Surveillance system and method having an operating mode partitioned fault classification model
NASA Technical Reports Server (NTRS)
Bickford, Randall L. (Inventor)
2005-01-01
A system and method which partitions a parameter estimation model, a fault detection model, and a fault classification model for a process surveillance scheme into two or more coordinated submodels together providing improved diagnostic decision making for at least one determined operating mode of an asset.
The Use of Computer-Aided Decision Support Systems for Complex Source Selection Decisions
1989-09-01
unique low noise interferometer developed at Fusetech Inc. by using divided Fabry - Perot fiber optic cells, common- mode rejection, matched path lengths and...potential techniques for a demodulation scheme. They proposed a detailed investigation of the approaches as part of the program. For mine applications
Sugimoto, Katsutoshi; Shiraishi, Junji; Moriyasu, Fuminori; Doi, Kunio
2009-04-01
To develop a computer-aided diagnostic (CAD) scheme for classifying focal liver lesions (FLLs) by use of physicians' subjective classification of echogenic patterns of FLLs on baseline and contrast-enhanced ultrasonography (US). A total of 137 hepatic lesions in 137 patients were evaluated with B-mode and NC100100 (Sonazoid)-enhanced pulse-inversion US; lesions included 74 hepatocellular carcinomas (HCCs) (23: well-differentiated, 36: moderately differentiated, 15: poorly differentiated HCCs), 33 liver metastases, and 30 liver hemangiomas. Three physicians evaluated single images at B-mode and arterial phases with a cine mode. Physicians were asked to classify each lesion into one of eight B-mode and one of eight enhancement patterns, but did not make a diagnosis. To classify five types of FLLs, we employed a decision tree model with four decision nodes and four artificial neural networks (ANNs). The results of the physicians' pattern classifications were used successively for four different ANNs in making decisions at each of the decision nodes in the decision tree model. The classification accuracies for the 137 FLLs were 84.8% for metastasis, 93.3% for hemangioma, and 98.6% for all HCCs. In addition, the classification accuracies for histological differentiation types of HCCs were 65.2% for well-differentiated HCC, 41.7% for moderately differentiated HCC, and 80.0% for poorly differentiated HCC. This CAD scheme has the potential to improve the diagnostic accuracy of liver lesions. However, the accuracy in the histologic differential diagnosis of HCC based on baseline and contrast-enhanced US is still limited.
Inoue, Takashi; Namiki, Shu
2013-12-02
We find that an adaptive equalizer and a phase-locked loop operating with decision-directed mode exhibit degraded performances when they are used in a digital coherent receiver to demodulate a 16QAM signal with intrinsically distorted constellation, and that the degradation is more significant for the dual-polarization case. We then propose a scheme to correctly demodulate such a distorted 16QAM signal, where the reference constellation and the threshold for the decision are adaptively adjusted such that they fit to the distorted ones. We experimentally confirm the improved performance of the proposed scheme over the conventional one for single-and dual-polarization 16QAM signals with distortion. We also investigate the applicable range of the proposed scheme for the degree of distortion of the signal.
Decision algorithm for data center vortex beam receiver
NASA Astrophysics Data System (ADS)
Kupferman, Judy; Arnon, Shlomi
2017-12-01
We present a new scheme for a vortex beam communications system which exploits the radial component p of Laguerre-Gauss modes in addition to the azimuthal component l generally used. We derive a new encoding algorithm which makes use of the spatial distribution of intensity to create an alphabet dictionary for communication. We suggest an application of the scheme as part of an optical wireless link for intra data center communication. We investigate the probability of error in decoding, for several detector options.
