ICRF Mode Conversion Flow Drive Experiments on Alcator C-Mod
NASA Astrophysics Data System (ADS)
Lin, Y.; Reinke, M. L.; Rice, J. E.; Wukitch, S. J.; Granetz, R.; Greenwald, M.; Hubbard, A. E.; Marmar, E. S.; Podpaly, Y. A.; Porkolab, M.; Tsujii, N.; Wolfe, S.
2011-12-01
We have carried out a detailed study of the dependence of ICRF mode conversion flow drive (MCFD) on plasma and RF parameters. The flow drive efficiency is found to depend strongly on the 3He concentration in D(3He) plasmas, a key parameter separating the ICRF minority heating regime and mode conversion regime. At +90 ° antenna phasing (waves in the co-Ip direction) and dipole phasing, the driven flow is in the co-Ip direction, and the change of the rotation velocity increases with both PRF and Ip, and scales unfavorably vs. plasma density and antenna frequency. When MCFD is applied to I-mode plasmas, the plasma rotation increases until the onset of MHD modes triggered by large sawtooth crashes. Very high performance I-mode plasmas with HITER98,y2˜1.4 and Te0˜8 keV have been obtained in these experiments.
NASA Astrophysics Data System (ADS)
Lee, Yuang-Shung; Chiu, Yin-Yuan; Cheng, Ming-Wang; Ko, Yi-Pin; Hsiao, Sung-Hsin
The proposed quasi-resonant (QR) zero current switching (ZCS) switched-capacitor (SC) converter is a new type of bidirectional power flow control conversion scheme. The proposed converter is able to provide voltage conversion ratios from -3/-{1 \\over 3} (triple-mode/trisection-mode) to -n/-{1 \\over n} (-n-mode/-{1 \\over n}-mode) by adding a different number of switched-capacitors and power MOSFET switches with a small series connected resonant inductor for forward and reverse power flow control schemes. It possesses the advantages of low switching losses and current stress in this QR ZCS SC converter. The principle of operation, theoretical analysis of the proposed triple-mode/trisection-mode bidirectional power conversion scheme is described in detail with circuit model analysis. Simulation and experimental studies are carried out to verify the performance of the proposed inverting type ZCS SC QR bidirectional converter. The proposed converters can be applied to battery equalization for battery management system (BMS).
NASA Astrophysics Data System (ADS)
Lin, Y.; Wukitch, S. J.; Edlund, E.; Ennever, P.; Hubbard, A. E.; Porkolab, M.; Rice, J.; Wright, J.
2017-10-01
In recent three-ion species (majority D and H plus a trace level of 3He) ICRF heating experiments on Alcator C-Mod, double mode conversion on both sides of the 3He cyclotron resonance has been observed using the phase contrast imaging (PCI) system. The MC locations are used to estimate the species concentrations in the plasma. Simulation using TORIC shows that with the 3He level <1%, most RF power is absorbed by the 3He ions and the process can generate energetic 3He ions. In mode conversion (MC) flow drive experiment in D(3He) plasma at 8 T, MC waves were also monitored by PCI. The MC ion cyclotron wave (ICW) amplitude and wavenumber kR have been found to correlate with the flow drive force. The MC efficiency, wave-number k of the MC ICW and their dependence on plasma parameters like Te0 have been studied. Based on the experimental observation and numerical study of the dispersion solutions, a hypothesis of the flow drive mechanism has been proposed.
Mode conversion in ICRF experiments on Alcator C-Mod
NASA Astrophysics Data System (ADS)
Lin, Y.; Wukitch, S. J.; Edlund, E.; Ennever, P.; Hubbard, A. E.; Porkolab, M.; Rice, J.; Wright, J.
2017-10-01
In recent three-ion species (majority D and H plus a trace level of 3He) ICRF heating experiment on Alcator C-Mod, double mode conversion on both sides of the 3He cyclotron resonance has been observed using the phase contrast imaging (PCI) system. The MC locations are used to estimate the species concentrations in the plasma. Simulation using TORIC shows that with the 3He level <1%, most RF power is absorbed by the 3He ions and the process can generate energetic 3He ions. In recent mode conversion flow drive experiment in D(3He) plasma at 8 T, MC waves were also monitored by PCI. The MC ion cyclotron wave (ICW) amplitude and wavenumber kR have been found to correlate with the flow drive force. The MC efficiency, wave-number k of the MC ICW and their dependence on plasma parameters like Te0 are shown to play important roles. Based on the experimental observation and numerical study of the dispersion solutions, a hypothesis of the flow drive mechanism has been proposed. Supported by USDoE awards DE-FC02-99ER54512.
NASA Astrophysics Data System (ADS)
Yang, Ce; Liu, Yixiong; Yang, Dengfeng; Wang, Benjiang
2017-11-01
To achieve the rebalance of flow distributions of double-sided impellers, a method of improving the radius of rear impeller is presented in this paper. It is found that the flow distributions of front and rear impeller can be adjusted effectively by increasing the radius of rear impeller, thus improves the balance of flow distributions of front and rear impeller. Meanwhile, the working conversion mode process of double-sided centrifugal compressor is also changed. Further analysis shows that the flowrates of blade channels in front impeller are mainly influenced by the circumferential distributions of static pressure in the volute. But the flowrates of rear impeller blade channels are influenced by the outlet flow field of bent duct besides the effects of static pressure distributions in the volute. In the airflow interaction area downstream, the flowrate of blade channel is obviously smaller. By increasing the radius of rear impeller, the work capacity of rear impeller is enhanced, the working mode conversion process from parallel working mode of double-sided impeller to the single impeller working mode is delayed, and the stable working range of double-sided compressor is broadened.
NASA Astrophysics Data System (ADS)
Kirilovskiy, S. V.; Poplavskaya, T. V.; Tsyryulnikov, I. S.
2016-10-01
This work is aimed at obtaining conversion factors of free stream disturbances from shock wave angle φ, angle of acoustic disturbances distribution θ and Mach number M∞ by solving a problem of interaction of long-wave (with the wavelength λ greater than the model length) free-stream disturbances with a shock wave formed in a supersonic flow around the wedge. Conversion factors at x/λ=0.2 as a ration between amplitude of pressure pulsations on the wedge surface and free stream disturbances amplitude were obtained. Factors of conversion were described by the dependence on angle θ of disturbances distribution, shock wave angle φ and Mach number M∞. These dependences are necessary for solving the problem of mode decomposition of disturbances in supersonic flows in wind tunnels.
Mortier, Eric; Simon, Yorick; Dahoun, Abdelsellam; Gerdolle, David
2009-01-01
The purpose of this study was to evaluate the influence of photopolymerization mode with a light emitting diode (LED) lamp on the curing contraction kinetics and degree of conversion of 3 resin-based restorative materials. The curing contraction kinetics of Admira (ADM), Filtek P60 (P60), and Filtek Flow (FLO) were measured by the glass slide method. The materials were exposed to light from a 1,000 mW/cm-(2) power LED lamp (Elipar Freelight 2) in 3 modes: 2 continuous modes of 20 and 40 seconds (C20 and C40), and 1 exponential mode (E20; 5 seconds of exponential power increase followed by 15 seconds of maximum intensity). The degree of conversion (DC) was measured for each of the materials, and each of the modes by Fourier transformed infra-red spectrometry. P60 had the significantly lowest final contraction and FLO the highest among all light exposure modes. The C20 and C40 modes did not produce any difference in contraction or degree of conversion. The E20 mode led to a significant slowing of contraction speed combined with greater final contraction. Use of a LED lamp (1,000 mW/cm2) in continuous mode reduces the exposure time by half for identical curing shrinkage and degree of conversion.
NASA Astrophysics Data System (ADS)
Tsyryulnikov, I. S.; Kirilovskiy, S. V.; Poplavskaya, T. V.
2016-10-01
In this paper, we describe a new method of mode decomposition of disturbances on the basis of specific features of interaction of long-wave free-stream disturbances with the shock wave and knowing the trends of changing of the conversion factors of various disturbance modes due to variations of the shock wave incidence angle. The range of admissible root-mean-square amplitudes of oscillations of vortex, entropy, and acoustic modes in the free stream generated in IT-302M was obtained by using the pressure fluctuations measured on the model surface and the calculated conversion factors.
Mode Propagation in Nonuniform Circular Ducts with Potential Flow
NASA Technical Reports Server (NTRS)
Cho, Y. C.; Ingard, K. U.
1982-01-01
A previously reported closed form solution is expanded to determine effects of isentropic mean flow on mode propagation in a slowly converging-diverging duct, a circular cosh duct. On the assumption of uniform steady fluid density, the mean flow increases the power transmission coefficient. The increase is directly related to the increase of the cutoff ratio at the duct throat. With the negligible transverse gradients of the steady fluid variables, the conversion from one mode to another is negligible, and the power transmission coefficient remains unchanged with the mean flow direction reversed. With a proper choice of frequency parameter, many different modes can be made subject to a single value of the power transmission loss. A systematic method to include the effects of the gradients of the steady fluid variables is also described.
Conversion of evanescent Lamb waves into propagating waves via a narrow aperture edge.
Yan, Xiang; Yuan, Fuh-Gwo
2015-06-01
This paper presents a quantitative study of conversion of evanescent Lamb waves into propagating in isotropic plates. The conversion is substantiated by prescribing time-harmonic Lamb displacements/tractions through a narrow aperture at an edge of a semi-infinite plate. Complex-valued dispersion and group velocity curves are employed to characterize the conversion process. The amplitude coefficient of the propagating Lamb modes converted from evanescent is quantified based on the complex reciprocity theorem via a finite element analysis. The power flow generated into the plate can be separated into radiative and reactive parts made on the basis of propagating and evanescent Lamb waves, where propagating Lamb waves are theoretically proved to radiate pure real power flow, and evanescent Lamb waves carry reactive pure imaginary power flow. The propagating power conversion efficiency is then defined to quantitatively describe the conversion. The conversion efficiency is strongly frequency dependent and can be significant. With the converted propagating waves from evanescent, sensors at far-field can recapture some localized damage information that is generally possessed in evanescent waves and may have potential application in structural health monitoring.
Shi, Wenying; He, Benqiao; Cao, Yuping; Li, Jianxin; Yan, Feng; Cui, Zhenyu; Zou, Zhiqun; Guo, Shiwei; Qian, Xiaomin
2013-02-01
A novel composite catalytic membrane (CCM) was prepared from sulfonated polyethersulfone (SPES) and polyethersulfone (PES) blend supported by non-woven fabrics, as a heterogeneous catalyst to produce biodiesel from continuous esterification of oleic acid with methanol in a flow-through mode. A kinetic model of esterification was established based on a plug-flow assumption. The effects of the CCM structure (thickness, area, porosity, etc.), reaction temperature and the external and internal mass transfer resistances on esterification were investigated. The results showed that the CCM structure had a significant effect on the acid conversion. The external mass transfer resistance could be neglected when the flow rate was over 1.2 ml min(-1). The internal mass transfer resistance impacted on the conversion when membrane thickness was over 1.779 mm. An oleic acid conversion kept over 98.0% for 500 h of continuous running. The conversions obtained from the model are in good agreement with the experimental data. Copyright © 2012 Elsevier Ltd. All rights reserved.
Microwave plasma generation of hydrogen atoms for rocket propulsion
NASA Technical Reports Server (NTRS)
Chapman, R.; Filpus, J.; Morin, T.; Snellenberger, R.; Asmussen, J.; Hawley, M.; Kerber, R.
1981-01-01
A flow microwave plasma reaction system is used to study the conversion of hydrogen to hydrogen atoms as a function of pressure, power density, cavity tuning, cavity mode, and time in the plasma zone. Hydrogen atom concentration is measured down-stream from the plasma by NOCl titration. Extensive modeling of the plasma and recombination zones is performed with the plasma zone treated as a backmix reaction system and the recombination zone treated as a plug flow. The thermodynamics and kinetics of the recombination process are examined in detail to provide an understanding of the conversion of recombination energy to gas kinetic energy. It is found that cavity tuning, discharge stability, and optimum power coupling are critically dependent on the system pressure, but nearly independent of the flow rate.
Continuous Flow Chemistry: Reaction of Diphenyldiazomethane with p-Nitrobenzoic Acid.
Aw, Alex; Fritz, Marshall; Napoline, Jonathan W; Pollet, Pamela; Liotta, Charles L
2017-11-15
Continuous flow technology has been identified as instrumental for its environmental and economic advantages leveraging superior mixing, heat transfer and cost savings through the "scaling out" strategy as opposed to the traditional "scaling up". Herein, we report the reaction of diphenyldiazomethane with p-nitrobenzoic acid in both batch and flow modes. To effectively transfer the reaction from batch to flow mode, it is essential to first conduct the reaction in batch. As a consequence, the reaction of diphenyldiazomethane was first studied in batch as a function of temperature, reaction time, and concentration to obtain kinetic information and process parameters. The glass flow reactor set-up is described and combines two types of reaction modules with "mixing" and "linear" microstructures. Finally, the reaction of diphenyldiazomethane with p-nitrobenzoic acid was successfully conducted in the flow reactor, with up to 95% conversion of the diphenyldiazomethane in 11 min. This proof of concept reaction aims to provide insight for scientists to consider flow technology's competitiveness, sustainability, and versatility in their research.
NASA Astrophysics Data System (ADS)
Stankiewicz, Witold; Morzyński, Marek; Kotecki, Krzysztof; Noack, Bernd R.
2017-04-01
We present a low-dimensional Galerkin model with state-dependent modes capturing linear and nonlinear dynamics. Departure point is a direct numerical simulation of the three-dimensional incompressible flow around a sphere at Reynolds numbers 400. This solution starts near the unstable steady Navier-Stokes solution and converges to a periodic limit cycle. The investigated Galerkin models are based on the dynamic mode decomposition (DMD) and derive the dynamical system from first principles, the Navier-Stokes equations. A DMD model with training data from the initial linear transient fails to predict the limit cycle. Conversely, a model from limit-cycle data underpredicts the initial growth rate roughly by a factor 5. Key enablers for uniform accuracy throughout the transient are a continuous mode interpolation between both oscillatory fluctuations and the addition of a shift mode. This interpolated model is shown to capture both the transient growth of the oscillation and the limit cycle.
Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.
Sekhar, Y Raja; Sharma, K V; Kamal, Subhash
2016-05-01
The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.
Non-equilibrium Microwave Plasma for Efficient High Temperature Chemistry.
van den Bekerom, Dirk; den Harder, Niek; Minea, Teofil; Gatti, Nicola; Linares, Jose Palomares; Bongers, Waldo; van de Sanden, Richard; van Rooij, Gerard
2017-08-01
A flowing microwave plasma based methodology for converting electric energy into internal and/or translational modes of stable molecules with the purpose of efficiently driving non-equilibrium chemistry is discussed. The advantage of a flowing plasma reactor is that continuous chemical processes can be driven with the flexibility of startup times in the seconds timescale. The plasma approach is generically suitable for conversion/activation of stable molecules such as CO2, N2 and CH4. Here the reduction of CO2 to CO is used as a model system: the complementary diagnostics illustrate how a baseline thermodynamic equilibrium conversion can be exceeded by the intrinsic non-equilibrium from high vibrational excitation. Laser (Rayleigh) scattering is used to measure the reactor temperature and Fourier Transform Infrared Spectroscopy (FTIR) to characterize in situ internal (vibrational) excitation as well as the effluent composition to monitor conversion and selectivity.
Comparison of Two Acoustic Waveguide Methods for Determining Liner Impedance
NASA Technical Reports Server (NTRS)
Jones, Michael G.; Watson, Willie R.; Tracy, Maureen B.; Parrott, Tony L.
2001-01-01
Acoustic measurements taken in a flow impedance tube are used to assess the relative accuracy of two waveguide methods for impedance eduction in the presence of grazing flow. The aeroacoustic environment is assumed to contain forward and backward-traveling acoustic waves, consisting of multiple modes, and uniform mean flow. Both methods require a measurement of the complex acoustic pressure profile over the length of the test liner. The Single Mode Method assumes that the sound pressure level and phase decay-rates of a single progressive mode can be extracted from this measured complex acoustic pressure profile. No a priori assumptions are made in the Finite Element. Method regarding the modal or reflection content in the measured acoustic pressure profile. The integrity of each method is initially demonstrated by how well their no-flow impedances match those acquired in a normal incidence impedance tube. These tests were conducted using ceramic tubular and conventional perforate liners. Ceramic tubular liners were included because of their impedance insensitivity to mean flow effects. Conversely, the conventional perforate liner was included because its impedance is known to be sensitive to mean flow velocity effects. Excellent comparisons between impedance values educed with the two waveguide methods in the absence of mean flow and the corresponding values educed with the normal incident impedance tube were observed. The two methods are then compared for mean flow Mach numbers up to 0.5, and are shown to give consistent results for both types of test liners. The quality of the results indicates that the Single Mode Method should be used when the measured acoustic pressure profile is clearly dominated by a single progressive mode, and the Finite Element Method should be used for all other cases.
NASA Astrophysics Data System (ADS)
Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro
2009-11-01
Recently, the intermittent plasma flow has been observed to be correlated with the fluctuations of the toroidal current It and n=1 mode in the HIST spherical torus device. During the partially driven phase mixed with a resistive decay, the toroidal ion flow velocity (˜ 40 km/s) in the opposite direction of It is driven in the central open flux region, and the oscillations in n=1 mode occur there, while during the resistive decay phase, this flow velocity reverses and results in the same as that of It, and the oscillations in n=1 mode disappear there. The purpose of the present study is to investigate the plasma flow reversal process and the relevant MHD relaxation by using the 3-D nonlinear MHD simulations. The numerical results exhibit that during the driven phase, the toroidal flow velocity (˜ 37 km/s) is in the opposite direction to It, but in the same direction as the ExB rotation induced by an applied voltage. This flow is driven by the magnetic reconnection occurring at the X-point during the repetitive process of the non-axisymmetric magnetized plasmoid ejection from the helicity injector. The oscillations of poloidal flux ψp are out of phase with those of toroidal flux ψt and magnetic energy for the dominant n=1 mode, indicating the flux conversion from ψt to ψp. The effect of the vacuum toroidal field strength on the plasma dynamics is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalaee, Mohammad Javad, E-mail: mjkalaee@ut.ac.ir; Katoh, Yuto, E-mail: yuto@stpp.gp.tohoku.ac.jp
One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma wavesmore » (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.« less
Efficient pre-ionization by direct X-B mode conversion in VEST
NASA Astrophysics Data System (ADS)
Jo, JongGab; Lee, H. Y.; Kim, S. C.; Kim, S. H.; An, Y. H.; Hwang, Y. S.
2017-01-01
Pre-ionization experiments with pure toroidal field have been carried out in VEST (Versatile Experiment Spherical Torus) to investigate the feasibility of direct XB mode conversion from perpendicular LFS (Low Field Side) injection for efficient pre-ionization. Pre-ionization plasmas are studied by measuring the electron density and temperature profiles with respect to microwave power and toroidal field strength, and 2D full wave cold plasma simulation using the COMSOL Multiphysics is performed for the comparison. It is experimentally figured out that exceeding the threshold microwave power (>3 kW), the parametric decay and localized collisional heating is observed near the UHR (Upper Hybrid Resonance), and the efficient XB mode conversion can be achieved in both short density scale length (Ln) and magnetic scale length (LB) region positioned at outboard and inboard sides, respectively. From the 2D full wave simulations, the reflection and tunneling of X-wave near the R-cutoff layer according to the measured electron density profiles are analyzed with electric field polarization and power flow. Threshold electric field and wave power density for parametric decay are evaluated at least more than 4.8 × 104 V/m and 100 W/cm2, respectively. This study shows that efficient pre-ionization schemes using direct XB mode conversion can be realized by considering the key factors such as Ln, LB, and transmitted wave power at the UHR. Application to Ohmic start-up experiment is carried out to confirm the effect of the pre-ionization schemes on tokamak plasma start-up in VEST.
Cold atmospheric pressure air plasma jet for medical applications
NASA Astrophysics Data System (ADS)
Kolb, J. F.; Mohamed, A.-A. H.; Price, R. O.; Swanson, R. J.; Bowman, A.; Chiavarini, R. L.; Stacey, M.; Schoenbach, K. H.
2008-06-01
By flowing atmospheric pressure air through a direct current powered microhollow cathode discharge, we were able to generate a 2cm long plasma jet. With increasing flow rate, the flow becomes turbulent and temperatures of the jet are reduced to values close to room temperature. Utilizing the jet, yeast grown on agar can be eradicated with a treatment of only a few seconds. Conversely, animal studies show no skin damage even with exposures ten times longer than needed for pathogen extermination. This cold plasma jet provides an effective mode of treatment for yeast infections of the skin.
NASA Astrophysics Data System (ADS)
Ma, Xiaojiao; Zhang, Yaocun
2018-01-01
Interannual variability of the North Pacific storm track and the three-dimensional atmosphere circulation during winter are investigated using NCEP/NCAR reanalysis data during 1950-2015. Results show that year-to-year variations of the storm track exhibit two principal modes, i.e. the monopole intensity change and the meridional shift of the storm track, respectively. The intensity change mode is linked to weakening of the Siberian high, northward shift of the western Pacific jet stream and Aleutian Low, and well corresponding to the Western Pacific teleconnection. The meridional shift mode is related to intensification and south-eastward extension of western Pacific jet stream and Aleutian Low, and linked to the Pacific-North America teleconnection. The internal atmospheric dynamics responsible for the storm track variability is further investigated from the perspective of wave-flow energy conversion. For the intensity change mode, accompanied by the enhanced baroclinity over the entrance region of the storm track, more energy is converted from mean available potential energy to eddy available potential energy and then transferred to eddy kinetic energy, which is favorable for the overall enhancement of the storm track intensity. For the meridional shift mode, more energy is transformed from mean available potential energy to eddy available potential energy and further transferred to eddy kinetic energy over the southern (northern) areas of the storm track, contributing to the southward (northward) shift of the storm track. Additionally, the increased (decreased) conversion from mean-flow kinetic energy to eddy kinetic energy over the north-eastern Pacific region is also in favor of the southward (northward) shift of the storm track.
Stucki, J W; Compiani, M; Caplan, S R
1983-09-01
Experimental investigations showed linear relations between flows and forces in some biological energy converters operating far from equilibrium. This observation cannot be understood on the basis of conventional nonequilibrium thermodynamics. Therefore, the efficiencies of a linear and a nonlinear mode of operation of an energy converter (a hypothetical redox-driven H+ pump) were compared. This comparison revealed that at physiological values of the forces and degrees of coupling (1) the force ratio permitting optimal efficiency was much higher in the linear than in the nonlinear mode and (2) the linear mode of operation was at least 10(6)-times more efficient that the nonlinear one. These observations suggest that the experimentally observed linear relations between flows and forces, particularly in the case of oxidative phosphorylation, may be due to a feedback regulation maintaining linear thermodynamic relations far from equilibrium. This regulation may have come about as the consequence of an evolutionary drive towards higher efficiency.
On-chip optical mode conversion based on dynamic grating in photonic-phononic hybrid waveguide
Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang
2015-01-01
We present a scheme for reversible and tunable on-chip optical mode conversion based on dynamic grating in a hybrid photonic-phononic waveguide. The dynamic grating is built up through the acousto-optic effect and the theoretical model of the optical mode conversion is developed by considering the geometrical deformation and refractive index change. Three kinds of mode conversions are able to be realized using the same hybrid waveguide structure in a large bandwidth by only changing the launched acoustic frequency. The complete mode conversion can be achieved by choosing a proper acoustic power under a given waveguide length. PMID:25996236
NASA Astrophysics Data System (ADS)
Kalaee, Mohammad Javad; Katoh, Yuto
2014-12-01
For a particular angle of incidence wave, it is possible for a slow Z-mode wave incident on an inhomogeneous plasma slab to be converted into an LO mode wave. But for another wave normal angle of the incident wave, it has been considered impossible, since an evanescence region exists between two mode branches. In this case we expect that the mode conversion takes place through the tunneling effect. We investigate the effect of the spatial scale of the density gradient on the mode conversion efficiency in an inhomogeneous plasma where the mode conversion can occur only by the tunneling effect. We use the computer simulation solving Maxwell's equations and the motion of a cold electron fluid. By considering the steepness of the density gradient, the simulation results show the efficient mode conversion could be expected even in the case that the mismatch of the refractive indexes prevents the close coupling of plasma waves. Also, we show for these cases the beaming angle does not correspond to Jones' formula. This effect leads to the angles larger and smaller than the angle estimated by the formula. This type of mode conversion process becomes important in a case where the different plasmas form a discontinuity at their contact boundary.
NASA Astrophysics Data System (ADS)
Song, Fengfei; Zhou, Tianjun; Wang, Lu
2013-05-01
In this study, two modes of the Silk Road pattern were investigated using NCEP2 reanalysis data and the simulation produced by Spectral Atmospheric Circulation Model of IAP LASG, Version 2 (SAMIL2.0) that was forced by SST observation data. The horizontal distribution of both modes were reasonably reproduced by the simulation, with a pattern correlation coefficient of 0.63 for the first mode and 0.62 for the second mode. The wave train was maintained by barotropic energy conversion (denoted as CK) and baroclinic energy conversion (denoted as CP) from the mean flow. The distribution of CK was dominated by its meridional component (CK y ) in both modes. When integrated spatially, CK y was more efficient than its zonal component (CK x ) in the first mode but less in the second mode. The distribution and efficiency of CK were not captured well by SAMIL2.0. However, the model performed reasonably well at reproducing the distribution and efficiency of CP in both modes. Because CP is more efficient than CK, the spatial patterns of the Silk Road pattern were well reproduced. Interestingly, the temporal phase of the second mode was well captured by a single-member simulation. However, further analysis of other ensemble runs demonstrated that the successful reproduction of the temporal phase was a result of internal variability rather than a signal of SST forcing. The analysis shows that the observed temporal variations of both CP and CK were poorly reproduced, leading to the low accuracy of the temporal phase of the Silk Road pattern in the simulation.
Charging system with galvanic isolation and multiple operating modes
Kajouke, Lateef A.; Perisic, Milun; Ransom, Ray M.
2013-01-08
Systems and methods are provided for operating a charging system with galvanic isolation adapted for multiple operating modes. A vehicle charging system comprises a DC interface, an AC interface, a first conversion module coupled to the DC interface, and a second conversion module coupled to the AC interface. An isolation module is coupled between the first conversion module and the second conversion module. The isolation module comprises a transformer and a switching element coupled between the transformer and the second conversion module. The transformer and the switching element are cooperatively configured for a plurality of operating modes, wherein each operating mode of the plurality of operating modes corresponds to a respective turns ratio of the transformer.
Vector mode conversion based on tilted fiber Bragg grating in ring-core fibers
NASA Astrophysics Data System (ADS)
Mi, Yuean; Ren, Guobin; Gao, Yixiao; Li, Haisu; Zhu, Bofeng; Liu, Yu
2018-03-01
We propose a vector mode conversion approach based on tilted fiber Bragg grating (TFBG) written in ring-core fiber with effective separation of eigenmodes. The mode coupling properties of TFBG are numerically investigated. It is shown that under the constraint of phase matching, the conversion of high-order vector modes could be achieved at specific wavelengths. Moreover, the polarization of incident light and tilt angle of TFBG play critical roles in mode coupling process. The proposed TFBG provides an efficient method to realize high-order vector mode conversion, and it shows great potential for fibers based OAM beam generation and fiber lasers with vortex beams output.
Improving the performance of immobilized β-glucosidase using a microreactor.
Wei, Ce; Zhou, Yan; Zhuang, Wei; Li, Ganlu; Jiang, Min; Zhang, Hongman
2018-04-01
Here, we have presented a technically simple and efficient method for preparing a continuous flow microreactor by employing immobilized β-glucosidase in a silica quartz capillary tube. Developing an immobilized enzyme layer on the inner wall of the capillary tube involved the modification of the inner wall using bifunctional crosslinking agents 3-aminopropyltriethoxysilane and glutaraldehyde before attaching β-glucosidase. The microreactor afforded unique reaction capacities compared with conventional batch operational configurations. These included enhanced pH and thermal stability during storage tests, increased conversion rates of cellobiose, and reduced product inhibition. The maximum conversion rate of soluble substrate cellobiose digestion in the microreactor was 76% at 50°C and pH 4.8 when the microreactor was operated continually over 10 h at a flow rate of 7 μL/min. This was markedly contrasting to the observed conversion rate of 56% when cellobiose was digested in a conventional batch mode under the same pH and temperature conditions. Reaction inhibition by glucose was significantly reduced in the microreactor. We postulate that the increased capacity of glucose to diffuse into the continual flowing media above the immobilized enzyme layer prevents glucose from reaching inhibitory concentrations at the substrate-enzyme interface. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Dae Jung; Lee, Dong-Hun; Kim, Kihong
We study theoretically the linear mode conversion between electromagnetic waves and Langmuir waves in warm, stratified, and unmagnetized plasmas, using a numerically precise calculation based on the invariant imbedding method. We verify that the principle of reciprocity for the forward and backward mode conversion coefficients holds precisely regardless of temperature. We also find that the temperature dependence of the mode conversion coefficient is substantially stronger than that previously reported. Depending on the wave frequency and the incident angle, the mode conversion coefficient is found to increase or decrease with the increase of temperature.
Fiber-guided modes conversion using superposed helical gratings
NASA Astrophysics Data System (ADS)
Ma, Yancheng; Fang, Liang; Wu, Guoan
2017-03-01
Optical fibers can support various modal forms, including vector modes, linear polarization (LP) modes, and orbital angular momentum (OAM) modes, etc. The modal correlation among these modes is investigated via Jones matrix, associated with polarization and helical phase corresponding to spin angular momentum (SAM) and OAM of light, respectively. We can generate different modal forms by adopting superposed helical gratings (SHGs) with opposite helix orientations. Detailed analysis and discussion on mode conversion is given as for mode coupling in optical fibers with both low and high contrast index, respectively. Our study may deepen the understanding for various fiber-guided modes and mode conversion among them via fiber gratings.
Is the bulk mode conversion important in high density helicon plasma?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isayama, Shogo; Hada, Tohru; Shinohara, Shunjiro
2016-06-15
In a high-density helicon plasma production process, a contribution of Trivelpiece-Gould (TG) wave for surface power deposition is widely accepted. The TG wave can be excited either due to an abrupt density gradient near the plasma edge (surface conversion) or due to linear mode conversion from the helicon wave in a density gradient in the bulk region (bulk mode conversion). By numerically solving the boundary value problem of linear coupling between the helicon and the TG waves in a background with density gradient, we show that the efficiency of the bulk mode conversion strongly depends on the dissipation included inmore » the plasma, and the bulk mode conversion is important when the dissipation is small. Also, by performing FDTD simulation, we show the time evolution of energy flux associated with the helicon and the TG waves.« less
Fundamental-mode MMF transmission enabled by mode conversion
NASA Astrophysics Data System (ADS)
Wu, Zhongying; Li, Juhao; Tian, Yu; Ge, Dawei; Zhu, Jinglong; Ren, Fang; Mo, Qi; Yu, Jinyi; Li, Zhengbin; Chen, Zhangyuan; He, Yongqi
2018-03-01
Modal dispersion in conventional multi-mode fiber (MMF) will cause serious signal degradation and an effective solution is to restrict the signal transmission in the fundamental mode of MMF. In this paper, unlike previous methods by filtering out higher-order modes, we propose to adopt low-modal-crosstalk mode converters to realize fundamental-mode MMF transmission. We design and fabricate all-fiber mode-selective couplers (MSC), which perform mode conversion between the fundamental mode in single-mode fiber (SMF) and fundamental mode in MMF. The proposed scheme is experimentally compared with center launching method under different MMF links and then its wavelength division multiplexing (WDM) transmission performance is investigated. Experimental results indicate that the proposed mode conversion scheme could achieve better transmission performance and works well for the whole C-band.
Design and Analysis of a New Hair Sensor for Multi-Physical Signal Measurement
Yang, Bo; Hu, Di; Wu, Lei
2016-01-01
A new hair sensor for multi-physical signal measurements, including acceleration, angular velocity and air flow, is presented in this paper. The entire structure consists of a hair post, a torsional frame and a resonant signal transducer. The hair post is utilized to sense and deliver the physical signals of the acceleration and the air flow rate. The physical signals are converted into frequency signals by the resonant transducer. The structure is optimized through finite element analysis. The simulation results demonstrate that the hair sensor has a frequency of 240 Hz in the first mode for the acceleration or the air flow sense, 3115 Hz in the third and fourth modes for the resonant conversion, and 3467 Hz in the fifth and sixth modes for the angular velocity transformation, respectively. All the above frequencies present in a reasonable modal distribution and are separated from interference modes. The input-output analysis of the new hair sensor demonstrates that the scale factor of the acceleration is 12.35 Hz/g, the scale factor of the angular velocity is 0.404 nm/deg/s and the sensitivity of the air flow is 1.075 Hz/(m/s)2, which verifies the multifunction sensitive characteristics of the hair sensor. Besides, the structural optimization of the hair post is used to improve the sensitivity of the air flow rate and the acceleration. The analysis results illustrate that the hollow circular hair post can increase the sensitivity of the air flow and the II-shape hair post can increase the sensitivity of the acceleration. Moreover, the thermal analysis confirms the scheme of the frequency difference for the resonant transducer can prominently eliminate the temperature influences on the measurement accuracy. The air flow analysis indicates that the surface area increase of hair post is significantly beneficial for the efficiency improvement of the signal transmission. In summary, the structure of the new hair sensor is proved to be feasible by comprehensive simulation and analysis. PMID:27399716
Mode conversion efficiency to Laguerre-Gaussian OAM modes using spiral phase optics.
Longman, Andrew; Fedosejevs, Robert
2017-07-24
An analytical model for the conversion efficiency from a TEM 00 mode to an arbitrary Laguerre-Gaussian (LG) mode with null radial index spiral phase optics is presented. We extend this model to include the effects of stepped spiral phase optics, spiral phase optics of non-integer topological charge, and the reduction in conversion efficiency due to broad laser bandwidth. We find that through optimization, an optimal beam waist ratio of the input and output modes exists and is dependent upon the output azimuthal mode number.
Mode conversion in metal-insulator-metal waveguide with a shifted cavity
NASA Astrophysics Data System (ADS)
Wang, Yueke; Yan, Xin
2018-01-01
We propose a method, which is utilized to achieve the plasmonic mode conversion in metal-insulator-metal (MIM) waveguide, theoretically. Our proposed structure is composed of bus waveguides and a shifted cavity. The shifted cavity can choose out a plasmonic mode (a- or s-mode) when it is in Fabry-Perot (FP) resonance. The length of the shifted cavity L is carefully chosen, and our structure can achieve the mode conversion between a- and s-mode in the communication region. Besides, our proposed structure can also achieve plasmonic mode-division multiplexing. All the numerical simulations are carried on by the finite element method to verify our design.
Guo, Xiang; Zou, Chang-Ling; Jung, Hojoong; Tang, Hong X
2016-09-16
While the frequency conversion of photons has been realized with various approaches, the realization of strong coupling between optical modes of different colors has never been reported. Here, we present an experimental demonstration of strong coupling between telecom (1550 nm) and visible (775 nm) optical modes on an aluminum nitride photonic chip. The nonreciprocal normal-mode splitting is demonstrated as a result of the coherent interference between photons with different colors. Furthermore, a wideband, bidirectional frequency conversion with 0.14 on-chip conversion efficiency and a bandwidth up to 1.2 GHz is demonstrated.
Mode conversion between Alfvén wave eigenmodes in axially inhomogeneous two-ion-species plasmas
NASA Astrophysics Data System (ADS)
Roberts, D. R.; Hershkowitz, N.; Tataronis, J. A.
1990-04-01
The uniform cylindrical plasma model of Litwin and Hershkowitz [Phys. Fluids 30, 1323 (1987)] is shown to predict mode conversion between the lowest radial order m=+1 fast magnetosonic surface and slow ion-cyclotron global eigenmodes of the Alfvén wave at the light-ion species Alfvén resonance of a cold two-ion plasma. A hydrogen (h)-deuterium (d) plasma is examined in experiments. The fast mode is efficiently excited by a rotating field antenna array at ω˜Ωh in the central cell of the Phaedrus-B tandem mirror [Phys. Rev. Lett. 51, 1955(1983)]. Radially scanned magnetic probes observe the propagating eigenmode wave fields within a shallow central cell magnetic gradient in which the conversion zone is axially localized according to nd/nh. A low radial-order slow ion-cyclotron mode, observed in the vicinity of the conversion zone, gives evidence for the predicted mode conversion.
A New Seamless Transfer Control Strategy of the Microgrid
Zhang, Zhaoyun; Chen, Wei; Zhang, Zhe
2014-01-01
A microgrid may operate under two typical modes; the seamless transfer control of the microgrid is very important. The mode conversion controller is installed in microgrid and the control logic of master power is optimized for microgrid mode conversion. In the proposed scheme, master power is very important. The master-power is under the PQ control when microgrid is under grid-connected. And it is under V/F control when the microgrid is under islanding. The microgrid mode controller is used to solve the planned conversion. Three types of conversion are simulated in this paper. The simulation results show the correctness and validity of the mode control scheme. Finally, the implementation and application of the operation and control device are described. PMID:24967431
A new seamless transfer control strategy of the microgrid.
Zhang, Zhaoyun; Chen, Wei; Zhang, Zhe
2014-01-01
A microgrid may operate under two typical modes; the seamless transfer control of the microgrid is very important. The mode conversion controller is installed in microgrid and the control logic of master power is optimized for microgrid mode conversion. In the proposed scheme, master power is very important. The master-power is under the PQ control when microgrid is under grid-connected. And it is under V/F control when the microgrid is under islanding. The microgrid mode controller is used to solve the planned conversion. Three types of conversion are simulated in this paper. The simulation results show the correctness and validity of the mode control scheme. Finally, the implementation and application of the operation and control device are described.
Roberts, Calum T; Kortekaas, Rebecca; Dawson, Jennifer A; Manley, Brett J; Owen, Louise S; Davis, Peter G
2016-05-01
Heating and humidification of inspired gases is routine during neonatal non-invasive respiratory support. However, little is known about the temperature and humidity delivered to the upper airway. The International Standards Organization (ISO) specifies that for all patients with an artificial airway humidifiers should deliver ≥33 g/m(3) absolute humidity (AH). We assessed the oropharyngeal temperature and humidity during different non-invasive support modes in a neonatal manikin study. Six different modes of non-invasive respiratory support were applied at clinically relevant settings to a neonatal manikin, placed in a warmed and humidified neonatal incubator. Oropharyngeal temperature and relative humidity (RH) were assessed using a thermohygrometer. AH was subsequently calculated. Measured temperature and RH varied between devices. Bubble and ventilator continuous positive airway pressure (CPAP) produced temperatures >34°C and AH >38 g/m(3). Variable flow CPAP resulted in lower levels of AH than bubble or ventilator CPAP, and AH decreased with higher gas flow. High-flow (HF) therapy delivered by Optiflow Junior produced higher AH with higher gas flow, whereas with Vapotherm HF the converse was true. Different non-invasive devices deliver inspiratory gases of variable temperature and humidity. Most AH levels were above the ISO recommendation; however, with some HF and variable flow CPAP devices at higher gas flow this was not achieved. Clinicians should be aware of differences in the efficacy of heating and humidification when choosing modes of non-invasive respiratory support. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Mode conversion in cold low-density plasma with a sheared magnetic field
Dodin, I. Y.; Ruiz, D. E.; Kubo, S.
2017-12-19
Here, a theory is proposed that describes mutual conversion of two electromagnetic modes in cold low-density plasma, specifically, in the high-frequency limit where the ion response is negligible. In contrast to the classic (Landau–Zener-type) theory of mode conversion, the region of resonant coupling in low-density plasma is not necessarily narrow, so the coupling matrix cannot be approximated with its first-order Taylor expansion; also, the initial conditions are set up differently. For the case of strong magnetic shear, a simple method is identified for preparing a two-mode wave such that it transforms into a single-mode wave upon entering high-density plasma. Themore » theory can be used for reduced modeling of wave-power input in fusion plasmas. In particular, applications are envisioned in stellarator research, where the mutual conversion of two electromagnetic modes near the plasma edge is a known issue.« less
Mode conversion in cold low-density plasma with a sheared magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodin, I. Y.; Ruiz, D. E.; Kubo, S.
Here, a theory is proposed that describes mutual conversion of two electromagnetic modes in cold low-density plasma, specifically, in the high-frequency limit where the ion response is negligible. In contrast to the classic (Landau–Zener-type) theory of mode conversion, the region of resonant coupling in low-density plasma is not necessarily narrow, so the coupling matrix cannot be approximated with its first-order Taylor expansion; also, the initial conditions are set up differently. For the case of strong magnetic shear, a simple method is identified for preparing a two-mode wave such that it transforms into a single-mode wave upon entering high-density plasma. Themore » theory can be used for reduced modeling of wave-power input in fusion plasmas. In particular, applications are envisioned in stellarator research, where the mutual conversion of two electromagnetic modes near the plasma edge is a known issue.« less
Rectification of Lamb wave propagation in thin plates with piezo-dielectric periodic structures
NASA Astrophysics Data System (ADS)
Iwasaki, Yuhei; Tsuruta, Kenji; Ishikawa, Atsushi
2016-07-01
Based on a heterostructured plate consisting of piezoelectric-ceramic/epoxy-resin composites with different periodicities, we design a novel acoustic diode for the symmetrical/asymmetrical (S/A) mode of Lamb wave at audible ranges. The acoustic diode is constructed with two parts, i.e., the mode conversion part and the mode selection part, and the mode conversion mechanism at the interface is applied to the mode hybridization from S to S+A and for the mode conversion from A to S. The phonon band structures for each part are calculated and optimized so that the mode selection is realized for a specific mode at the junction. Finite-element simulations prove that the proposed acoustic diode achieves efficient rectification at audio frequency ranges for both S and A mode incidences of the Lamb wave.
Lower hybrid to whistler mode conversion on a density striation
NASA Astrophysics Data System (ADS)
Camporeale, E.; Delzanno, G. L.; Colestock, P.
2012-10-01
When a wave packet composed of short wavelength lower hybrid modes traveling in an homogeneous plasma region encounters an inhomogeneity, it can resonantly excite long wavelength whistler waves via a linear mechanism known as mode conversion. An enhancement of lower hybrid/whistler activity has been often observed by sounding rockets and satellites in the presence of density depletions (striations) in the upper ionosphere. We address here the process of linear mode conversion of lower hybrid to whistler waves, mediated by a density striation, using a scalar-field formalism (in the limit of cold plasma linear theory) which we solve numerically. We show that the mode conversion can effectively transfer a large amount of energy from the short to the long wavelength modes. We also study how the efficiency scales by changing the properties (width and amplitude) of the density striation. We present a general criterion for the width of the striation that, if fulfilled, maximizes the conversion efficiency. Such a criterion could provide an interpretation of recent laboratory experiments carried out on the Large Plasma Device at UCLA.
"He Said What?!" Constructed Dialogue in Various Interface Modes
ERIC Educational Resources Information Center
Young, Lesa; Morris, Carla; Langdon, Clifton
2012-01-01
This study analyzes the manifestation of constructed dialogue in ASL narratives as dependent on the interface mode (i.e., face-to-face conversation, electronic conversation over videophone, and vlog monologues). Comparisons of eye gaze over three interface modes shows how aspects of constructed dialogue are altered to fit the communication mode.…
Mode conversion between Alfven wave eigenmodes in axially inhomogeneous two-ion-species plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, D.R.; Hershkowitz, N.; Tataronis, J.A.
The uniform cylindrical plasma model of Litwin and Hershkowitz (Phys. Fluids {bold 30}, 1323 (1987)) is shown to predict mode conversion between the lowest radial order {ital m}=+1 fast magnetosonic surface and slow ion-cyclotron global eigenmodes of the Alfven wave at the light-ion species Alfven resonance of a cold two-ion plasma. A hydrogen ({ital h})--deuterium ({ital d}) plasma is examined in experiments. The fast mode is efficiently excited by a rotating field antenna array at {omega}{similar to}{Omega}{sub {ital h}} in the central cell of the Phaedrus-B tandem mirror (Phys. Rev. Lett. {bold 51}, 1955(1983)). Radially scanned magnetic probes observe themore » propagating eigenmode wave fields within a shallow central cell magnetic gradient in which the conversion zone is axially localized according to {ital n}{sub {ital d}}/{ital n}{sub {ital h}}. A low radial-order slow ion-cyclotron mode, observed in the vicinity of the conversion zone, gives evidence for the predicted mode conversion.« less
Single-mode fiber laser based on core-cladding mode conversion.
Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N
2008-02-15
A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.
Time-Frequency Analysis of Rocket Nozzle Wall Pressures During Start-up Transients
NASA Technical Reports Server (NTRS)
Baars, Woutijn J.; Tinney, Charles E.; Ruf, Joseph H.
2011-01-01
Surveys of the fluctuating wall pressure were conducted on a sub-scale, thrust- optimized parabolic nozzle in order to develop a physical intuition for its Fourier-azimuthal mode behavior during fixed and transient start-up conditions. These unsteady signatures are driven by shock wave turbulent boundary layer interactions which depend on the nozzle pressure ratio and nozzle geometry. The focus however, is on the degree of similarity between the spectral footprints of these modes obtained from transient start-ups as opposed to a sequence of fixed nozzle pressure ratio conditions. For the latter, statistically converged spectra are computed using conventional Fourier analyses techniques, whereas the former are investigated by way of time-frequency analysis. The findings suggest that at low nozzle pressure ratios -- where the flow resides in a Free Shock Separation state -- strong spectral similarities occur between fixed and transient conditions. Conversely, at higher nozzle pressure ratios -- where the flow resides in Restricted Shock Separation -- stark differences are observed between the fixed and transient conditions and depends greatly on the ramping rate of the transient period. And so, it appears that an understanding of the dynamics during transient start-up conditions cannot be furnished by a way of fixed flow analysis.
ERIC Educational Resources Information Center
Endres, Frank L.
Symbolic Interactive Matrix Processing Language (SIMPLE) is a conversational matrix-oriented source language suited to a batch or a time-sharing environment. The two modes of operation of SIMPLE are conversational mode and programing mode. This program uses a TAURUS time-sharing system and cathode ray terminals or teletypes. SIMPLE performs all…
Broadband mode conversion via gradient index metamaterials
Wang, HaiXiao; Xu, YaDong; Genevet, Patrice; Jiang, Jian-Hua; Chen, HuanYang
2016-01-01
We propose a design for broadband waveguide mode conversion based on gradient index metamaterials (GIMs). Numerical simulations demonstrate that the zeroth order of transverse magnetic mode or the first order of transverse electric mode (TM0/TE1) can be converted into the first order of transverse magnetic mode or the second order of transverse electric mode (TM1/TE2) for a broadband of frequencies. As an application, an asymmetric propagation is achieved by integrating zero index metamaterials inside the GIM waveguide. PMID:27098456
Sm, Mousavinasab; M, Atai; N, Salehi; A, Salehi
2016-12-01
The degree of conversion depends on the material composition, light source properties, distance from light source, light intensity, curing time, and other factors such as shade and translucency. In the present study, we evaluated the effects of different light-curing modes and shades of methacrylate and silorane-based resin composites on the degree of conversion of resin composites (DC). The methacrylate-based (Filtek Z250, 3M, ESPE) and low-shrinkage silorane-based (Filtek P90, 3M, ESPE) resin composites were used in three groups as follows: group 1-Filtek Z250 (shade A3), group 2-Filtek Z250 (shade B2), and group 3-Filtek P90 (shade A3). We used a light-emitting diode (LED) curing unit for photopolymerization. 10 samples were prepared in each group to evaluate the degree of conversion; 5 samples were cured using soft-start curing mode, and the other 5 were cured using standard curing mode. The DC of the resin composites was measured using Fourier Transform Infrared Spectroscopy (FTIR). The data were analyzed using Kruskal Wallis and one-way ANOVA statistical tests. The degree of conversion of silorane-based resin composite was 70 - 75.8% and that of methacrylate-based resin composites was 60.2 - 68.2% (p = 0.009). The degree of conversion of the composite with brighter colour (B2) was statistically more than the darker composite (A3). Higher degree of conversion was achieved applying the standard curing mode. The results of the study showed that the colour and type of the resin composite and also the curing mode influence the degree of conversion of resin composites.
NASA Astrophysics Data System (ADS)
Han, Ya; Liu, Yan-Ge; Wang, Zhi; Huang, Wei; Chen, Lei; Zhang, Hong-Wei; Yang, Kang
2018-01-01
Mode-division multiplexing (MDM) is a promising technology for increasing the data-carrying capacity of a single few-mode optical fiber. The flexible mode manipulation would be highly desired in a robust MDM network. Recently, orbital angular momentum (OAM) modes have received wide attention as a new spatial mode basis. In this paper, we firstly proposed a long period fiber grating (LPFG) system to realize mode conversions between the higher order LP core modes in four-mode fiber. Based on the proposed system, we, for the first time, demonstrate the controllable all-fiber generation and conversion of the higher order LP core modes to the first and second order circularly polarized OAM beams with all the combinations of spin and OAM. Therefore, the proposed LPFG system can be potentially used as a controllable higher order OAM beam switch and a physical layer of the translating protocol from the conventional LP modes communication to the OAM modes communication in the future mode carrier telecommunication system and light calculation protocols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jiawei; Huang, Wenhua; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024
2015-03-16
A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.
Multi/demulti-plexer based on transverse mode conversion in photonic crystal waveguides.
Zhou, Wen; Zhuang, Yuyang; Ji, Ke; Chen, He-ming
2015-09-21
A novel mode multiplexer and demultiplexer (MMUX/DEMMUX) based on 2-D photonic crystal (PC) at 1550 nm is proposed. The PC-based mode MMUX/DEMMUX including mode conversion function with a single-mode and multi-mode waveguides can be realized by quasi phase-matching TE(0) & TE(1) modes of two waveguides. 2DFinite-Difference-Time-Domain and beam propagation methods are used for simulation. The results show that PC-based mode MMUX/DEMMUX has the potential for high-capacity MDM optical communication systems with a low insertion loss (<0.36dB), low mode crosstalk (< -20.9 dB) and wide bandwidth (~100 nm).
Waveguide structures in anisotropic nonlinear crystals
NASA Astrophysics Data System (ADS)
Li, Da; Hong, Pengda; Meissner, Helmuth E.
2017-02-01
We report on the design and manufacturing parameters of waveguiding structures of anisotropic nonlinear crystals that are employed for harmonic conversions, using Adhesive-Free Bonding (AFB®). This technology enables a full range of predetermined refractive index differences that are essential for the design of single mode or low-mode propagation with high efficiency in anisotropic nonlinear crystals which in turn results in compact frequency conversion systems. Examples of nonlinear optical waveguides include periodically bonded walk-off corrected nonlinear optical waveguides and periodically poled waveguide components, such as lithium triborate (LBO), beta barium borate (β-BBO), lithium niobate (LN), potassium titanyl phosphate (KTP), zinc germanium phosphide (ZGP) and silver selenogallate (AGSE). Simulation of planar LN waveguide shows that when the electric field vector E lies in the k-c plane, the power flow is directed precisely along the propagation direction, demonstrating waveguiding effect in the planar waveguide. Employment of anisotropic nonlinear optical waveguides, for example in combination with AFB® crystalline fiber waveguides (CFW), provides access to the design of a number of novel high power and high efficiency light sources spanning the range of wavelengths from deep ultraviolet (as short as 200 nm) to mid-infrared (as long as about 18 μm). To our knowledge, the technique is the only generally applicable one because most often there are no compatible cladding crystals available to nonlinear optical cores, especially not with an engineer-able refractive index difference and large mode area.
Geometric transformations of optical orbital angular momentum spatial modes
NASA Astrophysics Data System (ADS)
He, Rui; An, Xin
2018-02-01
With the aid of the bosonic mode conversions in two different coordinate frames, we show that (1) the coordinate eigenstate is exactly the EPR entangled state representation, and (2) the Laguerre-Gaussian (LG) mode is exactly the wave function of the common eigenvector of the orbital angular momentum and the total photon number operator. Moreover, by using the conversion of the bosonic modes, theWigner representation of the LG mode can be obtained directly. It provides an alternative to the method of Simon and Agarwal.
2007-04-30
control of cushion air flow and, hence, control of cushion pressure fore and aft of the divider that provides significant dynamic control of ship pitch...fore and aft of the divider that provides significant dynamic control of ship pitch and heave in a seaway. All these modes of operation were tested by...Installed Power, SHP 402,306 Integrated Power System (IPS) featuring: * (6) 50 MW Rolls-Royce MT50 based Gensets Power Plant * Associated Conversion and
Twenty Years of Research on the Alcator C-Mod Tokamak
NASA Astrophysics Data System (ADS)
Greenwald, Martin
2013-10-01
Alcator C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since its start in 1993, contributing data that extended tests of critical physical models into new parameter ranges and into new regimes. Using only RF for heating and current drive with innovative launching structures, C-Mod operates routinely at very high power densities. Research highlights include direct experimental observation of ICRF mode-conversion, ICRF flow drive, demonstration of Lower-Hybrid current drive at ITER-like densities and fields and, using a set of powerful new diagnostics, extensive validation of advanced RF codes. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components--an approach adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and EDA H-mode regimes which have high performance without large ELMs and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and found that self-generated flow shear can be strong enough to significantly modify transport. C-Mod made the first quantitative link between pedestal temperature and H-mode performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. Work supported by U.S. DoE
Two-dimensional numerical simulation of O-mode to Z-mode conversion in the ionosphere
NASA Astrophysics Data System (ADS)
Cannon, P. D.; Honary, F.; Borisov, N.
2016-03-01
Experiments in the illumination of the F region of the ionosphere via radio frequency waves polarized in the ordinary mode (O-mode) have revealed that the magnitude of artificial heating-induced effects depends strongly on the inclination angle of the pump beam, with a greater modification to the plasma observed when the heating beam is directed close to or along the magnetic zenith direction. Numerical simulations performed using a recently developed finite-difference time-domain (FDTD) code are used to investigate the contribution of the O-mode to Z-mode conversion process to this effect. The aspect angle dependence and angular size of the radio window for which conversion of an O-mode pump wave to the Z-mode occurs is simulated for a variety of plasma density profiles including 2-D linear gradients representative of large-scale plasma depletions, density-depleted plasma ducts, and periodic field-aligned irregularities. The angular shape of the conversion window is found to be strongly influenced by the background plasma profile. If the Z-mode wave is reflected, it can propagate back toward the O-mode reflection region leading to resonant enhancement of the electric field in this region. Simulation results presented in this paper demonstrate that this process can make a significant contribution to the magnitude of electron density depletion and temperature enhancement around the resonance height and contributes to a strong dependence of the magnitude of plasma perturbation with the direction of the pump wave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Guozhang; Xiang, Nong; Huang, Yueheng
2016-01-15
The propagation and mode conversion of lower hybrid waves in an inhomogeneous plasma are investigated by using the nonlinear δf algorithm in a two-dimensional particle-in-cell simulation code based on the gyrokinetic electron and fully kinetic ion (GeFi) scheme [Lin et al., Plasma Phys. Controlled Fusion 47, 657 (2005)]. The characteristics of the simulated waves, such as wavelength, frequency, phase, and group velocities, agree well with the linear theoretical analysis. It is shown that a significant reflection component emerges in the conversion process between the slow mode and the fast mode when the scale length of the density variation is comparablemore » to the local wavelength. The dependences of the reflection coefficient on the scale length of the density variation are compared with the results based on the linear full wave model for cold plasmas. It is indicated that the mode conversion for the waves with a frequency of 2.45 GHz (ω ∼ 3ω{sub LH}, where ω{sub LH} represents the lower hybrid resonance) and within Tokamak relevant amplitudes can be well described in the linear scheme. As the frequency decreases, the modification due to the nonlinear term becomes important. For the low-frequency waves (ω ∼ 1.3ω{sub LH}), the generations of the high harmonic modes and sidebands through nonlinear mode-mode coupling provide new power channels and thus could reduce the reflection significantly.« less
NASA Astrophysics Data System (ADS)
Wang, Huiqun; Toigo, Anthony D.
2016-06-01
Investigations of the variability, structure and energetics of the m = 1-3 traveling waves in the northern hemisphere of Mars are conducted with the MarsWRF general circulation model. Using a simple, annually repeatable dust scenario, the model reproduces many general characteristics of the observed traveling waves. The simulated m = 1 and m = 3 traveling waves show large differences in terms of their structures and energetics. For each representative wave mode, the geopotential signature maximizes at a higher altitude than the temperature signature, and the wave energetics suggests a mixed baroclinic-barotropic nature. There is a large contrast in wave energetics between the near-surface and higher altitudes, as well as between the lower latitudes and higher latitudes at high altitudes. Both barotropic and baroclinic conversions can act as either sources or sinks of eddy kinetic energy. Band-pass filtered transient eddies exhibit strong zonal variations in eddy kinetic energy and various energy transfer terms. Transient eddies are mainly interacting with the time mean flow. However, there appear to be non-negligible wave-wave interactions associated with wave mode transitions. These interactions include those between traveling waves and thermal tides and those among traveling waves.
Demonstration of Shear Waves, Lamb Waves, and Rayleigh Waves by Mode Conversion.
ERIC Educational Resources Information Center
Leung, W. P.
1980-01-01
Introduces an experiment that can be demonstrated in the classroom to show that shear waves, Rayleigh waves, and Lamb waves can be easily generated and observed by means of mode conversion. (Author/CS)
Survey of EBW Mode-Conversion Characteristics for Various Boundary Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, H.; Maekawa, T.; Igami, H.
2005-09-26
A survey of linear mode-conversion characteristics between external transverse electromagnetic (TEM) waves and electron Bernstein waves (EBW) for various plasma and wave parameters has been presented. It is shown that if the wave propagation angle and polarization are adjusted appropriately for each individual case of the plasma parameters, efficient mode conversion occur for wide range of plasma parameters where the conventional 'XB' and 'OXB' scheme cannot cover. It is confirmed that the plasma parameters just at the upper hybrid resonance (UHR) layer strongly affect the mode conversion process and the influence of the plasma profiles distant from the UHR layermore » is not so much. The results of this survey is useful enough to examine wave injection/detection condition for efficient ECH/ECCD or measurement of emissive TEM waves for each individual experimental condition of overdense plasmas.« less
Badal, Sunil P; Michalak, Shawn D; Chan, George C-Y; You, Yi; Shelley, Jacob T
2016-04-05
Plasma-based ambient desorption/ionization sources are versatile in that they enable direct ionization of gaseous samples as well as desorption/ionization of analytes from liquid and solid samples. However, ionization matrix effects, caused by competitive ionization processes, can worsen sensitivity or even inhibit detection all together. The present study is focused on expanding the analytical capabilities of the flowing atmospheric-pressure afterglow (FAPA) source by exploring additional types of ionization chemistry. Specifically, it was found that the abundance and type of reagent ions produced by the FAPA source and, thus, the corresponding ionization pathways of analytes, can be altered by changing the source working conditions. High abundance of proton-transfer reagent ions was observed with relatively high gas flow rates and low discharge currents. Conversely, charge-transfer reagent species were most abundant at low gas flows and high discharge currents. A rather nonpolar model analyte, biphenyl, was found to significantly change ionization pathway based on source operating parameters. Different analyte ions (e.g., MH(+) via proton-transfer and M(+.) via charge-transfer) were formed under unique operating parameters demonstrating two different operating regimes. These tunable ionization modes of the FAPA were used to enable or enhance detection of analytes which traditionally exhibit low-sensitivity in plasma-based ADI-MS analyses. In one example, 2,2'-dichloroquaterphenyl was detected under charge-transfer FAPA conditions, which were difficult or impossible to detect with proton-transfer FAPA or direct analysis in real-time (DART). Overall, this unique mode of operation increases the number and range of detectable analytes and has the potential to lessen ionization matrix effects in ADI-MS analyses.
Bērziņš, Agris; Actiņš, Andris
2014-06-01
The dehydration kinetics of mildronate dihydrate [3-(1,1,1-trimethylhydrazin-1-ium-2-yl)propionate dihydrate] was analyzed in isothermal and nonisothermal modes. The particle size, sample preparation and storage, sample weight, nitrogen flow rate, relative humidity, and sample history were varied in order to evaluate the effect of these factors and to more accurately interpret the data obtained from such analysis. It was determined that comparable kinetic parameters can be obtained in both isothermal and nonisothermal mode. However, dehydration activation energy values obtained in nonisothermal mode showed variation with conversion degree because of different rate-limiting step energy at higher temperature. Moreover, carrying out experiments in this mode required consideration of additional experimental complications. Our study of the different sample and experimental factor effect revealed information about changes of the dehydration rate-limiting step energy, variable contribution from different rate limiting steps, as well as clarified the dehydration mechanism. Procedures for convenient and fast determination of dehydration kinetic parameters were offered. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Huang, Ligang; Wang, Jie; Peng, Weihua; Zhang, Wending; Bo, Fang; Yu, Xuanyi; Gao, Feng; Chang, Pengfa; Song, Xiaobo; Zhang, Guoquan; Xu, Jingjun
2016-02-01
Based on the conversion between the fundamental mode (LP01) and the higher-order mode (LP11) in a tapered fiber via a whispering gallery mode resonator, an add/drop filter was proposed and demonstrated experimentally, in which the resonator only interacted with one tapered fiber, rather than two tapered fibers as in conventional configurations. The filter gains advantages of easy alignment and low scattering loss over the other filters based on tapered fiber and resonator, and will be useful in application.
Acoustic one-way mode conversion and transmission by sonic crystal waveguides
NASA Astrophysics Data System (ADS)
Ouyang, Shiliang; He, Hailong; He, Zhaojian; Deng, Ke; Zhao, Heping
2016-09-01
We proposed a scheme to achieve one-way acoustic propagation and even-odd mode switching in two mutually perpendicular sonic crystal waveguides connected by a resonant cavity. The even mode in the entrance waveguide is able to switch to the odd mode in the exit waveguide through a symmetry match between the cavity resonant modes and the waveguide modes. Conversely, the odd mode in the exit waveguide is unable to be converted into the even mode in the entrance waveguide as incident waves and eigenmodes are mismatched in their symmetries at the waveguide exit. This one-way mechanism can be applied to design an acoustic diode for acoustic integration devices and can be used as a convertor of the acoustic waveguide modes.
Puthillath, Padmakumar; Galan, Jose M; Ren, Baiyang; Lissenden, Cliff J; Rose, Joseph L
2013-05-01
Ultrasonic guided wave inspection of structures containing adhesively bonded joints requires an understanding of the interaction of guided waves with geometric and material discontinuities or transitions in the waveguide. Such interactions result in mode conversion with energy being partitioned among the reflected and transmitted modes. The step transition between an aluminum layer and an aluminum-adhesive-aluminum multi-layer waveguide is analyzed as a model structure. Dispersion analysis enables assessment of (i) synchronism through dispersion curve overlap and (ii) wavestructure correlation. Mode-pairs in the multi-layer waveguide are defined relative to a prescribed mode in a single layer as being synchronized and having nearly perfect wavestructure matching. Only a limited number of mode-pairs exist, and each has a unique frequency range. A hybrid model based on semi-analytical finite elements and the normal mode expansion is implemented to assess mode conversion at a step transition in a waveguide. The model results indicate that synchronism and wavestructure matching is associated with energy transfer through the step transition, and that the energy of an incident wave mode in a single layer is transmitted almost entirely to the associated mode-pair, where one exists. This analysis guides the selection of incident modes that convert into transmitted modes and improve adhesive joint inspection with ultrasonic guided waves.
