Sample records for modalities including ct

  1. Dual-modality brain PET-CT image segmentation based on adaptive use of functional and anatomical information.

    PubMed

    Xia, Yong; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Feng, David Dagan

    2012-01-01

    Dual medical imaging modalities, such as PET-CT, are now a routine component of clinical practice. Medical image segmentation methods, however, have generally only been applied to single modality images. In this paper, we propose the dual-modality image segmentation model to segment brain PET-CT images into gray matter, white matter and cerebrospinal fluid. This model converts PET-CT image segmentation into an optimization process controlled simultaneously by PET and CT voxel values and spatial constraints. It is innovative in the creation and application of the modality discriminatory power (MDP) coefficient as a weighting scheme to adaptively combine the functional (PET) and anatomical (CT) information on a voxel-by-voxel basis. Our approach relies upon allowing the modality with higher discriminatory power to play a more important role in the segmentation process. We compared the proposed approach to three other image segmentation strategies, including PET-only based segmentation, combination of the results of independent PET image segmentation and CT image segmentation, and simultaneous segmentation of joint PET and CT images without an adaptive weighting scheme. Our results in 21 clinical studies showed that our approach provides the most accurate and reliable segmentation for brain PET-CT images. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. New bone post-processing tools in forensic imaging: a multi-reader feasibility study to evaluate detection time and diagnostic accuracy in rib fracture assessment.

    PubMed

    Glemser, Philip A; Pfleiderer, Michael; Heger, Anna; Tremper, Jan; Krauskopf, Astrid; Schlemmer, Heinz-Peter; Yen, Kathrin; Simons, David

    2017-03-01

    The aim of this multi-reader feasibility study was to evaluate new post-processing CT imaging tools in rib fracture assessment of forensic cases by analyzing detection time and diagnostic accuracy. Thirty autopsy cases (20 with and 10 without rib fractures in autopsy) were randomly selected and included in this study. All cases received a native whole body CT scan prior to the autopsy procedure, which included dissection and careful evaluation of each rib. In addition to standard transverse sections (modality A), CT images were subjected to a reconstruction algorithm to compute axial labelling of the ribs (modality B) as well as "unfolding" visualizations of the rib cage (modality C, "eagle tool"). Three radiologists with different clinical and forensic experience who were blinded to autopsy results evaluated all cases in a random manner of modality and case. Rib fracture assessment of each reader was evaluated compared to autopsy and a CT consensus read as radiologic reference. A detailed evaluation of relevant test parameters revealed a better accordance to the CT consensus read as to the autopsy. Modality C was the significantly quickest rib fracture detection modality despite slightly reduced statistic test parameters compared to modalities A and B. Modern CT post-processing software is able to shorten reading time and to increase sensitivity and specificity compared to standard autopsy alone. The eagle tool as an easy to use tool is suited for an initial rib fracture screening prior to autopsy and can therefore be beneficial for forensic pathologists.

  3. A tri-modality image fusion method for target delineation of brain tumors in radiotherapy.

    PubMed

    Guo, Lu; Shen, Shuming; Harris, Eleanor; Wang, Zheng; Jiang, Wei; Guo, Yu; Feng, Yuanming

    2014-01-01

    To develop a tri-modality image fusion method for better target delineation in image-guided radiotherapy for patients with brain tumors. A new method of tri-modality image fusion was developed, which can fuse and display all image sets in one panel and one operation. And a feasibility study in gross tumor volume (GTV) delineation using data from three patients with brain tumors was conducted, which included images of simulation CT, MRI, and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) examinations before radiotherapy. Tri-modality image fusion was implemented after image registrations of CT+PET and CT+MRI, and the transparency weight of each modality could be adjusted and set by users. Three radiation oncologists delineated GTVs for all patients using dual-modality (MRI/CT) and tri-modality (MRI/CT/PET) image fusion respectively. Inter-observer variation was assessed by the coefficient of variation (COV), the average distance between surface and centroid (ADSC), and the local standard deviation (SDlocal). Analysis of COV was also performed to evaluate intra-observer volume variation. The inter-observer variation analysis showed that, the mean COV was 0.14(± 0.09) and 0.07(± 0.01) for dual-modality and tri-modality respectively; the standard deviation of ADSC was significantly reduced (p<0.05) with tri-modality; SDlocal averaged over median GTV surface was reduced in patient 2 (from 0.57 cm to 0.39 cm) and patient 3 (from 0.42 cm to 0.36 cm) with the new method. The intra-observer volume variation was also significantly reduced (p = 0.00) with the tri-modality method as compared with using the dual-modality method. With the new tri-modality image fusion method smaller inter- and intra-observer variation in GTV definition for the brain tumors can be achieved, which improves the consistency and accuracy for target delineation in individualized radiotherapy.

  4. Vision 20/20: Simultaneous CT-MRI — Next chapter of multimodality imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ge, E-mail: wangg6@rpi.edu; Xi, Yan; Gjesteby, Lars

    Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRImore » are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called “omnitomography” defined as the integration of all relevant imaging modalities for systems biology and precision medicine.« less

  5. Clinical Nononcologic Applications of PET/CT and PET/MRI in Musculoskeletal, Orthopedic, and Rheumatologic Imaging.

    PubMed

    Gholamrezanezhad, Ali; Basques, Kyle; Batouli, Ali; Matcuk, George; Alavi, Abass; Jadvar, Hossein

    2018-06-01

    With improvements in PET/CT and PET/MRI over the last decade, as well as increased understanding of the pathophysiology of musculoskeletal diseases, there is an emerging potential for PET as a primary or complementary modality in the management of rheumatologic and orthopedic conditions. We discuss the role of PET/CT and PET/MRI in nononcologic musculoskeletal disorders, including inflammatory and infectious conditions and postoperative complications. There is great potential for an increased role for PET to serve as a primary or complementary modality in the management of orthopedic and rheumatologic disorders.

  6. Diagnostic Imaging of the Hepatobiliary System: An Update.

    PubMed

    Marolf, Angela J

    2017-05-01

    Recent advances in diagnostic imaging of the hepatobiliary system include MRI, computed tomography (CT), contrast-enhanced ultrasound, and ultrasound elastography. With the advent of multislice CT scanners, sedated examinations in veterinary patients are feasible, increasing the utility of this imaging modality. CT and MRI provide additional information for dogs and cats with hepatobiliary diseases due to lack of superimposition of structures, operator dependence, and through intravenous contrast administration. Advanced ultrasound methods can offer complementary information to standard ultrasound imaging. These newer imaging modalities assist clinicians by aiding diagnosis, prognostication, and surgical planning. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. SU-E-I-53: Variation in Measurements of Breast Skin Thickness Obtained Using Different Imaging Modalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, U; Kumaraswamy, N; Markey, M

    Purpose: To investigate variation in measurements of breast skin thickness obtained using different imaging modalities, including mammography, computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI). Methods: Breast skin thicknesses as measured by mammography, CT, ultrasound, and MRI were compared. Mammographic measurements of skin thickness were obtained from published studies that utilized standard positioning (upright) and compression. CT measurements of skin thickness were obtained from a published study of a prototype breast CT scanner in which the women were in the prone position and the breast was uncompressed. Dermatological ultrasound exams of the breast skin were conducted at our institution,more » with the subjects in the upright position and the breast uncompressed. Breast skin thickness was calculated from breast MRI exams at our institution, with the patient in the prone position and the breast uncompressed. Results: T tests for independent samples demonstrated significant differences in the mean breast skin thickness as measured by different imaging modalities. Repeated measures ANOVA revealed significant differences in breast skin thickness across different quadrants of the breast for some modalities. Conclusion: The measurement of breast skin thickness is significantly different across different imaging modalities. Differences in the amount of compression and differences in patient positioning are possible reasons why measurements of breast skin thickness vary by modality.« less

  8. Towards Omni-Tomography—Grand Fusion of Multiple Modalities for Simultaneous Interior Tomography

    PubMed Central

    Wang, Ge; Zhang, Jie; Gao, Hao; Weir, Victor; Yu, Hengyong; Cong, Wenxiang; Xu, Xiaochen; Shen, Haiou; Bennett, James; Furth, Mark; Wang, Yue; Vannier, Michael

    2012-01-01

    We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose “omni-tomography”, a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality fusion: Software based image registration and hybrid scanners such as PET-CT, PET-MRI, and SPECT-CT among others. While there are intrinsic limitations with both approaches, the main obstacle to the seamless fusion of multiple imaging modalities has been the bulkiness of each individual imager and the conflict of their physical (especially spatial) requirements. To address this challenge, omni-tomography is now unveiled as an emerging direction for biomedical imaging and systems biomedicine. PMID:22768108

  9. SU-E-T-509: Inter-Observer and Inter-Modality Contouring Analysis for Organs at Risk for HDR Gynecological Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeghi, P; Smith, W; Tom Baker Cancer Centre, Calgary, AB

    2015-06-15

    Purpose This study quantifies errors associated with MR-guided High Dose Rate (HDR) gynecological brachytherapy. Uncertainties in this treatment results from contouring, organ motion between imaging and treatment delivery, dose calculation, and dose delivery. We focus on interobserver and inter-modality variability in contouring and the motion of organs at risk (OARs) in the time span between the MR and CT scans (∼1 hour). We report the change in organ volume and position of center of mass (CM) between the two imaging modalities. Methods A total of 8 patients treated with MR-guided HDR brachytherapy were included in this study. Two observers contouredmore » the bladder and rectum on both MR and CT scans. The change in OAR volume and CM position between the MR and CT imaging sessions on both image sets were calculated. Results The absolute mean bladder volume change between the two imaging modalities is 67.1cc. The absolute mean inter-observer difference in bladder volume is much lower at 15.5cc (MR) and 11.0cc (CT). This higher inter-modality volume difference suggests a real change in the bladder filling between the two imaging sessions. Change in Rectum volume inter-observer standard error of means (SEM) is 3.18cc (MR) and 3.09cc (CT), while the inter-modality SEM is 3.65cc (observer 1), and 2.75cc (observer 2). The SEM for rectum CM position in the superior-inferior direction was approximately three times higher than in other directions for both the inter—observer (0.77 cm, 0.92 cm for observers 1 and 2, respectively) and inter-modality (0.91 cm, 0.95 cm for MR and CT, respectively) variability. Conclusion Bladder contours display good consistency between different observers on both CT and MR images. For rectum contouring the highest inconsistency stems from the observers’ choice of the superior-inferior borders. A complete analysis of a larger patient cohort will enable us to separate the true organ motion from the inter-observer variability.« less

  10. CT Angiography after 20 Years

    PubMed Central

    Rubin, Geoffrey D.; Leipsic, Jonathon; Schoepf, U. Joseph; Fleischmann, Dominik; Napel, Sandy

    2015-01-01

    Through a marriage of spiral computed tomography (CT) and graphical volumetric image processing, CT angiography was born 20 years ago. Fueled by a series of technical innovations in CT and image processing, over the next 5–15 years, CT angiography toppled conventional angiography, the undisputed diagnostic reference standard for vascular disease for the prior 70 years, as the preferred modality for the diagnosis and characterization of most cardiovascular abnormalities. This review recounts the evolution of CT angiography from its development and early challenges to a maturing modality that has provided unique insights into cardiovascular disease characterization and management. Selected clinical challenges, which include acute aortic syndromes, peripheral vascular disease, aortic stent-graft and transcatheter aortic valve assessment, and coronary artery disease, are presented as contrasting examples of how CT angiography is changing our approach to cardiovascular disease diagnosis and management. Finally, the recently introduced capabilities for multispectral imaging, tissue perfusion imaging, and radiation dose reduction through iterative reconstruction are explored with consideration toward the continued refinement and advancement of CT angiography. PMID:24848958

  11. Recent technological advances in pediatric brain tumor surgery.

    PubMed

    Zebian, Bassel; Vergani, Francesco; Lavrador, José Pedro; Mukherjee, Soumya; Kitchen, William John; Stagno, Vita; Chamilos, Christos; Pettorini, Benedetta; Mallucci, Conor

    2017-01-01

    X-rays and ventriculograms were the first imaging modalities used to localize intracranial lesions including brain tumors as far back as the 1880s. Subsequent advances in preoperative radiological localization included computed tomography (CT; 1971) and MRI (1977). Since then, other imaging modalities have been developed for clinical application although none as pivotal as CT and MRI. Intraoperative technological advances include the microscope, which has allowed precise surgery under magnification and improved lighting, and the endoscope, which has improved the treatment of hydrocephalus and allowed biopsy and complete resection of intraventricular, pituitary and pineal region tumors through a minimally invasive approach. Neuronavigation, intraoperative MRI, CT and ultrasound have increased the ability of the neurosurgeon to perform safe and maximal tumor resection. This may be facilitated by the use of fluorescing agents, which help define the tumor margin, and intraoperative neurophysiological monitoring, which helps identify and protect eloquent brain.

  12. Multi-Modality Phantom Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Jennifer S.; Peng, Qiyu; Moses, William W.

    2009-03-20

    Multi-modality imaging has an increasing role in the diagnosis and treatment of a large number of diseases, particularly if both functional and anatomical information are acquired and accurately co-registered. Hence, there is a resulting need for multi modality phantoms in order to validate image co-registration and calibrate the imaging systems. We present our PET-ultrasound phantom development, including PET and ultrasound images of a simple prostate phantom. We use agar and gelatin mixed with a radioactive solution. We also present our development of custom multi-modality phantoms that are compatible with PET, transrectal ultrasound (TRUS), MRI and CT imaging. We describe bothmore » our selection of tissue mimicking materials and phantom construction procedures. These custom PET-TRUS-CT-MRI prostate phantoms use agargelatin radioactive mixtures with additional contrast agents and preservatives. We show multi-modality images of these custom prostate phantoms, as well as discuss phantom construction alternatives. Although we are currently focused on prostate imaging, this phantom development is applicable to many multi-modality imaging applications.« less

  13. Diagnostic value of CT, PET and combined PET/CT performed with low-dose unenhanced CT and full-dose enhanced CT in the initial staging of lymphoma.

    PubMed

    Pinilla, I; Gómez-León, N; Del Campo-Del Val, L; Hernandez-Maraver, D; Rodríguez-Vigil, B; Jover-Díaz, R; Coya, J

    2011-10-01

    The aim of this paper was to compare the accuracy of contrast-enhanced computed tomography (CT), positron emission tomography (PET), unenhanced low-dose PET/CT (LD-PET/CT) and full-dose enhanced PET/CT (FD-PET/CT) for the initial staging of lymphoma. One hundred and one lymphoma patients were examined by [18F]FDG-PET/CT including unenhanced low-dose CT and enhanced full-dose CT. Each modality of PET/CT was evaluated by a nuclear medicine physician and a radiologist unaware of the other modality, while the CT and PET images were interpreted separately by another independent radiologist and nuclear medicine physician respectively. The nodal and extranodal lesions detected by each technique were compared with a reference standard. For nodal assessment, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+), and negative LR (LR-) of LD-PET/CT were 97%, 96%, 98%, 95%, 26 and 0.02 respectively, and those of FD-PET/CT were 97%, 97%, 98%, 95%, 36 and 0.02. These results were significantly better than those of PET (sensitivity 82%, specificity 81%, PPV 88%, NPV 72%, LR+ 4.3, LR- 0.21). Likewise, both PET/CT displayed a higher sensitivity, NPV and LR- than CT (91%, 84%, 0.1 respectively). For organ evaluation, both modalities of PET/CT also had significantly better sensitivity and NPV than that of PET (LD-PET/CT: sensitivity 92%, NPV 90%; FD-PET/CT sensitivity 94%, NPV 92%; PET: sensitivity 70%, NPV 69%). The sensitivity, specificity, PPV and NPV for bone marrow involvement were 29%, 84%, 45% and 72% respectively for PET, and 29%, 90%, 56%, and 74% for both, LD-PET/CT, and FD-PET/CT. No significant differences were found between LD-PET/CT and FD-PET/CT, but FD-PET/CT detected important incidental findings in 5.9% of patients. PET/CT is an accurate technique for the initial staging of lymphomas without significant differences between LD-PET/CT and FD-PET/CT. FD-PET/CT detects relevant incidental findings that are missed on LD-PET/CT.

  14. Practical use of imaging technique for management of bone and soft tissue tumors.

    PubMed

    Miwa, Shinji; Otsuka, Takanobu

    2017-05-01

    Imaging modalities including radiography, computed tomography (CT), and magnetic resonance imaging (MRI) are necessary for the diagnosis of bone and soft tissue tumors. The history of imaging began with the discovery of X-rays in the 19th century. The development of CT, MRI, ultrasonography, and positron emission tomography (PET) have improved the management of bone and soft tissue tumors. X-ray imaging and CT scans enable the evaluation of bone destruction, periosteal reaction, sclerotic changes in lesions, condition of cortical bone, and ossification. MRI enables the assessment of tissue characteristics, tumor extent, and the reactive areas. Functional imaging modalities including 201 thallium ( 201 Tl) scintigraphy can be used to differentiate benign lesions from malignant lesions and to assess chemotherapeutic effects. Real-time assessment of soft tissue tumors by ultrasonography enables accurate and safe performance of surgery and biopsy. This article describes useful imaging modalities and characteristic findings in the management of bone and soft tissue tumors. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  15. Diagnostic role of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for early and atypical bone metastases.

    PubMed

    Chen, Xiao-Liang; Li, Qian; Cao, Lin; Jiang, Shi-Xi

    2014-01-01

    The bone metastasis appeared early before the bone imaging for most of the above patients. (99)Tc(m)-MDP ((99)Tc(m) marked methylene diphosphonate) bone imaging could diagnosis the bone metastasis with highly sensitivity, but with lower specificity. The aim of this study is to explore the diagnostic value of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for the early period atypical bone metastases. 15 to 30 mCi (99)Tc(m)-MDP was intravenously injected to the 34 malignant patients diagnosed as doubtful early bone metastases. SPECT, CT and SPECT/CT images were captured and analyzed consequently. For the patients diagnosed as early period atypical bone metastases by SPECT/CT, combining the SPECT/CT and MRI together as the SPECT/MRI integrated image. The obtained SPECT/MRI image was analyzed and compared with the pathogenic results of patients. The results indicated that 34 early period doubtful metastatic focus, including 34 SPECT positive focus, 17 focus without special changes by using CT method, 11 bone metastases focus by using SPECT/CT method, 23 doubtful bone metastases focus, 8 doubtful bone metastases focus, 14 doubtful bone metastases focus and 2 focus without clear image. Totally, SPECT/CT combined with SPECT/MRI method diagnosed 30 bone metastatic focus and 4 doubtfully metastatic focus. In conclusion, (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging shows a higher diagnostic value for the early period bone metastases, which also enhances the diagnostic accuracy rate.

  16. MO-E-12A-01: Quantitative Imaging: Techniques, Applications, and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, E; Jeraj, R; McNitt-Gray, M

    The first symposium in the Quantitative Imaging Track focused on the introduction of quantitative imaging (QI) by illustrating the potential of QI in diagnostic and therapeutic applications in research and patient care, highlighting key challenges in implementation of such QI applications, and reviewing QI efforts of selected national and international agencies and organizations, including the FDA, NCI, NIST, and RSNA. This second QI symposium will focus more specifically on the techniques, applications, and challenges of QI. The first talk of the session will focus on modalityagnostic challenges of QI, beginning with challenges of the development and implementation of QI applicationsmore » in single-center, single-vendor settings and progressing to the challenges encountered in the most general setting of multi-center, multi-vendor settings. The subsequent three talks will focus on specific QI challenges and opportunities in the modalityspecific settings of CT, PET/CT, and MR. Each talk will provide information on modality-specific QI techniques, applications, and challenges, including current efforts focused on solutions to such challenges. Learning Objectives: Understand key general challenges of QI application development and implementation, regardless of modality. Understand selected QI techniques and applications in CT, PET/CT, and MR. Understand challenges, and potential solutions for such challenges, for the applications presented for each modality.« less

  17. Multimodality Imaging of Ethiodized Oil–loaded Radiopaque Microspheres during Transarterial Embolization of Rabbits with VX2 Liver Tumors

    PubMed Central

    Tacher, Vania; Duran, Rafael; Lin, MingDe; Sohn, Jae Ho; Sharma, Karun V.; Wang, Zhijun; Chapiro, Julius; Gacchina Johnson, Carmen; Bhagat, Nikhil; Dreher, Matthew R.; Schäfer, Dirk; Woods, David L.; Lewis, Andrew L.; Tang, Yiqing; Grass, Michael; Wood, Bradford J.

    2016-01-01

    Purpose To assess the visibility of radiopaque microspheres during transarterial embolization (TAE) in the VX2 rabbit liver tumor model by using multimodality imaging, including single-snapshot radiography, cone-beam computed tomography (CT), multidetector CT, and micro-CT. Materials and Methods The study was approved by the institutional animal care and use committee. Fifteen VX2-tumor-bearing rabbits were assigned to three groups depending on the type of embolic agent injected: 70–150-μm radiopaque microspheres in saline (radiopaque microsphere group), 70–150-μm radiopaque microspheres in contrast material (radiopaque microsphere plus contrast material group), and 70–150-μm radiolucent microspheres in contrast material (nonradiopaque microsphere plus contrast material group). Rabbits were imaged with single-snapshot radiography, cone-beam CT, and multidetector CT. Three to 5 weeks after sacrifice, excised livers were imaged with micro-CT and histologic analysis was performed. The visibility of the embolic agent was assessed with all modalities before and after embolization by using a qualitative three-point scale score reading study and a quantitative assessment of the signal-to-noise ratio (SNR) change in various regions of interest, including the tumor and its feeding arteries. The Kruskal-Wallis test was used to compare the rabbit characteristics across groups, and the Wilcoxon signed rank test was used to compare SNR measurements before and after embolization. Results Radiopaque microspheres were qualitatively visualized within tumor feeding arteries and targeted tissue with all imaging modalities (P < .05), and their presence was confirmed with histologic examination. SNRs of radiopaque microsphere deposition increased after TAE on multidetector CT, cone-beam CT, and micro-CT images (P < .05). Similar results were obtained when contrast material was added to radiopaque microspheres, except for additional image attenuation due to tumor enhancement. For the group with nonradiopaque microspheres and contrast material, retained tumoral contrast remained qualitatively visible with all modalities except for micro-CT, which demonstrated soluble contrast material washout over time. Conclusion Radiopaque microspheres were visible with all imaging modalities and helped increase conspicuity of the tumor as well as its feeding arteries after TAE in a rabbit VX2 liver tumor model. © RSNA, 2015 PMID:26678453

  18. Multiscale and multi-modality visualization of angiogenesis in a human breast cancer model

    PubMed Central

    Cebulla, Jana; Kim, Eugene; Rhie, Kevin; Zhang, Jiangyang

    2017-01-01

    Angiogenesis in breast cancer helps fulfill the metabolic demands of the progressing tumor and plays a critical role in tumor metastasis. Therefore, various imaging modalities have been used to characterize tumor angiogenesis. While micro-CT (μCT) is a powerful tool for analyzing the tumor microvascular architecture at micron-scale resolution, magnetic resonance imaging (MRI) with its sub-millimeter resolution is useful for obtaining in vivo vascular data (e.g. tumor blood volume and vessel size index). However, integration of these microscopic and macroscopic angiogenesis data across spatial resolutions remains challenging. Here we demonstrate the feasibility of ‘multiscale’ angiogenesis imaging in a human breast cancer model, wherein we bridge the resolution gap between ex vivo μCT and in vivo MRI using intermediate resolution ex vivo MR microscopy (μMRI). To achieve this integration, we developed suitable vessel segmentation techniques for the ex vivo imaging data and co-registered the vascular data from all three imaging modalities. We showcase two applications of this multiscale, multi-modality imaging approach: (1) creation of co-registered maps of vascular volume from three independent imaging modalities, and (2) visualization of differences in tumor vasculature between viable and necrotic tumor regions by integrating μCT vascular data with tumor cellularity data obtained using diffusion-weighted MRI. Collectively, these results demonstrate the utility of ‘mesoscopic’ resolution μMRI for integrating macroscopic in vivo MRI data and microscopic μCT data. Although focused on the breast tumor xenograft vasculature, our imaging platform could be extended to include additional data types for a detailed characterization of the tumor microenvironment and computational systems biology applications. PMID:24719185

  19. Optimal Co-segmentation of Tumor in PET-CT Images with Context Information

    PubMed Central

    Song, Qi; Bai, Junjie; Han, Dongfeng; Bhatia, Sudershan; Sun, Wenqing; Rockey, William; Bayouth, John E.; Buatti, John M.

    2014-01-01

    PET-CT images have been widely used in clinical practice for radiotherapy treatment planning of the radiotherapy. Many existing segmentation approaches only work for a single imaging modality, which suffer from the low spatial resolution in PET or low contrast in CT. In this work we propose a novel method for the co-segmentation of the tumor in both PET and CT images, which makes use of advantages from each modality: the functionality information from PET and the anatomical structure information from CT. The approach formulates the segmentation problem as a minimization problem of a Markov Random Field (MRF) model, which encodes the information from both modalities. The optimization is solved using a graph-cut based method. Two sub-graphs are constructed for the segmentation of the PET and the CT images, respectively. To achieve consistent results in two modalities, an adaptive context cost is enforced by adding context arcs between the two subgraphs. An optimal solution can be obtained by solving a single maximum flow problem, which leads to simultaneous segmentation of the tumor volumes in both modalities. The proposed algorithm was validated in robust delineation of lung tumors on 23 PET-CT datasets and two head-and-neck cancer subjects. Both qualitative and quantitative results show significant improvement compared to the graph cut methods solely using PET or CT. PMID:23693127

  20. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temple, Nikki; Donald, Cortny; Skora, Amanda

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Basedmore » on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings.« less

  1. Intraoperative computed tomography.

    PubMed

    Tonn, J C; Schichor, C; Schnell, O; Zausinger, S; Uhl, E; Morhard, D; Reiser, M

    2011-01-01

    Intraoperative computed tomography (iCT) has gained increasing impact among modern neurosurgical techniques. Multislice CT with a sliding gantry in the OR provides excellent diagnostic image quality in the visualization of vascular lesions as well as bony structures including skull base and spine. Due to short acquisition times and a high spatial and temporal resolution, various modalities such as iCT-angiography, iCT-cerebral perfusion and the integration of intraoperative navigation with automatic re-registration after scanning can be performed. This allows a variety of applications, e.g. intraoperative angiography, intraoperative cerebral perfusion studies, update of cerebral and spinal navigation, stereotactic procedures as well as resection control in tumour surgery. Its versatility promotes its use in a multidisciplinary setting. Radiation exposure is comparable to standard CT systems outside the OR. For neurosurgical purposes, however, new hardware components (e.g. a radiolucent headholder system) had to be developed. Having a different range of applications compared to intraoperative MRI, it is an attractive modality for intraoperative imaging being comparatively easy to install and cost efficient.

  2. Image-guided interventional procedures in the dog and cat.

    PubMed

    Vignoli, Massimo; Saunders, Jimmy H

    2011-03-01

    Medical imaging is essential for the diagnostic workup of many soft tissue and bone lesions in dogs and cats, but imaging modalities do not always allow the clinician to differentiate inflammatory or infectious conditions from neoplastic disorders. This review describes interventional procedures in dogs and cats for collection of samples for cytological or histopathological examinations under imaging guidance. It describes the indications and procedures for imaging-guided sampling, including ultrasound (US), computed tomography (CT), magnetic resonance imaging and fluoroscopy. US and CT are currently the modalities of choice in interventional imaging. Copyright © 2009 Elsevier Ltd. All rights reserved.

  3. A framework for optimizing micro-CT in dual-modality micro-CT/XFCT small-animal imaging system

    NASA Astrophysics Data System (ADS)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew; Cho, Sang Hyun

    2017-09-01

    Dual-modality Computed Tomography (CT)/X-ray Fluorescence Computed Tomography (XFCT) can be a valuable tool for imaging and quantifying the organ and tissue distribution of small concentrations of high atomic number materials in small-animal system. In this work, the framework for optimizing the micro-CT imaging system component of the dual-modality system is described, either when the micro-CT images are concurrently acquired with XFCT and using the x-ray spectral conditions for XFCT, or when the micro-CT images are acquired sequentially and independently of XFCT. This framework utilizes the cascaded systems analysis for task-specific determination of the detectability index using numerical observer models at a given radiation dose, where the radiation dose is determined using Monte Carlo simulations.

  4. Diagnostic test accuracy study of 18F-sodium fluoride PET/CT, 99mTc-labelled diphosphonate SPECT/CT, and planar bone scintigraphy for diagnosis of bone metastases in newly diagnosed, high-risk prostate cancer

    PubMed Central

    Fonager, Randi F; Zacho, Helle D; Langkilde, Niels C; Fledelius, Joan; Ejlersen, June A; Haarmark, Christian; Hendel, Helle W; Lange, Mine Benedicte; Jochumsen, Mads R; Mortensen, Jesper C; Petersen, Lars J

    2017-01-01

    The aim of this study was to prospectively compare planar, bone scan (BS) versus SPECT/CT and NaF PET/CT in detecting bone metastases in prostate cancer. Thirty-seven consecutive, newly diagnosed, prostate cancer patients with prostate specific antigen (PSA) levels ≥ 50 ng/mL and who were considered eligible for androgen-deprivation therapy (ADT) were included in this study. BS, SPECT/CT, and NaF PET/CT, were performed prior to treatment and were repeated after six months of ADT. Baseline images from each index test were independently read by two experienced readers. The reference standard was based on a consensus decision made by a multidisciplinary team on the basis of baseline and follow-up images of the index tests, the findings of the baseline index tests by the experienced readers, and any available imaging, biochemical, and clinical data, including the response to ADT. Twenty-seven (73%) of the 37 patients had bone metastases according to the reference standard. The sensitivities for BS, SPECT/CT and NaF PET/CT were 78%, 89%, and 89%, respectively, and the specificities were 90%, 100%, and 90%, respectively. The positive predictive values of BS, SPECT/CT and NaF PET/CT were 96%, 100%, and 96%, respectively, and the negative predictive values were 60%, 77% and 75%, respectively. No statistically significant difference among the three imaging modalities was observed. All three imaging modalities showed high sensitivity and specificity. NaF PET/CT and SPECT/CT showed numerically improved, but not statistically superior, sensitivity compared with BS in this limited and selected patient cohort. PMID:29181269

  5. Evaluation of PET and laparoscopy in STagIng advanced gastric cancer: a multicenter prospective study (PLASTIC-study).

    PubMed

    Brenkman, H J F; Gertsen, E C; Vegt, E; van Hillegersberg, R; van Berge Henegouwen, M I; Gisbertz, S S; Luyer, M D P; Nieuwenhuijzen, G A P; van Lanschot, J J B; Lagarde, S M; de Steur, W O; Hartgrink, H H; Stoot, J H M B; Hulsewe, K W E; Spillenaar Bilgen, E J; van Det, M J; Kouwenhoven, E A; van der Peet, D L; Daams, F; van Sandick, J W; van Grieken, N C T; Heisterkamp, J; van Etten, B; Haveman, J W; Pierie, J P; Jonker, F; Thijssen, A Y; Belt, E J T; van Duijvendijk, P; Wassenaar, E; van Laarhoven, H W M; Wessels, F J; Haj Mohammad, N; van Stel, H F; Frederix, G W J; Siersema, P D; Ruurda, J P

    2018-04-20

    Initial staging of gastric cancer consists of computed tomography (CT) and gastroscopy. In locally advanced (cT3-4) gastric cancer, fluorodeoxyglucose positron emission tomography with CT (FDG-PET/CT or PET) and staging laparoscopy (SL) may have a role in staging, but evidence is scarce. The aim of this study is to evaluate the impact and cost-effectiveness of PET and SL in addition to initial staging in patients with locally advanced gastric cancer. This prospective observational cohort study will include all patients with a surgically resectable, advanced gastric adenocarcinoma (cT3-4b, N0-3, M0), that are scheduled for treatment with curative intent after initial staging with gastroscopy and CT. The modalities to be investigated in this study is the addition of PET and SL. The primary outcome of this study is the proportion of patients in whom the PET or SL lead to a change in treatment strategy. Secondary outcome parameters are: diagnostic performance, morbidity and mortality, quality of life, and cost-effectiveness of these additional diagnostic modalities. The study recently started in August 2017 with a duration of 36 months. At least 239 patients need to be included in this study to demonstrate that the diagnostic modalities are break-even. Based on the annual number of gastrectomies in the participating centers, it is estimated that approximately 543 patients are included in this study. In this study, it is hypothesized that performing PET and SL for locally advanced gastric adenocarcinomas results in a change of treatment strategy in 27% of patients and an annual cost-reduction in the Netherlands of €916.438 in this patient group by reducing futile treatment. The results of this study may be applicable to all countries with comparable treatment algorithms and health care systems. NCT03208621 . This trial was registered prospectively on June 30, 2017.

  6. In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles.

    PubMed

    Zhang, Jimei; Li, Chan; Zhang, Xu; Huo, Shuaidong; Jin, Shubin; An, Fei-Fei; Wang, Xiaodan; Xue, Xiangdong; Okeke, C I; Duan, Guiyun; Guo, Fengguang; Zhang, Xiaohong; Hao, Jifu; Wang, Paul C; Zhang, Jinchao; Liang, Xing-Jie

    2015-02-01

    As an intensely studied computed tomography (CT) contrast agent, gold nanoparticle has been suggested to be combined with fluorescence imaging modality to offset the low sensitivity of CT. However, the strong quenching of gold nanoparticle on fluorescent dyes requires complicated design and shielding to overcome. Herein, we report a unique nanoprobe (M-NPAPF-Au) co-loading an aggregation-induced emission (AIE) red dye and gold nanoparticles into DSPE-PEG(2000) micelles for dual-modal fluorescence/CT imaging. The nanoprobe was prepared based on a facile method of "one-pot ultrasonic emulsification". Surprisingly, in the micelles system, fluorescence dye (NPAPF) efficiently overcame the strong fluorescence quenching of shielding-free gold nanoparticles and retained the crucial AIE feature. In vivo studies demonstrated the nanoprobe had superior tumor-targeting ability, excellent fluorescence and CT imaging effects. The totality of present studies clearly indicates the significant potential application of M-NPAPF-Au as a dual-modal non-invasive fluorescence/X-ray CT nanoprobe for in vivo tumor-targeted imaging and diagnosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Imaging of congenital heart disease in adults: choice of modalities.

    PubMed

    Orwat, Stefan; Diller, Gerhard-Paul; Baumgartner, Helmut

    2014-01-01

    Major advances in noninvasive imaging of adult congenital heart disease have been accomplished. These tools play now a key role in comprehensive diagnostic work-up, decision for intervention, evaluation for the suitability of specific therapeutic options, monitoring of interventions and regular follow-up. Besides echocardiography, magnetic resonance (CMR) and computed tomography (CT) have gained particular importance. The choice of imaging modality has thus become a critical issue. This review summarizes strengths and limitations of the different imaging modalities and how they may be used in a complementary fashion. Echocardiography obviously remains the workhorse of imaging routinely used in all patients. However, in complex disease and after surgery echocardiography alone frequently remains insufficient. CMR is particularly useful in this setting and allows reproducible and accurate quantification of ventricular function and comprehensive assessment of cardiac anatomy, aorta, pulmonary arteries and venous return including complex flow measurements. CT is preferred when CMR is contraindicated, when superior spatial resolution is required or when "metallic" artefacts limit CMR imaging. In conclusion, the use of currently available imaging modalities in adult congenital heart disease needs to be complementary. Echocardiography remains the basis tool, CMR and CT should be added considering specific open questions and the ability to answer them, availability and economic issues.

  8. Pulmonary nodule characterization, including computer analysis and quantitative features.

    PubMed

    Bartholmai, Brian J; Koo, Chi Wan; Johnson, Geoffrey B; White, Darin B; Raghunath, Sushravya M; Rajagopalan, Srinivasan; Moynagh, Michael R; Lindell, Rebecca M; Hartman, Thomas E

    2015-03-01

    Pulmonary nodules are commonly detected in computed tomography (CT) chest screening of a high-risk population. The specific visual or quantitative features on CT or other modalities can be used to characterize the likelihood that a nodule is benign or malignant. Visual features on CT such as size, attenuation, location, morphology, edge characteristics, and other distinctive "signs" can be highly suggestive of a specific diagnosis and, in general, be used to determine the probability that a specific nodule is benign or malignant. Change in size, attenuation, and morphology on serial follow-up CT, or features on other modalities such as nuclear medicine studies or MRI, can also contribute to the characterization of lung nodules. Imaging analytics can objectively and reproducibly quantify nodule features on CT, nuclear medicine, and magnetic resonance imaging. Some quantitative techniques show great promise in helping to differentiate benign from malignant lesions or to stratify the risk of aggressive versus indolent neoplasm. In this article, we (1) summarize the visual characteristics, descriptors, and signs that may be helpful in management of nodules identified on screening CT, (2) discuss current quantitative and multimodality techniques that aid in the differentiation of nodules, and (3) highlight the power, pitfalls, and limitations of these various techniques.

  9. Adenocarcinoma Prostate With Neuroendocrine Differentiation: Potential Utility of 18F-FDG PET/CT and 68Ga-DOTANOC PET/CT Over 68Ga-PSMA PET/CT.

    PubMed

    Parida, Girish Kumar; Tripathy, Sarthak; Datta Gupta, Shreya; Singhal, Abhinav; Kumar, Rakesh; Bal, Chandrasekhar; Shamim, Shamim Ahmed

    2018-04-01

    Ga-PSMA PET/CT is the upcoming imaging modality for staging, restaging and response assessment of prostate cancer. However, due to neuroendocrine differentiation in some of patients with prostate cancer, they express somatostatin receptors instead of prostate specific membrane antigen. This can be exploited and other modalities like Ga-DOTANOC PET/CT and F-FDG PET/CT should be used in such cases for guiding management. We hereby discuss a similar case of 67-year-old man of adenocarcinoma prostate with neuroendocrine differentiation, which shows the potential pitfall of Ga-PSMA PET/CT imaging and benefit of Ga-DOTANOC PET/CT and F-FDG PET/CT in such cases.

  10. Transthoracic needle biopsy of the lung

    PubMed Central

    DiBardino, David M.; Yarmus, Lonny B.

    2015-01-01

    Background Image guided transthoracic needle aspiration (TTNA) is a valuable tool used for the diagnosis of countless thoracic diseases. Computed tomography (CT) is the most common imaging modality used for guidance followed by ultrasound (US) for lesions abutting the pleural surface. Novel approaches using virtual CT guidance have recently been introduced. The objective of this review is to examine the current literature for TTNA biopsy of the lung focusing on diagnostic accuracy and safety. Methods MEDLINE was searched from inception to October 2015 for all case series examining image guided TTNA. Articles focusing on fluoroscopic guidance as well as influence of rapid on-site evaluation (ROSE) on yield were excluded. The diagnostic accuracy, defined as the number of true positives divided by the number of biopsies done, as well as the complication rate [pneumothorax (PTX), bleeding] was examined for CT guided TTNA, US guided TTNA as well as CT guided electromagnetic navigational-TTNA (E-TTNA). Of the 490 articles recovered 75 were included in our analysis. Results The overall pooled diagnostic accuracy for CT guided TTNA using 48 articles that met the inclusion and exclusion criteria was 92.1% (9,567/10,383). A similar yield was obtained examining ten articles using US guided TTNA of 88.7% (446/503). E-TTNA, being a new modality, only had one pilot study citing a diagnostic accuracy of 83% (19/23). Pooled PTX and hemorrhage rates were 20.5% and 2.8% respectively for CT guided TTNA. The PTX rate was lower in US guided TTNA at a pooled rate of 4.4%. E-TTNA showed a similar rate of PTX at 20% with no incidence of bleeding in a single pilot study available. Conclusions Image guided TTNA is a safe and accurate modality for the biopsy of lung pathology. This study found similar yield and safety profiles with the three imaging modalities examined. PMID:26807279

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larner, J.

    In this interactive session, lung SBRT patient cases will be presented to highlight real-world considerations for ensuring safe and accurate treatment delivery. An expert panel of speakers will discuss challenges specific to lung SBRT including patient selection, patient immobilization techniques, 4D CT simulation and respiratory motion management, target delineation for treatment planning, online treatment alignment, and established prescription regimens and OAR dose limits. Practical examples of cases, including the patient flow thought the clinical process are presented and audience participation will be encouraged. This panel session is designed to provide case demonstration and review for lung SBRT in terms ofmore » (1) clinical appropriateness in patient selection, (2) strategies for simulation, including 4D and respiratory motion management, and (3) applying multi imaging modality (4D CT imaging, MRI, PET) for tumor volume delineation and motion extent, and (4) image guidance in treatment delivery. Learning Objectives: Understand the established requirements for patient selection in lung SBRT Become familiar with the various immobilization strategies for lung SBRT, including technology for respiratory motion management Understand the benefits and pitfalls of applying multi imaging modality (4D CT imaging, MRI, PET) for tumor volume delineation and motion extent determination for lung SBRT Understand established prescription regimes and OAR dose limits.« less

  12. Recommendations of the Spanish Societies of Radiation Oncology (SEOR), Nuclear Medicine & Molecular Imaging (SEMNiM), and Medical Physics (SEFM) on (18)F-FDG PET-CT for radiotherapy treatment planning.

    PubMed

    Caballero Perea, Begoña; Villegas, Antonio Cabrera; Rodríguez, José Miguel Delgado; Velloso, María José García; Vicente, Ana María García; Cabrerizo, Carlos Huerga; López, Rosa Morera; Romasanta, Luis Alberto Pérez; Beltrán, Moisés Sáez

    2012-01-01

    Positron emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process.

  13. Recommendations of the Spanish Societies of Radiation Oncology (SEOR), Nuclear Medicine & Molecular Imaging (SEMNiM), and Medical Physics (SEFM) on 18F-FDG PET-CT for radiotherapy treatment planning

    PubMed Central

    Caballero Perea, Begoña; Villegas, Antonio Cabrera; Rodríguez, José Miguel Delgado; Velloso, María José García; Vicente, Ana María García; Cabrerizo, Carlos Huerga; López, Rosa Morera; Romasanta, Luis Alberto Pérez; Beltrán, Moisés Sáez

    2012-01-01

    Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process. PMID:24377032

  14. X-ray cargo container inspection system with few-view projection imaging

    NASA Astrophysics Data System (ADS)

    Duan, Xinhui; Cheng, Jianping; Zhang, Li; Xing, Yuxiang; Chen, Zhiqiang; Zhao, Ziran

    2009-01-01

    An X-ray cargo inspection system with few-view projection imaging is developed for detecting contraband in air containers. This paper describes this developing inspection system, including its configuration and the process of inspection using three imaging modalities: digital radiography (DR), few view imaging and computed tomography (CT). The few-view imaging can provide 3D images with much faster scanning speed than CT and do great help to quickly locate suspicious cargo in a container. An algorithm to reconstruct tomographic images from severely sparse projection data of few-view imaging is discussed. A cooperative work manner of the three modalities is presented to make the inspection more convenient and effective. Numerous experiments of performance tests and modality comparison are performed on our system for inspecting air containers. Results demonstrate the effectiveness of our methods and implementation of few-view imaging in practical inspection systems.

  15. Diagnostic imaging in paraneoplastic autoimmune multiorgan syndrome: retrospective single site study and literature review of 225 patients.

    PubMed

    Lehman, Vance T; Barrick, Benjamin J; Pittelkow, Mark R; Peller, Patrick J; Camilleri, Michael J; Lehman, Julia S

    2015-04-01

    The utility of diagnostic imaging in paraneoplastic autoimmune multiorgan syndrome (PAMS) is unknown. We examined the role of diagnostic imaging in patients with PAMS evaluated at our tertiary referral center (at Mayo Clinic, Rochester, MN, USA) and in the English literature between January 1, 1996, and August 31, 2012. We included 17 patients from our institution and 208 patients from the literature review. Of these 225 patients, 113 (50.2%) were not known to have a malignancy diagnosis at the time of PAMS diagnosis. Of the 123 patients from our institution and from the literature reported to undergo imaging studies, conventional computed tomography (CT) was the predominant imaging modality (n = 110; 89.4%); 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT was also used, albeit infrequently (n = 12; 9.8%). When CT was included in imaging to identify or confirm the presence of a malignancy, imaging was successful in all patients who ultimately were diagnosed with an associated malignancy. At our institution, a relatively high percentage (n = 7; 41%) of patients had 18F-FDG PET/CT, which not only identified all tumors found on CT but also facilitated staging of lymphoma and guided biopsy procedures. Diagnostic imaging is frequently utilized in PAMS with unknown malignancy. Both conventional CT and 18F-FDG PET/CT are likely to detect the typical underlying neoplasms. Relative to conventional CT, 18F-FDG PET/CT may provide additional useful information regarding prognosis for the likely underlying malignancies, although there is a paucity of reports describing the use of this modality for this purpose. © 2014 The International Society of Dermatology.

  16. Near-infrared fluorescent silica-coated gold nanoparticle clusters for x-ray computed tomography/optical dual modal imaging of the lymphatic system.

    PubMed

    Hayashi, Koichiro; Nakamura, Michihiro; Ishimura, Kazunori

    2013-05-01

    Lymph nodes (LNs) are often removed to prevent the spread of cancer because they are frequently the first site of metastases. However, the enucleation of LNs requires difficult operative techniques and lymphedema can result as a complication. Although lymphedema can be cured by anastomosis of a lymph vessel (LV) to a vein, the operative procedure is extremely difficult because LNs and LVs are too small and indistinct to be identified. Therefore, visualization of LNs and LVs is important. The combination of X-ray computed tomography (CT) and fluorescence imaging, CT/fluorescence dual modal imaging, enables the visualization of LNs and LVs before and during surgery. To accomplish this, near-infrared fluorescent silica-coated gold nanoparticle clusters (Au@SiO₂) with a high X-ray absorption coefficient are synthesized. Both fluorescence imaging and CT show that the Au@SiO₂ nanoparticles gradually accumulate in LNs through LVs. CT determines the location and size of the LNs and LVs without dissection, and fluorescence imaging facilitates their identification. The Au@SiO₂ nanoparticles have neither hepatotoxicity nor nephrotoxicity. The results demonstrate that CT/fluorescence dual modal imaging using Au@SiO₂ nanoparticles provides anatomical information, including the location and size of LNs and LVs for determining a surgery plan, and provides intraoperative visualization of LNs and LVs to facilitate the operation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Neural network fusion: a novel CT-MR aortic aneurysm image segmentation method

    NASA Astrophysics Data System (ADS)

    Wang, Duo; Zhang, Rui; Zhu, Jin; Teng, Zhongzhao; Huang, Yuan; Spiga, Filippo; Du, Michael Hong-Fei; Gillard, Jonathan H.; Lu, Qingsheng; Liò, Pietro

    2018-03-01

    Medical imaging examination on patients usually involves more than one imaging modalities, such as Computed Tomography (CT), Magnetic Resonance (MR) and Positron Emission Tomography(PET) imaging. Multimodal imaging allows examiners to benefit from the advantage of each modalities. For example, for Abdominal Aortic Aneurysm, CT imaging shows calcium deposits in the aorta clearly while MR imaging distinguishes thrombus and soft tissues better.1 Analysing and segmenting both CT and MR images to combine the results will greatly help radiologists and doctors to treat the disease. In this work, we present methods on using deep neural network models to perform such multi-modal medical image segmentation. As CT image and MR image of the abdominal area cannot be well registered due to non-affine deformations, a naive approach is to train CT and MR segmentation network separately. However, such approach is time-consuming and resource-inefficient. We propose a new approach to fuse the high-level part of the CT and MR network together, hypothesizing that neurons recognizing the high level concepts of Aortic Aneurysm can be shared across multiple modalities. Such network is able to be trained end-to-end with non-registered CT and MR image using shorter training time. Moreover network fusion allows a shared representation of Aorta in both CT and MR images to be learnt. Through experiments we discovered that for parts of Aorta showing similar aneurysm conditions, their neural presentations in neural network has shorter distances. Such distances on the feature level is helpful for registering CT and MR image.

  18. Hybrid SPECT/CT imaging in neurology.

    PubMed

    Ciarmiello, Andrea; Giovannini, Elisabetta; Meniconi, Martina; Cuccurullo, Vincenzo; Gaeta, Maria Chiara

    2014-01-01

    In recent years, the SPECT/CT hybrid modality has led to a rapid development of imaging techniques in nuclear medicine, opening new perspectives for imaging staff and patients as well. However, while, the clinical role of positron emission tomography-computed tomography (PET-CT) is well consolidated, the diffusion and the consequent value of single-photon emission tomography-computed tomography (SPECT-CT) has yet to be weighed, Hence, there is a need for a careful analysis, comparing the "potential" benefits of the hybrid modality with the "established" ones of the standalone machine. The aim of this article is to analyze the impact of this hybrid tool on the diagnosis of diseases of the central nervous system, comparing strengths and weaknesses of both modalities through the use of SWOT analysis.

  19. Clinical Utility and Future Applications of PET/CT and PET/CMR in Cardiology

    PubMed Central

    Pan, Jonathan A.; Salerno, Michael

    2016-01-01

    Over the past several years, there have been major advances in cardiovascular positron emission tomography (PET) in combination with either computed tomography (CT) or, more recently, cardiovascular magnetic resonance (CMR). These multi-modality approaches have significant potential to leverage the strengths of each modality to improve the characterization of a variety of cardiovascular diseases and to predict clinical outcomes. This review will discuss current developments and potential future uses of PET/CT and PET/CMR for cardiovascular applications, which promise to add significant incremental benefits to the data provided by each modality alone. PMID:27598207

  20. Image reconstruction for PET/CT scanners: past achievements and future challenges

    PubMed Central

    Tong, Shan; Alessio, Adam M; Kinahan, Paul E

    2011-01-01

    PET is a medical imaging modality with proven clinical value for disease diagnosis and treatment monitoring. The integration of PET and CT on modern scanners provides a synergy of the two imaging modalities. Through different mathematical algorithms, PET data can be reconstructed into the spatial distribution of the injected radiotracer. With dynamic imaging, kinetic parameters of specific biological processes can also be determined. Numerous efforts have been devoted to the development of PET image reconstruction methods over the last four decades, encompassing analytic and iterative reconstruction methods. This article provides an overview of the commonly used methods. Current challenges in PET image reconstruction include more accurate quantitation, TOF imaging, system modeling, motion correction and dynamic reconstruction. Advances in these aspects could enhance the use of PET/CT imaging in patient care and in clinical research studies of pathophysiology and therapeutic interventions. PMID:21339831

  1. PET/CT and contrast enhanced CT in single vs. two separate sessions: a cost analysis study.

    PubMed

    Picchio, M; Mansueto, M; Crivellaro, C; Guerra, L; Marcelli, S; Arosio, M; Sironi, S; Gianolli, L; Grimaldi, A; Messa, C

    2012-06-01

    Aim of the study was to quantify the economic impact of PET/CT and contrast enhanced (c.e.) CT performed in a single session examination vs. stand-alone modalities in oncological patients. One-hundred-forty-five cancer patients referred to both PET/CT and c.e. CT, to either stage (N.=46) or re-stage (N.=99) the disease, were included. Seventy-two/145 performed both studies in a single session (innovative method) and 73/145 in two different sessions (traditional method). The cost-minimization analysis was performed by evaluating: 1) institutional costs, data obtained by hospital accountability (staff, medical materials, equipment maintenance and depreciation, departments utilities); 2) patients costs, data obtained by a specific survey provided to patients (travel, food, accommodation costs, productivity loss). Economic data analysis showed that the costs for innovative method was lower than those of traditional method, both for Institution (106 € less per test) and for patient (21 € less per patient). The loss of productivity for patient and caregivers resulted lower for the innovative method than the traditional method (3 work-hour less per person). PET/CT and c.e. CT performed in a single session is more cost-effective than stand-alone modalities, by reducing both Institutional and patients costs. These advantages are mainly due to lower Institutional cost (single procedure) and to lower cost related to travel and housing.

  2. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    PubMed Central

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  3. Preliminary experience on the use of PET/CT in the management of pediatric post-transplant lymphoproliferative disorder.

    PubMed

    Guerra-García, Pilar; Hirsch, Steffen; Levine, Daniel S; Taj, Mary M

    2017-12-01

    Post-transplant lymphoproliferative disorder (PTLD) is a well-known complication following prolonged immunosuppression. Contrary to other lymphomas, there is no standardized imaging approach to assess PTLD either at staging or for response to therapy. Positron emission tomography/computed tomography (PET/CT) is an imaging modality that has proven to be useful in lymphoma. However, there is still limited data concerning its use in pediatric PTLD. Our study evaluates the use of PET/CT in pediatric PTLD at our institution. To assess the role of PET/CT in pediatric PTLD, we reviewed the pediatric patients with PTLD who had undergone PET/CT at our institution between 2000 and 2016. Nine patients were identified. Six had PET/CT at diagnosis. All lesions seen on CT were identified with PET/CT. Fourteen PET/CTs were done during treatment. Eight PET/CTs were negative, including three where CT showed areas of uncertain significance. In these cases, PET/CT helped us to stop treatment and the patients remain in remission after a long follow-up (mean 74.3 months; range 12.4-180.9 months). PET/CT revealed additional disease in two cases, therefore treatment was intensified. Six biopsies and close follow-up was done to confirm PET/CT results. In one case, PET/CT did not identify central nervous system involvement demonstrated on magnetic resonance imaging. PET/CT may have an important role in the staging and follow-up of pediatric PTLD. In our cohort, PET/CT was helpful in staging and assessing treatment response and in clarifying equivocal findings on other imaging modalities. © 2017 Wiley Periodicals, Inc.

  4. MO-G-9A-01: Imaging Refresher for Standard of Care Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labby, Z; Sensakovic, W; Hipp, E

    2014-06-15

    Imaging techniques and technology which were previously the domain of diagnostic medicine are becoming increasingly integrated and utilized in radiation therapy (RT) clinical practice. As such, there are a number of specific imaging topics that are highly applicable to modern radiation therapy physics. As imaging becomes more widely integrated into standard clinical radiation oncology practice, the impetus is on RT physicists to be informed and up-to-date on those imaging modalities relevant to the design and delivery of therapeutic radiation treatments. For example, knowing that, for a given situation, a fluid attenuated inversion recovery (FLAIR) image set is most likely whatmore » the physician would like to import and contour is helpful, but may not be sufficient to providing the best quality of care. Understanding the physics of how that pulse sequence works and why it is used could help assess its utility and determine if it is the optimal sequence for aiding in that specific clinical situation. It is thus important that clinical medical physicists be able to understand and explain the physics behind the imaging techniques used in all aspects of clinical radiation oncology practice. This session will provide the basic physics for a variety of imaging modalities for applications that are highly relevant to radiation oncology practice: computed tomography (CT) (including kV, MV, cone beam CT [CBCT], and 4DCT), positron emission tomography (PET)/CT, magnetic resonance imaging (MRI), and imaging specific to brachytherapy (including ultrasound and some brachytherapy specific topics in MR). For each unique modality, the image formation process will be reviewed, trade-offs between image quality and other factors (e.g. imaging time or radiation dose) will be clarified, and typically used cases for each modality will be introduced. The current and near-future uses of these modalities and techniques in radiation oncology clinical practice will also be discussed. Learning Objectives: To review the basic physical science principles of CT, PET, MR, and ultrasound imaging. To understand how the images are created, and present their specific role in patient management and treatment planning for therapeutic radiation (both external beam and brachytherapy). To discuss when and how each specific imaging modality is currently used in clinical practice, as well as how they may come to be used in the near future.« less

  5. Diagnostic value of imaging in infective endocarditis: a systematic review.

    PubMed

    Gomes, Anna; Glaudemans, Andor W J M; Touw, Daan J; van Melle, Joost P; Willems, Tineke P; Maass, Alexander H; Natour, Ehsan; Prakken, Niek H J; Borra, Ronald J H; van Geel, Peter Paul; Slart, Riemer H J A; van Assen, Sander; Sinha, Bhanu

    2017-01-01

    Sensitivity and specificity of the modified Duke criteria for native valve endocarditis are both suboptimal, at approximately 80%. Diagnostic accuracy for intracardiac prosthetic material-related infection is even lower. Non-invasive imaging modalities could potentially improve diagnosis of infective endocarditis; however, their diagnostic value is unclear. We did a systematic literature review to critically appraise the evidence for the diagnostic performance of these imaging modalities, according to PRISMA and GRADE criteria. We searched PubMed, Embase, and Cochrane databases. 31 studies were included that presented original data on the performance of electrocardiogram (ECG)-gated multidetector CT angiography (MDCTA), ECG-gated MRI, 18 F-fluorodeoxyglucose ( 18 F-FDG) PET/CT, and leucocyte scintigraphy in diagnosis of native valve endocarditis, intracardiac prosthetic material-related infection, and extracardiac foci in adults. We consistently found positive albeit weak evidence for the diagnostic benefit of 18 F-FDG PET/CT and MDCTA. We conclude that additional imaging techniques should be considered if infective endocarditis is suspected. We propose an evidence-based diagnostic work-up for infective endocarditis including these non-invasive techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Computerised tomography vs magnetic resonance imaging for modeling of patient-specific instrumentation in total knee arthroplasty.

    PubMed

    Stirling, Paul; Valsalan Mannambeth, Rejith; Soler, Agustin; Batta, Vineet; Malhotra, Rajeev Kumar; Kalairajah, Yegappan

    2015-03-18

    To summarise and compare currently available evidence regarding accuracy of pre-operative imaging, which is one of the key choices for surgeons contemplating patient-specific instrumentation (PSI) surgery. The MEDLINE and EMBASE medical literature databases were searched, from January 1990 to December 2013, to identify relevant studies. The data from several clinical studies was assimilated to allow appreciation and comparison of the accuracy of each modality. The overall accuracy of each modality was calculated as proportion of outliers > 3% in the coronal plane of both computerised tomography (CT) or magnetic resonance imaging (MRI). Seven clinical studies matched our inclusion criteria for comparison and were included in our study for statistical analysis. Three of these reported series using MRI and four with CT. Overall percentage of outliers > 3% in patients with CT-based PSI systems was 12.5% vs 16.9% for MRI-based systems. These results were not statistically significant. Although many studies have been undertaken to determine the ideal pre-operative imaging modality, conclusions remain speculative in the absence of long term data. Ultimately, information regarding accuracy of CT and MRI will be the main determining factor. Increased accuracy of pre-operative imaging could result in longer-term savings, and reduced accumulated dose of radiation by eliminating the need for post-operative imaging and revision surgery.

  7. Costs, charges, and revenues for hospital diagnostic imaging procedures: differences by modality and hospital characteristics.

    PubMed

    Sistrom, Christopher Lee; McKay, Niccie L

    2005-06-01

    This study examined financial data reported by Florida hospitals concerning costs, charges, and revenues related to imaging services. Financial reports to the Florida Hospital Uniform Reporting System by all licensed acute care facilities for fiscal year 2002 were used to calculate four financial indices on a per procedure basis. These included charge, net revenue, operating expense (variable cost), and contribution margin. Analysis, stratified by cost center (imaging modality), tested the effects of bed size, ownership, teaching status, and urban or rural status on the four indices. The mean operating expense and charge per procedure were as follows: computed tomography (CT): $51 and $1565; x-ray and ultrasound: $55 and $410; nuclear medicine (NM): $135 and $1138; and magnetic resonance imaging (MRI): $165 and $2048. With all four modalities, for-profit hospitals had higher charges than not-for-profit and public facilities. Excepting NM, however, the difference by ownership disappeared when considering net revenue. Operating expense did not differ by ownership type or bed size. Operating expense (variable cost) per procedure is considerably lower for CT than for MRI. Consequently, when diagnostically equivalent, CT is preferable to MRI in terms of costs for hospitals. If the cost structure of nonhospital imaging is at all similar to hospitals, the profit potential for performing CT and MRI seems to be substantial, which has relevance to the issue of imaging self-referral.

  8. Computerised tomography vs magnetic resonance imaging for modeling of patient-specific instrumentation in total knee arthroplasty

    PubMed Central

    Stirling, Paul; Valsalan Mannambeth, Rejith; Soler, Agustin; Batta, Vineet; Malhotra, Rajeev Kumar; Kalairajah, Yegappan

    2015-01-01

    AIM: To summarise and compare currently available evidence regarding accuracy of pre-operative imaging, which is one of the key choices for surgeons contemplating patient-specific instrumentation (PSI) surgery. METHODS: The MEDLINE and EMBASE medical literature databases were searched, from January 1990 to December 2013, to identify relevant studies. The data from several clinical studies was assimilated to allow appreciation and comparison of the accuracy of each modality. The overall accuracy of each modality was calculated as proportion of outliers > 3% in the coronal plane of both computerised tomography (CT) or magnetic resonance imaging (MRI). RESULTS: Seven clinical studies matched our inclusion criteria for comparison and were included in our study for statistical analysis. Three of these reported series using MRI and four with CT. Overall percentage of outliers > 3% in patients with CT-based PSI systems was 12.5% vs 16.9% for MRI-based systems. These results were not statistically significant. CONCLUSION: Although many studies have been undertaken to determine the ideal pre-operative imaging modality, conclusions remain speculative in the absence of long term data. Ultimately, information regarding accuracy of CT and MRI will be the main determining factor. Increased accuracy of pre-operative imaging could result in longer-term savings, and reduced accumulated dose of radiation by eliminating the need for post-operative imaging and revision surgery. PMID:25793170

  9. Diagnosing Early Ischemic Changes with the Latest-Generation Flat Detector CT: A Comparative Study with Multidetector CT.

    PubMed

    Maier, I L; Leyhe, J R; Tsogkas, I; Behme, D; Schregel, K; Knauth, M; Schnieder, M; Liman, J; Psychogios, M-N

    2018-05-01

    One-stop management of mechanical thrombectomy-eligible patients with large-vessel occlusion represents an innovative approach in acute stroke treatment. This approach reduces door-to-reperfusion times by omitting multidetector CT, using flat detector CT as pre-mechanical thrombectomy imaging. The purpose of this study was to compare the diagnostic performance of the latest-generation flat detector CT with multidetector CT. Prospectively derived data from patients with ischemic stroke with large-vessel occlusion and mechanical thrombectomy were analyzed in this monocentric study. All included patients underwent multidetector CT before referral to our comprehensive stroke center and flat detector CT in the angiography suite before mechanical thrombectomy. Diagnosis of early ischemic signs, quantified by the ASPECTS, was compared between modalities using cross tables, the Pearson correlation, and Bland-Altman plots. The predictive value of multidetector CT- and flat detector CT-derived ASPECTS for functional outcome was investigated using area under the receiver operating characteristic curve analysis. Of 25 patients, 24 (96%) had flat detector CT with sufficient diagnostic quality. Median multidetector CT and flat detector CT ASPECTSs were 7 (interquartile range, 5.5-9 and 4.25-8, respectively) with a mean period of 143.6 ± 49.5 minutes between both modalities. The overall sensitivity was 85.1% and specificity was 83.1% for flat detector CT ASPECTS compared with multidetector CT ASPECTS as the reference technique. Multidetector CT and flat detector CT ASPECTS were strongly correlated ( r = 0.849, P < .001) and moderately predicted functional outcome (area under the receiver operating characteristic curve, 0.738; P = .007 and .715; P = .069, respectively). Determination of ASPECTS on flat detector CT is feasible, showing no significant difference compared with multidetector CT ASPECTS and a similar predictive value for functional outcome. Our findings support the use of flat detector CT for emergency stroke imaging before mechanical thrombectomy to reduce door-to-groin time. © 2018 by American Journal of Neuroradiology.

  10. 18F-FDG SPECT/CT in the diagnosis of differentiated thyroid carcinoma with elevated thyroglobulin and negative iodine-131 scans.

    PubMed

    Ma, C; Wang, X; Shao, M; Zhao, L; Jiawei, X; Wu, Z; Wang, H

    2015-06-01

    Aim of the present study was to investigate the usefulness of 18F-FDG SPECT/CT in differentiated thyroid cancer (DTC) with elevated serum thyroglobulin (Tg) but negative iodine-131 scan. This retrospective review of patients with DTC recurrence who had 18F-FDG SPECT/CT and 18F-FDG PET/CT for elevated serum Tg but negative iodine-131 scan (March 2007-October 2012). After total thyroidectomy followed by radioiodine ablation, 86 consecutive patients with elevated Tg levels underwent 18F-FDG SPECT/CT or 18F-FDG PET/CT. Of these, 45 patients had 18F-FDG SPECT/CT, the other 41 patients had 18F-FDG PET/CT 3-4weeks after thyroid hormone withdrawal. The results of 18F-FDG PET/CT and SPECT/CT were correlated with patient follow-up information, which included the results from subsequent imaging modalities such as neck ultrasound, MRI and CT, Tg levels, and histologic examination of surgical specimens. The diagnostic accuracy of the two imaging modalities was evaluated. In 18F-FDG SPECT/CT scans, 24 (24/45) patients had positive findings, 22 true positive in 24 patients, false positive in 2 patients, true-negative and false-negative in 6, 15 patients, respectively. The overall sensitivity, specificity, and accuracy of 18F-FDG SPECT/CT were 59.5%, 75% and 62.2%, respectively. Twenty six patients had positive findings on 18F-FDG PET/CT scans, 23 true positive in 26 (26/41) patients, false positive in 3 patients, true-negative and false-negative in 9, 6 patients, respectively. The overall sensitivity, specificity, and accuracy of 18F-FDG PET/CT were 79.3%, 81.8% and 78.1%, respectively. Clinical management changed for 13 (29%) of 45 patients by 18F-FDG SPECT/CT, 14 (34%) of 41 patients by 18F-FDG PET/CT including surgery, radiation therapy, or multikinase inhibitor. Based on the retrospective analysis of 86 patients, 18F-FDG SPECT/CT has lower sensitivity in the diagnosis of DTC recurrence with elevated Tg and negative iodine-131scan to 18F-FDG PET/CT. The clinical application of FDG SPECT/CT is then limited and cannot replace PET/CT.

  11. Radiological Determination of Postoperative Cervical Fusion: A Systematic Review.

    PubMed

    Rhee, John M; Chapman, Jens R; Norvell, Daniel C; Smith, Justin; Sherry, Ned A; Riew, K Daniel

    2015-07-01

    Systematic review. To determine best criteria for radiological determination of postoperative subaxial cervical fusion to be applied to current clinical practice and ongoing future research assessing fusion to standardize assessment and improve comparability. Despite availability of multiple imaging modalities and criteria, there remains no method of determining cervical fusion with absolute certainty, nor clear consensus on specific criteria to be applied. A systematic search in MEDLINE/Cochrane Collaboration Library (through March 2014). Included studies assessed C2 to C7 via anterior or posterior approach, at 12 weeks or more postoperative, with any graft or implant. Overall body of evidence with respect to 6 posited key questions was determined using Grading of Recommendations Assessment, Development and Evaluation and Agency for Healthcare Research and Quality precepts. Of plain radiographical modalities, there is moderate evidence that the interspinous process motion method (<1 mm) is more accurate than the Cobb angle method for assessing anterior cervical fusion. Of the advanced imaging modalities, there is moderate evidence that computed tomography (CT) is more accurate and reliable than magnetic resonance imaging in assessing anterior cervical fusion. There is insufficient evidence regarding the optimal modality and criteria for assessing posterior cervical fusions and insufficient evidence to support a single time point after surgery as being optimal for determining fusion, although some evidence suggest that reliability of radiography and CT improves with increasing time postoperatively. We recommend using less than 1-mm motion as the initial modality for determining anterior cervical arthrodesis for both clinical and research applications. If further imaging is needed because of indeterminate radiographical evaluation, we recommend CT, which has relatively high accuracy and reliability, but due to greater radiation exposure and cost, it is not routinely suggested. We recommend that plain radiographs also be the initial method of determining posterior cervical fusion but suggest a lower threshold for obtaining CT scans because dynamic radiographs may not be as useful if spinous processes have been removed by laminectomy. 1.

  12. MO-E-BRB-03: Panel Member

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salter, B.

    2016-06-15

    In this interactive session, lung SBRT patient cases will be presented to highlight real-world considerations for ensuring safe and accurate treatment delivery. An expert panel of speakers will discuss challenges specific to lung SBRT including patient selection, patient immobilization techniques, 4D CT simulation and respiratory motion management, target delineation for treatment planning, online treatment alignment, and established prescription regimens and OAR dose limits. Practical examples of cases, including the patient flow thought the clinical process are presented and audience participation will be encouraged. This panel session is designed to provide case demonstration and review for lung SBRT in terms ofmore » (1) clinical appropriateness in patient selection, (2) strategies for simulation, including 4D and respiratory motion management, and (3) applying multi imaging modality (4D CT imaging, MRI, PET) for tumor volume delineation and motion extent, and (4) image guidance in treatment delivery. Learning Objectives: Understand the established requirements for patient selection in lung SBRT Become familiar with the various immobilization strategies for lung SBRT, including technology for respiratory motion management Understand the benefits and pitfalls of applying multi imaging modality (4D CT imaging, MRI, PET) for tumor volume delineation and motion extent determination for lung SBRT Understand established prescription regimes and OAR dose limits.« less

  13. MO-E-BRB-01: Panel Member

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedict, S.

    2016-06-15

    In this interactive session, lung SBRT patient cases will be presented to highlight real-world considerations for ensuring safe and accurate treatment delivery. An expert panel of speakers will discuss challenges specific to lung SBRT including patient selection, patient immobilization techniques, 4D CT simulation and respiratory motion management, target delineation for treatment planning, online treatment alignment, and established prescription regimens and OAR dose limits. Practical examples of cases, including the patient flow thought the clinical process are presented and audience participation will be encouraged. This panel session is designed to provide case demonstration and review for lung SBRT in terms ofmore » (1) clinical appropriateness in patient selection, (2) strategies for simulation, including 4D and respiratory motion management, and (3) applying multi imaging modality (4D CT imaging, MRI, PET) for tumor volume delineation and motion extent, and (4) image guidance in treatment delivery. Learning Objectives: Understand the established requirements for patient selection in lung SBRT Become familiar with the various immobilization strategies for lung SBRT, including technology for respiratory motion management Understand the benefits and pitfalls of applying multi imaging modality (4D CT imaging, MRI, PET) for tumor volume delineation and motion extent determination for lung SBRT Understand established prescription regimes and OAR dose limits.« less

  14. MO-E-BRB-00: PANEL DISCUSSION: SBRT/SRS Case Studies - Lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2016-06-15

    In this interactive session, lung SBRT patient cases will be presented to highlight real-world considerations for ensuring safe and accurate treatment delivery. An expert panel of speakers will discuss challenges specific to lung SBRT including patient selection, patient immobilization techniques, 4D CT simulation and respiratory motion management, target delineation for treatment planning, online treatment alignment, and established prescription regimens and OAR dose limits. Practical examples of cases, including the patient flow thought the clinical process are presented and audience participation will be encouraged. This panel session is designed to provide case demonstration and review for lung SBRT in terms ofmore » (1) clinical appropriateness in patient selection, (2) strategies for simulation, including 4D and respiratory motion management, and (3) applying multi imaging modality (4D CT imaging, MRI, PET) for tumor volume delineation and motion extent, and (4) image guidance in treatment delivery. Learning Objectives: Understand the established requirements for patient selection in lung SBRT Become familiar with the various immobilization strategies for lung SBRT, including technology for respiratory motion management Understand the benefits and pitfalls of applying multi imaging modality (4D CT imaging, MRI, PET) for tumor volume delineation and motion extent determination for lung SBRT Understand established prescription regimes and OAR dose limits.« less

  15. SU-E-J-218: Novel Validation Paradigm of MRI to CT Deformation of Prostate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padgett, K; University of Miami School of Medicine - Radiology, Miami, FL; Pirozzi, S

    2015-06-15

    Purpose: Deformable registration algorithms are inherently difficult to characterize in the multi-modality setting due to a significant differences in the characteristics of the different modalities (CT and MRI) as well as tissue deformations. We present a unique paradigm where this is overcome by utilizing a planning-MRI acquired within an hour of the planning-CT serving as a surrogate for quantifying MRI to CT deformation by eliminating the issues of multi-modality comparisons. Methods: For nine subjects, T2 fast-spin-echo images were acquired at two different time points, the first several weeks prior to planning (diagnostic-MRI) and the second on the same day asmore » the planning-CT (planning-MRI). Significant effort in patient positioning and bowel/bladder preparation was undertaken to minimize distortion of the prostate in all datasets. The diagnostic-MRI was rigidly and deformably aligned to the planning-CT utilizing a commercially available deformable registration algorithm synthesized from local registrations. Additionally, the quality of rigid alignment was ranked by an imaging physicist. The distances between corresponding anatomical landmarks on rigid and deformed registrations (diagnostic-MR to planning-CT) were evaluated. Results: It was discovered that in cases where the rigid registration was of acceptable quality the deformable registration didn’t improve the alignment, this was true of all metrics employed. If the analysis is separated into cases where the rigid alignment was ranked as unacceptable the deformable registration significantly improved the alignment, 4.62mm residual error in landmarks as compared to 5.72mm residual error in rigid alignments with a p-value of 0.0008. Conclusion: This paradigm provides an ideal testing ground for MR to CT deformable registration algorithms by allowing for inter-modality comparisons of multi-modality registrations. Consistent positioning, bowel and bladder preparation may Result in higher quality rigid registrations than typically achieved which limits the impact of deformable registrations. In this study cases where significant differences exist, deformable registrations provide significant value.« less

  16. Health consumption in Sami speaking municipalities and a control group with regard to medical imaging.

    PubMed

    Størmer, Jan; Norum, Jan; Olsen, Lena Ringstad; Eldevik, Petter; Broderstad, Ann Ragnhild

    2012-03-23

    The Northern Norway Regional Health Authority trust aims to offer a high quality specialist health care to all inhabitants. The objective of this study was to document the consumption of medical imaging [conventional radiography (CR), computerised tomography (CT), magnetic resonance (MR), ultrasound (US)]. The eight municipalities in northern Norway included in the administration area of the Sami language law (Sami group - 132,490 persons/year in the period 2003-2009, mean/year 19,363 inhabitants) were matched with a control group of 11 municipalities (non-Sami group - 135,539 persons/year, mean/year 18,927 inhabitants). Population data was accessed from Statistics Norway. Data on imaging exams were derived from a regional database including production data from all public and private institutions within the region. All four main modality groups (CR, CT, MR, US) were analysed. Variations for imaging frequency on each modality were compared between the Sami and non-Sami municipalities. A total of 278,832 exams were performed during study period. The age adjusted exam rate (all modalities) was significantly higher (p < 0.001) in non-Sami (females and males) group. There was no difference with regard to conventional radiography (CR) (p = 0.855). Whereas MR (p < 0.001) imaging was more common in the Sami group, CT (p < 0.001) and US (p = 0.003) exams were more frequently used in the control group. People living in Sami speaking communities experienced significantly less CT and US exams, but had more MR exams than the control group. A relatively high physical activity, obesity and a lower risk of cancer may be explanations.

  17. Health consumption in Sami speaking municipalities and a control group with regard to medical imaging.

    PubMed

    Størmer, Jan; Norum, Jan; Olsen, LenaRingstad; Eldevik, Petter; Ragnhild Broderstad, Ann

    2012-01-01

    The Northern Norway Regional Health Authority trust aims to offer a high quality specialist health care to all inhabitants. The objective of this study was to document the consumption of medical imaging [conventional radiography (CR), computerised tomography (CT), magnetic resonance (MR), ultrasound (US)]. The eight municipalities in northern Norway included in the administration area of the Sami language law (Sami group - 132,490 persons/year in the period 2003-2009, mean/year 19,363 inhabitants) were matched with a control group of 11 municipalities (non-Sami group - 135,539 persons/year, mean/year 18,927 inhabitants). Population data was accessed from Statistics Norway. Data on imaging exams were derived from a regional database including production data from all public and private institutions within the region. All four main modality groups (CR, CT, MR, US) were analysed. Variations for imaging frequency on each modality were compared between the Sami and non-Sami municipalities. A total of 278,832 exams were performed during study period. The age adjusted exam rate (all modalities) was significantly higher (p < 0.001) in non-Sami (females and males) group. There was no difference with regard to conventional radiography (CR) (p = 0.855). Whereas MR (p < 0.001) imaging was more common in the Sami group, CT (p < 0.001) and US (p = 0.003) exams were more frequently used in the control group. People living in Sami speaking communities experienced significantly less CT and US exams, but had more MR exams than the control group. A relatively high physical activity, obesity and a lower risk of cancer may be explanations.

  18. Health consumption in Sami speaking municipalities and a control group with regard to medical imaging

    PubMed Central

    Størmer, Jan; Norum, Jan; Olsen, Lena Ringstad; Eldevik, Petter; Broderstad, Ann Ragnhild

    2012-01-01

    Objectives The Northern Norway Regional Health Authority trust aims to offer a high quality specialist health care to all inhabitants. The objective of this study was to document the consumption of medical imaging [conventional radiography (CR), computerised tomography (CT), magnetic resonance (MR), ultrasound (US)]. Methods The eight municipalities in northern Norway included in the administration area of the Sami language law (Sami group – 132,490 persons/year in the period 2003–2009, mean/year 19,363 inhabitants) were matched with a control group of 11 municipalities (non-Sami group – 135,539 persons/year, mean/year 18,927 inhabitants). Population data was accessed from Statistics Norway. Data on imaging exams were derived from a regional database including production data from all public and private institutions within the region. All four main modality groups (CR, CT, MR, US) were analysed. Variations for imaging frequency on each modality were compared between the Sami and non-Sami municipalities. Results A total of 278,832 exams were performed during study period. The age adjusted exam rate (all modalities) was significantly higher (p <0.001) in non-Sami (females and males) group. There was no difference with regard to conventional radiography (CR) (p=0.855). Whereas MR (p<0.001) imaging was more common in the Sami group, CT (p<0.001) and US (p=0.003) exams were more frequently used in the control group. Conclusion People living in Sami speaking communities experienced significantly less CT and US exams, but had more MR exams than the control group. A relatively high physical activity, obesity and a lower risk of cancer may be explanations. PMID:22456037

  19. Benefit of cone-beam computed tomography angiography in acute management of angiographically undetectable ruptured arteriovenous malformations.

    PubMed

    Rahal, Jason P; Malek, Adel M

    2013-10-01

    Ruptured arteriovenous malformations (AVMs) are a frequent cause of intracerebral hemorrhage (ICH). In some cases, compression from the associated hematoma in the acute setting can partially or completely occlude an AVM, making it invisible on conventional angiography techniques. The authors report on the successful use of cone-beam CT angiography (CBCT-A) to precisely identify the underlying angioarchitecture of ruptured AVMs that are not visible on conventional angiography. Three patients presented with ICH for which they underwent examination with CBCT-A in addition to digital subtraction angiography and other imaging modalities, including MR angiography and CT angiography. All patients underwent surgical evacuation due to mass effect from the hematoma. Clinical history, imaging studies, and surgical records were reviewed. Hematoma volumes were calculated. In all 3 cases, CBCT-A demonstrated detailed anatomy of an AVM where no lesion or just a suggestion of a draining vein had been seen with other imaging modalities. Magnetic resonance imaging demonstrated enhancement in 1 patient; CT angiography demonstrated a draining vein in 1 patient; 2D digital subtraction angiography and 3D rotational angiography demonstrated a suggestion of a draining vein in 2 cases and no finding in the third. In the 2 patients in whom CBCT-A was performed prior to surgery, the demonstrated AVM was successfully resected without evidence of a residual lesion. In the third patient, CBCT-A allowed precise targeting of the AVM nidus using Gamma Knife radiosurgery. Cone-beam CT angiography should be considered in the evaluation and subsequent treatment of ICH due to ruptured AVMs. In cases in which the associated hematoma compresses the AVM nidus, CBCT-A can have higher sensitivity and anatomical accuracy than traditional angiographic modalities, including digital subtraction angiography.

  20. [Changing the internal cost allocation (ICA) on DRG shares : Example of computed tomography in a university radiology setting].

    PubMed

    Wirth, K; Zielinski, P; Trinter, T; Stahl, R; Mück, F; Reiser, M; Wirth, S

    2016-08-01

    In hospitals, the radiological services provided to non-privately insured in-house patients are mostly distributed to requesting disciplines through internal cost allocation (ICA). In many institutions, computed tomography (CT) is the modality with the largest amount of allocation credits. The aim of this work is to compare the ICA to respective DRG (Diagnosis Related Groups) shares for diagnostic CT services in a university hospital setting. The data from four CT scanners in a large university hospital were processed for the 2012 fiscal year. For each of the 50 DRG groups with the most case-mix points, all diagnostic CT services were documented including their respective amount of GOÄ allocation credits and invoiced ICA value. As the German Institute for Reimbursement of Hospitals (InEK) database groups the radiation disciplines (radiology, nuclear medicine and radiation therapy) together and also lacks any modality differentiation, the determination of the diagnostic CT component was based on the existing institutional distribution of ICA allocations. Within the included 24,854 cases, 63,062,060 GOÄ-based performance credits were counted. The ICA relieved these diagnostic CT services by € 819,029 (single credit value of 1.30 Eurocent), whereas accounting by using DRG shares would have resulted in € 1,127,591 (single credit value of 1.79 Eurocent). The GOÄ single credit value is 5.62 Eurocent. The diagnostic CT service was basically rendered as relatively inexpensive. In addition to a better financial result, changing the current ICA to DRG shares might also mean a chance for real revenues. However, the attractiveness considerably depends on how the DRG shares are distributed to the different radiation disciplines of one institution.

  1. Computed tomography of patients with head trauma following road traffic accident in Benin City, Nigeria.

    PubMed

    Eze, K C; Mazeli, F O

    2011-01-01

    The outcome of head trauma as a result of road accident rests with increased use of CT scan and other radiological imaging modalities for prompt diagnosis is important. To find out the time of presentation for CT scan, symptoms for referral for CT scan and pattern of injuries in patients with cranial CT scan following road traffic accidents. Retrospective analysis of cranial computed tomography (CT) films, request cards, duplicate copy of radiology reports, soft copy CT images and case notes of 61 patients who underwent cranial CT scan on account of road traffic accidents. The study CT scans were performed at the radiology department of University Teaching Hospital between 1st January 2002 and 31st December 2004. 51 patients (83.6%) were male while 10 (16.4%) were female with male to female ratio of 5:1. Thirty - eight (62.3%) patients were aged 20-39 years. Forty two patients (68.9%) presented after one week of injury. No patient presented within the first six hours of injury. The symptoms needing referral for CT scan included head injury 30 (49.2%), seizures 10 16.4%), skull fractures 8 (13.1%) and persistent headache 6 (5.6%). A total of 113 lesions were seen as some patients presented with more than one lesion. The findings on CT scan included 10 patients with normal findings , 21 (34.4%) skull fractures , 21 (34.4%) intra-cerebral haemorrhage , 19 (31.2%) brain contusion , 18 (29.5%) paranasal sinus collection,11 (18.0%) cerebral oedema, 10 (16.4%) subdural haematoma and 5 (8.2%) epidural haematoma. Over 80% of the subdural and epidural haematomas were associated with skull fractures. The yield from plain radiography was poor being positive in only 8 (13.1%) while CT scan was positive in 51 (83.61%). Also 75 (about 66%) of the 113 lesions seen on CT scan were treatable surgically. CT scan is an effective imaging modality of patient with road traffic accident and should be promptly requested in symptomatic patients who sustain trauma to the head toward identification of lesions that are amenable to surgical treatment.

  2. Feature and Intensity Based Medical Image Registration Using Particle Swarm Optimization.

    PubMed

    Abdel-Basset, Mohamed; Fakhry, Ahmed E; El-Henawy, Ibrahim; Qiu, Tie; Sangaiah, Arun Kumar

    2017-11-03

    Image registration is an important aspect in medical image analysis, and kinds use in a variety of medical applications. Examples include diagnosis, pre/post surgery guidance, comparing/merging/integrating images from multi-modal like Magnetic Resonance Imaging (MRI), and Computed Tomography (CT). Whether registering images across modalities for a single patient or registering across patients for a single modality, registration is an effective way to combine information from different images into a normalized frame for reference. Registered datasets can be used for providing information relating to the structure, function, and pathology of the organ or individual being imaged. In this paper a hybrid approach for medical images registration has been developed. It employs a modified Mutual Information (MI) as a similarity metric and Particle Swarm Optimization (PSO) method. Computation of mutual information is modified using a weighted linear combination of image intensity and image gradient vector flow (GVF) intensity. In this manner, statistical as well as spatial image information is included into the image registration process. Maximization of the modified mutual information is effected using the versatile Particle Swarm Optimization which is developed easily with adjusted less parameter. The developed approach has been tested and verified successfully on a number of medical image data sets that include images with missing parts, noise contamination, and/or of different modalities (CT, MRI). The registration results indicate the proposed model as accurate and effective, and show the posture contribution in inclusion of both statistical and spatial image data to the developed approach.

  3. Biocompatible and high-performance amino acids-capped MnWO4 nanocasting as a novel non-lanthanide contrast agent for X-ray computed tomography and T1-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Dong, Kai; Liu, Zhen; Liu, Jianhua; Huang, Sa; Li, Zhenhua; Yuan, Qinghai; Ren, Jinsong; Qu, Xiaogang

    2014-01-01

    In the present work, a novel non-lanthanide dual-modality contrast agent, manganese tungstate (MnWO4), has been successfully constructed by a facile and versatile hydrothermal route. With the merits of a high atomic number and a well-positioned K-edge energy of tungsten, our well-prepared non-lanthanide nanoprobes provide a higher contrast efficacy than routine iodine-based agents in clinics. Additionally, the presence of Mn in these nanoparticles endow them with excellent T1-weighted MR imaging capabilities. As an alternative to T2-weighted MRI and CT dual-modality contrast agents, the nanoprobes can provide a positive contrast signal, which prevents confusion with the dark signals from hemorrhage and blood clots. To the best of our knowledge, this is the first report that a non-lanthanide imaging nanoprobe is applied for CT and T1-weighted MRI simultaneously. Moreover, comparing with gadolinium-based T1-weighted MRI and CT dual-modality contrast agents that were associated with nephrogenic systemic fibrosis (NSF), our contrast agents have superior biocompatibility, which is proved by a detailed study of the pharmacokinetics, biodistribution, and in vivo toxicology. Together with excellent dispersibility, high biocompatibility and superior contrast efficacy, these nanoprobes provide detailed and complementary information from dual-modality imaging over traditional single-mode imaging and bring more opportunities to the new generation of non-lanthanide nanoparticulate-based contrast agents.In the present work, a novel non-lanthanide dual-modality contrast agent, manganese tungstate (MnWO4), has been successfully constructed by a facile and versatile hydrothermal route. With the merits of a high atomic number and a well-positioned K-edge energy of tungsten, our well-prepared non-lanthanide nanoprobes provide a higher contrast efficacy than routine iodine-based agents in clinics. Additionally, the presence of Mn in these nanoparticles endow them with excellent T1-weighted MR imaging capabilities. As an alternative to T2-weighted MRI and CT dual-modality contrast agents, the nanoprobes can provide a positive contrast signal, which prevents confusion with the dark signals from hemorrhage and blood clots. To the best of our knowledge, this is the first report that a non-lanthanide imaging nanoprobe is applied for CT and T1-weighted MRI simultaneously. Moreover, comparing with gadolinium-based T1-weighted MRI and CT dual-modality contrast agents that were associated with nephrogenic systemic fibrosis (NSF), our contrast agents have superior biocompatibility, which is proved by a detailed study of the pharmacokinetics, biodistribution, and in vivo toxicology. Together with excellent dispersibility, high biocompatibility and superior contrast efficacy, these nanoprobes provide detailed and complementary information from dual-modality imaging over traditional single-mode imaging and bring more opportunities to the new generation of non-lanthanide nanoparticulate-based contrast agents. Electronic supplementary information (ESI) available: TEM images of MnWO4 nanoparticles synthesized at pH = 7, 180 °C pH = 9, 180 °C pH = 6, 200 °C with various amino acid molecules as capped agents, survey XPS spectra, FTIR spectrum of glycine capped MnWO4 nanorods, photos of glycine capped MnWO4 nanorods in various solutions including PBS, DMEM cell medium, and FBS, in vivo coronal view CT images of a rat before and after intravenous injection of iobitridol at different timed intervals, in vivo CT imaging of the rat one month after intravenous injection of MnWO4 nanorods, CT values of the heart, liver, spleen and kidney of a rat before and after intravenous administration of MnWO4 nanorods and iobitridol at different time intervals, hematology analysis and blood biochemical assay. See DOI: 10.1039/c3nr05455a

  4. Imaging modalities in the diagnosis of pancreatic adenocarcinoma: A systematic review and meta-analysis of sensitivity, specificity and diagnostic accuracy.

    PubMed

    Toft, James; Hadden, William J; Laurence, Jerome M; Lam, Vincent; Yuen, Lawrence; Janssen, Anna; Pleass, Henry

    2017-07-01

    Pancreatic cancer, primarily pancreatic ductal adenocarcinoma (PDAC), accounts for 2.4% of cancer diagnoses and 5.8% of cancer death annually. Early diagnoses can improve 5-year survival in PDAC. The aim of this systematic review was to determine the sensitivity, specificity and diagnostic accuracy values for MRI, CT, PET&PET/CT, EUS and transabdominal ultrasound (TAUS) in the diagnosis of PDAC. A systematic review was undertaken to identify studies reporting sensitivity, specificity and/or diagnostic accuracy for the diagnosis of PDAC with MRI, CT, PET, EUS or TAUS. Proportional meta-analysis was performed for each modality. A total of 5399 patients, 3567 with PDAC, from 52 studies were included. The sensitivity, specificity and diagnostic accuracy were 93% (95% CI=88-96), 89% (95% CI=82-94) and 90% (95% CI=86-94) for MRI; 90% (95% CI=87-93), 87% (95% CI=79-93) and 89% (95% CI=85-93) for CT; 89% (95% CI=85-93), 70% (95% CI=54-84) and 84% (95% CI=79-89) for PET; 91% (95% CI=87-94), 86% (95% CI=81-91) and 89% (95% CI=87-92) for EUS; and 88% (95% CI=86-90), 94% (95% CI=87-98) and 91% (95% C=87-93) for TAUS. This review concludes all modalities, except for PET, are equivalent within 95% confidence intervals for the diagnosis of PDAC. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. SU-F-BRF-10: Deformable MRI to CT Validation Employing Same Day Planning MRI for Surrogate Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padgett, K; Stoyanova, R; Johnson, P

    Purpose: To compare rigid and deformable registrations of the prostate in the multi-modality setting (diagnostic-MRI to planning-CT) by utilizing a planning-MRI as a surrogate. The surrogate allows for the direct quantitative analysis which can be difficult in the multi-modality domain where intensity mapping differs. Methods: For ten subjects, T2 fast-spin-echo images were acquired at two different time points, the first several weeks prior to planning (diagnostic-MRI) and the second on the same day in which the planning CT was collected (planning-MRI). Significant effort in patient positioning and bowel/bladder preparation was undertaken to minimize distortion of the prostate in all datasets.more » The diagnostic-MRI was deformed to the planning-CT utilizing a commercially available deformable registration algorithm synthesized from local registrations. The deformed MRI was then rigidly aligned to the planning MRI which was used as the surrogate for the planning-CT. Agreement between the two MRI datasets was scored using intensity based metrics including Pearson correlation and normalized mutual information, NMI. A local analysis was performed by looking only within the prostate, proximal seminal vesicles, penile bulb and combined areas. A similar method was used to assess a rigid registration between the diagnostic-MRI and planning-CT. Results: Utilizing the NMI, the deformable registrations were superior to the rigid registrations in 9 of 10 cases demonstrating a 15.94% improvement (p-value < 0.001) within the combined area. The Pearson correlation showed similar results with the deformable registration superior in the same number of cases and demonstrating a 6.97% improvement (p-value <0.011). Conclusion: Validating deformable multi-modality registrations using spatial intensity based metrics is difficult due to the inherent differences in intensity mapping. This population provides an ideal testing ground for MRI to CT deformable registrations by obviating the need for multi-modality comparisons which are inherently more challenging. Deformable registrations generated in this work significantly outperformed rigid alignments. Research reported in this abstract was supported by the NIH National Cancer Institute R21CA153826 “MRI-Guided Radiotherapy and Biomarkers for Prostate Cancer” and Bankhead-Coley Cancer Research Program 10BT-03 “MRI-Guided Radiotherapy and Biomarkers for Prostate Cancer”.« less

  6. Assessment and validation of CT scanogram to compare per-operative and post-operative mechanical axis after navigated total knee replacement

    PubMed Central

    Jain, Sunil

    2008-01-01

    Our objective was to assess and validate low-dose computed tomography (CT) scanogram as a post-operative imaging modality to measure the mechanical axis after navigated total knee replacement. A prospective study was performed to compare intra-operative and post-operative mechanical axis after navigated total knee replacements. All consecutive patients who underwent navigated total knee replacement between May and December 2006 were included. The intra-operative final axis was recorded, and post-operatively a CT scanogram of lower limbs was performed. The mechanical axis was measured and compared against the intra-operative measurement. There were 15 patients ranging in age from 57 to 80 (average 70) years. The average final intra-operative axis was 0.56° varus (4° varus to 1.5° valgus) and post-operative CT scanogram axis was 0.52° varus (3.1° varus to 1.8° valgus). The average deviation from final axes to CT scanogram axes was 0.12° valgus with a correlation coefficient of 0.9. Our study suggests that CT scanogram is an imaging modality with reasonable accuracy for measuring mechanical axis despite significantly low radiation. It also confirms a high level of correlation between intra-operative and post-operative mechanical axis after navigated total knee replacement. PMID:18696064

  7. Detection of Post-Therapeutic Effects in Breast Carcinoma Using Hard X-Ray Index of Refraction Computed Tomography - A Feasibility Study.