NASA Astrophysics Data System (ADS)
Abdellah, Skoudarli; Mokhtar, Nibouche; Amina, Serir
2015-11-01
The H.264/AVC video coding standard is used in a wide range of applications from video conferencing to high-definition television according to its high compression efficiency. This efficiency is mainly acquired from the newly allowed prediction schemes including variable block modes. However, these schemes require a high complexity to select the optimal mode. Consequently, complexity reduction in the H.264/AVC encoder has recently become a very challenging task in the video compression domain, especially when implementing the encoder in real-time applications. Fast mode decision algorithms play an important role in reducing the overall complexity of the encoder. In this paper, we propose an adaptive fast intermode algorithm based on motion activity, temporal stationarity, and spatial homogeneity. This algorithm predicts the motion activity of the current macroblock from its neighboring blocks and identifies temporal stationary regions and spatially homogeneous regions using adaptive threshold values based on content video features. Extensive experimental work has been done in high profile, and results show that the proposed source-coding algorithm effectively reduces the computational complexity by 53.18% on average compared with the reference software encoder, while maintaining the high-coding efficiency of H.264/AVC by incurring only 0.097 dB in total peak signal-to-noise ratio and 0.228% increment on the total bit rate.
Zhao, Kai-Hui; Chen, Te-Fang; Zhang, Chang-Fan; He, Jing; Huang, Gang
2014-01-01
To prevent irreversible demagnetization of a permanent magnet (PM) for interior permanent magnet synchronous motors (IPMSMs) by flux-weakening control, a robust PM flux-linkage nonsingular fast terminal-sliding-mode observer (NFTSMO) is proposed to detect demagnetization faults. First, the IPMSM mathematical model of demagnetization is presented. Second, the construction of the NFTSMO to estimate PM demagnetization faults in IPMSM is described, and a proof of observer stability is given. The fault decision criteria and fault-processing method are also presented. Finally, the proposed scheme was simulated using MATLAB/Simulink and implemented on the RT-LAB platform. A number of robustness tests have been carried out. The scheme shows good performance in spite of speed fluctuations, torque ripples and the uncertainties of stator resistance. PMID:25490582
Zhao, Kai-Hui; Chen, Te-Fang; Zhang, Chang-Fan; He, Jing; Huang, Gang
2014-12-05
To prevent irreversible demagnetization of a permanent magnet (PM) for interior permanent magnet synchronous motors (IPMSMs) by flux-weakening control, a robust PM flux-linkage nonsingular fast terminal-sliding-mode observer (NFTSMO) is proposed to detect demagnetization faults. First, the IPMSM mathematical model of demagnetization is presented. Second, the construction of the NFTSMO to estimate PM demagnetization faults in IPMSM is described, and a proof of observer stability is given. The fault decision criteria and fault-processing method are also presented. Finally, the proposed scheme was simulated using MATLAB/Simulink and implemented on the RT-LAB platform. A number of robustness tests have been carried out. The scheme shows good performance in spite of speed fluctuations, torque ripples and the uncertainties of stator resistance.
NASA Astrophysics Data System (ADS)
Weng, Yi; He, Xuan; Wang, Junyi; Pan, Zhongqi
2017-01-01
Spatial-division multiplexing (SDM) techniques have been purposed to increase the capacity of optical fiber transmission links by utilizing multicore fibers or few-mode fibers (FMF). The most challenging impairments of SDMbased long-haul optical links mainly include modal dispersion and mode-dependent loss (MDL), whereas MDL arises from inline component imperfections, and breaks modal orthogonality thus degrading the capacity of multiple-inputmultiple- output (MIMO) receivers. To reduce MDL, optical approaches include mode scramblers and specialty fiber designs, yet these methods were burdened with high cost, yet cannot completely remove the accumulated MDL in the link. Besides, space-time trellis codes (STTC) were purposed to lessen MDL, but suffered from high complexity. In this work, we investigated the performance of space-time block-coding (STBC) scheme to mitigate MDL in SDM-based optical communication by exploiting space and delay diversity, whereas weight matrices of frequency-domain equalization (FDE) were updated heuristically using decision-directed recursive-least-squares (RLS) algorithm for convergence and channel estimation. The STBC was evaluated in a six-mode multiplexed system over 30-km FMF via 6×6 MIMO FDE, with modal gain offset 3 dB, core refractive index 1.49, numerical aperture 0.5. Results show that optical-signal-to-noise ratio (OSNR) tolerance can be improved via STBC by approximately 3.1, 4.9, 7.8 dB for QPSK, 16- and 64-QAM with respective bit-error-rates (BER) and minimum-mean-square-error (MMSE). Besides, we also evaluate the complexity optimization of STBC decoding scheme with zero-forcing decision feedback (ZFDF) equalizer by shortening the coding slot length, which is robust to frequency-selective fading channels, and can be scaled up for SDM systems with more dynamic channels.