NASA Astrophysics Data System (ADS)
Shi, Jingjing; Lee, Jonghoon; Dong, Yalin; Roy, Ajit; Fisher, Timothy S.; Ruan, Xiulin
2018-04-01
Dimensionally mismatched interfaces are emerging for thermal management applications, but thermal transport physics remains poorly understood. Here we consider the carbon-nanotube-graphene junction, which is a dimensionally mismatched interface between one- and two-dimensional materials and is the building block for carbon-nanotube (CNT)-graphene three-dimensional networks. We predict the transmission function of individual phonon modes using the wave packet method; surprisingly, most incident phonon modes show predominantly polarization conversion behavior. For instance, longitudinal acoustic (LA) polarizations incident from CNTs transmit mainly into flexural transverse (ZA) polarizations in graphene. The frequency stays the same as the incident mode, indicating elastic transmission. Polarization conversion is more significant as the phonon wavelength increases. We attribute such unique phonon polarization conversion behavior to the dimensional mismatch across the interface, and it opens significantly new phonon transport channels as compared to existing theories where polarization conversion is neglected.
NASA Astrophysics Data System (ADS)
Abderrahim, Iheb
Wind power generation has grown strongly in the last decade. This results in the development of Wind Energy Conversion System WECS at the levels of modeling and electrical control. Modern WECS operate at varying wind speeds and are equipped with synchronous and asynchronous generators. Among these generators, the Doubly-Fed Induction Generator (DFIG) offers several advantages and capabilities of active and reactive power in four quadrants. WECS based DFIG also causes less conversion costs and minimum energy losses compared with a WECS based on a synchronous generator powered entirely by full scale of power converters. The connection of such a system to the electrical distribution network involves bidirectional operation of networks. This is clearly established in sub and super synchronous operating modes of DFIG. The grid provides the active power to the rotor of DFIG in sub synchronous operating mode and receives the active power of the rotor in super synchronous operating mode of DFIG. Energy quality is thus of major importance during the integration of wind power to the grid. Poor wave quality can affect network stability and could even cause major problems and consequences. This is even more critical where non-linear loads such as the switching power supplies and variable speed drives, are connected to the grid. The idea of this research work is how to mitigate the problems associated with the wave quality while ensuring better implementation of DFIG so that the whole of WECS remains insensitive to external disturbances and parametric variations. The Grid Side Converter (GSC) must be able to compensate harmonics, current unbalance and reactive power injected by a nonlinear three-phase unbalanced load connected to the grid. In addition to these innovative features to improve the conditions of operation of the grid, it provides also the power flow during different modes of operation of the DFIG. It is considered a simple, efficient and cost competitive solution by saving the use of other power equipment. At the same time, the energy efficiency of wind power conversion chain should be improved by extracting the MPPT. Searching allows us to select vector control and control in synchronous reference to achieve these objectives. WECS based DFIG is simulated in MATLAB SIMULINK in the presence of a non-linear balanced and unbalanced three-phase load.
ITG modes in the presence of inhomogeneous field-aligned flow
NASA Astrophysics Data System (ADS)
Sen, S.; McCarthy, D. R.; Lontano, M.; Lazzaro, E.; Honary, F.
2010-02-01
In a recent paper, Varischetti et al. (Plasma Phys. Contr. F. 2008, 50, 105008-1-15) have found that in a slab geometry the effect of the flow shear in the field-aligned parallel flow on the linear mode stability of the ion temperature gradient (ITG)-driven modes is not very prominent. They found that the flow shear also has a negligible effect on the mode characteristics. The work in this paper shows that the inclusion of flow curvature in the field-aligned flow can have a considerable effect on the mode stability; it can also change the mode structure so as to effect the mixing length transport in the core region of a fusion device. Flow shear, on the other hand, has indeed an insignificant role in the mode stability and mode structure. Inhomogeneous field-aligned flow should therefore still be considered for a viable candidate in controlling the ITG mode stability and mode structure.
Proposal of optical mode switch
NASA Astrophysics Data System (ADS)
Takakura, Ryuta; Jizodo, Makoto; Fujino, Asuka; Tanaka, Tatsushi; Hamamoto, Kiichi
2014-08-01
Here, we propose a novel optical mode switch, which is a new concept of the optical switch. It can overcome the matrix size limitation issue, which has been a general issue for the waveguide optical space switch, because of its simple fiber coupling configuration. In addition, it contributes to the lossless mux/demux function such as wavelength multiplexing with powerless mode conversion unlike wavelength conversion. In this paper, we propose the principle of the optical mode switch. The simulation results showed less than -30 dB mode crosstalk, with less than only 0.1 dB excess loss for a two-mode optical switch. Moreover, the scalable configuration up to four modes is also proposed in this paper.
Waveguide mode converter and method using same
Moeller, Charles P.
1990-01-01
A waveguide mode converter converts electromagnetic power being transmitted in a TE.sub.0n or a TM.sub.0n mode, where n is an integer, to an HE.sub.11 mode. The conversion process occurs in a single stage without requiring the power to pass through any intermediate modes. The converter comprises a length of circular corrugated waveguide formed in a multiperiod periodic curve. The period of the curve is selected to couple the desired modes and decouple undesired modes. The corrugation depth is selected to control the phase propagation constant, or wavenumbers, of the input and output modes, thereby preventing coherent coupling to competing modes. In one embodiment, both the period and amplitude of the curve may be selectively adjusted, thereby allowing the converter to be tuned to maximize the conversion efficiency.
Systems and methods for commutating inductor current using a matrix converter
Ransom, Ray M; Kajouke, Lateef A; Perisic, Milun
2012-10-16
Systems and methods are provided for delivering current using a matrix converter in a vehicle. An electrical system comprises an AC interface, a first conversion module coupled to the AC interface, an inductive element coupled between the AC interface and the first conversion module, and a control module coupled to the first conversion module. The control module is configured to operate the first conversion module in a bidirectional operating mode to commutate current bidirectionally. When a magnitude of the current through the inductive element is greater than a first threshold value, the control module operates the conversion module in a unidirectional operating mode, wherein current is commutated unidirectionally.
Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications
Viola, Michael B [Macomb Township, MI; Schmieg, Steven J [Troy, MI; Sloane, Thompson M [Oxford, MI; Hilden, David L [Shelby Township, MI; Mulawa, Patricia A [Clinton Township, MI; Lee, Jong H [Rochester Hills, MI; Cheng, Shi-Wai S [Troy, MI
2012-05-29
A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.
NASA Astrophysics Data System (ADS)
Buren, Mandula; Jian, Yongjun; Zhao, Yingchun; Chang, Long
2018-05-01
In this paper we analytically investigate the electroviscous effect and electrokinetic energy conversion in the time periodic pressure-driven flow of an incompressible viscous Newtonian liquid through a parallel-plate nanochannel with surface charge-dependent slip. Analytical and semi-analytical solutions for electric potential, velocity and streaming electric field are obtained and are utilized to compute electrokinetic energy conversion efficiency. The results show that velocity amplitude and energy conversion efficiency are reduced when the effect of surface charge on slip length is considered. The surface charge effect increases with zeta potential and ionic concentration. In addition, the energy conversion efficiency is large when the ratio of channel half-height to the electric double layer thickness is small. The boundary slip results in a large increase in energy conversion. Higher values of the frequency of pressure pulsation lead to higher values of the energy conversion efficiency. We also obtain the energy conversion efficiency in constant pressure-driven flow and find that the energy conversion efficiency in periodical pressure-driven flow becomes larger than that in constant pressure-driven flow when the frequency is large enough.
Defect induced guided waves mode conversion
NASA Astrophysics Data System (ADS)
Wandowski, Tomasz; Kudela, Pawel; Malinowski, Pawel; Ostachowicz, Wieslaw
2016-04-01
This paper deals with analysis of guided waves mode conversion phenomenon in fiber reinforced composite materials. Mode conversion phenomenon may take place when propagating elastic guided waves interact with discontinuities in the composite waveguide. The examples of such discontinuities are sudden thickness change or delamination between layers in composite material. In this paper, analysis of mode conversion phenomenon is based on full wave-field signals. In the full wave-field approach signals representing propagation of elastic waves are gathered from dense mesh of points that span over investigated area of composite part. This allow to animate the guided wave propagation. The reported analysis is based on signals resulting from numerical calculations and experimental measurements. In both cases defect in the form of delamination is considered. In the case of numerical research, Spectral Element Method (SEM) is utilized, in which a mesh is composed of 3D elements. Numerical model includes also piezoelectric transducer. Full wave-field experimental measurements are conducted by using piezoelectric transducer for guided wave excitation and Scanning Laser Doppler Vibrometer (SLDV) for sensing.
Mode Conversion Behavior of Guided Wave in a Pipe Inspection System Based on a Long Waveguide.
Sun, Feiran; Sun, Zhenguo; Chen, Qiang; Murayama, Riichi; Nishino, Hideo
2016-10-19
To make clear the mode conversion behavior of S0-mode lamb wave and SH0-plate wave converting to the longitudinal mode guided wave and torsional mode guided wave in a pipe, respectively, the experiments were performed based on a previous built pipe inspection system. The pipe was wound with an L-shaped plate or a T-shaped plate as the waveguide, and the S0-wave and SH0-wave were excited separately in the waveguide. To carry out the objective, a meander-line coil electromagnetic acoustic transducer (EMAT) for S0-wave and a periodic permanent magnet (PPM) EMAT for SH0-wave were developed and optimized. Then, several comparison experiments were conducted to compare the efficiency of mode conversion. Experimental results showed that the T(0,1) mode, L(0,1) mode, and L(0,2) mode guided waves can be successfully detected when converted from the S0-wave or SH0-wave with different shaped waveguides. It can also be inferred that the S0-wave has a better ability to convert to the T(0,1) mode, while the SH0-wave is easier to convert to the L(0,1) mode and L(0,2) mode, and the L-shaped waveguide has a better efficiency than T-shaped waveguide.
Feasibility study for convertible engine torque converter
NASA Technical Reports Server (NTRS)
1985-01-01
The feasibility study has shown that a dump/fill type torque converter has excellent potential for the convertible fan/shaft engine. The torque converter space requirement permits internal housing within the normal flow path of a turbofan engine at acceptable engine weight. The unit permits operating the engine in the turboshaft mode by decoupling the fan. To convert to turbofan mode, the torque converter overdrive capability bring the fan speed up to the power turbine speed to permit engagement of a mechanical lockup device when the shaft speed are synchronized. The conversion to turbofan mode can be made without drop of power turbine speed in less than 10 sec. Total thrust delivered to the aircraft by the proprotor, fan, and engine during tansient can be controlled to prevent loss of air speed or altitude. Heat rejection to the oil is low, and additional oil cooling capacity is not required. The turbofan engine aerodynamic design is basically uncompromised by convertibility and allows proper fan design for quiet and efficient cruise operation. Although the results of the feasibility study are exceedingly encouraging, it must be noted that they are based on extrapolation of limited existing data on torque converters. A component test program with three trial torque converter designs and concurrent computer modeling for fluid flow, stress, and dynamics, updated with test results from each unit, is recommended.
A reduced-dimensionality approach to uncovering dyadic modes of body motion in conversations.
Gaziv, Guy; Noy, Lior; Liron, Yuvalal; Alon, Uri
2017-01-01
Face-to-face conversations are central to human communication and a fascinating example of joint action. Beyond verbal content, one of the primary ways in which information is conveyed in conversations is body language. Body motion in natural conversations has been difficult to study precisely due to the large number of coordinates at play. There is need for fresh approaches to analyze and understand the data, in order to ask whether dyads show basic building blocks of coupled motion. Here we present a method for analyzing body motion during joint action using depth-sensing cameras, and use it to analyze a sample of scientific conversations. Our method consists of three steps: defining modes of body motion of individual participants, defining dyadic modes made of combinations of these individual modes, and lastly defining motion motifs as dyadic modes that occur significantly more often than expected given the single-person motion statistics. As a proof-of-concept, we analyze the motion of 12 dyads of scientists measured using two Microsoft Kinect cameras. In our sample, we find that out of many possible modes, only two were motion motifs: synchronized parallel torso motion in which the participants swayed from side to side in sync, and still segments where neither person moved. We find evidence of dyad individuality in the use of motion modes. For a randomly selected subset of 5 dyads, this individuality was maintained for at least 6 months. The present approach to simplify complex motion data and to define motion motifs may be used to understand other joint tasks and interactions. The analysis tools developed here and the motion dataset are publicly available.
A reduced-dimensionality approach to uncovering dyadic modes of body motion in conversations
Noy, Lior; Liron, Yuvalal; Alon, Uri
2017-01-01
Face-to-face conversations are central to human communication and a fascinating example of joint action. Beyond verbal content, one of the primary ways in which information is conveyed in conversations is body language. Body motion in natural conversations has been difficult to study precisely due to the large number of coordinates at play. There is need for fresh approaches to analyze and understand the data, in order to ask whether dyads show basic building blocks of coupled motion. Here we present a method for analyzing body motion during joint action using depth-sensing cameras, and use it to analyze a sample of scientific conversations. Our method consists of three steps: defining modes of body motion of individual participants, defining dyadic modes made of combinations of these individual modes, and lastly defining motion motifs as dyadic modes that occur significantly more often than expected given the single-person motion statistics. As a proof-of-concept, we analyze the motion of 12 dyads of scientists measured using two Microsoft Kinect cameras. In our sample, we find that out of many possible modes, only two were motion motifs: synchronized parallel torso motion in which the participants swayed from side to side in sync, and still segments where neither person moved. We find evidence of dyad individuality in the use of motion modes. For a randomly selected subset of 5 dyads, this individuality was maintained for at least 6 months. The present approach to simplify complex motion data and to define motion motifs may be used to understand other joint tasks and interactions. The analysis tools developed here and the motion dataset are publicly available. PMID:28141861
Frequency conversion of structured light.
Steinlechner, Fabian; Hermosa, Nathaniel; Pruneri, Valerio; Torres, Juan P
2016-02-15
Coherent frequency conversion of structured light, i.e. the ability to manipulate the carrier frequency of a wave front without distorting its spatial phase and intensity profile, provides the opportunity for numerous novel applications in photonic technology and fundamental science. In particular, frequency conversion of spatial modes carrying orbital angular momentum can be exploited in sub-wavelength resolution nano-optics and coherent imaging at a wavelength different from that used to illuminate an object. Moreover, coherent frequency conversion will be crucial for interfacing information stored in the high-dimensional spatial structure of single and entangled photons with various constituents of quantum networks. In this work, we demonstrate frequency conversion of structured light from the near infrared (803 nm) to the visible (527 nm). The conversion scheme is based on sum-frequency generation in a periodically poled lithium niobate crystal pumped with a 1540-nm Gaussian beam. We observe frequency-converted fields that exhibit a high degree of similarity with the input field and verify the coherence of the frequency-conversion process via mode projection measurements with a phase mask and a single-mode fiber. Our results demonstrate the suitability of exploiting the technique for applications in quantum information processing and coherent imaging.
Modeling of helicon wave propagation and the physical process of helicon plasma production
NASA Astrophysics Data System (ADS)
Isayama, Shogo; Hada, Tohru; Shinohara, Shunjiro; Tanikawa, Takao
2014-10-01
Helicon plasma is a high-density and low-temperature plasma generated by the helicon wave, and is expected to be useful for various applications. On the other hand, there still remain a number of unsolved physical issues regarding how the plasma is generated using the helicon wave. The generation involves such physical processes as wave propagation, mode conversion, and collisionless as well as collisional wave damping that leads to ionization/recombination of neutral particles. In this study, we attempt to construct a model for the helicon plasma production using numerical simulations. In particular, we will make a quantitative argument on the roles of the mode conversion from the helicon to the electrostatic Trivelpiece-Gould (TG) wave, as first proposed by Shamrai. According to his scenario, the long wavelength helicon wave linearly mode converts to the TG wave, which then dissipates rapidly due to its large wave number. On the other hand, the efficiency of the mode conversion depends strongly on the magnitudes of dissipation parameters. Particularly when the dissipation is dominant, the TG wave is no longer excited and the input helicon wave directly dissipates. In the presentation, we will discuss the mode conversion and the plasma heating using numerical simulations.
Analysis of trickle-bed reactor for ethanol production from syngas using Clostridium ragsdalei
NASA Astrophysics Data System (ADS)
Devarapalli, Mamatha
The conversion of syngas components (CO, CO2 and H2) to liquid fuels such as ethanol involves complex biochemical reactions catalyzed by a group of acetogens such as Clostridium ljungdahlii, Clostridium carboxidivorans and Clostridium ragsdalei. The low ethanol productivity in this process is associated with the low solubility of gaseous substrates CO and H2 in the fermentation medium. In the present study, a 1-L trickle-bed reactor (TBR) was analyzed to understand its capabilities to improve the mass transfer of syngas in fermentation medium. Further, semi-continuous and continuous syngas fermentations were performed using C. ragsdalei to evaluate the ability of the TBR for ethanol production. In the mass transfer studies, using 6-mm glass beads, it was found that the overall mass transfer coefficient (kLa/V L) increased with the increase in gas flow rate from 5.5 to 130.5 sccm. Further, an increase in the liquid flow rate in the TBR decreased the kLa/VL due to the increase in liquid hold up volume (VL) in the packing. The highest kLa/VL values of 421 h-1 and 178 h-1 were achieved at a gas flow rate of 130.5 sccm for 6-mm and 3-mm glass beads, respectively. Semi-continuous fermentations were performed with repetitive medium replacement in counter-current and co-current modes. In semi-continuous fermentations with syngas consisting of 38% CO, 5% N2, 28.5% CO2 and 28.5% H2 (by volume), the increase in H2 conversion (from 18 to 55%) and uptake (from 0.7 to 2.2 mmol/h) were observed. This increase was attributed to more cell attachment in the packing that reduced CO inhibition to hydrogenase along the column length and increased the H2 uptake. The maximum ethanol produced during counter-current and co-current modes were 3.0 g/L and 5.7 g/L, respectively. In continuous syngas fermentation, the TBR was operated at dilution rates between 0.006 h-1and 0.012 h -1 and gas flow rates between 1.5 sccm and 18.9 sccm. The highest ethanol concentration of 13 g/L was achieved at dilution and gas flow rates of 0.012 h-1 and 18.9 sccm, respectively. The molar ratio of ethanol to acetic acid of 4:1 was obtained during continuous fermentation which was 7.7 times higher than in semi-continuous fermentations. The improvement of the reactor performance in continuous mode gives scope to explore the TBR as a potential bioreactor design for large scale biofuels production.
On the surface-to-bulk mode conversion of Rayleigh waves.
NASA Technical Reports Server (NTRS)
Chang, C.-P.; Tuan, H.-S.
1973-01-01
Surface-to-bulk wave conversion phenomena occurring at a discontinuity characterized by a surface contour deformation are shown to be usable as a means for tapping Rayleigh waves in a nonpiezoelectric solid. A boundary perturbation technique is used in the treatment of the mode conversion problem. A systematic procedure is presented for calculating not only the first-order scattered waves, which include the reflected surface wave and the converted bulk wave, but also the higher order terms.
Debris-flow mobilization from landslides
Iverson, R.M.; Reid, M.E.; LaHusen, R.G.
1997-01-01
Field observations, laboratory experiments, and theoretical analyses indicate that landslides mobilize to form debris flows by three processes: (a) widespread Coulomb failure within a sloping soil, rock, or sediment mass, (b) partial or complete liquefaction of the mass by high pore-fluid pressures, and (c) conversion of landslide translational energy to internal vibrational energy (i.e. granular temperature). These processes can operate independently, but in many circumstances they appear to operate simultaneously and synergistically. Early work on debris-flow mobilization described a similar interplay of processes but relied on mechanical models in which debris behavior was assumed to be fixed and governed by a Bingham or Bagnold rheology. In contrast, this review emphasizes models in which debris behavior evolves in response to changing pore pressures and granular temperatures. One-dimensional infinite-slope models provide insight by quantifying how pore pressures and granular temperatures can influence the transition from Coulomb failure to liquefaction. Analyses of multidimensional experiments reveal complications ignored in one-dimensional models and demonstrate that debris-flow mobilization may occur by at least two distinct modes in the field.
Mutual conversion between B-mode image and acoustic impedance image
NASA Astrophysics Data System (ADS)
Chean, Tan Wei; Hozumi, Naohiro; Yoshida, Sachiko; Kobayashi, Kazuto; Ogura, Yuki
2017-07-01
To study the acoustic properties of a B-mode image, two ways of analysis methods were proposed in this report. The first method is the conversion of an acoustic impedance image into a B-mode image (Z to B). The time domain reflectometry theory and transmission line model were used as reference in the calculation. The second method is the direct a conversion of B-mode image into an acoustic impedance image (B to Z). The theoretical background of the second method is similar to that of the first method; however, the calculation is in the opposite direction. Significant scatter, refraction, and attenuation were assumed not to take place during the propagation of an ultrasonic wave. Hence, they were ignored in both calculations. In this study, rat cerebellar tissue and human cheek skin were used to determine the feasibility of the first and second methods respectively. Some good results are obtained and hence both methods showed their possible applications in the study of acoustic properties of B-mode images.
Optical apparatus for conversion of whispering-gallery modes into a free space gaussian like beam
Stallard, B.W.; Makowski, M.A.; Byers, J.A.
1992-05-19
An optical converter for efficient conversion of millimeter wavelength whispering-gallery gyrotron output into a linearly polarized, free-space Gaussian-like beam is described. The converter uses a mode-converting taper and three mirror optics. The first mirror has an azimuthal tilt to eliminate the k[sub [phi
Investigation for all polarization conversions of the guided-modes in a bending waveguide
NASA Astrophysics Data System (ADS)
Shi, Yunjie; Shang, Hongpeng; Sun, DeGui
2018-03-01
In this work, a new solution to the partial differential Maxwell equations is first derived to investigate all polarization conversions of the transverse and the longitudinal components of guided-modes in a bending waveguide. Then, for the silica-waveguides, the polarization conversion efficiencies are numerical calculated and a significant finding is that the transverse-longitudinal polarization conversion efficiency is much higher than that of transverse-transverse polarization conversion. Furthermore, the dependences of all the conversion efficiencies on waveguide parameters are found. The agreeable results between the numerical calculation and the finite difference time-domain (FDTD) simulation show that for two 100 μm long bending waveguides of 0.75 and 1.50% index contrasts, the amplitude conversion efficiencies from ∼10-3 to ∼10-2 can be realized for the transverse-transverse polarization components and that of ∼10-1 can be realized for the transverse-longitudinal polarization components.
Roles Played by Electrostatic Waves in Producing Radio Emissions
NASA Technical Reports Server (NTRS)
Cairns, Iver H.
2000-01-01
Processes in which electromagnetic radiation is produced directly or indirectly via intermediate waves are reviewed. It is shown that strict theoretical constraints exist for electrons to produce nonthermal levels of radiation directly by the Cerenkov or cyclotron resonances. In contrast, indirect emission processes in which intermediary plasma waves are converted into radiation are often favored on general and specific grounds. Four classes of mechanisms involving the conversion of electrostatic waves into radiation are linear mode conversion, hybrid linear/nonlinear mechanisms, nonlinear wave-wave and wave-particle processes, and radiation from localized wave packets. These processes are reviewed theoretically and observational evidence summarized for their occurrence. Strong evidence exists that specific nonlinear wave processes and mode conversion can explain quantitatively phenomena involving type III solar radio bursts and ionospheric emissions. On the other hand, no convincing evidence exists that magnetospheric continuum radiation is produced by mode conversion instead of nonlinear wave processes. Further research on these processes is needed.
NASA Astrophysics Data System (ADS)
Horký, Miroslav; Omura, Yoshiharu; Santolík, Ondřej
2018-04-01
This paper presents the wave mode conversion between electrostatic and electromagnetic waves on the plasma density gradient. We use 2-D electromagnetic code KEMPO2 implemented with the generation of density gradient to simulate such a conversion process. In the dense region, we use ring beam instability to generate electron Bernstein waves and we study the temporal evolution of wave spectra, velocity distributions, Poynting flux, and electric and magnetic energies to observe the wave mode conversion. Such a conversion process can be a source of electromagnetic emissions which are routinely measured by spacecraft on the plasmapause density gradient.
Advanced Thermionic Technology Program
NASA Technical Reports Server (NTRS)
1977-01-01
Topics include surface studies (surface theory, basic surface experiments, and activation chamber experiments); plasma studies (converter theory and enhanced mode conversion experiments); and component development (low temperature conversion experiments, high efficiency conversion experiments, and hot shell development).
LP01 to LP11 mode convertor based on side-polished small-core single-mode fiber
NASA Astrophysics Data System (ADS)
Liu, Yan; Li, Yang; Li, Wei-dong
2018-03-01
An all-fiber LP01-LP11 mode convertor based on side-polished small-core single-mode fibers (SMFs) is numerically demonstrated. The linearly polarized incident beam in one arm experiences π shift through a fiber half waveplate, and the side-polished parts merge into an equivalent twin-core fiber (TCF) which spatially shapes the incident LP01 modes to the LP11 mode supported by the step-index few-mode fiber (FMF). Optimum conditions for the highest conversion efficiency are investigated using the beam propagation method (BPM) with an approximate efficiency as high as 96.7%. The proposed scheme can operate within a wide wavelength range from 1.3 μm to1.7 μm with overall conversion efficiency greater than 95%. The effective mode area and coupling loss are also characterized in detail by finite element method (FEM).
Searching for O-X-B mode-conversion window with monitoring of stray microwave radiation in LHD
NASA Astrophysics Data System (ADS)
Igami, H.; Kubo, S.; Laqua, H. P.; Nagasaki, K.; Inagaki, S.; Notake, T.; Shimozuma, T.; Yoshimura, Y.; Mutoh, T.; LHD Experimental Group
2006-10-01
In the Large Helical Device, the stray microwave radiation is monitored by using so-called sniffer probes during electron cyclotron heating. In monitoring the stray radiation, we changed the microwave beam injection angle and search the O-X-B mode-conversion window to excite electron Bernstein waves (EBWs). When the microwave beam is injected toward the vicinity of the predicted O-X-B mode-conversion window, the electron temperature rises in the central part of overdense plasmas. In that case, the stray radiation level near the injection antenna becomes low. These results indicate that monitoring the stray radiation near the injection antenna is helpful in confirming the effectiveness of excitation of EBWs simply without precise analysis.
NASA Astrophysics Data System (ADS)
Royer, François; Amata, Hadi; Parsy, François; Jamon, Damien; Ghibaudo, Elise; Broquin, Jean-Emmanuel; Neveu, Sophie
2012-01-01
The integration of magneto-optical materials with classical technologies being still a difficult problem, this study explores the possibility to realize a mode converter based on a hybrid structure. A composite magneto-optical layer made of a silica/zirconia matrix doped by magnetic nanoparticles is coated on the top face of ion-exchanged glass waveguides. Optical characterizations that have been carried out demonstrated the efficiency of these hybrid structures in terms of lateral confinement. Furthermore, TE to TM mode conversion has been observed when a longitudinal magnetic field is applied to the device. The amount of this conversion is analysed taking into account the magneto-optical confinement and the modal birefringence of the structure.
Undamped transverse oscillations of coronal loops as a self-oscillatory process
NASA Astrophysics Data System (ADS)
Nakariakov, V. M.; Anfinogentov, S. A.; Nisticò, G.; Lee, D.-H.
2016-06-01
Context. Standing transverse oscillations of coronal loops are observed to operate in two regimes: rapidly decaying, large amplitude oscillations and undamped small amplitude oscillations. In the latter regime the damping should be compensated by energy supply, which allows the loop to perform almost monochromatic oscillations with almost constant amplitude and phase. Different loops oscillate with different periods. The oscillation amplitude does not show dependence on the loop length or the oscillation period. Aims: We aim to develop a low-dimensional model explaining the undamped kink oscillations as a self-oscillatory process caused by the effect of negative friction. The source of energy is an external quasi-steady flow, for example, supergranulation motions near the loop footpoints or external flows in the corona. Methods: We demonstrate that the interaction of a quasi-steady flow with a loop can be described by a Rayleigh oscillator equation that is a non-linear ordinary differential equation, with the damping and resonant terms determined empirically. Results: Small-amplitude self-oscillatory solutions to the Rayleigh oscillator equation are harmonic signals of constant amplitude, which is consistent with the observed properties of undamped kink oscillations. The period of self-oscillations is determined by the frequency of the kink mode. The damping by dissipation and mode conversion is compensated by the continuous energy deposition at the frequency of the natural oscillation. Conclusions: We propose that undamped kink oscillations of coronal loops may be caused by the interaction of the loops with quasi-steady flows, and hence are self-oscillations, which is analogous to producing a tune by moving a bow across a violin string.
Modes of Discourse in Educational Administration: A Taxonomy.
ERIC Educational Resources Information Center
Vice, James W.
1983-01-01
Uses examples from higher education to present a taxonomy of discourse, classifying verbal interchanges into three minor modes (rote pronouncement, passing time, and gossip), a transitional mode (true conversation), and three major modes (rhetoric, dialectic, and deliberation). (JAC)
Intrinsic hybrid modes in a corrugated conical horn
NASA Astrophysics Data System (ADS)
Dendane, A.; Arnold, J. M.
1988-08-01
Computational requirements for the generation of intrinsic modes in a nonseparable waveguide geometry requiring a full vector field description with anistropic impedance boundaries were derived. Good agreement is shown between computed and measured radiation patterns in copolar and crosspolar configurations. This agreement establishes that the intrinsic mode correctly accounts for the local normal mode conversion which takes place along the horn in a conventional mode coupling scheme, at least for cone semiangles up to 15 deg. The advantage of the intrinsic mode formulation over the conventional mode-coupling theory is that, to construct a single intrinsic mode throughout the horn, only one local normal mode field is required at each cross section, whereas mode conversion from the HE11 mode would require all the HE1n modes to be known at each cross section. The intrinsic mode accounts also for fields which would appear as backward modes in coupled-mode theory. A complete coupled-mode theory solution requires the inversion of a large matrix at each cross section, whereas the intrinsic mode can be constructed explicitly using a simple Fourier-like integral; the perturbation solution of Dragone (1977) is difficult to make rigorous.
Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction.
Ma, Ming; Grey, François; Shen, Luming; Urbakh, Michael; Wu, Shuai; Liu, Jefferson Zhe; Liu, Yilun; Zheng, Quanshui
2015-08-01
The emergence of the field of nanofluidics in the last decade has led to the development of important applications including water desalination, ultrafiltration and osmotic energy conversion. Most applications make use of carbon nanotubes, boron nitride nanotubes, graphene and graphene oxide. In particular, understanding water transport in carbon nanotubes is key for designing ultrafiltration devices and energy-efficient water filters. However, although theoretical studies based on molecular dynamics simulations have revealed many mechanistic features of water transport at the molecular level, further advances in this direction are limited by the fact that the lowest flow velocities accessible by simulations are orders of magnitude higher than those measured experimentally. Here, we extend molecular dynamics studies of water transport through carbon nanotubes to flow velocities comparable with experimental ones using massive crowd-sourced computing power. We observe previously undetected oscillations in the friction force between water and carbon nanotubes and show that these oscillations result from the coupling between confined water molecules and the longitudinal phonon modes of the nanotube. This coupling can enhance the diffusion of confined water by more than 300%. Our results may serve as a theoretical framework for the design of new devices for more efficient water filtration and osmotic energy conversion devices.
Enhancement and inhibition of light tunneling mediated by resonant mode conversion.
Kartashov, Yaroslav V; Vysloukh, Victor A; Torner, Lluis
2014-02-15
We show that the rate at which light tunnels between neighboring multimode waveguides can be drastically increased or reduced by the presence of small longitudinal periodic modulations of the waveguide properties that stimulate resonant conversion between the eigenmodes of each waveguide. Such a conversion, available only in multimode guiding structures, leads to periodic power transfer into higher-order modes, whose tails may considerably overlap with neighboring waveguides. As a result, the effective coupling constant for neighboring waveguides may change by several orders of magnitude upon small variations in the longitudinal modulation parameters.
NASA Technical Reports Server (NTRS)
Lempert, Walter R.; Zhang, Boying; Miles, Richard B.; Diskin, Glenn
1991-01-01
The use of an O2:He stimulated Raman cell to generate the Stokes beam for the Raman vibrational pumping step of the RELIEF (Raman Excitation plus Laser-Induced Electronic Fluorescence) flow tagging method is reported. Use of the Raman cell rather than a dye laser provides pump and Stokes beams which are automatically frequency matched and temporally and spatially overlapped. The Nd:YAG pump laser is operated multilongitudinal mode, which eliminates the need for injection seeding, resulting in decreased operation complexity and improved stability with respect to acoustic noise. Results are presented for 1st Stokes conversion efficiency and stimulated Brillouin backscattering loss and are compared to the case of pure O2. Scanning CARS measurements of the Q-branch lineshape for both pure O2 and the O2:He mixture are also presented.
Preferential vibrational excitation in microwave nitrogen plasma assessed by Raman scattering
NASA Astrophysics Data System (ADS)
Gatti, N.; Ponduri, S.; Peeters, F. J. J.; van den Bekerom, D. C. M.; Minea, T.; Tosi, P.; van de Sanden, M. C. M.; van Rooij, G. J.
2018-05-01
Vibrational activation of N2 molecules in a flowing microwave plasma is investigated in the context of utilising electrical energy for chemical conversion. Spatial profiles of rotational (T r ) and vibrational (T v ) temperatures are measured by Raman scattering. Maximum values of T r = 3500 K and T v = 6000 K were observed in the centre of the plasma at low pressure (50 mbar). A detailed quantification of the local energy content shows how the strong non-equilibrium character of low pressure discharges compares with a closer-to-equilibrium energy distribution at higher pressures. Measurements performed downstream of the plasma display the ability of the microwave flowing reactor to deliver up to 48% of the specific energy input (SEI) into internal degrees of freedom of the gas molecules. Specifically, 23% of the SEI is loaded into the vibrational mode, which is potentially available to enhance chemical reactivity of endothermic reactions.
A new and trustworthy formalism to compute entropy in quantum systems
NASA Astrophysics Data System (ADS)
Ansari, Mohammad
Entropy is nonlinear in density matrix and as such its evaluation in open quantum system has not been fully understood. Recently a quantum formalism was proposed by Ansari and Nazarov that evaluates entropy using parallel time evolutions of multiple worlds. We can use this formalism to evaluate entropy flow in a photovoltaic cells coupled to thermal reservoirs and cavity modes. Recently we studied the full counting statistics of energy transfers in such systems. This rigorously proves a nontrivial correspondence between energy exchanges and entropy changes in quantum systems, which only in systems without entanglement can be simplified to the textbook second law of thermodynamics. We evaluate the flow of entropy using this formalism. In the presence of entanglement, however, interestingly much less information is exchanged than what we expected. This increases the upper limit capacity for information transfer and its conversion to energy for next generation devices in mesoscopic physics.
Controlled higher-order transverse mode conversion from a fiber laser by polarization manipulation
NASA Astrophysics Data System (ADS)
Huang, Bin; Yi, Qian; Yang, Lingling; Zhao, Chujun; Wen, Shuangchun
2018-02-01
We report a vectorial fiber laser with controlled transverse mode conversion by intra-cavity polarization manipulation. By combining a q-plate and two quarter-wave plates (QWPs), we can generate a switchable polarization state output represented by the higher-order Poincaré sphere (l = +1, l = -1), and distinguish the fourfold degenerate LP11 mode. The four transverse vector modes can be obtained and switched in a flexible way, and the slope efficiency of the fiber laser can reach up to 39.4%. This compactness, high efficiency, and switchable operation potential will benefit a range of applications, such as materials processing, particle manipulation, etc.
Conversational Flow Promotes Solidarity
Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H.
2013-01-01
Social interaction is fundamental to the development of various aspects of “we-ness”. Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed. PMID:24265683
Conversational flow promotes solidarity.
Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H
2013-01-01
Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.
Realization of a compact polarization splitter-rotator on silicon.
Dai, Daoxin; Wu, Hao
2016-05-15
A novel compact polarization splitter-rotator (PSR) is proposed and realized with silicon-on-insulator nanowires. The present PSR consists of an adiabatic taper, an asymmetric directional coupler (ADC), and a multimode interference (MMI) mode filter. The adiabatic taper enables an efficient mode conversion from the launched TM0 mode to the TE1 mode in a wide waveguide, which is then coupled to the TE0 mode of a narrow waveguide through the ADC. Meanwhile, the launched TE0 mode does not have mode conversion and outputs from the through port directly. The MMI mode filter is cascaded at the through port to filter out the residual power of the TE1 mode so that the extinction ratio of the PSR is improved greatly. The total length of the PSR is ∼70 μm and the fabricated PSR has an extinction ratio of ∼20 dB over a broadband ranging from 1547 to 1597 nm.
The "Alfvén" proposal for the European Space Agency M5 Mission Call
NASA Astrophysics Data System (ADS)
Berthomier, M.; Fazakerley, A. N.
2017-12-01
The Alfvén mission objective is to elucidate the particle acceleration processes and their consequences for electromagnetic radiation and energy transport in strongly magnetised plasmas. The Earth's Auroral Acceleration Region is a unique laboratory for investigating these processes. The only way to distinguish between the models describing acceleration processes at the heart of Magnetosphere-Ionosphere Coupling is to combine high-time resolution in situ measurements (as pioneered by FAST), multi-point measurements (as pioneered by CLUSTER), and auroral arc imaging in one mission. Charged particle acceleration in strongly magnetized plasmas requires the conversion of electromagnetic energy into magnetic-field-aligned particle kinetic energy. Alfvén will measure for the first time the occurrence and distribution of small scale parallel electric fields in space and time. In order to determine the relative efficiency of the different conversion mechanisms, Alfvén will also measure the corresponding particle energy fluxes locally and into the aurora. Alfvén will discover how electromagnetic radiation is generated in the acceleration region and how it escapes. Alfvén will make key measurements of Auroral Kilometric Radiation needed to test competing models of wave generation, mode conversion and escape from their source region. These will reveal the mode conversion processes and which information is ultimately carried by the polarization of radio waves reaching free space. Alfvén will discover the global impact of particle acceleration on the dynamic coupling between a magnetized object and its plasma environment. Dual spacecraft measurements offer the unique opportunity to unambiguously determine which part of the energy flowing into the ionosphere is eventually dissipated in this collisional plasma and which part is transmitted to outflowing ions of ionospheric origin. The Alfvén mission design involves use of two simple identical spacecraft, a comprehensive suite of inter-calibrated particles and fields instruments, cutting edge auroral imaging, easily accessible orbits that frequently visit the region of scientific interest and straightforward operations.
Hendriks, Hanneke; de Bruijn, Gert-Jan; Meehan, Orla; van den Putte, Bas
2016-07-01
Although research has demonstrated that interpersonal communication about alcohol influences drinking behaviors, this notion has mainly been examined in offline contexts with familiar conversation partners. The present study investigated how communication mode and familiarity influence conversational valence (i.e., how negatively or positively people talk) and binge drinking norms. During a 2 (offline vs. online communication) × 2 (unfamiliar vs. familiar conversation partner) lab experiment, participants (N = 76) were exposed to an anti-binge drinking campaign, after which they discussed binge drinking and the campaign. Binge drinking norms were measured 1 week before and directly after the discussion. Results revealed that conversations between unfamiliar conversation partners were positive about the campaign, especially in offline settings, subsequently leading to healthier binge drinking norms. We recommend that researchers further investigate the influence of communication mode and familiarity on discussion effects, and we suggest that health promotion attempts might benefit from eliciting conversations about anti-binge drinking campaigns between unfamiliar persons.
Reciprocity principle in duct acoustics
NASA Technical Reports Server (NTRS)
Cho, Y.-C.
1979-01-01
Various reciprocity relations in duct acoustics have been derived on the basis of the spatial reciprocity principle implied in Green's functions for linear waves. The derivation includes the reciprocity relations between mode conversion coefficients for reflection and transmission in nonuniform ducts, and the relation between the radiation of a mode from an arbitrarily terminated duct and the absorption of an externally incident plane wave by the duct. Such relations are well defined as long as the systems remain linear, regardless of acoustic properties of duct nonuniformities which cause the mode conversions.
2D constant-loss taper for mode conversion
NASA Astrophysics Data System (ADS)
Horth, Alexandre; Kashyap, Raman; Quitoriano, Nathaniel J.
2015-03-01
Proposed in this manuscript is a novel taper geometry, the constant-loss taper (CLT). This geometry is derived with 1D slabs of silicon embedded in silicon dioxide using coupled-mode theory (CMT). The efficiency of the CLT is compared to both linear and parabolic tapers using CMT and 2D finite-difference time-domain simulations. It is shown that over a short 2D, 4.45 μm long taper the CLT's mode conversion efficiency is ~90% which is 10% and 18% more efficient than a 2D parabolic or linear taper, respectively.
Conversion of the high-mode solitons in strongly nonlocal nonlinear media
NASA Astrophysics Data System (ADS)
Zhang, Xiaping
2017-01-01
The conversion of high-mode solitons propagating in Strongly Nonlocal Nonlinear Media (SNNM) in three coordinate systems, namely, the elliptic coordinate system, the rectangular coordinate system and the cylindrical coordinate system, based on the Snyder-Mitchell Model that describes the paraxial beam propagating in SNNM, is discussed. Through constituting the trial solution with modulating the Gaussian beam by Ince polynomials, the closed-solution of Gaussian beams in elliptic coordinate is accessed. The Ince-Gaussian (IG) beams constitute the exact and continuous transition modes between Hermite-Gaussian beams and Laguerre-Gaussian (LG) beams, which is controlled by the elliptic parameter. The conditions of conversion in the three types of solitons are given in relation to the Gouy phase invariability in stable propagation. The profiles of the IG breather at a different propagating distance are numerically obtained, and the conversions of a few IG solitons are illustrated. The difference between the IG soliton and the corresponding LG soliton is remarkable from the Poynting vector and phase plots at their profiles along the propagating axis.
Fast-to-Alfvén Mode Conversion in the Presence of Ambipolar Diffusion
NASA Astrophysics Data System (ADS)
Cally, Paul S.; Khomenko, Elena
2018-03-01
It is known that fast magnetohydrodynamic waves partially convert to upward and/or downward propagating Alfvén waves in a stratified atmosphere where Alfvén speed increases with height. This happens around the fast wave reflection height, where the fast wave’s horizontal phase speed equals the Alfvén speed (in a low-β plasma). Typically, this takes place in the mid to upper solar chromosphere for low-frequency waves in the few-millihertz band. However, this region is weakly ionized and thus susceptible to nonideal MHD processes. In this article, we explore how ambipolar diffusion in a zero-β plasma affects fast waves injected from below. Classical ambipolar diffusion is far too weak to have any significant influence at these low frequencies, but if enhanced by turbulence (in the quiet-Sun chromosphere but not in sunspot umbrae) or the production of sufficiently small-scale structure, can substantially absorb waves for turbulent ambipolar Reynolds numbers of around 20 or less. In that case, it is found that the mode conversion process is not qualitatively altered from the ideal case, though conversion to Alfvén waves is reduced because the fast wave flux reaching the conversion region is degraded. It is also found that any upward propagating Alfvén waves generated in this process are almost immune to further ambipolar attenuation, thereby reducing local ambipolar heating compared to cases without mode conversion. In that sense, mode conversion provides a form of “Alfvén cooling.”
Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits.
Dai, Daoxin; Mao, Mao
2015-11-02
An inverse taper on silicon is proposed and designed to realize an efficient mode converter available for the connection between multimode silicon nanophotonic integrated circuits and few-mode fibers. The present mode converter has a silicon-on-insulator inverse taper buried in a 3 × 3μm(2) SiN strip waveguide to deal with not only for the fundamental mode but also for the higher-order modes. The designed inverse taper enables the conversion between the six modes (i.e., TE(11), TE(21), TE(31), TE(41), TM(11), TM(12)) in a 1.4 × 0.22μm(2) multimode SOI waveguide and the six modes (like the LP(01), LP(11a), LP(11b) modes in a few-mode fiber) in a 3 × 3μm(2) SiN strip waveguide. The conversion efficiency for any desired mode is higher than 95.6% while any undesired mode excitation ratio is lower than 0.5%. This is helpful to make multimode silicon nanophotonic integrated circuits (e.g., the on-chip mode (de)multiplexers developed well) available to work together with few-mode fibers in the future.
Fluid-structure-interaction of a flag in a channel flow
NASA Astrophysics Data System (ADS)
Liu, Yingzheng; Yu, Yuelong; Zhou, Wenwu; Wang, Weizhe
2017-11-01
The unsteady flow field and flapping dynamics of an inverted flag in water channel are investigated using time resolved particle image velocimetry (TR-PIV) measurements. The dynamically deformed profiles of the inverted flag are determined by a novel algorithm that combines morphological image processing and principle component analysis. Instantaneous flow field, phase averaged vorticity, time-mean flow field and turbulent kinematic energy are addressed for the flow. Four modes are discovered as the dimensionless bending stiffness decreases, i.e., the straight mode, the biased mode, the flapping mode and the deflected mode. Among all modes, the flapping mode is characterized by large flapping amplitude and the reverse von Kármán vortex street wake, which is potential to enhance heat transfer remarkably. National Natural Science Foundation of China.
Enhanced converse magnetoelectric effect in cylindrical piezoelectric-magnetostrictive composites
NASA Astrophysics Data System (ADS)
Wu, Gaojian; Zhang, Ru; Zhang, Ning
2016-10-01
Enhanced converse magnetoelectric (ME) effect has been experimentally observed in cylindrical PZT-Terfenol-D piezoelectric-magnetostrictive bilayered composites, where the piezoelectric and magnetostrictive components are coupled through normal stresses instead of shear stresses that act in most of previous multiferroic composites. A theoretical model based on elastodynamics analysis has been proposed to describe the frequency response of converse ME effect for axial and radial modes in the bilayered cylindrical composites. The theory shows good agreement with the experimental results. The different variation tendency of resonant converse ME coefficient, as well as different variation rate of resonance frequency with bias magnetic field for axial and radial modes is interpreted in terms of demagnetizing effect. This work is of theoretical and technological significance for the application of converse ME effect as magnetic sensor, transducers, coil-free flux switch, etc.
Photon correlation in single-photon frequency upconversion.
Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping
2012-01-30
We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.
NASA Astrophysics Data System (ADS)
Larson, Peder E. Z.; Kerr, Adam B.; Leon Swisher, Christine; Pauly, John M.; Vigneron, Daniel B.
2012-12-01
In this work, we present a new MR spectroscopy approach for directly observing nuclear spins that undergo exchange, metabolic conversion, or, generally, any frequency shift during a mixing time. Unlike conventional approaches to observe these processes, such as exchange spectroscopy (EXSY), this rapid approach requires only a single encoding step and thus is readily applicable to hyperpolarized MR in which the magnetization is not replenished after T1 decay and RF excitations. This method is based on stimulated-echoes and uses phase-sensitive detection in conjunction with precisely chosen echo times in order to separate spins generated during the mixing time from those present prior to mixing. We are calling the method Metabolic Activity Decomposition Stimulated-echo Acquisition Mode or MAD-STEAM. We have validated this approach as well as applied it in vivo to normal mice and a transgenic prostate cancer mouse model for observing pyruvate-lactate conversion, which has been shown to be elevated in numerous tumor types. In this application, it provides an improved measure of cellular metabolism by separating [1-13C]-lactate produced in tissue by metabolic conversion from [1-13C]-lactate that has flowed into the tissue or is in the blood. Generally, MAD-STEAM can be applied to any system in which spins undergo a frequency shift.
Larson, Peder E Z; Kerr, Adam B; Swisher, Christine Leon; Pauly, John M; Vigneron, Daniel B
2012-12-01
In this work, we present a new MR spectroscopy approach for directly observing nuclear spins that undergo exchange, metabolic conversion, or, generally, any frequency shift during a mixing time. Unlike conventional approaches to observe these processes, such as exchange spectroscopy (EXSY), this rapid approach requires only a single encoding step and thus is readily applicable to hyperpolarized MR in which the magnetization is not replenished after T(1) decay and RF excitations. This method is based on stimulated-echoes and uses phase-sensitive detection in conjunction with precisely chosen echo times in order to separate spins generated during the mixing time from those present prior to mixing. We are calling the method Metabolic Activity Decomposition Stimulated-echo Acquisition Mode or MAD-STEAM. We have validated this approach as well as applied it in vivo to normal mice and a transgenic prostate cancer mouse model for observing pyruvate-lactate conversion, which has been shown to be elevated in numerous tumor types. In this application, it provides an improved measure of cellular metabolism by separating [1-(13)C]-lactate produced in tissue by metabolic conversion from [1-(13)C]-lactate that has flowed into the tissue or is in the blood. Generally, MAD-STEAM can be applied to any system in which spins undergo a frequency shift. Copyright © 2012 Elsevier Inc. All rights reserved.
Self-consistent Formulation of EBW Excitation by Mode Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bers, Abraham; Decker, Joan
2005-09-26
Based upon a FLR-hydrodynamic formulation for high frequency waves in a collisionless plasma, we formulate the self-consistent, coupled set of ordinary differential equations whose solution gives the mode conversion of O- and/or X-waves at an angle to B0 to electron Bernstein waves (EBW) at the upper-hybrid resonance UHR layer occurring at the edge of an ST plasma.
All-optical wavelength conversion for mode division multiplexed superchannels.
Gong, Jiaxin; Xu, Jing; Luo, Ming; Li, Xiang; Qiu, Ying; Yang, Qi; Zhang, Xinliang; Yu, Shaohua
2016-04-18
We report in this work the first all-optical wavelength conversion (AOWC) of a mode division multiplexed (MDM) superchannel consisting of 2N modes by dividing the superchannel into N single-mode (SM) tributaries, wavelength converting N SM signals using well developed SM-AOWC techniques, and finally combining the N SM tributaries back to an MDM superchannel at the converted wavelength, inspired by the idea of using SM filtering techniques to filter multimode signals in astronomy. The conversions between multimode and SM are realized by 3D laser-writing photonic lanterns and SM-AOWCs are realized based on polarization insensitive four wave mixing (FWM) configuration in N semiconductor optical amplifiers (SOAs). As a proof of concept demonstration, the conversion of a 6-mode MDM superchannel with each mode modulated with orthogonal frequency division multiplexed (OFDM) quadrature phase-shift keying (QPSK)/16 quadrature amplitude modulation (QAM) signals is demonstrated in this work, indicating that the scheme is transparent to data format, polarization and compatible with multi-carrier signals. Data integrity of the converted superchannel has been verified by using coherent detection and digital signal processing (DSP). Bit error rates (BERs) below the forward error correction (FEC) hard limit (3.8 × 10-3) have been obtained for QPSK modulation at a net bitrate of 104.2 Gbit/s and BERs below the soft decision FEC threshold (1.98 × 10-2) have been achieved for 16-QAM format, giving a total aggregate bit rate of 185.8 Gbit/s when taking 20% coding overhead into account. Add and drop functionalities that usually come along with wavelength conversion in flexible network nodes have also been demonstrated. The working conditions of the SOAs, especially the pump and signal power levels, are critical for the quality of the converted signal and have been thoroughly discussed. The impact of imbalanced FWM conversion efficiency among different SM tributaries has also been analyzed. This work illustrates a promising way to perform all-optical signal processing for MDM superchannels.
Energy conversion analysis of microalgal lipid production under different culture modes.
Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xie, Guo-Jun; Ren, Nan-Qi
2014-08-01
Growth and lipid production performance of Scenedesmus sp. under different culture modes were investigated. Under heterotrophic aerobic mode, algal biomass concentration and total lipid content reached 3.42 g L(-1) and 43.0 wt.%, which were much higher than those in autotrophic aerobic mode (0.55 g L(-1)/20.2 wt.%). The applied light exposure of 7.0 Wm(-2) was beneficial to biomass and lipid accumulation. Mixotrophic aerobic mode produced the highest biomass concentration of 3.84 g L(-1). The biomass was rich in lipids (51.3 wt.%) and low in proteins (17.9 wt.%) and carbohydrates (10.3 wt.%). However, lower algal biomass concentration (2.93 g L(-1)) and total lipid content (36.1 wt.%) were obtained in mixotrophic anaerobic mode. Mixotrophic aerobic mode gave the maximum heat value conversion efficiency of 45.7%. These results indicate that mixotrophic aerobic cultivation was a promising culture mode for lipid production by Scenedesmus sp. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hosten, Bernard; Moreau, Ludovic; Castaings, Michel
2007-06-01
The paper presents a Fourier transform-based signal processing procedure for quantifying the reflection and transmission coefficients and mode conversion of guided waves diffracted by defects in plates made of viscoelastic materials. The case of the S(0) Lamb wave mode incident on a notch in a Perspex plate is considered. The procedure is applied to numerical data produced by a finite element code that simulates the propagation of attenuated guided modes and their diffraction by the notch, including mode conversion. Its validity and precision are checked by the way of the energy balance computation and by comparison with results obtained using an orthogonality relation-based processing method.
On controlling the flow behavior driven by induction electrohydrodynamics in microfluidic channels.
Li, Yanbo; Ren, Yukun; Liu, Weiyu; Chen, Xiaoming; Tao, Ye; Jiang, Hongyuan
2017-04-01
In this study, we develop a nondimensional physical model to demonstrate fluid flow at the micrometer dimension driven by traveling-wave induction electrohydrodynamics (EHD) through direct numerical simulation. In order to realize an enhancement in the pump flow rate as well as a flexible adjustment of anisotropy of flow behavior generated by induction EHD in microchannels, while not adding the risk of causing dielectric breakdown of working solution and material for insulation, a pair of synchronized traveling-wave voltage signals are imposed on double-sided electrode arrays that are mounted on the top and bottom insulating substrate, respectively. Accordingly, we present a model evidence, that not only the pump performance is improved evidently, but a variety of flow profiles, including the symmetrical and parabolic curve, plug-like shape and even biased flow behavior of quite high anisotropy are produced by the device design of "mix-type", "superimposition-type" and "adjustable-type" proposed herein as well, with the resulting controllable fluid motion being able to greatly facilitate an on-demand transportation mode of on-chip bio-microfluidic samples. Besides, automatic conversion in the direction of pump flow is achievable by switching on and off a second voltage wave. Our results provide utilitarian guidelines for constructing flexible electrokinetic framework useful in controllable transportation of particle and fluid samples in modern microfluidic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Targeting specific azimuthal modes using wall changes in turbulent pipe flow
NASA Astrophysics Data System (ADS)
van Buren, Tyler; Hellström, Leo; Marusic, Ivan; Smits, Alexander
2017-11-01
We experimentally study turbulent pipe flow at Re =3486 using stereoscopic particle image velocimetry. Using pipe inserts with non-circular geometry to perturb the flow upstream of the measurement location, we excite specific naturally occurring energetic modes. We consider inserts that directly manipulate the flow momentum (vortex generators), and/or induce secondary flows through Reynolds stresses (sinusoidally varying wall shape). These inserts substantially change the mean flow, and produce distinct regions of low and high momentum corresponding to the mode being excited. The inserts add energy in the targeted modes while simultaneously reducing the energy in the non-excited azimuthal modes. In addition, inserts designed to excite two modes simultaneously exhibit non-linear interactions. Supported under ONR Grant N00014-15-1-2402, Program Manager/Director Thomas Fu and the Australian Research Council.
De Angelis, Elisabetta; Casciola, Carlo M; L'vov, Victor S; Piva, Renzo; Procaccia, Itamar
2003-05-01
We address the phenomenon of drag reduction by a dilute polymeric additive to turbulent flows, using direct numerical simulations (DNS) of the FENE-P model of viscoelastic flows. It had been amply demonstrated that these model equations reproduce the phenomenon, but the results of DNS were not analyzed so far with the goal of interpreting the phenomenon. In order to construct a useful framework for the understanding of drag reduction we initiate in this paper an investigation of the most important modes that are sustained in the viscoelastic and Newtonian turbulent flows, respectively. The modes are obtained empirically using the Karhunen-Loéve decomposition, allowing us to compare the most energetic modes in the viscoelastic and Newtonian flows. The main finding of the present study is that the spatial profile of the most energetic modes is hardly changed between the two flows. What changes is the energy associated with these modes, and their relative ordering in the decreasing order from the most energetic to the least. Modes that are highly excited in one flow can be strongly suppressed in the other, and vice versa. This dramatic energy redistribution is an important clue to the mechanism of drag reduction as is proposed in this paper. In particular, there is an enhancement of the energy containing modes in the viscoelastic flow compared to the Newtonian one; drag reduction is seen in the energy containing modes rather than the dissipative modes, as proposed in some previous theories.
Unidirectional spin-wave heat conveyer.
An, T; Vasyuchka, V I; Uchida, K; Chumak, A V; Yamaguchi, K; Harii, K; Ohe, J; Jungfleisch, M B; Kajiwara, Y; Adachi, H; Hillebrands, B; Maekawa, S; Saitoh, E
2013-06-01
When energy is introduced into a region of matter, it heats up and the local temperature increases. This energy spontaneously diffuses away from the heated region. In general, heat should flow from warmer to cooler regions and it is not possible to externally change the direction of heat conduction. Here we show a magnetically controllable heat flow caused by a spin-wave current. The direction of the flow can be switched by applying a magnetic field. When microwave energy is applied to a region of ferrimagnetic Y3Fe5O12, an end of the magnet far from this region is found to be heated in a controlled manner and a negative temperature gradient towards it is formed. This is due to unidirectional energy transfer by the excitation of spin-wave modes without time-reversal symmetry and to the conversion of spin waves into heat. When a Y3Fe5O12 film with low damping coefficients is used, spin waves are observed to emit heat at the sample end up to 10 mm away from the excitation source. The magnetically controlled remote heating we observe is directly applicable to the fabrication of a heat-flow controller.
Surface Wave Mode Conversion due to Lateral Heterogeneity and its Impact on Waveform Inversions
NASA Astrophysics Data System (ADS)
Datta, A.; Priestley, K. F.; Chapman, C. H.; Roecker, S. W.
2016-12-01
Surface wave tomography based on great circle ray theory has certain limitations which become increasingly significant with increasing frequency. One such limitation is the assumption of different surface wave modes propagating independently from source to receiver, valid only in case of smoothly varying media. In the real Earth, strong lateral gradients can cause significant interconversion among modes, thus potentially wreaking havoc with ray theory based tomographic inversions that make use of multimode information. The issue of mode coupling (with either normal modes or surface wave modes) for accurate modelling and inversion of body wave data has received significant attention in the seismological literature, but its impact on inversion of surface waveforms themselves remains much less understood.We present an empirical study with synthetic data, to investigate this problem with a two-fold approach. In the first part, 2D forward modelling using a new finite difference method that allows modelling a single mode at a time, is used to build a general picture of energy transfer among modes as a function of size, strength and sharpness of lateral heterogeneities. In the second part, we use the example of a multimode waveform inversion technique based on the Cara and Leveque (1987) approach of secondary observables, to invert our synthetic data and assess how mode conversion can affect the process of imaging the Earth. We pay special attention to ensuring that any biases or artefacts in the resulting inversions can be unambiguously attributed to mode conversion effects. This study helps pave the way towards the next generation of (non-numerical) surface wave tomography techniques geared to exploit higher frequencies and mode numbers than are typically used today.
On-chip WDM mode-division multiplexing interconnection with optional demodulation function.
Ye, Mengyuan; Yu, Yu; Chen, Guanyu; Luo, Yuchan; Zhang, Xinliang
2015-12-14
We propose and fabricate a wavelength-division-multiplexing (WDM) compatible and multi-functional mode-division-multiplexing (MDM) integrated circuit, which can perform the mode conversion and multiplexing for the incoming multipath WDM signals, avoiding the wavelength conflict. An phase-to-intensity demodulation function can be optionally applied within the circuit while performing the mode multiplexing. For demonstration, 4 × 10 Gb/s non-return-to-zero differential phase shift keying (NRZ-DPSK) signals are successfully processed, with open and clear eye diagrams. Measured bit error ratio (BER) results show less than 1 dB receive sensitivity variation for three modes and four wavelengths with demodulation. In the case without demodulation, the average power penalties at 4 wavelengths are -1.5, -3 and -3.5 dB for TE₀-TE₀, TE₀-TE₁ and TE₀-TE₂ mode conversions, respectively. The proposed flexible scheme can be used at the interface of long-haul and on-chip communication systems.
Moens, Yves P S; Gootjes, Peter; Ionita, Jean-Claude; Heinonen, Erkki; Schatzmann, Urs
2009-05-01
To remodel and validate commercially available monitors and their Pitot tube-based flow sensors for use in large animals, using in vitro techniques. Prospective, in vitro experiment. Both the original and the remodelled sensor were studied with a reference flow generator. Measurements were taken of the static flow-pressure relationship and linearity of the flow signal. Sensor airway resistance was calculated. Following recalibration of the host monitor, volumes ranging from 1 to 7 L were generated by a calibration syringe, and bias and precision of spirometric volume was determined. Where manual recalibration was not available, a conversion factor for volume measurement was determined. The influence of gas composition mixture and peak flow on the conversion factor was studied. Both the original and the remodelled sensor showed similar static flow-pressure relationships and linearity of the flow signal. Mean bias (%) of displayed values compared with the reference volume of 3, 5 and 7 L varied between -0.4% and +2.4%, and this was significantly smaller than that for 1 L (4.8% to +5.0%). Conversion factors for 3, 5 and 7 L were very similar (mean 6.00 +/- 0.2, range 5.91-6.06) and were not significantly influenced by the gas mixture used. Increasing peak flow caused a small decrease in the conversion factor. Volume measurement error and conversion factors for inspiration and expiration were close to identity. The combination of the host monitor with the remodelled flow sensor allowed accurate in vitro measurement of flows and volumes in a range expected during large animal anaesthesia. This combination has potential as a reliable spirometric monitor for use during large animal anaesthesia.
Mean and oscillating plasma flows and turbulence interactions across the L-H confinement transition.
Conway, G D; Angioni, C; Ryter, F; Sauter, P; Vicente, J
2011-02-11
A complex interaction between turbulence driven E × B zonal flow oscillations, i.e., geodesic acoustic modes (GAMs), the turbulence, and mean equilibrium flows is observed during the low to high (L-H) plasma confinement mode transition in the ASDEX Upgrade tokamak. Below the L-H threshold at low densities a limit-cycle oscillation forms with competition between the turbulence level and the GAM flow shearing. At higher densities the cycle is diminished, while in the H mode the cycle duration becomes too short to sustain the GAM, which is replaced by large amplitude broadband flow perturbations. Initially GAM amplitude increases as the H-mode transition is approached, but is then suppressed in the H mode by enhanced mean flow shear.