    PubMed

    Grandl, Susanne; Sztrókay-Gaul, Anikó; Mittone, Alberto; Gasilov, Sergey; Brun, Emmanuel; Bravin, Alberto; Mayr, Doris; Auweter, Sigrid D; Hellerhoff, Karin; Reiser, Maximilian; Coan, Paola

    2016-01-01

    Neoadjuvant chemotherapy is the state-of-the-art treatment in advanced breast cancer. A correct visualization of the post-therapeutic tumor size is of high prognostic relevance. X-ray phase-contrast computed tomography (PC-CT) has been shown to provide improved soft-tissue contrast at a resolution formerly restricted to histopathology, at low doses. This study aimed at assessing ex-vivo the potential use of PC-CT for visualizing the effects of neoadjuvant chemotherapy on breast carcinoma. The analysis was performed on two ex-vivo formalin-fixed mastectomy samples containing an invasive carcinoma removed from two patients treated with neoadjuvant chemotherapy. Images were matched with corresponding histological slices. The visibility of typical post-therapeutic tissue changes was assessed and compared to results obtained with conventional clinical imaging modalities. PC-CT depicted the different tissue types with an excellent correlation to histopathology. Post-therapeutic tissue changes were correctly visualized and the residual tumor mass could be detected. PC-CT outperformed clinical imaging modalities in the detection of chemotherapy-induced tissue alterations including post-therapeutic tumor size. PC-CT might become a unique diagnostic tool in the prediction of tumor response to neoadjuvant chemotherapy. PC-CT might be used to assist during histopathological diagnosis, offering a high-resolution and high-contrast virtual histological tool for the accurate delineation of tumor boundaries.

  8. SU-E-P-10: Imaging in the Cardiac Catheterization Lab - Technologies and Clinical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fetterly, K

    2014-06-01

    Purpose: Diagnosis and treatment of cardiovascular disease in the cardiac catheterization laboratory is often aided by a multitude of imaging technologies. The purpose of this work is to highlight the contributions to patient care offered by the various imaging systems used during cardiovascular interventional procedures. Methods: Imaging technologies used in the cardiac catheterization lab were characterized by their fundamental technology and by the clinical applications for which they are used. Whether the modality is external to the patient, intravascular, or intracavity was specified. Specific clinical procedures for which multiple modalities are routinely used will be highlighted. Results: X-ray imaging modalitiesmore » include fluoroscopy/angiography and angiography CT. Ultrasound imaging is performed with external, trans-esophageal echocardiography (TEE), and intravascular (IVUS) transducers. Intravascular infrared optical coherence tomography (IVOCT) is used to assess vessel endothelium. Relatively large (>0.5 mm) anatomical structures are imaged with x-ray and ultrasound. IVUS and IVOCT provide high resolution images of vessel walls. Cardiac CT and MRI images are used to plan complex cardiovascular interventions. Advanced applications are used to spatially and temporally merge images from different technologies. Diagnosis and treatment of coronary artery disease frequently utilizes angiography and intra-vascular imaging, and treatment of complex structural heart conditions routinely includes use of multiple imaging modalities. Conclusion: There are several imaging modalities which are routinely used in the cardiac catheterization laboratory to diagnose and treat both coronary artery and structural heart disease. Multiple modalities are frequently used to enhance the quality and safety of procedures. The cardiac catheterization laboratory includes many opportunities for medical physicists to contribute substantially toward advancing patient care.« less

  9. Quantitative Imaging Biomarkers of NAFLD

    PubMed Central

    Kinner, Sonja; Reeder, Scott B.

    2016-01-01

    Conventional imaging modalities, including ultrasonography (US), computed tomography (CT), and magnetic resonance (MR), play an important role in the diagnosis and management of patients with nonalcoholic fatty liver disease (NAFLD) by allowing noninvasive diagnosis of hepatic steatosis. However, conventional imaging modalities are limited as biomarkers of NAFLD for various reasons. Multi-parametric quantitative MRI techniques overcome many of the shortcomings of conventional imaging and allow comprehensive and objective evaluation of NAFLD. MRI can provide unconfounded biomarkers of hepatic fat, iron, and fibrosis in a single examination—a virtual biopsy has become a clinical reality. In this article, we will review the utility and limitation of conventional US, CT, and MR imaging for the diagnosis NAFLD. Recent advances in imaging biomarkers of NAFLD are also discussed with an emphasis in multi-parametric quantitative MRI. PMID:26848588

  10. Multimodality Imaging in Patients with Secondary Hypertension: With a Focus on Appropriate Imaging Approaches Depending on the Etiologies.

    PubMed

    Ahn, Hyungwoo; Chun, Eun Ju; Lee, Hak Jong; Hwang, Sung Il; Choi, Dong-Ju; Chae, In-Ho; Lee, Kyung Won

    2018-01-01

    Although the causes of hypertension are usually unknown, about 10% of the cases occur secondary to specific etiologies, which are often treatable. Common categories of secondary hypertension include renal parenchymal disease, renovascular stenosis, vascular and endocrinologic disorders. For diseases involving the renal parenchyma and adrenal glands, ultrasonography (US), computed tomography (CT) or magnetic resonance (MR) imaging is recommended. For renovascular stenosis and vascular disorders, Doppler US, conventional or noninvasive (CT or MR) angiography is an appropriate modality. Nuclear imaging can be useful in the differential diagnosis of endocrine causes. Radiologists should understand the role of each imaging modality and its typical findings in various causes of secondary hypertension. This article focuses on appropriate imaging approaches in accordance with the categorized etiologies leading to hypertension.

  11. Whole-body MRI including diffusion-weighted MRI compared with 5-HTP PET/CT in the detection of neuroendocrine tumors

    PubMed Central

    Carlbom, Lina; Caballero-Corbalán, José; Granberg, Dan; Sörensen, Jens; Eriksson, Barbro; Ahlström, Håkan

    2017-01-01

    Aim We wanted to explore if whole-body magnetic resonance imaging (MRI) including diffusion-weighted (DW) and liver-specific contrast agent-enhanced imaging could be valuable in lesion detection of neuroendocrine tumors (NET). [11C]-5-Hydroxytryptophan positron emission tomography/computed tomography (5-HTP PET/CT) was used for comparison. Materials and methods Twenty-one patients with NET were investigated with whole-body MRI, including DW imaging (DWI) and contrast-enhanced imaging of the liver, and whole-body 5-HTP PET/CT. Seven additional patients underwent upper abdomen MRI including DWI, liver-specific contrast agent-enhanced imaging, and 5-HTP PET/CT. Results There was a patient-based concordance of 61% and a lesion-based concordance of 53% between the modalities. MRI showed good concordance with PET in detecting bone metastases but was less sensitive in detecting metastases in mediastinal lymph nodes. MRI detected more liver metastases than 5-HTP PET/CT. Conclusion Whole-body MRI with DWI did not detect all NET lesions found with whole-body 5-HTP PET/CT. Our findings indicate that MRI of the liver including liver-specific contrast agent-enhanced imaging and DWI could be a useful complement to whole-body 5-HTP PET/CT. PMID:27894208

  12. Comparative effectiveness of using computed tomography alone to exclude cervical spine injuries in obtunded or intubated patients: meta-analysis of 14,327 patients with blunt trauma.

    PubMed

    Panczykowski, David M; Tomycz, Nestor D; Okonkwo, David O

    2011-09-01

    The current standard of practice for clearance of the cervical spine in obtunded patients suffering blunt trauma is to use CT and an adjuvant imaging modality (such as MR imaging). The objective of this study was to determine the comparative effectiveness of multislice helical CT alone to diagnose acute unstable cervical spine injury following blunt trauma. The authors performed a meta-analysis of studies comparing modern CT with adjunctive imaging modalities and required that studies present acute traumatic findings as well as treatment for unstable injuries. Study quality, population characteristics, diagnostic protocols, and outcome data were extracted. Positive disease status included all injuries necessitating surgical or orthotic stabilization identified on imaging and/or clinical follow-up. Seventeen studies encompassing 14,327 patients met the inclusion criteria. Overall, the sensitivity and specificity for modern CT were both > 99.9% (95% CI 0.99-1.00 and 0.99-1.00, respectively). The negative likelihood ratio of an unstable cervical injury after a CT scan negative for acute injury was < 0.001 (95% CI 0.00-0.01), while the negative predictive value of a normal CT scan was 100% (95% CI 0.96-1.00). Global severity of injury, CT slice thickness, and study quality did not significantly affect accuracy estimates. Modern CT alone is sufficient to detect unstable cervical spine injuries in trauma patients. Adjuvant imaging is unnecessary when the CT scan is negative for acute injury. Results of this meta-analysis strongly show that the cervical collar may be removed from obtunded or intubated trauma patients if a modern CT scan is negative for acute injury.

  13. Geographic Distribution of CT, MRI and PET Devices in Japan: A Longitudinal Analysis Based on National Census Data.

    PubMed

    Matsumoto, Masatoshi; Koike, Soichi; Kashima, Saori; Awai, Kazuo

    2015-01-01

    Japan has the most CT and MRI scanners per unit population in the world; however, the geographic distribution of these technologies is currently unknown. Moreover, nothing is known of the cause-effect relationship between the number of diagnostic imaging devices and their geographic distribution. Data on the number of CT, MRI and PET devices and that of their utilizations in all 1829 municipalities of Japan was generated, based on the Static Survey of Medical Institutions conducted by the government. The inter-municipality equity of the number of devices or utilizations was evaluated with Gini coefficient. Between 2005 and 2011, the number of CT, MRI and PET devices in Japan increased by 47% (8789 to 12945), 19% (5034 to 5990) and 70% (274 to 466), respectively. Gini coefficient of the number of devices was largest for PET and smallest for CT (p for PET-MRI difference <0.001; MRI-CT difference <0.001). For all three modalities, Gini coefficient steadily decreased (p for 2011-2005 difference: <0.001 for CT; 0.003 for MRI; and <0.001 for PET). The number of devices in old models (single-detector CT, MRI<1.5 tesla, and conventional PET) decreased, while that in new models (multi-detector CT, MRI≥1.5 tesla, and PET-CT) increased. Gini coefficient of the old models increased or remained unchanged (increase rate of 9%, 3%, and -1%; p for 2011-2008 difference <0.001, 0.072, and 0.562, respectively), while Gini coefficient of the new models decreased (-10%, -9%, and -10%; p for 2011-2008 difference <0.001, <0.001, and <0.001 respectively). Similar results were observed in terms of utilizations. The more abundant a modality, the more equal the modality's distribution. Any increase in the modality made its distribution more equal. The geographic distribution of the diagnostic imaging technology in Japan appears to be affected by spatial competition derived from a market force.

  14. Cross-modality PET/CT and contrast-enhanced CT imaging for pancreatic cancer

    PubMed Central

    Zhang, Jian; Zuo, Chang-Jing; Jia, Ning-Yang; Wang, Jian-Hua; Hu, Sheng-Ping; Yu, Zhong-Fei; Zheng, Yuan; Zhang, An-Yu; Feng, Xiao-Yuan

    2015-01-01

    AIM: To explore the diagnostic value of the cross-modality fusion images provided by positron emission tomography/computed tomography (PET/CT) and contrast-enhanced CT (CECT) for pancreatic cancer (PC). METHODS: Data from 70 patients with pancreatic lesions who underwent CECT and PET/CT examinations at our hospital from August 2010 to October 2012 were analyzed. PET/CECT for the cross-modality image fusion was obtained using TureD software. The diagnostic efficiencies of PET/CT, CECT and PET/CECT were calculated and compared with each other using a χ2 test. P < 0.05 was considered to indicate statistical significance. RESULTS: Of the total 70 patients, 50 had PC and 20 had benign lesions. The differences in the sensitivity, negative predictive value (NPV), and accuracy between CECT and PET/CECT in detecting PC were statistically significant (P < 0.05 for each). In 15 of the 31 patients with PC who underwent a surgical operation, peripancreatic vessel invasion was verified. The differences in the sensitivity, positive predictive value, NPV, and accuracy of CECT vs PET/CT and PET/CECT vs PET/CT in diagnosing peripancreatic vessel invasion were statistically significant (P < 0.05 for each). In 19 of the 31 patients with PC who underwent a surgical operation, regional lymph node metastasis was verified by postsurgical histology. There was no statistically significant difference among the three methods in detecting regional lymph node metastasis (P > 0.05 for each). In 17 of the 50 patients with PC confirmed by histology or clinical follow-up, distant metastasis was confirmed. The differences in the sensitivity and NPV between CECT and PET/CECT in detecting distant metastasis were statistically significant (P < 0.05 for each). CONCLUSION: Cross-modality image fusion of PET/CT and CECT is a convenient and effective method that can be used to diagnose and stage PC, compensating for the defects of PET/CT and CECT when they are conducted individually. PMID:25780297

  15. A retrospective analysis of preoperative staging modalities for oral squamous cell carcinoma.

    PubMed

    Kähling, Ch; Langguth, T; Roller, F; Kroll, T; Krombach, G; Knitschke, M; Streckbein, Ph; Howaldt, H P; Wilbrand, J-F

    2016-12-01

    An accurate preoperative assessment of cervical lymph node status is a prerequisite for individually tailored cancer therapies in patients with oral squamous cell carcinoma. The detection of malignant spread and its treatment crucially influence the prognosis. The aim of the present study was to analyze the different staging modalities used among patients with a diagnosis of primary oral squamous cell carcinoma between 2008 and 2015. An analysis of preoperative staging findings, collected by clinical palpation, ultrasound, and computed tomography (CT), was performed. The results obtained were compared with the results of the final histopathological findings of the neck dissection specimens. A statistical analysis using McNemar's test was performed. The sensitivity of CT for the detection of malignant cervical tumor spread was 74.5%. The ultrasound obtained a sensitivity of 60.8%. Both CT and ultrasound demonstrated significantly enhanced sensitivity compared to the clinical palpation with a sensitivity of 37.1%. No significant difference was observed between CT and ultrasound. A combination of different staging modalities increased the sensitivity significantly compared with ultrasound staging alone. No significant difference in sensitivity was found between the combined use of different staging modalities and CT staging alone. The highest sensitivity, of 80.0%, was obtained by a combination of all three staging modalities: clinical palpation, ultrasound and CT. The present study indicates that CT has an essential role in the preoperative staging of patients with oral squamous cell carcinoma. Its use not only significantly increases the sensitivity of cervical lymph node metastasis detection but also offers a preoperative assessment of local tumor spread and resection borders. An additional non-invasive cervical lymph node examination increases the sensitivity of the tumor staging process and reduces the risk of occult metastasis. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  16. Congenitally absent lumbar pedicle: a reappraisal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wortzman, G.; Steinhardt, M.I.

    1984-09-01

    Three patients who had a diagnosis of congenitally absent lumbar pedicle underwent CT examination. Findings showed that each patient had an aberrant hypoplastic pedicle plus a retroisthmic defect in their ipsilateral lamina rather than an absent pedicle. Axial CT was the diagnostic modality of choice; reformated images were of little value. The differential diagnosis to be considered from the findings of plain film radiography includes pediculate thinning, neoplastic disease, neurofibroma, mesodermal dysplasia associated with neurofibromatosis, and vascular anomalies.

  17. Which metabolic imaging, besides bone scan with 99mTc-phosphonates, for detecting and evaluating bone metastases in prostatic cancer patients? An open discussion.

    PubMed

    Bombardieri, E; Setti, L; Kirienko, M; Antunovic, L; Guglielmo, P; Ciocia, G

    2015-12-01

    Prostate cancer bone metastases occur frequently in advanced cancer and this is matter of particular attention, due to the great impact on patient's management and considering that a lot of new emerging therapeutic options have been recently introduced. Imaging bone metastases is essential to localize lesions, to establish their size and number, to study characteristics and changes during therapy. Besides radiological imaging, nuclear medicine modalities can image their features and offer additional information about their metabolic behaviour. They can be classified according to physical characteristics, type of detection, mechanism of uptake, availability for daily use. The physiopathology of metastases formation and the mechanisms of tracer uptake are essential to understand the interpretation of nuclear medicine images. Therefore, radiopharmaceuticals for bone metastases can be classified in agents targeting bone (99mTc-phosphonates, 18F-fluoride) and those targeting prostatic cancer cells (18F-fluoromethylcholine, 11C-choline, 18F-fluorodeoxyglucose). The modalities using the first group of tracers are planar bone scan, SPECT or SPECT/CT with 99mTc-diphosphonates, and 18F-fluoride PET/CT, while the modalities using the second group include 18F/11C-choline derivatives PET/CT, 18F-FDG PET/CT and PET/CT scans with several other radiopharmaceuticals described in the literature, such as 18F/11C-acetate derivatives, 18F-fluoro-5α-dihydrotestosterone (FDHT), 18F-anti-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC), 18F-2'-fluoro-5-methyl-1-β-D-arabinofuranosyluracil (FMAU) and 68Ga-labeled-prostate specific membrane antigen (PMSA) PET/TC. However, since data on clinical validation for these last novel modalities are not conclusive and/or are not still sufficient in number, at present they can be still considered as promising tools under evaluation. The present paper considers the nuclear modalities today available for the clinical routine. This overview wants to discuss the opportunities and the drawbacks of these current diagnostic tests in a scenario where planar scintigraphy and/or SPECT with phosphonates, is the only metabolic imaging recommended by the most important Guidelines of the Scientific Societies dealing with prostate cancer. Other nuclear medicine modalities are in very few cases just cited, never recommended except in rare situations. Is there space for agents other than 99mTc-phosphonates to image bone lesions from prostate cancer?

  18. Can PET-CT imaging and radiokinetic analyses provide useful clinical information on atypical femoral shaft fracture in osteoporotic patients?

    PubMed

    Chesnut, C Haile; Chesnut, Charles H

    2012-03-01

    Atypical femoral shaft fractures are associated with the extended usage of nitrogen-containing bisphosphonates as therapy for osteoporosis. For such fractures, the positron emission tomography (PET) procedure, coupled with computerized tomography (CT), provides a potential imaging modality for defining aspects of the pathogenesis, site specificity, and possible prodromal abnormalities prior to fracture. PET-CT may assess the radiokinetic variables K1 (a putative marker for skeletal blood flow) and Ki (a putative marker for skeletal bone formation), and when combined with PET imaging modalities and CT skeletal site localization, may define the site of such radiokinetic findings. Further studies into the clinical usage of PET-CT in patients with atypical femoral shaft fractures are warranted.

  19. Multi-modality PET-CT imaging of breast cancer in an animal model using nanoparticle x-ray contrast agent and 18F-FDG

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Ghaghada, K.; Espinosa, G.; Strong, L.; Annapragada, A.

    2011-03-01

    Multi-modality PET-CT imaging is playing an important role in the field of oncology. While PET imaging facilitates functional interrogation of tumor status, the use of CT imaging is primarily limited to anatomical reference. In an attempt to extract comprehensive information about tumor cells and its microenvironment, we used a nanoparticle xray contrast agent to image tumor vasculature and vessel 'leakiness' and 18F-FDG to investigate the metabolic status of tumor cells. In vivo PET/CT studies were performed in mice implanted with 4T1 mammary breast cancer cells.Early-phase micro-CT imaging enabled visualization 3D vascular architecture of the tumors whereas delayedphase micro-CT demonstrated highly permeable vessels as evident by nanoparticle accumulation within the tumor. Both imaging modalities demonstrated the presence of a necrotic core as indicated by a hypo-enhanced region in the center of the tumor. At early time-points, the CT-derived fractional blood volume did not correlate with 18F-FDG uptake. At delayed time-points, the tumor enhancement in 18F-FDG micro-PET images correlated with the delayed signal enhanced due to nanoparticle extravasation seen in CT images. The proposed hybrid imaging approach could be used to better understand tumor angiogenesis and to be the basis for monitoring and evaluating anti-angiogenic and nano-chemotherapies.

  20. Hard x-ray micro-tomography of a human head post-mortem as a gold standard to compare x-ray modalities

    NASA Astrophysics Data System (ADS)

    Dalstra, M.; Schulz, G.; Dagassan-Berndt, D.; Verna, C.; Müller-Gerbl, M.; Müller, B.

    2016-10-01

    An entire human head obtained at autopsy was micro-CT scanned in a nano/micro-CT scanner in a 6-hour long session. Despite the size of the head, it could still be scanned with a pixel size of 70 μm. The aim of this study was to obtain an optimal quality 3D data-set to be used as baseline control in a larger study comparing the image quality of various cone beam CT systems currently used in dentistry. The image quality of the micro-CT scans was indeed better than the ones of the clinical imaging modalities, both with regard to noise and streak artifacts due to metal dental implants. Bony features in the jaws, like the trabecular architecture and the thin wall of the alveolar bone were clearly visible. Therefore, the 3D micro-CT data-set can be used as the gold standard for linear, angular, and volumetric measurements of anatomical features in and around the oral cavity when comparing clinical imaging modalities.

  1. Identification of Nasal Bone Fractures on Conventional Radiography and Facial CT: Comparison of the Diagnostic Accuracy in Different Imaging Modalities and Analysis of Interobserver Reliability.

    PubMed

    Baek, Hye Jin; Kim, Dong Wook; Ryu, Ji Hwa; Lee, Yoo Jin

    2013-09-01

    There has been no study to compare the diagnostic accuracy of an experienced radiologist with a trainee in nasal bone fracture. To compare the diagnostic accuracy between conventional radiography and computed tomography (CT) for the identification of nasal bone fractures and to evaluate the interobserver reliability between a staff radiologist and a trainee. A total of 108 patients who underwent conventional radiography and CT after acute nasal trauma were included in this retrospective study. Two readers, a staff radiologist and a second-year resident, independently assessed the results of the imaging studies. Of the 108 patients, the presence of a nasal bone fracture was confirmed in 88 (81.5%) patients. The number of non-depressed fractures was higher than the number of depressed fractures. In nine (10.2%) patients, nasal bone fractures were only identified on conventional radiography, including three depressed and six non-depressed fractures. CT was more accurate as compared to conventional radiography for the identification of nasal bone fractures as determined by both readers (P <0.05), all diagnostic indices of an experienced radiologist were similar to or higher than those of a trainee, and κ statistics showed moderate agreement between the two diagnostic tools for both readers. There was no statistical difference in the assessment of interobserver reliability for both imaging modalities in the identification of nasal bone fractures. For the identification of nasal bone fractures, CT was significantly superior to conventional radiography. Although a staff radiologist showed better values in the identification of nasal bone fracture and differentiation between depressed and non-depressed fractures than a trainee, there was no statistically significant difference in the interpretation of conventional radiography and CT between a radiologist and a trainee.

  2. Improving ultrasound quality to reduce computed tomography use in pediatric appendicitis: the Safe and Sound campaign.

    PubMed

    Kotagal, Meera; Richards, Morgan K; Chapman, Teresa; Finch, Lisa; McCann, Bessie; Ormazabal, Amaya; Rush, Robert J; Goldin, Adam B

    2015-05-01

    Safety concerns about the use of radiation-based imaging such as computed tomography (CT) in children have resulted in national recommendations to use ultrasound (US) for the diagnosis of appendicitis when possible. We evaluated the trends in CT and US use in a statewide sample and the accuracy of these modalities. Patients less than or equal to 18 years undergoing appendectomy in Washington State from 2008 to 2013 were evaluated for preoperative US/CT use, as well as imaging/pathology concordance using data from the Surgical Care and Outcomes Assessment Program. Among 3,353 children, 98.3% underwent preoperative imaging. There was a significant increase in the use of US first over the study period (P < .001). The use of CT at any time during the evaluation decreased. Despite this, in 2013, over 40% of the children still underwent CT imaging. Concordance between US imaging and pathology varied between 40% and 75% at hospitals performing greater than or equal to 10 appendectomies in 2013. Over one third (34.9%) of CT scans performed in the evaluation of children with appendicitis were performed after an indeterminate US. Although the use of US as the first imaging modality to diagnose pediatric appendicitis has increased over the past 5 years, over 40% of children still undergo a CT scan during their preoperative evaluation. Causality for this persistence of CT use is unclear, but could include variability in US accuracy, lack of training, and lack of awareness of the risks of radiation-based imaging. Developing a campaign to focus on continued reduction in CT and increased use of high-quality US should be pursued. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. MRI vs. CT for orthodontic applications: comparison of two MRI protocols and three CT (multislice, cone-beam, industrial) technologies.

    PubMed

    Detterbeck, Andreas; Hofmeister, Michael; Hofmann, Elisabeth; Haddad, Daniel; Weber, Daniel; Hölzing, Astrid; Zabler, Simon; Schmid, Matthias; Hiller, Karl-Heinz; Jakob, Peter; Engel, Jens; Hiller, Jochen; Hirschfelder, Ursula

    2016-07-01

    To examine the relative usefulness and suitability of magnetic resonance imaging (MRI) in daily clinical practice as compared to various technologies of computed tomography (CT) in addressing questions of orthodontic interest. Three blinded raters evaluated 2D slices and 3D reconstructions created from scans of two pig heads. Five imaging modalities were used, including three CT technologies-multislice (MSCT), cone-beam CT (CBCT), and industrial (µCT)-and two MRI protocols with different scan durations. Defined orthodontic parameters were rated one by one on the 2D slices and the 3D reconstructions, followed by final overall ratings for each modality. A mixed linear model was used for statistical analysis. Based on the 2D slices, the parameter of visualizing tooth-germ topography did not yield any significantly different ratings for MRI versus any of the CT scans. While some ratings for the other parameters did involve significant differences, how these should be interpreted depends greatly on the relevance of each parameter. Based on the 3D reconstructions, the only significant difference between technologies was noted for the parameter of visualizing root-surface morphology. Based on the final overall ratings, the imaging performance of the standard MRI protocol was noninferior to the performance of the three CT technologies. On comparing the imaging performance of MRI and CT scans, it becomes clear that MRI has a huge potential for applications in daily clinical practice. Given its additional benefits of a good contrast ratio and complete absence of ionizing radiation, further studies are needed to explore this clinical potential in greater detail.

  4. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    PubMed

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  5. Accuracy and precision of patient positioning for pelvic MR-only radiation therapy using digitally reconstructed radiographs

    NASA Astrophysics Data System (ADS)

    Kemppainen, R.; Vaara, T.; Joensuu, T.; Kiljunen, T.

    2018-03-01

    Background and Purpose. Magnetic resonance imaging (MRI) has in recent years emerged as an imaging modality to drive precise contouring of targets and organs at risk in external beam radiation therapy. Moreover, recent advances in MRI enable treatment of cancer without computed tomography (CT) simulation. A commercially available MR-only solution, MRCAT, offers a single-modality approach that provides density information for dose calculation and generation of positioning reference images. We evaluated the accuracy of patient positioning based on MRCAT digitally reconstructed radiographs (DRRs) by comparing to standard CT based workflow. Materials and Methods. Twenty consecutive prostate cancer patients being treated with external beam radiation therapy were included in the study. DRRs were generated for each patient based on the planning CT and MRCAT. The accuracy assessment was performed by manually registering the DRR images to planar kV setup images using bony landmarks. A Bayesian linear mixed effects model was used to separate systematic and random components (inter- and intra-observer variation) in the assessment. In addition, method agreement was assessed using a Bland-Altman analysis. Results. The systematic difference between MRCAT and CT based patient positioning, averaged over the study population, were found to be (mean [95% CI])  -0.49 [-0.85 to  -0.13] mm, 0.11 [-0.33 to  +0.57] mm and  -0.05 [-0.23 to  +0.36] mm in vertical, longitudinal and lateral directions, respectively. The increases in total random uncertainty were estimated to be below 0.5 mm for all directions, when using MR-only workflow instead of CT. Conclusions. The MRCAT pseudo-CT method provides clinically acceptable accuracy and precision for patient positioning for pelvic radiation therapy based on planar DRR images. Furthermore, due to the reduction of geometric uncertainty, compared to dual-modality workflow, the approach is likely to improve the total geometric accuracy of pelvic radiation therapy.

  6. TU-A-18C-01: ACR Accreditation Updates in CT, Ultrasound, Mammography and MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, R; Berns, E; Hangiandreou, N

    2014-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, the ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-datemore » as the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, mammography, ultrasound, and computed tomography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program. To understand the new requirements of the ACR ultrasound accreditation program, and roles the physicist can play in annual equipment surveys and setting up and supervising the routine QC program. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process.« less

  7. MO-AB-207-01: ACR Update in CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNitt-Gray, M.

    2015-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less

  8. MO-AB-207-00: ACR Update in MR, CT, Nuclear Medicine, and Mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less

  9. Predicting tumor hypoxia in non-small cell lung cancer by combining CT, FDG PET and dynamic contrast-enhanced CT.

    PubMed

    Even, Aniek J G; Reymen, Bart; La Fontaine, Matthew D; Das, Marco; Jochems, Arthur; Mottaghy, Felix M; Belderbos, José S A; De Ruysscher, Dirk; Lambin, Philippe; van Elmpt, Wouter

    2017-11-01

    Most solid tumors contain inadequately oxygenated (i.e., hypoxic) regions, which tend to be more aggressive and treatment resistant. Hypoxia PET allows visualization of hypoxia and may enable treatment adaptation. However, hypoxia PET imaging is expensive, time-consuming and not widely available. We aimed to predict hypoxia levels in non-small cell lung cancer (NSCLC) using more easily available imaging modalities: FDG-PET/CT and dynamic contrast-enhanced CT (DCE-CT). For 34 NSCLC patients, included in two clinical trials, hypoxia HX4-PET/CT, planning FDG-PET/CT and DCE-CT scans were acquired before radiotherapy. Scans were non-rigidly registered to the planning CT. Tumor blood flow (BF) and blood volume (BV) were calculated by kinetic analysis of DCE-CT images. Within the gross tumor volume, independent clusters, i.e., supervoxels, were created based on FDG-PET/CT. For each supervoxel, tumor-to-background ratios (TBR) were calculated (median SUV/aorta SUV mean ) for HX4-PET/CT and supervoxel features (median, SD, entropy) for the other modalities. Two random forest models (cross-validated: 10 folds, five repeats) were trained to predict the hypoxia TBR; one based on CT, FDG, BF and BV, and one with only CT and FDG features. Patients were split in a training (trial NCT01024829) and independent test set (trial NCT01210378). For each patient, predicted, and observed hypoxic volumes (HV) (TBR > 1.2) were compared. Fifteen patients (3291 supervoxels) were used for training and 19 patients (1502 supervoxels) for testing. The model with all features (RMSE training: 0.19 ± 0.01, test: 0.27) outperformed the model with only CT and FDG-PET features (RMSE training: 0.20 ± 0.01, test: 0.29). All tumors of the test set were correctly classified as normoxic or hypoxic (HV > 1 cm 3 ) by the best performing model. We created a data-driven methodology to predict hypoxia levels and hypoxia spatial patterns using CT, FDG-PET and DCE-CT features in NSCLC. The model correctly classifies all tumors, and could therefore, aid tumor hypoxia classification and patient stratification.

  10. CT Bronchus Sign and the Diagnostic Yield of Guided Bronchoscopy for Peripheral Pulmonary Lesions: A Systematic Review and Meta-Analysis.

    PubMed

    Ali, Muhammad S; Sethi, Jaskaran; Taneja, Amit; Musani, Ali; Maldonado, Fabien

    2018-06-07

    Indeterminate peripheral pulmonary lesions often require tissue diagnosis. If non-surgical biopsy techniques are considered, deciding between bronchoscopic transbronchial vs. CT guided transthoracic biopsy can be difficult. The former has a low diagnostic yield with a low complication risk, while the latter has a better diagnostic yield but a higher complication rate. Investigators have looked at various lesion characteristics that can predict the diagnostic yield of guided bronchoscopic biopsies. While consensus exists that larger size and proximity to the hilum increase the diagnostic yield, there is ongoing debate about the association between CT bronchus sign (air-filled bronchus in close proximity of the lesion as seen on CT) and the diagnostic yield of guided bronchoscopic modalities. To perform a meta-analysis and systematic review, determining the association between CT bronchus sign and the diagnostic yield of guided bronchoscopy for peripheral pulmonary lesions. MEDLINE, Embase, Scopus and Google Scholar were searched in January 2018 for guided bronchoscopy studies that had assessed the impact of CT bronchus sign on the diagnostic yield. The quality of included studies was assessed using Quality Assessment, Data Abstraction and Synthesis-2 tool. Meta-analysis was performed using MedCalc (version 18). Odds ratios were used to compare yield of lesions with and without bronchus sign. Random effects model was used when significant heterogeneity was observed (I2>40%). For 2199 lesions with CT bronchus sign, the overall weighted diagnostic yield was 74.1% (95% CI: 68.3-79.5%). For 971 lesions without CT bronchus sign, the overall weighted diagnostic yield was 49.6% (95% CI: 39.6-59.5%). The odds ratio for successfully diagnosing a lesion with CT bronchus was 3.4 (95% CI: 2.4-5.0). Possible sources of heterogeneity in the meta-analysis included differences in study designs, guidance modalities and cancer prevalence. The odds ratio for successfully diagnosing a lesion with CT bronchus sign was relatively lower for prospective studies. Peripheral pulmonary lesions with CT bronchus sign are more likely to be diagnosed with guided bronchoscopy as compared to the lesions without CT bronchus sign. Clinicians should consider this along with the lesion size and distance from hilum, when contemplating guided bronchoscopy for peripheral pulmonary lesions. To perform a meta-analysis and systematic review, determining the impact of CT bronchus sign on the diagnostic yield of guided bronchoscopy for peripheral pulmonary lesions. MEDLINE, Embase, Scopus and Google Scholar were searched in January 2018 for guided bronchoscopy studies that had assessed the impact of CT bronchus sign on the diagnostic yield. The quality of included studies was assessed using Quality Assessment, Data Abstraction and Synthesis-2 tool. Meta-analysis was performed using MedCalc (version 18). Odds ratios were used to compare yield of lesions with and without bronchus sign. Random effects model was used when significant heterogeneity was observed (I2>40%). For 2199 lesions with CT bronchus sign, the overall weighted diagnostic yield was 74.1% (95% CI: 68.3-79.5%). For 971 lesions without CT bronchus, the overall weighted diagnostic yield was 49.6% (95% CI: 39.6-59.5%). The odds ratio for successfully diagnosing a lesion with CT bronchus was 3.4 (95% CI: 2.4-5.0). I² index was 62.1 therefore random effects model was used. Peripheral pulmonary lesions with CT bronchus sign are much more likely to be successfully diagnosed with guided bronchoscopy as compared to the lesions without CT bronchus sign. Clinicians should consider the presence (or absence) of CT bronchus sign along with the size of the lesion and distance from the hilum, when contemplating guided bronchoscopic modalities for peripheral pulmonary lesions.

  11. Utility of Gallium-68 DOTANOC PET/CT in the localization of Tumour-induced osteomalacia.

    PubMed

    Bhavani, Nisha; Reena Asirvatham, Adlyne; Kallur, Kumar; Menon, Arun S; Pavithran, Praveen V; Nair, Vasantha; Vasukutty, Jayakumar R; Menon, Usha; Kumar, Harish

    2016-01-01

    Tumour-induced osteomalacia (TIO) is a rare disorder characterized by hypophosphataemic osteomalacia caused by small mesenchymal tumours secreting fibroblast growth factor 23 (FGF 23). The most difficult part in the management of these patients is the localization of tumours causing TIO. We describe the utility of Gallium (Ga)-68 DOTANOC PET/CT in the localization of tumours causing TIO. The study was conducted in a single tertiary referral university teaching hospital in India. Ten patients with TIO who underwent Ga-68 DOTANOC PET/CT from the time period 2009 to 2014 were included in this study. Their detailed clinical history, biochemical parameters, imaging modalities, surgical interventions, histopathology and outcomes were reviewed. Ga-68 DOTANOC PET/CT could correctly localize the tumours in TIO in 9 of the 10 cases in which it was performed. Complete resection of the tumour led to full clinical recovery in six of the ten patients; two patients who had partial resection and one patient who underwent radiofrequency ablation showed partial remission. One patient in whom Ga-68 DOTANOC PET/CT was positive in vertebral body with a low standardized uptake value (SUV) did not show up the tumour on surgery. We conclude that Ga-68 DOTANOC PET/CT can be used as the first imaging modality in patients diagnosed with TIO. The extremely good outcome following the resection of these small otherwise undiagnosed tumours far outweighs its cost even in resource limited settings. © 2015 John Wiley & Sons Ltd.

  12. Mutual-information-based registration for ultrasound and CT datasets

    NASA Astrophysics Data System (ADS)

    Firle, Evelyn A.; Wesarg, Stefan; Dold, Christian

    2004-05-01

    In many applications for minimal invasive surgery the acquisition of intra-operative medical images is helpful if not absolutely necessary. Especially for Brachytherapy imaging is critically important to the safe delivery of the therapy. Modern computed tomography (CT) and magnetic resonance (MR) scanners allow minimal invasive procedures to be performed under direct imaging guidance. However, conventional scanners do not have real-time imaging capability and are expensive technologies requiring a special facility. Ultrasound (U/S) is a much cheaper and one of the most flexible imaging modalities. It can be moved to the application room as required and the physician sees what is happening as it occurs. Nevertheless it may be easier to interpret these 3D intra-operative U/S images if they are used in combination with less noisier preoperative data such as CT. The purpose of our current investigation is to develop a registration tool for automatically combining pre-operative CT volumes with intra-operatively acquired 3D U/S datasets. The applied alignment procedure is based on the information theoretic approach of maximizing the mutual information of two arbitrary datasets from different modalities. Since the CT datasets include a much bigger field of view we introduced a bounding box to narrow down the region of interest within the CT dataset. We conducted a phantom experiment using a CIRS Model 53 U/S Prostate Training Phantom to evaluate the feasibility and accuracy of the proposed method.

  13. CT versus MR Techniques in the Detection of Cervical Artery Dissection.

    PubMed

    Hanning, Uta; Sporns, Peter B; Schmiedel, Meilin; Ringelstein, Erich B; Heindel, Walter; Wiendl, Heinz; Niederstadt, Thomas; Dittrich, Ralf

    2017-11-01

    Spontaneous cervical artery dissection (sCAD) is an important etiology of juvenile stroke. The gold standard for the diagnosis of sCAD is convential angiography. However, magnetic resonance imaging (MRI)/MR angiography (MRA) and computed tomography (CT)/CT angiography (CTA) are frequently used alternatives. New developments such as multislice CT/CTA have enabled routine acquisition of thinner sections with rapid imaging times. The goal of this study was to compare the capability of recent developed 128-slice CT/CTA to MRI/MRA to detect radiologic features of sCAD. Retrospective review of patients with suspected sCAD (n = 188) in a database of our Stroke center (2008-2014), who underwent CT/CTA and MRI/MRA on initial clinical work-up. A control group of 26 patients was added. All Images were evaluated concerning specific and sensitive radiological features for dissection by two experienced neuroradiologists. Imaging features were compared between the two modalities. Forty patients with 43 dissected arteries received both modalities (29 internal carotid arteries [ICAs] and 14 vertebral arteries [VAs]). All CADs were identified in CT/CTA and MRI/MRA. The features intimal flap, stenosis, and lumen irregularity appeared in both modalities. One high-grade stenosis was identified by CT/CTA that was expected occluded on MRI/MRA. Two MRI/MRA-confirmed pseudoaneurysms were missed by CT/CTA. None of the controls evidenced specific imaging signs for dissection. CT/CTA is a reliable and better available alternative to MRI/MRA for diagnosis of sCAD. CT/CTA should be used to complement MRI/MRA in cases where MRI/MRA suggests occlusion. Copyright © 2017 by the American Society of Neuroimaging.

  14. [18F-Fluorocholine PET-CT for localization of parathyroid adenomas].

    PubMed

    Kluijfhout, Wouter P; Vriens, Menno R; Borel Rinkes, Inne H M; Valk, Gerlof D; de Klerk, John M H; de Keizer, Bart

    2015-01-01

    18F-fluorocholine PET-CT is a new imaging modality for the localization of pathological parathyroid glands in patients with primary hyperparathyroidism. The PET-CT is a combination scan that uses both the physiological information from the PET and the anatomical information from the CT. Uptake of the radio-isotope 18F-fluorocholine is increased in pathological parathyroid glands. 18F-fluorocholine PET-CT helps clinicians to localize the pathological parathyroid glands where conventional modalities fail to do so. This enables surgeons to carry out targeted minimal invasive surgery. It may also prevent the patient having to undergo a more extensive exploration, with its associated risks, and alleviate the necessity of taking medications with side effects. Although the literature on this subject is still scarce, preliminary results are promising. As any hospital with a PET-CT can perform the scan, we expect that its use in patients with hyperparathyroidism will increase over the next few years.

  15. Direct visualization of gastrointestinal tract with lanthanide-doped BaYbF5 upconversion nanoprobes.

    PubMed

    Liu, Zhen; Ju, Enguo; Liu, Jianhua; Du, Yingda; Li, Zhengqiang; Yuan, Qinghai; Ren, Jinsong; Qu, Xiaogang

    2013-10-01

    Nanoparticulate contrast agents have attracted a great deal of attention along with the rapid development of modern medicine. Here, a binary contrast agent based on PAA modified BaYbF5:Tm nanoparticles for direct visualization of gastrointestinal (GI) tract has been designed and developed via a one-pot solvothermal route. By taking advantages of excellent colloidal stability, low cytotoxicity, and neglectable hemolysis of these well-designed nanoparticles, their feasibility as a multi-modal contrast agent for GI tract was intensively investigated. Significant enhancement of contrast efficacy relative to clinical barium meal and iodine-based contrast agent was evaluated via X-ray imaging and CT imaging in vivo. By doping Tm(3+) ions into these nanoprobes, in vivo NIR-NIR imaging was then demonstrated. Unlike some invasive imaging modalities, non-invasive imaging strategy including X-ray imaging, CT imaging, and UCL imaging for GI tract could extremely reduce the painlessness to patients, effectively facilitate imaging procedure, as well as rationality economize diagnostic time. Critical to clinical applications, long-term toxicity of our contrast agent was additionally investigated in detail, indicating their overall safety. Based on our results, PAA-BaYbF5:Tm nanoparticles were the excellent multi-modal contrast agent to integrate X-ray imaging, CT imaging, and UCL imaging for direct visualization of GI tract with low systemic toxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Synchrotron radiation μCT and histology evaluation of bone-to-implant contact.

    PubMed

    Neldam, Camilla Albeck; Sporring, Jon; Rack, Alexander; Lauridsen, Torsten; Hauge, Ellen-Margrethe; Jørgensen, Henrik L; Jørgensen, Niklas Rye; Feidenhansl, Robert; Pinholt, Else Marie

    2017-09-01

    The purpose of this study was to evaluate bone-to-implant contact (BIC) in two-dimensional (2D) histology compared to high-resolution three-dimensional (3D) synchrotron radiation micro computed tomography (SR micro-CT). High spatial resolution, excellent signal-to-noise ratio, and contrast establish SR micro-CT as the leading imaging modality for hard X-ray microtomography. Using SR micro-CT at voxel size 5 μm in an experimental goat mandible model, no statistically significant difference was found between the different treatment modalities nor between recipient and reconstructed bone. The histological evaluation showed a statistically significant difference between BIC in reconstructed and recipient bone (p < 0.0001). Further, no statistically significant difference was found between the different treatment modalities which we found was due to large variation and subsequently due to low power. Comparing histology and SR micro-CT evaluation a bias of 5.2% was found in reconstructed area, and 15.3% in recipient bone. We conclude that for evaluation of BIC with histology and SR micro-CT, SR micro-CT cannot be proven more precise than histology for evaluation of BIC, however, with this SR micro-CT method, one histologic bone section is comparable to the 3D evaluation. Further, the two methods complement each other with knowledge on BIC in 2D and 3D. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  17. Percutaneous Bone Biopsies: Comparison between Flat-Panel Cone-Beam CT and CT-Scan Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tselikas, Lambros, E-mail: lambros.tselikas@gmail.com; Joskin, Julien, E-mail: j.joskin@gmail.com; Roquet, Florian, E-mail: florianroquet@hotmail.com

    2015-02-15

    PurposeThis study was designed to compare the accuracy of targeting and the radiation dose of bone biopsies performed either under fluoroscopic guidance using a cone-beam CT with real-time 3D image fusion software (FP-CBCT-guidance) or under conventional computed tomography guidance (CT-guidance).MethodsSixty-eight consecutive patients with a bone lesion were prospectively included. The bone biopsies were scheduled under FP-CBCT-guidance or under CT-guidance according to operating room availability. Thirty-four patients underwent a bone biopsy under FP-CBCT and 34 under CT-guidance. We prospectively compared the two guidance modalities for their technical success, accuracy, puncture time, and pathological success rate. Patient and physician radiation doses also were compared.ResultsAll biopsiesmore » were technically successful, with both guidance modalities. Accuracy was significantly better using FP-CBCT-guidance (3 and 5 mm respectively: p = 0.003). There was no significant difference in puncture time (32 and 31 min respectively, p = 0.51) nor in pathological results (88 and 88 % of pathological success respectively, p = 1). Patient radiation doses were significantly lower with FP-CBCT (45 vs. 136 mSv, p < 0.0001). The percentage of operators who received a dose higher than 0.001 mSv (dosimeter detection dose threshold) was lower with FP-CBCT than CT-guidance (27 vs. 59 %, p = 0.01).ConclusionsFP-CBCT-guidance for bone biopsy is accurate and reduces patient and operator radiation doses compared with CT-guidance.« less

  18. Evaluation of an imaging protocol using ultrasound as the primary diagnostic modality in pediatric patients with superficial soft tissue infections of the face and neck.

    PubMed

    Sethia, Rishabh; Mahida, Justin B; Subbarayan, Rahul A; Deans, Katherine J; Minneci, Peter C; Elmaraghy, Charles A; Essig, Garth F

    2017-05-01

    To determine the clinical impact of an initiative to use ultrasound (US) as the primary diagnostic modality for children with superficial face and neck infections versus use of computed tomography (CT). Children with a diagnosis of lymphadenitis, face or neck abscess, or face and neck cellulitis were retrospectively evaluated by the otolaryngology service. Patients were separated into two groups based on implementation of a departmental initiative to use US as the primary diagnostic modality. The pre-implementation cohort consisted of patients treated prior to the initiative (2006-2009) and the current protocol cohort consisted of patients treated after the initiative was started (2010-2013). Demographics, use of US or CT, necessity of surgical intervention, and failure of medical management were compared. Three hundred seventy three children were evaluated; 114 patients were included in the pre-implementation cohort and 259 patients were included in the current protocol cohort for comparison. Patients presenting during the current protocol period were more likely to undergo US (pre-implementation vs. current protocol, p-value) (12% vs. 49%, p < 0.0001) and less likely to undergo CT (66% vs. 41%, p < 0.0001) for their initial evaluation. There were no differences in the percentage of children who underwent prompt surgical drainage, prompt discharge without surgery, or trial inpatient observation. There were also no differences in the rate of treatment failure for patients undergoing prompt surgery or prompt discharge on antibiotics. For those patients who underwent repeat evaluation following trial medical management, US was used more frequently in the current protocol period (4% vs. 20%, p = 0.002) with no difference in CT use, selected treatment strategy, or treatment failure rates. Increased use of US on initial evaluation of children with superficial face and neck infections resulted in decreased CT utilization, without negatively impacting outcome. Decreasing pediatric radiation exposure and potential long-term effects is of primary importance. Copyright © 2017. Published by Elsevier B.V.

  19. Surgical Scar Site Recurrence in Patients With Cervical Cancer on 18F-FDG PET-CT: A Case-Control Study.

    PubMed

    Dhull, Varun S; Khangembam, Bangkim C; Sharma, Punit; Rana, Neelima; Verma, Satyavrat; Sharma, Dayanand; Shamim, Shamim A; Kumar, Sunesh; Kumar, Rakesh

    2016-02-01

    The purpose of this study was to assess the role of fluorine 18 ((18)F)-fluorodeoxyglucose positron emission tomography-computed tomography ((18)F-FDG PET-CT) in evaluating various parameters in patients with surgical scar site recurrence in cervical carcinoma. Data of all patients with cervical cancer (n = 329) who underwent PET-CT at our institute between 2005 and 2013 was reviewed. Of these 329 patients, 132 patients who were surgically treated and underwent restaging/follow-up PET-CT were included in the present study for final analysis. Tumor recurrence at the abdominal surgical scar site was looked for. Abnormal uptakes suggestive of active disease at other sites were also noted. Maximum standardized uptake value was measured for all the lesions. Patients with scar site recurrence were taken as cases (n = 6), whereas the remaining patients served as controls (n = 126). Comparison with conventional imaging modalities was made wherever available. Histopathological examination was always sought for. The incidence of scar site recurrence after surgery was found to be 4.5% (6/117). A total of 56 of 132 patients had recurrent disease, including 6 patients with scar site recurrence. All of the patients with scar site recurrence also had recurrent disease at other sites (local, nodal, or distant). Conventional imaging modalities were available in 4 of these 6 patients and detected scar site recurrence in 3 of those 4 patients. In patients with scar site recurrence, the mean ± SD time to scar site recurrence was 14.0 ± 10.9 months (median, 10 months; range, 7-36 months). Significant difference was seen between cases and control for International Federation of Genecology and Oncology stage (P = 0.001) and nodal recurrence (P = 0.007). Additionally, age, nodal recurrence, distant recurrence, and scar site recurrence were significantly associated with death. Scar site recurrence carries a poor prognosis, and the incidence is much higher than previously known when PET-CT is used as a modality for its detection.

  20. Hybrid FDG-PET/MR compared to FDG-PET/CT in adult lymphoma patients.

    PubMed

    Atkinson, Wendy; Catana, Ciprian; Abramson, Jeremy S; Arabasz, Grae; McDermott, Shanaugh; Catalano, Onofrio; Muse, Victorine; Blake, Michael A; Barnes, Jeffrey; Shelly, Martin; Hochberg, Ephraim; Rosen, Bruce R; Guimaraes, Alexander R

    2016-07-01

    The goal of this study is to evaluate the diagnostic performance of simultaneous FDG-PET/MR including diffusion compared to FDG-PET/CT in patients with lymphoma. Eighteen patients with a confirmed diagnosis of non-Hodgkin's (NHL) or Hodgkin's lymphoma (HL) underwent an IRB-approved, single-injection/dual-imaging protocol consisting of a clinical FDG-PET/CT and subsequent FDG-PET/MR scan. PET images from both modalities were reconstructed iteratively. Attenuation correction was performed using low-dose CT data for PET/CT and Dixon-MR sequences for PET/MR. Diffusion-weighted imaging was performed. SUVmax was measured and compared between modalities and the apparent diffusion coefficient (ADC) using ROI analysis by an experienced radiologist using OsiriX. Strength of correlation between variables was measured using the Pearson correlation coefficient (r p). Of the 18 patients included in this study, 5 had HL and 13 had NHL. The median age was 51 ± 14.8 years. Sixty-five FDG-avid lesions were identified. All FDG-avid lesions were visible with comparable contrast, and therefore initial and follow-up staging was identical between both examinations. SUVmax from FDG-PET/MR [(mean ± sem) (21.3 ± 2.07)] vs. FDG-PET/CT (mean 23.2 ± 2.8) demonstrated a strongly positive correlation [r s = 0.95 (0.94, 0.99); p < 0.0001]. There was no correlation found between ADCmin and SUVmax from FDG-PET/MR [r = 0.17(-0.07, 0.66); p = 0.09]. FDG-PET/MR offers an equivalent whole-body staging examination as compared with PET/CT with an improved radiation safety profile in lymphoma patients. Correlation of ADC to SUVmax was weak, understating their lack of equivalence, but not undermining their potential synergy and differing importance.

  1. TU-H-CAMPUS-JeP2-02: Interobserver Variability of CT, PET-CT and MRI Based Primary Tumor Delineation for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karki, K; Hugo, G; Saraiya, S

    Purpose: Target delineation in lung cancer radiotherapy has, in general, large variability. MRI has so far not been investigated in detail for lung cancer delineation variability. The purpose of this study is to investigate delineation variability for lung tumors using MRI and compare it to CT alone and PET-CT based delineations. Methods: Seven physicians delineated the primary tumor volumes of nine patients for the following scenarios: (1) CT only; (2) post-contrast T1-weighted MRI registered with diffusion-weighted MRI; and (3) PET-CT fusion images. To compute interobserver variability, the median surface was generated from all observers’ contours and used as the referencemore » surface. A single physician labeled the interface types (tumor to lung, atelectasis (collapsed lung), hilum, mediastinum, or chest-wall) on the median surface. Volume variation (normalized to PET-CT volume), minimum distance (MD), and bidirectional local distance (BLD) between individual observers’ contours and the reference contour were measured. Results: CT- and MRI-based normalized volumes were 1.61±0.76 (mean±SD) and 1.38±0.44, respectively, both significantly larger than PET-CT (p<0.05, paired t-test). The overall uncertainty (root mean square of SD values over all points) of both BLD and MD measures of the observers for the interfaces were not significantly different (p>0.05, two-samples t-test) for all imaging modalities except between tumor-mediastinum and tumor-atelectasis in PET-CT. The largest mean overall uncertainty was observed for tumor-atelectasis interface, the smallest for tumor-mediastinum and tumor-lung interfaces for all modalities. The whole tumor uncertainties for both BLD and MD were not significantly different between any two modalities (p>0.05, paired t-test). Overall uncertainties for the interfaces using BLD were similar to using MD. Conclusion: Large volume variations were observed between the three imaging modalities. Contouring variability appeared to depend on the interface type. This study will be useful for understanding the delineation uncertainty for radiotherapy planning of lung cancer using different imaging modalities. Disclosures: Research agreement with Phillips Healthcare (GH and EW), National Institutes of Health Licensing agreement with Varian Medical Systems (GH and EW), research grants from the National Institute of Health (GH and EW), UpToDate royalties (EW), and none (others). Authors have no potential conflicts of interest to disclose.« less

  2. Magnetic resonance imaging for the ophthalmologist: A primer

    PubMed Central

    Simha, Arathi; Irodi, Aparna; David, Sarada

    2012-01-01

    Magnetic resonance imaging (MRI) and computerized tomography (CT) have added a new dimension in the diagnosis and management of ocular and orbital diseases. Although CT is more widely used, MRI is the modality of choice in select conditions and can be complimentary to CT in certain situations. The diagnostic yield is best when the ophthalmologist and radiologist work together. Ophthalmologists should be able to interpret these complex imaging modalities as better clinical correlation is then possible. In this article, we attempt to describe the basic principles of MRI and its interpretation, avoiding confusing technical terms. PMID:22824600

  3. Intraoperative utilization of advanced imaging modalities in a complex kidney stone case: a pilot case study.

    PubMed

    Christiansen, Andrew R; Shorti, Rami M; Smith, Cory D; Prows, William C; Bishoff, Jay T

    2018-05-01

    Despite the increasing use of advanced 3D imaging techniques and 3D printing, these techniques have not yet been comprehensively compared in a surgical setting. The purpose of this study is to explore the effectiveness of five different advanced imaging modalities during a complex renal surgical procedure. A patient with a horseshoe kidney and multiple large, symptomatic stones that had failed Extracorporeal Shock Wave Lithotripsy (ESWL) and ureteroscopy treatment was used for this evaluation. CT data were used to generate five different imaging modalities, including a 3D printed model, three different volume rendered models, and a geometric CAD model. A survey was used to evaluate the quality and breadth of the imaging modalities during four different phases of the laparoscopic procedure. In the case of a complex kidney procedure, the CAD model, 3D print, volume render on an autostereoscopic 3D display, interactive and basic volume render models demonstrated added insight and complemented the surgical procedure. CAD manual segmentation allowed tissue layers and/or kidney stones to be made colorful and semi-transparent, allowing easier navigation through abnormal vasculature. The 3D print allowed for simultaneous visualization of renal pelvis and surrounding vasculature. Our preliminary exploration indicates that various advanced imaging modalities, when properly utilized and supported during surgery, can be useful in complementing the CT data and laparoscopic display. This study suggests that various imaging modalities, such as ones utilized in this case, can be beneficial intraoperatively depending on the surgical step involved and may be more helpful than 3D printed models. We also present factors to consider when evaluating advanced imaging modalities during complex surgery.

  4. Portable head computed tomography scanner--technology and applications: experience with 3421 scans.

    PubMed

    Carlson, Andrew P; Yonas, Howard

    2012-10-01

    The use of head computed tomography (CT) is standard in the management of acute brain injury; however, there are inherent risks of transport of critically ill patients. Portable CT can be brought to the patient at any location. We describe the clinical use of a portable head CT scanner (CereTom: NeuroLogica: Danvers, MA) that can be brought to the patient's bedside or to other locations such as the operating room or angiography suite. Between June of 2006 and December of 2009, a total of 3421 portable CTs were performed. A total of 3278 (95.8%) were performed in the neuroscience intensive care unit (ICU) for an average of 2.6 neuroscience ICU CT scans per day. Other locations where CTs were performed included other ICUs (n = 97), the operating room (n = 53), the emergency department (n = 1), and the angiography suite (n = 2). Most studies were non-contrasted head CT, though other modalities including xenon/CT, contrasted CT, and CT angiography were performed. Portable head CT can reliably and consistently be performed at the patient's bedside. This should lead to decreased transportation-related morbidity and improved rapid decision making in the ICU, OR, and other locations. Further studies to confirm this clinical advantage are needed. Copyright © 2011 by the American Society of Neuroimaging.

  5. ACR Appropriateness Criteria® Suspected Liver Metastases.

    PubMed

    Kaur, Harmeet; Hindman, Nicole M; Al-Refaie, Waddah B; Arif-Tiwari, Hina; Cash, Brooks D; Chernyak, Victoria; Farrell, James; Grajo, Joseph R; Horowitz, Jeanne M; McNamara, Michelle M; Noto, Richard B; Qayyum, Aliya; Lalani, Tasneem; Kamel, Ihab R

    2017-05-01

    Liver metastases are the most common malignant liver tumors. The accurate and early detection and characterization of liver lesions is the key to successful treatment strategies. Increasingly, surgical resection in combination with chemotherapy is effective in significantly improving survival if all metastases are successfully resected. MRI and multiphase CT are the primary imaging modalities in the assessment of liver metastasis, with the relative preference toward multiphase CT or MRI depending upon the clinical setting (ie, surveillance or presurgical planning). The optimization of imaging parameters is a vital factor in the success of either modality. PET/CT, intraoperative ultrasound are used to supplement CT and MRI. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer-reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  6. Echocardiography as an indication of continuous-time cardiac quiescence

    NASA Astrophysics Data System (ADS)

    Wick, C. A.; Auffermann, W. F.; Shah, A. J.; Inan, O. T.; Bhatti, P. T.; Tridandapani, S.

    2016-07-01

    Cardiac computed tomography (CT) angiography using prospective gating requires that data be acquired during intervals of minimal cardiac motion to obtain diagnostic images of the coronary vessels free of motion artifacts. This work is intended to assess B-mode echocardiography as a continuous-time indication of these quiescent periods to determine if echocardiography can be used as a cost-efficient, non-ionizing modality to develop new prospective gating techniques for cardiac CT. These new prospective gating approaches will not be based on echocardiography itself but on CT-compatible modalities derived from the mechanics of the heart (e.g. seismocardiography and impedance cardiography), unlike the current standard electrocardiogram. To this end, echocardiography and retrospectively-gated CT data were obtained from ten patients with varied cardiac conditions. CT reconstructions were made throughout the cardiac cycle. Motion of the interventricular septum (IVS) was calculated from both echocardiography and CT reconstructions using correlation-based, deviation techniques. The IVS was chosen because it (1) is visible in echocardiography images, whereas the coronary vessels generally are not, and (2) has been shown to be a suitable indicator of cardiac quiescence. Quiescent phases were calculated as the minima of IVS motion and CT volumes were reconstructed for these phases. The diagnostic quality of the CT reconstructions from phases calculated from echocardiography and CT data was graded on a four-point Likert scale by a board-certified radiologist fellowship-trained in cardiothoracic radiology. Using a Wilcoxon signed-rank test, no significant difference in the diagnostic quality of the coronary vessels was found between CT volumes reconstructed from echocardiography- and CT-selected phases. Additionally, there was a correlation of 0.956 between the echocardiography- and CT-selected phases. This initial work suggests that B-mode echocardiography can be used as a tool to develop CT-compatible gating techniques based on modalities derived from cardiac mechanics rather than relying on the ECG alone.

  7. Advances in Pancreatic CT Imaging.

    PubMed

    Almeida, Renata R; Lo, Grace C; Patino, Manuel; Bizzo, Bernardo; Canellas, Rodrigo; Sahani, Dushyant V

    2018-07-01

    The purpose of this article is to discuss the advances in CT acquisition and image postprocessing as they apply to imaging the pancreas and to conceptualize the role of radiogenomics and machine learning in pancreatic imaging. CT is the preferred imaging modality for assessment of pancreatic diseases. Recent advances in CT (dual-energy CT, CT perfusion, CT volumetry, and radiogenomics) and emerging computational algorithms (machine learning) have the potential to further increase the value of CT in pancreatic imaging.

  8. Evaluation of lymph node status after neoadjuvant chemotherapy in breast cancer patients: comparison of diagnostic performance of ultrasound, MRI and ¹⁸F-FDG PET/CT.

    PubMed

    You, S; Kang, D K; Jung, Y S; An, Y-S; Jeon, G S; Kim, T H

    2015-08-01

    To evaluate the diagnostic performance of ultrasound, MRI and fluorine-18 fludeoxyglucose positron emission tomography (¹⁸F-FDG PET)/CT for the diagnosis of metastatic axillary lymph node (ALN) after neoadjuvant chemotherapy (NAC) and to find out histopathological factors affecting the diagnostic performance of these imaging modalities. From January 2012 to November 2014, 191 consecutive patients with breast cancer who underwent NAC before surgery were retrospectively reviewed. We included 139 patients with ALN metastasis that was confirmed on fine needle aspiration or core needle biopsy at initial diagnosis. After NAC, 39 (28%) patients showed negative conversion of ALN on surgical specimens of sentinel lymph node (LN) or ALN. The sensitivity of ultrasound, MRI and PET/CT was 50% (48/96), 72% (70/97) and 22% (16/73), respectively. The specificity of ultrasound, MRI and PET/CT was 77% (30/39), 54% (21/39) and 85% (22/26), respectively. The Az value of combination of ultrasound and PET/CT was the highest (0.634) followed by ultrasound (0.626) and combination of ultrasound, MRI and PET/CT (0.617). The size of tumour deposit in LN and oestrogen receptor was significantly associated with the diagnostic performance of ultrasound (p < 0.001 and p = 0.009, respectively) and MRI (p = 0.045 and p = 0.036, respectively). The percentage diameter decrease, size of tumour deposit in LN, progesterone receptor, HER2 and histological grade were significantly associated with the diagnostic performance of PET/CT (p = 0.023, p = 0.002, p = 0.036, p = 0.044 and p = 0.008, respectively). On multivariate logistic regression analysis, size of tumour deposit within LN was identified as being independently associated with diagnostic performance of ultrasound [odds ratio, 13.07; 95% confidence interval (CI), 2.95-57.96] and PET/CT (odds ratio, 6.47; 95% CI, 1.407-29.737). Combination of three imaging modalities showed the highest sensitivity, and PET/CT showed the highest specificity for the evaluation of ALN metastasis after NAC. Ultrasound alone or combination of ultrasound and PET/CT showed the highest positive-predictive value. The size of tumour deposit within ALN was significantly associated with diagnostic performance of ultrasound and PET/CT. This study is about the diagnostic performance of ultrasound, MRI, PET/CT and combination of each imaging modality for the evaluation of metastatic ALN after NAC. Of many histopathological factors, only the size of tumour deposit within ALN was an independent factor associated with the diagnostic performance of ultrasound and PET/CT.

  9. SU-E-J-97: Evaluation of Multi-Modality (CT/MR/PET) Image Registration Accuracy in Radiotherapy Planning.

    PubMed

    Sethi, A; Rusu, I; Surucu, M; Halama, J

    2012-06-01

    Evaluate accuracy of multi-modality image registration in radiotherapy planning process. A water-filled anthropomorphic head phantom containing eight 'donut-shaped' fiducial markers (3 internal + 5 external) was selected for this study. Seven image sets (3CTs, 3MRs and PET) of phantom were acquired and fused in a commercial treatment planning system. First, a narrow slice (0.75mm) baseline CT scan was acquired (CT1). Subsequently, the phantom was re-scanned with a coarse slice width = 1.5mm (CT2) and after subjecting phantom to rotation/displacement (CT3). Next, the phantom was scanned in a 1.5 Tesla MR scanner and three MR image sets (axial T1, axial T2, coronal T1) were acquired at 2mm slice width. Finally, the phantom and center of fiducials were doped with 18F and a PET scan was performed with 2mm cubic voxels. All image scans (CT/MR/PET) were fused to the baseline (CT1) data using automated mutual-information based fusion algorithm. Difference between centroids of fiducial markers in various image modalities was used to assess image registration accuracy. CT/CT image registration was superior to CT/MR and CT/PET: average CT/CT fusion error was found to be 0.64 ± 0.14 mm. Corresponding values for CT/MR and CT/PET fusion were 1.33 ± 0.71mm and 1.11 ± 0.37mm. Internal markers near the center of phantom fused better than external markers placed on the phantom surface. This was particularly true for the CT/MR and CT/PET. The inferior quality of external marker fusion indicates possible distortion effects toward the edges of MR image. Peripheral targets in the PET scan may be subject to parallax error caused by depth of interaction of photons in detectors. Current widespread use of multimodality imaging in radiotherapy planning calls for periodic quality assurance of image registration process. Such studies may help improve safety and accuracy in treatment planning. © 2012 American Association of Physicists in Medicine.

  10. Radiological and Radionuclide Imaging of Degenerative Disease of the Facet Joints

    PubMed Central

    Shur, Natalie; Corrigan, Alexis; Agrawal, Kanhaiyalal; Desai, Amidevi; Gnanasegaran, Gopinath

    2015-01-01

    The facet joint has been increasingly implicated as a potential source of lower back pain. Diagnosis can be challenging as there is not a direct correlation between facet joint disease and clinical or radiological features. The purpose of this article is to review the diagnosis, treatment, and current imaging modality options in the context of degenerative facet joint disease. We describe each modality in turn with a pictorial review using current evidence. Newer hybrid imaging techniques such as single photon emission computed tomography/computed tomography (SPECT/CT) provide additional information relative to the historic gold standard magnetic resonance imaging. The diagnostic benefits of SPECT/CT include precise localization and characterization of spinal lesions and improved diagnosis for lower back pain. It may have a role in selecting patients for local therapeutic injections, as well as guiding their location with increased precision. PMID:26170560

  11. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    PubMed Central

    Zhang, Yakun; Li, Xiang; Segars, W. Paul; Samei, Ehsan

    2014-01-01

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definium 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDIvol and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose metrics only increased slightly for radiographic modalities and for chest tomosynthesis. Effective and organ doses normalized to mAs all illustrated an exponential decrease with increasing patient size. As a surface organ, breast doses had less correlation with body size than that of lungs or liver. Conclusions: Patient body size has a much greater impact on radiation dose of chest CT examinations than chest radiography and tomosynthesis. The size of a patient should be considered when choosing the best thoracic imaging modality. PMID:24506654

  12. Determining injuries from posterior and flank stab wounds using computed tomography tractography.

    PubMed

    Bansal, Vishal; Reid, Chris M; Fortlage, Dale; Lee, Jeanne; Kobayashi, Leslie; Doucet, Jay; Coimbra, Raul

    2014-04-01

    Unlike anterior stab wounds (SW), in which local exploration may direct management, posterior SW can be challenging to evaluate. Traditional triple contrast computed tomography (CT) imaging is cumbersome and technician-dependent. The present study examines the role of CT tractography as a strategy to manage select patients with back and flank SW. Hemodynamically stable patients with back and flank SW were studied. After resuscitation, Betadine- or Visipaque®-soaked sterile sponges were inserted into each SW for the estimated depth of the wound. Patients underwent abdominal helical CT scanning, including intravenous contrast, as the sole abdominal imaging study. Images were reviewed by an attending radiologist and trauma surgeon. The tractogram was evaluated to determine SW trajectory and injury to intra- or retroperitoneal organs, vascular structures, the diaphragm, and the urinary tract. Complete patient demographics including operative management and injuries were collected. Forty-one patients underwent CT tractography. In 11 patients, tractography detected violation of the intra- or retroperitoneal cavity leading to operative exploration. Injuries detected included: the spleen (two), colon (one), colonic mesentery (one), kidney (kidney), diaphragm (kidney), pneumothorax (seven), hemothorax (two), iliac artery (one), and traumatic abdominal wall hernia (two). In all patients, none had negative CT findings that failed observation. In this series, CT tractography is a safe and effective imaging strategy to evaluate posterior torso SW. It is unknown whether CT tractography is superior to traditional imaging modalities. Other uses for CT tractography may include determining trajectory from missile wounds and tangential penetrating injuries.

  13. Accuracy of diagnostic imaging modalities for peripheral post-traumatic osteomyelitis - a systematic review of the recent literature.

    PubMed

    Govaert, Geertje A; IJpma, Frank F; McNally, Martin; McNally, Eugene; Reininga, Inge H; Glaudemans, Andor W

    2017-08-01

    Post-traumatic osteomyelitis (PTO) is difficult to diagnose and there is no consensus on the best imaging strategy. The aim of this study is to present a systematic review of the recent literature on diagnostic imaging of PTO. A literature search of the EMBASE and PubMed databases of the last 16 years (2000-2016) was performed. Studies that evaluated the accuracy of magnetic resonance imaging (MRI), three-phase bone scintigraphy (TPBS), white blood cell (WBC) or antigranulocyte antibody (AGA) scintigraphy, fluorodeoxyglucose positron emission tomography (FDG-PET) and plain computed tomography (CT) in diagnosing PTO were considered for inclusion. The review was conducted using the PRISMA statement and QUADAS-2 criteria. The literature search identified 3358 original records, of which 10 articles could be included in this review. Four of these studies had a comparative design which made it possible to report the results of, in total, 17 patient series. WBC (or AGA) scintigraphy and FDG-PET exhibit good accuracy for diagnosing PTO (sensitivity ranged from 50-100%, specificity ranged from 40-97% versus 83-100% and 51%-100%, respectively). The accuracy of both modalities improved when a hybrid imaging technique (SPECT/CT & FDG-PET/CT) was performed. For FDG-PET/CT, sensitivity ranged between 86 and 94% and specificity between 76 and 100%. For WBC scintigraphy + SPECT/CT, this is 100% and 89-97%, respectively. Based on the best available evidence of the last 16 years, both WBC (or AGA) scintigraphy combined with SPECT/CT or FDG-PET combined with CT have the best diagnostic accuracy for diagnosing peripheral PTO.

  14. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications

    NASA Astrophysics Data System (ADS)

    Wei, Qingyang; Wang, Shi; Ma, Tianyu; Wu, Jing; Liu, Hui; Xu, Tianpeng; Xia, Yan; Fan, Peng; Lyu, Zhenlei; Liu, Yaqiang

    2015-06-01

    PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance.

  15. Low-Dose Contrast-Enhanced Breast CT Using Spectral Shaping Filters: An Experimental Study.

    PubMed

    Makeev, Andrey; Glick, Stephen J

    2017-12-01

    Iodinated contrast-enhanced X-ray imaging of the breast has been studied with various modalities, including full-field digital mammography (FFDM), digital breast tomosynthesis (DBT), and dedicated breast CT. Contrast imaging with breast CT has a number of advantages over FFDM and DBT, including the lack of breast compression, and generation of fully isotropic 3-D reconstructions. Nonetheless, for breast CT to be considered as a viable tool for routine clinical use, it would be desirable to reduce radiation dose. One approach for dose reduction in breast CT is spectral shaping using X-ray filters. In this paper, two high atomic number filter materials are studied, namely, gadolinium (Gd) and erbium (Er), and compared with Al and Cu filters currently used in breast CT systems. Task-based performance is assessed by imaging a cylindrical poly(methyl methacrylate) phantom with iodine inserts on a benchtop breast CT system that emulates clinical breast CT. To evaluate detectability, a channelized hoteling observer (CHO) is used with sums of Laguerre-Gauss channels. It was observed that spectral shaping using Er and Gd filters substantially increased the dose efficiency (defined as signal-to-noise ratio of the CHO divided by mean glandular dose) as compared with kilovolt peak and filter settings used in commercial and prototype breast CT systems. These experimental phantom study results are encouraging for reducing dose of breast CT, however, further evaluation involving patients is needed.

  16. Dosimetry in MARS spectral CT: TOPAS Monte Carlo simulations and ion chamber measurements.

    PubMed

    Lu, Gray; Marsh, Steven; Damet, Jerome; Carbonez, Pierre; Laban, John; Bateman, Christopher; Butler, Anthony; Butler, Phil

    2017-06-01

    Spectral computed tomography (CT) is an up and coming imaging modality which shows great promise in revealing unique diagnostic information. Because this imaging modality is based on X-ray CT, it is of utmost importance to study the radiation dose aspects of its use. This study reports on the implementation and evaluation of a Monte Carlo simulation tool using TOPAS for estimating dose in a pre-clinical spectral CT scanner known as the MARS scanner. Simulated estimates were compared with measurements from an ionization chamber. For a typical MARS scan, TOPAS estimated for a 30 mm diameter cylindrical phantom a CT dose index (CTDI) of 29.7 mGy; CTDI was measured by ion chamber to within 3% of TOPAS estimates. Although further development is required, our investigation of TOPAS for estimating MARS scan dosimetry has shown its potential for further study of spectral scanning protocols and dose to scanned objects.

  17. Multi-detector CT imaging in the postoperative orthopedic patient with metal hardware.

    PubMed

    Vande Berg, Bruno; Malghem, Jacques; Maldague, Baudouin; Lecouvet, Frederic

    2006-12-01

    Multi-detector CT imaging (MDCT) becomes routine imaging modality in the assessment of the postoperative orthopedic patients with metallic instrumentation that degrades image quality at MR imaging. This article reviews the physical basis and CT appearance of such metal-related artifacts. It also addresses the clinical value of MDCT in postoperative orthopedic patients with emphasis on fracture healing, spinal fusion or arthrodesis, and joint replacement. MDCT imaging shows limitations in the assessment of the bone marrow cavity and of the soft tissues for which MR imaging remains the imaging modality of choice despite metal-related anatomic distortions and signal alteration.

  18. Globally optimal tumor segmentation in PET-CT images: a graph-based co-segmentation method.

    PubMed

    Han, Dongfeng; Bayouth, John; Song, Qi; Taurani, Aakant; Sonka, Milan; Buatti, John; Wu, Xiaodong

    2011-01-01

    Tumor segmentation in PET and CT images is notoriously challenging due to the low spatial resolution in PET and low contrast in CT images. In this paper, we have proposed a general framework to use both PET and CT images simultaneously for tumor segmentation. Our method utilizes the strength of each imaging modality: the superior contrast of PET and the superior spatial resolution of CT. We formulate this problem as a Markov Random Field (MRF) based segmentation of the image pair with a regularized term that penalizes the segmentation difference between PET and CT. Our method simulates the clinical practice of delineating tumor simultaneously using both PET and CT, and is able to concurrently segment tumor from both modalities, achieving globally optimal solutions in low-order polynomial time by a single maximum flow computation. The method was evaluated on clinically relevant tumor segmentation problems. The results showed that our method can effectively make use of both PET and CT image information, yielding segmentation accuracy of 0.85 in Dice similarity coefficient and the average median hausdorff distance (HD) of 6.4 mm, which is 10% (resp., 16%) improvement compared to the graph cuts method solely using the PET (resp., CT) images.

  19. Impact of adjuvant treatment modalities on survival outcomes in curatively resected pancreatic and periampullary adenocarcinoma

    PubMed Central

    Benekli, Mustafa; Unal, Olcun Umit; Unek, İlkay Tugba; Tastekin, Didem; Dane, Faysal; Algın, Efnan; Ulger, Sukran; Eren, Tulay; Topcu, Turkan Ozturk; Turkmen, Esma; Babacan, Nalan Akgül; Tufan, Gulnihal; Urakci, Zuhat; Ustaalioglu, Basak Oven; Uysal, Ozlem Sonmez; Ercelep, Ozlem Balvan; Taskoylu, Burcu Yapar; Aksoy, Asude; Canhoroz, Mustafa; Demirci, Umut; Dogan, Erkan; Berk, Veli; Balakan, Ozan; Ekinci, Ahmet Şiyar; Uysal, Mukremin; Petekkaya, İbrahim; Ozturk, Selçuk Cemil; Tonyalı, Önder; Çetin, Bülent; Aldemir, Mehmet Naci; Helvacı, Kaan; Ozdemir, Nuriye; Oztop, İlhan; Coskun, Ugur; Uner, Aytug; Ozet, Ahmet; Buyukberber, Suleyman

    2015-01-01

    Background We examined the impact of adjuvant modalities on resected pancreatic and periampullary adenocarcinoma (PAC). Methods A total of 563 patients who were curatively resected for PAC were retrospectively analyzed between 2003 and 2013. Results Of 563 patients, 472 received adjuvant chemotherapy (CT) alone, chemoradiotherapy (CRT) alone, and chemoradiotherapy plus chemotherapy (CRT-CT) were analyzed. Of the 472 patients, 231 were given CRT-CT, 26 were given CRT, and 215 were given CT. The median recurrence-free survival (RFS) and overall survival (OS) were 12 and 19 months, respectively. When CT and CRT-CT groups were compared, there was no significant difference with respect to both RFS and OS, and also there was no difference in RFS and OS among CRT-CT, CT and CRT groups. To further investigate the impact of radiation on subgroups, patients were stratified according to lymph node status and resection margins. In node-positive patients, both RFS and OS were significantly longer in CRT-CT than CT. In contrast, there was no significant difference between groups when patients with node-negative disease or patients with or without positive surgical margins were considered. Conclusions Addition of radiation to CT has a survival benefit in patients with node-positive disease following pancreatic resection. PMID:26361410

  20. A systematic approach to vertebral hemangioma.

    PubMed

    Gaudino, Simona; Martucci, Matia; Colantonio, Raffaella; Lozupone, Emilio; Visconti, Emiliano; Leone, Antonio; Colosimo, Cesare

    2015-01-01

    Vertebral hemangiomas (VHs) are a frequent and often incidental finding on computed tomography (CT) and magnetic resonance (MR) imaging of the spine. When their imaging appearance is "typical" (coarsened vertical trabeculae on radiographic and CT images, hyperintensity on T1- and T2-weighted MR images), the radiological diagnosis is straightforward. Nonetheless, VHs might also display an "atypical" appearance on MR imaging because of their histological features (amount of fat, vessels, and interstitial edema). Although the majority of VHs are asymptomatic and quiescent lesions, they can exhibit active behaviors, including growing quickly, extending beyond the vertebral body, and invading the paravertebral and/or epidural space with possible compression of the spinal cord and/or nerve roots ("aggressive" VHs). These "atypical" and "aggressive" VHs are a radiological challenge since they can mimic primary bony malignancies or metastases. CT plays a central role in the workup of atypical VHs, being the most appropriate imaging modality to highlight the polka-dot appearance that is representative of them. When aggressive VHs are suspected, both CT and MR are needed. MR is the best imaging modality to characterize the epidural and/or soft-tissue component, helping in the differential diagnosis. Angiography is a useful imaging adjunct for evaluating and even treating aggressive VHs. The primary objectives of this review article are to summarize the clinical, pathological, and imaging features of VHs, as well as the treatment options, and to provide a practical guide for the differential diagnosis, focusing on the rationale assessment of the findings from radiography, CT, and MR imaging.

  1. Functional Imaging for Prostate Cancer: Therapeutic Implications

    PubMed Central

    Aparici, Carina Mari; Seo, Youngho

    2012-01-01

    Functional radionuclide imaging modalities, now commonly combined with anatomical imaging modalities CT or MRI (SPECT/CT, PET/CT, and PET/MRI) are promising tools for the management of prostate cancer particularly for therapeutic implications. Sensitive detection capability of prostate cancer using these imaging modalities is one issue; however, the treatment of prostate cancer using the information that can be obtained from functional radionuclide imaging techniques is another challenging area. There are not many SPECT or PET radiotracers that can cover the full spectrum of the management of prostate cancer from initial detection, to staging, prognosis predictor, and all the way to treatment response assessment. However, when used appropriately, the information from functional radionuclide imaging improves, and sometimes significantly changes, the whole course of the cancer management. The limitations of using SPECT and PET radiotracers with regards to therapeutic implications are not so much different from their limitations solely for the task of detecting prostate cancer; however, the specific imaging target and how this target is reliably imaged by SPECT and PET can potentially make significant impact in the treatment of prostate cancer. Finally, while the localized prostate cancer is considered manageable, there is still significant need for improvement in noninvasive imaging of metastatic prostate cancer, in treatment guidance, and in response assessment from functional imaging including radionuclide-based techniques. In this review article, we present the rationale of using functional radionuclide imaging and the therapeutic implications for each of radionuclide imaging agent that have been studied in human subjects. PMID:22840598

  2. Reproducibility of 18F-FDG PET uptake measurements in head and neck squamous cell carcinoma on both PET/CT and PET/MR

    PubMed Central

    Fischer, B M; Aznar, M C; Hansen, A E; Vogelius, I R; Löfgren, J; Andersen, F L; Loft, A; Kjaer, A; Højgaard, L; Specht, L

    2015-01-01

    Objective: To investigate reproducibility of fluorine-18 fludeoxyglucose (18F-FDG) uptake on 18F-FDG positron emission tomography (PET)/CT and 18F-FDG PET/MR scans in patients with head and neck squamous cell carcinoma (HNSCC). Methods: 30 patients with HNSCC were included in this prospective study. The patients were scanned twice before radiotherapy treatment with both PET/CT and PET/MR. Patients were scanned on the same scanners, 3 days apart and according to the same protocol. Metabolic tumour activity was measured by the maximum and peak standardized uptake value (SUVmax and SUVpeak, respectively), and total lesion glycolysis from the metabolic tumour volume defined from ≥50% SUVmax. Bland–Altman analysis with limits of agreement, coefficient of variation (CV) from the two modalities were performed in order to test the reproducibility. Furthermore, CVs from SUVmax and SUVpeak were compared. The area under the curve from cumulative SUV–volume histograms were measured and tested for reproducibility of the distribution of 18F-FDG uptake. Results: 24 patients had two pre-treatment PET/CT scans and 21 patients had two pre-treatment PET/MR scans available for further analyses. Mean difference for SUVmax, peak and mean was approximately 4% for PET/CT and 3% for PET/MR, with 95% limits of agreement less than ±20%. CV was small (5–7%) for both modalities. There was no significant difference in CVs between PET/CT and PET/MR (p = 0.31). SUVmax was not more reproducible than SUVpeak (p = 0.09). Conclusion: 18F-FDG uptake in PET/CT and PET/MR is highly reproducible and we found no difference in reproducibility between PET/CT and PET/MR. Advances in knowledge: This is the first report to test reproducibility of PET/CT and PET/MR. PMID:25634069

  3. SU-E-J-86: Lobar Lung Function Quantification by PET Galligas and CT Ventilation Imaging in Lung Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslick, E; Kipritidis, J; Keall, P

    2014-06-01

    Purpose: The purpose of this study was to quantify the lobar lung function using the novel PET Galligas ([68Ga]-carbon nanoparticle) ventilation imaging and the investigational CT ventilation imaging in lung cancer patients pre-treatment. Methods: We present results on our first three lung cancer patients (2 male, mean age 78 years) as part of an ongoing ethics approved study. For each patient a PET Galligas ventilation (PET-V) image and a pair of breath hold CT images (end-exhale and end-inhale tidal volumes) were acquired using a Siemens Biograph PET CT. CT-ventilation (CT-V) images were created from the pair of CT images usingmore » deformable image registration (DIR) algorithms and the Hounsfield Unit (HU) ventilation metric. A comparison of ventilation quantification from each modality was done on the lobar level and the voxel level. A Bland-Altman plot was used to assess the difference in mean percentage contribution of each lobe to the total lung function between the two modalities. For each patient, a voxel-wise Spearmans correlation was calculated for the whole lungs between the two modalities. Results: The Bland-Altman plot demonstrated strong agreement between PET-V and CT-V for assessment of lobar function (r=0.99, p<0.001; range mean difference: −5.5 to 3.0). The correlation between PET-V and CT-V at the voxel level was moderate(r=0.60, p<0.001). Conclusion: This preliminary study on the three patients data sets demonstrated strong agreement between PET and CT ventilation imaging for the assessment of pre-treatment lung function at the lobar level. Agreement was only moderate at the level of voxel correlations. These results indicate that CT ventilation imaging has potential for assessing pre-treatment lobar lung function in lung cancer patients.« less

  4. Identification of Nasal Bone Fractures on Conventional Radiography and Facial CT: Comparison of the Diagnostic Accuracy in Different Imaging Modalities and Analysis of Interobserver Reliability

    PubMed Central

    Baek, Hye Jin; Kim, Dong Wook; Ryu, Ji Hwa; Lee, Yoo Jin

    2013-01-01

    Background There has been no study to compare the diagnostic accuracy of an experienced radiologist with a trainee in nasal bone fracture. Objectives To compare the diagnostic accuracy between conventional radiography and computed tomography (CT) for the identification of nasal bone fractures and to evaluate the interobserver reliability between a staff radiologist and a trainee. Patients and Methods A total of 108 patients who underwent conventional radiography and CT after acute nasal trauma were included in this retrospective study. Two readers, a staff radiologist and a second-year resident, independently assessed the results of the imaging studies. Results Of the 108 patients, the presence of a nasal bone fracture was confirmed in 88 (81.5%) patients. The number of non-depressed fractures was higher than the number of depressed fractures. In nine (10.2%) patients, nasal bone fractures were only identified on conventional radiography, including three depressed and six non-depressed fractures. CT was more accurate as compared to conventional radiography for the identification of nasal bone fractures as determined by both readers (P <0.05), all diagnostic indices of an experienced radiologist were similar to or higher than those of a trainee, and κ statistics showed moderate agreement between the two diagnostic tools for both readers. There was no statistical difference in the assessment of interobserver reliability for both imaging modalities in the identification of nasal bone fractures. Conclusion For the identification of nasal bone fractures, CT was significantly superior to conventional radiography. Although a staff radiologist showed better values in the identification of nasal bone fracture and differentiation between depressed and non-depressed fractures than a trainee, there was no statistically significant difference in the interpretation of conventional radiography and CT between a radiologist and a trainee. PMID:24348599

  5. The Road to the Common PET/CT Detector

    NASA Astrophysics Data System (ADS)

    Nassalski, Antoni; Moszynski, Marek; Szczesniak, Tomasz; Wolski, Dariusz; Batsch, Tadeusz

    2007-10-01

    Growing interest in the development of dual modality positron emission/X-rays tomography (PET/CT) systems prompts researchers to face a new challenge: to acquire both the anatomical and functional information in the same measurement, simultaneously using the same detection system and electronics. The aim of this work was to study a detector consisting of LaBr3, LSO or LYSO pixel crystals coupled to an avalanche photodiode (APD). The measurements covered tests of the detectors in PET and CT modes, respectively. The measurements included the determination of light output, energy resolution, the non-proportionality of the light yield and the time resolution for 511 keV annihilation quanta; analysis also included characterizing the PET detector, and determining the dependence of counting rate versus mean current of the APD in the X-ray detection. In the present experiment, the use of counting and current modes in the CT detection increases the dynamic range of the measured dose of X-rays by a factor of 20, compared to the counting mode alone.

  6. Clinical significance of preoperative imaging in oral squamous cell carcinoma compared with lymph node status: a comparative retrospective study.

