the modal parameters in operational condition, and the Operating Deflection Shapes (ODS) in frequencies of high level vibration that affect the quality of machining in real working conditions are obtained. Then, the ODS is decomposed by the mode shapes which are identified in operational conditions. So, the contributions each mode makes to machine tool vibration during machining process are got by decomposition coefficients. From the previous steps, we can find out the main modes which effect the machine tool more significantly in working conditions. This method was also verified to be effective by experiments.
Active control of panel vibrations induced by boundary-layer flow
NASA Technical Reports Server (NTRS)
Chow, Pao-Liu
1991-01-01
Some problems in active control of panel vibration excited by a boundary layer flow over a flat plate are studied. In the first phase of the study, the optimal control problem of vibrating elastic panel induced by a fluid dynamical loading was studied. For a simply supported rectangular plate, the vibration control problem can be analyzed by a modal analysis. The control objective is to minimize the total cost functional, which is the sum of a vibrational energy and the control cost. By means of the modal expansion, the dynamical equation for the plate and the cost functional are reduced to a system of ordinary differential equations and the cost functions for the modes. For the linear elastic plate, the modes become uncoupled. The control of each modal amplitude reduces to the so-called linear regulator problem in control theory. Such problems can then be solved by the method of adjoint state. The optimality system of equations was solved numerically by a shooting method. The results are summarized.
Structural system identification based on variational mode decomposition
NASA Astrophysics Data System (ADS)
Bagheri, Abdollah; Ozbulut, Osman E.; Harris, Devin K.
2018-03-01
In this paper, a new structural identification method is proposed to identify the modal properties of engineering structures based on dynamic response decomposition using the variational mode decomposition (VMD). The VMD approach is a decomposition algorithm that has been developed as a means to overcome some of the drawbacks and limitations of the empirical mode decomposition method. The VMD-based modal identification algorithm decomposes the acceleration signal into a series of distinct modal responses and their respective center frequencies, such that when combined their cumulative modal responses reproduce the original acceleration response. The decaying amplitude of the extracted modal responses is then used to identify the modal damping ratios using a linear fitting function on modal response data. Finally, after extracting modal responses from available sensors, the mode shape vector for each of the decomposed modes in the system is identified from all obtained modal response data. To demonstrate the efficiency of the algorithm, a series of numerical, laboratory, and field case studies were evaluated. The laboratory case study utilized the vibration response of a three-story shear frame, whereas the field study leveraged the ambient vibration response of a pedestrian bridge to characterize the modal properties of the structure. The modal properties of the shear frame were computed using analytical approach for a comparison with the experimental modal frequencies. Results from these case studies demonstrated that the proposed method is efficient and accurate in identifying modal data of the structures.
Statistically generated weighted curve fit of residual functions for modal analysis of structures
NASA Technical Reports Server (NTRS)
Bookout, P. S.
1995-01-01
A statistically generated weighting function for a second-order polynomial curve fit of residual functions has been developed. The residual flexibility test method, from which a residual function is generated, is a procedure for modal testing large structures in an external constraint-free environment to measure the effects of higher order modes and interface stiffness. This test method is applicable to structures with distinct degree-of-freedom interfaces to other system components. A theoretical residual function in the displacement/force domain has the characteristics of a relatively flat line in the lower frequencies and a slight upward curvature in the higher frequency range. In the test residual function, the above-mentioned characteristics can be seen in the data, but due to the present limitations in the modal parameter evaluation (natural frequencies and mode shapes) of test data, the residual function has regions of ragged data. A second order polynomial curve fit is required to obtain the residual flexibility term. A weighting function of the data is generated by examining the variances between neighboring data points. From a weighted second-order polynomial curve fit, an accurate residual flexibility value can be obtained. The residual flexibility value and free-free modes from testing are used to improve a mathematical model of the structure. The residual flexibility modal test method is applied to a straight beam with a trunnion appendage and a space shuttle payload pallet simulator.
Control of large flexible spacecraft by the independent modal-space control method
NASA Technical Reports Server (NTRS)
Meirovitch, L.; Shenar, J.
1984-01-01
The problem of control of a large-order flexible structure in the form of a plate-like lattice by the Independent Modal-Space Control (IMSC) method is presented. The equations of motion are first transformed to the modal space, thus obtaining internal (plant) decoupling of the system. Then, the control laws are designed in the modal space for each mode separately, so that the modal equations of motion are rendered externally (controller) decoupled. This complete decoupling applies both to rigid-body modes and elastic modes. The application of linear optimal control, in conjunction with a quadratic performance index, is first reviewed. A solution for high-order systems is proposed here by the IMSC method, whereby the problem is reduced to a number of modal minimum-fuel problems for the controlled modes.
NASA Astrophysics Data System (ADS)
Wang, Jing; Shen, Huoming; Zhang, Bo; Liu, Juan; Zhang, Yingrong
2018-07-01
We investigate the transverse free vibration behaviour of axially moving nanobeams based on the nonlocal strain gradient theory. Considering the geometrical nonlinearity, which takes the form of von Kármán strains, the coupled plane motion equations and related boundary conditions of a new size-dependent beam model of Euler-Bernoulli type are developed using the generalized Hamilton principle. Using the simply supported axially moving nanobeams as an example, the complex modal analysis method is adopted to solve the governing equation; then, the effect of the order of modal truncation on the natural frequencies is discussed. Subsequently, the roles of the nonlocal parameter, material characteristic parameter, axial speed, stiffness and axial support rigidity parameter on the free vibration are comprehensively addressed. The material characteristic parameter induces the stiffness hardening of nanobeams, while the nonlocal parameter induces stiffness softening. In addition, the roles of small-scale parameters on the flutter critical velocity and stability are explained.
Vibration fatigue using modal decomposition
NASA Astrophysics Data System (ADS)
Mršnik, Matjaž; Slavič, Janko; Boltežar, Miha
2018-01-01
Vibration-fatigue analysis deals with the material fatigue of flexible structures operating close to natural frequencies. Based on the uniaxial stress response, calculated in the frequency domain, the high-cycle fatigue model using the S-N curve material data and the Palmgren-Miner hypothesis of damage accumulation is applied. The multiaxial criterion is used to obtain the equivalent uniaxial stress response followed by the spectral moment approach to the cycle-amplitude probability density estimation. The vibration-fatigue analysis relates the fatigue analysis in the frequency domain to the structural dynamics. However, once the stress response within a node is obtained, the physical model of the structure dictating that response is discarded and does not propagate through the fatigue-analysis procedure. The structural model can be used to evaluate how specific dynamic properties (e.g., damping, modal shapes) affect the damage intensity. A new approach based on modal decomposition is presented in this research that directly links the fatigue-damage intensity with the dynamic properties of the system. It thus offers a valuable insight into how different modes of vibration contribute to the total damage to the material. A numerical study was performed showing good agreement between results obtained using the newly presented approach with those obtained using the classical method, especially with regards to the distribution of damage intensity and critical point location. The presented approach also offers orders of magnitude faster calculation in comparison with the conventional procedure. Furthermore, it can be applied in a straightforward way to strain experimental modal analysis results, taking advantage of experimentally measured strains.
Determining the best treatment for simple bone cyst: a decision analysis.
Lee, Seung Yeol; Chung, Chin Youb; Lee, Kyoung Min; Sung, Ki Hyuk; Won, Sung Hun; Choi, In Ho; Cho, Tae-Joon; Yoo, Won Joon; Yeo, Ji Hyun; Park, Moon Seok
2014-03-01
The treatment of simple bone cysts (SBC) in children varies significantly among physicians. This study examined which procedure is better for the treatment of SBC, using a decision analysis based on current published evidence. A decision tree focused on five treatment modalities of SBC (observation, steroid injection, autologous bone marrow injection, decompression, and curettage with bone graft) were created. Each treatment modality was further branched, according to the presence and severity of complications. The probabilities of all cases were obtained by literature review. A roll back tool was utilized to determine the most preferred treatment modality. One-way sensitivity analysis was performed to determine the threshold value of the treatment modalities. Two-way sensitivity analysis was utilized to examine the joint impact of changes in probabilities of two parameters. The decision model favored autologous bone marrow injection. The expected value of autologous bone marrow injection was 0.9445, while those of observation, steroid injection, decompression, and curettage and bone graft were 0.9318, 0.9400, 0.9395, and 0.9342, respectively. One-way sensitivity analysis showed that autologous bone marrow injection was better than that of decompression for the expected value when the rate of pathologic fracture, or positive symptoms of SBC after autologous bone marrow injection, was lower than 20.4%. In our study, autologous bone marrow injection was found to be the best choice of treatment of SBC. However, the results were sensitive to the rate of pathologic fracture after treatment of SBC. Physicians should consider the possibility of pathologic fracture when they determine a treatment method for SBC.
Damping Proceedings Held in Las Vegas, Nevada on 5-7 March 1986. Volume 2
1986-05-01
than in metalZio materials. The main sources of internal damping in a composite material arise from microplastic or viscoelastic phenomena associated...introduction of damping treatment. The analysis of coupled structures have, to some extent, already been done using Statistical Energy Analysis ( SEA ) methods1...However SEA methods are only useful in those frequency regions with high modal density for all of the substructures. Thus for low to medium
Roland, Michelle; Hull, M L; Howell, S M
2011-05-01
In a previous paper, we reported the virtual axis finder, which is a new method for finding the rotational axes of the knee. The virtual axis finder was validated through simulations that were subject to limitations. Hence, the objective of the present study was to perform a mechanical validation with two measurement modalities: 3D video-based motion analysis and marker-based roentgen stereophotogrammetric analysis (RSA). A two rotational axis mechanism was developed, which simulated internal-external (or longitudinal) and flexion-extension (FE) rotations. The actual axes of rotation were known with respect to motion analysis and RSA markers within ± 0.0006 deg and ± 0.036 mm and ± 0.0001 deg and ± 0.016 mm, respectively. The orientation and position root mean squared errors for identifying the longitudinal rotation (LR) and FE axes with video-based motion analysis (0.26 deg, 0.28 m, 0.36 deg, and 0.25 mm, respectively) were smaller than with RSA (1.04 deg, 0.84 mm, 0.82 deg, and 0.32 mm, respectively). The random error or precision in the orientation and position was significantly better (p=0.01 and p=0.02, respectively) in identifying the LR axis with video-based motion analysis (0.23 deg and 0.24 mm) than with RSA (0.95 deg and 0.76 mm). There was no significant difference in the bias errors between measurement modalities. In comparing the mechanical validations to virtual validations, the virtual validations produced comparable errors to those of the mechanical validation. The only significant difference between the errors of the mechanical and virtual validations was the precision in the position of the LR axis while simulating video-based motion analysis (0.24 mm and 0.78 mm, p=0.019). These results indicate that video-based motion analysis with the equipment used in this study is the superior measurement modality for use with the virtual axis finder but both measurement modalities produce satisfactory results. The lack of significant differences between validation techniques suggests that the virtual sensitivity analysis previously performed was appropriately modeled. Thus, the virtual axis finder can be applied with a thorough understanding of its errors in a variety of test conditions.
Kuttykrishnan, Sooraj; Kalantar-Zadeh, Kamyar; Arah, Onyebuchi A.; Cheung, Alfred K.; Brunelli, Steve; Heagerty, Patrick J.; Katz, Ronit; Molnar, Miklos Z.; Nissenson, Allen; Ravel, Vanessa; Streja, Elani; Himmelfarb, Jonathan; Mehrotra, Rajnish
2015-01-01
Background The Institute of Medicine has identified the comparative effectiveness of renal replacement therapies as a kidney-related topic among the top 100 national priorities. Given the importance of ensuring internal and external validity, the goal of this study was to identify potential sources of bias in observational studies that compare outcomes with different dialysis modalities. Methods This observational cohort study used data from the electronic medical records of all patients that started maintenance dialysis in the calendar years 2007–2011 and underwent treatment for at least 60 days in any of the 2217 facilities operated by DaVita Inc. Each patient was assigned one of six dialysis modalities for each 91-day period from the date of first dialysis (thrice weekly in-center hemodialysis (HD), peritoneal dialysis (PD), less-frequent HD, home HD, frequent HD and nocturnal in-center HD). Results Of the 162 644 patients, 18% underwent treatment with a modality other than HD for at least one 91-day period. Except for PD, patients started treatment with alternative modalities after variable lengths of treatment with HD; the time until a change in modality was shortest for less-frequent HD (median time = 6 months) and longest for frequent HD (median time = 15 months). Between 30 and 78% of patients transferred to another dialysis facility prior to change in modality. Finally, there were significant differences in baseline and time-varying clinical characteristics associated with dialysis modality. Conclusions This analysis identified numerous potential sources of bias in studies of the comparative effectiveness of dialysis modalities. PMID:25883196
Porcino, Antony; MacDougall, Colleen
2009-01-01
Background: Since the late 1980s, several taxonomies have been developed to help map and describe the interrelationships of complementary and alternative medicine (CAM) modalities. In these taxonomies, several issues are often incompletely addressed: A simple categorization process that clearly isolates a modality to a single conceptual categoryClear delineation of verticality—that is, a differentiation of scale being observed from individually applied techniques, through modalities (therapies), to whole medical systemsRecognition of CAM as part of the general field of health care Methods: Development of the Integrated Taxonomy of Health Care (ITHC) involved three stages: Development of a precise, uniform health glossaryAnalysis of the extant taxonomiesUse of an iterative process of classifying modalities and medical systems into categories until a failure to singularly classify a modality occurred, requiring a return to the glossary and adjustment of the classifying protocol Results: A full vertical taxonomy was developed that includes and clearly differentiates between techniques, modalities, domains (clusters of similar modalities), systems of health care (coordinated care system involving multiple modalities), and integrative health care. Domains are the classical primary focus of taxonomies. The ITHC has eleven domains: chemical/substance-based work, device-based work, soft tissue–focused manipulation, skeletal manipulation, fitness/movement instruction, mind–body integration/classical somatics work, mental/emotional–based work, bio-energy work based on physical manipulation, bio-energy modulation, spiritual-based work, unique assessments. Modalities are assigned to the domains based on the primary mode of interaction with the client, according the literature of the practitioners. Conclusions: The ITHC has several strengths: little interpretation is used while successfully assigning modalities to single domains; the issue of taxonomic verticality is fully resolved; and the design fully integrates the complementary health care fields of biomedicine and CAM. PMID:21589735
Large-scale Cross-modality Search via Collective Matrix Factorization Hashing.
Ding, Guiguang; Guo, Yuchen; Zhou, Jile; Gao, Yue
2016-09-08
By transforming data into binary representation, i.e., Hashing, we can perform high-speed search with low storage cost, and thus Hashing has collected increasing research interest in the recent years. Recently, how to generate Hashcode for multimodal data (e.g., images with textual tags, documents with photos, etc) for large-scale cross-modality search (e.g., searching semantically related images in database for a document query) is an important research issue because of the fast growth of multimodal data in the Web. To address this issue, a novel framework for multimodal Hashing is proposed, termed as Collective Matrix Factorization Hashing (CMFH). The key idea of CMFH is to learn unified Hashcodes for different modalities of one multimodal instance in the shared latent semantic space in which different modalities can be effectively connected. Therefore, accurate cross-modality search is supported. Based on the general framework, we extend it in the unsupervised scenario where it tries to preserve the Euclidean structure, and in the supervised scenario where it fully exploits the label information of data. The corresponding theoretical analysis and the optimization algorithms are given. We conducted comprehensive experiments on three benchmark datasets for cross-modality search. The experimental results demonstrate that CMFH can significantly outperform several state-of-the-art cross-modality Hashing methods, which validates the effectiveness of the proposed CMFH.
Learning Discriminative Binary Codes for Large-scale Cross-modal Retrieval.
Xu, Xing; Shen, Fumin; Yang, Yang; Shen, Heng Tao; Li, Xuelong
2017-05-01
Hashing based methods have attracted considerable attention for efficient cross-modal retrieval on large-scale multimedia data. The core problem of cross-modal hashing is how to learn compact binary codes that construct the underlying correlations between heterogeneous features from different modalities. A majority of recent approaches aim at learning hash functions to preserve the pairwise similarities defined by given class labels. However, these methods fail to explicitly explore the discriminative property of class labels during hash function learning. In addition, they usually discard the discrete constraints imposed on the to-be-learned binary codes, and compromise to solve a relaxed problem with quantization to obtain the approximate binary solution. Therefore, the binary codes generated by these methods are suboptimal and less discriminative to different classes. To overcome these drawbacks, we propose a novel cross-modal hashing method, termed discrete cross-modal hashing (DCH), which directly learns discriminative binary codes while retaining the discrete constraints. Specifically, DCH learns modality-specific hash functions for generating unified binary codes, and these binary codes are viewed as representative features for discriminative classification with class labels. An effective discrete optimization algorithm is developed for DCH to jointly learn the modality-specific hash function and the unified binary codes. Extensive experiments on three benchmark data sets highlight the superiority of DCH under various cross-modal scenarios and show its state-of-the-art performance.
[How to start a neuroimaging study].
Narumoto, Jin
2012-06-01
In order to help researchers understand how to start a neuroimaging study, several tips are described in this paper. These include 1) Choice of an imaging modality, 2) Statistical method, and 3) Interpretation of the results. 1) There are several imaging modalities available in clinical research. Advantages and disadvantages of each modality are described. 2) Statistical Parametric Mapping, which is the most common statistical software for neuroimaging analysis, is described in terms of parameter setting in normalization and level of significance. 3) In the discussion section, the region which shows a significant difference between patients and normal controls should be discussed in relation to the neurophysiology of the disease, making reference to previous reports from neuroimaging studies in normal controls, lesion studies and animal studies. A typical pattern of discussion is described.
NASA Technical Reports Server (NTRS)
Leppert, E. L.; Lee, S. H.; Day, F. D.; Chapman, P. C.; Wada, B. K.
1976-01-01
The Mariner Jupiter/Saturn (MJS) spacecraft was subjected to the traditional multipoint sine dwell (MPSD) modal test using 111 accelerometer channels, and also to single-point random (SPR) testing using 26 accelerometer channels, and the two methods are compared according to cost, schedule, and technical criteria. A measure of comparison between the systems was devised in terms of the cumulative difference in the kinetic energy distribution of the common accelerometers. The SPR and MPSD method show acceptable agreement with respect to frequencies and mode damping. The merit of the SPR method is that the excitation points are minimized and the test article can be committed to other uses while data analysis is performed. The MPSD approach allows validity of the data to be determined as the test progresses. Costs are about the same for the two methods.
PET/CT and contrast enhanced CT in single vs. two separate sessions: a cost analysis study.
Picchio, M; Mansueto, M; Crivellaro, C; Guerra, L; Marcelli, S; Arosio, M; Sironi, S; Gianolli, L; Grimaldi, A; Messa, C
2012-06-01
Aim of the study was to quantify the economic impact of PET/CT and contrast enhanced (c.e.) CT performed in a single session examination vs. stand-alone modalities in oncological patients. One-hundred-forty-five cancer patients referred to both PET/CT and c.e. CT, to either stage (N.=46) or re-stage (N.=99) the disease, were included. Seventy-two/145 performed both studies in a single session (innovative method) and 73/145 in two different sessions (traditional method). The cost-minimization analysis was performed by evaluating: 1) institutional costs, data obtained by hospital accountability (staff, medical materials, equipment maintenance and depreciation, departments utilities); 2) patients costs, data obtained by a specific survey provided to patients (travel, food, accommodation costs, productivity loss). Economic data analysis showed that the costs for innovative method was lower than those of traditional method, both for Institution (106 € less per test) and for patient (21 € less per patient). The loss of productivity for patient and caregivers resulted lower for the innovative method than the traditional method (3 work-hour less per person). PET/CT and c.e. CT performed in a single session is more cost-effective than stand-alone modalities, by reducing both Institutional and patients costs. These advantages are mainly due to lower Institutional cost (single procedure) and to lower cost related to travel and housing.
Aeroelastic stability analyses of two counter rotating propfan designs for a cruise missile model
NASA Technical Reports Server (NTRS)
Mahajan, Aparajit J.; Lucero, John M.; Mehmed, Oral; Stefko, George L.
1992-01-01
A modal aeroelastic analysis combining structural and aerodynamic models is applied to counterrotating propfans to evaluate their structural integrity for wind-tunnel testing. The aeroelastic analysis code is an extension of the 2D analysis code called the Aeroelastic Stability and Response of Propulsion Systems. Rotational speed and freestream Mach number are the parameters for calculating the stability of the two blade designs with a modal method combining a finite-element structural model with 2D steady and unsteady cascade aerodynamic models. The model demonstrates convergence to the least stable aeroelastic mode, describes the effects of a nonuniform inflow, and permits the modification of geometry and rotation. The analysis shows that the propfan designs are suitable for the wind-tunnel test and confirms that the propfans should be flutter-free under the range of conditions of the testing.
Efficient Analysis of Complex Structures
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.
2000-01-01
Last various accomplishments achieved during this project are : (1) A Survey of Neural Network (NN) applications using MATLAB NN Toolbox on structural engineering especially on equivalent continuum models (Appendix A). (2) Application of NN and GAs to simulate and synthesize substructures: 1-D and 2-D beam problems (Appendix B). (3) Development of an equivalent plate-model analysis method (EPA) for static and vibration analysis of general trapezoidal built-up wing structures composed of skins, spars and ribs. Calculation of all sorts of test cases and comparison with measurements or FEA results. (Appendix C). (4) Basic work on using second order sensitivities on simulating wing modal response, discussion of sensitivity evaluation approaches, and some results (Appendix D). (5) Establishing a general methodology of simulating the modal responses by direct application of NN and by sensitivity techniques, in a design space composed of a number of design points. Comparison is made through examples using these two methods (Appendix E). (6) Establishing a general methodology of efficient analysis of complex wing structures by indirect application of NN: the NN-aided Equivalent Plate Analysis. Training of the Neural Networks for this purpose in several cases of design spaces, which can be applicable for actual design of complex wings (Appendix F).
Modal analysis of a loaded tire with non-contact measurements and piezoelectric excitation
NASA Astrophysics Data System (ADS)
Ferhat, Ipar; Tarazaga, Pablo A.
2017-04-01
The complex nature of tires requires very precise test data to model the structure accurately. The highly damped characteristics, geometric features and operational conditions of tires cause various testing difficulties that affect the reliability of the modal testing. One of the biggest challenges of tire testing is exciting the whole tire at once. Conventionally, impact hammers, shakers, and cleats are used as an excitation input. The shortcomings of these excitation methods are the directional and force inconsistency of hammer impacts, coupled dynamics of shakers and speed limitations of cleat excitation. Other challenges of modal testing of tires are the effect of added mass due to sensor placements and difficulty of vibration measurement of a rotating tire with accelerometers. In order to remedy these problems, we conduct experimental modal analysis (EMA) using a non-contact measurement technique and piezoelectric excitation. For non-contact measurement, a 3-D scanning laser doppler vibrometer (SLDV) is used. For the piezoelectric excitation, Micro Fiber Composite (MFC) patches are used due to their flexible nature and power capacity. This excitation method can also be crucial to the excitation of rotating tires since the cleat excitation is not adequate for low-speed measurements. Furthermore, the piezoelectric actuation could be used as sensors as well as noise controllers in operating conditions. For this work, we run experiments for a loaded tire in non-rotating condition. Experiments are carried out for the frequency bandwidth up to 500Hz to capture the structural behavior under high-frequency excitations and its potential coupled behavior to airborne noise.
ERIC Educational Resources Information Center
Skinner, Anna; Diller, David; Kumar, Rohit; Cannon-Bowers, Jan; Smith, Roger; Tanaka, Alyssa; Julian, Danielle; Perez, Ray
2018-01-01
Background: Contemporary work in the design and development of intelligent training systems employs task analysis (TA) methods for gathering knowledge that is subsequently encoded into task models. These task models form the basis of intelligent interpretation of student performance within education and training systems. Also referred to as expert…
High-frequency asymptotic methods for analyzing the EM scattering by open-ended waveguide cavities
NASA Technical Reports Server (NTRS)
Burkholder, R. J.; Pathak, P. H.
1989-01-01
Four high-frequency methods are described for analyzing the electromagnetic (EM) scattering by electrically large open-ended cavities. They are: (1) a hybrid combination of waveguide modal analysis and high-frequency asymptotics, (2) geometrical optics (GO) ray shooting, (3) Gaussian beam (GB) shooting, and (4) the generalized ray expansion (GRE) method. The hybrid modal method gives very accurate results but is limited to cavities which are made up of sections of uniform waveguides for which the modal fields are known. The GO ray shooting method can be applied to much more arbitrary cavity geometries and can handle absorber treated interior walls, but it generally only predicts the major trends of the RCS pattern and not the details. Also, a very large number of rays need to be tracked for each new incidence angle. Like the GO ray shooting method, the GB shooting method can handle more arbitrary cavities, but it is much more efficient and generally more accurate than the GO method because it includes the fields diffracted by the rim at the open end which enter the cavity. However, due to beam divergence effects the GB method is limited to cavities which are not very long compared to their width. The GRE method overcomes the length-to-width limitation of the GB method by replacing the GB's with GO ray tubes which are launched in the same manner as the GB's to include the interior rim diffracted field. This method gives good accuracy and is generally more efficient than the GO method, but a large number of ray tubes needs to be tracked.
Multimodal neural correlates of cognitive control in the Human Connectome Project.
Lerman-Sinkoff, Dov B; Sui, Jing; Rachakonda, Srinivas; Kandala, Sridhar; Calhoun, Vince D; Barch, Deanna M
2017-12-01
Cognitive control is a construct that refers to the set of functions that enable decision-making and task performance through the representation of task states, goals, and rules. The neural correlates of cognitive control have been studied in humans using a wide variety of neuroimaging modalities, including structural MRI, resting-state fMRI, and task-based fMRI. The results from each of these modalities independently have implicated the involvement of a number of brain regions in cognitive control, including dorsal prefrontal cortex, and frontal parietal and cingulo-opercular brain networks. However, it is not clear how the results from a single modality relate to results in other modalities. Recent developments in multimodal image analysis methods provide an avenue for answering such questions and could yield more integrated models of the neural correlates of cognitive control. In this study, we used multiset canonical correlation analysis with joint independent component analysis (mCCA + jICA) to identify multimodal patterns of variation related to cognitive control. We used two independent cohorts of participants from the Human Connectome Project, each of which had data from four imaging modalities. We replicated the findings from the first cohort in the second cohort using both independent and predictive analyses. The independent analyses identified a component in each cohort that was highly similar to the other and significantly correlated with cognitive control performance. The replication by prediction analyses identified two independent components that were significantly correlated with cognitive control performance in the first cohort and significantly predictive of performance in the second cohort. These components identified positive relationships across the modalities in neural regions related to both dynamic and stable aspects of task control, including regions in both the frontal-parietal and cingulo-opercular networks, as well as regions hypothesized to be modulated by cognitive control signaling, such as visual cortex. Taken together, these results illustrate the potential utility of multi-modal analyses in identifying the neural correlates of cognitive control across different indicators of brain structure and function. Copyright © 2017 Elsevier Inc. All rights reserved.
Cooperberg, Matthew R.; Ramakrishna, Naren R.; Duff, Steven B.; Hughes, Kathleen E.; Sadownik, Sara; Smith, Joseph A.; Tewari, Ashutosh K.
2012-01-01
Objectives To characterize the costs and outcomes associated with radical prostatectomy (open, laparoscopic, or robot-assisted) and radiation therapy (dose-escalated 3-dimensional conformal radiation, intensity-modulated radiation, brachytherapy, or combination), using a comprehensive, lifetime decision analytic model. Patients and Methods A Markov model was constructed to follow hypothetical men with low-, intermediate-, and high-risk prostate cancer over their lifetimes following primary treatment; probabilities of outcomes were based on an exhaustive literature search yielding 232 unique publications. Patients could experience remission, recurrence, salvage treatment, metastasis, death from prostate cancer, and death from other causes. Utilities for each health state were determined, and disutilities were applied for complications and toxicities of treatment. Costs were determined from the U.S. payer perspective, with incorporation of patient costs in a sensitivity analysis. Results Differences in quality-adjusted life years across modalities were modest, ranging from 10.3 to 11.3 for low-risk patients, 9.6 to 10.5 for intermediate-risk patients, and 7.8 to 9.3 for high-risk patients. There were no statistically significant differences among surgical modalities, which tended to be more effective than radiation modalities, with the exception of combination external beam + brachytherapy for high-risk disease. Radiation modalities were consistently more expensive than surgical modalities; costs ranged from $19,901 (robot-assisted prostatectomy for low-risk disease) to $50,276 (combination radiation for high-risk disease). These findings were robust to an extensive set of sensitivity analyses. Conclusions Our analysis found small differences in outcomes and substantial differences in payer and patient costs across treatment alternatives. These findings may inform future policy discussions regarding strategies to improve efficiency of treatment selection for localized prostate cancer. PMID:23279038
A modal analysis of flexible aircraft dynamics with handling qualities implications
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1983-01-01
A multivariable modal analysis technique is presented for evaluating flexible aircraft dynamics, focusing on meaningful vehicle responses to pilot inputs and atmospheric turbulence. Although modal analysis is the tool, vehicle time response is emphasized, and the analysis is performed on the linear, time-domain vehicle model. In evaluating previously obtained experimental pitch tracking data for a family of vehicle dynamic models, it is shown that flexible aeroelastic effects can significantly affect pitch attitude handling qualities. Consideration of the eigenvalues alone, of both rigid-body and aeroelastic modes, does not explain the simulation results. Modal analysis revealed, however, that although the lowest aeroelastic mode frequency was still three times greater than the short-period frequency, the rigid-body attitude response was dominated by this aeroelastic mode. This dominance was defined in terms of the relative magnitudes of the modal residues in selected vehicle responses.
A System for the Semantic Multimodal Analysis of News Audio-Visual Content
NASA Astrophysics Data System (ADS)
Mezaris, Vasileios; Gidaros, Spyros; Papadopoulos, GeorgiosTh; Kasper, Walter; Steffen, Jörg; Ordelman, Roeland; Huijbregts, Marijn; de Jong, Franciska; Kompatsiaris, Ioannis; Strintzis, MichaelG
2010-12-01
News-related content is nowadays among the most popular types of content for users in everyday applications. Although the generation and distribution of news content has become commonplace, due to the availability of inexpensive media capturing devices and the development of media sharing services targeting both professional and user-generated news content, the automatic analysis and annotation that is required for supporting intelligent search and delivery of this content remains an open issue. In this paper, a complete architecture for knowledge-assisted multimodal analysis of news-related multimedia content is presented, along with its constituent components. The proposed analysis architecture employs state-of-the-art methods for the analysis of each individual modality (visual, audio, text) separately and proposes a novel fusion technique based on the particular characteristics of news-related content for the combination of the individual modality analysis results. Experimental results on news broadcast video illustrate the usefulness of the proposed techniques in the automatic generation of semantic annotations.
Simulation of crash tests for high impact levels of a new bridge safety barrier
NASA Astrophysics Data System (ADS)
Drozda, Jiří; Rotter, Tomáš
2017-09-01
The purpose is to show the opportunity of a non-linear dynamic impact simulation and to explain the possibility of using finite element method (FEM) for developing new designs of safety barriers. The main challenge is to determine the means to create and validate the finite element (FE) model. The results of accurate impact simulations can help to reduce necessary costs for developing of a new safety barrier. The introductory part deals with the creation of the FE model, which includes the newly-designed safety barrier and focuses on the application of an experimental modal analysis (EMA). The FE model has been created in ANSYS Workbench and is formed from shell and solid elements. The experimental modal analysis, which was performed on a real pattern, was employed for measuring the modal frequencies and shapes. After performing the EMA, the FE mesh was calibrated after comparing the measured modal frequencies with the calculated ones. The last part describes the process of the numerical non-linear dynamic impact simulation in LS-DYNA. This simulation was validated after comparing the measured ASI index with the calculated ones. The aim of the study is to improve professional public knowledge about dynamic non-linear impact simulations. This should ideally lead to safer, more accurate and profitable designs.
A Unified Development of Basis Reduction Methods for Rotor Blade Analysis
NASA Technical Reports Server (NTRS)
Ruzicka, Gene C.; Hodges, Dewey H.; Rutkowski, Michael (Technical Monitor)
2001-01-01
The axial foreshortening effect plays a key role in rotor blade dynamics, but approximating it accurately in reduced basis models has long posed a difficult problem for analysts. Recently, though, several methods have been shown to be effective in obtaining accurate,reduced basis models for rotor blades. These methods are the axial elongation method,the mixed finite element method, and the nonlinear normal mode method. The main objective of this paper is to demonstrate the close relationships among these methods, which are seemingly disparate at first glance. First, the difficulties inherent in obtaining reduced basis models of rotor blades are illustrated by examining the modal reduction accuracy of several blade analysis formulations. It is shown that classical, displacement-based finite elements are ill-suited for rotor blade analysis because they can't accurately represent the axial strain in modal space, and that this problem may be solved by employing the axial force as a variable in the analysis. It is shown that the mixed finite element method is a convenient means for accomplishing this, and the derivation of a mixed finite element for rotor blade analysis is outlined. A shortcoming of the mixed finite element method is that is that it increases the number of variables in the analysis. It is demonstrated that this problem may be rectified by solving for the axial displacements in terms of the axial forces and the bending displacements. Effectively, this procedure constitutes a generalization of the widely used axial elongation method to blades of arbitrary topology. The procedure is developed first for a single element, and then extended to an arbitrary assemblage of elements of arbitrary type. Finally, it is shown that the generalized axial elongation method is essentially an approximate solution for an invariant manifold that can be used as the basis for a nonlinear normal mode.
NASA Technical Reports Server (NTRS)
Kraft, R. E.
1996-01-01
A computational method to predict modal reflection coefficients in cylindrical ducts has been developed based on the work of Homicz, Lordi, and Rehm, which uses the Wiener-Hopf method to account for the boundary conditions at the termination of a thin cylindrical pipe. The purpose of this study is to develop a computational routine to predict the reflection coefficients of higher order acoustic modes impinging on the unflanged termination of a cylindrical duct. This effort was conducted wider Task Order 5 of the NASA Lewis LET Program, Active Noise Control of aircraft Engines: Feasibility Study, and will be used as part of the development of an integrated source noise, acoustic propagation, ANC actuator coupling, and control system algorithm simulation. The reflection coefficient prediction will be incorporated into an existing cylindrical duct modal analysis to account for the reflection of modes from the duct termination. This will provide a more accurate, rapid computation design tool for evaluating the effect of reflected waves on active noise control systems mounted in the duct, as well as providing a tool for the design of acoustic treatment in inlet ducts. As an active noise control system design tool, the method can be used preliminary to more accurate but more numerically intensive acoustic propagation models such as finite element methods. The resulting computer program has been shown to give reasonable results, some examples of which are presented. Reliable data to use for comparison is scarce, so complete checkout is difficult, and further checkout is needed over a wider range of system parameters. In future efforts the method will be adapted as a subroutine to the GEAE segmented cylindrical duct modal analysis program.