Analysis of Motorcycle Weave Mode by using Energy Flow Method
NASA Astrophysics Data System (ADS)
Marumo, Yoshitaka; Katayama, Tsuyoshi
The activation mechanism of motorcycle weave mode is clarified within the framework of the energy flow method, which calculates energy flow of mechanical forces in each motion. It is demonstrated that only a few mechanical forces affect the stability of the weave mode from among a total of about 40 mechanical forces. The activation of the lateral, yawing and rolling motions destabilize the weave mode, while activation of the steering motion stabilizes the weave mode. A detailed investigation of the energy flow of the steering motion reveals that the steering motion plays an important role in clarifying the characteristics of the weave mode. As activation of the steering motion progresses the phase of the front tire side force, and the weave mode is consequently stabilized. This paper provides a design guide for stabilizing the weave mode and the wobble mode compatibility.
Systematic Analysis of the Effects of Mode Conversion on Thermal Radiation from Neutron Stars
NASA Astrophysics Data System (ADS)
Yatabe, Akihiro; Yamada, Shoichi
2017-12-01
In this paper, we systematically calculate the polarization in soft X-rays emitted from magnetized neutron stars, which are expected to be observed by next-generation X-ray satellites. Magnetars are one of the targets for these observations. This is because thermal radiation is normally observed in the soft X-ray band, and it is thought to be linearly polarized because of different opacities for two polarization modes of photons in the magnetized atmosphere of neutron stars and the dielectric properties of the vacuum in strong magnetic fields. In their study, Taverna et al. illustrated how strong magnetic fields influence the behavior of the polarization observables for radiation propagating in vacuo without addressing a precise, physical emission model. In this paper, we pay attention to the conversion of photon polarization modes that can occur in the presence of an atmospheric layer above the neutron star surface, computing the polarization angle and fraction and systematically changing the magnetic field strength, radii of the emission region, temperature, mass, and radii of the neutron stars. We confirmed that if plasma is present, the effects of mode conversion cannot be neglected when the magnetic field is relatively weak, B∼ {10}13 {{G}}. Our results indicate that strongly magnetized (B≳ {10}14 {{G}}) neutron stars are suitable to detect polarizations, but not-so-strongly magnetized (B∼ {10}13 {{G}}) neutron stars will be the ones to confirm the mode conversion.
PLC-based mode multi/demultiplexer for MDM transmission
NASA Astrophysics Data System (ADS)
Hanzawa, N.; Saitoh, K.; Sakamoto, T.; Matsui, T.; Tsujikawa, K.; Koshiba, M.; Yamamoto, F.
2013-12-01
We propose a PLC-based multi/demultiplexer (MUX/DEMUX) with a mode conversion function for mode division multiplexing (MDM) transmission applications. The PLC-based mode MUX/DEMUX can realize a low insertion loss and a wide working wavelength bandwidth. We designed and demonstrated a two-mode (LP01 and LP11 modes) and a three-mode (LP01, LP11, and LP21 modes) MUX/DEMUX for use in the C-band.
Theoretical investigation of operation modes of MHD generators for energy-bypass engines
NASA Astrophysics Data System (ADS)
Tang, Jingfeng; Li, Nan; Yu, Daren
2014-12-01
A MHD generator with different arrangements of electromagnetic fields will lead the generator working in three modes. A quasi-one-dimensional approximation is used for the model of the MHD generator to analyze the inner mechanism of operation modes. For the MHD generator with a uniform constant magnetic field, a specific critical electric field E cr is required to decelerate a supersonic entrance flow into a subsonic exit flow. Otherwise, the generator works in a steady mode with a larger electric field than E cr in which a steady supersonic flow is provided at the exit, or the generator works in a choked mode with a smaller electric field than E cr in which the supersonic entrance flow is choked in the channel. The detailed flow field characteristics in different operation modes are discussed, demonstrating the relationship of operation modes with electromagnetic fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, G. S.; Wan, B. N.; Wang, Y. F.
A new mechanism is identified for driving the edge harmonic oscillations (EHOs) in the quiescent H-mode (QH-mode) regime, where a strong E × B flow shear destabilizes low-n kink/peeling modes, separately from the previously found Kelvin-Helmholtz drive. We find that the differential advection of mode vorticity by sheared E × B flows modifies the two-dimensional pattern of mode electrostatic potential perpendicular to the magnetic field lines, which in turn causes a radial expansion of the mode structure, an increase of field line bending away from the mode rational surface, and a reduction of inertial stabilization. This enhances the kink drivemore » as the parallel wavenumber increases significantly away from the rational surface where the magnetic shear is also strong. A newly developed model reproduces the observations that at high E × B flow shear only a few low-n modes remain unstable, consistent with the EHO behavior, while at low E × B flow shear the unstable mode spectrum is significantly broadened, consistent with the low-n broadband electromagnetic turbulence behavior observed recently in the DIII-D tokamak. This destabilization is also shown to be independent of the sign of the flow shear, as observed experimentally, and has not been taken into 2 / 46 account in previous pedestal linear stability analyses. Verification of the veracity of this EHO mechanism will require analysis of the nonlinear evolution of low-n kink/peeling modes so destabilized in the linear regime.« less
Xu, G. S.; Wan, B. N.; Wang, Y. F.; ...
2017-07-18
A new mechanism is identified for driving the edge harmonic oscillations (EHOs) in the quiescent H-mode (QH-mode) regime, where a strong E × B flow shear destabilizes low-n kink/peeling modes, separately from the previously found Kelvin-Helmholtz drive. We find that the differential advection of mode vorticity by sheared E × B flows modifies the two-dimensional pattern of mode electrostatic potential perpendicular to the magnetic field lines, which in turn causes a radial expansion of the mode structure, an increase of field line bending away from the mode rational surface, and a reduction of inertial stabilization. This enhances the kink drivemore » as the parallel wavenumber increases significantly away from the rational surface where the magnetic shear is also strong. A newly developed model reproduces the observations that at high E × B flow shear only a few low-n modes remain unstable, consistent with the EHO behavior, while at low E × B flow shear the unstable mode spectrum is significantly broadened, consistent with the low-n broadband electromagnetic turbulence behavior observed recently in the DIII-D tokamak. This destabilization is also shown to be independent of the sign of the flow shear, as observed experimentally, and has not been taken into 2 / 46 account in previous pedestal linear stability analyses. Verification of the veracity of this EHO mechanism will require analysis of the nonlinear evolution of low-n kink/peeling modes so destabilized in the linear regime.« less
Gasification Characteristics of Coal/Biomass Mixed Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Reginald
2014-09-01
A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co-produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomassmore » and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle pores and energy exchange between the particle and its environment. This char-particle gasification model is capable of predicting the average mass loss rates, sizes, apparent densities, specific surface areas, and temperatures of the char particles produced when co-firing coal and biomass to the type environments established in entrained flow gasifiers operating at high temperatures and elevated pressures.« less
NASA Astrophysics Data System (ADS)
Barnard, Daniel; Chakrapani, Sunil Kishore; Dayal, Vinay
2013-01-01
Modern helicopter rotor blades constructed of composite materials offer significant inspection challenges, particularly at inner structures, where geometry and differing material properties and anisotropy make placement of the probing energy difficult. This paper presents an application of Lamb waves to these structures, where mode conversion occurs at internal geometric discontinuities. These additional modes were found to successfully propagate to the targeted regions inside the rotor and back out, allowing evaluation of the structure. A finite element model was developed to simulate wave propagation and mode conversion in the structure and aid in identifying the signals received in the laboratory experiment. A good correlation between numerical and experimental results was observed.
Nonlinear MHD study on the influence of E×B flow in QH-mode plasma of DIII-D
NASA Astrophysics Data System (ADS)
Liu, Feng; Huijsmans, Guido; Loarte, Alberto; Garofalo, Andrea; Solomon, Wayne; Nkonga, Boniface; Hoelzl, Matthias
2017-10-01
In QH-mode experiments with zero-net NBI torque show that there remains a finite E×B rotation in the pedestal region implying that a minimum E×B flow or flow shear is required for the plasma to develop the Edge Harmonic Oscillation (EHO), which is a saturated KPM (kink-peeling mode) characteristic of the QH-mode. To understand the roles of E×B flow and its shear in the saturation of KPMs, non-linear MHD simulations of DIII-D QH-mode plasmas including toroidal mode numbers n = 0 to 10 with different E×B rotation speed have been performed. These simulation show that ExB rotation strongly stabilizes high-n modes but destabilizes low-n modes (particularly the n =2 mode) in the linear growth phase, which is consistent experimental observations and previous linear MHD modelling. US DOE under DE-FC02-04ER54698.
Laminar and turbulent flow modes of cold atmospheric pressure argon plasma jet
NASA Astrophysics Data System (ADS)
Basher, Abdulrahman H.; Mohamed, Abdel-Aleam H.
2018-05-01
Laminar and turbulent flow modes of a cold atmospheric pressure argon plasma jet are investigated in this work. The effects of the gas flow rate, applied voltage, and frequency on each plasma mode and on intermodal transitions are characterized using photographic, electrical, and spectroscopic techniques. Increasing the gas flow rate increases the plasma jet length in the laminar mode. Upon transition to the turbulent mode, increasing the gas flow rate leads to a decrease in the plasma jet length. The flow rate at which the jet transitions from laminar to turbulent increases with the applied voltage. The presence of nitric oxide (NO) radicals is indicated by the emission spectra of the turbulent plasmas only, while excited Ar, N2, OH, and O excited species are produced in both laminar and turbulent modes. With no distinctive behavior observed upon transition between the two operating modes, the power consumption was found to be insensitive to gas flow rate variation, while the energy density was found to decrease exponentially with the gas flow rate. Rotational and vibrational temperature measurements of the two plasma modes indicated that they are of the non-thermal equilibrium plasma type. Since they offer NO radicals while maintaining the benefits of the laminar plasma jet, the turbulent plasma jet is more useful than its laminar counterpart in biomedical applications.
Student use of narrative and paradigmatic forms of talk in elementary science conversations
NASA Astrophysics Data System (ADS)
Kurth, Lori A.; Kidd, Raymond; Gardner, Roberta; Smith, Edward L.
2002-11-01
The purpose of this work was to examine and characterize student use of narrative and paradigmatic expression in elementary science discourse. This interpretive study occurred over a 2-year period in a professional development school with a largely international population. This analysis focused on the narrative and paradigmatic modes of expression used by combined first-second- and second-grade students in a semistructured, fairly autonomous, whole-class conversational format. Students demonstrated competence with both modes of talk at the beginning of the year. Over time, students moved toward more paradigmatic talk, but narrative examples continued to be key components of the science conversations. Topically, students used narrative more often for life sciences and paradigmatic talk for physical sciences. For gender there were no qualitative differences in narrative or paradigmatic expression. However, boys obtained more opportunities to practice their use of both discourse forms by either receiving more speaking turns or expressing more language features per turn. These conversations show that narrative and paradigmatic modes in science need not be in opposition but can, in fact, be used together in complementary ways that are mutually enhancing.
An Experimental Investigation of Fluid Flow and Heating in Various Resonance Tube Modes
NASA Technical Reports Server (NTRS)
Sarohia, V.; Back, L. H.; Roschke, E. J.; Pathasarathy, S. P.
1976-01-01
Experiments have been performed to study resonance phenomena in tubes excited by underexpanded jet flows. This investigation comprised the following: Study of the various resonance tube modes under a wide range of nozzle pressure, spacing between nozzle and tube mouth, and different tube length; the effects of these modes on the endwall pressure and gas temperature; flow visualization of both jet and tube flows by spark shadowgraph technique; and measurement of wave speed inside the tube by the laser-schlieren techniques. An extensive study of the free-jet flow was undertaken to explain important aspects of various modes of operation of resonance tube flows.
In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy
NASA Astrophysics Data System (ADS)
Schad, Kelly C.; Hynynen, Kullervo
2010-09-01
Focused ultrasound therapy can be enhanced with microbubbles by thermal and cavitation effects. However, localization of treatment is difficult as bioeffects can occur outside of the target region. Spatial control of bubbles can be achieved by ultrasound-induced conversion of liquid perfluorocarbon droplets to gas bubbles. This study was undertaken to determine the acoustic parameters for bubble production by droplet conversion and how it depends on the acoustic conditions and droplet physical parameters. Lipid-encapsulated droplets containing dodecafluoropentane were manufactured with sizes ranging from 1.9 to 7.2 µm in diameter and diluted to a concentration of 8 × 106 droplets mL-1. The droplets were sonicated in vitro with a focused ultrasound transducer and varying frequency and exposure under flow conditions through an acoustically transparent vessel. The sonications were 10 ms in duration at frequencies of 0.578, 1.736 and 2.855 MHz. The pressure threshold for droplet conversion was measured with an active transducer operating in pulse-echo mode and simultaneous measurements of broadband acoustic emissions were performed with passive acoustic detection. The results show that droplets cannot be converted at low frequency without broadband emissions occurring. However, the pressure threshold for droplet conversion decreased with increasing frequency, exposure and droplet size. The pressure threshold for broadband emissions was independent of the droplet size and was 2.9, 4.4 and 5.3 MPa for 0.578, 1736 and 2.855 MHz, respectively. In summary, we have demonstrated that droplet conversion is feasible for clinically relevant sized droplets and acoustic exposures.
In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy.
Schad, Kelly C; Hynynen, Kullervo
2010-09-07
Focused ultrasound therapy can be enhanced with microbubbles by thermal and cavitation effects. However, localization of treatment is difficult as bioeffects can occur outside of the target region. Spatial control of bubbles can be achieved by ultrasound-induced conversion of liquid perfluorocarbon droplets to gas bubbles. This study was undertaken to determine the acoustic parameters for bubble production by droplet conversion and how it depends on the acoustic conditions and droplet physical parameters. Lipid-encapsulated droplets containing dodecafluoropentane were manufactured with sizes ranging from 1.9 to 7.2 microm in diameter and diluted to a concentration of 8 x 10(6) droplets mL(-1). The droplets were sonicated in vitro with a focused ultrasound transducer and varying frequency and exposure under flow conditions through an acoustically transparent vessel. The sonications were 10 ms in duration at frequencies of 0.578, 1.736 and 2.855 MHz. The pressure threshold for droplet conversion was measured with an active transducer operating in pulse-echo mode and simultaneous measurements of broadband acoustic emissions were performed with passive acoustic detection. The results show that droplets cannot be converted at low frequency without broadband emissions occurring. However, the pressure threshold for droplet conversion decreased with increasing frequency, exposure and droplet size. The pressure threshold for broadband emissions was independent of the droplet size and was 2.9, 4.4 and 5.3 MPa for 0.578, 1736 and 2.855 MHz, respectively. In summary, we have demonstrated that droplet conversion is feasible for clinically relevant sized droplets and acoustic exposures.
Photon energy conversion by near-zero permittivity nonlinear materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luk, Ting S.; Sinclair, Michael B.; Campione, Salvatore
Efficient harmonic light generation can be achieved with ultrathin films by coupling an incident pump wave to an epsilon-near-zero (ENZ) mode of the thin film. As an example, efficient third harmonic generation from an indium tin oxide nanofilm (.lamda./42 thick) on a glass substrate for a pump wavelength of 1.4 .mu.m was demonstrated. A conversion efficiency of 3.3.times.10.sup.-6 was achieved by exploiting the field enhancement properties of the ENZ mode with an enhancement factor of 200. This nanoscale frequency conversion method is applicable to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical phonon frequencies.
NASA Astrophysics Data System (ADS)
Horne, R. B.; Yoshizumi, M.
2017-12-01
Magnetosonic waves and electromagnetic ion cyclotron (EMIC) waves are important for electron acceleration and loss from the radiation belts. It is generally understood that these waves are generated by unstable ion distributions that form during geomagnetically disturbed times. Here we show that magnetosonic waves could be a source of EMIC waves as a result of propagation and a process of linear mode conversion. The converse is also possible. We present ray tracing to show how magnetosonic (EMIC) waves launched with large (small) wave normal angles can reach a location where the wave normal angle is zero and the wave frequency equals the so-called cross-over frequency whereupon energy can be converted from one mode to another without attenuation. While EMIC waves could be a source of magnetosonic waves below the cross-over frequency magnetosonic waves could be a source of hydrogen band waves but not helium band waves.
Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics
NASA Astrophysics Data System (ADS)
Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal
2016-08-01
The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics.
20 years of research on the Alcator C-Mod tokamaka)
NASA Astrophysics Data System (ADS)
Greenwald, M.; Bader, A.; Baek, S.; Bakhtiari, M.; Barnard, H.; Beck, W.; Bergerson, W.; Bespamyatnov, I.; Bonoli, P.; Brower, D.; Brunner, D.; Burke, W.; Candy, J.; Churchill, M.; Cziegler, I.; Diallo, A.; Dominguez, A.; Duval, B.; Edlund, E.; Ennever, P.; Ernst, D.; Faust, I.; Fiore, C.; Fredian, T.; Garcia, O.; Gao, C.; Goetz, J.; Golfinopoulos, T.; Granetz, R.; Grulke, O.; Hartwig, Z.; Horne, S.; Howard, N.; Hubbard, A.; Hughes, J.; Hutchinson, I.; Irby, J.; Izzo, V.; Kessel, C.; LaBombard, B.; Lau, C.; Li, C.; Lin, Y.; Lipschultz, B.; Loarte, A.; Marmar, E.; Mazurenko, A.; McCracken, G.; McDermott, R.; Meneghini, O.; Mikkelsen, D.; Mossessian, D.; Mumgaard, R.; Myra, J.; Nelson-Melby, E.; Ochoukov, R.; Olynyk, G.; Parker, R.; Pitcher, S.; Podpaly, Y.; Porkolab, M.; Reinke, M.; Rice, J.; Rowan, W.; Schmidt, A.; Scott, S.; Shiraiwa, S.; Sierchio, J.; Smick, N.; Snipes, J. A.; Snyder, P.; Sorbom, B.; Stillerman, J.; Sung, C.; Takase, Y.; Tang, V.; Terry, J.; Terry, D.; Theiler, C.; Tronchin-James, A.; Tsujii, N.; Vieira, R.; Walk, J.; Wallace, G.; White, A.; Whyte, D.; Wilson, J.; Wolfe, S.; Wright, G.; Wright, J.; Wukitch, S.; Zweben, S.
2014-11-01
The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental observation of ion cyclotron range of frequency (ICRF) mode-conversion, ICRF flow drive, demonstration of lower-hybrid current drive at ITER-like densities and fields and, using a set of novel diagnostics, extensive validation of advanced RF codes. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. A summary of important achievements and discoveries are included.
NASA Astrophysics Data System (ADS)
Li, Xintao; Zhang, Weiwei; Gao, Chuanqiang
2018-03-01
Wake-induced vibration (WIV) contains rich and complex phenomena due to the flow interference between cylinders. The aim of the present study is to gain physical insight into the intrinsic dynamics of WIV via linear stability analysis (LSA) of the fluid-structure interaction (FSI) system. A reduced-order-model-based linear dynamic model, combined with the direct computational fluid dynamics/computational structural dynamics simulation method, is adopted to investigate WIV in two identical tandem cylinders at low Re. The spacing ratio L/D, with L as the center-to-center distance and D as the diameter of cylinders, is selected as 2.0 to consider the effect of proximity flow interference. Results show that extensive WIV along with the vortex shedding could occur at subcritical Re conditions due to the instability of one coupled mode (i.e., coupled mode I, CM-I) of the FSI system. The eigenfrequency of CM-I transfers smoothly from close to the reduced natural frequency of structure to the eigenfrequency of uncoupled wake mode as the reduced velocity U* increases. Thus, CM-I characterizes as the structure mode (SM) at low U*, while it characterizes as the wake mode (WM) at large U*. Mode conversion of CM-I is the primary cause of the "frequency transition" phenomenon observed in WIV responses. Furthermore, LSA indicates that there exists a critical mass ratio mcr*, below which no upper instability boundary of CM-I exists (Uup p e r *→∞ ). The unbounded instability of CM-I ultimately leads to the "infinite WIV" phenomenon. The neutral stability boundaries for WIV in the (Re, U*) plane are determined through LSA. It is shown that the lowest Re possible for WIV regarding the present configuration is R el o w e s t≈34 . LSA accurately captures the dynamics of WIV at subcritical Re and reveals that it is essentially a fluid-elastic instability problem. This work lays a good foundation for the investigation of WIV at supercritical high Re and gives enlightenment to the understanding of more complex WIV phenomena therein.
Experimental study on rotating instability mode characteristics of axial compressor tip flow
NASA Astrophysics Data System (ADS)
Tian, Jie; Yao, Dan; Wu, Yadong; Ouyang, Hua
2018-04-01
This paper investigates the rotating instabilities that occurred on the single-stage axial compressor designed for aerodynamic performance validation, which was tested with two sets of circumferential measuring points in combination. Circumferential mode characteristics of compressors are usually too high to be captured experimentally, and aliasing of the circumferential mode order occurs when not enough sensors are used. A calibration and prediction method to capture the higher circumferential mode of unsteady flow in a compressor was proposed. Unsteady pressure fluctuations near the tip region in an axial compressor were studied, and high circumferential mode characteristics were captured on both the blade passing frequency (BPF) and the rotational instability frequency (RIF) under different flow rate conditions based on this novel method. The characteristic RI spectrum with a broadband hump was present in a large range of flow conditions. Both the frequency range and the dominant circumferential mode order decreased as the flow rate decreased. Based on the calibrated mode characteristics, a rotating aerodynamic source model is used to explain the side-by-side peak of RIF spectrum and rotating characteristics of RI. The calibration and prediction method of the high circumferential mode is beneficial for the research of unsteady flow in an axial compressor.
Investigation of a metallic photonic crystal high power microwave mode converter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dong, E-mail: mr20001@sina.com; Qin, Fen; Xu, Sha
2015-02-15
It is demonstrated that an L band metallic photonic crystal TEM-TE{sub 11} mode converter is suitable for narrow band high power microwave application. The proposed mode converter is realized by partially filling metallic photonic crystals along azimuthal direction in a coaxial transmission line for phase-shifting. A three rows structure is designed and simulated by commercial software CST Microwave Studio. Simulation results show that its conversion efficiency is 99% at the center frequency 1.58 GHz. Over the frequency range of 1.56-1.625 GHz, the conversion efficiency exceeds 90 %, with a corresponding bandwidth of 4.1 %. This mode converter has a gigawattmore » level power handling capability which is suitable for narrow band high power microwave application. Using magnetically insulated transmission line oscillator(MILO) as a high power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. The expected TE{sub 11} mode microwave output is obtained and the MILO works well. Mode conversion performance of the converter is tested by far-field measurement method. And the experimental result confirms the validity of our design. Then, high power microwave experiment is carried out on a Marx-driven Blumlein water line pulsed power accelerator. Microwave frequency, radiated pattern and power are measured in the far-field region and the results agree well with simulation results. The experiment also reveals that no microwave breakdown or pulse shortening took place in the experimental setup.« less
Gravity flow rate of solids through orifices and pipes
NASA Technical Reports Server (NTRS)
Gardner, J. F.; Smith, J. E.; Hobday, J. M.
1977-01-01
Lock-hopper systems are the most common means for feeding solids to and from coal conversion reactor vessels. The rate at which crushed solids flow by gravity through the vertical pipes and valves in lock-hopper systems affects the size of pipes and valves needed to meet the solids-handling requirements of the coal conversion process. Methods used to predict flow rates are described and compared with experimental data. Preliminary indications are that solids-handling systems for coal conversion processes are over-designed by a factor of 2 or 3.
Chiu, Hung-Wei; Lu, Chien-Chi; Chuang, Jia-min; Lin, Wei-Tso; Lin, Chii-Wann; Kao, Ming-Chien; Lin, Mu-Lien
2013-06-01
This paper presents the design flow of two high-efficiency class-E amplifiers for the implantable electrical stimulation system. The implantable stimulator is a high-Q class-E driver that delivers a sine-wave pulsed radiofrequency (PRF) stimulation, which was verified to have a superior efficacy in pain relief to a square wave. The proposed duty-cycle-controlled class-E PRF driver designed with a high-Q factor has two operational modes that are able to achieve 100% DC-AC conversion, and involves only one switched series inductor and an unchanged parallel capacitor. The measured output amplitude under low-voltage (LV) mode using a 22% duty cycle was 0.98 V with 91% efficiency, and under high-voltage (HV) mode using a 47% duty cycle was 2.95 V with 92% efficiency. These modes were inductively controlled by a duty-cycle detector, which can detect the duty-cycle modulated signal generated from the external complementary low-Q class-E power amplifier (PA). The design methodology of the low-Q inductive interface for a non-50% duty cycle is presented. The experimental results exhibits that the 1.5-V PA that consumes DC power of 14.21 mW was able to deliver a 2.9-V sine wave to a 500 Ω load. The optimal 60% drain efficiency of the system from the PA to the load was obtained at a 10-mm coupling distance.
DENSITY-DEPENDENT FLOW IN ONE-DIMENSIONAL VARIABLY-SATURATED MEDIA
A one-dimensional finite element is developed to simulate density-dependent flow of saltwater in variably saturated media. The flow and solute equations were solved in a coupled mode (iterative), in a partially coupled mode (non-iterative), and in a completely decoupled mode. P...
He, Lian; Lin, Yu; Shang, Yu; Shelton, Brent J.
2013-01-01
Abstract. The dual-wavelength diffuse correlation spectroscopy (DCS) flow-oximeter is an emerging technique enabling simultaneous measurements of blood flow and blood oxygenation changes in deep tissues. High signal-to-noise ratio (SNR) is crucial when applying DCS technologies in the study of human tissues where the detected signals are usually very weak. In this study, single-mode, few-mode, and multimode fibers are compared to explore the possibility of improving the SNR of DCS flow-oximeter measurements. Experiments on liquid phantom solutions and in vivo muscle tissues show only slight improvements in flow measurements when using the few-mode fiber compared with using the single-mode fiber. However, light intensities detected by the few-mode and multimode fibers are increased, leading to significant SNR improvements in detections of phantom optical property and tissue blood oxygenation. The outcomes from this study provide useful guidance for the selection of optical fibers to improve DCS flow-oximeter measurements. PMID:23455963
Verstraeten, M; Broeckhoven, K; Lynen, F; Choikhet, K; Landt, K; Dittmann, M; Witt, K; Sandra, P; Desmet, G
2013-01-25
The present contribution investigates the quantitation aspects of mass-sensitive detectors with nebulizing interface (ESI-MSD, ELSD, CAD) in the constant pressure gradient elution mode. In this operation mode, the pressure is controlled and maintained at a set value and the liquid flow rate will vary according to the inverse mobile phase viscosity. As the pressure is continuously kept at the allowable maximum during the entire gradient run, the average liquid flow rate is higher compared to that in the conventional constant flow rate operation mode, thus shortening the analysis time. The following three mass-sensitive detectors were investigated: mass spectrometry detector (MS), evaporative light scattering detector (ELSD) and charged aerosol detector (CAD) and a wide variety of samples (phenones, polyaromatic hydrocarbons, wine, cocoa butter) has been considered. It was found that the nebulizing efficiency of the LC-interfaces of the three detectors under consideration changes with the increasing liquid flow rate. For the MS, the increasing flow rate leads to a lower peak area whereas for the ELSD the peak area increases compared to the constant flow rate mode. The peak area obtained with a CAD is rather insensitive to the liquid flow rate. The reproducibility of the peak area remains similar in both modes, although variation in system permeability compromises the 'long-term' reproducibility. This problem can however be overcome by running a flow rate program with an optimized flow rate and composition profile obtained from the constant pressure mode. In this case, the quantification remains reproducibile, despite any occuring variations of the system permeability. Furthermore, the same fragmentation pattern (MS) has been found in the constant pressure mode compared to the customary constant flow rate mode. Copyright © 2012 Elsevier B.V. All rights reserved.
Impact of E × B shear flow on low-n MHD instabilities.
Chen, J G; Xu, X Q; Ma, C H; Xi, P W; Kong, D F; Lei, Y A
2017-05-01
Recently, the stationary high confinement operations with improved pedestal conditions have been achieved in DIII-D [K. H. Burrell et al. , Phys. Plasmas 23 , 056103 (2016)], accompanying the spontaneous transition from the coherent edge harmonic oscillation (EHO) to the broadband MHD turbulence state by reducing the neutral beam injection torque to zero. It is highly significant for the burning plasma devices such as ITER. Simulations about the effects of E × B shear flow on the quiescent H-mode (QH-mode) are carried out using the three-field two-fluid model in the field-aligned coordinate under the BOUT++ framework. Using the shifted circular cross-section equilibriums including bootstrap current, the results demonstrate that the E × B shear flow strongly destabilizes low-n peeling modes, which are mainly driven by the gradient of parallel current in peeling-dominant cases and are sensitive to the E r shear. Adopting the much more general shape of E × B shear ([Formula: see text]) profiles, the linear and nonlinear BOUT++ simulations show qualitative consistence with the experiments. The stronger shear flow shifts the most unstable mode to lower-n and narrows the mode spectrum. At the meantime, the nonlinear simulations of the QH-mode indicate that the shear flow in both co- and counter directions of diamagnetic flow has some similar effects. The nonlinear mode interaction is enhanced during the mode amplitude saturation phase. These results reveal that the fundamental physics mechanism of the QH-mode may be shear flow and are significant for understanding the mechanism of EHO and QH-mode.
Impact of E × B shear flow on low-n MHD instabilities
NASA Astrophysics Data System (ADS)
Chen, J. G.; Xu, X. Q.; Ma, C. H.; Xi, P. W.; Kong, D. F.; Lei, Y. A.
2017-05-01
Recently, the stationary high confinement operations with improved pedestal conditions have been achieved in DIII-D [K. H. Burrell et al., Phys. Plasmas 23, 056103 (2016)], accompanying the spontaneous transition from the coherent edge harmonic oscillation (EHO) to the broadband MHD turbulence state by reducing the neutral beam injection torque to zero. It is highly significant for the burning plasma devices such as ITER. Simulations about the effects of E × B shear flow on the quiescent H-mode (QH-mode) are carried out using the three-field two-fluid model in the field-aligned coordinate under the BOUT++ framework. Using the shifted circular cross-section equilibriums including bootstrap current, the results demonstrate that the E × B shear flow strongly destabilizes low-n peeling modes, which are mainly driven by the gradient of parallel current in peeling-dominant cases and are sensitive to the Er shear. Adopting the much more general shape of E × B shear ( ω E = E r / R B θ ) profiles, the linear and nonlinear BOUT++ simulations show qualitative consistence with the experiments. The stronger shear flow shifts the most unstable mode to lower-n and narrows the mode spectrum. At the meantime, the nonlinear simulations of the QH-mode indicate that the shear flow in both co- and counter directions of diamagnetic flow has some similar effects. The nonlinear mode interaction is enhanced during the mode amplitude saturation phase. These results reveal that the fundamental physics mechanism of the QH-mode may be shear flow and are significant for understanding the mechanism of EHO and QH-mode.
Impact of E × B shear flow on low-n MHD instabilities
Chen, J. G.; Ma, C. H.; Xi, P. W.; Lei, Y. A.
2017-01-01
Recently, the stationary high confinement operations with improved pedestal conditions have been achieved in DIII-D [K. H. Burrell et al., Phys. Plasmas 23, 056103 (2016)], accompanying the spontaneous transition from the coherent edge harmonic oscillation (EHO) to the broadband MHD turbulence state by reducing the neutral beam injection torque to zero. It is highly significant for the burning plasma devices such as ITER. Simulations about the effects of E × B shear flow on the quiescent H-mode (QH-mode) are carried out using the three-field two-fluid model in the field-aligned coordinate under the BOUT++ framework. Using the shifted circular cross-section equilibriums including bootstrap current, the results demonstrate that the E × B shear flow strongly destabilizes low-n peeling modes, which are mainly driven by the gradient of parallel current in peeling-dominant cases and are sensitive to the Er shear. Adopting the much more general shape of E × B shear (ωE=Er/RBθ) profiles, the linear and nonlinear BOUT++ simulations show qualitative consistence with the experiments. The stronger shear flow shifts the most unstable mode to lower-n and narrows the mode spectrum. At the meantime, the nonlinear simulations of the QH-mode indicate that the shear flow in both co- and counter directions of diamagnetic flow has some similar effects. The nonlinear mode interaction is enhanced during the mode amplitude saturation phase. These results reveal that the fundamental physics mechanism of the QH-mode may be shear flow and are significant for understanding the mechanism of EHO and QH-mode. PMID:28579732
NASA Astrophysics Data System (ADS)
Petit, Pierre; Saint-Eve, Frédéric; Sawicki, Jean-Paul; Aillerie, Michel
2017-02-01
This paper focuses on an original performed command on DC-DC boosts developed for applications in the LMOPS lab for the photovoltaic energy conversion and more specifically the Photovoltaic panels connected to HVDC smart grids. This boost, commonly named MCB-ARS (Magnetically Coupled Boost with Active Recovery Switch) presents great advantages concerning the simplicity of the command on the single constitutive switch, the global efficiency and the voltage conversion ratio. A fine analysis of the losses all over the entire converter shows that losses are not distributed uniformly in the constituting components. So a previous modification described in a previous paper consisting in the conducting assistance on the power flowing intermediate diode, performed advantageously the global efficiency. The present analysis takes into account the fact that the new configuration obtained after this important improvement looks like a classical half-bridge push-pull stage and may be controlled by a twice complementary command. In that way, a comparison has been done between a natural commutation recovery diode and an assisted switch commutation driven in a push-pull mode. As attempted, the switching command laws in charge to assume the energy transfer has been compared to the classical previous system described in anterior papers, and we demonstrate in this publication that a commutation based on a push-pull command mode within the two switches of the MCB-ARS converter is possible and increases the power transfer.
Conformational Changes of Trialanine in Water Induced by Vibrational Relaxation of the Amide I Mode.
Bastida, Adolfo; Zúñiga, José; Requena, Alberto; Miguel, Beatriz; Candela, María Emilia; Soler, Miguel Angel
2016-01-21
Most of the protein-based diseases are caused by anomalies in the functionality and stability of these molecules. Experimental and theoretical studies of the conformational dynamics of proteins are becoming in this respect essential to understand the origin of these anomalies. However, a description of the conformational dynamics of proteins based on mechano-energetic principles still remains elusive because of the intrinsic high flexibility of the peptide chains, the participation of weak noncovalent interactions, and the role of the ubiquitous water solvent. In this work, the conformational dynamics of trialanine dissolved in water (D2O) is investigated through Molecular Dynamics (MD) simulations combined with instantaneous normal modes (INMs) analysis both at equilibrium and after the vibrational excitation of the C-terminal amide I mode. The conformational equilibrium between α and pPII conformers is found to be altered by the intramolecular relaxation of the amide I mode as a consequence of the different relaxation pathways of each conformer which modify the amount of vibrational energy stored in the torsional motions of the tripeptide, so the α → pPII and pPII → α conversion rates are increased differently. The selectivity of the process comes from the shifts of the vibrational frequencies with the conformational changes that modify the resonance conditions driving the intramolecular energy flows.
Finite element simulation of core inspection in helicopter rotor blades using guided waves.
Chakrapani, Sunil Kishore; Barnard, Daniel; Dayal, Vinay
2015-09-01
This paper extends the work presented earlier on inspection of helicopter rotor blades using guided Lamb modes by focusing on inspecting the spar-core bond. In particular, this research focuses on structures which employ high stiffness, high density core materials. Wave propagation in such structures deviate from the generic Lamb wave propagation in sandwich panels. To understand the various mode conversions, finite element models of a generalized helicopter rotor blade were created and subjected to transient analysis using a commercial finite element code; ANSYS. Numerical simulations showed that a Lamb wave excited in the spar section of the blade gets converted into Rayleigh wave which travels across the spar-core section and mode converts back into Lamb wave. Dispersion of Rayleigh waves in multi-layered half-space was also explored. Damage was modeled in the form of a notch in the core section to simulate a cracked core, and delamination was modeled between the spar and core material to simulate spar-core disbond. Mode conversions under these damaged conditions were examined numerically. The numerical models help in assessing the difficulty of using nondestructive evaluation for complex structures and also highlight the physics behind the mode conversions which occur at various discontinuities. Copyright © 2015 Elsevier B.V. All rights reserved.
A 400-kWe high-efficiency steam turbine for industrial cogeneration
NASA Technical Reports Server (NTRS)
Leibowitz, H. M.
1982-01-01
An advanced state-of-the-art steam turbine-generator developed to serve as the power conversion subsystem for the Department of Energy's Sandia National Laboratories' Solar Total-Energy Project (STEP) is described. The turbine-generator, which is designed to provide 400-kW of net electrical power, represents the largest turbine-generator built specifically for commercial solar-powered cogeneration. The controls for the turbine-generator incorporate a multiple, partial-arc entry to provide efficient off-design performance, as well as an extraction control scheme to permit extraction flow regulation while maintaining 110-spsig pressure. Normal turbine operation is achieved while synchronized to a local utility and in a stand-alone mode. In both cases, the turbine-generator features automatic load control as well as remote start-up and shutdown capability. Tests totaling 200 hours were conducted to confirm the integrity of the turbine's mechanical structure and control function. Performance tests resulted in a measured inlet throttle flow of 8,450 pounds per hour, which was near design conditions.
The Alfvén Mission for the ESA M5 Call
NASA Astrophysics Data System (ADS)
Fazakerley, Andrew; Berthomier, Matthieu; Pottelette, Raymond; Forsyth, Colin
2017-04-01
The Alfvén mission will explore particle acceleration processes and their consequences for electromagnetic radiation and energy transport in strongly magnetised plasmas. In particular it will address the following three key questions. Alfvén will discover where and how particle acceleration occurs in strongly magnetized plasmas. Charged particle acceleration in strongly magnetized plasmas requires the conversion of electromagnetic energy into magnetic-field-aligned particle kinetic energy. Several pathways of energy conversion have been proposed; to understand which are important, Alfvén will measure for the first time in a strongly magnetized plasma the occurrence and distribution of small scale parallel electric fields in space and time. In order to determine the relative efficiency of the different conversion mechanisms, Alfvén will also measure the corresponding particle energy fluxes locally and into the aurora. Alfvén discoveries will inform efforts to understand similar processes in other strongly magnetized plasmas, such as recent work to resolve paradoxes in models of solar flares. Alfvén will discover how electromagnetic radiation is generated in the acceleration region and how it escapes. One of the most important consequences of particle acceleration in strong magnetic fields is the generation of non-thermal electromagnetic radiation. Some of the brightest astrophysical radio signals are from coherent generation in plasmas, which also occurs on every magnetized planet. Alfvén will make key measurements of Earth's powerful Auroral Kilometric Radiation (AKR) needed to test competing models of wave generation, mode conversion and escape from their source region. These will reveal the mode conversion processes and which information is ultimately carried by the polarization of radio waves reaching free space. The resulting discoveries will make a strong contribution to a better understanding of astrophysical radio sources. Alfvén will discover the global impact of particle acceleration on the dynamic coupling between a magnetized object and its plasma environment. Energy can be transported over vast distances in several forms regulated by the magnetic field, including Poynting flux of plasma waves, accelerated particle fluxes, and bulk plasma flows. A key to understanding the coupling between a magnetized object and the surrounding plasma is how the energy converts from one type to another. Dual spacecraft measurements offer the unique opportunity to unambiguously determine which part of the energy flowing into the ionosphere is eventually dissipated in this collisional plasma and which part is transmitted to outflowing ions of ionospheric origin. Alfvén will discover what combination of plasma and magnetic conditions controls the conversion of Poynting flux into particle energy at Earth. These conditions will be compared to those at the outer planets, illuminating the theoretical descriptions of energy deposition in these remote environments. The Alfvén mission design involves use of two simple identical spacecraft, a comprehensive suite of inter-calibrated particles and fields instruments, cutting edge auroral imaging, easily accessible orbits that frequently visit the region of scientific interest and straightforward operations. This has not previously been possible, but is now compelling and timely. It is a low risk mission that is compatible with the M5 cost cap.
NASA Astrophysics Data System (ADS)
Kler, Aleksandr; Tyurina, Elina; Mednikov, Aleksandr
2018-01-01
The paper presents perspective technologies for combined conversion of fossil fuels into synthetic liquid fuels and electricity. The comparative efficiency of various process flows of conversion and transportation of energy resources of Russia's east that are aimed at supplying electricity to remote consumers is presented. These also include process flows based on production of synthetic liquid fuel.
Acoustic modes in fluid networks
NASA Technical Reports Server (NTRS)
Michalopoulos, C. D.; Clark, Robert W., Jr.; Doiron, Harold H.
1992-01-01
Pressure and flow rate eigenvalue problems for one-dimensional flow of a fluid in a network of pipes are derived from the familiar transmission line equations. These equations are linearized by assuming small velocity and pressure oscillations about mean flow conditions. It is shown that the flow rate eigenvalues are the same as the pressure eigenvalues and the relationship between line pressure modes and flow rate modes is established. A volume at the end of each branch is employed which allows any combination of boundary conditions, from open to closed, to be used. The Jacobi iterative method is used to compute undamped natural frequencies and associated pressure/flow modes. Several numerical examples are presented which include acoustic modes for the Helium Supply System of the Space Shuttle Orbiter Main Propulsion System. It should be noted that the method presented herein can be applied to any one-dimensional acoustic system involving an arbitrary number of branches.
Tan, Tien Chye; Spadiut, Oliver; Gandini, Rosaria; Haltrich, Dietmar; Divne, Christina
2014-01-01
Each year, about six million tons of lactose are generated from liquid whey as industrial byproduct, and optimally this large carbohydrate waste should be used for the production of value-added products. Trametes multicolor pyranose 2-oxidase (TmP2O) catalyzes the oxidation of various monosaccharides to the corresponding 2-keto sugars. Thus, a potential use of TmP2O is to convert the products from lactose hydrolysis, D-glucose and D-galactose, to more valuable products such as tagatose. Oxidation of glucose is however strongly favored over galactose, and oxidation of both substrates at more equal rates is desirable. Characterization of TmP2O variants (H450G, V546C, H450G/V546C) with improved D-galactose conversion has been given earlier, of which H450G displayed the best relative conversion between the substrates. To rationalize the changes in conversion rates, we have analyzed high-resolution crystal structures of the aforementioned mutants with bound 2- and 3-fluorinated glucose and galactose. Binding of glucose and galactose in the productive 2-oxidation binding mode is nearly identical in all mutants, suggesting that this binding mode is essentially unaffected by the mutations. For the competing glucose binding mode, enzyme variants carrying the H450G replacement stabilize glucose as the α-anomer in position for 3-oxidation. The backbone relaxation at position 450 allows the substrate-binding loop to fold tightly around the ligand. V546C however stabilize glucose as the β-anomer using an open loop conformation. Improved binding of galactose is enabled by subtle relaxation effects at key active-site backbone positions. The competing binding mode for galactose 2-oxidation by V546C stabilizes the β-anomer for oxidation at C1, whereas H450G variants stabilize the 3-oxidation binding mode of the galactose α-anomer. The present study provides a detailed description of binding modes that rationalize changes in the relative conversion rates of D-glucose and D-galactose and can be used to refine future enzyme designs for more efficient use of lactose-hydrolysis byproducts.
Gandini, Rosaria; Haltrich, Dietmar; Divne, Christina
2014-01-01
Each year, about six million tons of lactose are generated from liquid whey as industrial byproduct, and optimally this large carbohydrate waste should be used for the production of value-added products. Trametes multicolor pyranose 2-oxidase (TmP2O) catalyzes the oxidation of various monosaccharides to the corresponding 2-keto sugars. Thus, a potential use of TmP2O is to convert the products from lactose hydrolysis, D-glucose and D-galactose, to more valuable products such as tagatose. Oxidation of glucose is however strongly favored over galactose, and oxidation of both substrates at more equal rates is desirable. Characterization of TmP2O variants (H450G, V546C, H450G/V546C) with improved D-galactose conversion has been given earlier, of which H450G displayed the best relative conversion between the substrates. To rationalize the changes in conversion rates, we have analyzed high-resolution crystal structures of the aforementioned mutants with bound 2- and 3-fluorinated glucose and galactose. Binding of glucose and galactose in the productive 2-oxidation binding mode is nearly identical in all mutants, suggesting that this binding mode is essentially unaffected by the mutations. For the competing glucose binding mode, enzyme variants carrying the H450G replacement stabilize glucose as the α-anomer in position for 3-oxidation. The backbone relaxation at position 450 allows the substrate-binding loop to fold tightly around the ligand. V546C however stabilize glucose as the β-anomer using an open loop conformation. Improved binding of galactose is enabled by subtle relaxation effects at key active-site backbone positions. The competing binding mode for galactose 2-oxidation by V546C stabilizes the β-anomer for oxidation at C1, whereas H450G variants stabilize the 3-oxidation binding mode of the galactose α-anomer. The present study provides a detailed description of binding modes that rationalize changes in the relative conversion rates of D-glucose and D-galactose and can be used to refine future enzyme designs for more efficient use of lactose-hydrolysis byproducts. PMID:24466218
A linear polarization converter with near unity efficiency in microwave regime
NASA Astrophysics Data System (ADS)
Xu, Peng; Wang, Shen-Yun; Geyi, Wen
2017-04-01
In this paper, we present a linear polarization converter in the reflective mode with near unity conversion efficiency. The converter is designed in an array form on the basis of a pair of orthogonally arranged three-dimensional split-loop resonators sharing a common terminal coaxial port and a continuous metallic ground slab. It converts the linearly polarized incident electromagnetic wave at resonance to its orthogonal counterpart upon the reflection mode. The conversion mechanism is explained by an equivalent circuit model, and the conversion efficiency can be tuned by changing the impedance of the terminal port. Such a scheme of the linear polarization converter has potential applications in microwave communications, remote sensing, and imaging.
Conversion of carbon dioxide to carbon monoxide by pulse dielectric barrier discharge plasma
NASA Astrophysics Data System (ADS)
Wang, Taobo; Liu, Hongxia; Xiong, Xiang; Feng, Xinxin
2017-01-01
The conversion of carbon dioxide (CO2) to carbon monoxide (CO) was investigated in a non-thermal plasma dielectric barrier discharge (DBD) reactor, and the effects of different process conditions on the CO2 conversion were investigated. The results showed that the increase of input power could optimize the conversion of CO2 to CO. The CO2 conversion and CO yield were negatively correlated with the gas flow rate, but there was an optimum gas flow rate, that made the CO selectivity best. The carrier gas (N2, Ar) was conducive to the conversion of CO2, and the effect of N2 as carrier gas was better than Ar. The conversion of CO2 to CO was enhanced by addition of the catalyst (5A molecular sieve).
Deconvolution of reacting-flow dynamics using proper orthogonal and dynamic mode decompositions
NASA Astrophysics Data System (ADS)
Roy, Sukesh; Hua, Jia-Chen; Barnhill, Will; Gunaratne, Gemunu H.; Gord, James R.
2015-01-01
Analytical and computational studies of reacting flows are extremely challenging due in part to nonlinearities of the underlying system of equations and long-range coupling mediated by heat and pressure fluctuations. However, many dynamical features of the flow can be inferred through low-order models if the flow constituents (e.g., eddies or vortices) and their symmetries, as well as the interactions among constituents, are established. Modal decompositions of high-frequency, high-resolution imaging, such as measurements of species-concentration fields through planar laser-induced florescence and of velocity fields through particle-image velocimetry, are the first step in the process. A methodology is introduced for deducing the flow constituents and their dynamics following modal decomposition. Proper orthogonal (POD) and dynamic mode (DMD) decompositions of two classes of problems are performed and their strengths compared. The first problem involves a cellular state generated in a flat circular flame front through symmetry breaking. The state contains two rings of cells that rotate clockwise at different rates. Both POD and DMD can be used to deconvolve the state into the two rings. In POD the contribution of each mode to the flow is quantified using the energy. Each DMD mode can be associated with an energy as well as a unique complex growth rate. Dynamic modes with the same spatial symmetry but different growth rates are found to be combined into a single POD mode. Thus, a flow can be approximated by a smaller number of POD modes. On the other hand, DMD provides a more detailed resolution of the dynamics. Two classes of reacting flows behind symmetric bluff bodies are also analyzed. In the first, symmetric pairs of vortices are released periodically from the two ends of the bluff body. The second flow contains von Karman vortices also, with a vortex being shed from one end of the bluff body followed by a second shedding from the opposite end. The way in which DMD can be used to deconvolve the second flow into symmetric and von Karman vortices is demonstrated. The analyses performed illustrate two distinct advantages of DMD: (1) Unlike proper orthogonal modes, each dynamic mode is associated with a unique complex growth rate. By comparing DMD spectra from multiple nominally identical experiments, it is possible to identify "reproducible" modes in a flow. We also find that although most high-energy modes are reproducible, some are not common between experimental realizations; in the examples considered, energy fails to differentiate between reproducible and nonreproducible modes. Consequently, it may not be possible to differentiate reproducible and nonreproducible modes in POD. (2) Time-dependent coefficients of dynamic modes are complex. Even in noisy experimental data, the dynamics of the phase of these coefficients (but not their magnitude) are highly regular. The phase represents the angular position of a rotating ring of cells and quantifies the downstream displacement of vortices in reacting flows. Thus, it is suggested that the dynamical characterizations of complex flows are best made through the phase dynamics of reproducible DMD modes.
FLOW-i ventilator performance in the presence of a circle system leak.
Lucangelo, Umberto; Ajčević, Miloš; Accardo, Agostino; Borelli, Massimo; Peratoner, Alberto; Comuzzi, Lucia; Zin, Walter A
2017-04-01
Recently, the FLOW-i anaesthesia ventilator was developed based on the SERVO-i intensive care ventilator. The aim of this study was to test the FLOW-i's tidal volume delivery in the presence of a leak in the breathing circuit. We ventilated a test lung model in volume-, pressure-, and pressure-regulated volume-controlled modes (VC, PC, and PRVC, respectively) with a FLOW-i. First, the circuit remained airtight and the ventilator was tested with fresh gas flows of 6, 1, and 0.3 L/min in VC, PC, and PRVC modes and facing 4 combinations of different resistive and elastic loads. Second, a fixed leak in the breathing circuit was introduced and the measurements repeated. In the airtight system, FLOW-i maintained tidal volume (VT) and circuit pressure at approximately the set values, independently of respiratory mode, load, or fresh gas flow. In the leaking circuit, set VT = 500 mL, FLOW-i delivered higher VTs in PC (about 460 mL) than in VC and PRVC, where VTs were substantially less than 500 mL. Interestingly, VT did not differ appreciably from 6 to 0.3 L/min of fresh air flow among the 3 ventilatory modes. In the absence of leakage, peak inspiratory pressures were similar, while they were 35-45 % smaller in PRVC and VC than in PC mode in the presence of leaks. In conclusion, FLOW-i maintained VT (down to fresh gas flows of 0.3 L/min) to 90 % of its preset value in PC mode, which was 4-5 times greater than in VC or PRVC modes.
Sub-leading flow modes in PbPb collisions at from the HYDJET++ model
NASA Astrophysics Data System (ADS)
Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Stojanovic, M.
2017-07-01
Recent LHC results on the appearance of sub-leading flow modes in PbPb collisions at 2.76 TeV, related to initial-state fluctuations, are analyzed and interpreted within the HYDJET++ model. Using the newly introduced Principal Component Analysis (PCA) method applied to two-particle azimuthal correlations extracted from the model calculations, the leading and sub-leading flow modes are studied as a function of the transverse momentum (p T) over a wide centrality range. The leading modes of the elliptic and triangular flow calculated with the HYDJET++ model reproduce rather well the v 2{2} and v 3{2} coefficients measured experimentally using the two-particle correlations. Within the p T ⩽ 3 GeV/c range, where hydrodynamics dominates, the sub-leading flow effects are greatest at the highest p T of around 3 GeV/c. The sub-leading elliptic flow mode , which corresponds to the n = 2 harmonic, has a small non-zero value and slowly increases from central to peripheral collisions, while the sub-leading triangular flow mode , which corresponds to the n=3 harmonic, is even smaller and does not depend on centrality. For n= 2, the relative magnitude of the effect measured with respect to the leading flow mode shows a shallow minimum for semi-central collisions and increases for very central and for peripheral collisions. For the n= 3 case, there is no centrality dependence. The sub-leading flow mode results obtained from the HYDJET++ model are in rather good agreement with the experimental measurements of the CMS Collaboration. Supported by Ministry of Education, Science and Technological Development of the Republic of Serbia (171019)
Technique for measuring gas conversion factors
NASA Technical Reports Server (NTRS)
Singh, J. J.; Sprinkle, D. R. (Inventor)
1985-01-01
A method for determining hydrocarbon conversion factors for a flowmeter. A mixture of air, O2 and C sub x H sub y is burned and the partial paressure of O2 in the resulting gas is forced to equal the partial pressure of O2 in air. The flowrate of O2 flowing into the mixture is measured by flowmeter and the flowrate of C sub x H sub y flowing into the mixture is measured by the flowmeter conversion factor is to be determined. These measured values are used to calculate the conversion factor.
A broadband polarization-insensitive cloak based on mode conversion
Gu, Chendong; Xu, Yadong; Li, Sucheng; Lu, Weixin; Li, Jensen; Chen, Huanyang; Hou, Bo
2015-01-01
In this work, we demonstrate an one-dimensional cloak consisting of parallel-plated waveguide with two slabs of gradient index metamaterials attached to its metallic walls. In it objects are hidden without limitation of polarizations, and good performance is observed for a broadband of frequencies. The experiments at microwave frequencies are carried out, supporting the theoretical results very well. The essential principle behind the proposed cloaking device is based on mode conversion, which provides a new strategy to manipulate wave propagation. PMID:26175114
Information Flow in Interaction Networks II: Channels, Path Lengths, and Potentials
Stojmirović, Aleksandar
2012-01-01
Abstract In our previous publication, a framework for information flow in interaction networks based on random walks with damping was formulated with two fundamental modes: emitting and absorbing. While many other network analysis methods based on random walks or equivalent notions have been developed before and after our earlier work, one can show that they can all be mapped to one of the two modes. In addition to these two fundamental modes, a major strength of our earlier formalism was its accommodation of context-specific directed information flow that yielded plausible and meaningful biological interpretation of protein functions and pathways. However, the directed flow from origins to destinations was induced via a potential function that was heuristic. Here, with a theoretically sound approach called the channel mode, we extend our earlier work for directed information flow. This is achieved by constructing a potential function facilitating a purely probabilistic interpretation of the channel mode. For each network node, the channel mode combines the solutions of emitting and absorbing modes in the same context, producing what we call a channel tensor. The entries of the channel tensor at each node can be interpreted as the amount of flow passing through that node from an origin to a destination. Similarly to our earlier model, the channel mode encompasses damping as a free parameter that controls the locality of information flow. Through examples involving the yeast pheromone response pathway, we illustrate the versatility and stability of our new framework. PMID:22409812
Gyroharmonic conversion experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirshfield, J. L.; LaPointe, M. A.; Yale University, New Haven, Connecticut 06511
1999-05-07
Generation of high power microwaves has been observed in experiments where a 250-350 kV, 20-30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allowsmore » efficient 20 GHz co-generation within the CARA waveguide itself.« less
Autonomous Sensors Powered by Energy Harvesting from von Karman Vortices in Airflow.
Demori, Marco; Ferrari, Marco; Bonzanini, Arianna; Poesio, Pietro; Ferrari, Vittorio
2017-09-13
In this paper an energy harvesting system based on a piezoelectric converter to extract energy from airflow and use it to power battery-less sensors is presented. The converter is embedded as a part of a flexure beam that is put into vibrations by von Karman vortices detached from a bluff body placed upstream. The vortex street has been investigated by Computational Fluid Dynamics (CFD) simulations, aiming at assessing the vortex shedding frequency as a function of the flow velocity. From the simulation results the preferred positioning of the beam behind the bluff body has been derived. In the experimental characterization the electrical output from the converter has been measured for different flow velocities and beam orientations. Highest conversion effectiveness is obtained by an optimal orientation of the beam, to exploit the maximum forcing, and for flow velocities where the repetition frequency of the vortices allows to excite the beam resonant frequency at its first flexural mode. The possibility to power battery-less sensors and make them autonomous has been shown by developing an energy management and signal conditioning electronic circuit plus two sensors for measuring temperature and flow velocity and transmitting their values over a RF signal. A harvested power of about 650 μW with retransmission intervals below 2 min have been obtained for the optimal flow velocity of 4 m/s.
Autonomous Sensors Powered by Energy Harvesting from von Karman Vortices in Airflow
Bonzanini, Arianna; Poesio, Pietro
2017-01-01
In this paper an energy harvesting system based on a piezoelectric converter to extract energy from airflow and use it to power battery-less sensors is presented. The converter is embedded as a part of a flexure beam that is put into vibrations by von Karman vortices detached from a bluff body placed upstream. The vortex street has been investigated by Computational Fluid Dynamics (CFD) simulations, aiming at assessing the vortex shedding frequency as a function of the flow velocity. From the simulation results the preferred positioning of the beam behind the bluff body has been derived. In the experimental characterization the electrical output from the converter has been measured for different flow velocities and beam orientations. Highest conversion effectiveness is obtained by an optimal orientation of the beam, to exploit the maximum forcing, and for flow velocities where the repetition frequency of the vortices allows to excite the beam resonant frequency at its first flexural mode. The possibility to power battery-less sensors and make them autonomous has been shown by developing an energy management and signal conditioning electronic circuit plus two sensors for measuring temperature and flow velocity and transmitting their values over a RF signal. A harvested power of about 650 μW with retransmission intervals below 2 min have been obtained for the optimal flow velocity of 4 m/s. PMID:28902139
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Hu; Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an Shaanxi 710024
2015-06-15
A V-band overmoded relativistic backward wave oscillator (RBWO) guided by low magnetic field and operating on a TM{sub 03} mode is presented to increase both the power handling capacity and the wave-beam interaction conversion efficiency. Trapezoidal slow wave structures (SWSs) with shallow corrugations and long periods are adopted to make the group velocity of TM{sub 03} mode at the intersection point close to zero. The coupling impedance and diffraction Q-factor of the RBWO increase, while the starting current decreases owing to the reduction of the group velocity of TM{sub 03} mode. In addition, the TM{sub 03} mode dominates over themore » other modes in the startup of the oscillation. Via numerical simulation, the generation of the microwave pulse with an output power of 425 MW and a conversion efficiency of 32% are achieved at 60.5 GHz with an external magnetic field of 1.25 T. This RBWO can provide greater power handling capacity when operating on the TM{sub 03} mode than on the TM{sub 01} mode.« less
Study of the Effectiveness of OCR for Decentralized Data Capture and Conversion. Final Report.
ERIC Educational Resources Information Center
Liston, David M.; And Others
The ERIC network conversion to an OCR (Optical Character Recognition) mode of data entry was studied to analyze the potential effectiveness of OCR data entry for future EPC/s (Editorial Processing Centers). Study results are also applicable to any other system involving decentralized bibliographic data capture and conversion functions. The report…
Various aspects of ultrasound assisted emulsion polymerization process.
Korkut, Ibrahim; Bayramoglu, Mahmut
2014-07-01
In this paper, the effects of ultrasonic (US) power, pulse ratio, probe area and recipe composition were investigated on two process responses namely, monomer (methyl methacrylate, MMA) conversion and electrical energy consumption per mass of product polymer (PMMA). Pulsed mode US is more suitable than continuous mode US for emulsion polymerization. The probe (tip) area has little effect on the yield of polymerization when comparing 19 and 13 mm probes, 13 mm probe performing slightly better for high conversion levels. Meanwhile, large probe area is beneficial for high conversion efficiency of electric energy to US energy as well as for high radical generation yield per energy consumed. The conversion increased slightly and electrical energy consumption decreased substantially by using a recipe with high SDS and monomer concentrations. Conclusions presented in this paper may be useful for scale-up of US assisted emulsion polymerization. Copyright © 2014 Elsevier B.V. All rights reserved.
Peterson, Donald W.; Tilling, Robert I.
1980-01-01
Nearly all Hawaiian basaltic lava erupts as pahoehoe, and some changes to aa during flowage and cooling; factors governing the transition involve certain critical relations between viscosity and rate of shear strain. If the lava slows, cools, and stops in direct response to concomitant increase in viscosity before these critical relations are reached, it remains pahoehoe. But, if flow mechanics (flow rate, flow dimensions, slope, momentum, etc.) impel the lava to continue to move and deform even after it has become highly viscous, the critical relations may be reached and the lava changes to aa.Typical modes of transition from pahoehoe to aa include: (1) spontaneous formation of relatively stiff clots in parts of the flowing lava where shear rate is highest; these clots grow into discrete, rough, sticky masses to which the remaining fluid lava incrementally adheres; (2) fragmentation and immersion of solid or semi-solid surface crusts of pahoehoe by roiling movements of the flow, forming cores of discrete, tacky masses; (3) sudden renewed movement of lava stored and cooled within surface reservoirs to form clots. The masses, fragments, and clots in these transition modes are characterized by spinose, granulated surfaces; as flow movement continues, the masses and fragments aggregate, fracture, and grind together, completing the transition to aa.Observations show that the critical relation between viscosity and rate of shear strain is inverse: if viscosity is low, a high rate of shear is required to begin the transition to aa; conversely, if viscosity is high, a much lower rate of shear will induce the transition. These relations can be demonstrated qualitatively with simple graphs, which can be used to examine the flow history of any selected finite lava element by tracing the path represented by its changing viscosity and shear rate. A broad, diffuse “transition threshold zone” in these graphs portrays the inverse critical relation between viscosity and shear rate; the transition to aa is represented by the path of the lava element crossing this zone.Moving lava flows can be regarded as natural viscometers, by which shear stress and rate of shear strain at selected points can be determined and viscosity can be computed. By making such determinations under a wide range of conditions on pahoehoe, aa, and transitional flow types, the critical relations that control the pahoehoe-aa transition can be quantified.
Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics
Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal
2016-01-01
The ability to generate efficient giga–terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics. PMID:27492493
Mode conversion at density irregularities in the LAPD
NASA Astrophysics Data System (ADS)
Kersten, Kristopher; Cattell, Cynthia; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Vincena, Steve
2010-11-01
Mode conversion of electrostatic plasma oscillations to electromagnetic radiation is commonly observed in space plasmas as Type II and III radio bursts. Much theoretical work has addressed the phenomenon, but due to the transient nature and generation location of the bursts, experimental verification via in situ observation has proved difficult. The Large Plasma Device (LAPD) provides a reproducible plasma environment that can be tailored for the study of space plasma phenomena. A highly configurable axial magnetic field and flexible diagnostics make the device well suited for the study of plasma instabilities at density gradients. We present preliminary results of mode conversion studies performed at the LAPD. The studies employed an electron beam source configured to drive Langmuir waves towards high density plasma near the cathode discharge. Internal floating potential probes show the expected plasma oscillations ahead of the beam cathode, and external microwave antenna signals reveal a strong band of radiation near the plasma frequency that persists into the low density plasma afterglow.
ICRF fast wave current drive and mode conversion current drive in EAST tokamak
NASA Astrophysics Data System (ADS)
Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.
2017-10-01
Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.
NASA Astrophysics Data System (ADS)
Iverson, Richard M.
1997-08-01
Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ˜10 m³ of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.
Iverson, R.M.
1997-01-01
Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.
On the interaction of Tollmien-Schlichting waves in axisymmetric supersonic flows
NASA Technical Reports Server (NTRS)
Duck, P. W.; Hall, P.