    PubMed

    Mazzawi, Elias; El-Naaj, Imad Abu; Ghantous, Yasmine; Balan, Salim; Sabo, Edmond; Rachmiel, Adi; Leiser, Yoav

    2018-05-01

    The accuracy and sensitivity of commonly used imaging modalities in evaluating oral cavity cancer was evaluated by comparing the preoperative radiologic findings and the postoperative pathology report. Patients with oral squamous cell carcinoma, who had undergone at least 1 imaging test 2 weeks before surgery were included. Radiologic findings were compared with the dissected neck findings to assess the lymph node status. Sensitivity and specificity of the imaging modalities were calculated by using the χ 2 test. Sensitivities for detecting metastatic neck lymph nodes at a threshold of 1 cm were 48% (P = .02) and 43.8% (P = .3) for computed tomography (CT) and magnetic resonance imaging respectively. Specificities were 76.3% and 70%, respectively. As for the 1.5 cm threshold, sensitivities were 36% (P = .002) and 31.3% (P = .5), respectively, and specificities were 91.5% and 76.7%, respectively. PET-CT was the most sensitive modality in the present study, with a P value of .02. The different studied imaging modalities used for preoperative neck staging are not sensitive enough and would lead to underdiagnoses of a significant proportion of patients. Thus, prophylactic neck dissection for occult neck disease is of extreme importance and remains the gold standard for oral cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. SU-E-J-89: Comparative Analysis of MIM and Velocity’s Image Deformation Algorithm Using Simulated KV-CBCT Images for Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, K; Narayanasamy, G; Obediat, M

    Purpose: Deformable image registration (DIR) is used routinely in the clinic without a formalized quality assurance (QA) process. Using simulated deformations to digitally deform images in a known way and comparing to DIR algorithm predictions is a powerful technique for DIR QA. This technique must also simulate realistic image noise and artifacts, especially between modalities. This study developed an algorithm to create simulated daily kV cone-beam computed-tomography (CBCT) images from CT images for DIR QA between these modalities. Methods: A Catphan and physical head-and-neck phantom, with known deformations, were used. CT and kV-CBCT images of the Catphan were utilized tomore » characterize the changes in Hounsfield units, noise, and image cupping that occur between these imaging modalities. The algorithm then imprinted these changes onto a CT image of the deformed head-and-neck phantom, thereby creating a simulated-CBCT image. CT and kV-CBCT images of the undeformed and deformed head-and-neck phantom were also acquired. The Velocity and MIM DIR algorithms were applied between the undeformed CT image and each of the deformed CT, CBCT, and simulated-CBCT images to obtain predicted deformations. The error between the known and predicted deformations was used as a metric to evaluate the quality of the simulated-CBCT image. Ideally, the simulated-CBCT image registration would produce the same accuracy as the deformed CBCT image registration. Results: For Velocity, the mean error was 1.4 mm for the CT-CT registration, 1.7 mm for the CT-CBCT registration, and 1.4 mm for the CT-simulated-CBCT registration. These same numbers were 1.5, 4.5, and 5.9 mm, respectively, for MIM. Conclusion: All cases produced similar accuracy for Velocity. MIM produced similar values of accuracy for CT-CT registration, but was not as accurate for CT-CBCT registrations. The MIM simulated-CBCT registration followed this same trend, but overestimated MIM DIR errors relative to the CT-CBCT registration.« less

  8. Measurement of Clavicle Fracture Shortening Using Computed Tomography and Chest Radiography.

    PubMed

    Omid, Reza; Kidd, Chris; Yi, Anthony; Villacis, Diego; White, Eric

    2016-12-01

    Nonoperative management of midshaft clavicle fractures has resulted in widely disparate outcomes and there is growing evidence that clavicle shortening poses the risk of unsatisfactory functional outcomes due to shoulder weakness and nonunion. Unfortunately, the literature does not clearly demonstrate the superiority of one particular method for measuring clavicle shortening. The purpose of this study was to compare the accuracy of clavicle shortening measurements based on plain radiographs with those based on computed tomography (CT) reconstructed images of the clavicle. A total of 51 patients with midshaft clavicle fractures who underwent both a chest CT scan and standardized anteroposterior chest radiography on the day of admission were included in this study. Both an orthopedic surgeon and a musculoskeletal radiologist measured clavicle shortening for all included patients. We then determined the accuracy and intraclass correlation coefficients for the imaging modalities. Bland-Altman plots were created to analyze agreement between the modalities and a paired t-test was used to determine any significant difference between measurements. For injured clavicles, radiographic measurements significantly overestimated the clavicular length by a mean of 8.2 mm (standard deviation [SD], ± 10.2; confidence interval [CI], 95%) compared to CT-based measurements ( p < 0.001). The intraclass correlation was 0.96 for both plain radiograph- and CT-based measurements ( p = 0.17). We found that plain radiograph-based measurements of midshaft clavicle shortening are precise, but inaccurate. When clavicle shortening is considered in the decision to pursue operative management, we do not recommend the use of plain radiograph-based measurements.

  9. Measurement of Clavicle Fracture Shortening Using Computed Tomography and Chest Radiography

    PubMed Central

    Omid, Reza; Kidd, Chris; Villacis, Diego; White, Eric

    2016-01-01

    Background Nonoperative management of midshaft clavicle fractures has resulted in widely disparate outcomes and there is growing evidence that clavicle shortening poses the risk of unsatisfactory functional outcomes due to shoulder weakness and nonunion. Unfortunately, the literature does not clearly demonstrate the superiority of one particular method for measuring clavicle shortening. The purpose of this study was to compare the accuracy of clavicle shortening measurements based on plain radiographs with those based on computed tomography (CT) reconstructed images of the clavicle. Methods A total of 51 patients with midshaft clavicle fractures who underwent both a chest CT scan and standardized anteroposterior chest radiography on the day of admission were included in this study. Both an orthopedic surgeon and a musculoskeletal radiologist measured clavicle shortening for all included patients. We then determined the accuracy and intraclass correlation coefficients for the imaging modalities. Bland-Altman plots were created to analyze agreement between the modalities and a paired t-test was used to determine any significant difference between measurements. Results For injured clavicles, radiographic measurements significantly overestimated the clavicular length by a mean of 8.2 mm (standard deviation [SD], ± 10.2; confidence interval [CI], 95%) compared to CT-based measurements (p < 0.001). The intraclass correlation was 0.96 for both plain radiograph- and CT-based measurements (p = 0.17). Conclusions We found that plain radiograph-based measurements of midshaft clavicle shortening are precise, but inaccurate. When clavicle shortening is considered in the decision to pursue operative management, we do not recommend the use of plain radiograph-based measurements. PMID:27904717

  10. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning.

    PubMed

    Sattler, Bernhard; Lee, John A; Lonsdale, Markus; Coche, Emmanuel

    2010-09-01

    The positron emission tomography in combination with CT in hybrid, cross-modality imaging systems (PET/CT) gains more and more importance as a part of the treatment-planning procedure in radiotherapy. Positron emission tomography (PET), as a integral part of nuclear medicine imaging and non-invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy. By the choice of the PET-Tracer, a variety of different metabolic processes can be visualized. First and foremost, this is the glucose metabolism of a tissue as well as for instance hypoxia or cell proliferation. This paper comprises the system characteristics of hybrid PET/CT systems. Acquisition and processing protocols are described in general and modifications to cope with the special needs in radiooncology. This starts with the different position of the patient on a special table top, continues with the use of the same fixation material as used for positioning of the patient in radiooncology while simulation and irradiation and leads to special processing protocols that include the delineation of the volumes that are subject to treatment planning and irradiation (PTV, GTV, CTV, etc.). General CT acquisition and processing parameters as well as the use of contrast enhancement of the CT are described. The possible risks and pitfalls the investigator could face during the hybrid-imaging procedure are explained and listed. The interdisciplinary use of different imaging modalities implies a increase of the volume of data created. These data need to be stored and communicated fast, safe and correct. Therefore, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and computed tomography (CT) are used to communicate the actual image data created by the modalities. Care must be taken for data security, especially when transferring data across the (network-) borders of different hospitals. Overall, the most important precondition for successful integration of functional imaging in RT treatment planning is the goal orientated as well as close and thorough communication between nuclear medicine and radiotherapy departments on all levels of interaction (personnel, imaging protocols, GTV delineation, and selection of the data transfer method). Copyright 2010 European Society for Therapeutic Radiology and Oncology and European Association of Nuclear Medicine. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce; Tang, H. Roger; Da Silva, Angela J.; Wong, Kenneth H.; Iwata, Koji; Wu, Max C.

    2001-09-01

    In comparison to conventional medical imaging techniques, dual-modality imaging offers the advantage of correlating anatomical information from X-ray computed tomography (CT) with functional measurements from single-photon emission computed tomography (SPECT) or with positron emission tomography (PET). The combined X-ray/radionuclide images from dual-modality imaging can help the clinician to differentiate disease from normal uptake of radiopharmaceuticals, and to improve diagnosis and staging of disease. In addition, phantom and animal studies have demonstrated that a priori structural information from CT can be used to improve quantification of tissue uptake and organ function by correcting the radionuclide data for errors due to photon attenuation, partial volume effects, scatter radiation, and other physical effects. Dual-modality imaging therefore is emerging as a method of improving the visual quality and the quantitative accuracy of radionuclide imaging for diagnosis of patients with cancer and heart disease.

  12. Guide for diagnosis and treatment of hepatocellular carcinoma

    PubMed Central

    Attwa, Magdy Hamed; El-Etreby, Shahira Aly

    2015-01-01

    Hepatocellular carcinoma (HCC) is ranked as the 5th common type of cancer worldwide and is considered as the 3rd common reason for cancer-related deaths. HCC often occurs on top of a cirrhotic liver. The prognosis is determined by several factors; tumour extension, alpha-fetoprotein (AFP) concentration, histologic subtype of the tumour, degree of liver dysfunction, and the patient’s performance status. HCC prognosis is strongly correlated with diagnostic delay. To date, no ideal screening modality has been developed. Analysis of recent studies showed that AFP assessment lacks adequate sensitivity and specificity for effective surveillance and diagnosis. Many tumour markers have been tested in clinical trials without progressing to routine use in clinical practice. Thus, surveillance is still based on ultrasound (US) examination every 6 mo. Imaging studies for diagnosis of HCC can fall into one of two main categories: routine non-invasive studies such as US, computed tomography (CT), and magnetic resonance imaging, and more specialized invasive techniques including CT during hepatic arteriography and CT arterial portography in addition to the conventional hepatic angiography. This article provides an overview and spotlight on the different diagnostic modalities and treatment options of HCC. PMID:26140083

  13. [PET/CT and biochemical recurrence of prostate adenocarcinoma: Added value of 68Ga-PSMA-11 when 18F-fluorocholine is non-contributive].

    PubMed

    Gauthé, M; Belissant, O; Girard, A; Zhang Yin, J; Ohnona, J; Cottereau, A-S; Nataf, V; Balogova, S; Pontvert, D; Lebret, T; Guillonneau, B; Cussenot, O; Talbot, J-N

    Since April 201, we have introduced PET/CT using a ligand of prostate-specific membrane antigen labeled with gallium-68 (PSMA-11). We aimed to evaluate its positivity rate and impact in patients presenting biochemical recurrence of prostate cancer whose 18 F-fluorocholine (FCH) PET/CT was non-contributive. Patients were prospectively included between April and December 2016. PET/CT was performed 60min after injection of 2MBq/kg of body mass of 68 Ga-PSMA-11. Three anatomical areas were considered: prostatic lodge, pelvic lymph nodes and distant locations. The impact of PSMA-11 PET/CT was assessed by comparing changes in therapeutic strategy decided during multidisciplinary meeting. Thirty-three patients were included. The mean PSA serum level measured on the month of the PSMA-11 PET/CT was 2,8ng/mL. Twenty-five (76%) PSMA-11 PET/CT were positive, 7 (21%) negative and 1 (3%) equivocal. Of 11 patients whose FCH PET/CT showed equivocal foci, PSMA-11 PET/CT confirmed those foci in 5 cases. Follow-up was available for 18 patients (55%). PSMA-11 PET/CT results led to a change in management in 12 patients (67%). 68 Ga-PSMA-11 PET/CT is useful in detecting recurrence of prostate cancer, by identifying residual disease which was not detected on other imaging modalities and by changing management of 2 patients out of 3. 5. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Intramodality and intermodality agreement in radiography and computed tomography of equine distal limb fractures.

    PubMed

    Crijns, C P; Martens, A; Bergman, H-J; van der Veen, H; Duchateau, L; van Bree, H J J; Gielen, I M V L

    2014-01-01

    Computed tomography (CT) is increasingly accessible in equine referral hospitals. To document the level of agreement within and between radiography and CT in characterising equine distal limb fractures. Retrospective descriptive study. Images from horses that underwent radiographic and CT evaluation for suspected distal limb fractures were reviewed, including 27 horses and 3 negative controls. Using Cohen's kappa and weighted kappa analysis, the level of agreement among 4 observers for a predefined set of diagnostic characteristics for radiography and CT separately and for the level of agreement between the 2 imaging modalities were documented. Both CT and radiography had very good intramodality agreement in identifying fractures, but intermodality agreement was lower. There was good intermodality and intramodality agreement for anatomical localisation and the identification of fracture displacement. Agreement for articular involvement, fracture comminution and fracture fragment number was towards the lower limit of good agreement. There was poor to fair intermodality agreement regarding fracture orientation, fracture width and coalescing cracks; intramodality agreement was higher for CT than for radiography for these features. Further studies, including comparisons with surgical and/or post mortem findings, are required to determine the sensitivity and specificity of CT and radiography in the diagnosis and characterisation of equine distal limb fractures. © 2013 EVJ Ltd.

  15. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yakun; Li, Xiang; Segars, W. Paul

    2014-02-15

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definiummore » 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDI{sub vol} and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose metrics only increased slightly for radiographic modalities and for chest tomosynthesis. Effective and organ doses normalized to mAs all illustrated an exponential decrease with increasing patient size. As a surface organ, breast doses had less correlation with body size than that of lungs or liver. Conclusions: Patient body size has a much greater impact on radiation dose of chest CT examinations than chest radiography and tomosynthesis. The size of a patient should be considered when choosing the best thoracic imaging modality.« less

  16. Clinical importance of [18F]fluorodeoxyglucose positron emission tomography/computed tomography in the management of patients with bronchoalveolar carcinoma: Role in the detection of recurrence.

    PubMed

    Skoura, Evangelia; Datseris, Ioannis E; Exarhos, Dimitrios; Chatziioannou, Sophia; Oikonomopoulos, Georgios; Samartzis, Alexandros; Giannopoulou, Chariklia; Syrigos, Konstantinos N

    2013-05-01

    [ 18 F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) has been reported to have a low sensitivity in the initial diagnosis of bronchoalveolar carcinoma (BAC) due to BAC's low metabolic activity. The aim of this study was to assess the value of [ 18 F]FDG-PET/CT in the detection of BAC recurrence. Between February 2007 and September 2011, the [ 18 F]FDG-PET/CT scans that were performed on patients with known, histologically proven BAC were studied. A total of 24 [ 18 F]FDG-PET/CT scans were performed in 22 patients, including 16 males and 6 females, with a mean age of 65±9 years. Among the scans, 15 were performed to assess for possible recurrence with equivocal findings in conventional imaging methods and 9 for restaging post-therapy. In all cases conventional imaging studies (CT and MRI) were performed 5-30 days prior to PET/CT. Among the 24 [ 18 F]FDG-PET/CT scans, 18 were positive and 6 negative. Among the 15 [ 18 F]FDG-PET/CT scans performed for suspected recurrence, 34 lesions were detected and the mean maximum standardized uptake value (SUVmax) was 6.8±3.26. In nine scans, upstaging was observed, while two were in agreement with the findings of the conventional modalities. A greater number of lesions were detected in two scans and fewer lesions were detected in one, with no change in staging. Only one scan was negative. By contrast, in patients examined for restaging, there were only five lesions with a mean SUVmax of 4.86±3.18. Agreement between the findings of [ 18 F]FDG-PET/CT and the conventional modalities was observed in 8 out of 9 cases. Although [ 18 F]FDG-PET/CT has been reported to have a low sensitivity in the initial diagnosis of BAC, the present results indicate that when there is recurrence, the lesions become [ 18 F]FDG avid. [ 18 F]FDG-PET/CT may provide further information in patients evaluated for recurrence and thus improve patient management.

  17. Multislice CT imaging of ruptured left sinus of Valsalva aneurysm with fistulous track between left sinus and right atrium.

    PubMed

    Pampapati, Praveenkumar; Rao, Hejmadi Tati Gururaj; Radhesh, Srinivasan; Anand, Hejjaji Krishnamurthy; Praveen, Lokkur Srinivasamurthy

    2011-01-01

    Sinus of valsalva aneurysm is a rare condition arising from any of the three aortic sinuses. Among them, an aneurysm arising from the left coronary sinus is the rarest. Most of these cases were earlier diagnosed using echocardiography and conventional angiography. But with the availability of advanced imaging modalities like 64 slice cardiac CT and MR modalities, this condition can be accurately assessed noninvasively. We report a case of ruptured aneurysm originating from the left coronary sinus with a long windsock type of fistulous track between the aneurysm and right atrium evaluated by 64 slice cardiac CT imaging. This was later confirmed perioperatively.

  18. Dual modality virtual colonoscopy workstation: design, implementation, and preliminary evaluation

    NASA Astrophysics Data System (ADS)

    Chen, Dongqing; Meissner, Michael

    2006-03-01

    The aim of this study is to develop a virtual colonoscopy (VC) workstation that supports both CT (computed tomography) and MR (magnetic resonance) imaging procedures. The workflow should be optimized and be able to take advantage of both image modalities. The technological break through is at the real-time volume rendering of spatial-intensity-inhomogeneous MR images to achieve high quality 3D endoluminal view. VC aims at visualizing CT or MR tomography images for detection of colonic polyp and lesion. It is also called as CT/MR colonography based on the imaging modality that is employed. The published results of large scale clinical trial demonstrated more than 90% of sensitivity on polyp detection for certain CT colonography (CTC) workstation. A drawback of the CT colonoscopy is the radiation exposure. MR colonography (MRC) is free from the X-ray radiation. It achieved almost 100% specificity for polyp detection in published trials. The better tissue contrast in MR image allows the accurate diagnosis of inflammatory bowel disease also, which is usually difficult in CTC. At present, most of the VC workstations are designed for CT examination. They are not able to display multi-sequence MR series concurrently in a single application. The automatic correlation between 2D and 3D view is not available due to the difficulty of 3D model building for MR images. This study aims at enhancing a commercial VC product that was successfully used for CTC to equally support dark-lumen protocol MR procedure also.

  19. Assessment of ultrasonography and computed tomography for the evaluation of unilateral orbital disease in dogs.

    PubMed

    Boroffka, Susanne A E B; Verbruggen, Anne-Marie; Grinwis, Guy C M; Voorhout, George; Barthez, Paul Y

    2007-03-01

    To describe clinical, ultrasonographic, and computed tomographic (CT) features of confirmed neoplastic and nonneoplastic disease in dogs with unilateral orbital diseases, determine criteria to differentiate between the 2 conditions, and assess the relative value of ultrasonography and CT for the differential diagnosis of these 2 conditions. Prospective study. 29 dogs with unilateral neoplastic orbital disease and 16 dogs with unilateral nonneoplastic orbital disease. Clinical history and results of physical and ophthalmologic examinations were recorded. Ultrasonographic and CT images were evaluated, and discriminating factors were identified to differentiate neoplastic from nonneoplastic diseases. Diagnostic value of ultrasonography and CT was assessed. Dogs with neoplastic disease were significantly older; had clinical signs for a longer time before initial examination; had more progressive onset of clinical signs; and more frequently had protrusion of the nictitating membrane, fever, and anorexia. The most discriminating factor for both imaging modalities was delineation of the margins (odds ratio was 41.7 for ultrasonography and 45 for CT), with neoplastic lesions clearly delineated more often. Ultrasonographically, neoplastic lesions were more frequently hypoechoic and homogeneous, with indentation of the globe and bone involvement evident more frequently than for nonneoplastic lesions. Mineralization was detected only with neoplasia. Fluctuant fluid was seen more frequently in dogs with nonneoplastic disease. Computed tomography more frequently revealed extraorbital involvement. Diagnostic value was similar for both imaging modalities. Ultrasonography and CT are valuable imaging modalities to assist in differentiating neoplastic from nonneoplastic unilateral orbital disease in dogs.

  20. Cardiac CT for myocardial ischaemia detection and characterization--comparative analysis.

    PubMed

    Bucher, A M; De Cecco, C N; Schoepf, U J; Wang, R; Meinel, F G; Binukrishnan, S R; Spearman, J V; Vogl, T J; Ruzsics, B

    2014-11-01

    The assessment of patients presenting with symptoms of myocardial ischaemia remains one of the most common and challenging clinical scenarios faced by physicians. Current imaging modalities are capable of three-dimensional, functional and anatomical views of the heart and as such offer a unique contribution to understanding and managing the pathology involved. Evidence has accumulated that visual anatomical coronary evaluation does not adequately predict haemodynamic relevance and should be complemented by physiological evaluation, highlighting the importance of functional assessment. Technical advances in CT technology over the past decade have progressively moved cardiac CT imaging into the clinical workflow. In addition to anatomical evaluation, cardiac CT is capable of providing myocardial perfusion parameters. A variety of CT techniques can be used to assess the myocardial perfusion. The single energy first-pass CT and dual energy first-pass CT allow static assessment of myocardial blood pool. Dynamic cardiac CT imaging allows quantification of myocardial perfusion through time-resolved attenuation data. CT-based myocardial perfusion imaging (MPI) is showing promising diagnostic accuracy compared with the current reference modalities. The aim of this review is to present currently available myocardial perfusion techniques with a focus on CT imaging in light of recent clinical investigations. This article provides a comprehensive overview of currently available CT approaches of static and dynamic MPI and presents the results of corresponding clinical trials.

  1. SU-E-J-275: Review - Computerized PET/CT Image Analysis in the Evaluation of Tumor Response to Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, W; Wang, J; Zhang, H

    Purpose: To review the literature in using computerized PET/CT image analysis for the evaluation of tumor response to therapy. Methods: We reviewed and summarized more than 100 papers that used computerized image analysis techniques for the evaluation of tumor response with PET/CT. This review mainly covered four aspects: image registration, tumor segmentation, image feature extraction, and response evaluation. Results: Although rigid image registration is straightforward, it has been shown to achieve good alignment between baseline and evaluation scans. Deformable image registration has been shown to improve the alignment when complex deformable distortions occur due to tumor shrinkage, weight loss ormore » gain, and motion. Many semi-automatic tumor segmentation methods have been developed on PET. A comparative study revealed benefits of high levels of user interaction with simultaneous visualization of CT images and PET gradients. On CT, semi-automatic methods have been developed for only tumors that show marked difference in CT attenuation between the tumor and the surrounding normal tissues. Quite a few multi-modality segmentation methods have been shown to improve accuracy compared to single-modality algorithms. Advanced PET image features considering spatial information, such as tumor volume, tumor shape, total glycolytic volume, histogram distance, and texture features have been found more informative than the traditional SUVmax for the prediction of tumor response. Advanced CT features, including volumetric, attenuation, morphologic, structure, and texture descriptors, have also been found advantage over the traditional RECIST and WHO criteria in certain tumor types. Predictive models based on machine learning technique have been constructed for correlating selected image features to response. These models showed improved performance compared to current methods using cutoff value of a single measurement for tumor response. Conclusion: This review showed that computerized PET/CT image analysis holds great potential to improve the accuracy in evaluation of tumor response. This work was supported in part by the National Cancer Institute Grant R01CA172638.« less

  2. Is integrated 18F-FDG PET/MRI superior to 18F-FDG PET/CT in the differentiation of incidental tracer uptake in the head and neck area?

    PubMed

    Schaarschmidt, Benedikt Michael; Gomez, Benedikt; Buchbender, Christian; Grueneisen, Johannes; Nensa, Felix; Sawicki, Lino Morris; Ruhlmann, Verena; Wetter, Axel; Antoch, Gerald; Heusch, Philipp

    2017-01-01

    We aimed to investigate the accuracy of 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI) compared with contrast-enhanced 18F-FDG PET/computed tomography (PET/CT) for the characterization of incidental tracer uptake in examinations of the head and neck. A retrospective analysis of 81 oncologic patients who underwent contrast-enhanced 18F-FDG PET/CT and subsequent PET/MRI was performed by two readers for incidental tracer uptake. In a consensus reading, discrepancies were resolved. Each finding was either characterized as most likely benign, most likely malignant, or indeterminate. Using all available clinical information including results from histopathologic sampling and follow-up examinations, an expert reader classified each finding as benign or malignant. McNemar's test was used to compare the performance of both imaging modalities in characterizing incidental tracer uptake. Forty-six lesions were detected by both modalities. On PET/CT, 27 lesions were classified as most likely benign, one as most likely malignant, and 18 as indeterminate; on PET/MRI, 31 lesions were classified as most likely benign, one lesion as most likely malignant, and 14 as indeterminate. Forty-three lesions were benign and one lesion was malignant according to the reference standard. In two lesions, a definite diagnosis was not possible. McNemar's test detected no differences concerning the correct classification of incidental tracer uptake between PET/CT and PET/MRI (P = 0.125). In examinations of the head and neck area, incidental tracer uptake cannot be classified more accurately by PET/MRI than by PET/CT.

  3. Low-activity 124I-PET/low-dose CT versus 99mTc-pertechnetate planar scintigraphy or 99mTc-pertechnetate single-photon emission computed tomography of the thyroid: a pilot comparison.

    PubMed

    Darr, Andreas M; Opfermann, Thomas; Niksch, Tobias; Driesch, Dominik; Marlowe, Robert J; Freesmeyer, Martin

    2013-10-01

    The standard thyroid functional imaging method, 99mTc-pertechnetate (99mTc-PT) planar scintigraphy, has technical drawbacks decreasing its sensitivity in detecting nodules or anatomical pathology. 124I-PET, lacking these disadvantages and allowing simultaneous CT, may have greater sensitivity for these purposes. We performed a blinded pilot comparison of 124I-PET(/CT) versus 99mTc-PT planar scintigraphy or its cross-sectional enhancement, 99mTc-PT single-photon emission CT (SPECT), in characterizing the thyroid gland with benign disease. Twenty-one consecutive adults with goiter underwent low-activity (1 MBq/0.027 mCi) 124I-PET/low-dose (30 mAs) CT, 99mTc-PT planar scintigraphy, and 99mTc-PT-SPECT. Endpoints included the numbers of “hot spots” with/without central photopenia and “cold spots” detected, the proportion of these lesions with morphological correlates, the mean volume and diameter of visualized nodules, and the number of cases of lobus pyramidalis or retrosternal thyroid tissue identified. 124I-PET detected significantly more “hot spots” with/without central photopenia (P < 0.001), significantly more nodules (P < 0.001), and more “cold spots” than did 99mTc-PT planar scintigraphy or 99mTc-PT-SPECT, including all lesions seen on the 99mTc-PT modalities. Ultrasonographic correlates were found for all nodules visualized on all 3 modalities and 92.5% of nodules seen only on 124I-PET. Nodules discernible only on 124I-PET had significantly smaller mean volume or diameter (P < 0.001) than did those visualized on 99mTc-PT planar scintigraphy or 99mTc-PT-SPECT. 124I-PET(/CT) identified significantly more patients with a lobus pyramidalis (P < 0.001) or retrosternal thyroid tissue (P < 0.05). 124I-PET(/CT) may provide superior imaging of benign thyroid disease compared to planar or cross-sectional 99mTc-PT scintigraphy.

  4. A nanocomposite of Au-AgI core/shell dimer as a dual-modality contrast agent for x-ray computed tomography and photoacoustic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orza, Anamaria; Wu, Hui; Li, Yuancheng

    Purpose: To develop a core/shell nanodimer of gold (core) and silver iodine (shell) as a dual-modal contrast-enhancing agent for biomarker targeted x-ray computed tomography (CT) and photoacoustic imaging (PAI) applications. Methods: The gold and silver iodine core/shell nanodimer (Au/AgICSD) was prepared by fusing together components of gold, silver, and iodine. The physicochemical properties of Au/AgICSD were then characterized using different optical and imaging techniques (e.g., HR- transmission electron microscope, scanning transmission electron microscope, x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, Z-potential, and UV-vis). The CT and PAI contrast-enhancing effects were tested and then compared with a clinically used CT contrast agentmore » and Au nanoparticles. To confer biocompatibility and the capability for efficient biomarker targeting, the surface of the Au/AgICSD nanodimer was modified with the amphiphilic diblock polymer and then functionalized with transferrin for targeting transferrin receptor that is overexpressed in various cancer cells. Cytotoxicity of the prepared Au/AgICSD nanodimer was also tested with both normal and cancer cell lines. Results: The characterizations of prepared Au/AgI core/shell nanostructure confirmed the formation of Au/AgICSD nanodimers. Au/AgICSD nanodimer is stable in physiological conditions for in vivo applications. Au/AgICSD nanodimer exhibited higher contrast enhancement in both CT and PAI for dual-modality imaging. Moreover, transferrin functionalized Au/AgICSD nanodimer showed specific binding to the tumor cells that have a high level of expression of the transferrin receptor. Conclusions: The developed Au/AgICSD nanodimer can be used as a potential biomarker targeted dual-modal contrast agent for both or combined CT and PAI molecular imaging.« less

  5. A navigation system for flexible endoscopes using abdominal 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Hoffmann, R.; Kaar, M.; Bathia, Amon; Bathia, Amar; Lampret, A.; Birkfellner, W.; Hummel, J.; Figl, M.

    2014-09-01

    A navigation system for flexible endoscopes equipped with ultrasound (US) scan heads is presented. In contrast to similar systems, abdominal 3D-US is used for image fusion of the pre-interventional computed tomography (CT) to the endoscopic US. A 3D-US scan, tracked with an optical tracking system (OTS), is taken pre-operatively together with the CT scan. The CT is calibrated using the OTS, providing the transformation from CT to 3D-US. Immediately before intervention a 3D-US tracked with an electromagnetic tracking system (EMTS) is acquired and registered intra-modal to the preoperative 3D-US. The endoscopic US is calibrated using the EMTS and registered to the pre-operative CT by an intra-modal 3D-US/3D-US registration. Phantom studies showed a registration error for the US to CT registration of 5.1 mm ± 2.8 mm. 3D-US/3D-US registration of patient data gave an error of 4.1 mm compared to 2.8 mm with the phantom. From this we estimate an error on patient experiments of 5.6 mm.

  6. Comparison between multislice and cone-beam computerized tomography in the volumetric assessment of cleft palate.

    PubMed

    Albuquerque, Marco Antonio; Gaia, Bruno Felipe; Cavalcanti, Marcelo Gusmão Paraíso

    2011-08-01

    The aim of this study was to determine the applicability of multislice and cone-beam computerized tomography (CT) in the assessment of bone defects in patients with oral clefts. Bone defects were produced in 9 dry skulls to mimic oral clefts. All defects were modeled with wax. The skulls were submitted to multislice and cone-beam CT. Subsequently, physical measurements were obtained by the Archimedes principle of water displacement of wax models. The results demonstrated that multislice and cone-beam CT showed a high efficiency rate and were considered to be effective for volumetric assessment of bone defects. It was also observed that both CT modalities showed excellent results with high reliability in the study of the volume of bone defects, with no difference in performance between them. The clinical applicability of our research has shown these CT modalities to be immediate and direct, and they is important for the diagnosis and therapeutic process of patients with oral cleft. Copyright © 2011 Mosby, Inc. All rights reserved.

  7. MRI in patients with inflammatory bowel disease

    PubMed Central

    Gee, Michael S.; Harisinghani, Mukesh G.

    2011-01-01

    Inflammatory bowel disease (IBD) affects approximately 1.4 million people in North America and, because of its typical early age of onset and episodic disease course, IBD patients often undergo numerous imaging studies over the course of their lifetimes. CT has become the standard imaging modality for assessment of IBD patients because of its widespread availability, rapid image acquisition, and ability to evaluate intraluminal and extraluminal disease. However, repetitive CT imaging has been associated with a significant ionizing radiation risk to patients, making MRI an appealing alternative IBD imaging modality. Pelvic MRI is currently the imaging gold standard for detecting perianal disease, while recent studies indicate that MRI bowel-directed techniques (enteroclysis, enterography, colonography) can accurately evaluate bowel inflammation in IBD. With recent technical innovations leading to faster and higher resolution body MRI, the role of MRI in IBD evaluation is likely to continue to expand. Future applications include surveillance imaging, detection of mural fibrosis, and early assessment of therapy response. PMID:21512607

  8. Multi-modal anatomical optical coherence tomography and CT for in vivo dynamic upper airway imaging

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Santosh; Bu, Ruofei; Price, Hillel; Zdanski, Carlton; Oldenburg, Amy L.

    2017-02-01

    We describe a novel, multi-modal imaging protocol for validating quantitative dynamic airway imaging performed using anatomical Optical Coherence Tomography (aOCT). The aOCT system consists of a catheter-based aOCT probe that is deployed via a bronchoscope, while a programmable ventilator is used to control airway pressure. This setup is employed on the bed of a Siemens Biograph CT system capable of performing respiratory-gated acquisitions. In this arrangement the position of the aOCT catheter may be visualized with CT to aid in co-registration. Utilizing this setup we investigate multiple respiratory pressure parameters with aOCT, and respiratory-gated CT, on both ex vivo porcine trachea and live, anesthetized pigs. This acquisition protocol has enabled real-time measurement of airway deformation with simultaneous measurement of pressure under physiologically relevant static and dynamic conditions- inspiratory peak or peak positive airway pressures of 10-40 cm H2O, and 20-30 breaths per minute for dynamic studies. We subsequently compare the airway cross sectional areas (CSA) obtained from aOCT and CT, including the change in CSA at different stages of the breathing cycle for dynamic studies, and the CSA at different peak positive airway pressures for static studies. This approach has allowed us to improve our acquisition methodology and to validate aOCT measurements of the dynamic airway for the first time. We believe that this protocol will prove invaluable for aOCT system development and greatly facilitate translation of OCT systems for airway imaging into the clinical setting.

  9. Quantitative analysis of bone and soft tissue by micro-computed tomography: applications to ex vivo and in vivo studies

    PubMed Central

    Campbell, Graeme M; Sophocleous, Antonia

    2014-01-01

    Micro-computed tomography (micro-CT) is a high-resolution imaging modality that is capable of analysing bone structure with a voxel size on the order of 10 μm. With the development of in vivo micro-CT, where disease progression and treatment can be monitored in a living animal over a period of time, this modality has become a standard tool for preclinical assessment of bone architecture during disease progression and treatment. For meaningful comparison between micro-CT studies, it is essential that the same parameters for data acquisition and analysis methods be used. This protocol outlines the common procedures that are currently used for sample preparation, scanning, reconstruction and analysis in micro-CT studies. Scan and analysis methods for trabecular and cortical bone are covered for the femur, tibia, vertebra and the full neonate body of small rodents. The analysis procedures using the software provided by ScancoMedical and Bruker are discussed, and the routinely used bone architectural parameters are outlined. This protocol also provides a section dedicated to in vivo scanning and analysis, which covers the topics of anaesthesia, radiation dose and image registration. Because of the expanding research using micro-CT to study other skeletal sites, as well as soft tissues, we also provide a review of current techniques to examine the skull and mandible, adipose tissue, vasculature, tumour severity and cartilage. Lists of recommended further reading and literature references are included to provide the reader with more detail on the methods described. PMID:25184037

  10. SU-E-J-109: Accurate Contour Transfer Between Different Image Modalities Using a Hybrid Deformable Image Registration and Fuzzy Connected Image Segmentation Method.

    PubMed

    Yang, C; Paulson, E; Li, X

    2012-06-01

    To develop and evaluate a tool that can improve the accuracy of contour transfer between different image modalities under challenging conditions of low image contrast and large image deformation, comparing to a few commonly used methods, for radiation treatment planning. The software tool includes the following steps and functionalities: (1) accepting input of images of different modalities, (2) converting existing contours on reference images (e.g., MRI) into delineated volumes and adjusting the intensity within the volumes to match target images (e.g., CT) intensity distribution for enhanced similarity metric, (3) registering reference and target images using appropriate deformable registration algorithms (e.g., B-spline, demons) and generate deformed contours, (4) mapping the deformed volumes on target images, calculating mean, variance, and center of mass as the initialization parameters for consecutive fuzzy connectedness (FC) image segmentation on target images, (5) generate affinity map from FC segmentation, (6) achieving final contours by modifying the deformed contours using the affinity map with a gradient distance weighting algorithm. The tool was tested with the CT and MR images of four pancreatic cancer patients acquired at the same respiration phase to minimize motion distortion. Dice's Coefficient was calculated against direct delineation on target image. Contours generated by various methods, including rigid transfer, auto-segmentation, deformable only transfer and proposed method, were compared. Fuzzy connected image segmentation needs careful parameter initialization and user involvement. Automatic contour transfer by multi-modality deformable registration leads up to 10% of accuracy improvement over the rigid transfer. Two extra proposed steps of adjusting intensity distribution and modifying the deformed contour with affinity map improve the transfer accuracy further to 14% averagely. Deformable image registration aided by contrast adjustment and fuzzy connectedness segmentation improves the contour transfer accuracy between multi-modality images, particularly with large deformation and low image contrast. © 2012 American Association of Physicists in Medicine.

  11. Multidetector CT of expected findings and complications after contemporary inguinal hernia repair surgery

    PubMed Central

    Tonolini, Massimo

    2016-01-01

    Inguinal hernia repair (IHR) with prosthetic mesh implantation is the most common procedure in general surgery, and may be performed using either an open or laparoscopic approach. This paper provides an overview of contemporary tension-free IHR techniques and materials, and illustrates the expected postoperative imaging findings and iatrogenic injuries. Emphasis is placed on multidetector CT, which represents the ideal modality to comprehensively visualize the operated groin region and deeper intra-abdominal structures. CT consistently depicts seroma, mesh infections, hemorrhages, bowel complications and urinary bladder injuries, and thus generally provides a consistent basis for therapeutic choice. Since radiologists are increasingly requested to investigate suspected iatrogenic complications, this paper aims to provide an increased familiarity with early CT studies after IHR, including complications and normal postoperative appearances such as focal pseudolesions, in order to avoid misinterpretation and inappropriate management. PMID:27460285

  12. Pulmonary nodule detection in oncological patients - Value of respiratory-triggered, periodically rotated overlapping parallel T2-weighted imaging evaluated with PET/CT-MR.

    PubMed

    de Galiza Barbosa, Felipe; Geismar, Jan Henning; Delso, Gaspar; Messerli, Michael; Huellner, Martin; Stolzmann, Paul; Veit-Haibach, Patrick

    2018-01-01

    To prospectively evaluate the detection and conspicuity of pulmonary nodules in an oncological population, using a tri-modality PET/CT-MR protocol including a respiration-gated T2-PROPELLER sequence for possible integration into a simultaneous PET/MR protocol. 149 patients referred for staging of malignancy were prospectively enrolled in this single-center study. Imaging was performed on a tri-modality PET/CT-MR setup and was comprised of PET/CT and 3T-MR imaging with 3D dual-echo GRE pulse sequence (Dixon) and an axial respiration-gated T2-weighted PROPELLER (T2-P) sequence. Images were assessed for presence, conspicuity, size and interpretation of the pulmonary parenchymal nodules. McNemar's test was used to evaluate paired differences in nodule detection rates between MR and CT from PET/CT. The correlation of pulmonary nodule size in CT and MR imaging was assessed using Pearson correlation coefficient. 299 pulmonary nodules were detected on PET/CT. The detectability was significantly higher on T2-P (60%, p<0.01) compared to T1-weighted Dixon-type sequences (16.1-37.8%). T2-P had a significantly higher detection rate among FDG-positive (92.4%) and among confirmed malignant nodules (75.9%) compared to T1-Dixon. Nodules <10mm were detected less often by MR sequences than by CT (p < 0.01). However, nodules >10mm were detected equally well with T2-P (92.2%) and CT (p >0.05). In a per-patient analysis, there was no significant change in the clinical interpretation of the nodules detected with T2-P and CT. Despite the overall lower detection rate compared with CT, the free-breathing respiratory gating T2-w sequence showed higher detectability in all evaluated categories compared to breath-hold T1-weighted MR sequences. Specifically, the T2-P was found to be not statistically different from CT in FDG-positive nodules, in detection of nodules >10mm and concerning conspicuity of pulmonary nodules. Overall, the additional time investment into T2-P seems to be justified since clinical relevant assessment of pulmonary lung nodules can mostly be done by T2-P in a whole body PET/MR staging of oncologic patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. [Effects of biphasic spiral CT, conventional and iron oxide enhanced MRI on therapy and therapy costs in patients with focal liver lesions].

    PubMed

    Helmberger, T; Gregor, M; Holzknecht, N; Rau, H; Scheidler, J; Reiser, M

    2000-03-01

    Evaluation of the diagnostic efficacy and cost-benefit of contrast enhanced CT (CT) and MRI pre- and post-SPIO-particles in focal hepatic disease with consideration of therapeutic outcome. In 52 patients with the suspicion of primary or secondary hepatic malignancy, biphasic spiral CT and breath-hold gradient-echo T1- and fast spin-echo T2-weighted MRI pre- and post-iron oxide administration (1.5 T, body-phased-array coil) were compared. The number of hepatic lesions and the related diagnoses resulting from each imaging modality were recorded and statistically correlated to the final diagnoses established by biopsy/OP (34/52), long term follow-up of 12 months (18/52), and a consensus reading of all imaging modalities considering all clinical imaging information. The most likely induced therapy resulting from each imaging test was correlated to the final therapy. Based on data from the hospitals accountants, the therapy-related costs were estimated without hospitalization costs. In 34/52 (65.4%) of the cases the correct diagnosis was primarily stated by CT (sensitivity [se.] 85.2%, specificity [sp.] 44.0%). In additional 10/52 of the cases unenhanced MRI (se. 91.4%, sp. 75.0%) enabled correct diagnoses, and in another 6 cases the diagnosis was established only by SPIO-MRI (se. 100%, sp. 86.7%). Considering the possible therapeutic recommendation arising from each modality, CT would have induced needles therapy costs of 191,042 DM, unenhanced MRI of 171,035 DM, and SPIO-MRI of 7,311 DM. In comparison to the real therapy costs of 221,873 DM, this would have corresponded to an unnecessary increase of therapy costs of 86.1%, 77.1%, and 3.3%, respectively. In two cases (1 hemangioma, 1 regenerative nodule) all modalities failed, causing unnecessary surgery in one patient. In this problem-oriented scenario unenhanced and SPIO-enhanced MRI proved to be superior to CT regarding diagnostic efficacy. The cost-benefit resulted mainly due to preserving patients from unnecessary surgical procedures.

  14. In vivo longitudinal micro-CT study of bent long limb bones in rat offspring.

    PubMed

    De Schaepdrijver, Luc; Delille, Peter; Geys, Helena; Boehringer-Shahidi, Christian; Vanhove, Christian

    2014-07-01

    Micro-computed X-ray tomography (micro-CT) has been reported as a reliable method to assess ex vivo rat and rabbit fetal skeletons in embryo-fetal developmental toxicity studies. Since micro-CT is a non-invasive imaging modality it has the potential for longitudinal, in vivo investigation of postnatal skeletal development. This is the first paper using micro-CT to assess the reversibility of drug-induced bent long bones in a longitudinal study from birth to early adulthood in rat offspring. Analysis of the scans obtained on postnatal Day 0, 7, 21 and 80 showed complete recovery or repair of the bent long limb bones (including the scapula) within the first 3 weeks. When assessing risk the ability to demonstrate recovery is highly advantageous when interpreting such transient skeletal change. In summary, in vivo micro-CT of small laboratory animals can aid in non-clinical safety assessment, particularly for specific mechanistic purposes or to address a particular concern in developmental biology. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Wide field of view CT and acromioclavicular joint instability: A technical innovation.

    PubMed

    Dyer, David R; Troupis, John M; Kamali Moaveni, Afshin

    2015-06-01

    A 21-year-old female with a traumatic shoulder injury is investigated and managed for symptoms relating to this injury. Pathology at the acromioclavicular joint is detected clinically; however, clinical examination and multiple imaging modalities do not reach a unified diagnosis on the grading of this acromioclavicular joint injury. When management appropriate to that suggested injury grading fail to help the patient's symptoms, further investigation methods were utilised. Wide field of view, dynamic CT (4D CT) is conducted on the patient's affected shoulder using a 320 × 0.5 mm detector multislice CT. Scans were conducted with a static table as the patient completed three movements of the affected shoulder. Capturing multiple data sets per second over a z-axis of 16 cm, measurements of the acromioclavicular joint were made, to show dynamic changes at the joint. Acromioclavicular (AC) joint translations were witnessed in three planes (a previously unrecognised pathology in the grading of acromioclavicular joint injuries). Translation in multiple planes was also not evident on careful clinical examination of this patient. AC joint width, anterior-posterior translation, superior-inferior translation and coracoclavicular width were measured with planar reconstructions while volume-rendered images and dynamic sequences aiding visual understanding of the pathology. Wide field of view dynamic CT (4D CT) is an accurate and quick modality to diagnose complex acromioclavicular joint injury. It provides dynamic information that no other modality can; 4D CT shows future benefits for clinical approach to diagnosis and management of acromioclavicular joint injury, and other musculoskeletal pathologies. © 2015 The Royal Australian and New Zealand College of Radiologists.

  16. 3D visualization of Thoraco-Lumbar Spinal Lesions in German Shepherd Dog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azpiroz, J.; Krafft, J.; Cadena, M.

    2006-09-08

    Computed tomography (CT) has been found to be an excellent imaging modality due to its sensitivity to characterize the morphology of the spine in dogs. This technique is considered to be particularly helpful for diagnosing spinal cord atrophy and spinal stenosis. The three-dimensional visualization of organs and bones can significantly improve the diagnosis of certain diseases in dogs. CT images were acquired of a German shepherd's dog spinal cord to generate stacks and digitally process them to arrange them in a volume image. All imaging experiments were acquired using standard clinical protocols on a clinical CT scanner. The three-dimensional visualizationmore » allowed us to observe anatomical structures that otherwise are not possible to observe with two-dimensional images. The combination of an imaging modality like CT together with imaging processing techniques can be a powerful tool for the diagnosis of a number of animal diseases.« less

  17. 3D visualization of Thoraco-Lumbar Spinal Lesions in German Shepherd Dog

    NASA Astrophysics Data System (ADS)

    Azpiroz, J.; Krafft, J.; Cadena, M.; Rodríguez, A. O.

    2006-09-01

    Computed tomography (CT) has been found to be an excellent imaging modality due to its sensitivity to characterize the morphology of the spine in dogs. This technique is considered to be particularly helpful for diagnosing spinal cord atrophy and spinal stenosis. The three-dimensional visualization of organs and bones can significantly improve the diagnosis of certain diseases in dogs. CT images were acquired of a German shepherd's dog spinal cord to generate stacks and digitally process them to arrange them in a volume image. All imaging experiments were acquired using standard clinical protocols on a clinical CT scanner. The three-dimensional visualization allowed us to observe anatomical structures that otherwise are not possible to observe with two-dimensional images. The combination of an imaging modality like CT together with imaging processing techniques can be a powerful tool for the diagnosis of a number of animal diseases.

  18. The continual innovation of commercial PET/CT solutions in nuclear cardiology: Siemens Healthineers.

    PubMed

    Bendriem, Bernard; Reed, Jessie; McCullough, Kathryn; Khan, Mohammad Raza; Smith, Anne M; Thomas, Damita; Long, Misty

    2018-04-10

    Cardiac PET/CT is an evolving, non-invasive imaging modality that impacts patient management in many clinical scenarios. Beyond offering the capability to assess myocardial perfusion, inflammatory cardiac pathologies, and myocardial viability, cardiac PET/CT also allows for the non-invasive quantitative assessment of myocardial blood flow (MBF) and myocardial flow reserve (MFR). Recognizing the need for an enhanced comprehension of coronary physiology, Siemens Healthineers implemented a sophisticated solution for the calculation of MBF and MFR in 2009. As a result, each aspect of their innovative scanner and image-processing technology seamlessly integrates into an efficient, easy-to-use workflow for everyday clinical use that maximizes the number of patients who potentially benefit from this imaging modality.

  19. TU-H-CAMPUS-JeP2-01: Inter-Observer Delineation Comparison of Visible Glandular Breast Tissue On Magnetic Resonance Imaging and Computed Tomography (prone and Supine)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogson, EM; University of Wollongong, Wollongong, NSW; Liverpool and Macarthur Cancer Therapy Centres, Liverpool, NSW

    2016-06-15

    Purpose: Breast cancers predominantly arise from Glandular Breast Tissue (GBT). If the GBT can be treated effectively post-operatively utilising radiotherapy this may be adequate volumetric coverage for adjuvant breast radiotherapy. Adequate imaging of the GBT is necessary and will be assessed between MRI and CT modalities. GBT visualisation is acknowledged to be qualitatively superior on Magnetic Resonance Image (MRI) compared to Computed Tomography (CT), the current radiotherapy imaging standard, however this has not been quantitatively assessed. For radiotherapy purposes it is important that any treatment volume can be consistently defined between observers. This study investigates the consistency of CT andmore » MRI GBT contours for potential radiotherapy planning. Methods: Ten experts (9 breast radiation oncologists and 1 radiologist) contoured the extent of the visible GBT for 33 patients on MRI and CT (both without contrast), which was performed according to a contouring guideline in supine and prone patient positions. The GBT volume was not a conventional whole breast radiotherapy planning volume, but rather the extent of GBT that was indicated from the CT or MR imaging. Volumes were compared utilizing the dice similarity coefficient (DSC), kappa statistic, and Hausdorff Distances (HDs) to ascertain the modality that was most consistently volumed. Results: The inter-observer concordance was of substantial agreement (kappa above 0.6) for the CT supine, CT prone, MRI supine and MRI prone datasets. The MRI GBT volumes were larger than the CT GBT volumes (p<0.001). Inter-observer conformity was higher for CT than MRI, although the magnitude of this difference was small (VOI<0.04). Conformity between modalities (CT and MRI) was in agreement for both prone and supine, DSC=0.75. Prone GBT volumes were larger than supine for both MRI and CT. Conclusion: MRI improves the extent of GBT delineation. The role of MRI guided, GBT-targeted radiotherapy requires investigation in a clinical trial. This work was supported by a grant number APP1033237 from Cancer Australia and the National Breast Cancer Foundation.« less

  20. Telestroke Imaging: A Review.

    PubMed

    Laghari, Fahad J; Hammer, Maxim D

    2017-01-01

    The use of telecommunications technology to provide the healthcare services, telemedicine, has been in use since the 1860s. The use of technology has ranged from providing medical care to far-off places during wartimes to monitoring physiological measurements of astronauts in space. Since the 1990s, reports have been published on diagnoses of neurological diseases with the use of video links. Studies confirm that the neurological examinations, including the National Institutes of Health Stroke Scale, performed during teleneurology are dependable. The transfer of stroke patients in rural hospitals to bigger medical centers delays treatment while there exists current and projected shortage of neurologists. Telestroke provides the solution. Patients suspected of acute stroke need a noncontrast computerized tomography (CT) scan for tissue plasminogen activator administration. Vascular imaging such as CT angiography, magnetic resonance angiography, and digital subtraction angiography can help show large-vessel occlusion or critical stenosis responsive to endovascular therapy. A standard protocol can be followed to decide a vascular modality of choice, considering advantages and disadvantages of each imaging modality. Telestroke solves the problems of distance and of shortage of neurologists. Neuroimaging plays a vital role in the delivery of telestroke, and the telestroke doctor should be comfortable with making a decision on selecting an appropriate vascular imaging modality. Copyright © 2016 by the American Society of Neuroimaging.

  1. Three-Dimensional Magnetic Resonance Imaging Quantification of Glenoid Bone Loss Is Equivalent to 3-Dimensional Computed Tomography Quantification: Cadaveric Study.

    PubMed

    Yanke, Adam B; Shin, Jason J; Pearson, Ian; Bach, Bernard R; Romeo, Anthony A; Cole, Brian J; Verma, Nikhil N

    2017-04-01

    To assess the ability of 3-dimensional (3D) magnetic resonance imaging (MRI, 1.5 and 3 tesla [T]) to quantify glenoid bone loss in a cadaveric model compared with the current gold standard, 3D computed tomography (CT). Six cadaveric shoulders were used to create a bone loss model, leaving the surrounding soft tissues intact. The anteroposterior (AP) dimension of the glenoid was measured at the glenoid equator and after soft tissue layer closure the specimen underwent scanning (CT, 1.5-T MRI, and 3-T MRI) with the following methods (0%, 10%, and 25% defect by area). Raw axial data from the scans were segmented using manual mask manipulation for bone and reconstructed using Mimics software to obtain a 3D en face glenoid view. Using calibrated Digital Imaging and Communications in Medicine images, the diameter of the glenoid at the equator and the area of the glenoid defect was measured on all imaging modalities. In specimens with 10% or 25% defects, no difference was detected between imaging modalities when comparing the measured defect size (10% defect P = .27, 25% defect P = .73). All 3 modalities demonstrated a strong correlation with the actual defect size (CT, ρ = .97; 1.5-T MRI, ρ = .93; 3-T MRI, ρ = .92, P < .0001). When looking at the absolute difference between the actual and measured defect area, no significance was noted between imaging modalities (10% defect P = .34, 25% defect P = .47). The error of 3-T 3D MRI increased with increasing defect size (P = .02). Both 1.5- and 3-T-based 3D MRI reconstructions of glenoid bone loss correlate with measurements from 3D CT scan data and actual defect size in a cadaveric model. Regardless of imaging modality, the error in bone loss measurement tends to increase with increased defect size. Use of 3D MRI in the setting of shoulder instability could obviate the need for CT scans. The goal of our work was to develop a reproducible method of determining glenoid bone loss from 3D MRI data and hence eliminate the need for CT scans in this setting. This will lead to decreased cost of care as well as decreased radiation exposure to patients. The long-term goal is a fully automated system that is as approachable for clinicians as current 3D CT technology. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  2. The utility of chest X-ray as a screening tool for blunt thoracic aortic injury.

    PubMed

    Gutierrez, Adam; Inaba, Kenji; Siboni, Stefano; Effron, Zachary; Haltmeier, Tobias; Jaffray, Paul; Reddy, Sravanthi; Lofthus, Alexander; Benjamin, Elizabeth; Dubose, Joseph; Demetriades, Demetrios

    2016-01-01

    The early and accurate identification of patients with blunt thoracic aortic injury (BTAI) remains a challenge. Traditionally, a portable AP chest X-ray (CXR) is utilized as the initial screening modality for BTAI, however, there is controversy surrounding its sensitivity. The purpose of this study was to assess the sensitivity of CXR as a screening modality for BTAI. After IRB approval, all adult (≥18 yo) blunt trauma patients admitted to LAC+USC (01/2011-12/2013) who underwent CXR and chest CT were retrospectively reviewed. Final radiology attending CXR readings were reviewed for mediastinal abnormalities (widened mediastinum, mediastinal to chest width ratio greater than 0.25, irregular aortic arch, blurred aortic contour, opacification of the aortopulmonary window, and apical pleural haematoma) suggestive of aortic injury. Chest CT final attending radiologist readings were utilized as the gold standard for diagnosis of BTAI. The primary outcome analyzed was CXR sensitivity. A total of 3728 patients were included in the study. The majority of patients were male (72.6%); mean age was 43 (SD 20). Median ISS was 9 (IQR 4-17) and median GCS was 15 (IQR 14-15). The most common mechanism of injury was MVC (48.0%), followed by fall (20.6%), and AVP (16.9%). The total number of CXRs demonstrating a mediastinal abnormality was 200 (5.4%). Widened mediastinum was present on 191 (5.1%) of CXRs, blurred aortic contour on 10 (0.3%), and irregular aortic arch on 4 (0.1%). An acute aortic injury confirmed by chest CT was present in 17 (0.5%) patients. Only 7 of these with CT-confirmed BTAI had a mediastinal abnormality identified on CXR, for a sensitivity of 41% (95% CI: 19-67%). The results from this study suggest that CXR alone is not a reliable screening modality for BTAI. A combination of screening CXR and careful consideration of other factors, such as mechanism of injury, will be required to effectively discriminate between those who should and should not undergo chest CT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Bone and Gallium Single-Photon Emission Computed Tomography-Computed Tomography is Equivalent to Magnetic Resonance Imaging in the Diagnosis of Infectious Spondylodiscitis: A Retrospective Study.

    PubMed

    Tamm, Alexander S; Abele, Jonathan T

    2017-02-01

    Spondylodiscitis has historically been a difficult clinical diagnosis. Two imaging techniques that address this problem are magnetic resonance imaging (MRI) and combined bone ( 99m Tc-methylene diphosphonate) and gallium-67 single-photon emission computed tomography-computed tomography (SPECT-CT). Their accuracies have not been adequately compared. The purpose of this study is to compare the sensitivities and specificities of bone and gallium SPECT-CT and MRI in infectious spondylodiscitis. This retrospective study assessed all patients who underwent a bone or gallium SPECT-CT of the spine to assess for infectious spondylodiscitis from January 1, 2010, to May 2, 2012, at a single tertiary care centre. Thirty-four patients (23 men; average 62 ± 14 years of age) were included. The results of the bone or gallium SPECT-CT were compared against MRI for all patients in the cohort who underwent an MRI within 12 weeks of the SPECT-CT. A diagnosis of spondylodiscitis in the discharge summary was considered the reference standard, and was based on a combination of clinical scenario, response to therapy, imaging, or microbiology. Spondylodiscitis was diagnosed in 18 patients and excluded in 16. Bone or gallium SPECT-CT and MRI had similar (P > .05; κ = 0.74) sensitivities (0.94 vs 0.94), specificities (1.00 vs 1.00), positive predictive values (1.00 vs 1.00), negative predictive values (0.94 vs 0.80), and accuracies (0.97 vs 0.95) when compared to the reference standard. Although MRI remains the initial modality of choice in diagnosing spondylodiscitis, bone and gallium SPECT-CT appears diagnostically equivalent and should be considered a viable supplementary or alternative imaging modality particularly if there is contraindication or inaccessibility to MRI. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  4. Material model of pelvic bone based on modal analysis: a study on the composite bone.

    PubMed

    Henyš, Petr; Čapek, Lukáš

    2017-02-01

    Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's modulus or on the apparent density of bone obtained from computer tomography (CT) data. The Young's modulus of bone is described in many experimental works with large variations in the results. The concept of measuring and validating the material model of the pelvic bone based on modal analysis is introduced in this pilot study. The modal frequencies, damping, and shapes of the composite bone were measured precisely by an impact hammer at 239 points. An FE model was built using the data pertaining to the geometry and apparent density obtained from the CT of the composite bone. The isotropic homogeneous Young's modulus and Poisson's ratio of the cortical and trabecular bone were estimated from the optimisation procedure including Gaussian statistical properties. The performance of the updated model was investigated through the sensitivity analysis of the natural frequencies with respect to the material parameters. The maximal error between the numerical and experimental natural frequencies of the bone reached 1.74 % in the first modal shape. Finally, the optimised parameters were matched with the data sheets of the composite bone. The maximal difference between the calibrated material properties and that obtained from the data sheet was 34 %. The optimisation scheme of the FE model based on the modal analysis data provides extremely useful calibration of the FE models with the uncertainty bounds and without the influence of the boundary conditions.

  5. Role for imaging in spondyloarthritis.

    PubMed

    Ran, Jun; Morelli, John N; Xie, Ruyi; Zhang, Xiaoli; Liang, Xiaoqing; Liu, Xuanlin; Li, Xiaoming

    2017-09-01

    Despite major progress in the imaging diagnosis of spondyloarthritis (SpA), the relative advantages of various available imaging techniques remain unclear. The aim of this study is to assess the current use of imaging in the diagnosis of SpA and to provide suitable recommendations for the use of imaging as an outcome measure as defined in the Assessment in SpondyloArthritis international Society (ASAS) criteria. A systematic literature search regarding imaging in SpA was performed. Articles were assessed by two reviewers to identify and summarized key information pertaining to imaging in SpA. The search identified 180 relevant articles. Conventional radiography (CR) (17 articles), ultrasound (US) (26 articles), conventional computed tomography (CT) (13 articles), spectral computed tomography (spectral CT) (2 articles), bone scintigraphy (24 articles), and magnetic resonance imaging (MRI) were assessed (98 articles). Sacroiliitis and enthesitis were the major imaging findings in SpA. Multiple studies assessed the feasibility, validity, or differences among imaging modalities for the diagnosis of SpA; however, comprehensive assessments were not available due to a paucity of prospective imaging studies. CR is a widely available, inexpensive initial approach to evaluate patients with suspected SpA. CT enables assessment of structural changes from chronic sacroiliitis including bony erosions, subchondral sclerosis, joint space narrowing, and ankyloses; however, both CR and CT modalities are insensitive for demonstrating early enthesitis and sacroiliitis in SpA. US mainly identifies appendicular enthesitis but is more limited with respect to the sacroiliac joints. Bone scintigraphy can identify sacroiliac joint lesions and semi-quantitatively assess active sacroiliitis. MRI optimally evaluates not only early enthesitis and sacroiliitis of SpA but also chronic structural changes to the sacroiliac joints. More than one modality may be required for diagnostic and assessment of SpA depending upon disease characteristics and evolution. CR is a suitable initial examination while MRI is able to detect both early and late changes of SpA. A combination of CR and MRI is recommended for the diagnosis and assessment of SpA.

  6. Feature-based Alignment of Volumetric Multi-modal Images

    PubMed Central

    Toews, Matthew; Zöllei, Lilla; Wells, William M.

    2014-01-01

    This paper proposes a method for aligning image volumes acquired from different imaging modalities (e.g. MR, CT) based on 3D scale-invariant image features. A novel method for encoding invariant feature geometry and appearance is developed, based on the assumption of locally linear intensity relationships, providing a solution to poor repeatability of feature detection in different image modalities. The encoding method is incorporated into a probabilistic feature-based model for multi-modal image alignment. The model parameters are estimated via a group-wise alignment algorithm, that iteratively alternates between estimating a feature-based model from feature data, then realigning feature data to the model, converging to a stable alignment solution with few pre-processing or pre-alignment requirements. The resulting model can be used to align multi-modal image data with the benefits of invariant feature correspondence: globally optimal solutions, high efficiency and low memory usage. The method is tested on the difficult RIRE data set of CT, T1, T2, PD and MP-RAGE brain images of subjects exhibiting significant inter-subject variability due to pathology. PMID:24683955

  7. Diagnostic imaging and radiation exposure in inflammatory bowel disease.

    PubMed

    Zakeri, Nekisa; Pollok, Richard C G

    2016-02-21

    Diagnostic imaging plays a key role in the diagnosis and management of inflammatory bowel disease (IBD). However due to the relapsing nature of IBD, there is growing concern that IBD patients may be exposed to potentially harmful cumulative levels of ionising radiation in their lifetime, increasing malignant potential in a population already at risk. In this review we explore the proportion of IBD patients exposed to high cumulative radiation doses, the risk factors associated with higher radiation exposures, and we compare conventional diagnostic imaging with newer radiation-free imaging techniques used in the evaluation of patients with IBD. While computed tomography (CT) performs well as an imaging modality for IBD, the effective radiation dose is considerably higher than other abdominal imaging modalities. It is increasingly recognised that CT imaging remains responsible for the majority of diagnostic medical radiation to which IBD patients are exposed. Magnetic resonance imaging (MRI) and small intestine contrast enhanced ultrasonography (SICUS) have now emerged as suitable radiation-free alternatives to CT imaging, with comparable diagnostic accuracy. The routine use of MRI and SICUS for the clinical evaluation of patients with known or suspected small bowel Crohn's disease is to be encouraged wherever possible. More provision is needed for out-of-hours radiation-free imaging modalities to reduce the need for CT.

  8. Diagnostic imaging and radiation exposure in inflammatory bowel disease

    PubMed Central

    Zakeri, Nekisa; Pollok, Richard CG

    2016-01-01

    Diagnostic imaging plays a key role in the diagnosis and management of inflammatory bowel disease (IBD). However due to the relapsing nature of IBD, there is growing concern that IBD patients may be exposed to potentially harmful cumulative levels of ionising radiation in their lifetime, increasing malignant potential in a population already at risk. In this review we explore the proportion of IBD patients exposed to high cumulative radiation doses, the risk factors associated with higher radiation exposures, and we compare conventional diagnostic imaging with newer radiation-free imaging techniques used in the evaluation of patients with IBD. While computed tomography (CT) performs well as an imaging modality for IBD, the effective radiation dose is considerably higher than other abdominal imaging modalities. It is increasingly recognised that CT imaging remains responsible for the majority of diagnostic medical radiation to which IBD patients are exposed. Magnetic resonance imaging (MRI) and small intestine contrast enhanced ultrasonography (SICUS) have now emerged as suitable radiation-free alternatives to CT imaging, with comparable diagnostic accuracy. The routine use of MRI and SICUS for the clinical evaluation of patients with known or suspected small bowel Crohn’s disease is to be encouraged wherever possible. More provision is needed for out-of-hours radiation-free imaging modalities to reduce the need for CT. PMID:26900282

  9. Incidental category learning and cognitive load in a multisensory environment across childhood.

    PubMed

    Broadbent, H J; Osborne, T; Rea, M; Peng, A; Mareschal, D; Kirkham, N Z

    2018-06-01

    Multisensory information has been shown to facilitate learning (Bahrick & Lickliter, 2000; Broadbent, White, Mareschal, & Kirkham, 2017; Jordan & Baker, 2011; Shams & Seitz, 2008). However, although research has examined the modulating effect of unisensory and multisensory distractors on multisensory processing, the extent to which a concurrent unisensory or multisensory cognitive load task would interfere with or support multisensory learning remains unclear. This study examined the role of concurrent task modality on incidental category learning in 6- to 10-year-olds. Participants were engaged in a multisensory learning task while also performing either a unisensory (visual or auditory only) or multisensory (audiovisual) concurrent task (CT). We found that engaging in an auditory CT led to poorer performance on incidental category learning compared with an audiovisual or visual CT, across groups. In 6-year-olds, category test performance was at chance in the auditory-only CT condition, suggesting auditory concurrent tasks may interfere with learning in younger children, but the addition of visual information may serve to focus attention. These findings provide novel insight into the use of multisensory concurrent information on incidental learning. Implications for the deployment of multisensory learning tasks within education across development and developmental changes in modality dominance and ability to switch flexibly across modalities are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. Radiation dose reduction and new image modalities development for interventional C-arm imaging system

    NASA Astrophysics Data System (ADS)

    Niu, Kai

    Cardiovascular disease and stroke are the leading health problems and causes of death in the US. Due to the minimally invasive nature of the evolution of image guided techniques, interventional radiological procedures are becoming more common and are preferred in treating many cardiovascular diseases and strokes. In addition, with the recent advances in hardware and device technology, the speed and efficacy of interventional treatment has significantly improved. This implies that more image modalities can be developed based on the current C-arm system and patients treated in interventional suites can potentially experience better health outcomes. However, during the treatment patients are irradiated with substantial amounts of ionizing radiation with a high dose rate (digital subtraction angiography (DSA) with 3muGy/frame and 3D cone beam CT image with 0.36muGy/frame for a Siemens Artis Zee biplane system) and/or a long irradiation time (a roadmapping image sequence can be as long as one hour during aneurysm embolization). As a result, the patient entrance dose is extremely high. Despite the fact that the radiation dose is already substantial, image quality is not always satisfactory. By default a temporal average is used in roadmapping images to overcome poor image quality, but this technique can result in motion blurred images. Therefore, reducing radiation dose while maintaining or even improving the image quality is an important area for continued research. This thesis is focused on improving the clinical applications of C-arm cone beam CT systems in two ways: (1) Improve the performance of current image modalities on the C-arm system. (2) Develop new image modalities based on the current system. To be more specific, the objectives are to reduce radiation dose for current modalities (e.g., DSA, fluoroscopy, roadmapping, and cone beam CT) and enable cone beam CT perfusion and time resolved cone beam CT angiography that can be used to diagnose and triage acute ischemic stroke patients more efficiently compared with the current clinical work-flow. The animal and patient cases presented in this thesis are focused towards but not limited to neurointerventional applications.

  11. Clinical significance of FDG-PET/CT at the postoperative surveillance in the breast cancer patients.

    PubMed

    Jung, Na Young; Yoo, Ie Ryung; Kang, Bong Joo; Kim, Sung Hun; Chae, Byung Joo; Seo, Ye Young

    2016-01-01

    We evaluated the clinical role of [(18)F]-2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (FDG-PET/CT) compared with conventional imaging (CI) to detect locoregional recurrence or distant metastasis during postoperative surveillance of patients with breast cancer. We included 1,819 examinations of 1,161 patients, who underwent FDG-PET/CT and CI, including mammography, breast ultrasound, whole-body bone scintigraphy, and chest radiography for postoperative surveillance. All patients had a history of surgery with or without adjuvant treatment due to more than stage II breast cancer between November 2003 and November 2009. We evaluated the diagnostic performance of CI, FDG-PET/CT, and combined CI and FDG-PET/CT for detecting locoregional recurrence, distant metastasis, and incidental cancer. We also analyzed false-positive and false-negative results in both FDG-PET/CT and CI. Sensitivity, specificity, positive predictive value, and negative predictive value of CI were 75.4, 98.7, 93.4, and 94.3 %. Those of FDG-PET/CT were 97.5, 98.8, 95.4, and 99.4 %. Those of the combined results were 98.6, 98.2, 96.7, and 99.7 %. Sensitivity of FDG-PET/CT was significantly higher than that of CI (P < 0.05). Sensitivity of combined CI and FDG-PET/CT results improved, but they were not significantly different from those of FDG-PET/CT alone (P = 0.43). Seventeen false-positive and nine false-negative cases were detected with FDG-PET/CT, and 19 false-positive and 88 false-negative cases were detected with CI. FDG-PET/CT is considered as an acceptable diagnostic imaging modality for postoperative surveillance of patients with breast cancer.

  12. Adrenocortical tumours: high CT attenuation value correlates with eosinophilia but does not discriminate lipid-poor adenomas from malignancy.

    PubMed

    Pennanen, Mirkka; Raade, Merja; Louhimo, Johanna; Sane, Timo; Heiskanen, Ilkka; Arola, Johanna; Haglund, Caj

    2013-12-01

    Characterisation of adrenal tumours is an important clinical problem. Unenhanced CT is the primary imaging modality to assess the nature of these lesions. To study the correlation between unenhanced CT attenuation value and the specific histopathology, as well as the proportion of lipid-poor eosinophilic cells in adrenocortical tumours. We studied retrospectively primary adrenocortical tumours that had been operated on at Helsinki University Central Hospital between 2002 and 2008. Of 171 tumours, 79 had appropriate preoperative CT scans and were included in the study. We evaluated the unenhanced CT attenuation values (Hounsfield units, HU) of these tumours and determined their histopathological diagnosis by the Weiss scoring system. We also assessed the proportion of lipid-poor eosinophilic cells for each tumour. Unenhanced CT attenuation value (HU) in adrenocortical tumours correlated well with the proportion of lipid-poor eosinophilic cells (rs=0.750, p<0.001). HU and Weiss score also had a correlation (rs=0.582, p<0.001). Unenhanced CT attenuation value correlates well with the percentage of lipid-poor eosinophilic cells, but unenhanced CT attenuation value fails to differentiate between benign lipid-poor adenomas and malignant adrenocortical tumours. All adrenocortical tumours with unenhanced CT attenuation value ≤10 HU are histologically benign lipid-rich tumours.

  13. Optimal gross tumor volume definition in lung-sparing intensity modulated radiotherapy for pleural mesothelioma: an in silico study.

    PubMed

    Botticella, Angela; Defraene, Gilles; Nackaerts, Kristiaan; Deroose, Christophe M; Coolen, Johan; Nafteux, Philippe; Peeters, Stephanie; Ricardi, Umberto; De Ruysscher, Dirk

    2016-12-01

    The gross tumor volume (GTV) definition for malignant pleural mesothelioma (MPM) is ill-defined. We therefore investigated which imaging modality is optimal: computed tomography (CT) with intravenous contrast (IVC), positron emission tomography-CT (PET/CT) or magnetic resonance imaging (MRI). Sixteen consecutive patients with untreated stage I-IV MPM were included. Patients with prior pleurodesis were excluded. CT with IVC, 18FDG-PET/CT and MRI (T2 and contrast-enhanced T1) were obtained. CT was rigidly co-registered with PET/CT and with MRI. Three sets of pleural GTVs were defined: GTV CT , GTV CT+PET/CT and GTV CT+MRI . Quantitative and qualitative evaluations of the contoured GTVs were performed. Compared to CT-based GTV definition, PET/CT identified additional tumor sites (defined as either separate nodules or greater extent of a known tumor) in 12/16 patients. Compared to either CT or PET/CT, MRI identified additional tumor sites in 15/16 patients (p = .7). The mean GTV CT , GTV CT+PET/CT and GTV CT+MRI [±standard deviation (SD)] were 630.1 cm 3 (±302.81), 640.23 cm 3 (±302.83) and 660.8 cm 3 (±290.8), respectively. Differences in mean volumes were not significant. The mean Jaccard Index was significantly lower in MRI-based contours versus all the others. As MRI identified additional pleural disease sites in the majority of patients, it may play a role in optimal target volume definition.

  14. Imaging of Herniated Discs of the Cervical Spine: Inter-Modality Differences between 64-Slice Multidetector CT and 1.5-T MRI

    PubMed Central

    Yi, Ji Sook; Han, Jong Kyu; Kim, Hyun-Joo

    2015-01-01

    Objective To assess inter-modality variability when evaluating cervical intervertebral disc herniation using 64-slice multidetector-row computed tomography (MDCT) and magnetic resonance imaging (MRI). Materials and Methods Three musculoskeletal radiologists independently reviewed cervical spine 1.5-T MRI and 64-slice MDCT data on C2-3 though C6-7 of 51 patients in the context of intervertebral disc herniation. Interobserver and inter-modality agreements were expressed as unweighted kappa values. Weighted kappa statistics were used to assess the extents of agreement in terms of the number of involved segments (NIS) in disc herniation and epicenter measurements collected using MDCT and MRI. Results The interobserver agreement rates upon evaluation of disc morphology by the three radiologists were in fair to moderate agreement (k = 0.39-0.53 for MDCT images; k = 0.45-0.56 for MRIs). When the disc morphology was categorized into two and four grades, the inter-modality agreement rates were moderate (k-value, 0.59) and substantial (k-value, 0.66), respectively. The inter-modality agreements for evaluations of the NIS (k-value, 0.78) and the epicenter (k-value, 0.79) were substantial. Also, the interobserver agreements for the NIS (CT; k-value, 0.85 and MRI; k-value, 0.88) and epicenter (CT; k-value, 0.74 and MRI; k-value, 0.70) evaluations by two readers were substantial. MDCT tended to underestimate the extent of herniated disc lesions compared with MRI. Conclusion Multidetector-row computed tomography and MRI showed a moderate-to-substantial degree of inter-modality agreement for the assessment of herniated cervical discs. MDCT images have a tendency to underestimate the anterior/posterior extent of the herniated disc compared with MRI. PMID:26175589

  15. Quintuple-modality (SERS-MRI-CT-TPL-PTT) plasmonic nanoprobe for theranostics

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chang, Zheng; Yuan, Hsiangkuo; Fales, Andrew M.; Vo-Dinh, Tuan

    2013-11-01

    A unique quintuple-modality theranostic nanoprobe (QMT) is developed with gold nanostars for surface-enhanced Raman scattering (SERS), magnetic resonance imaging (MRI), computed tomography (CT), two-photon luminescence (TPL) imaging and photothermal therapy (PTT). The synthesized gold nanostars were tagged with a SERS reporter and linked with an MRI contrast agent Gd3+. In vitro experiments demonstrated the developed QMT nanoprobe to be a potential theranostic agent for future biomedical applications.A unique quintuple-modality theranostic nanoprobe (QMT) is developed with gold nanostars for surface-enhanced Raman scattering (SERS), magnetic resonance imaging (MRI), computed tomography (CT), two-photon luminescence (TPL) imaging and photothermal therapy (PTT). The synthesized gold nanostars were tagged with a SERS reporter and linked with an MRI contrast agent Gd3+. In vitro experiments demonstrated the developed QMT nanoprobe to be a potential theranostic agent for future biomedical applications. Electronic supplementary information (ESI) available: Details of experimental section, characterization details and relaxivity curve of developed QMT nanoprobe in water at 1.5 T magnetic filed strength. See DOI: 10.1039/c3nr03762b

  16. Imaging trends in suspected appendicitis-a Canadian perspective.

    PubMed

    Tan, Victoria F; Patlas, Michael N; Katz, Douglas S

    2017-06-01

    The purpose of our study was to assess trends in the imaging of suspected appendicitis in adult patients in emergency departments of academic centers in Canada. A questionnaire was sent to all 17 academic centers in Canada to be completed by a radiologist who works in emergency radiology. The questionnaires were sent and collected over a period of 4 months from October 2015 to February 2016. Sixteen centers (94%) responded to the questionnaire. Eleven respondents (73%) use IV contrast-enhanced computed tomography (CT) as the imaging modality of choice for all patients with suspected appendicitis. Thirteen respondents (81%) use ultrasound as the first modality of choice in imaging pregnant patients with suspected appendicitis. Eleven respondents (69%) use ultrasound (US) as the first modality of choice in patients younger than 40 years of age. Ten respondents (67%) use ultrasound as the first imaging modality in female patients younger than 40 years of age. When CT is used, 81% use non-focused CT of the abdomen and pelvis, and 44% of centers use oral contrast. Thirteen centers (81%) have ultrasound available 24 h a day/7 days a week. At 12 centers (75%), ultrasound is performed by ultrasound technologists. Four centers (40%) perform magnetic resonance imaging (MRI) in suspected appendicitis in adult patients at the discretion of the attending radiologist. Eleven centers (69%) have MRI available 24/7. All 16 centers (100%) use unenhanced MRI. Various imaging modalities are available for the work-up of suspected appendicitis. Although there are North American societal guidelines and recommendations regarding the appropriateness of the multiple imaging modalities, significant heterogeneity in the first-line modalities exist, which vary depending on the patient demographics and resource availability. Imaging trends in the use of the first-line modalities should be considered in order to plan for the availability of the imaging examinations and to consider plans for an imaging algorithm to permit standardization across multiple centers. While this study examined the imaging trends specifically in Canada, there are implications to other countries seeking to streamline imaging protocols and determining appropriateness of the first-line imaging modalities.

  17. In vivo tomographic imaging of lung colonization of tumour in mouse with simultaneous fluorescence and X-ray CT.

    PubMed

    Zhang, Bin; Gao, Fuping; Wang, Mengjiao; Cao, Xu; Liu, Fei; Wang, Xin; Luo, Jianwen; Wang, Guangzhi; Bai, Jing

    2014-01-01

    Non-invasive in vivo imaging of diffuse and wide-spread colonization within the lungs, rather than distinct solid primary tumors, is still a challenging work. In this work, a lung colonization mouse model bearing A549 human lung tumor was simultaneously scanned by a dual-modality fluorescence molecular tomography (FMT) and X-ray computed tomography (CT) system in vivo. A two steps method which incorporates CT structural information into the FMT reconstruction procedure is employed to provide concurrent anatomical and functional information. By using the target-specific fluorescence agent, the fluorescence tomographic results show elevated fluorescence intensity deep within the lungs which is colonized with diffuse and wide-spread tumors. The results were confirmed with ex vivo fluorescence reflectance imaging and histological examination of the lung tissues. With FMT reconstruction combined with the CT information, the dual-modality FMT/micro-CT system is expected to offer sensitive and noninvasive imaging of diffuse tumor colonization within the lungs in vivo. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The bone scan.

    PubMed

    Brenner, Arnold I; Koshy, June; Morey, Jose; Lin, Cheryl; DiPoce, Jason

    2012-01-01

    Bone imaging continues to be the second greatest-volume nuclear imaging procedure, offering the advantage of total body examination, low cost, and high sensitivity. Its power rests in the physiological uptake and pathophysiologic behavior of 99m technetium (99m-Tc) diphosphonates. The diagnostic utility, sensitivity, specificity, and predictive value of 99m-Tc bone imaging for benign conditions and tumors was established when only planar imaging was available. Currently, nearly all bone scans are performed as a planar study (whole-body, 3-phase, or regional), with the radiologist often adding single-photon emission computed tomography (SPECT) imaging. Here we review many current indications for planar bone imaging, highlighting indications in which the planar data are often diagnostically sufficient, although diagnosis may be enhanced by SPECT. (18)F sodium fluoride positron emission tomography (PET) is also re-emerging as a bone agent, and had been considered interchangeable with 99m-Tc diphosphonates in the past. In addition to SPECT, new imaging modalities, including (18)F fluorodeoxyglucose, PET/CT, CT, magnetic resonance, and SPECT/CT, have been developed and can aid in evaluating benign and malignant bone disease. Because (18)F fluorodeoxyglucose is taken up by tumor cells and Tc diphosphonates are taken up in osteoblastic activity or osteoblastic healing reaction, both modalities are complementary. CT and magnetic resonance may supplement, but do not replace, bone imaging, which often detects pathology before anatomic changes are appreciated. We also stress the importance of dose reduction by reducing the dose of 99m-Tc diphosphonates and avoiding unnecessary CT acquisitions. In addition, we describe an approach to image interpretation that emphasizes communication with referring colleagues and correlation with appropriate history to significantly improve our impact on patient care. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Ultrasonography in the diagnosis of nasal bone fractures: a comparison with conventional radiography and computed tomography.

    PubMed

    Lee, In Sook; Lee, Jung-Hoon; Woo, Chang-Ki; Kim, Hak Jin; Sol, Yu Li; Song, Jong Woon; Cho, Kyu-Sup

    2016-02-01

    The purpose of this study was to evaluate and compare the diagnostic efficacy of ultrasonography (US) with radiography and multi-detector computed tomography (CT) for the detection of nasal bone fractures. Forty-one patients with a nasal bone fracture who underwent prospective US examinations were included. Plain radiographs and CT images were obtained on the day of trauma. For US examinations, radiologist used a linear array transducer (L17-5 MHz) in 24 patients and hockey-stick probe (L15-7 MHz) in 17. The bony component of the nose was divided into three parts (right and left lateral nasal walls, and midline of nasal bone). Fracture detection by three modalities was subjected to analysis. Furthermore, findings made by each modality were compared with intraoperative findings. Nasal bone fractures were located in the right lateral wall (n = 28), midline of nasal bone (n = 31), or left lateral wall (n = 31). For right and left lateral nasal walls, CT had greater sensitivity and specificity than US or radiography, and better agreed with intraoperative findings. However, for midline fractures of nasal bone, US had higher specificity, positive predictive value, and negative predictive value than CT. Although two US evaluations showed good agreements at all three sites, US findings obtained by the hockey-stick probe showed closer agreement with intraoperative findings for both lateral nasal wall and midline of nasal bone. Although CT showed higher sensitivity and specificity than US or radiography, US found to be helpful for evaluating the midline of nasal bone. Furthermore, for US examinations of the nasal bone, a smaller probe and higher frequency may be required.

  20. 18 F-FDG PET/CT for planning external beam radiotherapy alters therapy in 11% of 581 patients.

    PubMed

    Birk Christensen, Charlotte; Loft-Jakobsen, Annika; Munck Af Rosenschöld, Per; Højgaard, Liselotte; Roed, Henrik; Berthelsen, Anne K

    2018-03-01

    18 F-FDG PET/CT (FDG PET/CT) used in radiotherapy planning for extra-cerebral malignancy may reveal metastases to distant sites that may affect the choice of therapy. To investigate the role of FDG PET/CT on treatment strategy changes induced by the use of PET/CT as part of the radiotherapy planning. 'A major change of treatment strategy' was defined as either including more lesions in the gross tumour volume (GTV) distant from the primary tumour or a change in treatment modalities. The study includes 581 consecutive patients who underwent an FDG PET/CT scan for radiotherapy planning in our institution in the year 2008. All PET/CT scans were performed with the patient in treatment position with the use of immobilization devices according to the intended radiotherapy treatment. All scans were evaluated by a nuclear medicine physician together with a radiologist to delineate PET-positive GTV (GTV-PET). For 63 of the patients (11%), the PET/CT simulation scans resulted in a major change in treatment strategy because of the additional diagnostic information. Changes were most frequently observed in patients with lung cancer (20%) or upper gastrointestinal cancer (12%). In 65% of the patients for whom the PET/CT simulation scan revealed unexpected dissemination, radiotherapy was given - changed (n = 38) or unchanged (n = 13) according to the findings on the FDG PET/CT. Unexpected dissemination on the FDG PET/CT scanning performed for radiotherapy planning caused a change in treatment strategy in 11% of 581 patients. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  1. Electromagnetic-Optical Coherence Tomography Guidance of Transbronchial Solitary Pulmonary Nodule Biopsy

    DTIC Science & Technology

    2016-04-01

    6 1. INTRODUCTION Lung cancer is the leading cause of cancer related death accounting for more deaths than breast , prostate and colon...the cancer has spread, at which time patients have little chance of cure. Macroscopic imaging modalities including CT and bronchoscopy have made...Electromagnetic Navigation , Biopsy Guidance, Optical Microscopy, Optical Coherence Tomography, Lung Cancer , Optical needle. 3. OVERALL PROJECT SUMMARY

  2. COMPARISONS AMONG RADIOGRAPHY, ULTRASONOGRAPHY AND COMPUTED TOMOGRAPHY FOR EX VIVO CHARACTERIZATION OF STIFLE OSTEOARTHRITIS IN THE HORSE.

    PubMed

    De Lasalle, Julie; Alexander, Kate; Olive, Julien; Laverty, Sheila

    2016-09-01

    A better understanding of imaging characteristics of equine stifle osteoarthritis (OA) may allow earlier detection and improve prognosis. Objectives of this ex vivo, prospective, methods comparison study were to (1) describe the location and severity of naturally acquired OA lesions in the equine stifle using ultrasound (US), radiography (XR), computed tomography (CT), and macroscopic evaluation (ME); (2) compare the diagnostic performance of each imaging modality with ME; and (3) describe subchondral bone mineral density (BMD) in equine stifle joints with OA using CT. Radiographic, CT, and US evaluations were performed on 23 equine cadaver stifles and compared with ME. Significant associations were found between osteophyte global scores for all imaging modalities (CT, P ˂ 0.0001; XR, P = 0.005; US, P = 0.04) vs. ME osteophyte global scores. Osteophytes were detected most frequently in the medial femorotibial (MFT) joint. A specific pattern of osteophytes was observed, with a long ridge of new bone at the insertion of the MFT joint capsule cranially on the medial femoral condyle. A novel caudo-10°proximo-5°lateral-cranio-disto-medial oblique radiographic projection was helpful for detection of intercondylar osteophytes. Multiplanar CT reformatted images were helpful for characterizing all osteophytes. Osteophyte grades at most sites did not differ among modalities. Low sensitivity/specificity for subchondral bone sclerosis and flattening of femoral condyles suggested that these signs may not be reliable radiographic and CT indicators of equine stifle OA. Equine stifle OA was associated with a decrease in BMD and specific sites of focal subchondral bone resorption/cyst formation were found in some specimens. © 2016 American College of Veterinary Radiology.

  3. MIND Demons for MR-to-CT Deformable Image Registration In Image-Guided Spine Surgery

    PubMed Central

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.

    2016-01-01

    Purpose Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation. PMID:27330239

  4. MIND Demons for MR-to-CT deformable image registration in image-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.

    2016-03-01

    Purpose: Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method: The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result: The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions: A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation.

  5. MIND Demons for MR-to-CT Deformable Image Registration In Image-Guided Spine Surgery.

    PubMed

    Reaungamornrat, S; De Silva, T; Uneri, A; Wolinsky, J-P; Khanna, A J; Kleinszig, G; Vogt, S; Prince, J L; Siewerdsen, J H

    2016-02-27

    Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation.

  6. Gold standards and expert panels: a pulmonary nodule case study with challenges and solutions

    NASA Astrophysics Data System (ADS)

    Miller, Dave P.; O'Shaughnessy, Kathryn F.; Wood, Susan A.; Castellino, Ronald A.

    2004-05-01

    Comparative evaluations of reader performance using different modalities, e.g. CT with computer-aided detection (CAD) vs. CT without CAD, generally require a "truth" definition based on a gold standard. There are many situations in which a true invariant gold standard is impractical or impossible to obtain. For instance, small pulmonary nodules are generally not assessed by biopsy or resection. In such cases, it is common to use a unanimous consensus or majority agreement from an expert panel as a reference standard for actionability in lieu of the unknown gold standard for disease. Nonetheless, there are three major concerns about expert panel reference standards: (1) actionability is not synonymous with disease (2) it may be possible to obtain different conclusions about which modality is better using different rules (e.g. majority vs. unanimous consensus), and (3) the variability associated with the panelists is not formally captured in the p-values or confidence intervals that are generally produced for estimating the extent to which one modality is superior to the other. A multi-reader-multi-case (MRMC) receiver operating characteristic (ROC) study was performed using 90 cases, 15 readers, and a reference truth based on 3 experienced panelists. The primary analyses were conducted using a reference truth of unanimous consensus regarding actionability (3 out of 3 panelists). To assess the three concerns noted above: (1) additional data from the original radiology reports were compared to the panel (2) the complete analysis was repeated using different definitions of truth, and (3) bootstrap analyses were conducted in which new truth panels were constructed by picking 1, 2, or 3 panelists at random. The definition of the reference truth affected the results for each modality (CT with CAD and CT without CAD) considered by itself, but the effects were similar, so the primary analysis comparing the modalities was robust to the choice of the reference truth.

  7. Time-Of-Flight Camera, Optical Tracker and Computed Tomography in Pairwise Data Registration.

    PubMed

    Pycinski, Bartlomiej; Czajkowska, Joanna; Badura, Pawel; Juszczyk, Jan; Pietka, Ewa

    2016-01-01

    A growing number of medical applications, including minimal invasive surgery, depends on multi-modal or multi-sensors data processing. Fast and accurate 3D scene analysis, comprising data registration, seems to be crucial for the development of computer aided diagnosis and therapy. The advancement of surface tracking system based on optical trackers already plays an important role in surgical procedures planning. However, new modalities, like the time-of-flight (ToF) sensors, widely explored in non-medical fields are powerful and have the potential to become a part of computer aided surgery set-up. Connection of different acquisition systems promises to provide a valuable support for operating room procedures. Therefore, the detailed analysis of the accuracy of such multi-sensors positioning systems is needed. We present the system combining pre-operative CT series with intra-operative ToF-sensor and optical tracker point clouds. The methodology contains: optical sensor set-up and the ToF-camera calibration procedures, data pre-processing algorithms, and registration technique. The data pre-processing yields a surface, in case of CT, and point clouds for ToF-sensor and marker-driven optical tracker representation of an object of interest. An applied registration technique is based on Iterative Closest Point algorithm. The experiments validate the registration of each pair of modalities/sensors involving phantoms of four various human organs in terms of Hausdorff distance and mean absolute distance metrics. The best surface alignment was obtained for CT and optical tracker combination, whereas the worst for experiments involving ToF-camera. The obtained accuracies encourage to further develop the multi-sensors systems. The presented substantive discussion concerning the system limitations and possible improvements mainly related to the depth information produced by the ToF-sensor is useful for computer aided surgery developers.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y; Fullerton, G; Goins, B

    Purpose: In our previous study a preclinical multi-modality quality assurance (QA) phantom that contains five tumor-simulating test objects with 2, 4, 7, 10 and 14 mm diameters was developed for accurate tumor size measurement by researchers during cancer drug development and testing. This study analyzed the errors during tumor volume measurement from preclinical magnetic resonance (MR), micro-computed tomography (micro- CT) and ultrasound (US) images acquired in a rodent tumor model using the preclinical multi-modality QA phantom. Methods: Using preclinical 7-Tesla MR, US and micro-CT scanners, images were acquired of subcutaneous SCC4 tumor xenografts in nude rats (3–4 rats per group;more » 5 groups) along with the QA phantom using the same imaging protocols. After tumors were excised, in-air micro-CT imaging was performed to determine reference tumor volume. Volumes measured for the rat tumors and phantom test objects were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three imaging modalities. Then linear regression analysis was performed to compare image-based tumor volumes with the reference tumor volume and known test object volume for the rats and the phantom respectively. Results: The slopes of regression lines for in-vivo tumor volumes measured by three imaging modalities were 1.021, 1.101 and 0.862 for MRI, micro-CT and US respectively. For phantom, the slopes were 0.9485, 0.9971 and 0.9734 for MRI, micro-CT and US respectively. Conclusion: For both animal and phantom studies, random and systematic errors were observed. Random errors were observer-dependent and systematic errors were mainly due to selected imaging protocols and/or measurement method. In the animal study, there were additional systematic errors attributed to ellipsoidal assumption for tumor shape. The systematic errors measured using the QA phantom need to be taken into account to reduce measurement errors during the animal study.« less

  9. Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review

    NASA Astrophysics Data System (ADS)

    van Rikxoort, Eva M.; van Ginneken, Bram

    2013-09-01

    Computed tomography (CT) is the modality of choice for imaging the lungs in vivo. Sub-millimeter isotropic images of the lungs can be obtained within seconds, allowing the detection of small lesions and detailed analysis of disease processes. The high resolution of thoracic CT and the high prevalence of lung diseases require a high degree of automation in the analysis pipeline. The automated segmentation of pulmonary structures in thoracic CT has been an important research topic for over a decade now. This systematic review provides an overview of current literature. We discuss segmentation methods for the lungs, the pulmonary vasculature, the airways, including airway tree construction and airway wall segmentation, the fissures, the lobes and the pulmonary segments. For each topic, the current state of the art is summarized, and topics for future research are identified.