NASA Astrophysics Data System (ADS)
Guo, Ning; Yang, Zhichun; Wang, Le; Ouyang, Yan; Zhang, Xinping
2018-05-01
Aiming at providing a precise dynamic structural finite element (FE) model for dynamic strength evaluation in addition to dynamic analysis. A dynamic FE model updating method is presented to correct the uncertain parameters of the FE model of a structure using strain mode shapes and natural frequencies. The strain mode shape, which is sensitive to local changes in structure, is used instead of the displacement mode for enhancing model updating. The coordinate strain modal assurance criterion is developed to evaluate the correlation level at each coordinate over the experimental and the analytical strain mode shapes. Moreover, the natural frequencies which provide the global information of the structure are used to guarantee the accuracy of modal properties of the global model. Then, the weighted summation of the natural frequency residual and the coordinate strain modal assurance criterion residual is used as the objective function in the proposed dynamic FE model updating procedure. The hybrid genetic/pattern-search optimization algorithm is adopted to perform the dynamic FE model updating procedure. Numerical simulation and model updating experiment for a clamped-clamped beam are performed to validate the feasibility and effectiveness of the present method. The results show that the proposed method can be used to update the uncertain parameters with good robustness. And the updated dynamic FE model of the beam structure, which can correctly predict both the natural frequencies and the local dynamic strains, is reliable for the following dynamic analysis and dynamic strength evaluation.
Gerhard, Stephan; Daducci, Alessandro; Lemkaddem, Alia; Meuli, Reto; Thiran, Jean-Philippe; Hagmann, Patric
2011-01-01
Advanced neuroinformatics tools are required for methods of connectome mapping, analysis, and visualization. The inherent multi-modality of connectome datasets poses new challenges for data organization, integration, and sharing. We have designed and implemented the Connectome Viewer Toolkit - a set of free and extensible open source neuroimaging tools written in Python. The key components of the toolkit are as follows: (1) The Connectome File Format is an XML-based container format to standardize multi-modal data integration and structured metadata annotation. (2) The Connectome File Format Library enables management and sharing of connectome files. (3) The Connectome Viewer is an integrated research and development environment for visualization and analysis of multi-modal connectome data. The Connectome Viewer's plugin architecture supports extensions with network analysis packages and an interactive scripting shell, to enable easy development and community contributions. Integration with tools from the scientific Python community allows the leveraging of numerous existing libraries for powerful connectome data mining, exploration, and comparison. We demonstrate the applicability of the Connectome Viewer Toolkit using Diffusion MRI datasets processed by the Connectome Mapper. The Connectome Viewer Toolkit is available from http://www.cmtk.org/
Gerhard, Stephan; Daducci, Alessandro; Lemkaddem, Alia; Meuli, Reto; Thiran, Jean-Philippe; Hagmann, Patric
2011-01-01
Advanced neuroinformatics tools are required for methods of connectome mapping, analysis, and visualization. The inherent multi-modality of connectome datasets poses new challenges for data organization, integration, and sharing. We have designed and implemented the Connectome Viewer Toolkit – a set of free and extensible open source neuroimaging tools written in Python. The key components of the toolkit are as follows: (1) The Connectome File Format is an XML-based container format to standardize multi-modal data integration and structured metadata annotation. (2) The Connectome File Format Library enables management and sharing of connectome files. (3) The Connectome Viewer is an integrated research and development environment for visualization and analysis of multi-modal connectome data. The Connectome Viewer's plugin architecture supports extensions with network analysis packages and an interactive scripting shell, to enable easy development and community contributions. Integration with tools from the scientific Python community allows the leveraging of numerous existing libraries for powerful connectome data mining, exploration, and comparison. We demonstrate the applicability of the Connectome Viewer Toolkit using Diffusion MRI datasets processed by the Connectome Mapper. The Connectome Viewer Toolkit is available from http://www.cmtk.org/ PMID:21713110
Modeling and control of beam-like structures
NASA Technical Reports Server (NTRS)
Hu, A.; Skelton, R. E.; Yang, T. Y.
1987-01-01
The most popular finite element codes are based upon appealing theories of convergence of modal frequencies. For example, the popularity of cubic elements for beam-like structures is due to the rapid convergence of modal frequencies and stiffness properties. However, for those problems in which the primary consideration is the accuracy of response of the structure at specified locations it is more important to obtain accuracy in the modal costs than in the modal frequencies. The modal cost represents the contribution of a mode in the norm of the response vector. This paper provides a complete modal cost analysis for beam-like continua. Upper bounds are developed for mode truncation errors in the model reduction process and modal cost analysis dictates which modes to retain in order to reduce the model for control design purposes.
Jain, Avani; Srivastava, Madhur Kumar; Pawaskar, Alok Suresh; Shelley, Simon; Elangovan, Indirani; Jain, Hasmukh; Pandey, Somnath; Kalal, Shilpa; Amalachandran, Jaykanth
2015-01-01
Background: To evaluate the advantages of contrast enhanced F-18-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET-contrast enhanced CT [CECT]) when used as an initial imaging modality in patients presenting with metastatic malignancy of undefined primary origin (MUO). Materials and Methods: A total of 243 patients with fine needle aspiration cytology/biopsy proven MUO were included in this prospective study. Patients who were thoroughly evaluated for primary or primary tumor was detected by any other investigation were excluded from the analysis. Totally, 163 patients with pathological diagnosis of malignancy but no apparent sites of the primary tumor were finally selected for analysis. The site of probable primary malignancy suggested by PET-CECT was confirmed by biopsy/follow-up. Results: PET-CECT suggested probable site of primary in 128/163 (78.52%) patients. In 30/35 remaining patients, primary tumor was not detected even after extensive work-up. In 5 patients, where PET-CECT was negative, primary was found on further extensive investigations or follow-up. The sensitivity, specificity, positive predictive value and negative predictive value of the study were 95.76%, 66.67%, 88.28% and 85.71% respectively. Conclusions: F-18 FDG PET-CECT aptly serves the purpose of initial imaging modality owing to high sensitivity, negative and positive predictive value. PET-CECT not only surveys the whole body for the primary malignancy but also stages the disease accurately. Use of contrast improves the diagnostic utility of modality as well as help in staging of the primary tumor. Although benefits of using PET-CECT as initial diagnostic modality are obvious from this study, there is a need for a larger study comparing conventional methods for diagnosing primary in patients with MUO versus PET-CECT. PMID:26170563
A double expansion method for the frequency response of finite-length beams with periodic parameters
NASA Astrophysics Data System (ADS)
Ying, Z. G.; Ni, Y. Q.
2017-03-01
A double expansion method for the frequency response of finite-length beams with periodic distribution parameters is proposed. The vibration response of the beam with spatial periodic parameters under harmonic excitations is studied. The frequency response of the periodic beam is the function of parametric period and then can be expressed by the series with the product of periodic and non-periodic functions. The procedure of the double expansion method includes the following two main steps: first, the frequency response function and periodic parameters are expanded by using identical periodic functions based on the extension of the Floquet-Bloch theorem, and the period-parametric differential equation for the frequency response is converted into a series of linear differential equations with constant coefficients; second, the solutions to the linear differential equations are expanded by using modal functions which satisfy the boundary conditions, and the linear differential equations are converted into algebraic equations according to the Galerkin method. The expansion coefficients are obtained by solving the algebraic equations and then the frequency response function is finally determined. The proposed double expansion method can uncouple the effects of the periodic expansion and modal expansion so that the expansion terms are determined respectively. The modal number considered in the second expansion can be reduced remarkably in comparison with the direct expansion method. The proposed double expansion method can be extended and applied to the other structures with periodic distribution parameters for dynamics analysis. Numerical results on the frequency response of the finite-length periodic beam with various parametric wave numbers and wave amplitude ratios are given to illustrate the effective application of the proposed method and the new frequency response characteristics, including the parameter-excited modal resonance, doubling-peak frequency response and remarkable reduction of the maximum frequency response for certain parametric wave number and wave amplitude. The results have the potential application to structural vibration control.
NASA Astrophysics Data System (ADS)
Liu, Xiaonan; Chen, Kewei; Wu, Teresa; Weidman, David; Lure, Fleming; Li, Jing
2018-02-01
Alzheimer's Disease (AD) is the most common cause of dementia and currently has no cure. Treatments targeting early stages of AD such as Mild Cognitive Impairment (MCI) may be most effective to deaccelerate AD, thus attracting increasing attention. However, MCI has substantial heterogeneity in that it can be caused by various underlying conditions, not only AD. To detect MCI due to AD, NIA-AA published updated consensus criteria in 2011, in which the use of multi-modality images was highlighted as one of the most promising methods. It is of great interest to develop a CAD system based on automatic, quantitative analysis of multi-modality images and machine learning algorithms to help physicians more adequately diagnose MCI due to AD. The challenge, however, is that multi-modality images are not universally available for many patients due to cost, access, safety, and lack of consent. We developed a novel Missing Modality Transfer Learning (MMTL) algorithm capable of utilizing whatever imaging modalities are available for an MCI patient to diagnose the patient's likelihood of MCI due to AD. Furthermore, we integrated MMTL with radiomics steps including image processing, feature extraction, and feature screening, and a post-processing for uncertainty quantification (UQ), and developed a CAD system called "ADMultiImg" to assist clinical diagnosis of MCI due to AD using multi-modality images together with patient demographic and genetic information. Tested on ADNI date, our system can generate a diagnosis with high accuracy even for patients with only partially available image modalities (AUC=0.94), and therefore may have broad clinical utility.
Cortical Signal Analysis and Advances in Functional Near-Infrared Spectroscopy Signal: A Review.
Kamran, Muhammad A; Mannan, Malik M Naeem; Jeong, Myung Yung
2016-01-01
Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging modality that measures the concentration changes of oxy-hemoglobin (HbO) and de-oxy hemoglobin (HbR) at the same time. It is an emerging cortical imaging modality with a good temporal resolution that is acceptable for brain-computer interface applications. Researchers have developed several methods in last two decades to extract the neuronal activation related waveform from the observed fNIRS time series. But still there is no standard method for analysis of fNIRS data. This article presents a brief review of existing methodologies to model and analyze the activation signal. The purpose of this review article is to give a general overview of variety of existing methodologies to extract useful information from measured fNIRS data including pre-processing steps, effects of differential path length factor (DPF), variations and attributes of hemodynamic response function (HRF), extraction of evoked response, removal of physiological noises, instrumentation, and environmental noises and resting/activation state functional connectivity. Finally, the challenges in the analysis of fNIRS signal are summarized.
Cortical Signal Analysis and Advances in Functional Near-Infrared Spectroscopy Signal: A Review
Kamran, Muhammad A.; Mannan, Malik M. Naeem; Jeong, Myung Yung
2016-01-01
Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging modality that measures the concentration changes of oxy-hemoglobin (HbO) and de-oxy hemoglobin (HbR) at the same time. It is an emerging cortical imaging modality with a good temporal resolution that is acceptable for brain-computer interface applications. Researchers have developed several methods in last two decades to extract the neuronal activation related waveform from the observed fNIRS time series. But still there is no standard method for analysis of fNIRS data. This article presents a brief review of existing methodologies to model and analyze the activation signal. The purpose of this review article is to give a general overview of variety of existing methodologies to extract useful information from measured fNIRS data including pre-processing steps, effects of differential path length factor (DPF), variations and attributes of hemodynamic response function (HRF), extraction of evoked response, removal of physiological noises, instrumentation, and environmental noises and resting/activation state functional connectivity. Finally, the challenges in the analysis of fNIRS signal are summarized. PMID:27375458
Tait, Lauren; Lee, Kenneth; Rasiah, Rohan; Cooper, Joyce M; Ling, Tristan; Geelan, Benjamin; Bindoff, Ivan
2018-05-03
Background . There are numerous approaches to simulating a patient encounter in pharmacy education. However, little direct comparison between these approaches has been undertaken. Our objective was to investigate student experiences, satisfaction, and feedback preferences between three scenario simulation modalities (paper-, actor-, and computer-based). Methods . We conducted a mixed methods study with randomized cross-over of simulation modalities on final-year Australian graduate-entry Master of Pharmacy students. Participants completed case-based scenarios within each of three simulation modalities, with feedback provided at the completion of each scenario in a format corresponding to each simulation modality. A post-simulation questionnaire collected qualitative and quantitative responses pertaining to participant satisfaction, experiences, and feedback preferences. Results . Participants reported similar levels satisfaction across all three modalities. However, each modality resulted in unique positive and negative experiences, such as student disengagement with paper-based scenarios. Conclusion . Importantly, the themes of guidance and opportunity for peer discussion underlie the best forms of feedback for students. The provision of feedback following simulation should be carefully considered and delivered, with all three simulation modalities producing both positive and negative experiences in regard to their feedback format.
Three-port beam splitter of a binary fused-silica grating.
Feng, Jijun; Zhou, Changhe; Wang, Bo; Zheng, Jiangjun; Jia, Wei; Cao, Hongchao; Lv, Peng
2008-12-10
A deep-etched polarization-independent binary fused-silica phase grating as a three-port beam splitter is designed and manufactured. The grating profile is optimized by use of the rigorous coupled-wave analysis around the 785 nm wavelength. The physical explanation of the grating is illustrated by the modal method. Simple analytical expressions of the diffraction efficiencies and modal guidelines for the three-port beam splitter grating design are given. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in good agreement with the theoretical values.
Finite element, modal co-ordinate analysis of structures subjected to moving loads
NASA Astrophysics Data System (ADS)
Olsson, M.
1985-03-01
Some of the possibilities of the finite element method in the moving load problem are demonstrated. The bridge-vehicle interaction phenomenon is considered by deriving a general bridge-vehicle element which is believed to be novel. This element may be regarded as a finite element with time-dependent and unsymmetric element matrices. The bridge response is formulated in modal co-ordinates thereby reducing the number of equations to be solved within each time step. Illustrative examples are shown for the special case of a beam bridge model and a one-axle vehicle model.
On-Line Modal State Monitoring of Slowly Time-Varying Structures
NASA Technical Reports Server (NTRS)
Johnson, Erik A.; Bergman, Lawrence A.; Voulgaris, Petros G.
1997-01-01
Monitoring the dynamic response of structures is often performed for a variety of reasons. These reasons include condition-based maintenance, health monitoring, performance improvements, and control. In many cases the data analysis that is performed is part of a repetitive decision-making process, and in these cases the development of effective on-line monitoring schemes help to speed the decision-making process and reduce the risk of erroneous decisions. This report investigates the use of spatial modal filters for tracking the dynamics of slowly time-varying linear structures. The report includes an overview of modal filter theory followed by an overview of several structural system identification methods. Included in this discussion and comparison are H-infinity, eigensystem realization, and several time-domain least squares approaches. Finally, a two-stage adaptive on-line monitoring scheme is developed and evaluated.
Scattering Cross Section of Sound Waves by the Modal Element Method
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1994-01-01
#he modal element method has been employed to determine the scattered field from a plane acoustic wave impinging on a two dimensional body. In the modal element method, the scattering body is represented by finite elements, which are coupled to an eigenfunction expansion representing the acoustic pressure in the infinite computational domain surrounding the body. The present paper extends the previous work by developing the algorithm necessary to calculate the acoustics scattering cross section by the modal element method. The scattering cross section is the acoustical equivalent to the Radar Cross Section (RCS) in electromagnetic theory. Since the scattering cross section is evaluated at infinite distance from the body, an asymptotic approximation is used in conjunction with the standard modal element method. For validation, the scattering cross section of the rigid circular cylinder is computed for the frequency range 0.1 is less than or equal to ka is less than or equal to 100. Results show excellent agreement with the analytic solution.
NASA Technical Reports Server (NTRS)
Ojalvo, I. U.; Austin, F.; Levy, A.
1974-01-01
An efficient iterative procedure is described for the vibration and modal stress analysis of reusable surface insulation (RSI) of multi-tiled space shuttle panels. The method, which is quite general, is rapidly convergent and highly useful for this application. A user-oriented computer program based upon this procedure and titled RESIST (REusable Surface Insulation Stresses) has been prepared for the analysis of compact, widely spaced, stringer-stiffened panels. RESIST, which uses finite element methods, obtains three dimensional tile stresses in the isolator, arrestor (if any) and RSI materials. Two dimensional stresses are obtained in the tile coating and the stringer-stiffened primary structure plate. A special feature of the program is that all the usual detailed finite element grid data is generated internally from a minimum of input data. The program can accommodate tile idealizations with up to 850 nodes (2550 degrees-of-freedom) and primary structure idealizations with a maximum of 10,000 degrees-of-freedom. The primary structure vibration capability is achieved through the development of a new rapid eigenvalue program named ALARM (Automatic LArge Reduction of Matrices to tridiagonal form).
Characteristics of Reduction Gear in Electric Agricultural Vehicle
NASA Astrophysics Data System (ADS)
Choi, W. S.; Pratama, P. S.; Supeno, D.; Jeong, S. W.; Byun, J. Y.; Woo, J. H.; Lee, E. S.; Park, C. S.
2018-03-01
In electric agricultural machine a reduction gear is needed to convert the high speed rotation motion generated by DC motor to lower speed rotation motion used by the vehicle. The reduction gear consists of several spur gears. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modelling and simulation of spur gears in DC motor reduction gear is important to predict the actual motion behaviour. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of reduction gear is simulated using ANSYS workbench based on finite element method (FEM). The modal analysis was done to understand reduction gear deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on reduction gear to simulate the gear teeth bending stress and contact stress behaviour.
Interactive visualization and analysis of multimodal datasets for surgical applications.
Kirmizibayrak, Can; Yim, Yeny; Wakid, Mike; Hahn, James
2012-12-01
Surgeons use information from multiple sources when making surgical decisions. These include volumetric datasets (such as CT, PET, MRI, and their variants), 2D datasets (such as endoscopic videos), and vector-valued datasets (such as computer simulations). Presenting all the information to the user in an effective manner is a challenging problem. In this paper, we present a visualization approach that displays the information from various sources in a single coherent view. The system allows the user to explore and manipulate volumetric datasets, display analysis of dataset values in local regions, combine 2D and 3D imaging modalities and display results of vector-based computer simulations. Several interaction methods are discussed: in addition to traditional interfaces including mouse and trackers, gesture-based natural interaction methods are shown to control these visualizations with real-time performance. An example of a medical application (medialization laryngoplasty) is presented to demonstrate how the combination of different modalities can be used in a surgical setting with our approach.
Modal element method for scattering of sound by absorbing bodies
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1992-01-01
The modal element method for acoustic scattering from 2-D body is presented. The body may be acoustically soft (absorbing) or hard (reflecting). The infinite computational region is divided into two subdomains - the bounded finite element domain, which is characterized by complicated geometry and/or variable material properties, and the surrounding unbounded homogeneous domain. The acoustic pressure field is represented approximately in the finite element domain by a finite element solution, and is represented analytically by an eigenfunction expansion in the homogeneous domain. The two solutions are coupled by the continuity of pressure and velocity across the interface between the two subdomains. Also, for hard bodies, a compact modal ring grid system is introduced for which computing requirements are drastically reduced. Analysis for 2-D scattering from solid and coated (acoustically treated) bodies is presented, and several simple numerical examples are discussed. In addition, criteria are presented for determining the number of modes to accurately resolve the scattered pressure field from a solid cylinder as a function of the frequency of the incoming wave and the radius of the cylinder.
NASA Astrophysics Data System (ADS)
Liang, Guanghui; Ren, Shangjie; Dong, Feng
2018-07-01
The ultrasound/electrical dual-modality tomography utilizes the complementarity of ultrasound reflection tomography (URT) and electrical impedance tomography (EIT) to improve the speed and accuracy of image reconstruction. Due to its advantages of no-invasive, no-radiation and low-cost, ultrasound/electrical dual-modality tomography has attracted much attention in the field of dual-modality imaging and has many potential applications in industrial and biomedical imaging. However, the data fusion of URT and EIT is difficult due to their different theoretical foundations and measurement principles. The most commonly used data fusion strategy in ultrasound/electrical dual-modality tomography is incorporating the structured information extracted from the URT into the EIT image reconstruction process through a pixel-based constraint. Due to the inherent non-linearity and ill-posedness of EIT, the reconstructed images from the strategy suffer from the low resolution, especially at the boundary of the observed inclusions. To improve this condition, an augmented Lagrangian trust region method is proposed to directly reconstruct the shapes of the inclusions from the ultrasound/electrical dual-modality measurements. In the proposed method, the shape of the target inclusion is parameterized by a radial shape model whose coefficients are used as the shape parameters. Then, the dual-modality shape inversion problem is formulated by an energy minimization problem in which the energy function derived from EIT is constrained by an ultrasound measurements model through an equality constraint equation. Finally, the optimal shape parameters associated with the optimal inclusion shape guesses are determined by minimizing the constrained cost function using the augmented Lagrangian trust region method. To evaluate the proposed method, numerical tests are carried out. Compared with single modality EIT, the proposed dual-modality inclusion boundary reconstruction method has a higher accuracy and is more robust to the measurement noise.
Li, Xiaomeng; Dou, Qi; Chen, Hao; Fu, Chi-Wing; Qi, Xiaojuan; Belavý, Daniel L; Armbrecht, Gabriele; Felsenberg, Dieter; Zheng, Guoyan; Heng, Pheng-Ann
2018-04-01
Intervertebral discs (IVDs) are small joints that lie between adjacent vertebrae. The localization and segmentation of IVDs are important for spine disease diagnosis and measurement quantification. However, manual annotation is time-consuming and error-prone with limited reproducibility, particularly for volumetric data. In this work, our goal is to develop an automatic and accurate method based on fully convolutional networks (FCN) for the localization and segmentation of IVDs from multi-modality 3D MR data. Compared with single modality data, multi-modality MR images provide complementary contextual information, which contributes to better recognition performance. However, how to effectively integrate such multi-modality information to generate accurate segmentation results remains to be further explored. In this paper, we present a novel multi-scale and modality dropout learning framework to locate and segment IVDs from four-modality MR images. First, we design a 3D multi-scale context fully convolutional network, which processes the input data in multiple scales of context and then merges the high-level features to enhance the representation capability of the network for handling the scale variation of anatomical structures. Second, to harness the complementary information from different modalities, we present a random modality voxel dropout strategy which alleviates the co-adaption issue and increases the discriminative capability of the network. Our method achieved the 1st place in the MICCAI challenge on automatic localization and segmentation of IVDs from multi-modality MR images, with a mean segmentation Dice coefficient of 91.2% and a mean localization error of 0.62 mm. We further conduct extensive experiments on the extended dataset to validate our method. We demonstrate that the proposed modality dropout strategy with multi-modality images as contextual information improved the segmentation accuracy significantly. Furthermore, experiments conducted on extended data collected from two different time points demonstrate the efficacy of our method on tracking the morphological changes in a longitudinal study. Copyright © 2018 Elsevier B.V. All rights reserved.
A comparative overview of modal testing and system identification for control of structures
NASA Technical Reports Server (NTRS)
Juang, J.-N.; Pappa, R. S.
1988-01-01
A comparative overview is presented of the disciplines of modal testing used in structural engineering and system identification used in control theory. A list of representative references from both areas is given, and the basic methods are described briefly. Recent progress on the interaction of modal testing and control disciplines is discussed. It is concluded that combined efforts of researchers in both disciplines are required for unification of modal testing and system identification methods for control of flexible structures.
Modal parameter identification using the log decrement method and band-pass filters
NASA Astrophysics Data System (ADS)
Liao, Yabin; Wells, Valana
2011-10-01
This paper presents a time-domain technique for identifying modal parameters of test specimens based on the log-decrement method. For lightly damped multidegree-of-freedom or continuous systems, the conventional method is usually restricted to identification of fundamental-mode parameters only. Implementation of band-pass filters makes it possible for the proposed technique to extract modal information of higher modes. The method has been applied to a polymethyl methacrylate (PMMA) beam for complex modulus identification in the frequency range 10-1100 Hz. Results compare well with those obtained using the Least Squares method, and with those previously published in literature. Then the accuracy of the proposed method has been further verified by experiments performed on a QuietSteel specimen with very low damping. The method is simple and fast. It can be used for a quick estimation of the modal parameters, or as a complementary approach for validation purposes.
Analysis of modal behavior at frequency cross-over
NASA Astrophysics Data System (ADS)
Costa, Robert N., Jr.
1994-11-01
The existence of the mode crossing condition is detected and analyzed in the Active Control of Space Structures Model 4 (ACOSS4). The condition is studied for its contribution to the inability of previous algorithms to successfully optimize the structure and converge to a feasible solution. A new algorithm is developed to detect and correct for mode crossings. The existence of the mode crossing condition is verified in ACOSS4 and found not to have appreciably affected the solution. The structure is then successfully optimized using new analytic methods based on modal expansion. An unrelated error in the optimization algorithm previously used is verified and corrected, thereby equipping the optimization algorithm with a second analytic method for eigenvector differentiation based on Nelson's Method. The second structure is the Control of Flexible Structures (COFS). The COFS structure is successfully reproduced and an initial eigenanalysis completed.
On modal cross-coupling in the asymptotic modal limit
NASA Astrophysics Data System (ADS)
Culver, Dean; Dowell, Earl
2018-03-01
The conditions under which significant modal cross-coupling occurs in dynamical systems responding to high-frequency, broadband forcing that excites many modes is studied. The modal overlap factor plays a key role in the analysis of these systems as the modal density (the ratio of number of modes to the frequency bandwidth) becomes large. The modal overlap factor is effectively the ratio of the width of a resonant peak (the damping ratio times the resonant frequency) to the average frequency interval between resonant peaks (or rather, the inverse of the modal density). It is shown that this parameter largely determines whether substantial modal cross-coupling occurs in a given system's response. Here, two prototypical systems are considered. The first is a simple rectangular plate whose significant modal cross-coupling is the exception rather than the norm. The second is a pair of rectangular plates attached at a point where significant modal cross-coupling is more likely to occur. We show that, for certain cases of modal density and damping, non-negligible cross coupling occurs in both systems. Under similar circumstances, the constraint force between the two plates in the latter system becomes broadband. The implications of this for using Asymptotic Modal Analysis (AMA) in multi-component systems are discussed.
NASA Astrophysics Data System (ADS)
Ni, Yanchun; Lu, Xilin; Lu, Wensheng
2017-03-01
The field non-destructive vibration test plays an important role in the area of structural health monitoring. It assists in monitoring the health status and reducing the risk caused by the poor performance of structures. As the most economic field test among the various vibration tests, the ambient vibration test is the most popular and is widely used to assess the physical condition of a structure under operational service. Based on the ambient vibration data, modal identification can help provide significant previous study for model updating and damage detection during the service life of a structure. It has been proved that modal identification works well in the investigation of the dynamic performance of different kinds of structures. In this paper, the objective structure is a high-rise multi-function office building. The whole building is composed of seven three-story structural units. Each unit comprises one complete floor and two L shaped floors to form large spaces along the vertical direction. There are 56 viscous dampers installed in the building to improve the energy dissipation capacity. Due to the special feature of the structure, field vibration tests and further modal identification were performed to investigate its dynamic performance. Twenty-nine setups were designed to cover all the degrees of freedom of interest. About two years later, another field test was carried out to measure the building for 48 h to investigate the performance variance and the distribution of the modal parameters. A Fast Bayesian FFT method was employed to perform the modal identification. This Bayesian method not only provides the most probable values of the modal parameters but also assesses the associated posterior uncertainty analytically, which is especially relevant in field vibration tests arising due to measurement noise, sensor alignment error, modelling error, etc. A shaking table test was also implemented including cases with and without dampers, which assists in investigating the effect of dampers. The modal parameters obtained from different tests were investigated separately and then compared with each other.
Static, Modal and Buckling Analyses of Automotive Propeller Shaft using Finite Element Methods
NASA Astrophysics Data System (ADS)
Kumar, Mukul; Singh, Nilamber Kumar
2018-03-01
This paper presents a comparative study of static, modal and buckling analyses of aluminium alloys and steel, Al6351, Al7075 and SM45C made automotive propeller shafts using finite element methods. The 3D-model of propeller shaft is created in CATIA and then analysis is done using ANSYS. Natural frequency is determined for six different mode shapes and the critical load at which the propeller shaft starts buckling is compared for dissimilar materials. The stress distribution and unsafe areas are shown for the modification in existing design of the propeller shaft. It is found that the aluminum propeller shaft has higher natural frequency than the steel propeller shaft. Therefore, the resonance stage reaches later in aluminum propeller shaft and enhances its life.
Yoshida, Atsushi; Ueno, Fumiaki; Morizane, Toshio; Joh, Takashi; Kamiya, Takeshi; Takahashi, Shin''ichi; Tokunaga, Kengo; Iwakiri, Ryuichi; Kinoshita, Yoshikazu; Suzuki, Hidekazu; Naito, Yuji; Uchiyama, Kazuhiko; Fukodo, Shin; Chan, Francis K L; Halm, Ki-Baik; Kachintorn, Udom; Fock, Kwong Ming; Rani, Abdul Aziz; Syam, Ari Fahrial; Sollano, Jose D; Zhu, Qi
2017-01-01
Diagnostic and therapeutic strategies in inflammatory bowel disease (IBD) vary among countries in terms of availability of modalities, affordability of health care resource, health care policy and cultural background. This may be the case in different countries in Eastern Asia. The aim of this study was to determine and understand the differences in diagnostic and therapeutic strategies of IBD between Japan and the rest of Asian countries (ROA). Questionnaires with regard to clinical practice in IBD were distributed to members of the International Gastroenterology Consensus Symposium Study Group. The responders were allowed to select multiple items for each question, as multiple modalities are frequently utilized in the diagnosis and the management of IBD. Dependency and independency of selected items for each question were evaluated by the Bayesian network analysis. The selected diagnostic modalities were not very different between Japan and ROA, except for those related to small bowel investigations. Balloon-assisted enteroscopy and small bowel follow through are frequently used in Japan, while CT/MR enterography is popular in ROA. Therapeutic modalities for IBD depend on availability of such modalities in clinical practice. As far as modalities commonly available in both regions are concerned, there seemed to be similarity in the selection of each therapeutic modality. However, evaluation of dependency of separate therapeutic modalities by Bayesian network analysis disclosed some difference in therapeutic strategies between Japan and ROA. Although selected modalities showed some similarity, Bayesian network analysis elicited certain differences in the clinical approaches combining multiple modalities in various aspects of IBD between Japan and ROA. © 2016 S. Karger AG, Basel.
Operational Modal Analysis of Bridge Structures with Data from GNSS/Accelerometer Measurements.
Xiong, Chunbao; Lu, Huali; Zhu, Jinsong
2017-02-23
Real-time dynamic displacement and acceleration responses of the main span section of the Tianjin Fumin Bridge in China under ambient excitation were tested using a Global Navigation Satellite System (GNSS) dynamic deformation monitoring system and an acceleration sensor vibration test system. Considering the close relationship between the GNSS multipath errors and measurement environment in combination with the noise reduction characteristics of different filtering algorithms, the researchers proposed an AFEC mixed filtering algorithm, which is an combination of autocorrelation function-based empirical mode decomposition (EMD) and Chebyshev mixed filtering to extract the real vibration displacement of the bridge structure after system error correction and filtering de-noising of signals collected by the GNSS. The proposed AFEC mixed filtering algorithm had high accuracy (1 mm) of real displacement at the elevation direction. Next, the traditional random decrement technique (used mainly for stationary random processes) was expanded to non-stationary random processes. Combining the expanded random decrement technique (RDT) and autoregressive moving average model (ARMA), the modal frequency of the bridge structural system was extracted using an expanded ARMA_RDT modal identification method, which was compared with the power spectrum analysis results of the acceleration signal and finite element analysis results. Identification results demonstrated that the proposed algorithm is applicable to analyze the dynamic displacement monitoring data of real bridge structures under ambient excitation and could identify the first five orders of the inherent frequencies of the structural system accurately. The identification error of the inherent frequency was smaller than 6%, indicating the high identification accuracy of the proposed algorithm. Furthermore, the GNSS dynamic deformation monitoring method can be used to monitor dynamic displacement and identify the modal parameters of bridge structures. The GNSS can monitor the working state of bridges effectively and accurately. Research results can provide references to evaluate the bearing capacity, safety performance, and durability of bridge structures during operation.
Operational Modal Analysis of Bridge Structures with Data from GNSS/Accelerometer Measurements
Xiong, Chunbao; Lu, Huali; Zhu, Jinsong
2017-01-01
Real-time dynamic displacement and acceleration responses of the main span section of the Tianjin Fumin Bridge in China under ambient excitation were tested using a Global Navigation Satellite System (GNSS) dynamic deformation monitoring system and an acceleration sensor vibration test system. Considering the close relationship between the GNSS multipath errors and measurement environment in combination with the noise reduction characteristics of different filtering algorithms, the researchers proposed an AFEC mixed filtering algorithm, which is an combination of autocorrelation function-based empirical mode decomposition (EMD) and Chebyshev mixed filtering to extract the real vibration displacement of the bridge structure after system error correction and filtering de-noising of signals collected by the GNSS. The proposed AFEC mixed filtering algorithm had high accuracy (1 mm) of real displacement at the elevation direction. Next, the traditional random decrement technique (used mainly for stationary random processes) was expanded to non-stationary random processes. Combining the expanded random decrement technique (RDT) and autoregressive moving average model (ARMA), the modal frequency of the bridge structural system was extracted using an expanded ARMA_RDT modal identification method, which was compared with the power spectrum analysis results of the acceleration signal and finite element analysis results. Identification results demonstrated that the proposed algorithm is applicable to analyze the dynamic displacement monitoring data of real bridge structures under ambient excitation and could identify the first five orders of the inherent frequencies of the structural system accurately. The identification error of the inherent frequency was smaller than 6%, indicating the high identification accuracy of the proposed algorithm. Furthermore, the GNSS dynamic deformation monitoring method can be used to monitor dynamic displacement and identify the modal parameters of bridge structures. The GNSS can monitor the working state of bridges effectively and accurately. Research results can provide references to evaluate the bearing capacity, safety performance, and durability of bridge structures during operation. PMID:28241472
Breast Angiosarcoma: Case Series and Expression of Vascular Endothelial Growth Factor
Brar, Rondeep; West, Robert; Witten, Daniela; Raman, Bhargav; Jacobs, Charlotte; Ganjoo, Kristen
2009-01-01
Purpose Angiosarcoma of the breast is a rare, malignant tumor for which little is known regarding prognostic indicators and optimal therapeutic regimens. To address this issue, we performed a retrospective analysis of breast angiosarcoma cases seen at Stanford University along with immunohistochemical analysis for markers of angiogenesis. Methods Breast angiosarcoma cases seen between 1980 and 2008 were examined. Viable tissue blocks were analyzed for expression of vascular endothelial growth factor and its receptors. Results A total of 16 cases were identified. Data was collected regarding epidemiology, treatment, response rates, disease-free survival, and the use of various imaging modalities. Five tissue blocks remained viable for immunohistochemical analysis. Vascular endothelial growth factor-A was positively expressed in 3 of these samples. Conclusion Angiosarcoma of the breast is an aggressive malignancy with a propensity for both local recurrence and distant metastases. Angiogenesis inhibition may represent a novel therapeutic modality in this rare, vascular malignancy. PMID:20737044
NASA Astrophysics Data System (ADS)
Irwandi; Rusydy, Ibnu; Muksin, Umar; Rudyanto, Ariska; Daryono
2018-05-01
Wave vibration confined in the boundary will produce stationary wave solution in discrete states called modes. There are many physics applications related to modal solutions such as air column resonance, string vibration, and emission spectrum of the atomic Hydrogen. Naturally, energy is distributed in several modes so that the complete calculation is obtained from the sum of the whole modes called modal summation. The modal summation technique was applied to simulate the surface wave propagation above crustal structure of the earth. The method is computational because it uses 1D structural model which is not necessary to calculate the overall wave propagation. The simulation results of the magnitude 6.5 Pidie Jaya earthquake show the response spectral of the Summation Technique has a good correlation to the observed seismometer and accelerometer waveform data, especially at the KCSI (Kotacane) station. On the other hand, at the LASI (Langsa) station shows the modal simulation result of response is relatively lower than observation. The lower value of the reaction spectral estimation is obtained because the station is located in the thick sedimentary basin causing the amplification effect. This is the limitation of modal summation technique, and therefore it should be combined with different finite simulation on the 2D local structural model of the basin.