1988-01-01
Two-dimensional lower branch Tollmien-Schlichting waves described by triple-deck theory are always stable for planar supersonic flows. The possible occurrence of axisymmetric unstable modes in the supersonic flow around an axisymmetric body is investigated. In particular flows around bodies with typical radii comparable with the thickness of the upper deck are considered. It is shown that such unstable modes exist below a critical nondimensional radius of the body a sub 0. At values of the radius above a sub 0 all the modes are stable while if unstable modes exist they are found to occur in pairs. The interaction of these modes in the nonlinear regime is investigated using a weakly nonlinear approach and it is found that, dependent on the frequencies of the imposed Tollmien-Schlichting waves, either of the modes can be set up.
On the interaction of Tollmien-Schlichting waves in axisymmetric supersonic flows
NASA Technical Reports Server (NTRS)
Duck, P. W.; Hall, P.
1989-01-01
Two-dimensional lower branch Tollmien-Schlichting waves described by triple-deck theory are always stable for planar supersonic flows. The possible occurrence of axisymmetric unstable modes in the supersonic flow around an axisymmetric body is investigated. In particular flows around bodies with typical radii comparable with the thickness of the upper deck are considered. It is shown that such unstable modes exist below a critical nondimensional radius of the body a sub O. At values of the radius above a sub O all the modes are stable while if unstable modes exist they are found to occur in pairs. The interaction of these modes in the nonlinear regime is investigated using a weakly nonlinear approach and it is found that, dependent on the frequencies of the imposed Tollmien-Schlichting waves, either of the modes can be set up.
NASA Technical Reports Server (NTRS)
Miller, Christopher J.; Shyam, Vikram; Rigby, David L.
2013-01-01
This work studied the feasibility of using Helmholtz resonator cavities embedded in low-pressure-turbine (LPT) airfoils to (1) reduce core noise by damping acoustic modes; (2) use the synthetic jets produced by the liner hole acoustic oscillations to improve engine efficiency by maintaining turbulent attached flow in the LPT at low-Reynolds-number cruise conditions; and (3) reduce engine nitrogen oxide emissions by lining the internal cavities with materials capable of catalytic conversion. Flat plates with embedded Helmholtz resonators, designed to resonate at either 3000 or at 400 Hz, were simulated using computational fluid dynamics. The simulations were conducted for two inlet Mach numbers, 0.25 and 0.5, corresponding to Reynolds numbers of 90 000 and 164 000 based on the effective chordwise distance to the resonator orifice. The results of this study are (1) the region of acoustic treatment may be large enough to have a benefit; (2) the jets may not possess sufficient strength to reduce flow separation (based on prior work by researchers in the flow control area); and (3) the additional catalytic surface area is not exposed to a high velocity, so it probably does not have any benefit.
Experimental and analytical investigation of a fluidic power generator
NASA Technical Reports Server (NTRS)
Sarohia, V.; Bernal, L.; Beauchamp, R. B.
1981-01-01
A combined experimental and analytical investigation was performed to understand the various fluid processes associated with the conversion of flow energy into electric power in a fluidic generator. Experiments were performed under flight-simulated laboratory conditions and results were compared with those obtained in the free-flight conditions. It is concluded that the mean mass flow critically controlled the output of the fluidic generator. Cross-correlation of the outputs of transducer data indicate the presence of a standing wave in the tube; the mechanism of oscillation is an acoustic resonance tube phenomenon. A linearized model was constructed coupling the flow behavior of the jet, the jet-layer, the tube, the cavity, and the holes of the fluidic generator. The analytical results also show that the mode of the fluidic power generator is an acoustical resonance phenomenon with the frequency of operation given by f approx = a/4L, where f is the frequency of jet swallowing, a is the average speed of sound in the tube, and L is the length of the tube. Analytical results further indicated that oscillations in the fluidic generator are always damped and consequently there is a forcing of the system in operation.
E × B flow shear drive of the linear low-n modes of EHO in the QH-mode regime
NASA Astrophysics Data System (ADS)
Xu, G. S.; Wan, B. N.; Wang, Y. F.; Wu, X. Q.; Chen, Xi; Peng, Y.-K. Martin; Guo, H. Y.; Burrell, K. H.; Garofalo, A. M.; Osborne, T. H.; Groebner, R. J.; Wang, H. Q.; Chen, R.; Yan, N.; Wang, L.; Ding, S. Y.; Shao, L. M.; Hu, G. H.; Li, Y. L.; Lan, H.; Yang, Q. Q.; Chen, L.; Ye, Y.; Xu, J. C.; Li, J.
2017-08-01
A new model for the edge harmonic oscillations (EHOs) in the quiescent H-mode regime has been developed, which successfully reproduces the recent observations in the DIII-D tokamak. In particular, at high E × B flow shear only a few low-n kink modes remain unstable at the plasma edge, consistent with the EHO behavior, while at low E × B flow shear, the unstable mode spectrum is significantly broadened, consistent with the low-n broadband electromagnetic turbulence behavior. The model is based on a new mechanism for destabilizing low-n kink/peeling modes by the E × B flow shear, which underlies the EHOs, separately from the previously found Kelvin-Helmholtz drive. We find that the differential advection of mode vorticity by sheared E × B flows modifies the 2D pattern of mode electrostatic potential perpendicular to the magnetic field lines, which in turn causes a radial expansion of the mode structure, an increase of field line bending away from the mode rational surface, and a reduction of inertial stabilization. This enhances the kink drive as the parallel wavenumber increases significantly away from the rational surface at the plasma edge where the magnetic shear is also strong. This destabilization is also shown to be independent of the sign of the flow shear, as observed experimentally, and has not been taken into account in previous pedestal linear stability analyses. Verification of the veracity of this EHO mechanism will require analysis of the nonlinear evolution of low-n kink/peeling modes so destabilized in the linear regime.
NASA Astrophysics Data System (ADS)
Soltani, Mohammad; Zhang, Mian; Ryan, Colm; Ribeill, Guilhem J.; Wang, Cheng; Loncar, Marko
2017-10-01
We propose a low-noise, triply resonant, electro-optic (EO) scheme for quantum microwave-to-optical conversion based on coupled nanophotonics resonators integrated with a superconducting qubit. Our optical system features a split resonance—a doublet—with a tunable frequency splitting that matches the microwave resonance frequency of the superconducting qubit. This is in contrast to conventional approaches, where large optical resonators with free-spectral range comparable to the qubit microwave frequency are used. In our system, EO mixing between the optical pump coupled into the low-frequency doublet mode and a resonance microwave photon results in an up-converted optical photon on resonance with high-frequency doublet mode. Importantly, the down-conversion process, which is the source of noise, is suppressed in our scheme as the coupled-resonator system does not support modes at that frequency. Our device has at least an order of magnitude smaller footprint than conventional devices, resulting in large overlap between optical and microwave fields and a large photon conversion rate (g /2 π ) in the range of ˜5 -15 kHz. Owing to a large g factor and doubly resonant nature of our device, microwave-to-optical frequency conversion can be achieved with optical pump powers in the range of tens of microwatts, even with moderate values for optical Q (˜106 ) and microwave Q (˜104 ). The performance metrics of our device, with substantial improvement over the previous EO-based approaches, promise a scalable quantum microwave-to-optical conversion and networking of superconducting processors via optical fiber communication.
A novel optical waveguide LP01/LP02 mode converter
NASA Astrophysics Data System (ADS)
Shen, Dongya; Wang, Changhui; Ma, Chuan; Mellah, Hakim; Zhang, Xiupu; Yuan, Hong; Ren, Wenping
2018-07-01
A novel optical waveguide LP01 /LP02 mode converter is proposed using combination of bicone structure based on the coupled-mode theory. It is composed of a cladding, a tapered core and combined bicone structure. It is found that this mode converter can have operating bandwidth of 1350-1700 nm, i.e. 350 nm, with a conversion efficiency of ∼90% (∼0.5 dB) and low crosstalk from other modes
Singular observation of the polarization-conversion effect for a gammadion-shaped metasurface
Lin, Chu-En; Yen, Ta-Jen; Yu, Chih-Jen; Hsieh, Cheng-Min; Lee, Min-Han; Chen, Chii-Chang; Chang, Cheng-Wei
2016-01-01
In this article, the polarization-conversion effects of a gammadion-shaped metasurface in transmission and reflection modes are discussed. In our experiment, the polarization-conversion effect of a gammadion-shaped metasurface is investigated because of the contribution of the phase and amplitude anisotropies. According to our experimental and simulated results, the polarization property of the first-order transmitted diffraction is dominated by linear anisotropy and has weak depolarization; the first-order reflected diffraction exhibits both linear and circular anisotropies and has stronger depolarization than the transmission mode. These results are different from previously published research. The Mueller matrix ellipsometer and polar decomposition method will aid in the investigation of the polarization properties of other nanostructures. PMID:26915332
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asahi, Y., E-mail: y.asahi@nr.titech.ac.jp; Tsutsui, H.; Tsuji-Iio, S.
2014-05-15
Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger thanmore » or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.« less
Dayside Magnetosphere-Ionosphere Coupling and Prompt Response of Low-Latitude/Equatorial Ionosphere
NASA Astrophysics Data System (ADS)
Tu, J.; Song, P.
2017-12-01
We use a newly developed numerical simulation model of the ionosphere/thermosphere to investigate magnetosphere-ionosphere coupling and response of the low-latitude/equatorial ionosphere. The simulation model adapts an inductive-dynamic approach (including self-consistent solutions of Faraday's law and retaining inertia terms in ion momentum equations), that is, based on magnetic field B and plasma velocity v (B-v paradigm), in contrast to the conventional modeling based on electric field E and current j (E-j paradigm). The most distinct feature of this model is that the magnetic field in the ionosphere is not constant but self-consistently varies, e.g., with currents, in time. The model solves self-consistently time-dependent continuity, momentum, and energy equations for multiple species of ions and neutrals including photochemistry, and Maxwell's equations. The governing equations solved in the model are a set of multifluid-collisional-Hall MHD equations which are one of unique features of our ionosphere/thermosphere model. With such an inductive-dynamic approach, all possible MHD wave modes, each of which may refract and reflect depending on the local conditions, are retained in the solutions so that the dynamic coupling between the magnetosphere and ionosphere and among different regions of the ionosphere can be self-consistently investigated. In this presentation, we show that the disturbances propagate in the Alfven speed from the magnetosphere along the magnetic field lines down to the ionosphere/thermosphere and that they experience a mode conversion to compressional mode MHD waves (particularly fast mode) in the ionosphere. Because the fast modes can propagate perpendicular to the field, they propagate from the dayside high-latitude to the nightside as compressional waves and to the dayside low-latitude/equatorial ionosphere as rarefaction waves. The apparent prompt response of the low-latitude/equatorial ionosphere, manifesting as the sudden increase of the upward flow around the equator and global antisunward convection, is the result of such coupling of the high-latitude and the low-latitude/equatorial ionosphere, and the requirement of the flow continuity, instead of mechanisms such as the penetration electric field.
A high-efficiency tunable TEM-TE11 mode converter for high-power microwave applications
NASA Astrophysics Data System (ADS)
Wang, Xiao-Yu; Fan, Yu-Wei; Shu, Ting; Yuan, Cheng-wei; Zhang, Qiang
2017-03-01
The tunable high power microwave source (HPM's) is considered to be an important research direction. However, the corresponding mode converter has been researched little. In this paper, a high-efficiency tunable mode converter (HETMC) is investigated for high-power microwave applications. The HETMC that is consisted of coaxial inner and outer conductors, with four metal plates arranged radially, at 90° in the coaxial gap, and matching rods can transform coaxial transverse electromagnetic (TEM) mode to TE11 coaxial waveguide mode. The results show that adjusting the length of the downstream plate, and the distance between the rods installed upstream and the closest edges of the plates, can improve the conversion efficiency and bandwidth remarkably. Moreover, when the frequency ranges from 1.63 GHz to 2.12 GHz, the conversion efficiency is above 95% between 1.63 GHz and 2.12 GHz with a bandwidth of 26.1%. Besides, the unwished reflection and transmission can be eliminated effectively in the HETMC.
NASA Astrophysics Data System (ADS)
Parashar, T.; Yang, Y.; Chasapis, A.; Matthaeus, W. H.
2017-12-01
High resolution Magnetospheric Multiscale (MMS) plasma and magnetic field data obtained in the inhomogeneous turbulent magnetosheath directly reveals the exchanges of energy between electromagnetic, flow and random kinetic energy. The parameters that quantify these exchanges are based on standard manipulations of the collisionless Vlasov model of plasma dynamics [1], without appeal to viscous or other closures. No analysis of heat transport or heat conduction is carried out. Several intervals of burst mode data in the magnetosheath are considered. Time series of the work done by the electromagnetic field, and the pressure-stress interaction enable description of the pathways to dissipation in this low collisionality plasma. Using these examples we demonstrate that the pressure-stress interaction provides important information not readily revealed in other diagnostics concerning the physical processes that are observed. This method does not require any specific mechanism for its application such as reconnection or a selected mode, although with increased experience it will be useful in distinguishing among proposed possibilities. [1] Y. Yang et al, Phys. Plasmas 24, 072306 (2017); doi: 10.1063/1.4990421.
NASA Astrophysics Data System (ADS)
Pieczonka, Łukasz; Ambroziński, Łukasz; Staszewski, Wiesław J.; Barnoncel, David; Pérès, Patrick
2017-12-01
This paper introduces damage identification approach based on guided ultrasonic waves and 3D laser Doppler vibrometry. The method is based on the fact that the symmetric and antisymmetric Lamb wave modes differ in amplitude of the in-plane and out-of-plane vibrations. Moreover, the modes differ also in group velocities and normally they are well separated in time. For a given time window both modes can occur simultaneously only close to the wave source or to a defect that leads to mode conversion. By making the comparison between the in-plane and out-of-plane wave vector components the detection of mode conversion is possible, allowing for superior and reliable damage detection. Experimental verification of the proposed damage identification procedure is performed on fuel tank elements of Reusable Launch Vehicles designed for space exploration. Lamb waves are excited using low-profile, surface-bonded piezoceramic transducers and 3D scanning laser Doppler vibrometer is used to characterize the Lamb wave propagation field. The paper presents theoretical background of the proposed damage identification technique as well as experimental arrangements and results.
NASA Astrophysics Data System (ADS)
Tomar, Dharmendra S.; Sharma, Gaurav
2018-01-01
We analyzed the linear stability of surfactant-laden liquid film with a free surface flowing down an inclined plane under the action of gravity when the inclined plane is coated with a deformable solid layer. For a flow past a rigid incline and in the presence of inertia, the gas-liquid (GL) interface is prone to the free surface instability and the presence of surfactant is known to stabilize the free surface mode when the Marangoni number increases above a critical value. The rigid surface configuration also admits a surfactant induced Marangoni mode which remains stable for film flows with a free surface. This Marangoni mode was observed to become unstable for a surfactant covered film flow past a flexible inclined plane in a creeping flow limit when the wall is made sufficiently deformable. In view of these observations, we investigate the following two aspects. First, what is the effect of inertia on Marangoni mode instability induced by wall deformability? Second, and more importantly, whether it is possible to use a deformable solid coating to obtain stable flow for the surfactant covered film for cases when the Marangoni number is below the critical value required for stabilization of free surface instability. In order to explore the first question, we continued the growth rates for the Marangoni mode from the creeping flow limit to finite Reynolds numbers (Re) and observed that while the increase in Reynolds number has a small stabilizing effect on growth rates, the Marangoni mode still remains unstable for finite Reynolds numbers as long as the wall is sufficiently deformable. The Marangoni mode remains the dominant mode for zero and small Reynolds numbers until the GL mode also becomes unstable with the increase in Re. Thus, for a given set of parameters and beyond a critical Re, there is an exchange of dominant mode of instability from the Marangoni to free surface GL mode. With respect to the second important aspect, our results clearly demonstrate that for cases when the stabilizing contribution of surfactant is not sufficient for suppressing GL mode instability, a deformable solid coating could be employed to suppress free surface instability without triggering Marangoni or liquid-solid interfacial modes. Specifically, we have shown that for a given solid thickness, as the shear modulus of the solid layer decreases (i.e., the solid becomes more deformable) the GL mode instability is suppressed. With further decrease in shear modulus, the Marangoni and liquid-solid interfacial modes become unstable. Thus, there exists a stability window in terms of shear modulus where the surfactant-laden film flow remains stable even when the Marangoni number is below the critical value required for free surface instability suppression. Further, when the Marangoni number is greater than the critical value so that the GL mode remains stable in the rigid limit or with the deformable wall, the increase in wall deformability or solid thickness triggers Marangoni mode instability and, thus, renders a stable flow configuration into an unstable one. Thus, we show that the soft solid layer can be used to manipulate and control the stability of surfactant-laden film flows.
Effects of planar shear on the three-dimensional instability in flow past a circular cylinder
NASA Astrophysics Data System (ADS)
Park, Doohyun; Yang, Kyung-Soo
2018-03-01
A Floquet stability analysis has been carried out in order to investigate how a planar shear in wake flow affects the three-dimensional (3D) instability in the near-wake region. We consider a circular cylinder immersed in a freestream with planar shear. The cylinder was implemented in a Cartesian grid system by means of an immersed boundary method. Planar shear tends to promote the primary instability, known as Hopf bifurcation where steady flow bifurcates into time-periodic flow, in the sense that its critical Reynolds number decreases with increasing planar shear. The effects of planar shear on the 3D instability are different depending on the type of 3D instability. The flow asymmetry caused by the planar shear suppresses a QP-type mode but generates a C-type mode. The conventional A and B modes are stabilized by the planar shear, whereas mode C is intensified with increasing shear. The criticality of each 3D mode is discussed, and the neutral stability curves for each 3D mode are presented. The current Floquet results have been validated by using direct numerical simulation for some selected cases of flow parameters.
NASA Astrophysics Data System (ADS)
Lam, K. M.; Liu, P.; Hu, J. C.
2010-07-01
This paper attempts to study the roles of lateral cylinder oscillations and a uniform cross-flow in the vortex formation and wake modes of an oscillating circular cylinder. A circular cylinder is given lateral oscillations of varying amplitudes (between 0.28 and 1.42 cylinder-diameters) in a slow uniform flow stream (Reynolds number=284) to produce the 2S, 2P and P+S wake modes. Detailed flow information is obtained with time-resolved particle-image velocimetry and the phase-locked averaging techniques. In the 2S and 2P mode, the flow speeds relative to the cylinder movement are less than the uniform flow velocity and it is found that initial formation of a vortex is caused by shear-layer separation of the uniform flow on the cylinder. Subsequent development of the shear-layer vortices is affected by the lateral cylinder movement. At small cylinder oscillation amplitudes, vortices are shed in synchronization with the cylinder movement, resulting in the 2S mode. The 2P mode occurs at larger cylinder oscillation amplitudes at which each shear-layer vortex is found to undergo intense stretching and eventual bifurcation into two separate vortices. The P+S mode occurs when the cylinder moving speeds are, for most of the time, higher than the speed of the uniform flow. These situations are found at fast and large-amplitude cylinder oscillations in which the flow relative to the cylinder movement takes over the uniform flow in governing the initial vortex formation. The formation stages of vortices from the cylinder are found to bear close resemblance to those of a vortex street pattern of a cylinder oscillating in an otherwise quiescent fluid at Keulegan-Carpenter numbers around 16. Vortices in the inclined vortex street pattern so formed are then convected downstream by the uniform flow as the vortex pairs in the 2P mode.
A Resonator for Low-Threshold Frequency Conversion
NASA Technical Reports Server (NTRS)
Iltchenko, Vladimir; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute
2004-01-01
A proposed toroidal or disklike dielectric optical resonator (dielectric optical cavity) would be made of an optically nonlinear material and would be optimized for use in parametric frequency conversion by imposition of a spatially periodic permanent electric polarization. The poling (see figure) would suppress dispersions caused by both the material and the geometry of the optical cavity, thereby effecting quasi-matching of the phases of high-resonance-quality (high-Q) whispering-gallery electromagnetic modes. The quasi-phase-matching of the modes would serve to maximize the interactions among them. Such a resonator might be a prototype of a family of compact, efficient nonlinear devices for operation over a broad range of optical wavelengths. A little background information is prerequisite to a meaningful description of this proposal: (1) Described in several prior NASA Tech Briefs articles, the whispering-gallery modes in a component of spheroidal, disklike, or toroidal shape are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. (2) For the sake of completeness, it must be stated that even though optical resonators of the type considered here are solid dielectric objects and light is confined within them by total internal reflection at dielectric interfaces without need for mirrors, such components are sometimes traditionally called cavities because their effects upon the light propagating within them are similar to those of true cavities bounded by mirrors. (3) For a given set of electromagnetic modes interacting with each other in an optically nonlinear material (e.g., modes associated with the frequencies involved in a frequency-conversion scheme), the threshold power for oscillation depends on the mode volumes and the mode-overlap integral. (4) Whispering-gallery modes are attractive in nonlinear optics because they maximize the effects of nonlinearities by occupying small volumes and affording high Q values
Oscillatory mode transition for supersonic open cavity flows
NASA Astrophysics Data System (ADS)
Kumar, Mayank; Vaidyanathan, Aravind
2018-02-01
The transition in the primary oscillatory mode in an open cavity has been experimentally investigated and the associated characteristics in a Mach 1.71 flow has been analyzed. The length-to-depth (L/D) ratios of the rectangular cavities are varied from 1.67 to 3.33. Unsteady pressure measurement and flow visualization are employed to understand the transitional flow physics. Flow visualization revealed the change in oscillation pattern from longitudinal mode to transverse mode and is also characterized by the presence of two bow shocks at the trailing edge instead of one. The transition is found to occur between L/D 1.67 and 2, marked by a change in the feedback mechanism, resulting in a shift from the vortex circulation driven transverse feedback mode to the oscillating shear layer driven longitudinal feedback mode. Cavities oscillating in the transition mode exhibit multiple tones of comparable strength. Correlation analysis indicated the shift in the feedback mechanism. Wavelet analysis revealed the temporal behaviour of tones during transition. Tone switching is observed in deeper cavities and is attributed to the occurrence of two bow shocks as evident from the temporo-spectral characteristics of transition that affects the shear layer modal shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Bo; Habbal, Shadia Rifai; Chen Yanjun, E-mail: bbl@sdu.edu.cn
2013-04-20
In the applications of solar magneto-seismology, the ratio of the period of the fundamental mode to twice the period of its first overtone, P{sub 1}/2P{sub 2}, plays an important role. We examine how field-aligned flows affect the dispersion properties, and hence the period ratios, of standing modes supported by magnetic slabs in the solar atmosphere. We numerically solve the dispersion relations and devise a graphic means to construct standing modes. For coronal slabs, we find that the flow effects are significant for the fast kink and sausage modes alike. For the kink ones, they may reduce P{sub 1}/2P{sub 2} bymore » up to 23% compared with the static case, and the minimum allowed P{sub 1}/2P{sub 2} can fall below the lower limit analytically derived for static slabs. For the sausage modes, while introducing the flow reduces P{sub 1}/2P{sub 2} by typically {approx}< 5% relative to the static case, it significantly increases the threshold aspect ratio only above which standing sausage modes can be supported, meaning that their detectability is restricted to even wider slabs. In the case of photospheric slabs, the flow effect is not as strong. However, standing modes are distinct from the coronal case in that standing kink modes show a P{sub 1}/2P{sub 2} that deviates from unity even for a zero-width slab, while standing sausage modes no longer suffer from a threshold aspect ratio. We conclude that transverse structuring in plasma density and flow speed should be considered in seismological applications of multiple periodicities to solar atmospheric structures.« less
Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas.
de Ceglia, Domenico; Vincenti, Maria Antonietta; De Angelis, Costantino; Locatelli, Andrea; Haus, Joseph W; Scalora, Michael
2015-01-26
We study optical second harmonic generation from metallic dipole antennas with narrow gaps. Enhancement of the fundamental-frequency field in the gap region plays a marginal role on conversion efficiency. In the symmetric configuration, i.e., with the gap located at the center of the antenna axis, reducing gap size induces a significant red-shift of the maximum conversion efficiency peak. Either enhancement or inhibition of second-harmonic emission may be observed as gap size is decreased, depending on the antenna mode excited at the harmonic frequency. The second-harmonic signal is extremely sensitive to the asymmetry introduced by gap's displacements with respect to the antenna center. In this situation, second-harmonic light can couple to all the available antenna modes. We perform a multipolar analysis that allows engineering the far-field SH emission and find that the interaction with quasi-odd-symmetry modes generates radiation patterns with a strong dipolar component.
Duvetter, Thomas; Fraeye, Ilse; Sila, Daniel N; Verlent, Isabel; Smout, Chantal; Clynen, Elke; Schoofs, Liliane; Schols, Henk; Hendrickx, Marc; Van Loey, Ann
2006-01-01
Pectin was de-esterified with purified recombinant Aspergillus aculeatus pectin methyl esterase (PME) during isothermal-isobaric treatments. By measuring the release of methanol as a function of treatment time, the rate of enzymatic pectin conversion was determined. Elevated temperature and pressure were found to stimulate PME activity. The highest rate of PME-catalyzed pectin de-esterification was obtained when combining pressures in the range 200-300 MPa with temperatures in the range 50-55 degrees C. The mode of pectin de-esterification was investigated by characterizing the pectin reaction products by enzymatic fingerprinting. No significant effect of increasing pressure (300 MPa) and/or temperature (50 degrees C) on the mode of pectin conversion was detected.
Resonant Mode-hopping Micromixing
Jang, Ling-Sheng; Chao, Shih-Hui; Holl, Mark R.; Meldrum, Deirdre R.
2009-01-01
A common micromixer design strategy is to generate interleaved flow topologies to enhance diffusion. However, problems with these designs include complicated structures and dead volumes within the flow fields. We present an active micromixer using a resonating piezoceramic/silicon composite diaphragm to generate acoustic streaming flow topologies. Circulation patterns are observed experimentally and correlate to the resonant mode shapes of the diaphragm. The dead volumes in the flow field are eliminated by rapidly switching from one discrete resonant mode to another (i.e., resonant mode-hop). Mixer performance is characterized by mixing buffer with a fluorescence tracer containing fluorescein. Movies of the mixing process are analyzed by converting fluorescent images to two-dimensional fluorescein concentration distributions. The results demonstrate that mode-hopping operation rapidly homogenized chamber contents, circumventing diffusion-isolated zones. PMID:19551159
Novais, Veridiana Resende; Raposo, Luís Henrique Araújo; Miranda, Rafael Resende de; Lopes, Camila de Carvalho Almança; Simamoto, Paulo Cézar; Soares, Carlos José
2017-01-01
The aim of this study was to assess the performance of resin cements when different curing modes are used, by evaluating the degree of conversion and bond strength to a ceramic substrate. Three resin cements were evaluated, two dual-cured (Variolink II and RelyX ARC) and one light-cured (Variolink Veneer). The dual-cured resin cements were tested by using the dual activation mode (base and catalyst) and light-activation mode (base paste only). For degree of conversion (DC) (n=5), a 1.0 mm thick feldspathic ceramic disc was placed over the resin cement specimens and the set was light activated with a QTH unit. After 24 h storage, the DC was measured with Fourier transform infrared spectroscopy (FTIR). For microshear bond strength testing, five feldspathic ceramic discs were submitted to surface treatment, and three cylindrical resin cement specimens were bonded to each ceramic surface according to the experimental groups. After 24 h, microshear bond testing was performed at 0.5 mm/min crosshead speed until the failure. Data were submitted to one-way ANOVA followed by Tukey test (p<0.05). Scanning electron microscopy (SEM) was used for classifying the failure modes. Higher DC and bond strength values were shown by the resin cements cured by using the dual activation mode. The Variolink II group presented higher DC and bond strength values when using light-activation only when compared with the Variolink Veneer group. The base paste of dual-cured resin cements in light-activation mode can be used for bonding translucent ceramic restorations of up to or less than 1.0 mm thick.
Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luk, Ting S.; De Ceglia, Domenico; Liu, Sheng
We demonstrate, through our experimentation, efficient third harmonic generation from an indium tin oxide nanofilm (λ/42 thick) on a glass substrate for a pump wavelength of 1.4 μm. A conversion efficiency of 3.3 × 10 -6 is achieved by exploiting the field enhancement properties of the epsilon-near-zero mode with an enhancement factor of 200. Furthermore, this nanoscale frequency conversion method is applicable to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical phonon frequencies.
Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luk, Ting S., E-mail: tsluk@sandia.gov; Liu, Sheng; Campione, Salvatore
We experimentally demonstrate efficient third harmonic generation from an indium tin oxide nanofilm (λ/42 thick) on a glass substrate for a pump wavelength of 1.4 μm. A conversion efficiency of 3.3 × 10{sup −6} is achieved by exploiting the field enhancement properties of the epsilon-near-zero mode with an enhancement factor of 200. This nanoscale frequency conversion method is applicable to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical phonon frequencies.
Optical apparatus for conversion of whispering-gallery modes into a free space gaussian like beam
Stallard, Barry W.; Makowski, Michael A.; Byers, Jack A.
1992-01-01
An optical converter for efficient conversion of millimeter wavelength whispering-gallery gyrotron output into a linearly polarized, free-space Gaussian-like beam. The converter uses a mode-converting taper and three mirror optics. The first mirror has an azimuthal tilt to eliminate the k.sub..phi. component of the propagation vector of the gyrotron output beam. The second mirror has a twist reflector to linearly polarize the beam. The third mirror has a constant phase surface so the converter output is in phase.
Optomechanical Light-Matter Interface with Optical Wavelength Conversion
2015-07-21
Using the concept of Bogoliubov dark mode, high- fidelity entanglement can be generated between cavity outputs as well. In Fig.7, we plot the...In addition, Bogoliubov mechanical mode, which is a precursor for entangled mechanical mode, has also been realized in a system, in which two...thermal mechanical motion in mechanically mediated optical state transfer or optical entanglement . The dark mode and the Sorensen-Molmer approaches have
NASA Astrophysics Data System (ADS)
Duanmu, Yu; Zou, Lu; Wan, De-cheng
2017-12-01
This paper aimed at describing numerical simulations of vortex-induced vibrations (VIVs) of a long flexible riser with different length-to-diameter ratio (aspect ratio) in uniform and shear currents. Three aspect ratios were simulated: L/D = 500, 750 and 1 000. The simulation was carried out by the in-house computational fluid dynamics (CFD) solver viv-FOAM-SJTU developed by the authors, which was coupled with the strip method and developed on the OpenFOAM platform. Moreover, the radial basis function (RBF) dynamic grid technique is applied to the viv-FOAM-SJTU solver to simulate the VIV in both in-line (IL) and cross-flow (CF) directions of flexible riser with high aspect ratio. The validation of the benchmark case has been completed. With the same parameters, the aspect ratio shows a significant influence on VIV of a long flexible riser. The increase of aspect ratio exerted a strong effect on the IL equilibrium position of the riser while producing little effect on the curvature of riser. With the aspect ratio rose from 500 to 1 000, the maximum IL mean displacement increased from 3 times the diameter to 8 times the diameter. On the other hand, the vibration mode of the riser would increase with the increase of aspect ratio. When the aspect ratio was 500, the CF vibration was shown as a standing wave with a 3rd order single mode. When the aspect ratio was 1 000, the modal weights of the 5th and 6th modes are high, serving as the dominant modes. The effect of the flow profile on the oscillating mode becomes more and more apparent when the aspect ratio is high, and the dominant mode of riser in shear flow is usually higher than that in uniform flow. When the aspect ratio was 750, the CF oscillations in both uniform flow and shear flow showed multi-mode vibration of the 4th and 5th mode. While, the dominant mode in uniform flow is the 4th order, and the dominant mode in shear flow is the 5th order.
A Theory For The Variability of The Baroclinic Quasi-geostrophic Winnd Driven Circulation.
NASA Astrophysics Data System (ADS)
Ben Jelloul, M.; Huck, T.
We propose a theory of the wind driven circulation based on the large scale (i.e. small Burger number) quasi-geostrophic assumptions retained in the Rhines and Young (1982) classical study of the steady baroclinic flow. We therefore use multiple time scale and asymptotic expansions to separate steady and the time dependent component of the flow. The barotropic flow is given by the Sverdrup balance. At first order in Burger number, the baroclinic flow can be decom- posed in two parts. A steady contribution ensures no flow in the deep layer which is at rest in absence of dissipative processes. Since the baroclinic instability is inhibited at large scale a spectrum of neutral modes also arises. These are of three type, classical Rossby basin modes deformed through advection by the barotropic flow, recirculating modes localized in the recirculation gyre and blocked modes corresponding to closed potential vorticity contours. At next order in Burger number, amplitude equations for baroclinic modes are derived. If dissipative processes are included at this order, the system adjusts towards Rhines and Young solution with a homogenized potential vorticity pool.
Nonlinear Stability and Structure of Compressible Reacting Mixing Layers
NASA Technical Reports Server (NTRS)
Day, M. J.; Mansour, N. N.; Reynolds, W. C.
2000-01-01
The parabolized stability equations (PSE) are used to investigate issues of nonlinear flow development and mixing in compressible reacting shear layers. Particular interest is placed on investigating the change in flow structure that occurs when compressibility and heat release are added to the flow. These conditions allow the 'outer' instability modes- one associated with each of the fast and slow streams-to dominate over the 'central', Kelvin-Helmholtz mode that unaccompanied in incompressible nonreacting mixing layers. Analysis of scalar probability density functions in flows with dominant outer modes demonstrates the ineffective, one-sided nature of mixing that accompany these flow structures. Colayer conditions, where two modes have equal growth rate and the mixing layer is formed by two sets of vortices, offer some opportunity for mixing enhancement. Their extent, however, is found to be limited in the mixing layer's parameter space. Extensive validation of the PSE technique also provides a unique perspective on central- mode vortex pairing, further supporting the view that pairing is primarily governed perspective sheds insight on how linear stability theory is able to provide such an accurate prediction of experimentally-observed, fully nonlinear flow phenomenon.
Non-axisymmetric viscous lower-branch modes in axisymmetric supersonic flows
NASA Technical Reports Server (NTRS)
Duck, Peter W.; Hall, Philip
1990-01-01
A previous paper by Duck and Hall (1989) considered the weakly nonlinear interaction of a pair of axisymmetric lower-branch Tollmien-Schlichting instabilities in cylindrical supersonic flows. Here, the possibility that nonaxisymmetric modes might also exist is investigated. In fact, it is found that such modes do exist and, on the basis of linear theory, it appears that these modes are the most important. The nonaxisymmetric modes are found to exist for flows around cylinders with nondimensional radius a less than some critical value a(c). This critical value a(c) is found to increase monotonically with the azimuthal wavenumber n of the disturbance, and it is found that unstable modes always occur in pairs. It is shown that, in general, instability in the form of lower-branch Tollmien-Schlichting waves will occur first for nonaxisymmetric modes and that, in the unstable regime, the largest growth rates correspond to the latter modes.
Nonaxisymmetric viscous lower branch modes in axisymmetric supersonic flows
NASA Technical Reports Server (NTRS)
Duck, Peter W.; Hall, Philip
1988-01-01
In a previous paper, the weakly nonlinear interaction of a pair of axisymmetric lower branch Tollmien-Schlichting instabilities in cylindrical supersonic flows was considered. Here the possibility that nonaxisymmetric modes might also exist is investigated. In fact, it is found that such modes do exist and, on the basis of linear theory, it appears that these modes are the most important. The nonaxisymmetric modes are found to exist for flows around cylinders with nondimensional radius alpha less than some critical value alpha sub c. This critical value alpha sub c is found to increase monotonically with the azimuthal wavenumber nu of the disturbance and it is found that unstable modes always occur in pairs. It is also shown that, in general, instability in the form of lower branch Tollmien-Schlichting waves will occur first for nonaxisymmetric modes and that in the unstable regime the largest growth rates correspond to the latter modes.
Fast dynamos with finite resistivity in steady flows with stagnation points
NASA Technical Reports Server (NTRS)
Lau, Yun-Tung; Finn, John M.
1993-01-01
Results are presented of a kinematic fast dynamo problem for two classes of steady incompressible flows: the ABC flow and the spatially aperiodic flow of Lau and Finn (1992). The numerical method used to find the solutions is described, together with convergence studies with respect to the time step and the number of points N of the spatial grid. It is shown that the growth rate and frequency can be extrapolated to N = infinity. Results are presented indicating that fast kinematic dynamos can exist in both these flows and that chaotic flow is a necessary condition. It was found that, for the ABC flow with A = B = C, there are two dynamo modes: an oscillating mode and a purely growing mode.
Bortnik, Bartosz J; Fetterman, Harold R
2008-10-01
A more simple photonically assisted analog-to-digital conversion system utilizing a cw multiwavelength source and phase modulation instead of a mode-locked laser is presented. The output of the cw multiwavelength source is launched into a dispersive device (such as a single-mode fiber). This fiber creates a pulse train, where the central wavelength of each pulse corresponds to a spectral line of the optical source. The pulses can then be either dispersed again to perform discrete wavelength time stretching or demultiplexed for continuous time analog-to-digital conversion. We experimentally demonstrate the operation of both time stretched and interleaved systems at 38 GHz. The potential of integrating this type of system on a monolithic chip is discussed.
Dual-mode ultraflow access networks: a hybrid solution for the access bottleneck
NASA Astrophysics Data System (ADS)
Kazovsky, Leonid G.; Shen, Thomas Shunrong; Dhaini, Ahmad R.; Yin, Shuang; De Leenheer, Marc; Detwiler, Benjamin A.
2013-12-01
Optical Flow Switching (OFS) is a promising solution for large Internet data transfers. In this paper, we introduce UltraFlow Access, a novel optical access network architecture that offers dual-mode service to its end-users: IP and OFS. With UltraFlow Access, we design and implement a new dual-mode control plane and a new dual-mode network stack to ensure efficient connection setup and reliable and optimal data transmission. We study the impact of the UltraFlow system's design on the network throughput. Our experimental results show that with an optimized system design, near optimal (around 10 Gb/s) OFS data throughput can be attained when the line rate is 10Gb/s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vukovic, M.; Harper, M.; Breun, R.
1995-12-31
Current drive experiments on the Phaedrus-T tokamak performed with a low field side two-strap fast wave antenna at frequencies below {omega}{sub cH} show loop volt drops of up to 30% with strap phasing (0, {pi}/2). RF induced density fluctuations in the plasma core have also been observed with a microwave reflectometer. It is believed that they are caused by kinetic Alfven waves generated by mode conversion of fast waves at the Alfven resonance. Correlation of the observed density fluctuations with the magnitude of the {Delta}V{sub loop} suggest that the {Delta}V{sub loop} is attributable to current drive/heating due to mode convertedmore » kinetic Alfven waves. The toroidal cold plasma wave code LION is used to model the Alfven resonance mode conversion surfaces in the experiments while the cylindrical hot plasma kinetic wave code ISMENE is used to model the behavior of kinetic Alfven waves at the Alfven resonance location. Initial results obtained from limited density, magnetic field, antenna phase, and impurity scans show good agreement between the RF induced density fluctuations and the predicted behavior of the kinetic Alfven waves. Detailed comparisons between the density fluctuations and the code predictions are presented.« less
Ray splitting in the reflection and refraction of surface acoustic waves in anisotropic solids.
Every, A G; Maznev, A A
2010-05-01
This paper examines the conditions for, and provides examples of, ray splitting in the reflection and refraction of surface acoustic waves (SAW) in elastically anisotropic solids at straight obstacles such as edges, surface breaking cracks, and interfaces between different solids. The concern here is not with the partial scattering of an incident SAW's energy into bulk waves, but with the occurrence of more than one SAW ray in the reflected and/or transmitted wave fields, by analogy with birefringence in optics and mode conversion of bulk elastic waves at interfaces. SAW ray splitting is dependent on the SAW slowness curve possessing concave regions, which within the constraint of wave vector conservation parallel to the obstacle allows multiple outgoing SAW modes for certain directions of incidence and orientation of obstacle. The existence of pseudo-SAW for a given surface provides a further channel for ray splitting. This paper discusses some typical material configurations for which SAW ray splitting occurs. An example is provided of mode conversion entailing backward reflection or negative refraction. Experimental demonstration of ray splitting in the reflection of a laser generated SAW in GaAs(111) is provided. The calculation of SAW mode conversion amplitudes lies outside the scope of this paper.
Stability of plasma cylinder with current in a helical plasma flow
NASA Astrophysics Data System (ADS)
Leonovich, Anatoly S.; Kozlov, Daniil A.; Zong, Qiugang
2018-04-01
Stability of a plasma cylinder with a current wrapped by a helical plasma flow is studied. Unstable surface modes of magnetohydrodynamic (MHD) oscillations develop at the boundary of the cylinder enwrapped by the plasma flow. Unstable eigenmodes can also develop for which the plasma cylinder is a waveguide. The growth rate of the surface modes is much higher than that for the eigenmodes. It is shown that the asymmetric MHD modes in the plasma cylinder are stable if the velocity of the plasma flow is below a certain threshold. Such a plasma flow velocity threshold is absent for the symmetric modes. They are unstable in any arbitrarily slow plasma flows. For all surface modes there is an upper threshold for the flow velocity above which they are stable. The helicity index of the flow around the plasma cylinder significantly affects both the Mach number dependence of the surface wave growth rate and the velocity threshold values. The higher the index, the lower the upper threshold of the velocity jump above which the surface waves become stable. Calculations have been carried out for the growth rates of unstable oscillations in an equilibrium plasma cylinder with current serving as a model of the low-latitude boundary layer (LLBL) of the Earth's magnetic tail. A tangential discontinuity model is used to simulate the geomagnetic tail boundary. It is shown that the magnetopause in the geotail LLBL is unstable to a surface wave (having the highest growth rate) in low- and medium-speed solar wind flows, but becomes stable to this wave in high-speed flows. However, it can remain weakly unstable to the radiative modes of MHD oscillations.
Cardenas, A M; Siqueira, F; Rocha, J; Szesz, A L; Anwar, M; El-Askary, F; Reis, A; Loguercio, A
2016-01-01
To evaluate the effect of application protocol in resin-enamel microshear bond strength (μSBS), in situ degree of conversion, and etching pattern of three universal adhesive systems. Sixty-three extracted third molars were sectioned in four parts (buccal, lingual, and proximals) and divided into nine groups, according to the combination of the main factors-Adhesive (Clearfil Universal, Kuraray Noritake Dental Inc, Tokyo, Japan; Futurabond U, VOCO, Cuxhaven, Germany; and Scotchbond Universal Adhesive, 3M ESPE, St Paul, MN, USA)-and enamel treatment/application time (etch-and-rinse mode [ER], self-etch [SE] application for 20 seconds [SE20], and SE application for 40 seconds [SE40]). Specimens were stored in water (37°C/24 h) and tested at 1.0 mm/min (μSBS). The degree of conversion of the adhesives at the resin-enamel interfaces was evaluated using micro-Raman spectroscopy. The enamel-etching pattern was evaluated under a scanning electron microscope. Data were analyzed with two-way analysis of variance and Tukey test (α=0.05). In general, the application of the universal adhesives in the SE40 produced μSBS and degree of conversion that were higher than in the SE20 (p<0.01) and similar to the ER mode. The deepest enamel-etching pattern was obtained in the ER mode, followed by the SE40. The active and prolonged application of universal adhesives in the SE mode may be a viable alternative to increase the degree of conversion, etching pattern, and resin-enamel bond strength.
On the secondary instability of the most dangerous Goertler vortex
NASA Technical Reports Server (NTRS)
Otto, S. R.; Denier, James P.
1993-01-01
Recent studies have demonstrated the most unstable Goertler vortex mode is found in flows, both two and three-dimensional, with regions of (moderately) large body curvature and these modes reside within a thin layer situated at the base of the conventional boundary layer. Further work concerning the nonlinear development of the most dangerous mode demonstrates that the flow results in a self induced flow reversal. However, prior to the point at which flow reversal is encountered, the total streamwise velocity profile is found to be highly inflectional in nature. Previous work then suggests that the nonlinear vortex state will become unstable to secondary, inviscid, Rayleigh wave instabilities prior to the point of flow reversal. Our concern is with the secondary instability of the nonlinear vortex states, which result from the streamwise evolution of the most unstable Goertler vortex mode, with the aim of determining whether such modes can induce a transition to a fully turbulent state before separation is encountered.
Intrinsic Flow Behavior During Improved Confinement in MST Reversed-field Pinch
NASA Astrophysics Data System (ADS)
Tan, E.; Craig, D.; Schott, B.; Boguski, J.; Xing, Z. A.; Nornberg, M. D.; Anderson, J. K.
2017-10-01
We used active charge exchange recombination spectroscopy to measure impurity ion flow velocity in high-current plasmas during periods of improved confinement. Velocity measurements througout the core reveal that ion flow parallel to the magnetic field is dominant compared to the perpendicular flow. The poloidal flow profile reverses at r/a = 0.6, and the flow near the core is larger on outboard positions compared to the inboard positions. A strong shear in the toroidal flow develops near the axis as PPCD proceeds. In the past, the mode velocity has been used to infer the toroidal flow based on the `no-slip' assumption that the mode and local plasma co-rotate. We tested this assumption with direct measurements near the m = 1, n = 6 resonant surface. Inboard flow measurements are consistent with the no-slip condition and exhibit a time dependence where the flow decreases together with the n = 6 mode velocity. The outboard flow is consistent in magnitude with the no-slip condition but the variations in time and across shots do not correlate well with the n = 6 mode velocity. Possible reasons why the inboard and outboard flow exhibit different behavior are discussed. This work has been supported by the US DOE and the Wheaton College summer research program.
Intrinsic Flow and Momentum Transport during Improved Confinement in MST
NASA Astrophysics Data System (ADS)
Craig, D.; Tan, E.; Schott, B.; Anderson, J. K.; Boguski, J.; Nornberg, M. D.; Xing, Z. A.
2017-10-01
Progress in absolute wavelength calibration of the Charge Exchange Recombination Spectroscopy (CHERS) system on MST has enabled new observations and analysis of intrinsic flow and momentum transport. Localized toroidal and poloidal flow measurements with systematic accuracy of +/- 3 km/s have been obtained during improved confinement Pulsed Parallel Current Drive (PPCD) plasmas at high plasma current (400-500 kA). The magnetic activity prior to and during the transition to improved confinement tends to increase the flow and sets the initial condition for the momentum profile evolution during improved confinement where intrinsic flow drive appears to weaken. Inboard flows change in time during PPCD, consistent with changes in the core-resonant m =1, n =6 tearing mode phase velocity. Outboard flows near the magnetic axis are time-independent, resulting in the development of a strongly sheared toroidal flow in the core and asymmetry in the poloidal flow profile. The deceleration of the n =6 mode during the period of improved confinement correlates well with the n =6 mode amplitude and is roughly consistent with the expected torque from eddy currents in the conducting shell. The level of Dα emission and secondary mode amplitudes (n =7-10) do not correlate with the mode deceleration suggesting that the momentum loss from charge exchange with neutrals and diffusion due to residual magnetic stochasticity are not significant in PPCD. This work has been supported by the U.S.D.O.E.
Dual throat thruster cold flow analysis
NASA Technical Reports Server (NTRS)
Lundgreen, R. B.; Nickerson, G. R.; Obrien, C. J.
1978-01-01
The concept was evaluated with cold flow (nitrogen gas) testing and through analysis for application as a tripropellant engine for single-stage-to-orbit type missions. Three modes of operation were tested and analyzed: (1) Mode 1 Series Burn, (2) Mode 1 Parallel Burn, and (3) Mode 2. Primary emphasis was placed on the Mode 2 plume attachment aerodynamics and performance. The conclusions from the test data analysis are as follows: (1) the concept is aerodynamically feasible, (2) the performance loss is as low as 0.5 percent, (3) the loss is minimized by an optimum nozzle spacing corresponding to an AF-ATS ratio of about 1.5 or an Le/Rtp ratio of 3.0 for the dual throat hardware tested, requiring only 4% bleed flow, (4) the Mode 1 and Mode 2 geometry requirements are compatible and pose no significant design problems.
Measuring rectilinear flow within the anterior chamber in phacoemulsification procedures.
Oki, Kotaro
2004-08-01
To measure and photograph rectilinear flow generated in an anterior chamber model during different power phases of phacoemulsification. Oki Eye Surgery Center, Tokyo, Japan. An ultrasound (US) needle was fitted to a Sovereign WhiteStar (AMO) phacoemulsification unit. The sleeved needle was inserted into a silicone test chamber filled with balanced salt solution with glutation (BSS Plus). An LV-1610 laser Doppler vibrometer (Ono-Sokki) captured and processed the velocity and displacement of vibrations on the surface of the test chamber. Measurements were processed in a CF-520 Fast Fourier Transform (FFT) analyzer with the results shown in real time on the FFT analyzer and displayed on a computer monitor using 3-dimensional software. Four US delivery modes were measured: WhiteStar DB, WhiteStar CF, continuous mode, and short-pulse mode at 6 pulses per second (pps). Flow and vacuum were set at 20 cc/min and 200 mm Hg, respectively, and US power was 20% and 50%. Schlieren photography of the fluid flow was performed with an ultra-high-speed Memrecam fx 6000 camera (NAC Image Technology). The peak vibration velocity (m/s) and displacement at the distal end of the test chamber were greatest for continuous mode, followed by short pulse (6 pps), WhiteStar DB, and WhiteStar CF, in descending order. At 20% power, the US needle generated a peak velocity of 8.64 x 10(-3) m/s in continuous mode, 7.30 x 10(-3) m/s in short-pulse mode, 5.03 x 10(-3) m/s in DB mode, and 3.74 x 10(-3) m/s in CF mode. At 50% power, the US needle generated a peak velocity of 12.8 x 10(-3) m/s in continuous mode, 10.9 x 10(-3) m/s in short-pulse mode, 8.52 x 10(-3) m/s in DB mode, and 6.37 x 10(-3) m/s in CF mode. Schlieren photography showed the greatest wave speed, intensity, and turbulence in continuous mode and the least with the WhiteStar modes. Peak vibration velocity and amplitude of displacement were less with the WhiteStar delivery modes than with continuous power or short-pulse modes. A similar reduction was seen in the rectilinear flow under Schlieren photography. Attenuation of rectilinear flow and turbulence patterns may have clinical implications for the corneal endothelium during phacoemulsification.
Linear models for sound from supersonic reacting mixing layers
NASA Astrophysics Data System (ADS)
Chary, P. Shivakanth; Samanta, Arnab
2016-12-01
We perform a linearized reduced-order modeling of the aeroacoustic sound sources in supersonic reacting mixing layers to explore their sensitivities to some of the flow parameters in radiating sound. Specifically, we investigate the role of outer modes as the effective flow compressibility is raised, when some of these are expected to dominate over the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow (fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible boundary layers with an imposed composite (turbulent) spreading rate, which we show to significantly alter the growth of instability waves by saturating them earlier, similar to in nonlinear calculations, achieved here via solving the linear parabolized stability equations. As the flow parameters are varied, instability of the slow modes is shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound seems to be relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth.
The transmission of sound in nonuniform ducts. [carrying steady, compressible flow
NASA Technical Reports Server (NTRS)
Eversman, W.
1975-01-01
The method of weighted residuals in the form of a modified Galerkin method with boundary residuals was developed for the study of the transmission of sound in nonuniform ducts carrying a steady, compressible flow. In this development, the steady flow was modeled as essentially one dimensional but with a kinematic modification to force tangency of the flow at the duct walls. Three forms of the computational scheme were developed using for basis functions (1) the no-flow uniform duct modes, (2) positive running uniform duct modes, with flow, and (3) positive and negative running uniform duct modes, with flow. The formulation using the no-flow modes was the most highly developed, and has advantages primarily due to relative computational simplicity. Results using the three methods are shown to converge to known solutions for several special cases, and the most significant check case is against low frequency, one dimensional results over the complete subsonic Mach number range. Development of the method is continuing, with emphasis on assessing the relative accuracy and efficiency of the three implementations.
Effect of surface tension on global modes of confined wake flows
NASA Astrophysics Data System (ADS)
Tammisola, Outi; Lundell, Fredrik; Söderberg, L. Daniel
2011-01-01
Many wake flows are susceptible to self-sustained oscillations, such as the well-known von Kármán vortex street behind a cylinder that makes a rope beat against a flagpole at a distinct frequency on a windy day. One appropriate method to study these global instabilities numerically is to look at the growth rates of the linear temporal global modes. If all growth rates for all modes are negative for a certain flow field then a self-sustained oscillation should not occur. On the other hand, if one growth rate for one mode is slightly positive, the oscillation will approximately obtain the frequency and shape of this global mode. In our study, we first introduce surface tension between two fluids to the wake-flow problem. Then we investigate its effects on the global linear instability of a spatially developing wake with two co-flowing immiscible fluids. The inlet profile consists of two uniform layers, which makes the problem easily parametrizable. The fluids are assumed to have the same density and viscosity, with the result that the interface position becomes dynamically important solely through the action of surface tension. Two wakes with different parameter values and surface tension are studied in detail. The results show that surface tension has a strong influence on the oscillation frequency, growth rate, and shape of the global mode(s). Finally, we make an attempt to confirm and explain the surface-tension effect based on a local stability analysis of the same flow field in the streamwise position of maximum reverse flow.
Rapidly reconfigurable all-optical universal logic gate
Goddard, Lynford L.; Bond, Tiziana C.; Kallman, Jeffrey S.
2010-09-07
A new reconfigurable cascadable all-optical on-chip device is presented. The gate operates by combining the Vernier effect with a novel effect, the gain-index lever, to help shift the dominant lasing mode from a mode where the laser light is output at one facet to a mode where it is output at the other facet. Since the laser remains above threshold, the speed of the gate for logic operations as well as for reprogramming the function of the gate is primarily limited to the small signal optical modulation speed of the laser, which can be on the order of up to about tens of GHz. The gate can be rapidly and repeatedly reprogrammed to perform any of the basic digital logic operations by using an appropriate analog optical or electrical signal at the gate selection port. Other all-optical functionality includes wavelength conversion, signal duplication, threshold switching, analog to digital conversion, digital to analog conversion, signal routing, and environment sensing. Since each gate can perform different operations, the functionality of such a cascaded circuit grows exponentially.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vining, C.B.; Williams, R.M.; Underwood, M.L.
1993-10-01
An AMTEC cell, may be described as performing two distinct energy conversion processes: (i) conversion of heat to mechanical energy via a sodium-based heat engine and (ii) conversion of mechanical energy to electrical energy by utilizing the special properties of the electrolyte material. The thermodynamic cycle appropriate to an alkali metal thermal-to-electric converter cell is discussed for both liquid- and vapor-fed modes of operation, under the assumption that all processes can be performed reversibly. In the liquid-fed mode, the reversible efficiency is greater than 89.6% of Carnot efficiency for heat input and rejection temperatures (900--1,300 and 400--800 K, respectively) typicalmore » of practical devices. Vapor-fed cells can approach the efficiency of liquid-fed cells. Quantitative estimates confirm that the efficiency is insensitive to either the work required to pressurize the sodium liquid or the details of the state changes associated with cooling the low pressure sodium gas to the heat rejection temperature.« less
On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS
Liang, Yuan; Yu, Hao; Wen, Jincai; Apriyana, Anak Agung Alit; Li, Nan; Luo, Yu; Sun, Lingling
2016-01-01
An on-chip low-loss and high conversion efficiency plasmonic waveguide converter is demonstrated at sub-THz in CMOS. By introducing a subwavelength periodic corrugated structure onto the transmission line (T-line) implemented by a top-layer metal, surface plasmon polaritons (SPP) are established to propagate signals with strongly localized surface-wave. To match both impedance and momentum of other on-chip components with TEM-wave propagation, a mode converter structure featured by a smooth bridge between the Ground coplanar waveguide (GCPW) with 50 Ω impedance and SPP T-line is proposed. To further reduce area, the converter is ultimately simplified to a gradual increment of groove with smooth gradient. The proposed SPP T-lines with the converter is designed and fabricated in the standard 65 nm CMOS process. Both near-field simulation and measurement results show excellent conversion efficiency from quasi-TEM to SPP modes in a broadband frequency range. The converter achieves wideband impedance matching (<−9 dB) with excellent transmission efficiency (averagely −1.9 dB) from 110 GHz–325 GHz. The demonstrated compact and wideband SPP T-lines with mode converter have shown great potentials to replace existing waveguides as future on-chip THz interconnects. To the best of the author’s knowledge, this is the first time to demonstrate the (sub)-THz surface mode conversion on-chip in CMOS technology. PMID:27444782
Meneghini, Orso; Volpe, Francesco A.
2016-08-19
An innovative millimeter wave diagnostic is proposed to measure the local magnetic field and edge current as a function of the minor radius in the tokamak pedestal region. The idea is to identify the direction of minimum reflectivity at the O-mode cutoff layer. Correspondingly, the transmissivity due to O-X mode conversion is maximum. That direction, and the angular map of reflectivity around it, contain information on the magnetic field vector B at the cutoff layer. By probing the plasma with different wave frequencies it provides the radial profile of B. Full-wave finite-element simulations are presented here in 2D slab geometry.more » Modeling confirms the existence of a minimum in reflectivity that depends on the magnetic field at the cutoff, as expected from mode conversion physics, giving confidence in the feasibility of the diagnostic. We proposed an reflectometric approach in order to yield superior signal-to-noise ratio and to access wider ranges of density and magnetic field, compared with related radiometric techniques that require the plasma to emit Electron Bernstein Waves. Due to computational limitations, frequencies of 10-20 GHz were considered in this initial study. Furthermore, frequencies above the edge electron-cyclotron frequency (f >28 GHz here) would be preferable for the experiment, because the upper hybrid resonance and right cutoff would lie in the plasma, and would help separate the O-mode of interest from spurious X-waves.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meneghini, Orso; Volpe, Francesco A., E-mail: fvolpe@columbia.edu
An innovative millimeter wave diagnostic is proposed to measure the local magnetic field and edge current as a function of the minor radius in the tokamak pedestal region. The idea is to identify the direction of minimum reflectivity at the O-mode cutoff layer. Correspondingly, the transmissivity due to O-X mode conversion is maximum. That direction, and the angular map of reflectivity around it, contains information on the magnetic field vector B at the cutoff layer. Probing the plasma with different wave frequencies provides the radial profile of B. Full-wave finite-element simulations are presented here in 2D slab geometry. Modeling confirmsmore » the existence of a minimum in reflectivity that depends on the magnetic field at the cutoff, as expected from mode conversion physics, giving confidence in the feasibility of the diagnostic. The proposed reflectometric approach is expected to yield superior signal-to-noise ratio and to access wider ranges of density and magnetic field, compared with related radiometric techniques that require the plasma to emit electron Bernstein waves. Due to computational limitations, frequencies of 10-20 GHz were considered in this initial study. Frequencies above the edge electron-cyclotron frequency (f > 28 GHz here) would be preferable for the experiment, because the upper hybrid resonance and right cutoff would lie in the plasma, and would help separate the O-mode of interest from spurious X-waves.« less
NASA Astrophysics Data System (ADS)
Nutto, C.; Steiner, O.; Schaffenberger, W.; Roth, M.
2012-02-01
Context. Observations of waves at frequencies above the acoustic cut-off frequency have revealed vanishing wave travel-times in the vicinity of strong magnetic fields. This detection of apparently evanescent waves, instead of the expected propagating waves, has remained a riddle. Aims: We investigate the influence of a strong magnetic field on the propagation of magneto-acoustic waves in the atmosphere of the solar network. We test whether mode conversion effects can account for the shortening in wave travel-times between different heights in the solar atmosphere. Methods: We carry out numerical simulations of the complex magneto-atmosphere representing the solar magnetic network. In the simulation domain, we artificially excite high frequency waves whose wave travel-times between different height levels we then analyze. Results: The simulations demonstrate that the wave travel-time in the solar magneto-atmosphere is strongly influenced by mode conversion. In a layer enclosing the surface sheet defined by the set of points where the Alfvén speed and the sound speed are equal, called the equipartition level, energy is partially transferred from the fast acoustic mode to the fast magnetic mode. Above the equipartition level, the fast magnetic mode is refracted due to the large gradient of the Alfvén speed. The refractive wave path and the increasing phase speed of the fast mode inside the magnetic canopy significantly reduce the wave travel-time, provided that both observing levels are above the equipartition level. Conclusions: Mode conversion and the resulting excitation and propagation of fast magneto-acoustic waves is responsible for the observation of vanishing wave travel-times in the vicinity of strong magnetic fields. In particular, the wave propagation behavior of the fast mode above the equipartition level may mimic evanescent behavior. The present wave propagation experiments provide an explanation of vanishing wave travel-times as observed with multi-line high-cadence instruments. Movies are available in electronic form at http://www.aanda.org
Prism-coupled light emission from tunnel junctions
NASA Technical Reports Server (NTRS)
Ushioda, S.; Rutledge, J. E.; Pierce, R. M.
1985-01-01
Completely p-polarized light emission has been observed from smooth Al-AlO(x)-Au tunnel junctions placed on a prism coupler. The angle and polarization dependence demonstrate unambiguously that the emitted light is radiated by the fast-mode surface plasmon polariton. The emission spectra suggest that the dominant process for the excitation of the fast mode is through conversion of the slow mode to the fast mode mediated by residual roughness on the junction surface.
Gyroharmonic conversion experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirshfield, J.L.; LaPointe, M.A.; Ganguly, A.K.
1999-05-01
Generation of high power microwaves has been observed in experiments where a 250{endash}350 kV, 20{endash}30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allowsmore » efficient 20 GHz co-generation within the CARA waveguide itself. {copyright} {ital 1999 American Institute of Physics.}« less
Yun, Xiao; Quarini, Giuseppe L
2017-03-13
We demonstrate a method for the study of the heat and mass transfer and of the freezing phenomena in a subcooled brine environment. Our experiment showed that, under the proper conditions, ice can be produced when water is introduced to a bath of cold brine. To make ice form, in addition to having the brine and water mix, the rate of heat transfer must bypass that of mass transfer. When water is introduced in the form of tiny droplets to the brine surface, the mode of heat and mass transfer is by diffusion. The buoyancy stops water from mixing with the brine underneath, but as the ice grows thicker, it slows down the rate of heat transfer, making ice more difficult to grow as a result. When water is introduced inside the brine in the form of a flow, a number of factors are found to influence how much ice can form. Brine temperature and concentration, which are the driving forces of heat and mass transfer, respectively, can affect the water-to-ice conversion ratio; lower bath temperatures and brine concentrations encourage more ice to form. The flow rheology, which can directly affect both the heat and mass transfer coefficients, is also a key factor. In addition, the flow rheology changes the area of contact of the flow with the bulk fluid.
Conversion of Low-Flow Priapism to High-Flow State Using T-Shunt with Tunneling.
Mistry, Neil A; Tadros, Nicholas N; Hedges, Jason C
2017-01-01
Introduction . The three types of priapism are stuttering, arterial (high-flow, nonischemic), and venoocclusive (low-flow, ischemic). These are usually distinct entities and rarely occur in the same patient. T-shunts and other distal shunts are frequently combined with tunneling, but a seldom recognized potential complication is conversion to a high-flow state. Case Presentation . We describe 2 cases of men who presented with low-flow priapism episodes that were treated using T-shunts with tunneling that resulted with both men having recurrent erections shortly after surgery that were found to be consistent with high-flow states. Case 1 was a 33-year-old male with sickle cell anemia and case 2 was a 24-year-old male with idiopathic thrombocytopenic purpura. In both cases the men were observed over several weeks and both men returned to normal erectile function. Conclusions . Historically, proximal shunts were performed only in cases when distal shunts failed and carry a higher risk of serious complications. T-shunts and other distal shunts combined with tunneling are being used more frequently in place of proximal shunts. These cases illustrate how postoperative erections after T-shunts with tunneling can signify a conversion from low-flow to high-flow states and could potentially be misdiagnosed as an operative failure.