NASA Technical Reports Server (NTRS)
Vess, Melissa F.; Starin, Scott R.
2007-01-01
During design of the SDO Science and Inertial mode PID controllers, the decision was made to disable the integral torque whenever system stability was in question. Three different schemes were developed to determine when to disable or enable the integral torque, and a trade study was performed to determine which scheme to implement. The trade study compared complexity of the control logic, risk of not reenabling the integral gain in time to reject steady-state error, and the amount of integral torque space used. The first scheme calculated a simplified Routh criterion to determine when to disable the integral torque. The second scheme calculates the PD part of the torque and looked to see if that torque would cause actuator saturation. If so, only the PD torque is used. If not, the integral torque is added. Finally, the third scheme compares the attitude and rate errors to limits and disables the integral torque if either of the errors is greater than the limit. Based on the trade study results, the third scheme was selected. Once it was decided when to disable the integral torque, analysis was performed to determine how to disable the integral torque and whether or not to reset the integrator once the integral torque was reenabled. Three ways to disable the integral torque were investigated: zero the input into the integrator, which causes the integral part of the PID control torque to be held constant; zero the integral torque directly but allow the integrator to continue integrating; or zero the integral torque directly and reset the integrator on integral torque reactivation. The analysis looked at complexity of the control logic, slew time plus settling time between each calibration maneuver step, and ability to reject steady-state error. Based on the results of the analysis, the decision was made to zero the input into the integrator without resetting it. Throughout the analysis, a high fidelity simulation was used to test the various implementation methods.
Liu, Xiang; Effenberger, Frank; Chand, Naresh
2015-03-09
We demonstrate a flexible modulation and detection scheme for upstream transmission in passive optical networks using pulse position modulation at optical network unit, facilitating burst-mode detection with automatic decision threshold tracking, and DSP-enabled soft-combining at optical line terminal. Adaptive receiver sensitivities of -33.1 dBm, -36.6 dBm and -38.3 dBm at a bit error ratio of 10(-4) are respectively achieved for 2.5 Gb/s, 1.25 Gb/s and 625 Mb/s after transmission over a 20-km standard single-mode fiber without any optical amplification.
Non-linear multi-objective model for planning water-energy modes of Novosibirsk Hydro Power Plant
NASA Astrophysics Data System (ADS)
Alsova, O. K.; Artamonova, A. V.
2018-05-01
This paper presents a non-linear multi-objective model for planning and optimizing of water-energy modes for the Novosibirsk Hydro Power Plant (HPP) operation. There is a very important problem of developing a strategy to improve the scheme of water-power modes and ensure the effective operation of hydropower plants. It is necessary to determine the methods and criteria for the optimal distribution of water resources, to develop a set of models and to apply them to the software implementation of a DSS (decision-support system) for managing Novosibirsk HPP modes. One of the possible versions of the model is presented and investigated in this paper. Experimental study of the model has been carried out with 2017 data and the task of ten-day period planning from April to July (only 12 ten-day periods) was solved.
Teacher argumentation in the secondary science classroom: Images of two modes of scientific inquiry
NASA Astrophysics Data System (ADS)
Gray, Ron E.