Jacob, Michelle M.; Gonzales, Kelly L.; Calhoun, Darren; Beals, Janette; Muller, Clemma Jacobsen; Goldberg, Jack; Nelson, Lonnie; Welty, Thomas K.; Howard, Barbara V.
2013-01-01
Aims The aims of this paper are to examine the relationship between psychological trauma symptoms and Type 2 diabetes prevalence, glucose control, and treatment modality among 3,776 American Indians in Phase V of the Strong Heart Family Study. Methods This cross-sectional analysis measured psychological trauma symptoms using the National Anxiety Disorder Screening Day instrument, diabetes by American Diabetes Association criteria, and treatment modality by four categories: no medication, oral medication only, insulin only, or both oral medication and insulin. We used binary logistic regression to evaluate the association between psychological trauma symptoms and diabetes prevalence. We used ordinary least squares regression to evaluate the association between psychological trauma symptoms and glucose control. We used binary logistic regression to model the association of psychological trauma symptoms with treatment modality. Results Neither diabetes prevalence (22-31%; p = 0.19) nor control (8.0-8.6; p = 0.25) varied significantly by psychological trauma symptoms categories. However, diabetes treatment modality was associated with psychological trauma symptoms categories, as people with greater burden used either no medication, or both oral and insulin medications (odds ratio = 3.1, p < 0.001). Conclusions The positive relationship between treatment modality and psychological trauma symptoms suggests future research investigate patient and provider treatment decision making. PMID:24051029
Modal Test/Analysis Correlation of Space Station Structures Using Nonlinear Sensitivity
NASA Technical Reports Server (NTRS)
Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan
1992-01-01
The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlation. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.
Modal test/analysis correlation of Space Station structures using nonlinear sensitivity
NASA Technical Reports Server (NTRS)
Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan
1992-01-01
The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlations. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.
Wee, Leonard; Hackett, Sara Lyons; Jones, Andrew; Lim, Tee Sin; Harper, Christopher Stirling
2013-01-01
This study evaluated the agreement of fiducial marker localization between two modalities — an electronic portal imaging device (EPID) and cone‐beam computed tomography (CBCT) — using a low‐dose, half‐rotation scanning protocol. Twenty‐five prostate cancer patients with implanted fiducial markers were enrolled. Before each daily treatment, EPID and half‐rotation CBCT images were acquired. Translational shifts were computed for each modality and two marker‐matching algorithms, seed‐chamfer and grey‐value, were performed for each set of CBCT images. The localization offsets, and systematic and random errors from both modalities were computed. Localization performances for both modalities were compared using Bland‐Altman limits of agreement (LoA) analysis, Deming regression analysis, and Cohen's kappa inter‐rater analysis. The differences in the systematic and random errors between the modalities were within 0.2 mm in all directions. The LoA analysis revealed a 95% agreement limit of the modalities of 2 to 3.5 mm in any given translational direction. Deming regression analysis demonstrated that constant biases existed in the shifts computed by the modalities in the superior–inferior (SI) direction, but no significant proportional biases were identified in any direction. Cohen's kappa analysis showed good agreement between the modalities in prescribing translational corrections of the couch at 3 and 5 mm action levels. Images obtained from EPID and half‐rotation CBCT showed acceptable agreement for registration of fiducial markers. The seed‐chamfer algorithm for tracking of fiducial markers in CBCT datasets yielded better agreement than the grey‐value matching algorithm with EPID‐based registration. PACS numbers: 87.55.km, 87.55.Qr PMID:23835391
Dynamic modal estimation using instrumental variables
NASA Technical Reports Server (NTRS)
Salzwedel, H.
1980-01-01
A method to determine the modes of dynamical systems is described. The inputs and outputs of a system are Fourier transformed and averaged to reduce the error level. An instrumental variable method that estimates modal parameters from multiple correlations between responses of single input, multiple output systems is applied to estimate aircraft, spacecraft, and off-shore platform modal parameters.
Manifold Regularized Multitask Feature Learning for Multimodality Disease Classification
Jie, Biao; Zhang, Daoqiang; Cheng, Bo; Shen, Dinggang
2015-01-01
Multimodality based methods have shown great advantages in classification of Alzheimer’s disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature selection methods are typically used for joint selection of common features across multiple modalities. However, one disadvantage of existing multimodality based methods is that they ignore the useful data distribution information in each modality, which is essential for subsequent classification. Accordingly, in this paper we propose a manifold regularized multitask feature learning method to preserve both the intrinsic relatedness among multiple modalities of data and the data distribution information in each modality. Specifically, we denote the feature learning on each modality as a single task, and use group-sparsity regularizer to capture the intrinsic relatedness among multiple tasks (i.e., modalities) and jointly select the common features from multiple tasks. Furthermore, we introduce a new manifold-based Laplacian regularizer to preserve the data distribution information from each task. Finally, we use the multikernel support vector machine method to fuse multimodality data for eventual classification. Conversely, we also extend our method to the semisupervised setting, where only partial data are labeled. We evaluate our method using the baseline magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET), and cerebrospinal fluid (CSF) data of subjects from AD neuroimaging initiative database. The experimental results demonstrate that our proposed method can not only achieve improved classification performance, but also help to discover the disease-related brain regions useful for disease diagnosis. PMID:25277605
On the mechanism of bandgap formation in locally resonant finite elastic metamaterials
NASA Astrophysics Data System (ADS)
Sugino, Christopher; Leadenham, Stephen; Ruzzene, Massimo; Erturk, Alper
2016-10-01
Elastic/acoustic metamaterials made from locally resonant arrays can exhibit bandgaps at wavelengths much longer than the lattice size for various applications spanning from low-frequency vibration/sound attenuation to wave guiding and filtering in mechanical and electromechanical devices. For an effective use of such locally resonant metamaterial concepts in finite structures, it is required to bridge the gap between the lattice dispersion characteristics and modal behavior of the host structure with its resonators. To this end, we develop a novel argument for bandgap formation in finite-length elastic metamaterial beams, relying on the modal analysis and the assumption of infinitely many resonators. We show that the dual problem to wave propagation through an infinite periodic beam is the modal analysis of a finite beam with an infinite number of resonators. A simple formula that depends only on the resonator natural frequency and total mass ratio is derived for placing the bandgap in a desired frequency range, yielding an analytical insight and a rule of thumb for design purposes. A method for understanding the importance of a resonator location and mass is discussed in the context of a Riemann sum approximation of an integral, and a method for determining the optimal number of resonators for a given set of boundary conditions and target frequency is introduced. The simulations of the theoretical framework are validated by experiments for bending vibrations of a locally resonant cantilever beam.
MRMC analysis of agreement studies
NASA Astrophysics Data System (ADS)
Gallas, Brandon D.; Anam, Amrita; Chen, Weijie; Wunderlich, Adam; Zhang, Zhiwei
2016-03-01
The purpose of this work is to present and evaluate methods based on U-statistics to compare intra- or inter-reader agreement across different imaging modalities. We apply these methods to multi-reader multi-case (MRMC) studies. We measure reader-averaged agreement and estimate its variance accounting for the variability from readers and cases (an MRMC analysis). In our application, pathologists (readers) evaluate patient tissue mounted on glass slides (cases) in two ways. They evaluate the slides on a microscope (reference modality) and they evaluate digital scans of the slides on a computer display (new modality). In the current work, we consider concordance as the agreement measure, but many of the concepts outlined here apply to other agreement measures. Concordance is the probability that two readers rank two cases in the same order. Concordance can be estimated with a U-statistic and thus it has some nice properties: it is unbiased, asymptotically normal, and its variance is given by an explicit formula. Another property of a U-statistic is that it is symmetric in its inputs; it doesn't matter which reader is listed first or which case is listed first, the result is the same. Using this property and a few tricks while building the U-statistic kernel for concordance, we get a mathematically tractable problem and efficient software. Simulations show that our variance and covariance estimates are unbiased.
Braided artificial muscles: modeling and experimental validation
NASA Astrophysics Data System (ADS)
Dragan, Liliana; Cioban, Horia
2009-01-01
The paper presents a few graphical modalities for constructing the double helical braid, which is the basis for the braided artificial pneumatic muscles, by using specialized software applications. This represents the first stage in achieving the method of finite element analysis of this type of linear pneumatic actuator.
Polynomial modal analysis of slanted lamellar gratings.
Granet, Gérard; Randriamihaja, Manjakavola Honore; Raniriharinosy, Karyl
2017-06-01
The problem of diffraction by slanted lamellar dielectric and metallic gratings in classical mounting is formulated as an eigenvalue eigenvector problem. The numerical solution is obtained by using the moment method with Legendre polynomials as expansion and test functions, which allows us to enforce in an exact manner the boundary conditions which determine the eigensolutions. Our method is successfully validated by comparison with other methods including in the case of highly slanted gratings.
Kessler, Daniel; Angstadt, Michael; Welsh, Robert C.
2014-01-01
Previous neuroimaging investigations in attention-deficit/hyperactivity disorder (ADHD) have separately identified distributed structural and functional deficits, but interconnections between these deficits have not been explored. To unite these modalities in a common model, we used joint independent component analysis, a multivariate, multimodal method that identifies cohesive components that span modalities. Based on recent network models of ADHD, we hypothesized that altered relationships between large-scale networks, in particular, default mode network (DMN) and task-positive networks (TPNs), would co-occur with structural abnormalities in cognitive regulation regions. For 756 human participants in the ADHD-200 sample, we produced gray and white matter volume maps with voxel-based morphometry, as well as whole-brain functional connectomes. Joint independent component analysis was performed, and the resulting transmodal components were tested for differential expression in ADHD versus healthy controls. Four components showed greater expression in ADHD. Consistent with our a priori hypothesis, we observed reduced DMN-TPN segregation co-occurring with structural abnormalities in dorsolateral prefrontal cortex and anterior cingulate cortex, two important cognitive control regions. We also observed altered intranetwork connectivity in DMN, dorsal attention network, and visual network, with co-occurring distributed structural deficits. There was strong evidence of spatial correspondence across modalities: For all four components, the impact of the respective component on gray matter at a region strongly predicted the impact on functional connectivity at that region. Overall, our results demonstrate that ADHD involves multiple, cohesive modality spanning deficits, each one of which exhibits strong spatial overlap in the pattern of structural and functional alterations. PMID:25505309
Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis.
Liu, Manhua; Cheng, Danni; Wang, Kundong; Wang, Yaping
2018-03-23
Accurate and early diagnosis of Alzheimer's disease (AD) plays important role for patient care and development of future treatment. Structural and functional neuroimages, such as magnetic resonance images (MRI) and positron emission tomography (PET), are providing powerful imaging modalities to help understand the anatomical and functional neural changes related to AD. In recent years, machine learning methods have been widely studied on analysis of multi-modality neuroimages for quantitative evaluation and computer-aided-diagnosis (CAD) of AD. Most existing methods extract the hand-craft imaging features after image preprocessing such as registration and segmentation, and then train a classifier to distinguish AD subjects from other groups. This paper proposes to construct cascaded convolutional neural networks (CNNs) to learn the multi-level and multimodal features of MRI and PET brain images for AD classification. First, multiple deep 3D-CNNs are constructed on different local image patches to transform the local brain image into more compact high-level features. Then, an upper high-level 2D-CNN followed by softmax layer is cascaded to ensemble the high-level features learned from the multi-modality and generate the latent multimodal correlation features of the corresponding image patches for classification task. Finally, these learned features are combined by a fully connected layer followed by softmax layer for AD classification. The proposed method can automatically learn the generic multi-level and multimodal features from multiple imaging modalities for classification, which are robust to the scale and rotation variations to some extent. No image segmentation and rigid registration are required in pre-processing the brain images. Our method is evaluated on the baseline MRI and PET images of 397 subjects including 93 AD patients, 204 mild cognitive impairment (MCI, 76 pMCI +128 sMCI) and 100 normal controls (NC) from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves an accuracy of 93.26% for classification of AD vs. NC and 82.95% for classification pMCI vs. NC, demonstrating the promising classification performance.
Valcarcel, Alessandra M; Linn, Kristin A; Vandekar, Simon N; Satterthwaite, Theodore D; Muschelli, John; Calabresi, Peter A; Pham, Dzung L; Martin, Melissa Lynne; Shinohara, Russell T
2018-03-08
Magnetic resonance imaging (MRI) is crucial for in vivo detection and characterization of white matter lesions (WMLs) in multiple sclerosis. While WMLs have been studied for over two decades using MRI, automated segmentation remains challenging. Although the majority of statistical techniques for the automated segmentation of WMLs are based on single imaging modalities, recent advances have used multimodal techniques for identifying WMLs. Complementary modalities emphasize different tissue properties, which help identify interrelated features of lesions. Method for Inter-Modal Segmentation Analysis (MIMoSA), a fully automatic lesion segmentation algorithm that utilizes novel covariance features from intermodal coupling regression in addition to mean structure to model the probability lesion is contained in each voxel, is proposed. MIMoSA was validated by comparison with both expert manual and other automated segmentation methods in two datasets. The first included 98 subjects imaged at Johns Hopkins Hospital in which bootstrap cross-validation was used to compare the performance of MIMoSA against OASIS and LesionTOADS, two popular automatic segmentation approaches. For a secondary validation, a publicly available data from a segmentation challenge were used for performance benchmarking. In the Johns Hopkins study, MIMoSA yielded average Sørensen-Dice coefficient (DSC) of .57 and partial AUC of .68 calculated with false positive rates up to 1%. This was superior to performance using OASIS and LesionTOADS. The proposed method also performed competitively in the segmentation challenge dataset. MIMoSA resulted in statistically significant improvements in lesion segmentation performance compared with LesionTOADS and OASIS, and performed competitively in an additional validation study. Copyright © 2018 by the American Society of Neuroimaging.
Operational modal analysis using SVD of power spectral density transmissibility matrices
NASA Astrophysics Data System (ADS)
Araújo, Iván Gómez; Laier, Jose Elias
2014-05-01
This paper proposes the singular value decomposition of power spectrum density transmissibility matrices with different references, (PSDTM-SVD), as an identification method of natural frequencies and mode shapes of a dynamic system subjected to excitations under operational conditions. At the system poles, the rows of the proposed transmissibility matrix converge to the same ratio of amplitudes of vibration modes. As a result, the matrices are linearly dependent on the columns, and their singular values converge to zero. Singular values are used to determine the natural frequencies, and the first left singular vectors are used to estimate mode shapes. A numerical example of the finite element model of a beam subjected to colored noise excitation is analyzed to illustrate the accuracy of the proposed method. Results of the PSDTM-SVD method in the numerical example are compared with obtained using frequency domain decomposition (FDD) and power spectrum density transmissibility (PSDT). It is demonstrated that the proposed method does not depend on the excitation characteristics contrary to the FDD method that assumes white noise excitation, and further reduces the risk to identify extra non-physical poles in comparison to the PSDT method. Furthermore, a case study is performed using data from an operational vibration test of a bridge with a simply supported beam system. The real application of a full-sized bridge has shown that the proposed PSDTM-SVD method is able to identify the operational modal parameter. Operational modal parameters identified by the PSDTM-SVD in the real application agree well those identified by the FDD and PSDT methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zauls, A. Jason, E-mail: zauls@musc.edu; Watkins, John M.; Wahlquist, Amy E.
Purpose: The American Society for Radiation Oncology published a Consensus Statement for accelerated partial breast irradiation identifying three groups: Suitable, Cautionary, and Unsuitable. The objective of this study was to compare oncologic outcomes in women treated with MammoSite brachytherapy (MB) vs. whole breast irradiation (WBI) after stratification into Statement groups. Methods: Eligible women had invasive carcinoma or ductal carcinoma in situ (DCIS) {<=}3 cm, and {<=}3 lymph nodes positive. Women were stratified by radiation modality and Statement groups. Survival analysis methods including Kaplan-Meier estimation, Cox regression, and competing risks analysis were used to assess overall survival (OS), disease-free survival (DFS),more » time to local failure (TTLF), and tumor bed failure (TBF). Results: A total of 459 (183 MB and 276 WBI) patients were treated from 2002 to 2009. After a median follow-up of 45 months, we found no statistical differences by stratification group or radiation modality with regard to OS and DFS. At 4 years TTLF or TBF were not statistically different between the cohorts. Univariate analysis in the MB cohort revealed that nodal positivity (pN1 vs. pN0) was related to TTLF (hazard ratio 6.39, p = 0.02). There was a suggestion that DCIS histology had an increased risk of failure when compared with invasive ductal carcinoma (hazard ratio 3.57, p = 0.06). Conclusions: MB and WBI patients stratified by Statement groups seem to combine women who will have similar outcomes regardless of radiation modality. Although outcomes were similar, we remain guarded in overinterpretation of these preliminary results until further analysis and long-term follow-up data become available. Caution should be used in treating women with DCIS or pN1 disease with MB.« less
VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.
Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro
2016-01-01
In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the estimation of advanced regional association metrics at the voxel level.
Multimodal Classification of Alzheimer’s Disease and Mild Cognitive Impairment
Zhang, Daoqiang; Wang, Yaping; Zhou, Luping; Yuan, Hong; Shen, Dinggang
2011-01-01
Effective and accurate diagnosis of Alzheimer’s disease (AD), as well as its prodromal stage (i.e., mild cognitive impairment (MCI)), has attracted more and more attentions recently. So far, multiple biomarkers have been shown sensitive to the diagnosis of AD and MCI, i.e., structural MR imaging (MRI) for brain atrophy measurement, functional imaging (e.g., FDG-PET) for hypometabolism quantification, and cerebrospinal fluid (CSF) for quantification of specific proteins. However, most existing research focuses on only a single modality of biomarkers for diagnosis of AD and MCI, although recent studies have shown that different biomarkers may provide complementary information for diagnosis of AD and MCI. In this paper, we propose to combine three modalities of biomarkers, i.e., MRI, FDG-PET, and CSF biomarkers, to discriminate between AD (or MCI) and healthy controls, using a kernel combination method. Specifically, ADNI baseline MRI, FDG-PET, and CSF data from 51 AD patients, 99 MCI patients (including 43 MCI converters who had converted to AD within 18 months and 56 MCI non-converters who had not converted to AD within 18 months), and 52 healthy controls are used for development and validation of our proposed multimodal classification method. In particular, for each MR or FDG-PET image, 93 volumetric features are extracted from the 93 regions of interest (ROIs), automatically labeled by an atlas warping algorithm. For CSF biomarkers, their original values are directly used as features. Then, a linear support vector machine (SVM) is adopted to evaluate the classification accuracy, using a 10-fold cross-validation. As a result, for classifying AD from healthy controls, we achieve a classification accuracy of 93.2% (with a sensitivity of 93% and a specificity of 93.3%) when combining all three modalities of biomarkers, and only 86.5% when using even the best individual modality of biomarkers. Similarly, for classifying MCI from healthy controls, we achieve a classification accuracy of 76.4% (with a sensitivity of 81.8% and a specificity of 66%) for our combined method, and only 72% even using the best individual modality of biomarkers. Further analysis on MCI sensitivity of our combined method indicates that 91.5% of MCI converters and 73.4% of MCI non-converters are correctly classified. Moreover, we also evaluate the classification performance when employing a feature selection method to select the most discriminative MR and FDG-PET features. Again, our combined method shows considerably better performance, compared to the case of using an individual modality of biomarkers. PMID:21236349
Zu, Chen; Jie, Biao; Liu, Mingxia; Chen, Songcan
2015-01-01
Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional single-modality-based ones for diagnosis and prognosis of Alzheimer’s disease (AD), as well as its prodromal stage, i.e., mild cognitive impairment (MCI). However, to the best of our knowledge, most existing methods focus on mining the relationship across multiple modalities of the same subjects, while ignoring the potentially useful relationship across different subjects. Accordingly, in this paper, we propose a novel learning method for multimodal classification of AD/MCI, by fully exploring the relationships across both modalities and subjects. Specifically, our proposed method includes two subsequent components, i.e., label-aligned multi-task feature selection and multimodal classification. In the first step, the feature selection learning from multiple modalities are treated as different learning tasks and a group sparsity regularizer is imposed to jointly select a subset of relevant features. Furthermore, to utilize the discriminative information among labeled subjects, a new label-aligned regularization term is added into the objective function of standard multi-task feature selection, where label-alignment means that all multi-modality subjects with the same class labels should be closer in the new feature-reduced space. In the second step, a multi-kernel support vector machine (SVM) is adopted to fuse the selected features from multi-modality data for final classification. To validate our method, we perform experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using baseline MRI and FDG-PET imaging data. The experimental results demonstrate that our proposed method achieves better classification performance compared with several state-of-the-art methods for multimodal classification of AD/MCI. PMID:26572145
Bailey, E A; Dutton, A W; Mattingly, M; Devasia, S; Roemer, R B
1998-01-01
Reduced-order modelling techniques can make important contributions in the control and state estimation of large systems. In hyperthermia, reduced-order modelling can provide a useful tool by which a large thermal model can be reduced to the most significant subset of its full-order modes, making real-time control and estimation possible. Two such reduction methods, one based on modal decomposition and the other on balanced realization, are compared in the context of simulated hyperthermia heat transfer problems. The results show that the modal decomposition reduction method has three significant advantages over that of balanced realization. First, modal decomposition reduced models result in less error, when compared to the full-order model, than balanced realization reduced models of similar order in problems with low or moderate advective heat transfer. Second, because the balanced realization based methods require a priori knowledge of the sensor and actuator placements, the reduced-order model is not robust to changes in sensor or actuator locations, a limitation not present in modal decomposition. Third, the modal decomposition transformation is less demanding computationally. On the other hand, in thermal problems dominated by advective heat transfer, numerical instabilities make modal decomposition based reduction problematic. Modal decomposition methods are therefore recommended for reduction of models in which advection is not dominant and research continues into methods to render balanced realization based reduction more suitable for real-time clinical hyperthermia control and estimation.
Uncertain Photometric Redshifts with Deep Learning Methods
NASA Astrophysics Data System (ADS)
D'Isanto, A.
2017-06-01
The need for accurate photometric redshifts estimation is a topic that has fundamental importance in Astronomy, due to the necessity of efficiently obtaining redshift information without the need of spectroscopic analysis. We propose a method for determining accurate multi-modal photo-z probability density functions (PDFs) using Mixture Density Networks (MDN) and Deep Convolutional Networks (DCN). A comparison with a Random Forest (RF) is performed.
NASA Technical Reports Server (NTRS)
Davis, R. B.; Stephens, M. V.
1974-01-01
An approximate method for calculating the longitudinal and torsional natural frequencies and associated modal data of a beamlike, variable cross section multibranch structure is presented. The procedure described is the numerical integration of the first order differential equations that characterize the beam element in longitudinal motion and that satisfy the appropriate boundary conditions.
Vibration Analysis Of Automotive Structures Using Holographic Interferometry
NASA Astrophysics Data System (ADS)
Brown, G. M.; Wales, R. R.
1983-10-01
Since 1979, Ford Motor Company has been developing holographic interferometry to supplement more conventional test methods to measure vehicle component vibrations. An Apollo PHK-1 Double Pulse Holographic Laser System was employed to visualize a variety of complex vibration modes, primarily on current production and prototype powertrain components. Design improvements to reduce powertrain response to problem excitations have been deter-mined through pulsed laser holography, and have, in several cases, been put into production in Ford vehicles. Whole-field definition of vibration related deflections provide continuity of information missed by accelerometer/modal analysis techniaues. Certain opera-tional problems, common among pulsed ruby holographic lasers, have reauired ongoing hardware and electronics improvements to minimize system downtime. Real-time, time-averaged and stroboscopic C. W. laser holographic techniques are being developed at Ford to complement the double pulse capabilities and provide rapid identification of modal frequencies and nodal lines for analysis of powertrain structures. Methods for mounting and exciting powertrains to minimize rigid body motions are discussed. Work at Ford will continue toward development of C. W. holographic techniques to provide refined test methodology dedicated to noise and vibration diagnostics with particular emphasis on semi-automated methods for quantifying displacement and relative phase using high resolution digitized video and computers. Continued use of refined pulsed and CW laser holographic interferometry for the analysis of complex structure vibrations seems assured.
The Shock and Vibration Digest. Volume 16, Number 4
1984-04-01
The 2nd International Modal Analysis Conference, which was held in Orlando, Florida, this past February, was highly successful in all respects. A...announcement of the formation of a new technical society dedicated to advancing the modal analysis technology, the International Society for Modal Testing and... Analysis . This new society is I unique in two respects. First, it is dedicated to a specific branch of a specialized technical field..Second, it is a
Modal Analysis and Testing of Missile Systems
1988-12-01
TECHNICAL REPORT -Rb-ST-eS MODAL ANALY AND TESMG OF MISSU E SYSTEMS Lfl 0 N Larry C. Mixon John A4 Schaeffel , Jr. Peter L. Green ,I iLT Roque L...Include Stcurty Claz ficaDin) MODAL ANALYSIS AND TESTING OF MISSILE SYSTEMS 12. PERSONAL AUTHOR(S) Larry C. Mixon, John A. Schaeffel , Jr., Peter L. Green
Research on natural frequency based on modal test for high speed vehicles
NASA Astrophysics Data System (ADS)
Ma, Guangsong; He, Guanglin; Guo, Yachao
2018-04-01
High speed vehicle as a vibration system, resonance generated in flight may be harmful to high speed vehicles. It is possible to solve the resonance problem by acquiring the natural frequency of the high-speed aircraft and then taking some measures to avoid the natural frequency of the high speed vehicle. Therefore, In this paper, the modal test of the high speed vehicle was carried out by using the running hammer method and the PolyMAX modal parameter identification method. Firstly, the total frequency response function, coherence function of the high speed vehicle are obtained by the running hammer stimulation test, and through the modal assurance criterion (MAC) to determine the accuracy of the estimated parameters. Secondly, the first three order frequencies, the pole steady state diagram of the high speed vehicles is obtained by the PolyMAX modal parameter identification method. At last, the natural frequency of the vibration system was accurately obtained by the running hammer method.
NASA Astrophysics Data System (ADS)
Ozer, Ekin; Feng, Dongming; Feng, Maria Q.
2017-10-01
State-of-the-art multisensory technologies and heterogeneous sensor networks propose a wide range of response measurement opportunities for structural health monitoring (SHM). Measuring and fusing different physical quantities in terms of structural vibrations can provide alternative acquisition methods and improve the quality of the modal testing results. In this study, a recently introduced SHM concept, SHM with smartphones, is focused to utilize multisensory smartphone features for a hybridized structural vibration response measurement framework. Based on vibration testing of a small-scale multistory laboratory model, displacement and acceleration responses are monitored using two different smartphone sensors, an embedded camera and accelerometer, respectively. Double-integration or differentiation among different measurement types is performed to combine multisensory measurements on a comparative basis. In addition, distributed sensor signals from collocated devices are processed for modal identification, and performance of smartphone-based sensing platforms are tested under different configuration scenarios and heterogeneity levels. The results of these tests show a novel and successful implementation of a hybrid motion sensing platform through multiple sensor type and device integration. Despite the heterogeneity of motion data obtained from different smartphone devices and technologies, it is shown that multisensory response measurements can be blended for experimental modal analysis. Getting benefit from the accessibility of smartphone technology, similar smartphone-based dynamic testing methodologies can provide innovative SHM solutions with mobile, programmable, and cost-free interfaces.
Eigenvectors phase correction in inverse modal problem
NASA Astrophysics Data System (ADS)
Qiao, Guandong; Rahmatalla, Salam
2017-12-01
The solution of the inverse modal problem for the spatial parameters of mechanical and structural systems is heavily dependent on the quality of the modal parameters obtained from the experiments. While experimental and environmental noises will always exist during modal testing, the resulting modal parameters are expected to be corrupted with different levels of noise. A novel methodology is presented in this work to mitigate the errors in the eigenvectors when solving the inverse modal problem for the spatial parameters. The phases of the eigenvector component were utilized as design variables within an optimization problem that minimizes the difference between the calculated and experimental transfer functions. The equation of motion in terms of the modal and spatial parameters was used as a constraint in the optimization problem. Constraints that reserve the positive and semi-positive definiteness and the inter-connectivity of the spatial matrices were implemented using semi-definite programming. Numerical examples utilizing noisy eigenvectors with augmented Gaussian white noise of 1%, 5%, and 10% were used to demonstrate the efficacy of the proposed method. The results showed that the proposed method is superior when compared with a known method in the literature.
NASA Astrophysics Data System (ADS)
Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost
2003-01-01
This paper presents the development of a human brain multimedia database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted MRI and FLAIR MRI and ictal and interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication pretty much fits with the surgeons" expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.
Numerical study on air-structure coupling dynamic characteristics of the axial fan blade
NASA Astrophysics Data System (ADS)
Chen, Q. G.; Xie, B.; Li, F.; Gu, W. G.
2013-12-01
In order to understand the dynamic characteristics of the axial-flow fan blade due to the effect of rotating stress and the action of unsteady aerodynamic forces caused by the airflow, a numerical simulation method for air-structure coupling in an axial-flow fan with fixed rear guide blades was performed. The dynamic characteristics of an axial-flow fan rotating blade were studied by using the two-way air-structure coupling method. Based on the standard k-ε turbulence model, and using weak coupling method, the preceding six orders modal parameters of the rotating blade were obtained, and the distributions of stress and strain on the rotating blade were presented. The results show that the modal frequency from the first to the sixth order is 3Hz higher than the modal frequency without considering air-structure coupling interaction; the maximum stress and the maximum strain are all occurred in the vicinity of root area of the blade no matter the air-structure coupling is considered or not, thus, the blade root is the dangerous location subjected to fatigue break; the position of maximum deformation is at the blade tip, so the vibration of the blade tip is significant. This study can provide theoretical references for the further study on the strength analysis and mechanical optimal design.
NASA Astrophysics Data System (ADS)
Brewick, P. T.; Smyth, A. W.
2014-12-01
The accurate and reliable estimation of modal damping from output-only vibration measurements of structural systems is a continuing challenge in the fields of operational modal analysis (OMA) and system identification. In this paper a modified version of the blind source separation (BSS)-based Second-Order Blind Identification (SOBI) method was used to perform modal damping identification on a model bridge structure under varying loading conditions. The bridge model was created with finite elements and consisted of a series of stringer beams supported by a larger girder. The excitation was separated into two categories: ambient noise and traffic loads with noise modeled with random forcing vectors and traffic simulated with moving loads for cars and partially distributed moving masses for trains. The acceleration responses were treated as the mixed output signals for the BSS algorithm. The modified SOBI method used a windowing technique to maximize the amount of information used for blind identification from the responses. The modified SOBI method successfully found the mode shapes for both types of excitation with strong accuracy, but power spectral densities (PSDs) of the recovered modal responses showed signs of distortion for the traffic simulations. The distortion had an adverse affect on the damping ratio estimates for some of the modes but no correlation could be found between the accuracy of the damping estimates and the accuracy of the recovered mode shapes. The responses and their PSDs were compared to real-world collected data and patterns similar to distortion were observed implying that this issue likely affects real-world estimates.
NASA Technical Reports Server (NTRS)
Pickett, G. F.; Wells, R. A.; Love, R. A.
1977-01-01
A computer user's manual describing the operation and the essential features of the Modal Calculation Program is presented. The modal Calculation Program calculates the amplitude and phase of modal structures by means of acoustic pressure measurements obtained from microphones placed at selected locations within the fan inlet duct. In addition, the Modal Calculation Program also calculates the first-order errors in the modal coefficients that are due to tolerances in microphone location coordinates and inaccuracies in the acoustic pressure measurements.
Adaptive Modal Identification for Flutter Suppression Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Drew, Michael; Swei, Sean S.
2016-01-01
In this paper, we will develop an adaptive modal identification method for identifying the frequencies and damping of a flutter mode based on model-reference adaptive control (MRAC) and least-squares methods. The least-squares parameter estimation will achieve parameter convergence in the presence of persistent excitation whereas the MRAC parameter estimation does not guarantee parameter convergence. Two adaptive flutter suppression control approaches are developed: one based on MRAC and the other based on the least-squares method. The MRAC flutter suppression control is designed as an integral part of the parameter estimation where the feedback signal is used to estimate the modal information. On the other hand, the separation principle of control and estimation is applied to the least-squares method. The least-squares modal identification is used to perform parameter estimation.
Barriers and incentives for choosing to specialise in mammography: Qualitative analysis.
Warren-Forward, H M; Taylor, J
2017-02-01
There is a projected shortage of radiographers working in breast screening and this study aimed to examine comments from open response questions from a mixed methods survey of current diagnostic radiography students on their perceptions of working in mammography. The survey asked three open ended questions: Justification of choice of modality in which they would want to specialise, why they believed there was a shortage of radiographers working in breast screening and any other comment about mammography. Reasons given for specialising in any modality was interest, feature of a modality, amount of clinical exposure during the degree program, personal issues and career prospects. Few current diagnostic radiography students indicated that they would be interested in specialising in breast imaging. They considered there to be a shortage of radiographers as breast imaging was seen to be repetitive, high pressure, intimate and gender biased. Lack of education, clinical exposure, limited career prospects and low pay were also discussed. Increasing education to the modality during the degree, allowing males to be involved in breast imaging and promoting part-time work in mammography while also working in other modalities may alter the perception that mammography offers a limited career pathway. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Economic evaluation of bone stimulation modalities: A systematic review of the literature.
Button, Melissa L; Sprague, Sheila; Gharsaa, Osama; Latouche, Sandra; Bhandari, Mohit
2009-04-01
Various bone stimulation modalities are commonly used in treatment of fresh fractures and nonunions; however, the effectiveness and efficiency of these modalities remain uncertain. A systematic review of trials evaluating the clinical and economical outcomes of ultrasounds, electrical stimulation, and extracorporeal sound waves on fracture healing was conducted. We searched four electronic databases for economic evaluations that assessed bone stimulation modalities using ultrasound therapy, electrical stimulation, or extracorporeal shock waves. In addition, we searched the references and related articles of eligible studies, and a content expert was contacted. Information on the clinical and economical outcomes of patients was independently extracted by reviewers. Fourteen studies met the inclusion criteria; therefore, very limited research was found on the cost associated with treatments and the corresponding outcomes. The data available focus primarily on the efficacy of newly introduced treatment methods for bone growth, but failed to incorporate the costs of implementing such treatments. One economic analysis was identified that assessed different treatment paths using ultrasound. A total cost savings of 24-40% per patient occurred when ultrasound was used for fresh fractures and nonunions (grade C recommendation). The results suggest that the ultrasound is a viable alternative for bone stimulation; however, the impacts of the other modalities are left unknown due to the lack of research available. Methodological limitations leave the overall economic and clinical impact of these modalities uncertain. Large, prospective, randomized controlled trials that include cost-effectiveness analyses are needed to further define the clinical effectiveness and financial burden associated with bone stimulation modalities.
Motion interference analysis and optimal control of an electronic controlled bamboo-dance mechanism
NASA Astrophysics Data System (ADS)
Liu, Xiaohong; Xu, Liang; Hu, Xiaobin
2017-08-01
An electric bamboo-dance mechanism was designed and developed to realize mechanism of automation and mechanization. For coherent and fluent motion, ANSYS finite element analysis was applied on movement interference. Static structural method was used for analyzing dynamic deflection and deformation of the slender rod, while modal analysis was applied on frequency analysis to avoid second deformation caused by resonance. Therefore, the deformation in vertical and horizontal direction was explored and reasonable optimization was taken to avoid interference.