NASA Astrophysics Data System (ADS)
Liu, Yanlan; Ai, Kelong; Lu, Lehui
2011-11-01
The widespread forgery in all kinds of paper documents and certificates has become a real threat to society. Traditional fluorescent anti-counterfeiting materials generally exhibit unicolor display and suffer greatly from substitution, thus leading to a poor anti-counterfeiting effect. In this work, unseen but significant enhanced blue down-conversion emission from oleic acid-stabilized lanthanide-doped fluoride nanocrystals is first present and the mechanism is proposed and validated. This not only endows these nanocrystals with dual-mode fluorescence, but also offers a simplified synthesis approach for dual-mode fluorescent nanocrystals involving no further complicated assembly or coating procedures, unlike the traditional methods. Furthermore, by changing the host/dopant combination or the content of dopant, these nanocrystals can exhibit simultaneously multicolor up-conversion emission under excitation at near-infrared light and unalterable blue down-conversion emission under ultraviolet light. A preliminary investigation of their anti-counterfeiting performance has been made, and the results indicate that this color tuning capability and high concealment makes these nanocrystals behave in a similar way to chameleons and can provide a strengthened and more reliable anti-counterfeiting effect.The widespread forgery in all kinds of paper documents and certificates has become a real threat to society. Traditional fluorescent anti-counterfeiting materials generally exhibit unicolor display and suffer greatly from substitution, thus leading to a poor anti-counterfeiting effect. In this work, unseen but significant enhanced blue down-conversion emission from oleic acid-stabilized lanthanide-doped fluoride nanocrystals is first present and the mechanism is proposed and validated. This not only endows these nanocrystals with dual-mode fluorescence, but also offers a simplified synthesis approach for dual-mode fluorescent nanocrystals involving no further complicated assembly or coating procedures, unlike the traditional methods. Furthermore, by changing the host/dopant combination or the content of dopant, these nanocrystals can exhibit simultaneously multicolor up-conversion emission under excitation at near-infrared light and unalterable blue down-conversion emission under ultraviolet light. A preliminary investigation of their anti-counterfeiting performance has been made, and the results indicate that this color tuning capability and high concealment makes these nanocrystals behave in a similar way to chameleons and can provide a strengthened and more reliable anti-counterfeiting effect. Electronic supplementary information (ESI) available: Fig. S1-S6, Table S. See DOI: 10.1039/c1nr10752f
PLC-based LP₁₁ mode rotator for mode-division multiplexing transmission.
Saitoh, Kunimasa; Uematsu, Takui; Hanzawa, Nobutomo; Ishizaka, Yuhei; Masumoto, Kohei; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Yamamoto, Fumihiko
2014-08-11
A PLC-based LP11 mode rotator is proposed. The proposed mode rotator is composed of a waveguide with a trench that provides asymmetry of the waveguide. Numerical simulations show that converting LP11a (LP11b) mode to LP11b (LP11a) mode can be achieved with high conversion efficiency (more than 90%) and little polarization dependence over a wide wavelength range from 1450 nm to 1650 nm. In addition, we fabricate the proposed LP11 mode rotator using silica-based PLC. It is confirmed that the fabricated mode rotator can convert LP11a mode to LP11b mode over a wide wavelength range.
Paillet, Frederick L.
1998-01-01
A numerical model of flow in the vicinity of a borehole is used to analyze flowmeter data obtained with high-resolution flowmeters. The model is designed to (1) precisely compute flow in a borehole, (2) approximate the effects of flow in surrounding aquifers on the measured borehole flow, (3) allow for an arbitrary number (N) of entry/exit points connected to M < N far-field aquifers, and (4) be consistent with the practical limitations of flowmeter measurements such as limits of resolution, typical measurement error, and finite measurement periods. The model is used in three modes: (1) a quasi-steady pumping mode where there is no ambient flow, (2) a steady flow mode where ambient differences in far-field water levels drive flow between fracture zones in the borehole, and (3) a cross-borehole test mode where pumping in an adjacent borehole drives flow in the observation borehole. The model gives estimates of transmissivity for any number of fractures in steady or quasi-steady flow experiments that agree with straddle-packer test data. Field examples show how these cross-borehole-type curves can be used to estimate the storage coefficient of fractures and bedding planes and to determine whether fractures intersecting a borehole at different locations are hydraulically connected in the surrounding rock mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufman, A.N.; Morehead, J.J.; Brizard, A.J.
Linear conversion of an incoming magnetosonic wave (a.k.a. fast or compressional wave) to an ion-hybrid wave can be considered as a 3-step process in ray phase space. This is demonstrated by casting the cold-fluid model into the Friedland-Kaufman normal form for linear mode conversion. First, the incoming magnetosonic ray (MSR) converts a fraction of its action to an {ital intermediate} ion-hybrid ray (IHR), with the transmitted ray proceeding through the conversion layer. The IHR propagates in k-space to a {ital second} conversion point, where it converts in turn a fraction of its action into a {ital reflected} MSR, with themore » remainder of the its action constituting the {ital converted} IHR. The modular approach gives {ital exact} agreement with the more standard Budden formulation for the transmission, reflection and conversion coefficients, but has the important advantage of exposing the intermediate IHR. The existence of the intermediate IHR has important physical consequences as it can resonate with {alpha} particles. We estimate the time-integrated damping coefficient between the two conversions and show that {integral}{gamma}dt is of order {minus}100, thus the IH wave is completely annihilated between conversions and transfers its energy to the {alpha}{close_quote}s. This suggests that proposals to use the IH mode for current drive or DT heating are likely to fail in the presence of fusion {alpha}{close_quote}s. {copyright} {ital 1997 American Institute of Physics.}« less
Shock/vortex interaction and vortex-breakdown modes
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Kandil, H. A.; Liu, C. H.
1992-01-01
Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liezers, Martin; Lehn, Scott A; Olsen, Khris B
2009-10-01
Electrochemically modulated separations (EMS) are shown to be a rapid and selective means of extracting and concentrating Pu from complex solutions prior to isotopic analysis by inductively coupled plasma mass spectrometry (ICP-MS). This separation is performed in a flow injection mode, on-line with the ICP-MS. A three-electrode, flow-by electrochemical cell is used to accumulate Pu at an anodized glassy carbon electrode by redox conversion of Pu(III) to Pu (IV&VI). The entire process takes place in 2% v/v (0.46M) HNO 3. No redox chemicals or acid concentration changes are required. Plutonium accumulation and release is redox dependent and controlled by themore » applied cell potential. Thus large transient volumetric concentration enhancements can be achieved. Based on more negative U(IV) potentials relative to Pu(IV), separation of Pu from uranium is efficient, thereby eliminating uranium hydride interferences. EMS-ICP-MS isotope ratio measurement performance will be presented for femtogram to attogram level plutonium concentrations.« less
Documentation of a Conduit Flow Process (CFP) for MODFLOW-2005
Shoemaker, W. Barclay; Kuniansky, Eve L.; Birk, Steffen; Bauer, Sebastian; Swain, Eric D.
2007-01-01
This report documents the Conduit Flow Process (CFP) for the modular finite-difference ground-water flow model, MODFLOW-2005. The CFP has the ability to simulate turbulent ground-water flow conditions by: (1) coupling the traditional ground-water flow equation with formulations for a discrete network of cylindrical pipes (Mode 1), (2) inserting a high-conductivity flow layer that can switch between laminar and turbulent flow (Mode 2), or (3) simultaneously coupling a discrete pipe network while inserting a high-conductivity flow layer that can switch between laminar and turbulent flow (Mode 3). Conduit flow pipes (Mode 1) may represent dissolution or biological burrowing features in carbonate aquifers, voids in fractured rock, and (or) lava tubes in basaltic aquifers and can be fully or partially saturated under laminar or turbulent flow conditions. Preferential flow layers (Mode 2) may represent: (1) a porous media where turbulent flow is suspected to occur under the observed hydraulic gradients; (2) a single secondary porosity subsurface feature, such as a well-defined laterally extensive underground cave; or (3) a horizontal preferential flow layer consisting of many interconnected voids. In this second case, the input data are effective parameters, such as a very high hydraulic conductivity, representing multiple features. Data preparation is more complex for CFP Mode 1 (CFPM1) than for CFP Mode 2 (CFPM2). Specifically for CFPM1, conduit pipe locations, lengths, diameters, tortuosity, internal roughness, critical Reynolds numbers (NRe), and exchange conductances are required. CFPM1, however, solves the pipe network equations in a matrix that is independent of the porous media equation matrix, which may mitigate numerical instability associated with solution of dual flow components within the same matrix. CFPM2 requires less hydraulic information and knowledge about the specific location and hydraulic properties of conduits, and turbulent flow is approximated by modifying horizontal conductances assembled by the Block-Centered Flow (BCF), Layer-Property Flow (LPF), or Hydrogeologic-Unit Flow Packages (HUF) of MODFLOW-2005. For both conduit flow pipes (CFPM1) and preferential flow layers (CFPM2), critical Reynolds numbers are used to determine if flow is laminar or turbulent. Due to conservation of momentum, flow in a laminar state tends to remain laminar and flow in a turbulent state tends to remain turbulent. This delayed transition between laminar and turbulent flow is introduced in the CFP, which provides an additional benefit of facilitating convergence of the computer algorithm during iterations of transient simulations. Specifically, the user can specify a higher critical Reynolds number to determine when laminar flow within a pipe converts to turbulent flow, and a lower critical Reynolds number for determining when a pipe with turbulent flow switches to laminar flow. With CFPM1, the Hagen-Poiseuille equation is used for laminar flow conditions and the Darcy-Weisbach equation is applied to turbulent flow conditions. With CFPM2, turbulent flow is approximated by reducing the laminar hydraulic conductivity by a nonlinear function of the Reynolds number, once the critical head difference is exceeded. This adjustment approximates the reductions in mean velocity under turbulent ground-water flow conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, Marvin J.; Pelc, Matthew; Kamtekar, Satwik
2010-08-11
The work described herein demonstrates the utility of structure-based drug design (SBDD) in shifting the binding mode of an HTS hit from a DFG-in to a DFG-out binding mode resulting in a class of novel potent CSF-1R kinase inhibitors suitable for lead development.
Mode Conversion of a Solar Extreme-ultraviolet Wave over a Coronal Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zong, Weiguo; Dai, Yu, E-mail: ydai@nju.edu.cn
2017-01-10
We report on observations of an extreme-ultraviolet (EUV) wave event in the Sun on 2011 January 13 by Solar Terrestrial Relations Observatory and Solar Dynamics Observatory in quadrature. Both the trailing edge and the leading edge of the EUV wave front in the north direction are reliably traced, revealing generally compatible propagation velocities in both perspectives and a velocity ratio of about 1/3. When the wave front encounters a coronal cavity near the northern polar coronal hole, the trailing edge of the front stops while its leading edge just shows a small gap and extends over the cavity, meanwhile gettingmore » significantly decelerated but intensified. We propose that the trailing edge and the leading edge of the northward propagating wave front correspond to a non-wave coronal mass ejection component and a fast-mode magnetohydrodynamic wave component, respectively. The interaction of the fast-mode wave and the coronal cavity may involve a mode conversion process, through which part of the fast-mode wave is converted to a slow-mode wave that is trapped along the magnetic field lines. This scenario can reasonably account for the unusual behavior of the wave front over the coronal cavity.« less
ERIC Educational Resources Information Center
Khalfaoui, Mouez
2011-01-01
The common understanding of Islam tends to consider religious conversion as a matter of individual and rational belief and consisting, first and foremost, of attesting to the oneness of God ("shahada"). In this paper I argue that divergences exist among schools of Islamic Law concerning the modes and types of conversion. Contrary to…
Plasma Density Effects on Toroidal Flow Stabilization of Edge Localized Modes
NASA Astrophysics Data System (ADS)
Cheng, Shikui; Zhu, Ping; Banerjee, Debabrata
2016-10-01
Recent EAST experiments have demonstrated mitigation and suppression of edge localized modes (ELMs) with toroidal rotation flow in higher collisionality regime, suggesting potential roles of plasma density. In this work, the effects of plasma density on the toroidal flow stabilization of the high- n edge localized modes have been extensively studied in linear calculations for a circular-shaped limiter H-mode tokamak, using the initial-value extended MHD code NIMROD. In the single MHD model, toroidal flow has a weak stabilizing effects on the high- n modes. Such a stabilization, however, can be significantly enhanced with the increase in plasma density. Furthermore, our calculations show that the enhanced stabilization of high- n modes from toroidal flow with higher edge plasma density persists in the 2-fluid MHD model. These findings may explain the ELM mitigation and suppression by toroidal rotation in higher collisionality regime due to the enhancement of plasma density obtained in EAST experiment. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of Chinese Academy of Sciences.
Evaluation of Vertical Integrated Nanogenerator Performances in Flexion
NASA Astrophysics Data System (ADS)
Tao, R.; Hinchet, R.; Ardila, G.; Mouis, M.
2013-12-01
Piezoelectric nanowires have attracted great interest as new building blocks of mechanical energy harvesting systems. This paper presents the design improvements of mechanical energy harvesters integrating vertical ZnO piezoelectric nanowires onto a Silicon or plastic membrane. We have calculated the energy generation and conversion performance of ZnO nanowires based vertical integrated nanogenerators in flexion mode. We show that in flexion mode ZnO nanowires are superior to bulk ZnO layer. Both mechanical and electrical effects of matrix materials on the potential generation and energy conversion are discussed, in the aim of guiding further improvement of nanogenerator performance.
Elevator mode convection in flows with strong magnetic fields
NASA Astrophysics Data System (ADS)
Liu, Li; Zikanov, Oleg
2015-04-01
Instability modes in the form of axially uniform vertical jets, also called "elevator modes," are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.
Elevator mode convection in flows with strong magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Li; Zikanov, Oleg, E-mail: zikanov@umich.edu
2015-04-15
Instability modes in the form of axially uniform vertical jets, also called “elevator modes,” are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that anmore » analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.« less
The Development of Teacher Assessment Identity through Participation in Online Moderation
ERIC Educational Resources Information Center
Adie, Lenore
2013-01-01
Teachers' professional conversations regarding the qualities evidenced in student work provide opportunities to develop a shared understanding of achievement standards. This research investigates social moderation conducted in a synchronous online mode as a specific form of professional conversation. The discussion considers the different factors…
Thavasi Raja, G; Halder, Raktim; Varshney, S K
2015-12-10
The bend-induced mode-area reduction and thermal effects are vital factors that affect the power scaling of fiber lasers. Recently, bend-compensated large-mode-area double-clad modified hybrid leakage channel fiber (M-HLCF) has been reported with a mode area greater than 1000 μm, while sustaining the single-mode behavior at 1064 nm for high-temperature environments. In this work, the lasing characteristics of a newly designed ytterbium-doped double-clad M-HLCF (YDMHLCF) have been numerically investigated for strongly pumped conditions. The doped region size is optimally found through simulations, equivalent to the size of core diameter ∼38 μm in order to achieve maximum conversion efficiency for the bent and straight cases. Numerical simulations further confirm that a 2 m long YDMHLCF exhibits slope efficiency of 78% and conversion efficiency of 79% for the straight case and also almost the same for the practical bending radius of 7.5 cm when pumped with a 975 nm laser source.
Inflow/Outflow Conditions for Unsteady Aerodynamics and Aeroacoustics in Nonuniform Flow
NASA Technical Reports Server (NTRS)
Atassi, Oliver V.; Grady, Joseph E. (Technical Monitor)
2003-01-01
The effect of a nonuniform mean flow on the normal modes; the inflow/outflow nonreflecting boundary conditions; and the sound power are studied. The normal modes in an annular duct are computed using a spectral method in combination with a shooting method. The swirl causes force imbalance which couples the acoustic and vortical modes. The acoustic modes are distinguished from the vortical modes by their large pressure and small vorticity content. The mean swirl also produces a Doppler shift in frequency. This results in more counter-spinning modes cut-on at a given frequency than modes spinning with the swirl. Nonreflecting boundary conditions are formulated using the normal mode solutions. The inflow/outflow boundary conditions are implemented in a linearized Euler scheme and validated by computing the propagation of acoustic and vortical waves in a duct for a variety of swirling mean flows. Numerical results show that the evolution of the vortical disturbances is sensitive to the inflow conditions and the details of the wake excitations. All three components of the wake velocity must be considered to correctly compute the wake evolution and the blade upwash. For high frequencies, the acoustic-vortical mode coupling is weak and a conservation equation for the acoustic energy can be derived. Sound power calculations show significant mean flow swirl effects, but mode interference effects are small.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590
The dispersion relation for the dust ion-acoustic surface waves propagating at the interface of semi-bounded Lorentzian dusty plasma with supersonic ion flow has been kinetically derived to investigate the nonthermal property and the ion wake field effect. We found that the supersonic ion flow creates the upper and the lower modes. The increase in the nonthermal particles decreases the wave frequency for the upper mode whereas it increases the frequency for the lower mode. The increase in the supersonic ion flow velocity is found to enhance the wave frequency for both modes. We also found that the increase in nonthermalmore » plasmas is found to enhance the group velocity of the upper mode. However, the nonthermal particles suppress the lower mode group velocity. The nonthermal effects on the group velocity will be reduced in the limit of small or large wavelength limit.« less
NASA Technical Reports Server (NTRS)
Maleki, Lute (Inventor); Levi, Anthony F. J. (Inventor)
2005-01-01
Techniques for directly converting an electrical signal into an optical signal by using a whispering gallery mode optical resonator formed of a dielectric material that allows for direct modulation of optical absorption by the electrical signal.
Generation of Alfvenic Waves and Turbulence in Magnetic Reconnection Jets
NASA Astrophysics Data System (ADS)
Hoshino, M.
2014-12-01
The magneto-hydro-dynamic (MHD) linear stability for the plasma sheet with a localized bulk plasma flow parallel to the neutral sheet is investigated. We find three different unstable modes propagating parallel to the anti-parallel magnetic field line, and we call them as "streaming tearing'', "streaming sausage'', and "streaming kink'' mode. The streaming tearing and sausage modes have the tearing mode-like structure with symmetric density fluctuation to the neutral sheet, and the streaming kink mode has the asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing the magnetic Reynolds number, while those of the streaming sausage and kink modes do not strongly depend on the Reynolds number. The wavelengths of these unstable modes are of the order of the thickness of plasma sheet, which behavior is almost same as the standard tearing mode with no bulk flow. Roughly speaking the growth rates of three modes become faster than the standard tearing mode. The situation of the plasma sheet with the bulk flow can be realized in the reconnection exhaust with the Alfvenic reconnection jet, and the unstable modes may be regarded as one of the generation processes of Alfvenic turbulence in the plasma sheet during magnetic reconnection.
Sandia’s Current Energy Conversion module for the Flexible-Mesh Delft3D flow solver v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartand, Chris; Jagers, Bert
The DOE has funded Sandia National Labs (SNL) to develop an open-source modeling tool to guide the design and layout of marine hydrokinetic (MHK) arrays to maximize power production while minimizing environmental effects. This modeling framework simulates flows through and around a MHK arrays while quantifying environmental responses. As an augmented version of the Dutch company, Deltares’s, environmental hydrodynamics code, Delft3D, SNL-Delft3D-CEC-FM includes a new module that simulates energy conversion (momentum withdrawal) by MHK current energy conversion devices with commensurate changes in the turbulent kinetic energy and its dissipation rate. SNL-Delft3D-CEC-FM modified the Delft3D flexible mesh flow solver, DFlowFM.
Mitigation of wind tunnel wall interactions in subsonic cavity flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.
In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, anmore » acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.« less
Mitigation of wind tunnel wall interactions in subsonic cavity flows
Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; ...
2015-03-06
In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, anmore » acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.« less
Acoustics flow analysis in circular duct using sound intensity and dynamic mode decomposition
NASA Astrophysics Data System (ADS)
Weyna, S.
2014-08-01
Sound intensity generation in hard-walled duct with acoustic flow (no mean-flow) is treated experimentally and shown graphically. In paper, numerous methods of visualization illustrating the vortex flow (2D, 3D) can graphically explain diffraction and scattering phenomena occurring inside the duct and around open end area. Sound intensity investigation in annular duct gives a physical picture of sound waves in any duct mode. In the paper, modal energy analysis are discussed with particular reference to acoustics acoustic orthogonal decomposition (AOD). The image of sound intensity fields before and above "cut-off" frequency region are found to compare acoustic modes which might resonate in duct. The experimental results show also the effects of axial and swirling flow. However acoustic field is extremely complicated, because pressures in non-propagating (cut-off) modes cooperate with the particle velocities in propagating modes, and vice versa. Measurement in cylindrical duct demonstrates also the cut-off phenomenon and the effect of reflection from open end. The aim of experimental study was to obtain information on low Mach number flows in ducts in order to improve physical understanding and validate theoretical CFD and CAA models that still may be improved.
Zonal Flow Velocimetry in Spherical Couette Flow using Acoustic Modes
NASA Astrophysics Data System (ADS)
Adams, Matthew M.; Mautino, Anthony R.; Stone, Douglas R.; Triana, Santiago A.; Lekic, Vedran; Lathrop, Daniel P.
2015-11-01
We present studies of spherical Couette flows using the technique of acoustic mode Doppler velocimetry. This technique uses rotational splittings of acoustic modes to infer the azimuthal velocity profile of a rotating flow, and is of special interest in experiments where direct flow visualization is impractical. The primary experimental system consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter sphere, with air or nitrogen gas serving as the working fluid. The geometry of the system approximates that of the Earth's core, making these studies geophysically relevant. A turbulent shear flow is established in the system by rotating the inner sphere and outer shell at different rates. Acoustic modes of the fluid volume are excited using a speaker and measured via microphones, allowingdetermination of rotational splittings. Preliminary results comparing observed splittings with those predicted by theory are presented. While the majority of these studies were performed in the 60 cm diameter device using nitrogen gas, some work has also been done looking at acoustic modes in the 3 m diameter liquid sodium spherical Couette experiment. Prospects for measuring zonal velocity profiles in a wide variety of experiments are discussed.
On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom
Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can
2016-01-01
In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process. PMID:27321821
On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom.
Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can
2016-06-20
In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process.
State-plane analysis of parallel resonant converter
NASA Technical Reports Server (NTRS)
Oruganti, R.; Lee, F. C.
1985-01-01
A method for analyzing the complex operation of a parallel resonant converter is developed, utilizing graphical state-plane techniques. The comprehensive mode analysis uncovers, for the first time, the presence of other complex modes besides the continuous conduction mode and the discontinuous conduction mode and determines their theoretical boundaries. Based on the insight gained from the analysis, a novel, high-frequency resonant buck converter is proposed. The voltage conversion ratio of the new converter is almost independent of load.
Three-dimensional transition after wake deflection behind a flapping foil.
Deng, Jian; Caulfield, C P
2015-04-01
We report the inherently three-dimensional linear instabilities of a propulsive wake, produced by a flapping foil, mimicking the caudal fin of a fish or the wing of a flying animal. For the base flow, three sequential wake patterns appear as we increase the flapping amplitude: Bénard-von Kármán (BvK) vortex streets; reverse BvK vortex streets; and deflected wakes. Imposing a three-dimensional spanwise periodic perturbation, we find that the resulting Floquet multiplier |μ| indicates an unstable "short wavelength" mode at wave number β=30, or wavelength λ=0.21 (nondimensionalized by the chord length) at sufficiently high flow Reynolds number Re=Uc/ν≃600, where U is the upstream flow velocity, c is the chord length, and ν is the kinematic viscosity of the fluid. Another, "long wavelength" mode at β=6 (λ=1.05) becomes critical at somewhat higher Reynolds number, although we do not expect that this mode would be observed physically because its growth rate is always less than the short wavelength mode, at least for the parameters we have considered. The long wavelength mode has certain similarities with the so-called mode A in the drag wake of a fixed bluff body, while the short wavelength mode appears to have a period of the order of twice that of the base flow, in that its structure seems to repeat approximately only every second cycle of the base flow. Whether it is appropriate to classify this mode as a truly subharmonic mode or as a quasiperiodic mode is still an open question however, worthy of a detailed parametric study with various flapping amplitudes and frequencies.
Three-dimensional transition after wake deflection behind a flapping foil
NASA Astrophysics Data System (ADS)
Deng, Jian; Caulfield, C. P.
2015-04-01
We report the inherently three-dimensional linear instabilities of a propulsive wake, produced by a flapping foil, mimicking the caudal fin of a fish or the wing of a flying animal. For the base flow, three sequential wake patterns appear as we increase the flapping amplitude: Bénard-von Kármán (BvK) vortex streets; reverse BvK vortex streets; and deflected wakes. Imposing a three-dimensional spanwise periodic perturbation, we find that the resulting Floquet multiplier |μ | indicates an unstable "short wavelength" mode at wave number β =30 , or wavelength λ =0.21 (nondimensionalized by the chord length) at sufficiently high flow Reynolds number Re=U c /ν ≃600 , where U is the upstream flow velocity, c is the chord length, and ν is the kinematic viscosity of the fluid. Another, "long wavelength" mode at β =6 (λ =1.05 ) becomes critical at somewhat higher Reynolds number, although we do not expect that this mode would be observed physically because its growth rate is always less than the short wavelength mode, at least for the parameters we have considered. The long wavelength mode has certain similarities with the so-called mode A in the drag wake of a fixed bluff body, while the short wavelength mode appears to have a period of the order of twice that of the base flow, in that its structure seems to repeat approximately only every second cycle of the base flow. Whether it is appropriate to classify this mode as a truly subharmonic mode or as a quasiperiodic mode is still an open question however, worthy of a detailed parametric study with various flapping amplitudes and frequencies.
Li, Yongfeng; Zhang, Jieqiu; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Feng, Dayi; Xu, Zhuo; Qu, Shaobo
2016-01-01
We propose the design of wideband birefringent metamaterials based on spoof surface plasmon polaritons (SSPPs). Spatial k-dispersion design of SSPP modes in metamaterials is adopted to achieve high-efficiency transmission of electromagnetic waves through the metamaterial layer. By anisotropic design, the transmission phase accumulation in metamaterials can be independently modulated for x- and y-polarized components of incident waves. Since the dispersion curve of SSPPs is nonlinear, frequency-dependent phase differences can be obtained between the two orthogonal components of transmitted waves. As an example, we demonstrate a microwave birefringent metamaterials composed of fishbone structures. The full-polarization-state conversions on the zero-longitude line of Poincaré sphere can be fulfilled twice in 6–20 GHz for both linearly polarized (LP) and circularly polarized (CP) waves incidence. Besides, at a given frequency, the full-polarization-state conversion can be achieved by changing the polarization angle of the incident LP waves. Both the simulation and experiment results verify the high-efficiency polarization conversion functions of the birefringent metamaterial, including circular-to-circular, circular-to-linear(linear-to-circular), linear-to-linear polarization conversions. PMID:27698443
Modes of Learning in Religious Education
ERIC Educational Resources Information Center
Afdal, Geir
2015-01-01
This article is a contribution to the discussion of learning processes in religious education (RE) classrooms. Sociocultural theories of learning, understood here as tool-mediated processes, are used in an analysis of three RE classroom conversations. The analysis focuses on the language tools that are used in conversations; how the tools mediate;…
Generalized parametric down conversion, many particle interferometry, and Bell's theorem
NASA Technical Reports Server (NTRS)
Choi, Hyung Sup
1992-01-01
A new field of multi-particle interferometry is introduced using a nonlinear optical spontaneous parametric down conversion (SPDC) of a photon into more than two photons. The study of SPDC using a realistic Hamiltonian in a multi-mode shows that at least a low conversion rate limit is possible. The down converted field exhibits many stronger nonclassical phenomena than the usual two photon parametric down conversion. Application of the multi-particle interferometry to a recently proposed many particle Bell's theorem on the Einstein-Podolsky-Rosen problem is given.
Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber.
Jung, Yongmin; Jeong, Yoonchan; Brambilla, Gilberto; Richardson, David J
2009-08-01
We propose a simple and effective method to selectively excite the fundamental mode of a multimode fiber by adiabatically tapering a fusion splice to a single-mode fiber. We experimentally demonstrate the method by adiabatically tapering splice (taper waist=15 microm, uniform length=40 mm) between single-mode and multimode fiber and show that it provides a successful mode conversion/connection and allows for almost perfect fundamental mode excitation in the multimode fiber. Excellent beam quality (M(2) approximately 1.08) was achieved with low loss and high environmental stability.
Distillation of the two-mode squeezed state.
Kurochkin, Yury; Prasad, Adarsh S; Lvovsky, A I
2014-02-21
We experimentally demonstrate entanglement distillation of the two-mode squeezed state obtained by parametric down-conversion. Applying the photon annihilation operator to both modes, we raise the fraction of the photon-pair component in the state, resulting in the increase of both squeezing and entanglement by about 50%. Because of the low amount of initial squeezing, the distilled state does not experience significant loss of Gaussian character.
Effects of Crimped Fiber Paths on Mixed Mode Delamination Behaviors in Woven Fabric Composites
2016-09-01
continuum finite - element models. Three variations of a plain-woven fabric architecture—each of which had different crimped fiber paths—were considered... Finite - Element Analysis Fracture Mechanics Fracture Toughness Mixed Modes Strain Energy Release Rate 16. SECURITY...polymer FB Fully balanced laminate FEA Finite - element analysis FTCM Fracture toughness conversion mechanism G Shear modulus GI, GII, GIII Mode
Computational Simulation of Acoustic Modes in Rocket Combustors
NASA Technical Reports Server (NTRS)
Harper, Brent (Technical Monitor); Merkle, C. L.; Sankaran, V.; Ellis, M.
2004-01-01
A combination of computational fluid dynamic analysis and analytical solutions is being used to characterize the dominant modes in liquid rocket engines in conjunction with laboratory experiments. The analytical solutions are based on simplified geometries and flow conditions and are used for careful validation of the numerical formulation. The validated computational model is then extended to realistic geometries and flow conditions to test the effects of various parameters on chamber modes, to guide and interpret companion laboratory experiments in simplified combustors, and to scale the measurements to engine operating conditions. In turn, the experiments are used to validate and improve the model. The present paper gives an overview of the numerical and analytical techniques along with comparisons illustrating the accuracy of the computations as a function of grid resolution. A representative parametric study of the effect of combustor mean flow Mach number and combustor aspect ratio on the chamber modes is then presented for both transverse and longitudinal modes. The results show that higher mean flow Mach numbers drive the modes to lower frequencies. Estimates of transverse wave mechanics in a high aspect ratio combustor are then contrasted with longitudinal modes in a long and narrow combustor to provide understanding of potential experimental simulations.
Stability of miscible core?annular flows with viscosity stratification
NASA Astrophysics Data System (ADS)
Selvam, B.; Merk, S.; Govindarajan, Rama; Meiburg, E.
The linear stability of variable viscosity, miscible core-annular flows is investigated. Consistent with pipe flow of a single fluid, the flow is stable at any Reynolds number when the magnitude of the viscosity ratio is less than a critical value. This is in contrast to the immiscible case without interfacial tension, which is unstable at any viscosity ratio. Beyond the critical value of the viscosity ratio, the flow can be unstable even when the more viscous fluid is in the core. This is in contrast to plane channel flows with finite interface thickness, which are always stabilized relative to single fluid flow when the less viscous fluid is in contact with the wall. If the more viscous fluid occupies the core, the axisymmetric mode usually dominates over the corkscrew mode. It is demonstrated that, for a less viscous core, the corkscrew mode is inviscidly unstable, whereas the axisymmetric mode is unstable for small Reynolds numbers at high Schmidt numbers. For the parameters under consideration, the switchover occurs at an intermediate Schmidt number of about 500. The occurrence of inviscid instability for the corkscrew mode is shown to be consistent with the Rayleigh criterion for pipe flows. In some parameter ranges, the miscible flow is seen to be more unstable than its immiscible counterpart, and the physical reasons for this behaviour are discussed.A detailed parametric study shows that increasing the interface thickness has a uniformly stabilizing effect. The flow is least stable when the interface between the two fluids is located at approximately 0.6 times the tube radius. Unlike for channel flow, there is no sudden change in the stability with radial location of the interface. The instability originates mainly in the less viscous fluid, close to the interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tracy, Eugene R
Quadratic corrections to the metaplectic formulation of mode conversions. In this work we showed how to systematically deal with quadratic corrections beyond the usual linearization of the dispersion matrix at a conversion. The linearization leads to parabolic cylinder functions as the local approximation to the full-wave behavior, but these do not include the variation in amplitude associated with ray refraction in the neighborhood of the conversion. Hence, the region over which they give a good fit to the incoming and outgoing WKB solutions is small. By including higher order corrections it is possible to provide a much more robust matching.more » We also showed that it was possible, in principle, to extend these methods to arbitrary order. A new normal form for mode conversion. This is based upon our earlier NSF-DOE-funded work on ray helicity. We have begun efforts to apply these new ideas in practical ray tracing algorithms. Group theoretical foundation of path integrals and phase space representations of wave problems. Using the symbol theory of N. Zobin, we developed a new understanding of path integrals on phase space. The initial goal was to find practical computational tools for dealing with non-standard mode conversions. Along the way we uncovered a new way to represent wave functions directly on phase space without the intermediary of a Wigner function. We are exploring the use of these ideas for numerical studies of conversion, with the goal of eventually incorporating kinetic effects. Wave packet studies of gyroresonance crossing. In earlier work, Huanchun Ye and Allan Kaufman -- building upon ideas due to Lazar Friedland -- had shown that gyroresonance crossings could be treated as a double conversion. This perspective is one we have used for many of our papers since then. We are now performing a detailed numerical comparison between full-wave and ray tracing approaches in the study of minority-ion gyroresonance crossing. In this study, a fast magnetosonic wave -- supported by a majority-ion species such as deuterium -- crosses the resonance layer associated with a minority species, such as hydrogen. By using wave packets instead of harmonic solutions, it becomes easy to see the evolution in k-space of the minority-ion disturbance, and the time delay for emission of the reflected fast-wave packet. Iterated conversion in a cavity. When mode conversion occurs in a cavity where rays are trapped, multiple conversions will occur and the resulting absorption profile will typically have a complicated spatial dependence due to overlapping interference patterns. The goal of this work is to develop fast and efficient ray-based methods for computing the cavity response to external driving, and to compute the spatial absorption profile. We have introduced a new approach that allows us to visualize in great detail the underlying iterated ray geometry, and should lead to simpler methods for identifying parameter values where global changes occur in the qualitative response (e.g. global bifurcations).« less
Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho
2016-01-01
An inexpensive and compact frequency multi-mode diode laser enables a compact two-photon polarization entanglement source via the continuous wave broadband pumped spontaneous parametric down-conversion (SPDC) process. Entanglement degradation caused by polarization mode dispersion (PMD) is one of the critical issues in optical fiber-based polarization entanglement distribution. We theoretically and experimentally investigate how the initial entanglement is degraded when the two-photon polarization entangled state undergoes PMD. We report an effect of PMD unique to broadband pumped SPDC, equally applicable to pulsed pumping as well as cw broadband pumping, which is that the amount of the entanglement degradation is asymmetrical to the PMD introduced to each quantum channel. We believe that our results have important applications in long-distance distribution of polarization entanglement via optical fiber channels. PMID:27174100
Bio-inspired multi-mode optic flow sensors for micro air vehicles
NASA Astrophysics Data System (ADS)
Park, Seokjun; Choi, Jaehyuk; Cho, Jihyun; Yoon, Euisik
2013-06-01
Monitoring wide-field surrounding information is essential for vision-based autonomous navigation in micro-air-vehicles (MAV). Our image-cube (iCube) module, which consists of multiple sensors that are facing different angles in 3-D space, can be applied to the wide-field of view optic flows estimation (μ-Compound eyes) and to attitude control (μ- Ocelli) in the Micro Autonomous Systems and Technology (MAST) platforms. In this paper, we report an analog/digital (A/D) mixed-mode optic-flow sensor, which generates both optic flows and normal images in different modes for μ- Compound eyes and μ-Ocelli applications. The sensor employs a time-stamp based optic flow algorithm which is modified from the conventional EMD (Elementary Motion Detector) algorithm to give an optimum partitioning of hardware blocks in analog and digital domains as well as adequate allocation of pixel-level, column-parallel, and chip-level signal processing. Temporal filtering, which may require huge hardware resources if implemented in digital domain, is remained in a pixel-level analog processing unit. The rest of the blocks, including feature detection and timestamp latching, are implemented using digital circuits in a column-parallel processing unit. Finally, time-stamp information is decoded into velocity from look-up tables, multiplications, and simple subtraction circuits in a chip-level processing unit, thus significantly reducing core digital processing power consumption. In the normal image mode, the sensor generates 8-b digital images using single slope ADCs in the column unit. In the optic flow mode, the sensor estimates 8-b 1-D optic flows from the integrated mixed-mode algorithm core and 2-D optic flows with an external timestamp processing, respectively.
Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma
NASA Astrophysics Data System (ADS)
Pan, CHEN; Jun, SHEN; Tangchun, RAN; Tao, YANG; Yongxiang, YIN
2017-12-01
Experiments of CO2 splitting by dielectric barrier discharge (DBD) plasma were carried out, and the influence of CO2 flow rate, plasma power, discharge voltage, discharge frequency on CO2 conversion and process energy efficiency were investigated. It was shown that the absolute quantity of CO2 decomposed was only proportional to the amount of conductive electrons across the discharge gap, and the electron amount was proportional to the discharge power; the energy efficiency of CO2 conversion was almost a constant at a lower level, which was limited by CO2 inherent discharge character that determined a constant gap electric field strength. This was the main reason why CO2 conversion rate decreased as the CO2 flow rate increase and process energy efficiency was decreased a little as applied frequency increased. Therefore, one can improve the CO2 conversion by less feed flow rate or larger discharge power in DBD plasma, but the energy efficiency is difficult to improve.
Chen, Hsiao-Ching; Ju, Hen-Yi; Wu, Tsung-Ta; Liu, Yung-Chuan; Lee, Chih-Chen; Chang, Cheng; Chung, Yi-Lin; Shieh, Chwen-Jen
2011-01-01
An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1°C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31 ± 2.07% and 82.81 ± .98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.
Computer-Assisted English Learning System Based on Free Conversation by Topic
ERIC Educational Resources Information Center
Choi, Sung-Kwon; Kwon, Oh-Woog; Kim, Young-Kil
2017-01-01
This paper aims to describe a computer-assisted English learning system using chatbots and dialogue systems, which allow free conversation outside the topic without limiting the learner's flow of conversation. The evaluation was conducted by 20 experimenters. The performance of the system based on a free conversation by topic was measured by the…
Metastable states and energy flow pathway in square graphene resonators
NASA Astrophysics Data System (ADS)
Wang, Yisen; Zhu, Zhigang; Zhang, Yong; Huang, Liang
2018-01-01
Nonlinear interaction between flexural modes is critical to heat conductivity and mechanical vibration of two-dimensional materials such as graphene. Much effort has been devoted to understand the underlying mechanism. In this paper, we examine solely the out-of-plane flexural modes and identify their energy flow pathway during thermalization process. The key is the development of a universal scheme that numerically characterizes the strength of nonlinear interactions between normal modes. In particular, for our square graphene system, the modes are grouped into four classes by their distinct symmetries. The couplings are significantly larger within a class than between classes. As a result, the equations for the normal modes in the same class as the initially excited one can be approximated by driven harmonic oscillators, therefore, they get energy almost instantaneously. Because of the hierarchical organization of the mode coupling, the energy distribution among the modes will arrive at a stable profile, where most of the energy is localized on a few modes, leading to the formation of "natural package" and metastable states. The dynamics for modes in other symmetry classes follows a Mathieu type of equation, thus, interclass energy flow, when the initial excitation energy is small, starts typically when there is a mode that lies in the unstable region in the parameter space of Mathieu equation. Due to strong coupling of the modes inside the class, the whole class will get energy and be lifted up by the unstable mode. This characterizes the energy flow pathway of the system. These results bring fundamental understandings to the Fermi-Pasta-Ulam problem in two-dimensional systems with complex potentials, and reveal clearly the physical picture of dynamical interactions between the flexural modes, which will be crucial to the understanding of their abnormal contribution to heat conduction and nonlinear mechanical vibrations.
NASA Astrophysics Data System (ADS)
Kordilla, Jannes; Noffz, Torsten; Dentz, Marco; Geyer, Tobias; Tartakovsky, Alexandre M.
2017-11-01
In this work, we study gravity-driven flow of water in the presence of air on a synthetic surface intersected by a horizontal fracture and investigate the importance of droplet and rivulet flow modes on the partitioning behavior at the fracture intersection. We present laboratory experiments, three-dimensional smoothed particle hydrodynamics (SPH) simulations using a heavily parallelized code, and a theoretical analysis. The flow-rate-dependent mode switching from droplets to rivulets is observed in experiments and reproduced by the SPH model, and the transition ranges agree in SPH simulations and laboratory experiments. We show that flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), the flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency increases. For rivulet flows, the initial filling of the horizontal fracture is described by classical plug flow. Meanwhile, for droplet flows, a size-dependent partitioning behavior is observed, and the filling of the fracture takes longer. For the case of rivulet flow, we provide an analytical solution that demonstrates the existence of classical Washburn flow within the horizontal fracture.
The effects of differential flow between rational surfaces on toroidal resistive MHD modes
NASA Astrophysics Data System (ADS)
Brennan, Dylan; Halfmoon, Michael; Rhodes, Dov; Cole, Andrew; Okabayashi, Michio; Paz-Soldan, Carlos; Finn, John
2016-10-01
Differential flow between resonant surfaces can strongly affect the coupling and penetration of resonant components of resistive modes, and yet this mechanism is not yet fully understood. This study focuses on the evolution of tearing instabilities and the penetration of imposed resonant magnetic perturbations (RMPs) in tokamak configurations relevant to DIII-D and ITER, including equilibrium flow shear. It has been observed on DIII-D that the onset of tearing instabilities leading to disruption is often coincident with a loss of differential rotation between a higher m/n tearing surface (normally the 4/3 or 3/2) and a lower m/n tearing surface (normally the 2/1). Imposing RMPs can strongly affect this coupling and the torques between the modes. We apply the nonlinear 3-D resistive magnetohydrodynamic (MHD) code NIMROD to study the mechanisms by which these couplings occur. Reduced MHD analyses are applied to study the effects of differential flow between resonant surfaces in the simulations. Interaction between resonant modes can cause significant energy transfer between them, effectively stabilizing one mode while the other grows. The flow mitigates this transfer, but also affects the individual modes. The combination of these effects determines the nonlinear outcome. Supported by US DOE Grants DE-SC0014005 and DE-SC0014119.
Hanzawa, Nobutomo; Saitoh, Kuimasa; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Koshiba, Masanori; Yamamoto, Fumihiko
2013-11-04
We proposed a PLC-based mode multi/demultiplexer (MUX/DEMUX) with an asymmetric parallel waveguide for mode division multiplexed (MDM) transmission. The mode MUX/DEMUX including a mode conversion function with an asymmetric parallel waveguide can be realized by matching the effective indices of the LP(01) and LP(11) modes of two waveguides. We report the design of a mode MUX/DEMUX that can support C-band WDM-MDM transmission. The fabricated mode MUX/DEMUX realized a low insertion loss of less than 1.3 dB and high a mode extinction ratio that exceeded 15 dB. We used the fabricated mode MUX/DEMUX to achieve a successful 2 mode x 4 wavelength x 10 Gbps transmission over a 9 km two-mode fiber with a penalty of less than 1 dB.
Mei, Danhua; Tu, Xin
2017-11-17
Direct conversion of CO 2 into CO and O 2 is performed in a packed-bed dielectric barrier discharge (DBD) non-thermal plasma reactor at low temperatures and atmospheric pressure. The maximum CO 2 conversion of 22.6 % is achieved when BaTiO 3 pellets are fully packed into the discharge gap. The introduction of γ-Al 2 O 3 or 10 wt % Ni/γ-Al 2 O 3 catalyst into the BaTiO 3 packed DBD reactor increases both CO 2 conversion and energy efficiency of the plasma process. Packing γ-Al 2 O 3 or 10 wt % Ni/γ-Al 2 O 3 upstream of the BaTiO 3 bed shows higher CO 2 conversion and energy efficiency compared with that of mid- or downstream packing modes because the reverse reaction of CO 2 conversion-the recombination of CO and O to form CO 2 -is more likely to occur in mid- and downstream modes. Compared with the γ-Al 2 O 3 support, the coupling of the DBD with the Ni catalyst shows a higher CO 2 conversion, which can be attributed to the presence of Ni active species on the catalyst surface. The argon plasma treatment of the reacted Ni catalyst provides extra evidence to confirm the role of Ni active species in the conversion of CO 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the Vortex Waves in Nonadiabatic Flows
NASA Astrophysics Data System (ADS)
Ibáñez S., Miguel H.; Núñez, Luis A.
2018-03-01
Linear disturbances superposed on steady flows in nonadiabatic plasmas are analyzed. In addition to the potential modes resulting (two sound waves and a thermal mode) that are Doppler shifted, a rotational mode appears identified as an entropy-vortex wave (evw) which is carried along by the gas flow. In adiabatic flows, as well as in nonadiabatic flows, the evw always shows a null pressure disturbance. But in the second case, the wave number of the evw disturbance is fixed for the particular thermal conditions of the gas. The above holds for optically thin gases, as well as for radiating flows, if the dynamical effects of the radiation field are neglected in a first approximation. The above results allow us to calculate the dimensions of the vortex elements that are expected to be formed in nonadiabatic gas flows, particularly in hot ionized plasmas of interest in astrophysics.
Electrodynamic tethers for energy conversion
NASA Technical Reports Server (NTRS)
Nobles, W.
1986-01-01
Conductive tethers have been proposed as a new method for converting orbital mechanical energy into electrical power for use on-board a satellite (generator mode) or conversely (motor mode) as a method of providing electric propulsion using electrical energy from the satellite. The operating characteristics of such systems are functionally dependent on orbit altitude and inclination. Effects of these relationships are examined to determine acceptable regions of application. To identify system design considerations, a specific set of system performance goals and requirements are selected. The case selected is for a 25 kW auxiliary power system for use on Space Station. Appropriate system design considerations are developed, and the resulting system is described.
Low-speed wind tunnel test results of the Canard Rotor/Wing concept
NASA Technical Reports Server (NTRS)
Bass, Steven M.; Thompson, Thomas L.; Rutherford, John W.; Swanson, Stephen
1993-01-01
The Canard Rotor/Wing (CRW), a high-speed rotorcraft concept, was tested at the National Aeronautics and Space Administration (NASA) Ames Research Center's 40- by 80-Foot Wind Tunnel in Mountain View, California. The 1/5-scale model was tested to identify certain low-speed, fixed-wing, aerodynamic characteristics of the configuration and investigate the effectiveness of two empennages, an H-Tail and a T-Tail. The paper addresses the principal test objectives and the results achieved in the wind tunnel test. These are summarized as: i) drag build-up and differences between the H-Tail and T-Tail configuration, ii) longitudinal stability of the H-Tail and T-Tail configurations in the conversion and cruise modes, iii) control derivatives for the canard and elevator in the conversion and cruise modes, iv) aerodynamic characteristics of varying the rotor/wing azimuth position, and v) canard and tail lift/trim capability for conversion conditions.
Kwon, Osung; Ra, Young-Sik; Kim, Yoon-Ho
2009-07-20
Coherence properties of the photon pair generated via spontaneous parametric down-conversion pumped by a multi-mode cw diode laser are studied with a Mach-Zehnder interferometer. Each photon of the pair enters a different input port of the interferometer and the biphoton coherence properties are studied with a two-photon detector placed at one output port. When the photon pair simultaneously enters the interferometer, periodic recurrence of the biphoton de Broglie wave packet is observed, closely resembling the coherence properties of the pump diode laser. With non-zero delays between the photons at the input ports, biphoton interference exhibits the same periodic recurrence but the wave packet shapes are shown to be dependent on both the input delay as well as the interferometer delay. These properties could be useful for building engineered entangled photon sources based on diode laser-pumped spontaneous parametric down-conversion.
NASA Astrophysics Data System (ADS)
Alava, M. J.; Heikkinen, J. A.; Hellsten, T.
1995-07-01
In order to reduce or to avoid ion cyclotron damping, the use of frequencies below the ion cyclotron frequency of minority ion species or the second harmonic of majority ion species has been proposed for fast wave current drive based on direct electron absorption. For these scenarios, the Alfven or ion-ion hybrid resonance can appear on the high field side of a tokamak. The presence of these resonances causes parasitic absorption, competing with the electron Landau damping and transit time magnetic pumping responsible for the fast wave current drive. In the present study, neglecting effects from toroidicity, the mode conversion at the Alfven resonance is shown to be of the order of 5 to 10% in the current drive scenarios for the planned ITER experiment. If the single pass absorption in the centre can be made sufficiently high, the conversion at the Alfven resonance becomes negligible
ECRH launching scenario in FFHR-d1
NASA Astrophysics Data System (ADS)
Yanagihara, Kota; Kubo, Shin; Shimozuma, Takashi; Yoshimura, Yasuo; Igami, Hiroe; Takahashi, Hiromi; Tsujimura, Tohru; Makino, Ryohhei
2016-10-01
ECRH is promising as a principal heating system in a prototype helical reactor FFHR-d1 where the heating power of 80 MW is required to bring the plasma parameter to break even condition. To generate the plasma and bring it to ignition condition in FFHR-d1, it is effective to heat the under/over-dense plasma with normal ECRH or Electron Bernstein Wave (EBW). Normal ECRH is well established but heating via EBW need sophisticated injection control. EBW can be excited via the O(ordinary)-X(extraordinary)-B(EBW) mode conversion process by launching the ordinary wave from the low field side to plasma cut-off layer with optimum injection angle, and the range of injection angle to get high OXB mode conversion rate is called OXB mode conversion window. Since the window position can change as the plasma parameter, it is necessary to optimize the injection angle so as to aim the window in response to the plasma parameters. Candidates of antenna positions are determined by optimum injection points on the plasma facing wall calculated by the injection angle. Given such picked up area, detailed analysis using ray-tracing calculations and engineering antenna design will be performed.
NASA Astrophysics Data System (ADS)
Kou, Jiaqing; Le Clainche, Soledad; Zhang, Weiwei
2018-01-01
This study proposes an improvement in the performance of reduced-order models (ROMs) based on dynamic mode decomposition to model the flow dynamics of the attractor from a transient solution. By combining higher order dynamic mode decomposition (HODMD) with an efficient mode selection criterion, the HODMD with criterion (HODMDc) ROM is able to identify dominant flow patterns with high accuracy. This helps us to develop a more parsimonious ROM structure, allowing better predictions of the attractor dynamics. The method is tested in the solution of a NACA0012 airfoil buffeting in a transonic flow, and its good performance in both the reconstruction of the original solution and the prediction of the permanent dynamics is shown. In addition, the robustness of the method has been successfully tested using different types of parameters, indicating that the proposed ROM approach is a tool promising for using in both numerical simulations and experimental data.
Field-flow fractionation and hydrodynamic chromatography on a microfluidic chip.
Shendruk, Tyler N; Tahvildari, Radin; Catafard, Nicolas M; Andrzejewski, Lukasz; Gigault, Christian; Todd, Andrew; Gagne-Dumais, Laurent; Slater, Gary W; Godin, Michel
2013-06-18
We present gravitational field-flow fractionation and hydrodynamic chromatography of colloids eluting through 18 μm microchannels. Using video microscopy and mesoscopic simulations, we investigate the average retention ratio of colloids with both a large specific weight and neutral buoyancy. We consider the entire range of colloid sizes, including particles that barely fit in the microchannel and nanoscopic particles. Ideal theory predicts four operational modes, from hydrodynamic chromatography to Faxén-mode field-flow fractionation. We experimentally demonstrate, for the first time, the existence of the Faxén-mode field-flow fractionation and the transition from hydrodynamic chromatography to normal-mode field-flow fractionation. Furthermore, video microscopy and simulations show that the retention ratios are largely reduced above the steric-inversion point, causing the variation of the retention ratio in the steric- and Faxén-mode regimes to be suppressed due to increased drag. We demonstrate that theory can accurately predict retention ratios if hydrodynamic interactions with the microchannel walls (wall drag) are added to the ideal theory. Rather than limiting the applicability, these effects allow the microfluidic channel size to be tuned to ensure high selectivity. Our findings indicate that particle velocimetry methods must account for the wall-induced lag when determining flow rates in highly confining systems.
De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken
2016-08-12
When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure. Copyright © 2016 Elsevier B.V. All rights reserved.
Conversation Begins at Home--Around the Table.
ERIC Educational Resources Information Center
Bodner-Johnson, Barbara
1988-01-01
Suggestions are made for encouraging conversation skills in the deaf child at the family dinner table. Among suggestions to families are to use dinnertime to catch up on each other's news, make the physical environment pleasant, use modes of communication accessible to the deaf child, and be responsive to the deaf child. (DB)
Zonal Acoustic Velocimetry in 30-cm, 60-cm, and 3-m Laboratory Models of the Outer Core
NASA Astrophysics Data System (ADS)
Rojas, R.; Doan, M. N.; Adams, M. M.; Mautino, A. R.; Stone, D.; Lekic, V.; Lathrop, D. P.
2016-12-01
A knowledge of zonal flows and shear is key in understanding magnetic field dynamics in the Earth and laboratory experiments with Earth-like geometries. Traditional techniques for measuring fluid flow using visualization and particle tracking are not well-suited to liquid metal flows. This has led us to develop a flow measurement technique based on acoustic mode velocimetry adapted from helioseismology. As a first step prior to measurements in the liquid sodium experiments, we implement this technique in our 60-cm diameter spherical Couette experiment in air. To account for a more realistic experimental geometry, including deviations from spherical symmetry, we compute predicted frequencies of acoustic normal modes using the finite element method. The higher accuracy of the predicted frequencies allows the identification of over a dozen acoustic modes, and mode identification is further aided by the use of multiple microphones and by analyzing spectra together with those obtained at a variety of nearby Rossby numbers. Differences between the predicted and observed mode frequencies are caused by differences in flow patterns present in the experiment. We compare acoustic mode frequency splittings with theoretical predictions for stationary fluid and solid body flow condition with excellent agreement. We also use this technique to estimate the zonal shear in those experiments across a range of Rossby numbers. Finally, we report on initial attempts to use this in liquid sodium in the 3-meter diameter experiment and parallel experiments performed in water in the 30-cm diameter experiment.
Low chemical concentrating steam generating cycle
Mangus, James D.
1983-01-01
A steam cycle for a nuclear power plant having two optional modes of operation. A once-through mode of operation uses direct feed of coolant water to an evaporator avoiding excessive chemical concentration buildup. A recirculation mode of operation uses a recirculation loop to direct a portion of flow from the evaporator back through the evaporator to effectively increase evaporator flow.
An instability of hyperbolic space under the Yang-Mills flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gegenberg, Jack; Day, Andrew C.; Liu, Haitao
2014-04-15
We consider the Yang-Mills flow on hyperbolic 3-space. The gauge connection is constructed from the frame-field and (not necessarily compatible) spin connection components. The fixed points of this flow include zero Yang-Mills curvature configurations, for which the spin connection has zero torsion and the associated Riemannian geometry is one of constant curvature. We analytically solve the linearized flow equations for a large class of perturbations to the fixed point corresponding to hyperbolic 3-space. These can be expressed as a linear superposition of distinct modes, some of which are exponentially growing along the flow. The growing modes imply the divergence ofmore » the (gauge invariant) perturbative torsion for a wide class of initial data, indicating an instability of the background geometry that we confirm with numeric simulations in the partially compactified case. There are stable modes with zero torsion, but all the unstable modes are torsion-full. This leads us to speculate that the instability is induced by the torsion degrees of freedom present in the Yang-Mills flow.« less
NASA Astrophysics Data System (ADS)
Peng, Yu-Xiang; Wang, Kai-Jun; He, Meng-Dong; Luo, Jian-Hua; Zhang, Xin-Min; Li, Jian-Bo; Tan, Shi-Hua; Liu, Jian-Qiang; Hu, Wei-Da; Chen, Xiaoshuang
2018-04-01
In this paper, we demonstrate the effect of polarization conversion in a plasmonic metasurface structure, in which each unit cell consists of a metal bar and four metal split-ring resonators (SRRs). Such effect is attributed to the fact that the dark plasmon mode of SRRs (bar), which radiates cross-polarized component, is induced by the bright plasmon mode of bar (SRRs) due to the electromagnetic near-field coupling between bar and SRRs. We find that there are two ways to achieve a large cross-polarized component in our proposed metasurface structure. The first way is realized when the dark plasmon mode of bar (SRRs) is in resonance, while at this time the bright plasmon mode of SRRs (bar) is not at resonant state. The second way is realized when the bright plasmon mode of SRRs (bar) is resonantly excited, while the dark plasmon mode of bar (SRRs) is at nonresonant state. It is also found that the linearly polarized light can be rotated by 56.50 after propagation through the metasurface structure. Furthermore, our proposed metasurface structure exhibits an asymmetric transmission for circularly polarized light. Our findings take a further step in developing integrated metasurface-based photonics devices for polarization manipulation and modulation.
Electron Bernstein Wave Studies in MST
NASA Astrophysics Data System (ADS)
Seltzman, Andrew; Anderson, Jay; Forest, Cary; Nonn, Paul; Thomas, Mark; Reusch, Joshua; Hendries, Eric
2013-10-01
The overdense condition in a RFP prevents electromagnetic waves from propagating past the extreme edge. However use of the electron Bernstein wave (EBW) has the potential to heat and drive current in the plasma. MHD simulations have demonstrated that resistive tearing mode stability is very sensitive to the gradient in the edge current density profile, allowing EBW current drive to influence and potentially stabilize tearing mode activity. Coupling between the X-mode and Bernstein waves is strongly dependent on the edge density gradient. The effects on coupling of plasma density, magnetic field strength, antenna radial position and launch polarization have been examined. Coupling as high as 90% has been observed. Construction of a 450 kw RF source is complete and initial experimental results will be reported. The power and energy of this auxiliary system should be sufficient for several scientific purposes, including verifying mode conversion, EBW propagation and absorption in high beta plasmas. Target plasmas in the 300-400 kA range will be heated near the reversal surface, potentially allowing mode control, while target plasmas in the 250 kA range will allow heating near the core, allowing better observation of heating effects. Heating and heat pulse propagation experiments are planned, as well as probing the stability of parametric decay during mode conversion, at moderate injected power. Work supported by USDOE.
On the POD based reduced order modeling of high Reynolds flows
NASA Astrophysics Data System (ADS)
Behzad, Fariduddin; Helenbrook, Brian; Ahmadi, Goodarz
2012-11-01
Reduced-order modeling (ROM) of a high Reynolds fluid flow using the proper orthogonal decomposition (POD) was studied. Particular attention was given to incompressible, unsteady flow over a two-dimensional NACA0015 airfoil. The Reynolds number is 105 and the angle of attacked of the airfoil is 12°. For DNS solution, hp-finite element method is employed to drive flow samples from which the POD modes are extracted. Particular attention is paid on two issues. First, the stability of POD-ROM resimulation of the turbulent flow is studied. High Reynolds flow contains a lot of fluctuating modes. So, to reach a certain amount of error, more POD modes are needed and the effect of truncation of POD modes is more important. Second, the role of convergence rate on the results of POD. Due to complexity of the flow, convergence of the governing equations is more difficult and the influences of weak convergence appear in the results of POD-ROM. For each issue, the capability of the POD-ROM is assessed in terms of predictions quality of times upon which the POD model was derived. The results are compared with DNS solution and the accuracy and efficiency of different cases are evaluated.
Influence of equilibrium shear flow in the parallel magnetic direction on edge localized mode crash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Y.; Xiong, Y. Y.; Chen, S. Y., E-mail: sychen531@163.com
2016-04-15
The influence of the parallel shear flow on the evolution of peeling-ballooning (P-B) modes is studied with the BOUT++ four-field code in this paper. The parallel shear flow has different effects in linear simulation and nonlinear simulation. In the linear simulations, the growth rate of edge localized mode (ELM) can be increased by Kelvin-Helmholtz term, which can be caused by the parallel shear flow. In the nonlinear simulations, the results accord with the linear simulations in the linear phase. However, the ELM size is reduced by the parallel shear flow in the beginning of the turbulence phase, which is recognizedmore » as the P-B filaments' structure. Then during the turbulence phase, the ELM size is decreased by the shear flow.« less
Flame dynamics in a micro-channeled combustor
NASA Astrophysics Data System (ADS)
Hussain, Taaha; Markides, Christos N.; Balachandran, Ramanarayanan
2015-01-01
The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of existence of the chaotic flame increases. The frequency of re-ignition of successive flames decreases at higher flow rates and increases at higher temperatures. The data and results from this study will not only help the development of new micro-power generation devices, but they will also serve as a validation case for combustion models capable of predicting flame behavior in the presence of strong thermal and flow boundary layers, a situation common to many industrial applications.
Tremmel, Stephanie; Sonnentag, Sabine
2017-08-31
Incivility by coworkers and customers can have detrimental consequences for employees' affective well-being at work. However, little is known about whether incivility also impairs employees' affect at home and how long these negative effects may last. In this diary study, we examine whether incivility by coworkers and customers is related to next-morning negative affect via negative affect at the end of the workday and at bedtime, and investigate different modes of social sharing (i.e., conversations about experienced mistreatment) as day-level moderators of this relationship. Daily diary data collected over 10 workdays (N = 113 employees) revealed that coworker incivility was indirectly related to bedtime negative affect via negative affect at the end of the workday, and customer incivility was indirectly related to next-morning negative affect via negative affect at the end of the workday and at bedtime. Although we found no moderating effect for conversations in an affective sharing mode (i.e., conversation partners provide comfort and consolation), the relationship between workplace incivility and employees' negative affect was buffered by conversations in a cognitive sharing mode (i.e., conversation partners suggest alternative explanations or reappraisal of uncivil behavior). In line with social sharing theory, our results suggest that talking about experienced mistreatment can, under specific circumstances, offset the negative relationship of uncivil coworker and customer behavior and employees' negative affect. This study advances current research on workplace incivility by studying negative affect 3 times a day and thus sheds light on the mechanism connecting workplace incivility and employees' affective well-being at home. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Radiant energy absorption studies for laser propulsion. [gas dynamics
NASA Technical Reports Server (NTRS)
Caledonia, G. E.; Wu, P. K. S.; Pirri, A. N.
1975-01-01
A study of the energy absorption mechanisms and fluid dynamic considerations for efficient conversion of high power laser radiation into a high velocity flow is presented. The objectives of the study are: (1) to determine the most effective absorption mechanisms for converting laser radiation into translational energy, and (2) to examine the requirements for transfer of the absorbed energy into a steady flow which is stable to disturbances in the absorption zone. A review of inverse Bremsstrahlung, molecular and particulate absorption mechanisms is considered and the steady flow and stability considerations for conversion of the laser power to a high velocity flow in a nozzle configuration is calculated. A quasi-one-dimensional flow through a nozzle was formulated under the assumptions of perfect gas.