The purpose of this exploratory study was to examine scientific arguments constructed by secondary science teachers during instruction. The analysis focused on how arguments constructed by teachers differed based on the mode of inquiry underlying the topic. Specifically, how did the structure and content of arguments differ between experimentally and historically based topics? In addition, what factors mediate these differences? Four highly experienced high school science teachers were observed daily during instructional units for both experimental and historical science topics. Data sources include classroom observations, field notes, reflective memos, classroom artifacts, a nature of science survey, and teacher interviews. The arguments were analyzed for structure and content using Toulmin's argumentation pattern and Walton's schemes for presumptive reasoning revealing specific patterns of use between the two modes of inquiry. Interview data was analyzed to determine possible factors mediating these patterns. The results of this study reveal that highly experienced teachers present arguments to their students that, while simple in structure, reveal authentic images of science based on experimental and historical modes of inquiry. Structural analysis of the data revealed a common trend toward a greater amount of scientific data used to evidence knowledge claims in the historical science units. The presumptive reasoning analysis revealed that, while some presumptive reasoning schemes remained stable across the two units (e.g. 'causal inferences' and 'sign' schemes), others revealed different patterns of use including the 'analogy', 'evidence to hypothesis', 'example', and 'expert opinion' schemes. Finally, examination of the interview and survey data revealed five specific factors mediating the arguments constructed by the teachers: view of the nature of science, nature of the topic, teacher personal factors, view of students, and pedagogical decisions. These factors influenced both the structure and use of presumptive reasoning in the arguments. The results have implications for classroom practice, teacher education, and further research.
Research on crude oil storage and transportation based on optimization algorithm
NASA Astrophysics Data System (ADS)
Yuan, Xuhua
2018-04-01
At present, the optimization theory and method have been widely used in the optimization scheduling and optimal operation scheme of complex production systems. Based on C++Builder 6 program development platform, the theoretical research results are implemented by computer. The simulation and intelligent decision system of crude oil storage and transportation inventory scheduling are designed. The system includes modules of project management, data management, graphics processing, simulation of oil depot operation scheme. It can realize the optimization of the scheduling scheme of crude oil storage and transportation system. A multi-point temperature measuring system for monitoring the temperature field of floating roof oil storage tank is developed. The results show that by optimizing operating parameters such as tank operating mode and temperature, the total transportation scheduling costs of the storage and transportation system can be reduced by 9.1%. Therefore, this method can realize safe and stable operation of crude oil storage and transportation system.
Efficient Scheme for Perfect Collective Einstein-Podolsky-Rosen Steering
Wang, M.; Gong, Q. H.; Ficek, Z.; He, Q. Y.
2015-01-01
A practical scheme for the demonstration of perfect one-sided device-independent quantum secret sharing is proposed. The scheme involves a three-mode optomechanical system in which a pair of independent cavity modes is driven by short laser pulses and interact with a movable mirror. We demonstrate that by tuning the laser frequency to the blue (anti-Stokes) sideband of the average frequency of the cavity modes, the modes become mutually coherent and then may collectively steer the mirror mode to a perfect Einstein-Podolsky-Rosen state. The scheme is shown to be experimentally feasible, it is robust against the frequency difference between the modes, mechanical thermal noise and damping, and coupling strengths of the cavity modes to the mirror. PMID:26212901
Robust Stabilization of T-S Fuzzy Stochastic Descriptor Systems via Integral Sliding Modes.
Li, Jinghao; Zhang, Qingling; Yan, Xing-Gang; Spurgeon, Sarah K
2017-09-19
This paper addresses the robust stabilization problem for T-S fuzzy stochastic descriptor systems using an integral sliding mode control paradigm. A classical integral sliding mode control scheme and a nonparallel distributed compensation (Non-PDC) integral sliding mode control scheme are presented. It is shown that two restrictive assumptions previously adopted developing sliding mode controllers for Takagi-Sugeno (T-S) fuzzy stochastic systems are not required with the proposed framework. A unified framework for sliding mode control of T-S fuzzy systems is formulated. The proposed Non-PDC integral sliding mode control scheme encompasses existing schemes when the previously imposed assumptions hold. Stability of the sliding motion is analyzed and the sliding mode controller is parameterized in terms of the solutions of a set of linear matrix inequalities which facilitates design. The methodology is applied to an inverted pendulum model to validate the effectiveness of the results presented.