  10. PET/CT alignment calibration with a non-radioactive phantom and the intrinsic 176Lu radiation of PET detector

    NASA Astrophysics Data System (ADS)

    Wei, Qingyang; Ma, Tianyu; Wang, Shi; Liu, Yaqiang; Gu, Yu; Dai, Tiantian

    2016-11-01

    Positron emission tomography/computed tomography (PET/CT) is an important tool for clinical studies and pre-clinical researches which provides both functional and anatomical images. To achieve high quality co-registered PET/CT images, alignment calibration of PET and CT scanner is a critical procedure. The existing methods reported use positron source phantoms imaged both by PET and CT scanner and then derive the transformation matrix from the reconstructed images of the two modalities. In this paper, a novel PET/CT alignment calibration method with a non-radioactive phantom and the intrinsic 176Lu radiation of the PET detector was developed. Firstly, a multi-tungsten-alloy-sphere phantom without positron source was designed and imaged by CT and the PET scanner using intrinsic 176Lu radiation included in LYSO. Secondly, the centroids of the spheres were derived and matched by an automatic program. Lastly, the rotation matrix and the translation vector were calculated by least-square fitting of the centroid data. The proposed method was employed in an animal PET/CT system (InliView-3000) developed in our lab. Experimental results showed that the proposed method achieves high accuracy and is feasible to replace the conventional positron source based methods.

  11. Advanced imaging in COPD: insights into pulmonary pathophysiology

    PubMed Central

    Milne, Stephen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) involves a complex interaction of structural and functional abnormalities. The two have long been studied in isolation. However, advanced imaging techniques allow us to simultaneously assess pathological processes and their physiological consequences. This review gives a comprehensive account of the various advanced imaging modalities used to study COPD, including computed tomography (CT), magnetic resonance imaging (MRI), and the nuclear medicine techniques positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Some more recent developments in imaging technology, including micro-CT, synchrotron imaging, optical coherence tomography (OCT) and electrical impedance tomography (EIT), are also described. The authors identify the pathophysiological insights gained from these techniques, and speculate on the future role of advanced imaging in both clinical and research settings. PMID:25478198

  12. FDG-PET/CT in the evaluation of anal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotter, Shane E.; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO; Grigsby, Perry W.

    2006-07-01

    Purpose: Surgical staging and treatment of anal carcinoma has been replaced by noninvasive staging studies and combined modality therapy. In this study, we compare computed tomography (CT) and physical examination to [{sup 18}F]-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography (FDG-PET/CT) in the staging of carcinoma of the anal canal, with special emphasis on determination of spread to inguinal lymph nodes. Methods and Materials: Between July 2003 and July 2005, 41 consecutive patients with biopsy-proved anal carcinoma underwent a complete staging evaluation including physical examination, CT, and 2-FDG-PET/CT. Patients ranged in age from 30 to 89 years. Nine men were HIV-positive. Treatment was withmore » standard Nigro regimen. Results: [{sup 18}F]-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography (FDG-PET/CT) detected 91% of nonexcised primary tumors, whereas CT visualized 59%. FDG-PET/CT detected abnormal uptake in pelvic nodes of 5 patients with normal pelvic CT scans. FDG-PET/CT detected abnormal nodes in 20% of groins that were normal by CT, and in 23% without abnormality on physical examination. Furthermore, 17% of groins negative by both CT and physical examination showed abnormal uptake on FDG-PET/CT. HIV-positive patients had an increased frequency of PET-positive lymph nodes. Conclusion: [{sup 18}F]-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography detects the primary tumor more often than CT. FDG-PET/CT detects substantially more abnormal inguinal lymph nodes than are identified by standard clinical staging with CT and physical examination.« less

  13. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion.

    PubMed

    Yang, Y X; Teo, S-K; Van Reeth, E; Tan, C H; Tham, I W K; Poh, C L

    2015-08-01

    Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors' proposed approach. A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors' proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.

  14. Imaging for percutaneous renal access and management of renal calculi.

    PubMed

    Park, Sangtae; Pearle, Margaret S

    2006-08-01

    Percutaneous renal stone surgery requires detailed imaging to define stone burden and delineate the anatomy of the kidney and nearby organs. It is also essential to carry out safe percutaneous access and to assess postoperative outcomes. The emergence of CT as the imaging modality of choice for detecting renal calculi and the ability of CT urography with or without three-dimensional reconstruction to delineate the collecting system makes this the most versatile and sensitive imaging modality for pre- and postoperative evaluation. At present, intravenous urogram continues to play an important role in the evaluation of patients considered for percutaneous nephrostolithotomy. Fluoroscopy re-mains the mainstay of intraoperative imaging, although ultrasound is a useful alternative. Selection and application of appropriate imaging modalities for patients undergoing per-cutaneous nephrostolithotomy enhances the safety and success of the procedure.

  15. Initial clinical evaluation of stationary digital chest tomosynthesis

    NASA Astrophysics Data System (ADS)

    Hartman, Allison E.; Shan, Jing; Wu, Gongting; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping; Heath, Michael; Wang, Xiaohui; Foos, David

    2016-03-01

    Computed Tomography (CT) is the gold standard for image evaluation of lung disease, including lung cancer and cystic fibrosis. It provides detailed information of the lung anatomy and lesions, but at a relatively high cost and high dose of radiation. Chest radiography is a low dose imaging modality but it has low sensitivity. Digital chest tomosynthesis (DCT) is an imaging modality that produces 3D images by collecting x-ray projection images over a limited angle. DCT is less expensive than CT and requires about 1/10th the dose of radiation. Commercial DCT systems acquire the projection images by mechanically scanning an x-ray tube. The movement of the tube head limits acquisition speed. We recently demonstrated the feasibility of stationary digital chest tomosynthesis (s-DCT) using a carbon nanotube (CNT) x-ray source array in benchtop phantom studies. The stationary x-ray source allows for fast image acquisition. The objective of this study is to demonstrate the feasibility of s-DCT for patient imaging. We have successfully imaged 31 patients. Preliminary evaluation by board certified radiologists suggests good depiction of thoracic anatomy and pathology.

  16. Margin reduction from image guided radiation therapy for soft tissue sarcoma: Secondary analysis of Radiation Therapy Oncology Group 0630 results.

    PubMed

    Li, X Allen; Chen, Xiaojian; Zhang, Qiang; Kirsch, David G; Petersen, Ivy; DeLaney, Thomas F; Freeman, Carolyn R; Trotti, Andy; Hitchcock, Ying; Bedi, Meena; Haddock, Michael; Salerno, Kilian; Dundas, George; Wang, Dian

    2016-01-01

    Six imaging modalities were used in Radiation Therapy Oncology Group (RTOG) 0630, a study of image guided radiation therapy (IGRT) for primary soft tissue sarcomas of the extremity. We analyzed all daily patient-repositioning data collected in this trial to determine the impact of daily IGRT on clinical target volume-to-planning target volume (CTV-to-PTV) margin. Daily repositioning data, including shifts in right-left (RL), superior-inferior (SI), and anterior-posterior (AP) directions and rotations for 98 patients enrolled in RTOG 0630 from 18 institutions were analyzed. Patients were repositioned daily on the basis of bone anatomy by using pretreatment images, including kilovoltage orthogonal images (KVorth), megavoltage orthogonal images (MVorth), KV fan-beam computed tomography (KVCT), KV cone beam CT (KVCB), MV fan-beam CT (MVCT), and MV cone beam CT (MVCB). Means and standard deviations (SDs) for each shift and rotation were calculated for each patient and for each IGRT modality. The Student's t tests and F-tests were performed to analyze the differences in the means and SDs. Necessary CTV-to-PTV margins were estimated. The repositioning shifts and day-to-day variations were large and generally similar for the 6 imaging modalities. Of the 2 most commonly used modalities, MVCT and KVorth, there were no statistically significant differences in the shifts and rotations (P = .15 and .59 for the RL and SI shifts, respectively; and P = .22 for rotation), except for shifts in AP direction (P = .002). The estimated CTV-to-PTV margins in the RL, SI, and AP directions would be 13.0, 10.4, and 11.7 mm from MVCT data, respectively, and 13.1, 8.6, and 10.8 mm from KVorth data, respectively, indicating that margins substantially larger than 5 mm used with daily IGRT would be required in the absence of IGRT. The observed large daily repositioning errors and the large variations among institutions imply that daily IGRT is necessary for this tumor site, particularly in multi-institutional trials. Otherwise, a CTV-to-PTV margin of 1.5 cm is required to account for daily setup variations. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  17. Pitfalls in 16-detector row CT of the coronary arteries.

    PubMed

    Nakanishi, Tadashi; Kayashima, Yasuyo; Inoue, Rintaro; Sumii, Kotaro; Gomyo, Yukihiko

    2005-01-01

    Recently developed 16-detector row computed tomography (CT) has been introduced as a reliable noninvasive imaging modality for evaluating the coronary arteries. In most cases, with appropriate premedication that includes beta-blockers and nitroglycerin, ideal data sets can be acquired from which to obtain excellent-quality coronary CT angiograms, most often with multiplanar reformation, thin-slab maximum intensity projection, and volume rendering. However, various artifacts associated with data creation and reformation, postprocessing methods, and image interpretation can hamper accurate diagnosis. These artifacts can be related to pulsation (nonassessable segments, pseudostenosis) as well as rhythm disorders, respiratory issues, partial volume averaging effect, high-attenuation entities, inappropriate scan pitch, contrast material enhancement, and patient body habitus. Some artifacts have already been resolved with technical advances, whereas others represent partially inherent limitations of coronary CT angiography. Familiarity with the pitfalls of coronary angiography with 16-detector row CT, coupled with the knowledge of both the normal anatomy and anatomic variants of the coronary arteries, can almost always help radiologists avoid interpretive errors in the diagnosis of coronary artery stenosis. (c) RSNA, 2005.

  18. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  19. Brain Imaging in Alzheimer Disease

    PubMed Central

    Johnson, Keith A.; Fox, Nick C.; Sperling, Reisa A.; Klunk, William E.

    2012-01-01

    Imaging has played a variety of roles in the study of Alzheimer disease (AD) over the past four decades. Initially, computed tomography (CT) and then magnetic resonance imaging (MRI) were used diagnostically to rule out other causes of dementia. More recently, a variety of imaging modalities including structural and functional MRI and positron emission tomography (PET) studies of cerebral metabolism with fluoro-deoxy-d-glucose (FDG) and amyloid tracers such as Pittsburgh Compound-B (PiB) have shown characteristic changes in the brains of patients with AD, and in prodromal and even presymptomatic states that can help rule-in the AD pathophysiological process. No one imaging modality can serve all purposes as each have unique strengths and weaknesses. These modalities and their particular utilities are discussed in this article. The challenge for the future will be to combine imaging biomarkers to most efficiently facilitate diagnosis, disease staging, and, most importantly, development of effective disease-modifying therapies. PMID:22474610

  20. The influence of interpreters' professional background and experience on the interpretation of multimodality imaging of pulmonary lesions using 18F-3'-deoxy-fluorothymidine and 18F-fluorodeoxyglucose PET/CT.

    PubMed

    Xu, Bai-xuan; Liu, Chang-bin; Wang, Rui-min; Shao, Ming-zhe; Fu, Li-ping; Li, Yun-gang; Tian, Jia-he

    2013-01-01

    Based on the results of a recently accomplished multicenter clinical trial for the incremental value of a dual-tracer (18F-FDG and 18F-FLT), dual-modality (PET and CT) imaging in the differential diagnosis of pulmonary lesions, we investigate some issues that might affect the image interpretation and result reporting. The images were read in two separate sessions. Firstly the images were read and reported by physician(s) of the imaging center on completion of each PET/CT scanning. By the end of MCCT, all images collected during the trial were re-read by a collective of readers in an isolated, blinded, and independent way. One hundred sixty two patients successfully passed the data verification and entered into the final analysis. The primary reporting result showed adding 18F-FDG image information did not change the clinical performance much in sensitivity, specifity and accuracy, but the ratio between SUVFLT and SUVFDG did help the differentiation efficacy among the three subgroups of patients. The collective reviewing result showed the diagnostic achievement varied with reading strategies. ANOVA indicated significant differences among (18)F-FDG, (18)F-FLT in SUV (F = 14.239, p = 0.004). CT had almost the same diagnostic performance as 18F-FLT. When the 18F-FDG, 18F-FLT and CT images read in pair, both diagnostic sensitivity and specificity improved. The best diagnostic figures were obtained in full-modality strategy, when dual-tracer PET worked in combination with CT. With certain experience and training both radiologists and nuclear physicians are qualified to read and to achieve the similar diagnostic accuracy in PET/CT study. Making full use of modality combination and selecting right criteria seems more practical than professional back ground and personal experience in the new hybrid imaging technology, at least when novel tracer or application is concerned.

  1. PET/CT image registration: preliminary tests for its application to clinical dosimetry in radiotherapy.

    PubMed

    Baños-Capilla, M C; García, M A; Bea, J; Pla, C; Larrea, L; López, E

    2007-06-01

    The quality of dosimetry in radiotherapy treatment requires the accurate delimitation of the gross tumor volume. This can be achieved by complementing the anatomical detail provided by CT images through fusion with other imaging modalities that provide additional metabolic and physiological information. Therefore, use of multiple imaging modalities for radiotherapy treatment planning requires an accurate image registration method. This work describes tests carried out on a Discovery LS positron emission/computed tomography (PET/CT) system by General Electric Medical Systems (GEMS), for its later use to obtain images to delimit the target in radiotherapy treatment. Several phantoms have been used to verify image correlation, in combination with fiducial markers, which were used as a system of external landmarks. We analyzed the geometrical accuracy of two different fusion methods with the images obtained with these phantoms. We first studied the fusion method used by the PET/CT system by GEMS (hardware fusion) on the basis that there is satisfactory coincidence between the reconstruction centers in CT and PET systems; and secondly the fiducial fusion, a registration method, by means of least-squares fitting algorithm of a landmark points system. The study concluded with the verification of the centroid position of some phantom components in both imaging modalities. Centroids were estimated through a calculation similar to center-of-mass, weighted by the value of the CT number and the uptake intensity in PET. The mean deviations found for the hardware fusion method were: deltax/ +/-sigma = 3.3 mm +/- 1.0 mm and /deltax/ +/-sigma = 3.6 mm +/- 1.0 mm. These values were substantially improved upon applying fiducial fusion based on external landmark points: /deltax/ +/-sigma = 0.7 mm +/- 0.8 mm and /deltax/ +/-sigma = 0.3 mm 1.7 mm. We also noted that differences found for each of the fusion methods were similar for both the axial and helical CT image acquisition protocols.

  2. PET/CT versus bone marrow biopsy in the initial evaluation of bone marrow infiltration in various pediatric malignancies.

    PubMed

    Zapata, Claudia P; Cuglievan, Branko; Zapata, Catalina M; Olavarrieta, Raquel; Raskin, Scott; Desai, Kavita; De Angulo, Guillermo

    2018-02-01

    Accurate staging is essential in the prognosis and management of pediatric malignancies. Current protocols require screening for marrow infiltration with bone marrow biopsy (BMB) as the gold standard. Positron emission tomography-computed tomography (PET-CT) is commonly used to complete the staging process and can also be used to evaluate marrow infiltration. To compare PET-CT and BMB in the initial evaluation of bone marrow infiltration in pediatric cancers. We retrospectively reviewed new cases of EWS, rhabdomyosarcoma, neuroblastoma, and lymphoma diagnosed between January 2009 and October 2014. Each case had undergone both PET-CT and BMB within 4 weeks without treatment in the interval between screening modalities. We reviewed 69 cases. Bone marrow infiltration was demonstrated in 34 cases by PET-CT and in 18 cases by BMB. The sensitivity and negative predictive value of PET-CT were both 100%. Interestingly, the cases in which infiltration was not detected on BMB had an abnormal marrow signal on PET-CT focal or distant to iliac crest. PET-CT has a high sensitivity when assessing marrow infiltration in pediatric malignancies. Advances in radiologic modalities may obviate the use of invasive, painful, and costly procedures like BMB. Furthermore, biopsy results are limited by insufficient tissue or the degree of marrow infiltration (diffuse vs. focal disease). PET-CT can improve the precision of biopsy when used as a guiding tool. This study proposes the use of PET-CT as first-line screening for bone marrow infiltration to improve the accuracy of staging in new diagnoses. © 2017 Wiley Periodicals, Inc.

  3. A new methodological approach for PET implementation in radiotherapy treatment planning.

    PubMed

    Bellan, Elena; Ferretti, Alice; Capirci, Carlo; Grassetto, Gaia; Gava, Marcello; Chondrogiannis, Sotirios; Virdis, Graziella; Marzola, Maria Cristina; Massaro, Arianna; Rubello, Domenico; Nibale, Otello

    2012-05-01

    In this paper, a new methodological approach to using PET information in radiotherapy treatment planning has been discussed. Computed tomography (CT) represents the primary modality to plan personalized radiation treatment, because it provides the basic electron density map for correct dose calculation. If PET scanning is also performed it is typically coregistered with the CT study. This operation can be executed automatically by a hybrid PET/CT scanner or, if the PET and CT imaging sets have been acquired through different equipment, by a dedicated module of the radiotherapy treatment planning system. Both approaches have some disadvantages: in the first case, the bore of a PET/CT system generally used in clinical practice often does not allow the use of certain bulky devices for patient immobilization in radiotherapy, whereas in the second case the result could be affected by limitations in window/level visualization of two different image modalities, and the displayed PET volumes can appear not to be related to the actual uptake into the patient. To overcome these problems, at our centre a specific procedure has been studied and tested in 30 patients, allowing good results of precision in the target contouring to be obtained. The process consists of segmentation of the biological target volume by a dedicated PET/CT console and its export to a dedicated radiotherapy system, where an image registration between the CT images acquired by the PET/CT scanner and a large-bore CT is performed. The planning target volume is contoured only on the large-bore CT and is used for virtual simulation, to individuate permanent skin markers on the patient.

  4. Radiomic biomarkers from PET/CT multi-modality fusion images for the prediction of immunotherapy response in advanced non-small cell lung cancer patients

    NASA Astrophysics Data System (ADS)

    Mu, Wei; Qi, Jin; Lu, Hong; Schabath, Matthew; Balagurunathan, Yoganand; Tunali, Ilke; Gillies, Robert James

    2018-02-01

    Purpose: Investigate the ability of using complementary information provided by the fusion of PET/CT images to predict immunotherapy response in non-small cell lung cancer (NSCLC) patients. Materials and methods: We collected 64 patients diagnosed with primary NSCLC treated with anti PD-1 checkpoint blockade. Using PET/CT images, fused images were created following multiple methodologies, resulting in up to 7 different images for the tumor region. Quantitative image features were extracted from the primary image (PET/CT) and the fused images, which included 195 from primary images and 1235 features from the fusion images. Three clinical characteristics were also analyzed. We then used support vector machine (SVM) classification models to identify discriminant features that predict immunotherapy response at baseline. Results: A SVM built with 87 fusion features and 13 primary PET/CT features on validation dataset had an accuracy and area under the ROC curve (AUROC) of 87.5% and 0.82, respectively, compared to a model built with 113 original PET/CT features on validation dataset 78.12% and 0.68. Conclusion: The fusion features shows better ability to predict immunotherapy response prediction compared to individual image features.

  5. Elucidating early CT after pancreatico-duodenectomy: a primer for radiologists.

    PubMed

    Tonolini, Massimo; Ierardi, Anna Maria; Carrafiello, Gianpaolo

    2018-04-13

    Pancreatico-duodenectomy (PD) represents the standard surgical treatment for resectable malignancies of the pancreatic head, distal common bile duct, periampullary region and duodenum, and is also performed to manage selected benign tumours and refractory chronic pancreatitis. Despite improved surgical techniques and acceptable mortality, PD remains a technically demanding, high-risk operation burdened with high morbidity (complication rates 40-50% of patients). Multidetector computed tomography (CT) represents the mainstay modality to rapidly investigate the postoperative abdomen, and to provide a consistent basis for an appropriate choice between conservative, interventional or surgical treatment. However, radiologists require familiarity with the surgically altered anatomy, awareness of expected imaging appearances and possible complications to correctly interpret early post-PD CT studies. This paper provides an overview of surgical indications and techniques, discusses risk factors and clinical manifestations of the usual postsurgical complications, and suggests appropriate techniques and indications for early postoperative CT imaging. Afterwards, the usual, normal early post-PD CT findings are presented, including transient fluid, pneumobilia, delayed gastric emptying, identification of pancreatic gland remnant and of surgical anastomoses. Finally, several imaging examples review the most common and some unusual complications such as pancreatic fistula, bile leaks, abscesses, intraluminal and extraluminal haemorrhage, and acute pancreatitis. • Pancreatico-duodenectomy (PD) is a technically demanding surgery burdened with high morbidity (40-50%). • Multidetector CT is the mainstay technique to investigate suspected complications following PD. • Interpreting post-PD CT requires knowledge of surgically altered anatomy and expected findings. • CT showing collection at surgical site supports clinico-biological diagnosis of pancreatic fistula. • Other complications include biliary leaks, haemorrhage, abscesses and venous thrombosis.

  6. CT to Cone-beam CT Deformable Registration With Simultaneous Intensity Correction

    PubMed Central

    Zhen, Xin; Gu, Xuejun; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B.

    2012-01-01

    Computed tomography (CT) to cone-beam computed tomography (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of inconsistent intensities between the two modalities. In this paper, we propose a variant of demons, called Deformation with Intensity Simultaneously Corrected (DISC), to deal with CT-CBCT DIR. DISC distinguishes itself from the original demons algorithm by performing an adaptive intensity correction step on the CBCT image at every iteration step of the demons registration. Specifically, the intensity correction of a voxel in CBCT is achieved by matching the first and the second moments of the voxel intensities inside a patch around the voxel with those on the CT image. It is expected that such a strategy can remove artifacts in the CBCT image, as well as ensuring the intensity consistency between the two modalities. DISC is implemented on computer graphics processing units (GPUs) in compute unified device architecture (CUDA) programming environment. The performance of DISC is evaluated on a simulated patient case and six clinical head-and-neck cancer patient data. It is found that DISC is robust against the CBCT artifacts and intensity inconsistency and significantly improves the registration accuracy when compared with the original demons. PMID:23032638

  7. Accuracy of Intraoperative Computed Tomography during Deep Brain Stimulation Procedures: Comparison with Postoperative Magnetic Resonance Imaging

    PubMed Central

    Bot, Maarten; van den Munckhof, Pepijn; Bakay, Roy; Stebbins, Glenn; Verhagen Metman, Leo

    2017-01-01

    Objective To determine the accuracy of intraoperative computed tomography (iCT) in localizing deep brain stimulation (DBS) electrodes by comparing this modality with postoperative magnetic resonance imaging (MRI). Background Optimal lead placement is a critical factor for the outcome of DBS procedures and preferably confirmed during surgery. iCT offers 3-dimensional verification of both microelectrode and lead location during DBS surgery. However, accurate electrode representation on iCT has not been extensively studied. Methods DBS surgery was performed using the Leksell stereotactic G frame. Stereotactic coordinates of 52 DBS leads were determined on both iCT and postoperative MRI and compared with intended final target coordinates. The resulting absolute differences in X (medial-lateral), Y (anterior-posterior), and Z (dorsal-ventral) coordinates (ΔX, ΔY, and ΔZ) for both modalities were then used to calculate the euclidean distance. Results Euclidean distances were 2.7 ± 1.1 and 2.5 ± 1.2 mm for MRI and iCT, respectively (p = 0.2). Conclusion Postoperative MRI and iCT show equivalent DBS lead representation. Intraoperative localization of both microelectrode and DBS lead in stereotactic space enables direct adjustments. Verification of lead placement with postoperative MRI, considered to be the gold standard, is unnecessary. PMID:28601874

  8. Accuracy of Intraoperative Computed Tomography during Deep Brain Stimulation Procedures: Comparison with Postoperative Magnetic Resonance Imaging.

    PubMed

    Bot, Maarten; van den Munckhof, Pepijn; Bakay, Roy; Stebbins, Glenn; Verhagen Metman, Leo

    2017-01-01

    To determine the accuracy of intraoperative computed tomography (iCT) in localizing deep brain stimulation (DBS) electrodes by comparing this modality with postoperative magnetic resonance imaging (MRI). Optimal lead placement is a critical factor for the outcome of DBS procedures and preferably confirmed during surgery. iCT offers 3-dimensional verification of both microelectrode and lead location during DBS surgery. However, accurate electrode representation on iCT has not been extensively studied. DBS surgery was performed using the Leksell stereotactic G frame. Stereotactic coordinates of 52 DBS leads were determined on both iCT and postoperative MRI and compared with intended final target coordinates. The resulting absolute differences in X (medial-lateral), Y (anterior-posterior), and Z (dorsal-ventral) coordinates (ΔX, ΔY, and ΔZ) for both modalities were then used to calculate the euclidean distance. Euclidean distances were 2.7 ± 1.1 and 2.5 ± 1.2 mm for MRI and iCT, respectively (p = 0.2). Postoperative MRI and iCT show equivalent DBS lead representation. Intraoperative localization of both microelectrode and DBS lead in stereotactic space enables direct adjustments. Verification of lead placement with postoperative MRI, considered to be the gold standard, is unnecessary. © 2017 The Author(s) Published by S. Karger AG, Basel.

  9. CT/FMT dual-model imaging of breast cancer based on peptide-lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, Guoqiang; Lin, Qiaoya; Lian, Lichao; Qian, Yuan; Lu, Lisen; Zhang, Zhihong

    2016-03-01

    Breast cancer is one of the most harmful cancers in human. Its early diagnosis is expected to improve the patients' survival rate. X-ray computed tomography (CT) has been widely used in tumor detection for obtaining three-dimentional information. Fluorescence Molecular Tomography (FMT) imaging combined with near-infrared fluorescent dyes provides a powerful tool for the acquisition of molecular biodistribution information in deep tissues. Thus, the combination of CT and FMT imaging modalities allows us to better differentiate diseased tissues from normal tissues. Here we developed a tumor-targeting nanoparticle for dual-modality imaging based on a biocompatible HDL-mimicking peptide-phospholipid scaffold (HPPS) nanocarrier. By incorporation of CT contrast agents (iodinated oil) and far-infrared fluorescent dyes (DiR-BOA) into the hydrophobic core of HPPS, we obtained the FMT and CT signals simultaneously. Increased accumulation of the nanoparticles in the tumor lesions was achieved through the effect of the tumor-targeting peptide on the surface of nanoparticle. It resulted in excellent contrast between lesions and normal tissues. Together, the abilities to sensitively separate the lesions from adjacent normal tissues with the aid of a FMT/CT dual-model imaging approach make the targeting nanoparticles a useful tool for the diagnostics of breast cancer.

  10. Chest pain: coronary CT in the ER

    PubMed Central

    Maffei, Erica; Seitun, Sara; Guaricci, Andrea I

    2016-01-01

    Cardiac CT has developed into a robust clinical tool during the past 15 years. Of the fields in which the potential of cardiac CT has raised more interest is chest pain in acute settings. In fact, the possibility to exclude with high reliability obstructive coronary artery disease (CAD) in patients at low-to-intermediate risk is of great interest both from the clinical standpoint and from the management standpoint. Several other modalities, with or without imaging, have been used during the past decades in the settings of new onset chest pain or in acute chest pain for both diagnostic and prognostic assessment of CAD. Each one has advantages and disadvantages. Most imaging modalities also focus on inducible ischaemia to guide referral to invasive coronary angiography. The advent of cardiac CT has introduced a new practice diagnostic paradigm, being the most accurate non-invasive method for identification and exclusion of CAD. Furthermore, the detection of subclinical CAD and plaque imaging offer the opportunity to improve risk stratification. Moreover, recent advances of the latest generation CT scanners allow combining both anatomical and functional imaging by stress myocardial perfusion. The role of cardiac CT in acute settings is already important and will become progressively more important in the coming years. PMID:26866681

  11. Micro-CT of rodents: state-of-the-art and future perspectives

    PubMed Central

    Clark, D. P.; Badea, C. T.

    2014-01-01

    Micron-scale computed tomography (micro-CT) is an essential tool for phenotyping and for elucidating diseases and their therapies. This work is focused on preclinical micro-CT imaging, reviewing relevant principles, technologies, and applications. Commonly, micro-CT provides high-resolution anatomic information, either on its own or in conjunction with lower-resolution functional imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). More recently, however, advanced applications of micro-CT produce functional information by translating clinical applications to model systems (e.g. measuring cardiac functional metrics) and by pioneering new ones (e.g. measuring tumor vascular permeability with nanoparticle contrast agents). The primary limitations of micro-CT imaging are the associated radiation dose and relatively poor soft tissue contrast. We review several image reconstruction strategies based on iterative, statistical, and gradient sparsity regularization, demonstrating that high image quality is achievable with low radiation dose given ever more powerful computational resources. We also review two contrast mechanisms under intense development. The first is spectral contrast for quantitative material discrimination in combination with passive or actively targeted nanoparticle contrast agents. The second is phase contrast which measures refraction in biological tissues for improved contrast and potentially reduced radiation dose relative to standard absorption imaging. These technological advancements promise to develop micro-CT into a commonplace, functional and even molecular imaging modality. PMID:24974176

  12. MR and CT image fusion for postimplant analysis in permanent prostate seed implants.

    PubMed

    Polo, Alfredo; Cattani, Federica; Vavassori, Andrea; Origgi, Daniela; Villa, Gaetano; Marsiglia, Hugo; Bellomi, Massimo; Tosi, Giampiero; De Cobelli, Ottavio; Orecchia, Roberto

    2004-12-01

    To compare the outcome of two different image-based postimplant dosimetry methods in permanent seed implantation. Between October 1999 and October 2002, 150 patients with low-risk prostate carcinoma were treated with (125)I and (103)Pd in our institution. A CT-MRI image fusion protocol was used in 21 consecutive patients treated with exclusive brachytherapy. The accuracy and reproducibility of the method was calculated, and then the CT-based dosimetry was compared with the CT-MRI-based dosimetry using the dose-volume histogram (DVH) related parameters recommended by the American Brachytherapy Society and the American Association of Physicists in Medicine. Our method for CT-MRI image fusion was accurate and reproducible (median shift <1 mm). Differences in prostate volume were found, depending on the image modality used. Quality assurance DVH-related parameters strongly depended on the image modality (CT vs. CT-MRI): V(100) = 82% vs. 88%, p < 0.05. D(90) = 96% vs. 115%, p < 0.05. Those results depend on the institutional implant technique and reflect the importance of lowering inter- and intraobserver discrepancies when outlining prostate and organs at risk for postimplant dosimetry. Computed tomography-MRI fused images allow accurate determination of prostate size, significantly improving the dosimetric evaluation based on DVH analysis. This provides a consistent method to judge a prostate seed implant's quality.

  13. Musculoskeletal Imaging Findings of Hematologic Malignancies.

    PubMed

    Navarro, Shannon M; Matcuk, George R; Patel, Dakshesh B; Skalski, Matthew; White, Eric A; Tomasian, Anderanik; Schein, Aaron J

    2017-01-01

    Hematologic malignancies comprise a set of prevalent yet clinically diverse diseases that can affect every organ system. Because blood components originate in bone marrow, it is no surprise that bone marrow is a common location for both primary and metastatic hematologic neoplasms. Findings of hematologic malignancy can be seen with most imaging modalities including radiography, computed tomography (CT), technetium 99m ( 99m Tc) methylene diphosphonate (MDP) bone scanning, fluorine 18 ( 18 F) fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT, and magnetic resonance (MR) imaging. Because of the diversity of imaging appearances and clinical behavior of this spectrum of disease, diagnosis can be challenging, and profound understanding of the underlying pathophysiologic changes and current treatment modalities can be daunting. The appearance of normal bone marrow at MR imaging and FDG PET/CT is also varied due to dynamic compositional changes with normal aging and in response to hematologic demand or treatment, which can lead to false-positive interpretation of imaging studies. In this article, the authors review the normal maturation and imaging appearance of bone marrow. Focusing on lymphoma, leukemia, and multiple myeloma, they present the spectrum of imaging findings of hematologic malignancy affecting the musculoskeletal system and the current imaging tools available to the radiologist. They discuss the imaging findings of posttreatment bone marrow and review commonly used staging systems and consensus recommendations for appropriate imaging for staging, management, and assessment of clinical remission. © RSNA, 2017.

  14. Cone beam tomographic imaging anatomy of the maxillofacial region.

    PubMed

    Angelopoulos, Christos

    2008-10-01

    Multiplanar imaging is a fairly new concept in diagnostic imaging available with a number of contemporary imaging modalities such as CT, MR imaging, diagnostic ultrasound, and others. This modality allows reconstruction of images in different planes (flat or curved) from a volume of data that was acquired previously. This concept makes the diagnostic process more interactive, and proper use may increase diagnostic potential. At the same time, the complexity of the anatomical structures on the maxillofacial region may make it harder for these images to be interpreted. This article reviews the anatomy of maxillofacial structures in planar imaging, and more specifically cone-beam CT images.

  15. 18 F-sodium fluoride positron emission tomography of the equine distal limb: Exploratory study in three horses.

    PubMed

    Spriet, M; Espinosa, P; Kyme, A Z; Phillips, K L; Katzman, S A; Galuppo, L D; Stepanov, P; Beylin, D

    2018-01-01

    Positron emission tomography (PET) is a cross-sectional, functional imaging modality that has recently become available to the horse. The use of 18 F-sodium fluoride ( 18 F-NaF), a PET bone tracer, has not previously been reported in this species. To assess the feasibility of 18 F-NaF PET in the equine distal limb and explore possible applications in the horse in comparison with other imaging modalities. Exploratory descriptive study involving three research horses. Horses were placed under general anaesthesia prior to intravenous (i.v.) administration of 1.5 MBq/kg of 18 F-NaF. Positron emission tomography imaging of both front feet and fetlocks was performed using a portable scanner. Computed tomography (CT) of the distal limb was performed under a separate anaesthetic episode. Bone scintigraphy and magnetic resonance imaging (MRI) were subsequently performed under standing sedation. Images obtained from PET and other imaging modalities were independently assessed and the results correlated. Positron emission tomography images were obtained without complication. The radiation exposure rate was similar to equine bone scintigraphy. Positron emission tomography detected focal 18 F-NaF uptake in areas where other imaging modalities did not identify any abnormalities. This included sites of ligamentous attachment, subchondral compact bone plate and the flexor cortex of the navicular bone. 18 F-NaF uptake was identified in some, but not all, osseous fragments and areas of osseous formation, suggesting a distinction between active and inactive lesions. A small number of horses were included and histopathology was not available. 18 F-NaF PET imaging of the equine distal limb provides useful additional information when compared with CT, MRI and scintigraphy and has the potential for both research and clinical applications in the horse. The Summary is available in Chinese - see Supporting information. © 2017 EVJ Ltd.

  16. State-of-the-art: Radiological investigation of pleural disease.

    PubMed

    Hallifax, R J; Talwar, A; Wrightson, J M; Edey, A; Gleeson, F V

    2017-03-01

    Pleural disease is common. Radiological investigation of pleural effusion, thickening, masses, and pneumothorax is key in diagnosing and determining management. Conventional chest radiograph (CXR) remains as the initial investigation of choice for patients with suspected pleural disease. When abnormalities are detected, thoracic ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) can each play important roles in further investigation, but appropriate modality selection is critical. US adds significant value in the identification of pleural fluid and pleural nodularity, guiding pleural procedures and, increasingly, as "point of care" assessment for pneumothorax, but is highly operator dependent. CT scan is the modality of choice for further assessment of pleural disease: Characterising pleural thickening, some pleural effusions and demonstration of homogeneity of pleural masses and areas of fatty attenuation or calcification. MRI has specific utility for soft tissue abnormalities and may have a role for younger patients requiring follow-up serial imaging. MRI and PET/CT may provide additional information in malignant pleural disease regarding prognosis and response to therapy. This article summarises existing techniques, highlighting the benefits and applications of these different imaging modalities and provides an up to date review of the evidence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image.

    PubMed

    Xiang, Lei; Wang, Qian; Nie, Dong; Zhang, Lichi; Jin, Xiyao; Qiao, Yu; Shen, Dinggang

    2018-07-01

    Recently, more and more attention is drawn to the field of medical image synthesis across modalities. Among them, the synthesis of computed tomography (CT) image from T1-weighted magnetic resonance (MR) image is of great importance, although the mapping between them is highly complex due to large gaps of appearances of the two modalities. In this work, we aim to tackle this MR-to-CT synthesis task by a novel deep embedding convolutional neural network (DECNN). Specifically, we generate the feature maps from MR images, and then transform these feature maps forward through convolutional layers in the network. We can further compute a tentative CT synthesis from the midway of the flow of feature maps, and then embed this tentative CT synthesis result back to the feature maps. This embedding operation results in better feature maps, which are further transformed forward in DECNN. After repeating this embedding procedure for several times in the network, we can eventually synthesize a final CT image in the end of the DECNN. We have validated our proposed method on both brain and prostate imaging datasets, by also comparing with the state-of-the-art methods. Experimental results suggest that our DECNN (with repeated embedding operations) demonstrates its superior performances, in terms of both the perceptive quality of the synthesized CT image and the run-time cost for synthesizing a CT image. Copyright © 2018. Published by Elsevier B.V.

  18. Dual Pathologies of Parathyroid Adenoma and Papillary Thyroid Cancer on Fluorocholine and Fluorodeoxyglucose PET/CT.

    PubMed

    Thanseer, N T K; Bhadada, Sanjay Kumar; Sood, Ashwani; Parihar, Ashwin Singh; Dahiya, Divya; Singh, Priyanka; Basher, Rajender Kumar; Das, Ashim; Mittal, Bhagwant R

    2018-04-01

    18 F-Fluorocholine (FCH) PET/CT is evolving as a functional imaging modality for the preoperative imaging of abnormal parathyroid tissue(s) helping to localize eutopic and ectopic parathyroid tissue and limit the extent of surgery. FCH PET/CT may show incidental uptake in various thyroid lesions necessitating further evaluation, whereas the role of 18 F-fluorodeoxyglucose (FDG) PET/CT in the detection of incidental thyroid nodules is well documented. The case of a middle-aged woman with dual pathology of parathyroid adenoma and papillary thyroid cancer detected on FCH and FDG PET/CT is presented.

  19. A dedicated breast-PET/CT scanner: Evaluation of basic performance characteristics.

    PubMed

    Raylman, Raymond R; Van Kampen, Will; Stolin, Alexander V; Gong, Wenbo; Jaliparthi, Gangadhar; Martone, Peter F; Smith, Mark F; Sarment, David; Clinthorne, Neal H; Perna, Mark

    2018-04-01

    Application of advanced imaging techniques, such as PET and x ray CT, can potentially improve detection of breast cancer. Unfortunately, both modalities have challenges in the detection of some lesions. The combination of the two techniques, however, could potentially lead to an overall improvement in diagnostic breast imaging. The purpose of this investigation is to test the basic performance of a new dedicated breast-PET/CT. The PET component consists of a rotating pair of detectors. Its performance was evaluated using the NEMA NU4-2008 protocols. The CT component utilizes a pulsed x ray source and flat panel detector mounted on the same gantry as the PET scanner. Its performance was assessed using specialized phantoms. The radiation dose to a breast during CT imaging was explored by the measurement of free-in-air kerma and air kerma measured at the center of a 16 cm-diameter PMMA cylinder. Finally, the combined capabilities of the system were demonstrated by imaging of a micro-hot-rod phantom. Overall, performance of the PET component is comparable to many pre-clinical and other dedicated breast-PET scanners. Its spatial resolution is 2.2 mm, 5 mm from the center of the scanner using images created with the single-sliced-filtered-backprojection algorithm. Peak NECR is 24.6 kcps; peak sensitivity is 1.36%; the scatter fraction is 27%. Spatial resolution of the CT scanner is 1.1 lp/mm at 10% MTF. The free-in-air kerma is 2.33 mGy, while the PMMA-air kerma is 1.24 mGy. Finally, combined imaging of a micro-hot-rod phantom illustrated the potential utility of the dual-modality images produced by the system. The basic performance characteristics of a new dedicated breast-PET/CT scanner are good, demonstrating that its performance is similar to current dedicated PET and CT scanners. The potential value of this system is the capability to produce combined duality-modality images that could improve detection of breast disease. The next stage in development of this system is testing with more advanced phantoms and human subjects. © 2018 American Association of Physicists in Medicine.

  20. Circulating tumor DNA as a liquid biopsy target for detection of pancreatic cancer

    PubMed Central

    Takai, Erina; Yachida, Shinichi

    2016-01-01

    Most pancreatic cancer patients present with advanced metastatic disease, resulting in extremely poor 5-year survival, mainly because of the lack of a reliable modality for early detection and limited therapeutic options for advanced disease. Therefore, there is a need for minimally-invasive diagnostic tools for detecting pancreatic cancer at an early stage, when curative surgery and also novel therapeutic approaches including precision medicine may be feasible. The “liquid biopsy” addresses these unmet clinical needs based on the concept that simple peripheral blood sampling and detection of circulating tumor DNA (ctDNA) could provide diagnostic information. In this review, we provide an overview of the current status of blood-based tests for diagnosis of pancreatic cancer and the potential utility of ctDNA for precision medicine. We also discuss challenges that remain to be addressed in developing practical ctDNA-based liquid biopsy approaches for early diagnosis of pancreatic cancer. PMID:27784960

  1. Circulating tumor DNA as a liquid biopsy target for detection of pancreatic cancer.

    PubMed

    Takai, Erina; Yachida, Shinichi

    2016-10-14

    Most pancreatic cancer patients present with advanced metastatic disease, resulting in extremely poor 5-year survival, mainly because of the lack of a reliable modality for early detection and limited therapeutic options for advanced disease. Therefore, there is a need for minimally-invasive diagnostic tools for detecting pancreatic cancer at an early stage, when curative surgery and also novel therapeutic approaches including precision medicine may be feasible. The "liquid biopsy" addresses these unmet clinical needs based on the concept that simple peripheral blood sampling and detection of circulating tumor DNA (ctDNA) could provide diagnostic information. In this review, we provide an overview of the current status of blood-based tests for diagnosis of pancreatic cancer and the potential utility of ctDNA for precision medicine. We also discuss challenges that remain to be addressed in developing practical ctDNA-based liquid biopsy approaches for early diagnosis of pancreatic cancer.

  2. [Coronary artery disease and cardiac ischemic disease: two different pathologies with different diagnostic procedures].

    PubMed

    Vallejo, Enrique

    2009-01-01

    Coronary artery disease (CAD) remains the leading cause of death in the Western world, and early detection of CAD allows optimal therapeutic management. The gold standard has always been invasive coronary angiography, but over the years various non-invasive techniques have been developed to detect CAD, including cardiac SPECT and cardiac computed tomography (Cardiac CT). Cardiac SPECT permitted visualization of myocardial perfusion and have focused on the assessment of the hemodynamic consequences of obstructive coronary lesions as a marker of CAD. Cardiac CT focuses on the detection of atherosclerosis rather than ischemia, and permit detection of CAD at an earlier stage. Objectives of this manuscript are to discuss the clinical experience with both modalities and to provide a critical review of the strengths and limitations of Cardiac SPECT and Cardiac CT for the diagnostic and management of patients with suspected CAD or cardiac ischemic disease.

  3. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y. X.; Van Reeth, E.; Poh, C. L., E-mail: clpoh@ntu.edu.sg

    2015-08-15

    Purpose: Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors’ proposed approach. Methods: A novel hybrid approach based on deformable image registration (DIR) and finite elementmore » method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. Results: The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors’ proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. Conclusions: The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.« less

  4. Risk Factor Differences in Calcified and Non-Calcified Aortic Plaque: The Framingham Heart Study

    PubMed Central

    Chuang, Michael L.; Gona, Philimon; Oyama-Manabe, Noriko; Manders, Emily S.; Salton, Carol J.; Hoffmann, Udo; Manning, Warren J.; O'Donnell, Christopher J.

    2014-01-01

    Objective Determine the prevalence and risk factor (RF) correlates of aortic plaque (AP) detected by cardiovascular magnetic resonance (CMR), which mainly shows noncalcified plaques, and by noncontrast computed tomography (CT), which best depicts calcified plaques, in community-dwelling adults. Approach and Results 1016 Framingham Offspring cohort members (64±9y, 474 men) underwent CMR and CT of the aorta. Potential RFs for AP (age; sex; BMI; blood pressure; LDL and HDL cholesterol; fasting glucose; C-reactive protein; prevalent hypertension, diabetes, smoking; use of antihypertensive, diabetes or lipid-lowering drugs) were compared between participants with zero versus nonzero AP by CMR and by CT. Candidate RFs attaining p<0.05 for difference with either imaging modality were entered into multivariable logistic regression models adjusting for age, sex and other RFs. Odds ratios were calculated for modality-specific prevalence of AP. Associations between RFs and continuous measures of AP were assessed using Tobit regression. Prevalences of CMR and CT AP were 49% and 82% respectively. AP burdens by CMR and CT were correlated, r=0.28, p<0.0001. Increasing age and smoking were associated with prevalent AP by both CMR and CT. Additionally, prevalent AP by CMR was associated with female sex and fasting glucose, prevalent AP by CT with hypertension treatment and with adverse lipid profile. Conclusions AP by CMR and CT are both associated with smoking and increasing age, but other risk factors differ between calcified and noncalcified AP. The relative predictive value of AP detected by CMR versus by CT for incident cardiovascular events remains to be determined. PMID:24833796

  5. MIND: modality independent neighbourhood descriptor for multi-modal deformable registration.

    PubMed

    Heinrich, Mattias P; Jenkinson, Mark; Bhushan, Manav; Matin, Tahreema; Gleeson, Fergus V; Brady, Sir Michael; Schnabel, Julia A

    2012-10-01

    Deformable registration of images obtained from different modalities remains a challenging task in medical image analysis. This paper addresses this important problem and proposes a modality independent neighbourhood descriptor (MIND) for both linear and deformable multi-modal registration. Based on the similarity of small image patches within one image, it aims to extract the distinctive structure in a local neighbourhood, which is preserved across modalities. The descriptor is based on the concept of image self-similarity, which has been introduced for non-local means filtering for image denoising. It is able to distinguish between different types of features such as corners, edges and homogeneously textured regions. MIND is robust to the most considerable differences between modalities: non-functional intensity relations, image noise and non-uniform bias fields. The multi-dimensional descriptor can be efficiently computed in a dense fashion across the whole image and provides point-wise local similarity across modalities based on the absolute or squared difference between descriptors, making it applicable for a wide range of transformation models and optimisation algorithms. We use the sum of squared differences of the MIND representations of the images as a similarity metric within a symmetric non-parametric Gauss-Newton registration framework. In principle, MIND would be applicable to the registration of arbitrary modalities. In this work, we apply and validate it for the registration of clinical 3D thoracic CT scans between inhale and exhale as well as the alignment of 3D CT and MRI scans. Experimental results show the advantages of MIND over state-of-the-art techniques such as conditional mutual information and entropy images, with respect to clinically annotated landmark locations. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Association of follow-up infarct volume with functional outcome in acute ischemic stroke: a pooled analysis of seven randomized trials.

    PubMed

    Boers, Anna M M; Jansen, Ivo G H; Beenen, Ludo F M; Devlin, Thomas G; San Roman, Luis; Heo, Ji Hoe; Ribó, Marc; Brown, Scott; Almekhlafi, Mohammed A; Liebeskind, David S; Teitelbaum, Jeanne; Lingsma, Hester F; van Zwam, Wim H; Cuadras, Patricia; du Mesnil de Rochemont, Richard; Beaumont, Marine; Brown, Martin M; Yoo, Albert J; van Oostenbrugge, Robert J; Menon, Bijoy K; Donnan, Geoffrey A; Mas, Jean Louis; Roos, Yvo B W E M; Oppenheim, Catherine; van der Lugt, Aad; Dowling, Richard J; Hill, Michael D; Davalos, Antoni; Moulin, Thierry; Agrinier, Nelly; Demchuk, Andrew M; Lopes, Demetrius K; Aja Rodríguez, Lucia; Dippel, Diederik W J; Campbell, Bruce C V; Mitchell, Peter J; Al-Ajlan, Fahad S; Jovin, Tudor G; Madigan, Jeremy; Albers, Gregory W; Soize, Sebastien; Guillemin, Francis; Reddy, Vivek K; Bracard, Serge; Blasco, Jordi; Muir, Keith W; Nogueira, Raul G; White, Phil M; Goyal, Mayank; Davis, Stephen M; Marquering, Henk A; Majoie, Charles B L M

    2018-04-07

    Follow-up infarct volume (FIV) has been recommended as an early indicator of treatment efficacy in patients with acute ischemic stroke. Questions remain about the optimal imaging approach for FIV measurement. To examine the association of FIV with 90-day modified Rankin Scale (mRS) score and investigate its dependency on acquisition time and modality. Data of seven trials were pooled. FIV was assessed on follow-up (12 hours to 2 weeks) CT or MRI. Infarct location was defined as laterality and involvement of the Alberta Stroke Program Early CT Score regions. Relative quality and strength of multivariable regression models of the association between FIV and functional outcome were assessed. Dependency of imaging modality and acquisition time (≤48 hours vs >48 hours) was evaluated. Of 1665 included patients, 83% were imaged with CT. Median FIV was 41 mL (IQR 14-120). A large FIV was associated with worse functional outcome (OR=0.88(95% CI 0.87 to 0.89) per 10 mL) in adjusted analysis. A model including FIV, location, and hemorrhage type best predicted mRS score. FIV of ≥133 mL was highly specific for unfavorable outcome. FIV was equally strongly associated with mRS score for assessment on CT and MRI, even though large differences in volume were present (48 mL (IQR 15-131) vs 22 mL (IQR 8-71), respectively). Associations of both early and late FIV assessments with outcome were similar in strength (ρ=0.60(95% CI 0.56 to 0.64) and ρ=0.55(95% CI 0.50 to 0.60), respectively). In patients with an acute ischemic stroke due to a proximal intracranial occlusion of the anterior circulation, FIV is a strong independent predictor of functional outcome and can be assessed before 48 hours, oneither CT or MRI. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. What are the advantages and disadvantages of imaging modalities to diagnose wear-related corrosion problems?

    PubMed

    Nam, Denis; Barrack, Robert L; Potter, Hollis G

    2014-12-01

    Adverse tissue reactions are known to occur after total hip arthroplasty using both conventional and metal-on-metal (MoM) bearings and after MoM hip resurfacing arthroplasty (SRA). A variety of imaging tools, including ultrasound (US), CT, and MRI, have been used to diagnose problems associated with wear after MoM hip arthroplasty and corrosion at the head-trunnion junction; however, the relative advantages and disadvantages of each remain a source of controversy. The purposes of this review were to evaluate the advantages and disadvantages of (1) US; (2) CT; and (3) MRI as diagnostic tools in the assessment of wear-related corrosion problems after hip arthroplasty. A systematic literature review was performed through Medline, EMBASE, Scopus CINAHL, and the Cochrane Library without time restriction using search terms related to THA, SRA, US, CT, MRI, adverse tissue reactions, and corrosion. Inclusion criteria were Level I through IV studies in the English language, whereas expert opinions and case reports were excluded. The quality of included studies was judged by their level of evidence, method of intervention allocation, outcome assessments, and followup of patients. Four hundred ninety unique results were returned and 40 articles were reviewed. The prevalence of adverse local tissue reactions in both asymptomatic and symptomatic patients varies based on the method of evaluation (US, CT, MRI) and imaging protocols. US is accessible and relatively inexpensive, yet has not been used to report synovial thicknesses in the setting of wear-related corrosion. CT scans are highly sensitive and provide information regarding component positioning but are limited in providing enhanced soft tissue contrast and require ionizing radiation. MRI has shown promise in predicting both the presence and severity of adverse local tissue reactions but is more expensive. All three imaging modalities have a role in the assessment of adverse local tissue reactions and tribocorrosion after total hip arthroplasty. Although US may serve as a screening technique for the detection of larger periprosthetic collections, only MRI has been shown to predict the severity of tissue destruction found at revision and correlate to the degree of tissue necrosis at histologic evaluation.

  8. Clinical Utility of SPECT Neuroimaging in the Diagnosis and Treatment of Traumatic Brain Injury: A Systematic Review

    PubMed Central

    Raji, Cyrus A.; Tarzwell, Robert; Pavel, Dan; Schneider, Howard; Uszler, Michael; Thornton, John; van Lierop, Muriel; Cohen, Phil; Amen, Daniel G.; Henderson, Theodore

    2014-01-01

    Purpose This systematic review evaluated the clinical utility of single photon emission computed tomography (SPECT) in traumatic brain injury (TBI). Methods After defining a PICO Statement (Population, Intervention, Comparison and Outcome Statement), PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria were applied to identify 1600 articles. After screening, 374 articles were eligible for review. Inclusion for review was focus on SPECT in the setting of mild, moderate, or severe TBI with cerebral lobar specificity of SPECT findings. Other inclusion criteria were comparison modalities in the same subjects and articles in English. Foreign language articles, SPECT studies that did not include comparison modalities, and case reports were not included for review. Results We identified 19 longitudinal and 52 cross-sectional studies meeting inclusion criteria. Three longitudinal studies examined diagnostic predictive value. The first showed positive predictive value increases from initial SPECT scan shortly after trauma to one year follow up scans, from 59% to 95%. Subsequent work replicated these results in a larger cohort. Longitudinal and cross sectional studies demonstrated SPECT lesion localization not detected by CT or MRI. The most commonly abnormal regions revealed by SPECT in cross-sectional studies were frontal (94%) and temporal (77%) lobes. SPECT was found to outperform both CT and MRI in both acute and chronic imaging of TBI, particularly mild TBI. It was also found to have a near 100% negative predictive value. Conclusions This review demonstrates Level IIA evidence (at least one non-randomized controlled trial) for the value of SPECT in TBI. Given its advantages over CT and MRI in the detection of mild TBI in numerous studies of adequate quality, and given its excellent negative predictive value, it may be an important second test in settings where CT or MRI are negative after a closed head injury with post-injury neurological or psychiatric symptoms. PMID:24646878

  9. Clinical utility of SPECT neuroimaging in the diagnosis and treatment of traumatic brain injury: a systematic review.

    PubMed

    Raji, Cyrus A; Tarzwell, Robert; Pavel, Dan; Schneider, Howard; Uszler, Michael; Thornton, John; van Lierop, Muriel; Cohen, Phil; Amen, Daniel G; Henderson, Theodore

    2014-01-01

    This systematic review evaluated the clinical utility of single photon emission computed tomography (SPECT) in traumatic brain injury (TBI). After defining a PICO Statement (Population, Intervention, Comparison and Outcome Statement), PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria were applied to identify 1600 articles. After screening, 374 articles were eligible for review. Inclusion for review was focus on SPECT in the setting of mild, moderate, or severe TBI with cerebral lobar specificity of SPECT findings. Other inclusion criteria were comparison modalities in the same subjects and articles in English. Foreign language articles, SPECT studies that did not include comparison modalities, and case reports were not included for review. We identified 19 longitudinal and 52 cross-sectional studies meeting inclusion criteria. Three longitudinal studies examined diagnostic predictive value. The first showed positive predictive value increases from initial SPECT scan shortly after trauma to one year follow up scans, from 59% to 95%. Subsequent work replicated these results in a larger cohort. Longitudinal and cross sectional studies demonstrated SPECT lesion localization not detected by CT or MRI. The most commonly abnormal regions revealed by SPECT in cross-sectional studies were frontal (94%) and temporal (77%) lobes. SPECT was found to outperform both CT and MRI in both acute and chronic imaging of TBI, particularly mild TBI. It was also found to have a near 100% negative predictive value. This review demonstrates Level IIA evidence (at least one non-randomized controlled trial) for the value of SPECT in TBI. Given its advantages over CT and MRI in the detection of mild TBI in numerous studies of adequate quality, and given its excellent negative predictive value, it may be an important second test in settings where CT or MRI are negative after a closed head injury with post-injury neurological or psychiatric symptoms.

  10. Professional efficiencies for diagnostic imaging services rendered by different physicians: analysis of recent medicare multiple procedure payment reduction policy.

    PubMed

    Duszak, Richard; Silva, Ezequiel; Kim, Angela J; Barr, Robert M; Donovan, William D; Kassing, Pamela; McGinty, Geraldine; Allen, Bibb

    2013-09-01

    The aim of this study was to quantify potential physician work efficiencies and appropriate multiple procedure payment reductions for different same-session diagnostic imaging studies interpreted by different physicians in the same group practice. Medicare Resource-Based Relative Value Scale data were analyzed to determine the relative contributions of various preservice, intraservice, and postservice physician diagnostic imaging work activities. An expert panel quantified potential duplications in professional work activities when separate examinations were performed during the same session by different physicians within the same group practice. Maximum potential work duplications for various imaging modalities were calculated and compared with those used as the basis of CMS payment policy. No potential intraservice work duplication was identified when different examination interpretations were rendered by different physicians in the same group practice. When multiple interpretations within the same modality were rendered by different physicians, maximum potential duplicated preservice and postservice activities ranged from 5% (radiography, fluoroscopy, and nuclear medicine) to 13.6% (CT). Maximum mean potential duplicated work relative value units ranged from 0.0049 (radiography and fluoroscopy) to 0.0413 (CT). This equates to overall potential total work reductions ranging from 1.39% (nuclear medicine) to 2.73% (CT). Across all modalities, this corresponds to maximum Medicare professional component physician fee reductions of 1.23 ± 0.38% (range, 0.95%-1.87%) for services within the same modality, much less than an order of magnitude smaller than those implemented by CMS. For services from different modalities, potential duplications were too small to quantify. Although potential efficiencies exist in physician preservice and postservice work when same-session, same-modality imaging services are rendered by different physicians in the same group practice, these are relatively minuscule and have been grossly overestimated by current CMS payment policy. Greater transparency and methodologic rigor in government payment policy development are warranted. Copyright © 2013 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  11. Trends in the utilization of computed tomography and cardiac catheterization among children with congenital heart disease.

    PubMed

    Yang, Justin Cheng-Ta; Lin, Ming-Tai; Jaw, Fu-Shan; Chen, Shyh-Jye; Wang, Jou-Kou; Shih, Tiffany Ting-Fang; Wu, Mei-Hwan; Li, Yiu-Wah

    2015-11-01

    Pediatric cardiac computed tomography (CT) is a noninvasive imaging modality used to clearly demonstrate the anatomical detail of congenital heart diseases. We investigated the impact of cardiac CT on the utilization of cardiac catheterization among children with congenital heart disease. The study sample consisted of 2648 cardiac CT and 3814 cardiac catheterization from 1999 to 2009 for congenital heart diseases. Diagnoses were categorized into 11 disease groups. The numbers of examination, according to the different modalities, were compared using temporal trend analyses. The estimated effective radiation doses (mSv) of CT and catheterization were calculated and compared. The number of CT scans and interventional catheterizations had a slight annual increase of 1.2% and 2.7%, respectively, whereas that of diagnostic catheterization decreased by 6.2% per year. Disease groups fell into two categories according to utilization trend differences between CT and diagnostic catheterization. The increased use of CT reduces the need for diagnostic catheterization in patients with atrioventricular connection disorder, coronary arterial disorder, great vessel disorder, septal disorder, tetralogy of Fallot, and ventriculoarterial connection disorder. Clinicians choose either catheterization or CT, or both examinations, depending on clinical conditions, in patients with semilunar valvular disorder, heterotaxy, myocardial disorder, pericardial disorder, and pulmonary vein disorder. The radiation dose of CT was lower than that of diagnostic cardiac catheterization in all age groups. The use of noninvasive CT in children with selected heart conditions might reduce the use of diagnostic cardiac catheterization. This may release time and facilities within the catheterization laboratory to meet the increasing demand for cardiac interventions. Copyright © 2014. Published by Elsevier B.V.

  12. Feasibility of using an inversion-recovery ultrashort echo time (UTE) sequence for quantification of glenoid bone loss.

    PubMed

    Ma, Ya-Jun; West, Justin; Nazaran, Amin; Cheng, Xin; Hoenecke, Heinz; Du, Jiang; Chang, Eric Y

    2018-02-02

    To utilize the 3D inversion recovery prepared ultrashort echo time with cones readout (IR-UTE-Cones) MRI technique for direct imaging of lamellar bone with comparison to the gold standard of computed tomography (CT). CT and MRI was performed on 11 shoulder specimens and three patients. Five specimens had imaging performed before and after glenoid fracture (osteotomy). 2D and 3D volume-rendered CT images were reconstructed and conventional T1-weighted and 3D IR-UTE-Cones MRI techniques were performed. Glenoid widths and defects were independently measured by two readers using the circle method. Measurements were compared with those made from 3D CT datasets. Paired-sample Student's t tests and intraclass correlation coefficients were performed. In addition, 2D CT and 3D IR-UTE-Cones MRI datasets were linearly registered, digitally overlaid, and compared in consensus by these two readers. Compared with the reference standard (3D CT), glenoid bone diameter measurements made on 2D CT and 3D IR-UTE-Cones were not significantly different for either reader, whereas T1-weighted images underestimated the diameter (mean difference of 0.18 cm, p = 0.003 and 0.16 cm, p = 0.022 for readers 1 and 2, respectively). However, mean margin of error for measuring glenoid bone loss was small for all modalities (range, 1.46-3.92%). All measured ICCs were near perfect. Digitally registered 2D CT and 3D IR-UTE-Cones MRI datasets yielded essentially perfect congruity between the two modalities. The 3D IR-UTE-Cones MRI technique selectively visualizes lamellar bone, produces similar contrast to 2D CT imaging, and compares favorably to measurements made using 2D and 3D CT.

  13. Diagnostic imaging to detect and evaluate response to therapy in bone metastases from prostate cancer: current modalities and new horizons.

    PubMed

    Evangelista, Laura; Bertoldo, Francesco; Boccardo, Francesco; Conti, Giario; Menchi, Ilario; Mungai, Francesco; Ricardi, Umberto; Bombardieri, Emilio

    2016-07-01

    Different therapeutic options for the management of prostate cancer (PC) have been developed, and some are successful in providing crucial improvement in both survival and quality of life, especially in patients with metastatic castration-resistant PC. In this scenario, diverse combinations of radiopharmaceuticals (for targeting bone, cancer cells and receptors) and nuclear medicine modalities (e.g. bone scan, SPECT, SPECT/CT, PET and PET/CT) are now available for imaging bone metastases. Some radiopharmaceuticals are approved, currently available and used in the routine clinical setting, while others are not registered and are still under evaluation, and should therefore be considered experimental. On the other hand, radiologists have other tools, in addition to CT, that can better visualize bone localization and medullary involvement, such as multimodal MRI. In this review, the authors provide an overview of current management of advanced PC and discuss the choice of diagnostic modality for the detection of metastatic skeletal lesions in different phases of the disease. In addition to detection of bone metastases, the evaluation of response to therapy is another critical issue, since it remains one of the most important open questions that a multidisciplinary team faces when optimizing the management of PC. The authors emphasize the role of nuclear modalities that can presently be used in clinical practice, and also look at future perspectives based on relevant clinical data with novel radiopharmaceuticals.

  14. Discovering Hominins - Application of Medical Computed Tomography (CT) to Fossil-Bearing Rocks from the Site of Malapa, South Africa.

    PubMed

    Smilg, Jacqueline S; Berger, Lee R

    2015-01-01

    In the South African context, computed tomography (CT) has been used applied to individually prepared fossils and small rocks containing fossils, but has not been utilized on large breccia blocks as a means of discovering fossils, and particularly fossil hominins. Previous attempts at CT imaging of rocks from other South African sites for this purpose yielded disappointing results. For this study, 109 fossil- bearing rocks from the site of Malapa, South Africa were scanned with medical CT prior to manual preparation. The resultant images were assessed for accuracy of fossil identification and characterization against the standard of manual preparation. The accurate identification of fossils, including those of early hominins, that were not visible on the surface of individual blocks, is shown to be possible. The discovery of unexpected fossils is reduced, thus lowering the potential that fossils could be damaged through accidental encounter during routine preparation, or even entirely missed. This study should significantly change the way fossil discovery, recovery and preparation is done in the South African context and has potential for application in other palaeontological situations. Medical CT imaging is shown to be reliable, readily available, cost effective and accurate in finding fossils within matrix conglomerates. Improvements in CT equipment and in CT image quality are such that medical CT is now a viable imaging modality for this palaeontological application.

  15. Discovering Hominins - Application of Medical Computed Tomography (CT) to Fossil-Bearing Rocks from the Site of Malapa, South Africa

    PubMed Central

    Smilg, Jacqueline S.; Berger, Lee R.

    2015-01-01

    In the South African context, computed tomography (CT) has been used applied to individually prepared fossils and small rocks containing fossils, but has not been utilized on large breccia blocks as a means of discovering fossils, and particularly fossil hominins. Previous attempts at CT imaging of rocks from other South African sites for this purpose yielded disappointing results. For this study, 109 fossil- bearing rocks from the site of Malapa, South Africa were scanned with medical CT prior to manual preparation. The resultant images were assessed for accuracy of fossil identification and characterization against the standard of manual preparation. The accurate identification of fossils, including those of early hominins, that were not visible on the surface of individual blocks, is shown to be possible. The discovery of unexpected fossils is reduced, thus lowering the potential that fossils could be damaged through accidental encounter during routine preparation, or even entirely missed. This study should significantly change the way fossil discovery, recovery and preparation is done in the South African context and has potential for application in other palaeontological situations. Medical CT imaging is shown to be reliable, readily available, cost effective and accurate in finding fossils within matrix conglomerates. Improvements in CT equipment and in CT image quality are such that medical CT is now a viable imaging modality for this palaeontological application. PMID:26684299

  16. The impact of FDG-PET/CT in the management of patients with vulvar and vaginal cancer.

    PubMed

    Robertson, N L; Hricak, H; Sonoda, Y; Sosa, R E; Benz, M; Lyons, G; Abu-Rustum, N R; Sala, E; Vargas, H A

    2016-03-01

    To evaluate the changes in prognostic impression and patient management following PET/CT in patients with vulvar and vaginal carcinoma; and to compare PET/CT findings with those of conventional imaging modalities. We summarized prospectively and retrospectively collected data for 50 consecutive patients from our institution that enrolled in the National Oncologic PET Registry and underwent FDG-PET/CT for a suspected or known primary or recurrent vulvar/vaginal cancer. 54/83 (65%) studies included had a diagnosis of vulvar cancer, and the remaining 29/83 (35%), a diagnosis of vaginal cancer. Following FDG-PET/CT, the physician's prognostic impression changed in 51% of cases. A change in patient management, defined as a change to/from a non-interventional strategy (observation or additional imaging), to/from an interventional strategy (biopsy or treatment), was documented in 36% of studies. The electronic records demonstrated that 95% of the management strategies recorded in the physician questionnaires were implemented as planned. MRI and/or CT were performed within one month of the FDG-PET/CT in 20/83 (24%) and 28/83 (34%) cases, respectively. FDG-PET/CT detected nodes suspicious for metastases on 29/83 (35%) studies performed. MRI and CT detected positive nodes on 6 and 11 studies respectively. Distant metastases were identified in 10 cases imaged with FDG-PET and 5 cases that had additional conventional CT imaging. All suspicious lesions seen on CT were positively identified on PET/CT. In 4 cases, an abnormality identified on PET/CT, was not seen on diagnostic CT. FDG-PET/CT may play an important role in the management of vulvar and vaginal carcinoma. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Combining transrectal ultrasound and CT for image-guided adaptive brachytherapy of cervical cancer: Proof of concept.

    PubMed

    Nesvacil, Nicole; Schmid, Maximilian P; Pötter, Richard; Kronreif, Gernot; Kirisits, Christian

    To investigate the feasibility of a treatment planning workflow for three-dimensional image-guided cervix cancer brachytherapy, combining volumetric transrectal ultrasound (TRUS) for target definition with CT for dose optimization to organs at risk (OARs), for settings with no access to MRI. A workflow for TRUS/CT-based volumetric treatment planning was developed, based on a customized system including ultrasound probe, stepper unit, and software for image volume acquisition. A full TRUS/CT-based workflow was simulated in a clinical case and compared with MR- or CT-only delineation. High-risk clinical target volume was delineated on TRUS, and OARs were delineated on CT. Manually defined tandem/ring applicator positions on TRUS and CT were used as a reference for rigid registration of the image volumes. Treatment plan optimization for TRUS target and CT organ volumes was performed and compared to MRI and CT target contours. TRUS/CT-based contouring, applicator reconstruction, image fusion, and treatment planning were feasible, and the full workflow could be successfully demonstrated. The TRUS/CT plan fulfilled all clinical planning aims. Dose-volume histogram evaluation of the TRUS/CT-optimized plan (high-risk clinical target volume D 90 , OARs D 2cm³ for) on different image modalities showed good agreement between dose values reported for TRUS/CT and MRI-only reference contours and large deviations for CT-only target parameters. A TRUS/CT-based workflow for full three-dimensional image-guided cervix brachytherapy treatment planning seems feasible and may be clinically comparable to MRI-based treatment planning. Further development to solve challenges with applicator definition in the TRUS volume is required before systematic applicability of this workflow. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  18. Imaging in traumatic mandibular fractures

    PubMed Central

    Gemal, Hugo; Reed, Duncan

    2017-01-01

    A fracture of the mandible is a common trauma presentation amongst young males and represents one of the most frequently encountered fractured bones within the viscerocranium. Historically, assault was the dominant contributing factor but now due to the increased number of vehicles used per capita, motor vehicle accidents are the primary cause. Mandibular fractures can be classified anatomically, by dentition, by muscle group and by severity. The fracture may also be closed, open, comminuted, displaced or pathological. It is important that the imaging modality used identifies the classification as this will decide definitive treatment. X-ray projections have typically been used to detect a mandibular fracture, but are limited to an anteroposterior (AP), lateral and oblique view in an unstable trauma patient. These views are inadequate to detail the level of fracture displacement and show poor detail of the condylar region. Computer tomography (CT) is the imaging modality of choice when assessing a traumatic mandibular injury and can demonstrate a 100% sensitivity in detecting a fracture. This is through use of a multidetector-row CT, which reduces motion blur and therefore produces accurate coronal and sagittal reconstructions. Furthermore, reconstructive three-dimensional CT images gained from planar views, allows a better understanding of the spatial relationship of the fracture with other anatomical landmarks. This ensures a better appreciation of the severity and classification of a mandibular fracture, which therefore influences operative planning. Ultrasound is another useful modality in detecting a mandibular fracture when the patient is too unstable to be transferred to a CT scanner. The sensitivity however is less in comparison to a CT series of images and provides limited detail on the fracture pattern. Magnetic resonance imaging demonstrates use in assessing soft tissue injury of the temporomandibular joint but this is unlikely to be of priority when initially assessing a trauma patient. PMID:28932703

  19. A comparative study of the deviation of the menton on posteroanterior cephalograms and three-dimensional computed tomography

    PubMed Central

    Lee, Hee Jin; Lee, Sungeun; Lee, Eun Joo; Song, In Ja; Kang, Byung-Cheol; Lee, Jae-Seo; Lim, Hoi-Jeong

    2016-01-01

    Purpose Facial asymmetry has been measured by the severity of deviation of the menton (Me) on posteroanterior (PA) cephalograms and three-dimensional (3D) computed tomography (CT). This study aimed to compare PA cephalograms and 3D CT regarding the severity of Me deviation and the direction of the Me. Materials and Methods PA cephalograms and 3D CT images of 35 patients who underwent orthognathic surgery (19 males and 16 females, with an average age of 22.1±3.3 years) were retrospectively reviewed in this study. By measuring the distance and direction of the Me from the midfacial reference line and the midsagittal plane in the cephalograms and 3D CT, respectively, the x-coordinates (x1 and x2) of the Me were obtained in each image. The difference between the x-coordinates was calculated and statistical analysis was performed to compare the severity of Me deviation and the direction of the Me in the two imaging modalities. Results A statistically significant difference in the severity of Me deviation was found between the two imaging modalities (Δx=2.45±2.03 mm, p<0.05) using the one-sample t-test. Statistically significant agreement was observed in the presence of deviation (k=0.64, p<0.05) and in the severity of Me deviation (k=0.27, p<0.05). A difference in the direction of the Me was detected in three patients (8.6%). The severity of the Me deviation was found to vary according to the imaging modality in 16 patients (45.7%). Conclusion The measurement of Me deviation may be different between PA cephalograms and 3D CT in some patients. PMID:27051637

  20. Compared to X-ray, three-dimensional computed tomography measurement is a reproducible radiographic method for normal proximal humerus.

    PubMed

    Jia, Xiaoyang; Chen, Yanxi; Qiang, Minfei; Zhang, Kun; Li, Haobo; Jiang, Yuchen; Zhang, Yijie

    2016-07-15

    Accurate comprehension of the normal humeral morphology is crucial for anatomical reconstruction in shoulder arthroplasty. However, traditional morphological measurements for humerus were mainly based on cadaver and radiography. The purpose of this study was to provide a series of precise and repeatable parameters of the normal proximal humerus for arthroplasty, based on the three-dimensional (3-D) measurements. Radiographic and 3-D computed tomography (CT) measurements of the proximal humerus were performed in a sample of 120 consecutive adults. Sex differences, two image modalities differences, and correlations of the parameters were evaluated. Intra- and inter-observer reproducibility was evaluated using intraclass correlation coefficients (ICCs). In the male group, all parameters except the neck-shaft angle of humerus, based on 3-D CT images, were greater than those in the female group (P < 0.05). All variables were significantly different between two image modalities (P < 0.05). In 3-D CT measurement, all parameters expect neck-shaft angle had correlation with each other (P < 0.001), particularly between two diameters of the humeral head (r = 0.907). All parameters in the 3-D CT measurement had excellent reproducibility (ICC range, 0.878 to 0.936) that was higher than those in the radiographs (ICC range, 0.741 to 0.858). The present study suggested that 3-D CT was more reproducible than plain radiography in the assessment of morphology of the normal proximal humerus. Therefore, this reproducible modality could be utilized in the preoperative planning. Our data could serve as an effective guideline for humeral component selection and improve the design of shoulder prosthesis.

  1. Liver CT image processing: a short introduction of the technical elements.

    PubMed

    Masutani, Y; Uozumi, K; Akahane, Masaaki; Ohtomo, Kuni

    2006-05-01

    In this paper, we describe the technical aspects of image analysis for liver diagnosis and treatment, including the state-of-the-art of liver image analysis and its applications. After discussion on modalities for liver image analysis, various technical elements for liver image analysis such as registration, segmentation, modeling, and computer-assisted detection are covered with examples performed with clinical data sets. Perspective in the imaging technologies is also reviewed and discussed.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirkhoda, A; Mauro, M.A.; Staab, E.V.

    Fifty-four hemophiliac patients underwent a total of 94 studies using computed tomography (CT), ultrasound, or both. Not only common bleeding sites such as the iliopsoas muscles but also several unusual sites were encountered: these included th iliac bone, bowel wall, mesentery, rectus abdominis muscle, retroperitoneum, bladder wall, and scrotum. Both modalities gave comparable results, and each was helpful in (a) establishing the diagnosis, (b) evaluating the extent of bleeding and its effect on adjacent organs, and (c) demonstrating regression after treatment.

  3. Three-dimensional imaging modalities in endodontics

    PubMed Central

    Mao, Teresa

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337

  4. Noninvasive Imaging of the Biliary System Relevant to Percutaneous Interventions

    PubMed Central

    Thomas, Stephen; Jahangir, Kayleen

    2016-01-01

    Clinical data such as history, physical examination, and laboratory tests are useful in identifying patients with biliary obstruction and biliary sources of infection. However, if intervention is planned, noninvasive imaging is needed to confirm the presence, location, and extent of the disease process. Currently, the most commonly available and used noninvasive modalities are ultrasound (US), computed tomography (CT), magnetic resonance (MR), and nuclear medicine hepatobiliary scintigraphy (HIDA). US is quick, portable, readily available, and is commonly the first imaging modality used when biliary pathology is suspected. It is excellent in the detection of cholelithiasis and acute cholecystitis but is limited in detecting choledocholithiasis. CT is excellent at detecting infected postoperative fluid collections, bilomas, biliary obstruction, and biliary infection but is limited in the detection of cholelithiasis. Therefore, US may be more useful than CT for the initial screening of acute biliary disease. MR has inherent advantages over CT, as it does not use ionizing radiation, can be done without intravenous contrast, and its detection of cholelithiasis is not affected by the internal composition of the stone. Magnetic resonance cholangiopancreatography can be used to determine the cause and location of biliary obstruction but is limited in the detection of small stones and the evaluation of the biliary tract near the ampulla. HIDA is used to evaluate for cholecystitis, biliary obstruction, and bile leaks. The main limitation is its lack of anatomical detail, and it is therefore frequently performed in conjunction with other described modalities. PMID:27904246

  5. Is appendiceal CT scan overused for evaluating patients with right lower quadrant pain?

    PubMed

    Safran, D B; Pilati, D; Folz, E; Oller, D

    2001-05-01

    Reports citing excellent sensitivity, specificity, and predictive accuracy of focused appendiceal computed tomography (CT) and showing an overall reduction in resource use and nontherapeutic laparotomies have led to increasing use of that imaging modality. Diagnostic algorithms have begun to incorporate appendiceal CT for patients presenting to the emergency department with right lower quadrant pain. We present a series of 4 cases in which use of appendiceal CT ultimately led to increased cost, resource use, and complexity in patient care. The results of these cases support an argument against unbridled use of appendiceal CT scanning and reinforce the need for clinical evaluation by the operating surgeon before routine performance of appendiceal CT scan.

  6. Quantification of atherosclerotic plaque activity and vascular inflammation using [18-F] fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT).

    PubMed

    Mehta, Nehal N; Torigian, Drew A; Gelfand, Joel M; Saboury, Babak; Alavi, Abass

    2012-05-02

    Conventional non-invasive imaging modalities of atherosclerosis such as coronary artery calcium (CAC) and carotid intimal medial thickness (C-IMT) provide information about the burden of disease. However, despite multiple validation studies of CAC, and C-IMT, these modalities do not accurately assess plaque characteristics, and the composition and inflammatory state of the plaque determine its stability and, therefore, the risk of clinical events. [(18)F]-2-fluoro-2-deoxy-D-glucose (FDG) imaging using positron-emission tomography (PET)/computed tomography (CT) has been extensively studied in oncologic metabolism. Studies using animal models and immunohistochemistry in humans show that FDG-PET/CT is exquisitely sensitive for detecting macrophage activity, an important source of cellular inflammation in vessel walls. More recently, we and others have shown that FDG-PET/CT enables highly precise, novel measurements of inflammatory activity of activity of atherosclerotic plaques in large and medium-sized arteries. FDG-PET/CT studies have many advantages over other imaging modalities: 1) high contrast resolution; 2) quantification of plaque volume and metabolic activity allowing for multi-modal atherosclerotic plaque quantification; 3) dynamic, real-time, in vivo imaging; 4) minimal operator dependence. Finally, vascular inflammation detected by FDG-PET/CT has been shown to predict cardiovascular (CV) events independent of traditional risk factors and is also highly associated with overall burden of atherosclerosis. Plaque activity by FDG-PET/CT is modulated by known beneficial CV interventions such as short term (12 week) statin therapy as well as longer term therapeutic lifestyle changes (16 months). The current methodology for quantification of FDG uptake in atherosclerotic plaque involves measurement of the standardized uptake value (SUV) of an artery of interest and of the venous blood pool in order to calculate a target to background ratio (TBR), which is calculated by dividing the arterial SUV by the venous blood pool SUV. This method has shown to represent a stable, reproducible phenotype over time, has a high sensitivity for detection of vascular inflammation, and also has high inter-and intra-reader reliability. Here we present our methodology for patient preparation, image acquisition, and quantification of atherosclerotic plaque activity and vascular inflammation using SUV, TBR, and a global parameter called the metabolic volumetric product (MVP). These approaches may be applied to assess vascular inflammation in various study samples of interest in a consistent fashion as we have shown in several prior publications.

  7. 68Ga-PSMA and 11C-Choline comparison using a tri-modality PET/CT-MRI (3.0 T) system with a dedicated shuttle.

    PubMed

    Alonso, Omar; Dos Santos, Gerardo; García Fontes, Margarita; Balter, Henia; Engler, Henry

    2018-01-01

    The aim of this study was to prospectively compare the detection rate of 68 Ga-PSMA versus 11 C-Choline in men with prostate cancer with biochemical recurrence and to demonstrate the added value of a tri-modality PET/CT-MRI system. We analysed 36 patients who underwent both 11 C-Choline PET/CT and 68 Ga-PSMA PET/CT scanning within a time window of 1-2 weeks. Additionally, for the 68 Ga-PSMA scan, we used a PET/CT-MRI (3.0 T) system with a dedicated shuttle, acquiring MRI images of the pelvis. Both scans were positive in 18 patients (50%) and negative in 8 patients (22%). Nine patients were positive with 68 Ga-PSMA alone (25%) and one with 11 C-Choline only (3%). The median detected lesion per patient was 2 for 68 Ga-PSMA (range 0-93) and 1 for 11 C-Choline (range 0-57). Tumour to background ratios in all concordant lesions ( n  = 96) were higher for 68 Ga-PSMA than for 11 C-Choline (110.3 ± 107.8 and 27.5 ± 17.1, mean ± S.D., for each tracer, respectively P  = 0.0001). The number of detected lesions per patient was higher for 11 C-Choline in those with PSA ≥ 3.3 ng/mL, while the number of detected lesions was independent of PSA levels for 68 Ga-PSMA using the same PSA cut-off value. Metastatic pelvic lesions were found in 25 patients (69%) with 68 Ga-PSMA PET/CT, in 18 (50%) with 11 C-Choline PET/CT and in 21 (58%) with MRI (3.0 T). MRI was very useful in detecting recurrence in cases classified as indeterminate by means of PET/CT alone at prostate bed. In patients with prostate cancer with biochemical recurrence 68 Ga-PSMA detected more lesions per patient than 11 C-Choline, regardless of PSA levels. PET/CT-MRI (3.0 T) system is a feasible imaging modality that potentially adds useful relevant information with increased accuracy of diagnosis.

  8. Overuse of CT and MRI in paediatric emergency departments.

    PubMed

    Ohana, Orly; Soffer, Shelly; Zimlichman, Eyal; Klang, Eyal

    2018-05-01

    The aim of this review is to survey CT and MRI overuse in the paediatric emergency department (ED) population. CT is one of the most important modalities employed in the ED. Not surprisingly, its high accuracy, rapid acquisition and availability have resulted in overuse. An obvious limitation of CT is ionizing radiation; in addition there are economic implications to overuse. Studies from the last two decades have shown increase in paediatric ED CT utilization in the first decade, reaching a plateau forming around 2008, followed by a decrease in the last decade. This decrease occurred in conjunction with campaigns raising awareness to the risks of radiation exposure. Although a trend of decrease in overuse have been observed, great variability has been shown across different facilities, as well as among physicians, with more pronounced overuse in non-teaching and non-children dedicated EDs. The leading types of paediatric ED CTs are head and abdominal scans. Decision rules, such as PECARN for head injury and the Alvarado score for abdominal pain, as well as using alternative imaging modalities, have been shown to reduce CT overuse in these two categories. MRI has the obvious benefit of avoiding radiation exposure, but the disadvantages of higher costs, less availability and less tolerability in younger children. Although anecdotally paediatric ED MRI usage has increased in recent years, only scarce reports have been published. In our opinion, there is need to conduct up-to-date studies covering paediatric CT and MRI overuse trends, usage variability and adherence to clinical protocols.

  9. Group-wise feature-based registration of CT and ultrasound images of spine

    NASA Astrophysics Data System (ADS)

    Rasoulian, Abtin; Mousavi, Parvin; Hedjazi Moghari, Mehdi; Foroughi, Pezhman; Abolmaesumi, Purang

    2010-02-01

    Registration of pre-operative CT and freehand intra-operative ultrasound of lumbar spine could aid surgeons in the spinal needle injection which is a common procedure for pain management. Patients are always in a supine position during the CT scan, and in the prone or sitting position during the intervention. This leads to a difference in the spinal curvature between the two imaging modalities, which means a single rigid registration cannot be used for all of the lumbar vertebrae. In this work, a method for group-wise registration of pre-operative CT and intra-operative freehand 2-D ultrasound images of the lumbar spine is presented. The approach utilizes a pointbased registration technique based on the unscented Kalman filter, taking as input segmented vertebrae surfaces in both CT and ultrasound data. Ultrasound images are automatically segmented using a dynamic programming approach, while the CT images are semi-automatically segmented using thresholding. Since the curvature of the spine is different between the pre-operative and the intra-operative data, the registration approach is designed to simultaneously align individual groups of points segmented from each vertebra in the two imaging modalities. A biomechanical model is used to constrain the vertebrae transformation parameters during the registration and to ensure convergence. The mean target registration error achieved for individual vertebrae on five spine phantoms generated from CT data of patients, is 2.47 mm with standard deviation of 1.14 mm.

  10. Diagnostic accuracy of MRI in the measurement of glenoid bone loss.

    PubMed

    Gyftopoulos, Soterios; Hasan, Saqib; Bencardino, Jenny; Mayo, Jason; Nayyar, Samir; Babb, James; Jazrawi, Laith

    2012-10-01

    The purpose of this study is to assess the accuracy of MRI quantification of glenoid bone loss and to compare the diagnostic accuracy of MRI to CT in the measurement of glenoid bone loss. MRI, CT, and 3D CT examinations of 18 cadaveric glenoids were obtained after the creation of defects along the anterior and anteroinferior glenoid. The defects were measured by three readers separately and blindly using the circle method. These measurements were compared with measurements made on digital photographic images of the cadaveric glenoids. Paired sample Student t tests were used to compare the imaging modalities. Concordance correlation coefficients were also calculated to measure interobserver agreement. Our data show that MRI could be used to accurately measure glenoid bone loss with a small margin of error (mean, 3.44%; range, 2.06-5.94%) in estimated percentage loss. MRI accuracy was similar to that of both CT and 3D CT for glenoid loss measurements in our study for the readers familiar with the circle method, with 1.3% as the maximum expected difference in accuracy of the percentage bone loss between the different modalities (95% confidence). Glenoid bone loss can be accurately measured on MRI using the circle method. The MRI quantification of glenoid bone loss compares favorably to measurements obtained using 3D CT and CT. The accuracy of the measurements correlates with the level of training, and a learning curve is expected before mastering this technique.

  11. Contrast-enhanced computed tomography plus gadolinium-ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging for gross classification of hepatocellular carcinoma.

    PubMed

    Chen, Chuang; Zhao, Hui; Fu, Xu; Huang, LuoShun; Tang, Min; Yan, XiaoPeng; Sun, ShiQuan; Jia, WenJun; Mao, Liang; Shi, Jiong; Chen, Jun; He, Jian; Zhu, Jin; Qiu, YuDong

    2017-05-02

    Accurate gross classification through imaging is critical for determination of hepatocellular carcinoma (HCC) patient prognoses and treatment strategies. The present retrospective study evaluated the utility of contrast-enhanced computed tomography (CE-CT) combined with gadolinium-ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (EOB-MRI) for diagnosis and classification of HCCs prior to surgery. Ninety-four surgically resected HCC nodules were classified as simple nodular (SN), SN with extranodular growth (SN-EG), confluent multinodular (CMN), or infiltrative (IF) types. SN-EG, CMN and IF samples were grouped as non-SN. The abilities of the two imaging modalities to differentiate non-SN from SN HCCs were assessed using the EOB-MRI hepatobiliary phase and CE-CT arterial, portal, and equilibrium phases. Areas under the ROC curves for non-SN diagnoses were 0.765 (95% confidence interval [CI]: 0.666-0.846) for CE-CT, 0.877 (95% CI: 0.793-0.936) for EOB-MRI, and 0.908 (95% CI: 0.830-0.958) for CE-CT plus EOB-MRI. Sensitivities, specificities, and accuracies with respect to identification of non-SN tumors of all sizes were 71.4%, 81.6%, and 75.5% for CE-CT; 96.4%, 78.9%, and 89.3% for EOB-MRI; and 98.2%, 84.2%, and 92.5% for CE-CT plus EOB-MRI. These results show that CE-CT combined with EOB-MRI offers a more accurate imaging evaluation for HCC gross classification than either modality alone.

  12. Accuracy of conventional radiography and computed tomography in predicting implant position in relation to the vertebral canal in dogs.

    PubMed

    Hettlich, Bianca F; Fosgate, Geoffrey T; Levine, Jonathan M; Young, Benjamin D; Kerwin, Sharon C; Walker, Michael; Griffin, Jay; Maierl, Johann

    2010-08-01

    To compare the accuracy of radiography and computed tomography (CT) in predicting implant position in relation to the vertebral canal in the cervical and thoracolumbar vertebral column. In vitro imaging and anatomic study. Medium-sized canine cadaver vertebral columns (n=12). Steinmann pins were inserted into cervical and thoracolumbar vertebrae based on established landmarks but without predetermination of vertebral canal violation. Radiographs and CT images were obtained and evaluated by 6 individuals. A random subset of pins was evaluated for ability to distinguish left from right pins on radiographs. The ability to correctly identify vertebral canal penetration for all pins was assessed both on radiographs and CT. Spines were then anatomically prepared and visual examination of pin penetration into the canal served as the gold standard. Left/right accuracy was 93.1%. Overall sensitivity of radiographs and CT to detect vertebral canal penetration by an implant were significantly different and estimated as 50.7% and 93.4%, respectively (P<.0001). Sensitivity was significantly higher for complete versus partial penetration and for radiologists compared with nonradiologists for both imaging modalities. Overall specificity of radiographs and CT to detect vertebral canal penetration was 82.9% and 86.4%, respectively (P=.049). CT was superior to radiographic assessment and is the recommended imaging modality to assess penetration into the vertebral canal. CT is significantly more accurate in identifying vertebral canal violation by Steinmann pins and should be performed postoperatively to assess implant position.

  13. PET/CT-guided interventions: Indications, advantages, disadvantages and the state of the art.

    PubMed

    Cazzato, Roberto Luigi; Garnon, Julien; Shaygi, Behnam; Koch, Guillaume; Tsoumakidou, Georgia; Caudrelier, Jean; Addeo, Pietro; Bachellier, Philippe; Namer, Izzie Jacques; Gangi, Afshin

    2018-02-01

    Positron emission tomography/computed tomography (PET/CT) represents an emerging imaging guidance modality that has been applied to successfully guide percutaneous procedures such as biopsies and tumour ablations. The aim of the present narrative review is to report the indications, advantages and disadvantages of PET/CT-guided procedures in the field of interventional oncology and to briefly describe the experience gained with this new emerging technique while performing biopsies and tumor ablations.