Mode decomposition and Lagrangian structures of the flow dynamics in orbitally shaken bioreactors
NASA Astrophysics Data System (ADS)
Weheliye, Weheliye Hashi; Cagney, Neil; Rodriguez, Gregorio; Micheletti, Martina; Ducci, Andrea
2018-03-01
In this study, two mode decomposition techniques were applied and compared to assess the flow dynamics in an orbital shaken bioreactor (OSB) of cylindrical geometry and flat bottom: proper orthogonal decomposition and dynamic mode decomposition. Particle Image Velocimetry (PIV) experiments were carried out for different operating conditions including fluid height, h, and shaker rotational speed, N. A detailed flow analysis is provided for conditions when the fluid and vessel motions are in-phase (Fr = 0.23) and out-of-phase (Fr = 0.47). PIV measurements in vertical and horizontal planes were combined to reconstruct low order models of the full 3D flow and to determine its Finite-Time Lyapunov Exponent (FTLE) within OSBs. The combined results from the mode decomposition and the FTLE fields provide a useful insight into the flow dynamics and Lagrangian coherent structures in OSBs and offer a valuable tool to optimise bioprocess design in terms of mixing and cell suspension.
Instabilities in rapid directional solidification under weak flow
NASA Astrophysics Data System (ADS)
Kowal, Katarzyna N.; Davis, Stephen H.; Voorhees, Peter W.
2017-12-01
We examine a rapidly solidifying binary alloy under directional solidification with nonequilibrium interfacial thermodynamics viz. the segregation coefficient and the liquidus slope are speed dependent and attachment-kinetic effects are present. Both of these effects alone give rise to (steady) cellular instabilities, mode S , and a pulsatile instability, mode P . We examine how weak imposed boundary-layer flow of magnitude |V | affects these instabilities. For small |V | , mode S becomes a traveling and the flow stabilizes (destabilizes) the interface for small (large) surface energies. For small |V | , mode P has a critical wave number that shifts from zero to nonzero giving spatial structure. The flow promotes this instability and the frequencies of the complex conjugate pairs each increase (decrease) with flow for large (small) wave numbers. These results are obtained by regular perturbation theory in powers of V far from the point where the neutral curves cross, but requires a modified expansion in powers of V1 /3 near the crossing. A uniform composite expansion is then obtained valid for all small |V | .
NASA Astrophysics Data System (ADS)
Ghebali, Sacha; Garicano-Mena, Jesús; Ferrer, Esteban; Valero, Eusebio
2018-04-01
A Dynamic Mode Decomposition (DMD) of Direct Numerical Simulations (DNS) of fully developed channel flows is undertaken in order to study the main differences in flow features between a plane-channel flow and a passively “controlled” flow wherein the mean friction was reduced relative to the baseline by modifying the geometry in order to generate a streamwise-periodic spanwise pressure gradient, as is the case for an oblique wavy wall. The present analysis reports POD and DMD modes for the plane channel, jointly with the application of a sparsity-promoting method, as well as a reconstruction of the Reynolds shear stress with the dynamic modes. Additionally, a dynamic link between the streamwise velocity fluctuations and the friction on the wall is sought by means of a composite approach both in the plane and wavy cases. One of the DMD modes associated with the wavy-wall friction exhibits a meandering motion which was hardly identifiable on the instantaneous friction fluctuations.
NASA Astrophysics Data System (ADS)
Liu, Zhiyuan; Meng, Qiang
2014-05-01
This paper focuses on modelling the network flow equilibrium problem on a multimodal transport network with bus-based park-and-ride (P&R) system and congestion pricing charges. The multimodal network has three travel modes: auto mode, transit mode and P&R mode. A continuously distributed value-of-time is assumed to convert toll charges and transit fares to time unit, and the users' route choice behaviour is assumed to follow the probit-based stochastic user equilibrium principle with elastic demand. These two assumptions have caused randomness to the users' generalised travel times on the multimodal network. A comprehensive network framework is first defined for the flow equilibrium problem with consideration of interactions between auto flows and transit (bus) flows. Then, a fixed-point model with unique solution is proposed for the equilibrium flows, which can be solved by a convergent cost averaging method. Finally, the proposed methodology is tested by a network example.
Trattner, Sigal; Chelliah, Anjali; Prinsen, Peter; Ruzal-Shapiro, Carrie B; Xu, Yanping; Jambawalikar, Sachin; Amurao, Maxwell; Einstein, Andrew J
2017-03-01
The purpose of this study is to determine the conversion factors that enable accurate estimation of the effective dose (ED) used for cardiac 64-MDCT angiography performed for children. Anthropomorphic phantoms representative of 1- and 10-year-old children, with 50 metal oxide semiconductor field-effect transistor dosimeters placed in organs, underwent scanning performed using a 64-MDCT scanner with different routine clinical cardiac scan modes and x-ray tube potentials. Organ doses were used to calculate the ED on the basis of weighting factors published in 1991 in International Commission on Radiological Protection (ICRP) publication 60 and in 2007 in ICRP publication 103. The EDs and the scanner-reported dose-length products were used to determine conversion factors for each scan mode. The effect of infant heart rate on the ED and the conversion factors was also assessed. The mean conversion factors calculated using the current definition of ED that appeared in ICRP publication 103 were as follows: 0.099 mSv · mGy -1 · cm -1 , for the 1-year-old phantom, and 0.049 mSv · mGy -1 · cm -1 , for the 10-year-old phantom. These conversion factors were a mean of 37% higher than the corresponding conversion factors calculated using the older definition of ED that appeared in ICRP publication 60. Varying the heart rate did not influence the ED or the conversion factors. Conversion factors determined using the definition of ED in ICRP publication 103 and cardiac, rather than chest, scan coverage suggest that the radiation doses that children receive from cardiac CT performed using a contemporary 64-MDCT scanner are higher than the radiation doses previously reported when older chest conversion factors were used. Additional up-to-date pediatric cardiac CT conversion factors are required for use with other contemporary CT scanners and patients of different age ranges.
All-fiber mode converter based on superimposed long period fiber gratings
NASA Astrophysics Data System (ADS)
Xue, Yan-ru; Bi, Wei-hong; Jin, Wa; Tian, Peng-fei; Jiang, Peng; Liu, Qiang; Jin, Yun
2018-03-01
In this paper, a novel broadband all-fiber mode converter is proposed and experimentally demonstrated. Through writing a pair of superimposed long period fiber gratings (SLPFGs) in tow-mode fiber (TMF) with a CO2 laser, the mode converter can realize the conversion from LP01 to LP11 owing to the phase matching condition. Numerical and experimental results show that the bandwidth of this mode converter is 3 times broader than that of a single grating converter. The converter has low loss, high coupling efficiency, small size and is easy to fabricate, so it can be widely used in mode-division multiplexing.
Taher, Aymen Belhadj; Di Bin, Philippe; Bahloul, Faouzi; Tartaret-Josnière, Etienne; Jossent, Mathieu; Février, Sébastien; Attia, Rabah
2016-01-25
We propose a new technique to selectively excite the fundamental mode in a few mode fiber (FMF). This method of excitation is made from a single mode fiber (SMF) which is inserted facing the FMF into an air-silica microstructured cane before the assembly is adiabatically tapered. We study theoretically and numerically this method by calculating the effective indices of the propagated modes, their amplitudes along the taper and the adiabaticity criteria, showing the ability to achieve an excellent selective excitation of the fundamental mode in the FMF with negligible loss. We experimentally demonstrate that the proposed solution provides a successful mode conversion and allows an almost excellent fundamental mode excitation in the FMF (representing 99.8% of the total power).
Callewaert, Francois; Butun, Serkan; Li, Zhongyang; Aydin, Koray
2016-01-01
The objective-first inverse-design algorithm is used to design an ultra-compact optical diode. Based on silicon and air only, this optical diode relies on asymmetric spatial mode conversion between the left and right ports. The first even mode incident from the left port is transmitted to the right port after being converted into an odd mode. On the other hand, same mode incident from the right port is reflected back by the optical diode dielectric structure. The convergence and performance of the algorithm are studied, along with a transform method that converts continuous permittivity medium into a binary material design. The optimal device is studied with full-wave electromagnetic simulations to compare its behavior under right and left incidences, in 2D and 3D settings as well. A parametric study is designed to understand the impact of the design space size and initial conditions on the optimized devices performance. A broadband optical diode behavior is observed after optimization, with a large rejection ratio between the two transmission directions. This illustrates the potential of the objective-first inverse-design method to design ultra-compact broadband photonic devices. PMID:27586852
Graeme Lockaby; Chelsea Nagy; James M. Vose; Chelcy R. Ford; Ge Sun; Steve McNulty; Pete Caldwell; Erika Cohen; Jennifer Moore Meyers
2011-01-01
Forest conversion to agriculture or urban use consistently causes increased discharge, peak flow, and velocity of streams. Subregional differences in hydrologic responses to urbanization are substantial. Sediment, water chemistry indices, pathogens, and other substances often become more concentrated after forest conversion. If the conversion is to an urban use, the...
Dielectric Metasurface as a Platform for Spatial Mode Conversion in Nanoscale Waveguides.
Ohana, David; Desiatov, Boris; Mazurski, Noa; Levy, Uriel
2016-12-14
We experimentally demonstrate a nanoscale mode converter that performs coupling between the first two transverse electric-like modes of a silicon-on-insulator waveguide. The device operates by introducing a nanoscale periodic perturbation in its effective refractive index along the propagation direction and a graded effective index profile along its transverse direction. The periodic perturbation provides phase matching between the modes, while the graded index profile, which is realized by the implementation of nanoscale dielectric metasurface consisting of silicon features that are etched into the waveguide taking advantage of the effective medium concept, provides the overlap between the modes. Following the device design and numerical analysis using three-dimensional finite difference time domain simulations, we have fabricated the device and characterized it by directly measuring the modal content using optical imaging microscopy. From these measurements, the mode purity is estimated to be 95% and the transmission relative to an unperturbed strip waveguide is as high as 88%. Finally, we extend this approach to accommodate for the coupling between photonic and plasmonic modes. Specifically, we design and numerically demonstrate photonic to plasmonic mode conversion in a hybrid waveguide in which photonic and surface plasmon polariton modes can be guided in the silicon core and in the silicon/metal interface, respectively. The same method can also be used for coupling between symmetric and antisymmetric plasmonic modes in metal-insulator-metal or insulator-metal-insulator structures. On the basis of the current demonstration, we believe that such nanoscale dielectric metasurface-based mode converters can now be realized and become an important building block in future nanoscale photonic and plasmonic devices. Furthermore, the demonstrated platform can be used for the implementation of other chip scale components such as splitters, combiners couplers, and more.
Yu, Mingzhe; McCulloch, William D; Beauchamp, Damian R; Huang, Zhongjie; Ren, Xiaodi; Wu, Yiying
2015-07-08
Integrating both photoelectric-conversion and energy-storage functions into one device allows for the more efficient solar energy usage. Here we demonstrate the concept of an aqueous lithium-iodine (Li-I) solar flow battery (SFB) by incorporation of a built-in dye-sensitized TiO2 photoelectrode in a Li-I redox flow battery via linkage of an I3(-)/I(-) based catholyte, for the simultaneous conversion and storage of solar energy. During the photoassisted charging process, I(-) ions are photoelectrochemically oxidized to I3(-), harvesting solar energy and storing it as chemical energy. The Li-I SFB can be charged at a voltage of 2.90 V under 1 sun AM 1.5 illumination, which is lower than its discharging voltage of 3.30 V. The charging voltage reduction translates to energy savings of close to 20% compared to conventional Li-I batteries. This concept also serves as a guiding design that can be extended to other metal-redox flow battery systems.
Orbital angular momentum modes of high-gain parametric down-conversion
NASA Astrophysics Data System (ADS)
Beltran, Lina; Frascella, Gaetano; Perez, Angela M.; Fickler, Robert; Sharapova, Polina R.; Manceau, Mathieu; Tikhonova, Olga V.; Boyd, Robert W.; Leuchs, Gerd; Chekhova, Maria V.
2017-04-01
Light beams with orbital angular momentum (OAM) are convenient carriers of quantum information. They can also be used for imparting rotational motion to particles and providing high resolution in imaging. Due to the conservation of OAM in parametric down-conversion (PDC), signal and idler photons generated at low gain have perfectly anti-correlated OAM values. It is interesting to study the OAM properties of high-gain PDC, where the same OAM modes can be populated with large, but correlated, numbers of photons. Here we investigate the OAM spectrum of high-gain PDC and show that the OAM mode content can be controlled by varying the pump power and the configuration of the source. In our experiment, we use a source consisting of two nonlinear crystals separated by an air gap. We discuss the OAM properties of PDC radiation emitted by this source and suggest possible modifications.
Monitoring the Thickness of Coal-Conversion Slag
NASA Technical Reports Server (NTRS)
Walsh, J. V.
1984-01-01
Technique adapts analogous ocean-floor-mapping technology. Existing ocean floor acoustic technology adapted for real-time monitoring of thickness and viscosity of flowing slag in coal-conversion processing.
2011-08-01
heat transfers [49, 52]. However, the DO method has not yet been applied to Boussinesq flows, and the numerical challenges of the DO decomposition for...used a PCE scheme to study mixing in a two-dimensional (2D) microchannel and improved the efficiency of their solution scheme by decoupling the...to several Navier-Stokes flows and their stochastic dynamics has been studied, including mean-mode and mode-mode energy transfers for 2D flows and
NASA Astrophysics Data System (ADS)
He, Guobing; Gao, Yang; Xu, Yan; Ji, Lanting; Sun, Xiaoqiang; Wang, Xibin; Yi, Yunji; Chen, Changming; Wang, Fei; Zhang, Daming; Wu, Yuanda
2018-05-01
A polymer mode multiplexer based on asymmetric couplers is theoretically designed and experimentally demonstrated. The proposed X-junction coupler is formed by waveguides overlapped with different crossing angles in the vertical direction. A beam propagation method is adopted to optimize the dimensional parameters of the mode multiplexer to convert LP01 mode of two lower waveguides to LP11a and LP21a mode of the upper waveguide. The ultraviolet lithography and wet chemical etching are used in the fabrication process. A conversion ratio over 98% for both LP11a and LP21a mode in the wavelength range from 1530 to 1570 nm are experimentally demonstrated. This mode multiplexer has potential in broadband mode-division multiplexing transmission systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branover, H.; Mond, M.; Unger, Y.
The present collection of papers on MHD-related uses of liquid metal flows and their applications discusses topics in laminar MHD flows, MHD power generation, metallurgical MHD applications, and two-phase MHD flows. Attention is given to MHD flows with closed streamlines, nonlinear waves in liquid metals under a transverse magnetic field, liquid-metal MHD conversion of nuclear energy to electricity, the testing of optimized MHD conversion (OMACON) systems, and aspects of a liquid-metal induction generator. Also discussed are MHD effects in liquid-metal breeder reactors, a plasma-driven MHD powerplant, modeling the recirculating flows in channel-induction surfaces, the hydrodynamics of aluminum reduction cells, free-surfacemore » determination in a levitation-melting process, the parametric interactions of waves in bubbly liquid metals, and the occurrence of cavitation in water jets.« less
Numerical analysis of rotating stall instabilities of a pump- turbine in pump mode
NASA Astrophysics Data System (ADS)
Xia, L. S.; Cheng, Y. G.; Zhang, X. X.; Yang, J. D.
2014-03-01
Rotating stall may occur at part load flow of a pump-turbine in pump mode. Unstable flow structures developing under stall condition can lead to a sudden drop of efficiency, high dynamic load and even cavitation. CFD simulations on a pump-turbine model in pump mode were carried out to reveal the onset and developed mechanisms of these unstable flow phenomena at part load. The simulation results of energy-discharge and efficiency characteristics are in good agreement with those obtained by experiments. The more deviate from design conditions with decreasing flow rate, the more flow separations within the vanes. Under specific conditions, four stationary separation zones begin to progress on the circumference, rotating at a fraction of the impeller rotation rate. Rotating stalls lead to the flow in the vane diffuser channels alternating between outward jet flow and blockage. Strong jets impact the spiral casing wall causing high pressure pulsations. Severe separations of the stall cells disturb the flow inducing periodical large amplitude pressure fluctuations, of which the intensity at different span wise of the guide vanes is different. The enforced rotating nonuniform pressure distributions on the circumference lead to dynamic uniform forces on the impeller and guide vanes. The results show that the CFD simulations are capable to gain the complicated flow structure information for analysing the unstable characteristics of the pump mode at part load.
Combustion mode switching with a turbocharged/supercharged engine
Mond, Alan; Jiang, Li
2015-09-22
A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.
NASA Astrophysics Data System (ADS)
Sears, S. H.; Almagri, A. F.; Anderson, J. K.; Bonofiglo, P. J.; Capecchi, W.; Kim, J.
2016-10-01
The damping of Alfvenic waves is an important process, with implications varying from anomalous ion heating in laboratory and astrophysical plasmas to the stability of fusion alpha-driven modes in a burning plasma. With a 1 MW NBI on the MST, a controllable set of energetic particle modes (EPMs) and Alfvenic eigenmodes can be excited. We investigate the damping of these modes as a function of both magnetic and flow shear. Typical EPM damping rates are -104 s-1 in standard RFP discharges. Magnetic shear in the region of large energetic ion density is -2 cm-1 and can be increased up to -2.5 cm-1 by varying the boundary field. Continuum mode damping rates can be reduced up to 50%. New experiments use a bias probe to control the rotation profile. Accelerating the edge plasma relative to the rapidly rotating NBI-driven core decreases the flow shear, while decelerating the edge plasma increases the flow shear in the region of strong energetic ion population. Mode damping rates measured as a function of the local flow shear are compared to ideal MHD predictions. Work supported by US DOE.
Interpretations of the impact of cross-field drifts on divertor flows in DIII-D with UEDGE
Jaervinen, Aaro E.; Allen, Steve L.; Groth, Mathias; ...
2017-01-27
Simulations using the multi-fluid code UEDGE indicates that, in low confinement (Lmode) plasmas in DIII-D, recycling driven flows dominate poloidal particle flows in the divertor, whereas E×B drift flows dominate the radial particle flows. In contrast, in high confinement (H-mode) conditions E×B drift flows dominate both poloidal and radial particle flows in the divertor. UEDGE indicates that the toroidal C 2+ flow velocities in the divertor plasma are entrained within 30% to the background deuterium flow in both Land H-mode plasmas in the plasma region where the CIII 465 nm emission is measured. Therefore, UEDGE indicates that the Carbon Dopplermore » Coherence Imaging System (CIS), measuring the toroidal velocity of the C 2+ ions, can provide insight to the deuterium flows in the divertor. Parallel-to-B velocity dominates the toroidal divertor flow; direct drift impact being less than 1%. Toroidal divertor flow is predicted to reverse when the magnetic field is reversed. This is explained by the parallel-B flow towards the nearest divertor plate corresponding to opposite toroidal directions in opposite toroidal field configurations. Due to strong poloidal E×B flows in H-mode, net poloidal particle transport can be in opposite direction than the poloidal component of the parallel-B plasma flow.« less
Flow Cells for Scalable Energy Conversion and Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukundan, Rangachary
2017-10-26
This project is a response to current flow systems that are V-aqueous and not cost effective. It will hopefully enable high energy/ power density flow cells through rational materials and system design.
Properties of 83mKr conversion electrons and their use in the KATRIN experiment
NASA Astrophysics Data System (ADS)
Vénos, D.; Sentkerestiová, J.; Dragoun, O.; Slezák, M.; Ryšavý, M.; Špalek, A.
2018-02-01
The gaseous 83mKr will be used as a source of monoenergetic conversion electrons for systematic studies and calibration of the energy scale in the KArlsruhe TRItium Neutrino experiment (KATRIN). Using all existing experimental data the adopted values of the electron binding energies for free krypton were established and the basic conversion electron properties in 83mKr decay were compiled. Modes of the measurements with gaseous 83mKr were suggested for KATRIN.
Plasma Flow During RF Discharges in VASIMR
NASA Technical Reports Server (NTRS)
Jacobson, V. T.; Chang Diaz, F. R.; Squire, J. P.; Ilin, A. V.; Bengtson, R. D.; Carter, M. D.; Goulding, R. H.
1999-01-01
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) plasma source consists of a helical antenna, driven at frequencies of 4 to 19 MHz with powers up to 1 kW, in a magnetic field up to 3 kG. Helium is the current test gas, and future experiments with hydrogen are planned. Plasma density and temperature profiles were measured by a reciprocating Langmuir probe, and plasma flow profiles were measured with a reciprocating Mach probe. Both probes were located about 0.5 m downstream from the helical antenna. The plasma source operated in capacitive and inductive modes in addition to a helicon mode. During capacitive and inductive modes, densities were low and plasma flow was < 0.5 Cs. When the plasma operated in a helicon mode, the densities measured downstream from the source were higher [10(exp 12) / cubic cm ] and plasma flow along the magnetic field was of the order Mach 1. Details of the measurements will be shown.
Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover
2011-01-01
Background Cellulases and related hydrolytic enzymes represent a key cost factor for biochemical conversion of cellulosic biomass feedstocks to sugars for biofuels and chemicals production. The US Department of Energy (DOE) is cost sharing projects to decrease the cost of enzymes for biomass saccharification. The performance of benchmark cellulase preparations produced by Danisco, DSM, Novozymes and Verenium to convert pretreated corn stover (PCS) cellulose to glucose was evaluated under common experimental conditions and is reported here in a non-attributed manner. Results Two hydrolysis modes were examined, enzymatic hydrolysis (EH) of PCS whole slurry or washed PCS solids at pH 5 and 50°C, and simultaneous saccharification and fermentation (SSF) of washed PCS solids at pH 5 and 38°C. Enzymes were dosed on a total protein mass basis, with protein quantified using both the bicinchoninic acid (BCA) assay and the Bradford assay. Substantial differences were observed in absolute cellulose to glucose conversion performance levels under the conditions tested. Higher cellulose conversion yields were obtained using washed solids compared to whole slurry, and estimated enzyme protein dosages required to achieve a particular cellulose conversion to glucose yield were extremely dependent on the protein assay used. All four enzyme systems achieved glucose yields of 90% of theoretical or higher in SSF mode. Glucose yields were reduced in EH mode, with all enzymes achieving glucose yields of at least 85% of theoretical on washed PCS solids and 75% in PCS whole slurry. One of the enzyme systems ('enzyme B') exhibited the best overall performance. However in attaining high conversion yields at lower total enzyme protein loadings, the relative and rank ordered performance of the enzyme systems varied significantly depending upon which hydrolysis mode and protein assay were used as the basis for comparison. Conclusions This study provides extensive information about the performance of four precommercial cellulase preparations. Though test conditions were not necessarily optimal for some of the enzymes, all were able to effectively saccharify PCS cellulose. Large differences in the estimated enzyme dosage requirements depending on the assay used to measure protein concentration highlight the need for better consensus methods to quantify enzyme protein. PMID:21899748
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghizzo, A., E-mail: alain.ghizzo@univ-lorraine.fr; Palermo, F.
We address the mechanisms underlying low-frequency zonal flow generation in turbulent system and the associated intermittent regime of ion-temperature-gradient (ITG) turbulence. This model is in connection with the recent observation of quasi periodic zonal flow oscillation at a frequency close to 2 kHz, at the low-high transition, observed in the ASDEX Upgrade [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)] and EAST tokamak [Xu et al., Phys. Rev. Lett 107, 125001 (2011)]. Turbulent bursts caused by the coupling of Kelvin-Helmholtz (KH) driven shear flows with trapped ion modes (TIMs) were investigated by means of reduced gyrokinetic simulations. It was foundmore » that ITG turbulence can be regulated by low-frequency meso-scale zonal flows driven by resonant collisionless trapped ion modes (CTIMs), through parametric-type scattering, a process in competition with the usual KH instability.« less
ERIC Educational Resources Information Center
Paterson, Judy; Sneddon, Jamie
2011-01-01
This article reports on the learning conversations between a mathematician and a mathematics educator as they worked together to change the delivery model of a third year discrete mathematics course from a traditional lecture mode to team-based learning (TBL). This change prompted the mathematician to create team tasks which increasingly focused…
The role of turbulence-flow interactions in L- to H-mode transition dynamics: recent progress
NASA Astrophysics Data System (ADS)
Schmitz, L.
2017-02-01
Recent experimental and simulation work has substantially advanced the understanding of L-mode plasma edge turbulence and plasma flows and their mutual interaction across the L-H transition. Flow acceleration and E × B shear flow amplification via the turbulent Reynolds stress have been directly observed in multiple devices, using multi-tip probe arrays, Doppler backscattering, beam emission spectroscopy, and gas puff imaging diagnostics. L-H transitions characterized by limit-cycle oscillations (LCO) allow probing of the trigger dynamics and the synergy of turbulence-driven and pressure-gradient-driven flows with high spatio-temporal resolution. L-mode turbulent structures exhibit characteristic changes in topology (tilting) and temporal and radial correlation preceding the L-H transition. Long-range toroidal flow correlations increase preceding edge-transport-barrier formation. The energy transfer from the turbulence spectrum to large-scale axisymmetric flows has been quantified in L-LCO and fast L-H transitions in several devices. After formation of a transient barrier, the increasing ion pressure gradient (via the E × B flow shear associated with diamagnetic flow) sustains fluctuation suppression and secures the transition to H-mode. Heuristic models of the L-H trigger dynamics have progressed from 0D predator-prey models to 1D extended models, including neoclassical ion flow-damping and pressure-gradient evolution. Initial results from 2D and 3D reduced fluid models have been obtained for high-collisionality regimes.
Relativistic backward wave oscillator operating in TM02 with cutoff-type resonant reflector
NASA Astrophysics Data System (ADS)
Teng, Yan; Shi, Yanchao; Yang, Dewen; Cao, Yibing; Zhang, Zhijun
2017-04-01
This paper proposes an overmoded relativistic backward wave oscillator (RBWO) operating in the TM02 mode with the cutoff-type resonant reflector characterized by the advantages of the cutoff neck and the single resonant cavity. In order to protect the explosive emission of the annular cathode from the disturbance of the microwave leakage, the cutoff-type resonant reflector can effectively prevent the microwave consisting of several modes from propagating into the diode region. Attributed to the strong reflections caused by the cutoff-type resonant reflector at the front end of the overmoded slow-wave structure (SWS), the overmoded RBWO works in the state of the strong resonance, which enhances the beam-to-microwave power conversion efficiency. TM02 is selected as the operation mode so as to increase the power handling capability. The nonuniform SWS depresses the cross-excitation of the unwanted longitudinal modes of TM02 and improves the synchronous interaction between the electron beam and the structure wave. It is found that when we make the peak values of the longitudinal electric field and the modulated current appear nearly at the same position in the overmoded SWS by optimizing the electrodynamic structure, the conversion efficiency will be enhanced significantly. In the numerical simulation, the microwave generation with power 2.99 GW and efficiency 0.45 is obtained under the diode voltage 851 kV and current 7.8 kA with the guide magnetic field of 4.3 T. The microwave generation with the pure frequency spectrum of 10.083 GHz radiates in the TM01 mode. The conversion efficiency keeps above 0.40 over the diode voltage range of 220 kV.
NASA Technical Reports Server (NTRS)
Gilliland, M. G.; Rougelot, R. S.; Schumaker, R. A.
1966-01-01
Video signal processor uses special-purpose integrated circuits with nonsaturating current mode switching to accept texture and color information from a digital computer in a visual spaceflight simulator and to combine these, for display on color CRT with analog information concerning fading.
Heralded creation of photonic qudits from parametric down-conversion using linear optics
NASA Astrophysics Data System (ADS)
Yoshikawa, Jun-ichi; Bergmann, Marcel; van Loock, Peter; Fuwa, Maria; Okada, Masanori; Takase, Kan; Toyama, Takeshi; Makino, Kenzo; Takeda, Shuntaro; Furusawa, Akira
2018-05-01
We propose an experimental scheme to generate, in a heralded fashion, arbitrary quantum superpositions of two-mode optical states with a fixed total photon number n based on weakly squeezed two-mode squeezed state resources (obtained via weak parametric down-conversion), linear optics, and photon detection. Arbitrary d -level (qudit) states can be created this way where d =n +1 . Furthermore, we experimentally demonstrate our scheme for n =2 . The resulting qutrit states are characterized via optical homodyne tomography. We also discuss possible extensions to more than two modes concluding that, in general, our approach ceases to work in this case. For illustration and with regards to possible applications, we explicitly calculate a few examples such as NOON states and logical qubit states for quantum error correction. In particular, our approach enables one to construct bosonic qubit error-correction codes against amplitude damping (photon loss) with a typical suppression of √{n }-1 losses and spanned by two logical codewords that each correspond to an n -photon superposition for two bosonic modes.
NASA Astrophysics Data System (ADS)
Wang, Wenke; Wang, Zhan; Hou, Rongzhe; Guan, Longyao; Dang, Yan; Zhang, Zaiyong; Wang, Hao; Duan, Lei; Wang, Zhoufeng
2018-05-01
The hydrodynamic processes and impacts exerted by river-groundwater transformation need to be studied at regional and catchment scale, especially with respect to diverse geology and lithology. This work adopted an integrated method to study four typical modes (characterized primarily by lithology, flow subsystems, and gaining/losing river status) and the associated hydrodynamic processes and ecological impacts in the southern part of Junggar Basin, China. River-groundwater transformation occurs one to four times along the basin route. For mode classification, such transformation occurs: once or twice, controlled by lithological factors (mode 1); twice, impacted by geomorphic features and lithological structures (mode 2); and three or four times, controlled by both geological and lithological structures (modes 3 and 4). Results also suggest: (1) there exist local and regional groundwater flow subsystems at 400 m depth, which form a multistage nested groundwater flow system. The groundwater flow velocities are 0.1-1.0 and <0.1 m/day for each of two subsystems; (2) the primary groundwater hydro-chemical type takes on apparent horizontal and vertical zoning characteristics, and the TDS of the groundwater evidently increases along the direction of groundwater flow, driven by hydrodynamic processes; (3) the streams, wetland and terminal lakes are the end-points of the local and regional groundwater flow systems. This work indicates that not only are groundwater and river water derived from the same source, but also hydrodynamic and hydro-chemical processes and ecological effects, as a whole in arid areas, are controlled by stream-groundwater transformation.
NASA Astrophysics Data System (ADS)
VerHulst, Claire; Meneveau, Charles
2014-02-01
In this study, we address the question of how kinetic energy is entrained into large wind turbine arrays and, in particular, how large-scale flow structures contribute to such entrainment. Previous research has shown this entrainment to be an important limiting factor in the performance of very large arrays where the flow becomes fully developed and there is a balance between the forcing of the atmospheric boundary layer and the resistance of the wind turbines. Given the high Reynolds numbers and domain sizes on the order of kilometers, we rely on wall-modeled large eddy simulation (LES) to simulate turbulent flow within the wind farm. Three-dimensional proper orthogonal decomposition (POD) analysis is then used to identify the most energetic flow structures present in the LES data. We quantify the contribution of each POD mode to the kinetic energy entrainment and its dependence on the layout of the wind turbine array. The primary large-scale structures are found to be streamwise, counter-rotating vortices located above the height of the wind turbines. While the flow is periodic, the geometry is not invariant to all horizontal translations due to the presence of the wind turbines and thus POD modes need not be Fourier modes. Differences of the obtained modes with Fourier modes are documented. Some of the modes are responsible for a large fraction of the kinetic energy flux to the wind turbine region. Surprisingly, more flow structures (POD modes) are needed to capture at least 40% of the turbulent kinetic energy, for which the POD analysis is optimal, than are needed to capture at least 40% of the kinetic energy flux to the turbines. For comparison, we consider the cases of aligned and staggered wind turbine arrays in a neutral atmospheric boundary layer as well as a reference case without wind turbines. While the general characteristics of the flow structures are robust, the net kinetic energy entrainment to the turbines depends on the presence and relative arrangement of the wind turbines in the domain.
CO2 conversion in non-thermal plasma and plasma/g-C3N4 catalyst hybrid processes
NASA Astrophysics Data System (ADS)
Lu, Na; Sun, Danfeng; Zhang, Chuke; Jiang, Nan; Shang, Kefeng; Bao, Xiaoding; Li, Jie; Wu, Yan
2018-03-01
Carbon dioxide conversion at atmosphere pressure and low temperature has been studied in a cylindrical dielectric barrier discharge (DBD) reactor. Pure CO2 feed flows to the discharge zone and typical filamentary discharges were obtained in each half-cycle of the applied voltage. The gas temperature increased with discharge time and discharge power, which was found to affect the CO2 decomposition deeply. As the DBD reactor was cooled to ambient temperature, both the conversion of CO2 and the CO yield were enhanced. Especially the energy efficiencies changed slightly with the increase of discharge power and were much higher in cooling condition comparing to those without cooling. At a discharge power of 40 W, the energy efficiency under cooling condition was approximately six times more than that without cooling. Gas flow rate was observed to affect CO2 conversion and 0.1 L min-1 was obtained as optimum gas flow rate under cooling condition. In addition, the CO2 conversion rate in plasma/g-C3N4 catalyst hybrid system was twice times as that in plasma-alone system. In case of cooling, the existence of g-C3N4 catalyst contributed to a 47% increase of CO2 conversion compared to the sole plasma process. The maximum energy-efficiency with g-C3N4 was 0.26 mmol kJ-1 at 20 W, which increased by 157% compared to that without g-C3N4. The synergistic effect of DBD plasma with g-C3N4 on pure CO2 conversion was verified.
Gong, Yan-Xiao; Zhang, ShengLi; Xu, P; Zhu, S N
2016-03-21
We propose to generate a single-mode-squeezing two-mode squeezed vacuum state via a single χ(2) nonlinear photonic crystal. The state is favorable for existing Gaussian entanglement distillation schemes, since local squeezing operations can enhance the final entanglement and the success probability. The crystal is designed for enabling three concurrent quasi-phase-matching parametric-down conversions, and hence relieves the auxiliary on-line bi-side local squeezing operations. The compact source opens up a way for continuous-variable quantum technologies and could find more potential applications in future large-scale quantum networks.
Apparatus for checking the direction of polarization of shear-wave ultrasonic transducers
Karplus, Henry H. B.
1980-01-01
An apparatus for checking the direction of polarization of shear-wave ultrasonic transducers comprises a first planar surface for mounting the shear-wave transducer, a second planar surface inclined at a predetermined angle to the first surface to generate longitudinal waves by mode conversion, and a third planar surface disposed at a second predetermined angle to the first for mounting a longitudinal-wave ultrasonic transducer. In an alternate embodiment, two second planar surfaces at the predetermined angle are placed at an angle to each other. The magnitude of the shear wave is a function of the angle between the direction of polarization of the transducer and the mode-conversion surface.
Apparatus for checking the direction of polarization of shear-wave ultrasonic transducers
Karplus, H.H.B.; Forster, G.A.
An apparatus for checking the direction of polarization of shear-wave ultrasonic transducers comprises a first planar surface for mounting the shear-wave transducer, a second planar surface inclined at a predetermined angle to the first surface to generate longitudinal waves by mode conversion, and a third planar surface disposed at a second predetermined angle to the first for mounting a longitudinal-wave ultransonic transducer. In an alternate embodiment, two second planar surfaces at the predetermined angle are placed at an angle to each other. The magnitude of the shear wave is a function of the angle between the direction of polarization of the transducer and the mode-conversion surface.
Conversion of laser energy to gas kinetic energy
NASA Technical Reports Server (NTRS)
Caledonia, G. E.
1975-01-01
Techniques for the gas phase absorption of laser radiation for conversion to gas kinetic energy are discussed. Absorption by inverse Bremsstrahlung, in which laser energy is converted at a gas kinetic rate in a spectrally continuous process, is briefly described, and absorption by molecular vibrational rotation bands is discussed at length. High pressure absorption is proposed as a means of minimizing gas bleaching and dissociation, the major disadvantages of the molecular absorption process. A band model is presented for predicting the molecular absorption spectra in the high pressure absorption region and is applied to the CO molecule. Use of a rare gas seeded with Fe(CO)5 for converting vibrational modes to translation modes is described.
Analysis of the STS-126 Flow Control Valve Structural-Acoustic Coupling Failure
NASA Technical Reports Server (NTRS)
Jones, Trevor M.; Larko, Jeffrey M.; McNelis, Mark E.
2010-01-01
During the Space Transportation System mission STS-126, one of the main engine's flow control valves incurred an unexpected failure. A section of the valve broke off during liftoff. It is theorized that an acoustic mode of the flowing fuel, coupled with a structural mode of the valve, causing a high cycle fatigue failure. This report documents the analysis efforts conducted in an attempt to verify this theory. Hand calculations, computational fluid dynamics, and finite element methods are all implemented and analyses are performed using steady-state methods in addition to transient analysis methods. The conclusion of the analyses is that there is a critical acoustic mode that aligns with a structural mode of the valve
Nonlinear Large Scale Flow in a Precessing Cylinder and Its Ability To Drive Dynamo Action
NASA Astrophysics Data System (ADS)
Giesecke, André; Vogt, Tobias; Gundrum, Thomas; Stefani, Frank
2018-01-01
We have conducted experimental measurements and numerical simulations of a precession-driven flow in a cylindrical cavity. The study is dedicated to the precession dynamo experiment currently under construction at Helmholtz-Zentrum Dresden-Rossendorf and aims at the evaluation of the hydrodynamic flow with respect to its ability to drive a dynamo. We focus on the strongly nonlinear regime in which the flow is essentially composed of the directly forced primary Kelvin mode and higher modes in terms of standing inertial waves arising from nonlinear self-interactions. We obtain an excellent agreement between experiment and simulation with regard to both flow amplitudes and flow geometry. A peculiarity is the resonance-like emergence of an axisymmetric mode that represents a double roll structure in the meridional plane. Kinematic simulations of the magnetic field evolution induced by the time-averaged flow yield dynamo action at critical magnetic Reynolds numbers around Rmc≈430 , which is well within the range of the planned liquid sodium experiment.
Nonlinear Large Scale Flow in a Precessing Cylinder and Its Ability To Drive Dynamo Action.
Giesecke, André; Vogt, Tobias; Gundrum, Thomas; Stefani, Frank
2018-01-12
We have conducted experimental measurements and numerical simulations of a precession-driven flow in a cylindrical cavity. The study is dedicated to the precession dynamo experiment currently under construction at Helmholtz-Zentrum Dresden-Rossendorf and aims at the evaluation of the hydrodynamic flow with respect to its ability to drive a dynamo. We focus on the strongly nonlinear regime in which the flow is essentially composed of the directly forced primary Kelvin mode and higher modes in terms of standing inertial waves arising from nonlinear self-interactions. We obtain an excellent agreement between experiment and simulation with regard to both flow amplitudes and flow geometry. A peculiarity is the resonance-like emergence of an axisymmetric mode that represents a double roll structure in the meridional plane. Kinematic simulations of the magnetic field evolution induced by the time-averaged flow yield dynamo action at critical magnetic Reynolds numbers around Rm^{c}≈430, which is well within the range of the planned liquid sodium experiment.
Comparison study between wind turbine and power kite wakes
NASA Astrophysics Data System (ADS)
Haas, T.; Meyers, J.
2017-05-01
Airborne Wind Energy (AWE) is an emerging technology in the field of renewable energy that uses kites to harvest wind energy. However, unlike for conventional wind turbines, the wind environment in AWE systems has not yet been studied in much detail. We propose a simulation framework using Large Eddy Simulation to model the wakes of such kite systems and offer a comparison with turbine-like wakes. In order to model the kite effects on the flow, a lifting line technique is used. We investigate different wake configurations related to the operation modes of wind turbines and airborne systems in drag mode. In the turbine mode, the aerodynamic torque of the blades is directly added to the flow. In the kite drag mode, the aerodynamic torque of the wings is directly balanced by an opposite torque induced by on-board generators; this results in a total torque on the flow that is zero. We present the main differences in wake characteristics, especially flow induction and vorticity fields, for the depicted operation modes both with laminar and turbulent inflows.
NASA Astrophysics Data System (ADS)
Ambarita, H.
2018-02-01
The Government of Indonesia (GoI) has released a target on reduction Green Houses Gases emissions (GHG) by 26% from level business-as-usual by 2020, and the target can be up to 41% by international supports. In the energy sector, this target can be reached effectively by promoting fossil fuel replacement or blending with biofuel. One of the potential solutions is operating compression ignition (CI) engine in dual-fuel (diesel-biogas) mode. In this study effects of engine load and biogas flow rate on the performance and exhaust gas emissions of a compression ignition engine run in dual-fuel mode are investigated. In the present study, the used biogas is refined with methane content 70% of volume. The objectives are to explore the optimum operating condition of the CI engine run in dual-fuel mode. The experiments are performed on a four-strokes CI engine with rated output power of 4.41 kW. The engine is tested at constant speed 1500 rpm. The engine load varied from 600W to 1500W and biogas flow rate varied from 0 L/min to 6 L/min. The results show brake thermal efficiency of the engine run in dual-fuel mode is better than pure diesel mode if the biogas flow rates are 2 L/min and 4 L/min. It is recommended to operate the present engine in a dual-fuel mode with biogas flow rate of 4 L/min. The consumption of diesel fuel can be replaced up to 50%.
NASA Astrophysics Data System (ADS)
Thongdaeng, S.; Bubphachot, B.; Rittidech, S.
2016-11-01
This research is aimed at studying the two-phase flow pattern of a top heat mode closed loop oscillating heat pipe with check valves. The working fluids used are ethanol and R141b and R11 coolants with a filling ratio of 50% of the total volume. It is found that the maximum heat flux occurs for the R11 coolant used as the working fluid in the case with the inner diameter of 1.8 mm, inclination angle of -90°, evaporator temperature of 125°C, and evaporator length of 50 mm. The internal flow patterns are found to be slug flow/disperse bubble flow/annular flow, slug flow/disperse bubble flow/churn flow, slug flow/bubble flow/annular flow, slug flow/disperse bubble flow, bubble flow/annular flow, and slug flow/annular flow.
Transport modes during crystal growth in a centrifuge
NASA Technical Reports Server (NTRS)
Arnold, William A.; Wilcox, William R.; Carlson, Frederick; Chait, Arnon; Regel', Liia L.
1992-01-01
Flow modes arising under average acceleration in centrifugal crystal growth, the gradient of acceleration, and the Coriolis force are investigated using a fully nonlinear three-dimensional numerical model for a centrifugal crystal growth experiment. The analysis focuses on an examination of the quasi-steady state flow modes. The importance of the gradient acceleration is determined by the value of a new nondimensional number, Ad.
Tearing Instability of a Current Sheet Forming by Sheared Incompressible Flow
NASA Astrophysics Data System (ADS)
Tolman, Elizabeth; Loureiro, Nuno; Uzdensky, Dmitri
2017-10-01
Sweet-Parker current sheets are unstable to the tearing mode, suggesting they will not form in physical systems. Understanding magnetic reconnection thus requires study of the stability of a current sheet as it forms. Such formation can occur as a result of sheared, sub-Alfvénic incompressible flows into and along the sheet. This work presents an analysis of how tearing perturbations behave in a current sheet forming under the influence of such flows, beginning with a phase when the growth rate of the tearing mode is small and the behavior of perturbations is primarily governed by ideal MHD. Later, after the tearing growth rate becomes significant relative to the time scale of the driving flows, the flows cause a slight reduction in the tearing growth rate and wave vector of the dominant mode. Once the tearing mode enters the nonlinear regime, the flows accelerate the tearing growth slightly; during X-point collapse, the flows have negligible effect on the system behavior. This analysis allows greater understanding of reconnection in evolving systems and increases confidence in the application of tools developed in time-independent current sheets to changing current sheets. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship.
Arteriovenous oscillations of the redox potential: Is the redox state influencing blood flow?
Poznanski, Jaroslaw; Szczesny, Pawel; Pawlinski, Bartosz; Mazurek, Tomasz; Zielenkiewicz, Piotr; Gajewski, Zdzislaw; Paczek, Leszek
2017-09-01
Studies on the regulation of human blood flow revealed several modes of oscillations with frequencies ranging from 0.005 to 1 Hz. Several mechanisms were proposed that might influence these oscillations, such as the activity of vascular endothelium, the neurogenic activity of vessel wall, the intrinsic activity of vascular smooth muscle, respiration, and heartbeat. These studies relied typically on non-invasive techniques, for example, laser Doppler flowmetry. Oscillations of biochemical markers were rarely coupled to blood flow. The redox potential difference between the artery and the vein was measured by platinum electrodes placed in the parallel homonymous femoral artery and the femoral vein of ventilated anesthetized pigs. Continuous measurement at 5 Hz sampling rate using a digital nanovoltmeter revealed fluctuating signals with three basic modes of oscillations: ∼ 1, ∼ 0.1 and ∼ 0.01 Hz. These signals clearly overlap with reported modes of oscillations in blood flow, suggesting coupling of the redox potential and blood flow. The amplitude of the oscillations associated with heart action was significantly smaller than for the other two modes, despite the fact that heart action has the greatest influence on blood flow. This finding suggests that redox potential in blood might be not a derivative but either a mediator or an effector of the blood flow control system.
40 CFR 1065.650 - Emission calculations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... from a changing flow rate or a constant flow rate (including discrete-mode steady-state testing), as...·hr e NOx = 64.975/25.783 e NOx = 2.520 g/(kW·hr) (2) For discrete-mode steady-state testing, you may... method not be used if there are any work flow paths described in § 1065.210 that cross the system...
Topics in the optimization of millimeter-wave mixers
NASA Technical Reports Server (NTRS)
Siegel, P. H.; Kerr, A. R.; Hwang, W.
1984-01-01
A user oriented computer program for the analysis of single-ended Schottky diode mixers is described. The program is used to compute the performance of a 140 to 220 GHz mixer and excellent agreement with measurements at 150 and 180 GHz is obtained. A sensitivity analysis indicates the importance of various diode and mount characteristics on the mixer performance. A computer program for the analysis of varactor diode multipliers is described. The diode operates in either the reverse biased varactor mode or with substantial forward current flow where the conversion mechanism is predominantly resistive. A description and analysis of a new H-plane rectangular waveguide transformer is reported. The transformer is made quickly and easily in split-block waveguide using a standard slitting saw. It is particularly suited for use in the millimeter-wave band, replacing conventional electroformed stepped transformers. A theoretical analysis of the transformer is given and good agreement is obtained with measurements made at X-band.
Role of electric fields in the MHD evolution of the kink instability
Lapenta, Giovanni; Skender, Marina
2017-02-17
Here, the discovery of electrostatic fields playing a crucial role in establishing plasma motion in the flux conversion and dynamo processes in reversed field pinches is revisited. In order to further elucidate the role of the electrostatic fields, a flux rope configuration susceptible to the kink instability is numerically studied with anMHDcode. Simulated nonlinear evolution of the kink instability is found to confirm the crucial role of the electrostatic fields. Anew insight is gained on the special function of the electrostatic fields: they lead the plasma towards the reconnection site at the mode resonant surface. Without this step the plasmamore » column could not relax to its nonlinear state, since no other agent is present to perform this role. While the inductive field generated directly by the kink instability is the dominant flow driver, the electrostatic field is found to allow the motion in the vicinity of the reconnection region.« less
NASA Astrophysics Data System (ADS)
Sergeev, D. A.; Kandaurov, A. A.; Troitskaya, Yu I.
2017-11-01
In this paper we describe PIV-system specially designed for the study of the hydrophysical processes in large-scale benchmark setup of promising fast reactor. The system allows the PIV-measurements for the conditions of complicated configuration of the reactor benchmark, reflections and distortions section of the laser sheet, blackout, in the closed volume. The use of filtering techniques and method of masks images enabled us to reduce the number of incorrect measurement of flow velocity vectors by an order. The method of conversion of image coordinates and velocity field in the reference model of the reactor using a virtual 3D simulation targets, without loss of accuracy in comparison with a method of using physical objects in filming area was released. The results of measurements of velocity fields in various modes, both stationary (workers), as well as in non-stationary (emergency).
Role of electric fields in the MHD evolution of the kink instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapenta, Giovanni; Skender, Marina
Here, the discovery of electrostatic fields playing a crucial role in establishing plasma motion in the flux conversion and dynamo processes in reversed field pinches is revisited. In order to further elucidate the role of the electrostatic fields, a flux rope configuration susceptible to the kink instability is numerically studied with anMHDcode. Simulated nonlinear evolution of the kink instability is found to confirm the crucial role of the electrostatic fields. Anew insight is gained on the special function of the electrostatic fields: they lead the plasma towards the reconnection site at the mode resonant surface. Without this step the plasmamore » column could not relax to its nonlinear state, since no other agent is present to perform this role. While the inductive field generated directly by the kink instability is the dominant flow driver, the electrostatic field is found to allow the motion in the vicinity of the reconnection region.« less
Decay rates of magnetic modes below the threshold of a turbulent dynamo.
Herault, J; Pétrélis, F; Fauve, S
2014-04-01
We measure the decay rates of magnetic field modes in a turbulent flow of liquid sodium below the dynamo threshold. We observe that turbulent fluctuations induce energy transfers between modes with different symmetries (dipolar and quadrupolar). Using symmetry properties, we show how to measure the decay rate of each mode without being restricted to the one with the smallest damping rate. We observe that the respective values of the decay rates of these modes depend on the shape of the propellers driving the flow. Dynamical regimes, including field reversals, are observed only when the modes are both nearly marginal. This is in line with a recently proposed model.
NASA Astrophysics Data System (ADS)
Hu, Jun; Hadid, Hamda Ben; Henry, Daniel; Mojtabi, Abdelkader
Temporal and spatio-temporal instabilities of binary liquid films flowing down an inclined uniformly heated plate with Soret effect are investigated by using the Chebyshev collocation method to solve the full system of linear stability equations. Seven dimensionless parameters, i.e. the Kapitza, Galileo, Prandtl, Lewis, Soret, Marangoni, and Biot numbers (Ka, G, Pr, L, ) are used to control the flow system. In the case of pure spanwise perturbations, thermocapillary S- and P-modes are obtained. It is found that the most dangerous modes are stationary for positive Soret numbers (0), and oscillatory for =0 remains so for >0 and even merges with the long-wave S-mode. In the case of streamwise perturbations, a long-wave surface mode (H-mode) is also obtained. From the neutral curves, it is found that larger Soret numbers make the film flow more unstable as do larger Marangoni numbers. The increase of these parameters leads to the merging of the long-wave H- and S-modes, making the situation long-wave unstable for any Galileo number. It also strongly influences the short-wave P-mode which becomes the most critical for large enough Galileo numbers. Furthermore, from the boundary curves between absolute and convective instabilities (AI/CI) calculated for both the long-wave instability (S- and H-modes) and the short-wave instability (P-mode), it is shown that for small Galileo numbers the AI/CI boundary curves are determined by the long-wave instability, while for large Galileo numbers they are determined by the short-wave instability.
Observations of Traveling Crossflow Resonant Triad Interactions on a Swept Wing
NASA Technical Reports Server (NTRS)
Eppink, Jenna L.; Wlezien, Richard
2012-01-01
Experimental evidence indicates the presence of a triad resonance interaction between traveling crossflow modes in a swept wing flow. Results indicate that this interaction occurs when the stationary and traveling crossflow modes have similar and relatively low amplitudes (approx.1% to 6% of the total freestream velocity). The resonant interaction occurs at instability amplitudes well below those typically known to cause transition, yet transition is observed to occur just downstream of the resonance. In each case, two primary linearly unstable traveling crossflow modes are nonlinearly coupled to a higher frequency linearly stable mode at the sum of their frequencies. The higher-frequency mode is linearly stable and presumed to exist as a consequence of the interaction of the two primary modes. Autoand cross-bicoherence are used to determine the extent of phase-matching between the modes, and wavenumber matching confirms the triad resonant nature of the interaction. The bicoherence results indicate a spectral broadening mechanism and the potential path to early transition. The implications for laminar flow control in swept wing flows are significant. Even if stationary crossflow modes remain subcritical, traveling crossflow interactions can lead to early transition.
On Three-dimensional Structures in Relativistic Hydrodynamic Jets
NASA Astrophysics Data System (ADS)
Hardee, Philip E.
2000-04-01
The appearance of wavelike helical structures on steady relativistic jets is studied using a normal mode analysis of the linearized fluid equations. Helical structures produced by the normal modes scale relative to the resonant (most unstable) wavelength and not with the absolute wavelength. The resonant wavelength of the normal modes can be less than the jet radius even on highly relativistic jets. High-pressure regions helically twisted around the jet beam may be confined close to the jet surface, penetrate deeply into the jet interior, or be confined to the jet interior. The high-pressure regions range from thin and ribbon-like to thick and tubelike depending on the mode and wavelength. The wave speeds can be significantly different at different wavelengths but are less than the flow speed. The highest wave speed for the jets studied has a Lorentz factor somewhat more than half that of the underlying flow speed. A maximum pressure fluctuation criterion found through comparison between theory and a set of relativistic axisymmetric jet simulations is applied to estimate the maximum amplitudes of the helical, elliptical, and triangular normal modes. Transverse velocity fluctuations for these asymmetric modes are up to twice the amplitude of those associated with the axisymmetric pinch mode. The maximum amplitude of jet distortions and the accompanying velocity fluctuations at, for example, the resonant wavelength decreases as the Lorentz factor increases. Long-wavelength helical surface mode and shorter wavelength helical first body mode generated structures should be the most significant. Emission from high-pressure regions as they twist around the jet beam can vary significantly as a result of angular variation in the flow direction associated with normal mode structures if they are viewed at about the beaming angle θ=1/γ. Variation in the Doppler boost factor can lead to brightness asymmetries by factors up to 6 as long-wavelength helical structure produced by the helical surface mode winds around the jet. Higher order surface modes and first body modes produce less variation. Angular variation in the flow direction associated with the helical mode appears consistent with precessing jet models that have been proposed to explain the variability in 3C 273 and BL Lac object AO 0235+164. In particular, cyclic angular variation in the flow direction produced by the normal modes could produce the activity seen in BL Lac object OJ 287. Jet precession provides a mechanism for triggering the helical modes on multiple length scales, e.g., the galactic superluminal GRO J1655-40.
Robust-mode analysis of hydrodynamic flows
NASA Astrophysics Data System (ADS)
Roy, Sukesh; Gord, James R.; Hua, Jia-Chen; Gunaratne, Gemunu H.
2017-04-01
The emergence of techniques to extract high-frequency high-resolution data introduces a new avenue for modal decomposition to assess the underlying dynamics, especially of complex flows. However, this task requires the differentiation of robust, repeatable flow constituents from noise and other irregular features of a flow. Traditional approaches involving low-pass filtering and principle components analysis have shortcomings. The approach outlined here, referred to as robust-mode analysis, is based on Koopman decomposition. Three applications to (a) a counter-rotating cellular flame state, (b) variations in financial markets, and (c) turbulent injector flows are provided.
Stratification of a two-phase monodisperse system in a plane laminar flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedoseev, V. B., E-mail: vbfedoseev@yandex.ru
2016-05-15
A thermodynamic approach is used to describe the distribution of particles of a disperse phase in a plane laminar flow. The effect of the density, shape, and velocity of disperse particles in the flow is considered. Conditions are described under which various modes of stratification of the flow (near-wall, central, intermediate, and multilayer modes) arise. The equilibrium distributions obtained are self-similar; this allows one to compare the behavior of colloidal, highly disperse, coarsely disperse, and coarse-grain systems for various shear velocities and flow widths.
Tomography and Purification of the Temporal-Mode Structure of Quantum Light
NASA Astrophysics Data System (ADS)
Ansari, Vahid; Donohue, John M.; Allgaier, Markus; Sansoni, Linda; Brecht, Benjamin; Roslund, Jonathan; Treps, Nicolas; Harder, Georg; Silberhorn, Christine
2018-05-01
High-dimensional quantum information processing promises capabilities beyond the current state of the art, but addressing individual information-carrying modes presents a significant experimental challenge. Here we demonstrate effective high-dimensional operations in the time-frequency domain of nonclassical light. We generate heralded photons with tailored temporal-mode structures through the pulse shaping of a broadband parametric down-conversion pump. We then implement a quantum pulse gate, enabled by dispersion-engineered sum-frequency generation, to project onto programmable temporal modes, reconstructing the quantum state in seven dimensions. We also manipulate the time-frequency structure by selectively removing temporal modes, explicitly demonstrating the effectiveness of engineered nonlinear processes for the mode-selective manipulation of quantum states.
Volcke, E I P; van Loosdrecht, M C M; Vanrolleghem, P A
2006-01-01
The combined SHARON-Anammox process for treating wastewater streams with high ammonia load is the focus of this paper. In particular, partial nitritation in the SHARON reactor should be performed to such an extent that a nitrite:ammonium ratio is generated which is optimal for full conversion in an Anammox process. In the simulation studies performed in this contribution, the nitrite:ammonium ratio produced in a SHARON process with fixed volume, as well as its effect on the subsequent Anammox process, is examined for realistic influent conditions and considering both direct and indirect pH effects on the SHARON process. Several possible operating modes for the SHARON reactor, differing in control strategies for O2, pH and the produced nitrite:ammonium ratio and based on regulating the air flow rate and/or acid/base addition, are systematically evaluated. The results are quantified through an operating cost index. Best results are obtained by means of cascade feedback control of the SHARON effluent nitrite:ammonium ratio through setting an O2 set-point that is tracked by adjusting the air flow rate, combined with single loop pH control through acid/base addition.
Role of zonal flow predator-prey oscillations in triggering the transition to H-mode confinement.
Schmitz, L; Zeng, L; Rhodes, T L; Hillesheim, J C; Doyle, E J; Groebner, R J; Peebles, W A; Burrell, K H; Wang, G
2012-04-13
Direct evidence of zonal flow (ZF) predator-prey oscillations and the synergistic roles of ZF- and equilibrium E×B flow shear in triggering the low- to high-confinement (L- to H-mode) transition in the DIII-D tokamak is presented. Periodic turbulence suppression is first observed in a narrow layer at and just inside the separatrix when the shearing rate transiently exceeds the turbulence decorrelation rate. The final transition to H mode with sustained turbulence and transport reduction is controlled by equilibrium E×B shear due to the increasing ion pressure gradient.
Dou, Haiyang; Lee, Yong-Ju; Jung, Euo Chang; Lee, Byung-Chul; Lee, Seungho
2013-08-23
In field-flow fractionation (FFF), there is the 'steric transition' phenomenon where the sample elution mode changes from the normal to steric/hyperlayer mode. Accurate analysis by FFF requires understanding of the steric transition phenomenon, particularly when the sample has a broad size distribution, for which the effect by combination of different modes may become complicated to interpret. In this study, the steric transition phenomenon in asymmetrical flow FFF (AF4) was studied using polystyrene (PS) latex beads. The retention ratio (R) gradually decreases as the particle size increases (normal mode) and reaches a minimum (Ri) at diameter around 0.5μm, after which R increases with increasing diameter (steric/hyperlayer mode). It was found that the size-based selectivity (Sd) tends to increase as the channel thickness (w) increases. The retention behavior of cyclo-1,3,5-trimethylene-2,4,6-trinitramine (commonly called 'research department explosive' (RDX)) particles in AF4 was investigated by varying experimental parameters including w and flow rates. AF4 showed a good reproducibility in size determination of RDX particles with the relative standard deviation of 4.1%. The reliability of separation obtained by AF4 was evaluated by transmission electron microscopy (TEM). Copyright © 2013 Elsevier B.V. All rights reserved.
Effects of Equilibrium Toroidal Flow on Locked Mode and Plasma Response in a Tokamak
NASA Astrophysics Data System (ADS)
Zhu, Ping; Huang, Wenlong; Yan, Xingting
2016-10-01
It is widely believed that plasma flow plays significant roles in regulating the processes of mode locking and plasma response in a tokamak in presence of external resonant magnetic perturbations (RMPs). Recently a common analytic relation for both locked mode and plasma response has been developed based on the steady-state solution to the coupled dynamic system of magnetic island evolution and torque balance. The analytic relation predicts the size of the magnetic island of a locked mode or a static nonlinear plasma response for a given RMP amplitude, and rigorously proves a screening effect of the equilibrium toroidal flow. To test the theory, we solve for the locked mode and the nonlinear plasma response in presence of RMP for a circular-shaped limiter tokamak equilibrium with constant toroidal flow, using the initial-value, full MHD simulation code NIMROD. The comparison between the simulation results and the theory prediction, in terms of the quantitative screening effects of equilibrium toroidal flow, will be reported and discussed. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.
Cubic law with aperture-length correlation: implications for network scale fluid flow
NASA Astrophysics Data System (ADS)
Klimczak, Christian; Schultz, Richard A.; Parashar, Rishi; Reeves, Donald M.
2010-06-01
Previous studies have computed and modeled fluid flow through fractured rock with the parallel plate approach where the volumetric flow per unit width normal to the direction of flow is proportional to the cubed aperture between the plates, referred to as the traditional cubic law. When combined with the square root relationship of displacement to length scaling of opening-mode fractures, total flow rates through natural opening-mode fractures are found to be proportional to apertures to the fifth power. This new relationship was explored by examining a suite of flow simulations through fracture networks using the discrete fracture network model (DFN). Flow was modeled through fracture networks with the same spatial distribution of fractures for both correlated and uncorrelated fracture length-to-aperture relationships. Results indicate that flow rates are significantly higher for correlated DFNs. Furthermore, the length-to-aperture relations lead to power-law distributions of network hydraulic conductivity which greatly influence equivalent permeability tensor values. These results confirm the importance of the correlated square root relationship of displacement to length scaling for total flow through natural opening-mode fractures and, hence, emphasize the role of these correlations for flow modeling.
Quah, Timothy; Milton, Ross D; Abdellaoui, Sofiene; Minteer, Shelley D
2017-07-25
Diaphorase and a benzylpropylviologen redox polymer were combined to create a bioelectrode that can both oxidize NADH and reduce NAD + . We demonstrate how bioelectrocatalytic NAD + /NADH inter-conversion can transform a glucose/O 2 enzymatic fuel cell (EFC) with an open circuit potential (OCP) of 1.1 V into an enzymatic redox flow battery (ERFB), which can be rapidly recharged by operation as an EFC.
Liao, Shichao; Zong, Xu; Seger, Brian; Pedersen, Thomas; Yao, Tingting; Ding, Chunmei; Shi, Jingying; Chen, Jian; Li, Can
2016-05-04
Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge injection, our device shows an optimal solar-to-chemical conversion efficiency of ∼5.9% and an overall photon-chemical-electricity energy conversion efficiency of ∼3.2%, which, to our knowledge, outperforms previously reported SRFCs. The proposed SRFC can be self-photocharged to 0.8 V and delivers a discharge capacity of 730 mAh l(-1). Our work may guide future designs for highly efficient solar rechargeable devices.
Modeling of the reactant conversion rate in a turbulent shear flow
NASA Technical Reports Server (NTRS)
Frankel, S. H.; Madnia, C. K.; Givi, P.