Sarmiento, Kelly; Eckstein, Daniel; Zambon, Allison
2013-03-01
In an effort to encourage appropriate field triage procedures, the Centers for Disease Control and Prevention (CDC), in collaboration with the National Highway Traffic Safety Administration and the American College of Surgeons-Committee on Trauma, convened the National Expert Panel on Field Triage to update the Field Triage Decision Scheme: The National Trauma Triage Protocol (Decision Scheme). In support of the Decision Scheme, CDC developed educational resources for emergency medical service (EMS) professionals, one of CDC's first efforts to develop and broadly disseminate educational information for the EMS community. CDC wanted to systematically collect information from the EMS community on what worked and what did not with respect to these educational materials and which materials were of most use. An evaluation was conducted to obtain feedback from EMS professionals about the Decision Scheme and use of Decision Scheme educational materials. The evaluation included a survey and a series of focus groups. Findings indicate that a segment of the Decision Scheme's intended audience is using the materials and learning from them, and they have had a positive influence on their triage practices. However, many of the individuals who participated in this research are not using the Decision Scheme and indicated that the materials have not affected their triage practices. Findings presented in this article can be used to inform development and distribution of additional Decision Scheme educational resources to ensure they reach a greater proportion of EMS professionals and to inform other education and dissemination efforts with the EMS community.
Efficient biprediction decision scheme for fast high efficiency video coding encoding
NASA Astrophysics Data System (ADS)
Park, Sang-hyo; Lee, Seung-ho; Jang, Euee S.; Jun, Dongsan; Kang, Jung-Won
2016-11-01
An efficient biprediction decision scheme of high efficiency video coding (HEVC) is proposed for fast-encoding applications. For low-delay video applications, bidirectional prediction can be used to increase compression performance efficiently with previous reference frames. However, at the same time, the computational complexity of the HEVC encoder is significantly increased due to the additional biprediction search. Although a some research has attempted to reduce this complexity, whether the prediction is strongly related to both motion complexity and prediction modes in a coding unit has not yet been investigated. A method that avoids most compression-inefficient search points is proposed so that the computational complexity of the motion estimation process can be dramatically decreased. To determine if biprediction is critical, the proposed method exploits the stochastic correlation of the context of prediction units (PUs): the direction of a PU and the accuracy of a motion vector. Through experimental results, the proposed method showed that the time complexity of biprediction can be reduced to 30% on average, outperforming existing methods in view of encoding time, number of function calls, and memory access.
Considering social and environmental concerns as reservoir operating objectives
NASA Astrophysics Data System (ADS)
Tilmant, A.; Georis, B.; Doulliez, P.
2003-04-01
Sustainability principles are now widely recognized as key criteria for water resource development schemes, such as hydroelectric and multipurpose reservoirs. Development decisions no longer rely solely on economic grounds, but also consider environmental and social concerns through the so-called environmental and social impact assessments. The objective of this paper is to show that environmental and social concerns can also be addressed in the management (operation) of existing or projected reservoir schemes. By either adequately exploiting the results of environmental and social impact assessments, or by carrying out survey of water users, experts and managers, efficient (Pareto optimal) reservoir operating rules can be derived using flexible mathematical programming techniques. By reformulating the problem as a multistage flexible constraint satisfaction problem, incommensurable and subjective operating objectives can contribute, along with classical economic objectives, to the determination of optimal release decisions. Employed in a simulation mode, the results can be used to assess the long-term impacts of various operating rules on the social well-being of affected populations as well as on the integrity of the environment. The methodology is illustrated with a reservoir reallocation problem in Chile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Shibiao
2004-06-01
We propose a scheme for approximately and conditionally teleporting an unknown atomic state in cavity QED. Our scheme does not involve the Bell-state measurement and thus an additional atom is unnecessary. Only two atoms and one single-mode cavity are required. The scheme may be used to teleport the state of a cavity mode to another mode using a single atom. The idea may also be used to teleport the state of a trapped ion.