A Survey of Probabilistic Methods for Dynamical Systems with Uncertain Parameters.
1986-05-01
J., "An Approach to the Theoretical Background of Statistical Energy Analysis Applied to Structural Vibration," Journ. Acoust. Soc. Amer., Vol. 69...1973, Sect. 8.3. 80. Lyon, R.H., " Statistical Energy Analysis of Dynamical Systems," M.I.T. Press, 1975. e) Late References added in Proofreading !! 81...Dowell, E.H., and Kubota, Y., "Asymptotic Modal Analysis and ’~ y C-" -165- Statistical Energy Analysis of Dynamical Systems," Journ. Appi. - Mech
Capsule Endoscopy in the Assessment of Obscure Gastrointestinal Bleeding: An Evidence-Based Analysis
2015-01-01
Background Obscure gastrointestinal bleeding (OGIB) is defined as persistent or recurrent bleeding associated with negative findings on upper and lower gastrointestinal (GI) endoscopic evaluations. The diagnosis and management of patients with OGIB is particularly challenging because of the length and complex loops of the small intestine. Capsule endoscopy (CE) is 1 diagnostic modality that is used to determine the etiology of bleeding. Objectives The objective of this analysis was to review the diagnostic accuracy, safety, and impact on health outcomes of CE in patients with OGIB in comparison with other diagnostic modalities. Data Sources A literature search was performed using Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid Embase, the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database, for studies published between 2007 and 2013. Review Methods Data on diagnostic accuracy, safety, and impact on health outcomes were abstracted from included studies. Quality of evidence was assessed using Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Results The search yielded 1,189 citations, and 24 studies were included. Eight studies reported diagnostic accuracy comparing CE with other diagnostic modalities. Capsule endoscopy has a higher sensitivity and lower specificity than magnetic resonance enteroclysis, computed tomography, and push enteroscopy. Capsule endoscopy has a good safety profile with few adverse events, although comparative safety data with other diagnostic modalities are limited. Capsule endoscopy is associated with no difference in patient health-related outcomes such as rebleeding or follow-up treatment compared with push enteroscopy, small-bowel follow-through, and angiography. Limitations There was significant heterogeneity in estimates of diagnostic accuracy, which prohibited a statistical summary of findings. The analysis was also limited by the fact that there is no established reference standard to which the diagnostic accuracy of CE can be compared. Conclusions There is very-low-quality evidence that CE has a higher sensitivity but a lower specificity than other diagnostic modalities. Capsule endoscopy has few adverse events, with capsule retention being the most serious complication. Capsule endoscopy is perceived by patients as less painful and less burdensome compared with other modalities. There is low-quality evidence that patients who undergo CE have similar rates of rebleeding, further therapeutic interventions, and hospitalization compared with other diagnostic modalities. PMID:26357529
Swider, P.; Guérin, G.; Baas, Joergen; Søballe, Kjeld; Bechtold, Joan E.
2013-01-01
Orthopaedic implant fixation is strongly dependant upon the effective mechanical properties of newly formed tissue. In this study, we evaluated the potential of modal analysis to derive viscoelastic properties of periprosthetic tissue. We hypothesized that Young's modulus and loss factor could be obtained by a combined theoretical, computational and experimental modal analysis approach. This procedure was applied to ex vivo specimens from a cylindrical experimental implant placed in cancellous bone in an unloaded press-fit configuration, obtained after a four week observation period. Four sections each from seven textured titanium implants were investigated. The first resonant frequency and loss factor were measured. Average experimentally determined loss factor was 2% (SD 0.4%) and average first resonant frequency was 2.1 KHz (SD: 50). A 2D axisymmetric finite element (FE) model identified effective Young's modulus of tissue using experimental resonant frequencies as input. Average value was 42 MPa (SD: 2.4) and no significant difference between specimens was observed. In this pilot study, the non-destructive method allowed accurate measure of dynamic loss factor and resonant frequency and derivation of effective Young's modulus. Prior to implementing this dynamic protocol for broader mechanical evaluation of experimental implant fixation, further work is needed to determine if this affects results from subsequent destructive shear push-out tests. PMID:19464687
Remote-Controlled Rotorcraft Blade Vibration and Modal Analysis at Low Frequencies
2016-02-01
modal analysis, remote-controlled helicopter , remote-controlled rotorcraft, HUMS for rotorcraft 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...Experimental Setup 1 4. Results 4 4.1 Rotor Blade Acceleration 4 4.2 Modal Analysis: Using an Impact Hammer 7 4.3 Dynamic Response Revisited 8 5... Rotor blade response to shaker outputting 1-V sine wave at 100 Hz ....5 Fig. 6 Rotor blade response to shaker outputting 1-V sine sweep from 20- to 100
Modal loss mechanism of micro-structured VCSELs studied using full vector FDTD method.
Jo, Du-Ho; Vu, Ngoc Hai; Kim, Jin-Tae; Hwang, In-Kag
2011-09-12
Modal properties of vertical cavity surface-emitting lasers (VCSELs) with holey structures are studied using a finite difference time domain (FDTD) method. We investigate loss behavior with respect to the variation of structural parameters, and explain the loss mechanism of VCSELs. We also propose an effective method to estimate the modal loss based on mode profiles obtained using FDTD simulation. Our results could provide an important guideline for optimization of the microstructures of high-power single-mode VCSELs.
NASA Technical Reports Server (NTRS)
Grillenbeck, Anton M.; Dillinger, Stephan A.; Elliott, Kenny B.
1998-01-01
Theoretical and experimental studies have been performed to investigate the potential and limitations of the modal characterization of a typical spacecraft bus structure by means of active structure elements. The aim of these studies has been test and advance tools for performing an accurate on-orbit modal identification which may be characterized by the availability of a generally very limited test instrumentation, autonomous excitation capabilities by active structure elements and a zero-g environment. The NASA LARC CSI Evolutionary Testbed provided an excellent object for the experimental part of this study program. The main subjects of investigation were: (1) the selection of optimum excitation and measurement to unambiguously identify modes of interest; (2) the applicability of different types of excitation means with focus on active structure elements; and (3) the assessment of the modal identification potential of different types of excitation functions and modal analysis tools. Conventional as well as dedicated modal analysis tools were applied to determine modal parameters and mode shapes. The results will be presented and discussed based on orthogonality checks as well as on suitable indicators for the quality of the acquired modes with respect to modal purity. In particular, the suitability for modal analysis of the acquired frequency response functions as obtained by excitation with active structure elements will be demonstrated with the help of reciprocity checks. Finally, the results will be summarized in a procedure to perform an on-orbit modal identification, including an indication of limitation to be observed.
An alternative representation of the receptance: The 'elliptical plane' and its modal properties
NASA Astrophysics Data System (ADS)
Montalvão, Diogo; Amafabia, Daerefa-a. Mitsheal
2018-03-01
Modal Identification from Frequency Response Functions (FRFs) has been extensively investigated up to the point its research reached a stagnation state. Yet, a new approach to determine the modal damping factors from FRFs was recently proposed, showing that there still is scope for new findings in the field. Contrary to other modal identification methods which are based on the dynamic motion governing equations, the method used the dissipated energy per cycle of vibration as a starting point. For lightly damped systems with conveniently spaced modes, it produced quite accurate results, especially when compared to the well-known method of the inverse. The method used a plot of the sine of the phase of the receptance against its amplitude, whereby damping was determined from the slope of a linear fit to the resulting plot. In this paper, it is shown that this plot has other (perhaps more important) special properties that were not explored before. Near resonant frequencies, its shape is elliptical, whereby the real and imaginary parts of the modal constants can be determined from numerical curve-fitting. This finding allowed developing a new method which formulation is presented in this paper. The method is discussed through numerical and experimental examples. Although the intention is not to present a new modal identification method that is superior to other existing ones (like the method of the inverse or those based on the Nyquist plot), the authors believe that this new representation of the receptance and its properties may bring valuable insights for other researchers in the field.
NASA Technical Reports Server (NTRS)
Klein, L. R.
1974-01-01
The free vibrations of elastic structures of arbitrary complexity were analyzed in terms of their component modes. The method was based upon the use of the normal unconstrained modes of the components in a Rayleigh-Ritz analysis. The continuity conditions were enforced by means of Lagrange Multipliers. Examples of the structures considered are: (1) beams with nonuniform properties; (2) airplane structures with high or low aspect ratio lifting surface components; (3) the oblique wing airplane; and (4) plate structures. The method was also applied to the analysis of modal damping of linear elastic structures. Convergence of the method versus the number of modes per component and/or the number of components is discussed and compared to more conventional approaches, ad-hoc methods, and experimental results.
Multi-modal Registration for Correlative Microscopy using Image Analogies
Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc
2014-01-01
Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. PMID:24387943
NASA Technical Reports Server (NTRS)
Boyd, D. E.; Rao, C. K. P.
1973-01-01
The derivation and application of a Rayleigh-Ritz modal vibration analysis are presented for ring and/or stringer stiffened noncircular cylindrical shells with arbitrary end conditions. Comparisons with previous results from experimental and analytical studies showed this method of analysis to be accurate for a variety of end conditions. Results indicate a greater effect of rings on natural frequencies than of stringers.
A hybrid sensing approach for pure and adulterated honey classification.
Subari, Norazian; Mohamad Saleh, Junita; Md Shakaff, Ali Yeon; Zakaria, Ammar
2012-10-17
This paper presents a comparison between data from single modality and fusion methods to classify Tualang honey as pure or adulterated using Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) statistical classification approaches. Ten different brands of certified pure Tualang honey were obtained throughout peninsular Malaysia and Sumatera, Indonesia. Various concentrations of two types of sugar solution (beet and cane sugar) were used in this investigation to create honey samples of 20%, 40%, 60% and 80% adulteration concentrations. Honey data extracted from an electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR) were gathered, analyzed and compared based on fusion methods. Visual observation of classification plots revealed that the PCA approach able to distinct pure and adulterated honey samples better than the LDA technique. Overall, the validated classification results based on FTIR data (88.0%) gave higher classification accuracy than e-nose data (76.5%) using the LDA technique. Honey classification based on normalized low-level and intermediate-level FTIR and e-nose fusion data scored classification accuracies of 92.2% and 88.7%, respectively using the Stepwise LDA method. The results suggested that pure and adulterated honey samples were better classified using FTIR and e-nose fusion data than single modality data.
Experimental investigation on frequency shifting of imperfect adhesively bonded pipe joints
NASA Astrophysics Data System (ADS)
Haiyam, F. N.; Hilmy, I.; Sulaeman, E.; Firdaus, T.; Adesta, E. Y. T.
2018-01-01
Inspection tests for any manufactured structure are compulsory in order to detect the existence of damage.It is to ensure the product integrity, reliability and to avoid further catastrophic failure. In this research, modal analysis was utilized to detect structural damage as one of the Non Destructive Testing (NDT) methods. Comparing the vibration signal of a healthy structure with a non-healthy signal was performed. A modal analysis of an adhesively bonded pipe joint was investigated with a healthy joint as a reference. The damage joint was engineered by inserting a nylon fiber, which act as an impurity at adhesive region. The impact test using hammer was utilized in this research. Identification of shifting frequency of a free supported and clamped pipe joint was performed.It was found that shifting frequency occurred to the lower side by 5%.
Chen, Weijie; Wunderlich, Adam; Petrick, Nicholas; Gallas, Brandon D
2014-10-01
We treat multireader multicase (MRMC) reader studies for which a reader's diagnostic assessment is converted to binary agreement (1: agree with the truth state, 0: disagree with the truth state). We present a mathematical model for simulating binary MRMC data with a desired correlation structure across readers, cases, and two modalities, assuming the expected probability of agreement is equal for the two modalities ([Formula: see text]). This model can be used to validate the coverage probabilities of 95% confidence intervals (of [Formula: see text], [Formula: see text], or [Formula: see text] when [Formula: see text]), validate the type I error of a superiority hypothesis test, and size a noninferiority hypothesis test (which assumes [Formula: see text]). To illustrate the utility of our simulation model, we adapt the Obuchowski-Rockette-Hillis (ORH) method for the analysis of MRMC binary agreement data. Moreover, we use our simulation model to validate the ORH method for binary data and to illustrate sizing in a noninferiority setting. Our software package is publicly available on the Google code project hosting site for use in simulation, analysis, validation, and sizing of MRMC reader studies with binary agreement data.
Chen, Weijie; Wunderlich, Adam; Petrick, Nicholas; Gallas, Brandon D.
2014-01-01
Abstract. We treat multireader multicase (MRMC) reader studies for which a reader’s diagnostic assessment is converted to binary agreement (1: agree with the truth state, 0: disagree with the truth state). We present a mathematical model for simulating binary MRMC data with a desired correlation structure across readers, cases, and two modalities, assuming the expected probability of agreement is equal for the two modalities (P1=P2). This model can be used to validate the coverage probabilities of 95% confidence intervals (of P1, P2, or P1−P2 when P1−P2=0), validate the type I error of a superiority hypothesis test, and size a noninferiority hypothesis test (which assumes P1=P2). To illustrate the utility of our simulation model, we adapt the Obuchowski–Rockette–Hillis (ORH) method for the analysis of MRMC binary agreement data. Moreover, we use our simulation model to validate the ORH method for binary data and to illustrate sizing in a noninferiority setting. Our software package is publicly available on the Google code project hosting site for use in simulation, analysis, validation, and sizing of MRMC reader studies with binary agreement data. PMID:26158051
A Prospective Programmatic Cost Analysis of Fuel Your Life: A Worksite Translation of DPP.
Ingels, Justin B; Walcott, Rebecca L; Wilson, Mark G; Corso, Phaedra S; Padilla, Heather M; Zuercher, Heather; DeJoy, David M; Vandenberg, Robert J
2016-11-01
An accounting of the resources necessary for implementation of efficacious programs is important for economic evaluations and dissemination. A programmatic costs analysis was conducted prospectively in conjunction with an efficacy trial of Fuel Your Life (FYL), a worksite translation of the Diabetes Prevention Program. FYL was implemented through three different modalities, Group, Phone, and Self-study, using a micro-costing approach from both the employer and societal perspectives. The Phone modality was the most costly at $354.6 per participant, compared with $154.6 and $75.5 for the Group and Self-study modalities, respectively. With the inclusion of participant-related costs, the Phone modality was still more expensive than the Group modality but with a smaller incremental difference ($461.4 vs $368.1). This level of cost-related detail for a preventive intervention is rare, and our analysis can aid in the transparency of future economic evaluations.
Modal strain energies in COSMIC NASTRAN
NASA Technical Reports Server (NTRS)
Snyder, B. D.; Venkayya, V. B.
1989-01-01
A computer program was developed to take a NASTRAN output file from a normal modes analysis and calculate the modal strain energies of selected elements. The FORTRAN program can determine the modal strain energies for CROD, CBAR, CELAS, CTRMEM, CQDMEM2, and CSHEAR elements. Modal strain energies are useful in estimating damping in structures.
Biological Parametric Mapping: A Statistical Toolbox for Multi-Modality Brain Image Analysis
Casanova, Ramon; Ryali, Srikanth; Baer, Aaron; Laurienti, Paul J.; Burdette, Jonathan H.; Hayasaka, Satoru; Flowers, Lynn; Wood, Frank; Maldjian, Joseph A.
2006-01-01
In recent years multiple brain MR imaging modalities have emerged; however, analysis methodologies have mainly remained modality specific. In addition, when comparing across imaging modalities, most researchers have been forced to rely on simple region-of-interest type analyses, which do not allow the voxel-by-voxel comparisons necessary to answer more sophisticated neuroscience questions. To overcome these limitations, we developed a toolbox for multimodal image analysis called biological parametric mapping (BPM), based on a voxel-wise use of the general linear model. The BPM toolbox incorporates information obtained from other modalities as regressors in a voxel-wise analysis, thereby permitting investigation of more sophisticated hypotheses. The BPM toolbox has been developed in MATLAB with a user friendly interface for performing analyses, including voxel-wise multimodal correlation, ANCOVA, and multiple regression. It has a high degree of integration with the SPM (statistical parametric mapping) software relying on it for visualization and statistical inference. Furthermore, statistical inference for a correlation field, rather than a widely-used T-field, has been implemented in the correlation analysis for more accurate results. An example with in-vivo data is presented demonstrating the potential of the BPM methodology as a tool for multimodal image analysis. PMID:17070709
Voltage stability analysis in the new deregulated environment
NASA Astrophysics Data System (ADS)
Zhu, Tong
Nowadays, a significant portion of the power industry is under deregulation. Under this new circumstance, network security analysis is more critical and more difficult. One of the most important issues in network security analysis is voltage stability analysis. Due to the expected higher utilization of equipment induced by competition in a power market that covers bigger power systems, this issue is increasingly acute after deregulation. In this dissertation, some selected topics of voltage stability analysis are covered. In the first part, after a brief review of general concepts of continuation power flow (CPF), investigations on various matrix analysis techniques to improve the speed of CPF calculation for large systems are reported. Based on these improvements, a new CPF algorithm is proposed. This new method is then tested by an inter-area transaction in a large inter-connected power system. In the second part, the Arnoldi algorithm, the best method to find a few minimum singular values for a large sparse matrix, is introduced into the modal analysis for the first time. This new modal analysis is applied to the estimation of the point of voltage collapse and contingency evaluation in voltage security assessment. Simulations show that the new method is very efficient. In the third part, after transient voltage stability component models are investigated systematically, a novel system model for transient voltage stability analysis, which is a logical-algebraic-differential-difference equation (LADDE), is offered. As an example, TCSC (Thyristor controlled series capacitors) is addressed as a transient voltage stabilizing controller. After a TCSC transient voltage stability model is outlined, a new TCSC controller is proposed to enhance both fault related and load increasing related transient voltage stability. Its ability is proven by the simulation.
Modal ring method for the scattering of sound
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1993-01-01
The modal element method for acoustic scattering can be simplified when the scattering body is rigid. In this simplified method, called the modal ring method, the scattering body is represented by a ring of triangular finite elements forming the outer surface. The acoustic pressure is calculated at the element nodes. The pressure in the infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The two solution forms are coupled by the continuity of pressure and velocity on the body surface. The modal ring method effectively reduces the two-dimensional scattering problem to a one-dimensional problem capable of handling very high frequency scattering. In contrast to the boundary element method or the method of moments, which perform a similar reduction in problem dimension, the model line method has the added advantage of having a highly banded solution matrix requiring considerably less computer storage. The method shows excellent agreement with analytic results for scattering from rigid circular cylinders over a wide frequency range (1 is equal to or less than ka is less than or equal to 100) in the near and far fields.
Application of Artificial Boundary Conditions in Sensitivity-Based Updating of Finite Element Models
2007-06-01
is known as the impedance matrix[ ]( )Z Ω . [ ] [ ] 1( ) ( )Z H −Ω = Ω (12) where [ ] 2( )Z K M j C ⎡ ⎤Ω = −Ω + Ω⎣ ⎦ (13) A. REDUCED ORDER...D.L. A correlation coefficient for modal vector analysis. Proceedings of 1st International Modal Analysis Conference, 1982, 110-116. Anton , H ... Rorres , C ., (2005). Elementary Linear Algebra. New York: John Wiley and Sons. Avitable, Peter (2001, January) Experimental Modal Analysis, A Simple
2006-08-21
Dynamic Testing of In-Situ Composite Floors and Evaluation of Vibration Serviceability Using the Finite Element Method By Anthony R. Barrett...Setareh Alfred L. Wicks 21 August 2006 Blacksburg, VA Keywords: vibration, floor, serviceability , walking, modal analysis, fundamental frequency...burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services
NASA Astrophysics Data System (ADS)
Park, Hyo Seon; Oh, Byung Kwan
2018-03-01
This paper presents a new approach for the damage detection of building structures under ambient excitation based on the inherent modal characteristics. In this study, without the extraction of modal parameters widely utilized in the previous studies on damage detection, a new index called the modal participation ratio (MPR), which is a representative value of the modal response extracted from dynamic responses measured in ambient vibration tests, is proposed to evaluate the change of the system of a structure according to the reduction of the story stiffness. The relationship between the MPR, representing a modal contribution for a specific mode and degree of freedom in buildings, and the story stiffness damage factor (SSDF), representing the extent of reduction in the story stiffness, is analyzed in various damage scenarios. From the analyses with three examples, several rules for the damage localization of building structures are found based on the characteristics of the MPR variation for the first mode subject to change in the SSDF. In addition, a damage severity function, derived from the relationship between the MPR for the first mode in the lowest story and the SSDF, is constructed to identify the severity of story stiffness reduction. Furthermore, the locations and severities of multiple damages are identified via the superposition of the presented damage severity functions. The presented method was applied to detect damage in a three-dimensional reinforced concrete (RC) structure.
Structural Inference in the Art of Violin Making.
NASA Astrophysics Data System (ADS)
Morse-Fortier, Leonard Joseph
The "secrets" of success of early Italian violins have long been sought. Among their many efforts to reproduce the results of Stradiveri, Guarneri, and Amati, luthiers have attempted to order and match natural resonant frequencies in the free violin plates. This tap-tone plate tuning technique is simply an eigenvalue extraction scheme. In the final stages of carving, the violin maker complements considerable intuitive knowledge of violin plate structure and of modal attributes with tap-tone frequency estimates to better understand plate structure and to inform decisions about plate carving and completeness. Examining the modal attributes of violin plates, this work develops and incorporates an impulse-response scheme for modal inference, measures resonant frequencies and modeshapes for a pair of violin plates, and presents modeshapes through a unique computer visualization scheme developed specifically for this purpose. The work explores, through simple examples questions of how plate modal attributes reflect underlying structure, and questions about the so -called evolution of modeshapes and frequencies through assembly of the violin. Separately, the work develops computer code for a carved, anisotropic, plate/shell finite element. Solutions are found to the static displacement and free-vibration eigenvalue problems for an orthotropic plate, and used to verify element accuracy. Finally, a violin back plate is modelled with full consideration of plate thickness and arching. Model estimates for modal attributes compare very well against experimentally acquired values. Finally, the modal synthesis technique is applied to predicting the modal attributes of the violin top plate with ribs attached from those of the top plate alone, and with an estimate of rib mass and stiffness. This last analysis serves to verify the modal synthesis method, and to quantify its limits of applicability in attempting to solve problems with severe structural modification. Conclusions emphasize the importance of better understanding the underlying structure, improved understanding of its relationship to modal attributes, and better estimates of wood elasticity.
Wang, Yan; Ma, Guangkai; An, Le; Shi, Feng; Zhang, Pei; Lalush, David S.; Wu, Xi; Pu, Yifei; Zhou, Jiliu; Shen, Dinggang
2017-01-01
Objective To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI). Methods It was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semi-supervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance. Results Validation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods. Conclusion This work proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection. Significance The proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients. PMID:27187939
Vibration characteristics of teak wood filled steel tubes
NASA Astrophysics Data System (ADS)
Danawade, Bharatesh Adappa; Malagi, Ravindra Rachappa
2018-05-01
The objective of this paper is to determine fundamental frequency and damping ratio of teak wood filled steel tubes. Mechanically bonded teak wood filled steel tubes have been evaluated by experimental impact hammer test using modal analysis. The results of impact hammer test were verified and validated by finite element tool ANSYS using harmonic analysis. The error between the two methods was observed to be within acceptable limit.
Dynamic Data Driven Operator Error Early Warning System
2015-08-13
calibrations, participants started to do the experiment with a 3-minute baselining session. They were rested and listened to the music Bachs Harpsichord...conditions. Further, training data is not necessary to perform the PCA analysis presented here. The second method is the least squares complex...approach for operational modal analysis. In Proceedings of the 25th IMAC, Orlando (FL), USA, 2007. [4] Linda Chlan. Effectiveness of a music therapy
Campbell, Graeme M; Sophocleous, Antonia
2014-01-01
Micro-computed tomography (micro-CT) is a high-resolution imaging modality that is capable of analysing bone structure with a voxel size on the order of 10 μm. With the development of in vivo micro-CT, where disease progression and treatment can be monitored in a living animal over a period of time, this modality has become a standard tool for preclinical assessment of bone architecture during disease progression and treatment. For meaningful comparison between micro-CT studies, it is essential that the same parameters for data acquisition and analysis methods be used. This protocol outlines the common procedures that are currently used for sample preparation, scanning, reconstruction and analysis in micro-CT studies. Scan and analysis methods for trabecular and cortical bone are covered for the femur, tibia, vertebra and the full neonate body of small rodents. The analysis procedures using the software provided by ScancoMedical and Bruker are discussed, and the routinely used bone architectural parameters are outlined. This protocol also provides a section dedicated to in vivo scanning and analysis, which covers the topics of anaesthesia, radiation dose and image registration. Because of the expanding research using micro-CT to study other skeletal sites, as well as soft tissues, we also provide a review of current techniques to examine the skull and mandible, adipose tissue, vasculature, tumour severity and cartilage. Lists of recommended further reading and literature references are included to provide the reader with more detail on the methods described. PMID:25184037
NASA Astrophysics Data System (ADS)
He, Fei; Liu, Yuanning; Zhu, Xiaodong; Huang, Chun; Han, Ye; Chen, Ying
2014-05-01
A multimodal biometric system has been considered a promising technique to overcome the defects of unimodal biometric systems. We have introduced a fusion scheme to gain a better understanding and fusion method for a face-iris-fingerprint multimodal biometric system. In our case, we use particle swarm optimization to train a set of adaptive Gabor filters in order to achieve the proper Gabor basic functions for each modality. For a closer analysis of texture information, two different local Gabor features for each modality are produced by the corresponding Gabor coefficients. Next, all matching scores of the two Gabor features for each modality are projected to a single-scalar score via a trained, supported, vector regression model for a final decision. A large-scale dataset is formed to validate the proposed scheme using the Facial Recognition Technology database-fafb and CASIA-V3-Interval together with FVC2004-DB2a datasets. The experimental results demonstrate that as well as achieving further powerful local Gabor features of multimodalities and obtaining better recognition performance by their fusion strategy, our architecture also outperforms some state-of-the-art individual methods and other fusion approaches for face-iris-fingerprint multimodal biometric systems.
Jain, Avani; Srivastava, Madhur Kumar; Pawaskar, Alok Suresh; Shelley, Simon; Elangovan, Indirani; Jain, Hasmukh; Pandey, Somnath; Kalal, Shilpa; Amalachandran, Jaykanth
2015-01-01
To evaluate the advantages of contrast enhanced F-18-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET-contrast enhanced CT [CECT]) when used as an initial imaging modality in patients presenting with metastatic malignancy of undefined primary origin (MUO). A total of 243 patients with fine needle aspiration cytology/biopsy proven MUO were included in this prospective study. Patients who were thoroughly evaluated for primary or primary tumor was detected by any other investigation were excluded from the analysis. Totally, 163 patients with pathological diagnosis of malignancy but no apparent sites of the primary tumor were finally selected for analysis. The site of probable primary malignancy suggested by PET-CECT was confirmed by biopsy/follow-up. PET-CECT suggested probable site of primary in 128/163 (78.52%) patients. In 30/35 remaining patients, primary tumor was not detected even after extensive work-up. In 5 patients, where PET-CECT was negative, primary was found on further extensive investigations or follow-up. The sensitivity, specificity, positive predictive value and negative predictive value of the study were 95.76%, 66.67%, 88.28% and 85.71% respectively. F-18 FDG PET-CECT aptly serves the purpose of initial imaging modality owing to high sensitivity, negative and positive predictive value. PET-CECT not only surveys the whole body for the primary malignancy but also stages the disease accurately. Use of contrast improves the diagnostic utility of modality as well as help in staging of the primary tumor. Although benefits of using PET-CECT as initial diagnostic modality are obvious from this study, there is a need for a larger study comparing conventional methods for diagnosing primary in patients with MUO versus PET-CECT.
Analysis and optimization of dynamic model of eccentric shaft grinder
NASA Astrophysics Data System (ADS)
Gao, Yangjie; Han, Qiushi; Li, Qiguang; Peng, Baoying
2018-04-01
Eccentric shaft servo grinder is the core equipment in the process chain of machining eccentric shaft. The establishment of the movement model and the determination of the kinematic relation of the-axis in the grinding process directly affect the quality of the grinding process, and there are many error factors in grinding, and it is very important to analyze the influence of these factors on the work piece quality. The three-dimensional model of eccentric shaft grinder is drawn by Pro/E three-dimensional drawing software, the model is imported into ANSYS Workbench Finite element analysis software, and the finite element analysis is carried out, and then the variation and parameters of each component of the bed are obtained by the modal analysis result. The natural frequencies and formations of the first six steps of the eccentric shaft grinder are obtained by modal analysis, and the weak links of the parts of the grinder are found out, and a reference improvement method is proposed for the design of the eccentric shaft grinder in the future.
Space simulation facilities providing a stable thermal vacuum facility
NASA Technical Reports Server (NTRS)
Tellalian, Martin L.
1990-01-01
CBI has recently constructed the Intermediate Thermal Vacuum Facility. Built as a corporate facility, the installation will first be used on the Boost Surveillance and Tracking System (BSTS) program. It will also be used to develop and test other sensor systems. The horizontal chamber has a horseshoe shaped cross section and is supported on pneumatic isolators for vibration isolation. The chamber structure was designed to meet stability and stiffness requirements. The design process included measurement of the ambient ground vibrations, analysis of various foundation test article support configurations, design and analysis of the chamber shell and modal testing of the chamber shell. A detailed 3-D finite element analysis was made in the design stage to predict the lowest three natural frequencies and mode shapes and to identify local vibrating components. The design process is described and the results are compared of the finite element analysis to the results of the field modal testing and analysis for the 3 lowest natural frequencies and mode shapes. Concepts are also presented for stiffening large steel structures along with methods to improve test article stability in large space simulation facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeghi, P; Smith, W; Tom Baker Cancer Centre, Calgary, AB
2015-06-15
Purpose This study quantifies errors associated with MR-guided High Dose Rate (HDR) gynecological brachytherapy. Uncertainties in this treatment results from contouring, organ motion between imaging and treatment delivery, dose calculation, and dose delivery. We focus on interobserver and inter-modality variability in contouring and the motion of organs at risk (OARs) in the time span between the MR and CT scans (∼1 hour). We report the change in organ volume and position of center of mass (CM) between the two imaging modalities. Methods A total of 8 patients treated with MR-guided HDR brachytherapy were included in this study. Two observers contouredmore » the bladder and rectum on both MR and CT scans. The change in OAR volume and CM position between the MR and CT imaging sessions on both image sets were calculated. Results The absolute mean bladder volume change between the two imaging modalities is 67.1cc. The absolute mean inter-observer difference in bladder volume is much lower at 15.5cc (MR) and 11.0cc (CT). This higher inter-modality volume difference suggests a real change in the bladder filling between the two imaging sessions. Change in Rectum volume inter-observer standard error of means (SEM) is 3.18cc (MR) and 3.09cc (CT), while the inter-modality SEM is 3.65cc (observer 1), and 2.75cc (observer 2). The SEM for rectum CM position in the superior-inferior direction was approximately three times higher than in other directions for both the inter—observer (0.77 cm, 0.92 cm for observers 1 and 2, respectively) and inter-modality (0.91 cm, 0.95 cm for MR and CT, respectively) variability. Conclusion Bladder contours display good consistency between different observers on both CT and MR images. For rectum contouring the highest inconsistency stems from the observers’ choice of the superior-inferior borders. A complete analysis of a larger patient cohort will enable us to separate the true organ motion from the inter-observer variability.« less
Feature-based Alignment of Volumetric Multi-modal Images
Toews, Matthew; Zöllei, Lilla; Wells, William M.
2014-01-01
This paper proposes a method for aligning image volumes acquired from different imaging modalities (e.g. MR, CT) based on 3D scale-invariant image features. A novel method for encoding invariant feature geometry and appearance is developed, based on the assumption of locally linear intensity relationships, providing a solution to poor repeatability of feature detection in different image modalities. The encoding method is incorporated into a probabilistic feature-based model for multi-modal image alignment. The model parameters are estimated via a group-wise alignment algorithm, that iteratively alternates between estimating a feature-based model from feature data, then realigning feature data to the model, converging to a stable alignment solution with few pre-processing or pre-alignment requirements. The resulting model can be used to align multi-modal image data with the benefits of invariant feature correspondence: globally optimal solutions, high efficiency and low memory usage. The method is tested on the difficult RIRE data set of CT, T1, T2, PD and MP-RAGE brain images of subjects exhibiting significant inter-subject variability due to pathology. PMID:24683955
Build-Up Approach to Updating the Mock Quiet Spike Beam Model
NASA Technical Reports Server (NTRS)
Herrera, Claudia Y.; Pak, Chan-gi
2007-01-01
When a new aircraft is designed or a modification is done to an existing aircraft, the aeroelastic properties of the aircraft should be examined to ensure the aircraft is flight worthy. Evaluating the aeroelastic properties of a new or modified aircraft can include performing a variety of analyses, such as modal and flutter analyses. In order to produce accurate results from these analyses, it is imperative to work with finite element models (FEM) that have been validated by or correlated to ground vibration test (GVT) data, Updating an analytical model using measured data is a challenge in the area of structural dynamics. The analytical model update process encompasses a series of optimizations that match analytical frequencies and mode shapes to the measured modal characteristics of structure. In the past, the method used to update a model to test data was "trial and error." This is an inefficient method - running a modal analysis, comparing the analytical results to the GVT data, manually modifying one or more structural parameters (mass, CG, inertia, area, etc.), rerunning the analysis, and comparing the new analytical modal characteristics to the GVT modal data. If the match is close enough (close enough defined by analyst's updating requirements), then the updating process is completed. If the match does not meet updating-requirements, then the parameters are changed again and the process is repeated. Clearly, this manual optimization process is highly inefficient for large FEM's and/or a large number of structural parameters. NASA Dryden Flight Research Center (DFRC) has developed, in-house, a Mode Matching Code that automates the above-mentioned optimization process, DFRC's in-house Mode Matching Code reads mode shapes and frequencies acquired from GVT to create the target model. It also reads the current analytical model, as we11 as the design variables and their upper and lower limits. It performs a modal analysis on this model and modifies it to create an updated model that has similar mode shapes and frequencies as those of the target model. The Mode Matching Code output frequencies and modal assurance criteria (MAC) values that allow for the quantified comparison of the updated model versus the target model. A recent application of this code is the F453 supersonic flight testing platform, NASA DFRC possesses a modified F-15B that is used as a test bed aircraft for supersonic flight experiments. Traditionally, the finite element model of the test article is generated. A GVT is done on the test article ta validate and update its FEM. This FEM is then mated to the F-15B model, which was correlated to GVT data in fall of 2004, A GVT is conducted with the test article mated to the aircraft, and this mated F-15B/ test article FEM is correlated to this final GVT.
Fixed Base Modal Survey of the MPCV Orion European Service Module Structural Test Article
NASA Technical Reports Server (NTRS)
Winkel, James P.; Akers, J. C.; Suarez, Vicente J.; Staab, Lucas D.; Napolitano, Kevin L.
2017-01-01
Recently, the MPCV Orion European Service Module Structural Test Article (E-STA) underwent sine vibration testing using the multi-axis shaker system at NASA GRC Plum Brook Station Mechanical Vibration Facility (MVF). An innovative approach using measured constraint shapes at the interface of E-STA to the MVF allowed high-quality fixed base modal parameters of the E-STA to be extracted, which have been used to update the E-STA finite element model (FEM), without the need for a traditional fixed base modal survey. This innovative approach provided considerable program cost and test schedule savings. This paper documents this modal survey, which includes the modal pretest analysis sensor selection, the fixed base methodology using measured constraint shapes as virtual references and measured frequency response functions, and post-survey comparison between measured and analysis fixed base modal parameters.