  14. Effects of Combined Aerobic-Strength Training vs Fitness Education Program in COPD Patients.

    PubMed

    Rinaldo, Nicoletta; Bacchi, Elisabetta; Coratella, Giuseppe; Vitali, Francesca; Milanese, Chiara; Rossi, Andrea; Schena, Federico; Lanza, Massimo

    2017-11-01

    We compared the effects of a new physical activity education program approach (EDU), based on a periodically supervised protocol of different exercise modalities vs traditionally supervised combined strength-endurance training (CT) on health-related factors in patients with stable chronic obstructive pulmonary disease (COPD). Twenty-eight COPD patients without comorbidities were randomly assigned to receive either EDU or CT. CT was continuously supervised to combine strength-endurance training; EDU was taught to progressively increase the rate of autonomous physical activity, through different training modalities such as Nordic walking, group classes and circuit training. Body composition, walking capacity, muscle strength, flexibility and balance, total daily energy expenditure and quality of life were evaluated at baseline, after 28 weeks training period (3d/week) and after a 14-week follow-up. No adverse events occurred during the interventions. After training, CT and EDU similarly improved walking capacity, body composition and quality of life. However, after 14 weeks of follow-up, such improvements were not maintained. Only in CT, muscle strength and flexibility improved after training but returned to baseline after follow-up. EDU, similar to CT, can effectively and safely improve health-related parameters in COPD patients. EDU could be an attractive alternative to traditional supervised training for improving quality of life in COPD patients. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Diagnostic Value of Software-Based Image Fusion of Computed Tomography and F18-FDG PET Scans in Patients with Malignant Lymphoma

    PubMed Central

    Henninger, B.; Putzer, D.; Kendler, D.; Uprimny, C.; Virgolini, I.; Gunsilius, E.; Bale, R.

    2012-01-01

    Aim. The purpose of this study was to evaluate the accuracy of 2-deoxy-2-[fluorine-18]fluoro-D-glucose (FDG) positron emission tomography (PET), computed tomography (CT), and software-based image fusion of both modalities in the imaging of non-Hodgkin's lymphoma (NHL) and Hodgkin's disease (HD). Methods. 77 patients with NHL (n = 58) or HD (n = 19) underwent a FDG PET scan, a contrast-enhanced CT, and a subsequent digital image fusion during initial staging or followup. 109 examinations of each modality were evaluated and compared to each other. Conventional staging procedures, other imaging techniques, laboratory screening, and follow-up data constituted the reference standard for comparison with image fusion. Sensitivity and specificity were calculated for CT and PET separately. Results. Sensitivity and specificity for detecting malignant lymphoma were 90% and 76% for CT and 94% and 91% for PET, respectively. A lymph node region-based analysis (comprising 14 defined anatomical regions) revealed a sensitivity of 81% and a specificity of 97% for CT and 96% and 99% for FDG PET, respectively. Only three of 109 image fusion findings needed further evaluation (false positive). Conclusion. Digital fusion of PET and CT improves the accuracy of staging, restaging, and therapy monitoring in patients with malignant lymphoma and may reduce the need for invasive diagnostic procedures. PMID:22654631

  16. Castleman's Disease: An Interesting Cause of Hematuria.

    PubMed

    Tolofari, Sotonye Karl; Chow, Wai-Man; Hussain, Basharat

    2015-03-01

    Castleman's disease is a rare benign lymphoproliferative disorder, characterized by benign growths of the lymph node tissue. It is associated with a number of malignancies, including Kaposi sarcoma, non-Hodgkin's and Hodgkins lymphoma, and POEMS syndrome. This report describes the case of a 38 year old gentleman, presenting with painless hematuria. Initial investigations, including flexible cystoscopy were unremarkable. However, subsequent imaging including CT Urogram and MR pelvis revealed multiple prevesical lesions. Histology obtained from excision biopsy revealed histological features consistent with Castleman's disease. In this report we discuss the nature, presentation and treatment modalities of this rare condition.

  17. A review of cognitive therapy in acute medical settings. Part I: therapy model and assessment.

    PubMed

    Levin, Tomer T; White, Craig A; Kissane, David W

    2013-04-01

    Although cognitive therapy (CT) has established outpatient utility, there is no integrative framework for using CT in acute medical settings where most psychosomatic medicine (P-M) clinicians practice. Biopsychosocial complexity challenges P-M clinicians who want to use CT as the a priori psychotherapeutic modality. For example, how should clinicians modify the data gathering and formulation process to support CT in acute settings? Narrative review methodology is used to describe the framework for a CT informed interview, formulation, and assessment in acute medical settings. Because this review is aimed largely at P-M trainees and educators, exemplary dialogues model the approach (specific CT strategies for common P-M scenarios appear in the companion article.) Structured data gathering needs to be tailored by focusing on cognitive processes informed by the cognitive hypothesis. Agenda setting, Socratic questioning, and adaptations to the mental state examination are necessary. Specific attention is paid to the CT formulation, Folkman's Cognitive Coping Model, self-report measures, data-driven evaluations, and collaboration (e.g., sharing the formulation with the patient.) Integrative CT-psychopharmacological approaches and the importance of empathy are emphasized. The value of implementing psychotherapy in parallel with data gathering because of time urgency is advocated, but this is a significant departure from usual outpatient approaches in which psychotherapy follows evaluation. This conceptual approach offers a novel integrative framework for using CT in acute medical settings, but future challenges include demonstrating clinical outcomes and training P-M clinicians so as to demonstrate fidelity.

  18. ACR appropriateness criteria blunt chest trauma.

    PubMed

    Chung, Jonathan H; Cox, Christian W; Mohammed, Tan-Lucien H; Kirsch, Jacobo; Brown, Kathleen; Dyer, Debra Sue; Ginsburg, Mark E; Heitkamp, Darel E; Kanne, Jeffrey P; Kazerooni, Ella A; Ketai, Loren H; Ravenel, James G; Saleh, Anthony G; Shah, Rakesh D; Steiner, Robert M; Suh, Robert D

    2014-04-01

    Imaging is paramount in the setting of blunt trauma and is now the standard of care at any trauma center. Although anteroposterior radiography has inherent limitations, the ability to acquire a radiograph in the trauma bay with little interruption in clinical survey, monitoring, and treatment, as well as radiography's accepted role in screening for traumatic aortic injury, supports the routine use of chest radiography. Chest CT or CT angiography is the gold-standard routine imaging modality for detecting thoracic injuries caused by blunt trauma. There is disagreement on whether routine chest CT is necessary in all patients with histories of blunt trauma. Ultimately, the frequency and timing of CT chest imaging should be site specific and should depend on the local resources of the trauma center as well as patient status. Ultrasound may be beneficial in the detection of pneumothorax, hemothorax, and pericardial hemorrhage; transesophageal echocardiography is a first-line imaging tool in the setting of suspected cardiac injury. In the blunt trauma setting, MRI and nuclear medicine likely play no role in the acute setting, although these modalities may be helpful as problem-solving tools after initial assessment. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every 2 years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances in which evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  19. Segmentation of medical images using explicit anatomical knowledge

    NASA Astrophysics Data System (ADS)

    Wilson, Laurie S.; Brown, Stephen; Brown, Matthew S.; Young, Jeanne; Li, Rongxin; Luo, Suhuai; Brandt, Lee

    1999-07-01

    Knowledge-based image segmentation is defined in terms of the separation of image analysis procedures and representation of knowledge. Such architecture is particularly suitable for medical image segmentation, because of the large amount of structured domain knowledge. A general methodology for the application of knowledge-based methods to medical image segmentation is described. This includes frames for knowledge representation, fuzzy logic for anatomical variations, and a strategy for determining the order of segmentation from the modal specification. This method has been applied to three separate problems, 3D thoracic CT, chest X-rays and CT angiography. The application of the same methodology to such a range of applications suggests a major role in medical imaging for segmentation methods incorporating representation of anatomical knowledge.

  20. Imaging Prostate Cancer With Prostate-Specific Membrane Antigen PET/CT and PET/MRI: Current and Future Applications.

    PubMed

    Hope, Thomas A; Afshar-Oromieh, Ali; Eiber, Matthias; Emmett, Louise; Fendler, Wolfgang P; Lawhn-Heath, Courtney; Rowe, Steven P

    2018-06-27

    The purpose of this article is to describe the large number of radiotracers being evaluated for prostate-specific membrane antigen (PSMA) PET, which is becoming a central tool in the staging of prostate cancer. PSMA PET is a highly promising modality for the staging of prostate cancer because of its higher detection rate compared with that of conventional imaging. Both PET/CT and PET/MRI offer benefits with PSMA radiotracers, and PSMA PET findings frequently lead to changes in management. It is imperative that subsequent treatment changes be evaluated to show improved outcomes. PSMA PET also has potential applications, including patient selection for PSMA-based radioligand therapy and evaluation of treatment response.

  1. Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)/MRI for Lung Cancer Staging.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-07-01

    Tumor, lymph node, and metastasis (TNM) classification of lung cancer is typically performed with the TNM staging system, as recommended by the Union Internationale Contre le Cancer (UICC), the American Joint Committee on Cancer (AJCC), and the International Association for the Study of Lung Cancer (IASLC). Radiologic examinations for TNM staging of lung cancer patients include computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography with 2-[fluorine-18] fluoro-2-deoxy-D-glucose (FDG-PET), and FDG-PET combined with CT (FDG-PET/CT) and are used for pretherapeutic assessments. Recent technical advances in MR systems, application of fast and parallel imaging and/or introduction of new MR techniques, and utilization of contrast media have markedly improved the diagnostic utility of MRI in this setting. In addition, FDG-PET can be combined or fused with MRI (PET/MRI) for clinical practice. This review article will focus on these recent advances in MRI as well as on PET/MRI for lung cancer staging, in addition to a discussion of their potential and limitations for routine clinical practice in comparison with other modalities such as CT, FDG-PET, and PET/CT.

  2. Review of Gallium-68 PSMA PET/CT Imaging in the Management of Prostate Cancer

    PubMed Central

    Lenzo, Nat P.; Meyrick, Danielle; Turner, J. Harvey

    2018-01-01

    Over 90% of prostate cancers over-express prostate specific membrane antigen (PSMA) and these tumor cells may be accurately targeted for diagnosis by 68Ga-PSMA-positron emission tomography/computed tomography (68Ga-PSMA-PET/CT) imaging. This novel molecular imaging modality appears clinically to have superseded CT, and appears superior to MR imaging, for the detection of metastatic disease. 68Ga-PSMA PET/CT has the ability to reliably stage prostate cancer at presentation and can help inform an optimal treatment approach. Novel diagnostic applications of 68Ga-PSMA PET/CT include guiding biopsy to improve sampling accuracy, and guiding surgery and radiotherapy. In addition to facilitating the management of metastatic castrate resistant prostate cancer (mCRPC), 68Ga-PSMA can select patients who may benefit from targeted systemic radionuclide therapy. 68Ga-PSMA is the diagnostic positron-emitting theranostic pair with the beta emitter Lutetium-177 PSMA (177Lu-PSMA) and alpha-emitter Actinium-225 PSMA (225Ac-PSMA) which can both be used to treat PSMA-avid metastases of prostate cancer in the molecular tumor-targeted approach of theranostic nuclear oncology. PMID:29439481

  3. FDG-PET/CT in autosomal dominant polycystic kidney disease patients with suspected cyst infection.

    PubMed

    Pijl, Jordy Pieter; Glaudemans, Andor W J M; Slart, Riemer H J A; Kwee, Thomas Christian

    2018-04-13

    Purpose: To determine the value of 18 F-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET)/computed tomography (CT) for diagnosing renal or hepatic cyst infection in patients with autosomal dominant polycystic kidney disease (ADPKD). Methods: This retrospective single-center study included all patients with ADPKD who underwent FDG-PET/CT because of suspected cyst infection between 2010 and 2017. Results: Thirty FDG-PET/CT scans of thirty individual patients were included, of which 19 were positive for cyst infection. According to a previously established clinical and biochemical reference standard, FDG-PET/CT achieved sensitivity of 88.9%, specificity of 75.0%, positive predictive value of 84.2%, and negative predictive value of 81.8% for the diagnosis of cyst infection. In 5 cases, FDG-PET/CT suggested a different pathologic process that explained the symptoms, including pneumonia ( n = 1), generalized peritonitis ( n = 1), pancreatitis ( n = 1), colitis ( n = 1), and cholangitis ( n = 1). Total duration of hospital stay and duration between FDG-PET/CT scan and hospital discharge of patients with an FDG-PET/CT scan positive for cyst infection were significantly longer than those with a negative scan ( P = 0.005 and P = 0.009, respectively). Creatinine levels were significantly higher in patients with an FDG-PET/CT scan positive for cyst infection than in patients with a negative scan ( P = 0.015). Other comparisons of clinical parameters (age, gender, presence of fever (>38.5°C) for more than 3 days, abdominal pain, history of solid organ transplantation and nephrectomy, immune status), laboratory values (C-reactive protein level (CRP), leukocyte count, estimated glomerular filtration rate), and microbiologic results (blood and urine cultures) were not significantly different ( P = 0.13-1.00) between FDG-PET/CT-positive and -negative patients. Conclusion: FDG-PET/CT is a useful and recommendable (upfront) imaging modality for the evaluation of patients with ADPKD and suspected cyst infection. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  4. The right atrium: gateway to the heart--anatomic and pathologic imaging findings.

    PubMed

    Malik, Sachin B; Kwan, Damon; Shah, Amar B; Hsu, Joe Y

    2015-01-01

    Knowledge of right atrial anatomic and pathologic imaging findings and associated clinical symptoms is important to avoid false-positive diagnoses and missed findings. Complete evaluation of the heart often requires a multimodality approach that includes radiography, echocardiography, computed tomography (CT), magnetic resonance (MR) imaging, and invasive angiography. In general, CT provides the highest spatial resolution of these modalities at the cost of radiation exposure to the patient. Echocardiography and MR imaging offer complementary and detailed information for functional evaluation without added radiation exposure. The advantages and disadvantages of each modality for the evaluation of right atrial anatomic structure, size, and pathologic findings are discussed. Cardiac MR imaging is the reference standard for evaluation of right atrial size and volume but often is too time consuming and resource intensive to perform in routine clinical practice. Therefore, established reference ranges for two-dimensional transthoracic echocardiography are often used. Right atrial pathologic findings can be broadly categorized into (a) congenital anomalies (cor triatriatum dexter, Ebstein anomaly, and aneurysm), (b) disorders of volume (tricuspid regurgitation, pathologic mimics such as a pseudoaneurysm, and atrial septal defect), (c) disorders of pressure (tricuspid stenosis, restrictive cardiomyopathy, and constrictive pericarditis), and (d) masses (pseudomasses, thrombus, lipomatous hypertrophy of the interatrial septum, lipoma, myxoma, sarcoma, and metastatic disease). Familiarity with each pathologic entity and its treatment options is essential to ensure that appropriate imaging modalities are selected. Online supplemental material is available for this article. RSNA, 2015

  5. Risk factor differences in calcified and noncalcified aortic plaque: the Framingham Heart Study.

    PubMed

    Chuang, Michael L; Gona, Philimon; Oyama-Manabe, Noriko; Manders, Emily S; Salton, Carol J; Hoffmann, Udo; Manning, Warren J; O'Donnell, Christopher J

    2014-07-01

    The objective of this study was to determine the prevalence and risk factor (RF) correlates of aortic plaque (AP) detected by cardiovascular magnetic resonance (CMR), which mainly shows noncalcified plaques, and by noncontrast computed tomography (CT), which best depicts calcified plaques, in community-dwelling adults. A total of 1016 Framingham Heart Study Offspring cohort members (64 ± 9 years; 474 men) underwent CMR and CT of the aorta. Potential RFs for AP (age; sex; body mass index; blood pressure; low-density lipoprotein and high-density lipoprotein cholesterol; fasting glucose; C-reactive protein; prevalent hypertension, diabetes mellitus, smoking; use of antihypertensive, diabetes mellitus, or lipid-lowering drugs) were compared between participants, with zero versus nonzero AP by CMR and by CT. Candidate RFs attaining P<0.05 for difference with either imaging modality were entered into multivariable logistic regression models adjusting for age, sex, and other RFs. Odds ratios were calculated for modality-specific prevalence of AP. Associations between RFs and continuous measures of AP were assessed using Tobit regression. Prevalence of CMR and CT AP was 49% and 82%, respectively. AP burdens by CMR and CT were correlated, r=0.28, P<0.0001. Increasing age and smoking were associated with prevalent AP by both CMR and CT. Additionally, prevalent AP by CMR was associated with female sex and fasting glucose and prevalent AP by CT with hypertension treatment and adverse lipid profile. AP by CMR and CT are both associated with smoking and increasing age, but other RFs differ between calcified and noncalcified AP. The relative predictive value of AP detected by CMR versus by CT for incident cardiovascular events remains to be determined. © 2014 American Heart Association, Inc.

  6. Fusion of Computed Tomography and PROPELLER Diffusion-Weighted Magnetic Resonance Imaging for the Detection and Localization of Middle Ear Cholesteatoma.

    PubMed

    Locketz, Garrett D; Li, Peter M M C; Fischbein, Nancy J; Holdsworth, Samantha J; Blevins, Nikolas H

    2016-10-01

    A method to optimize imaging of cholesteatoma by combining the strengths of available modalities will improve diagnostic accuracy and help to target treatment. To assess whether fusing Periodically Rotated Overlapping Parallel Lines With Enhanced Reconstruction (PROPELLER) diffusion-weighted magnetic resonance imaging (DW-MRI) with corresponding temporal bone computed tomography (CT) images could increase cholesteatoma diagnostic and localization accuracy across 6 distinct anatomical regions of the temporal bone. Case series and preliminary technology evaluation of adults with preoperative temporal bone CT and PROPELLER DW-MRI scans who underwent surgery for clinically suggested cholesteatoma at a tertiary academic hospital. When cholesteatoma was encountered surgically, the precise location was recorded in a diagram of the middle ear and mastoid. For each patient, the 3 image data sets (CT, PROPELLER DW-MRI, and CT-MRI fusion) were reviewed in random order for the presence or absence of cholesteatoma by an investigator blinded to operative findings. If cholesteatoma was deemed present on review of each imaging modality, the location of the lesion was mapped presumptively. Image analysis was then compared with surgical findings. Twelve adults (5 women and 7 men; median [range] age, 45.5 [19-77] years) were included. The use of CT-MRI fusion had greater diagnostic sensitivity (0.88 vs 0.75), positive predictive value (0.88 vs 0.86), and negative predictive value (0.75 vs 0.60) than PROPELLER DW-MRI alone. Image fusion also showed increased overall localization accuracy when stratified across 6 distinct anatomical regions of the temporal bone (localization sensitivity and specificity, 0.76 and 0.98 for CT-MRI fusion vs 0.58 and 0.98 for PROPELLER DW-MRI). For PROPELLER DW-MRI, there were 15 true-positive, 45 true-negative, 1 false-positive, and 11 false-negative results; overall accuracy was 0.83. For CT-MRI fusion, there were 20 true-positive, 45 true-negative, 1 false-positive, and 6 false-negative results; overall accuracy was 0.90. The poor anatomical spatial resolution of DW-MRI makes precise localization of cholesteatoma within the middle ear and mastoid a diagnostic challenge. This study suggests that the bony anatomic detail obtained via CT coupled with the excellent sensitivity and specificity of PROPELLER DW-MRI for cholesteatoma can improve both preoperative identification and localization of disease over DW-MRI alone.

  7. Fluoroscopic-guided radiofrequency ablation of the basivertebral nerve: application and analysis with multiple imaging modalities in an ovine model (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Bergeron, Jeffrey A.; Eskey, Cliff J.; Attawia, Mohammed; Patel, Samit J.; Ryan, Thomas P.; Pellegrino, Richard; Sutton, Jeffrey; Crombie, John; Paul, B. T.; Hoopes, P. J.

    2005-04-01

    Pathologic involvement of the basivertebral nerve, an intraosseous vertebral nerve found in humans and most mammalian species, may play a role in some forms of back pain. This study was designed to assess the feasibility and effects of the percutaneous delivery of radiofrequency (RF) energy to thermally ablate the basivertebral nerve in the lumbar vertebrae of mature sheep. Using fluoroscopic guidance, a RF bipolar device was placed and a thermal dose delivered to lumbar vertebral bodies in sheep. Post-treatment assessment included multiple magnetic resonance imaging (MRI) techniques and computed tomography (CT). These data were analyzed and correlated to histopathology and morphometry findings to describe the cellular and boney structural changes resulting from the treatment. Imaging modalities MRI and CT can be implemented to non-invasively describe treatment region and volume, marrow cellular effects, and bone density alterations immediately following RF treatment and during convalescence. Such imaging can be utilized to assess treatment effects and refine the thermal dose to vertebral body volume ratio used in treatment planning. This information will be used to improve the therapeutic ratio and develop a treatment protocol for human applications.

  8. Differentiation of early from advanced coronary atherosclerotic lesions: systematic comparison of CT, intravascular US, and optical frequency domain imaging with histopathologic examination in ex vivo human hearts.

    PubMed

    Maurovich-Horvat, Pál; Schlett, Christopher L; Alkadhi, Hatem; Nakano, Masataka; Stolzmann, Paul; Vorpahl, Marc; Scheffel, Hans; Tanaka, Atsushi; Warger, William C; Maehara, Akiko; Ma, Shixin; Kriegel, Matthias F; Kaple, Ryan K; Seifarth, Harald; Bamberg, Fabian; Mintz, Gary S; Tearney, Guillermo J; Virmani, Renu; Hoffmann, Udo

    2012-11-01

    To establish an ex vivo experimental setup for imaging coronary atherosclerosis with coronary computed tomographic (CT) angiography, intravascular ultrasonography (US), and optical frequency domain imaging (OFDI) and to investigate their ability to help differentiate early from advanced coronary plaques. All procedures were performed in accordance with local and federal regulations and the Declaration of Helsinki. Approval of the local Ethics Committee was obtained. Overall, 379 histologic cuts from nine coronary arteries from three donor hearts were acquired, coregistered among modalities, and assessed for the presence and composition of atherosclerotic plaque. To assess the discriminatory capacity of the different modalities in the detection of advanced lesions, c statistic analysis was used. Interobserver agreement was assessed with the Cohen κ statistic. Cross sections without plaque at coronary CT angiography and with fibrous plaque at OFDI almost never showed advanced lesions at histopathologic examination (odds ratio [OR]: 0.02 and 0.06, respectively; both P<.0001), while mixed plaque at coronary CT angiography, calcified plaque at intravascular US, and lipid-rich plaque at OFDI were associated with advanced lesions (OR: 2.49, P=.0003; OR: 2.60, P=.002; and OR: 31.2, P<.0001, respectively). OFDI had higher accuracy for discriminating early from advanced lesions than intravascular US and coronary CT angiography (area under the receiver operating characteristic curve: 0.858 [95% confidence interval {CI}: 0.802, 0.913], 0.631 [95% CI: 0.554, 0.709], and 0.679 [95% CI: 0.618, 0.740]; respectively, P<.0001). Interobserver agreement was excellent for OFDI and coronary CT angiography (κ=0.87 and 0.85, respectively) and was good for intravascular US (κ=0.66). Systematic and standardized comparison between invasive and noninvasive modalities for coronary plaque characterization in ex vivo specimens demonstrated that coronary CT angiography and intravascular US are reasonably associated with plaque composition and lesion grading according to histopathologic findings, while OFDI was strongly associated. These data may help to develop initial concepts of sequential imaging strategies to identify patients with advanced coronary plaques. © RSNA, 2012

  9. Use of PET and Other Functional Imaging to Guide Target Delineation in Radiation Oncology.

    PubMed

    Verma, Vivek; Choi, J Isabelle; Sawant, Amit; Gullapalli, Rao P; Chen, Wengen; Alavi, Abass; Simone, Charles B

    2018-06-01

    Molecular and functional imaging is increasingly being used to guide radiotherapy (RT) management and target delineation. This review summarizes existing data in several disease sites of various functional imaging modalities, chiefly positron emission tomography/computed tomography (PET/CT), with respect to RT target definition and management. For gliomas, differentiation between postoperative changes and viable tumor is discussed, as well as focal dose escalation and reirradiation. Head and neck neoplasms may also benefit from precise PET/CT-based target delineation, especially for cancers of unknown primary; focal dose escalation is also described. In lung cancer, PET/CT can influence coverage of tumor volumes, dose escalation, and adaptive management. For cervical cancer, PET/CT as an adjunct to magnetic resonance imaging planning is discussed, as are dose escalation and delineation of avoidance targets such as the bone marrow. The emerging role of choline-based PET for prostate cancer and its impact on dose escalation is also described. Lastly, given the essential role of PET/CT for target definition in lymphoma, phase III trials of PET-directed management are reviewed, along with novel imaging modalities. Taken together, molecular and functional imaging approaches offer a major step to individualize radiotherapeutic care going forward. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Volumetric analysis of tumors in rodents using the variable resolution x-ray (VRX) CT-scanner

    NASA Astrophysics Data System (ADS)

    Gaber, M. Waleed; Wilson, Christy M.; Duntsch, Christopher D.; Shukla, Hemant; Zawaski, Janice A.; Jordan, Lawrence M.; Rendon, David A.; Vangalaa, Sravanthi; Keyes, Gary S.; DiBianca, Frank A.

    2005-04-01

    The Variable Resolution X-ray (VRX) CT system, developed at the UTHSC, Memphis, has the potential for use in animal imaging. Animal models of tumor progression and pharmacological impact are becoming increasingly important in understanding the molecular and mechanistic basis of tumor development. In general, CT-imaging offers several advantages in animal research: a fast throughput of seconds to minutes reducing the physiological stress animals are exposed to, and it is an inexpensive modality affordable to many animal laboratories. We are developing the VRX CT scanner as a non-invasive imaging modality to measure tumor volume, progression, and metastasis. From the axial images taken by the VRX CT-scanner, tumor area was measured and the tumor volume was calculated. Animals were also imaged using an optical liquid nitrogen-cooled CCD camera to detect tumor fluorescence. A simple image fusion with a planner x-ray image was used to ascertain the position of the tumors, animals were then sacrificed the tumors excised, and the tumor volume calculated by physical measurements. Furthermore, using a specially designed phantom with three spheres of different volumes, we demonstrated that our system allowed us to estimate the volume with up to 10% accuracy; we expect this to increase dramatically in the next few months.

  11. Advanced imaging technologies for mapping cadaveric lymphatic anatomy: magnetic resonance and computed tomography lymphangiography.

    PubMed

    Pan, W R; Rozen, W M; Stretch, J; Thierry, B; Ashton, M W; Corlett, R J

    2008-09-01

    Lymphatic anatomy has become increasingly clinically important as surgical techniques evolve for investigating and treating cancer metastases. However, due to limited anatomical techniques available, research in this field has been insufficient. The techniques of computed tomography (CT) and magnetic resonance (MR) lymphangiography have not been described previously in the imaging of cadaveric lymphatic anatomy. This preliminary work describes the feasibility of these advanced imaging technologies for imaging lymphatic anatomy. A single, fresh cadaveric lower limb underwent lymphatic dissection and cannulation utilizing microsurgical techniques. Contrast materials for both CT and MR studies were chosen based on their suitability for subsequent clinical use, and imaging was undertaken with a view to mapping lymphatic anatomy. Microdissection studies were compared with imaging findings in each case. Both MR-based and CT-based contrast media in current clinical use were found to be suitable for demonstrating cadaveric lymphatic anatomy upon direct intralymphatic injection. MR lymphangiography and CT lymphangiography are feasible modalities for cadaveric anatomical research for lymphatic anatomy. Future studies including refinements in scanning techniques may offer these technologies to the clinical setting.

  12. Digital tomosynthesis and high resolution computed tomography as clinical tools for vertebral endplate topography measurements: Comparison with microcomputed tomography.

    PubMed

    Oravec, Daniel; Quazi, Abrar; Xiao, Angela; Yang, Ellen; Zauel, Roger; Flynn, Michael J; Yeni, Yener N

    2015-12-01

    Endplate morphology is understood to play an important role in the mechanical behavior of vertebral bone as well as degenerative processes in spinal tissues; however, the utility of clinical imaging modalities in assessment of the vertebral endplate has been limited. The objective of this study was to evaluate the ability of two clinical imaging modalities (digital tomosynthesis, DTS; high resolution computed tomography, HRCT) to assess endplate topography by correlating the measurements to a microcomputed tomography (μCT) standard. DTS, HRCT, and μCT images of 117 cadaveric thoracolumbar vertebrae (T10-L1; 23 male, 19 female; ages 36-100 years) were segmented, and inferior and superior endplate surface topographical distribution parameters were calculated. Both DTS and HRCT showed statistically significant correlations with μCT approaching a moderate level of correlation at the superior endplate for all measured parameters (R(2)Adj=0.19-0.57), including averages, variability, and higher order statistical moments. Correlation of average depths at the inferior endplate was comparable to the superior case for both DTS and HRCT (R(2)Adj=0.14-0.51), while correlations became weak or nonsignificant for higher moments of the topography distribution. DTS was able to capture variations in the endplate topography to a slightly better extent than HRCT, and taken together with the higher speed and lower radiation cost of DTS than HRCT, DTS appears preferable for endplate measurements. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Imaging technologies for preclinical models of bone and joint disorders

    PubMed Central

    2011-01-01

    Preclinical models for musculoskeletal disorders are critical for understanding the pathogenesis of bone and joint disorders in humans and the development of effective therapies. The assessment of these models primarily relies on morphological analysis which remains time consuming and costly, requiring large numbers of animals to be tested through different stages of the disease. The implementation of preclinical imaging represents a keystone in the refinement of animal models allowing longitudinal studies and enabling a powerful, non-invasive and clinically translatable way for monitoring disease progression in real time. Our aim is to highlight examples that demonstrate the advantages and limitations of different imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and optical imaging. All of which are in current use in preclinical skeletal research. MRI can provide high resolution of soft tissue structures, but imaging requires comparatively long acquisition times; hence, animals require long-term anaesthesia. CT is extensively used in bone and joint disorders providing excellent spatial resolution and good contrast for bone imaging. Despite its excellent structural assessment of mineralized structures, CT does not provide in vivo functional information of ongoing biological processes. Nuclear medicine is a very promising tool for investigating functional and molecular processes in vivo with new tracers becoming available as biomarkers. The combined use of imaging modalities also holds significant potential for the assessment of disease pathogenesis in animal models of musculoskeletal disorders, minimising the use of conventional invasive methods and animal redundancy. PMID:22214535

  14. Cone-beam volume CT mammographic imaging: feasibility study

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Ning, Ruola

    2001-06-01

    X-ray projection mammography, using a film/screen combination or digital techniques, has proven to be the most effective imaging modality for early detection of breast cancer currently available. However, the inherent superimposition of structures makes small carcinoma (a few millimeters in size) difficult to detect in the occultation case or in dense breasts, resulting in a high false positive biopsy rate. The cone-beam x-ray projection based volume imaging using flat panel detectors (FPDs) makes it possible to obtain three-dimensional breast images. This may benefit diagnosis of the structure and pattern of the lesion while eliminating hard compression of the breast. This paper presents a novel cone-beam volume CT mammographic imaging protocol based on the above techniques. Through computer simulation, the key issues of the system and imaging techniques, including the x-ray imaging geometry and corresponding reconstruction algorithms, x-ray characteristics of breast tissues, x-ray setting techniques, the absorbed dose estimation and the quantitative effect of x-ray scattering on image quality, are addressed. The preliminary simulation results support the proposed cone-beam volume CT mammographic imaging modality in respect to feasibility and practicability for mammography. The absorbed dose level is comparable to that of current two-view mammography and would not be a prominent problem for this imaging protocol. Compared to traditional mammography, the proposed imaging protocol with isotropic spatial resolution will potentially provide significantly better low contrast detectability of breast tumors and more accurate location of breast lesions.

  15. Thoracic computed tomography is an effective screening modality in patients with penetrating injuries to the chest.

    PubMed

    Strumwasser, Aaron; Chong, Vincent; Chu, Eveline; Victorino, Gregory P

    2016-09-01

    The precise role of thoracic CT in penetrating chest trauma remains to be defined. We hypothesized that thoracic CT effectively screens hemodynamically normal patients with penetrating thoracic trauma to surgery vs. expectant management (NOM). A ten-year review of all penetrating torso cases was retrospectively analyzed from our urban University-based trauma center. We included hemodynamically normal patients (systolic blood pressure ≥90) with penetrating chest injuries that underwent screening thoracic CT. Hemodynamically unstable patients and diaphragmatic injuries were excluded. The sensitivity, specificity, positive predictive value and negative predictive value were calculated. A total of 212 patients (mean injury severity score=24, Abbreviated Injury Score for Chest=3.9) met inclusion criteria. Of these, 84.3% underwent NOM, 9.1% necessitated abdominal exploration, 6.6% underwent exploration for retained hemothorax/empyema, 6.6% underwent immediate thoracic exploration for significant injuries on chest CT, and 1.0% underwent delayed thoracic exploration for missed injuries. Thoracic CT had a sensitivity of 82%, specificity of 99%, positive predictive value of 90%, a negative predictive value of 99%, and an accuracy of 99% in predicting surgery vs. NOM. Thoracic CT has a negative predictive value of 99% in triaging hemodynamically normal patients with penetrating chest trauma. Screening thoracic CT successfully excludes surgery in patients with non-significant radiologic findings. Copyright © 2016. Published by Elsevier Ltd.

  16. Imaging of femoroacetabular impingement-current concepts

    PubMed Central

    Albers, Christoph E.; Wambeek, Nicholas; Hanke, Markus S.; Schmaranzer, Florian; Prosser, Gareth H.; Yates, Piers J.

    2016-01-01

    Following the recognition of femoroacetabular impingement (FAI) as a clinical entity, diagnostic tools have continuously evolved. While the diagnosis of FAI is primarily made based on the patients’ history and clinical examination, imaging of FAI is indispensable. Routine diagnostic work-up consists of a set of plain radiographs, magnetic resonance imaging (MRI) and MR-arthrography. Recent advances in MRI technology include biochemically sensitive sequences bearing the potential to detect degenerative changes of the hip joint at an early stage prior to their appearance on conventional imaging modalities. Computed tomography may serve as an adjunct. Advantages of CT include superior bone to soft tissue contrast, making CT applicable for image-guiding software tools that allow evaluation of the underlying dynamic mechanisms causing FAI. This article provides a summary of current concepts of imaging in FAI and a review of the literature on recent advances, and their application to clinical practice. PMID:29632685

  17. Concurrent segmentation of the prostate on MRI and CT via linked statistical shape models for radiotherapy planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Najeeb; Toth, Robert; Chappelow, Jonathan

    2012-04-15

    Purpose: Prostate gland segmentation is a critical step in prostate radiotherapy planning, where dose plans are typically formulated on CT. Pretreatment MRI is now beginning to be acquired at several medical centers. Delineation of the prostate on MRI is acknowledged as being significantly simpler to perform, compared to delineation on CT. In this work, the authors present a novel framework for building a linked statistical shape model (LSSM), a statistical shape model (SSM) that links the shape variation of a structure of interest (SOI) across multiple imaging modalities. This framework is particularly relevant in scenarios where accurate boundary delineations ofmore » the SOI on one of the modalities may not be readily available, or difficult to obtain, for training a SSM. In this work the authors apply the LSSM in the context of multimodal prostate segmentation for radiotherapy planning, where the prostate is concurrently segmented on MRI and CT. Methods: The framework comprises a number of logically connected steps. The first step utilizes multimodal registration of MRI and CT to map 2D boundary delineations of the prostate from MRI onto corresponding CT images, for a set of training studies. Hence, the scheme obviates the need for expert delineations of the gland on CT for explicitly constructing a SSM for prostate segmentation on CT. The delineations of the prostate gland on MRI and CT allows for 3D reconstruction of the prostate shape which facilitates the building of the LSSM. In order to perform concurrent prostate MRI and CT segmentation using the LSSM, the authors employ a region-based level set approach where the authors deform the evolving prostate boundary to simultaneously fit to MRI and CT images in which voxels are classified to be either part of the prostate or outside the prostate. The classification is facilitated by using a combination of MRI-CT probabilistic spatial atlases and a random forest classifier, driven by gradient and Haar features. Results: The authors acquire a total of 20 MRI-CT patient studies and use the leave-one-out strategy to train and evaluate four different LSSMs. First, a fusion-based LSSM (fLSSM) is built using expert ground truth delineations of the prostate on MRI alone, where the ground truth for the gland on CT is obtained via coregistration of the corresponding MRI and CT slices. The authors compare the fLSSM against another LSSM (xLSSM), where expert delineations of the gland on both MRI and CT are employed in the model building; xLSSM representing the idealized LSSM. The authors also compare the fLSSM against an exclusive CT-based SSM (ctSSM), built from expert delineations of the gland on CT alone. In addition, two LSSMs trained using trainee delineations (tLSSM) on CT are compared with the fLSSM. The results indicate that the xLSSM, tLSSMs, and the fLSSM perform equivalently, all of them out-performing the ctSSM. Conclusions: The fLSSM provides an accurate alternative to SSMs that require careful expert delineations of the SOI that may be difficult or laborious to obtain. Additionally, the fLSSM has the added benefit of providing concurrent segmentations of the SOI on multiple imaging modalities.« less

  18. Incidence of retrorenal colon during percutaneous nephrolithotomy

    PubMed Central

    Balasar, Mehmet; Kandemir, Abdülkadir; Poyraz, Necdet; Unal, Yunus; Ozturk, Ahmet

    2015-01-01

    Objective The aim of this study was to investigate retrorenal colon incidence in percutaneous nephrolithotomy (PNL) interventions made in our clinic. Materials and Methods Clinical data of 804 PNL patients, accumulated over a 7 year period (2006-2012), was surveyed. The patient files were reviewed retrospectively, and only those who had abdominal computed tomography (CT) images before PNL intervention were included in the study. In the CT images, the position of both the ascending and descending colon in relation to the right and left kidneys were evaluated. Results According to our hospital reports, 394 patients with CT images were included in the present study 27 patients (6.9%) had retrorenal colon, of which 18 (4.6%) were on the left side, 4 (1.0%) on the right side and 5 (1.3%) had bilateral retrorenal colons. Colonic perforation complication was seen only in two patients and the colonic perforation rate was 0.3%. These two cases had no CT images. Conclusions PNL, in the process of becoming the standard treatment modality, is a safe and reliable technique for renal stone treatment. Colonic injury should be taken into consideration during PNL interventions of the lower pole of the kidney (especially on the left side) due to the location of retrorenal colon. PMID:26005968

  19. Whole-body nonenhanced PET/MR versus PET/CT in the staging and restaging of cancers: preliminary observations.

    PubMed

    Huellner, Martin W; Appenzeller, Philippe; Kuhn, Félix P; Husmann, Lars; Pietsch, Carsten M; Burger, Irene A; Porto, Miguel; Delso, Gaspar; von Schulthess, Gustav K; Veit-Haibach, Patrick

    2014-12-01

    To assess the diagnostic performance of whole-body non-contrast material-enhanced positron emission tomography (PET)/magnetic resonance (MR) imaging and PET/computed tomography (CT) for staging and restaging of cancers and provide guidance for modality and sequence selection. This study was approved by the institutional review board and national government authorities. One hundred six consecutive patients (median age, 68 years; 46 female and 60 male patients) referred for staging or restaging of oncologic malignancies underwent whole-body imaging with a sequential trimodality PET/CT/MR system. The MR protocol included short inversion time inversion-recovery ( STIR short inversion time inversion-recovery ), Dixon-type liver accelerated volume acquisition ( LAVA liver accelerated volume acquisition ; GE Healthcare, Waukesha, Wis), and respiratory-gated periodically rotated overlapping parallel lines with enhanced reconstruction ( PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction ; GE Healthcare) sequences. Primary tumors (n = 43), local lymph node metastases (n = 74), and distant metastases (n = 66) were evaluated for conspicuity (scored 0-4), artifacts (scored 0-2), and reader confidence on PET/CT and PET/MR images. Subanalysis for lung lesions (n = 46) was also performed. Relevant incidental findings with both modalities were compared. Interreader agreement was analyzed with intraclass correlation coefficients and κ statistics. Lesion conspicuity, image artifacts, and incidental findings were analyzed with nonparametric tests. Primary tumors were less conspicuous on STIR short inversion time inversion-recovery (3.08, P = .016) and LAVA liver accelerated volume acquisition (2.64, P = .002) images than on CT images (3.49), while findings with the PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction sequence (3.70, P = .436) were comparable to those at CT. In distant metastases, the PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction sequence (3.84) yielded better results than CT (2.88, P < .001). Subanalysis for lung lesions yielded similar results (primary lung tumors: CT, 3.71; STIR short inversion time inversion-recovery , 3.32 [P = .014]; LAVA liver accelerated volume acquisition , 2.52 [P = .002]; PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction , 3.64 [P = .546]). Readers classified lesions more confidently with PET/MR than PET/CT. However, PET/CT showed more incidental findings than PET/MR (P = .039), especially in the lung (P < .001). MR images had more artifacts than CT images. PET/MR performs comparably to PET/CT in whole-body oncology and neoplastic lung disease, with the use of appropriate sequences. Further studies are needed to define regionalized PET/MR protocols with sequences tailored to specific tumor entities. © RSNA, 2014 Online supplemental material is available for this article.

  20. Advances in cardiac CT contrast injection and acquisition protocols.

    PubMed

    Scholtz, Jan-Erik; Ghoshhajra, Brian

    2017-10-01

    Cardiac computed tomography (CT) imaging has become an important part of modern cardiovascular care. Coronary CT angiography (CTA) is the first choice imaging modality for non-invasive visualization of coronary artery stenosis. In addition, cardiac CT does not only provide anatomical evaluation, but also functional and valvular assessment, and myocardial perfusion evaluation. In this article we outline the factors which influence contrast enhancement, give an overview of current contrast injection and acquisition protocols, with focus on current emerging topics such as pre-transcatheter aortic valve replacement (TAVR) planning, cardiac CT for congenital heart disease (CHD) patients, and myocardial CT perfusion (CTP). Further, we point out areas where we see potential for future improvements in cardiac CT imaging based on a closer interaction between CT scanner settings and contrast injection protocols to tailor injections to patient- and exam-specific factors.

  1. Advances in cardiac CT contrast injection and acquisition protocols

    PubMed Central

    Scholtz, Jan-Erik

    2017-01-01

    Cardiac computed tomography (CT) imaging has become an important part of modern cardiovascular care. Coronary CT angiography (CTA) is the first choice imaging modality for non-invasive visualization of coronary artery stenosis. In addition, cardiac CT does not only provide anatomical evaluation, but also functional and valvular assessment, and myocardial perfusion evaluation. In this article we outline the factors which influence contrast enhancement, give an overview of current contrast injection and acquisition protocols, with focus on current emerging topics such as pre-transcatheter aortic valve replacement (TAVR) planning, cardiac CT for congenital heart disease (CHD) patients, and myocardial CT perfusion (CTP). Further, we point out areas where we see potential for future improvements in cardiac CT imaging based on a closer interaction between CT scanner settings and contrast injection protocols to tailor injections to patient- and exam-specific factors. PMID:29255688

  2. Deformable image registration for multimodal lung-cancer staging

    NASA Astrophysics Data System (ADS)

    Cheirsilp, Ronnarit; Zang, Xiaonan; Bascom, Rebecca; Allen, Thomas W.; Mahraj, Rickhesvar P. M.; Higgins, William E.

    2016-03-01

    Positron emission tomography (PET) and X-ray computed tomography (CT) serve as major diagnostic imaging modalities in the lung-cancer staging process. Modern scanners provide co-registered whole-body PET/CT studies, collected while the patient breathes freely, and high-resolution chest CT scans, collected under a brief patient breath hold. Unfortunately, no method exists for registering a PET/CT study into the space of a high-resolution chest CT scan. If this could be done, vital diagnostic information offered by the PET/CT study could be brought seamlessly into the procedure plan used during live cancer-staging bronchoscopy. We propose a method for the deformable registration of whole-body PET/CT data into the space of a high-resolution chest CT study. We then demonstrate its potential for procedure planning and subsequent use in multimodal image-guided bronchoscopy.

  3. Project MICAS: a multivendor open-system incremental approach to implementing an integrated enterprise-wide PACS: works in progress

    NASA Astrophysics Data System (ADS)

    Smith, Edward M.; Wright, Jeffrey; Fontaine, Marc T.; Robinson, Arvin E.

    1998-07-01

    The Medical Information, Communication and Archive System (MICAS) is a multi-vendor incremental approach to PACS. MICAS is a multi-modality integrated image management system that incorporates the radiology information system (RIS) and radiology image database (RID) with future 'hooks' to other hospital databases. Even though this approach to PACS is more risky than a single-vendor turn-key approach, it offers significant advantages. The vendors involved in the initial phase of MICAS are IDX Corp., ImageLabs, Inc. and Digital Equipment Corp (DEC). The network architecture operates at 100 MBits per sec except between the modalities and the stackable intelligent switch which is used to segment MICAS by modality. Each modality segment contains the acquisition engine for the modality, a temporary archive and one or more diagnostic workstations. All archived studies are available at all workstations, but there is no permanent archive at this time. At present, the RIS vendor is responsible for study acquisition and workflow as well as maintenance of the temporary archive. Management of study acquisition, workflow and the permanent archive will become the responsibility of the archive vendor when the archive is installed in the second quarter of 1998. The modalities currently interfaced to MICAS are MRI, CT and a Howtek film digitizer with Nuclear Medicine and computed radiography (CR) to be added when the permanent archive is installed. There are six dual-monitor diagnostic workstations which use ImageLabs Shared Vision viewer software located in MRI, CT, Nuclear Medicine, musculoskeletal reading areas and two in Radiology's main reading area. One of the major lessons learned to date is that the permanent archive should have been part of the initial MICAS installation and the archive vendor should have been responsible for image acquisition rather than the RIS vendor. Currently an archive vendor is being selected who will be responsible for the management of the archive plus the HIS/RIS interface, image acquisition, modality work list manager and interfacing to the current DICOM viewer software. The next phase of MICAS will include interfacing ultrasound, locating servers outside of the Radiology LAN to support the distribution of images and reports to the clinical floors and physician offices both within and outside of the University of Rochester Medical Center (URMC) campus and the teaching archive.

  4. Time-Of-Flight Camera, Optical Tracker and Computed Tomography in Pairwise Data Registration

    PubMed Central

    Badura, Pawel; Juszczyk, Jan; Pietka, Ewa

    2016-01-01

    Purpose A growing number of medical applications, including minimal invasive surgery, depends on multi-modal or multi-sensors data processing. Fast and accurate 3D scene analysis, comprising data registration, seems to be crucial for the development of computer aided diagnosis and therapy. The advancement of surface tracking system based on optical trackers already plays an important role in surgical procedures planning. However, new modalities, like the time-of-flight (ToF) sensors, widely explored in non-medical fields are powerful and have the potential to become a part of computer aided surgery set-up. Connection of different acquisition systems promises to provide a valuable support for operating room procedures. Therefore, the detailed analysis of the accuracy of such multi-sensors positioning systems is needed. Methods We present the system combining pre-operative CT series with intra-operative ToF-sensor and optical tracker point clouds. The methodology contains: optical sensor set-up and the ToF-camera calibration procedures, data pre-processing algorithms, and registration technique. The data pre-processing yields a surface, in case of CT, and point clouds for ToF-sensor and marker-driven optical tracker representation of an object of interest. An applied registration technique is based on Iterative Closest Point algorithm. Results The experiments validate the registration of each pair of modalities/sensors involving phantoms of four various human organs in terms of Hausdorff distance and mean absolute distance metrics. The best surface alignment was obtained for CT and optical tracker combination, whereas the worst for experiments involving ToF-camera. Conclusion The obtained accuracies encourage to further develop the multi-sensors systems. The presented substantive discussion concerning the system limitations and possible improvements mainly related to the depth information produced by the ToF-sensor is useful for computer aided surgery developers. PMID:27434396

  5. Cardiac calcifications are more prevalent in children receiving hemodialysis than peritoneal dialysis.

    PubMed

    Srivaths, Poyyapakkam; Krishnamurthy, Rajesh; Brunner, Lori; Logan, Barbara; Bennett, Michael; Ma, Qing; VanDeVoorde, Rene; Goldstein, Stuart L

    2014-04-01

    Children receiving maintenance dialysis exhibit high cardiovascular (CV) associated mortality. We and others have shown high prevalence of cardiac calcifications (CC) in children with endstage renal disease (ESRD). However, no pediatric study has examined modality difference in CC prevalence. The current study was conducted to assess for a difference in CC prevalence between hemodialysis (HD) and peritoneal dialysis (PD) in children with ESRD. 38 patients (19 female, 19 male; mean age 15.5 ± 4.1 years) receiving dialysis (21 HD, 17 PD) were included in the study. CC were assessed by ultrafast gated CT and quantified by Agatston score. Patients received thrice weekly HD for 3 - 3.5 hours or daily continuous cycler PD (CCPD). FGF 23, IL-6, IL-8, and CRP levels were obtained at time of CT. Time-averaged (6 months prior to CT) serum Ca, P, Alb, iPTH, and cholesterol levels were obtained. Patients on aspirin, with evidence of infection, underlying collagen vascular disease were excluded. CC were present in 11/38 patients, but more prevalent in HD vs. PD (9/21 vs. 2/17, p = 0.04). Subjects with CC were older (p = 0.0003), had longer dialysis vintage (p = 0.02) and higher serum phosphorus (p = 0.02) and FGF 23 levels (p = 0.03). HD patients also had significantly higher phosphorus (p = 0.02), FGF 23 (p = 0.009), and IL-8 levels (p = 0.02) when compared to PD patients. Residual renal function was not different between modalities or patients with CC. On a multinomial regression model, modality, and age remained independent associations for CC prevalence. We have shown that pediatric patients receiving CCPD have lower CC prevalence conferring lower CV risk. The better control of mineral imbalance in patients receiving PD may play an important role in lower CC prevalence.

  6. The utility of 64 channel multidetector CT angiography for evaluating the renal vascular anatomy and possible variations: a pictorial essay.

    PubMed

    Kumar, Sheo; Neyaz, Zafar; Gupta, Archna

    2010-01-01

    The increased use of laparoscopic nephrectomy and nephron-sparing surgery has prompted the need for a more detailed radiological evaluation of the renal vascular anatomy. Multidetector CT angiography is a fast and accurate modality for assessing the precise anatomy of the renal vessels. In this pictorial review, we present the multidetector CT angiography appearances of the normal renal vascular anatomy and a spectrum of various anomalies that require accurate vascular depiction before undergoing surgical treatment.

  7. FDG-PET Imaging in Hematological Malignancies

    PubMed Central

    Valls, L.; Badve, C.; Avril, S.; Herrmann, K.; Faulhaber, P.; O'Donnell, J.; Avril, N.

    2016-01-01

    The majority of aggressive lymphomas is characterized by an up regulated glycolytic activity, which enables the visualization by F-18 FDG-PET/CT. One-stop hybrid FDG-PET/CT combines the functional and morphologic information, outperforming both, CT and FDG-PET as separate imaging modalities. This has resulted in several recommendations using FDG-PET/CT for staging, restaging, monitoring during therapy, and assessment of treatment response as well as identification of malignant transformation. FDG-PET/CT may obviate the need for a bone marrow biopsy in patients with Hodgkin's lymphoma and diffuse large B-cell lymphoma. FDG-PET/CT response assessment is recommended for FDG-avid lymphomas, whereas CT-based response evaluation remains important in lymphomas with low or variable FDG avidity. The treatment induced change in metabolic activity allows for assessment of response after completion of therapy as well as prediction of outcome early during therapy. The five point scale Deauville Criteria allows the assessment of treatment response based on visual FDG-PET analysis. Although the use of FDG-PET/CT for prediction of therapeutic response is promising it should only be conducted in the context of clinical trials. Surveillance FDG-PET/CT after complete remission is discouraged due to the relative high number of false-positive findings, which in turn may result in further unnecessary investigations. Future directions include the use of new PET tracers such as F-18 fluorothymidine (FLT), a surrogate biomarker of cellular proliferation and Ga-68 CXCR4, a chemokine receptor imaging biomarker as well as innovative digital PET/CT and PET/MRI techniques. PMID:27090170

  8. Relationships among measurements obtained by use of computed tomography and radiography and scores of cartilage microdamage in hip joints with moderate to severe joint laxity of adult dogs.

    PubMed

    Lopez, Mandi J; Lewis, Brooke P; Swaab, Megan E; Markel, Mark D

    2008-03-01

    To evaluate correlations among measurements on radiographic and computed tomography (CT) images with articular cartilage microdamage in lax hip joints of dogs. 12 adult mixed-breed hounds. Pelvic CT and radiography were performed. Hip joints were harvested following euthanasia. Orthopedic Foundation for Animals (OFA) and PennHIP radiograph reports were obtained. Norberg angle (NA) and radiographic percentage femoral head coverage (RPC) were determined. Center-edge angle (CEA), horizontal toit externe angle (HTEA), ventral acetabular sector angle (VASA), dorsal acetabular sector angle (DASA), horizontal acetabular sector angle (HASA), acetabular index (AI), and CT percentage femoral head coverage (CPC) were measured on 2-dimensional CT images. Femoral head-acetabular shelf percentage was measured on sagittal 3-dimensional CT (SCT) and transverse 3-dimensional CT (TCT) images. Light microscopy was used to score joint cartilage. Relationships of OFA confirmation and PennHIP osteoarthritis scores with radiography, CT, and cartilage variables and relationships of cartilage scores with radiography and CT measurements were evaluated with Spearman rank correlations. Pearson correlation was used for relationships of distraction index (DI) with radiography, CT, and cartilage variables. Significant relationships included PennHIP osteoarthritis score with cartilage score, CEA, HTEA, DASA, AI, CPC, and TCT; OFA confirmation score with cartilage score, NA, RPC, CEA, HTEA, DASA, AI, CPC, and TCT; cartilage score with NA, RPC, CEA, HTEA, DASA, HASA, AI, and TCT; and DI with cartilage score, CEA, HTEA, DASA, HASA, AI, and CPC. CT appeared to be a valuable imaging modality for predicting cartilage microdamage in canine hip joints.

  9. First multimodal embolization particles visible on x-ray/computed tomography and magnetic resonance imaging.

    PubMed

    Bartling, Soenke H; Budjan, Johannes; Aviv, Hagit; Haneder, Stefan; Kraenzlin, Bettina; Michaely, Henrik; Margel, Shlomo; Diehl, Steffen; Semmler, Wolfhard; Gretz, Norbert; Schönberg, Stefan O; Sadick, Maliha

    2011-03-01

    Embolization therapy is gaining importance in the treatment of malignant lesions, and even more in benign lesions. Current embolization materials are not visible in imaging modalities. However, it is assumed that directly visible embolization material may provide several advantages over current embolization agents, ranging from particle shunt and reflux prevention to improved therapy control and follow-up assessment. X-ray- as well as magnetic resonance imaging (MRI)-visible embolization materials have been demonstrated in experiments. In this study, we present an embolization material with the property of being visible in more than one imaging modality, namely MRI and x-ray/computed tomography (CT). Characterization and testing of the substance in animal models was performed. To reduce the chance of adverse reactions and to facilitate clinical approval, materials have been applied that are similar to those that are approved and being used on a routine basis in diagnostic imaging. Therefore, x-ray-visible Iodine was combined with MRI-visible Iron (Fe3O4) in a macroparticle (diameter, 40-200 μm). Its core, consisting of a copolymerized monomer MAOETIB (2-methacryloyloxyethyl [2,3,5-triiodobenzoate]), was coated with ultra-small paramagnetic iron oxide nanoparticles (150 nm). After in vitro testing, including signal to noise measurements in CT and MRI (n = 5), its ability to embolize tissue was tested in an established tumor embolization model in rabbits (n = 6). Digital subtraction angiography (DSA) (Integris, Philips), CT (Definition, Siemens Healthcare Section, Forchheim, Germany), and MRI (3 Tesla Magnetom Tim Trio MRI, Siemens Healthcare Section, Forchheim, Germany) were performed before, during, and after embolization. Imaging signal changes that could be attributed to embolization particles were assessed by visual inspection and rated on an ordinal scale by 3 radiologists, from 1 to 3. Histologic analysis of organs was performed. Particles provided a sufficient image contrast on DSA, CT (signal to noise [SNR], 13 ± 2.5), and MRI (SNR, 35 ± 1) in in vitro scans. Successful embolization of renal tissue was confirmed by catheter angiography, revealing at least partial perfusion stop in all kidneys. Signal changes that were attributed to particles residing within the kidney were found in all cases in all the 3 imaging modalities. Localization distribution of particles corresponded well in all imaging modalities. Dynamic imaging during embolization provided real-time monitoring of the inflow of embolization particles within DSA, CT, and MRI. Histologic visualization of the residing particles as well as associated thrombosis in renal arteries could be performed. Visual assessment of the likelihood of embolization particle presence received full rating scores (153/153) after embolization. Multimodal-visible embolization particles have been developed, characterized, and tested in vivo in an animal model. Their implementation in clinical radiology may provide optimization of embolization procedures with regard to prevention of particle misplacement and direct intraprocedural visualization, at the same time improving follow-up examinations by utilizing the complementary characteristics of CT and MRI. Radiation dose savings can also be considered. All these advantages could contribute to future refinements and improvements in embolization therapy. Additionally, new approaches in embolization research may open up.

  10. 18F-Fluorocholine PET/CT in the assessment of primary hyperparathyroidism compared with 99mTc-MIBI or 99mTc-tetrofosmin SPECT/CT: a prospective dual-centre study in 100 patients.

    PubMed

    Beheshti, Mohsen; Hehenwarter, Lukas; Paymani, Zeinab; Rendl, Gundula; Imamovic, Larisa; Rettenbacher, Rupert; Tsybrovskyy, Oleksiy; Langsteger, Werner; Pirich, Christian

    2018-03-08

    In this prospective study we compared the accuracy of 18 F-fluorocholine PET/CT with that of 99m Tc-MIBI or 99m Tc-tetrofosmin SPECT/CT in the preoperative detection of parathyroid adenoma in patients with primary hyperparathyroidism. We also assessed the value of semiquantitative parameters in differentiating between parathyroid hyperplasia and adenoma. Both 18 F-fluorocholine PET/CT and 99m Tc-MIBI/tetrofosmin SPECT/CT were performed in 100 consecutive patients with biochemical evidence of primary hyperparathyroidism. At least one abnormal focus on either 18 F-fluorocholine or 99m Tc-MIBI/tetrofosmin corresponding to a parathyroid gland or ectopic parathyroid tissue was considered as a positive finding. In 76 patients with positive findings on at least one imaging modality, surgical exploration was performed within 6 months, and the results were related to histopathological findings and clinical and laboratory findings at 3-6 months as the standard of truth. In 24 patients, no surgery was performed: in 18 patients with positive imaging findings surgery was refused or considered risky, and in 6 patients imaging was negative. Therefore, data from 82 patients (76 undergoing surgery, 6 without surgery) in whom the standard of truth criteria were met, were used in the final analysis. All patients showed biochemical evidence of primary hyperparathyroidism with a mean serum calcium level of 2.78 ± 0.34 mmol/l and parathormone (PTH) level of 196.5 ± 236.4 pg/ml. The study results in 76 patients with verified histopathology and 3 patients with negative imaging findings were analysed. Three of six patients with negative imaging showed normalized serum PTH and calcium levels on laboratory follow-up at 3 and 6 months, and the results were considered true negative. In a patient-based analysis, the detection rate with 18 F-fluorocholine PET/CT was 93% (76/82), but was only 61% (50/82) with 99m Tc-MIBI/tetrofosmin SPECT/CT. In a lesion-based analysis, the sensitivity, specificity, positive predictive value, negative predictive value and overall accuracy of 18 F-fluorocholine PET/CT in the detection of parathyroid adenoma were 93.7%, 96.0%, 90.2%, 97.4% and 95.3%, respectively, and of 99m Tc-MIBI/tetrofosmin SPECT/CT were 60.8%, 98.5%, 94.1%, 86.3% and 87.7%, respectively. Although 18 F-fluorocholine PET-positive adenomatous lesions showed higher SUVmax values than the hyperplastic glands (6.80 ± 3.78 vs. 4.53 ± 0.40) in the semiquantitative analysis, the difference was not significant (p = 0.236). The mean size (measured as the length of the greatest dimension) and weight of adenomas were 15.9 ± 7.6 mm (median 15 mm, range 1-40 mm) and 1.71 ± 1.86 g (median 1 g, range: 0.25-9 g), respectively. Among the analysed parameters including serum calcium and PTH and the size and weight of parathyroid adenomas, size was significantly different between patients with negative 99m Tc-MIBI/tetrofosmin SPECT/CT and those with positive 99m Tc-MIBI/tetrofosmin SPECT/CT (mean size 13.4 ± 7.6 mm vs. 16.9 ± 7.4 mm, respectively; p = 0.042). In this prospective study, 18 F-fluorocholine PET/CT showed promise as a functional imaging modality, being clearly superior to 99m Tc-MIBI/tetrofosmin SPECT/CT, especially in the detection and localization of small parathyroid adenomas in patients with primary hyperparathyroidism. SUVmax was higher in parathyroid adenomas than in hyperplasia. However, further evaluation of this modality is needed.

  11. Utility of PET-CT in detecting nodal metastasis in cN0 early stage oral cavity squamous cell carcinoma.

    PubMed

    Zhang, Han; Seikaly, Hadi; Biron, Vincent L; Jeffery, Caroline C

    2018-05-01

    Management of the clinically node-negative neck (cN0) in patients with early stage oral cavity squamous cell carcinoma (OCSCC) is challenging. Accurate imaging alternatives to elective neck dissections would help reduce surgical morbidity. While pooled studies suggest that imaging modalities have similar accuracy in predicting occult nodal disease, no study has examined the utility of PET-CT in this specific population of low-volume, clinically T1 and T2 OCSCC patients. A retrospective review of patients in the Alberta Cancer Registry who were diagnosed with cT1 or T2N0M0 OCSCC who underwent elective unilateral or bilateral neck dissections was performed. Pre-operative PET-CT and CT necks were reviewed for number of radiographically suspicious lymph nodes. Surgical pathology reports were reviewed to obtain the total number of nodes sampled and number of malignant nodes. Between 2009 and 2013, 148 patients were diagnosed with cT1 or T2N0M0 OCSCC. Of these, 96 patients underwent elective neck dissections. All patients underwent preoperative CT of the neck with 32 patients having undergone additional preoperative PET-CT. Based on finally surgical pathology, the overall rate of occult metastasis was 13.5% (13/96). The overall sensitivity and specificity of PET-CT in this cohort was 21.4% and 98.4%, respectively with a negative predictive value of 99.1%. Although sensitivity improved in patients with tumors ≥2 cm and depth ≥4 mm, specificity remained unchanged. In patients with cT1 and T2N0 OCSCC, PET-CT has high negative predictive value. These patients can be considered for treatment with single modality surgical resection and elective neck dissection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. [Importance of PET/CT in lymphoma diagnostics].

    PubMed

    Afshar-Oromieh, A; Kratochwil, C; Haberkorn, U; Giesel, F L

    2012-04-01

    Staging or re-staging of lymphomas using conventional imaging modalities is based on morphological changes, usually on the diameter of lesions. However, vitality of tumors cannot be evaluated. In this context computed tomography (CT) has been used as a standard modality. Since the introduction of positron emission tomography (PET), evaluation of tumor vitality has become possible. Moreover PET/CT hybrid scanners were brought onto the market one decade ago. The fluorodeoxyglucose (FDG) PET/CT technique is now accepted as one of the most accurate modalities in the diagnosis of aggressive lymphomas due to a high FDG uptake (overall accuracy > 90%, sensitivity >90%). However, indolent lymphomas suffer from lower FDG uptake due to a moderate metabolic activity. After the introduction of PET/CT hybrid imaging the specificity of this diagnostic technique increased significantly compared to PET alone (from > 80% to > 90%). With the utilization of PET approximately 20% more lesions are detected when comparing to CT alone and in up to 15% of the patients this also results in a change of the therapeutic regime. As post-chemotherapy scar tissue usually persists for months, evaluation of vitality within residual bulks using FDG-PET can predict therapy response much earlier than CT, enabling therapy stratification. Other PET tracers apart from FDG have low impact in imaging of lymphomas and only the thymidine analogue fluorothymidine (FLT) is used in some cases for non-invasive measurement of proliferation. Despite the capability of FDG-PET/CT there is no evidence that the improvement in diagnostics is translated into a better patient outcome and therefore warrants the high costs. False positive findings in PET can result in unnecessary treatment escalation with subsequent higher therapy-associated toxicity and costs. Some pitfalls can be avoided by scheduling PET scans carefully. As treatment-induced inflammation early after therapy can be misinterpreted as vital tumor tissue, it is recommended to wait at least 3 weeks between the last treatment cycle and the subsequent FDG-PET follow-up. Until the results of the prospective multicenter trials "PETAL" and "HD-18" become available, in Germany FDG-PET is only recommended generally for restaging Hodgkin's disease with a known rest bulk of  > 2.5 cm in justifiable individual cases or in clinical trials.

  13. Image Guided Biodistribution and Pharmacokinetic Studies of Theranostics

    PubMed Central

    Ding, Hong; Wu, Fang

    2012-01-01

    Image guided technique is playing an increasingly important role in the investigation of the biodistribution and pharmacokinetics of drugs or drug delivery systems in various diseases, especially cancers. Besides anatomical imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), molecular imaging strategy including optical imaging, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) will facilitate the localization and quantization of radioisotope or optical probe labeled nanoparticle delivery systems in the category of theranostics. The quantitative measurement of the bio-distribution and pharmacokinetics of theranostics in the fields of new drug/probe development, diagnosis and treatment process monitoring as well as tracking the brain-blood-barrier (BBB) breaking through by high sensitive imaging method, and the applications of the representative imaging modalities are summarized in this review. PMID:23227121

  14. 68Gallium-Arginine-Glycine-Aspartic Acid and 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Chondroblastic Osteosarcoma of the Skull.

    PubMed

    Orunmuyi, Akintunde; Modiselle, Moshe; Lengana, Thabo; Ebenhan, Thomas; Vorster, Mariza; Sathekge, Mike

    2017-09-01

    We report the case of a 32 year-old male with Chondroblastic Osteosarcoma of the skull, which was imaged with both 18 [F]fluorodeoxyglucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) and 68 Gallium-arginine-glycine-aspartic acid ( 68 Ga-RGD) PET/CT. The 18 F-FDG PET/CT did not demonstrate the tumour, whereas the 68 Ga-RGD PET/CT clearly depicted a left-sided frontal tumour. 68 Ga-RGD PET/CT may be a clinically useful imaging modality for early detection of recurrent osteosarcoma, considering the limitations of 18 F-FDG PET in a setting of low glycolytic activity.

  15. Gold nanoshelled liquid perfluorocarbon nanocapsules for combined dual modal ultrasound/CT imaging and photothermal therapy of cancer.

    PubMed

    Ke, Hengte; Yue, Xiuli; Wang, Jinrui; Xing, Sen; Zhang, Qian; Dai, Zhifei; Tian, Jie; Wang, Shumin; Jin, Yushen

    2014-03-26

    The integration of multimodal contrast-enhanced diagnostic imaging and therapeutic capabilities could utilize imaging guided therapy to plan the treatment strategy based on the diagnostic results and to guide/monitor the therapeutic procedures. Herein, gold nanoshelled perfluorooctylbromide (PFOB) nanocapsules with PEGylation (PGsP NCs) are constructed by oil-in-water emulsion method to form polymeric PFOB nanocapsules, followed by the formation of PEGylated gold nanoshell on the surface. PGsP NCs could not only provide excellent contrast enhancement for dual modal ultrasound and CT imaging in vitro and in vivo, but also serve as efficient photoabsorbers for photothermal ablation of tumors on xenografted nude mouse model. To our best knowledge, this is the first report of gold nanoshell serving as both CT contrast agents and photoabsorbers for photothermal therapy. The novel multifunctional nanomedicine would be of great value to offer more comprehensive diagnostic information to guide more accurate and effective cancer therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Interactive dual-volume rendering visualization with real-time fusion and transfer function enhancement

    NASA Astrophysics Data System (ADS)

    Macready, Hugh; Kim, Jinman; Feng, David; Cai, Weidong

    2006-03-01

    Dual-modality imaging scanners combining functional PET and anatomical CT constitute a challenge in volumetric visualization that can be limited by the high computational demand and expense. This study aims at providing physicians with multi-dimensional visualization tools, in order to navigate and manipulate the data running on a consumer PC. We have maximized the utilization of pixel-shader architecture of the low-cost graphic hardware and the texture-based volume rendering to provide visualization tools with high degree of interactivity. All the software was developed using OpenGL and Silicon Graphics Inc. Volumizer, tested on a Pentium mobile CPU on a PC notebook with 64M graphic memory. We render the individual modalities separately, and performing real-time per-voxel fusion. We designed a novel "alpha-spike" transfer function to interactively identify structure of interest from volume rendering of PET/CT. This works by assigning a non-linear opacity to the voxels, thus, allowing the physician to selectively eliminate or reveal information from the PET/CT volumes. As the PET and CT are rendered independently, manipulations can be applied to individual volumes, for instance, the application of transfer function to CT to reveal the lung boundary while adjusting the fusion ration between the CT and PET to enhance the contrast of a tumour region, with the resultant manipulated data sets fused together in real-time as the adjustments are made. In addition to conventional navigation and manipulation tools, such as scaling, LUT, volume slicing, and others, our strategy permits efficient visualization of PET/CT volume rendering which can potentially aid in interpretation and diagnosis.

  17. Plaque imaging with CT—a comprehensive review on coronary CT angiography based risk assessment

    PubMed Central

    Kolossváry, Márton; Szilveszter, Bálint; Merkely, Béla

    2017-01-01

    CT based technologies have evolved considerably in recent years. Coronary CT angiography (CTA) provides robust assessment of coronary artery disease (CAD). Early coronary CTA imaging—as a gate-keeper of invasive angiography—has focused on the presence of obstructive stenosis. Coronary CTA is currently the only non-invasive imaging modality for the evaluation of non-obstructive CAD, which has been shown to contribute to adverse cardiac events. Importantly, improved spatial resolution of CT scanners and novel image reconstruction algorithms enable the quantification and characterization of atherosclerotic plaques. State-of-the-art CT imaging can therefore reliably assess the extent of CAD and differentiate between various plaque features. Recent studies have demonstrated the incremental prognostic value of adverse plaque features over luminal stenosis. Comprehensive coronary plaque assessment holds potential to significantly improve individual risk assessment incorporating adverse plaque characteristics, the extent and severity of atherosclerotic plaque burden. As a result, several coronary CTA based composite risk scores have been proposed recently to determine patients at high risk for adverse events. Coronary CTA became a promising modality for the evaluation of functional significance of coronary lesions using CT derived fractional flow reserve (FFR-CT) and/or rest/dynamic myocardial CT perfusion. This could lead to substantial reduction in unnecessary invasive catheterization procedures and provide information on ischemic burden of CAD. Discordance between the degree of stenosis and ischemia has been recognized in clinical landmark trials using invasive FFR. Both lesion stenosis and composition are possibly related to myocardial ischemia. The evaluation of lesion-specific ischemia using combined functional and morphological plaque information could ultimately improve the diagnostic performance of CTA and thus patient care. In this review we aimed to summarize current evidence on comprehensive coronary artery plaque assessment using coronary CTA. PMID:29255692

  18. Development of a universal medical X-ray imaging phantom prototype.

    PubMed

    Groenewald, Annemari; Groenewald, Willem A

    2016-11-08

    Diagnostic X-ray imaging depends on the maintenance of image quality that allows for proper diagnosis of medical conditions. Maintenance of image quality requires quality assurance programs on the various X-ray modalities, which consist of pro-jection radiography (including mobile X-ray units), fluoroscopy, mammography, and computed tomography (CT) scanning. Currently a variety of modality-specific phantoms are used to perform quality assurance (QA) tests. These phantoms are not only expensive, but suitably trained personnel are needed to successfully use them and interpret the results. The question arose as to whether a single universal phantom could be designed and applied to all of the X-ray imaging modalities. A universal phantom would reduce initial procurement cost, possibly reduce the time spent on QA procedures and simplify training of staff on the single device. The aim of the study was to design and manufacture a prototype of a universal phantom, suitable for image quality assurance in general X-rays, fluoroscopy, mammography, and CT scanning. The universal phantom should be easy to use and would enable automatic data analysis, pass/fail reporting, and corrective action recommendation. In addition, a universal phantom would especially be of value in low-income countries where finances and human resources are limited. The design process included a thorough investigation of commercially available phantoms. Image quality parameters necessary for image quality assurance in the different X-ray imaging modalities were determined. Based on information obtained from the above-mentioned investigations, a prototype of a universal phantom was developed, keeping ease of use and reduced cost in mind. A variety of possible phantom housing and insert materials were investigated, considering physical properties, machinability, and cost. A three-dimensional computer model of the first phantom prototype was used to manufacture the prototype housing and inserts. Some of the inserts were 3D-printed, others were machined from different materials. The different components were assembled to form the first prototype of the universal X-ray imaging phantom. The resulting prototype of the universal phantom conformed to the aims of a single phantom for multiple imag-ing modalities, which would be easy to use and manufacture at a reduced cost. A PCT International Patent Application No. PCT/IB2016/051165 has been filed for this technology. © 2016 The Authors.

  19. Diagnostic Imaging and Newer Modalities for Thoracic Diseases: PET/Computed Tomographic Imaging and Endobronchial Ultrasound for Staging and Its Implication for Lung Cancer.

    PubMed

    Counts, Sarah J; Kim, Anthony W

    2017-08-01

    Modalities to detect and characterize lung cancer are generally divided into those that are invasive [endobronchial ultrasound (EBUS), esophageal ultrasound (EUS), and electromagnetic navigational bronchoscopy (ENMB)] versus noninvasive [chest radiography (CXR), computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI)]. This chapter describes these modalities, the literature supporting their use, and delineates what tests to use to best evaluate the patient with lung cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Diagnostic accuracy of susceptibility-weighted magnetic resonance imaging for the evaluation of pineal gland calcification

    PubMed Central

    Böker, Sarah M.; Bender, Yvonne Y.; Diederichs, Gerd; Fallenberg, Eva M.; Wagner, Moritz; Hamm, Bernd; Makowski, Marcus R.

    2017-01-01

    Objectives To determine the diagnostic performance of susceptibility-weighted magnetic resonance imaging (SWMR) for the detection of pineal gland calcifications (PGC) compared to conventional magnetic resonance imaging (MRI) sequences, using computed tomography (CT) as a reference standard. Methods 384 patients who received a 1.5 Tesla MRI scan including SWMR sequences and a CT scan of the brain between January 2014 and October 2016 were retrospectively evaluated. 346 patients were included in the analysis, of which 214 showed PGC on CT scans. To assess correlation between imaging modalities, the maximum calcification diameter was used. Sensitivity and specificity and intra- and interobserver reliability were calculated for SWMR and conventional MRI sequences. Results SWMR reached a sensitivity of 95% (95% CI: 91%-97%) and a specificity of 96% (95% CI: 91%-99%) for the detection of PGC, whereas conventional MRI achieved a sensitivity of 43% (95% CI: 36%-50%) and a specificity of 96% (95% CI: 91%-99%). Detection rates for calcifications in SWMR and conventional MRI differed significantly (95% versus 43%, p<0.001). Diameter measurements between SWMR and CT showed a close correlation (R2 = 0.85, p<0.001) with a slight but not significant overestimation of size (SWMR: 6.5 mm ± 2.5; CT: 5.9 mm ± 2.4, p = 0.02). Interobserver-agreement for diameter measurements was excellent on SWMR (ICC = 0.984, p < 0.0001). Conclusions Combining SWMR magnitude and phase information enables the accurate detection of PGC and offers a better diagnostic performance than conventional MRI with CT as a reference standard. PMID:28278291

  1. Noninvasive evaluation of global and regional left ventricular function using computed tomography and magnetic resonance imaging: a meta-analysis.

    PubMed

    Kaniewska, Malwina; Schuetz, Georg M; Willun, Steffen; Schlattmann, Peter; Dewey, Marc

    2017-04-01

    To compare the diagnostic accuracy of computed tomography (CT) in the assessment of global and regional left ventricular (LV) function with magnetic resonance imaging (MRI). MEDLINE, EMBASE and ISI Web of Science were systematically reviewed. Evaluation included: ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV) and left ventricular mass (LVM). Differences between modalities were analysed using limits of agreement (LoA). Publication bias was measured by Egger's regression test. Heterogeneity was evaluated using Cochran's Q test and Higgins I 2 statistic. In the presence of heterogeneity the DerSimonian-Laird method was used for estimation of heterogeneity variance. Fifty-three studies including 1,814 patients were identified. The mean difference between CT and MRI was -0.56 % (LoA, -11.6-10.5 %) for EF, 2.62 ml (-34.1-39.3 ml) for EDV and 1.61 ml (-22.4-25.7 ml) for ESV, 3.21 ml (-21.8-28.3 ml) for SV and 0.13 g (-28.2-28.4 g) for LVM. CT detected wall motion abnormalities on a per-segment basis with 90 % sensitivity and 97 % specificity. CT is accurate for assessing global LV function parameters but the limits of agreement versus MRI are moderately wide, while wall motion deficits are detected with high accuracy. • CT helps to assess patients with coronary artery disease (CAD). • MRI is the reference standard for evaluation of left ventricular function. • CT provides accurate assessment of global left ventricular function.

  2. Differentiation and diagnosis of benign and malignant testicular lesions using 18F-FDG PET/CT.

    PubMed

    Shao, Dan; Gao, Qiang; Tian, Xu-Wei; Wang, Si-Yun; Liang, Chang-Hong; Wang, Shu-Xia

    2017-08-01

    The purpose of this study was to evaluate the differential diagnostic value of 18 F-fluorodeoxy glucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) for benign and malignant testicular lesions. The PET/CT scans of 53 patients with testicular lesions confirmed by biopsy or surgical pathology were retrospectively analyzed. There were 32 cases of malignant tumors and 21 cases of benign lesions. Differences in the maximum standardized uptake value (SUVmax) measurements and the SUVmax lesion/background ratios between benign and malignant lesions were analyzed. The diagnostic value of this PET/CT modality for the differential diagnosis of benign versus malignant testicular lesions was calculated. The differences in the SUVmax measurements and the SUVmax lesion/background ratios between benign and malignant lesions were statistically significant (SUVmax: Z=-4.295, p=0.000; SUVmax lesion/background ratio: Z=-5.219, p=0.000); specifically, both of these indicators were higher in malignant lesions compared to benign lesions. An SUVmax of 3.75 was the optimal cutoff value to differentiate between benign and malignant testicular lesions. The diagnostic sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of this PET/CT modality in the differential diagnosis of benign versus malignant testicular lesions were 90.6%, 80.9%, 86.8%, 87.9%, and 85.0%, respectively. 18 F-FDG PET/CT can accurately identify benign and malignant testicular lesions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Accuracy of Ultrasonography and Computed Tomography in the Evaluation of Patients Undergoing Sialendoscopy for Sialolithiasis.

    PubMed

    Thomas, W Walsh; Douglas, Jennifer E; Rassekh, Christopher H

    2017-05-01

    Objective To determine the accuracy of the 2 most utilized imaging modalities in obstructive sialadenitis secondary to sialolithiasis-computed tomography (CT) and ultrasonography (US)-using sialendoscopic findings as a comparison standard. To review the impact of CT and US on the management of sialolithiasis managed with sialendoscopy alone and through combined approaches. Study Design Retrospective cohort study. Setting Quaternary academic referral center. Subjects and Methods All cases of patients undergoing sialendoscopy by a single surgeon for suspected parotid and submandibular gland pathology between the October 2013 and April 2016 were reviewed. Results Sixty-eight patients were in this cohort, of whom 44 underwent US, CT, and sialendoscopy; 20 underwent CT and sialendoscopy only; and 4 underwent US and sialendoscopy only. The sensitivity and specificity were 65% and 80% for US and 98% and 88% for CT, respectively. These 68 patients had 84 total stones addressed, with 79 being removed and 5 remaining in situ. The methods of stone removal were sialendoscopy alone (34 stones), open transoral approaches (36 stones), and an external approach: transcervical for submandibular and transfacial for parotid (11 stones). Conclusion US had a lower sensitivity (65%) than what has been reported in the literature (70%-94%), and the majority of missed stones were anterior Wharton's duct stones. These sialoliths were likely missed due to an incomplete examination. US and CT were complementary in this study, and the findings suggest that both modalities can be utilized to optimize the outcome of sialendoscopy and combined approaches.

  4. Volumetric Assessment of Swallowing Muscles: A Comparison of CT and MRI Segmentation.

    PubMed

    Sporns, Kim Barbara; Hanning, Uta; Schmidt, Rene; Muhle, Paul; Wirth, Rainer; Zimmer, Sebastian; Dziewas, Rainer; Suntrup-Krueger, Sonja; Sporns, Peter Bernhard; Heindel, Walter; Schwindt, Wolfram

    2018-05-01

     Recent retrospective studies have proposed a high correlation between atrophy of swallowing muscles, age, severity of dysphagia and aspiration status based on computed tomography (CT). However, ionizing radiation poses an ethical barrier to research in prospective non-patient populations. Hence, there is a need to prove the efficacy of techniques that rely on noninvasive methods and produce high-resolution soft tissue images such as magnetic resonance imaging (MRI). The objective of this study was therefore to compare the segmentation results of swallowing muscles using CT and MRI.  Retrospective study of 21 patients (median age: 46.6; gender: 11 female) who underwent CT and MRI of the head and neck region within a time frame of less than 50 days because of suspected head and neck cancer using contrast agent. CT and MR images were segmented by two blinded readers using Medical Imaging Toolkit (MITK) and both modalities were tested (with the equivalence test) regarding the segmented muscle volumes. Adjustment for multiple testing was performed using the Bonferroni test and the potential time effect of the muscle volumes and the time interval between the modalities was assessed by a spearman correlation. The study was approved by the local ethics committee.  The median volumes for each muscle belly of the digastric muscle derived from CT were 3051 mm 3 (left) and 2969 mm 3 (right), and from MRI they were 3218 mm 3 (left) and 3027 mm 3 (right). The median volume of the geniohyoid muscle was 6580 mm 3 on CT and 6648 mm 3 on MRI. The interrater reliability was high for all segmented muscles. The mean time interval between the CT and MRI examinations was 34 days (IQR 25; 41). The muscle differences of each muscle between the two modalities did not reveal significant correlation to the time interval between the examinations (digastric left r = 0.003 and digastric right r = -0.008; geniohyoid muscle r = 0.075).  CT-based segmentation and MRI-based segmentation of the digastric and geniohyoid muscle are equally feasible. The potential advantage of MRI for prospective studies is the absence of ionizing radiation.   · CT-based segmentation and MRI-based segmentation of the swallowing muscles are equally feasible.. · The advantage of MRI is the absence of ionizing radiation.. · MRI should therefore be deployed for future prospective studies.. · Sporns KB, Hanning U, Schmidt R et al. Volumetric Assessment of Swallowing Muscles: A Comparison of CT and MRI Segmentation. Fortschr Röntgenstr 2018; 190: 441 - 446. © Georg Thieme Verlag KG Stuttgart · New York.

  5. The new frontiers of multimodality and multi-isotope imaging

    NASA Astrophysics Data System (ADS)

    Behnam Azad, Babak; Nimmagadda, Sridhar

    2014-06-01

    Technological advances in imaging systems and the development of target specific imaging tracers has been rapidly growing over the past two decades. Recent progress in "all-in-one" imaging systems that allow for automated image coregistration has significantly added to the growth of this field. These developments include ultra high resolution PET and SPECT scanners that can be integrated with CT or MR resulting in PET/CT, SPECT/CT, SPECT/PET and PET/MRI scanners for simultaneous high resolution high sensitivity anatomical and functional imaging. These technological developments have also resulted in drastic enhancements in image quality and acquisition time while eliminating cross compatibility issues between modalities. Furthermore, the most cutting edge technology, though mostly preclinical, also allows for simultaneous multimodality multi-isotope image acquisition and image reconstruction based on radioisotope decay characteristics. These scientific advances, in conjunction with the explosion in the development of highly specific multimodality molecular imaging agents, may aid in realizing simultaneous imaging of multiple biological processes and pave the way towards more efficient diagnosis and improved patient care.

  6. Aggressive vertebral hemangioma of the thoracic spine without typical radiological appearance.

    PubMed

    Dang, Lei; Liu, Chen; Yang, Shao Min; Jiang, Liang; Liu, Zhong Jun; Liu, Xiao Guang; Yuan, Hui Shu; Wei, Feng; Yu, Miao

    2012-10-01

    Vertebral hemangioma (VH) is virtually vascular malformation, which is usually asymptomatic. Only 3.7 % of VH may become active and symptomatic, and 1 % may invade the spinal canal and/or paravertebral space. Treatment protocols for active or aggressive VHs are still in controversy. Reported treatments include radiotherapy, vertebroplasty, direct alcohol injection, embolization, surgery and a combination of these modalities. A 41-year-old lady was presented with 18 month history of intermittent back pain. CT revealed T5 osteolytic lesion with epidural and paravertebral extension. The first CT guided biopsy yielded little information. Histopathological diagnosis of the second biopsy was VH. Vertebroplasty, posterior decompression and fixation were performed followed by postoperative radiotherapy. Her symptoms were resolved immediately after the operation. At 12 months follow-up, no recurrence was detected by CT with contrast enhancement. Surgical decompression, vertebroplasty and fixation are safe and effective for aggressive VH. More attention is needed in determining the algorithm for the diagnosis and treatment of aggressive VH.

  7. Evaluation of 18-F-fluoro-2-deoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) as a staging and monitoring tool for dogs with stage-2 splenic hemangiosarcoma - A pilot study.

    PubMed

    Borgatti, Antonella; Winter, Amber L; Stuebner, Kathleen; Scott, Ruth; Ober, Christopher P; Anderson, Kari L; Feeney, Daniel A; Vallera, Daniel A; Koopmeiners, Joseph S; Modiano, Jaime F; Froelich, Jerry

    2017-01-01

    Positron Emission Tomography-Computed Tomography (PET-CT) is routinely used for staging and monitoring of human cancer patients and is becoming increasingly available in veterinary medicine. In this study, 18-fluorodeoxyglucose (18FDG)-PET-CT was used in dogs with naturally occurring splenic hemangiosarcoma (HSA) to assess its utility as a staging and monitoring modality as compared to standard radiography and ultrasonography. Nine dogs with stage-2 HSA underwent 18FDG-PET-CT following splenectomy and prior to commencement of chemotherapy. Routine staging (thoracic radiography and abdominal ultrasonography) was performed prior to 18FDG-PET-CT in all dogs. When abnormalities not identified on routine tests were noted on 18FDG-PET-CT, owners were given the option to repeat a PET-CT following treatment with eBAT. A PET-CT scan was repeated on Day 21 in three dogs. Abnormalities not observed on conventional staging tools, and most consistent with malignant disease based on location, appearance, and outcome, were detected in two dogs and included a right atrial mass and a hepatic nodule, respectively. These lesions were larger and had higher metabolic activity on the second scans. 18FDG-PET-CT has potential to provide important prognostic information and influence treatment recommendations for dogs with stage-2 HSA. Additional studies will be needed to precisely define the value of this imaging tool for staging and therapy monitoring in dogs with this and other cancers.

  8. CT vaginography: a new CT technique for imaging of upper and middle vaginal fistulas.

    PubMed

    Botsikas, Diomidis; Pluchino, Nicola; Kalovidouri, Anastasia; Platon, Alexandra; Montet, Xavier; Dallenbach, Patrick; Poletti, Pierre-Alexandre

    2017-05-01

    Different types of vaginal fistulas is a relatively uncommon condition in the Western world but very frequent in developing countries. In the past, conventional vaginography was the radiological examination of choice for exploring this condition. CT and MRI are now both used for this purpose. Our objective was to test the feasibility and to explore the potential role of a new CT imaging technique implementing vaginal introitus obstruction and opacification of the vagina with iodine contrast agent, to show patency of a fistula. We describe the technical protocol of CT-vaginography as performed in Geneva University Hospitals, including vaginal catheterization with a Foley catheter and obstruction of the introitus by inflating the balloon of the catheter. We also report three cases of patients with suspected vaginal fistula who underwent CT-vaginography. The examinations were technically successful. In one patient, it revealed the presence of fistulous pathways from the vaginal fornix along the bilateral infected surgical prostheses. In a second patient, it showed a fistula between the vagina and the necrotic cavity of a recurrent cervical cancer. In a third patient, it proved the absence of a suspected vaginal fistula. CT-vaginography is a technically feasible CT protocol that provides anatomical and functional information on clinically suspected vaginal fistulas. Advances in knowledge: After the abandon of conventional vaginography in the era of transaxial imaging, the current modalities of imaging vaginal fistulas provide excellent anatomical detail but less functional information concerning the permeability of a vaginal fistulous pathway. We propose the use of CT-vaginography, a technical protocol that we describe in detail.

  9. Evaluation of 18-F-fluoro-2-deoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) as a staging and monitoring tool for dogs with stage-2 splenic hemangiosarcoma – A pilot study

    PubMed Central

    Winter, Amber L.; Stuebner, Kathleen; Scott, Ruth; Ober, Christopher P.; Anderson, Kari L.; Feeney, Daniel A.; Vallera, Daniel A.; Koopmeiners, Joseph S.; Modiano, Jaime F.; Froelich, Jerry

    2017-01-01

    Positron Emission Tomography-Computed Tomography (PET-CT) is routinely used for staging and monitoring of human cancer patients and is becoming increasingly available in veterinary medicine. In this study, 18-fluorodeoxyglucose (18FDG)-PET-CT was used in dogs with naturally occurring splenic hemangiosarcoma (HSA) to assess its utility as a staging and monitoring modality as compared to standard radiography and ultrasonography. Nine dogs with stage-2 HSA underwent 18FDG-PET-CT following splenectomy and prior to commencement of chemotherapy. Routine staging (thoracic radiography and abdominal ultrasonography) was performed prior to 18FDG-PET-CT in all dogs. When abnormalities not identified on routine tests were noted on 18FDG-PET-CT, owners were given the option to repeat a PET-CT following treatment with eBAT. A PET-CT scan was repeated on Day 21 in three dogs. Abnormalities not observed on conventional staging tools, and most consistent with malignant disease based on location, appearance, and outcome, were detected in two dogs and included a right atrial mass and a hepatic nodule, respectively. These lesions were larger and had higher metabolic activity on the second scans. 18FDG-PET-CT has potential to provide important prognostic information and influence treatment recommendations for dogs with stage-2 HSA. Additional studies will be needed to precisely define the value of this imaging tool for staging and therapy monitoring in dogs with this and other cancers. PMID:28222142

  10. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT.