Gutierrez, Hialy; Shewade, Ashwini; Dai, Minghan; Mendoza-Arana, Pedro; Gómez-Dantés, Octavio; Jain, Nishant; Khonelidze, Irma; Nabyonga-Orem, Juliet; Saleh, Karima; Teerawattananon, Yot; Nishtar, Sania; Hornberger, John
2015-08-01
Lessons learned by countries that have successfully implemented coverage schemes for health services may be valuable for other countries, especially low- and middle-income countries (LMICs), which likewise are seeking to provide/expand coverage. The research team surveyed experts in population health management from LMICs for information on characteristics of health care coverage schemes and factors that influenced decision-making processes. The level of coverage provided by the different schemes varied. Nearly all the health care coverage schemes involved various representatives and stakeholders in their decision-making processes. Maternal and child health, cardiovascular diseases, cancer, and HIV were among the highest priorities guiding coverage development decisions. Evidence used to inform coverage decisions included medical literature, regional and global epidemiology, and coverage policies of other coverage schemes. Funding was the most commonly reported reason for restricting coverage. This exploratory study provides an overview of health care coverage schemes from participating LMICs and contributes to the scarce evidence base on coverage decision making. Sharing knowledge and experiences among LMICs can support efforts to establish systems for accessible, affordable, and equitable health care.
Joint Remote State Preparation Schemes for Two Different Quantum States Selectively
NASA Astrophysics Data System (ADS)
Shi, Jin
2018-05-01
The scheme for joint remote state preparation of two different one-qubit states according to requirement is proposed by using one four-dimensional spatial-mode-entangled KLM state as quantum channel. The scheme for joint remote state preparation of two different two-qubit states according to requirement is also proposed by using one four-dimensional spatial-mode-entangled KLM state and one three-dimensional spatial-mode-entangled GHZ state as quantum channels. Quantum non-demolition measurement, Hadamard gate operation, projective measurement and unitary transformation are included in the schemes.
High-dimensional free-space optical communications based on orbital angular momentum coding
NASA Astrophysics Data System (ADS)
Zou, Li; Gu, Xiaofan; Wang, Le
2018-03-01
In this paper, we propose a high-dimensional free-space optical communication scheme using orbital angular momentum (OAM) coding. In the scheme, the transmitter encodes N-bits information by using a spatial light modulator to convert a Gaussian beam to a superposition mode of N OAM modes and a Gaussian mode; The receiver decodes the information through an OAM mode analyser which consists of a MZ interferometer with a rotating Dove prism, a photoelectric detector and a computer carrying out the fast Fourier transform. The scheme could realize a high-dimensional free-space optical communication, and decodes the information much fast and accurately. We have verified the feasibility of the scheme by exploiting 8 (4) OAM modes and a Gaussian mode to implement a 256-ary (16-ary) coding free-space optical communication to transmit a 256-gray-scale (16-gray-scale) picture. The results show that a zero bit error rate performance has been achieved.
Optimal control of large space structures via generalized inverse matrix
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Fang, Xiaowen
1987-01-01
Independent Modal Space Control (IMSC) is a control scheme that decouples the space structure into n independent second-order subsystems according to n controlled modes and controls each mode independently. It is well-known that the IMSC eliminates control and observation spillover caused when the conventional coupled modal control scheme is employed. The independent control of each mode requires that the number of actuators be equal to the number of modelled modes, which is very high for a faithful modeling of large space structures. A control scheme is proposed that allows one to use a reduced number of actuators to control all modeled modes suboptimally. In particular, the method of generalized inverse matrices is employed to implement the actuators such that the eigenvalues of the closed-loop system are as closed as possible to those specified by the optimal IMSC. Computer simulation of the proposed control scheme on a simply supported beam is given.