NASA Technical Reports Server (NTRS)
Maasha, Rumaasha; Towner, Robert L.
2012-01-01
High-fidelity Finite Element Models (FEMs) were developed to support a recent test program at Marshall Space Flight Center (MSFC). The FEMs correspond to test articles used for a series of acoustic tests. Modal survey tests were used to validate the FEMs for five acoustic tests (a bare panel and four different mass-loaded panel configurations). An additional modal survey test was performed on the empty test fixture (orthogrid panel mounting fixture, between the reverb and anechoic chambers). Modal survey tests were used to test-validate the dynamic characteristics of FEMs used for acoustic test excitation. Modal survey testing and subsequent model correlation has validated the natural frequencies and mode shapes of the FEMs. The modal survey test results provide a basis for the analysis models used for acoustic loading response test and analysis comparisons
Modal Auxiliaries and Their Semantic Functions Used by Advanced EFL Learners
ERIC Educational Resources Information Center
Torabiardakani, Najmeh; Khojasteh, Laleh; Shokrpour, Nasrin
2015-01-01
Since modal auxiliary verbs have been proved to be one of the most troublesome grammatical structures in English, the researchers of this study decided to do an analysis on the ways in which advanced EFL Iranian students use modal auxiliaries focusing specially on nine modals' semantic functions. Consequently, was conducted based on the following…
Experimental Modal Analysis of Rectangular and Circular Beams
ERIC Educational Resources Information Center
Emory, Benjamin H.; Zhu, Wei Dong
2006-01-01
Analytical and experimental methods are used to determine the natural frequencies and mode shapes of Aluminum 6061-T651 beams with rectangular and circular cross-sections. A unique test stand is developed to provide the rectangular beam with different boundary conditions including clamped-free, clamped-clamped, clamped-pinned, and pinned-pinned.…
Spectrum Modal Analysis for the Detection of Low-Altitude Windshear with Airborne Doppler Radar
NASA Technical Reports Server (NTRS)
Kunkel, Matthew W.
1992-01-01
A major obstacle in the estimation of windspeed patterns associated with low-altitude windshear with an airborne pulsed Doppler radar system is the presence of strong levels of ground clutter which can strongly bias a windspeed estimate. Typical solutions attempt to remove the clutter energy from the return through clutter rejection filtering. Proposed is a method whereby both the weather and clutter modes present in a return spectrum can be identified to yield an unbiased estimate of the weather mode without the need for clutter rejection filtering. An attempt will be made to show that modeling through a second order extended Prony approach is sufficient for the identification of the weather mode. A pattern recognition approach to windspeed estimation from the identified modes is derived and applied to both simulated and actual flight data. Comparisons between windspeed estimates derived from modal analysis and the pulse-pair estimator are included as well as associated hazard factors. Also included is a computationally attractive method for estimating windspeeds directly from the coefficients of a second-order autoregressive model. Extensions and recommendations for further study are included.
Vibration analysis of rotor systems using reduced subsystem models
NASA Technical Reports Server (NTRS)
Fan, Uei-Jiun; Noah, Sherif T.
1989-01-01
A general impedance method using reduced submodels has been developed for the linear dynamic analysis of rotor systems. Formulated in terms of either modal or physical coordinates of the subsystems, the method enables imbalance responses at specific locations of the rotor systems to be efficiently determined from a small number of 'master' degrees of freedom. To demonstrate the capability of this impedance approach, the Space Shuttle Main Engine high-pressure oxygen turbopump has been investigated to determine the bearing loads due to imbalance. Based on the same formulation, an eigenvalue analysis has been performed to study the system stability. A small 5-DOF model has been utilized to illustrate the application of the method to eigenvalue analysis. Because of its inherent characteristics of allowing formulation of reduced submodels, the impedance method can significantly increase the computational speed.
Modal description—A better way of characterizing human vibration behavior
NASA Astrophysics Data System (ADS)
Rützel, Sebastian; Hinz, Barbara; Wölfel, Horst Peter
2006-12-01
Biodynamic responses to whole body vibrations are usually characterized in terms of transfer functions, such as impedance or apparent mass. Data measurements from subjects are averaged and analyzed with respect to certain attributes (anthropometrics, posture, excitation intensity, etc.). Averaging involves the risk of identifying unnatural vibration characteristics. The use of a modal description as an alternative method is presented and its contribution to biodynamic modelling is discussed. Modal description is not limited to just one biodynamic function: The method holds for all transfer functions. This is shown in terms of the apparent mass and the seat-to-head transfer function. The advantages of modal description are illustrated using apparent mass data of six male individuals of the same mass percentile. From experimental data, modal parameters such as natural frequencies, damping ratios and modal masses are identified which can easily be used to set up a mathematical model. Following the phenomenological approach, this model will provide the global vibration behavior relating to the input data. The modal description could be used for the development of hardware vibration dummies. With respect to software models such as finite element models, the validation process for these models can be supported by the modal approach. Modal parameters of computational models and of the experimental data can establish a basis for comparison.
A modal analysis of lamellar diffraction gratings in conical mountings
NASA Technical Reports Server (NTRS)
Li, Lifeng
1992-01-01
A rigorous modal analysis of lamellar grating, i.e., gratings having rectangular grooves, in conical mountings is presented. It is an extension of the analysis of Botten et al. which considered non-conical mountings. A key step in the extension is a decomposition of the electromagnetic field in the grating region into two orthogonal components. A computer program implementing this extended modal analysis is capable of dealing with plane wave diffraction by dielectric and metallic gratings with deep grooves, at arbitrary angles of incidence, and having arbitrary incident polarizations. Some numerical examples are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Squire, A Bhattacharjee
We study the magnetorotational instability (MRI) (Balbus & Hawley 1998) using non-modal stability techniques.Despite the spectral instability of many forms of the MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very diff erent to the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localizedmore » in a completely di fferent region of space. These ideas lead – for both axisymmetric and non-axisymmetric modes – to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary diff erential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using non-modal analysis techniques, we conclude by analyzing local MRI growth over finite time-scales using these methods. The strong growth over a wide range of wave-numbers suggests that non-modal linear physics could be of fundamental importance in MRI turbulence (Squire & Bhattacharjee 2014).« less
A novel tracing method for the segmentation of cell wall networks.
De Vylder, Jonas; Rooms, Filip; Dhondt, Stijn; Inze, Dirk; Philips, Wilfried
2013-01-01
Cell wall networks are a common subject of research in biology, which are important for plant growth analysis, organ studies, etc. In order to automate the detection of individual cells in such cell wall networks, we propose a new segmentation algorithm. The proposed method is a network tracing algorithm, exploiting the prior knowledge of the network structure. The method is applicable on multiple microscopy modalities such as fluorescence, but also for images captured using non invasive microscopes such as differential interference contrast (DIC) microscopes.
Modal analysis of circular Bragg fibers with arbitrary index profiles
NASA Astrophysics Data System (ADS)
Horikis, Theodoros P.; Kath, William L.
2006-12-01
A finite-difference approach based upon the immersed interface method is used to analyze the mode structure of Bragg fibers with arbitrary index profiles. The method allows general propagation constants and eigenmodes to be calculated to a high degree of accuracy, while computation times are kept to a minimum by exploiting sparse matrix algebra. The method is well suited to handle complicated structures comprised of a large number of thin layers with high-index contrast and simultaneously determines multiple eigenmodes without modification.
O'Donnell, Andrew P.; Kurama, Yahya C.; Kalkan, Erol; Taflanidis, Alexandros A.
2017-01-01
This paper experimentally evaluates four methods to scale earthquake ground-motions within an ensemble of records to minimize the statistical dispersion and maximize the accuracy in the dynamic peak roof drift demand and peak inter-story drift demand estimates from response-history analyses of nonlinear building structures. The scaling methods that are investigated are based on: (1) ASCE/SEI 7–10 guidelines; (2) spectral acceleration at the fundamental (first mode) period of the structure, Sa(T1); (3) maximum incremental velocity, MIV; and (4) modal pushover analysis. A total of 720 shake-table tests of four small-scale nonlinear building frame specimens with different static and dynamic characteristics are conducted. The peak displacement demands from full suites of 36 near-fault ground-motion records as well as from smaller “unbiased” and “biased” design subsets (bins) of ground-motions are included. Out of the four scaling methods, ground-motions scaled to the median MIV of the ensemble resulted in the smallest dispersion in the peak roof and inter-story drift demands. Scaling based on MIValso provided the most accurate median demands as compared with the “benchmark” demands for structures with greater nonlinearity; however, this accuracy was reduced for structures exhibiting reduced nonlinearity. The modal pushover-based scaling (MPS) procedure was the only method to conservatively overestimate the median drift demands.
Power maps and wavefront for progressive addition lenses in eyeglass frames.
Mejía, Yobani; Mora, David A; Díaz, Daniel E
2014-10-01
To evaluate a method for measuring the cylinder, sphere, and wavefront of progressive addition lenses (PALs) in eyeglass frames. We examine the contour maps of cylinder, sphere, and wavefront of a PAL assembled in an eyeglass frame using an optical system based on a Hartmann test. To reduce the data noise, particularly in the border of the eyeglass frame, we implement a method based on the Fourier analysis to extrapolate spots outside the eyeglass frame. The spots are extrapolated up to a circular pupil that circumscribes the eyeglass frame and compared with data obtained from a circular uncut PAL. By using the Fourier analysis to extrapolate spots outside the eyeglass frame, we can remove the edge artifacts of the PAL within its frame and implement the modal method to fit wavefront data with Zernike polynomials within a circular aperture that circumscribes the frame. The extrapolated modal maps from framed PALs accurately reflect maps obtained from uncut PALs and provide smoothed maps for the cylinder and sphere inside the eyeglass frame. The proposed method for extrapolating spots outside the eyeglass frame removes edge artifacts of the contour maps (wavefront, cylinder, and sphere), which may be useful to facilitate measurements such as the length and width of the progressive corridor for a PAL in its frame. The method can be applied to any shape of eyeglass frame.
Modal sound transmission loss of a single leaf panel: Effects of inter-modal coupling.
Wang, Chong
2015-06-01
Sound transmission through a single leaf panel has mostly been discussed and explained by using the approaching wave concept, from which the well-known mass law can be derived. In this paper, the modal behavior in sound transmission coefficients is explored, and it is shown that the mutual modal radiation impedances in modal sound transmission coefficients may not be ignored even for a panel immersed in a light fluid. By introducing the equivalent modal impedance which incorporates the inter-modal coupling effect, an analytical expression for the modal sound transmission coefficient is derived, and the overall sound transmission coefficient is simply a modal superposition of modal sound transmission coefficients. A good correlation is obtained between analytical calculation and boundary element method. In addition, it is found that inter-modal coupling has noticeable effects in modal sound transmission coefficients in the subsonic region but may be ignored as modes become supersonic. It is also shown that the well-known mass law performance is attributed to all the supersonic modes.
Dynamic modulus estimation and structural vibration analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, A.
1998-11-18
Often the dynamic elastic modulus of a material with frequency dependent properties is difficult to estimate. These uncertainties are compounded in any structural vibration analysis using the material properties. Here, different experimental techniques are used to estimate the properties of a particular elastomeric material over a broad frequency range. Once the properties are determined, various structures incorporating the elastomer are analyzed by an interactive finite element method to determine natural frequencies and mode shapes. Then, the finite element results are correlated with results obtained by experimental modal analysis.
Decentralized modal identification using sparse blind source separation
NASA Astrophysics Data System (ADS)
Sadhu, A.; Hazra, B.; Narasimhan, S.; Pandey, M. D.
2011-12-01
Popular ambient vibration-based system identification methods process information collected from a dense array of sensors centrally to yield the modal properties. In such methods, the need for a centralized processing unit capable of satisfying large memory and processing demands is unavoidable. With the advent of wireless smart sensor networks, it is now possible to process information locally at the sensor level, instead. The information at the individual sensor level can then be concatenated to obtain the global structure characteristics. A novel decentralized algorithm based on wavelet transforms to infer global structure mode information using measurements obtained using a small group of sensors at a time is proposed in this paper. The focus of the paper is on algorithmic development, while the actual hardware and software implementation is not pursued here. The problem of identification is cast within the framework of under-determined blind source separation invoking transformations of measurements to the time-frequency domain resulting in a sparse representation. The partial mode shape coefficients so identified are then combined to yield complete modal information. The transformations are undertaken using stationary wavelet packet transform (SWPT), yielding a sparse representation in the wavelet domain. Principal component analysis (PCA) is then performed on the resulting wavelet coefficients, yielding the partial mixing matrix coefficients from a few measurement channels at a time. This process is repeated using measurements obtained from multiple sensor groups, and the results so obtained from each group are concatenated to obtain the global modal characteristics of the structure.
Tao, Zhuolin; Yao, Zaoxing; Kong, Hui; Duan, Fei; Li, Guicai
2018-05-09
Shenzhen has rapidly grown into a megacity in the recent decades. It is a challenging task for the Shenzhen government to provide sufficient healthcare services. The spatial configuration of healthcare services can influence the convenience for the consumers to obtain healthcare services. Spatial accessibility has been widely adopted as a scientific measurement for evaluating the rationality of the spatial configuration of healthcare services. The multi-modal two-step floating catchment area (2SFCA) method is an important advance in the field of healthcare accessibility modelling, which enables the simultaneous assessment of spatial accessibility via multiple transport modes. This study further develops the multi-modal 2SFCA method by introducing online map APIs to improve the estimation of travel time by public transit or by car respectively. As the results show, the distribution of healthcare accessibility by multi-modal 2SFCA shows significant spatial disparity. Moreover, by dividing the multi-modal accessibility into car-mode and transit-mode accessibility, this study discovers that the transit-mode subgroup is disadvantaged in the competition for healthcare services with the car-mode subgroup. The disparity in transit-mode accessibility is the main reason of the uneven pattern of healthcare accessibility in Shenzhen. The findings suggest improving the public transit conditions for accessing healthcare services to reduce the disparity of healthcare accessibility. More healthcare services should be allocated in the eastern and western Shenzhen, especially sub-districts in Dapeng District and western Bao'an District. As these findings cannot be drawn by the traditional single-modal 2SFCA method, the advantage of the multi-modal 2SFCA method is significant to both healthcare studies and healthcare system planning.
Validation of a new modal performance measure for flexible controllers design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simo, J.B.; Tahan, S.A.; Kamwa, I.
1996-05-01
A new modal performance measure for power system stabilizer (PSS) optimization is proposed in this paper. The new method is based on modifying the square envelopes of oscillating modes, in order to take into account their damping ratios while minimizing the performance index. This criteria is applied to flexible controllers optimal design, on a multi-input-multi-output (MIMO) reduced-order model of a prototype power system. The multivariable model includes four generators, each having one input and one output. Linear time-response simulation and transient stability analysis with a nonlinear package confirm the superiority of the proposed criteria and illustrate its effectiveness in decentralizedmore » control.« less
A non-modal analytical method to predict turbulent properties applied to the Hasegawa-Wakatani model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, B., E-mail: friedman11@llnl.gov; Lawrence Livermore National Laboratory, Livermore, California 94550; Carter, T. A.
2015-01-15
Linear eigenmode analysis often fails to describe turbulence in model systems that have non-normal linear operators and thus nonorthogonal eigenmodes, which can cause fluctuations to transiently grow faster than expected from eigenmode analysis. When combined with energetically conservative nonlinear mode mixing, transient growth can lead to sustained turbulence even in the absence of eigenmode instability. Since linear operators ultimately provide the turbulent fluctuations with energy, it is useful to define a growth rate that takes into account non-modal effects, allowing for prediction of energy injection, transport levels, and possibly even turbulent onset in the subcritical regime. We define such amore » non-modal growth rate using a relatively simple model of the statistical effect that the nonlinearities have on cross-phases and amplitude ratios of the system state variables. In particular, we model the nonlinearities as delta-function-like, periodic forces that randomize the state variables once every eddy turnover time. Furthermore, we estimate the eddy turnover time to be the inverse of the least stable eigenmode frequency or growth rate, which allows for prediction without nonlinear numerical simulation. We test this procedure on the 2D and 3D Hasegawa-Wakatani model [A. Hasegawa and M. Wakatani, Phys. Rev. Lett. 50, 682 (1983)] and find that the non-modal growth rate is a good predictor of energy injection rates, especially in the strongly non-normal, fully developed turbulence regime.« less
A non-modal analytical method to predict turbulent properties applied to the Hasegawa-Wakatani model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, B.; Carter, T. A.
2015-01-15
Linear eigenmode analysis often fails to describe turbulence in model systems that have non-normal linear operators and thus nonorthogonal eigenmodes, which can cause fluctuations to transiently grow faster than expected from eigenmode analysis. When combined with energetically conservative nonlinear mode mixing, transient growth can lead to sustained turbulence even in the absence of eigenmode instability. Since linear operators ultimately provide the turbulent fluctuations with energy, it is useful to define a growth rate that takes into account non-modal effects, allowing for prediction of energy injection, transport levels, and possibly even turbulent onset in the subcritical regime. Here, we define suchmore » a non-modal growth rate using a relatively simple model of the statistical effect that the nonlinearities have on cross-phases and amplitude ratios of the system state variables. In particular, we model the nonlinearities as delta-function-like, periodic forces that randomize the state variables once every eddy turnover time. Furthermore, we estimate the eddy turnover time to be the inverse of the least stable eigenmode frequency or growth rate, which allows for prediction without nonlinear numerical simulation. Also, we test this procedure on the 2D and 3D Hasegawa-Wakatani model [A. Hasegawa and M. Wakatani, Phys. Rev. Lett. 50, 682 (1983)] and find that the non-modal growth rate is a good predictor of energy injection rates, especially in the strongly non-normal, fully developed turbulence regime.« less
NASA Technical Reports Server (NTRS)
Chambers, Jeffrey A.
1994-01-01
Finite element analysis is regularly used during the engineering cycle of mechanical systems to predict the response to static, thermal, and dynamic loads. The finite element model (FEM) used to represent the system is often correlated with physical test results to determine the validity of analytical results provided. Results from dynamic testing provide one means for performing this correlation. One of the most common methods of measuring accuracy is by classical modal testing, whereby vibratory mode shapes are compared to mode shapes provided by finite element analysis. The degree of correlation between the test and analytical mode shapes can be shown mathematically using the cross orthogonality check. A great deal of time and effort can be exhausted in generating the set of test acquired mode shapes needed for the cross orthogonality check. In most situations response data from vibration tests are digitally processed to generate the mode shapes from a combination of modal parameters, forcing functions, and recorded response data. An alternate method is proposed in which the same correlation of analytical and test acquired mode shapes can be achieved without conducting the modal survey. Instead a procedure is detailed in which a minimum of test information, specifically the acceleration response data from a random vibration test, is used to generate a set of equivalent local accelerations to be applied to the reduced analytical model at discrete points corresponding to the test measurement locations. The static solution of the analytical model then produces a set of deformations that once normalized can be used to represent the test acquired mode shapes in the cross orthogonality relation. The method proposed has been shown to provide accurate results for both a simple analytical model as well as a complex space flight structure.
Cross-Modal Multivariate Pattern Analysis
Meyer, Kaspar; Kaplan, Jonas T.
2011-01-01
Multivariate pattern analysis (MVPA) is an increasingly popular method of analyzing functional magnetic resonance imaging (fMRI) data1-4. Typically, the method is used to identify a subject's perceptual experience from neural activity in certain regions of the brain. For instance, it has been employed to predict the orientation of visual gratings a subject perceives from activity in early visual cortices5 or, analogously, the content of speech from activity in early auditory cortices6. Here, we present an extension of the classical MVPA paradigm, according to which perceptual stimuli are not predicted within, but across sensory systems. Specifically, the method we describe addresses the question of whether stimuli that evoke memory associations in modalities other than the one through which they are presented induce content-specific activity patterns in the sensory cortices of those other modalities. For instance, seeing a muted video clip of a glass vase shattering on the ground automatically triggers in most observers an auditory image of the associated sound; is the experience of this image in the "mind's ear" correlated with a specific neural activity pattern in early auditory cortices? Furthermore, is this activity pattern distinct from the pattern that could be observed if the subject were, instead, watching a video clip of a howling dog? In two previous studies7,8, we were able to predict sound- and touch-implying video clips based on neural activity in early auditory and somatosensory cortices, respectively. Our results are in line with a neuroarchitectural framework proposed by Damasio9,10, according to which the experience of mental images that are based on memories - such as hearing the shattering sound of a vase in the "mind's ear" upon seeing the corresponding video clip - is supported by the re-construction of content-specific neural activity patterns in early sensory cortices. PMID:22105246
Cao, Hongbao; Duan, Junbo; Lin, Dongdong; Shugart, Yin Yao; Calhoun, Vince; Wang, Yu-Ping
2014-11-15
Integrative analysis of multiple data types can take advantage of their complementary information and therefore may provide higher power to identify potential biomarkers that would be missed using individual data analysis. Due to different natures of diverse data modality, data integration is challenging. Here we address the data integration problem by developing a generalized sparse model (GSM) using weighting factors to integrate multi-modality data for biomarker selection. As an example, we applied the GSM model to a joint analysis of two types of schizophrenia data sets: 759,075 SNPs and 153,594 functional magnetic resonance imaging (fMRI) voxels in 208 subjects (92 cases/116 controls). To solve this small-sample-large-variable problem, we developed a novel sparse representation based variable selection (SRVS) algorithm, with the primary aim to identify biomarkers associated with schizophrenia. To validate the effectiveness of the selected variables, we performed multivariate classification followed by a ten-fold cross validation. We compared our proposed SRVS algorithm with an earlier sparse model based variable selection algorithm for integrated analysis. In addition, we compared with the traditional statistics method for uni-variant data analysis (Chi-squared test for SNP data and ANOVA for fMRI data). Results showed that our proposed SRVS method can identify novel biomarkers that show stronger capability in distinguishing schizophrenia patients from healthy controls. Moreover, better classification ratios were achieved using biomarkers from both types of data, suggesting the importance of integrative analysis. Copyright © 2014 Elsevier Inc. All rights reserved.
Modal parameter estimation and monitoring for on-line flight flutter analysis
NASA Astrophysics Data System (ADS)
Verboven, P.; Cauberghe, B.; Guillaume, P.; Vanlanduit, S.; Parloo, E.
2004-05-01
The clearance of the flight envelope of a new airplane by means of flight flutter testing is time consuming and expensive. Most common approach is to track the modal damping ratios during a number of flight conditions, and hence the accuracy of the damping estimates plays a crucial role. However, aircraft manufacturers desire to decrease the flight flutter testing time for practical, safety and economical reasons by evolving from discrete flight test points to a more continuous flight test pattern. Therefore, this paper presents an approach that provides modal parameter estimation and monitoring for an aircraft with a slowly time-varying structural behaviour that will be observed during a faster and more continuous exploration of the flight envelope. The proposed identification approach estimates the modal parameters directly from input/output Fourier data. This avoids the need for an averaging-based pre-processing of the data, which becomes inapplicable in the case that only short data records are measured. Instead of using a Hanning window to reduce effects of leakage, these transient effects are modelled simultaneously with the dynamical behaviour of the airplane. The method is validated for the monitoring of the system poles during flight flutter testing.
Feature-based fusion of medical imaging data.
Calhoun, Vince D; Adali, Tülay
2009-09-01
The acquisition of multiple brain imaging types for a given study is a very common practice. There have been a number of approaches proposed for combining or fusing multitask or multimodal information. These can be roughly divided into those that attempt to study convergence of multimodal imaging, for example, how function and structure are related in the same region of the brain, and those that attempt to study the complementary nature of modalities, for example, utilizing temporal EEG information and spatial functional magnetic resonance imaging information. Within each of these categories, one can attempt data integration (the use of one imaging modality to improve the results of another) or true data fusion (in which multiple modalities are utilized to inform one another). We review both approaches and present a recent computational approach that first preprocesses the data to compute features of interest. The features are then analyzed in a multivariate manner using independent component analysis. We describe the approach in detail and provide examples of how it has been used for different fusion tasks. We also propose a method for selecting which combination of modalities provides the greatest value in discriminating groups. Finally, we summarize and describe future research topics.
Computationally efficient finite-difference modal method for the solution of Maxwell's equations.
Semenikhin, Igor; Zanuccoli, Mauro
2013-12-01
In this work, a new implementation of the finite-difference (FD) modal method (FDMM) based on an iterative approach to calculate the eigenvalues and corresponding eigenfunctions of the Helmholtz equation is presented. Two relevant enhancements that significantly increase the speed and accuracy of the method are introduced. First of all, the solution of the complete eigenvalue problem is avoided in favor of finding only the meaningful part of eigenmodes by using iterative methods. Second, a multigrid algorithm and Richardson extrapolation are implemented. Simultaneous use of these techniques leads to an enhancement in terms of accuracy, which allows a simple method such as the FDMM with a typical three-point difference scheme to be significantly competitive with an analytical modal method.
The Shock and Vibration Digest. Volume 14, Number 11
1982-11-01
cooled reactor 1981) ( HTGR ) core under seismic excitation his been developed . N82-18644 The computer program can be used to predict the behavior (In...French) of the HTGR core under seismic excitation. Key Words: Computer programs , Modal analysis, Beams, Undamped structures A computation method is...30) PROGRAMMING c c Dale and Cohen [221 extended the method of McMunn and Plunkett [201 developed a compute- McMunn and Plunkett to continuous systems
Medical ultrasonic tomographic system
NASA Technical Reports Server (NTRS)
Heyser, R. C.; Lecroissette, D. H.; Nathan, R.; Wilson, R. L.
1977-01-01
An electro-mechanical scanning assembly was designed and fabricated for the purpose of generating an ultrasound tomogram. A low cost modality was demonstrated in which analog instrumentation methods formed a tomogram on photographic film. Successful tomogram reconstructions were obtained on in vitro test objects by using the attenuation of the fist path ultrasound signal as it passed through the test object. The nearly half century tomographic methods of X-ray analysis were verified as being useful for ultrasound imaging.
Analysis of acoustic and entropy disturbances in a hypersonic wind tunnel
NASA Astrophysics Data System (ADS)
Schilden, Thomas; Schröder, Wolfgang; Ali, Syed Raza Christopher; Schreyer, Anne-Marie; Wu, Jie; Radespiel, Rolf
2016-05-01
The tunnel noise in a Mach 5.9 Ludwieg tube is determined by two methods, a newly developed cone-probe-DNS method and a reliable hot-wire-Pitot-probe method. The new method combines pressure and heat flux measurements using a cone probe and direct numerical simulation (DNS). The modal analysis is based on transfer functions obtained by the DNS to link the measured quantities to the tunnel noise. The measurements are performed for several unit-Reynolds numbers in the range of 5 ṡ 106 ≤ Re/m ≤ 16 ṡ 106 and probe positions to identify the sensitivities of tunnel noise. The DNS solutions show similar response mechanisms of the cone probe to incident acoustic and entropy waves which leads to high condition numbers of the transfer matrix such that a unique relationship between response and source mechanism can be only determined by neglecting the contribution of the non-acoustic modes to the pressure and heat flux fluctuations. The results of the cone-probe-DNS method are compared to a modal analysis based on the hot-wire-Pitot-probe method which provides reliable results in the frequency range less than 50 kHz. In this low frequency range the findings of the two different mode analyses agree well. At higher frequencies, the newly developed cone-probe-DNS method is still valid. The tunnel noise is dominated by the acoustic mode, since the entropy mode is lower by one order of magnitude and the vorticity mode can be neglected. The acoustic mode is approximately 0.5% at 30 kHz and the cone-probe-DNS data illustrate the acoustic mode to decrease and to asymptotically approach 0.2%.
NASA Astrophysics Data System (ADS)
Kirby, Richard; Whitaker, Ross
2016-09-01
In recent years, the use of multi-modal camera rigs consisting of an RGB sensor and an infrared (IR) sensor have become increasingly popular for use in surveillance and robotics applications. The advantages of using multi-modal camera rigs include improved foreground/background segmentation, wider range of lighting conditions under which the system works, and richer information (e.g. visible light and heat signature) for target identification. However, the traditional computer vision method of mapping pairs of images using pixel intensities or image features is often not possible with an RGB/IR image pair. We introduce a novel method to overcome the lack of common features in RGB/IR image pairs by using a variational methods optimization algorithm to map the optical flow fields computed from different wavelength images. This results in the alignment of the flow fields, which in turn produce correspondences similar to those found in a stereo RGB/RGB camera rig using pixel intensities or image features. In addition to aligning the different wavelength images, these correspondences are used to generate dense disparity and depth maps. We obtain accuracies similar to other multi-modal image alignment methodologies as long as the scene contains sufficient depth variations, although a direct comparison is not possible because of the lack of standard image sets from moving multi-modal camera rigs. We test our method on synthetic optical flow fields and on real image sequences that we created with a multi-modal binocular stereo RGB/IR camera rig. We determine our method's accuracy by comparing against a ground truth.
Optical imaging modalities: From design to diagnosis of skin cancer
NASA Astrophysics Data System (ADS)
Korde, Vrushali Raj
This study investigates three high resolution optical imaging modalities to better detect and diagnose skin cancer. The ideal high resolution optical imaging system can visualize pre-malignant tissue growth non-invasively with resolution comparable to histology. I examined 3 modalities which approached this goal. The first method examined was high magnification microscopy of thin stained tissue sections, together with a statistical analysis of nuclear chromatin patterns termed Karyometry. This method has subcellular resolution, but it necessitates taking a biopsy at the desired tissue site and imaging the tissue ex-vivo. My part of this study was to develop an automated nuclear segmentation algorithm to segment cell nuclei in skin histology images for karyometric analysis. The results of this algorithm were compared to hand segmented cell nuclei in the same images, and it was concluded that the automated segmentations can be used for karyometric analysis. The second optical imaging modality I investigated was Optical Coherence Tomography (OCT). OCT is analogous to ultrasound, in which sound waves are delivered into the body and the echo time and reflected signal magnitude are measured. Due to the fast speed of light and detector temporal integration times, low coherence interferometry is needed to gate the backscattered light. OCT acquires cross sectional images, and has an axial resolution of 1-15 mum (depending on the source bandwidth) and a lateral resolution of 10-20 mum (depending on the sample arm optics). While it is not capable of achieving subcellular resolution, it is a non-invasive imaging modality. OCT was used in this study to evaluate skin along a continuum from normal to sun damaged to precancer. I developed algorithms to detect statistically significant differences between images of sun protected and sun damaged skin, as well as between undiseased and precancerous skin. An Optical Coherence Microscopy (OCM) endoscope was developed in the third portion of this study. OCM is a high resolution en-face imaging modality. It is a hybrid system that combines the principles of confocal microscopy with coherence gating to provide an increased imaging depth. It can also be described as an OCT system with a high NA objective. Similar to OCT, the axial resolution is determined by the source center wavelength and bandwidth. The NA of the sample arm optics determines the lateral resolution, usually on the order of 1-5 mum. My effort on this system was to develop a handheld endoscope. To my knowledge, an OCM endoscope has not been developed prior to this work. An image of skin was taken as a proof of concept. This rigid handheld OCM endoscope will be useful for applications ranging from minimally invasive surgical imaging to non-invasively assessing dysplasia and sun damage in skin.
NASA Astrophysics Data System (ADS)
Yang, Jinping; Li, Peizhen; Yang, Youfa; Xu, Dian
2018-04-01
Empirical mode decomposition (EMD) is a highly adaptable signal processing method. However, the EMD approach has certain drawbacks, including distortions from end effects and mode mixing. In the present study, these two problems are addressed using an end extension method based on the support vector regression machine (SVRM) and a modal decomposition method based on the characteristics of the Hilbert transform. The algorithm includes two steps: using the SVRM, the time series data are extended at both endpoints to reduce the end effects, and then, a modified EMD method using the characteristics of the Hilbert transform is performed on the resulting signal to reduce mode mixing. A new combined static-dynamic method for identifying structural damage is presented. This method combines the static and dynamic information in an equilibrium equation that can be solved using the Moore-Penrose generalized matrix inverse. The combination method uses the differences in displacements of the structure with and without damage and variations in the modal force vector. Tests on a four-story, steel-frame structure were conducted to obtain static and dynamic responses of the structure. The modal parameters are identified using data from the dynamic tests and improved EMD method. The new method is shown to be more accurate and effective than the traditional EMD method. Through tests with a shear-type test frame, the higher performance of the proposed static-dynamic damage detection approach, which can detect both single and multiple damage locations and the degree of the damage, is demonstrated. For structures with multiple damage, the combined approach is more effective than either the static or dynamic method. The proposed EMD method and static-dynamic damage detection method offer improved modal identification and damage detection, respectively, in structures.
Stability analysis of a liquid fuel annular combustion chamber. M.S. Thesis
NASA Technical Reports Server (NTRS)
Mcdonald, G. H.
1979-01-01
The problems of combustion instability in an annular combustion chamber are investigated. A modified Galerkin method was used to produce a set of modal amplitude equations from the general nonlinear partial differential acoustic wave equation. From these modal amplitude equations, the two variable perturbation method was used to develop a set of approximate equations of a given order of magnitude. These equations were modeled to show the effects of velocity sensitive combustion instabilities by evaluating the effects of certain parameters in the given set of equations. By evaluating these effects, parameters which cause instabilities to occur in the combustion chamber can be ascertained. It is assumed that in the annular combustion chamber, the liquid propellants are injected uniformly across the injector face, the combustion processes are distributed throughout the combustion chamber, and that no time delay occurs in the combustion processes.
Nonlinear Characterization of Half and Full Wavelength Power Ultrasonic Devices
NASA Astrophysics Data System (ADS)
Mathieson, Andrew; Cerisola, Niccolò; Cardoni, Andrea
It is well known that power ultrasonic devices whilst driven under elevated excitation levels exhibit nonlinear behaviors. If no attempt is made to understand and subsequently control these behaviors, these devices can exhibit poor performance or even suffer premature failure. This paper presents an experimental method for the dynamic characterization of a commercial ultrasonic transducer for bone cutting applications (Piezosurgery® Device) operated together with a variety of rod horns that are tuned to operate in a longitudinal mode of vibration. Near resonance responses, excited via a burst sine sweep method were used to identify nonlinear responses exhibited by the devices, while experimental modal analysis was performed to identify the modal parameters of the longitudinal modes of vibration of the assemblies between 0-80 kHz. This study tries to provide an understanding of the effects that geometry and material choices may have on the nonlinear behavior of a tuned device.
Automated computation of autonomous spectral submanifolds for nonlinear modal analysis
NASA Astrophysics Data System (ADS)
Ponsioen, Sten; Pedergnana, Tiemo; Haller, George
2018-04-01
We discuss an automated computational methodology for computing two-dimensional spectral submanifolds (SSMs) in autonomous nonlinear mechanical systems of arbitrary degrees of freedom. In our algorithm, SSMs, the smoothest nonlinear continuations of modal subspaces of the linearized system, are constructed up to arbitrary orders of accuracy, using the parameterization method. An advantage of this approach is that the construction of the SSMs does not break down when the SSM folds over its underlying spectral subspace. A further advantage is an automated a posteriori error estimation feature that enables a systematic increase in the orders of the SSM computation until the required accuracy is reached. We find that the present algorithm provides a major speed-up, relative to numerical continuation methods, in the computation of backbone curves, especially in higher-dimensional problems. We illustrate the accuracy and speed of the automated SSM algorithm on lower- and higher-dimensional mechanical systems.