    PubMed

    Parsa, Azin; Ibrahim, Norliza; Hassan, Bassam; van der Stelt, Paul; Wismeijer, Daniel

    2015-01-01

    The first purpose of this study was to analyze the correlation between bone volume fraction (BV/TV) and calibrated radiographic bone density Hounsfield units (HU) in human jaws, derived from micro-CT and multislice computed tomography (MSCT), respectively. The second aim was to assess the accuracy of cone beam computed tomography (CBCT) in evaluating trabecular bone density and microstructure using MSCT and micro-CT, respectively, as reference gold standards. Twenty partially edentulous human mandibular cadavers were scanned by three types of CT modalities: MSCT (Philips, Best, the Netherlands), CBCT (3D Accuitomo 170, J Morita, Kyoto, Japan), and micro-CT (SkyScan 1173, Kontich, Belgium). Image analysis was performed using Amira (v4.1, Visage Imaging Inc., Carlsbad, CA, USA), 3Diagnosis (v5.3.1, 3diemme, Cantu, Italy), Geomagic (studio(®) 2012, Morrisville, NC, USA), and CTAn (v1.11, SkyScan). MSCT, CBCT, and micro-CT scans of each mandible were matched to select the exact region of interest (ROI). MSCT HU, micro-CT BV/TV, and CBCT gray value and bone volume fraction of each ROI were derived. Statistical analysis was performed to assess the correlations between corresponding measurement parameters. Strong correlations were observed between CBCT and MSCT density (r = 0.89) and between CBCT and micro-CT BV/TV measurements (r = 0.82). Excellent correlation was observed between MSCT HU and micro-CT BV/TV (r = 0.91). However, significant differences were found between all comparisons pairs (P < 0.001) except for mean measurement between CBCT BV/TV and micro-CT BV/TV (P = 0.147). An excellent correlation exists between bone volume fraction and bone density as assessed on micro-CT and MSCT, respectively. This suggests that bone density measurements could be used to estimate bone microstructural parameters. A strong correlation also was found between CBCT gray values and BV/TV and their gold standards, suggesting the potential of this modality in bone quality assessment at implant site. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Positron Emission Tomography/Computed Tomography Identification of Clear Cell Renal Cell Carcinoma: Results From the REDECT Trial

    PubMed Central

    Divgi, Chaitanya R.; Uzzo, Robert G.; Gatsonis, Constantine; Bartz, Roman; Treutner, Silke; Yu, Jian Qin; Chen, David; Carrasquillo, Jorge A.; Larson, Steven; Bevan, Paul; Russo, Paul

    2013-01-01

    Purpose A clinical study to characterize renal masses with positron emission tomography/computed tomography (PET/CT) was undertaken. Patients and Methods This was an open-label multicenter study of iodine-124 (124I) -girentuximab PET/CT in patients with renal masses who were scheduled for resection. PET/CT and contrast-enhanced CT (CECT) of the abdomen were performed 2 to 6 days after intravenous 124I-girentuximab administration and before resection of the renal mass(es). Images were interpreted centrally by three blinded readers for each imaging modality. Tumor histology was determined by a blinded central pathologist. The primary end points—average sensitivity and specificity for clear cell renal cell carcinoma (ccRCC)—were compared between the two modalities. Agreement between and within readers was assessed. Results 124I-girentuximab was well tolerated. In all, 195 patients had complete data sets (histopathologic diagnosis and PET/CT and CECT results) available. The average sensitivity was 86.2% (95% CI, 75.3% to 97.1%) for PET/CT and 75.5% (95% CI, 62.6% to 88.4%) for CECT (P = .023). The average specificity was 85.9% (95% CI, 69.4% to 99.9%) for PET/CT and 46.8% (95% CI, 18.8% to 74.7%) for CECT (P = .005). Inter-reader agreement was high (κ range, 0.87 to 0.92 for PET/CT; 0.67 to 0.76 for CECT), as was intrareader agreement (range, 87% to 100% for PET/CT; 73.7% to 91.3% for CECT). Conclusion This study represents (to the best of our knowledge) the first clinical validation of a molecular imaging biomarker for malignancy. 124I-girentuximab PET/CT can accurately and noninvasively identify ccRCC, with potential utility for designing best management approaches for patients with renal masses. PMID:23213092

  12. Normal bone and soft tissue distribution of fluorine-18-sodium fluoride and artifacts on 18F-NaF PET/CT bone scan: a pictorial review.

    PubMed

    Sarikaya, Ismet; Elgazzar, Abdelhamid H; Sarikaya, Ali; Alfeeli, Mahmoud

    2017-10-01

    Fluorine-18-sodium fluoride (F-NaF) PET/CT is a relatively new and high-resolution bone imaging modality. Since the use of F-NaF PET/CT has been increasing, it is important to accurately assess the images and be aware of normal distribution and major artifacts. In this pictorial review article, we will describe the normal uptake patterns of F-NaF in the bone tissues, particularly in complex structures, as well as its physiologic soft tissue distribution and certain artifacts seen on F-NaF PET/CT images.

  13. Low-cost printing of computerised tomography (CT) images where there is no dedicated CT camera.

    PubMed

    Tabari, Abdulkadir M

    2007-01-01

    Many developing countries still rely on conventional hard copy images to transfer information among physicians. We have developed a low-cost alternative method of printing computerised tomography (CT) scan images where there is no dedicated camera. A digital camera is used to photograph images from the CT scan screen monitor. The images are then transferred to a PC via a USB port, before being printed on glossy paper using an inkjet printer. The method can be applied to other imaging modalities like ultrasound and MRI and appears worthy of emulation elsewhere in the developing world where resources and technical expertise are scarce.

  14. 68Ga-PSMA PET-CT Imaging of Metastatic Adenoid Cystic Carcinoma.

    PubMed

    de Keizer, Bart; Krijger, Gerard C; Ververs, F Tessa; van Es, Robert J J; de Bree, Remco; Willems, Stefan

    2017-12-01

    A patient with a history of adenoid cystic carcinoma of the nasal cavity presented himself with bone pain and an elevated PSA level. On suspicion of metastatic prostate cancer a 68 Ga-PSMA PET-CT was performed. The PET-CT showed numerous lung and non-sclerotic bone metastasis. Biopsy of a bone metastasis was performed and pathology showed adenoid cystic carcinoma instead of prostate cancer. Immunohistochemical PSMA staining of the primary tumour showed intense PSMA expression in adenoid cystic carcinoma tumour cells. Because of the high PSMA expression of adenoid cystic carcinoma, 68 Ga-PSMA PET-CT might be a promising imaging modality for this malignancy.

  15. Contrast-Enhanced [{sup 18}F]fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography for Staging and Radiotherapy Planning in Patients With Anal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannas, Peter, E-mail: p.bannas@uke.de; Weber, Christoph; Adam, Gerhard

    2011-10-01

    Purpose: The practice of surgical staging and treatment of anal cancer has been replaced by noninvasive staging and combined modality therapy. For appropriate patient management, accurate lymph node staging is crucial. The present study evaluated the feasibility and diagnostic accuracy of contrast-enhanced [{sup 18}F]fluoro-2-deoxy-D-glucose ([{sup 18}F]FDG)-positron emission tomography/computed tomography (PET/CT) for staging and radiotherapy planning of anal cancer. Methods and Materials: A total of 22 consecutive patients (median age, 61 years old) with anal cancer underwent complete staging evaluation including physical examination, biopsy of the primary tumor, and contrast-enhanced (ce)-PET/CT. Patients were positioned as they would be for their subsequentmore » radiotherapy. PET and CT images were evaluated independently for detectability and localization of the primary tumor, pelvic and inguinal lymph nodes, and distant metastasis. The stage, determined by CT or PET alone, and the proposed therapy planning were compared with the stage and management determined by ce-PET/CT. Data from ce-PET/CT were used for radiotherapy planning. Results: ce-PET/CT revealed locoregional lymph node metastasis in 11 of 22 patients (50%). After simultaneous reading of PET and CT data sets by experienced observers, 3 patients (14%) were found to have sites of disease not seen on CT that were identified on PET. Two patients had sites of disease not seen on PET that were identified on CT. In summary, 2 patients were upstaged, and 4 patients were downstaged due to ce-PET/CT. However, radiotherapy fields were changed due to the results from ce-PET/CT in 23% of cases compared to CT or PET results alone. Conclusions: ce-PET/CT is superior to PET or CT alone for staging of anal cancer, with significant impact on therapy planning.« less

  16. Role of 18F-fluoride PET/CT in the assessment of multiple myeloma: initial experience.

    PubMed

    Nishiyama, Yuji; Tateishi, Ukihide; Shizukuishi, Kazuya; Shishikura, Ayako; Yamazaki, Etsuko; Shibata, Hiroto; Yoneyama, Tomohiro; Ishigatsubo, Yoshiaki; Inoue, Tomio

    2013-01-01

    The aim of this study was to report our early experience with (18)F-fluoride PET/CT for detecting lesions and evaluate the usefulness of this modality in the assessment of multiple myeloma (MM). (18)F-fluoride PET/CT and (99m)Tc-MDP bone scintigraphy (BS) studies from 7 myeloma patients (4 male and 3 female, mean age 55 years) diagnosed according to standard criteria were reviewed retrospectively. Two reviewers visually and quantitatively analyzed the images and recorded their findings after reaching a consensus. Diagnostic certainty regarding the presence or absence of myeloma lesions was evaluated according to the reference standard consisting of whole-body magnetic resonance imaging and whole-body X-ray. A total of 93 affected areas were definite according to the reference standard. Of these, 83 affected areas (89 %) were identified on (18)F-fluoride PET/CT, whereas 54 affected areas (58 %) were found on BS. Mean SUVmax in the affected areas was 9.8 ± 3.2 (standard deviation) ranging from 5.0 to 21.2. A total of s17 lesions with bone fracture were also detected by (18)F-fluoride PET/CT and 2 lesions (12 %) were negative on BS. Our result showed that (18)F-fluoride PET was a possible modality to detect areas of lesions in patients with MM.

  17. How Well Are We Respecting Patient Privacy in Medical Imaging? Lessons Learnt From a Departmental Audit.

    PubMed

    Dilauro, Marc; Thornhill, Rebecca; Fasih, Najla

    2016-11-01

    Preservation of patient privacy and dignity are basic requirements for all patients visiting a hospital. The purpose of this study was to perform an audit of patients' satisfaction with privacy whilst in the Department of Medical Imaging (MI) at the Civic Campus of the Ottawa Hospital. Outpatients who underwent magnetic resonance imaging (MRI), computed tomography (CT), ultrasonography (US), and plain film (XR) examinations were provided with a survey on patient privacy. The survey asked participants to rank (on a 6-point scale ranging from 6 = excellent to 1 = no privacy) whether their privacy was respected in 5 key locations within the Department of MI. The survey was conducted over a consecutive 5-day period. A total of 502 surveys were completed. The survey response rate for each imaging modality was: 55% MRI, 42% CT, 45% US, and 47% XR. For each imaging modality, the total percentage of privacy scores greater than or equal to 5 were: 98% MRI, 96% CT, 94% US, and 92% XR. Privacy ratings for the MRI reception and waiting room areas were significantly higher in comparison to the other imaging modalities (P = .0025 and P = .0227, respectively). Overall, patient privacy was well respected within the Department of MI. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  18. Reimbursements and frequency of tests in privately insured testicular cancer patients in the United States: Implications to national guidelines.

    PubMed

    Kamel, Mohamed H; Barber, Austin; Davis, Rodney; Raheem, Omer A; Bissada, Nabil; Abdelmaksoud, Alaa Eldin A; Eltahawy, Ehab

    2017-01-01

    The objective of this study was to assess the frequency of utilization and reimbursement of the common diagnostic tests and treatment modalities used in testicular cancer care. LifeLink™ (IMS Health, Danbury, CT, USA) Claims Database was used. We identified 877 subjects with a primary diagnosis of testicular cancer (ICD 186.9) between 2007 and 2012. Median reimbursement and frequency of the diagnostic/treatment modalities used were recorded. The most common claim was a vein puncture with median reimbursement of $9.11. Tumor markers, alpha-fetoprotein and beta human chorionic gonadotropin, were ranked 6 th and 7 th with median reimbursement of $52.13 and $48.71, respectively. Chest X-ray and computerized tomography (CT) scan of the chest were ranked 9 th and 13 th with median reimbursement of $68.51 and $769, respectively. A contrast CT scan of abdomen and pelvis was the 11 th most frequent claim with median reimbursement of $855.89. The three invasive treatment modalities, chemotherapy, radiation therapy, and retroperitoneal lymphadenectomy were ranked 8 th , 15 th , and 164 th with median reimbursement of $2858.38, $3988.25, and $2009.67, respectively. Testicular cancer is not an inexpensive disease. Surgery is the less utilized than radiation and chemotherapy despite lower cost. This may have implications to national guidelines and training since these treatments often carry the same grade of recommendation.

  19. Mechanically assisted 3D ultrasound for pre-operative assessment and guiding percutaneous treatment of focal liver tumors

    NASA Astrophysics Data System (ADS)

    Sadeghi Neshat, Hamid; Bax, Jeffery; Barker, Kevin; Gardi, Lori; Chedalavada, Jason; Kakani, Nirmal; Fenster, Aaron

    2014-03-01

    Image-guided percutaneous ablation is the standard treatment for focal liver tumors deemed inoperable and is commonly used to maintain eligibility for patients on transplant waitlists. Radiofrequency (RFA), microwave (MWA) and cryoablation technologies are all delivered via one or a number of needle-shaped probes inserted directly into the tumor. Planning is mostly based on contrast CT/MRI. While intra-procedural CT is commonly used to confirm the intended probe placement, 2D ultrasound (US) remains the main, and in some centers the only imaging modality used for needle guidance. Corresponding intraoperative 2D US with planning and other intra-procedural imaging modalities is essential for accurate needle placement. However, identification of matching features of interest among these images is often challenging given the limited field-of-view (FOV) and low quality of 2D US images. We have developed a passive tracking arm with a motorized scan-head and software tools to improve guiding capabilities of conventional US by large FOV 3D US scans that provides more anatomical landmarks that can facilitate registration of US with both planning and intra-procedural images. The tracker arm is used to scan the whole liver with a high geometrical accuracy that facilitates multi-modality landmark based image registration. Software tools are provided to assist with the segmentation of the ablation probes and tumors, find the 2D view that best shows the probe(s) from a 3D US image, and to identify the corresponding image from planning CT scans. In this paper, evaluation results from laboratory testing and a phase 1 clinical trial for planning and guiding RFA and MWA procedures using the developed system will be presented. Early clinical results show a comparable performance to intra-procedural CT that suggests 3D US as a cost-effective alternative with no side-effects in centers where CT is not available.

  20. 18F-FDG PET/CT and PET/MRI Perform Equally Well in Cancer: Evidence from Studies on More Than 2,300 Patients

    PubMed Central

    Spick, Claudio; Herrmann, Ken; Czernin, Johannes

    2016-01-01

    18F-FDG PET/CT has become the reference standard in oncologic imaging against which the performance of other imaging modalities is measured. The promise of PET/MRI includes multiparametric imaging to further improve diagnosis and phenotyping of cancer. Rather than focusing on these capabilities, many investigators have examined whether 18F-FDG PET combined with mostly anatomic MRI improves cancer staging and restaging. After a description of PET/MRI scanner designs and a discussion of technical and operational issues, we review the available literature to determine whether cancer assessments are improved with PET/MRI. The available data show that PET/MRI is feasible and performs as well as PET/CT in most types of cancer. Diagnostic advantages may be achievable in prostate cancer and in bone metastases, whereas disadvantages exist in lung nodule assessments. We conclude that 18F-FDG PET/MRI and PET/CT provide comparable diagnostic information when MRI is used simply to provide the anatomic framework. Thus, PET/MRI could be used in lieu of PET/CT if this approach becomes economically viable and if reasonable workflows can be established. Future studies should explore the multiparametric potential of MRI. PMID:26742709

  1. Radiological review of pleural tumors

    PubMed Central

    Sureka, Binit; Thukral, Brij Bhushan; Mittal, Mahesh Kumar; Mittal, Aliza; Sinha, Mukul

    2013-01-01

    Tumors of the pleura are not uncommon and diagnosis is clinched by combined imaging and clinical correlation. Malignant tumors are more common than benign tumors. Initial imaging modalities are chest radiography and Computed Tomography (CT). Further characterization may be required using Ultrasoundgraphy (USG), Magnetic resonance Imaging (MRI) and PET-CT. Biopsy remains gold standard. This article highlights various common and uncommon tumors of pleura and characteristic imaging findings. PMID:24604935

  2. Angiomyolipoma

    DTIC Science & Technology

    2008-01-01

    attenuation value of -15 Hounsfield units is suggestive of AML (7). Renal MRI may be necessary to help determine the character of more complex or...increased risk for retroperitoneal hemorrhage and may be managed more aggressively. CT scan is currently the imaging modality of choice and the...evaluation of these renal masses if CT is contraindicated. History A 46-year-old male presented to the emergency room with one day history of right

  3. Comparison of 18F-FDG PET/CT and PET/MRI in patients with multiple myeloma

    PubMed Central

    Sachpekidis, Christos; Hillengass, Jens; Goldschmidt, Hartmut; Mosebach, Jennifer; Pan, Leyun; Schlemmer, Heinz-Peter; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2015-01-01

    PET/MRI represents a promising hybrid imaging modality with several potential clinical applications. Although PET/MRI seems highly attractive in the diagnostic approach of multiple myeloma (MM), its role has not yet been evaluated. The aims of this prospective study are to evaluate the feasibility of 18F-FDG PET/MRI in detection of MM lesions, and to investigate the reproducibility of bone marrow lesions detection and quantitative data of 18F-FDG uptake between the functional (PET) component of PET/CT and PET/MRI in MM patients. The study includes 30 MM patients. All patients initially underwent 18F-FDG PET/CT (60 min p.i.), followed by PET/MRI (120 min p.i.). PET/CT and PET/MRI data were assessed and compared based on qualitative (lesion detection) and quantitative (SUV) evaluation. The hybrid PET/MRI system provided good image quality in all cases without artefacts. PET/MRI identified 65 of the 69 lesions, which were detectable with PET/CT (94.2%). Quantitative PET evaluations showed the following mean values in MM lesions: SUVaverage=5.5 and SUVmax=7.9 for PET/CT; SUVaverage=3.9 and SUVmax=5.8 for PET/MRI. Both SUVaverage and SUVmax were significantly higher on PET/CT than on PET/MRI. Spearman correlation analysis demonstrated a strong correlation between both lesional SUVaverage (r=0.744) and lesional SUVmax (r=0.855) values derived from PET/CT and PET/MRI. Regarding detection of myeloma skeletal lesions, PET/MRI exhibited equivalent performance to PET/CT. In terms of tracer uptake quantitation, a significant correlation between the two techniques was demonstrated, despite the statistically significant differences in lesional SUVs between PET/CT and PET/MRI. PMID:26550538

  4. 3D echocardiographic analysis of aortic annulus for transcatheter aortic valve replacement using novel aortic valve quantification software: Comparison with computed tomography.

    PubMed

    Mediratta, Anuj; Addetia, Karima; Medvedofsky, Diego; Schneider, Robert J; Kruse, Eric; Shah, Atman P; Nathan, Sandeep; Paul, Jonathan D; Blair, John E; Ota, Takeyoshi; Balkhy, Husam H; Patel, Amit R; Mor-Avi, Victor; Lang, Roberto M

    2017-05-01

    With the increasing use of transcatheter aortic valve replacement (TAVR) in patients with aortic stenosis (AS), computed tomography (CT) remains the standard for annulus sizing. However, 3D transesophageal echocardiography (TEE) has been an alternative in patients with contraindications to CT. We sought to (1) test the feasibility, accuracy, and reproducibility of prototype 3DTEE analysis software (Philips) for aortic annular measurements and (2) compare the new approach to the existing echocardiographic techniques. We prospectively studied 52 patients who underwent gated contrast CT, procedural 3DTEE, and TAVR. 3DTEE images were analyzed using novel semi-automated software designed for 3D measurements of the aortic root, which uses multiplanar reconstruction, similar to CT analysis. Aortic annulus measurements included area, perimeter, and diameter calculations from these measurements. The results were compared to CT-derived values. Additionally, 3D echocardiographic measurements (3D planimetry and mitral valve analysis software adapted for the aortic valve) were also compared to the CT reference values. 3DTEE image quality was sufficient in 90% of patients for aortic annulus measurements using the new software, which were in good agreement with CT (r-values: .89-.91) and small (<4%) inter-modality nonsignificant biases. Repeated measurements showed <10% measurements variability. The new 3D analysis was the more accurate and reproducible of the existing echocardiographic techniques. Novel semi-automated 3DTEE analysis software can accurately measure aortic annulus in patients with severe AS undergoing TAVR, in better agreement with CT than the existing methodology. Accordingly, intra-procedural TEE could potentially replace CT in patients where CT carries significant risk. © 2017, Wiley Periodicals, Inc.

  5. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study

    PubMed Central

    Grosser, Oliver S.; Kupitz, Dennis; Ruf, Juri; Czuczwara, Damian; Steffen, Ingo G.; Furth, Christian; Thormann, Markus; Loewenthal, David; Ricke, Jens; Amthauer, Holger

    2015-01-01

    Background Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) with computed tomography (CT). Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR) on the image quality of the low-dose CT images. Methodology/Principal Findings Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU) values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88) and the contrast-to-noise ratio (CNR) was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04). In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001). Conclusion/Significance In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality. PMID:26390216

  6. Automatic anatomy recognition in whole-body PET/CT images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huiqian; Udupa, Jayaram K., E-mail: jay@mail.med.upenn.edu; Odhner, Dewey

    Purpose: Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical first step for accurately and automatically quantifying disease body-wide, body-region-wise, and organwise. This latter process, however, has remained a challenge due to the lower quality of the anatomic information portrayed in the CT component of this imaging modality and the paucity ofmore » anatomic details in the PET component. In this paper, the authors demonstrate the adaptation of a recently developed automatic anatomy recognition (AAR) methodology [Udupa et al., “Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images,” Med. Image Anal. 18, 752–771 (2014)] to PET/CT images. Their goal was to test what level of object localization accuracy can be achieved on PET/CT compared to that achieved on diagnostic CT images. Methods: The authors advance the AAR approach in this work in three fronts: (i) from body-region-wise treatment in the work of Udupa et al. to whole body; (ii) from the use of image intensity in optimal object recognition in the work of Udupa et al. to intensity plus object-specific texture properties, and (iii) from the intramodality model-building-recognition strategy to the intermodality approach. The whole-body approach allows consideration of relationships among objects in different body regions, which was previously not possible. Consideration of object texture allows generalizing the previous optimal threshold-based fuzzy model recognition method from intensity images to any derived fuzzy membership image, and in the process, to bring performance to the level achieved on diagnostic CT and MR images in body-region-wise approaches. The intermodality approach fosters the use of already existing fuzzy models, previously created from diagnostic CT images, on PET/CT and other derived images, thus truly separating the modality-independent object assembly anatomy from modality-specific tissue property portrayal in the image. Results: Key ways of combining the above three basic ideas lead them to 15 different strategies for recognizing objects in PET/CT images. Utilizing 50 diagnostic CT image data sets from the thoracic and abdominal body regions and 16 whole-body PET/CT image data sets, the authors compare the recognition performance among these 15 strategies on 18 objects from the thorax, abdomen, and pelvis in object localization error and size estimation error. Particularly on texture membership images, object localization is within three voxels on whole-body low-dose CT images and 2 voxels on body-region-wise low-dose images of known true locations. Surprisingly, even on direct body-region-wise PET images, localization error within 3 voxels seems possible. Conclusions: The previous body-region-wise approach can be extended to whole-body torso with similar object localization performance. Combined use of image texture and intensity property yields the best object localization accuracy. In both body-region-wise and whole-body approaches, recognition performance on low-dose CT images reaches levels previously achieved on diagnostic CT images. The best object recognition strategy varies among objects; the proposed framework however allows employing a strategy that is optimal for each object.« less

  7. Informatics in Radiology: Dual-Energy Electronic Cleansing for Fecal-Tagging CT Colonography

    PubMed Central

    Kim, Se Hyung; Lee, June-Goo; Yoshida, Hiroyuki

    2013-01-01

    Electronic cleansing (EC) is an emerging technique for the removal of tagged fecal materials at fecal-tagging computed tomographic (CT) colonography. However, existing EC methods may generate various types of artifacts that severely impair the quality of the cleansed CT colonographic images. Dual-energy fecal-tagging CT colonography is regarded as a next-generation imaging modality. EC that makes use of dual-energy fecal-tagging CT colonographic images promises to be effective in reducing cleansing artifacts by means of applying the material decomposition capability of dual-energy CT. The dual-energy index (DEI), which is calculated from the relative change in the attenuation values of a material at two different photon energies, is a reliable and effective indicator for differentiating tagged fecal materials from various types of tissues on fecal-tagging CT colonographic images. A DEI-based dual-energy EC scheme uses the DEI to help differentiate the colonic lumen—including the luminal air, tagged fecal materials, and air-tagging mixture—from the colonic soft-tissue structures, and then segments the entire colonic lumen for cleansing of the tagged fecal materials. As a result, dual-energy EC can help identify partial-volume effects in the air-tagging mixture and inhomogeneous tagging in residual fecal materials, the major causes of EC artifacts. This technique has the potential to significantly improve the quality of EC and promises to provide images of a cleansed colon that are free of the artifacts commonly observed with conventional single-energy EC methods. © RSNA, 2013 PMID:23479680

  8. Prospective evaluation of 68 Ga-DOTATATE PET/CT in limited disease neuroendocrine tumors and/or elevated serum neuroendocrine biomarkers.

    PubMed

    Gabriel, Sophie; Garrigue, Philippe; Dahan, Laetitia; Castinetti, Frédéric; Sebag, Frédéric; Baumstark, Karine; Archange, Cendrine; Abhishek, Jha; Pacak, Karel; Guillet, Benjamin; Taïeb, David

    2018-05-22

    The 68 Ga-labelled somatostatin analogues ( 68 Ga-DOTA-SSAs) is becoming popular as an important diagnostic tool in neuroendocrine tumors as evidenced by a growing number of reports detailing institutional experience with various DOTA peptides. However, only few prospective studies have compared 68 Ga-DOTA-SSAs and somatostatin receptor scintigraphy (SRS) in gastroenteropancreatic neuroendocrine tumors (GEP-NETs) and pulmonary neuroendocrine tumors. The aim of our prospective study was to perform head-to-head comparison between 68 Ga-DOTATATE PET/CT and standard imaging work-up (SI) that included multiphasic CT, liver MRI, and SRS using single photon emission computed tomography. In this prospective study, the patients were enrolled only if they met any of the following inclusion criteria were: i- initial staging of a NETs without distant metastases on SI or neuroendocrine tumor with unknown primary on SI; ii-restaging of NETs that could be treated by focused therapeutic interventions; iii- elevated serum neuroendocrine hormones or peptides. The exclusion criteria was grade 3 GEP-NETs. Thirty-two patients were enrolled in the study. Eleven patients (6 pancreas, 4 ileum, 1 duodenal) were included for initial evaluation and staging of NETs, 8 patients (5 pancreas, 1 ileal, 1 lung, 1 duodenal gastrinoma) for restaging, and 13 patients for elevated serum neuroendocrine biomarkers (5 ectopic Cushing's syndrome, 5 organic hypoglycemia, 1 patient each with elevated vasoactive inhibitory peptide, chromogranin A, and neuron-specific enolase). 68 Ga-DOTATATE PET/CT detected more primary tumors than SRS (15/18 vs 10/18: p=0.074). The missed tumors on 68 Ga-DOTATATE PET/CT were located in the lung in 2 cases and duodenum in 1 case. For other anatomical regions (nodal and distant metastasis), no statistical difference was observed between imaging modalities using 68 Ga-DOTATATE PET/CT and SRS. Overall, 68 Ga-DOTATATE PET/CT+CT+MRI detected 31/33 of the involved regions (including primaries) (29 and 22 for 68 Ga-DOTATATE and SRS, respectively). Our study shows that 68 Ga-DOTATATE PET/CT detected similar number of sites than combination of SRS, liver MRI and thoraco-abdominopelvic CT region-based analysis. 68 Ga-DOTATATE PET/CT missed half of primary lung carcinoids with ectopic Cushing's syndrome. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. The use of image-guidance during transsphenoidal pituitary surgery in the United States

    PubMed Central

    Chung, Thomas K.; Riley, Kristen O.

    2015-01-01

    Background: Intraoperative image guidance is a useful modality for transsphenoidal pituitary surgery. However, the outcomes associated with this technology have not been systematically evaluated. Objective: The purpose of the study was to quantify complication rates with and without the use of image guidance during transsphenoidal pituitary surgery using a nationwide database with broadly applicable results. Methods: A retrospective analysis of the Nationwide Inpatient Sample was performed from 2007 to 2011. Transsphenoidal pituitary resections for adenomas were identified by International Classification of Diseases-9th Revision, Clinical Modification code. The effect of image guidance on cerebrospinal fluid (CSF) leak complications and cost-benefit was analyzed. Results: A total of 48,848 transsphenoidal pituitary resections were identified, of which 77.5% were partial resections and 22.5% were complete. Pathologic indications included benign (89.3%), malignant primary (0.6%), and malignant secondary (0.4%). Complications included same-stay death (0.4%), CSF leak (8.8%), postoperative CSF rhinorrhea (1.9%), diabetes insipidus (12.4%), and meningitis (0.4%). Image guidance was employed in 7% (n = 3401) of all cases. When analyzed by modality, computed tomography (CT)-assisted procedures had lower CSF rhinorrhea rates (1.1%) compared with cases with no image guidance (1.9%), whereas magnetic resonance (MR)-assisted procedures had the highest rates (2.7%, χ2 p < 0.001). Rates of CSF leak demonstrated a similar pattern (CT 6.4%, no image guidance 8.9%, MR 9.2%, χ2 p < 0.001). CT-assisted surgery had significantly shorter length of stay (2.9 days) versus no image guidance (3.7 days, p < 0.001), lower total charges ($47,589 versus $62,629, p < 0.001), and lower total cost ($16,748 versus $20,530, p < 0.001). Conclusions: CT-assisted surgery is associated with a lower rate of CSF leak, shorter length of stay, and lower cost compared with patients without image guidance. Further studies that control for severity and extent of disease are warranted to confirm this finding. PMID:25975254

  10. Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation.

    PubMed

    Mendelsohn, Daniel; Strelzow, Jason; Dea, Nicolas; Ford, Nancy L; Batke, Juliet; Pennington, Andrew; Yang, Kaiyun; Ailon, Tamir; Boyd, Michael; Dvorak, Marcel; Kwon, Brian; Paquette, Scott; Fisher, Charles; Street, John

    2016-03-01

    Imaging modalities used to visualize spinal anatomy intraoperatively include X-ray studies, fluoroscopy, and computed tomography (CT). All of these emit ionizing radiation. Radiation emitted to the patient and the surgical team when performing surgeries using intraoperative CT-based spine navigation was compared. This is a retrospective cohort case-control study. Seventy-three patients underwent CT-navigated spinal instrumentation and 73 matched controls underwent spinal instrumentation with conventional fluoroscopy. Effective doses of radiation to the patient when the surgical team was inside and outside of the room were analyzed. The number of postoperative imaging investigations between navigated and non-navigated cases was compared. Intraoperative X-ray imaging, fluoroscopy, and CT dosages were recorded and standardized to effective doses. The number of postoperative imaging investigations was compared with the matched cohort of surgical cases. A literature review identified historical radiation exposure values for fluoroscopic-guided spinal instrumentation. The 73 navigated operations involved an average of 5.44 levels of instrumentation. Thoracic and lumbar instrumentations had higher radiation emission from all modalities (CT, X-ray imaging, and fluoroscopy) compared with cervical cases (6.93 millisievert [mSv] vs. 2.34 mSv). Major deformity and degenerative cases involved more radiation emission than trauma or oncology cases (7.05 mSv vs. 4.20 mSv). On average, the total radiation dose to the patient was 8.7 times more than the radiation emitted when the surgical team was inside the operating room. Total radiation exposure to the patient was 2.77 times the values reported in the literature for thoracolumbar instrumentations performed without navigation. In comparison, the radiation emitted to the patient when the surgical team was inside the operating room was 2.50 lower than non-navigated thoracolumbar instrumentations. The average total radiation exposure to the patient was 5.69 mSv, a value less than a single routine lumbar CT scan (7.5 mSv). The average radiation exposure to the patient in the present study was approximately one quarter the recommended annual occupational radiation exposure. Navigation did not reduce the number of postoperative X-rays or CT scans obtained. Intraoperative CT navigation increases the radiation exposure to the patient and reduces the radiation exposure to the surgeon when compared with values reported in the literature. Intraoperative CT navigation improves the accuracy of spine instrumentation with acceptable patient radiation exposure and reduced surgical team exposure. Surgeons should be aware of the implications of radiation exposure to both the patient and the surgical team when using intraoperative CT navigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Accelerated gradient-based free form deformable registration for online adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Yu, Gang; Liang, Yueqiang; Yang, Guanyu; Shu, Huazhong; Li, Baosheng; Yin, Yong; Li, Dengwang

    2015-04-01

    The registration of planning fan-beam computed tomography (FBCT) and daily cone-beam CT (CBCT) is a crucial step in adaptive radiation therapy. The current intensity-based registration algorithms, such as Demons, may fail when they are used to register FBCT and CBCT, because the CT numbers in CBCT cannot exactly correspond to the electron densities. In this paper, we investigated the effects of CBCT intensity inaccuracy on the registration accuracy and developed an accurate gradient-based free form deformation algorithm (GFFD). GFFD distinguishes itself from other free form deformable registration algorithms by (a) measuring the similarity using the 3D gradient vector fields to avoid the effect of inconsistent intensities between the two modalities; (b) accommodating image sampling anisotropy using the local polynomial approximation-intersection of confidence intervals (LPA-ICI) algorithm to ensure a smooth and continuous displacement field; and (c) introducing a ‘bi-directional’ force along with an adaptive force strength adjustment to accelerate the convergence process. It is expected that such a strategy can decrease the effect of the inconsistent intensities between the two modalities, thus improving the registration accuracy and robustness. Moreover, for clinical application, the algorithm was implemented by graphics processing units (GPU) through OpenCL framework. The registration time of the GFFD algorithm for each set of CT data ranges from 8 to 13 s. The applications of on-line adaptive image-guided radiation therapy, including auto-propagation of contours, aperture-optimization and dose volume histogram (DVH) in the course of radiation therapy were also studied by in-house-developed software.

  12. Diagnostic performance and impact on patient management of 68Ga-DOTA-TOC PET/CT for detecting osteomalacia-associated tumours.

    PubMed

    Paquet, Marie; Gauthé, Mathieu; Zhang Yin, Jules; Nataf, Valérie; Bélissant, Ophélie; Orcel, Philippe; Roux, Christian; Talbot, Jean-Noël; Montravers, Françoise

    2018-03-12

    Oncogenic osteomalacia is an endocrine disorder induced by small benign tumours (TIO) producing excessive fibroblast growth factor-23 (FGF23). The only way of curing oncogenic osteomalacia is surgical resection of the culprit TIO, which is extremely difficult to detect using conventional imaging modalities due to its small size and variable location in the body. Since TIO frequently overexpress somatostatin receptors, a clinical utility of SPECT or PET with radiolabelled somatostatin analogues has been reported. Among them, 68 Ga-DOTA-TOC has recently been granted a marketing authorization, facilitating its routine application. We report here the results of the first series evaluating the diagnostic performance of 68 Ga-DOTA-TOC PET/CT in detecting TIO and its impact on patient management. 68 Ga-DOTA-TOC PET/CT and clinical and imaging data from 15 patients with clinical and biochemical signs of oncogenic osteomalacia were retrospectively reviewed. The 68 Ga-DOTA-TOC PET/CT findings were compared with the results of post-surgical pathology and clinical and biochemical follow-up. 68 Ga-DOTA-TOC PET/CT resulted in the detection of one focus suspicious for TIO in nine of 15 patients (60%), and a tumour was surgically removed in eight. Post-operative pathology confirmed a TIO in those eight patients whose symptoms diminished promptly and biochemical anomalies resolved. 68 Ga-DOTA-TOC PET/CT sensitivity, specificity and accuracy were 73%, 67% and 71%, respectively. 68 Ga-DOTA-TOC PET/CT findings affected patient management in 67% of cases. In particular, 68 Ga-DOTA-TOC PET/CT was able to detect the TIO with a negative or a false-positive result of a previous 111 In-pentetreotide SPECT/CT in 5/8 patients (63%) or a previous FDG PET/CT in 7/11 patients (64%). No close relationship was found between the positivity of 68 Ga-DOTA-TOC PET/CT and the serum level of a biochemical marker. However, a true-positive result of 68 Ga-DOTA-TOC PET/CT was obtained in only one patient with a non-elevated serum level of FGF23. 68 Ga-DOTA-TOC PET/CT is an accurate imaging modality in the detection of TIO; in particular, it is worthwhile after failure of somatostatin receptor SPECT(/CT) or FDG PET/CT.

  13. Imaging in syndesmotic injury: a systematic literature review.

    PubMed

    Krähenbühl, Nicola; Weinberg, Maxwell W; Davidson, Nathan P; Mills, Megan K; Hintermann, Beat; Saltzman, Charles L; Barg, Alexej

    2018-05-01

    To give a systematic overview of current diagnostic imaging options for assessment of the distal tibio-fibular syndesmosis. A systematic literature search across the following sources was performed: PubMed, ScienceDirect, Google Scholar, and SpringerLink. Forty-two articles were included and subdivided into three groups: group one consists of studies using conventional radiographs (22 articles), group two includes studies using computed tomography (CT) scans (15 articles), and group three comprises studies using magnet resonance imaging (MRI, 9 articles).The following data were extracted: imaging modality, measurement method, number of participants and ankles included, average age of participants, sensitivity, specificity, and accuracy of the measurement technique. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool was used to assess the methodological quality. The three most common techniques used for assessment of the syndesmosis in conventional radiographs are the tibio-fibular clear space (TFCS), the tibio-fibular overlap (TFO), and the medial clear space (MCS). Regarding CT scans, the tibio-fibular width (axial images) was most commonly used. Most of the MRI studies used direct assessment of syndesmotic integrity. Overall, the included studies show low probability of bias and are applicable in daily practice. Conventional radiographs cannot predict syndesmotic injuries reliably. CT scans outperform plain radiographs in detecting syndesmotic mal-reduction. Additionally, the syndesmotic interval can be assessed in greater detail by CT. MRI measurements achieve a sensitivity and specificity of nearly 100%; however, correlating MRI findings with patients' complaints is difficult, and utility with subtle syndesmotic instability needs further investigation. Overall, the methodological quality of these studies was satisfactory.

  14. Simultaneous CT-MRI Reconstruction for Constrained Imaging Geometries using Structural Coupling and Compressive Sensing

    PubMed Central

    Xi, Yan; Zhao, Jun; Bennett, James R.; Stacy, Mitchel R.; Sinusas, Albert J.; Wang, Ge

    2016-01-01

    Objective A unified reconstruction framework is presented for simultaneous CT-MRI reconstruction. Significance Combined CT-MRI imaging has the potential for improved results in existing preclinical and clinical applications, as well as opening novel research directions for future applications. Methods In an ideal CT-MRI scanner, CT and MRI acquisitions would occur simultaneously, and hence would be inherently registered in space and time. Alternatively, separately acquired CT and MRI scans can be fused to simulate an instantaneous acquisition. In this study, structural coupling and compressive sensing techniques are combined to unify CT and MRI reconstructions. A bidirectional image estimation method was proposed to connect images from different modalities. Hence, CT and MRI data serve as prior knowledge to each other for better CT and MRI image reconstruction than what could be achieved with separate reconstruction. Results Our integrated reconstruction methodology is demonstrated with numerical phantom and real-dataset based experiments, and has yielded promising results. PMID:26672028

  15. Clinical Significance of Fluorine-18-fluorodeoxyglucose Positron Emission Tomography/computed Tomography in the Follow-up of Colorectal Cancer: Searching off Approaches Increasing Specificity for Detection of Recurrence

    PubMed Central

    Okuyucu, Kursat; Hancerliogulları, Oguz; Alagoz, Engin; San, Huseyin; Arslan, Nuri

    2017-01-01

    Abstract Background Nearly 40% of colorectal cancer (CRC) recurs within 2 years after resection of primary tumor. Imaging with fluorine-18-fluorodeoxyglucose (l8F-FDG) positron emission tomography/computed tomography (PET/CT) is the most recent modality and often applied for the evaluation of metastatic spread during the follow-up period. Our goal was to study the diagnostic importance of 18F-FDG-PET/CT data of maximum standardized uptake value (SUVmax), total lesion glycolysis (TLG) and the difference of SUVmax on dual-time imaging in CRC. Patients and methods We examined the SUVmax value of lesions on control or restaging 18F-FDG-PET/CT of 53 CRC patients. All lesions with increased SUVmax values were confirmed by colonoscopy or histopathology. We compared PET/CT results with conventional imaging modalities (CT, MRI) and tumor markers (carbohydrate antigen 19-9 [Ca 19-9], carcinoembryonic antigen [CEA]). Results Mean SUVmax was 6.9 ± 5.6 in benign group, 12.7 ± 6.1 in malignant group. Mean TLG values of malignant group and benign group were 401 and 148, respectively. 18F-FDG-PET/CT was truely positive in 48% of patients with normal Ca 19-9 or CEA levels and truely negative in 10% of cases with elevated Ca 19-9 or CEA. CT or MRI detected suspicious malignancy in 32% of the patients and 18F-FDG-PET/CT was truely negative in 35% of these cases. We found the most important and striking statistical difference of TLG value between the groups with benign and recurrent disease. Conclusions Although SUVmax is a strong metabolic parameter (p = 0.008), TLG seems to be the best predictor in recurrence of CRC (p = 0.001); both are increasing the specificity of 18F-FDG-PET/CT. PMID:29333115

  16. Clinical Significance of Fluorine-18-fluorodeoxyglucose Positron Emission Tomography/computed Tomography in the Follow-up of Colorectal Cancer: Searching off Approaches Increasing Specificity for Detection of Recurrence.

    PubMed

    Ince, Semra; Okuyucu, Kursat; Hancerliogulları, Oguz; Alagoz, Engin; San, Huseyin; Arslan, Nuri

    2017-12-01

    Nearly 40% of colorectal cancer (CRC) recurs within 2 years after resection of primary tumor. Imaging with fluorine-18-fluorodeoxyglucose ( l8 F-FDG) positron emission tomography/computed tomography (PET/CT) is the most recent modality and often applied for the evaluation of metastatic spread during the follow-up period. Our goal was to study the diagnostic importance of 18 F-FDG-PET/CT data of maximum standardized uptake value (SUVmax), total lesion glycolysis (TLG) and the difference of SUVmax on dual-time imaging in CRC. We examined the SUVmax value of lesions on control or restaging 18 F-FDG-PET/CT of 53 CRC patients. All lesions with increased SUVmax values were confirmed by colonoscopy or histopathology. We compared PET/CT results with conventional imaging modalities (CT, MRI) and tumor markers (carbohydrate antigen 19-9 [Ca 19-9], carcinoembryonic antigen [CEA]). Mean SUVmax was 6.9 ± 5.6 in benign group, 12.7 ± 6.1 in malignant group. Mean TLG values of malignant group and benign group were 401 and 148, respectively. 18 F-FDG-PET/CT was truely positive in 48% of patients with normal Ca 19-9 or CEA levels and truely negative in 10% of cases with elevated Ca 19-9 or CEA. CT or MRI detected suspicious malignancy in 32% of the patients and 18 F-FDG-PET/CT was truely negative in 35% of these cases. We found the most important and striking statistical difference of TLG value between the groups with benign and recurrent disease. Although SUVmax is a strong metabolic parameter (p = 0.008), TLG seems to be the best predictor in recurrence of CRC (p = 0.001); both are increasing the specificity of 18 F-FDG-PET/CT.

  17. Prostate seed implant quality assessment using MR and CT image fusion.

    PubMed

    Amdur, R J; Gladstone, D; Leopold, K A; Harris, R D

    1999-01-01

    After a seed implant of the prostate, computerized tomography (CT) is ideal for determining seed distribution but soft tissue anatomy is frequently not well visualized. Magnetic resonance (MR) images soft tissue anatomy well but seed visualization is problematic. We describe a method of fusing CT and MR images to exploit the advantages of both of these modalities when assessing the quality of a prostate seed implant. Eleven consecutive prostate seed implant patients were imaged with axial MR and CT scans. MR and CT images were fused in three dimensions using the Pinnacle 3.0 version of the ADAC treatment planning system. The urethra and bladder base were used to "line up" MR and CT image sets during image fusion. Alignment was accomplished using translation and rotation in the three ortho-normal planes. Accuracy of image fusion was evaluated by calculating the maximum deviation in millimeters between the center of the urethra on axial MR versus CT images. Implant quality was determined by comparing dosimetric results to previously set parameters. Image fusion was performed with a high degree of accuracy. When lining up the urethra and base of bladder, the maximum difference in axial position of the urethra between MR and CT averaged 2.5 mm (range 1.3-4.0 mm, SD 0.9 mm). By projecting CT-derived dose distributions over MR images of soft tissue structures, qualitative and quantitative evaluation of implant quality is straightforward. The image-fusion process we describe provides a sophisticated way of assessing the quality of a prostate seed implant. Commercial software makes the process time-efficient and available to any clinical practice with a high-quality treatment planning system. While we use MR to image soft tissue structures, the process could be used with any imaging modality that is able to visualize the prostatic urethra (e.g., ultrasound).

  18. Preoperative planning of calcium deposit removal in calcifying tendinitis of the rotator cuff - possible contribution of computed tomography, ultrasound and conventional X-Ray.

    PubMed

    Izadpanah, Kaywan; Jaeger, Martin; Maier, Dirk; Südkamp, Norbert P; Ogon, Peter

    2014-11-20

    The purpose of the present study was to investigate the accuracy of Ultrasound (US), conventional X-Ray (CX) and Computed Tomography (CT) to estimate the total count, localization, morphology and consistency of Calcium deposits (CDs) in the rotator cuff. US, CX and CT imaging was performed pre-operatively in 151 patients who underwent arthroscopic removal of CDs in the rotator cuff. In all procedures: (1) total CD counts were determined, (2) the CDs appearance in each image modality was correlated to the intraoperative consistency and (3) CDs were localized in their relation to the acromion using US, CX and CT. Using US158 CDs, using CT 188 CDs and using CX 164 CDs were identified. Reliable localization of the CDs was possible with all used diagnostic modalities. CT revealed 49% of the CDs to be septated, out of which 85% were uni- and 15% multiseptated. CX was not suitable for prediction of CDs consistency. US reliably predicted viscous-solid CDs consistency only when presenting with full sound extinction (PPV 84.6%) . CT had high positive and negative predictive values for detection of liquid-soft (PPV 92.9%) and viscous-solid (PPV 87.8%) CDs. US and CX are sufficient for preoperative planning of CD removal with regards to localization and prediction of consistency if the deposits present with full sound extinction. This is the case in the majority of the patients. However, in patients with missing sound extinction CT can be recommended if CDs consistency of the deposits should be determined. Satellite deposits or septations are regularly present, which is of importance if complete CD removal is aspired.

  19. MicroPET/CT Colonoscopy in long-lived Min mouse using NM404

    NASA Astrophysics Data System (ADS)

    Christensen, Matthew B.; Halberg, Richard B.; Schutten, Melissa M.; Weichert, Jamey P.

    2009-02-01

    Colon cancer is a leading cause of death in the US, even though many cases are preventable if tumors are detected early. One technique to promote screening is Computed Tomography Colonography (CTC). NM404 is a second generation phospholipid ether analogue which has demonstrated selective uptake and prolonged retention in 43/43 types of malignant tumors but not inflammatory sites or premalignant lesions. The purpose of this experiment was to evaluate (SWR x B6 )F1.Min mice as a preclinical model to test MicroPET/CT dual modality virtual colonoscopy. Each animal was given an IV injection of 124I-NM404 (100 uCi) 24, 48 and 96 hours prior to scanning on a dedicated microPET/CT system. Forty million counts were histogrammed in 3D and reconstructed using an OSEM 2D algorithm. Immediately after PET acquisition, a 93 m volumetric CT was acquired at 80 kVp, 800 uA and 350 ms exposures. Following CT, the mouse was sacrificed. The entire intestinal tract was excised, washed, insufflated, and scanned ex vivo A total of eight tissue samples from the small intestine were harvested: 5 were benign adenomas, 2 were malignant adenocarcinomas, and 1 was a Peyer's patch (lymph tissue) . The sites of these samples were positioned on CT and PET images based on morphological cues and the distance from the anus. Only 1/8 samples showed tracer uptake. several hot spots in the microPET image were not chosen for histology. (SWR x B6)F1.Min mice develop benign and malignant tumors, making this animal model a strong candidate for future dual modality microPET/CT virtual colonography studies.

  20. Post-PET ultrasound improves specificity of 18F-FDG-PET for recurrent differentiated thyroid cancer while maintaining sensitivity

    PubMed Central

    Kråkenes, Jostein; Brauckhoff, Katrin; Haugland, Hans Kristian; Heinecke, Achim; Akslen, Lars A; Varhaug, Jan Erik; Brauckhoff, Michael

    2015-01-01

    Background Positron emission tomography (PET) using fluor-18-deoxyglucose (18F-FDG) with or without computed tomography (CT) is generally accepted as the most sensitive imaging modality for diagnosing recurrent differentiated thyroid cancer (DTC) in patients with negative whole body scintigraphy with iodine-131 (I-131). Purpose To assess the potential incremental value of ultrasound (US) over 18F-FDG-PET-CT. Material and Methods Fifty-one consecutive patients with suspected recurrent DTC were prospectively evaluated using the following multimodal imaging protocol: (i) US before PET (pre-US) with or without fine needle biopsy (FNB) of suspicious lesions; (ii) single photon emission computed tomography (≥3 GBq I-131) with co-registered CT (SPECT-CT); (iii) 18F-FDG-PET with co-registered contrast-enhanced CT of the neck; (iv) US in correlation with the other imaging modalities (post-US). Postoperative histology, FNB, and long-term follow-up (median, 2.8 years) were taken as composite gold standard. Results Fifty-eight malignant lesions were identified in 34 patients. Forty lesions were located in the neck or upper mediastinum. On receiver operating characteristics (ROC) analysis, 18F-FDG-PET had a limited lesion-based specificity of 59% at a set sensitivity of 90%. Pre-US had poor sensitivity and specificity of 52% and 53%, respectively, increasing to 85% and 94% on post-US, with knowledge of the PET/CT findings (P < 0.05 vs. PET and pre-US). Multimodal imaging changed therapy in 15 out of 51 patients (30%). Conclusion In patients with suspected recurrent DTC, supplemental targeted US in addition to 18F-FDG-PET-CT increases specificity while maintainin sensitivity, as non-malignant FDG uptake in cervical lesions can be confirmed. PMID:25770086

  1. Dual-modality, fluorescent, PLGA encapsulated bismuth nanoparticles for molecular and cellular fluorescence imaging and computed tomography.

    PubMed

    Swy, Eric R; Schwartz-Duval, Aaron S; Shuboni, Dorela D; Latourette, Matthew T; Mallet, Christiane L; Parys, Maciej; Cormode, David P; Shapiro, Erik M

    2014-11-07

    Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ∼70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging.

  2. A new approach of building 3D visualization framework for multimodal medical images display and computed assisted diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Zhenwei; Sun, Jianyong; Zhang, Jianguo

    2012-02-01

    As more and more CT/MR studies are scanning with larger volume of data sets, more and more radiologists and clinician would like using PACS WS to display and manipulate these larger data sets of images with 3D rendering features. In this paper, we proposed a design method and implantation strategy to develop 3D image display component not only with normal 3D display functions but also with multi-modal medical image fusion as well as compute-assisted diagnosis of coronary heart diseases. The 3D component has been integrated into the PACS display workstation of Shanghai Huadong Hospital, and the clinical practice showed that it is easy for radiologists and physicians to use these 3D functions such as multi-modalities' (e.g. CT, MRI, PET, SPECT) visualization, registration and fusion, and the lesion quantitative measurements. The users were satisfying with the rendering speeds and quality of 3D reconstruction. The advantages of the component include low requirements for computer hardware, easy integration, reliable performance and comfortable application experience. With this system, the radiologists and the clinicians can manipulate with 3D images easily, and use the advanced visualization tools to facilitate their work with a PACS display workstation at any time.

  3. Interactive visualization and analysis of multimodal datasets for surgical applications.

    PubMed

    Kirmizibayrak, Can; Yim, Yeny; Wakid, Mike; Hahn, James

    2012-12-01

    Surgeons use information from multiple sources when making surgical decisions. These include volumetric datasets (such as CT, PET, MRI, and their variants), 2D datasets (such as endoscopic videos), and vector-valued datasets (such as computer simulations). Presenting all the information to the user in an effective manner is a challenging problem. In this paper, we present a visualization approach that displays the information from various sources in a single coherent view. The system allows the user to explore and manipulate volumetric datasets, display analysis of dataset values in local regions, combine 2D and 3D imaging modalities and display results of vector-based computer simulations. Several interaction methods are discussed: in addition to traditional interfaces including mouse and trackers, gesture-based natural interaction methods are shown to control these visualizations with real-time performance. An example of a medical application (medialization laryngoplasty) is presented to demonstrate how the combination of different modalities can be used in a surgical setting with our approach.

  4. [Magnetic resonance imaging in facial injuries and digital fusion CT/MRI].

    PubMed

    Kozakiewicz, Marcin; Olszycki, Marek; Arkuszewski, Piotr; Stefańczyk, Ludomir

    2006-01-01

    Magnetic resonance images [MRI] and their digital fusion with computed tomography [CT] data, observed in patients affected with facial injuries, are presented in this study. The MR imaging of 12 posttraumatic patients was performed in the same plains as their previous CT scans. Evaluation focused on quality of the facial soft tissues depicting, which was unsatisfactory in CT. Using the own "Dental Studio" programme the digital fusion of the both modalities was performed. Pathologic dislocations and injures of facial soft tissues are visualized better in MRI than in CT examination. Especially MRI properly reveals disturbances in intraorbital soft structures. MRI-based assessment is valuable in patients affected with facial soft tissues injuries, especially in case of orbita/sinuses hernia. Fusion CT/MRI scans allows to evaluate simultaneously bone structure and soft tissues of the same region.

  5. Early clinical applications for imaging at microscopic detail: microfocus computed tomography (micro-CT).

    PubMed

    Hutchinson, J Ciaran; Shelmerdine, Susan C; Simcock, Ian C; Sebire, Neil J; Arthurs, Owen J

    2017-07-01

    Microfocus CT (micro-CT) has traditionally been used in industry and preclinical studies, although it may find new applicability in the routine clinical setting. It can provide high-resolution three-dimensional digital imaging data sets to the same level of detail as microscopic examination without the need for tissue dissection. Micro-CT is already enabling non-invasive detailed internal assessment of various tissue specimens, particularly in breast imaging and early gestational fetal autopsy, not previously possible from more conventional modalities such as MRI or CT. In this review, we discuss the technical aspects behind micro-CT image acquisition, how early work with small animal studies have informed our knowledge of human disease and the imaging performed so far on human tissue specimens. We conclude with potential future clinical applications of this novel and emerging technique.

  6. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities

    PubMed Central

    Weidlich, Georg A.

    2016-01-01

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404

  7. A Review of the Effectiveness of Neuroimaging Modalities for the Detection of Traumatic Brain Injury.

    PubMed

    Amyot, Franck; Arciniegas, David B; Brazaitis, Michael P; Curley, Kenneth C; Diaz-Arrastia, Ramon; Gandjbakhche, Amir; Herscovitch, Peter; Hinds, Sidney R; Manley, Geoffrey T; Pacifico, Anthony; Razumovsky, Alexander; Riley, Jason; Salzer, Wanda; Shih, Robert; Smirniotopoulos, James G; Stocker, Derek

    2015-11-15

    The incidence of traumatic brain injury (TBI) in the United States was 3.5 million cases in 2009, according to the Centers for Disease Control and Prevention. It is a contributing factor in 30.5% of injury-related deaths among civilians. Additionally, since 2000, more than 260,000 service members were diagnosed with TBI, with the vast majority classified as mild or concussive (76%). The objective assessment of TBI via imaging is a critical research gap, both in the military and civilian communities. In 2011, the Department of Defense (DoD) prepared a congressional report summarizing the effectiveness of seven neuroimaging modalities (computed tomography [CT], magnetic resonance imaging [MRI], transcranial Doppler [TCD], positron emission tomography, single photon emission computed tomography, electrophysiologic techniques [magnetoencephalography and electroencephalography], and functional near-infrared spectroscopy) to assess the spectrum of TBI from concussion to coma. For this report, neuroimaging experts identified the most relevant peer-reviewed publications and assessed the quality of the literature for each of these imaging technique in the clinical and research settings. Although CT, MRI, and TCD were determined to be the most useful modalities in the clinical setting, no single imaging modality proved sufficient for all patients due to the heterogeneity of TBI. All imaging modalities reviewed demonstrated the potential to emerge as part of future clinical care. This paper describes and updates the results of the DoD report and also expands on the use of angiography in patients with TBI.

  8. A Review of the Effectiveness of Neuroimaging Modalities for the Detection of Traumatic Brain Injury

    PubMed Central

    Amyot, Franck; Arciniegas, David B.; Brazaitis, Michael P.; Curley, Kenneth C.; Diaz-Arrastia, Ramon; Gandjbakhche, Amir; Herscovitch, Peter; Hinds, Sidney R.; Manley, Geoffrey T.; Razumovsky, Alexander; Riley, Jason; Salzer, Wanda; Shih, Robert; Smirniotopoulos, James G.; Stocker, Derek

    2015-01-01

    Abstract The incidence of traumatic brain injury (TBI) in the United States was 3.5 million cases in 2009, according to the Centers for Disease Control and Prevention. It is a contributing factor in 30.5% of injury-related deaths among civilians. Additionally, since 2000, more than 260,000 service members were diagnosed with TBI, with the vast majority classified as mild or concussive (76%). The objective assessment of TBI via imaging is a critical research gap, both in the military and civilian communities. In 2011, the Department of Defense (DoD) prepared a congressional report summarizing the effectiveness of seven neuroimaging modalities (computed tomography [CT], magnetic resonance imaging [MRI], transcranial Doppler [TCD], positron emission tomography, single photon emission computed tomography, electrophysiologic techniques [magnetoencephalography and electroencephalography], and functional near-infrared spectroscopy) to assess the spectrum of TBI from concussion to coma. For this report, neuroimaging experts identified the most relevant peer-reviewed publications and assessed the quality of the literature for each of these imaging technique in the clinical and research settings. Although CT, MRI, and TCD were determined to be the most useful modalities in the clinical setting, no single imaging modality proved sufficient for all patients due to the heterogeneity of TBI. All imaging modalities reviewed demonstrated the potential to emerge as part of future clinical care. This paper describes and updates the results of the DoD report and also expands on the use of angiography in patients with TBI. PMID:26176603

  9. MO-B-BRC-00: Prostate HDR Treatment Planning - Considering Different Imaging Modalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less

  10. Staging of neuroendocrine tumours: comparison of [68Ga]DOTATOC multiphase PET/CT and whole-body MRI

    PubMed Central

    Schwenzer, N. F.; Sperling, O.; Aschoff, P.; Lichy, M. P.; Müller, M.; Brendle, C.; Werner, M. K.; Claussen, C. D.; Pfannenberg, C.

    2013-01-01

    Abstract Purpose: In patients with a neuroendocrine tumour (NET), the extent of disease strongly influences the outcome and multidisciplinary therapeutic management. Thus, systematic analysis of the diagnostic performance of the existing staging modalities is necessary. The aim of this study was to compare the diagnostic performance of 2 whole-body imaging modalities, [68Ga]DOTATOC positron emission tomography (PET)/computed tomography (CT) and magnetic resonance imaging (MRI) in patients with NET with regard to possible impact on treatment decisions. Materials and methods: [68Ga]DOTATOC-PET/CT and whole-body magnetic resonance imaging (wbMRI) were performed on 51 patients (25 females, 26 males, mean age 57 years) with histologically proven NET and suspicion of metastatic spread within a mean interval of 2.4 days (range 0–28 days). PET/CT was performed after intravenous administration of 150 MBq [68Ga]DOTATOC. The CT protocol comprised multiphase contrast-enhanced imaging. The MRI protocol consisted of standard sequences before and after intravenous contrast administration at 1.5 T. Each modality (PET, CT, PET/CT, wbMRI) was evaluated independently by 2 experienced readers. Consensus decision based on correlation of all imaging data, histologic and surgical findings and clinical follow-up was established as the standard of reference. Lesion-based and patient-based analysis was performed. Detection rates and accuracy were compared using the McNemar test. P values <0.05 were considered significant. The impact of whole-body imaging on the treatment decision was evaluated by the interdisciplinary tumour board of our institution. Results: 593 metastatic lesions were detected in 41 of 51 (80%) patients with NET (lung 54, liver 266, bone 131, lymph node 99, other 43). One hundred and twenty PET-negative lesions were detected by CT or MRI. Of all 593 lesions detected, PET identified 381 (64%) true-positive lesions, CT 482 (81%), PET/CT 545 (92%) and wbMRI 540 (91%). Comparison of lesion-based detection rates between PET/CT and wbMRI revealed significantly higher sensitivity of PET/CT for metastatic lymph nodes (100% vs 73%; P < 0.0001) and pulmonary lesions (100% vs 87%; P = 0.0233), whereas wbMRI had significantly higher detection rates for liver (99% vs 92%; P < 0.0001) and bone lesions (96% vs 82%; P < 0.0001). Of all 593 lesions, 22 were found only in PET, 11 only in CT and 47 only in wbMRI. The patient-based overall assessment of the metastatic status of the patient showed comparable sensitivity of PET/CT and MRI with slightly higher accuracy of PET/CT. Patient-based analysis of metastatic organ involvement revealed significantly higher accuracy of PET/CT for bone and lymph node metastases (100% vs 88%; P = 0.0412 and 98% vs 78%; P = 0.0044) and for the overall comparison (99% vs 89%; P < 0.0001). The imaging results influenced the treatment decision in 30 patients (59%) with comparable information from PET/CT and wbMRI in 30 patients, additional relevant information from PET/CT in 16 patients and from wbMRI in 7 patients. Conclusion: PET/CT and wbMRI showed comparable overall lesion-based detection rates for metastatic involvement in NET but significantly differed in organ-based detection rates with superiority of PET/CT for lymph node and pulmonary lesions and of wbMRI for liver and bone metastases. Patient-based analysis revealed superiority of PET/CT for NET staging. Individual treatment strategies benefit from complementary information from PET/CT and MRI. PMID:23466785

  11. Diagnostic imaging for chronic orofacial pain, maxillofacial osseous and soft tissue pathology and temporomandibular disorders.

    PubMed

    Shintaku, Werner; Enciso, Reyes; Broussard, Jack; Clark, Glenn T

    2006-08-01

    Since dentists can be faced by unusual cases during their professional life, this article reviews the common orofacial disorders that are of concern to a dentist trying to diagnose the source of pain or dysfunction symptoms, providing an overview of the essential knowledge and usage of nowadays available advanced diagnostic imaging modalities. In addition to symptom-driven diagnostic dilemmas, where such imaging is utilized, occasionally there are asymptomatic anomalies discovered by routine clinical care and/or on dental or panoramic images that need more discussion. The correct selection criteria of an image exam should be based on the individual characteristics of the patient, and the type of imaging technique should be selected depending on the specific clinical problem, the kind of tissue to be visualized, the information obtained from the imaging modality, radiation exposure, and the cost of the examination. The usage of more specialized imaging modalities such as magnetic resonance imaging, computed tomography, ultrasound, as well as single photon computed tomography, positron electron tomography, and their hybrid machines, SPECT/ CT and PET/CT, are discussed.

  12. What is the best way to diagnose and stage malignant pleural mesothelioma?

    PubMed

    Zahid, Imran; Sharif, Sumera; Routledge, Tom; Scarci, Marco

    2011-02-01

    A best evidence topic in thoracic surgery was written according to a structured protocol. The question addressed was which diagnostic modality [computed tomography (CT), positron emission tomography (PET), combination PET/CT and magnetic resonance imaging (MRI)] provides the best diagnostic and staging information in patients with malignant pleural mesothelioma (MPM). Overall, 61 papers were found using the reported search, of which 14 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results are tabulated. We conclude that fluorodeoxyglucose (FDG)-PET is superior to MRI and CT but inferior to PET-CT, in terms of diagnostic specificity, sensitivity and staging of MPM. Four studies reported outcomes using FDG-PET to diagnose MPM. PET diagnosed MPM with high sensitivity (92%) and specificity (87.9%). Mean standardised uptake value (SUV) was higher in malignant than benign disease (4.91 vs. 1.41, P<0.0001). Lymph node metastases were detected with higher accuracy (80% vs. 66.7%) compared to extrathoracic disease. Three studies assessed the utility of PET-CT to diagnose MPM. Mean SUV was higher in malignant than benign disease (6.5 vs. 0.8, P<0.001). MPM was diagnosed with high sensitivity (88.2%), specificity (92.9%) and accuracy (88.9%). PET-CT had low sensitivity for stage N2 (38%) and T4 (67%) disease. CT-guided needle biopsy definitively diagnosed MPM after just one biopsy (100% vs. 9%) much more often than a 'blind' approach. CT had a lower success rate (92% vs. 100%) than thoracoscopic pleural biopsy but was equivalent to MRI in terms of detection of lymph node metastases (P=0.85) and visceral pleural tumour (P=0.64). CT had a lower specificity for stage II (77% vs. 100%, P<0.01) and stage III (75% vs. 100%, P<0.01) disease compared to PET-CT. Overall, the high specificity and sensitivity rates seen with open pleural biopsy make it a superior diagnostic modality to CT, MRI or PET for diagnosing patients with MPM.

  13. Detection of vessel wall calcifications in vertebral arteries using susceptibility weighted imaging.

    PubMed

    Adams, Lisa C; Böker, Sarah M; Bender, Yvonne Y; Fallenberg, Eva M; Wagner, Moritz; Liebig, Thomas; Hamm, Bernd; Makowski, Marcus R

    2017-09-01

    Calcification of the brain supplying arteries has been linked to an increased risk for cerebrovascular disease. The purpose of this study was to test the potential of susceptibility weighted MR imaging (SWMR) for the detection of vertebral artery calcifications, based on CT as a reference standard. Four hundred seventy-four patients, who had received head CT and 1.5 T MR scans with SWMR, including the distal vertebral artery, between January 2014 and December 2016, were retrospectively evaluated and 389 patients were included. Sensitivity and specificity for the detection of focal calcifications and intra- and interobserver agreement were calculated for SWMR and standard MRI, using CT as a standard of reference. The diameter of vertebral artery calcifications was used to assess correlations between imaging modalities. Furthermore, the degree of vessel stenosis was determined in 30 patients, who had received an additional angiography. On CT scans, 40 patients showed a total of 52 vertebral artery calcifications. While SWMR reached a sensitivity of 94% (95% CI 84-99%) and a specificity of 97% (95% CI 94-98%), standard MRI yielded a sensitivity of 33% (95% CI 20-46%), and a specificity of 93% (95% CI 90-96%). Linear regression analysis of size measurements confirmed a close correlation between SWMR and CT measurements (R 2  = 0.74, p < 0.001). Compared to standard MRI (ICC = 0.52; CI 0.45-0.59), SWMR showed a higher interobserver agreement for calcification measurements (ICC = 0.84; CI 0.81-0.87). For detection of distal vertebral artery calcifications, SWMR demonstrates a performance comparable to CT and considerably higher than conventional MRI.

  14. New insight into the assessment of asthma using xenon ventilation computed tomography.

    PubMed

    Jung, Jae-Woo; Kwon, Jae-Woo; Kim, Tae-Wan; Lee, So-Hee; Kim, Kyung-Mook; Kang, Hye-Ryun; Park, Heung-Woo; Lee, Chang-Hyun; Goo, Jin-Mo; Min, Kyung-Up; Cho, Sang-Heon

    2013-08-01

    Image analyses include computed tomography (CT), magnetic resonance imaging, and xenon ventilation CT, which is new modality to evaluate pulmonary functional imaging. To examine the usefulness of dual-energy xenon ventilation CT in asthmatic patients. A total of 43 patients 18 years or older who were nonsmokers were included in the study. Xenon CT images in wash-in and wash-out phases were obtained at baseline and after inhalation of methacholine and salbutamol. The degrees of ventilation defects and xenon trappings were evaluated through visual analysis. Ventilation defects and xenon trapping were significantly increased and decreased after methacholine challenge and salbutamol inhalation, respectively (P < .005). The ventilation abnormalities were not significantly related to the percentage of forced expiratory volume in 1 second (FEV1) or the ratio of FEV1 to forced vital capacity. Xenon trappings after salbutamol inhalation were negatively related to the scores of the asthma control test, wheezing, or night symptoms, with statistical significance (P < .05), whereas, FEV1 showed no significant correlation with symptom scores. Baseline FEV1 was significantly lower and dyspnea and wheezing were more severe in the non-full reversal group than in the full reversal group after salbutamol inhalation in xenon CT (P < .05). The degree of ventilation defects were positively correlated with FEV1 improvement after 3 months of treatment (P = .02). The results of this study suggest that xenon ventilation CT can be used as a new method to assess ventilation abnormalities in asthma, and these ventilation abnormalities can be used as novel parameters that reflect the status of asthma control and symptom severity. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. MO-AB-207-02: ACR Update in MR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, R.

    2015-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less

  16. MO-AB-207-04: ACR Update in Mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berns, E.

    2015-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less

  17. MO-AB-207-03: ACR Update in Nuclear Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harkness, B.

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less

  18. Diagnostic accuracy of sequential co-registered PET+MR in comparison to PET/CT in local thoracic staging of malignant pleural mesothelioma.

    PubMed

    Martini, Katharina; Meier, Andreas; Opitz, Isabelle; Weder, Walter; Veit-Haibach, Patrick; Stahel, Rolf A; Frauenfelder, Thomas

    2016-04-01

    To investigate the diagnostic accuracy of sequential co-registered PET+MR (PET+MR) for local staging of malignant pleural mesothelioma (MPM) compared to PET/CT. In a prospective clinical trial 34 consecutive patients (median age 66 years; range 40-79 years; 1 female, 33 male) with known MPM, who underwent PET/CT and PET+MR exams for either staging or re-staging/follow-up were evaluated. Imaging was conducted using a tri-modality PET/CT-MR set-up (Discovery PET/CT 690, 3T Discovery MR 750w, both GE Healthcare, Waukesha, WI, USA). In 26 cases histopathology served as standard of reference. Two independent readers evaluated images for T and N stage, confidence level (sure to unsure; 1-3) and subjective overall image quality (very good to non-diagnostic; 1-4). Inter-observer agreement of T and N stages (Cohen's kappa) and interclass correlation coefficient (ICC) between PET/CT vs. PET+MR was calculated. Inter observer agreement for evaluation of T and N Stage in PET/CT images was excellent (k=0.844 and k=0.824, respectively), whereas PET+MR imaging showed substantial agreement in T and N stage (k=0.729 and k=0.691, respectively). The ICC of PET/CT vs. PET+MR for evaluation of both, T and N Stage, was excellent (ICC=0.951 and ICC=0.93, respectively). Diagnostic confidence was scored significantly higher in PET+MR compared to PET/CT (mean score=1.66 and 1.93, respectively; p=0.004). Image quality was diagnostic for all image series. Comparing pT and pN stage vs cT and cN stage (n=26 cases), both imaging modalities showed excellent agreement for T stage (ICCPET+MR=0.888 vs. ICCPET/CT=0.853, respectively) and substantial to moderate agreement for N stage (ICCPET+MR=0.683 vs. ICC=0.595PET/CT, respectively). Our findings suggest that diagnostic accuracy of PET+MR is comparable to PET/CT for local staging of MPM, whereas radiologists felt significantly more confident staging PET+MR compared to PET/CT images (p=0003), using dedicated sequences. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Retrospective review of positron emission tomography with contrast-enhanced computed tomography in the posttreatment setting in human papillomavirus-associated oropharyngeal carcinoma.

    PubMed

    Chan, Jason Y K; Sanguineti, Giuseppe; Richmon, Jeremy D; Marur, Shanthi; Gourin, Christine G; Koch, Wayne; Chung, Christine H; Quon, Harry; Bishop, Justin A; Aygun, Nafi; Agrawal, Nishant

    2012-11-01

    To determine the value of positron emission tomography (PET) with contrast-enhanced computed tomography (CT) in assessing the need for neck dissection by retrospectively reviewing the pathology reports of patients with human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (SCC). Retrospective cohort study. Tertiary medical center. Seventy-seven patients with HPV-related SCC. Seventy-seven consecutive patients with a diagnosis of HPV-related SCC who were treated with radiotherapy as the primary treatment between August 2007 and October 2010 were retrospectively evaluated for radiologic and pathologic rate of persistence of nodal metastasis after completion of definitive radiotherapy. Pretreatment and posttreatment imaging included contrast-enhanced CT and PET. Response to treatment was measured on CT, PET at standardized uptake value (SUV) thresholds of 2 and 2.5, and PET/CT by a neuroradiologist in a blinded fashion. Then, the pathology report of the patients who underwent neck dissections was reviewed for nodal status after resection and correlated with the imaging findings. Of the 77 patients, 67 met the study criteria, with an average follow-up PET/CT scan at 90.5 days after completion of radiotherapy. Ten patients did not undergo follow-up PET/CT imaging. Twenty patients underwent neck dissections after completion of radiation therapy. Of these 20 patients, 4 had persistent tumor and 16 did not have viable tumor. Using the final pathology report to correlate with imaging responses, CT had a negative predictive value (NPV) of 85.7% (95% CI, 48.7%-97.4%), PET with SUV thresholds of 2 had an NPV of 91.7% (95% CI, 64.6%-98.5%), PET with a cutoff SUV of 2.5 had an NPV of 85.7% (95% CI, 60.1%-96.0%), PET/CT with an SUV of 2 had an NPV of 100% (95% CI, 59.8%-100.0%), and PET/CT with an SUV of 2.5 had an NPV of 85.7% (95% CI, 48.7%-97.4%). The 47 patients who did not undergo neck dissection had a median follow-up of 26 months without an isolated neck failure. Analysis of all 67 patients in the cohort revealed the following values: CT had an NPV of 95.7% (95% CI, 85.8%-98.8%), PET with an SUV of 2 had an NPV of 98.2% (95% CI, 90.4%-99.7%), PET with an SUV of 2.5 had an NPV of 95.0% (95% CI, 86.3%-98.3%), PET/CT with an SUV of 2 had an NPV of 100.0% (95% CI, 92.0%-100.0%), and PET/CT with an SUV of 2.5 had an NPV of 95.7% (95% CI, 85.8%-98.8%). Positron emission tomography combined with contrast-enhanced CT has a better NPV than either imaging modality alone in patients with HPV-associated oropharyngeal SCC. Furthermore, PET/CT with an SUV threshold of 2 used in patients with HPV-related SCC offers an imaging modality with a high NPV that may obviate the need for unnecessary neck dissections.

  20. Homogeneous and inhomogeneous material effect in gamma index evaluation of IMRT technique based on fan beam and Cone Beam CT patient images

    NASA Astrophysics Data System (ADS)

    Wibowo, W. E.; Waliyyulhaq, M.; Pawiro, S. A.

    2017-05-01

    Patient-specific Quality Assurance (QA) technique in lung case Intensity-Modulated Radiation Therapy (IMRT) is traditionally limited to homogeneous material, although the fact that the planning is carried out with inhomogeneous material present. Moreover, the chest area has many of inhomogeneous material, such as lung, soft tissue, and bone, which inhomogeneous material requires special attention to avoid inaccuracies in dose calculation in the Treatment Planning System (TPS). Recent preliminary studies shown that the role of Cone Beam CT (CBCT) can be used not only to position the patient at the time prior to irradiation but also to serve as planning modality. Our study presented the influence of a homogeneous and inhomogeneous materials using Fan Beam CT and Cone Beam CT modalities in IMRT technique on the Gamma Index (GI) value. We used a variation of the segment and Calculation Grid Resolution (CGR). The results showed the deviation of averaged GI value to be between CGR 0.2 cm and 0.4 cm with homogeneous material ranging from -0.44% to 1.46%. For inhomogeneous material, the value was range from -1.74% to 0.98%. In performing patient-specific IMRT QA techniques for lung cancer, homogeneous material can be implemented in evaluating the gamma index.

  1. Evolving role of FDG-PET/CT in prognostic evaluation of resectable gastric cancer

    PubMed Central

    De Raffele, Emilio; Mirarchi, Mariateresa; Cuicchi, Dajana; Lecce, Ferdinando; Cola, Bruno

    2017-01-01

    Gastric cancer (GC) remains a leading cause of cancer death worldwide. Radical gastrectomy is the only potentially curative treatment, and perioperative adjuvant therapies may improve the prognosis after curative resection. Prognosis largely depends on the tumour stage and histology, but the host systemic inflammatory response (SIR) to GC may contribute as well, as has been determined for other malignancies. In GC patients, the potential utility of positron emission tomography/computed tomography (PET/CT) with the imaging radiopharmaceutical 18F-fluorodeoxyglucose (FDG) is still debated, due to its lower sensitivity in diagnosing and staging GC compared to other imaging modalities. There is, however, growing evidence that FDG uptake in the primary tumour and regional lymph nodes may be efficient for predicting prognosis of resected patients and for monitoring tumour response to perioperative treatments, having prognostic value in that it can change therapeutic strategies. Moreover, FDG uptake in bone marrow seems to be significantly associated with SIR to GC and to represent an efficient prognostic factor after curative surgery. In conclusion, PET/CT technology is efficient in GC patients, since it is useful to integrate other imaging modalities in staging tumours and may have prognostic value that can change therapeutic strategies. With ongoing improvements, PET/CT imaging may gain further importance in the management of GC patients. PMID:29097864

  2. Expanding role of 18F-fluoro-d-deoxyglucose PET and PET/CT in spinal infections

    PubMed Central

    Rijk, Paul C.; Collins, James M. P.; Parlevliet, Thierry; Stumpe, Katrin D.; Palestro, Christopher J.

    2010-01-01

    18F-fluoro-d-deoxyglucose positron emission tomography ([18F]-FDG PET) is successfully employed as a molecular imaging technique in oncology, and has become a promising imaging modality in the field of infection. The non-invasive diagnosis of spinal infections (SI) has been a challenge for physicians for many years. Morphological imaging modalities such as conventional radiography, computed tomography (CT), and magnetic resonance imaging (MRI) are techniques frequently used in patients with SI. However, these methods are sometimes non-specific, and difficulties in differentiating infectious from degenerative end-plate abnormalities or postoperative changes can occur. Moreover, in contrast to CT and MRI, FDG uptake in PET is not hampered by metallic implant-associated artifacts. Conventional radionuclide imaging tests, such as bone scintigraphy, labeled leukocyte, and gallium scanning, suffer from relatively poor spatial resolution and lack sensitivity, specificity, or both. Initial data show that [18F]-FDG PET is an emerging imaging technique for diagnosing SI. [18F]-FDG PET appears to be especially helpful in those cases in which MRI cannot be performed or is non-diagnostic, and as an adjunct in patients in whom the diagnosis is inconclusive. The article reviews the currently available literature on [18F]-FDG PET and PET/CT in the diagnosis of SI. PMID:20052505

  3. Magnetic resonance imaging. Application to family practice.

    PubMed

    Goh, R H; Somers, S; Jurriaans, E; Yu, J

    1999-09-01

    To review indications, contraindications, and risks of using magnetic resonance imaging (MRI) in order to help primary care physicians refer patients appropriately for MRI, screen for contraindications to using MRI, and educate patients about MRI. Recommendations are based on classic textbooks, the policies of our MRI group, and a literature search using MEDLINE with the MeSH headings magnetic resonance imaging, brain, musculoskeletal, and spine. The search was limited to human, English-language, and review articles. Evidence in favour of using MRI for imaging the head, spine, and joints is well established. For cardiac, abdominal, and pelvic conditions, MRI has been shown useful for certain indications, usually to complement other modalities. For demonstrating soft tissue conditions, MRI is better than computed tomography (CT), but CT shows bone and acute bleeding better. Therefore, patients with trauma or suspected intracranial bleeding should have CT. Tumours, congenital abnormalities, vascular structures, and the cervical or thoracic spine show better on MRI. Either modality can be used for lower back pain. Cardiac, abdominal, and pelvic abnormalities should be imaged with ultrasound or CT before MRI. Contraindications for MRI are mainly metallic implants or shrapnel, severe claustrophobia, or obesity. With the increasing availability of MRI scanners in Canada, better understanding of the indications, contraindications, and risks will be helpful for family physicians and their patients.

  4. Incremental value of 99mTc-HYNIC-TOC SPECT/CT over whole-body planar scintigraphy and SPECT in patients with neuroendocrine tumours.

    PubMed

    Trogrlic, Mate; Težak, Stanko

    2017-06-12

    The aim of this study was to evaluate the additional value of 99m Tc-HYNIC-TOC SPECT/CT over planar whole-body (WB) scintigraphy and SPECT alone in the detection and accurate localisation of neuroendocrine tumour (NET) lesions. This study included 65 patients with a definitive histological diagnosis of NET prior to scintigraphy. Planar WB scintigraphy, SPECT, and SPECT/CT images were acquired at 4 h post-administration of 670 MBq 99m Tc-HYNIC-TOC. Additional SPECT images at 10 min after tracer administration were also acquired. Clinical and imaging follow-up findings were considered as the reference standards (minimum follow-up period, 15 months). Patient and lesion-based analyses of the efficacies of the imaging modalities were performed. While 38 patients exhibited metastasis of NETs, 27 presented no evidence of metastasis. Upon patient-based analysis, the sensitivity and specificity of SPECT/CT were found to be 88.9 and 79.3 %, respectively. The diagnostic accuracies of WB scintigraphy, 4h-SPECT, and SPECT/CT were 72.3, 73.8, and 84.6 %, respectively. The area under curve (AUC) value for SPECT/CT (0.84) was the highest, followed by those for 4h-SPECT (0.75) and WB scintigraphy (0.74). The accuracy and AUC values of SPECT/CT were significantly better compared to those of WB scintigraphy (p < 0.001), 10 min-SPECT (p < 0.001), and 4 h-SPECT (p = 0.001). The findings of SPECT/CT led to the change in treatment plan of 11 patients (16.9 %). The sensitivity and diagnostic accuracy of SPECT/CT in the evaluation of NET lesions outperforms planar WB imaging or SPECT alone.

  5. PROSPECTIVE COMPARISON OF TUMOR STAGING USING COMPUTED TOMOGRAPHY VERSUS MAGNETIC RESONANCE IMAGING FINDINGS IN DOGS WITH NASAL NEOPLASIA: A PILOT STUDY.

    PubMed

    Lux, Cassie N; Culp, William T N; Johnson, Lynelle R; Kent, Michael; Mayhew, Philipp; Daniaux, Lise A; Carr, Alaina; Puchalski, Sarah

    2017-05-01

    Identification of nasal neoplasia extension and tumor staging in dogs is most commonly performed using computed tomography (CT), however magnetic resonance imaging (MRI) is routinely used in human medicine. A prospective pilot study enrolling six dogs with nasal neoplasia was performed with CT and MRI studies acquired under the same anesthetic episode. Interobserver comparison and comparison between the two imaging modalities with regard to bidimensional measurements of the nasal tumors, tumor staging using historical schemes, and assignment of an ordinal scale of tumor margin clarity at the tumor-soft tissue interface were performed. The hypotheses included that MRI would have greater tumor measurements, result in higher tumor staging, and more clearly define the tumor soft tissue interface when compared to CT. Evaluation of bone involvement of the nasal cavity and head showed a high level of agreement between CT and MRI. Estimation of tumor volume using bidimensional measurements was higher on MRI imaging in 5/6 dogs, and resulted in a median tumor volume which was 18.4% higher than CT imaging. Disagreement between CT and MRI was noted with meningeal enhancement, in which two dogs were positive for meningeal enhancement on MRI and negative on CT. One of six dogs had a higher tumor stage on MRI compared to CT, while the remaining five agreed. Magnetic resonance imaging resulted in larger bidimensional measurements and tumor volume estimates, along with a higher likelihood of identifying meningeal enhancement when compared to CT imaging. Magnetic resonance imaging may provide integral information for tumor staging, prognosis, and treatment planning. © 2017 American College of Veterinary Radiology.

  6. The cheating liver: imaging of focal steatosis and fatty sparing.

    PubMed

    Dioguardi Burgio, Marco; Bruno, Onorina; Agnello, Francesco; Torrisi, Chiara; Vernuccio, Federica; Cabibbo, Giuseppe; Soresi, Maurizio; Petta, Salvatore; Calamia, Mauro; Papia, Giovanni; Gambino, Angelo; Ricceri, Viola; Midiri, Massimo; Lagalla, Roberto; Brancatelli, Giuseppe

    2016-06-01

    Focal steatosis and fatty sparing are a frequent finding in liver imaging, and can mimic solid lesions. Liver regional variations in the degree of fat accumulation can be related to vascular anomalies, metabolic disorders, use of certain drugs or coexistence of hepatic masses. CT and MRI are the modalities of choice for the noninvasive diagnosis of hepatic steatosis. Knowledge of CT and MRI appearance of focal steatosis and fatty sparing is crucial for an accurate diagnosis, and to rule-out other pathologic processes. This paper will review the CT and MRI techniques for the diagnosis of hepatic steatosis and the CT and MRI features of common and uncommon causes of focal steatosis and fatty sparing.

  7. Diagnosis demystified: CT as diagnostic tool in endodontics

    PubMed Central

    Shruthi, Nagaraja; Sreenivasa Murthy, B V; Sundaresh, K J; Mallikarjuna, Rachappa

    2013-01-01

    Diagnosis in endodontics is usually based on clinical and radiographical presentations, which are only empirical methods. The role of healing profession is to apply knowledge and skills towards maintaining and restoring the patient's health. Recent advances in imaging technologies have added to correct interpretation and diagnosis. CT is proving to be an effective tool in solving endodontic mysteries through its three-dimensional visualisation. CT imaging offers many diagnostic advantages to produce reconstructed images in selected projection and low-contrast resolution far superior to that of all other X-ray imaging modalities. This case report is an endeavour towards effective treatment planning of cases with root fracture, root resorption using spiral CT as an adjuvant diagnostic tool. PMID:23814212

  8. Multi-modality molecular imaging: pre-clinical laboratory configuration

    NASA Astrophysics Data System (ADS)

    Wu, Yanjun; Wellen, Jeremy W.; Sarkar, Susanta K.

    2006-02-01

    In recent years, the prevalence of in vivo molecular imaging applications has rapidly increased. Here we report on the construction of a multi-modality imaging facility in a pharmaceutical setting that is expected to further advance existing capabilities for in vivo imaging of drug distribution and the interaction with their target. The imaging instrumentation in our facility includes a microPET scanner, a four wavelength time-domain optical imaging scanner, a 9.4T/30cm MRI scanner and a SPECT/X-ray CT scanner. An electronics shop and a computer room dedicated to image analysis are additional features of the facility. The layout of the facility was designed with a central animal preparation room surrounded by separate laboratory rooms for each of the major imaging modalities to accommodate the work-flow of simultaneous in vivo imaging experiments. This report will focus on the design of and anticipated applications for our microPET and optical imaging laboratory spaces. Additionally, we will discuss efforts to maximize the daily throughput of animal scans through development of efficient experimental work-flows and the use of multiple animals in a single scanning session.

  9. Three-dimensional CT might be a potential evaluation modality in correction of asymmetrical masseter muscle hypertrophy by botulinum toxin injection.

    PubMed

    No, Yeon A; Ahn, Byeong Heon; Kim, Beom Joon; Kim, Myeung Nam; Hong, Chang Kwon

    2016-01-01

    For correction of this asymmetrical hypertrophy, botulinum toxin type A (BTxA) injection is one of convenient treatment modalities. Unfortunately, physical examination of masseter muscle is not enough to estimate the exact volume of muscle hypertrophy difference. Two Koreans, male and female, of bilateral masseter hypertrophy with asymmetricity were evaluated. BTxA (NABOTA(®), Daewoong, Co. Ltd., Seoul, Korea) was injected at master muscle site with total 50 U (25 U at each side) and volume change was evaluated with three-dimensional (3D) CT image analysis. Maximum reduction of masseter hypertrophy was recognized at 2-month follow-up and reduced muscle size started to restore after 3 months. Mean reduction of masseter muscle volume was 36% compared with baseline. More hypertrophied side of masseter muscle presented 42% of volume reduction at 2-month follow-up but less hypertrophied side of masseter muscle showed 30% of volume shrinkage. In conclusion, 3D CT image analysis might be the exact evaluation tool for correction of asymmetrical masseter hypertrophy by botulinum toxin injection.

  10. Neuroimaging in ophthalmology

    PubMed Central

    Kim, James D.; Hashemi, Nafiseh; Gelman, Rachel; Lee, Andrew G.

    2012-01-01

    In the past three decades, there have been countless advances in imaging modalities that have revolutionized evaluation, management, and treatment of neuro-ophthalmic disorders. Non-invasive approaches for early detection and monitoring of treatments have decreased morbidity and mortality. Understanding of basic methods of imaging techniques and choice of imaging modalities in cases encountered in neuro-ophthalmology clinic is critical for proper evaluation of patients. Two main imaging modalities that are often used are computed tomography (CT) and magnetic resonance imaging (MRI). However, variations of these modalities and appropriate location of imaging must be considered in each clinical scenario. In this article, we review and summarize the best neuroimaging studies for specific neuro-ophthalmic indications and the diagnostic radiographic findings for important clinical entities. PMID:23961025

  11. Image-guided thoracic surgery in the hybrid operation room.

    PubMed

    Ujiie, Hideki; Effat, Andrew; Yasufuku, Kazuhiro

    2017-01-01

    There has been an increase in the use of image-guided technology to facilitate minimally invasive therapy. The next generation of minimally invasive therapy is focused on advancement and translation of novel image-guided technologies in therapeutic interventions, including surgery, interventional pulmonology, radiation therapy, and interventional laser therapy. To establish the efficacy of different minimally invasive therapies, we have developed a hybrid operating room, known as the guided therapeutics operating room (GTx OR) at the Toronto General Hospital. The GTx OR is equipped with multi-modality image-guidance systems, which features a dual source-dual energy computed tomography (CT) scanner, a robotic cone-beam CT (CBCT)/fluoroscopy, high-performance endobronchial ultrasound system, endoscopic surgery system, near-infrared (NIR) fluorescence imaging system, and navigation tracking systems. The novel multimodality image-guidance systems allow physicians to quickly, and accurately image patients while they are on the operating table. This yield improved outcomes since physicians are able to use image guidance during their procedures, and carry out innovative multi-modality therapeutics. Multiple preclinical translational studies pertaining to innovative minimally invasive technology is being developed in our guided therapeutics laboratory (GTx Lab). The GTx Lab is equipped with similar technology, and multimodality image-guidance systems as the GTx OR, and acts as an appropriate platform for translation of research into human clinical trials. Through the GTx Lab, we are able to perform basic research, such as the development of image-guided technologies, preclinical model testing, as well as preclinical imaging, and then translate that research into the GTx OR. This OR allows for the utilization of new technologies in cancer therapy, including molecular imaging, and other innovative imaging modalities, and therefore enables a better quality of life for patients, both during and after the procedure. In this article, we describe capabilities of the GTx systems, and discuss the first-in-human technologies used, and evaluated in GTx OR.

  12. Noninvasive physiologic assessment of coronary stenoses using cardiac CT.

    PubMed

    Xu, Lei; Sun, Zhonghua; Fan, Zhanming

    2015-01-01

    Coronary CT angiography (CCTA) has become an important noninvasive imaging modality in the diagnosis of coronary artery disease (CAD). CCTA enables accurate evaluation of coronary artery stenosis. However, CCTA provides limited information on the physiological significance of stenotic lesions. A noninvasive "one-stop-shop" diagnostic test that can provide both anatomical significance and functional significance of stenotic lesions would be beneficial in the diagnosis and management of CAD. Recently, with the introduction of novel techniques, such as myocardial CT perfusion, CT-derived fractional flow reserve (FFRCT), and transluminal attenuation gradient (TAG), CCTA has emerged as a noninvasive method for the assessment of both anatomy of coronary lesions and its physiological consequences during a single study. This review provides an overview of the current status of new CT techniques for the physiologic assessments of CAD.