1992-01-01
Results are presented of direct numerical simulations (DNS) of spatially developing shear flows under the influence of infinitely fast chemical reactions of the type A + B yields Products. The simulation results are used to construct the compositional structure of the scalar field in a statistical manner. The results of this statistical analysis indicate that the use of a Beta density for the probability density function (PDF) of an appropriate Shvab-Zeldovich mixture fraction provides a very good estimate of the limiting bounds of the reactant conversion rate within the shear layer. This provides a strong justification for the implementation of this density in practical modeling of non-homogeneous turbulent reacting flows. However, the validity of the model cannot be generalized for predictions of higher order statistical quantities. A closed form analytical expression is presented for predicting the maximum rate of reactant conversion in non-homogeneous reacting turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilson, Jeffrey M.
A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second modemore » converting reflector is substantially circular.« less
Inertial modes and their transition to turbulence in a differentially rotating spherical gap flow
NASA Astrophysics Data System (ADS)
Hoff, Michael; Harlander, Uwe; Andrés Triana, Santiago; Egbers, Christoph
2016-04-01
We present a study of inertial modes in a spherical shell experiment. Inertial modes are Coriolis-restored linear wave modes, often arise in rapidly-rotating fluids (e.g. in the Earth's liquid outer core [1]). Recent experimental works showed that inertial modes exist in differentially rotating spherical shells. A set of particular inertial modes, characterized by (l,m,ˆω), where l, m is the polar and azimuthal wavenumber and ˆω = ω/Ωout the dimensionless frequency [2], has been found. It is known that they arise due to eruptions in the Ekman boundary layer of the outer shell. But it is an open issue why only a few modes develop and how they get enhanced. Kelley et al. 2010 [3] showed that some modes draw their energy from detached shear layers (e.g. Stewartson layers) via over-reflection. Additionally, Rieutord et al. (2012) [4] found critical layers within the shear layers below which most of the modes cannot exist. In contrast to other spherical shell experiments, we have a full optical access to the flow. Therefore, we present an experimental study of inertial modes, based on Particle-Image-Velocimetry (PIV) data, in a differentially rotating spherical gap flow where the inner sphere is subrotating or counter-rotating at Ωin with respect to the outer spherical shell at Ωout, characterized by the Rossby number Ro = (Ωin - Ωout)/Ωout. The radius ratio of η = 1/3, with rin = 40mm and rout = 120mm, is close to that of the Earth's core. Our apparatus is running at Ekman numbers (E ≈ 10-5, with E = ν/(Ωoutrout2), two orders of magnitude higher than most of the other experiments. Based on a frequency-Rossby number spectrogram, we can partly confirm previous considerations with respect to the onset of inertial modes. In contrast, the behavior of the modes in the counter-rotation regime is different. We found a triad interaction between three dominant inertial modes, where one is a slow axisymmetric Rossby mode [5]. We show that the amplitude of the most dominant mode (l,m,ˆω) = (3,2,˜ 0.71) is increasing with increasing |Ro| until a critical Rossby number Rocrit. Accompanying with this is an increase of the zonal mean flow outside the tangent cylinder, leading to enhanced angular momentum transport. At the particular Rocrit, the wave mode, and the entire flow, breaks up into smaller-scale turbulence [6], together with a strong increase of the zonal mean flow inside the tangent cylinder. We found that the critical Rossby number scales approximately with E1/5. References [1] Aldridge, K. D.; Lumb, L. I. (1987): Inertial waves identified in the Earth's fluid outer core. Nature 325 (6103), S. 421-423. DOI: 10.1038/325421a0. [2] Greenspan, H. P. (1968): The theory of rotating fluids. London: Cambridge U.P. (Cambridge monographs on mechanics and applied mathematics). [3] Kelley, D. H.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2010): Selection of inertial modes in spherical Couette flow. Phys. Rev. E 81 (2), 26311. DOI: 10.1103/PhysRevE.81.026311. [4] Rieutord, M.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2012): Excitation of inertial modes in an experimental spherical Couette flow. Phys. Rev. E 86 (2), 026304. DOI: 10.1103/PhysRevE.86.026304. [5] Hoff, M., Harlander, U., Egbers, C. (2016): Experimental survey of linear and nonlinear inertial waves and wave instabilities in a spherical shell. J. Fluid Mech., (in print) [6] Kerswell, R. R. (1999): Secondary instabilities in rapidly rotating fluids: inertial wave breakdown. Journal of Fluid Mechanics 382, S. 283-306. DOI: 10.1017/S0022112098003954.
Metallurgical technologies, energy conversion, and magnetohydrodynamic flows
NASA Astrophysics Data System (ADS)
Branover, Herman; Unger, Yeshajahu
The present volume discusses metallurgical applications of MHD, R&D on MHD devices employing liquid working medium for process applications, electromagnetic (EM) modulation of molten metal flow, EM pump performance of superconducting MHD devices, induction EM alkali-metal pumps, a physical model for EM-driven flow in channel-induction furnaces, grain refinement in Al alloys via EM vibrational method, dendrite growth of solidifying metal in dc magnetic field, MHD for mass and heat transfer in single-crystal melt growth, inverse EM shaping, and liquid-metal MHD development in Israel. Also discussed are the embrittlement of steel by lead, an open cycle MHD disk generator, the acceleration of gas-liquid piston flows for molten-metal MHD generators, MHD flow around a cylinder, new MHD drag coefficients, liquid-metal MHD two-phase flow, and two-phase liquid gas mixers for MHD energy conversion. (No individual items are abstracted in this volume)
Guermandi, Marco; Bigucci, Alessandro; Franchi Scarselli, Eleonora; Guerrieri, Roberto
2015-01-01
We present a system for the acquisition of EEG signals based on active electrodes and implementing a Driving Right Leg circuit (DgRL). DgRL allows for single-ended amplification and analog-to-digital conversion, still guaranteeing a common mode rejection in excess of 110 dB. This allows the system to acquire high-quality EEG signals essentially removing network interference for both wet and dry-contact electrodes. The front-end amplification stage is integrated on the electrode, minimizing the system's sensitivity to electrode contact quality, cable movement and common mode interference. The A/D conversion stage can be either integrated in the remote back-end or placed on the head as well, allowing for an all-digital communication to the back-end. Noise integrated in the band from 0.5 to 100 Hz is comprised between 0.62 and 1.3 μV, depending on the configuration. Current consumption for the amplification and A/D conversion of one channel is 390 μA. Thanks to its low noise, the high level of interference suppression and its quick setup capabilities, the system is particularly suitable for use outside clinical environments, such as in home care, brain-computer interfaces or consumer-oriented applications.
Cho, Hideo; Rokhlin, Stanislav I
2015-09-01
The Rayleigh-to-interface wave conversion and the propagation of the resulting symmetric and antisymmetric modes on a bonded interface between solids is analyzed by the two dimensional finite difference time domain method. The propagated patterns were visualized to improve understanding of the phenomena. It is found that the partition of the energy of the interface waves above and below the interface changes repeatedly with propagation distance due to interference between the two modes which have slightly different phase velocities. The destructive interference of those two modes results in dips in the amplitude spectrum of the interface waves, which shift in frequency with propagation distance. The Rayleigh wave received that is created by the interface wave at the exit corner of the joint also shows interference dips in its spectrum. Those dips depend on the interface properties and can potentially be used for interface characterization. Conversion factors related to the interface wave at the upward and downward corners are determined and discussed. As a result, the total transition factor through the upward and downward corners for the interface wave was estimated as 0.37 and would be sufficiently large to probe the interface by coupling from the Rayleigh to the interface wave. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Johnson, W.
1974-01-01
An analytical model is developed for proprotor aircraft dynamics. The rotor model includes coupled flap-lag bending modes, and blade torsion degrees of freedom. The rotor aerodynamic model is generally valid for high and low inflow, and for axial and nonaxial flight. For the rotor support, a cantilever wing is considered; incorporation of a more general support with this rotor model will be a straight-forward matter.
Theoretical Studies of Low-Loss Optical Fibers.
1980-09-15
on the fiber surface. Single-mode fiber operation is of interest in communications. Marcuse has shown that surface imperfections are a strong source...0.01 very small value of a : 8A at X = 1 vim Marcuse single mode 2.7 typical value of a = 1 jim, A : 10.6 vm, af = 37 Pim surface imperfections 55...Braunstein, "Scattering Losses in Single and Polycrystalline Materials for Infrared Fiber Applications," unpublished. 5. D. Marcuse , "Mode Conversion
Flow and performance of an air-curtain biological safety cabinet.
Huang, Rong Fung; Chou, Chun I
2009-06-01
Using laser-assisted smoke flow visualization and tracer gas concentration detection techniques, this study examines aerodynamic flow properties and the characteristics of escape from containment, inward dispersion, and cross-cabinet contamination of a biological safety cabinet installed with an air curtain across the front aperture. The experimental method partially simulates the NSF/ANSI 49 standards with the difference that the biological tracer recommended by these standards is replaced by a mixture of 10% SF(6) in N(2). The air curtain is set up across the cabinet aperture plane by means of a narrow planar jet issued from the lower edge of the sash and a suction flow going through a suction slot installed at the front edge of the work surface. Varying the combination of jet velocity, suction flow velocity, and descending flow velocity reveals three types of characteristic flow modes: 'straight curtain', 'slightly concave curtain', and 'severely concave curtain'. Operating the cabinet in the straight curtain mode causes the air curtain to impinge on the doorsill and therefore induces serious escape from containment. In the severely concave curtain mode, drastically large inward dispersion and cross-cabinet contamination were observed because environmental air entered into the cabinet and a three-dimensional vortical flow structure formed in the cabinet. The slightly concave curtain mode presents a smooth and two-dimensional flow pattern with an air curtain separating the outside atmosphere from the inside space of the cabinet, and therefore exhibited negligibly small escape from containment, inward dispersion, and cross-cabinet contamination.
NASA Astrophysics Data System (ADS)
Alam, Sabir Ul; Rao, A. Srinivasa; Ghosh, Anirban; Vaity, Pravin; Samanta, G. K.
2018-04-01
We report on a simple experimental scheme to generate and control the orbital angular momentum (OAM) spectrum of the asymmetric vortex beams in a nonlinear frequency conversion process. Using a spiral phase plate (SPP) and adjusting the transverse shift of the SPP with respect to the incident Gaussian beam axis, we have transformed the symmetric (intensity distribution) optical vortex of order l into an asymmetric vortex beam of measured broad spectrum of OAM modes of orders l, l - 1, l - 2, …, 0 (Gaussian mode). While the position of the SPP determines the distribution of the OAM modes, we have also observed that the modal distribution of the vortex beam changes with the shift of the SPP of all orders and finally results in a Gaussian beam (l = 0). Using single-pass frequency doubling of the asymmetric vortices, we have transferred the pump OAM spectra, l, l - 1, l - 2, …, 0, into the broad spectra of higher order OAM modes, 2l, 2l - 1, 2l - 2, …, 0 at green wavelength, owing to OAM conservation in nonlinear processes. We also observed an increase in single-pass conversion efficiency with the increase in asymmetry of the pump vortices producing a higher power vortex beam of mixed OAM modes at a new wavelength than that of the pure OAM mode.
Production of Nitrous Oxide from Nitrite in Stable Type II Methanotrophic Enrichments.
Myung, Jaewook; Wang, Zhiyue; Yuan, Tong; Zhang, Ping; Van Nostrand, Joy D; Zhou, Jizhong; Criddle, Craig S
2015-09-15
The coupled aerobic-anoxic nitrous decomposition operation is a new process for wastewater treatment that removes nitrogen from wastewater and recovers energy from the nitrogen in three steps: (1) NH4(+) oxidation to NO2(-), (2) NO2(-) reduction to N2O, and (3) N2O conversion to N2 with energy production. Here, we demonstrate that type II methanotrophic enrichments can mediate step two by coupling oxidation of poly(3-hydroxybutyrate) (P3HB) to NO2(-) reduction. Enrichments grown with NH4(+) and NO2(-) were subject to alternating 48-h aerobic and anoxic periods, in which CH4 and NO2(-) were added together in a "coupled" mode of operation or separately in a "decoupled mode". Community structure was stable in both modes and dominated by Methylocystis. In the coupled mode, production of P3HB and N2O was low. In the decoupled mode, significant P3HB was produced, and oxidation of P3HB drove reduction of NO2(-) to N2O with ∼ 70% conversion for >30 cycles (120 d). In batch tests of wasted cells from the decoupled mode, N2O production rates increased at low O2 or high NO2(-) levels. The results are significant for the development of engineered processes that remove nitrogen from wastewater and for understanding of conditions that favor environmental production of N2O.
Direct numerical simulations of mack-mode damping on porous coated cones
NASA Astrophysics Data System (ADS)
Lüdeke, H.; Wartemann, V.
2013-06-01
The flow field over a 3 degree blunt cone is investigated with respect to a hypersonic stability analysis of the boundary-layer flow at Mach 6 with porous as well as smooth walls by comparing local direct numerical simulations (DNS) and linear stability theory (LST) data. The original boundary-layer profile is generated by a finite volume solver, using shock capturing techniques to generate an axisymmetric flow field. Local boundary-layer profiles are extracted from this flow field and hypersonic Mack-modes are superimposed for cone-walls with and without a porous surface used as a passive transition-reduction device. Special care is taken of curvature effects of the wall on the mode development over smooth and porous walls.
Equilibrium and stability of flow-dominated Plasmas in the Big Red Ball
NASA Astrophysics Data System (ADS)
Siller, Robert; Flanagan, Kenneth; Peterson, Ethan; Milhone, Jason; Mirnov, Vladimir; Forest, Cary
2017-10-01
The equilibrium and linear stability of flow-dominated plasmas are studied numerically using a spectral techniques to model MRI and dynamo experiments in the Big Red Ball device. The equilibrium code solves for steady-state magnetic fields and plasma flows subject to boundary conditions in a spherical domain. It has been benchmarked with NIMROD (non-ideal MHD with rotation - open discussion), Two different flow scenarios are studied. The first scenario creates a differentially rotating toroidal flow that is peaked at the center. This is done to explore the onset of the magnetorotational instability (MRI) in a spherical geometry. The second scenario creates a counter-rotating von Karman-like flow in the presence of a weak magnetic field. This is done to explore the plasma dynamo instability in the limit of a weak applied field. Both scenarios are numerically modeled as axisymmetric flow to create a steady-state equilibrium solution, the stability and normal modes are studied in the lowest toroidal mode number. The details of the observed flow, and the structure of the fastest growing modes will be shown. DoE, NSF.
Two-mode thermal-noise squeezing in an electromechanical resonator.
Mahboob, I; Okamoto, H; Onomitsu, K; Yamaguchi, H
2014-10-17
An electromechanical resonator is developed in which mechanical nonlinearities can be dynamically engineered to emulate the nondegenerate parametric down-conversion interaction. In this configuration, phonons are simultaneously generated in pairs in two macroscopic vibration modes, resulting in the amplification of their motion. In parallel, two-mode thermal squeezed states are also created, which exhibit fluctuations below the thermal motion of their constituent modes as well as harboring correlations between the modes that become almost perfect as their amplification is increased. The existence of correlations between two massive phonon ensembles paves the way towards an entangled macroscopic mechanical system at the single phonon level.
Feed Me! Rethinking Traditional Modes of Library Access and Content Delivery
ERIC Educational Resources Information Center
Hutchens, Chad; Clark, Jason
2008-01-01
At their core, XML feeds are content-delivery vehicles. This fact has not always been highlighted in library conversations surrounding RSS and ATOM. The authors have looked to extend the conversation by offering a proof of concept application using RSS as a means to deliver all types of library data: PDFs, docs, images, video--to people where and…
3.1 W narrowband blue external cavity diode laser
NASA Astrophysics Data System (ADS)
Peng, Jue; Ren, Huaijin; Zhou, Kun; Li, Yi; Du, Weichuan; Gao, Songxin; Li, Ruijun; Liu, Jianping; Li, Deyao; Yang, Hui
2018-03-01
We reported a high-power narrowband blue diode laser which is suitable for subsequent nonlinear frequency conversion into the deep ultraviolet (DUV) spectral range. The laser is based on an external cavity diode laser (ECDL) system using a commercially available GaN-based high-power blue laser diode emitting at 448 nm. Longitudinal mode selection is realized by using a surface diffraction grating in Littrow configuration. The diffraction efficiency of the grating was optimized by controlling the polarization state of the laser beam incident on the grating. A maximum optical output power of 3.1 W in continuous-wave operation with a spectral width of 60 pm and a side-mode suppression ratio (SMSR) larger than 10 dB at 448.4 nm is achieved. Based on the experimental spectra and output powers, the theoretical efficiency and output power of the subsequent nonlinear frequency conversion were calculated according to the Boyd- Kleinman theory. The single-pass conversion efficiency and output power is expected to be 1.9×10-4 and 0.57 mW, respectively, at the 3.1 W output power of the ECDL. The high-power narrowband blue diode laser is very promising as pump source in the subsequent nonlinear frequency conversion.
Buoyancy instability of homologous implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, B. M.
2015-06-15
With this study, I consider the hydrodynamic stability of imploding ideal gases as an idealized model for inertial confinement fusion capsules, sonoluminescent bubbles and the gravitational collapse of astrophysical gases. For oblate modes (short-wavelength incompressive modes elongated in the direction of the mean flow), a second-order ordinary differential equation is derived that can be used to assess the stability of any time-dependent flow with planar, cylindrical or spherical symmetry. Upon further restricting the analysis to homologous flows, it is shown that a monatomic gas is governed by the Schwarzschild criterion for buoyant stability. Under buoyantly unstable conditions, both entropy andmore » vorticity fluctuations experience power-law growth in time, with a growth rate that depends upon mean flow gradients and, in the absence of dissipative effects, is independent of mode number. If the flow accelerates throughout the implosion, oblate modes amplify by a factor (2C) |N0|ti, where C is the convergence ratio of the implosion, N 0 is the initial buoyancy frequency and t i is the implosion time scale. If, instead, the implosion consists of a coasting phase followed by stagnation, oblate modes amplify by a factor exp(π|N 0|t s), where N 0 is the buoyancy frequency at stagnation and t s is the stagnation time scale. Even under stable conditions, vorticity fluctuations grow due to the conservation of angular momentum as the gas is compressed. For non-monatomic gases, this additional growth due to compression results in weak oscillatory growth under conditions that would otherwise be buoyantly stable; this over-stability is consistent with the conservation of wave action in the fluid frame. The above analytical results are verified by evolving the complete set of linear equations as an initial value problem, and it is demonstrated that oblate modes are the fastest-growing modes and that high mode numbers are required to reach this limit (Legendre mode ℓ ≳ 100 for spherical flows). Finally, comparisons are made with a Lagrangian hydrodynamics code, and it is found that a numerical resolution of ~30 zones per wavelength is required to capture these solutions accurately. This translates to an angular resolution of ~(12/ℓ)°, or ≲ 0.1° to resolve the fastest-growing modes.« less
Pilot-scale testing of a leachbed for anaerobic digestion of livestock residues on-farm.
Yap, S D; Astals, S; Jensen, P D; Batstone, D J; Tait, S
2016-04-01
A leachbed is a relatively simple anaerobic digester suitable for high-solids residues and on-farm applications. However, performance characteristics and optimal configuration of leachbeds are not well-understood. In this study, two 200 L pilot-scale leachbeds fed with spent straw bedding from pigs/swine (methane potential, B0 = 195-218 L CH4 kg(-1) VS fed) were used to assess the effects of leachate recirculation mode (trickling vs. flood-and-drain) on the digestion performance. Results showed comparable substrate solubilisation extents (30-45% of total chemical oxygen demand fed) and methane conversion (50% of the B0) for the trickling and flood-and-drain modes, indicating that digestion performance was insensitive to the mode of leachate flow. However, the flood-and-drain leachbed mobilised more particulates into the leachate than the trickling leachbed, an undesirable outcome, because these particulates were mostly non-biodegradable. Inoculation with solid residues from a previous leachbed (inoculum-to-substrate ratio of 0.22 on a VS basis) hastened the leachbed start-up, but methane recovery remained at 50% of the B0 regardless of the leachate recirculation mode. Post-digestion testing indicated that the leachbeds may have been limited by microbial activity/inhibition. The high residual methane potential of leachate from the trickling (residual Bo = 732 ± 7 L CH4 kg(-1) VS fed) and flood-and-drain leachbeds (582 ± 8 L CH4 kg(-1) VS fed) indicated an opportunity for further processing of leachate via a separate methanogenic step. Overall, a trickling leachbed appeared to be more favourable than the flood-and-drain leachbed for treating spent bedding at farm-scale due to easier operation. Copyright © 2016 Elsevier Ltd. All rights reserved.
On thermal instability and hydrostatic equilibrium in cooling flows. [of intracluster gas
NASA Technical Reports Server (NTRS)
Balbus, Steven A.
1988-01-01
The nature of thermal instability in cluster cooling flows is investigated. The radial modes of a spherical static system are discussed, and it is shown that only the acoustical modes are present at short wavelengths and that there are no isobaric thermal instabilities. The analysis is expanded to include nonradial modes, and it is demonstrated that there are azimuthal high wavenumber thermal modes which can indeed become unstable according to the classical Field (1965) criterion. A new convective instability criterion is derived, and thermal instability and its limitations are briefly discussed.
NASA Technical Reports Server (NTRS)
Thompkins, W. T., Jr.
1985-01-01
A streamline Euler solver which combines high accuracy and good convergence rates with capabilities for inverse or direct mode solution modes and an analysis technique for finite difference models of hyperbolic partial difference equations were developed.
Lewis, Alex J.; Borole, Abhijeet P.
2016-06-16
We investigated the effect of flow rate and recycle on the conversion of a biomass-derived pyrolysis aqueous phase in amicrobial electrolysis cell (MEC) to demonstrate production of renewable hydrogen in biorefinery. A continuous MEC operation was investigated under one-pass and recycle conditions usingthe complex, biomass-derived, fermentable, mixed substrate feed at a constant concentration of 0.026 g/L,while testing flow rates ranging from 0.19 to 3.6 mL/min. This corresponds to an organic loading rate (OLR) of 0.54₋10 g/L-day. Mass transfer issues observed at low flow rates were alleviated using high flow rates.Increasing the flow rate to 3.6 mL/min (3.7 min HRT) duringmore » one-pass operation increased the hydrogen productivity 3-fold, but anode conversion efficiency (ACE) decreased from 57.9% to 9.9%. Recycle of the anode liquid helped to alleviate kinetic limitations and the ACE increased by 1.8-fold and the hydrogen productivity by 1.2-fold compared to the one-pass condition at the flow rate of 3.6 mL/min (10 g/L-d OLR). High COD removal was also achieved under recycle conditions, reaching 74.2 1.1%, with hydrogen production rate of 2.92 ± 0.51 L/L-day. This study demonstrates the advantages of combining faster flow rates with a recycle process to improve rate of hydrogen production from a switchgrass-derived stream in the biorefinery.« less
Real English: A Translator to Enable Natural Language Man-Machine Conversation.
ERIC Educational Resources Information Center
Gautin, Harvey
This dissertation presents a pragmatic interpreter/translator called Real English to serve as a natural language man-machine communication interface in a multi-mode on-line information retrieval system. This multi-mode feature affords the user a library-like searching tool by giving him access to a dictionary, lexicon, thesaurus, synonym table,…
Time-Distance Helioseismology with f Modes as a Method for Measurement of Near-Surface Flows
NASA Technical Reports Server (NTRS)
Duvall, Thomas L., Jr.; Gizon, Laurent
1999-01-01
Travel times measured for the f mode have been used to study flows near the solar surface in conjunction with simultaneous measurements of the magnetic field. Previous flow measurements of doppler surface rotation, small magnetic feature rotation, supergranular pattern rotation, and surface meridional circulation have been confirmed. In addition, the flow in supergranules due to Coriolis forces has been measured. The spatial and temporal power spectra for a six-day observing sequence has been measured.
Machine Detection of Enhanced Electromechanical Energy Conversion in PbZr 0.2Ti 0.8O 3 Thin Films
Agar, Joshua C.; Cao, Ye; Naul, Brett; ...
2018-05-28
Many energy conversion, sensing, and microelectronic applications based on ferroic materials are determined by the domain structure evolution under applied stimuli. New hyperspectral, multidimensional spectroscopic techniques now probe dynamic responses at relevant length and time scales to provide an understanding of how these nanoscale domain structures impact macroscopic properties. Such approaches, however, remain limited in use because of the difficulties that exist in extracting and visualizing scientific insights from these complex datasets. Using multidimensional band-excitation scanning probe spectroscopy and adapting tools from both computer vision and machine learning, an automated workflow is developed to featurize, detect, and classify signatures ofmore » ferroelectric/ferroelastic switching processes in complex ferroelectric domain structures. This approach enables the identification and nanoscale visualization of varied modes of response and a pathway to statistically meaningful quantification of the differences between those modes. Lastly, among other things, the importance of domain geometry is spatially visualized for enhancing nanoscale electromechanical energy conversion.« less
NASA Astrophysics Data System (ADS)
Dong, Guo-Xiang; Shi, Hong-Yu; Xia, Song; Li, Wei; Zhang, An-Xue; Xu, Zhuo; Wei, Xiao-Yong
2016-08-01
In this paper, we present a novel metasurface design that achieves a high-efficiency ultra-broadband cross polarization conversion. The metasurface is composed of an array of unit resonators, each of which combines an H-shaped structure and two rectangular metallic patches. Different plasmon resonance modes are excited in unit resonators and allow the polarization states to be manipulated. The bandwidth of the cross polarization converter is 82% of the central frequency, covering the range from 15.7 GHz to 37.5 GHz. The conversion efficiency of the innovative new design is higher than 90%. At 14.43 GHz and 40.95 GHz, the linearly polarized incident wave is converted into a circularly polarized wave. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471292, 61331005, 61471388, 51277012, 41404095, and 61501365), the 111 Project, China (Grant No. B14040), the National Basic Research Program of China (Grant No. 2015CB654602), and the China Postdoctoral Science Foundation ( Grant No. 2015M580849).
Machine Detection of Enhanced Electromechanical Energy Conversion in PbZr 0.2Ti 0.8O 3 Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agar, Joshua C.; Cao, Ye; Naul, Brett
Many energy conversion, sensing, and microelectronic applications based on ferroic materials are determined by the domain structure evolution under applied stimuli. New hyperspectral, multidimensional spectroscopic techniques now probe dynamic responses at relevant length and time scales to provide an understanding of how these nanoscale domain structures impact macroscopic properties. Such approaches, however, remain limited in use because of the difficulties that exist in extracting and visualizing scientific insights from these complex datasets. Using multidimensional band-excitation scanning probe spectroscopy and adapting tools from both computer vision and machine learning, an automated workflow is developed to featurize, detect, and classify signatures ofmore » ferroelectric/ferroelastic switching processes in complex ferroelectric domain structures. This approach enables the identification and nanoscale visualization of varied modes of response and a pathway to statistically meaningful quantification of the differences between those modes. Lastly, among other things, the importance of domain geometry is spatially visualized for enhancing nanoscale electromechanical energy conversion.« less
Self-induced flavor conversion of supernova neutrinos on small scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, S.; Hansen, R. S.; Izaguirre, I.
2016-01-15
Self-induced flavor conversion of supernova (SN) neutrinos is a generic feature of neutrino-neutrino dispersion. The corresponding run-away modes in flavor space can spontaneously break the original symmetries of the neutrino flux and in particular can spontaneously produce small-scale features as shown in recent schematic studies. However, the unavoidable “multi-angle matter effect” shifts these small-scale instabilities into regions of matter and neutrino density which are not encountered on the way out from a SN. The traditional modes which are uniform on the largest scales are most prone for instabilities and thus provide the most sensitive test for the appearance of self-inducedmore » flavor conversion. As a by-product we clarify the relation between the time evolution of an expanding neutrino gas and the radial evolution of a stationary SN neutrino flux. Our results depend on several simplifying assumptions, notably stationarity of the solution, the absence of a “backward” neutrino flux caused by residual scattering, and global spherical symmetry of emission.« less
Self-induced flavor conversion of supernova neutrinos on small scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, S.; Izaguirre, I.; Raffelt, G.G.
2016-01-01
Self-induced flavor conversion of supernova (SN) neutrinos is a generic feature of neutrino-neutrino dispersion. The corresponding run-away modes in flavor space can spontaneously break the original symmetries of the neutrino flux and in particular can spontaneously produce small-scale features as shown in recent schematic studies. However, the unavoidable ''multi-angle matter effect'' shifts these small-scale instabilities into regions of matter and neutrino density which are not encountered on the way out from a SN. The traditional modes which are uniform on the largest scales are most prone for instabilities and thus provide the most sensitive test for the appearance of self-inducedmore » flavor conversion. As a by-product we clarify the relation between the time evolution of an expanding neutrino gas and the radial evolution of a stationary SN neutrino flux. Our results depend on several simplifying assumptions, notably stationarity of the solution, the absence of a ''backward'' neutrino flux caused by residual scattering, and global spherical symmetry of emission.« less
da Silva, Eduardo Moreira; Poskus, Laiza Tatiana; Guimarães, José Guilherme Antunes; de Araújo Lima Barcellos, Alexandre; Fellows, Carlos Eduardo
2008-03-01
This study analyzed the influence of light polymerization modes on crosslink density (CD) and the degree of conversion (DC) of dental composites. A minifilled hybrid and a nanofilled dental composite were photoactivated with two light polymerization modes: Conventional-850 mW/cm2 for 20 s and Gradual-50 up to 1,000 mW/cm2 for 10 s+1,000 mW/cm2 for 10 s. DC was determined by the use of FT-Raman-spectrometer. A softening test, using Knoop diamond indentation, was carried out at the top and bottom of 2 mm thick dental composite disks, before and after storage in 100% ethanol for 24 h, in order to represent the amount of crosslink density. Data were analyzed by ANOVA and Student-Newman-Keuls' multiple range test (alpha=0.05). The DC was influenced by light polymerization modes, with Gradual mode presenting lower DC. On bottom surfaces, the nanofilled dental composite was more susceptible to softening by ethanol than minifilled hybrid, and gradual light polymerization of nanofilled dental composite resulted in more softening than when conventional light polymerization was used. The results suggest that nanofilled composites are capable undergoing more plasticization if applied in thick increments.
NASA Astrophysics Data System (ADS)
Li, Chuan-Hsun; Blasing, David; Chen, Yong
2017-04-01
In cold atom systems, spin excitations have been shown to be a sensitive probe of interactions and quantum statistical effects, and can be used to study spin transport in both Fermi and Bose gases. In particular, spin-dipole mode (SDM) is a type of excitation that can generate a spin current without a net mass current. We present recent measurements and analysis of SDM in a disorder-free, interacting three-dimensional (3D) 87Rb Bose-Einstein condensate (BEC) by applying spin-dependent synthetic electric fields to actuate head-on collisions between two BECs of different spin states. We experimentally study and compare the behaviors of the system following SDM excitations in the presence as well as absence of synthetic 1D spin-orbit coupling (SOC). We find that in the absence of SOC, SDM is relatively weakly damped, accompanied with collision-induced thermalization which heats up the atomic cloud. However, in the presence of SOC, we find that SDM is more strongly damped with reduced thermalization, and observe excitation of a quadrupole mode that exhibits BEC shape oscillation even after SDM is damped out. Such a mode conversion bears analogies with the Beliaev coupling process or the parametric frequency down conversion of light in nonlinear optics.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Ju, Jinchuan; Zhang, Jun; Zhong, Huihuang
2017-12-01
To achieve GW-level amplification output radiation at the X-band, a relativistic triaxial klystron amplifier with two-stage cascaded double-gap bunching cavities is investigated. The input cavity is optimized to obtain a high absorption rate of the external injection microwave. The cascaded bunching cavities are optimized to achieve a high depth of the fundamental harmonic current. A double-gap standing wave extractor is designed to improve the beam wave conversion efficiency. Two reflectors with high reflection coefficients both to the asymmetric mode and the TEM mode are employed to suppress the asymmetric mode competition and TEM mode microwave leakage. Particle-in-cell simulation results show that a high power microwave with a power of 2.53 GW and a frequency of 8.4 GHz is generated with a 690 kV, 9.3 kA electron beam excitation and a 25 kW seed microwave injection. Particularly, the achieved power conversion efficiency is about 40%, and the gain is as high as 50 dB. Meanwhile, there is insignificant self-excitation of the parasitic mode in the proposed structure by adopting the reflectors. The relative phase difference between the injected signals and the output microwaves keeps locked after the amplifier becomes saturated.
Flow-structure interaction effects on a jet emanating from a flexible nozzle
Murugappan, S.; Gutmark, E. J.; Lakhamraju, R. R.; Khosla, S.
2008-01-01
In recent years, a wide variety of applications have been found for the use of pulsed jets in the area of flow control. The goal of the current study was to identify the flow field and mixing characteristics associated with an incompressible elongated jet emitted from a flexible nozzle. The shape of the nozzle was that of a high aspect ratio jet deforming from a fully opened to a completely closed configuration. The jet was characterized by a pulsatile flow that was self-excited by the motion of the flexible tube. The frequency of excitation was found to be between 150 and 175 Hz and the Strouhal number (nondimensional frequency) varied from 0.17 to 0.45. The jet flow was dominated by vortices that were shed from the nozzle with an axis parallel to the major axis. The vortices in the near field were quasi-two-dimensional so that measurements performed at the center plane represented the dynamics of the entire vortex. The nozzle excited two different modes depending on the tension applied to the flexible nozzle and the volumetric flow through it. The first was a flapping mode, which was associated with alternate shedding of vortices. This caused strong steering of the jet to one side or the other. The second mode was a symmetric mode that was associated with the formation of counter-rotating vortex pairs. Turbulence and jet spread in the measured planes were much larger in the first mode than the second one. PMID:19547723
NASA Astrophysics Data System (ADS)
Limeng, Zhang; Dan, Lu; Zhaosong, Li; Biwei, Pan; Lingjuan, Zhao
2016-12-01
The design, fabrication and characterization of a fundamental/first-order mode converter based on multimode interference coupler on InP substrate were reported. Detailed optimization of the device parameters were investigated using 3D beam propagation method. In the experiments, the fabricated mode converter realized mode conversion from the fundamental mode to the first-order mode in the wavelength range of 1530-1565 nm with excess loss less than 3 dB. Moreover, LP01 and LP11 fiber modes were successfully excited from a few-mode fiber by using the device. This InP-based mode converter can be a possible candidate for integrated transceivers for future mode-division multiplexing system. Project supported by the National Basic Research Program of China (No. 2014CB340102) and in part by the National Natural Science Foundation of China (Nos. 61274045, 61335009).
Stability of surface plastic flow in large strain deformation of metals
NASA Astrophysics Data System (ADS)
Viswanathan, Koushik; Udapa, Anirduh; Sagapuram, Dinakar; Mann, James; Chandrasekar, Srinivasan
We examine large-strain unconstrained simple shear deformation in metals using a model two-dimensional cutting system and high-speed in situ imaging. The nature of the deformation mode is shown to be a function of the initial microstructure state of the metal and the deformation geometry. For annealed metals, which exhibit large ductility and strain hardening capacity, the commonly assumed laminar flow mode is inherently unstable. Instead, the imposed shear is accommodated by a highly rotational flow-sinuous flow-with vortex-like components and large-amplitude folding on the mesoscale. Sinuous flow is triggered by a plastic instability on the material surface ahead of the primary region of shear. On the other hand, when the material is extensively strain-hardened prior to shear, laminar flow again becomes unstable giving way to shear banding. The existence of these flow modes is established by stability analysis of laminar flow. The role of the initial microstructure state in determining the change in stability from laminar to sinuous / shear-banded flows in metals is elucidated. The implications for cutting, forming and wear processes for metals, and to surface plasticity phenomena such as mechanochemical Rehbinder effects are discussed.
Effects on wetting by spray on concentrated flow erosion and intake rate
USDA-ARS?s Scientific Manuscript database
When water flows in dry rills (or furrows), fast wetting and aggregate slaking occur. Conversely, when rain wets the surface of the soil before applying concentrated flow, slow wetting precedes the concentrated flow, and less aggregate disintegration occurs. It is hypothesized that slow wetting by t...
Energetics of the Brazil Current in the Rio Grande Cone region
NASA Astrophysics Data System (ADS)
Brum, André Lopes; Azevedo, José Luiz Lima de; Oliveira, Leopoldo Rota de; Calil, Paulo Henrique Rezende
2017-10-01
The energetics of the Brazil Current (BC) in the region of the Rio Grande Cone (RGC, 30-35.5°S), a topographic rise in the southwest portion of the Brazilian continental margin, are analyzed using 16 years of numerical data from the Ocean General Circulation Model (OGCM) for the Earth Simulator (OFES). The main focus of this study is the eddy-mean flow interactions of the BC and the local energy budgets in the study region. The kinetic and potential energy balance equations are derived for mean and eddy flows, and the resulting terms are presented and discussed. The eddy-mean flow interactions exhibit complex spatial distributions, and the intensities of the energy budgets decrease with increasing depth. However, only the mean potential energy (MPE) budget decreases southward. Eddy kinetic energy (EKE) and eddy potential energy (EPE) exhibit similar horizontal distribution patterns. Additionally, the baroclinic and barotropic conversion rates increase downstream of the bump, where the eddy energy field exhibits along-stream variability that increases southward. Barotropic conversion is more intense between 50 and 200 m, where mean kinetic energy (MKE) and EKE are concentrated, and it exhibits a horizontal cross-stream variation pattern, with mean-to-eddy energy conversion observed on the offshore side of the BC. This result indicates that the turbulence associated with the stream jet increases as the BC moves away from the coast, with the conversion term acting to stabilize the flow. Baroclinic conversion exhibits a high intensity below 300 m (where MPE and EPE display peaks), and it has a greater influence on the eddy-mean flow interaction than does the barotropic conversion. The RGC directly affects the local dynamics of the BC by increasing the eddy field as soon as the BC reaches the bump. The energy diagrams illustrate a stream characterized by evolving barotropic and baroclinic instability processes throughout the water column. This result indicates an intrinsically unstable jet in the study region. Moreover, baroclinic instability is the main source of EKE in the RGC region.
Ray, Bahni; Reddy, Puchalapalli Dinesh Sankar; Bandyopadhyay, Dipankar; Joo, Sang W; Sharma, Ashutosh; Qian, Shizhi; Biswas, Gautam
2011-11-01
We consider the stability of a thin liquid film with a free charged surface resting on a solid charged substrate by performing a general Orr-Sommerfeld (O-S) analysis complemented by a long-wave (LW) analysis. An externally applied field generates an electroosmotic flow (EOF) near the solid substrate and an electrophoretic flow (EPF) at the free surface. The EPF retards the EOF when both the surfaces have the same sign of the potential and can even lead to the flow reversal in a part of the film. In conjunction with the hydrodynamic stress, the Maxwell stress is also considered in the problem formulation. The electrokinetic potential at the liquid-air and solid-liquid interfaces is modelled by the Poisson-Boltzmann equation with the Debye-Hückel approximation. The O-S analysis shows a finite-wavenumber shear mode of instability when the inertial forces are strong and an LW interfacial mode of instability in the regime where the viscous force dominates. Interestingly, both the modes are found to form beyond a critical flow rate. The shear (interfacial) mode is found to be dominant when the film is thick (thin), the electric field applied is strong (weak), and the zeta-potentials on the liquid-air and solid-liquid interfaces are high (small). The LW analysis predicts the presence of the interfacial mode, but fails to capture the shear mode. The change in the propagation direction of the interfacial mode with the zeta-potential is predicted by both O-S and LW analyses. The parametric range in which the LW analysis is valid is thus demonstrated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
McCaffery, Anthony J
2015-09-14
Little is known of the mechanism by which H and H2, the principal constituents of the post-re-combination early Universe, cooled sufficiently to permit cluster formation, nucleosynthesis, and, eventually, the formation of structured objects. Radiative decay primarily cools the internal modes of H2, as Δj = - 2 jumps accompany quadrupolar emission. This, however, would be a self-limiting mechanism. In this work, a translational energy cooling mechanism based on collision-induced, translation-to-internal mode conversion, is extended, following an earlier study [A. J. McCaffery and R. J. Marsh, J. Chem. Phys. 139, 234310 (2013)] of ensembles comprising H2 in a H atom bath gas. Here, the possible influence of minor species, such as HD, on this cooling mechanism is investigated. Results suggest that the influence of HD is small but not insignificant. Conversion is very rapid and an overall translation-to-internal energy conversion efficiency of some 5% could be expected. This finding may be of use in the further development of models of this complex phase of early Universe evolution. An unexpected finding in this study was that H2 + HD ensembles are capable of very rapid translation-to-internal conversion with efficiencies of >40% and relaxation rates that appear to be relatively slow. This may have potential as an energy storage mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffery, Anthony J., E-mail: A.J.McCaffery@sussex.ac.uk
Little is known of the mechanism by which H and H{sub 2}, the principal constituents of the post-re-combination early Universe, cooled sufficiently to permit cluster formation, nucleosynthesis, and, eventually, the formation of structured objects. Radiative decay primarily cools the internal modes of H{sub 2}, as Δj = − 2 jumps accompany quadrupolar emission. This, however, would be a self-limiting mechanism. In this work, a translational energy cooling mechanism based on collision-induced, translation-to-internal mode conversion, is extended, following an earlier study [A. J. McCaffery and R. J. Marsh, J. Chem. Phys. 139, 234310 (2013)] of ensembles comprising H{sub 2} in amore » H atom bath gas. Here, the possible influence of minor species, such as HD, on this cooling mechanism is investigated. Results suggest that the influence of HD is small but not insignificant. Conversion is very rapid and an overall translation-to-internal energy conversion efficiency of some 5% could be expected. This finding may be of use in the further development of models of this complex phase of early Universe evolution. An unexpected finding in this study was that H{sub 2} + HD ensembles are capable of very rapid translation-to-internal conversion with efficiencies of >40% and relaxation rates that appear to be relatively slow. This may have potential as an energy storage mechanism.« less
NASA Astrophysics Data System (ADS)
Cho, Minhaeng
2018-05-01
Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.
Dual-pumped nondegenerate four-wave mixing in semiconductor laser with a built-in external cavity
NASA Astrophysics Data System (ADS)
Wu, Jian-Wei; Qiu, Qi; Hyub Won, Yong
2017-04-01
In this paper, a semiconductor laser system consisting of a conventional multimode Fabry-Pérot laser diode with a built-in external cavity is presented and demonstrated. More than two resonance modes, whose peak levels are significantly higher than other residual modes, are simultaneously supported and output by adjusting the bias current and operating temperature of the active region. Based on this device, dual-pumped nondegenerate four-wave mixing—in which two pump waves and a single signal wave are simultaneously fed into the laser, and the injection power and wavelength of the injected pump and signal waves are changed—is observed and discussed thoroughly. The results show that while the wavelengths of pump wave A and signal wave S are kept constant, the other pump wave B jumps from about 1535 nm to 1578 nm, generating conversion signals with changed wavelengths. The achieved conversion bandwidth between the primary signal and the converted signal waves is broadly tunable in the range of several terahertz frequencies. Both the conversion efficiency and optical signal-to-noise ratio of the newly generated conversion signals are adopted to evaluate the performance of the proposed four-wave mixing process, and are strongly dependent on the wavelength and power of the injected waves. Here, the attained maximum conversion efficiency and optical signal-to-noise ratio are close to -22 dB and 15 dB, respectively.
Cho, Minhaeng
2018-05-14
Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.
NASA Technical Reports Server (NTRS)
Re, Richard J.; Carson, George T., Jr.
1991-01-01
The internal performance of two exhaust system concepts applicable to single-engine short-take-off and vertical-landing tactical fighter configurations was investigated. These concepts involved blocking (or partially blocking) tailpipe flow to the rear (cruise) nozzle and diverting it through an opening to a ventral nozzle exit for vertical thrust. A set of variable angle vanes at the ventral nozzle exit were used to vary ventral nozzle thrust angle between 45 and 110 deg relative to the positive axial force direction. In the vertical flight mode the rear nozzle (or tailpipe flow to it) was completely blocked. In the transition flight mode flow in the tailpipe was split between the rear and ventral nozzles and the flow was vectored at both exits for aircraft control purposes through this flight regime. In the cruise flight mode the ventral nozzle was sealed and all flow exited through the rear nozzle.
Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow
Urs, Raksha; Ketterling, Jeffrey A.; Silverman, Ronald H.
2016-01-01
Purpose Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. Methods We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. Results With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. Conclusions Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. PMID:27428169
Full statistical mode reconstruction of a light field via a photon-number-resolved measurement
NASA Astrophysics Data System (ADS)
Burenkov, I. A.; Sharma, A. K.; Gerrits, T.; Harder, G.; Bartley, T. J.; Silberhorn, C.; Goldschmidt, E. A.; Polyakov, S. V.
2017-05-01
We present a method to reconstruct the complete statistical mode structure and optical losses of multimode conjugated optical fields using an experimentally measured joint photon-number probability distribution. We demonstrate that this method evaluates classical and nonclassical properties using a single measurement technique and is well suited for quantum mesoscopic state characterization. We obtain a nearly perfect reconstruction of a field comprised of up to ten modes based on a minimal set of assumptions. To show the utility of this method, we use it to reconstruct the mode structure of an unknown bright parametric down-conversion source.
Flow Disturbance Characterization Measurements in the National Transonic Facility
NASA Technical Reports Server (NTRS)
King, Rudolph A.; Andino, Marlyn Y.; Melton, Latunia; Eppink, Jenna; Kegerise, Michael A.; Tsoi, Andrew
2012-01-01
Recent flow measurements have been acquired in the National Transonic Facility (NTF) to assess the unsteady flow environment in the test section. The primary purpose of the test is to determine the feasibility of the NTF to conduct laminar-flow-control testing and boundary-layer transition sensitive testing. The NTF can operate in two modes, warm (air) and cold/cryogenic (nitrogen) test conditions for testing full and semispan scaled models. The warm-air mode enables low to moderately high Reynolds numbers through the use of high tunnel pressure, and the nitrogen mode enables high Reynolds numbers up to flight conditions, depending on aircraft type and size, utilizing high tunnel pressure and cryogenic temperatures. NASA's Environmentally Responsible Aviation (ERA) project is interested in demonstrating different laminar-flow technologies at flight-relevant operating conditions throughout the transonic Mach number range and the NTF is well suited for the initial ground-based demonstrations. Roll polar data at selected test conditions were obtained to look at the uniformity of the flow disturbance field in the test section. Data acquired from the rake probes included mean total temperatures, mean and fluctuating static/total pressures, and mean and fluctuating hot-wire measurements. . Based on the current measurements and previous data, an assessment was made that the NTF is a suitable facility for ground-based demonstrations of laminar-flow technologies at flight-relevant conditions in the cryogenic mode.
NASA Astrophysics Data System (ADS)
Yang, Qingchun; Wang, Hongxin; Chetehouna, Khaled; Gascoin, Nicolas
2017-01-01
The supersonic combustion ramjet (scramjet) engine remains the most promising airbreathing engine cycle for hypersonic flight, particularly the high-performance dual-mode scramjet in the range of flight Mach number from 4 to 7, because it can operates under different combustion modes. Isolator is a very key component of the dual-mode scramjet engine. In this paper, nonlinear characteristics of combustion mode transition is theoretically analyzed. The discontinuous sudden changes of static pressure and Mach number are obtained as the mode transition occurs, which emphasizing the importance of predication and control of combustion modes. In this paper, a predication model of different combustion modes is developed based on these these nonlinear features in the isolator flow field. it can provide a valuable reference for control system design of the scramjet-powered aerospace vehicle.
NASA Astrophysics Data System (ADS)
Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Tyasto, A.
2016-04-01
It is shown that in order to form the current pulse of a near rectangular shape, which provides conversion of the welding arc into a dynamic mode, it is rational to connect a forming element made on the basis of an artificial forming line in series to the welding DC circuit. The paper presents a diagram of a pulsed device for welding with a non-consumable electrode in argon which was developed using the forming element. The conversion of the arc into the dynamic mode is illustrated by the current and voltage oscillograms of the arc gap and the dynamic characteristic of the arc within the interval of one pulse generation time in the arc gap. The background current travels in the interpulse interval.
Time reversal of arbitrary photonic temporal modes via nonlinear optical frequency conversion
NASA Astrophysics Data System (ADS)
Raymer, Michael G.; Reddy, Dileep V.; van Enk, Steven J.; McKinstrie, Colin J.
2018-05-01
Single-photon wave packets can carry quantum information between nodes of a quantum network. An important general operation in photon-based quantum information systems is ‘blind’ reversal of a photon’s temporal wave packet envelope, that is, the ability to reverse an envelope without knowing the temporal state of the photon. We present an all-optical means for doing so, using nonlinear-optical frequency conversion driven by a short pump pulse. The process used may be sum-frequency generation or four-wave Bragg scattering. This scheme allows for quantum operations such as a temporal-mode parity sorter. We also verify that the scheme works for arbitrary states (not only single-photon ones) of an unknown wave packet.
NASA Astrophysics Data System (ADS)
Ernst, D. R.; Lang, J.; Nevins, W. M.; Hoffman, M.; Chen, Y.; Dorland, W.; Parker, S.
2009-05-01
Trapped electron mode (TEM) turbulence exhibits a rich variety of collisional and zonal flow physics. This work explores the parametric variation of zonal flows and underlying mechanisms through a series of linear and nonlinear gyrokinetic simulations, using both particle-in-cell and continuum methods. A new stability diagram for electron modes is presented, identifying a critical boundary at ηe=1, separating long and short wavelength TEMs. A novel parity test is used to separate TEMs from electron temperature gradient driven modes. A nonlinear scan of ηe reveals fine scale structure for ηe≳1, consistent with linear expectation. For ηe<1, zonal flows are the dominant saturation mechanism, and TEM transport is insensitive to ηe. For ηe>1, zonal flows are weak, and TEM transport falls inversely with a power law in ηe. The role of zonal flows appears to be connected to linear stability properties. Particle and continuum methods are compared in detail over a range of ηe=d ln Te/d ln ne values from zero to five. Linear growth rate spectra, transport fluxes, fluctuation wavelength spectra, zonal flow shearing spectra, and correlation lengths and times are in close agreement. In addition to identifying the critical parameter ηe for TEM zonal flows, this paper takes a challenging step in code verification, directly comparing very different methods of simulating simultaneous kinetic electron and ion dynamics in TEM turbulence.
NASA Technical Reports Server (NTRS)
Eppink, Jenna L.; Yao, Chung-Sheng
2017-01-01
Time-resolved particle image velocimetry (TRPIV) measurements are performed down-stream of a swept backward-facing step, with a height of 49% of the boundary-layer thickness. The results agree well qualitatively with previously reported hotwire measurements, though the amplitudes of the fluctuating components measured using TRPIV are higher. Nonetheless, the low-amplitude instabilities in the flow are fairly well resolved using TR- PIV. Proper orthogonal decomposition is used to study the development of the traveling cross flow and Tollmien-Schlichting (TS) instabilities downstream of the step and to study how they interact to form the large velocity spikes that ultimately lead to transition. A secondary mode within the traveling cross flow frequency band develops with a wavelength close to that of the stationary cross flow instability, so that at a certain point in the phase, it causes an increase in the spanwise modulation initially caused by the stationary cross flow mode. This increased modulation leads to an increase in the amplitude of the TS mode, which, itself, is highly modulated through interactions with the stationary cross flow. When the traveling cross flow and TS modes align in time and space, the large velocity spikes occur. Thus, these three instabilities, which are individually of low amplitude when the spikes start to occur (U'rms/Ue <0.03), interact and combine to cause a large flow disturbance that eventually leads to transition.
The inviscid stability of supersonic flow past axisymmetric bodies
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1990-01-01
The supersonic flow past a sharp cone is studied. The associated boundary layer flow (i.e., the velocity and temperature field) is computed. The inviscid linear temporal stability of axisymmetric boundary layers in general is considered, and in particular, a so-called 'triply generalized' inflection condition for 'subsonic' nonaxisymmetric neutral modes is presented. Preliminary numerical results for the stability of the cone boundary layer are presented for a freestream Mach number of 3.8. In particular, a new inviscid mode of instability is seen to occur in certain regimes, and this is shown to be related to a viscous mode found by Duck and Hall (1988).
The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications
NASA Technical Reports Server (NTRS)
Bravo, Ramiro H.; Chen, Ching-Jen
1992-01-01
In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.
Electromagnetic holographic sensitivity field of two-phase flow in horizontal wells
NASA Astrophysics Data System (ADS)
Zhang, Kuo; Wu, Xi-Ling; Yan, Jing-Fu; Cai, Jia-Tie
2017-03-01
Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography theory and Radon inverse transform to derive the expression of the electromagnetic holographic sensitivity field (EMHSF). Then, we apply the EMHSF calculated by using finite-element methods to flow simulations and holographic imaging. The results suggest that the EMHSF based on the partial derivative of radius of the complex electric potential φ is closely linked to the Radon inverse transform and encompasses the sensitivities of the amplitude and phase data. The flow images obtained with inversion using EMHSF better agree with the actual flow patterns. The EMHSF overcomes the limitations of traditional single-mode sensitivity fields.
Magnetic activity and radial electric field during I-phase in ASDEX Upgrade plasmas
NASA Astrophysics Data System (ADS)
Birkenmeier, Gregor; Cavedon, Marco; Conway, Garrard; Manz, Peter; Puetterich, Thomas; Stroth, Ulrich; ASDEX Upgrade Team Team
2016-10-01
At the transition from the low (L-mode) to the high (H-mode) confinement regime, so called limit-cycle oscillations (LCOs) can occur at the edge of a fusion plasma. During the LCO evolution, which is also called I-phase, the relative importance of background flows and turbulence-generated zonal flows can change, and it is still unclear whether a large contribution of zonal flows is a necessary condition for triggering the H-mode. At ASDEX Upgrade, I-phases have been studied in a wide range of parameters. The modulation of flows and gradients during I-phase is accompanied by a strong magnetic activity with a specific poloidal and toroidal structure. The magnetic activity increases during the development of an edge pedestal during I-phase, and is preceded by type-III ELM-like precursors. During all phases of the I-phase, the radial electric field Er is found to be close to the neoclassical prediction of the electric field Er , neo. These results suggest that zonal flows do not contribute significantly to the LCO dynamics, and the burst like behavior is reminiscent of a critical-gradient driven instability like edge localized modes. These observations on ASDEX Upgrade seem to be inconsistent with LCO models based on an interaction between zonal flows and turbulence.
Resolvent analysis of shear flows using One-Way Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Rigas, Georgios; Schmidt, Oliver; Towne, Aaron; Colonius, Tim
2017-11-01
For three-dimensional flows, questions of stability, receptivity, secondary flows, and coherent structures require the solution of large partial-derivative eigenvalue problems. Reduced-order approximations are thus required for engineering prediction since these problems are often computationally intractable or prohibitively expensive. For spatially slowly evolving flows, such as jets and boundary layers, the One-Way Navier-Stokes (OWNS) equations permit a fast spatial marching procedure that results in a huge reduction in computational cost. Here, an adjoint-based optimization framework is proposed and demonstrated for calculating optimal boundary conditions and optimal volumetric forcing. The corresponding optimal response modes are validated against modes obtained in terms of global resolvent analysis. For laminar base flows, the optimal modes reveal modal and non-modal transition mechanisms. For turbulent base flows, they predict the evolution of coherent structures in a statistical sense. Results from the application of the method to three-dimensional laminar wall-bounded flows and turbulent jets will be presented. This research was supported by the Office of Naval Research (N00014-16-1-2445) and Boeing Company (CT-BA-GTA-1).
Analysis of spectral light guidance in specialty fibers
NASA Astrophysics Data System (ADS)
Zimmer, Arne W.; Raithel, Philipp; Belz, Mathias; Klein, Karl-Friedrich
2016-04-01
A novel experimental set-up for measuring the spectral dependency of light-guidance of specialty non-active multimodefibers will be introduced. Light coupling into the test fiber is realized and controlled with a micro-structured single mode (SM) fiber and an image-system based on a microscope objective The far- and near-field profiles of the SM-fiber will be shown. The inverse far field method is modified and improved by using three wavelengths simultaneously under the same input conditions; the coupling conditions into the test-fiber and the far- and near-field at fiber output are observed with cameras. The numerical aperture (NA) and mode-conversion or focal-ratio-degradation (FRD) are measured in respect to wavelength at three wavelengths in the VIS region. For the analysis, the patterns are captured at varying exposure times to increase the dynamic range and finally analyzed using image processing methods. Characteristic parameters, such as skew mode propagation and ray-conversion, of circular and non-circular MM-fibers will be discussed, taking the surface roughness into account.
Power Control for Direct-Driven Permanent Magnet Wind Generator System with Battery Storage
Guang, Chu Xiao; Ying, Kong
2014-01-01
The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient. PMID:25050405
Modeling of the control of the driven current profile in ICRF MCCD on EAST plasma
NASA Astrophysics Data System (ADS)
Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Cao, J. J.; Wu, Z. Y.; Chen, Y.; Du, D.
2018-05-01
Control of the current profile is a crucial issue for improved confinement and the inhibition of instability in advanced tokamak operation. Using typical discharge data for the Experimental Advanced Superconducting Tokamak, numerical simulations of driven-current profile control in mode conversion current drive (MCCD) in the ion cyclotron range of frequencies were performed employing a full-wave method and Ehst-Karney efficiency formula. Results indicate that the driven current profile in MCCD can be effectively modified by shifting the mode conversion layer. The peak of the driven current can be located at an aimed position in the normalized minor radius range (-0.60 ≤r/a≤0) by changing the radiofrequency and the minority-ion concentration. The efficiency of the off-axis MCCD can reach 233 kA/MW through optimization, and the mode converted ion cyclotron wave plays an important role in such scenarios. The effects of electron temperature and plasma density on the driven current profile are also investigated.
Power control for direct-driven permanent magnet wind generator system with battery storage.
Guang, Chu Xiao; Ying, Kong
2014-01-01
The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient.
Research on spacecraft electrical power conversion
NASA Technical Reports Server (NTRS)
Wilson, T. G.
1983-01-01
The history of spacecraft electrical power conversion in literature, research and practice is reviewed. It is noted that the design techniques, analyses and understanding which were developed make today's contribution to power computers and communication installations. New applications which require more power, improved dynamic response, greater reliability, and lower cost are outlined. The switching mode approach in electronic power conditioning is discussed. Technical aspects of the research are summarized.
Precession effects on a liquid planetary core
NASA Astrophysics Data System (ADS)
Liu, Min; Li, Li-Gang
2018-02-01
Motivated by the desire to understand the rich dynamics of precessionally driven flow in a liquid planetary core, we investigate, through numerical simulations, the precessing fluid motion in a rotating cylindrical annulus, which simultaneously possesses slow precession. The same problemhas been studied extensively in cylinders, where the precessing flow is characterized by three key parameters: the Ekman number E, the Poincaré number Po and the radius-height aspect ratio Γ. While in an annulus, there is another parameter, the inner-radius-height aspect ratio ϒ, which also plays an important role in controlling the structure and evolution of the flow. By decomposing the nonlinear solution into a set of inertial modes, we demonstrate the properties of both weakly and moderately precessing flows. It is found that, when the precessional force is weak, the flow is stable with a constant amplitude of kinetic energy. As the precessional force increases, our simulation suggests that the nonlinear interaction between the boundary effects and the inertial modes can trigger more turbulence, introducing a transitional regime of rich dynamics to disordered flow. The inertial mode u 111, followed by u 113 or u 112, always dominates the precessing flow when 0.001 ≤ Po ≤ 0.05, ranging from weak to moderate precession. Moreover, the precessing flow in an annulus shows more stability than in a cylinder which is likely to be caused by the effect of the inner boundary that restricts the growth of resonant and non-resonant inertial modes. Furthermore, the mechanism of triadic resonance is not found in the transitional regime from a laminar to disordered flow.
NASA Technical Reports Server (NTRS)
Suder, Kenneth (Technical Monitor); Tan, Choon-Sooi
2003-01-01
The effects of two types of flow non-uniformity on stall inception behavior were assessed with linearized stability analyses of two compressor flow models. Response to rotating tip clearance asymmetries induced by a whirling rotor shaft or rotor height variations were investigated with a two-dimensional flow model. A 3-D compressor model was also developed to study the stability of both full-span and part-span rotating stall modes in annular geometries with radial flow variations. The studies focussed on (1) understanding what compressor designs were sensitive to these types of circumferential and spanwise flow non-uniformities, and (2) situations where 2-D stability theories were inadequate because of 3-D flow effects. Rotating tip clearance non-uniformity caused the greatest performance loss for shafts whirling at the rotating stall frequency. A whirling shaft displacement of 1 percent chord caused the stalling mass flow to rise by as much as 10 percent and the peak pressure rise to decrease by 6 percent. These changes were an order of magnitude larger than for equivalent-sized stationary or rotor-locked clearance asymmetries. Spanwise flow non-uniformity always destabilized the compressor, so that 2-D models over-predicted that stall margin compared to 3-D theory. The difference increased for compressors with larger spanwise variations of characteristic slope and reduced characteristic curvature near the peak. Differences between 2-D and 3-D stall point predictions were generally unacceptable (2 - 4 percent of flow coefficient) for single-stage configurations, but were less than 1 percent for multistage compressors. 2-D analyses predicted the wrong stall mode for specific cases of radial inlet flow distortion, mismatching and annulus area contraction, where higher-order radial modes led to stall. The stability behavior of flows with circumferential or radial non-uniformity was unified through a single stability criterion. The stall point for both cases was set by the integral around the annulus of the pressure rise characteristic slope, weighted by the amplitude of the mode shape. For the case of steady circumferential variations, this criterion reduced to the integrated mean slope (IMS) condition associated with steady inlet distortions. The rotating tip clearance asymmetry model was also used to demonstrate the feasibility of actively controlling the shaft position to suppress rotating stall. In axisymmetric mean flow, this method only stabilized the first harmonic mode, increasing the operating range until surge or higher harmonic modes became unstable.
Khan, Saba N; Chatterjee, Sudip K; Chaudhuri, Partha Roy
2015-02-20
We report here the controlled generation of a linearly polarized first-order azimuthally asymmetric beam (F-AAB) in a dual-mode fiber (DMF) by appropriate superposition of selectively excited zeroth-order vector modes that are doughnut-shaped azimuthally symmetric beams (D-ASBs). We first demonstrate continually switching polarization mode structures having an identical two-lobe intensity profile (i.e., intra-F-AAB conversion). Then, under a distinct launching state, we generate mode structures progressively toggling between the doughnut-shaped profile and two-lobe pattern having dissimilar polarization orientations (i.e., F-AAB to D-ASB conversion). Interestingly, a decentralized elliptical Gaussian beam possessing homogenous spatial polarization is obtained by enhancing the contribution of the fundamental mode (HE11/LP01) in selectively excited F-AAB. A smoothly varying azimuth of the input beam in this situation resulted in redistribution of transverse energy procuring a unique and exciting unconventional two-grain T-polarized beam having mutually orthogonal state of polarization (SOP). All of the above three were achieved under a given set of launching conditions (tilt/offset) of a Gaussian mode (TEM00) devised with changing SOP of the input beam. A strong modulation in the output beam characteristics was also observed with the variation in propagation distance (for a fixed input SOP) owing to the large difference in propagation constants of the participating modes (LP01 and one of the F-AABs). Finally, this particular study led to a design for a low-cost highly sensitive strain measuring device based on tracking the centroid movement of the output intensity pattern. Each of our experimentally observed intensity/polarization distributions is theoretically mapped on a one-to-one basis considering a linear superposition of appropriately excited LP basis modes of the waveguide toward a complete understanding of the polarization and mode propagation in the dual-mode structure.