Analysis of seismic stability of large-sized tank VST-20000 with software package ANSYS
NASA Astrophysics Data System (ADS)
Tarasenko, A. A.; Chepur, P. V.; Gruchenkova, A. A.
2018-05-01
The work is devoted to the study of seismic stability of vertical steel tank VST-20000 with due consideration of the system response “foundation-tank-liquid”, conducted on the basis of the finite element method, modal analysis and linear spectral theory. The calculations are performed for the tank model with a high degree of detailing of metallic structures: shells, a fixed roof, a bottom, a reinforcing ring.
Manufacturing Methods for High Speed Machining of Aluminum
1978-02-01
Tests 53 4.4.3 Intergrmnular Corrosion Tests. ........... 53 4.4.4 Cost Analysis . .. ............... . .. .... 60 4.5 Conclusions...Corporat~ion and Others to equuip an existing Uwidstvahd, five-axes, Modal as-i, oidail with a 20,000 rVIL 20 hOW~pse spindle, Based anresults obtained...economic analysis for high-speed machining wan also conducted by Metout, and the results are given in Section 11.0. Xn Section 12.0, conclusions and
International Space Station Modal Correction Analysis
NASA Technical Reports Server (NTRS)
Fotz[atrocl. Lrostom; Grugoer. < ocjae; Laible, Michael; Sugavanam, Sujatha
2012-01-01
This paper summarizes the on-orbit modal test and the related modal analysis, model validation and correlation performed for the ISS Stage ULF4, DTF S4-1A, October 11,2010, GMT 284/06:13:00.00. The objective of this analysis is to validate and correlate analytical models with the intent to verify the ISS critical interface dynamic loads and improve fatigue life prediction. For the ISS configurations under consideration, on-orbit dynamic responses were collected with Russian vehicles attached and without the Orbiter attached to the ISS. ISS instrumentation systems that were used to collect the dynamic responses during the DTF S4-1A included the Internal Wireless Instrumentation System (IWIS), External Wireless Instrumentation System (EWIS), Structural Dynamic Measurement System (SDMS), Space Acceleration Measurement System (SAMS), Inertial Measurement Unit (IMU) and ISS External Cameras. Experimental modal analyses were performed on the measured data to extract modal parameters including frequency, damping and mode shape information. Correlation and comparisons between test and analytical modal parameters were performed to assess the accuracy of models for the ISS configuration under consideration. Based on the frequency comparisons, the accuracy of the mathematical models is assessed and model refinement recommendations are given. Section 2.0 of this report presents the math model used in the analysis. This section also describes the ISS configuration under consideration and summarizes the associated primary modes of interest along with the fundamental appendage modes. Section 3.0 discusses the details of the ISS Stage ULF4 DTF S4-1A test. Section 4.0 discusses the on-orbit instrumentation systems that were used in the collection of the data analyzed in this paper. The modal analysis approach and results used in the analysis of the collected data are summarized in Section 5.0. The model correlation and validation effort is reported in Section 6.0. Conclusions and recommendations drawn from this analysis are included in Section 7.0.
UNDERSTANDING FLOW OF ENERGY IN BUILDINGS USING MODAL ANALYSIS METHODOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Gardner; Kevin Heglund; Kevin Van Den Wymelenberg
2013-07-01
It is widely understood that energy storage is the key to integrating variable generators into the grid. It has been proposed that the thermal mass of buildings could be used as a distributed energy storage solution and several researchers are making headway in this problem. However, the inability to easily determine the magnitude of the building’s effective thermal mass, and how the heating ventilation and air conditioning (HVAC) system exchanges thermal energy with it, is a significant challenge to designing systems which utilize this storage mechanism. In this paper we adapt modal analysis methods used in mechanical structures to identifymore » the primary modes of energy transfer among thermal masses in a building. The paper describes the technique using data from an idealized building model. The approach is successfully applied to actual temperature data from a commercial building in downtown Boise, Idaho.« less
Parametric study using modal analysis of a bi-material plate with defects
NASA Astrophysics Data System (ADS)
Esola, S.; Bartoli, I.; Horner, S. E.; Zheng, J. Q.; Kontsos, A.
2015-03-01
Global vibrational method feasibility as a non-destructive inspection tool for multi-layered composites is evaluated using a simulated parametric study approach. A finite element model of a composite consisting of two, isotropic layers of dissimilar materials and a third, thin isotropic layer of adhesive is constructed as the representative test subject. Next, artificial damage is inserted according to systematic variations of the defect morphology parameters. A free-vibrational modal analysis simulation is executed for pristine and damaged plate conditions. Finally, resultant mode shapes and natural frequencies are extracted, compared and analyzed for trends. Though other defect types may be explored, the focus of this research is on interfacial delamination and its effects on the global, free-vibrational behavior of a composite plate. This study is part of a multi-year research effort conducted for the U.S. Army Program Executive Office - Soldier.
Wiens, Andrew; Etemadi, Mozziyar; Klein, Liviu; Roy, Shuvo; Inan, Omer T.
2015-01-01
The recent resurgence of ballistocardiogram (BCG) measurement and interpretation technologies has led to a wide range of powerful tools available for unobtrusively assessing mechanical aspects of cardiovascular health at home. Researchers have demonstrated a multitude of modern BCG measurement modalities, including beds, chairs, weighing scales, and wearable approaches. However, many modalities produce significant variations in the morphology of the measured BCG, creating confusion in the analysis and interpretation of the signals. This paper creates a framework for comparing wearable BCG measurements to whole body measurements—such as taken with a weighing scale system—to eventually allow the same analysis and interpretation tools that have been developed for whole body systems to be applied in the future to wearable systems. To the best of our knowledge, it represents the first attempt to morphologically compare vertical acceleration recordings measured on different locations on the torso to whole body displacements measured by BCG instrumentation. PMID:25571158
On-Line Robust Modal Stability Prediction using Wavelet Processing
NASA Technical Reports Server (NTRS)
Brenner, Martin J.; Lind, Rick
1998-01-01
Wavelet analysis for filtering and system identification has been used to improve the estimation of aeroservoelastic stability margins. The conservatism of the robust stability margins is reduced with parametric and nonparametric time- frequency analysis of flight data in the model validation process. Nonparametric wavelet processing of data is used to reduce the effects of external disturbances and unmodeled dynamics. Parametric estimates of modal stability are also extracted using the wavelet transform. Computation of robust stability margins for stability boundary prediction depends on uncertainty descriptions derived from the data for model validation. The F-18 High Alpha Research Vehicle aeroservoelastic flight test data demonstrates improved robust stability prediction by extension of the stability boundary beyond the flight regime. Guidelines and computation times are presented to show the efficiency and practical aspects of these procedures for on-line implementation. Feasibility of the method is shown for processing flight data from time- varying nonstationary test points.
Mode extraction on wind turbine blades via phase-based video motion estimation
NASA Astrophysics Data System (ADS)
Sarrafi, Aral; Poozesh, Peyman; Niezrecki, Christopher; Mao, Zhu
2017-04-01
In recent years, image processing techniques are being applied more often for structural dynamics identification, characterization, and structural health monitoring. Although as a non-contact and full-field measurement method, image processing still has a long way to go to outperform other conventional sensing instruments (i.e. accelerometers, strain gauges, laser vibrometers, etc.,). However, the technologies associated with image processing are developing rapidly and gaining more attention in a variety of engineering applications including structural dynamics identification and modal analysis. Among numerous motion estimation and image-processing methods, phase-based video motion estimation is considered as one of the most efficient methods regarding computation consumption and noise robustness. In this paper, phase-based video motion estimation is adopted for structural dynamics characterization on a 2.3-meter long Skystream wind turbine blade, and the modal parameters (natural frequencies, operating deflection shapes) are extracted. Phase-based video processing adopted in this paper provides reliable full-field 2-D motion information, which is beneficial for manufacturing certification and model updating at the design stage. The phase-based video motion estimation approach is demonstrated through processing data on a full-scale commercial structure (i.e. a wind turbine blade) with complex geometry and properties, and the results obtained have a good correlation with the modal parameters extracted from accelerometer measurements, especially for the first four bending modes, which have significant importance in blade characterization.
Karathanasis, Nestoras; Tsamardinos, Ioannis
2016-01-01
Background The advance of omics technologies has made possible to measure several data modalities on a system of interest. In this work, we illustrate how the Non-Parametric Combination methodology, namely NPC, can be used for simultaneously assessing the association of different molecular quantities with an outcome of interest. We argue that NPC methods have several potential applications in integrating heterogeneous omics technologies, as for example identifying genes whose methylation and transcriptional levels are jointly deregulated, or finding proteins whose abundance shows the same trends of the expression of their encoding genes. Results We implemented the NPC methodology within “omicsNPC”, an R function specifically tailored for the characteristics of omics data. We compare omicsNPC against a range of alternative methods on simulated as well as on real data. Comparisons on simulated data point out that omicsNPC produces unbiased / calibrated p-values and performs equally or significantly better than the other methods included in the study; furthermore, the analysis of real data show that omicsNPC (a) exhibits higher statistical power than other methods, (b) it is easily applicable in a number of different scenarios, and (c) its results have improved biological interpretability. Conclusions The omicsNPC function competitively behaves in all comparisons conducted in this study. Taking into account that the method (i) requires minimal assumptions, (ii) it can be used on different studies designs and (iii) it captures the dependences among heterogeneous data modalities, omicsNPC provides a flexible and statistically powerful solution for the integrative analysis of different omics data. PMID:27812137
NASA Astrophysics Data System (ADS)
Yan, Wang-Ji; Ren, Wei-Xin
2018-01-01
This study applies the theoretical findings of circularly-symmetric complex normal ratio distribution Yan and Ren (2016) [1,2] to transmissibility-based modal analysis from a statistical viewpoint. A probabilistic model of transmissibility function in the vicinity of the resonant frequency is formulated in modal domain, while some insightful comments are offered. It theoretically reveals that the statistics of transmissibility function around the resonant frequency is solely dependent on 'noise-to-signal' ratio and mode shapes. As a sequel to the development of the probabilistic model of transmissibility function in modal domain, this study poses the process of modal identification in the context of Bayesian framework by borrowing a novel paradigm. Implementation issues unique to the proposed approach are resolved by Lagrange multiplier approach. Also, this study explores the possibility of applying Bayesian analysis in distinguishing harmonic components and structural ones. The approaches are verified through simulated data and experimentally testing data. The uncertainty behavior due to variation of different factors is also discussed in detail.
Galileo spacecraft modal test and evaluation of testing techniques
NASA Technical Reports Server (NTRS)
Chen, J.-C.
1984-01-01
The structural configuration, modal test requirements and pre-test activities involved in modeling the expected dynamic environment and responses of the Galileo spacecraft are discussed. The probe will be Shuttle-launched in 1986 and will gather data on the Jupiter system. Loads analysis for the 5300 lb spacecraft were performed with the NASTRAN code, and covered 10,000 static degrees of freedom and 1600 mass degrees of freedom. A modal analysis will be used to verify the predictions for natural frequencies, mode shapes, orthogonality checks, residual mass, modal damping and forces, and generalized forces. Verification of the validity of considering only 70 natural modes in the numerical simulation is being performed by examining the forcing functions of the analysis. The analysis led to requirements that 162 channels of accelerometer data and 118 channels of strain gage data be recorded during shaker tests to reveal areas where design changes will be needed to eliminate vibration peaks.
Wu, Guorong; Kim, Minjeong; Wang, Qian; Munsell, Brent C.
2015-01-01
Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data,, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked auto-encoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework image registration experiments were conducted on 7.0-tesla brain MR images. In all experiments, the results showed the new image registration framework consistently demonstrated more accurate registration results when compared to state-of-the-art. PMID:26552069
Wu, Guorong; Kim, Minjeong; Wang, Qian; Munsell, Brent C; Shen, Dinggang
2016-07-01
Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked autoencoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework, image registration experiments were conducted on 7.0-T brain MR images. In all experiments, the results showed that the new image registration framework consistently demonstrated more accurate registration results when compared to state of the art.
Multi-Source Learning for Joint Analysis of Incomplete Multi-Modality Neuroimaging Data
Yuan, Lei; Wang, Yalin; Thompson, Paul M.; Narayan, Vaibhav A.; Ye, Jieping
2013-01-01
Incomplete data present serious problems when integrating largescale brain imaging data sets from different imaging modalities. In the Alzheimer’s Disease Neuroimaging Initiative (ADNI), for example, over half of the subjects lack cerebrospinal fluid (CSF) measurements; an independent half of the subjects do not have fluorodeoxyglucose positron emission tomography (FDG-PET) scans; many lack proteomics measurements. Traditionally, subjects with missing measures are discarded, resulting in a severe loss of available information. We address this problem by proposing two novel learning methods where all the samples (with at least one available data source) can be used. In the first method, we divide our samples according to the availability of data sources, and we learn shared sets of features with state-of-the-art sparse learning methods. Our second method learns a base classifier for each data source independently, based on which we represent each source using a single column of prediction scores; we then estimate the missing prediction scores, which, combined with the existing prediction scores, are used to build a multi-source fusion model. To illustrate the proposed approaches, we classify patients from the ADNI study into groups with Alzheimer’s disease (AD), mild cognitive impairment (MCI) and normal controls, based on the multi-modality data. At baseline, ADNI’s 780 participants (172 AD, 397 MCI, 211 Normal), have at least one of four data types: magnetic resonance imaging (MRI), FDG-PET, CSF and proteomics. These data are used to test our algorithms. Comprehensive experiments show that our proposed methods yield stable and promising results. PMID:24014189
Interface conductance modal analysis of lattice matched InGaAs/InP
NASA Astrophysics Data System (ADS)
Gordiz, Kiarash; Henry, Asegun
2016-05-01
We studied the heat conduction at InGaAs/InP interfaces and found that the total value of interface conductance was quite high ˜830 MW m-2 K-1. The modal contributions to the thermal interface conductance (TIC) were then investigated to determine the mode responsible. Using the recently developed interface conductance modal analysis method, we showed that more than 70% of the TIC arises from extended modes in the system. The lattice dynamics calculations across the interface revealed that, unlike any other interfaces previously studied, the different classes of vibration around the interface of InGaAs/InP naturally segregate into distinct regions with respect to frequency. In addition, interestingly, the entire region of frequency overlap between the sides of the interface is occupied by extended modes, whereby the two materials vibrate together with a single frequency. We also mapped the correlations between modes, which showed that the contribution by extended modes to the TIC primarily arises from coupling to the modes that have the same frequencies of vibration (i.e., autocorrelations). Moreover, interfacial modes despite their low population still contribute more than 6% to interfacial thermal transport. The analysis sheds light on the nature of heat conduction by different classes of vibration that exist in interfacial systems, which has technological relevance to applications such as thermophotovoltaics and optoelectronics.
Modal Substructuring of Geometrically Nonlinear Finite-Element Models
Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.
2015-12-21
The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying amore » series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.« less
Modal Substructuring of Geometrically Nonlinear Finite-Element Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.
The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying amore » series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.« less
Periodic response of nonlinear systems
NASA Technical Reports Server (NTRS)
Nataraj, C.; Nelson, H. D.
1988-01-01
A procedure is developed to determine approximate periodic solutions of autonomous and non-autonomous systems. The trignometric collocation method (TCM) is formalized to allow for the analysis of relatively small order systems directly in physical coordinates. The TCM is extended to large order systems by utilizing modal analysis in a component mode synthesis strategy. The procedure was coded and verified by several check cases. Numerical results for two small order mechanical systems and one large order rotor dynamic system are presented. The method allows for the possibility of approximating periodic responses for large order forced and self-excited nonlinear systems.
2012-04-06
48 MODAL ANALYSIS...2. Lateral Loads 3. Non-uniform Loads 4. Modal Analysis 5. Seismic Analysis 6. Moving Load Analysis All of these analyses were conducted with...Tandem c onsisting of a t wo a xle ve hicle with 25 kips on each axle spaced by 4 ft Self-Weight Dead Load: Steel density of 0.49 kips per cubic foot
Eigensystem realization algorithm modal identification experiences with mini-mast
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Schenk, Axel; Noll, Christopher
1992-01-01
This paper summarizes work performed under a collaborative research effort between the National Aeronautics and Space Administration (NASA) and the German Aerospace Research Establishment (DLR, Deutsche Forschungsanstalt fur Luft- und Raumfahrt). The objective is to develop and demonstrate system identification technology for future large space structures. Recent experiences using the Eigensystem Realization Algorithm (ERA), for modal identification of Mini-Mast, are reported. Mini-Mast is a 20 m long deployable space truss used for structural dynamics and active vibration-control research at the Langley Research Center. A comprehensive analysis of 306 frequency response functions (3 excitation forces and 102 displacement responses) was performed. Emphasis is placed on two topics of current research: (1) gaining an improved understanding of ERA performance characteristics (theory vs. practice); and (2) developing reliable techniques to improve identification results for complex experimental data. Because of nonlinearities and numerous local modes, modal identification of Mini-Mast proved to be surprisingly difficult. Methods were available, ERA, for obtaining detailed, high-confidence results.
Evaluation of the Spies™ modalities image quality
Emiliani, Esteban; Talso, Michele; Baghdadi, Mohammed; Barreiro, Aarón; Orosa, Andrea; Serviàn, Pol; Gavrilov, Pavel; Proietti, Silvia; Traxer, Olivier
2017-01-01
Introduction The Spies™ system (Karl-Storz®) was introduced into digital ureteroscopy to improve endoscopic vision. To date, there is no data to either indicate which of the Spies modalities is better for improving diagnosis and treatment procedures, nor to compare the modalities in terms of image quality. The aim of this study was to evaluate and compare the image quality of five Spies™ modalities (SM) to the standard white light in an in-vitro model. Materials and Methods Two standardized grids and 3 stones of different composition were recorded in white light and the 5SM (Clara, Chroma, Clara+Chroma), Spectra A and B) using 4 standardized aqueous scenarios. Twelve templates were done in order to simultaneously compare the same objective in the different modalities. Six urologists, five medical students, five urology residents, and five persons not involved with urology evaluated each video on a scale of 1 (very bad) to 5 (very good). Results Comparing white light to SM, subjects scored better the quality of Clara and Clara+Chroma than white light (p=0.0139 and p<0.05) and scored worse Spectra A and B (p=0.0005 and p=0.0023)). When comparing Clara to the other SM, it was ranked equivalent to Clara+Chroma (p=0.67) and obtained a higher rank than Chroma, Spectra A and B (p<0.05, p=0.0001 and p=0.0001). In the multivariate analysis mean scores were higher among urologists. Conclusion In all analyzed scenarios, the subjects ranked Clara and Clara+Chroma as the modalities with better image quality compared to white light. PMID:28338307
Overview of multi-input frequency domain modal testing methods with an emphasis on sine testing
NASA Technical Reports Server (NTRS)
Rost, Robert W.; Brown, David L.
1988-01-01
An overview of the current state of the art multiple-input, multiple-output modal testing technology is discussed. A very brief review of the current time domain methods is given. A detailed review of frequency and spatial domain methods is presented with an emphasis on sine testing.
Real-time determination of laser beam quality by modal decomposition.
Schmidt, Oliver A; Schulze, Christian; Flamm, Daniel; Brüning, Robert; Kaiser, Thomas; Schröter, Siegmund; Duparré, Michael
2011-03-28
We present a real-time method to determine the beam propagation ratio M2 of laser beams. The all-optical measurement of modal amplitudes yields M2 parameters conform to the ISO standard method. The experimental technique is simple and fast, which allows to investigate laser beams under conditions inaccessible to other methods.
Huang, Yawen; Shao, Ling; Frangi, Alejandro F
2018-03-01
Multi-modality medical imaging is increasingly used for comprehensive assessment of complex diseases in either diagnostic examinations or as part of medical research trials. Different imaging modalities provide complementary information about living tissues. However, multi-modal examinations are not always possible due to adversary factors, such as patient discomfort, increased cost, prolonged scanning time, and scanner unavailability. In additionally, in large imaging studies, incomplete records are not uncommon owing to image artifacts, data corruption or data loss, which compromise the potential of multi-modal acquisitions. In this paper, we propose a weakly coupled and geometry co-regularized joint dictionary learning method to address the problem of cross-modality synthesis while considering the fact that collecting the large amounts of training data is often impractical. Our learning stage requires only a few registered multi-modality image pairs as training data. To employ both paired images and a large set of unpaired data, a cross-modality image matching criterion is proposed. Then, we propose a unified model by integrating such a criterion into the joint dictionary learning and the observed common feature space for associating cross-modality data for the purpose of synthesis. Furthermore, two regularization terms are added to construct robust sparse representations. Our experimental results demonstrate superior performance of the proposed model over state-of-the-art methods.
Multi-Modal Intelligent Traffic Signal Systems (MMITSS) impacts assessment.
DOT National Transportation Integrated Search
2015-08-01
The study evaluates the potential network-wide impacts of the Multi-Modal Intelligent Transportation Signal System (MMITSS) based on a field data analysis utilizing data collected from a MMITSS prototype and a simulation analysis. The Intelligent Tra...
Langen, Carolyn D; White, Tonya; Ikram, M Arfan; Vernooij, Meike W; Niessen, Wiro J
2015-01-01
Structural and functional brain connectivity are increasingly used to identify and analyze group differences in studies of brain disease. This study presents methods to analyze uni- and bi-modal brain connectivity and evaluate their ability to identify differences. Novel visualizations of significantly different connections comparing multiple metrics are presented. On the global level, "bi-modal comparison plots" show the distribution of uni- and bi-modal group differences and the relationship between structure and function. Differences between brain lobes are visualized using "worm plots". Group differences in connections are examined with an existing visualization, the "connectogram". These visualizations were evaluated in two proof-of-concept studies: (1) middle-aged versus elderly subjects; and (2) patients with schizophrenia versus controls. Each included two measures derived from diffusion weighted images and two from functional magnetic resonance images. The structural measures were minimum cost path between two anatomical regions according to the "Statistical Analysis of Minimum cost path based Structural Connectivity" method and the average fractional anisotropy along the fiber. The functional measures were Pearson's correlation and partial correlation of mean regional time series. The relationship between structure and function was similar in both studies. Uni-modal group differences varied greatly between connectivity types. Group differences were identified in both studies globally, within brain lobes and between regions. In the aging study, minimum cost path was highly effective in identifying group differences on all levels; fractional anisotropy and mean correlation showed smaller differences on the brain lobe and regional levels. In the schizophrenia study, minimum cost path and fractional anisotropy showed differences on the global level and within brain lobes; mean correlation showed small differences on the lobe level. Only fractional anisotropy and mean correlation showed regional differences. The presented visualizations were helpful in comparing and evaluating connectivity measures on multiple levels in both studies.
ERIC Educational Resources Information Center
Criado, Raquel; Sanchez, Aquilino
2009-01-01
The goal of this paper is to verify up to what point ELT textbooks used in Spanish educational settings comply with the official regulations prescribed, which fully advocate the Communicative Language Teaching Method (CLT). For that purpose, seven representative coursebooks of different educational levels and modalities in Spain--secondary, upper…
NASA Astrophysics Data System (ADS)
Fein, Howard
1999-03-01
Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of aerodynamic control and airfoil structures for advanced aircraft has always required advanced instrumentation for data collection in either actual flight test or wind-tunnel simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data on the ground in a noninvasive environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced exotic metal control structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of exotic metal structures for high stress applications. Advanced Titanium alloy is a significant example of these sorts of materials which has found continually increased use in advanced aerodynamic, undersea, and other highly mobil platforms. Aircraft applications in particular must consider environments where extremes in vibration and impulsive mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of structures made with such advanced materials. Holographic techniques are nondestructive, real- time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as operational parameters of structural components fabricated from advanced and exotic materials. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects. Deriving such information can be crucial to the determination of mechanical configurations and designs, as well as critical operational parameters of structural components fabricated from advanced and exotic materials.
Hallas, Peter; Folkestad, Lars; Brabrand, Mikkel
2011-12-01
Participants in advanced resuscitation courses are often expected to learn to perform intraosseous access (IO). But how many learning modalities are needed to achieve procedural confidence in IO? We distributed an online questionnaire to members of emergency medicine, paediatric and anaesthesiology societies in Scandinavia. The responders without real-life experience with IO (n=322) were classified as 'not confident' or 'confident' in IO. Of total responders 22.8% without training felt confident. Confidence increased to 74.8% after one training modality, 87.9% after two modalities, 98.7% after three modalities and 100% after four modalities (P<0.0001). Of total responders 89.5% who had 'workshop or similar training with hands-on experience' as sole teaching method was confident. Confidence in IO increases with the number of learning modalities. 'Workshop or similar training with hands-on experience' as single training modality seemed as effective as the combination of two modalities.
TACT: A Set of MSC/PATRAN- and MSC/NASTRAN- based Modal Correlation Tools
NASA Technical Reports Server (NTRS)
Marlowe, Jill M.; Dixon, Genevieve D.
1998-01-01
This paper describes the functionality and demonstrates the utility of the Test Analysis Correlation Tools (TACT), a suite of MSC/PATRAN Command Language (PCL) tools which automate the process of correlating finite element models to modal survey test data. The initial release of TACT provides a basic yet complete set of tools for performing correlation totally inside the PATRAN/NASTRAN environment. Features include a step-by-step menu structure, pre-test accelerometer set evaluation and selection, analysis and test result export/import in Universal File Format, calculation of frequency percent difference and cross-orthogonality correlation results using NASTRAN, creation and manipulation of mode pairs, and five different ways of viewing synchronized animations of analysis and test modal results. For the PATRAN-based analyst, TACT eliminates the repetitive, time-consuming and error-prone steps associated with transferring finite element data to a third-party modal correlation package, which allows the analyst to spend more time on the more challenging task of model updating. The usefulness of this software is presented using a case history, the correlation for a NASA Langley Research Center (LaRC) low aspect ratio research wind tunnel model. To demonstrate the improvements that TACT offers the MSC/PATRAN- and MSC/DIASTRAN- based structural analysis community, a comparison of the modal correlation process using TACT within PATRAN versus external third-party modal correlation packages is presented.
Modal Identification in an Automotive Multi-Component System Using HS 3D-DIC
López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.
2018-01-01
The modal characterization of automotive lighting systems becomes difficult using sensors due to the light weight of the elements which compose the component as well as the intricate access to allocate them. In experimental modal analysis, high speed 3D digital image correlation (HS 3D-DIC) is attracting the attention since it provides full-field contactless measurements of 3D displacements as main advantage over other techniques. Different methodologies have been published that perform modal identification, i.e., natural frequencies, damping ratios, and mode shapes using the full-field information. In this work, experimental modal analysis has been performed in a multi-component automotive lighting system using HS 3D-DIC. Base motion excitation was applied to simulate operating conditions. A recently validated methodology has been employed for modal identification using transmissibility functions, i.e., the transfer functions from base motion tests. Results make it possible to identify local and global behavior of the different elements of injected polymeric and metallic materials. PMID:29401725
Modified independent modal space control method for active control of flexible systems
NASA Technical Reports Server (NTRS)
Baz, A.; Poh, S.
1987-01-01
A modified independent modal space control (MIMSC) method is developed for designing active vibration control systems for large flexible structures. The method accounts for the interaction between the controlled and residual modes. It incorporates also optimal placement procedures for selecting the optimal locations of the actuators in the structure in order to minimize the structural vibrations as well as the actuation energy. The MIMSC method relies on an important feature which is based on time sharing of a small number of actuators, in the modal space, to control effectively a large number of modes. Numerical examples are presented to illustrate the application of the method to generic flexible systems. The results obtained suggest the potential of the devised method in designing efficient active control systems for large flexible structures.
Dominant modal decomposition method
NASA Astrophysics Data System (ADS)
Dombovari, Zoltan
2017-03-01
The paper deals with the automatic decomposition of experimental frequency response functions (FRF's) of mechanical structures. The decomposition of FRF's is based on the Green function representation of free vibratory systems. After the determination of the impulse dynamic subspace, the system matrix is formulated and the poles are calculated directly. By means of the corresponding eigenvectors, the contribution of each element of the impulse dynamic subspace is determined and the sufficient decomposition of the corresponding FRF is carried out. With the presented dominant modal decomposition (DMD) method, the mode shapes, the modal participation vectors and the modal scaling factors are identified using the decomposed FRF's. Analytical example is presented along with experimental case studies taken from machine tool industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lei; Xue, Junpeng; Gao, Bo
The correspondence residuals due to the discrepancy between the reality and the shape model in use are analyzed for the modal phase measuring deflectometry. Slope residuals are calculated from these discrepancies between the modal estimation and practical acquisition. Since the shape mismatch mainly occurs locally, zonal integration methods which are good at dealing with local variations are used to reconstruct the height residual for compensation. Finally, results of both simulation and experiment indicate the proposed height compensation method is effective, which can be used as a post-complement for the modal phase measuring deflectometry.
A Hybrid Sensing Approach for Pure and Adulterated Honey Classification
Subari, Norazian; Saleh, Junita Mohamad; Shakaff, Ali Yeon Md; Zakaria, Ammar
2012-01-01
This paper presents a comparison between data from single modality and fusion methods to classify Tualang honey as pure or adulterated using Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) statistical classification approaches. Ten different brands of certified pure Tualang honey were obtained throughout peninsular Malaysia and Sumatera, Indonesia. Various concentrations of two types of sugar solution (beet and cane sugar) were used in this investigation to create honey samples of 20%, 40%, 60% and 80% adulteration concentrations. Honey data extracted from an electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR) were gathered, analyzed and compared based on fusion methods. Visual observation of classification plots revealed that the PCA approach able to distinct pure and adulterated honey samples better than the LDA technique. Overall, the validated classification results based on FTIR data (88.0%) gave higher classification accuracy than e-nose data (76.5%) using the LDA technique. Honey classification based on normalized low-level and intermediate-level FTIR and e-nose fusion data scored classification accuracies of 92.2% and 88.7%, respectively using the Stepwise LDA method. The results suggested that pure and adulterated honey samples were better classified using FTIR and e-nose fusion data than single modality data. PMID:23202033
MR and CT image fusion for postimplant analysis in permanent prostate seed implants.
Polo, Alfredo; Cattani, Federica; Vavassori, Andrea; Origgi, Daniela; Villa, Gaetano; Marsiglia, Hugo; Bellomi, Massimo; Tosi, Giampiero; De Cobelli, Ottavio; Orecchia, Roberto
2004-12-01
To compare the outcome of two different image-based postimplant dosimetry methods in permanent seed implantation. Between October 1999 and October 2002, 150 patients with low-risk prostate carcinoma were treated with (125)I and (103)Pd in our institution. A CT-MRI image fusion protocol was used in 21 consecutive patients treated with exclusive brachytherapy. The accuracy and reproducibility of the method was calculated, and then the CT-based dosimetry was compared with the CT-MRI-based dosimetry using the dose-volume histogram (DVH) related parameters recommended by the American Brachytherapy Society and the American Association of Physicists in Medicine. Our method for CT-MRI image fusion was accurate and reproducible (median shift <1 mm). Differences in prostate volume were found, depending on the image modality used. Quality assurance DVH-related parameters strongly depended on the image modality (CT vs. CT-MRI): V(100) = 82% vs. 88%, p < 0.05. D(90) = 96% vs. 115%, p < 0.05. Those results depend on the institutional implant technique and reflect the importance of lowering inter- and intraobserver discrepancies when outlining prostate and organs at risk for postimplant dosimetry. Computed tomography-MRI fused images allow accurate determination of prostate size, significantly improving the dosimetric evaluation based on DVH analysis. This provides a consistent method to judge a prostate seed implant's quality.
Modal sound transmission loss of a single leaf panel: Asymptotic solutions.
Wang, Chong
2015-12-01
In a previously published paper [C. Wang, J. Acoust. Soc. Am. 137(6), 3514-3522 (2015)], the modal sound transmission coefficients of a single leaf panel were discussed with regard to the inter-modal coupling effects. By incorporating such effect into the equivalent modal radiation impedance, which is directly related to the modal sound transmission coefficient of each mode, the overall sound transmission loss for both normal and randomized sound incidences was computed through a simple modal superposition. Benefiting from the analytical expressions of the equivalent modal impedance and modal transmission coefficients, in this paper, behaviors of modal sound transmission coefficients in several typical frequency ranges are discussed in detail. Asymptotic solutions are also given for the panels with relatively low bending stiffnesses, for which the sound transmission loss has been assumed to follow the mass law of a limp panel. Results are also compared to numerical analysis and the renowned mass law theories.
An Evaluation of Material Properties Using EMA and FEM
NASA Astrophysics Data System (ADS)
Ďuriš, Rastislav; Labašová, Eva
2016-12-01
The main goal of the paper is the determination of material properties from experimentally measured natural frequencies. A combination of two approaches to structural dynamics testing was applied: the experimental measurements of natural frequencies were performed by Experimental Modal Analysis (EMA) and the numerical simulations, were carried out by Finite Element Analysis (FEA). The optimization methods were used to determine the values of density and elasticity modulus of a specimen based on the experimental results.
Multi-body Dynamic Contact Analysis Tool for Transmission Design
2003-04-01
frequencies were computed in COSMIC NASTRAN, and were validated against the published experimental modal analysis [17]. • Using assumed time domain... modal superposition. • Results from the structural analysis (mode shapes or forced response) were converted into IDEAS universal format (dataset 55...ARMY RESEARCH LABORATORY Multi-body Dynamic Contact Analysis Tool for Transmission Design SBIR Phase II Final Report by
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; MacMurdy, Dale E.; Kapania, Rakesh K.
1994-01-01
Strong interactions between flow about an aircraft wing and the wing structure can result in aeroelastic phenomena which significantly impact aircraft performance. Time-accurate methods for solving the unsteady Navier-Stokes equations have matured to the point where reliable results can be obtained with reasonable computational costs for complex non-linear flows with shock waves, vortices and separations. The ability to combine such a flow solver with a general finite element structural model is key to an aeroelastic analysis in these flows. Earlier work involved time-accurate integration of modal structural models based on plate elements. A finite element model was developed to handle three-dimensional wing boxes, and incorporated into the flow solver without the need for modal analysis. Static condensation is performed on the structural model to reduce the structural degrees of freedom for the aeroelastic analysis. Direct incorporation of the finite element wing-box structural model with the flow solver requires finding adequate methods for transferring aerodynamic pressures to the structural grid and returning deflections to the aerodynamic grid. Several schemes were explored for handling the grid-to-grid transfer of information. The complex, built-up nature of the wing-box complicated this transfer. Aeroelastic calculations for a sample wing in transonic flow comparing various simple transfer schemes are presented and discussed.
ERIC Educational Resources Information Center
Sirbu-Dumitrescu, Domnita
1988-01-01
Spanish modal verbs may express necessity, obligation, probability, and possibility, in either their personal or impersonal modes. Analysis is based on examples of contemporary Madrid speech. Four modals, "poder,""deber (de)," tener que," and "haber que," are placed within a tripartite structure defined by…
Subsonic flutter analysis addition to NASTRAN. [for use with CDC 6000 series digital computers
NASA Technical Reports Server (NTRS)
Doggett, R. V., Jr.; Harder, R. L.