  13. The Abernethy malformation-myriad imaging manifestations of a single entity.

    PubMed

    Ghuman, Samarjit S; Gupta, Saumya; Buxi, T B S; Rawat, Kishan S; Yadav, Anurag; Mehta, Naimish; Sud, Seema

    2016-01-01

    Abernethy malformation, also known as congenital extrahepatic portosystemic shunts (CEPS) is a rare clinical entity and manifests with different clinical symptoms. CEPS are abnormalities of vascular development where there is shunting of portal blood into the systemic venous system. Multidetector computed tomography (MDCT) is a fast and effective modality for evaluation of CEPS. CT displays all the information desired by the surgeon as well as the clinician including the anatomy of the splenic and superior mesenteric veins, size and site of the shunt, presence or absence of the portal vein radicles, and helps to plan the therapy and even the follow-up of these patients. Contrast-enhanced magnetic resonance imaging (MRI) has also emerged as a promising tool for the evaluation of liver lesions associated with the malformation. The Radiologist should be aware of the various imaging appearances of this entity including its complications. In this article, we describe the imaging appearances of CEPS, their complications, and their imaging appearances on CT and MRI. We have also described various associated anomalies.

  14. The Abernethy malformation—myriad imaging manifestations of a single entity

    PubMed Central

    Ghuman, Samarjit S; Gupta, Saumya; Buxi, T B S; Rawat, Kishan S; Yadav, Anurag; Mehta, Naimish; Sud, Seema

    2016-01-01

    Abernethy malformation, also known as congenital extrahepatic portosystemic shunts (CEPS) is a rare clinical entity and manifests with different clinical symptoms. CEPS are abnormalities of vascular development where there is shunting of portal blood into the systemic venous system. Multidetector computed tomography (MDCT) is a fast and effective modality for evaluation of CEPS. CT displays all the information desired by the surgeon as well as the clinician including the anatomy of the splenic and superior mesenteric veins, size and site of the shunt, presence or absence of the portal vein radicles, and helps to plan the therapy and even the follow-up of these patients. Contrast-enhanced magnetic resonance imaging (MRI) has also emerged as a promising tool for the evaluation of liver lesions associated with the malformation. The Radiologist should be aware of the various imaging appearances of this entity including its complications. In this article, we describe the imaging appearances of CEPS, their complications, and their imaging appearances on CT and MRI. We have also described various associated anomalies. PMID:27857464

  15. SU-E-J-33: Comparison Between Soft Tissue Alignment and Bony Alignment for Pancreatic Cancer Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Y; Crane, C; Krishnan, S

    Purpose An IGRT modality for pancreatic cancer treatment with dose escalation at our institution is in-room daily CT imaging. The purpose of this study is to assess the difference between soft tissue alignment and bony alignment for pancreatic tumor localization. Methods Eighteen patients with pancreatic tumors who underwent IMRT treatment with an inspiration breath-hold technique between July 2012 and February 2015 are included in this study. Prior to each treatment, a CT scan was acquired. The CT image guidance started with auto-alignment to either the bony anatomy (vertebral bodies) or fiducials (for the six patients with the stent in/near themore » tumor) and then, when necessary, manual adjustments were made based on soft tissue alignment using clinical software (CT-Assisted Targeting system). The difference between soft tissue alignment and bony/fiducial alignment was evaluated. Results Of all 380 treatments, manual adjustment was made in 225 treatments, ranging from 11% (3 treatments out of 28) to 96% (27 treatments out of 28) per patient. The mean of the difference between soft tissue alignment and bony/fiducial alignment per patient ranged from −3.6 to 0.3 mm, −1.5 to 2.8 mm, and −3.3 to 3.4 mm in the AP, SI, and RL directions, respectively. The maximum difference over all treatments was −9.5, −14.6, and −14.6 mm in the AP, SI, and RL directions, respectively. Conclusion About 60% of the time, manual adjustment based on soft tissue alignment was required. The extent of manual adjustment was usually small but varied significantly from patient to patient. The ultimate goal of the IGRT modality using daily CT imaging is not to fully cover the target but to spare organs-at-risk as much as possible to avoid them moving into higher dose gradients than accepted in the treatment plan. To this end, manual adjustment based on soft tissue alignment is critically important.« less

  16. Clinical values of (18) F-FDG PET/CT in oral cavity cancer with dental artifacts on CT or MRI.

    PubMed

    Hong, Hye Ran; Jin, Soyoung; Koo, Hyun Jung; Roh, Jong-Lyel; Kim, Jae Seung; Cho, Kyung-Ja; Choi, Seung-Ho; Nam, Soon Yuhl; Kim, Sang Yoon

    2014-11-01

    2a To investigate the role of (18) F-FDG PET/CT in tumor staging, extent, and volume measurements in oral cavity squamous cell carcinoma (OSCC) patients with/without dental artifacts on CT or MRI. This study was conducted in 63 consecutive patients with OSCC who received initial workups including (18) F-FDG PET/CT and MRI. The results of the imaging modalities were compared to those of pathology, using McNemar's test and the paired t-test. Thirty-seven patients (59%) had dental or metallic artifacts obscuring primary tumors. (18) F-FDG PET/CT scanning was superior to MRI in tumor staging (weighted κ = 0.870 vs. 0.518, P = 0.004) in patients with dental artifacts. In addition, (18) F-FDG PET/CT scans were more specific than MRI in detecting sublingual gland (P = 0.014) and mouth floor (P = 0.011) involvement. In patients with dental artifacts, there was a significant discrepancy between primary tumor volume (PTV) measured by pathology and MRI (P = 0.018), but not between PTV measured from pathology and (18) F-FDG PET/CT at SUV2.5 (P = 0.245), which showed the highest intraclass correlation coefficient value (0.860). (18) F-FDG PET/CT scans provide accurate tumor staging and volume measurements in OSCC patients with CR/MRI dental artifacts, leading to improved preoperative planning. 2b CONDENSED ABSTRACT This study evaluated the clinical value of (18) F-FDG PET/CT in 63 patients with oral cavity cancers. In 37 (59%) patients with dental artifacts on CT/MRI, (18) F-FDG PET/CT showed superior results compared to MRI in tumor staging and represented the highest intraclass correlation coefficient value to tumor volume determined by pathology. © 2014 Wiley Periodicals, Inc.

  17. Evaluation of the diagnostic accuracy of four-view radiography and conventional computed tomography analysing sacral and pelvic fractures in dogs.

    PubMed

    Stieger-Vanegas, S M; Senthirajah, S K J; Nemanic, S; Baltzer, W; Warnock, J; Bobe, G

    2015-01-01

    The purpose of our study was (1) to determine whether four-view radiography of the pelvis is as reliable and accurate as computed tomography (CT) in diagnosing sacral and pelvic fractures, in addition to coxofemoral and sacroiliac joint subluxation or luxation, and (2) to evaluate the effect of the amount of training in reading diagnostic imaging studies on the accuracy of diagnosing sacral and pelvic fractures in dogs. Sacral and pelvic fractures were created in 11 canine cadavers using a lateral impactor. In all cadavers, frog-legged ventro-dorsal, lateral, right and left ventro-45°-medial to dorsolateral oblique frog leg ("rollover 45-degree view") radiographs and a CT of the pelvis were obtained. Two radiologists, two surgeons and two veterinary students classified fractures using a confidence scale and noted the duration of evaluation for each imaging modality and case. The imaging results were compared to gross dissection. All evaluators required significantly more time to analyse CT images compared to radiographic images. Sacral and pelvic fractures, specifically those of the sacral body, ischiatic table, and the pubic bone, were more accurately diagnosed using CT compared to radiography. Fractures of the acetabulum and iliac body were diagnosed with similar accuracy (at least 86%) using either modality. Computed tomography is a better method for detecting canine sacral and some pelvic fractures compared to radiography. Computed tomography provided an accuracy of close to 100% in persons trained in evaluating CT images.

  18. Optimizing modality selection for image-guided procedures: an analysis of the challenges to ultrasound guidance.

    PubMed

    Beland, Michael D; Sternick, Laura A; Baird, Grayson L; Dupuy, Damian E; Cronan, John J; Mayo-Smith, William W

    2016-04-01

    Selection of the most appropriate modality for image guidance is essential for procedural success. We identified specific factors contributing to failure of ultrasound-guided procedures that were subsequently performed using CT guidance. This single-center, retrospective study included 164 patients who underwent a CT-guided biopsy, aspiration/drainage, or ablation after initially having the same procedure attempted unsuccessfully with ultrasound guidance. Review of the procedure images, reports, biopsy results, and clinical follow-up was performed and the reasons for inability to perform the procedure with ultrasound guidance were recorded. Patient cross-sectional area and depth to target were calculated. Differences in area and depth were compared using general linear modeling. Depth as a predictor of an unfavorable body habitus designation was modeled using logistic regression. US guidance was successful in the vast majority of cases (97%). Of the 164 procedures, there were 92 (56%) biopsies, 63 (38%) aspirations/drainages, and 9 (5%) ablations. The most common reason for procedure failure was poor acoustic window (83/164, 51%). Other reasons included target lesion being poorly discerned from adjacent tissue (61/164, 37%), adjacent bowel gas (34/164, 21%), body habitus (27/164, 16%), and gas-containing collection (22/164, 13%). Within the biopsy subgroup, patients for whom body habitus was a limiting factor were found to have on average a larger cross-sectional area and lesion depth relative to patients whose body habitus was not a complicating factor (p < 0.0001 and p = 0.0009). Poor acoustic window was the most common reason for procedural failure with ultrasound guidance. In addition, as lesion depth increased, the odds that body habitus would limit the procedure also increased. If preliminary imaging suggests a limited sonographic window, particularly for deeper lesions, proceeding directly to CT guidance should be considered.

  19. High Resolution X-ray-Induced Acoustic Tomography

    PubMed Central

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-01-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray. PMID:27189746

  20. Detailed description of the Mayo/IBM PACS

    NASA Astrophysics Data System (ADS)

    Gehring, Dale G.; Persons, Kenneth R.; Rothman, Melvyn L.; Salutz, James R.; Morin, Richard L.

    1991-07-01

    The Mayo Clinic and IBM/Rochester have jointly developed a picture archiving system (PACS) for use with Mayo's MRI and Neuro-CT imaging modalities. The system was developed to replace the imaging system's vendor-supplied magnetic tape archiving capability. The system consists of seven MR imagers and nine CT scanners, each interfaced to the PACS via IBM Personal System/2(tm) (PS/2) computers, which act as gateways from the imaging modality to the PACS network. The PAC system operates on the token-ring component of Mayo's city-wide local area network. Also on the PACS network are four optical storage subsystems used for image archival, three optical subsystems used for image retrieval, an IBM Application System/400(tm) (AS/400) computer used for database management and multiple PS/2-based image display systems and their image servers.

  1. Diagnostic imaging and interventional therapy of hepatocellular carcinoma.

    PubMed

    Palma, L D

    1998-08-01

    Diagnostic imaging has many important roles in the management of patients with hepatocellular carcinoma (HCC). In diagnosis, lipiodol CT (LCT) has been shown to be the most sensitive imaging modality (90-97%) for all sizes of lesions; all other modalities have high sensitivities for lesions 1-3 cm but low sensitivities for lesions < 1 cm (ultrasound 33-37%, conventional CT 20-42% and digital subtraction angiography 40-55%). All imaging modalities understage HCC. Once again LCT is the most accurate method of evaluating the extent of tumour, but even this method does not identify all satellite nodules. Ultrasound has been proposed as a screening method, but this cannot be justified on the basis of its results or cost benefit analysis. Both CT and dynamic MRI play useful roles in evaluating the efficacy and follow-up of patients undergoing chemoembolization (TACE) and percutaneous ethanol injection (PEI). Although surgery remains the best treatment of HCC, it is unsuitable in most of the cases which would be better treated with interventional therapy. This article presents a review of the literature regarding the use of TACE, PEI or a combination of both procedures in the treatment of HCC. A multicentric study has shown that patients with monofocal lesions less than 5 cm in diameter are better treated with PEI, which is therefore a good alternative to the surgical treatment; patients with multifocal lesions (maximum of three lesions) show a better survival with TACE. Combined treatment with TACE and PEI proves to be effective in patients with large HCC.

  2. Comparison of 68Ga-PSMA PET/CT and multiparametric MRI for staging of high-risk prostate cancer68Ga-PSMA PET and MRI in prostate cancer.

    PubMed

    Tulsyan, Shruti; Das, Chandan J; Tripathi, Madhavi; Seth, Amlesh; Kumar, Rajeev; Bal, Chandrasekhar

    2017-12-01

    We carried out this study to compare Glu-NH-CO-NH-Lys-(Ahx) [Ga(HBED-CC)] [Ga prostate-specific membrane antigen-11 (PSMA-11)] PET with multiparametric MRI (mpMRI) for the staging of high-risk prostate cancer. This was a prospective study in which 36 patients with high-risk prostate cancer were included. The criteria for inclusion were biopsy-proven prostate cancer with a serum prostate specific antigen of at least 20 and/or Gleason's score of at least 8. Each patient then underwent both gallium-68 (Ga)-PSMA PET/computed tomography (CT) and mpMRI including diffusion-weighted whole-body imaging with background body signal suppression within an interval of 1 week and both modalities were compared for staging of primary disease, lymph node, and distant metastasis. The median age of the 36 patients included was 65 years (range: 44-80 years) and the median prostate specific antigen was 94.3 ng/ml (range: 20-19005  ng/ml). Concordance for localization of primary on Ga-PSMA PET/CT and MRI was observed in 19/36 (52.7%) patients. Concurrence for T staging on Ga-PSMA and MRI was observed in 58.3% of patients. Ga-PSMA PET/CT detected higher numbers of patients with regional (29) and nonregional (15) lymph nodes in comparison with MRI (20 and 5, respectively). Concurrence for regional and nonregional lymph node staging was observed in 72.2% of patients. Additional sites of metastatic disease reported on Ga-PSMA PET/CT were to the skeleton in one patient, the lung in two patients, and the liver in one patient. This study suggests that Ga-PSMA PET/CT is useful for lymph node and metastases staging in high-risk prostate cancers, whereas its utility for staging of disease in the prostate is limited.

  3. Postoperative Evaluation of Reduction Loss in Proximal Humeral Fractures: A Comparison of Plain Radiographs and Computed Tomography.

    PubMed

    Jia, Xiao-Yang; Chen, Yan-Xi; Qiang, Min-Fei; Zhang, Kun; Li, Hao-Bo; Jiang, Yu-Chen; Zhang, Yi-Jie

    2017-05-01

    To compare postoperative CT images with plain radiographs for measuring prognostic factors of reduction loss of fractures of the proximal part of the humerus. A total of 65 patients who sustained fractures of the proximal humerus treated with locking plates from June 2012 to October 2015 were retrospectively analyzed. There were 24 men and 41 women, with a mean age of 60.0 years (range, 22-76 years). According to the Neer classification system of proximal humeral fracture, there were 26 two-part, 27 three-part and 12 four-part fractures of the proximal part of the humerus, and all fractures were treated with open reduction and internal fixation (ORIF) using locked plating. All postoperative CT images and plain radiographs of the patients were obtained. Prognostic factors of the reduction loss were the change of neck shaft angle (NSA) and the change of humeral head height (HHH). The change of NSA and HHH were evaluated by the difference between postoperative initial and final follow-up measurement. Reduction loss was defined as the change ≥10° for NSA or ≥5 mm for HHH. The NSA and HHH were measured using plain radiographs and 3-D CT images, both initially and at final follow-up. The paired t-test was used for comparison of NSA, change of NSA, HHH, and change of HHH between two image modalities. The differences between two image modalities in the assessment of reduction loss were examined using the χ 2 -test (McNemar test). Intraclass correlation coefficients (ICC) were used to assess the intra-observer and inter-observer reliability. 3-D CT images (ICC range, 0.834-0.967) were more reliable in all parameters when compared with plain radiographs (ICC range, 0.598-0.915). Significant differences were found between the two image modalities in all parameters (plain radiographs: initial NSA = 133.6° ± 3.8°, final NSA = 130.0° ± 1.9°, initial HHH = 17.9 ± 0.9 mm, final HHH = 15.8 ± 1.5 mm; 3-D CT: initial NSA = 131.4° ± 3.4°, final NSA = 128.8° ± 1.7°, initial HHH = 16.8 ± 1.2 mm, final HHH = 14.5 ± 1.1 mm; all P < 0.05). In the assessment of reduction loss, the percentage was 16.9% (11/65) for the plain radiographs and 7.7% (5/65) for the 3-D CT scans (P < 0.05). For the 5 patients with reduction loss, which were observed by two imaging modalities, the mean Constant-Murley score was 61.0 ± 1.6. The patients with reduction loss, observed only in plain radiographs but not CT images, had good shoulder function (Constant-Murley score: 82.7 ± 1.0). Our data reveal that 3-D CT images are more reliable than plain radiographs in the assessment of the prognostic factors of reduction loss of fractures of the proximal part of the humerus with treatment of locking plates; this reliable CT technique can serve as an effective guideline for the subsequent clinical management of patients. © 2017 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  4. The development, validation and application of a multi-detector CT (MDCT) scanner model for assessing organ doses to the pregnant patient and the fetus using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Gu, J.; Bednarz, B.; Caracappa, P. F.; Xu, X. G.

    2009-05-01

    The latest multiple-detector technologies have further increased the popularity of x-ray CT as a diagnostic imaging modality. There is a continuing need to assess the potential radiation risk associated with such rapidly evolving multi-detector CT (MDCT) modalities and scanning protocols. This need can be met by the use of CT source models that are integrated with patient computational phantoms for organ dose calculations. Based on this purpose, this work developed and validated an MDCT scanner using the Monte Carlo method, and meanwhile the pregnant patient phantoms were integrated into the MDCT scanner model for assessment of the dose to the fetus as well as doses to the organs or tissues of the pregnant patient phantom. A Monte Carlo code, MCNPX, was used to simulate the x-ray source including the energy spectrum, filter and scan trajectory. Detailed CT scanner components were specified using an iterative trial-and-error procedure for a GE LightSpeed CT scanner. The scanner model was validated by comparing simulated results against measured CTDI values and dose profiles reported in the literature. The source movement along the helical trajectory was simulated using the pitch of 0.9375 and 1.375, respectively. The validated scanner model was then integrated with phantoms of a pregnant patient in three different gestational periods to calculate organ doses. It was found that the dose to the fetus of the 3 month pregnant patient phantom was 0.13 mGy/100 mAs and 0.57 mGy/100 mAs from the chest and kidney scan, respectively. For the chest scan of the 6 month patient phantom and the 9 month patient phantom, the fetal doses were 0.21 mGy/100 mAs and 0.26 mGy/100 mAs, respectively. The paper also discusses how these fetal dose values can be used to evaluate imaging procedures and to assess risk using recommendations of the report from AAPM Task Group 36. This work demonstrates the ability of modeling and validating an MDCT scanner by the Monte Carlo method, as well as assessing fetal and organ doses by combining the MDCT scanner model and the pregnant patient phantom.

  5. Parametric boundary reconstruction algorithm for industrial CT metrology application.

    PubMed

    Yin, Zhye; Khare, Kedar; De Man, Bruno

    2009-01-01

    High-energy X-ray computed tomography (CT) systems have been recently used to produce high-resolution images in various nondestructive testing and evaluation (NDT/NDE) applications. The accuracy of the dimensional information extracted from CT images is rapidly approaching the accuracy achieved with a coordinate measuring machine (CMM), the conventional approach to acquire the metrology information directly. On the other hand, CT systems generate the sinogram which is transformed mathematically to the pixel-based images. The dimensional information of the scanned object is extracted later by performing edge detection on reconstructed CT images. The dimensional accuracy of this approach is limited by the grid size of the pixel-based representation of CT images since the edge detection is performed on the pixel grid. Moreover, reconstructed CT images usually display various artifacts due to the underlying physical process and resulting object boundaries from the edge detection fail to represent the true boundaries of the scanned object. In this paper, a novel algorithm to reconstruct the boundaries of an object with uniform material composition and uniform density is presented. There are three major benefits in the proposed approach. First, since the boundary parameters are reconstructed instead of image pixels, the complexity of the reconstruction algorithm is significantly reduced. The iterative approach, which can be computationally intensive, will be practical with the parametric boundary reconstruction. Second, the object of interest in metrology can be represented more directly and accurately by the boundary parameters instead of the image pixels. By eliminating the extra edge detection step, the overall dimensional accuracy and process time can be improved. Third, since the parametric reconstruction approach shares the boundary representation with other conventional metrology modalities such as CMM, boundary information from other modalities can be directly incorporated as prior knowledge to improve the convergence of an iterative approach. In this paper, the feasibility of parametric boundary reconstruction algorithm is demonstrated with both simple and complex simulated objects. Finally, the proposed algorithm is applied to the experimental industrial CT system data.

  6. Comparison of Magnetic Resonance Imaging and Computed Tomography for Breast Target Volume Delineation in Prone and Supine Positions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogson, Elise M.; Liverpool and Macarthur Cancer Therapy Centres, Liverpool; Ingham Institute for Applied Medical Research, Liverpool

    2016-11-15

    Purpose: To determine whether T2-weighted MRI improves seroma cavity (SC) and whole breast (WB) interobserver conformity for radiation therapy purposes, compared with the gold standard of CT, both in the prone and supine positions. Methods and Materials: Eleven observers (2 radiologists and 9 radiation oncologists) delineated SC and WB clinical target volumes (CTVs) on T2-weighted MRI and CT supine and prone scans (4 scans per patient) for 33 patient datasets. Individual observer's volumes were compared using the Dice similarity coefficient, volume overlap index, center of mass shift, and Hausdorff distances. An average cavity visualization score was also determined. Results: Imaging modalitymore » did not affect interobserver variation for WB CTVs. Prone WB CTVs were larger in volume and more conformal than supine CTVs (on both MRI and CT). Seroma cavity volumes were larger on CT than on MRI. Seroma cavity volumes proved to be comparable in interobserver conformity in both modalities (volume overlap index of 0.57 (95% Confidence Interval (CI) 0.54-0.60) for CT supine and 0.52 (95% CI 0.48-0.56) for MRI supine, 0.56 (95% CI 0.53-0.59) for CT prone and 0.55 (95% CI 0.51-0.59) for MRI prone); however, after registering modalities together the intermodality variation (Dice similarity coefficient of 0.41 (95% CI 0.36-0.46) for supine and 0.38 (0.34-0.42) for prone) was larger than the interobserver variability for SC, despite the location typically remaining constant. Conclusions: Magnetic resonance imaging interobserver variation was comparable to CT for the WB CTV and SC delineation, in both prone and supine positions. Although the cavity visualization score and interobserver concordance was not significantly higher for MRI than for CT, the SCs were smaller on MRI, potentially owing to clearer SC definition, especially on T2-weighted MR images.« less

  7. Spine oncology: Daedalus, Theseus, and the Minotaur.

    PubMed

    Donthineni, Rakesh; Ofluoglu, Onder

    2009-01-01

    Over the past three decades, progress has been dramatic in the management of spine tumors. For example, advanced imaging technologies made available at manageable costs have lowered the threshold for scanning. CT, MRI, and PET imaging modalities have greatly enhanced the ability of the surgeon to accurately delineate the extension of the lesion within the bone, the soft tissue, and the spinal canal. Such enhancements have led to great leaps forward in preoperative planning and postoperative evaluation, including improved reconstruction options are resulting in improved outcomes. This article introduces the theme of this volume.

  8. Advances in Imaging in Prostate and Bladder Cancer.

    PubMed

    Srivastava, Abhishek; Douglass, Laura M; Chernyak, Victoria; Watts, Kara L

    2017-09-01

    Recent advancements in urologic imaging techniques aim to improve the initial detection of urologic malignancies and subsequent recurrence and to more accurately stage disease. This allows the urologist to make better informed treatment decisions. In particular, exciting advances in the imaging of prostate cancer and bladder cancer have recently emerged including the use of dynamic, functional imaging with MRI and PET. In this review, we will explore these imaging modalities, in addition to new sonography techniques and CT, and how they hope to improve the diagnosis and management of prostate and bladder cancer.

  9. Anatomy and function: PET-CT.

    PubMed

    Kajander, Sami; Saraste, Antti; Ukkonen, Heikki; Knuuti, Juhani

    2010-05-01

    CT coronary angiography and perfusion PET form an attractive combination to study coronary artery lesions and their consequences in patients with coronary artery disease. Whereas CT provides non-invasive assessment of coronary lumen and wall, PET perfusion is a reliable method for the evaluation of myocardial flow. CT, although very capable of ruling out significant coronary artery disease, is less than satisfactory in assessing the actual significance of the detected lesions. PET imaging, despite its excellent sensitivity, fails to describe the exact anatomy of the epicardial vessels. By fusing image data from these two modalities, lesions can be accurately correlated with their physiological or anatomical counterparts. Hybrid PET-CT devices, now in wide clinical use, allow such fusion in a one-stop-shop study. Although still seeking its place in clinical scenarios, growing evidence suggests that hybrid PET-CT imaging of coronary anatomy and myocardial perfusion can accurately - and non-invasively - assess the existence and degree of coronary artery disease.

  10. Your brain on drugs: imaging of drug-related changes in the central nervous system.

    PubMed

    Tamrazi, Benita; Almast, Jeevak

    2012-01-01

    Drug abuse is a substantial problem in society today and is associated with significant morbidity and mortality. Various drugs are associated with serious complications affecting the brain, and it is critical to recognize the imaging findings of these complications to provide prompt medical management. The central nervous system (CNS) is a target organ for drugs of abuse as well as specific prescribed medications. Drugs of abuse affecting the CNS include cocaine, heroin, alcohol, amphetamines, toluene, and cannabis. Prescribed medications or medical therapies that can affect the CNS include immunosuppressants, antiepileptics, nitrous oxide, and total parenteral nutrition. The CNS complications of these drugs include neurovascular complications, encephalopathy, atrophy, infection, changes in the corpus callosum, and other miscellaneous changes. Imaging abnormalities indicative of these complications can be appreciated at both magnetic resonance (MR) imaging and computed tomography (CT). It is critical for radiologists to recognize complications related to drugs of abuse as well as iatrogenic effects of various medications. Therefore, diagnostic imaging modalities such as MR imaging and CT can play a pivotal role in the recognition and timely management of drug-related complications in the CNS.

  11. Predictive and prognostic value of 18F-DOPA PET/CT in patients affected by recurrent medullary carcinoma of the thyroid.

    PubMed

    Caobelli, Federico; Chiaravalloti, Agostino; Evangelista, Laura; Saladini, Giorgio; Schillaci, Orazio; Vadrucci, Manuela; Scalorbi, Federica; Donner, Davide; Alongi, Pierpaolo

    2018-01-01

    Medullary thyroid carcinoma (MTC) is a malignancy accounting for about 5-8% of thyroid cancers. Serum calcitonin and carcinoembryonic antigen (CEA) levels are widely used to monitor disease progression. However, prognostic factors able to predict outcomes are highly desirable. We, therefore, aimed to assess the prognostic role of 18 F-DOPA PET/CT in patients with recurrent MTC. 60 patients (mean age 64 ± 13 years, range 44-82) with recurrent MTC were eligible from a multicenter database. All patients underwent a restaging 18 F-DOPA PET/CT, performed at least 6 months after surgery. CEA/calcitonin levels, local recurrences, nodal involvement and metastases at PET/CT were recorded. SUVmax, SUVmean (also normalized to mediastinal uptake) and metabolic tumor volume were automatically calculated for each lesion, by placing a volume of interest around the lesion with 40% of peak activity as threshold for the automatic contouring. The patients were clinically and radiologically followed up for 21 ± 11 months. Rate of progression-free survival (PFS), disease-specific survival (DSS) and incremental prognostic value of 18 F-DOPA PET/CT over conventional imaging modalities were assessed by Kaplan-Meier curves and Log-Rank test. Cox regression univariate and multivariate analyses were performed for assessing predictors of prognosis. 18 F-DOPA PET/CT showed abnormal findings in 27 patients (45%) and resulted unremarkable in 33 (55%). PFS was significantly longer in patients with an unremarkable PET/CT scan (p = 0.018). Similarly, an unremarkable PET/CT study was associated with a significantly longer DSS (p = 0.04). 18 F-DOPA PET/CT added prognostic value over other imaging modalities both for PFS and for DSS (p < 0.001 and p = 0.012, respectively). Neither semiquantitative PET parameters nor clinical or laboratory data were predictive of a worse PFS and DSS in patients with recurrent MTC. 18 F-DOPA PET/CT scan has an important prognostic value in predicting disease progression and mortality rate.

  12. Orbital flourine-18-fluorodeoxyglucose positron emission tomography in patients with Graves' disease for evaluation of active inflammation.

    PubMed

    Uslu-Beşli, Lebriz; Kabasakal, Levent; Sağer, Sait; Cicik, Erdoğan; Asa, Sertaç; Sönmezoğlu, Kerim

    2017-11-01

    Prediction and early diagnosis of orbitopathy is needed in patients with Graves' disease, especially when radioiodine therapy is planned. Positron emission tomography/computerized tomography (PET/CT) using flourine-18-fluorodeoxyglucose (FDG) is an effective imaging modality in detection of inflammation, however, its ability to detect orbital inflammation has not been well studied. The aim of our study is to determine the ability of FDG PET/CT to detect orbital inflammation related with Graves' disease, identify active orbitopathy, predict the radioiodine-triggered orbitopathy, and find out the effects of radioiodine on orbital inflammation. Total 31 Graves' disease patients and 17 controls were included. All Graves' disease patients underwent cranial FDG PET/CT imaging prior therapy. Radioiodine therapy and post-treatment PET/CT study was applied to 21 patients. PET/CT images of all examinees were evaluated, measuring extraocular muscle maximum standard uptake value (SUVmax) and muscle thickness. FDG uptake was increased in the majority of extraocular muscles in Graves' disease patients in comparison to controls and this increase was found to be irrelevant from muscle thickness. Extraocular muscle SUVmax values did not increase in Graves' orbitopathy patients who received radioiodine under corticosteroid prophylaxis. SUVmax level of all orbital rectus muscles were increased after radioiodine therapy in nonsmokers, whereas no increase was detected in smokers. FDG PET/CT may be helpful in detection of extraocular muscle inflammation and it may show ongoing orbitopathy in early stages of inflammation before anatomical changes occur.

  13. PSMA-Targeted Nano-Conjugates as Dual-Modality (MRI/PET) Imaging Probes for the Non-Invasive Detection of Prostate Cancer

    DTIC Science & Technology

    2009-10-01

    be made. Currently, iodine based compounds are used to enhance contrast of CT which have the limitations of short imaging window due to rapid...number compared to conventionally used iodine compounds . Nanoparticle based CT contrast agents have been demonstrated for vascular imaging, which...constructs with gamma or positron emitting isotopes through a covalent attachment of a bifunctional chelator to the nanoparticles surface. However, in

  14. Dual-modality, fluorescent, PLGA encapsulated bismuth nanoparticles for molecular and cellular fluorescence imaging and computed tomography

    NASA Astrophysics Data System (ADS)

    Swy, Eric R.; Schwartz-Duval, Aaron S.; Shuboni, Dorela D.; Latourette, Matthew T.; Mallet, Christiane L.; Parys, Maciej; Cormode, David P.; Shapiro, Erik M.

    2014-10-01

    Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ~70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging.Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ~70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01405g

  15. Diffuse Optical Tomography for Brain Imaging: Theory

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen; Jiang, Huabei

    Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.

  16. Tracked 3D ultrasound in radio-frequency liver ablation

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Fichtinger, Gabor; Taylor, Russell H.; Choti, Michael A.

    2003-05-01

    Recent studies have shown that radio frequency (RF) ablation is a simple, safe and potentially effective treatment for selected patients with liver metastases. Despite all recent therapeutic advancements, however, intra-procedural target localization and precise and consistent placement of the tissue ablator device are still unsolved problems. Various imaging modalities, including ultrasound (US) and computed tomography (CT) have been tried as guidance modalities. Transcutaneous US imaging, due to its real-time nature, may be beneficial in many cases, but unfortunately, fails to adequately visualize the tumor in many cases. Intraoperative or laparoscopic US, on the other hand, provides improved visualization and target imaging. This paper describes a system for computer-assisted RF ablation of liver tumors, combining navigational tracking of a conventional imaging ultrasound probe to produce 3D ultrasound imaging with a tracked RF ablation device supported by a passive mechanical arm and spatially registered to the ultrasound volume.

  17. Gold nanoclusters as contrast agents for fluorescent and X-ray dual-modality imaging.

    PubMed

    Zhang, Aili; Tu, Yu; Qin, Songbing; Li, Yan; Zhou, Juying; Chen, Na; Lu, Qiang; Zhang, Bingbo

    2012-04-15

    Multimodal imaging technique is an alternative approach to improve sensitivity of early cancer diagnosis. In this study, highly fluorescent and strong X-ray absorption coefficient gold nanoclusters (Au NCs) are synthesized as dual-modality imaging contrast agents (CAs) for fluorescent and X-ray dual-modality imaging. The experimental results show that the as-prepared Au NCs are well constructed with ultrasmall sizes, reliable fluorescent emission, high computed tomography (CT) value and fine biocompatibility. In vivo imaging results indicate that the obtained Au NCs are capable of fluorescent and X-ray enhanced imaging. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. SU-E-J-226: Efficient Use of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) for Cervical-Cancer Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damato, A; Bhagwat, M; Buzurovic, I

    Purpose: To investigate image modality selection in an environment with limited access to interventional MRI for image-guided high-dose-rate cervical-cancer brachytherapy. Methods: Records of all cervical-cancer patients treated with brachytherapy between 1/2013 and 8/2014 were analyzed. Insertions were performed under CT guidance (CT group) or with >1 fraction under 3T MR guidance (MRI group; subMRI includes only patients who also had a CT-guided insertion). Differences between groups in clinical target volume (CTV), disease stage (I/II or III/IV), number of patients with or without interstitial needles, and CTV D90 were investigated. Statistical significance was evaluated with the Student T test and Fishermore » test (p <0.05). Results: 46 cervical-cancer patients were included (16 MRI [3 subMRI], 30 CT). CTV: overall, 55±53 cm3; MRI, 81±61 cm3; CT, 42±44 cm3 (p = 0.017). Stage: overall, 24 I/II and 22 III/IV; MRI, 3 I/II and 13 III/IV; CT, 21 I/II and 9 III/IV (p = 0.002). Use of needles: overall, 26 without and 20 with; MRI, 5 without and 11 with; CT, 21 without and 9 with (p = 0.015). CTV D90: overall, 82±5 Gy; MRI, 81±6 Gy; CT, 82±5 Gy (p = 0.78). SubMRI: CTV and D90 (as % of nominal fraction dose) were 23±6 cm3 and 124±3% for MRI-guided insertions and 21±5 cm3 (p = 0.83) and 106±12% (p = 0.15) for CT-guided insertions. Conclusion: Statistically significant differences in patient population indicate preferential use of MRI for patients with high-stage disease and large residual CTVs requiring the use of interstitial needles. CTV D90 was similar between groups, despite the difference in patient selection. For patients who underwent both CT and MRI insertions, a larger MR CTV D90 and similar CTVs between insertions were observed. While MRI is generally preferable to CT, MRI selection can be optimized in environments without a dedicated MRI brachytherapy suite. This work was partially funded by the NIH R21 CA167800 (PI: Viswanathan; aviswanathan@partners.org)« less

  19. Imaging of skull base lesions.

    PubMed

    Kelly, Hillary R; Curtin, Hugh D

    2016-01-01

    Skull base imaging requires a thorough knowledge of the complex anatomy of this region, including the numerous fissures and foramina and the major neurovascular structures that traverse them. Computed tomography (CT) and magnetic resonance imaging (MRI) play complementary roles in imaging of the skull base. MR is the preferred modality for evaluation of the soft tissues, the cranial nerves, and the medullary spaces of bone, while CT is preferred for demonstrating thin cortical bone structure. The anatomic location and origin of a lesion as well as the specific CT and MR findings can often narrow the differential diagnosis to a short list of possibilities. However, the primary role of the imaging specialist in evaluating the skull base is usually to define the extent of the lesion and determine its relationship to vital neurovascular structures. Technologic advances in imaging and radiation therapy, as well as surgical technique, have allowed for more aggressive approaches and improved outcomes, further emphasizing the importance of precise preoperative mapping of skull base lesions via imaging. Tumors arising from and affecting the cranial nerves at the skull base are considered here. © 2016 Elsevier B.V. All rights reserved.

  20. Magnetic Resonance and Computed Tomography Imaging for the Evaluation of Pulmonary Hypertension

    PubMed Central

    Freed, Benjamin H.; Collins, Jeremy D.; François, Christopher J.; Barker, Alex J.; Cuttica, Michael J.; Chesler, Naomi C.; Markl, Michael; Shah, Sanjiv J.

    2016-01-01

    Imaging plays a central role in the diagnosis and management of all forms of pulmonary hypertension (PH). While Doppler echocardiography is essential for the evaluation of PH, its ability to optimally evaluate the right ventricle (RV) and pulmonary vasculature is limited by its 2D planar capabilities. Magnetic resonance imaging (MRI) and computed tomography (CT) are capable of determining the etiology and pathophysiology of PH, and can be very useful in the management of these patients. Exciting new techniques such as RV tissue characterization with T1 mapping, 4D flow of the RV and pulmonary arteries, and CT lung perfusion imaging are paving the way for a new era of imaging in PH. These imaging modalities complement echocardiography and invasive hemodynamic testing, and may be useful as surrogate endpoints for early-phase PH clinical trials. Here we discuss the role of MRI and CT in the diagnosis and management of PH, including current uses and novel research applications, and we discuss the role of value-based imaging in PH. PMID:27282439

  1. Diagnostic and prognostic value of 18F-FDG PET/CT in recurrent germinal tumor carcinoma.

    PubMed

    Alongi, Pierpaolo; Evangelista, Laura; Caobelli, Federico; Spallino, Marianna; Gianolli, Luigi; Midiri, Massimo; Picchio, Maria

    2018-01-01

    The aim of this bicentric retrospective study was to assess the diagnostic performance, the prognostic value, the incremental prognostic value and the impact on therapeutic management of 18 F-FDG PET/CT in patients with suspected recurrent germinal cell testicular carcinoma (GCT). From the databases of two centers including 31,500 18 F-FDG PET/CT oncological studies, 114 patients affected by GCT were evaluated in a retrospective study. All 114 patients underwent 18 F-FDG PET/CT for suspected recurrent disease. Diagnostic performance of visually interpreted 18 F-FDG PET/CT and potential impact on the treatment decision were assessed using histology (17 patients), other diagnostic imaging modalities (i.e., contrast enhanced CT in 89 patients and MRI in 15) and clinical follow-up (114 patients) as reference. Progression-free survival (PFS) and overall survival (OS) rates were computed by means of Kaplan-Meier survival analysis. The progression rate (Hazard Ratio-HR) was determined using univariate Cox regression analysis by considering various clinical variables. Recurrent GCT was confirmed in 47 of 52 patients with pathological 18 F-FDG PET/CT findings, by means of histology in 18 patients and by other diagnostic imaging modalities/follow-up in 29. Sensitivity, specificity, accuracy, positive and negative likelihood ratio (LR+ and LR-, respectively), pre-test Odds-ratio and post-test Odds-ratio of 18 FDG PET/CT were 86.8%, 90.2%, 88.4%, 8.85, 0.14, 0.85, 8.85, respectively. 18 F-FDG PET/CT impacted significantly on therapeutic management in 26/114 (23%) cases (from palliative to curative in 12 patients, from "wait and watch" to new chemotherapy in six patients and the "wait-and-watch" approach in eight patients with unremarkable findings). At 2 and 5-year follow-up, PFS was significantly longer in patients with a negative than a pathological 18 F-FDG PET/CT scan (98% and 95% vs 48% and 38%, respectively; p = 0.02). An unremarkable scan was associated also with a longer OS (98% after 2 years and 95% after 5 years, p = 0.02). At univariate Cox regression analysis, a pathological 18 F-FDG PET/CT scan was associated with an increased risk of disease progression (HR = 24.3, CI 95% 14.1-40.6; p = 0.03) and lower OS (HR = 17.3 CI 95% 4,9-77; p < 0.001). Its prognostic value was confirmed also if tested against advanced disease at diagnosis and rising Human Chorionic Gonadotropin Beta (HCGB) or Alpha-Fetoprotein (AFP) (HR = 7.3 for STAGE III-PET+, p = 0.03; HR = 14.3 elevated HCGB-PET+, p = 0.02; HR 10.7 elevated AFP-PET+, p = 0.01) At multivariate analysis, only a pathological 18 F-FDG PET/CT scan and advanced disease in terms of TNM staging were predictors of disease progression and OS. 18 F-FDG PET/CT showed incremental value over other variables both in predicting PFS (chi-square from 24 to 40, p < 0.001) and OS (chi-square from 32 to 38, p = 0.003). 18 F-FDG PET/CT has a very good diagnostic performance in patients with suspected recurrent GCT and has an important prognostic value in assessing the rate of PFS and OS. Furthermore, 18 F-FDG PET/CT impacted the therapeutic regimen in 23% of patients, thus providing a significant impact in the restaging process.

  2. Image acquisition unit for the Mayo/IBM PACS project

    NASA Astrophysics Data System (ADS)

    Reardon, Frank J.; Salutz, James R.

    1991-07-01

    The Mayo Clinic and IBM Rochester, Minnesota, have jointly developed a picture archiving, distribution and viewing system for use with Mayo's CT and MRI imaging modalities. Images are retrieved from the modalities and sent over the Mayo city-wide token ring network to optical storage subsystems for archiving, and to server subsystems for viewing on image review stations. Images may also be retrieved from archive and transmitted back to the modalities. The subsystems that interface to the modalities and communicate to the other components of the system are termed Image Acquisition Units (LAUs). The IAUs are IBM Personal System/2 (PS/2) computers with specially developed software. They operate independently in a network of cooperative subsystems and communicate with the modalities, archive subsystems, image review server subsystems, and a central subsystem that maintains information about the content and location of images. This paper provides a detailed description of the function and design of the Image Acquisition Units.

  3. Diagnostic Performance of Ultrafast Brain MRI for Evaluation of Abusive Head Trauma.

    PubMed

    Kralik, S F; Yasrebi, M; Supakul, N; Lin, C; Netter, L G; Hicks, R A; Hibbard, R A; Ackerman, L L; Harris, M L; Ho, C Y

    2017-04-01

    MR imaging with sedation is commonly used to detect intracranial traumatic pathology in the pediatric population. Our purpose was to compare nonsedated ultrafast MR imaging, noncontrast head CT, and standard MR imaging for the detection of intracranial trauma in patients with potential abusive head trauma. A prospective study was performed in 24 pediatric patients who were evaluated for potential abusive head trauma. All patients received noncontrast head CT, ultrafast brain MR imaging without sedation, and standard MR imaging with general anesthesia or an immobilizer, sequentially. Two pediatric neuroradiologists independently reviewed each technique blinded to other modalities for intracranial trauma. We performed interreader agreement and consensus interpretation for standard MR imaging as the criterion standard. Diagnostic accuracy was calculated for ultrafast MR imaging, noncontrast head CT, and combined ultrafast MR imaging and noncontrast head CT. Interreader agreement was moderate for ultrafast MR imaging (κ = 0.42), substantial for noncontrast head CT (κ = 0.63), and nearly perfect for standard MR imaging (κ = 0.86). Forty-two percent of patients had discrepancies between ultrafast MR imaging and standard MR imaging, which included detection of subarachnoid hemorrhage and subdural hemorrhage. Sensitivity, specificity, and positive and negative predictive values were obtained for any traumatic pathology for each examination: ultrafast MR imaging (50%, 100%, 100%, 31%), noncontrast head CT (25%, 100%, 100%, 21%), and a combination of ultrafast MR imaging and noncontrast head CT (60%, 100%, 100%, 33%). Ultrafast MR imaging was more sensitive than noncontrast head CT for the detection of intraparenchymal hemorrhage ( P = .03), and the combination of ultrafast MR imaging and noncontrast head CT was more sensitive than noncontrast head CT alone for intracranial trauma ( P = .02). In abusive head trauma, ultrafast MR imaging, even combined with noncontrast head CT, demonstrated low sensitivity compared with standard MR imaging for intracranial traumatic pathology, which may limit its utility in this patient population. © 2017 by American Journal of Neuroradiology.

  4. The added value of 68Ga-DOTA-TATE-PET to contrast-enhanced CT for primary site detection in CUP of neuroendocrine origin.

    PubMed

    Kazmierczak, Philipp M; Rominger, Axel; Wenter, Vera; Spitzweg, Christine; Auernhammer, Christoph; Angele, Martin K; Rist, Carsten; Cyran, Clemens C

    2017-04-01

    To quantify the additional value of 68 Ga-DOTA-TATE PET/CT in comparison with contrast-enhanced CT alone for primary tumour detection in neuroendocrine cancer of unknown primary (CUP-NET). In total, 38 consecutive patients (27 men, 11 women; mean age 62 years) with histologically proven CUP-NET who underwent a contrast-enhanced 68 Ga-DOTA-TATE PET/CT scan for primary tumour detection and staging between 2010 and 2014 were included in this IRB-approved retrospective study. Two blinded readers independently analysed the contrast-enhanced CT and 68 Ga-DOTA-TATE PET datasets separately and noted from which modality they suspected a primary tumour. Consensus was reached if the results were divergent. Postoperative histopathology (24 patients) and follow-up 68 Ga-DOTA-TATE PET/CT imaging (14 patients) served as the reference standards and statistical measures of diagnostic accuracy were calculated accordingly. The majority of confirmed primary tumours were located in the abdomen (ileum in 19 patients, pancreas in 12, lung in 2, small pelvis in 1). High interobserver agreement was noted regarding the suspected primary tumour site (Cohen's k 0.90, p < 0.001). 68 Ga-DOTA-TATE PET demonstrated a significantly higher sensitivity (94 % vs. 63 %, p = 0.005) and a significantly higher accuracy (87 % vs. 68 %, p = 0.003) than contrast-enhanced CT. Ga-DOTA-TATE PET/CT compared with contrast-enhanced CT alone provides an improvement in sensitivity of 50 % and an improvement in accuracy of 30 % in primary tumour detection in CUP-NET. • 68 Ga-DOTA-TATE PET augments the sensitivity of contrast-enhanced CT by 50 % • 68 Ga-DOTA-TATE PET augments the accuracy of contrast-enhanced CT by 30 % • Somatostatin receptor-targeted hybrid imaging optimizes primary tumour detection in CUP-NET.

  5. Autocalibration method for non-stationary CT bias correction.

    PubMed

    Vegas-Sánchez-Ferrero, Gonzalo; Ledesma-Carbayo, Maria J; Washko, George R; Estépar, Raúl San José

    2018-02-01

    Computed tomography (CT) is a widely used imaging modality for screening and diagnosis. However, the deleterious effects of radiation exposure inherent in CT imaging require the development of image reconstruction methods which can reduce exposure levels. The development of iterative reconstruction techniques is now enabling the acquisition of low-dose CT images whose quality is comparable to that of CT images acquired with much higher radiation dosages. However, the characterization and calibration of the CT signal due to changes in dosage and reconstruction approaches is crucial to provide clinically relevant data. Although CT scanners are calibrated as part of the imaging workflow, the calibration is limited to select global reference values and does not consider other inherent factors of the acquisition that depend on the subject scanned (e.g. photon starvation, partial volume effect, beam hardening) and result in a non-stationary noise response. In this work, we analyze the effect of reconstruction biases caused by non-stationary noise and propose an autocalibration methodology to compensate it. Our contributions are: 1) the derivation of a functional relationship between observed bias and non-stationary noise, 2) a robust and accurate method to estimate the local variance, 3) an autocalibration methodology that does not necessarily rely on a calibration phantom, attenuates the bias caused by noise and removes the systematic bias observed in devices from different vendors. The validation of the proposed methodology was performed with a physical phantom and clinical CT scans acquired with different configurations (kernels, doses, algorithms including iterative reconstruction). The results confirmed the suitability of the proposed methods for removing the intra-device and inter-device reconstruction biases. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. CT and 3-T MRI accurately identify T3c disease in colon cancer, which strongly predicts disease-free survival.

    PubMed

    Hunter, C; Siddiqui, M; Georgiou Delisle, T; Blake, H; Jeyadevan, N; Abulafi, M; Swift, I; Toomey, P; Brown, G

    2017-04-01

    To compare the preoperative staging accuracy of computed tomography (CT) and 3-T magnetic resonance imaging (MRI) in colon cancer, and to investigate the prognostic significance of identified risk factors. Fifty-eight patients undergoing primary resection of their colon cancer were prospectively recruited, with 53 patients included for final analysis. Accuracy of CT and MRI were compared for two readers, using postoperative histology as the reference standard. Patients were followed-up for a median of 39 months. Risk factors were compared by modality and reader in terms of metachronous metastases and disease-free survival (DFS), stratified for adjuvant chemotherapy. Accuracy for the identification of T3c+ disease was non-significantly greater on MRI (75% and 79%) than CT (70% and 77%). Differences in the accuracy of MRI and CT for identification of T3+ disease (MRI 75% and 57%, CT 72% and 66%) and N+ disease (MRI 62% and 63%, CT 62% and 56%) were also non-significant. Identification of extramural venous invasion (EMVI+) disease was significantly greater on MRI (75% and 75%) than CT (79% and 54%) for one reader (p=0.029). T3c+ disease at histopathology was the only risk factor that demonstrated a significant difference in rate of metachronous metastases (odds ratio [OR] 8.6, p=0.0044) and DFS stratified for adjuvant therapy (OR=4, p=0.048). T3c or greater disease is the strongest risk factor for predicting DFS in colon cancer, and is accurately identified on imaging. T3c+ disease may therefore be the best imaging entry criteria for trials of neoadjuvant treatment. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  7. Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography.

    PubMed

    Willett, N J; Thote, T; Hart, M; Moran, S; Guldberg, R E; Kamath, R V

    2016-09-01

    The development of effective therapies for cartilage protection has been limited by a lack of efficient quantitative cartilage imaging modalities in pre-clinical in vivo models. Our objectives were two-fold: first, to validate a new contrast-enhanced 3D imaging analysis technique, equilibrium partitioning of an ionic contrast agent-micro computed tomography (EPIC-μCT), in a rat medial meniscal transection (MMT) osteoarthritis (OA) model; and second, to quantitatively assess the sensitivity of EPIC-μCT to detect the effects of matrix metalloproteinase inhibitor (MMPi) therapy on cartilage degeneration. Rats underwent MMT surgery and tissues were harvested at 1, 2, and 3 weeks post-surgery or rats received an MMPi or vehicle treatment and tissues harvested 3 weeks post-surgery. Parameters of disease progression were evaluated using histopathology and EPIC-μCT. Correlations and power analyses were performed to compare the techniques. EPIC-μCT was shown to provide simultaneous 3D quantification of multiple parameters, including cartilage degeneration and osteophyte formation. In MMT animals treated with MMPi, OA progression was attenuated, as measured by 3D parameters such as lesion volume and osteophyte size. A post-hoc power analysis showed that 3D parameters for EPIC-μCT were more sensitive than 2D parameters requiring fewer animals to detect a therapeutic effect of MMPi. 2D parameters were comparable between EPIC-μCT and histopathology. This study demonstrated that EPIC-μCT has high sensitivity to provide 3D structural and compositional measurements of cartilage and bone in the joint. EPIC-μCT can be used in combination with histology to provide a comprehensive analysis to screen new potential therapies. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoberi, J.

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less

  9. Technical Note: MRI only prostate radiotherapy planning using the statistical decomposition algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siversson, Carl, E-mail: carl.siversson@med.lu.se; Nordström, Fredrik; Department of Radiation Physics, Skåne University Hospital, Lund 214 28

    2015-10-15

    Purpose: In order to enable a magnetic resonance imaging (MRI) only workflow in radiotherapy treatment planning, methods are required for generating Hounsfield unit (HU) maps (i.e., synthetic computed tomography, sCT) for dose calculations, directly from MRI. The Statistical Decomposition Algorithm (SDA) is a method for automatically generating sCT images from a single MR image volume, based on automatic tissue classification in combination with a model trained using a multimodal template material. This study compares dose calculations between sCT generated by the SDA and conventional CT in the male pelvic region. Methods: The study comprised ten prostate cancer patients, for whommore » a 3D T2 weighted MRI and a conventional planning CT were acquired. For each patient, sCT images were generated from the acquired MRI using the SDA. In order to decouple the effect of variations in patient geometry between imaging modalities from the effect of uncertainties in the SDA, the conventional CT was nonrigidly registered to the MRI to assure that their geometries were well aligned. For each patient, a volumetric modulated arc therapy plan was created for the registered CT (rCT) and recalculated for both the sCT and the conventional CT. The results were evaluated using several methods, including mean average error (MAE), a set of dose-volume histogram parameters, and a restrictive gamma criterion (2% local dose/1 mm). Results: The MAE within the body contour was 36.5 ± 4.1 (1 s.d.) HU between sCT and rCT. Average mean absorbed dose difference to target was 0.0% ± 0.2% (1 s.d.) between sCT and rCT, whereas it was −0.3% ± 0.3% (1 s.d.) between CT and rCT. The average gamma pass rate was 99.9% for sCT vs rCT, whereas it was 90.3% for CT vs rCT. Conclusions: The SDA enables a highly accurate MRI only workflow in prostate radiotherapy planning. The dosimetric uncertainties originating from the SDA appear negligible and are notably lower than the uncertainties introduced by variations in patient geometry between imaging sessions.« less

  10. Evaluation of transcatheter arterial embolization therapy on hepatocellular carcinomas using contrast-enhanced harmonic power Doppler sonography: comparison with CT, power Doppler sonography, and dynamic MRI.

    PubMed

    Shima, Toshihide; Mizuno, Masayuki; Otsuji, Hideaki; Mizuno, Chiemi; Obata, Hirozumi; Park, Hyohun; Nakajo, Shinobu; Okanoue, Takeshi

    2005-09-01

    The aim of this study was to assess and compare the sensitivity of power Doppler sonography, contrast-enhanced sonography, plain computed tomography (CT), and dynamic magnetic resonance imaging (MRI) for detecting hepatocellular carcinoma (HCC) nodules incompletely treated with transcatheter arterial embolization (TAE). A total of 63 unresectable HCC nodules were examined in this study. The HCCs were treated with TAE. All patients underwent plain CT, power Doppler sonography, contrast-enhanced harmonic power Doppler sonography, and dynamic MRI 1 week after TAE. The sensitivity of each modality to incompletely treated HCC nodules was compared. Detection of the residual viable HCC on angiography or tumor biopsy was regarded as the gold standard for the diagnosis of incomplete treatment. Twenty-four nodules (38%) were diagnosed as incompletely treated. The sensitivities of plain CT, power Doppler sonography, contrast-enhanced harmonic power Doppler sonography, and dynamic MRI to these incompletely treated nodules were 42% (10/24), 46% (11/24), 88% (21/24), and 79% (19/24), respectively. Eighty percent (19 nodules) of the 24 incompletely treated nodules were located within a depth of less than 8 cm. The sensitivities of plain CT, power Doppler sonography, contrast-enhanced harmonic power Doppler sonography, and dynamic MRI to these superficial incompletely treated nodules were 37% (7/19), 53% (10/19), 100% (19/19), and 74% (14/19), respectively. In contrast, the sensitivities of each modality to deeply located nodules were 60% (3/5), 20% (1/5), 40% (2/5), and 100% (5/5), respectively. Plain CT and power Doppler sonography had a low sensitivity to HCC nodules incompletely treated with TAE. Except for those that were deeply located, contrast-enhanced harmonic sonography showed the highest sensitivity in detecting incompletely treated HCC nodules.

  11. Performance evaluation of the CT component of the IRIS PET/CT preclinical tomograph

    NASA Astrophysics Data System (ADS)

    Panetta, Daniele; Belcari, Nicola; Tripodi, Maria; Burchielli, Silvia; Salvadori, Piero A.; Del Guerra, Alberto

    2016-01-01

    In this paper, we evaluate the physical performance of the CT component of the IRIS scanner, a novel combined PET/CT scanner for preclinical imaging. The performance assessment is based on phantom measurement for the determination of image quality parameters (spatial resolution, linearity, geometric accuracy, contrast to noise ratio) and reproducibility in dynamic (4D) imaging. The CTDI100 has been measured free in air with a pencil ionization chamber, and the animal dose was calculated using Monte Carlo derived conversion factors taken from the literature. The spatial resolution at the highest quality protocol was 6.9 lp/mm at 10% of the MTF, using the smallest reconstruction voxel size of 58.8 μm. The accuracy of the reconstruction voxel size was within 0.1%. The linearity of the CT numbers as a function of the concentration of iodine was very good, with R2>0.996 for all the tube voltages. The animal dose depended strongly on the scanning protocol, ranging from 158 mGy for the highest quality protocol (2 min, 80 kV) to about 12 mGy for the fastest protocol (7.3 s, 80 kV). In 4D dynamic modality, the maximum scanning rate reached was 3.1 frames per minute, using a short-scan protocol with 7.3 s of scan time per frame at the isotropic voxel size of 235 μm. The reproducibility of the system was high throughout the 10 frames acquired in dynamic modality, with a standard deviation of the CT values of all frames <8 HU and an average spatial reproducibility within 30% of the voxel size across all the field of view. Example images obtained during animal experiments are also shown.

  12. Testosterone Deficiency and Bone Metabolism Damage in Testicular Cancer Survivors

    PubMed Central

    Ondrusova, Martina; Spanikova, Beata; Sevcikova, Katarina; Ondrus, Dalibor

    2016-01-01

    The aim of the study was to investigate the influence of therapeutic modalities and sexual hormone levels on changes in bone mineral density (BMD) in testicular cancer (TC) survivors. In a cross-sectional descriptive, long-term follow-up study, a total of 1,249 long-term TC survivors were evaluated according to treatment modality: orchiectomy (OE) only, OE + chemotherapy (CT), or OE + radiotherapy (RT). Luteinizing hormone (LH), total testosterone (TST), marker of bone resorption (β-carboxyl-terminal cross-linking telopeptide of type I collagen—CTx), and BMD were evaluated. Standard statistical techniques were used to test the differences between groups of patients. TST decrease was observed in 46/313 TC survivors after OE alone, in 103/665 after OE + CT, and in 66/271 after OE + RT. LH increase was observed in 23/313 TC survivors after OE alone, in 154/665 after OE + CT, and in 43/271 after OE + RT. CTx increase was observed in 116/313 TC survivors after OE alone, in 324/665 after OE + CT, and in 82/271 after OE + RT. Osteopenia/osteoporosis occurred in 136/313 TC survivors after OE alone, in 298/665 after OE + CT, and in 139/271 after OE + RT. TC survivors after RT have statistically significant decreased TST levels, increased LH and nonsignificant worse BMD (osteopenia/osteoporosis) in comparison with TC survivors after OE alone or CT. TST decrease and LH increase were statistically significant, more frequently observed in patients with osteopenia/osteoporosis. Examination of TST is an important part of follow-up in TC survivors with bilateral as well as unilateral disease. The important part of standard examination algorithm should be also the osteological examination of TC survivors mainly in patients with androgen deficiency. PMID:27489147

  13. The diagnostic accuracy of neck ultrasound, 4D-Computed tomographyand sestamibi imaging in parathyroid carcinoma.

    PubMed

    Christakis, Ioannis; Vu, Thinh; Chuang, Hubert H; Fellman, Bryan; Figueroa, Angelica M Silva; Williams, Michelle D; Busaidy, Naifa L; Perrier, Nancy D

    2017-10-01

    Our aim was to investigate the accuracy of available imaging modalities for parathyroid carcinoma (PC) in our institution and to identify which imaging modality, or combination thereof, is optimal in preoperative determination of precise tumor location. All operated PC patients in our institution between 2000 and 2015 that had at least one of the following in-house preoperative scans: neck ultrasonography (US), neck 4D-Computed Tomography (4DCT) and 99mTc Sestamibi SPECT/CT (MIBI). Sensitivity, specificity and accuracy of PC tumor localization were assessed individually and in combination. 20 patients fulfilled the inclusion criteria and were analysed. There were 18 US, 18 CT and 9 MIBI scans. The sensitivity and accuracy for tumor localisation of US was 80% (CI 56-94%) and 73% respectively, of 4DCT was 79% (CI 58-93%) and 82%, and of MIBI was 81% (CI 54-96%) and 78%. The sensitivity and accuracy of the combination of CT and MIBI was 94% (CI 73-100%) and 95% and for the combination of US, CT and MIBI was 100% (CI 72-100%) and 100% respectively. The wash-out of the PC lesions, expressed as a percentage change in Hounsfield Units from the arterial phase to early delayed phase was -9.29% and to the late delayed phase was -16.88% (n=11). The sensitivity of solitary preoperative imaging of PC patients, whether by US, CT or MIBI, is approximately 80%. Combinations of CT with MIBI and US increase the sensitivity to 95% or better. Combined preoperative imaging of patients with clinical possibility of PC is therefore recommended. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Fluorescence-enhanced optical tomography and nuclear imaging system for small animals

    NASA Astrophysics Data System (ADS)

    Tan, I.-Chih; Lu, Yujie; Darne, Chinmay; Rasmussen, John C.; Zhu, Banghe; Azhdarinia, Ali; Yan, Shikui; Smith, Anne M.; Sevick-Muraca, Eva M.

    2012-03-01

    Near-infrared (NIR) fluorescence is an alternative modality for molecular imaging that has been demonstrated in animals and recently in humans. Fluorescence-enhanced optical tomography (FEOT) using continuous wave or frequency domain photon migration techniques could be used to provide quantitative molecular imaging in vivo if it could be validated against "gold-standard," nuclear imaging modalities, using dual-labeled imaging agents. Unfortunately, developed FEOT systems are not suitable for incorporation with CT/PET/SPECT scanners because they utilize benchtop devices and require a large footprint. In this work, we developed a miniaturized fluorescence imaging system installed in the gantry of the Siemens Inveon PET/CT scanner to enable NIR transillumination measurements. The system consists of a CCD camera equipped with NIR sensitive intensifier, a diode laser controlled by a single board compact controller, a 2-axis galvanometer, and RF circuit modules for homodyne detection of the phase and amplitude of fluorescence signals. The performance of the FEOT system was tested and characterized. A mouse-shaped solid phantom of uniform optical properties with a fluorescent inclusion was scanned using CT, and NIR fluorescence images at several projections were collected. The method of high-order approximation to the radioactive transfer equation was then used to reconstruct the optical images. Dual-labeled agents were also used on a tumor bearing mouse to validate the results of the FEOT against PET/CT image. The results showed that the location of the fluorophore obtained from the FEOT matches the location of tumor obtained from the PET/CT images. Besides validation of FEOT, this hybrid system could allow multimodal molecular imaging (FEOT/PET/CT) for small animal imaging.

  15. Pediatric colonic volvulus: A single-institution experience and review.

    PubMed

    Tannouri, Sami; Hendi, Aditi; Gilje, Elizabeth; Grissom, Leslie; Katz, Douglas

    2017-06-01

    Pediatric colonic volvulus is both rare and underreported. Existing literature consists only of case reports and small series. We present an analysis of cases (n=11) over 15 years at a single institution, focusing on workup and diagnosis. This was an institutional review board approved single-institution retrospective chart review of 11 cases of large bowel volvulus occurring over 15 years (2000-2015). In our series, the most common presenting symptoms were abdominal pain and distention. Afflicted patients often had prior abdominal surgery, a neurodevelopmental disorder or chronic constipation. Of the imaging modalities utilized in the 11 patients studied, colonic volvulus was correctly diagnosed by barium enema in 100% of both cases, CT in 55.6% of cases and by plain radiography of the abdomen in only 22.2%of cases. Colonic volvulus was confirmed by laparotomy in all cases. The cecum (n=5) was the most often affected colonic segment, followed by the sigmoid (n=3). Operative treatment mainly consisted of resection (63.6%) and ostomy creation (36.4%). Colopexy was performed in 18.2% of cases. Plain abdominal radiography may be performed as an initial diagnostic study, however, it should be followed CT or air or contrast enema in children where there is high clinical suspicion and who do not have indications for immediate laparotomy. CT may be the most specific and useful test in diagnosis of colonic volvulus and has the added advantage of detection of complications including bowel ischemia. We demonstrate a range of diagnostic and therapeutic modalities for pediatric colonic volvulus. This underscores the need for further study to draft standard best practices for this life-threatening condition. Prognosis Study: Level IV. Study of a Diagnostic Test: Level III. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Competitive Advantage of PET/MRI

    PubMed Central

    Jadvar, Hossein; Colletti, Patrick M.

    2013-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. PMID:23791129

  17. Detection of bladder metabolic artifacts in (18)F-FDG PET imaging.

    PubMed

    Roman-Jimenez, Geoffrey; Crevoisier, Renaud De; Leseur, Julie; Devillers, Anne; Ospina, Juan David; Simon, Antoine; Terve, Pierre; Acosta, Oscar

    2016-04-01

    Positron emission tomography using (18)F-fluorodeoxyglucose ((18)F-FDG-PET) is a widely used imaging modality in oncology. It enables significant functional information to be included in analyses of anatomical data provided by other image modalities. Although PET offers high sensitivity in detecting suspected malignant metabolism, (18)F-FDG uptake is not tumor-specific and can also be fixed in surrounding healthy tissue, which may consequently be mistaken as cancerous. PET analyses may be particularly hampered in pelvic-located cancers by the bladder׳s physiological uptake potentially obliterating the tumor uptake. In this paper, we propose a novel method for detecting (18)F-FDG bladder artifacts based on a multi-feature double-step classification approach. Using two manually defined seeds (tumor and bladder), the method consists of a semi-automated double-step clustering strategy that simultaneously takes into consideration standard uptake values (SUV) on PET, Hounsfield values on computed tomography (CT), and the distance to the seeds. This method was performed on 52 PET/CT images from patients treated for locally advanced cervical cancer. Manual delineations of the bladder on CT images were used in order to evaluate bladder uptake detection capability. Tumor preservation was evaluated using a manual segmentation of the tumor, with a threshold of 42% of the maximal uptake within the tumor. Robustness was assessed by randomly selecting different initial seeds. The classification averages were 0.94±0.09 for sensitivity, 0.98±0.01 specificity, and 0.98±0.01 accuracy. These results suggest that this method is able to detect most (18)F-FDG bladder metabolism artifacts while preserving tumor uptake, and could thus be used as a pre-processing step for further non-parasitized PET analyses. Copyright © 2016. Published by Elsevier Ltd.

  18. Competitive advantage of PET/MRI.

    PubMed

    Jadvar, Hossein; Colletti, Patrick M

    2014-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Analyzing multimodality tomographic images and associated regions of interest with MIDAS

    NASA Astrophysics Data System (ADS)

    Tsui, Wai-Hon; Rusinek, Henry; Van Gelder, Peter; Lebedev, Sergey

    2001-07-01

    This paper outlines the design and features incorporated in a software package for analyzing multi-modality tomographic images. The package MIDAS has been evolving for the past 15 years and is in wide use by researchers at New York University School of Medicine and a number of collaborating research sites. It was written in the C language and runs on Sun workstations and Intel PCs under the Solaris operating system. A unique strength of the MIDAS package lies in its ability to generate, manipulate and analyze a practically unlimited number of regions of interest (ROIs). These regions are automatically saved in an efficient data structure and linked to associated images. A wide selection of set theoretical (e.g. union, xor, difference), geometrical (e.g. move, rotate) and morphological (grow, peel) operators can be applied to an arbitrary selection of ROIs. ROIs are constructed as a result of image segmentation algorithms incorporated in MIDAS; they also can be drawn interactively. These ROI editing operations can be applied in either 2D or 3D mode. ROI statistics generated by MIDAS include means, standard deviations, centroids and histograms. Other image manipulation tools incorporated in MIDAS are multimodality and within modality coregistration methods (including landmark matching, surface fitting and Woods' correlation methods) and image reformatting methods (using nearest-neighbor, tri-linear or sinc interpolation). Applications of MIDAS include: (1) neuroanatomy research: marking anatomical structures in one orientation, reformatting marks to another orientation; (2) tissue volume measurements: brain structures (PET, MRI, CT), lung nodules (low dose CT), breast density (MRI); (3) analysis of functional (SPECT, PET) experiments by overlaying corresponding structural scans; (4) longitudinal studies: regional measurement of atrophy.

  20. Noninvasive imaging of experimental lung fibrosis.

    PubMed

    Zhou, Yong; Chen, Huaping; Ambalavanan, Namasivayam; Liu, Gang; Antony, Veena B; Ding, Qiang; Nath, Hrudaya; Eary, Janet F; Thannickal, Victor J

    2015-07-01

    Small animal models of lung fibrosis are essential for unraveling the molecular mechanisms underlying human fibrotic lung diseases; additionally, they are useful for preclinical testing of candidate antifibrotic agents. The current end-point measures of experimental lung fibrosis involve labor-intensive histological and biochemical analyses. These measures fail to account for dynamic changes in the disease process in individual animals and are limited by the need for large numbers of animals for longitudinal studies. The emergence of noninvasive imaging technologies provides exciting opportunities to image lung fibrosis in live animals as often as needed and to longitudinally track the efficacy of novel antifibrotic compounds. Data obtained by noninvasive imaging provide complementary information to histological and biochemical measurements. In addition, the use of noninvasive imaging in animal studies reduces animal usage, thus satisfying animal welfare concerns. In this article, we review these new imaging modalities with the potential for evaluation of lung fibrosis in small animal models. Such techniques include micro-computed tomography (micro-CT), magnetic resonance imaging, positron emission tomography (PET), single photon emission computed tomography (SPECT), and multimodal imaging systems including PET/CT and SPECT/CT. It is anticipated that noninvasive imaging will be increasingly used in animal models of fibrosis to gain insights into disease pathogenesis and as preclinical tools to assess drug efficacy.

  1. Relative Value of Restaging MRI, CT, and FDG-PET Scan After Preoperative Chemoradiation for Rectal Cancer.

    PubMed

    Schneider, Daniel A; Akhurst, Timothy J; Ngan, Samuel Y; Warrier, Satish K; Michael, Michael; Lynch, Andrew C; Te Marvelde, Luc; Heriot, Alexander G

    2016-03-01

    Management of rectal cancer has become multidisciplinary and is driven by the stage of the disease, with increased focus on restaging rectal cancer after neoadjuvant therapy. The purpose of this study was to assess the relative impact of restaging after preoperative chemoradiation with FDG-PET scan, CT, and MRI in the management of patients with rectal cancer. This was a retrospective study from a single institution. This study was conducted at a tertiary cancer center. A total of 199 patients met the inclusion criteria: patients with rectal adenocarcinoma; staged with positron emission tomography, CT, and MRI; T2 to T4, N0 to N2, M0 to M1; treated with neoadjuvant chemoradiation 50.4 Gy and infusional 5-fluorouracil; and restaged 4 weeks after chemoradiation before surgery between 2003 and 2013. Comparisons of the tumor stage among different imaging modalities before and after neoadjuvant chemoradiation were performed. The impact of restaging on the management plan was assessed. The stage at presentation was T2, 8.04%; T3, 65.33%; T4, 26.63%; N0, 17.09%; N1, 47.74%; N2, 34.67%; M0, 81.91%; and M1, 18.09%. Changes in disease stage postneoadjuvant chemoradiation were observed in 99 patients (50%). The management plans of 29 patients (15%) were changed. The impact of each restaging modality on management for all of the patients was positron emission tomography, 11%; CT, 4%; and MRI, 4%. In patients with metastatic disease at primary staging, the relative impact of each restaging modality in changing management was positron emission tomography, 32%; CT, 18%; and MRI, 6%. This study was limited by its single-center and retrospective design. Operations were performed 4 weeks after restaging. Changes in the extent of disease after long-course chemoradiotherapy result in changes of management in a significant percentage of patients. Positron emission tomography has the most significant impact in the change of management overall, and its use in restaging advanced rectal cancer should be further explored.

  2. Qualitative Evaluation of Fiducial Markers for Radiotherapy Imaging

    PubMed Central

    Chan, Maria F.; Cohen, Gil’ad N.; Deasy, Joseph O.

    2016-01-01

    Purpose To evaluate visibility, artifacts, and distortions of various commercial markers in magnetic resonance imaging (MRI), computer tomography (CT), and ultrasound imaging used for radiotherapy planning and treatment guidance. Methods We compare 2 solid gold markers, 4 gold coils, and 1 polymer marker from 3 vendors. Imaging modalities used were 3-T and 1.5-T GE MRIs, Siemens Sequoia 512 Ultrasound, Phillips Big Bore CT, Varian Trilogy linear accelerator (cone-beam CT [CBCT], on-board imager kilovoltage [OBI-kV], electronic portal imaging device megavoltage [EPID-MV]), and Medtronic O-ARM CBCT. Markers were imaged in a 30 × 30 × 10 cm3 custom bolus phantom. In one experiment, Surgilube was used around the markers to reduce air gaps. Images were saved in Digital Imaging and Communications in Medicine (DICOM) format and analyzed using an in-house software. Profiles across the markers were used for objective comparison of the markers’ signals. The visibility and artifacts/distortions produced by each marker were assessed qualitatively and quantitatively. Results All markers are visible in CT, CBCT, OBI-kV, and ultrasound. Gold markers below 0.75 mm in diameter are not visible in EPID-MV images. The larger the markers, the more CT and CBCT image artifacts there are, yet the degree of the artifact depends on scan parameters and the scanner itself. Visibility of gold coils of 0.75 mm diameter or larger is comparable across all imaging modalities studied. The polymer marker causes minimal artifacts in CT and CBCT but has poor visibility in EPID-MV. Gold coils of 0.5 mm exhibit poor visibility in MRI and EPID-MV due to their small size. Gold markers are more visible in 3-T T1 gradient-recalled echo than in 1.5-T T1 fast spin-echo, depending on the scan sequence. In this study, all markers are clearly visible on ultrasound. Conclusion All gold markers are visible in CT, CBCT, kV, and ultrasound; however, only the large diameter markers are visible in MV. When MR and EPID-MV imagers are used, the selection of fiducial markers is not straightforward. For hybrid kV/MV image-guided radiotherapy imaging, larger diameter markers are suggested. If using kV imaging alone, smaller sized markers may be used in smaller sized patients in order to reduce artifacts. Only larger diameter gold markers are visible across all imaging modalities. PMID:25230715

  3. Unified Digital Image Display And Processing System

    NASA Astrophysics Data System (ADS)

    Horii, Steven C.; Maguire, Gerald Q.; Noz, Marilyn E.; Schimpf, James H.

    1981-11-01

    Our institution like many others, is faced with a proliferation of medical imaging techniques. Many of these methods give rise to digital images (e.g. digital radiography, computerized tomography (CT) , nuclear medicine and ultrasound). We feel that a unified, digital system approach to image management (storage, transmission and retrieval), image processing and image display will help in integrating these new modalities into the present diagnostic radiology operations. Future techniques are likely to employ digital images, so such a system could readily be expanded to include other image sources. We presently have the core of such a system. We can both view and process digital nuclear medicine (conventional gamma camera) images, positron emission tomography (PET) and CT images on a single system. Images from our recently installed digital radiographic unit can be added. Our paper describes our present system, explains the rationale for its configuration, and describes the directions in which it will expand.

  4. Medulloblastoma in infants and children: computed tomographic follow-up after treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.Y.; Glass, J.P.; van Eys, J.

    1985-03-01

    Thirty-six proven cases of medulloblastoma were reviewed by serial CT follow-up examinations from 4 months to 10 years, 2 months after the initial diagnosis, with a mean follow-up time of 3 years, 9 months. The tumor recurred at the primary site in 20 cases (56%). Leptomeningeal metastasis was demonstrated on CT in 14 cases (39%); seven of these patients also presented with solid subarachnoid metastases. Thirteen patients (36%) showed evidence of severe brain atrophy, which was confined to the posterior fossa in seven of the 13. Calcification resulting from mineralizing microangiopathy developed in five cases (14%), including three patients whomore » had had extensive dystrophic calcification in the corticomedullary junction and the deep-seated nuclei of the cerebrum and cerebellum. The patterns of tumor recurrence in the posterior fossa that is severely deformed by surgery and other treatment modalities and leptomeningeal spread of tumor are discussed.« less

  5. [Virtual colonoscopy is now reality].

    PubMed

    Pedersen, Bodil Ginnerup; Achiam, Michael P; Arnesen, Regnar Bøge

    2005-10-31

    Virtual colonoscopy involves a helical CT or MR scan of the abdomen and pelvis to detect colorectal polyps and cancer. Both modalities have shown promising sensitivity in revealing larger polyps, in comparison with colonoscopy. Caution should be exercised in its clinical implementation due to significant interobserver variation and individual learning curves. A Danish study indicates that CT colonography (CTC) can be performed cost-effectively compared to colonoscopy. CTC is recommended in preference to double-contrast barium enema after incomplete colonoscopy.

  6. Retrospective Review of Positron Emission Tomography With Contrast-Enhanced Computed Tomography in the Posttreatment Setting in Human Papillomavirus–Associated Oropharyngeal Carcinoma

    PubMed Central

    Chan, Jason Y. K.; Sanguineti, Giuseppe; Richmon, Jeremy D.; Marur, Shanthi; Gourin, Christine G.; Koch, Wayne; Chung, Christine H.; Quon, Harry; Bishop, Justin A.; Aygun, Nafi; Agrawal, Nishant

    2013-01-01

    Objective To determine the value of positron emission tomography (PET) with contrast-enhanced computed tomography (CT) in assessing the need for neck dissection by retrospectively reviewing the pathology reports of patients with human papillomavirus (HPV)- associated oropharyngeal squamous cell carcinoma (SCC). Design Retrospective cohort study. Setting Tertiary medical center. Patients Seventy-seven patients with HPV-related SCC. Main Outcome Measures Seventy-seven consecutive patients with a diagnosis of HPV-related SCC who were treated with radiotherapy as the primary treatment between August 2007 and October 2010 were retrospectively evaluated for radiologic and pathologic rate of persistence of nodal metastasis after completion of definitive radiotherapy. Pretreatment and posttreatment imaging included contrast-enhanced CT and PET. Response to treatment was measured on CT, PET at standardized uptake value (SUV) thresholds of 2 and 2.5, and PET/CT by a neuroradiologist in a blinded fashion. Then, the pathology report of the patients who underwent neck dissections was reviewed for nodal status after resection and correlated with the imaging findings. Results Of the 77 patients, 67 met the study criteria, with an average follow-up PET/CT scan at 90.5 days after completion of radiotherapy. Ten patients did not undergo follow-up PET/CT imaging. Twenty patients underwent neck dissections after completion of radiation therapy. Of these 20 patients, 4 had persistent tumor and 16 did not have viable tumor. Using the final pathology report to correlate with imaging responses, CT had a negative predictive value (NPV) of 85.7% (95% CI, 48.7%-97.4%), PET with SUV thresholds of 2 had an NPV of 91.7% (95% CI, 64.6%-98.5%), PET with a cutoff SUV of 2.5 had an NPV of 85.7% (95% CI, 60.1%-96.0%), PET/CT with an SUV of 2 had an NPV of 100% (95% CI, 59.8%-100.0%), and PET/CT with an SUV of 2.5 had an NPV of 85.7% (95% CI, 48.7%-97.4%). The 47 patients who did not undergo neck dissection had a median follow-up of 26 months without an isolated neck failure. Analysis of all 67 patients in the cohort revealed the following values: CT had an NPV of 95.7% (95% CI, 85.8%-98.8%), PET with an SUV of 2 had an NPV of 98.2% (95% CI, 90.4%-99.7%), PET with an SUV of 2.5 had an NPV of 95.0% (95% CI, 86.3%-98.3%), PET/CT with an SUV of 2 had an NPV of 100.0% (95% CI, 92.0%-100.0%), and PET/CT with an SUV of 2.5 had an NPV of 95.7% (95% CI, 85.8%-98.8%). Conclusions Positron emission tomography combined with contrast-enhanced CT has a better NPV than either imaging modality alone in patients with HPV-associated oropharyngeal SCC. Furthermore, PET/CT with an SUV threshold of 2 used in patients with HPV-related SCC offers an imaging modality with a high NPV that may obviate the need for unnecessary neck dissections. PMID:23165378

  7. ASCI 2010 appropriateness criteria for cardiac computed tomography: a report of the Asian Society of Cardiovascular Imaging Cardiac Computed Tomography and Cardiac Magnetic Resonance Imaging Guideline Working Group.

    PubMed

    Tsai, I-Chen; Choi, Byoung Wook; Chan, Carmen; Jinzaki, Masahiro; Kitagawa, Kakuya; Yong, Hwan Seok; Yu, Wei

    2010-02-01

    In Asia, the healthcare system, populations and patterns of disease differ from Western countries. The current reports on the criteria for cardiac CT scans, provided by Western professional societies, are not appropriate for Asian cultures. The Asian Society of Cardiovascular Imaging, the only society dedicated to cardiovascular imaging in Asia, formed a Working Group and invited 23 Technical Panel members representing a variety of Asian countries to rate the 51 indications for cardiac CT in clinical practice in Asia. The indications were rated as 'appropriate' (7-9), 'uncertain' (4-6), or 'inappropriate' (1-3) on a scale of 1-9. The median score was used for the final result if there was no disagreement. The final ratings for indications were 33 appropriate, 14 uncertain and 4 inappropriate. And 20 of them are highly agreed (19 appropriate and 1 inappropriate). Specifically, the Asian representatives considered cardiac CT as an appropriate modality for Kawasaki disease and congenital heart diseases in follow up and in symptomatic patients. In addition, except for some specified conditions, cardiac CT was considered to be an appropriate modality for one-stop shop ischemic heart disease evaluation due to its general appropriateness in coronary, structure and function evaluation. This report is expected to have a significant impact on the clinical practice, research and reimbursement policy in Asia.

  8. Artefacts in multimodal imaging of titanium, zirconium and binary titanium–zirconium alloy dental implants: an in vitro study

    PubMed Central

    Schöllchen, Maximilian; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-01-01

    Objectives: To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium–zirconium alloy dental implants. Methods: Zirconium, titanium and titanium–zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line–distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. Results: While titanium and titanium–zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium–zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium–zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium–zirconium alloy induced more severe artefacts than zirconium and titanium. Conclusions: MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium–zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting. PMID:27910719

  9. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study.

    PubMed

    Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-02-01

    To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.

  10. High-resolution 3D volumetry versus conventional measuring techniques for the assessment of experimental lymphedema in the mouse hindlimb

    PubMed Central

    Frueh, Florian S.; Körbel, Christina; Gassert, Laura; Müller, Andreas; Gousopoulos, Epameinondas; Lindenblatt, Nicole; Giovanoli, Pietro; Laschke, Matthias W.; Menger, Michael D.

    2016-01-01

    Secondary lymphedema is a common complication of cancer treatment characterized by chronic limb swelling with interstitial inflammation. The rodent hindlimb is a widely used model for the evaluation of novel lymphedema treatments. However, the assessment of limb volume in small animals is challenging. Recently, high-resolution three-dimensional (3D) imaging modalities have been introduced for rodent limb volumetry. In the present study we evaluated the validity of microcomputed tomography (μCT), magnetic resonance imaging (MRI) and ultrasound in comparison to conventional measuring techniques. For this purpose, acute lymphedema was induced in the mouse hindlimb by a modified popliteal lymphadenectomy. The 4-week course of this type of lymphedema was first assessed in 6 animals. In additional 12 animals, limb volumes were analyzed by μCT, 9.4 T MRI and 30 MHz ultrasound as well as by planimetry, circumferential length and paw thickness measurements. Interobserver correlation was high for all modalities, in particular for μCT analysis (r = 0.975, p < 0.001). Importantly, caliper-measured paw thickness correlated well with μCT (r = 0.861), MRI (r = 0.821) and ultrasound (r = 0.800). Because the assessment of paw thickness represents a time- and cost-effective approach, it may be ideally suited for the quantification of rodent hindlimb lymphedema. PMID:27698469

  11. Prevalence of computed tomographic subchondral bone lesions in the scapulohumeral joint of 32 immature dogs with thoracic limb lameness.

    PubMed

    Lande, Rachel; Reese, Shona L; Cuddy, Laura C; Berry, Clifford R; Pozzi, Antonio

    2014-01-01

    Osteochondrosis is a common developmental abnormality affecting the subchondral bone of immature, large breed dogs. The purpose of this retrospective study was to describe CT lesions detected in scapulohumeral joints of 32 immature dogs undergoing CT for thoracic limb lameness. Eight dogs (14 scapulohumeral joints) had arthroscopy following imaging. Thirteen dogs (19 scapulohumeral joints) were found to have CT lesions, including 10 dogs (16 scapulohumeral joints) with subchondral bone lesions and 3 dogs with enthesopathy of the supraspinatus tendon. In one dog, subchondral bone lesions appeared as large oval defects within the mid-aspect of the glenoid cavities, bilaterally. These lesions resembled osseous cyst-like lesions commonly identified in the horse. This is the first report of such a presentation of a subchondral bone lesion in the glenoid cavity of a dog. In all dogs, small, focal, round or linear lucent defects were visible within the cortical bone at the junction of the greater tubercle and intertubercular groove. These structures were thought to represent vascular channels. Findings from this study support the use of CT as an adjunct modality for the identification and characterization of scapulohumeral subchondral bone lesions in immature dogs with thoracic limb lameness. © 2013 American College of Veterinary Radiology.

  12. Imaging patterns and focal lesions in fatty liver: a pictorial review.

    PubMed

    Venkatesh, Sudhakar K; Hennedige, Tiffany; Johnson, Geoffrey B; Hough, David M; Fletcher, Joel G

    2017-05-01

    Non-alcoholic fatty liver disease is the most common cause of chronic liver disease and affects nearly one-third of US population. With the increasing trend of obesity in the population, associated fatty change in the liver will be a common feature observed in imaging studies. Fatty liver causes changes in liver parenchyma appearance on imaging modalities including ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) and may affect the imaging characteristics of focal liver lesions (FLLs). The imaging characteristics of FLLs were classically described in a non-fatty liver. In addition, focal fatty change and focal fat sparing may also simulate FLLs. Knowledge of characteristic patterns of fatty change in the liver (diffuse, geographical, focal, subcapsular, and perivascular) and their impact on the detection and characterization of FLL is therefore important. In general, fatty change may improve detection of FLLs on MRI using fat suppression sequences, but may reduce sensitivity on a single-phase (portal venous) CT and conventional ultrasound. In patients with fatty liver, MRI is generally superior to ultrasound and CT for detection and characterization of FLL. In this pictorial essay, we describe the imaging patterns of fatty change in the liver and its effect on detection and characterization of FLLs on ultrasound, CT, MRI, and PET.

  13. X-ray digital intra-oral tomosynthesis for quasi-three-dimensional imaging: system, reconstruction algorithm, and experiments

    NASA Astrophysics Data System (ADS)

    Li, Liang; Chen, Zhiqiang; Zhao, Ziran; Wu, Dufan

    2013-01-01

    At present, there are mainly three x-ray imaging modalities for dental clinical diagnosis: radiography, panorama and computed tomography (CT). We develop a new x-ray digital intra-oral tomosynthesis (IDT) system for quasi-three-dimensional dental imaging which can be seen as an intermediate modality between traditional radiography and CT. In addition to normal x-ray tube and digital sensor used in intra-oral radiography, IDT has a specially designed mechanical device to complete the tomosynthesis data acquisition. During the scanning, the measurement geometry is such that the sensor is stationary inside the patient's mouth and the x-ray tube moves along an arc trajectory with respect to the intra-oral sensor. Therefore, the projection geometry can be obtained without any other reference objects, which makes it be easily accepted in clinical applications. We also present a compressed sensing-based iterative reconstruction algorithm for this kind of intra-oral tomosynthesis. Finally, simulation and experiment were both carried out to evaluate this intra-oral imaging modality and algorithm. The results show that IDT has its potentiality to become a new tool for dental clinical diagnosis.

  14. Sensitivity of MRI of the spine compared with CT myelography in orthostatic headache with CSF leak.

    PubMed

    Starling, Amaal; Hernandez, Fatima; Hoxworth, Joseph M; Trentman, Terrence; Halker, Rashmi; Vargas, Bert B; Hastriter, Eric; Dodick, David

    2013-11-12

    To investigate the sensitivity of MRI of the spine compared with CT myelography (CTM) in detecting CSF leaks. Between July 1998 and October 2010, 12 patients with orthostatic headache and a CTM-confirmed spinal CSF leak underwent an MRI of the spine with and without contrast. Using CTM as the gold standard, we retrospectively investigated the sensitivity of spinal MRI in detecting a CSF leak. Eleven of 12 patients with a CSF leak documented by CTM also had extradural fluid collections on spinal MRI (sensitivity 91.7%). Six patients with extradural fluid collections on spinal MRI also had spinal dural enhancement. When compared with the gold standard of CTM, MRI of the spine appears to be a sensitive and less invasive imaging modality for detecting a spinal CSF leak, suggesting that MRI of the spine should be the imaging modality of first choice for the detection of spinal CSF leaks.

  15. Theory and preliminary experimental verification of quantitative edge illumination x-ray phase contrast tomography.

    PubMed

    Hagen, C K; Diemoz, P C; Endrizzi, M; Rigon, L; Dreossi, D; Arfelli, F; Lopez, F C M; Longo, R; Olivo, A

    2014-04-07

    X-ray phase contrast imaging (XPCi) methods are sensitive to phase in addition to attenuation effects and, therefore, can achieve improved image contrast for weakly attenuating materials, such as often encountered in biomedical applications. Several XPCi methods exist, most of which have already been implemented in computed tomographic (CT) modality, thus allowing volumetric imaging. The Edge Illumination (EI) XPCi method had, until now, not been implemented as a CT modality. This article provides indications that quantitative 3D maps of an object's phase and attenuation can be reconstructed from EI XPCi measurements. Moreover, a theory for the reconstruction of combined phase and attenuation maps is presented. Both reconstruction strategies find applications in tissue characterisation and the identification of faint, weakly attenuating details. Experimental results for wires of known materials and for a biological object validate the theory and confirm the superiority of the phase over conventional, attenuation-based image contrast.

  16. Comparison study of portable bladder scanner versus cone-beam CT scan for measuring bladder volumes in post-prostatectomy patients undergoing radiotherapy.

    PubMed

    Ung, K A; White, R; Mathlum, M; Mak-Hau, V; Lynch, R

    2014-01-01

    In post-prostatectomy radiotherapy to the prostatic bed, consistent bladder volume is essential to maintain the position of treatment target volume. We assessed the differences between bladder volume readings from a portable bladder scanner (BS-V) and those obtained from planning CT (CT-V) or cone-beam CT (CBCT-V). Interfraction bladder volume variation was also determined. BS-V was recorded before and after planning CT or CBCT. The percentage differences between the readings using the two imaging modalities, standard deviations and 95% confidence intervals were determined. Data were analysed for the whole patient cohort and separately for the older BladderScan™ BVI3000 and newer BVI9400 model. Interfraction bladder volume variation was determined from the percentage difference between the CT-V and CBCT-V. Treatment duration, incorporating the time needed for BS and CBCT, was recorded. Fourteen patients were enrolled, producing 133 data sets for analysis. BS-V was taken using the BVI9400 in four patients (43 data sets). The mean BS-V was 253.2 mL, and the mean CT-V or CBCT-V was 199 cm(3). The mean percentage difference between the two modalities was 19.7% (SD 42.2; 95%CI 12.4 to 26.9). The BVI9400 model produced more consistent readings, with a mean percentage difference of -6.2% (SD 27.8; 95% CI -14.7 to -2.4%). The mean percentage difference between CT-V and CBCT-V was 31.3% (range -48% to 199.4%). Treatment duration from time of first BS reading to CBCT was, on average, 12 min (range 6-27). The BS produces bladder volume readings of an average 19.7% difference from CT-V or CBCT-V and can potentially be used to screen for large interfraction bladder volume variations in radiotherapy to prostatic bed. The observed interfraction bladder volume variation suggests the need to improve bladder volume consistency. Incorporating the BS into practice is feasible. © 2014 The Royal Australian and New Zealand College of Radiologists.