Stochastic mechanics of loose boundary particle transport in turbulent flow
NASA Astrophysics Data System (ADS)
Dey, Subhasish; Ali, Sk Zeeshan
2017-05-01
In a turbulent wall shear flow, we explore, for the first time, the stochastic mechanics of loose boundary particle transport, having variable particle protrusions due to various cohesionless particle packing densities. The mean transport probabilities in contact and detachment modes are obtained. The mean transport probabilities in these modes as a function of Shields number (nondimensional fluid induced shear stress at the boundary) for different relative particle sizes (ratio of boundary roughness height to target particle diameter) and shear Reynolds numbers (ratio of fluid inertia to viscous damping) are presented. The transport probability in contact mode increases with an increase in Shields number attaining a peak and then decreases, while that in detachment mode increases monotonically. For the hydraulically transitional and rough flow regimes, the transport probability curves in contact mode for a given relative particle size of greater than or equal to unity attain their peaks corresponding to the averaged critical Shields numbers, from where the transport probability curves in detachment mode initiate. At an inception of particle transport, the mean probabilities in both the modes increase feebly with an increase in shear Reynolds number. Further, for a given particle size, the mean probability in contact mode increases with a decrease in critical Shields number attaining a critical value and then increases. However, the mean probability in detachment mode increases with a decrease in critical Shields number.
NASA Astrophysics Data System (ADS)
Dikpati, Mausumi; McIntosh, Scott W.; Bothun, Gregory; Cally, Paul S.; Ghosh, Siddhartha S.; Gilman, Peter A.; Umurhan, Orkan M.
2018-02-01
We present a nonlinear magnetohydrodynamic shallow-water model for the solar tachocline (MHD-SWT) that generates quasi-periodic tachocline nonlinear oscillations (TNOs) that can be identified with the recently discovered solar “seasons.” We discuss the properties of the hydrodynamic and magnetohydrodynamic Rossby waves that interact with the differential rotation and toroidal fields to sustain these oscillations, which occur due to back-and-forth energy exchanges among potential, kinetic, and magnetic energies. We perform model simulations for a few years, for selected example cases, in both hydrodynamic and magnetohydrodynamic regimes and show that the TNOs are robust features of the MHD-SWT model, occurring with periods of 2–20 months. We find that in certain cases multiple unstable shallow-water modes govern the dynamics, and TNO periods vary with time. In hydrodynamically governed TNOs, the energy exchange mechanism is simple, occurring between the Rossby waves and differential rotation. But in MHD cases, energy exchange becomes much more complex, involving energy flow among six energy reservoirs by means of eight different energy conversion processes. For toroidal magnetic bands of 5 and 35 kG peak amplitudes, both placed at 45° latitude and oppositely directed in north and south hemispheres, we show that the energy transfers responsible for TNO, as well as westward phase propagation, are evident in synoptic maps of the flow, magnetic field, and tachocline top-surface deformations. Nonlinear mode–mode interaction is particularly dramatic in the strong-field case. We also find that the TNO period increases with a decrease in rotation rate, implying that the younger Sun had more frequent seasons.
NASA Astrophysics Data System (ADS)
Sakuraba, A.
2015-12-01
I made a linear analysis of flow-induced oscillations along an underground cylindrical conduit with an elliptical cross section on the basis of the hypothesis that volcanic tremor is a result of magma movement through a conduit. As a first step to understand how the self oscillation occurs because of magma flow, I investigated surface wave propagation and attenuation along an infinitely long fluid-filled elliptic cylinder in an elastic medium. The boundary element method is used to obtain the two-dimensional wave field around the ellipse in the frequency-wavenumber domain. When the major axis is much greater than the minor axis of the ellipse, we obtain the analytic form of the dispersion relation of both the crack-wave mode (Korneev 2008, Lipovsky & Dunham 2015) and the Rayleigh-wave mode with flexural deformation. The crack-wave mode generally has a slower phase speed and a higher attenuation than the Rayleigh-wave mode. In the long-wavelength limit, the crack-wave mode disappears because of fluid viscosity, but the Rayleigh-wave mode exists with a constant Q-value that depends on viscosity. When the aspect ratio of the ellipse is finite, the surface waves can basically be understood as those propagating along a fluid pipe. The flexural mode does exist even when the wavelength is much longer than the major axis, but its phase speed coincides with that of the surrounding S-wave (Randall 1991). As its attenuation is zero in the long-wavelength limit, the flexural mode differs in nature from surface wave. I also obtain a result on linear stability of viscous flow through an elliptic cylinder. In this analysis, I made an assumption that the fluid inertia is so small that the Stokes equation can be used. As suggested by the author's previous study (Sakuraba & Yamauchi 2014), the flexural (Rayleigh-wave) mode is destabilized at a critical flow speed that decreases with the wavelength. However, when the wavelength is much greater than the major axis of the ellipse, the unstable solution does exist, but its linear growth rate in amplitude becomes almost zero. Therefore, the unstable solution effectively disappears in the long-wavelength limit, suggesting that the aspect ratio of the conduit is needed to be sufficiently large if the flow-induced oscillation caused by a moderate magma speed is an origin of volcanic tremor.
NASA Technical Reports Server (NTRS)
2011-01-01
NASA is interested in developing technology that leads to more routine, safe, and affordable access to space. Access to space using airbreathing propulsion systems has potential to meet these objectives based on Airbreathing Access to Space (AAS) system studies. To this end, the NASA Fundamental Aeronautics Program (FAP) Hypersonic Project is conducting fundamental research on a Turbine Based Combined Cycle (TBCC) propulsion system. The TBCC being studied considers a dual flow-path inlet system. One flow-path includes variable geometry to regulate airflow to a turbine engine cycle. The turbine cycle provides propulsion from take-off to supersonic flight. The second flow-path supports a dual-mode scramjet (DMSJ) cycle which would be initiated at supersonic speed to further accelerate the vehicle to hypersonic speed. For a TBCC propulsion system to accelerate a vehicle from supersonic to hypersonic speed, a critical enabling technology is the ability to safely and effectively transition from the turbine to the DMSJ-referred to as mode transition. To experimentally test methods of mode transition, a Combined Cycle Engine (CCE) Large-scale Inlet testbed was designed with two flow paths-a low speed flow-path sized for a turbine cycle and a high speed flow-path designed for a DMSJ. This testbed system is identified as the CCE Large-Scale Inlet for Mode Transition studies (CCE-LIMX). The test plan for the CCE-LIMX in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel (10x10 SWT) is segmented into multiple phases. The first phase is a matrix of inlet characterization (IC) tests to evaluate the inlet performance and establish the mode transition schedule. The second phase is a matrix of dynamic system identification (SysID) experiments designed to support closed-loop control development at mode transition schedule operating points for the CCE-LIMX. The third phase includes a direct demonstration of controlled mode transition using a closed loop control system developed with the data obtained from the first two phases. Plans for a fourth phase include mode transition experiments with a turbine engine. This paper, focusing on the first two phases of experiments, presents developed operational and analysis tools for streamlined testing and data reduction procedures.
The Effects of 10 Communication Modes on the Behavior of Teams During Co-Operative Problem-Solving
ERIC Educational Resources Information Center
Ochsman, Richard B.; Chapanis, Alphonse
1974-01-01
Sixty teams of two college students each solved credible "real world" problems co-operatively. Conversations were carried on in one of 10 modes of communication: (1) typewriting only, (2) handwriting only, (3) handwriting and typewriting, (4) typewriting and video, (5) handwriting and video, (6) voice only, (7) voice and typewriting, (8) voice and…
ERIC Educational Resources Information Center
Anderson, Ryan D.
2016-01-01
This study examines the leadership behaviors and conditions for creating knowledge present during mentoring between mentee principals and mentor principals. Using a survey instrument, 511 mentee principal respondents provided information on the extent of co-creating leadership dispositions, conditions for knowledge creation, and modes of knowledge…
Supersymmetric Transformations in Optical Fibers
NASA Astrophysics Data System (ADS)
Macho, Andrés; Llorente, Roberto; García-Meca, Carlos
2018-01-01
Supersymmetry (SUSY) has recently emerged as a tool to design unique optical structures with degenerate spectra. Here, we study several fundamental aspects and variants of one-dimensional SUSY in axially symmetric optical media, including their basic spectral features and the conditions for degeneracy breaking. Surprisingly, we find that the SUSY degeneracy theorem is partially (totally) violated in optical systems connected by isospectral (broken) SUSY transformations due to a degradation of the paraxial approximation. In addition, we show that isospectral constructions provide a dimension-independent design control over the group delay in SUSY fibers. Moreover, we find that the studied unbroken and isospectral SUSY transformations allow us to generate refractive-index superpartners with an extremely large phase-matching bandwidth spanning the S +C +L optical bands. These singular features define a class of optical fibers with a number of potential applications. To illustrate this, we numerically demonstrate the possibility of building photonic lanterns supporting broadband heterogeneous supermodes with large effective area, a broadband all-fiber true-mode (de)multiplexer requiring no mode conversion, and different mode-filtering, mode-conversion, and pulse-shaping devices. Finally, we discuss the possibility of extrapolating our results to acoustics and quantum mechanics.
Voss, Clifford I.; Simmons, Craig T.; Robinson, Neville I.
2010-01-01
This benchmark for three-dimensional (3D) numerical simulators of variable-density groundwater flow and solute or energy transport consists of matching simulation results with the semi-analytical solution for the transition from one steady-state convective mode to another in a porous box. Previous experimental and analytical studies of natural convective flow in an inclined porous layer have shown that there are a variety of convective modes possible depending on system parameters, geometry and inclination. In particular, there is a well-defined transition from the helicoidal mode consisting of downslope longitudinal rolls superimposed upon an upslope unicellular roll to a mode consisting of purely an upslope unicellular roll. Three-dimensional benchmarks for variable-density simulators are currently (2009) lacking and comparison of simulation results with this transition locus provides an unambiguous means to test the ability of such simulators to represent steady-state unstable 3D variable-density physics.
Linear stability analysis of particle-laden hypopycnal plumes
NASA Astrophysics Data System (ADS)
Farenzena, Bruno Avila; Silvestrini, Jorge Hugo
2017-12-01
Gravity-driven riverine outflows are responsible for carrying sediments to the coastal waters. The turbulent mixing in these flows is associated with shear and gravitational instabilities such as Kelvin-Helmholtz, Holmboe, and Rayleigh-Taylor. Results from temporal linear stability analysis of a two-layer stratified flow are presented, investigating the behavior of settling particles and mixing region thickness on the flow stability in the presence of ambient shear. The particles are considered suspended in the transport fluid, and its sedimentation is modeled with a constant valued settling velocity. Three scenarios, regarding the mixing region thickness, were identified: the poorly mixed environment, the strong mixed environment, and intermediate scenario. It was observed that Kelvin-Helmholtz and settling convection modes are the two fastest growing modes depending on the particles settling velocity and the total Richardson number. The second scenario presents a modified Rayleigh-Taylor instability, which is the dominant mode. The third case can have Kelvin-Helmholtz, settling convection, and modified Rayleigh-Taylor modes as the fastest growing mode depending on the combination of parameters.
Mean flow generation mechanism by inertial waves and normal modes
NASA Astrophysics Data System (ADS)
Will, Andreas; Ghasemi, Abouzar
2016-04-01
The mean flow generation mechanism by nonlinearity of the inertial normal modes and inertial wave beams in a rotating annular cavity with longitudinally librating walls in stable regime is discussed. Inertial normal modes (standing waves) are excited when libration frequency matches eigenfrequencies of the system. Inertial wave beams are produced by Ekman pumping and suction in a rotating cylinder and form periodic orbits or periodic ray trajectories at selected frequencies. Inertial wave beams emerge as concentrated shear layers in a librating annular cavity, while normal modes appear as global recirculation cells. Both (inertial wave beam and mode) are helical and thus intrinsically non-linear flow structures. No second mode or wave is necessary for non-linearity. We considered the low order normal modes (1,1), (2,1) and (2,2) which are expected to be excited in the planetary objects and investigate the mean flow generation mechanism using two independent solutions: 1) analytical solution (Borcia 2012) and 2) the wave component of the flow (ω0 component) obtained from the direct numerical simulation (DNS). It is well known that a retrograde bulk mean flow is generated by the Ekman boundary layer and E1/4-Stewartson layer close to the outer cylinder side wall due to libration. At and around the normal mode resonant frequencies we found additionally a prograde azimuthal mean flow (Inertial Normal Mode Mean Flow: INMMF) in the bulk of the fluid. The fluid in the bulk is in geostrophic balance in the absence of the inertial normal modes. However, when INMMF is excited, we found that the geostrophic balance does not hold in the region occupied by INMMF. We hypothesize that INMMF is generated by the nonlinearity of the normal modes or by second order effects. Expanding the velocity {V}(u_r,u_θ,u_z) and pressure (p) in a power series in ɛ (libration amplitude), the Navier-Stokes equations are segregated into the linear and nonlinear parts at orders ɛ1 and ɛ^2, respectively. The former is used to find the analytical solution of the normal modes (Borcia 2012). Plugging two independent solutions into the latter we investigate the generation mechanism of INMMF. We found R1^1=overbar{partial_z(u_r1 u_z^1)}, R2^1=overbar{partial_r(u_r1 u_r^1)} as source terms responsible for the generation of INMMF. The helical structure of the inertial waves causes the nonlinear terms R1 and R2 to be nonzero, contributing to the generation of INMMF. We used u_ra and u_za obtained from the analytical solution (Borcia 2012) and computed the source terms R1a and R2a and found a structural correspondence with the corresponding field computed from the DNS solution for the three normal modes investigated. The sum of R11 and R21 exhibits a good structural correspondence with INMMF. Interestingly, INMMF magnitude depends on the inertial wave beams and normal modes. For instance we found that INMMF is generated more efficiently for the libration frequency ω=1.58, although the resonant frequency is predicted by the analytical solution to be at ω=1.576 (normal mode (2,1)). Separating the inertial wave beams from the flow field obtained by DNS, using the analytical normal mode solution, we explored the phase lag between inertial wave beams and normal mode. We inferred that the normal mode amplitude is high only if the phase lag between the inertial wave beam and the normal mode is predominantly positive. In this case a high amplitude INMMF amplitude can be found. This supports the hypothesis that the normal modes are generated by the inertial wave beam in analogy to resonant forcing in classical mechanics. Interestingly, the 'optimum' phase lag found is much smaller than π/2. {Acknowledgement:} This work is a part of the project "Mischung und Grundstromanregung durch propagierende Trgheitswellen: Theorie, Experiment und Simulation" supported by the German Science Foundation (DFG). We would like to thank M. Klein, U. Harlander, I. Borcia and E. Schaller for helpful discussions and invaluable contributions. {References:} Borcia, I. D. & Harlander, U. 2012 Inertial waves in a rotating annulus with inclined inner cylinder: comparing the spectrum of wave attractor frequency bands and the eigenspectrum in the limit of zero inclination. Theor. Comput. Fluid Dyn. 27, 397-413.
Methods and apparatus for carbon dioxide removal from a fluid stream
Wei, Wei; Ruud, James Anthony; Ku, Anthony Yu-Chung; Ramaswamy, Vidya; Liu, Ke
2010-01-19
An apparatus for producing hydrogen gas wherein the apparatus includes a reactor. In one embodiment, the reactor includes at least two conversion-removal portions. Each conversion-removal portion comprises a catalyst section configured to convert CO in the stream to CO.sub.2 and a membrane section located downstream of and in flow communication with the catalyst section. The membrane section is configured to selectively remove the CO.sub.2 from the stream and to be in flow communication with a sweep gas.
40 CFR 1065.546 - Validation of minimum dilution ratio for PM batch sampling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... flows and/or tracer gas concentrations for transient and ramped modal cycles to validate the minimum... mode-average values instead of continuous measurements for discrete mode steady-state duty cycles... molar flow data. This involves determination of at least two of the following three quantities: Raw...
Theoretical and Computational Studies of Stability, Transition and Flow Control in High-Speed Flows
2008-02-14
subsonic perturbations, there is an overlapping of four modes. This case has not been considered yet elsewhere. Similarly to the other cases , one can derive...weights for the vorticity and entropy modes. Similarly to the incompressible case [Tum03], one can see that there is a discrepancy between the...turbulence’ [FK01]. In conventional computational studies , one could observe the generation of the instability mode only in the far field, where the
Influence of Decadal Variability of Global Oceans on South Asian Monsoon and ENSO-Monsoon Relation
NASA Astrophysics Data System (ADS)
Krishnamurthy, Lakshmi
This study has investigated the influence of the decadal variability associated with global oceans on South Asian monsoon and El Nino-Southern Oscillation (ENSO)-monsoon relation. The results are based on observational analysis using long records of monsoon rainfall and circulation and coupled general circulation model experiments using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) version 4 model. The multi-channel singular spectrum analysis (MSSA) of the observed rainfall over India yields three decadal modes. The first mode (52 year period) is associated with the Atlantic Multidecadal Oscillation (AMO), the second one (21 year) with the Pacific Decadal Oscillation (PDO) and the third mode (13 year) with the Atlantic tripole. The existence of these decadal modes in the monsoon was also found in the control simulation of NCAR CCSM4. The regionally de-coupled model experiments performed to isolate the influence of North Pacific and North Atlantic also substantiate the above results. The relation between the decadal modes in the monsoon rainfall with the known decadal modes in global SST is examined. The PDO has significant negative correlation with the Indian Monsoon Rainfall (IMR). The mechanism for PDO-monsoon relation is hypothesized through the seasonal footprinting mechanism and further through Walker and Hadley circulations. The model results also confirm the negative correlation between PDO and IMR and the mechanism through which PDO influences monsoon. Both observational and model analysis show that droughts (floods) are more likely over India than floods (droughts) when ENSO and PDO are in their warm (cold) phase. This study emphasizes the importance of carefully distinguishing the different decadal modes in the SST in the North Atlantic Ocean as they have different impacts on the monsoon. The AMO exhibits significant positive correlation with the IMR while the Atlantic tripole has significant negative correlation with the IMR. The AMO influences the Indian monsoon through atmospheric winds related to high summer North Atlantic Oscillation (NAO) mode leading to enhanced moisture flow over the Indian subcontinent. The Atlantic tripole mode affects the rainfall over India by enhancing the moisture flow through the equatorial westerly winds associated with the NAO. The model also simulates the positive and negative relation of AMO and tripole, respectively, with the monsoon rainfall. The model also indicates the enhanced moisture flow over India related to the positive phase of AMO through the equatorial westerly flow. But, for the tripole mode, the model indicates flow of moisture through the Bay of Bengal in contrast to observations where it is through the Arabian Sea. The reason for the absence of decadal mode in IMR inherent to the Indian Ocean is also explored. The SSA on dipole mode index (DMI) index reveals three modes. The first two modes are related to the biennial and canonical ENSO at interannual timescale while the third mode varies on decadal timescale and is related to PDO. The wind regression pattern associated with the PDO-IOD mode shows northeasterly winds enhancing the southeasterly flow from the southeastern Indian Ocean related to the Indian Ocean dipole (IOD) mode. The model also shows the influence of canonical ENSO and PDO influence on IOD, although the variance explained by PDO mode is lower in the model relative to observations.
Görges, Rainer; Eising, E G; Fotescu, D; Renzing-Köhler, K; Frilling, A; Schmid, K W; Bockisch, A; Dirsch, O
2003-02-01
Ultrasonography is an established diagnostic modality in the follow-up of thyroid cancer. Color flow Doppler has been proposed by some authors as an additional tool for differentiating benign from malignant cervical lesions in various types of head and neck cancer. Over the last few years, a new generation of high-resolution ultrasound platforms with the "power-mode" feature has become available, that also enables the imaging of small vessel blood flow. The objective of our study was to find ways of optimizing the differentiation of benign and malignant cervical tumors in thyroid cancer follow-up by means of sonography. Hundred and twelve cervical lesions in 90 patients with thyroid cancer were evaluated by high-end ultrasonography (Sonoline Elegra, Siemens) using a small-part transducer (7.5 L 40, Siemens). B-mode sonography was performed at a frequency of 8 MHz. The Solbiati index (SI= ratio of largest to smallest diameter), configuration, echogenicity, intranodular structures, and margins were assessed. Perinodular and intranodular blood flow was evaluated by color flow Doppler (PRF 1250 Hz for conventional color flow Doppler, 868 Hz for power-mode Doppler). Possible malignancy was validated by histology, cytology, scintigraphy, and follow-up. Thirty five lesions were benign (diameter 0.4-3.0 cm) and 77 were malignant (0.4-5.4 cm). The patients were randomized into a test group and a learning group to determine the diagnostic value of various ultrasound criteria by means of statistical analysis. In the learning group, decision rules based on the dichotomized criteria were developed using a logistic regression model. Sensitivity and specificity of these decision rules were then evaluated in the test group. The presence of an echocomplex pattern or irregular hyperechoic small intranodular structures (criterion A) and the presence of an irregular diffuse intranodular blood flow (criterion B) are the best indicators of malignancy, whereas an SI >2 is highly indicative of benign changes. Color flow Doppler is a useful addition to B-mode scanning for distinguishing benign and malignant neoplasms in the follow-up of thyroid cancer. Power-mode Doppler sonography significantly improves imaging of perinodular and intranodular blood flow when compared with conventional color flow Doppler. We propose the following decision rules based on a combination of the criteria above: (A) and (B) fulfilled: malignant, if SI< or =4; (B) but not (A) fulfilled: malignant, if SI< or =3; (A) but not (B) fulfilled: malignant, if SI< or =2; neither (A) nor (B) fulfilled: malignant, if SI approximately equal to 1 (sensitivity: 90%; specificity: 82%; accuracy 88%).
NASA Astrophysics Data System (ADS)
Bijlani, Bhavin J.
2011-07-01
This thesis explored the theory, design, fabrication and characterization of AlGaAs Bragg reflection waveguides (BRW) towards the goal of a platform for monolithic integration of active and optically nonlinear devices. Through integration of a diode laser and nonlinear phase-matched cavity, the possibility of on-chip nonlinear frequency generation was explored. Such integrated devices would be highly useful as a robust, alignment free, small footprint and electrically injected alternative to bulk optic systems. A theoretical framework for modal analysis of arbitrary 1-D photonic crystal defect waveguides is developed. This method relies on the transverse resonance condition. It is then demonstrated in the context of several types of Bragg reflection waveguides. The framework is then extended to phase-match second-order nonlinearities and incorporating quantum-wells for diode lasers. Experiments within a slab and ridge waveguide demonstrated phase-matched Type-I second harmonic generation at fundamental wavelength of 1587 and 1600 nm, respectively; a first for this type of waveguide. For the slab waveguide, conversion efficiency was 0.1 %/W. In the more strongly confined ridge waveguides, efficiency increased to 8.6 %/W owing to the increased intensity. The normalized conversion efficiency was estimated to be at 600 %/Wcm2. Diode lasers emitting at 980 nm in the BRW mode were also fabricated. Verification of the Bragg mode was performed through imaging the near- field of the mode. Propagation loss of this type of mode was measured directly for the first time at ≈ 14 cm-1. The lasers were found to be very insensitive with characteristic temperature at 215 K. Two designs incorporating both laser and phase-matched nonlinearity within the same cavity were fabricated, for degenerate and non-degenerate down-conversion. Though the lasers were sub-optimal, a parametric fluorescence signal was readily detected. Fluorescence power as high as 4 nW for the degenerate design and 5 nW for the non-degenerate design were detected. The conversion efficiency was 4176 %/Wcm2 and 874 %/Wcm2, respectively. Neither design was found to emit near the design wavelength. In general, the signal is between 1600-1800 nm and the idler is between 2200-2400 nm. Improvements in laser performance are expected to drastically increase the conversion efficiency.
On the cross-stream spectral method for the Orr-Sommerfeld equation
NASA Technical Reports Server (NTRS)
Zorumski, William E.; Hodge, Steven L.
1993-01-01
Cross-stream models are defined as solutions to the Orr-Sommerfeld equation which are propagating normal to the flow direction. These models are utilized as a basis for a Hilbert space to approximate the spectrum of the Orr-Sommerfeld equation with plane Poiseuille flow. The cross-stream basis leads to a standard eigenvalue problem for the frequencies of Poiseuille flow instability waves. The coefficient matrix in the eigenvalue problem is shown to be the sum of a real matrix and a negative-imaginary diagonal matrix which represents the frequencies of the cross-stream modes. The real coefficient matrix is shown to approach a Toeplitz matrix when the row and column indices are large. The Toeplitz matrix is diagonally dominant, and the diagonal elements vary inversely in magnitude with diagonal position. The Poiseuille flow eigenvalues are shown to lie within Gersgorin disks with radii bounded by the product of the average flow speed and the axial wavenumber. It is shown that the eigenvalues approach the Gersgorin disk centers when the mode index is large, so that the method may be used to compute spectra with an essentially unlimited number of elements. When the mode index is large, the real part of the eigenvalue is the product of the axial wavenumber and the average flow speed, and the imaginary part of the eigen value is identical to the corresponding cross-stream mode frequency. The cross-stream method is numerically well-conditioned in comparison to Chebyshev based methods, providing equivalent accuracy for small mode indices and superior accuracy for large indices.
NASA Astrophysics Data System (ADS)
Ali Asgarian, M.; Abbasi, M.
2018-04-01
Electron Bernstein waves (EBW) consist of promising tools in driving localized off-axis current needed for sustained operation as well as effective selective heating scenarios in advanced over dense fusion plasmas like spherical tori and stellarators by applying high power radio frequency waves within the range of Megawatts. Here some serious non-linear effects like parametric decay modes are highly expect-able which have been extensively studied theoretically and experimentally. In general, the decay of an EBW depends on the ratio of the incident frequency and electron cyclotron frequency. At ratios less than two, parametric decay leads to a lower hybrid wave (or an ion Bernstein wave) and EBWs at a lower frequency. For ratios more than two, the daughter waves constitute either an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. However, in contrast with these decay patterns, the excitation of an unusual up-shifted frequency decay channel for the ratio less than two is demonstrated in this study which is totally different as to its generation and persistence. It is shown that this mode varies from the conventional parametric decay channels which necessarily satisfy the matching conditions in frequency and wave-vector. Moreover, the excitation of some less-known local non-propagating quasi-modes (virtual modes) through weak-turbulence theory and their contributions to energy leakage from conversion process leading the reduction in conversion efficiency is assessed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, M. S.; Guo, Wenfeng
2016-06-15
The frequency spectrum and mode structure of axisymmetric electrostatic oscillations [the zonal flow (ZF), sound waves (SW), geodesic acoustic modes (GAM), and electrostatic mean flows (EMF)] in tokamaks with general cross-sections and toroidal flows are studied analytically using the electrostatic approximation for magnetohydrodynamic modes. These modes constitute the “electrostatic continua.” Starting from the energy principle for a tokamak plasma with toroidal rotation, we showed that these modes are completely stable. The ZF, the SW, and the EMF could all be viewed as special cases of the general GAM. The Euler equations for the general GAM are obtained and are solvedmore » analytically for both the low and high range of Mach numbers. The solution consists of the usual countable infinite set of eigen-modes with discrete eigen-frequencies, and two modes with lower frequencies. The countable infinite set is identified with the regular GAM. The lower frequency mode, which is also divergence free as the plasma rotation tends to zero, is identified as the ZF. The other lower (zero) frequency mode is a pure geodesic E×B flow and not divergence free is identified as the EMF. The frequency of the EMF is shown to be exactly 0 independent of plasma cross-section or its flow Mach number. We also show that in general, sound waves with no geodesic components are (almost) completely lost in tokamaks with a general cross-sectional shape. The exception is the special case of strict up-down symmetry. In this case, half of the GAMs would have no geodesic displacements. They are identified as the SW. Present day tokamaks, although not strictly up-down symmetric, usually are only slightly up-down asymmetric. They are expected to share the property with the up-down symmetric tokamak in that half of the GAMs would be more sound wave-like, i.e., have much weaker coupling to the geodesic components than the other half of non-sound-wave-like modes with stronger coupling to the geodesic displacements. Based on the general notion that the geodesic component of the GAM is more effective in tearing up the eddies in the electrostatic turbulence, it is important to preferentially excite the GAMs that are non-sound-wave like to maximize the efficiency on turbulence suppression through external means. Finally, approximate formulae for the frequencies of the EMF, ZF, SW, and the GAM for a large aspect ratio circular tokamak rotating at low Mach numbers are also provided.« less
McNulty, David; Geaney, Hugh; O’Dwyer, Colm
2017-01-01
We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li2O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications. PMID:28186183
McNulty, David; Geaney, Hugh; O'Dwyer, Colm
2017-02-10
We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li 2 O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications.
The inviscid axisymmetric stability of the supersonic flow along a circular cylinder
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1990-01-01
The supersonic flow past a thin straight circular cylinder is investigated. The associated boundary-layer flow (i.e. the velocity and temperature field) is computed; the asymptotic, far downstream solution is obtained, and compared with the full numerical results. The inviscid, linear, axisymmetric (temporal) stability of this boundary layer is also studied. A so-called 'doubly generalized' inflexion condition is derived, which is a condition for the existence of so-called 'subsonic' neutral modes. The eigenvalue problem (for the complex wavespeed) is computed for two free-stream Mach numbers (2.8 and 3.8), and this reveals that curvature has a profound effect on the stability of the flow. The first unstable inviscid mode is seen to disappear rapidly as curvature is introduced, while the second (and generally the most important) mode suffers a substantially reduced amplification rate.
The inviscid axisymmetric stability of the supersonic flow along a circular cylinder
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1989-01-01
The supersonic flow past a thin straight circular cylinder is investigated. The associated boundary layer flow (i.e., the velocity and temperature field) is computed; the asymptotic, far downstream solution is obtained, and compared with the full numerical results. The inviscid, linear, axisymmetric (temporal) stability of this boundary layer is also studied. A so called doubly generalized inflexion condition is derived, which is a condition for the existence of so called subsonic neutral modes. The eigenvalue problem (for the complex wavespeed) is computed for two freestream Mach numbers (2.8 and 3.8), and this reveals that curvature has a profound effect on the stability of the flow. The first unstable inviscid mode is seen to rapidly disappear as curvature is introduced, while the second (and generally the most important) mode suffers a substantially reduced amplification rate.
Persistent Step-Flow Growth of Strained Films on Vicinal Substrates
NASA Astrophysics Data System (ADS)
Hong, Wei; Lee, Ho Nyung; Yoon, Mina; Christen, Hans M.; Lowndes, Douglas H.; Suo, Zhigang; Zhang, Zhenyu
2005-08-01
We propose a model of persistent step flow, emphasizing dominant kinetic processes and strain effects. Within this model, we construct a morphological phase diagram, delineating a regime of step flow from regimes of step bunching and island formation. In particular, we predict the existence of concurrent step bunching and island formation, a new growth mode that competes with step flow for phase space, and show that the deposition flux and temperature must be chosen within a window in order to achieve persistent step flow. The model rationalizes the diverse growth modes observed in pulsed laser deposition of SrRuO3 on SrTiO3.
Yan, Z; McKee, G R; Fonck, R; Gohil, P; Groebner, R J; Osborne, T H
2014-03-28
Comprehensive 2D turbulence and eddy flow velocity measurements on DIII-D demonstrate a rapidly increasing turbulence-driven shear flow that develops ∼100 μs prior to the low-confinement (L mode) to high-confinement (H mode) transition and appears to trigger it. These changes are localized to a narrow layer 1-2 cm inside the magnetic boundary. Increasing heating power increases the Reynolds stress, the energy transfer from turbulence to the poloidal flow, and the edge flow shearing rate that then exceeds the decorrelation rate, suppressing turbulence and triggering the transition.
Liao, Shichao; Zong, Xu; Seger, Brian; Pedersen, Thomas; Yao, Tingting; Ding, Chunmei; Shi, Jingying; Chen, Jian; Li, Can
2016-01-01
Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge injection, our device shows an optimal solar-to-chemical conversion efficiency of ∼5.9% and an overall photon–chemical–electricity energy conversion efficiency of ∼3.2%, which, to our knowledge, outperforms previously reported SRFCs. The proposed SRFC can be self-photocharged to 0.8 V and delivers a discharge capacity of 730 mAh l−1. Our work may guide future designs for highly efficient solar rechargeable devices. PMID:27142885
D'Alpino, Paulo Henrique Perlatti; Silva, Marília Santos; Vismara, Marcus Vinícius Gonçalves; Di Hipólito, Vinicius; Miranda González, Alejandra Hortencia; de Oliveira Graeff, Carlos Frederico
2015-06-01
This study evaluated the degree of conversion, the free radical entrapment, and the chemical interaction of self-adhesive resin cements mixed with pure hydroxyapatite, as a function of the polymerization activation mode among a variety of commercial self-adhesive cements. Four cements (Embrace WetBond, MaxCem Elite, Bifix SE, and RelyX U200) were mixed, combined with hydroxyapatite, dispensed into molds, and distributed into three groups, according to polymerization protocols: IP (photoactivation for 40s); DP (delayed photoactivation, 10 min self-curing plus 40s light-activated); and CA (chemical activation, no light exposure). Infrared (IR) spectra were obtained and monomer conversion (%) was calculated by comparing the aliphatic-to-aromatic IR absorption peak ratio before and after polymerization (n=10). The free radical entrapment values of the resin cements were characterized using Electron Paramagnetic Resonance (EPR) and the concentration of spins (number of spins/mass) calculated (n=3). Values were compared using two-way ANOVA and Tukey's post-hoc test (α=5%). X-ray diffraction (XRD) characterized the crystallinity of hydroxyapatite as a function of the chemical interactions with the resin cements. The tested parameters varied as a function of resin cement and polymerization protocol. Embrace WetBond and RelyX U200 demonstrated dependence on photoactivation (immediate or delayed), whereas MaxCem Elite exhibited dependence on the chemical activation mode. Bifix SE presented the best balance based on the parameters analyzed, irrespective of the activation protocol. Choice of polymerization protocol affects the degree of conversion, free radical entrapment, and the chemical interaction between hydroxyapatite and self-adhesive resin cement mixtures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stellar convection 2: A multi-mode numerical solution for convection in spheres
NASA Technical Reports Server (NTRS)
Marcus, P. S.
1979-01-01
The convective flow of a self gravitating sphere of Boussinesq fluid for small Reynolds and Peclet numbers is numerically determined. The decomposition of the equations of motion into modes is reviewed and a relaxation method is developed and presented to compute the solutions to these equations. The stable equilibrium flow for a Rayleigh number of 10 to the 4th power and a Prandtl number of 10 is determined. The 2 and 3 dimensional spectra of the kinetic and thermal energies and the convective flux as a function of wavelengths are calculated in terms of modes. The anisotropy of the flow as a function of wavelength is defined.
The Formation of Ethane from Carbon Dioxide under Cold Plasma
NASA Astrophysics Data System (ADS)
Zhang, Xiu-ling; Zhang, Lin; Dai, Bin; Gong, Wei-min; Liu, Chang-hou
2001-04-01
Pulsed-corona plasma has been used as a new method for ethane dehydrogenation at low temperature and normal pressure using carbon dioxide as an oxidant in this paper. The effect of carbon dioxide content in the feed, power input, and flow rate of the reactants on the ethane dehydrogenation has been investigated. The experimental results show that the conversion of ethane increases with the increase in the amount of carbon dioxide in the feed. The yield of ethylene and acetylene decreases with the increase in the yield of carbon monoxide, indicating that the increased carbon dioxide leads to the part of ethylene and acetylene being oxidized to carbon monoxide. Power input is primarily an electrical parameter in pulsed-corona plasma, which plays an important role in reactant conversion and product formation. When the power input reaches 16 W, ethane conversion is 41.0% and carbon dioxide conversion is 26.3%. The total yield of ethylene and acetylene is 15.6%. The reduced flow rate of feed improves the conversion of ethane, carbon dioxide and the yield of acetylene, and induces carbon deposit as well.
Preserving Flow Variability in Watershed Model Calibrations
Background/Question/Methods Although watershed modeling flow calibration techniques often emphasize a specific flow mode, ecological conditions that depend on flow-ecology relationships often emphasize a range of flow conditions. We used informal likelihood methods to investig...
NASA Astrophysics Data System (ADS)
Dawson, Joshua
A novel multi-mode implementation of a pulsed detonation engine, put forth by Wilson et al., consists of four modes; each specifically designed to capitalize on flow features unique to the various flow regimes. This design enables the propulsion system to generate thrust through the entire flow regime. The Multi-Mode Ejector-Augmented Pulsed Detonation Rocket Engine operates in mode one during take-off conditions through the acceleration to supersonic speeds. Once the mixing chamber internal flow exceeds supersonic speed, the propulsion system transitions to mode two. While operating in mode two, supersonic air is compressed in the mixing chamber by an upstream propagating detonation wave and then exhausted through the convergent-divergent nozzle. Once the velocity of the air flow within the mixing chamber exceeds the Chapman-Jouguet Mach number, the upstream propagating detonation wave no longer has sufficient energy to propagate upstream and consequently the propulsive system shifts to mode three. As a result of the inability of the detonation wave to propagate upstream, a steady oblique shock system is established just upstream of the convergent-divergent nozzle to initiate combustion. And finally, the propulsion system progresses on to mode four operation, consisting purely of a pulsed detonation rocket for high Mach number flight and use in the upper atmosphere as is needed for orbital insertion. Modes three and four appear to be a fairly significant challenge to implement, while the challenge of implementing modes one and two may prove to be a more practical goal in the near future. A vast number of potential applications exist for a propulsion system that would utilize modes one and two, namely a high Mach number hypersonic cruise vehicle. There is particular interest in the dynamics of mode one operation, which is the subject of this research paper. Several advantages can be obtained by use of this technology. Geometrically the propulsion system is fairly simple and as a result of the rapid combustion process the engine cycle is more efficient compared to its combined cycle counterparts. The flow path geometry consists of an inlet system, followed just downstream by a mixing chamber where an ejector structure is placed within the flow path. Downstream of the ejector structure is a duct leading to a convergent-divergent nozzle. During mode one operation and within the ejector, products from the detonation of a stoichiometric hydrogen/air mixture are exhausted directly into the surrounding secondary air stream. Mixing then occurs between both the primary and secondary flow streams, at which point the air mass containing the high pressure, high temperature reaction products is convected downstream towards the nozzle. The engine cycle is engineered to a specific number of detonations per second, creating the pulsating characteristic of the primary flow. The pulsing nature of the primary flow serves as a momentum augmentation, enhancing the thrust and specific impulse at low speeds. Consequently it is necessary to understand the transient mixing process between the primary and secondary flow streams occurring during mode one operation. Using OPENFOAMRTM, an analytic tool is developed to simulate the dynamics of the turbulent detonation process along with detailed chemistry in order to understand the physics involved with the stream interactions. The computational code has been developed within the framework of OPENFOAMRTM, an open-source alternative to commercial CFD software. A conservative formulation of the Farve averaged Navier-Stokes equations is implemented to facilitate programming and numerical stability. Time discretization is accomplished by using the Crank-Nicolson method, achieving second order convergence in time. Species mass fraction transport equations are implemented and a Seulex ODE solver was used to resolve the system of ordinary differential equations describing the hydrogen-air reaction mechanism detailed in Appendix A. The Seulex ODE solution algorithm is an extrapolation method based on the linearly implicit Euler method with step size control. A second order total variation diminishing method with a modified Sweby flux limiter was used for space discretization. And finally the use of operator splitting (PISO algorithm, and chemical kinetics) is essential due to the significant differences in characteristic time scales evolving simultaneously in turbulent reactive flow. Capturing the turbulent nature of the combustion process was done using the k-o-SST turbulence model, as formulated by Mentor [1]. Mentor's formulation is well suited to resolve the boundary layer while remaining relatively insensitive to freestream conditions, blending the merits of both the k-o and k-epsilon models. Further development of the tool is possible, most notably with the Numerical Propulsion System Simulation application. NPSS allows the user to take advantage of a "zooming" functionality in which high fidelity models of engine components can be integrated into NPSS models, allowing for a more robust propulsion system simulation.
R&D100: 6.5kV Enhancement-Mode Silicon Carbide JFET Switch
Dries, Chris; Hostetler, John; Atcitty, Stan
2018-06-12
Researchers at Sandia National Laboratories have partnered with United Silicon Carbide, Inc. to combine advanced materials with novel manufacturing ideas to build a new product for significantly more efficient power conversion. Harnessing the unique features of silicon carbide, this first of its kind device allows higher voltage switching, and reductions in switching losses to significantly boost the efficiency and reliability of power generation and power conversion.
Overdense microwave plasma heating in the CNT stellarator
NASA Astrophysics Data System (ADS)
Hammond, K. C.; Diaz-Pacheco, R. R.; Köhn, A.; Volpe, F. A.; Wei, Y.
2018-02-01
Overdense plasmas have been attained with 2.45 GHz microwave heating in the low-field, low-aspect-ratio CNT stellarator. Densities higher than four times the ordinary (O) mode cutoff density were measured with 8 kW of power injected in the O-mode and, alternatively, with 6.5 kW in the extraordinary (X) mode. The temperature profiles peak at the plasma edge. This was ascribed to collisional damping of the X-mode at the upper hybrid resonant layer. The X-mode reaches that location by tunneling, mode-conversions or after polarization-scrambling reflections off the wall and in-vessel coils, regardless of the initial launch being in O- or X-mode. This interpretation was confirmed by full-wave numerical simulations. Also, as the CNT plasma is not completely ionized at these low microwave power levels, electron density was shown to increase with power. A dependence on magnetic field strength was also observed, for O-mode launch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, S.; Izaguirre, I.; Raffelt, G.G.
Neutrino-neutrino refraction in dense media can cause self-induced flavor conversion triggered by collective run-away modes of the interacting flavor oscillators. The growth rates were usually found to be of order a typical vacuum oscillation frequency Δ m{sup 2}/2E. However, even in the simple case of a ν{sub e} beam interacting with an opposite-moving ν-bar {sub e} beam, and allowing for spatial inhomogeneities, the growth rate of the fastest-growing Fourier mode is of order μ=√2 G{sub F} n{sub ν}, a typical ν–ν interaction energy. This growth rate is much larger than the vacuum oscillation frequency and gives rise to flavor conversion on a muchmore » shorter time scale. This phenomenon of 'fast flavor conversion' occurs even for vanishing Δ m{sup 2}/2E and thus does not depend on energy, but only on the angle distributions. Moreover, it does not require neutrinos to mix or to have masses, except perhaps for providing seed disturbances. We also construct a simple homogeneous example consisting of intersecting beams and study a schematic supernova model proposed by Ray Sawyer, where ν{sub e} and ν-bar {sub e} emerge with different zenith-angle distributions, the key ingredient for fast flavor conversion. What happens in realistic astrophysical scenarios remains to be understood.« less
Local Structure Evolution and Modes of Charge Storage in Secondary Li–FeS 2 Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butala, Megan M.; Mayo, Martin; Doan-Nguyen, Vicky V. T.
2017-03-27
In the pursuit of high-capacity electrochemical energy storage, a promising domain of research involves conversion reaction schemes, wherein electrode materials are fully transformed during charge and discharge. There are, however, numerous difficulties in realizing theoretical capacity and high rate capability in many conversion schemes. Here we employ operando studies to understand the conversion material FeS2, focusing on the local structure evolution of this relatively reversible material. X-ray absorption spectroscopy, pair distribution function analysis, and first-principles calculations of intermediate structures shed light on the mechanism of charge storage in the Li-FeS2 system, with some general principles emerging for charge storage inmore » chalcogenide materials. Focusing on second and later charge/discharge cycles, we find small, disordered domains that locally resemble Fe and Li2S at the end of the first discharge. Upon charge, this is converted to a Li-Fe-S composition whose local structure reveals tetrahedrally coordinated Fe. With continued charge, this ternary composition displays insertion extraction behavior at higher potentials and lower Li content. The finding of hybrid modes of charge storage, rather than simple conversion, points to the important role of intermediates that appear to store charge by mechanisms that more closely resemble intercalation.« less
Nonreciprocal frequency conversion in a multimode microwave optomechanical circuit
NASA Astrophysics Data System (ADS)
Feofanov, A. K.; Bernier, N. R.; Toth, L. D.; Koottandavida, A.; Kippenberg, T. J.
Nonreciprocal devices such as isolators, circulators, and directional amplifiers are pivotal to quantum signal processing with superconducting circuits. In the microwave domain, commercially available nonreciprocal devices are based on ferrite materials. They are barely compatible with superconducting quantum circuits, lossy, and cannot be integrated on chip. Significant potential exists for implementing non-magnetic chip-scale nonreciprocal devices using microwave optomechanical circuits. Here we demonstrate a possibility of nonreciprocal frequency conversion in a multimode microwave optomechanical circuit using solely optomechanical interaction between modes. The conversion scheme and the results reflecting the actual progress on the experimental implementation of the scheme will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
A partial acceptance test was conducted on the El Toro Library Solar Energy System, and the detailed results of the various mode acceptance tests are given. All the modes tested function as designed. Collector array efficiencies were calculated at approximately 40%. Chiller COP was estimated at .50, with chiller loop flow rates approximately 85 to 90% of design flow. The acceptance test included visual inspection, preoperational testing and procedure verification, operational mode checkout, and performance testing. (LEW)
NASA Astrophysics Data System (ADS)
Derishev, E.; Aharonian, F.
We show that, in the presence of radiation field, relativistic bulk flows can very quikly accelerate protons and electrons up to the energies limited either by Hillas criterion or by synchrotron losses. Unlike the traditional approach, we take advantage of continuous photon-induced conversion of charged particle species to neutral ones, and vice versa (proton-neutron or electron-photon). Such a conversion, though it leads to considerable energy losses, allows accelerated particles to increase their energies in each scattering by a factor roughly equal to the bulk Lorentz factor, thus avoiding the need in slow and relatively inefficient diffusive acceleration. The optical depth of accelerating region with respect to inelastic photon-induced reactions (pair production for electrons and photomeson reactions for protons) should be a substancial fraction of unity. Remarkably, self-tuning of the optical depth is automatically achieved as long as the photon density depends on the distance along the bulk flow. This mechanism can work in Gamma-Ray Bursts (GRBs), Active Galactic Nuclei (AGNs), microquasars, or any other object with relativistic bulk flows embedded in radiation-reach environment. Both GRBs and AGNs turn out to be capable of producing 1020 eV cosmic rays.
Nondestructive evaluation of helicopter rotor blades using guided Lamb modes.
Chakrapani, Sunil Kishore; Barnard, Daniel; Dayal, Vinay
2014-03-01
This paper presents an application for turning and direct modes in a complex composite laminate structure. The propagation and interaction of turning modes and fundamental Lamb modes are investigated in the skin, spar and web sections of a helicopter rotor blade. Finite element models were used to understand the various mode conversions at geometric discontinuities such as web-spar joints. Experimental investigation was carried out with the help of air coupled ultrasonic transducers. The turning and direct modes were confirmed with the help of particle displacements and velocities. Experimental B-Scans were performed on damaged and undamaged samples for qualitative and quantitative assessment of the structure. A strong correlation between the numerical and experimental results was observed and reported. Copyright © 2013 Elsevier B.V. All rights reserved.
Helioseismic Constraints on the Depth Dependence of Large-Scale Solar Convection
NASA Astrophysics Data System (ADS)
Woodard, Martin F.
2017-08-01
A recent helioseismic statistical waveform analysis of subsurface flow based on a 720-day time series of SOHO/MDI Medium-l spherical-harmonic coefficients has been extended to cover a greater range of subphotospheric depths. The latest analysis provides estimates of flow-dependent oscillation-mode coupling-strength coefficients b(s,t;n,l) over the range l = 30 to 150 of mode degree (angular wavenumber) for solar p-modes in the approximate frequency range 2 to 4 mHz. The range of penetration depths of this mode set covers most of the solar convection zone. The most recent analysis measures spherical harmonic (s,t) components of the flow velocity for odd s in the angular wavenumber range 1 to 19 for t not much smaller than s at a given s. The odd-s b(s,t;n,l) coefficients are interpreted as averages over depth of the depth-dependent amplitude of one spherical-harmonic (s,t) component of the toroidal part of the flow velocity field. The depth-dependent weighting function defining the average velocity is the fractional kinetic energy density in radius of modes of the (n,l) multiplet. The b coefficients have been converted to estimates of root velocity power as a function of l0 = nu0*l/nu(n,l), which is a measure of mode penetration depth. (nu(n,l) is mode frequency and nu0 is a reference frequency equal to 3 mHz.) A comparison of the observational results with simple convection models will be presented.
ERIC Educational Resources Information Center
Hedman, Leif; Sharafi, Parvaneh
2004-01-01
This case study explores how educational training and clinical practice that uses personal computers (PCs) and Personal Digital Assistants (PDAs) to access Internet-based medical information, affects the engagement modes of students, flow experience components, and IT-competence. A questionnaire assessing these variables was administered before…
Predicting Transition from Laminar to Turbulent Flow over a Surface
NASA Technical Reports Server (NTRS)
Sturdza, Peter (Inventor); Rajnarayan, Dev (Inventor)
2013-01-01
A prediction of whether a point on a computer-generated surface is adjacent to laminar or turbulent flow is made using a transition prediction technique. A plurality of boundary-layer properties at the point are obtained from a steady-state solution of a fluid flow in a region adjacent to the point. A plurality of instability modes are obtained, each defined by one or more mode parameters. A vector of regressor weights is obtained for the known instability growth rates in a training dataset. For each instability mode in the plurality of instability modes, a covariance vector is determined, which is the covariance of a predicted local growth rate with the known instability growth rates. Each covariance vector is used with the vector of regressor weights to determine a predicted local growth rate at the point. Based on the predicted local growth rates, an n-factor envelope at the point is determined.
Condensation model for the ESBWR passive condensers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revankar, S. T.; Zhou, W.; Wolf, B.
2012-07-01
In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data frommore » separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)« less
Shear-Flow Instability Saturation by Stable Modes: Hydrodynamics and Gyrokinetics
NASA Astrophysics Data System (ADS)
Fraser, Adrian; Pueschel, M. J.; Terry, P. W.; Zweibel, E. G.
2017-10-01
We present simulations of shear-driven instabilities, focusing on the impact of nonlinearly excited, large-scale, linearly stable modes on the nonlinear cascade, momentum transport, and secondary instabilities. Stable modes, which have previously been shown to significantly affect instability saturation [Fraser et al. PoP 2017], are investigated in a collisionless, gyrokinetic, periodic zonal flow using the
Effect of the radial buoyancy on a circular Couette flow
NASA Astrophysics Data System (ADS)
Meyer, Antoine; Yoshikawa, Harunori N.; Mutabazi, Innocent
2015-11-01
The effect of a radial temperature gradient on the stability of a circular Couette flow is investigated when the gravitational acceleration is neglected. The induced radial stratification of the fluid density coupled with the centrifugal acceleration generates radial buoyancy which is centrifugal for inward heating and centripetal for outward heating. This radial buoyancy modifies the Rayleigh discriminant and induces the asymmetry between inward heating and outward heating in flow behavior. The critical modes are axisymmetric and stationary for inward heating while for outward heating, they can be oscillatory axisymmetric or nonaxisymmetric depending on fluid diffusion properties, i.e., on the Prandtl number Pr. The dependence of the critical modes on Pr is explored for different values of the radius ratio of the annulus. The power input of the radial buoyancy is compared with other power terms. The critical frequency of the oscillatory axisymmetric modes is linked to the Brunt-Väisälä frequency due to the density stratification in the radial gravity field induced by the rotation. These modes are associated with inertial waves. The dispersion relation of the oscillatory axisymmetric modes is derived in the vicinity of the critical conditions. A weakly nonlinear amplitude equation with a forcing term is proposed to explain the domination of these axisymmetric oscillatory modes over the stationary centrifugal mode.
The Prominent Role of the Upstream Conditions on the Large-scale Motions of a Turbulent Channel Flow
NASA Astrophysics Data System (ADS)
Castillo, Luciano; Dharmarathne, Suranga; Tutkun, Murat; Hutchins, Nicholas
2017-11-01
In this study we investigate how upstream perturbations in a turbulent channel flow impact the downstream flow evolution, especially the large-scale motions. Direct numerical simulations were carried out at a friction Reynolds number, Reτ = 394 . Spanwise varying inlet blowing perturbations were imposed at 1 πh from the inlet. The flow field is decomposed into its constituent scales using proper orthogonal decomposition. The large-scale motions and the small-scale motions of the flow field are separated at a cut-off mode number, Mc. The cut-off mode number is defined as the number of the mode at which the fraction of energy recovered is 55 % . It is found that Reynolds stresses are increased due to blowing perturbations and large-scale motions are responsible for more than 70 % of the increase of the streamwise component of Reynolds normal stress. Surprisingly, 90 % of Reynolds shear stress is due to the energy augmentation of large-scale motions. It is shown that inlet perturbations impact the downstream flow by means of the LSM.
Frequency dependence and frequency control of microbubble streaming flows
NASA Astrophysics Data System (ADS)
Wang, Cheng; Rallabandi, Bhargav; Hilgenfeldt, Sascha
2013-02-01
Steady streaming from oscillating microbubbles is a powerful actuating mechanism in microfluidics, enjoying increased use due to its simplicity of manufacture, ease of integration, low heat generation, and unprecedented control over the flow field and particle transport. As the streaming flow patterns are caused by oscillations of microbubbles in contact with walls of the set-up, an understanding of the bubble dynamics is crucial. Here we experimentally characterize the oscillation modes and the frequency response spectrum of such cylindrical bubbles, driven by a pressure variation resulting from ultrasound in the range of 1 kHz raisebox {-.9ex{stackrel{textstyle <}{˜ }} }f raisebox {-.9ex{stackrel{textstyle <}{˜ }} } 100 kHz. We find that (i) the appearance of 2D streaming flow patterns is governed by the relative amplitudes of bubble azimuthal surface modes (normalized by the volume response), (ii) distinct, robust resonance patterns occur independent of details of the set-up, and (iii) the position and width of the resonance peaks can be understood using an asymptotic theory approach. This theory describes, for the first time, the shape oscillations of a pinned cylindrical bubble at a wall and gives insight into necessary mode couplings that shape the response spectrum. Having thus correlated relative mode strengths and observed flow patterns, we demonstrate that the performance of a bubble micromixer can be optimized by making use of such flow variations when modulating the driving frequency.
NASA Technical Reports Server (NTRS)
Giffin, R. G.; Mcfalls, R. A.; Beacher, B. F.
1977-01-01
The fan aerodynamic and aeromechanical performance tests of the quiet clean short haul experimental engine under the wing fan and inlet with a simulated core flow are described. Overall forward mode fan performance is presented at each rotor pitch angle setting with conventional flow pressure ratio efficiency fan maps, distinguishing the performance characteristics of the fan bypass and fan core regions. Effects of off design bypass ratio, hybrid inlet geometry, and tip radial inlet distortion on fan performance are determined. The nonaxisymmetric bypass OGV and pylon configuration is assessed relative to both total pressure loss and induced circumferential flow distortion. Reverse mode performance, obtained by resetting the rotor blades through both the stall pitch and flat pitch directions, is discussed in terms of the conventional flow pressure ratio relationship and its implications upon achievable reverse thrust. Core performance in reverse mode operation is presented in terms of overall recovery levels and radial profiles existing at the simulated core inlet plane. Observations of the starting phenomena associated with the initiation of stable rotor flow during acceleration in the reverse mode are briefly discussed. Aeromechanical response characteristics of the fan blades are presented as a separate appendix, along with a description of the vehicle instrumentation and method of data reduction.
Plasma rotation and transport in MAST spherical tokamak
NASA Astrophysics Data System (ADS)
Field, A. R.; Michael, C.; Akers, R. J.; Candy, J.; Colyer, G.; Guttenfelder, W.; Ghim, Y.-c.; Roach, C. M.; Saarelma, S.; MAST Team
2011-06-01
The formation of internal transport barriers (ITBs) is investigated in MAST spherical tokamak plasmas. The relative importance of equilibrium flow shear and magnetic shear in their formation and evolution is investigated using data from high-resolution kinetic- and q-profile diagnostics. In L-mode plasmas, with co-current directed NBI heating, ITBs in the momentum and ion thermal channels form in the negative shear region just inside qmin. In the ITB region the anomalous ion thermal transport is suppressed, with ion thermal transport close to the neo-classical level, although the electron transport remains anomalous. Linear stability analysis with the gyro-kinetic code GS2 shows that all electrostatic micro-instabilities are stable in the negative magnetic shear region in the core, both with and without flow shear. Outside the ITB, in the region of positive magnetic shear and relatively weak flow shear, electrostatic micro-instabilities become unstable over a wide range of wave numbers. Flow shear reduces the linear growth rates of low-k modes but suppression of ITG modes is incomplete, which is consistent with the observed anomalous ion transport in this region; however, flow shear has little impact on growth rates of high-k, electron-scale modes. With counter-NBI ITBs of greater radial extent form outside qmin due to the broader profile of E × B flow shear produced by the greater prompt fast-ion loss torque.
Optimization of a new flow design for solid oxide cells using computational fluid dynamics modelling
NASA Astrophysics Data System (ADS)
Duhn, Jakob Dragsbæk; Jensen, Anker Degn; Wedel, Stig; Wix, Christian
2016-12-01
Design of a gas distributor to distribute gas flow into parallel channels for Solid Oxide Cells (SOC) is optimized, with respect to flow distribution, using Computational Fluid Dynamics (CFD) modelling. The CFD model is based on a 3d geometric model and the optimized structural parameters include the width of the channels in the gas distributor and the area in front of the parallel channels. The flow of the optimized design is found to have a flow uniformity index value of 0.978. The effects of deviations from the assumptions used in the modelling (isothermal and non-reacting flow) are evaluated and it is found that a temperature gradient along the parallel channels does not affect the flow uniformity, whereas a temperature difference between the channels does. The impact of the flow distribution on the maximum obtainable conversion during operation is also investigated and the obtainable overall conversion is found to be directly proportional to the flow uniformity. Finally the effect of manufacturing errors is investigated. The design is shown to be robust towards deviations from design dimensions of at least ±0.1 mm which is well within obtainable tolerances.
Schrodinger's catapult II: entanglement between stationary and flying fields
NASA Astrophysics Data System (ADS)
Pfaff, W.; Axline, C.; Burkhart, L.; Vool, U.; Reinhold, P.; Frunzio, L.; Jiang, L.; Devoret, M.; Schoelkopf, R.
Entanglement between nodes is an elementary resource in a quantum network. An important step towards its realization is entanglement between stationary and flying states. Here we experimentally demonstrate entanglement generation between a long-lived cavity memory and traveling mode in circuit QED. A large on/off ratio and fast control over a parametric mixing process allow us to realize conversion with tunable magnitude and duration between standing and flying mode. In the case of half-conversion, we observe correlations between the standing and flying state that confirm the generation of entangled states. We show this for both single-photon and multi-photon states, paving the way for error-correctable remote entanglement. Our system could serve as an essential component in a modular architecture for error-protected quantum information processing.
Non-linear wave interaction in a magnetoplasma column. I - Theory. II Experiment
NASA Technical Reports Server (NTRS)
Larsen, J.-M.; Crawford, F. W.
1979-01-01
The paper presents an analysis of non-linear three-wave interaction for propagation along a cylindrical plasma column surrounded either by a metallic boundary, or by an infinite dielectric, and immersed in an infinite, static, axial magnetic field. An averaged Lagrangian method is used and the results are specialized to parametric amplification and mode conversion, assuming an undepleted pump wave. Computations are presented for a magneto-plasma column surrounded by free space, indicating that parametric growth rates of the order of a fraction of a decibel per centimeter should be obtainable for plausible laboratory plasma parameters. In addition, experiments on non-linear mode conversion in a cylindrical magnetoplasma column are described. The results are compared with the theoretical predictions and good qualitative agreement is demonstrated.
NASA Astrophysics Data System (ADS)
Hou, Zhilin; Assouar, Badreddine M.
2008-05-01
Eigenmode matching theory, which was developed originally for the band structure and the transmission property of the infinite phononic crystal (PC), is extended to deal with the PC thin plate. By this method, the transmission property of the one-dimensional PC thin plate with and without a uniform substrate is investigated. It is shown that in the PC thin plate without a substrate, the permitted band of the structure can be separated into two parts, which can be excited by the incident antisymmetric and symmetric Lamb modes, respectively. However, for the PC plate with a substrate, the energy conversion between the symmetric and antisymmetric modes can be found in the transmission spectrum. The physical origin of such an energy conversion is discussed.
NASA Astrophysics Data System (ADS)
Boiyo, Duncan Kiboi; Chabata, T. V.; Kipnoo, E. K. Rotich; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.
2017-01-01
We experimentally provide an alternative solution to channel collisions through up-wavelength conversion and switching by using vertical cavity surface-emitting lasers (VCSELs). This has been achieved by utilizing purely optical wavelength conversion on VCSELs at the low attenuation, 1550 nm transmission window. The corresponding transmission and bit error-rate (BER) performance evaluation is also presented. In this paper, two 1550 nm VCSELs with 50-150 GHz channel spacing are modulated with a 10 Gb/s NRZ PRBS 27-1 data and their interferences investigated. A channel interference penalty range of 0.15-1.63 dB is incurred for 150-50 GHz channel spacing without transmission. To avoid channel collisions and to minimize high interference penalties, the transmitting VCSEL with data is injected into the side-mode of a slave VCSEL to obtain a new up converted wavelength. A 16 dB extinction ratio of the incoming wavelength is achieved when a 15 dBm transmitting beam is injected into the side-mode of a -4.5 dBm slave VCSEL. At 8.5 Gb/s, a 1.1 dB conversion and a 0.5 dB transmission penalties are realized when the converted wavelength is transmitted over a 24.7 km G.655 fibre. This work offers a low-cost, effective wavelength conversion and channel switching to reduce channel collision probability by reconfiguring channels at the node of networks.
Wake Instabilities Behind Discrete Roughness Elements in High Speed Boundary Layers
NASA Technical Reports Server (NTRS)
Choudhari, Meelan; Li, Fei; Chang, Chau-Lyan; Norris, Andrew; Edwards, Jack
2013-01-01
Computations are performed to study the flow past an isolated, spanwise symmetric roughness element in zero pressure gradient boundary layers at Mach 3.5 and 5.9, with an emphasis on roughness heights of less than 55 percent of the local boundary layer thickness. The Mach 5.9 cases include flow conditions that are relevant to both ground facility experiments and high altitude flight ("cold wall" case). Regardless of the Mach number, the mean flow distortion due to the roughness element is characterized by long-lived streamwise streaks in the roughness wake, which can support instability modes that did not exist in the absence of the roughness element. The higher Mach number cases reveal a variety of instability mode shapes with velocity fluctuations concentrated in different localized regions of high base flow shear. The high shear regions vary from the top of a mushroom shaped structure characterizing the centerline streak to regions that are concentrated on the sides of the mushroom. Unlike the Mach 3.5 case with nearly same values of scaled roughness height k/delta and roughness height Reynolds number Re(sub kk), the odd wake modes in both Mach 5.9 cases are significantly more unstable than the even modes of instability. Additional computations for a Mach 3.5 boundary layer indicate that the presence of a roughness element can also enhance the amplification of first mode instabilities incident from upstream. Interactions between multiple roughness elements aligned along the flow direction are also explored.