1973-01-01
A subsonic flutter analysis capability has been developed for NASTRAN, and a developmental version of the program has been installed on the CDC 6000 series digital computers at the Langley Research Center. The flutter analysis is of the modal type, uses doublet lattice unsteady aerodynamic forces, and solves the flutter equations by using the k-method. Surface and one-dimensional spline functions are used to transform from the aerodynamic degrees of freedom to the structural degrees of freedom. Some preliminary applications of the method to a beamlike wing, a platelike wing, and a platelike wing with a folded tip are compared with existing experimental and analytical results.
Research on damping properties optimization of variable-stiffness plate
NASA Astrophysics Data System (ADS)
Wen-kai, QI; Xian-tao, YIN; Cheng, SHEN
2016-09-01
This paper investigates damping optimization design of variable-stiffness composite laminated plate, which means fibre paths can be continuously curved and fibre angles are distinct for different regions. First, damping prediction model is developed based on modal dissipative energy principle and verified by comparing with modal testing results. Then, instead of fibre angles, the element stiffness and damping matrixes are translated to be design variables on the basis of novel Discrete Material Optimization (DMO) formulation, thus reducing the computation time greatly. Finally, the modal damping capacity of arbitrary order is optimized using MMA (Method of Moving Asymptotes) method. Meanwhile, mode tracking technique is employed to investigate the variation of modal shape. The convergent performance of interpolation function, first order specific damping capacity (SDC) optimization results and variation of modal shape in different penalty factor are discussed. The results show that the damping properties of the variable-stiffness plate can be increased by 50%-70% after optimization.
High Sensitive Methods for Health Monitoring of Compressor Blades and Fatigue Detection
Witoś, Mirosław
2013-01-01
The diagnostic and research aspects of compressor blade fatigue detection have been elaborated in the paper. The real maintenance and overhaul problems and characteristic of different modes of metal blade fatigue (LCF, HCF, and VHCF) have been presented. The polycrystalline defects and impurities influencing the fatigue, along with their related surface finish techniques, are taken into account. The three experimental methods of structural health assessment are considered. The metal magnetic memory (MMM), experimental modal analysis (EMA) and tip timing (TTM) methods provide information on the damage of diagnosed objects, for example, compressor blades. Early damage symptoms, that is, magnetic and modal properties of material strengthening and weakening phases (change of local dislocation density and grain diameter, increase of structural and magnetic anisotropy), have been described. It has been proven that the shape of resonance characteristic gives abilities to determine if fatigue or a blade crack is concerned. The capabilities of the methods for steel and titanium alloy blades have been illustrated in examples from active and passive experiments. In the conclusion, the MMM, EMA, and TTM have been verified, and the potential for reliable diagnosis of the compressor blades using this method has been confirmed. PMID:24191135
An automatic data system for vibration modal tuning and evaluation
NASA Technical Reports Server (NTRS)
Salyer, R. A.; Jung, E. J., Jr.; Huggins, S. L.; Stephens, B. L.
1975-01-01
A digitally based automatic modal tuning and analysis system developed to provide an operational capability beginning at 0.1 hertz is described. The elements of the system, which provides unique control features, maximum operator visibility, and rapid data reduction and documentation, are briefly described; and the operational flow is discussed to illustrate the full range of capabilities and the flexibility of application. The successful application of the system to a modal survey of the Skylab payload is described. Information about the Skylab test article, coincident-quadrature analysis of modal response data, orthogonality, and damping calculations is included in the appendixes. Recommendations for future application of the system are also made.
NASA Technical Reports Server (NTRS)
Jones, R. L.
1984-01-01
An interactive digital computer program for modal analysis and gain estimation for eigensystem synthesis was written. Both mathematical and operation considerations are described; however, the mathematical presentation is limited to those concepts essential to the operational capability of the program. The program is capable of both modal and spectral synthesis of multi-input control systems. It is user friendly, has scratchpad capability and dynamic memory, and can be used to design either state or output feedback systems.
Three-Dimensional Velocity Field De-Noising using Modal Projection
NASA Astrophysics Data System (ADS)
Frank, Sarah; Ameli, Siavash; Szeri, Andrew; Shadden, Shawn
2017-11-01
PCMRI and Doppler ultrasound are common modalities for imaging velocity fields inside the body (e.g. blood, air, etc) and PCMRI is increasingly being used for other fluid mechanics applications where optical imaging is difficult. This type of imaging is typically applied to internal flows, which are strongly influenced by domain geometry. While these technologies are evolving, it remains that measured data is noisy and boundary layers are poorly resolved. We have developed a boundary modal analysis method to de-noise 3D velocity fields such that the resulting field is divergence-free and satisfies no-slip/no-penetration boundary conditions. First, two sets of divergence-free modes are computed based on domain geometry. The first set accounts for flow through ``truncation boundaries'', and the second set of modes has no-slip/no-penetration conditions imposed on all boundaries. The modes are calculated by minimizing the velocity gradient throughout the domain while enforcing a divergence-free condition. The measured velocity field is then projected onto these modes using a least squares algorithm. This method is demonstrated on CFD simulations with artificial noise. Different degrees of noise and different numbers of modes are tested to reveal the capabilities of the approach. American Heart Association Award 17PRE33660202.
NASA Astrophysics Data System (ADS)
Adi Aizudin Bin Radin Nasirudin, Radin; Meier, Reinhard; Ahari, Carmen; Sievert, Matti; Fiebich, Martin; Rummeny, Ernst J.; No"l, Peter B.
2011-03-01
Optical imaging (OI) is a relatively new method in detecting active inflammation of hand joints of patients suffering from rheumatoid arthritis (RA). With the high number of people affected by this disease especially in western countries, the availability of OI as an early diagnostic imaging method is clinically highly relevant. In this paper, we present a newly in-house developed OI analyzing tool and a clinical evaluation study. Our analyzing tool extends the capability of existing OI tools. We include many features in the tool, such as region-based image analysis, hyper perfusion curve analysis, and multi-modality image fusion to aid clinicians in localizing and determining the intensity of inflammation in joints. Additionally, image data management options, such as the full integration of PACS/RIS, are included. In our clinical study we demonstrate how OI facilitates the detection of active inflammation in rheumatoid arthritis. The preliminary clinical results indicate a sensitivity of 43.5%, a specificity of 80.3%, an accuracy of 65.7%, a positive predictive value of 76.6%, and a negative predictive value of 64.9% in relation to clinical results from MRI. The accuracy of inflammation detection serves as evidence to the potential of OI as a useful imaging modality for early detection of active inflammation in patients with rheumatoid arthritis. With our in-house developed tool we extend the usefulness of OI imaging in the clinical arena. Overall, we show that OI is a fast, inexpensive, non-invasive and nonionizing yet highly sensitive and accurate imaging modality.-
Parity–time-symmetric circular Bragg lasers: a proposal and analysis
Gu, Jiahua; Xi, Xiang; Ma, Jingwen; Yu, Zejie; Sun, Xiankai
2016-01-01
We propose a new type of semiconductor lasers by implementing the concept of parity–time symmetry in a two-dimensional circular Bragg grating structure, where both the real and imaginary parts of the refractive index are modulated along the radial direction. The laser modal properties are analyzed with a transfer-matrix method and are verified with numerical simulation of a practical design. Compared with conventional distributed-feedback lasers with modulation of only the real part of refractive index, the parity–time-symmetric circular Bragg lasers feature reduced threshold and enhanced modal discrimination, which in combination with the intrinsic circularly symmetric, large emission aperture are clear advantages in applications that require mode-hop-free, high-power, single-mode laser operation. PMID:27892933
NASA Technical Reports Server (NTRS)
Barnett, Alan R.; Ibrahim, Omar M.; Abdallah, Ayman A.; Sullivan, Timothy L.
1993-01-01
By utilizing MSC/NASTRAN DMAP (Direct Matrix Abstraction Program) in an existing NASA Lewis Research Center coupled loads methodology, solving modal equations of motion with initial conditions is possible using either coupled (Newmark-Beta) or uncoupled (exact mode superposition) integration available within module TRD1. Both the coupled and newly developed exact mode superposition methods have been used to perform transient analyses of various space systems. However, experience has shown that in most cases, significant time savings are realized when the equations of motion are integrated using the uncoupled solver instead of the coupled solver. Through the results of a real-world engineering analysis, advantages of using the exact mode superposition methodology are illustrated.
Missing Modality Transfer Learning via Latent Low-Rank Constraint.
Ding, Zhengming; Shao, Ming; Fu, Yun
2015-11-01
Transfer learning is usually exploited to leverage previously well-learned source domain for evaluating the unknown target domain; however, it may fail if no target data are available in the training stage. This problem arises when the data are multi-modal. For example, the target domain is in one modality, while the source domain is in another. To overcome this, we first borrow an auxiliary database with complete modalities, then consider knowledge transfer across databases and across modalities within databases simultaneously in a unified framework. The contributions are threefold: 1) a latent factor is introduced to uncover the underlying structure of the missing modality from the known data; 2) transfer learning in two directions allows the data alignment between both modalities and databases, giving rise to a very promising recovery; and 3) an efficient solution with theoretical guarantees to the proposed latent low-rank transfer learning algorithm. Comprehensive experiments on multi-modal knowledge transfer with missing target modality verify that our method can successfully inherit knowledge from both auxiliary database and source modality, and therefore significantly improve the recognition performance even when test modality is inaccessible in the training stage.
To increase controllability of a large flexible antenna by modal optimization
NASA Astrophysics Data System (ADS)
Wang, Feng; Wang, Pengpeng; Jiang, Wenjian
2017-12-01
Large deployable antennas are widely used in aerospace engineering to meet the envelop limit of rocket fairing. The high flexibility and low damping of antenna has proposed critical requirement not only for stability control of the antenna itself, but also for attitude control of the satellite. This paper aims to increase controllability of a large flexible antenna by modal optimization. Firstly, Sensitivity analysis of antenna modal frequencies to stiffness of support structure and stiffness of scanning mechanism are conducted respectively. Secondly, Modal simulation results of antenna frequencies are given, influences of scanning angles on moment of inertia and modal frequencies are evaluated, and modal test is carried out to validate the simulation results. All the simulation and test results show that, after modal optimization the modal characteristic of the large deployable antenna meets the controllability requirement well.
Modality and Causation in Serbian Dative Anticausatives: A Crosslinguistic Perspective
ERIC Educational Resources Information Center
Ilic, Tatjana
2013-01-01
In this dissertation I provide a principled, unified account of modality and causation in Serbian dative anticausatives using a typological, cognitive approach. This analysis is set within a larger claim that the causative and modal meanings crosslinguistically arise in the same morphosyntactic environments, indicating a shared conceptual base…
Modal parameter identification of a CMUT membrane using response data only
NASA Astrophysics Data System (ADS)
Lardiès, Joseph; Bourbon, Gilles; Moal, Patrice Le; Kacem, Najib; Walter, Vincent; Le, Thien-Phu
2018-03-01
Capacitive micromachined ultrasonic transducers (CMUTs) are microelectromechanical systems used for the generation of ultrasounds. The fundamental element of the transducer is a clamped thin metallized membrane that vibrates under voltage variations. To control such oscillations and to optimize its dynamic response it is necessary to know the modal parameters of the membrane such as resonance frequency, damping and stiffness coefficients. The purpose of this work is to identify these parameters using only the time data obtained from the membrane center displacement. Dynamic measurements are conducted in time domain and we use two methods to identify the modal parameters: a subspace method based on an innovation model of the state-space representation and the continuous wavelet transform method based on the use of the ridge of the wavelet transform of the displacement. Experimental results are presented showing the effectiveness of these two procedures in modal parameter identification.
Robust Multimodal Dictionary Learning
Cao, Tian; Jojic, Vladimir; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc
2014-01-01
We propose a robust multimodal dictionary learning method for multimodal images. Joint dictionary learning for both modalities may be impaired by lack of correspondence between image modalities in training data, for example due to areas of low quality in one of the modalities. Dictionaries learned with such non-corresponding data will induce uncertainty about image representation. In this paper, we propose a probabilistic model that accounts for image areas that are poorly corresponding between the image modalities. We cast the problem of learning a dictionary in presence of problematic image patches as a likelihood maximization problem and solve it with a variant of the EM algorithm. Our algorithm iterates identification of poorly corresponding patches and re-finements of the dictionary. We tested our method on synthetic and real data. We show improvements in image prediction quality and alignment accuracy when using the method for multimodal image registration. PMID:24505674
NASA Technical Reports Server (NTRS)
Perronnet, M.; Zolensky, M. E.; Gounelle, M.; Schwandt, C. S.
2007-01-01
CR carbonaceous chondrites are of the major interest since they contain one of the most primitive organic matters. However, aqueous alteration has more or less overprinted their original features in a way that needed to be assessed. That was done in the present study by comparing the mineralogy of the most altered CR1 chondrite, GRO 95577, to a less altered CR2, Renazzo. Their modal analyses were achieved thanks to a new method, based on X-ray elemental maps acquired on electron microprobe, and on IDL image treatment. It allowed the collection of new data on the composition of Renazzo and confirmed the classification of GRO 95577 as a CR1. New alteration products for CRs, vermiculite and clinochlore, were observed. The homogeneity of the Fe-poor clays in the CR1 and the distinctive matrix composition in the two chondrites suggest a wide-range of aqueous alteration on CRs. The preservation of the outlines of the chondrules in GRO 95577 and the elemental transfers of Al, Fe and Ca throughout the chondrule and of Fe and S from the matrix to the chondrule favor the idea of an asteroidal location of the aqueous alteration. From their mineralogical descriptions and modal abundances, the element repartitions in Renazzo and GRO 95577 were computed. It indicates a possible relationship between these two chondrites via an isochemical alteration process. Knowing the chemical reactions that occurred during the alteration, it was thus possible to decipher the mineralogical modal abundances in the unaltered CR body.
NASA Technical Reports Server (NTRS)
Perronnet, M.; Zolensky, M. E.; Gounelle, M.; Schwandt, C. S.
2007-01-01
carbonaceous chondrites are of the major interest since they contain one of the most primitive organic matters. However, aqueous alteration has more or less overprinted their original features in a way that needed to be assessed. That was done in the present study by comparing the mineralogy of the most altered CR1 chondrite, GRO 95577, to a less altered CR2, Renazzo. Their modal analyses were achieved thanks to a new method, based on X-ray elemental maps acquired on electron microprobe, and on IDL image treatment. It allowed the collection of new data on the composition of Renazzo and confirmed the classification of GRO 95577 as a CR1. New alteration products for CRs, vermiculite and clinochlore, were observed. The homogeneity of the Fe-poor clays in the CR1 and the distinctive matrix composition in the two chondrites suggest a wide-range of aqueous alteration on CRs. The preservation of the outlines of the chondrules in GRO 95577 and the elemental transfers of Al, Fe and Ca throughout the chondrule and of Fe and S from the matrix to the chondrule favor the idea of an asteroidal location of the aqueous alteration. From their mineralogical descriptions and modal abundances, the element repartitions in Renazzo and GRO 95577 were computed. It indicates a possible relationship between these two chondrites via an isochemical alteration process. Knowing the chemical reactions that occurred during the alteration, it was thus possible to decipher the mineralogical modal abundances in the unaltered CR body.
Sustained Attention in Children with Primary Language Impairment: A Meta-Analysis
Ebert, Kerry Danahy; Kohnert, Kathryn
2014-01-01
Purpose This study provides a meta-analysis of the difference between children with primary or specific language impairment (LI) and their typically developing peers on tasks of sustained attention. The meta-analysis seeks to determine if children with LI demonstrate subclinical deficits in sustained attention and, if so, under what conditions. Methods Articles that reported empirical data from the performance of children with LI, in comparison to typically developing peers, on a task assessing sustained attention were considered for inclusion. Twenty-eight effect sizes were included in the meta-analysis. Two moderator analyses addressed the effects of stimulus modality and ADHD exclusion. In addition, reaction time outcomes and the effects of task variables were summarized qualitatively. Results The meta-analysis supports the existence of sustained attention deficits in children with LI in both auditory and visual modalities, as demonstrated by reduced accuracy compared to typically developing peers. Larger effect sizes are found in tasks that use auditory and linguistic stimuli than in studies that use visual stimuli. Conclusions Future research should consider the role that sustained attention weaknesses play in LI, as well as the implications for clinical and research assessment tasks. Methodological recommendations are summarized. PMID:21646419
Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study
Yu, Qingbao; Wu, Lei; Bridwell, David A.; Erhardt, Erik B.; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D.
2016-01-01
The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics. PMID:27733821
NASA Astrophysics Data System (ADS)
Steinberg, Idan; Gannot, Israel; Eyal, Avishay
2015-03-01
Osteoporosis is a widespread disease that has a catastrophic impact on patient's lives and overwhelming related healthcare costs. In recent works, we have developed a multi-spectral, frequency domain photoacoustic method for the evaluation of bone pathologies. This method has great advantages over pure ultrasonic or optical methods as it provides both molecular information from the bone absorption spectrum and bone mechanical status from the characteristics of the ultrasound propagation. These characteristics include both the Speed of Sound (SOS) and Broadband Ultrasonic Attenuation (BUA). To test the method's quantitative predictions, we have constructed a combined ultrasound and photoacoustic setup. Here, we experimentally present a dual modality system, and compares between the methods on bone samples in-vitro. The differences between the two modalities are shown to provide valuable insight into the bone structure and functional status.
Automatic detection of kidney in 3D pediatric ultrasound images using deep neural networks
NASA Astrophysics Data System (ADS)
Tabrizi, Pooneh R.; Mansoor, Awais; Biggs, Elijah; Jago, James; Linguraru, Marius George
2018-02-01
Ultrasound (US) imaging is the routine and safe diagnostic modality for detecting pediatric urology problems, such as hydronephrosis in the kidney. Hydronephrosis is the swelling of one or both kidneys because of the build-up of urine. Early detection of hydronephrosis can lead to a substantial improvement in kidney health outcomes. Generally, US imaging is a challenging modality for the evaluation of pediatric kidneys with different shape, size, and texture characteristics. The aim of this study is to present an automatic detection method to help kidney analysis in pediatric 3DUS images. The method localizes the kidney based on its minimum volume oriented bounding box) using deep neural networks. Separate deep neural networks are trained to estimate the kidney position, orientation, and scale, making the method computationally efficient by avoiding full parameter training. The performance of the method was evaluated using a dataset of 45 kidneys (18 normal and 27 diseased kidneys diagnosed with hydronephrosis) through the leave-one-out cross validation method. Quantitative results show the proposed detection method could extract the kidney position, orientation, and scale ratio with root mean square values of 1.3 +/- 0.9 mm, 6.34 +/- 4.32 degrees, and 1.73 +/- 0.04, respectively. This method could be helpful in automating kidney segmentation for routine clinical evaluation.
Comparison of gesture and conventional interaction techniques for interventional neuroradiology.
Hettig, Julian; Saalfeld, Patrick; Luz, Maria; Becker, Mathias; Skalej, Martin; Hansen, Christian
2017-09-01
Interaction with radiological image data and volume renderings within a sterile environment is a challenging task. Clinically established methods such as joystick control and task delegation can be time-consuming and error-prone and interrupt the workflow. New touchless input modalities may have the potential to overcome these limitations, but their value compared to established methods is unclear. We present a comparative evaluation to analyze the value of two gesture input modalities (Myo Gesture Control Armband and Leap Motion Controller) versus two clinically established methods (task delegation and joystick control). A user study was conducted with ten experienced radiologists by simulating a diagnostic neuroradiological vascular treatment with two frequently used interaction tasks in an experimental operating room. The input modalities were assessed using task completion time, perceived task difficulty, and subjective workload. Overall, the clinically established method of task delegation performed best under the study conditions. In general, gesture control failed to exceed the clinical input approach. However, the Myo Gesture Control Armband showed a potential for simple image selection task. Novel input modalities have the potential to take over single tasks more efficiently than clinically established methods. The results of our user study show the relevance of task characteristics such as task complexity on performance with specific input modalities. Accordingly, future work should consider task characteristics to provide a useful gesture interface for a specific use case instead of an all-in-one solution.
Modal analysis on resonant excitation of two-dimensional waveguide grating filters
NASA Astrophysics Data System (ADS)
Zhou, Jianyu; Sang, Tian; Li, Junlang; Wang, Rui; Wang, La; Wang, Benxin; Wang, Yueke
2017-12-01
Modal analysis on resonant excitation of two-dimensional (2-D) waveguide grating filters (WGFs) is proposed. It is shown that the 2-D WGFs can support the excitation of a resonant pair, and the locations of the resonant pair arising from the TE and TM guided-mode resonances (GMRs) can be estimated accurately based on the modal analysis. Multichannel filtering using the resonant pair is investigated, and the antireflection (AR) design of the 2-D WGFs is also studied. It is shown that the reflection sideband can be reduced by placing an AR layer on the bottom of the homogeneous layer, and the well-shaped reflection spectrum with near-zero sideband reflection can be achieved by using the double-faced AR design. By merely increasing the thickness of the homogeneous layer with other parameters maintained, the spectrally dense comb-like filters with good unpolarized filtering features can be achieved. The proposed modal analysis can be extended to study the resonant excitation of 2-D periodic nanoarrays with diverse surface profiles.
Mental Health Disorder Therapeutic Modalities Modified for the GMS
Sumneangsanor, Tipsuda; Vuthiarpa, Sararud; Somprasert, Chomchueun
2017-01-01
Background: Mental health disorders can affect physical and psychological behaviors. The people of the Greater Mekong Subregion (GMS) have a high risk of mental health disorders, such as depression, stress, and substance abuse be-cause the people in this region are trafficked for forced sex work and various forms of forced labor. In these situations, vic-tims often endure violence and abuse from trafficking recruiters, employers, and other individuals. The purposes of this study were to identify the elements characterizing mental health disorders, especially in terms of depression, stress, and sub-stance abuse, and to identify the treatment modalities for mental health disorders in the GMS. Methods: The researcher undertook a comparative analysis of the literature, reviews of epidemiological studies and mental disorder therapies, and overviews of previous research studies, were used to generate a synthesis of the existing knowledge of the mental disorder therapeutic modalities. Regarding the search methods, the data from the electronic databases PubMed, PsycINFO, Dynamed and ScienceDirect were supplemented with a manual reference search covering relevant studies from 2005 to 2016. Results: Thirty-one papers were included in the review of elements characterizing mental health disorders, especially in terms of depression, stress, and substance abuse, and to identify the treatment modalities for mental health disorders in the GMS. Nine papers defined characterizing mental health disorders, in terms of depression, stress, and substance abuse. Twenty-two papers showed the treatment modalities for mental health disorders that the treatment was effective, these in-cluded pharmacological treatments and psychological treatments, such as mindfulness-based cognitive therapy, biofeedback, and music therapy. Useful guidance can be provided for the prevention and treatment of mental health disorders, and for the care of people in the Greater Mekong Subregion. Conclusion: The finding of this review confirms the therapeutic modalities can provide useful guidance for the prevention and treatment of mental health disorders and the care of the people in the Greater Mekong Sub-region. In addition, the effective interventions should be tested regarding their suitability for the socio-cultural context in the Greater Mekong Subregion. PMID:29657562
Multi-Body Dynamic Contact Analysis. Tool for Transmission Design SBIR Phase II Final Report
2003-04-01
shapes and natural frequencies were computed in COSMIC NASTRAN, and were validated against the published experimental modal analysis [17]. • Using...COSMIC NASTRAN via modal superposition. • Results from the structural analysis (mode shapes or forced response) were converted into IDEAS universal...ARMY RESEARCH LABORATORY Multi-body Dynamic Contact Analysis Tool for Transmission Design SBIR Phase II Final Report by
Azari, S; Mokhtari, S; Mousavi, H; Mohammadi, M; Aliyari, A; Salimi, M; Azari, GH
2015-01-01
Introduction: interpersonal communication skills are required for training and represent one of the most significant parts concerning the character of student learning. In another idea, learning is a constant method and learners favor a position of knowledge forms according to their character and individual practices. Evaluate the correlation between the learning methods and interpersonal conversation abilities of the nursing undergraduate in Medical Sciences Tehran University in 2012 was the purpose of this research. Methods: In this regular detailed cross-sectional analysis, 361 students from the School of Nursing and Midwifery were chosen during a census method. The information collection instruments were regulated, giving a questionnaire called Interpersonal Communication Skills Standards exam and VARK Learning Styles questionnaire. Data was examined by SPSS application (18th edition) by using Mann-Whitney and Kruskal-Wallis test. Results: 320 questionnaires were finished. 60.6% of the members were females. The average number of the students’ conversation abilities level was 101.91 ± 10.35. More than half of the samples (58.8%) preferred multi-modal learning styles (Bi-Tri and Quad Modals) and 41.2% of the students preferred single modal learning styles. There were no significant differences between the Interpersonal Communication Skills and the learning styles (P= 0.46). Conclusion: According to no significant relationship between the communication skills of students with learning style and Demographic changeable and Lack of proper form of communication skills, we were ready to build different systems and courses related to improving the skills’ level. PMID:28316687
Multiparametric ultrasound in the detection of prostate cancer: a systematic review.
Postema, Arnoud; Mischi, Massimo; de la Rosette, Jean; Wijkstra, Hessel
2015-11-01
To investigate the advances and clinical results of the different ultrasound modalities and the progress in combining them into multiparametric UltraSound (mpUS). A systematic literature search on mpUS and the different ultrasound modalities included: greyscale ultrasound, computerized transrectal ultrasound, Doppler and power Doppler techniques, dynamic contrast-enhanced ultrasound and (shear wave) elastography. Limited research available on combining ultrasound modalities has presented improvement in diagnostic performance. The data of two studies suggest that even adding a lower performing ultrasound modality to a better performing modality using crude methods can already improve the sensitivity by 13-51 %. The different modalities detect different tumours. No study has tried to combine ultrasound modalities employing a system similar to the PIRADS system used for mpMRI or more advanced classifying algorithms. Available evidence confirms that combining different ultrasound modalities significantly improves diagnostic performance.
NASA Technical Reports Server (NTRS)
Michalopoulos, C. D.
1976-01-01
An analysis of one and multidegree of freedom systems with classical damping is presented. Definition and minimization of error functions for each system are discussed. Systems with classical and nonclassical normal modes are studied, and results for first order perturbation are given. An alternative method of matching power spectral densities is provided, and numerical results are reviewed.
Basen-Engquist, Karen; Cox, Matthew G; Lyons, Elizabeth J; Carmack, Cindy L; Blalock, Janice A; Demark-Wahnefried, Wendy
2016-01-01
Background Effective, broad-reaching channels are important for the delivery of health behavior interventions in order to meet the needs of the growing population of cancer survivors in the United States. New technology presents opportunities to increase the reach of health behavior change interventions and therefore their overall impact. However, evidence suggests that older adults may be slower in their adoption of these technologies than the general population. Survivors’ interest for more traditional channels of delivery (eg, clinic) versus new technology-based channels (eg, smartphones) may depend on a variety of factors, including demographics, current health status, and the behavior requiring intervention. Objective The aim of this study was to determine the factors that predict cancer survivors’ interest in new technology-based health behavior intervention modalities versus traditional modalities. Methods Surveys were mailed to 1871 survivors of breast, prostate, and colorectal cancer. Participants’ demographics, diet and physical activity behaviors, interest in health behavior interventions, and interest in intervention delivery modalities were collected. Using path analysis, we explored the relationship between four intervention modality variables (ie, clinic, telephone, computer, and smartphone) and potential predictors of modality interest. Results In total, 1053 respondents to the survey (56.3% response rate); 847 provided complete data for this analysis. Delivery channel interest was highest for computer-based interventions (236/847, 27.9% very/extremely interested) and lowest for smartphone–based interventions (73/847, 8.6%), with interest in clinic-based (147/847, 17.3%) and telephone-delivered (143/847, 16.9%) falling in between. Use of other technology platforms, such as Web cameras and social networking sites, was positively predictive of interest in technology-based delivery channels. Older survivors were less likely to report interest in smartphone–based diet interventions. Physical activity, fruit and vegetable consumption, weight status, and age moderated relationships between interest in targeted intervention behavior and modality. Conclusions This study identified several predictors of survivor interest in various health behavior intervention delivery modalities. Overall, computer-based interventions were found to be most acceptable, while smartphones were the least. Factors related to survivors’ current technology use and health status play a role in their interest for technology-based intervention versus more traditional delivery channels. Future health behavior change research in this population should consider participants’ demographic, clinical, and lifestyle characteristics when selecting a delivery channel. Furthermore, current health behavior interventions for older cancer survivors may be best delivered over the Internet. Smartphone interventions may be feasible in the future following further adoption and familiarization by this particular population. PMID:28410164
Extracting Damping Ratio from Dynamic Data and Numerical Solutions
NASA Technical Reports Server (NTRS)
Casiano, M. J.
2016-01-01
There are many ways to extract damping parameters from data or models. This Technical Memorandum provides a quick reference for some of the more common approaches used in dynamics analysis. Described are six methods of extracting damping from data: the half-power method, logarithmic decrement (decay rate) method, an autocorrelation/power spectral density fitting method, a frequency response fitting method, a random decrement fitting method, and a newly developed half-quadratic gain method. Additionally, state-space models and finite element method modeling tools, such as COMSOL Multiphysics (COMSOL), provide a theoretical damping via complex frequency. Each method has its advantages which are briefly noted. There are also likely many other advanced techniques in extracting damping within the operational modal analysis discipline, where an input excitation is unknown; however, these approaches discussed here are objective, direct, and can be implemented in a consistent manner.
Bayesian operational modal analysis of Jiangyin Yangtze River Bridge
NASA Astrophysics Data System (ADS)
Brownjohn, James Mark William; Au, Siu-Kui; Zhu, Yichen; Sun, Zhen; Li, Binbin; Bassitt, James; Hudson, Emma; Sun, Hongbin
2018-09-01
Vibration testing of long span bridges is becoming a commissioning requirement, yet such exercises represent the extreme of experimental capability, with challenges for instrumentation (due to frequency range, resolution and km-order separation of sensor) and system identification (because of the extreme low frequencies). The challenge with instrumentation for modal analysis is managing synchronous data acquisition from sensors distributed widely apart inside and outside the structure. The ideal solution is precisely synchronised autonomous recorders that do not need cables, GPS or wireless communication. The challenge with system identification is to maximise the reliability of modal parameters through experimental design and subsequently to identify the parameters in terms of mean values and standard errors. The challenge is particularly severe for modes with low frequency and damping typical of long span bridges. One solution is to apply 'third generation' operational modal analysis procedures using Bayesian approaches in both the planning and analysis stages. The paper presents an exercise on the Jiangyin Yangtze River Bridge, a suspension bridge with a 1385 m main span. The exercise comprised planning of a test campaign to optimise the reliability of operational modal analysis, the deployment of a set of independent data acquisition units synchronised using precision oven controlled crystal oscillators and the subsequent identification of a set of modal parameters in terms of mean and variance errors. Although the bridge has had structural health monitoring technology installed since it was completed, this was the first full modal survey, aimed at identifying important features of the modal behaviour rather than providing fine resolution of mode shapes through the whole structure. Therefore, measurements were made in only the (south) tower, while torsional behaviour was identified by a single measurement using a pair of recorders across the carriageway. The modal survey revealed a first lateral symmetric mode with natural frequency 0.0536 Hz with standard error ±3.6% and damping ratio 4.4% with standard error ±88%. First vertical mode is antisymmetric with frequency 0.11 Hz ± 1.2% and damping ratio 4.9% ± 41%. A significant and novel element of the exercise was planning of the measurement setups and their necessary duration linked to prior estimation of the precision of the frequency and damping estimates. The second novelty is the use of the multi-sensor precision synchronised acquisition without external time reference on a structure of this scale. The challenges of ambient vibration testing and modal identification in a complex environment are addressed leveraging on advances in practical implementation and scientific understanding of the problem.
Eye movement analysis for activity recognition using electrooculography.
Bulling, Andreas; Ward, Jamie A; Gellersen, Hans; Tröster, Gerhard
2011-04-01
In this work, we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data were recorded using an electrooculography (EOG) system. We first describe and evaluate algorithms for detecting three eye movement characteristics from EOG signals-saccades, fixations, and blinks-and propose a method for assessing repetitive patterns of eye movements. We then devise 90 different features based on these characteristics and select a subset of them using minimum redundancy maximum relevance (mRMR) feature selection. We validate the method using an eight participant study in an office environment using an example set of five activity classes: copying a text, reading a printed paper, taking handwritten notes, watching a video, and browsing the Web. We also include periods with no specific activity (the NULL class). Using a support vector machine (SVM) classifier and person-independent (leave-one-person-out) training, we obtain an average precision of 76.1 percent and recall of 70.5 percent over all classes and participants. The work demonstrates the promise of eye-based activity recognition (EAR) and opens up discussion on the wider applicability of EAR to other activities that are difficult, or even impossible, to detect using common sensing modalities.
Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets.
Argelaguet, Ricard; Velten, Britta; Arnol, Damien; Dietrich, Sascha; Zenz, Thorsten; Marioni, John C; Buettner, Florian; Huber, Wolfgang; Stegle, Oliver
2018-06-20
Multi-omics studies promise the improved characterization of biological processes across molecular layers. However, methods for the unsupervised integration of the resulting heterogeneous data sets are lacking. We present Multi-Omics Factor Analysis (MOFA), a computational method for discovering the principal sources of variation in multi-omics data sets. MOFA infers a set of (hidden) factors that capture biological and technical sources of variability. It disentangles axes of heterogeneity that are shared across multiple modalities and those specific to individual data modalities. The learnt factors enable a variety of downstream analyses, including identification of sample subgroups, data imputation and the detection of outlier samples. We applied MOFA to a cohort of 200 patient samples of chronic lymphocytic leukaemia, profiled for somatic mutations, RNA expression, DNA methylation and ex vivo drug responses. MOFA identified major dimensions of disease heterogeneity, including immunoglobulin heavy-chain variable region status, trisomy of chromosome 12 and previously underappreciated drivers, such as response to oxidative stress. In a second application, we used MOFA to analyse single-cell multi-omics data, identifying coordinated transcriptional and epigenetic changes along cell differentiation. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
Chen, Cheng; Wang, Wei; Ozolek, John A.; Rohde, Gustavo K.
2013-01-01
We describe a new supervised learning-based template matching approach for segmenting cell nuclei from microscopy images. The method uses examples selected by a user for building a statistical model which captures the texture and shape variations of the nuclear structures from a given dataset to be segmented. Segmentation of subsequent, unlabeled, images is then performed by finding the model instance that best matches (in the normalized cross correlation sense) local neighborhood in the input image. We demonstrate the application of our method to segmenting nuclei from a variety of imaging modalities, and quantitatively compare our results to several other methods. Quantitative results using both simulated and real image data show that, while certain methods may work well for certain imaging modalities, our software is able to obtain high accuracy across several imaging modalities studied. Results also demonstrate that, relative to several existing methods, the template-based method we propose presents increased robustness in the sense of better handling variations in illumination, variations in texture from different imaging modalities, providing more smooth and accurate segmentation borders, as well as handling better cluttered nuclei. PMID:23568787
NASA Astrophysics Data System (ADS)
Suzuki, Yuki; Fung, George S. K.; Shen, Zeyang; Otake, Yoshito; Lee, Okkyun; Ciuffo, Luisa; Ashikaga, Hiroshi; Sato, Yoshinobu; Taguchi, Katsuyuki
2017-03-01
Cardiac motion (or functional) analysis has shown promise not only for non-invasive diagnosis of cardiovascular diseases but also for prediction of cardiac future events. Current imaging modalities has limitations that could degrade the accuracy of the analysis indices. In this paper, we present a projection-based motion estimation method for x-ray CT that estimates cardiac motion with high spatio-temporal resolution using projection data and a reference 3D volume image. The experiment using a synthesized digital phantom showed promising results for motion analysis.