  17. A correlative approach for combining microCT, light and transmission electron microscopy in a single 3D scenario

    PubMed Central

    2013-01-01

    Background In biomedical research, a huge variety of different techniques is currently available for the structural examination of small specimens, including conventional light microscopy (LM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), microscopic X-ray computed tomography (microCT), and many others. Since every imaging method is physically limited by certain parameters, a correlative use of complementary methods often yields a significant broader range of information. Here we demonstrate the advantages of the correlative use of microCT, light microscopy, and transmission electron microscopy for the analysis of small biological samples. Results We used a small juvenile bivalve mollusc (Mytilus galloprovincialis, approximately 0.8 mm length) to demonstrate the workflow of a correlative examination by microCT, LM serial section analysis, and TEM-re-sectioning. Initially these three datasets were analyzed separately, and subsequently they were fused in one 3D scene. This workflow is very straightforward. The specimen was processed as usual for transmission electron microscopy including post-fixation in osmium tetroxide and embedding in epoxy resin. Subsequently it was imaged with microCT. Post-fixation in osmium tetroxide yielded sufficient X-ray contrast for microCT imaging, since the X-ray absorption of epoxy resin is low. Thereafter, the same specimen was serially sectioned for LM investigation. The serial section images were aligned and specific organ systems were reconstructed based on manual segmentation and surface rendering. According to the region of interest (ROI), specific LM sections were detached from the slides, re-mounted on resin blocks and re-sectioned (ultrathin) for TEM. For analysis, image data from the three different modalities was co-registered into a single 3D scene using the software AMIRA®. We were able to register both the LM section series volume and TEM slices neatly to the microCT dataset, with small geometric deviations occurring only in the peripheral areas of the specimen. Based on co-registered datasets the excretory organs, which were chosen as ROI for this study, could be investigated regarding both their ultrastructure as well as their position in the organism and their spatial relationship to adjacent tissues. We found structures typical for mollusc excretory systems, including ultrafiltration sites at the pericardial wall, and ducts leading from the pericardium towards the kidneys, which exhibit a typical basal infolding system. Conclusions The presented approach allows a comprehensive analysis and presentation of small objects regarding both the overall organization as well as cellular and subcellular details. Although our protocol involves a variety of different equipment and procedures, we maintain that it offers savings in both effort and cost. Co-registration of datasets from different imaging modalities can be accomplished with high-end desktop computers and offers new opportunities for understanding and communicating structural relationships within organisms and tissues. In general, the correlative use of different microscopic imaging techniques will continue to become more widespread in morphological and structural research in zoology. Classical TEM serial section investigations are extremely time consuming, and modern methods for 3D analysis of ultrastructure such as SBF-SEM and FIB-SEM are limited to very small volumes for examination. Thus the re-sectioning of LM sections is suitable for speeding up TEM examination substantially, while microCT could become a key-method for complementing ultrastructural examinations. PMID:23915384

  18. Update on Modern Management of Pheochromocytoma and Paraganglioma.

    PubMed

    Lenders, Jacques W M; Eisenhofer, Graeme

    2017-06-01

    Despite all technical progress in modern diagnostic methods and treatment modalities of pheochromocytoma/paraganglioma, early consideration of the presence of these tumors remains the pivotal link towards the best possible outcome for patients. A timely diagnosis and proper treatment can prevent the wide variety of potentially catastrophic cardiovascular complications. Modern biochemical testing should include tests that offer the best available diagnostic performance, measurements of metanephrines and 3-methoxytyramine in plasma or urine. To minimize false-positive test results particular attention should be paid to pre-analytical sampling conditions. In addition to anatomical imaging by computed tomography (CT) or magnetic resonance imaging, new promising functional imaging modalities of photon emission tomography/CT using with somatostatin analogues such as ⁶⁸Ga-DOTATATE (⁶⁸Ga-labeled DOTA(0)-Tyr(3)-octreotide) will probably replace ¹²³I-MIBG (iodine-123-metaiodobenzylguanidine) in the near future. As nearly half of all pheochromocytoma patients harbor a mutation in one of the 14 tumor susceptibility genes, genetic testing and counseling should at least be considered in all patients with a proven tumor. Post-surgical annual follow-up of patients by measurements of plasma or urinary metanephrines should last for at least 10 years for timely detection of recurrent or metastatic disease. Patients with a high risk for recurrence or metastatic disease (paraganglioma, young age, multiple or large tumors, genetic background) should be followed up lifelong. Copyright © 2017 Korean Endocrine Society.

  19. 68Ga PSMA-11 PET with CT urography protocol in the initial staging and biochemical relapse of prostate cancer.

    PubMed

    Iravani, Amir; Hofman, Michael S; Mulcahy, Tony; Williams, Scott; Murphy, Declan; Parameswaran, Bimal K; Hicks, Rodney J

    2017-12-21

    68 Ga-labelled prostate specific membrane antigen (PSMA) ligand PET/CT is a promising modality in primary staging (PS) and biochemical relapse (BCR) of prostate cancer (PC). However, pelvic nodes or local recurrences can be difficult to differentiate from radioactive urine. CT urography (CT-U) is an established method, which allows assessment of urological malignancies. The study presents a novel protocol of 68 Ga-PSMA-11 PET/CT-U in PS and BCR of PC. A retrospective review of PSMA PET/CT-U preformed on 57 consecutive patients with prostate cancer. Fifty mL of IV contrast was administered 10 min (range 8-15) before the CT component of a combined PET/CT study, acquired approximately 60 min (range 40-85) after administration of 166 MBq (range 91-246) of 68 Ga-PSMA-11. PET and PET/CT-U were reviewed by two nuclear medicine physicians and CT-U by a radiologist. First, PET images were reviewed independently followed by PET/CT-U images. Foci of activity which could not unequivocally be assessed as disease or urinary activity were recorded. PET/CT-U was considered of potential benefit in final interpretation when the equivocal focal activity in PET images corresponded to opacified ureter, bladder, prostate bed, seminal vesicles, or urethra. Student's T test and Pearson's correlation coefficient was used for assessment of variables including lymph node size and standardized uptake value. Overall 50 PSMA PET/CT-U studies were performed for BCR and 7 for PS. Median PSA with BCR and PS were 2.0 ± 11.4 ng/ml (0.06-57.3 ng/ml) and 18 ± 35.3 ng/ml (6.8-100 ng/ml), respectively. The median Gleason-score for both groups was 7 (range 6-10). In BCR group, PSMA PET was reported positive in 36 (72%) patients, CT-U in 11(22%) patients and PET/CT-U in 33 (66%) patients. In PS group, PSMA PET detected the primary site in all seven patients, of which one patient with metastatic nodal disease had negative CT finding. Of 40 equivocal foci (27/57 patients) on PET, 11 foci (10/57 patients, 17.5%) were localized to enhanced urine on PET/CT-U, hence considered of potential benefit in interpretation. Of those, 3 foci (3 patients) were solitary sites of activity on PSMA imaging including two local and one nodal site and 4 foci (3 patients) were in different nodal fields. PET/CT-U protocol is a practical approach and may assist in interpretation of 68 Ga-PSMA-11 imaging by delineation of the contrast opacified genitourinary system and matching focal PSMA activity with urinary contrast.

  20. Assessment of Geometrical Accuracy of Multimodal Images Used for Treatment Planning in Stereotactic Radiotherapy and Radiosurgery: CT, MRI and PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Garduno, O. A.; Larraga-Gutierrez, J. M.; Celis, M. A.

    2006-09-08

    An acrylic phantom was designed and constructed to assess the geometrical accuracy of CT, MRI and PET images for stereotactic radiotherapy (SRT) and radiosurgery (SRS) applications. The phantom was suited for each image modality with a specific tracer and compared with CT images to measure the radial deviation between the reference marks in the phantom. It was found that for MRI the maximum mean deviation is 1.9 {+-} 0.2 mm compared to 2.4 {+-} 0.3 mm reported for PET. These results will be used for margin outlining in SRS and SRT treatment planning.

  1. Contribution of CT scan and CT-guided aspiration in the management of retropharyngeal abscess in children based on a series of 18 cases.

    PubMed

    Martin, C A; Gabrillargues, J; Louvrier, C; Saroul, N; Mom, T; Gilain, L

    2014-11-01

    This study was designed to analyse the contribution of CT scan to the management of retropharyngeal abscess in children and the place of CT-guided percutaneous aspiration as an alternative to surgical drainage. Retrospective study including 18 children with a mean age of 38 months [range: 5-67 months] presenting with retropharyngeal infection between 2006 and 2011. All cases were initially assessed by contrast-enhanced CT scan of the neck. Clinical, radiological treatment and bacteriological data were collected. Radiological results were correlated with surgical and percutaneous aspiration findings (presence or absence of an abscess). The initial CT scan detected 14 abscesses, 3 cases of non-suppurative lymphadenitis and one case of retropharyngeal oedema. One case of non-suppurative lymphadenitis progressed to abscess after failure of antibiotic therapy and was treated surgically. Surgical drainage revealed a purulent collection in 11 cases and no collection in 3 cases. Four CT-guided percutaneous aspirations were successfully performed. Three cases were treated by antibiotics alone (2 cases of lymphadenitis and 1 case of retropharyngeal oedema). Bacteriological examinations revealed the presence of Streptococcus pyogenes in 78.5% of cases. The positive predictive value of the initial CT scan was 78.8% in our series. Contrast-enhanced neck CT scan confirmed the diagnosis of retropharyngeal abscess and the indication for surgical drainage. It must be performed urgently, on admission. When it is decided to treat the patient with antibiotics alone, follow-up imaging should be performed in the absence of improvement 24 to 48 hours after starting antibiotics. CT-guided percutaneous aspiration is both a diagnostic modality confirming abscess formation of an inflammatory lesion of the retropharyngeal space as well as a therapeutic tool, sometimes avoiding the need for surgical drainage. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. SU-F-R-33: Can CT and CBCT Be Used Simultaneously for Radiomics Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, R; Wang, J; Zhong, H

    2016-06-15

    Purpose: To investigate whether CBCT and CT can be used in radiomics analysis simultaneously. To establish a batch correction method for radiomics in two similar image modalities. Methods: Four sites including rectum, bladder, femoral head and lung were considered as region of interest (ROI) in this study. For each site, 10 treatment planning CT images were collected. And 10 CBCT images which came from same site of same patient were acquired at first radiotherapy fraction. 253 radiomics features, which were selected by our test-retest study at rectum cancer CT (ICC>0.8), were calculated for both CBCT and CT images in MATLAB.more » Simple scaling (z-score) and nonlinear correction methods were applied to the CBCT radiomics features. The Pearson Correlation Coefficient was calculated to analyze the correlation between radiomics features of CT and CBCT images before and after correction. Cluster analysis of mixed data (for each site, 5 CT and 5 CBCT data are randomly selected) was implemented to validate the feasibility to merge radiomics data from CBCT and CT. The consistency of clustering result and site grouping was verified by a chi-square test for different datasets respectively. Results: For simple scaling, 234 of the 253 features have correlation coefficient ρ>0.8 among which 154 features haveρ>0.9 . For radiomics data after nonlinear correction, 240 of the 253 features have ρ>0.8 among which 220 features have ρ>0.9. Cluster analysis of mixed data shows that data of four sites was almost precisely separated for simple scaling(p=1.29 * 10{sup −7}, χ{sup 2} test) and nonlinear correction (p=5.98 * 10{sup −7}, χ{sup 2} test), which is similar to the cluster result of CT data (p=4.52 * 10{sup −8}, χ{sup 2} test). Conclusion: Radiomics data from CBCT can be merged with those from CT by simple scaling or nonlinear correction for radiomics analysis.« less

  3. Comparison of SPECT/CT, MRI and CT in diagnosis of skull base bone invasion in nasopharyngeal carcinoma.

    PubMed

    Zhang, Shu-xu; Han, Peng-hui; Zhang, Guo-qian; Wang, Rui-hao; Ge, Yong-bin; Ren, Zhi-gang; Li, Jian-sheng; Fu, Wen-hai

    2014-01-01

    Early detection of skull base invasion in nasopharyngeal carcinoma (NPC) is crucial for correct staging, assessing treatment response and contouring the tumor target in radiotherapy planning, as well as improving the patient's prognosis. To compare the diagnostic efficacy of single photon emission computed tomography/computed tomography (SPECT/CT) imaging, magnetic resonance imaging (MRI) and computed tomography (CT) for the detection of skull base invasion in NPC. Sixty untreated patients with histologically proven NPC underwent SPECT/CT imaging, contrast-enhanced MRI and CT. Of the 60 patients, 30 had skull base invasion confirmed by the final results of contrast-enhanced MRI, CT and six-month follow-up imaging (MRI and CT). The diagnostic efficacy of the three imaging modalities in detecting skull base invasion was evaluated. The rates of positive findings of skull base invasion for SPECT/CT, MRI and CT were 53.3%, 48.3% and 33.3%, respectively. The sensitivity, specificity and accuracy were 93.3%, 86.7% and 90.0% for SPECT/CT fusion imaging, 96.7%, 100.0% and 98.3% for contrast-enhanced MRI, and 66.7%, 100.0% and 83.3% for contrast-enhanced CT. MRI showed the best performance for the diagnosis of skull base invasion in nasopharyngeal carcinoma, followed closely by SPECT/CT. SPECT/CT had poorer specificity than that of both MRI and CT, while CT had the lowest sensitivity.

  4. Quantitative, Noninvasive Imaging of DNA Damage in Vivo of Prostate Cancer Therapy by Transurethral Photoacoustic (TUPA) Imaging

    DTIC Science & Technology

    2015-12-01

    Xiang, L Xing, “ X - Ray Fluorescence CT as a Novel Imaging Modality for Improved Radiation Therapy Target Delineation”, Presented at 56th Annual Meeting... Imaging and Sensing, 1: 18-22 (2014).  Moiz Ahmad, Magdalena Bazalova, Liangzhong Xiang, and Lei Xing, Order of magnitude sensitivity increase in x - ray ...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The goals of this training grant is to develop the foundations for a new medical imaging modality, now

  5. In vivo small animal micro-CT using nanoparticle contrast agents

    PubMed Central

    Ashton, Jeffrey R.; West, Jennifer L.; Badea, Cristian T.

    2015-01-01

    Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research. PMID:26581654

  6. 2D-3D registration using gradient-based MI for image guided surgery systems

    NASA Astrophysics Data System (ADS)

    Yim, Yeny; Chen, Xuanyi; Wakid, Mike; Bielamowicz, Steve; Hahn, James

    2011-03-01

    Registration of preoperative CT data to intra-operative video images is necessary not only to compare the outcome of the vocal fold after surgery with the preplanned shape but also to provide the image guidance for fusion of all imaging modalities. We propose a 2D-3D registration method using gradient-based mutual information. The 3D CT scan is aligned to 2D endoscopic images by finding the corresponding viewpoint between the real camera for endoscopic images and the virtual camera for CT scans. Even though mutual information has been successfully used to register different imaging modalities, it is difficult to robustly register the CT rendered image to the endoscopic image due to varying light patterns and shape of the vocal fold. The proposed method calculates the mutual information in the gradient images as well as original images, assigning more weight to the high gradient regions. The proposed method can emphasize the effect of vocal fold and allow a robust matching regardless of the surface illumination. To find the viewpoint with maximum mutual information, a downhill simplex method is applied in a conditional multi-resolution scheme which leads to a less-sensitive result to local maxima. To validate the registration accuracy, we evaluated the sensitivity to initial viewpoint of preoperative CT. Experimental results showed that gradient-based mutual information provided robust matching not only for two identical images with different viewpoints but also for different images acquired before and after surgery. The results also showed that conditional multi-resolution scheme led to a more accurate registration than single-resolution.

  7. AN ANALYSIS OF THE POTENTIAL ROLE OF CHEST TOMOSYNTHESIS IN OPTIMISING IMAGING RESOURCES IN THORACIC RADIOLOGY

    PubMed Central

    Petersson, Cecilia; Båth, Magnus; Vikgren, Jenny; Johnsson, Åse Allansdotter

    2016-01-01

    The aim of the study was to investigate the potential role of chest tomosynthesis (CTS) at a tertiary referral centre by exploring to what extent CTS could substitute chest radiography (CXR) and computed tomography (CT). The study comprised 1433 CXR, 523 CT and 216 CTS examinations performed 5 years after the introduction of CTS. For each examination, it was decided if CTS would have been appropriate instead of CXR (CXR cases), if CTS could have replaced the performed CT (CT cases) or if CT would have been performed had CTS not been available (CTS cases). It was judged that (a) CTS had been appropriate in 15 % of the CXR examinations, (b) CTS could have replaced additionally 7 % of the CT examinations and (c) CT would have been carried out in 63 % of the performed CTS examinations, had CTS not been available. In conclusion, the potential role for CTS to substitute other modalities during office hours at a tertiary referral centre may be in the order of 20 and 25 % of performed CXR and chest CT, respectively. PMID:26979807

  8. Developments in the imaging of brown adipose tissue and its associations with muscle, puberty, and health in children.

    PubMed

    Hu, Houchun H; Gilsanz, Vicente

    2011-01-01

    Fusion positron emission and computed tomography (PET/CT) remains the gold-standard imaging modality to non-invasively study metabolically active brown adipose tissue (BAT). It has been widely applied to studies in adult cohorts. In contrast, the number of BAT studies in children has been few. This is largely limited by the elevated risk of ionizing radiation and radionuclide tracer usage by PET/CT and the ethical restriction of performing such exams on healthy children. However, metabolically active BAT has a significantly higher prevalence in pediatric patients, according to recent literature. Young cohorts thus represent an ideal population to examine the potential relationships of BAT to muscle development, puberty, disease state, and the accumulation of white adipose tissue. In turn, magnetic resonance imaging (MRI) represents the most promising modality to overcome the limitations of PET/CT. The development of rapid, repeatable MRI techniques to identify and quantify both metabolically active and inactive BAT non-invasively and without the use of exogenous contrast agents or the need for sedation in pediatric patients are critically needed to advance our knowledge of this tissue's physiology.

  9. Tracking Organs Composed of One or Multiple Regions Using Geodesic Active Region Models

    NASA Astrophysics Data System (ADS)

    Martínez, A.; Jiménez, J. J.

    In radiotherapy treatment it is very important to find out the target organs on the medical image sequence in order to determine and apply the proper dose. The techniques to achieve this goal can be classified into extrinsic and intrinsic. Intrinsic techniques only use image processing with medical images associated to the radiotherapy Radiotherapy treatment, as we deal in this chapter. To accurately perform this organ tracking it is necessary to find out segmentation and tracking models that were able to be applied to several image modalities involved on a radiotherapy session (CT CT See Modality , MRI Magnetic resoance imaging , etc.). The movements of the organs are mainly affected by two factors: breathing and involuntary movements associated with the internal organs or patient positioning. Among the several alternatives to track the organs of interest, a model based on geodesic active regions is proposed. This model has been tested over CT Computed tomography images from the pelvic, cardiac, and thoracic area. A new model for the segmentation of organs composed by more than one region is proposed.

  10. Metallic artifacts from internal scaphoid fracture fixation screws: comparison between C-arm flat-panel, cone-beam, and multidetector computed tomography.

    PubMed

    Finkenstaedt, Tim; Morsbach, Fabian; Calcagni, Maurizio; Vich, Magdalena; Pfirrmann, Christian W A; Alkadhi, Hatem; Runge, Val M; Andreisek, Gustav; Guggenberger, Roman

    2014-08-01

    The aim of this study was to compare image quality and extent of artifacts from scaphoid fracture fixation screws using different computed tomography (CT) modalities and radiation dose protocols. Imaging of 6 cadaveric wrists with artificial scaphoid fractures and different fixation screws was performed in 2 screw positions (45° and 90° orientation in relation to the x/y-axis) using multidetector CT (MDCT) and 2 flat-panel CT modalities, C-arm flat-panel CT (FPCT) and cone-beam CT (CBCT), the latter 2 with low and standard radiation dose protocols. Mean cartilage attenuation and metal artifact-induced absolute Hounsfield unit changes (= artifact extent) were measured. Two independent radiologists evaluated different image quality criteria using a 5-point Likert-scale. Interreader agreements (Cohen κ) were calculated. Mean absolute Hounsfield unit changes and quality ratings were compared using Friedman and Wilcoxon signed-rank tests. Artifact extent was significantly smaller for MDCT and standard-dose FPCT compared with CBCT low- and standard-dose acquisitions (all P < 0.05). No significant differences in artifact extent among different screw types and scanning positions were noted (P > 0.05). Both MDCT and FPCT standard-dose protocols showed equal ratings for screw bone interface, fracture line, and trabecular bone evaluation (P = 0.06, 0.2, and 0.2, respectively) and performed significantly better than FPCT low- and CBCT low- and standard-dose acquisitions (all P < 0.05). Good interreader agreement was found for image quality comparisons (Cohen κ = 0.76-0.78). Both MDCT and FPCT standard-dose acquisition showed comparatively less metal-induced artifacts and better overall image quality compared with FPCT low-dose and both CBCT acquisitions. Flat-panel CT may provide sufficient image quality to serve as a versatile CT alternative for postoperative imaging of internally fixated wrist fractures.

  11. Feasibility of wall stress analysis of abdominal aortic aneurysms using three-dimensional ultrasound.

    PubMed

    Kok, Annette M; Nguyen, V Lai; Speelman, Lambert; Brands, Peter J; Schurink, Geert-Willem H; van de Vosse, Frans N; Lopata, Richard G P

    2015-05-01

    Abdominal aortic aneurysms (AAAs) are local dilations that can lead to a fatal hemorrhage when ruptured. Wall stress analysis of AAAs is a novel tool that has proven high potential to improve risk stratification. Currently, wall stress analysis of AAAs is based on computed tomography (CT) and magnetic resonance imaging; however, three-dimensional (3D) ultrasound (US) has great advantages over CT and magnetic resonance imaging in terms of costs, speed, and lack of radiation. In this study, the feasibility of 3D US as input for wall stress analysis is investigated. Second, 3D US-based wall stress analysis was compared with CT-based results. The 3D US and CT data were acquired in 12 patients (diameter, 35-90 mm). US data were segmented manually and compared with automatically acquired CT geometries by calculating the similarity index and Hausdorff distance. Wall stresses were simulated at P = 140 mm Hg and compared between both modalities. The similarity index of US vs CT was 0.75 to 0.91 (n = 12), with a median Hausdorff distance ranging from 4.8 to 13.9 mm, with the higher values found at the proximal and distal sides of the AAA. Wall stresses were in accordance with literature, and a good agreement was found between US- and CT-based median stresses and interquartile stresses, which was confirmed by Bland-Altman and regression analysis (n = 8). Wall stresses based on US were typically higher (+23%), caused by geometric irregularities due to the registration of several 3D volumes and manual segmentation. In future work, an automated US registration and segmentation approach is the essential point of improvement before pursuing large-scale patient studies. This study is a first step toward US-based wall stress analysis, which would be the modality of choice to monitor wall stress development over time because no ionizing radiation and contrast material are involved. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  12. Validation of a DIXON-based fat quantification technique for the measurement of visceral fat using a CT-based reference standard.

    PubMed

    Heckman, Katherine M; Otemuyiwa, Bamidele; Chenevert, Thomas L; Malyarenko, Dariya; Derstine, Brian A; Wang, Stewart C; Davenport, Matthew S

    2018-06-27

    The purpose of the study is to determine whether a novel semi-automated DIXON-based fat quantification algorithm can reliably quantify visceral fat using a CT-based reference standard. This was an IRB-approved retrospective cohort study of 27 subjects who underwent abdominopelvic CT within 7 days of proton density fat fraction (PDFF) mapping on a 1.5T MRI. Cross-sectional visceral fat area per slice (cm 2 ) was measured in blinded fashion in each modality at intervertebral disc levels from T12 to L4. CT estimates were obtained using a previously published semi-automated computational image processing system that sums pixels with attenuation - 205 to - 51 HU. MR estimates were obtained using two novel semi-automated DIXON-based fat quantification algorithms that measure visceral fat area by spatially regularizing non-uniform fat-only signal intensity or de-speckling PDFF 2D images and summing pixels with PDFF ≥ 50%. Pearson's correlations and Bland-Altman analyses were performed. Visceral fat area per slice ranged from 9.2 to 429.8 cm 2 for MR and from 1.6 to 405.5 cm 2 for CT. There was a strong correlation between CT and MR methods in measured visceral fat area across all studied vertebral body levels (r = 0.97; n = 101 observations); the least (r = 0.93) correlation was at T12. Bland-Altman analysis revealed a bias of 31.7 cm 2 (95% CI [- 27.1]-90.4 cm 2 ), indicating modestly higher visceral fat assessed by MR. MR- and CT-based visceral fat quantification are highly correlated and have good cross-modality reliability, indicating that visceral fat quantification by either method can yield a stable and reliable biomarker.

  13. Metal artifacts in computed tomography for radiation therapy planning: dosimetric effects and impact of metal artifact reduction.

    PubMed

    Giantsoudi, Drosoula; De Man, Bruno; Verburg, Joost; Trofimov, Alexei; Jin, Yannan; Wang, Ge; Gjesteby, Lars; Paganetti, Harald

    2017-04-21

    A significant and increasing number of patients receiving radiation therapy present with metal objects close to, or even within, the treatment area, resulting in artifacts in computed tomography (CT) imaging, which is the most commonly used imaging method for treatment planning in radiation therapy. In the presence of metal implants, such as dental fillings in treatment of head-and-neck tumors, spinal stabilization implants in spinal or paraspinal treatment or hip replacements in prostate cancer treatments, the extreme photon absorption by the metal object leads to prominent image artifacts. Although current CT scanners include a series of correction steps for beam hardening, scattered radiation and noisy measurements, when metal implants exist within or close to the treatment area, these corrections do not suffice. CT metal artifacts affect negatively the treatment planning of radiation therapy either by causing difficulties to delineate the target volume or by reducing the dose calculation accuracy. Various metal artifact reduction (MAR) methods have been explored in terms of improvement of organ delineation and dose calculation in radiation therapy treatment planning, depending on the type of radiation treatment and location of the metal implant and treatment site. Including a brief description of the available CT MAR methods that have been applied in radiation therapy, this article attempts to provide a comprehensive review on the dosimetric effect of the presence of CT metal artifacts in treatment planning, as reported in the literature, and the potential improvement suggested by different MAR approaches. The impact of artifacts on the treatment planning and delivery accuracy is discussed in the context of different modalities, such as photon external beam, brachytherapy and particle therapy, as well as by type and location of metal implants.

  14. Metal artifacts in computed tomography for radiation therapy planning: dosimetric effects and impact of metal artifact reduction

    NASA Astrophysics Data System (ADS)

    Giantsoudi, Drosoula; De Man, Bruno; Verburg, Joost; Trofimov, Alexei; Jin, Yannan; Wang, Ge; Gjesteby, Lars; Paganetti, Harald

    2017-04-01

    A significant and increasing number of patients receiving radiation therapy present with metal objects close to, or even within, the treatment area, resulting in artifacts in computed tomography (CT) imaging, which is the most commonly used imaging method for treatment planning in radiation therapy. In the presence of metal implants, such as dental fillings in treatment of head-and-neck tumors, spinal stabilization implants in spinal or paraspinal treatment or hip replacements in prostate cancer treatments, the extreme photon absorption by the metal object leads to prominent image artifacts. Although current CT scanners include a series of correction steps for beam hardening, scattered radiation and noisy measurements, when metal implants exist within or close to the treatment area, these corrections do not suffice. CT metal artifacts affect negatively the treatment planning of radiation therapy either by causing difficulties to delineate the target volume or by reducing the dose calculation accuracy. Various metal artifact reduction (MAR) methods have been explored in terms of improvement of organ delineation and dose calculation in radiation therapy treatment planning, depending on the type of radiation treatment and location of the metal implant and treatment site. Including a brief description of the available CT MAR methods that have been applied in radiation therapy, this article attempts to provide a comprehensive review on the dosimetric effect of the presence of CT metal artifacts in treatment planning, as reported in the literature, and the potential improvement suggested by different MAR approaches. The impact of artifacts on the treatment planning and delivery accuracy is discussed in the context of different modalities, such as photon external beam, brachytherapy and particle therapy, as well as by type and location of metal implants.

  15. Imaging dose in breast radiotherapy: does breast size affect the dose to the organs at risk and the risk of secondary cancer to the contralateral breast?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batumalai, Vikneswary, E-mail: vikneswary.batumalai@sswahs.nsw.gov.au; South Western Clinical School, University of New South Wales, Sydney, New South Wales; Quinn, Alexandra

    Correct target positioning is crucial for accurate dose delivery in breast radiotherapy resulting in utilisation of daily imaging. However, the radiation dose from daily imaging is associated with increased probability of secondary induced cancer. The aim of this study was to quantify doses associated with three imaging modalities and investigate the correlation of dose and varying breast size in breast radiotherapy. Planning computed tomography (CT) data sets of 30 breast cancer patients were utilised to simulate the dose received by various organs from a megavoltage computed tomography (MV-CT), megavoltage electronic portal image (MV-EPI) and megavoltage cone-beam computed tomography (MV-CBCT). Themore » mean dose to organs adjacent to the target volume (contralateral breast, lungs, spinal cord and heart) were analysed. Pearson correlation analysis was performed to determine the relationship between imaging dose and primary breast volume and the lifetime attributable risk (LAR) of induced secondary cancer was calculated for the contralateral breast. The highest contralateral breast mean dose was from the MV-CBCT (1.79 Gy), followed by MV-EPI (0.22 Gy) and MV-CT (0.11 Gy). A similar trend was found for all organs at risk (OAR) analysed. The primary breast volume inversely correlated with the contralateral breast dose for all three imaging modalities. As the primary breast volume increases, the likelihood of a patient developing a radiation-induced secondary cancer to the contralateral breast decreases. MV-CBCT showed a stronger relationship between breast size and LAR of developing a radiation-induced contralateral breast cancer in comparison with the MV-CT and MV-EPI. For breast patients, imaging dose to OAR depends on imaging modality and treated breast size. When considering the use of imaging during breast radiotherapy, the patient's breast size and contralateral breast dose should be taken into account.« less

  16. MIB-1 Index-Stratified Assessment of Dual-Tracer PET/CT with 68Ga-DOTATATE and 18F-FDG and Multimodality Anatomic Imaging in Metastatic Neuroendocrine Tumors of Unknown Primary in a PRRT Workup Setting.

    PubMed

    Sampathirao, Nikita; Basu, Sandip

    2017-03-01

    Our aim was to comparatively assess dual-tracer PET/CT ( 68 Ga-DOTATATE and 18 F-FDG) and multimodality anatomic imaging in studying metastatic neuroendocrine tumors (NETs) of unknown primary (CUP-NETs) scheduled for peptide receptor radionuclide therapy for divergence of tracer uptake on dual-tracer PET/CT, detection of primary, and overall lesion detection vis-a-vis tumor proliferation index (MIB-1/Ki-67). Methods: Fifty-one patients with CUP-NETs (25 men, 26 women; age, 22-74 y), histopathologically proven and thoroughly investigated with conventional imaging modalities (ultrasonography, CT/contrast-enhanced CT, MRI, and endoscopic ultrasound, wherever applicable), were retrospectively analyzed. Patients were primarily referred for deciding on feasibility of peptide receptor radionuclide therapy (except 2 patients), and all had undergone 68 Ga-DOTATATE and 18 F-FDG PET/CT as part of pretreatment workup. The sites of metastases included liver, lung/mediastinum, skeleton, abdominal nodes, and other soft-tissue sites. Patients were divided into 5 groups on the basis of MIB-1/Ki-67 index on a 5-point scale: group I (1%-5%) ( n = 35), group II (6%-10%) ( n = 8), group III (11%-15%) ( n = 4), group IV (16%-20%) ( n = 2), and group V (>20%) ( n = 2). Semiquantitative analysis of tracer uptake was undertaken by SUV max of metastatic lesions and the primary (when detected). The SUV max values were studied over increasing MIB-1/Ki-67 index. The detection sensitivity of 68 Ga-DOTATATE for primary and metastatic lesions was assessed and compared with other imaging modalities including 18 F-FDG PET/CT. Results: Unknown primary was detected on 68 Ga-DOTATATE in 31 of 51 patients, resulting in sensitivity of 60.78% whereas overall lesion detection sensitivity was 96.87%. The overall lesion detection sensitivities (individual groupwise from group I to group V) were 97.75%, 87.5%, 100%, 100%, and 66.67%, respectively. As MIB-1/Ki-67 index increased, 68 Ga-DOTATATE uptake decreased in metastatic and primary lesions (mean SUV max , 43.5 and 22.68 g/dL in group I to 22.54 and 16.83 g/dL in group V, respectively), whereas 18 F-FDG uptake showed a gradual rise (mean SUV max , 3.66 and 2.86 g/dL in group I to 7.53 and 9.58 g/dL in group V, respectively). There was a corresponding decrease in the 68 Ga-DOTATATE-to- 18 F-FDG uptake ratio with increasing MIB-1/Ki-67 index (from 11.89 in group I to 2.99 in group V). Conclusion: In CUP-NETs, the pattern of uptake on dual-tracer PET ( 68 Ga-DOTATATE and 18 F-FDG) correlates well with tumor proliferation index with a few outliers; combined dual-tracer PET/CT with MIB-1/Ki-67 index would aid in better whole-body assessment of tumor biology in CUP-NETs. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  17. The Role of 18F-FDG PET/CT Integrated Imaging in Distinguishing Malignant from Benign Pleural Effusion.

    PubMed

    Sun, Yajuan; Yu, Hongjuan; Ma, Jingquan; Lu, Peiou

    2016-01-01

    The aim of our study was to evaluate the role of 18F-FDG PET/CT integrated imaging in differentiating malignant from benign pleural effusion. A total of 176 patients with pleural effusion who underwent 18F-FDG PET/CT examination to differentiate malignancy from benignancy were retrospectively researched. The images of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were visually analyzed. The suspected malignant effusion was characterized by the presence of nodular or irregular pleural thickening on CT imaging. Whereas on PET imaging, pleural 18F-FDG uptake higher than mediastinal activity was interpreted as malignant effusion. Images of 18F-FDG PET/CT integrated imaging were interpreted by combining the morphologic feature of pleura on CT imaging with the degree and form of pleural 18F-FDG uptake on PET imaging. One hundred and eight patients had malignant effusion, including 86 with pleural metastasis and 22 with pleural mesothelioma, whereas 68 patients had benign effusion. The sensitivities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging in detecting malignant effusion were 75.0%, 91.7% and 93.5%, respectively, which were 69.8%, 91.9% and 93.0% in distinguishing metastatic effusion. The sensitivity of 18F-FDG PET/CT integrated imaging in detecting malignant effusion was higher than that of CT imaging (p = 0.000). For metastatic effusion, 18F-FDG PET imaging had higher sensitivity (p = 0.000) and better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with CT imaging (Kappa = 0.917 and Kappa = 0.295, respectively). The specificities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were 94.1%, 63.2% and 92.6% in detecting benign effusion. The specificities of CT imaging and 18F-FDG PET/CT integrated imaging were higher than that of 18F-FDG PET imaging (p = 0.000 and p = 0.000, respectively), and CT imaging had better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with 18F-FDG PET imaging (Kappa = 0.881 and Kappa = 0.240, respectively). 18F-FDG PET/CT integrated imaging is a more reliable modality in distinguishing malignant from benign pleural effusion than 18F-FDG PET imaging and CT imaging alone. For image interpretation of 18F-FDG PET/CT integrated imaging, the PET and CT portions play a major diagnostic role in identifying metastatic effusion and benign effusion, respectively.

  18. Hybrid registration of PET/CT in thoracic region with pre-filtering PET sinogram

    NASA Astrophysics Data System (ADS)

    Mokri, S. S.; Saripan, M. I.; Marhaban, M. H.; Nordin, A. J.; Hashim, S.

    2015-11-01

    The integration of physiological (PET) and anatomical (CT) images in cancer delineation requires an accurate spatial registration technique. Although hybrid PET/CT scanner is used to co-register these images, significant misregistrations exist due to patient and respiratory/cardiac motions. This paper proposes a hybrid feature-intensity based registration technique for hybrid PET/CT scanner. First, simulated PET sinogram was filtered with a 3D hybrid mean-median before reconstructing the image. The features were then derived from the segmented structures (lung, heart and tumor) from both images. The registration was performed based on modified multi-modality demon registration with multiresolution scheme. Apart from visual observations improvements, the proposed registration technique increased the normalized mutual information index (NMI) between the PET/CT images after registration. All nine tested datasets show marked improvements in mutual information (MI) index than free form deformation (FFD) registration technique with the highest MI increase is 25%.

  19. Comparison of CT angiography with conventional arterial angiography in aortoiliac occlusive disease.

    PubMed

    Tins, B; Oxtoby, J; Patel, S

    2001-03-01

    This study compared the results of conventional and CT angiography of the aortoiliac segment in 35 patients with occlusive disease. Disease severity was graded into five categories. Two assessors independently assessed the segment from the distal abdominal aorta to the proximal superficial femoral artery and a consensus was formed. There was interobserver agreement in 87% of segments for conventional angiography and in 78% for CT angiography. Comparison of the two modalities gave identical grading in 84% of segments. Dissimilar grading was found in 16%, with a roughly equal number of undergrading and overgrading. CT angiography has the advantages of being minimally invasive, requiring only an intravenous injection of contrast medium and imaging surrounding soft tissues. Multiplanar reconstruction aids the visualization of asymmetrical stenoses, and collateral blood supply is readily appreciated. However, CT angiography may fail to demonstrate short stenoses owing to limited z-axis resolution.

  20. Morphology supporting function: attenuation correction for SPECT/CT, PET/CT, and PET/MR imaging

    PubMed Central

    Lee, Tzu C.; Alessio, Adam M.; Miyaoka, Robert M.; Kinahan, Paul E.

    2017-01-01

    Both SPECT, and in particular PET, are unique in medical imaging for their high sensitivity and direct link to a physical quantity, i.e. radiotracer concentration. This gives PET and SPECT imaging unique capabilities for accurately monitoring disease activity for the purposes of clinical management or therapy development. However, to achieve a direct quantitative connection between the underlying radiotracer concentration and the reconstructed image values several confounding physical effects have to be estimated, notably photon attenuation and scatter. With the advent of dual-modality SPECT/CT, PET/CT, and PET/MR scanners, the complementary CT or MR image data can enable these corrections, although there are unique challenges for each combination. This review covers the basic physics underlying photon attenuation and scatter and summarizes technical considerations for multimodal imaging with regard to PET and SPECT quantification and methods to address the challenges for each multimodal combination. PMID:26576737

  1. Computed tomography and magnetic resonance imaging in diagnosing hepatocellular carcinoma.

    PubMed

    Dalla Palma, L; Pozzi-Mucelli, R S

    1992-02-01

    The evaluation of hepatocellular carcinoma (HCC) is based upon ultrasonography (US) which has proved to have a high sensitivity and is also extremely useful in guiding the percutaneous needle biopsy. The main role of computed tomography (CT) and magnetic resonance imaging (MRI) is to supplement US in evaluating the extent of HCC. The Authors discuss the different techniques of examinations of the liver both for CT and MRI as far as the modalities of contrast enhancement, site of injection, and type of contrast agents are concerned. The differences between low field and high field magnets are also discussed. The main CT and MRI findings are illustrated, depending upon the technique of examination. Finally the role of these techniques is discussed. Based upon personal experience and the data in CT literature, and if performed with updated technology and intraarterial injection (lipiodol), CT is the method of choice in order to supplement US in the evaluation of HCC.

  2. Diagnostic Imaging and workup of Malignant Pleural Mesothelioma.

    PubMed

    Cardinale, Luciano; Ardissone, Francesco; Gned, Dario; Sverzellati, Nicola; Piacibello, Edoardo; Veltri, Andrea

    2017-08-23

    Malignant pleural mesothelioma is the most frequent primary neoplasm of the pleura and its incidence is still increasing.This tumor has a strong association with exposure to occupational or environmental asbestos, often after a long latent period of 30-40 years.Plain chest radiography (CXR) is usually the first-line radiologic examination, but the radiographic findings are nonspecific due to its limited contrast resolution and they need to be complemented by other imaging modalities such as computed tomography (CT), magnetic resonance Imaging (MRI), Positron emission tomography-computed tomography (PET-CT) and ultrasound (US).The aim of this paper is to describe the imaging  features of this malignancy, underlining the peculiarity of CXR, CT, MRI, PET-CT and US and also focusing on diagnostic workup, based on the literature evidence and according to our experience.

  3. Gadolinium-doped hollow CeO2-ZrO2 nanoplatform as multifunctional MRI/CT dual-modal imaging agent and drug delivery vehicle.

    PubMed

    Wei, Zuwu; Wu, Ming; Li, Zuanfang; Lin, Zhan; Zeng, Jinhua; Sun, Haiyan; Liu, Xiaolong; Liu, Jingfeng; Li, Buhong; Zeng, Yongyi

    2018-11-01

    Developing multifunctional nanoparticle-based theranostic platform for cancer diagnosis and treatment is highly desirable, however, most of the present theranostic platforms are fabricated via complicated structure/composition design and time-consuming synthesis procedures. Herein, the multifunctional Gd/CeO 2 -ZrO 2 /DOX-PEG nanoplatform with single nano-structure was fabricated through a facile route, which possessed MR/CT dual-model imaging and chemotherapy ability. The nanoplatform not only exhibited well-defined shapes, tunable compositions and narrow size distributions, but also presented a well anti-cancer effect and MR/CT imaging ability. Therefore, the Gd/CeO 2 -ZrO 2 /DOX-PEG nanoplatform could be applied for chemotherapy as well as dual-model MR/CT imaging.

  4. Comparison of Oral Contrast-Enhanced Transabdominal Ultrasound Imaging With Transverse Contrast-Enhanced Computed Tomography in Preoperative Tumor Staging of Advanced Gastric Carcinoma.

    PubMed

    He, Xuemei; Sun, Jing; Huang, Xiaoling; Zeng, Chun; Ge, Yinggang; Zhang, Jun; Wu, Jingxian

    2017-12-01

    This study assessed the diagnostic performance of transabdominal oral contrast-enhanced ultrasound (US) imaging for preoperative tumor staging of advanced gastric carcinoma by comparing it with transverse contrast-enhanced computed tomography (CT). This retrospective study included 42 patients with advanced gastric cancer who underwent laparoscopy, radical surgery, or palliative surgery because of serious complications and had a body mass index of less than 25 kg/m 2 . A cereal-based oral contrast agent was used for transabdominal oral contrast-enhanced US. Retrospective analyses were conducted using preoperative tumor staging data acquired by either transabdominal oral contrast-enhanced US or transverse contrast-enhanced CT. Both contrast-enhanced US and contrast-enhanced CT examinations were reviewed by 2 experienced radiologists independently for preoperative tumor staging according to the seventh edition of the TNM classification. The accuracy, sensitivity, and specificity were calculated by comparing the results of contrast-enhanced US and contrast-enhanced CT with pathologic findings. The overall accuracies of the imaging modalities were compared by the McNemar test. No significant difference was noted in the overall accuracy of transabdominal oral contrast-enhanced US (86% [36 of 42]) and transverse contrast-enhanced CT (83% [35 of 42] P > .999). For stage T2 to T4 gastric cancer, the accuracies of transabdominal oral contrast-enhanced US were 88%, 86%, and 98%, respectively, and those of transverse contrast-enhanced CT were 93%, 83%, and 90%. The overall accuracy of transabdominal oral contrast-enhanced US was comparable with that of transverse contrast-enhanced CT for preoperative tumor staging of advanced gastric cancer. © 2017 by the American Institute of Ultrasound in Medicine.

  5. Lumbar vertebral pedicles: radiologic anatomy and pathology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, N.P.; Kumar, R.; Kinkhabwala, M.

    1988-01-01

    With the advancement of high-resolution computed tomography (CT) scanning the spine has added new knowledge to the various conditions affecting the pedicles. We wish to review the entire spectrum of pedicular lesions: the embryology, normal anatomy, normal variants, pitfalls, congenital anomalies, and pathological conditions are discussed. Different imaging modalities involving CT, isotope bone scanning, and Magnetic Resonance Imaging (MRI) are used to complement plain films of the lumbar spine. This subject review is an excellent source for future reference to lumbar pedicular lesions. 27 references.

  6. Combined single photon emission computerized tomography and conventional computerized tomography: Clinical value for the shoulder surgeons?

    PubMed Central

    Hirschmann, Michael T.; Schmid, Rahel; Dhawan, Ranju; Skarvan, Jiri; Rasch, Helmut; Friederich, Niklaus F.; Emery, Roger

    2011-01-01

    With the cases described, we strive to introduce single photon emission computerized tomography in combination with conventional computer tomography (SPECT/CT) to shoulder surgeons, illustrate the possible clinical value it may offer as new diagnostic radiologic modality, and discuss its limitations. SPECT/CT may facilitate the establishment of diagnosis, process of decision making, and further treatment for complex shoulder pathologies. Some of these advantages were highlighted in cases that are frequently seen in most shoulder clinics. PMID:22058640

  7. Routine Ultrasound and Limited Computed Tomography for the Diagnosis of Acute Appendicitis

    PubMed Central

    Wiersma, Fraukje; Bakker, Rutger F. R.; Merkus, Jos W. S.; Breslau, Paul J.; Hamming, Jaap F.

    2010-01-01

    Background Acute appendicitis continues to be a challenging diagnosis. Preoperative radiological imaging using ultrasound (US) or computed tomography (CT) has gained popularity as it may offer a more accurate diagnosis than classic clinical evaluation. The optimal implementation of these diagnostic modalities has yet to be established. The aim of the present study was to investigate a diagnostic pathway that uses routine US, limited CT, and clinical re-evaluation for patients with acute appendicitis. Methods A prospective analysis was performed of all patients presenting with acute abdominal pain at the emergency department from June 2005 until July 2006 using a structured diagnosis and management flowchart. Daily practice was mimicked, while ensuring a valid assessment of clinical and radiological diagnostic accuracies and the effect they had on patient management. Results A total of 802 patients were included in this analysis. Additional radiological imaging was performed in 96.3% of patients with suspected appendicitis (n = 164). Use of CT was kept to a minimum (17.9%), with a US:CT ratio of approximately 6:1. Positive and negative predictive values for the clinical diagnosis of appendicitis were 63 and 98%, respectively; for US 94 and 97%, respectively; and for CT 100 and 100%, respectively. The negative appendicitis rate was 3.3%, the perforation rate was 23.5%, and the missed perforated appendicitis rate was 3.4%. No (diagnostic) laparoscopies were performed. Conclusions A diagnostic pathway using routine US, limited CT, and clinical re-evaluation for patients with acute abdominal pain can provide excellent results for the diagnosis and treatment of appendicitis. PMID:20582544

  8. Detection of incidental colorectal pathology on positron emission tomography/computed tomography.

    PubMed

    Mui, Milton; Akhurst, Timothy; Warrier, Satish K; Lynch, A Craig; Heriot, Alexander G

    2018-03-01

    Positron emission tomography/computed tomography (PET/CT) is an important modality in cancer imaging. With its increasing availability and use, it is not uncommon to detect incidental focal colorectal 18 F-FDG uptake which poses a diagnostic challenge, as they may be associated with malignant or pre-malignant colorectal lesions. The aim of our study is to determine the proportion of these findings which represents true pathology. Patients with incidental focal colorectal 18 F-FDG uptake on PET/CT who subsequently underwent colonoscopy between January 2002 to September 2013 were identified from a prospective database in a tertiary referral centre. PET/CT results were correlated with colonoscopy and pathology results in these patients. Positive predictive values (PPVs) and 95% confidence intervals (CIs) of PET/CT in the detection of incidental colorectal pathology were calculated. A total of 148 patients (92 men and 56 women), with a mean age 73 years (range of 36 to 93 years) were included in the study. A total of 170 foci of colorectal 18 F-FDG uptake were detected on PET/CT. Of these, 101 foci corresponded to a malignant or pre-malignant lesion (PPV 59%; 95% CI: 52-67%). On a per-patient analysis, 93 patients had at least one focus of colorectal 18 F-FDG uptake which corresponded to a pre-malignant or malignant lesion (PPV 63%; 95% CI: 54-71%). Focal colorectal 18 F-FDG uptake on PET/CT is associated with a significant proportion of malignant or pre-malignant lesions. Further evaluation with colonoscopy is recommended. © 2016 Royal Australasian College of Surgeons.

  9. WE-G-209-02: CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kofler, J.

    2016-06-15

    Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less

  10. Artefacts of PET/CT images

    PubMed Central

    Pettinato, C; Nanni, C; Farsad, M; Castellucci, P; Sarnelli, A; Civollani, S; Franchi, R; Fanti, S; Marengo, M; Bergamini, C

    2006-01-01

    Positron emission tomography (PET) is a non-invasive imaging modality, which is clinically widely used both for diagnosis and accessing therapy response in oncology, cardiology and neurology. Fusing PET and CT images in a single dataset would be useful for physicians who could read the functional and the anatomical aspects of a disease in a single shot. The use of fusion software has been replaced in the last few years by integrated PET/CT systems, which combine a PET and a CT scanner in the same gantry. CT images have the double function to correct PET images for attenuation and can fuse with PET for a better visualization and localization of lesions. The use of CT for attenuation correction yields several advantages in terms of accuracy and patient comfort, but can also introduce several artefacts on PET-corrected images. PET/CT image artefacts are due primarily to metallic implants, respiratory motion, use of contrast media and image truncation. This paper reviews different types artefacts and their correction methods. PET/CT improves image quality and image accuracy. However, to avoid possible pitfalls the simultaneous display of both Computed Tomography Attenuation Corrected (CTAC) and non corrected PET images, side by side with CT images is strongly recommended. PMID:21614340

  11. A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times

    NASA Astrophysics Data System (ADS)

    Edmund, Jens M.; Kjer, Hans M.; Van Leemput, Koen; Hansen, Rasmus H.; Andersen, Jon AL; Andreasen, Daniel

    2014-12-01

    Radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, so-called MRI-only RT, would remove the systematic registration error between MR and computed tomography (CT), and provide co-registered MRI for assessment of treatment response and adaptive RT. Electron densities, however, need to be assigned to the MRI images for dose calculation and patient setup based on digitally reconstructed radiographs (DRRs). Here, we investigate the geometric and dosimetric performance for a number of popular voxel-based methods to generate a so-called pseudo CT (pCT). Five patients receiving cranial irradiation, each containing a co-registered MRI and CT scan, were included. An ultra short echo time MRI sequence for bone visualization was used. Six methods were investigated for three popular types of voxel-based approaches; (1) threshold-based segmentation, (2) Bayesian segmentation and (3) statistical regression. Each approach contained two methods. Approach 1 used bulk density assignment of MRI voxels into air, soft tissue and bone based on logical masks and the transverse relaxation time T2 of the bone. Approach 2 used similar bulk density assignments with Bayesian statistics including or excluding additional spatial information. Approach 3 used a statistical regression correlating MRI voxels with their corresponding CT voxels. A similar photon and proton treatment plan was generated for a target positioned between the nasal cavity and the brainstem for all patients. The CT agreement with the pCT of each method was quantified and compared with the other methods geometrically and dosimetrically using both a number of reported metrics and introducing some novel metrics. The best geometrical agreement with CT was obtained with the statistical regression methods which performed significantly better than the threshold and Bayesian segmentation methods (excluding spatial information). All methods agreed significantly better with CT than a reference water MRI comparison. The mean dosimetric deviation for photons and protons compared to the CT was about 2% and highest in the gradient dose region of the brainstem. Both the threshold based method and the statistical regression methods showed the highest dosimetrical agreement. Generation of pCTs using statistical regression seems to be the most promising candidate for MRI-only RT of the brain. Further, the total amount of different tissues needs to be taken into account for dosimetric considerations regardless of their correct geometrical position.

  12. MO-B-BRC-01: Introduction [Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prisciandaro, J.

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less

  13. Changing Utilization of Noninvasive Diagnostic Imaging Over 2 Decades: An Examination Family-Focused Analysis of Medicare Claims Using the Neiman Imaging Types of Service Categorization System.

    PubMed

    Rosman, David A; Duszak, Richard; Wang, Wenyi; Hughes, Danny R; Rosenkrantz, Andrew B

    2018-02-01

    The objective of our study was to use a new modality and body region categorization system to assess changing utilization of noninvasive diagnostic imaging in the Medicare fee-for-service population over a recent 20-year period (1994-2013). All Medicare Part B Physician Fee Schedule services billed between 1994 and 2013 were identified using Physician/Supplier Procedure Summary master files. Billed codes for diagnostic imaging were classified using the Neiman Imaging Types of Service (NITOS) coding system by both modality and body region. Utilization rates per 1000 beneficiaries were calculated for families of services. Among all diagnostic imaging modalities, growth was greatest for MRI (+312%) and CT (+151%) and was lower for ultrasound, nuclear medicine, and radiography and fluoroscopy (range, +1% to +31%). Among body regions, service growth was greatest for brain (+126%) and spine (+74%) imaging; showed milder growth (range, +18% to +67%) for imaging of the head and neck, breast, abdomen and pelvis, and extremity; and showed slight declines (range, -2% to -7%) for cardiac and chest imaging overall. The following specific imaging service families showed massive (> +100%) growth: cardiac CT, cardiac MRI, and breast MRI. NITOS categorization permits identification of temporal shifts in noninvasive diagnostic imaging by specific modality- and region-focused families, providing a granular understanding and reproducible analysis of global changes in imaging overall. Service family-level perspectives may help inform ongoing policy efforts to optimize imaging utilization and appropriateness.

  14. MO-B-BRC-04: MRI-Based Prostate HDR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mourtada, F.

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less

  15. MO-B-BRC-02: Ultrasound Based Prostate HDR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Z.

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less

  16. Temporal resolution and motion artifacts in single-source and dual-source cardiac CT.

    PubMed

    Schöndube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas

    2013-03-01

    The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same amount of data being used in the reconstruction process. The concept of assessing temporal resolution by means of the data employed for reconstruction can nicely be extended from single-source to dual-source CT. However, for advanced (possibly nonlinear iterative) reconstruction algorithms the examined approach fails to deliver accurate results. New methods and measures to assess the temporal resolution of CT images need to be developed to be able to accurately compare the performance of such algorithms.

  17. [18F]fluoroethylcholine-PET/CT imaging for radiation treatment planning of recurrent and primary prostate cancer with dose escalation to PET/CT-positive lymph nodes.

    PubMed

    Würschmidt, Florian; Petersen, Cordula; Wahl, Andreas; Dahle, Jörg; Kretschmer, Matthias

    2011-05-01

    At present there is no consensus on irradiation treatment volumes for intermediate to high-risk primary cancers or recurrent disease. Conventional imaging modalities, such as CT, MRI and transrectal ultrasound, are considered suboptimal for treatment decisions. Choline-PET/CT might be considered as the imaging modality in radiooncology to select and delineate clinical target volumes extending the prostate gland or prostate fossa. In conjunction with intensity modulated radiotherapy (IMRT) and imaged guided radiotherapy (IGRT), it might offer the opportunity of dose escalation to selected sites while avoiding unnecessary irradiation of healthy tissues. Twenty-six patients with primary (n = 7) or recurrent (n = 19) prostate cancer received Choline-PET/CT planned 3D conformal or intensity modulated radiotherapy. The median age of the patients was 65 yrs (range 45 to 78 yrs). PET/CT-scans with F18-fluoroethylcholine (FEC) were performed on a combined PET/CT-scanner equipped for radiation therapy planning. The majority of patients had intermediate to high risk prostate cancer. All patients received 3D conformal or intensity modulated and imaged guided radiotherapy with megavoltage cone beam CT. The median dose to primary tumours was 75.6 Gy and to FEC-positive recurrent lymph nodal sites 66,6 Gy. The median follow-up time was 28.8 months. The mean SUV(max) in primary cancer was 5,97 in the prostate gland and 3,2 in pelvic lymph nodes. Patients with recurrent cancer had a mean SUV(max) of 4,38. Two patients had negative PET/CT scans. At 28 months the overall survival rate is 94%. Biochemical relapse free survival is 83% for primary cancer and 49% for recurrent tumours. Distant disease free survival is 100% and 75% for primary and recurrent cancer, respectively. Acute normal tissue toxicity was mild in 85% and moderate (grade 2) in 15%. No or mild late side effects were observed in the majority of patients (84%). One patient had a severe bladder shrinkage (grade 4) after a previous treatment with TUR of the prostate and seed implantation. FEC-PET/CT planning could be helpful in dose escalation to lymph nodal sites of prostate cancer.

  18. Diagnostic Accuracy of MRI Versus CT for the Evaluation of Acute Appendicitis in Children and Young Adults.

    PubMed

    Kinner, Sonja; Pickhardt, Perry J; Riedesel, Erica L; Gill, Kara G; Robbins, Jessica B; Kitchin, Douglas R; Ziemlewicz, Timothy J; Harringa, John B; Reeder, Scott B; Repplinger, Michael D

    2017-10-01

    Appendicitis is frequently diagnosed in the emergency department, most commonly using CT. The purpose of this study was to compare the diagnostic accuracy of contrast-enhanced MRI with that of contrast-enhanced CT for the diagnosis of appendicitis in adolescents when interpreted by abdominal radiologists and pediatric radiologists. Our study included a prospectively enrolled cohort of 48 patients (12-20 years old) with nontraumatic abdominal pain who underwent CT and MRI. Fellowship-trained abdominal and pediatric radiologists reviewed all CT and MRI studies in randomized order, blinded to patient outcome. Likelihood for appendicitis was rated on a 5-point scale (1, definitely not appendicitis; 5, definitely appendicitis) for CT, the unenhanced portion of the MRI, and the entire contrast-enhanced MRI study. ROC curves were generated and AUC compared for each scan type for all six readers and then stratified by radiologist type. Image test characteristics, interrater reliability, and reading times were compared. Sensitivity and specificity were 85.9% (95% CI, 76.2-92.7%) and 93.8% (95% CI, 89.7-96.7%) for unenhanced MRI, 93.6% (95% CI, 85.6-97.9%) and 94.3% (95% CI, 90.2-97%) for contrast-enhanced MRI, and 93.6% (95% CI, 85.6-97.9%) and 94.3% (95% CI, 90.2-97%) for CT. No difference was found in the diagnostic accuracy or interpretation time when comparing abdominal radiologists to pediatric radiologists (CT, 3.0 min vs 2.8 min; contrast-enhanced MRI, 2.4 min vs 1.8 min; unenhanced MRI, 1.5 min vs 2.3 min). Substantial agreement between abdominal and pediatric radiologists was seen for all methods (κ = 0.72-0.83). The diagnostic accuracy of MRI to diagnose appendicitis was very similar to CT. No statistically significant difference in accuracy was observed between imaging modality or radiologist subspecialty.

  19. WE-H-206-03: Promises and Challenges of Benchtop X-Ray Fluorescence CT (XFCT) for Quantitative in Vivo Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, S.

    Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffersmore » from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed significantly to biomedical research during the past decade. The initial development was an extension of clinical PET/CT and SPECT/CT from human to small animals and combine the unique functional information obtained from PET and SPECT with anatomical information provided by the CT in registered multi-modality images. The requirements to image a mouse whose size is an order of magnitude smaller than that of a human have spurred advances in new radiation detector technologies, novel imaging system designs and special image reconstruction and processing techniques. Examples are new detector materials and designs with high intrinsic resolution, multi-pinhole (MPH) collimator design for much improved resolution and detection efficiency compared to the conventional collimator designs in SPECT, 3D high-resolution and artifact-free MPH and sparse-view image reconstruction techniques, and iterative image reconstruction methods with system response modeling for resolution recovery and image noise reduction for much improved image quality. The spatial resolution of PET and SPECT has improved from ∼6–12 mm to ∼1 mm a few years ago to sub-millimeter today. A recent commercial small animal SPECT system has achieved a resolution of ∼0.25 mm which surpasses that of a state-of-art PET system whose resolution is limited by the positron range. More recently, multimodality SA PET/MRI and SPECT/MRI systems have been developed in research laboratories. Also, multi-modality SA imaging systems that include other imaging modalities such as optical and ultrasound are being actively pursued. In this presentation, we will provide a review of the development, recent advances and future outlook of multi-modality molecular imaging of small animals. Learning Objectives: To learn about the two major multi-modality molecular imaging techniques of small animals. To learn about the spatial resolution achievable by the molecular imaging systems for small animal today. To learn about the new multi-modality imaging instrumentation and techniques that are being developed. Sang Hyun Cho; X-ray fluorescence (XRF) imaging, such as x-ray fluorescence computed tomography (XFCT), offers unique capabilities for accurate identification and quantification of metals within the imaging objects. As a result, it has emerged as a promising quantitative imaging modality in recent years, especially in conjunction with metal-based imaging probes. This talk will familiarize the audience with the basic principles of XRF/XFCT imaging. It will also cover the latest development of benchtop XFCT technology. Additionally, the use of metallic nanoparticles such as gold nanoparticles, in conjunction with benchtop XFCT, will be discussed within the context of preclinical multimodal multiplexed molecular imaging. Learning Objectives: To learn the basic principles of XRF/XFCT imaging To learn the latest advances in benchtop XFCT development for preclinical imaging Funding support received from NIH and DOD; Funding support received from GE Healthcare; Funding support received from Siemens AX; Patent royalties received from GE Healthcare; L. Wang, Funding Support: NIH; COI: Microphotoacoustics; S. Cho, Yes: ;NIH/NCI grant R01CA155446 DOD/PCRP grant W81XWH-12-1-0198.« less

  20. Imaging Characteristics of Children with Auditory Neuropathy Spectrum Disorder

    PubMed Central

    Roche, Joseph P.; Huang, Benjamin Y.; Castillo, Mauricio; Bassim, Marc K.; Adunka, Oliver F.; Buchman, Craig A.

    2013-01-01

    Objective To identify and define the imaging characteristics of children with auditory neuropathy spectrum disorder (ANSD). Design Retrospective medical records review and analysis of both temporal bone computed tomography (CT) and magnetic resonance images (MRI) in from children with the diagnosis of ANSD. Setting Tertiary referral center. Patients 118 children with the electrophysiological characteristics of ANSD with available imaging studies for review. Interventions Two neuroradiologists and a neurotologist reviewed each study and consensus descriptions were established. Main outcome measures The type and number of imaging findings were tabulated. Results Sixty-eight (64%) MRIs revealed at least one imaging abnormality while selective use of CT identified 23 (55%) with anomalies. The most prevalent MRI findings included cochlear nerve deficiency (n=51; 28% of 183 nerves), brain abnormalities (n=42; 40% of 106 brains) and prominent temporal horns (n=33, 16% of 212 temporal lobes). The most prevalent CT finding from selective use of CT was cochlear dysplasia (n=13; 31%). Conclusions MRI will identify many abnormalities in children with ANSD that are not readily discernable on CT. Specifically, both developmental and acquired abnormalities of the brain, posterior cranial fossa, and cochlear nerves are not uncommonly seen in this patient population. Inner ear anomalies are well delineated using either imaging modality. Since many of the central nervous system findings identified in this study using MRI can alter the treatment and prognosis for these children, we believe that MRI should be the initial imaging study of choice for children with ANSD. PMID:20593543

  1. Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 4. Medical Imaging Procedures.

    PubMed

    Byrum, Russell; Keith, Lauren; Bartos, Christopher; St Claire, Marisa; Lackemeyer, Matthew G; Holbrook, Michael R; Janosko, Krisztina; Barr, Jason; Pusl, Daniela; Bollinger, Laura; Wada, Jiro; Coe, Linda; Hensley, Lisa E; Jahrling, Peter B; Kuhn, Jens H; Lentz, Margaret R

    2016-10-03

    Medical imaging using animal models for human diseases has been utilized for decades; however, until recently, medical imaging of diseases induced by high-consequence pathogens has not been possible. In 2014, the National Institutes of Health, National Institute of Allergy and Infectious Diseases, Integrated Research Facility at Fort Detrick opened an Animal Biosafety Level 4 (ABSL-4) facility to assess the clinical course and pathology of infectious diseases in experimentally infected animals. Multiple imaging modalities including computed tomography (CT), magnetic resonance imaging, positron emission tomography, and single photon emission computed tomography are available to researchers for these evaluations. The focus of this article is to describe the workflow for safely obtaining a CT image of a live guinea pig in an ABSL-4 facility. These procedures include animal handling, anesthesia, and preparing and monitoring the animal until recovery from sedation. We will also discuss preparing the imaging equipment, performing quality checks, communication methods from "hot side" (containing pathogens) to "cold side," and moving the animal from the holding room to the imaging suite.

  2. Imaging of brain metastases.

    PubMed

    Fink, Kathleen R; Fink, James R

    2013-01-01

    Imaging plays a key role in the diagnosis of central nervous system (CNS) metastasis. Imaging is used to detect metastases in patients with known malignancies and new neurological signs or symptoms, as well as to screen for CNS involvement in patients with known cancer. Computed tomography (CT) and magnetic resonance imaging (MRI) are the key imaging modalities used in the diagnosis of brain metastases. In difficult cases, such as newly diagnosed solitary enhancing brain lesions in patients without known malignancy, advanced imaging techniques including proton magnetic resonance spectroscopy (MRS), contrast enhanced magnetic resonance perfusion (MRP), diffusion weighted imaging (DWI), and diffusion tensor imaging (DTI) may aid in arriving at the correct diagnosis. This image-rich review discusses the imaging evaluation of patients with suspected intracranial involvement and malignancy, describes typical imaging findings of parenchymal brain metastasis on CT and MRI, and provides clues to specific histological diagnoses such as the presence of hemorrhage. Additionally, the role of advanced imaging techniques is reviewed, specifically in the context of differentiating metastasis from high-grade glioma and other solitary enhancing brain lesions. Extra-axial CNS involvement by metastases, including pachymeningeal and leptomeningeal metastases is also briefly reviewed.

  3. A graph-based approach for the retrieval of multi-modality medical images.

    PubMed

    Kumar, Ashnil; Kim, Jinman; Wen, Lingfeng; Fulham, Michael; Feng, Dagan

    2014-02-01

    In this paper, we address the retrieval of multi-modality medical volumes, which consist of two different imaging modalities, acquired sequentially, from the same scanner. One such example, positron emission tomography and computed tomography (PET-CT), provides physicians with complementary functional and anatomical features as well as spatial relationships and has led to improved cancer diagnosis, localisation, and staging. The challenge of multi-modality volume retrieval for cancer patients lies in representing the complementary geometric and topologic attributes between tumours and organs. These attributes and relationships, which are used for tumour staging and classification, can be formulated as a graph. It has been demonstrated that graph-based methods have high accuracy for retrieval by spatial similarity. However, naïvely representing all relationships on a complete graph obscures the structure of the tumour-anatomy relationships. We propose a new graph structure derived from complete graphs that structurally constrains the edges connected to tumour vertices based upon the spatial proximity of tumours and organs. This enables retrieval on the basis of tumour localisation. We also present a similarity matching algorithm that accounts for different feature sets for graph elements from different imaging modalities. Our method emphasises the relationships between a tumour and related organs, while still modelling patient-specific anatomical variations. Constraining tumours to related anatomical structures improves the discrimination potential of graphs, making it easier to retrieve similar images based on tumour location. We evaluated our retrieval methodology on a dataset of clinical PET-CT volumes. Our results showed that our method enabled the retrieval of multi-modality images using spatial features. Our graph-based retrieval algorithm achieved a higher precision than several other retrieval techniques: gray-level histograms as well as state-of-the-art methods such as visual words using the scale- invariant feature transform (SIFT) and relational matrices representing the spatial arrangements of objects. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Impact of 68Ga-DOTA-Peptide PET/CT on the Management of Gastrointestinal Neuroendocrine Tumour (GI-NET): Malaysian National Referral Centre Experience.

    PubMed

    Tan, Teik Hin; Boey, Ching Yeen; Lee, Boon Nang

    2018-04-01

    The National Cancer Institute is the only referral centre in Malaysia that provides 68 Ga-DOTA-peptide imaging. The purpose of this study is to determine the impact of 68 Ga-DOTA-peptide PET/CT on the management of gastrointestinal neuroendocrine tumours (GI-NET). A cross-sectional study was performed to review the impact of 68 Ga-DOTA-peptide ( 68 Ga-DOTATATE or 68 Ga-DOTATOC) PET/CT on patients with biopsy-proven GI-NET between January 2011 and December 2015. Suspected NET was excluded. Demographic data, tumoral characteristics, change of disease stage, pre-PET intended management and post-PET management were evaluated. Over a 5-year period, 82 studies of 68 Ga-DOTA-peptide PET/CT were performed on 44 GI-NET patients. The most common primary site was the rectum (50.0%) followed by the small bowel, stomach and colon. Using WHO 2010 grading, 40.9% of patients had low-grade (G1) tumour, 22.7% intermediate (G2) and 4.5% high (G3). Of ten patients scheduled for pre-operative staging, 68 Ga-DOTA-peptide PET/CT only led to therapeutic change in three patients. Furthermore, false-negative results of 68 Ga-DOTA-peptide PET/CT were reported in one patient after surgical confirmation. However, therapeutic changes were seen in 20/36 patients (55.6%) scheduled for post-surgical restaging or assessment of somatostatin analogue (SSA) eligibility. When 68 Ga-DOTA-peptide PET/CT was used for monitoring disease progress during systemic treatment (sandostatin, chemotherapy, everolimus and PRRT) in metastatic disease, impact on management modification was seen in 19/36 patients (52.8%), of which 84.2% had inter-modality change (switch to everolimus, chemotherapy or PRRT) and 15.8% had intra-modality change (increased SSA dosage). 68 Ga-DOTA-peptide PET/CT has a significant impact on management decisions in GI-NET patients as it can provide additional information on occult metastasis/equivocal lesions and supply the clinician an opportunity to select patients for targeted therapy.

  5. 3D ultrasonography is as accurate as low-dose CT in thyroid volumetry.

    PubMed

    Licht, K; Darr, A; Opfermann, T; Winkens, T; Freesmeyer, M

    2014-01-01

    The purpose of this study was to compare thyroid volumetry by three-dimensional mechanically swept ultrasonography (3DmsUS) and low-dose computed tomography (ldCT). 30 subjects referred for radioiodine therapy of benign thyroid diseases were subjected to 3DmsUS and ldCT. A prerequisite of 3DmsUS analyses was that the scans had to capture the entire thyroid, excluding therefore cases with a very large volume or retrosternal portions. The 3DmsUS data were transformed into a DICOM format, and volumetry calculations were performed via a multimodal workstation equipped with standard software for cross-sectional imaging. Volume was calculated applying both the ellipsoid model and a manually tracing method. Statistical analyses included 95% confidence intervals (CI) of the means and limits of agreement according to Bland and Altman, the latter including 95% of all expected values. Volumetric measurements by 3DmsUS and ldCT resulted in very high, significant correlation coefficients, r = 0.997 using the ellipsoid model and r = 0.993 with the manually tracing method. The mean relative differences of the two imaging modalities proved very small (-1.2±4.0% [95% CI -2.62; 0.28] using the ellipsoid model; -1.1±5.2% [95% CI -2.93; 0.80] using the manually tracing method) and the limits of agreement sufficiently narrow (-9.1% to 6.8%; -11.3% to 9.2%, respectively). For moderately enlarged thyroids, volumetry with 3DmsUS proved comparable to that of ldCT, irrespective of whether the ellipsoid model or the manually tracing method was applied. Thus, 3DmsUS qualifies as a potential alternative to ldCT, provided that the organ is completely accessible. The use of a standard workstation for cross-sectional imaging with routine software did not prove problematic.

  6. SU-E-J-189: Credentialing of IGRT Equipment and Processes for Clinical Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Court, L; Aristophanous, M; Followill, D

    2014-06-01

    Purpose: Current dosimetry phantoms used for clinical trial credentialing do not directly assess IGRT processes. This work evaluates a custom-built IGRT phantom for credentialing of multiple IGRT modalities and processes. Methods: An IGRT phantom was built out of a low-density body with two inserts. Insert A is used for the CT simulation. Insert B is used for the actual treatment. The inserts contain identical targets in different locations. Relative positions are unknown to the user. The user simulates the phantom (with insert A) as they would a patient, including marking the phantom. A treatment plan is created and sent tomore » the treatment unit. The phantom (with insert B) is then positioned using local IGRT practice. Shifts (planned isocenter, if applicable, and final isocenter) are marked on the phantom using room lasers. The mechanical reproducibility of re-inserting the inserts within the phantom body was tested using repeat high-resolution CT scans. The phantom was tested at 7 centers, selected to include a wide variety of imaging equipment. Results: Mechanical reproducibility was measured as 0.5-0.9mm, depending on the direction. Approaches tested to mark (and transfer) simulation isocenter included lasers, fiducials and reflective markers. IGRT approaches included kV imaging (Varian Trilogy, Brainlab ExacTrac), kV CT (CT-on-rails), kV CBCT (Varian Trilogy, Varian Truebeam, Elekta Agility) and MV CT (Tomotherapy). Users were able to successfully use this phantom for all combinations of equipment and processes. IGRT-based shifts agreed with the truth within 0.8mm, 0.8mm and 1.9mm in the LR, AP, and SI directions, respectively. Conclusion: Based on these preliminary results, the IGRT phantom can be used for credentialing of clinical trials with an action level of 1mm in AP and LR directions, and 2mm in the SI direction, consistent with TG142. We are currently testing with additional institutions with different equipment and processes, including Cyberknife. This project was funded by the Cancer Prevention Research Institute of Texas.« less

  7. Hybrid SPECT-CT and PET-CT imaging of differentiated thyroid carcinoma.

    PubMed

    Wong, K K; Zarzhevsky, N; Cahill, J M; Frey, K A; Avram, A M

    2009-10-01

    Hybrid imaging modalities such as radioiodine single photon emission CT with integrated CT ((131)I SPECT-CT) and 2-(fluorine-18)-fluoro-2-deoxy-D-glucose positron emission tomography with integrated CT (FDG PET-CT) allow the rapid and efficient fusion of functional and anatomic images, and provide diagnostic information that may influence management decisions in patients with differentiated thyroid carcinoma (DTC). Diagnostic localisation and therapy of these tumours are dependent upon their capacity to concentrate radioiodine ((131)I) via uptake through the sodium-iodide symporter and retention within the tumour. The prognosis for most patients with DTC is favourable, although controversy exists regarding the role of post-operative (131)I therapy in patients at low-risk for disease. Accurate identification of functional thyroid tissue (benign or malignant) using diagnostic (131)I planar scintigraphy complemented by SPECT-CT imaging enables the completion of post-operative staging and patient risk stratification prior to (131)I therapy administration. In patients with non-iodine-avid tumours (negative (131)I scan but elevated thyroglobulin indicative of persistent or recurrent disease), FDG PET-CT is used to identify tumours with enhanced glucose metabolism and to localise the source of thyroglobulin production. The CT component of this hybrid technology provides anatomic localisation of activity and allows CT-based attenuation correction of PET images. Images from 15 patients illustrate the applications of (131)I SPECT-CT and FDG PET-CT.

  8. Comparison of standard radiography and computed tomography in 21 dogs with maxillary masses.

    PubMed

    Ghirelli, Carolina O; Villamizar, Lenin A; Pinto, Ana Carolina B C Fonseca

    2013-01-01

    Imaging of patients with oral cancer is required to determine tumor extension in order to assist in prognosis and surgical planning. Conventional screen-film radiography (SFR) used to be the most common method for oral assessment, but computed tomography (CT) has become more available and is being used for obtaining complementary information. CT examinations eliminate superimposition by acquiring cross-sectional images of the region of interest. The objective of this study was to determine the diagnostic value of SFR compared with CT examinations for evaluation of oral masses in dogs. Twenty-one dogs received head and thorax SFR, and pre- and post-contrast head CT. Bony changes were observed in 80.9% and 95.2% of the cases in SFR and CT studies, respectively. Invasion of adjacent structures (i.e. nasal cavity, frontal and sphenoidal sinuses, orbit, maxillary recess, nasopharynx) was observed in only 30% of cases with SFR while CT showed 90.4% involvement. CT is an important preoperative examination modality and is more effective in identifying bone changes and tumor invasion of adjacent structures compared with SFR.

  9. Preoperative evaluation of patients with squamous cell carcinoma of the oral cavity: fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography and ultrasonography versus histopathology.

    PubMed

    Sugawara, Chieko; Takahashi, Akira; Kubo, Michiko; Otsuka, Hideki; Ishimaru, Naozumi; Miyamoto, Youji; Honda, Eiichi

    2012-10-01

    The purpose of this retrospective study was to compare fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) and ultrasonography (US) in the staging of patients with squamous cell carcinoma of the oral cavity. We compared preoperative evaluations regarding lymph nodes using PET/CT, US, and both methods. The cutoff for the maximum standardized uptake value (SUV(max)) in PET/CT was set at 2.7 by a receiver operating characteristic analysis that was based on the histopathological diagnosis. US was used to examine internal structural changes on B-mode and hilar vascularity on power Doppler. The performance of PET/CT and US in combination was better than that of each modality separately. However, there were histopathological changes that could not be detected on PET/CT or US. PET/CT could not detect nodes with necrotic or cystic changes. US could not detect lymph nodes that did not have abnormal structures. PET/CT and US are complementary tools to evaluate preoperative patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Dual-energy computed tomographic virtual noncalcium algorithm for detection of bone marrow edema in acute fractures: early experiences.

    PubMed

    Reagan, Adrian C; Mallinson, Paul I; O'Connell, Timothy; McLaughlin, Patrick D; Krauss, Bernhard; Munk, Peter L; Nicolaou, Savvas; Ouellette, Hugue A

    2014-01-01

    Computed tomography (CT) is often used to assess the presence of occult fractures when plain radiographs are equivocal in the acute traumatic setting. While providing increased spatial resolution, conventional computed tomography is limited in the assessment of bone marrow edema, a finding that is readily detectable on magnetic resonance imaging (MRI).Dual-energy CT has recently been shown to demonstrate patterns of bone marrow edema similar to corresponding MRI studies. Dual-energy CT may therefore provide a convenient modality for further characterizing acute bony injury when MRI is not readily available. We report our initial experiences of 4 cases with imaging and clinical correlation.

  11. Applications of PET CT in clinical practice: Present and future

    NASA Astrophysics Data System (ADS)

    Costa, Durval Campos

    2007-02-01

    Radionuclide imaging and specially positron emission tomography (PET) has already demonstrated its benefits in three major medical subjects, i.e. neurology, cardiology and particularly clinical oncology. More recently the combination of PET and X-ray computed tomography (CT) as PET-CT led to a significant increment of the already large number of clinical applications of this imaging modality. This "anatomy-metabolic fusion" also known as Metabolic Imaging has its future assured if we can: (1) improve resolution reducing partial volume effect, (2) achieve very fast whole body imaging, (3) obtain accurate quantification of specific functions with higher contrast resolution and, if possible, (4) reduce exposure rates due to the unavoidable use of ionizing radiation.

  12. Interesting X-ray and computed tomography images of a cervical trauma patient.

    PubMed

    Kalkan, Havva; Emlik, Ganime Dilek; Sivri, Mesut

    2016-01-01

    Patients admitted to emergency departments with loss of consciousness following trauma often have cervical vertebrae fractures and spinal cord injuries with a ratio of 5-10%. Computed tomography (CT) and radiography are important for diagnosis. The aim of this study was to describe the interesting CT and radiography findings of a patient who had C3-4 dislocation anddistraction that was called shearing injury. C3 and C4 were seperated, but there was no fracture or major vascular injuries. Images were interesting. NEXUS and Canadian Rules were also referred to for clinical evaluation. Imaging modalities, espacially reformatted CT images, make it easier to diagnose where and what the problem is.

  13. Speed- and Circuit-Based High-Intensity Interval Training on Recovery Oxygen Consumption

    PubMed Central

    SCHLEPPENBACH, LINDSAY N.; EZER, ANDREAS B.; GRONEMUS, SARAH A.; WIDENSKI, KATELYN R.; BRAUN, SAORI I.; JANOT, JEFFREY M.

    2017-01-01

    Due to the current obesity epidemic in the United States, there is growing interest in efficient, effective ways to increase energy expenditure and weight loss. Research has shown that high-intensity exercise elicits a higher Excess Post-Exercise Oxygen Consumption (EPOC) throughout the day compared to steady-state exercise. Currently, there is no single research study that examines the differences in Recovery Oxygen Consumption (ROC) resulting from high-intensity interval training (HIIT) modalities. The purpose of this study is to review the impact of circuit training (CT) and speed interval training (SIT), on ROC in both regular exercising and sedentary populations. A total of 26 participants were recruited from the UW-Eau Claire campus and divided into regularly exercising and sedentary groups, according to self-reported exercise participation status. Oxygen consumption was measured during and after two HIIT sessions and was used to estimate caloric expenditure. There was no significant difference in caloric expenditure during and after exercise among individuals who regularly exercise and individuals who are sedentary. There was also no significant difference in ROC between regular exercisers and sedentary or between SIT and CT. However, there was a significantly higher caloric expenditure in SIT vs. CT regardless of exercise status. It is recommended that individuals engage in SIT vs. CT when the goal is to maximize overall caloric expenditure. With respect to ROC, individuals can choose either modalities of HIIT to achieve similar effects on increased oxygen consumption post-exercise. PMID:29170696

  14. Speed- and Circuit-Based High-Intensity Interval Training on Recovery Oxygen Consumption.

    PubMed

    Schleppenbach, Lindsay N; Ezer, Andreas B; Gronemus, Sarah A; Widenski, Katelyn R; Braun, Saori I; Janot, Jeffrey M

    2017-01-01

    Due to the current obesity epidemic in the United States, there is growing interest in efficient, effective ways to increase energy expenditure and weight loss. Research has shown that high-intensity exercise elicits a higher Excess Post-Exercise Oxygen Consumption (EPOC) throughout the day compared to steady-state exercise. Currently, there is no single research study that examines the differences in Recovery Oxygen Consumption (ROC) resulting from high-intensity interval training (HIIT) modalities. The purpose of this study is to review the impact of circuit training (CT) and speed interval training (SIT), on ROC in both regular exercising and sedentary populations. A total of 26 participants were recruited from the UW-Eau Claire campus and divided into regularly exercising and sedentary groups, according to self-reported exercise participation status. Oxygen consumption was measured during and after two HIIT sessions and was used to estimate caloric expenditure. There was no significant difference in caloric expenditure during and after exercise among individuals who regularly exercise and individuals who are sedentary. There was also no significant difference in ROC between regular exercisers and sedentary or between SIT and CT. However, there was a significantly higher caloric expenditure in SIT vs. CT regardless of exercise status. It is recommended that individuals engage in SIT vs. CT when the goal is to maximize overall caloric expenditure. With respect to ROC, individuals can choose either modalities of HIIT to achieve similar effects on increased oxygen consumption post-exercise.

  15. MRI and hybrid PET/CT for monitoring tumour metastasis in a metastatic breast cancer model in rabbit.

    PubMed

    Wang, Ling; Yao, Qing; Wang, Jing; Wei, Guangquan; Li, Guoquan; Li, Dong; Ling, Rui; Chen, Jianghao

    2008-02-01

    To study tumour growth and metastasis in a rabbit metastatic breast cancer (MBC) model and find the most sensitive screening modality in monitoring tumour metastasis. The MBC model was established by injecting a VX2 tumour mass suspension into the mammary glands of 23 rabbits and was monitored by using physical examination, X-ray, MRI and hybrid PET/CT. Of all 23 rabbits, axillary lymph node metastasis was detected in 21 (91%) at day 33 after tumour inoculation, mediastinal node metastasis in five (22%) at day 42, abdominal node metastasis in two (9%) at day 48, lung metastasis in six (26%) at day 39, liver metastasis in three (13%) at day 48, and lumbar spine metastasis in one (4%) at day 51. Tumour invasion of pleura was found in one, stomach wall in one, and pleura and stomach concurrently in one rabbit. Sensitivity for detection of lymph node metastases was 78.6% (22/28) and 67.9% (19/28) with MRI and PET/CT, respectively; and sensitivity for detection of metastases in distant organs was 85.7% (12/14) and 71.4% (10/14), respectively. The MBC model used here exhibits fast tumour growth and extensive metastasis in a relatively short period. Its metastatic pattern is quite similar to that of human MBC and hence could be potentially used as a model for testing imaging modalities and translational research, e.g., MBC management. MRI is superior to PET/CT in monitoring tumour metastasis.

  16. Quantitative computed tomography for the prediction of pulmonary function after lung cancer surgery: a simple method using simulation software.

    PubMed

    Ueda, Kazuhiro; Tanaka, Toshiki; Li, Tao-Sheng; Tanaka, Nobuyuki; Hamano, Kimikazu

    2009-03-01

    The prediction of pulmonary functional reserve is mandatory in therapeutic decision-making for patients with resectable lung cancer, especially those with underlying lung disease. Volumetric analysis in combination with densitometric analysis of the affected lung lobe or segment with quantitative computed tomography (CT) helps to identify residual pulmonary function, although the utility of this modality needs investigation. The subjects of this prospective study were 30 patients with resectable lung cancer. A three-dimensional CT lung model was created with voxels representing normal lung attenuation (-600 to -910 Hounsfield units). Residual pulmonary function was predicted by drawing a boundary line between the lung to be preserved and that to be resected, directly on the lung model. The predicted values were correlated with the postoperative measured values. The predicted and measured values corresponded well (r=0.89, p<0.001). Although the predicted values corresponded with values predicted by simple calculation using a segment-counting method (r=0.98), there were two outliers whose pulmonary functional reserves were predicted more accurately by CT than by segment counting. The measured pulmonary functional reserves were significantly higher than the predicted values in patients with extensive emphysematous areas (<-910 Hounsfield units), but not in patients with chronic obstructive pulmonary disease. Quantitative CT yielded accurate prediction of functional reserve after lung cancer surgery and helped to identify patients whose functional reserves are likely to be underestimated. Hence, this modality should be utilized for patients with marginal pulmonary function.

  17. Probabilistic sparse matching for robust 3D/3D fusion in minimally invasive surgery.

    PubMed

    Neumann, Dominik; Grbic, Sasa; John, Matthias; Navab, Nassir; Hornegger, Joachim; Ionasec, Razvan

    2015-01-01

    Classical surgery is being overtaken by minimally invasive and transcatheter procedures. As there is no direct view or access to the affected anatomy, advanced imaging techniques such as 3D C-arm computed tomography (CT) and C-arm fluoroscopy are routinely used in clinical practice for intraoperative guidance. However, due to constraints regarding acquisition time and device configuration, intraoperative modalities have limited soft tissue image quality and reliable assessment of the cardiac anatomy typically requires contrast agent, which is harmful to the patient and requires complex acquisition protocols. We propose a probabilistic sparse matching approach to fuse high-quality preoperative CT images and nongated, noncontrast intraoperative C-arm CT images by utilizing robust machine learning and numerical optimization techniques. Thus, high-quality patient-specific models can be extracted from the preoperative CT and mapped to the intraoperative imaging environment to guide minimally invasive procedures. Extensive quantitative experiments on 95 clinical datasets demonstrate that our model-based fusion approach has an average execution time of 1.56 s, while the accuracy of 5.48 mm between the anchor anatomy in both images lies within expert user confidence intervals. In direct comparison with image-to-image registration based on an open-source state-of-the-art medical imaging library and a recently proposed quasi-global, knowledge-driven multi-modal fusion approach for thoracic-abdominal images, our model-based method exhibits superior performance in terms of registration accuracy and robustness with respect to both target anatomy and anchor anatomy alignment errors.

  18. Imaging of the hip joint. Computed tomography versus magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Lang, P.; Genant, H. K.; Jergesen, H. E.; Murray, W. R.

    1992-01-01

    The authors reviewed the applications and limitations of computed tomography (CT) and magnetic resonance (MR) imaging in the assessment of the most common hip disorders. Magnetic resonance imaging is the most sensitive technique in detecting osteonecrosis of the femoral head. Magnetic resonance reflects the histologic changes associated with osteonecrosis very well, which may ultimately help to improve staging. Computed tomography can more accurately identify subchondral fractures than MR imaging and thus remains important for staging. In congenital dysplasia of the hip, the position of the nonossified femoral head in children less than six months of age can only be inferred by indirect signs on CT. Magnetic resonance imaging demonstrates the cartilaginous femoral head directly without ionizing radiation. Computed tomography remains the imaging modality of choice for evaluating fractures of the hip joint. In some patients, MR imaging demonstrates the fracture even when it is not apparent on radiography. In neoplasm, CT provides better assessment of calcification, ossification, and periosteal reaction than MR imaging. Magnetic resonance imaging, however, represents the most accurate imaging modality for evaluating intramedullary and soft-tissue extent of the tumor and identifying involvement of neurovascular bundles. Magnetic resonance imaging can also be used to monitor response to chemotherapy. In osteoarthrosis and rheumatoid arthritis of the hip, both CT and MR provide more detailed assessment of the severity of disease than conventional radiography because of their tomographic nature. Magnetic resonance imaging is unique in evaluating cartilage degeneration and loss, and in demonstrating soft-tissue alterations such as inflammatory synovial proliferation.

  19. Radiotherapy treatment planning: benefits of CT-MR image registration and fusion in tumor volume delineation.

    PubMed

    Djan, Igor; Petrović, Borislava; Erak, Marko; Nikolić, Ivan; Lucić, Silvija

    2013-08-01

    Development of imaging techniques, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), made great impact on radiotherapy treatment planning by improving the localization of target volumes. Improved localization allows better local control of tumor volumes, but also minimizes geographical misses. Mutual information is obtained by registration and fusion of images achieved manually or automatically. The aim of this study was to validate the CT-MRI image fusion method and compare delineation obtained by CT versus CT-MRI image fusion. The image fusion software (XIO CMS 4.50.0) was applied to delineate 16 patients. The patients were scanned on CT and MRI in the treatment position within an immobilization device before the initial treatment. The gross tumor volume (GTV) and clinical target volume (CTV) were delineated on CT alone and on CT+MRI images consecutively and image fusion was obtained. Image fusion showed that CTV delineated on a CT image study set is mainly inadequate for treatment planning, in comparison with CTV delineated on CT-MRI fused image study set. Fusion of different modalities enables the most accurate target volume delineation. This study shows that registration and image fusion allows precise target localization in terms of GTV and CTV and local disease control.

  20. Estimation of aortic valve leaflets from 3D CT images using local shape dictionaries and linear coding

    NASA Astrophysics Data System (ADS)

    Liang, Liang; Martin, Caitlin; Wang, Qian; Sun, Wei; Duncan, James

    2016-03-01

    Aortic valve (AV) disease is a significant cause of morbidity and mortality. The preferred treatment modality for severe AV disease is surgical resection and replacement of the native valve with either a mechanical or tissue prosthetic. In order to develop effective and long-lasting treatment methods, computational analyses, e.g., structural finite element (FE) and computational fluid dynamic simulations, are very effective for studying valve biomechanics. These computational analyses are based on mesh models of the aortic valve, which are usually constructed from 3D CT images though many hours of manual annotation, and therefore an automatic valve shape reconstruction method is desired. In this paper, we present a method for estimating the aortic valve shape from 3D cardiac CT images, which is represented by triangle meshes. We propose a pipeline for aortic valve shape estimation which includes novel algorithms for building local shape dictionaries and for building landmark detectors and curve detectors using local shape dictionaries. The method is evaluated on real patient image dataset using a leave-one-out approach and achieves an average accuracy of 0.69 mm. The work will facilitate automatic patient-specific computational modeling of the aortic valve.

Top