Amodal processing in human prefrontal cortex.
Tamber-Rosenau, Benjamin J; Dux, Paul E; Tombu, Michael N; Asplund, Christopher L; Marois, René
2013-07-10
Information enters the cortex via modality-specific sensory regions, whereas actions are produced by modality-specific motor regions. Intervening central stages of information processing map sensation to behavior. Humans perform this central processing in a flexible, abstract manner such that sensory information in any modality can lead to response via any motor system. Cognitive theories account for such flexible behavior by positing amodal central information processing (e.g., "central executive," Baddeley and Hitch, 1974; "supervisory attentional system," Norman and Shallice, 1986; "response selection bottleneck," Pashler, 1994). However, the extent to which brain regions embodying central mechanisms of information processing are amodal remains unclear. Here we apply multivariate pattern analysis to functional magnetic resonance imaging (fMRI) data to compare response selection, a cognitive process widely believed to recruit an amodal central resource across sensory and motor modalities. We show that most frontal and parietal cortical areas known to activate across a wide variety of tasks code modality, casting doubt on the notion that these regions embody a central processor devoid of modality representation. Importantly, regions of anterior insula and dorsolateral prefrontal cortex consistently failed to code modality across four experiments. However, these areas code at least one other task dimension, process (instantiated as response selection vs response execution), ensuring that failure to find coding of modality is not driven by insensitivity of multivariate pattern analysis in these regions. We conclude that abstract encoding of information modality is primarily a property of subregions of the prefrontal cortex.
Modality-Driven Classification and Visualization of Ensemble Variance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bensema, Kevin; Gosink, Luke; Obermaier, Harald
Advances in computational power now enable domain scientists to address conceptual and parametric uncertainty by running simulations multiple times in order to sufficiently sample the uncertain input space. While this approach helps address conceptual and parametric uncertainties, the ensemble datasets produced by this technique present a special challenge to visualization researchers as the ensemble dataset records a distribution of possible values for each location in the domain. Contemporary visualization approaches that rely solely on summary statistics (e.g., mean and variance) cannot convey the detailed information encoded in ensemble distributions that are paramount to ensemble analysis; summary statistics provide no informationmore » about modality classification and modality persistence. To address this problem, we propose a novel technique that classifies high-variance locations based on the modality of the distribution of ensemble predictions. Additionally, we develop a set of confidence metrics to inform the end-user of the quality of fit between the distribution at a given location and its assigned class. We apply a similar method to time-varying ensembles to illustrate the relationship between peak variance and bimodal or multimodal behavior. These classification schemes enable a deeper understanding of the behavior of the ensemble members by distinguishing between distributions that can be described by a single tendency and distributions which reflect divergent trends in the ensemble.« less
Optimal placement of tuning masses for vibration reduction in helicopter rotor blades
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.
1988-01-01
Described are methods for reducing vibration in helicopter rotor blades by determining optimum sizes and locations of tuning masses through formal mathematical optimization techniques. An optimization procedure is developed which employs the tuning masses and corresponding locations as design variables which are systematically changed to achieve low values of shear without a large mass penalty. The finite-element structural analysis of the blade and the optimization formulation require development of discretized expressions for two performance parameters: modal shaping parameter and modal shear amplitude. Matrix expressions for both quantities and their sensitivity derivatives are developed. Three optimization strategies are developed and tested. The first is based on minimizing the modal shaping parameter which indirectly reduces the modal shear amplitudes corresponding to each harmonic of airload. The second strategy reduces these amplitudes directly, and the third strategy reduces the shear as a function of time during a revolution of the blade. The first strategy works well for reducing the shear for one mode responding to a single harmonic of the airload, but has been found in some cases to be ineffective for more than one mode. The second and third strategies give similar results and show excellent reduction of the shear with a low mass penalty.
Comparison of NASTRAN analysis with ground vibration results of UH-60A NASA/AEFA test configuration
NASA Technical Reports Server (NTRS)
Idosor, Florentino; Seible, Frieder
1990-01-01
Preceding program flight tests, a ground vibration test and modal test analysis of a UH-60A Black Hawk helicopter was conducted by Sikorsky Aircraft to complement the UH-60A test plan and NASA/ARMY Modern Technology Rotor Airloads Program. The 'NASA/AEFA' shake test configuration was tested for modal frequencies and shapes and compared with its NASTRAN finite element model counterpart to give correlative results. Based upon previous findings, significant differences in modal data existed and were attributed to assumptions regarding the influence of secondary structure contributions in the preliminary NASTRAN modeling. An analysis of an updated finite element model including several secondary structural additions has confirmed that the inclusion of specific secondary components produces a significant effect on modal frequency and free-response shapes and improves correlations at lower frequencies with shake test data.
Effects of auditory and visual modalities in recall of words.
Gadzella, B M; Whitehead, D A
1975-02-01
Ten experimental conditions were used to study the effects of auditory and visual (printed words, uncolored and colored pictures) modalities and their various combinations with college students. A recall paradigm was employed in which subjects responded in a written test. Analysis of data showed the auditory modality was superior to visual (pictures) ones but was not significantly different from visual (printed words) modality. In visual modalities, printed words were superior to colored pictures. Generally, conditions with multiple modes of representation of stimuli were significantly higher than for conditions with single modes. Multiple modalities, consisting of two or three modes, did not differ significantly from each other. It was concluded that any two modalities of the stimuli presented simultaneously were just as effective as three in recall of stimulus words.
Yang, S; Liu, D G
2014-01-01
Objectives: The purposes of the study are to investigate the consistency of linear measurements between CBCT orthogonally synthesized cephalograms and conventional cephalograms and to evaluate the influence of different magnifications on these comparisons based on a simulation algorithm. Methods: Conventional cephalograms and CBCT scans were taken on 12 dry skulls with spherical metal markers. Orthogonally synthesized cephalograms were created from CBCT data. Linear parameters on both cephalograms were measured via Photoshop CS v. 5.0 (Adobe® Systems, San Jose, CA), named measurement group (MG). Bland–Altman analysis was utilized to assess the agreement of two imaging modalities. Reproducibility was investigated using paired t-test. By a specific mathematical programme “cepha”, corresponding linear parameters [mandibular corpus length (Go-Me), mandibular ramus length (Co-Go), posterior facial height (Go-S)] on these two types of cephalograms were calculated, named simulation group (SG). Bland–Altman analysis was used to assess the agreement between MG and SG. Simulated linear measurements with varying magnifications were generated based on “cepha” as well. Bland–Altman analysis was used to assess the agreement of simulated measurements between two modalities. Results: Bland–Altman analysis suggested the agreement between measurements on conventional cephalograms and orthogonally synthesized cephalograms, with a mean bias of 0.47 mm. Comparison between MG and SG showed that the difference did not reach clinical significance. The consistency between simulated measurements of both modalities with four different magnifications was demonstrated. Conclusions: Normative data of conventional cephalograms could be used for CBCT orthogonally synthesized cephalograms during this transitional period. PMID:25029593
A modal radar cross section of thin-wire targets via the singularity expansion method
NASA Technical Reports Server (NTRS)
Richards, M. A.; Shumpert, T. H.; Riggs, L. S.
1992-01-01
A modal radar cross section (RCS) of arbitrary wire scatterers is constructed in terms of SEM parameters. Numerical results are presented for both straight and L-shaped wire targets and are compared to computations performed in the frequency domain using the method of moments.
Vergara, Victor M; Ulloa, Alvaro; Calhoun, Vince D; Boutte, David; Chen, Jiayu; Liu, Jingyu
2014-09-01
Multi-modal data analysis techniques, such as the Parallel Independent Component Analysis (pICA), are essential in neuroscience, medical imaging and genetic studies. The pICA algorithm allows the simultaneous decomposition of up to two data modalities achieving better performance than separate ICA decompositions and enabling the discovery of links between modalities. However, advances in data acquisition techniques facilitate the collection of more than two data modalities from each subject. Examples of commonly measured modalities include genetic information, structural magnetic resonance imaging (MRI) and functional MRI. In order to take full advantage of the available data, this work extends the pICA approach to incorporate three modalities in one comprehensive analysis. Simulations demonstrate the three-way pICA performance in identifying pairwise links between modalities and estimating independent components which more closely resemble the true sources than components found by pICA or separate ICA analyses. In addition, the three-way pICA algorithm is applied to real experimental data obtained from a study that investigate genetic effects on alcohol dependence. Considered data modalities include functional MRI (contrast images during alcohol exposure paradigm), gray matter concentration images from structural MRI and genetic single nucleotide polymorphism (SNP). The three-way pICA approach identified links between a SNP component (pointing to brain function and mental disorder associated genes, including BDNF, GRIN2B and NRG1), a functional component related to increased activation in the precuneus area, and a gray matter component comprising part of the default mode network and the caudate. Although such findings need further verification, the simulation and in-vivo results validate the three-way pICA algorithm presented here as a useful tool in biomedical data fusion applications. Copyright © 2014 Elsevier Inc. All rights reserved.
On using the Hilbert transform for blind identification of complex modes: A practical approach
NASA Astrophysics Data System (ADS)
Antunes, Jose; Debut, Vincent; Piteau, Pilippe; Delaune, Xavier; Borsoi, Laurent
2018-01-01
The modal identification of dynamical systems under operational conditions, when subjected to wide-band unmeasured excitations, is today a viable alternative to more traditional modal identification approaches based on processing sets of measured FRFs or impulse responses. Among current techniques for performing operational modal identification, the so-called blind identification methods are the subject of considerable investigation. In particular, the SOBI (Second-Order Blind Identification) method was found to be quite efficient. SOBI was originally developed for systems with normal modes. To address systems with complex modes, various extension approaches have been proposed, in particular: (a) Using a first-order state-space formulation for the system dynamics; (b) Building complex analytic signals from the measured responses using the Hilbert transform. In this paper we further explore the latter option, which is conceptually interesting while preserving the model order and size. Focus is on applicability of the SOBI technique for extracting the modal responses from analytic signals built from a set of vibratory responses. The novelty of this work is to propose a straightforward computational procedure for obtaining the complex cross-correlation response matrix to be used for the modal identification procedure. After clarifying subtle aspects of the general theoretical framework, we demonstrate that the correlation matrix of the analytic responses can be computed through a Hilbert transform of the real correlation matrix, so that the actual time-domain responses are no longer required for modal identification purposes. The numerical validation of the proposed technique is presented based on time-domain simulations of a conceptual physical multi-modal system, designed to display modes ranging from normal to highly complex, while keeping modal damping low and nearly independent of the modal complexity, and which can prove very interesting in test bench applications. Numerical results for complex modal identifications are presented, and the quality of the identified modal matrix and modal responses, extracted using the complex SOBI technique and implementing the proposed formulation, is assessed.
2009-02-01
range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The corresponding...frequency range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The...predictions. The averaging process is consistent with the averaging done in statistical energy analysis for stochastic systems. The FEM will always
Diagnostic imaging and interventional therapy of hepatocellular carcinoma.
Palma, L D
1998-08-01
Diagnostic imaging has many important roles in the management of patients with hepatocellular carcinoma (HCC). In diagnosis, lipiodol CT (LCT) has been shown to be the most sensitive imaging modality (90-97%) for all sizes of lesions; all other modalities have high sensitivities for lesions 1-3 cm but low sensitivities for lesions < 1 cm (ultrasound 33-37%, conventional CT 20-42% and digital subtraction angiography 40-55%). All imaging modalities understage HCC. Once again LCT is the most accurate method of evaluating the extent of tumour, but even this method does not identify all satellite nodules. Ultrasound has been proposed as a screening method, but this cannot be justified on the basis of its results or cost benefit analysis. Both CT and dynamic MRI play useful roles in evaluating the efficacy and follow-up of patients undergoing chemoembolization (TACE) and percutaneous ethanol injection (PEI). Although surgery remains the best treatment of HCC, it is unsuitable in most of the cases which would be better treated with interventional therapy. This article presents a review of the literature regarding the use of TACE, PEI or a combination of both procedures in the treatment of HCC. A multicentric study has shown that patients with monofocal lesions less than 5 cm in diameter are better treated with PEI, which is therefore a good alternative to the surgical treatment; patients with multifocal lesions (maximum of three lesions) show a better survival with TACE. Combined treatment with TACE and PEI proves to be effective in patients with large HCC.
1978-09-01
SNAPSHOT PICTURE VIDEO TAPE 35-MM PHOTO TRANSPARENCY MICROFILM Figure 2 - Gross Area Information Density other across the organization. Then we developed...the finite element In the modeling of a tor- method. The torpedo hull is divided pedo for shock and vibration analysis, ,. into primary structural...length of the tor- 16. Figure 15 presents the magnitude pedo with several circumferential trac- and phase of motor motion, and Fig. 16 ings at
Modal Representations and Their Role in the Learning Process: A Theoretical and Pragmatic Analysis
ERIC Educational Resources Information Center
Gunel, Murat; Yesildag-Hasancebi, Funda
2016-01-01
In the construction and sharing of scientific knowledge, modal representations such as text, graphics, pictures, and mathematical expressions are commonly used. Due to the increasing importance of their role in the production and communication of science, modal representations have become a topic of growing interest in science education research…
Structural dynamics and vibrations of damped, aircraft-type structures
NASA Technical Reports Server (NTRS)
Young, Maurice I.
1992-01-01
Engineering preliminary design methods for approximating and predicting the effects of viscous or equivalent viscous-type damping treatments on the free and forced vibration of lightly damped aircraft-type structures are developed. Similar developments are presented for dynamic hysteresis viscoelastic-type damping treatments. It is shown by both engineering analysis and numerical illustrations that the intermodal coupling of the undamped modes arising from the introduction of damping may be neglected in applying these preliminary design methods, except when dissimilar modes of these lightly damped, complex aircraft-type structures have identical or nearly identical natural frequencies. In such cases, it is shown that a relatively simple, additional interaction calculation between pairs of modes exhibiting this 'modal response' phenomenon suffices in the prediction of interacting modal damping fractions. The accuracy of the methods is shown to be very good to excellent, depending on the normal natural frequency separation of the system modes, thereby permitting a relatively simple preliminary design approach. This approach is shown to be a natural precursor to elaborate finite element, digital computer design computations in evaluating the type, quantity, and location of damping treatment.
System identification of a tied arch bridge using reference-based wireless sensor networks
NASA Astrophysics Data System (ADS)
Hietbrink, Colby; Whelan, Matthew J.
2012-04-01
Vibration-based methods of structural health monitoring are generally founded on the principle that localized damage to a structure would exhibit changes within the global dynamic response. Upon this basis, accelerometers provide a unique health monitoring strategy in that a distributed network of sensors provides the technical feasibility to isolate the onset of damage without requiring that any sensor be located exactly on or in close proximity to the damage. While in theory this may be sufficient, practical experience has shown significant improvement in the application of damage diagnostic routines when mode shapes characterized by strongly localized behavior of specific elements are captured by the instrumentation array. In traditional applications, this presents a challenge since the cost and complexity of cable-based systems often effectively limits the number of instrumented locations thereby constraining the modal parameter extraction to only global modal responses. The advent of the low-cost RF chip transceiver with wireless networking capabilities has afforded a means by which a substantial number of output locations can be measured through referencebased testing using large-scale wireless sensor networks. In the current study, this approach was applied to the Prairie du Chien Bridge over the Mississippi River to extract operational mode shapes with high spatial reconstruction, including strongly localized modes. The tied arch bridge was instrumented at over 230 locations with single-axis accelerometers conditioned and acquired over a high-rate lossless wireless sensor network with simultaneous sampling capabilities. Acquisition of the dynamic response of the web plates of the arch rib was specifically targeted within the instrumentation array for diagnostic purposes. Reference-based operational modal analysis of the full structure through data-driven stochastic subspace identification is presented alongside finite element analysis results for confirmation of modal parameter plausibility. Particular emphasis is placed on the identification and reconstruction of modal response with large contribution from the arch rib web plates.
NASA Astrophysics Data System (ADS)
Aragonès, Àngels; Maxit, Laurent; Guasch, Oriol
2015-08-01
Statistical modal energy distribution analysis (SmEdA) extends classical statistical energy analysis (SEA) to the mid frequency range by establishing power balance equations between modes in different subsystems. This circumvents the SEA requirement of modal energy equipartition and enables applying SmEdA to the cases of low modal overlap, locally excited subsystems and to deal with complex heterogeneous subsystems as well. Yet, widening the range of application of SEA is done at a price with large models because the number of modes per subsystem can become considerable when the frequency increases. Therefore, it would be worthwhile to have at one's disposal tools for a quick identification and ranking of the resonant and non-resonant paths involved in modal energy transmission between subsystems. It will be shown that previously developed graph theory algorithms for transmission path analysis (TPA) in SEA can be adapted to SmEdA and prove useful for that purpose. The case of airborne transmission between two cavities separated apart by homogeneous and ribbed plates will be first addressed to illustrate the potential of the graph approach. A more complex case representing transmission between non-contiguous cavities in a shipbuilding structure will be also presented.
Östling, Robert; Börstell, Carl; Courtaux, Servane
2018-01-01
We use automatic processing of 120,000 sign videos in 31 different sign languages to show a cross-linguistic pattern for two types of iconic form–meaning relationships in the visual modality. First, we demonstrate that the degree of inherent plurality of concepts, based on individual ratings by non-signers, strongly correlates with the number of hands used in the sign forms encoding the same concepts across sign languages. Second, we show that certain concepts are iconically articulated around specific parts of the body, as predicted by the associational intuitions by non-signers. The implications of our results are both theoretical and methodological. With regard to theoretical implications, we corroborate previous research by demonstrating and quantifying, using a much larger material than previously available, the iconic nature of languages in the visual modality. As for the methodological implications, we show how automatic methods are, in fact, useful for performing large-scale analysis of sign language data, to a high level of accuracy, as indicated by our manual error analysis. PMID:29867684
NASA Astrophysics Data System (ADS)
Medjkoune, Sofiane; Mouchère, Harold; Petitrenaud, Simon; Viard-Gaudin, Christian
2013-01-01
The work reported in this paper concerns the problem of mathematical expressions recognition. This task is known to be a very hard one. We propose to alleviate the difficulties by taking into account two complementary modalities. The modalities referred to are handwriting and audio ones. To combine the signals coming from both modalities, various fusion methods are explored. Performances evaluated on the HAMEX dataset show a significant improvement compared to a single modality (handwriting) based system.
A modal approach to the prediction of the sound reduction index
NASA Astrophysics Data System (ADS)
Tisseyre, Alain; Courné, Cécile; Buzzy, Thomas; Moulinier, André
2003-04-01
The calculation of the sound reduction index in modal analysis is presented in a general way; different possible approaches are described. These calculations are done in two steps: a vibratory study to determine the transverse displacement of the plate and a study of radiation. The specificity of orthotropic plates is presented. This study led to programming a calculation algorithm. Initial hypotheses are indicated, as well as results obtained for various plates or partitions. Modal analysis calculation results are then compared to the Cremer-Sewell approach results.
NASTRAN documentation for flutter analysis of advanced turbopropellers
NASA Technical Reports Server (NTRS)
Elchuri, V.; Gallo, A. M.; Skalski, S. C.
1982-01-01
An existing capability developed to conduct modal flutter analysis of tuned bladed-shrouded discs was modified to facilitate investigation of the subsonic unstalled flutter characteristics of advanced turbopropellers. The modifications pertain to the inclusion of oscillatory modal aerodynamic loads of blades with large (backward and forward) varying sweep.
An enhanced sine dwell method as applied to the Galileo core structure modal survey
NASA Technical Reports Server (NTRS)
Smith, Kenneth S.; Trubert, Marc
1990-01-01
An incremental modal survey performed in 1988 on the core structure of the Galileo spacecraft with its adapters with the purpose of assessing the dynamics of the new portions of the structure is considered. Emphasis is placed on the enhancements of the sine dwell method employed in the test. For each mode, response data is acquired at 32 frequencies in a narrow band enclosing the resonance, utilizing the SWIFT technique. It is pointed out that due to the simplicity of the data processing involved, the diagnostic and modal-parameter data is available within several minutes after data acquisition; however, compared with straight curve-fitting approaches, the method requires more time for data acquisition.
A method for experimental modal separation
NASA Technical Reports Server (NTRS)
Hallauer, W. L., Jr.
1977-01-01
A method is described for the numerical simulation of multiple-shaker modal survey testing using simulated experimental data to optimize the shaker force-amplitude distribution for the purpose of isolating individual modes of vibration. Inertia, damping, stiffness, and model data are stored on magnetic disks, available by direct access to the interactive FORTRAN programs which perform all computations required by this relative force amplitude distribution method.
Full-degrees-of-freedom frequency based substructuring
NASA Astrophysics Data System (ADS)
Drozg, Armin; Čepon, Gregor; Boltežar, Miha
2018-01-01
Dividing the whole system into multiple subsystems and a separate dynamic analysis is common practice in the field of structural dynamics. The substructuring process improves the computational efficiency and enables an effective realization of the local optimization, modal updating and sensitivity analyses. This paper focuses on frequency-based substructuring methods using experimentally obtained data. An efficient substructuring process has already been demonstrated using numerically obtained frequency-response functions (FRFs). However, the experimental process suffers from several difficulties, among which, many of them are related to the rotational degrees of freedom. Thus, several attempts have been made to measure, expand or combine numerical correction methods in order to obtain a complete response model. The proposed methods have numerous limitations and are not yet generally applicable. Therefore, in this paper an alternative approach based on experimentally obtained data only, is proposed. The force-excited part of the FRF matrix is measured with piezoelectric translational and rotational direct accelerometers. The incomplete moment-excited part of the FRF matrix is expanded, based on the modal model. The proposed procedure is integrated in a Lagrange Multiplier Frequency Based Substructuring method and demonstrated on a simple beam structure, where the connection coordinates are mainly associated with the rotational degrees of freedom.
NASA Astrophysics Data System (ADS)
Pfefer, Joshua; Agrawal, Anant
2012-03-01
In recent years there has been increasing interest in development of consensus, tissue-phantom-based approaches for assessment of biophotonic imaging systems, with the primary goal of facilitating clinical translation of novel optical technologies. Well-characterized test methods based on tissue phantoms can provide useful tools for performance assessment, thus enabling standardization and device inter-comparison during preclinical development as well as quality assurance and re-calibration in the clinical setting. In this review, we study the role of phantom-based test methods as described in consensus documents such as international standards for established imaging modalities including X-ray CT, MRI and ultrasound. Specifically, we focus on three image quality characteristics - spatial resolution, spatial measurement accuracy and image uniformity - and summarize the terminology, metrics, phantom design/construction approaches and measurement/analysis procedures used to assess these characteristics. Phantom approaches described are those in routine clinical use and tend to have simplified morphology and biologically-relevant physical parameters. Finally, we discuss the potential for applying knowledge gained from existing consensus documents in the development of standardized, phantom-based test methods for optical coherence tomography.
NASA Astrophysics Data System (ADS)
Bártová, H.; Trojek, T.; Čechák, T.; Šefců, R.; Chlumská, Š.
2017-10-01
The presence of heavy chemical elements in old pigments is possible to identify in historical paintings using X-ray fluorescence analysis (XRF). This is a non-destructive analytical method frequently used in examination of objects that require in situ analysis, where it is necessary to avoid damaging the object by taking samples. Different modalities are available, such as microanalysis, scanning selected areas, or depth profiling techniques. Surface scanning is particularly profitable since 2D element distribution maps are much more understandable than the results of individual analyses. Information on the layered structure of the painting can be also obtained by handheld portable systems. Results presented in our paper combine 2D element distribution maps obtained by scanning analysis, and depth profiling using conventional XRF. The latter is very suitable for objects of art, as it can be evaluated from data measured with portable XRF device. Depth profiling by conventional XRF is based on the differences in X-ray absorption in paint layers. The XRF technique was applied for analysis of panel paintings of the Master of the St George Altarpiece who was active in Prague in the 1470s and 1480s. The results were evaluated by taking micro-samples and performing a material analysis.
1980-12-01
NOTES 3 19. KEY WORDS (Continue on revere side If n.cessary d Identify by block number) Bulk cargo Market demand analysis Commodity resource inventory...The study included a Commodity Resource Inventory, a Modal Split Analysis and a Market Demand Analysis. The work included investigation and analyses...inventory, a modal split analysis and a market demand analysis. The work included investigation and analyses of the production, transportation, and
A finite element analysis of viscoelastically damped sandwich plates
NASA Astrophysics Data System (ADS)
Ma, B.-A.; He, J.-F.
1992-01-01
A finite element analysis associated with an asymptotic solution method for the harmonic flexural vibration of viscoelastically damped unsymmetrical sandwich plates is given. The element formulation is based on generalization of the discrete Kirchhoff theory (DKT) element formulation. The results obtained with the first order approximation of the asymptotic solution presented here are the same as those obtained by means of the modal strain energy (MSE) method. By taking more terms of the asymptotic solution, with successive calculations and use of the Padé approximants method, accuracy can be improved. The finite element computation has been verified by comparison with an analytical exact solution for rectangular plates with simply supported edges. Results for the same plates with clamped edges are also presented.
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Cooper, J. E.; Wright, J. R.
1987-01-01
A modification to the Eigensystem Realization Algorithm (ERA) for modal parameter identification is presented in this paper. The ERA minimum order realization approach using singular value decomposition is combined with the philosophy of the Correlation Fit method in state space form such that response data correlations rather than actual response values are used for modal parameter identification. This new method, the ERA using data correlations (ERA/DC), reduces bias errors due to noise corruption significantly without the need for model overspecification. This method is tested using simulated five-degree-of-freedom system responses corrupted by measurement noise. It is found for this case that, when model overspecification is permitted and a minimum order solution obtained via singular value truncation, the results from the two methods are of similar quality.
NASA Technical Reports Server (NTRS)
Epp, L. W.; Stanton, P. H.
1993-01-01
In order to add the capability of an X-band uplink onto the 70-m antenna, a new dichroic plate is needed to replace the Pyle-guide-shaped dichroic plate currently in use. The replacement dichroic plate must exhibit an additional passband at the new uplink frequency of 7.165 GHz, while still maintaining a passband at the existing downlink frequency of 8.425 GHz. Because of the wide frequency separation of these two passbands, conventional methods of designing air-filled dichroic plates exhibit grating lobe problems. A new method of solving this problem by using a dichroic plate with cross-shaped holes is presented and verified experimentally. Two checks of the integral equation solution are described. One is the comparison to a modal analysis for the limiting cross shape of a square hole. As a final check, a prototype dichroic plate with cross-shaped holes was built and measured.
Cross-Modal Retrieval With CNN Visual Features: A New Baseline.
Wei, Yunchao; Zhao, Yao; Lu, Canyi; Wei, Shikui; Liu, Luoqi; Zhu, Zhenfeng; Yan, Shuicheng
2017-02-01
Recently, convolutional neural network (CNN) visual features have demonstrated their powerful ability as a universal representation for various recognition tasks. In this paper, cross-modal retrieval with CNN visual features is implemented with several classic methods. Specifically, off-the-shelf CNN visual features are extracted from the CNN model, which is pretrained on ImageNet with more than one million images from 1000 object categories, as a generic image representation to tackle cross-modal retrieval. To further enhance the representational ability of CNN visual features, based on the pretrained CNN model on ImageNet, a fine-tuning step is performed by using the open source Caffe CNN library for each target data set. Besides, we propose a deep semantic matching method to address the cross-modal retrieval problem with respect to samples which are annotated with one or multiple labels. Extensive experiments on five popular publicly available data sets well demonstrate the superiority of CNN visual features for cross-modal retrieval.
Computer-aided, multi-modal, and compression diffuse optical studies of breast tissue
NASA Astrophysics Data System (ADS)
Busch, David Richard, Jr.
Diffuse Optical Tomography and Spectroscopy permit measurement of important physiological parameters non-invasively through ˜10 cm of tissue. I have applied these techniques in measurements of human breast and breast cancer. My thesis integrates three loosely connected themes in this context: multi-modal breast cancer imaging, automated data analysis of breast cancer images, and microvascular hemodynamics of breast under compression. As per the first theme, I describe construction, testing, and the initial clinical usage of two generations of imaging systems for simultaneous diffuse optical and magnetic resonance imaging. The second project develops a statistical analysis of optical breast data from many spatial locations in a population of cancers to derive a novel optical signature of malignancy; I then apply this data-derived signature for localization of cancer in additional subjects. Finally, I construct and deploy diffuse optical instrumentation to measure blood content and blood flow during breast compression; besides optics, this research has implications for any method employing breast compression, e.g., mammography.
Sex differences in the ability to recognise non-verbal displays of emotion: a meta-analysis.
Thompson, Ashley E; Voyer, Daniel
2014-01-01
The present study aimed to quantify the magnitude of sex differences in humans' ability to accurately recognise non-verbal emotional displays. Studies of relevance were those that required explicit labelling of discrete emotions presented in the visual and/or auditory modality. A final set of 551 effect sizes from 215 samples was included in a multilevel meta-analysis. The results showed a small overall advantage in favour of females on emotion recognition tasks (d=0.19). However, the magnitude of that sex difference was moderated by several factors, namely specific emotion, emotion type (negative, positive), sex of the actor, sensory modality (visual, audio, audio-visual) and age of the participants. Method of presentation (computer, slides, print, etc.), type of measurement (response time, accuracy) and year of publication did not significantly contribute to variance in effect sizes. These findings are discussed in the context of social and biological explanations of sex differences in emotion recognition.
Evaluation of modal pushover-based scaling of one component of ground motion: Tall buildings
Kalkan, Erol; Chopra, Anil K.
2012-01-01
Nonlinear response history analysis (RHA) is now increasingly used for performance-based seismic design of tall buildings. Required for nonlinear RHAs is a set of ground motions selected and scaled appropriately so that analysis results would be accurate (unbiased) and efficient (having relatively small dispersion). This paper evaluates accuracy and efficiency of recently developed modal pushover–based scaling (MPS) method to scale ground motions for tall buildings. The procedure presented explicitly considers structural strength and is based on the standard intensity measure (IM) of spectral acceleration in a form convenient for evaluating existing structures or proposed designs for new structures. Based on results presented for two actual buildings (19 and 52 stories, respectively), it is demonstrated that the MPS procedure provided a highly accurate estimate of the engineering demand parameters (EDPs), accompanied by significantly reduced record-to-record variability of the responses. In addition, the MPS procedure is shown to be superior to the scaling procedure specified in the ASCE/SEI 7-05 document.
Autonomous smart sensor network for full-scale structural health monitoring
NASA Astrophysics Data System (ADS)
Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.
2010-04-01
The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.
NASA Technical Reports Server (NTRS)
Peretti, L. F.; Dowell, E. H.
1992-01-01
An experiment was performed on a rigid wall rectangular acoustic cavity driven by a flexible plate mounted in a quarter of one end wall and excited by white noise. The experiment was designed so that the assumptions of Asymptotic Modal Analysis (AMA) were satisfied for certain bandwidths and center frequencies. Measurements of sound pressure levels at points along the boundaries and incrementally into tbe interior were taken. These were compared with the theoretical results predicted with AMA, and found to be in good agreement, particularly for moderate (1/3 octave) bandwidths and sufficiently high center frequencies. Sound pressure level measurements were also taken well into the cavity interior at various points along the 5 totally rigid walls. The AMA theory, including boundary intensification effects, was shown to be accurate provided the assumption of large number of acoustic modes is satisfied, and variables such as power spectra of the wall acceleration, frequency, and damping are slowly varying in the frequency of bandwidth.
Phonon Transport at Crystalline Si/Ge Interfaces: The Role of Interfacial Modes of Vibration
Gordiz, Kiarash; Henry, Asegun
2016-01-01
We studied the modal contributions to heat conduction at crystalline Si and crystalline Ge interfaces and found that more than 15% of the interface conductance arises from less than 0.1% of the modes in the structure. Using the recently developed interface conductance modal analysis (ICMA) method along with a new complimentary methodology, we mapped the correlations between modes, which revealed that a small group of interfacial modes, which exist between 12–13 THz, exhibit extremely strong correlation with other modes in the system. It is found that these interfacial modes (e.g., modes with large eigen vectors for interfacial atoms) are enabled by the degree of anharmonicity near the interface, which is higher than in the bulk, and therefore allows this small group of modes to couple to all others. The analysis sheds light on the nature of localized vibrations at interfaces and can be enlightening for other investigations of localization. PMID:26979787
Determination of elastic constants of a generally orthotropic plate by modal analysis
NASA Astrophysics Data System (ADS)
Lai, T. C.; Lau, T. C.
1993-01-01
This paper describes a method of finding the elastic constants of a generally orthotropic composite thin plate through modal analysis based on a Rayleigh-Ritz formulation. The natural frequencies and mode shapes for a plate with free-free boundary conditions are obtained with chirp excitation. Based on the eigenvalue equation and the constitutive equations of the plate, an iteration scheme is derived using the experimentally determined natural frequencies to arrive at a set of converged values for the elastic constants. Four sets of experimental data are required for the four independent constants: namely the two Young's moduli E1 and E2, the in-plane shear modulus G12, and one Poisson's ratio nu12. The other Poisson's ratio nu21 can then be determined from the relationship among the constants. Comparison with static test results indicate good agreement. Choosing the right combinations of natural modes together with a set of reasonable initial estimates for the constants to start the iteration has been found to be crucial in achieving convergence.
Conceptual Structure within and between Modalities
Dilkina, Katia; Lambon Ralph, Matthew A.
2012-01-01
Current views of semantic memory share the assumption that conceptual representations are based on multimodal experience, which activates distinct modality-specific brain regions. This proposition is widely accepted, yet little is known about how each modality contributes to conceptual knowledge and how the structure of this contribution varies across these multiple information sources. We used verbal feature lists, features from drawings, and verbal co-occurrence statistics from latent semantic analysis to examine the informational structure in four domains of knowledge: perceptual, functional, encyclopedic, and verbal. The goals of the analysis were three-fold: (1) to assess the structure within individual modalities; (2) to compare structures between modalities; and (3) to assess the degree to which concepts organize categorically or randomly. Our results indicated significant and unique structure in all four modalities: perceptually, concepts organize based on prominent features such as shape, size, color, and parts; functionally, they group based on use and interaction; encyclopedically, they arrange based on commonality in location or behavior; and verbally, they group associatively or relationally. Visual/perceptual knowledge gives rise to the strongest hierarchical organization and is closest to classic taxonomic structure. Information is organized somewhat similarly in the perceptual and encyclopedic domains, which differs significantly from the structure in the functional and verbal domains. Notably, the verbal modality has the most unique organization, which is not at all categorical but also not random. The idiosyncrasy and complexity of conceptual structure across modalities raise the question of how all of these modality-specific experiences are fused together into coherent, multifaceted yet unified concepts. Accordingly, both methodological and theoretical implications of the present findings are discussed. PMID:23293593
NASA Technical Reports Server (NTRS)
Pathak, P. H.; Altintas, A.
1988-01-01
A high-frequency analysis of electromagnetic modal reflection and transmission coefficients is presented for waveguide discontinuities formed by joining different waveguide sections. The analysis uses an extended version of the concept of geometrical theory of diffraction based equivalent edge currents in conjunction with the reciprocity theorem to describe interior scattering effects. If the waveguide modes and their associated modal rays can be found explicitly, general two- and three-dimensional waveguide geometries can be analyzed. Expressions are developed for two-dimensional reflection and transmission coefficients. Numerical results are given for a flanged, semi-infinite parallel plate waveguide and for the junction between two linearly tapered waveguides.