NASA Astrophysics Data System (ADS)
Chen, Gang; Yang, Bing; Zhang, Xiaoyun; Gao, Zhiyong
2017-07-01
The latest high efficiency video coding (HEVC) standard significantly increases the encoding complexity for improving its coding efficiency. Due to the limited computational capability of handheld devices, complexity constrained video coding has drawn great attention in recent years. A complexity control algorithm based on adaptive mode selection is proposed for interframe coding in HEVC. Considering the direct proportionality between encoding time and computational complexity, the computational complexity is measured in terms of encoding time. First, complexity is mapped to a target in terms of prediction modes. Then, an adaptive mode selection algorithm is proposed for the mode decision process. Specifically, the optimal mode combination scheme that is chosen through offline statistics is developed at low complexity. If the complexity budget has not been used up, an adaptive mode sorting method is employed to further improve coding efficiency. The experimental results show that the proposed algorithm achieves a very large complexity control range (as low as 10%) for the HEVC encoder while maintaining good rate-distortion performance. For the lowdelayP condition, compared with the direct resource allocation method and the state-of-the-art method, an average gain of 0.63 and 0.17 dB in BDPSNR is observed for 18 sequences when the target complexity is around 40%.
NASA Astrophysics Data System (ADS)
Ajiatmo, Dwi; Robandi, Imam
2017-03-01
This paper proposes a control scheme photovoltaic, battery and super capacitor connected in parallel for use in a solar vehicle. Based on the features of battery charging, the control scheme consists of three modes, namely, mode dynamic irradian, constant load mode and constant voltage charging mode. The shift of the three modes can be realized by controlling the duty cycle of the mosffet Boost converter system. Meanwhile, the high voltage which is more suitable for the application can be obtained. Compared with normal charging method with parallel connected current limiting detention and charging method with dynamic irradian mode, constant load mode and constant voltage charging mode, the control scheme is proposed to shorten the charging time and increase the use of power generated from the PV array. From the simulation results and analysis conducted to determine the performance of the system in state transient and steady-state by using simulation software Matlab / Simulink. Response simulation results demonstrate the suitability of the proposed concept.
Edge-dip air core fiber for improvement of the transmission of higher-order OAM modes
NASA Astrophysics Data System (ADS)
Sun, Xibo; Geng, Yuanchao; Zhu, Qihua; Feng, Xi; Huang, Wanqing; Zhang, Ying; Wang, Wenyi; Liu, Lanqin
2018-03-01
We presented a novel scheme to improve the stability of the orbital angular momentum (OAM) modes transmission by adding a dip at the edge of the annular high-index region of the air-core fiber. The simulation indicated a larger effective index difference of the vector modes that composed OAM modes in the same order, promising a stable transmission of the OAM modes. The intensity of the modes was concentrated better in this scheme decreasing the crosstalk between adjacent fibers. The propagation properties of the OAM modes in bent fiber were investigated.
Cavity BPM with Dipole-Mode-Selective Coupler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zenghai; Johnson, Ronald; Smith, Stephen R.
2006-06-21
In this paper, we present a novel position sensitive signal pickup scheme for a cavity BPM. The scheme utilizes the H-plane of the waveguide to couple magnetically to the side of the cavity, which results in a selective coupling to the dipole mode and a total rejection of the monopole mode. This scheme greatly simplifies the BPM geometry and relaxes machining tolerances. We will present detailed numerical studies on such a cavity BPM, analyze its resolution limit and tolerance requirements for a nanometer resolution. Finally present the measurement results of a X-band prototype.
Quantum iSWAP gate in optical cavities with a cyclic three-level system
NASA Astrophysics Data System (ADS)
Yan, Guo-an; Qiao, Hao-xue; Lu, Hua
2018-04-01
In this paper we present a scheme to directly implement the iSWAP gate by passing a cyclic three-level system across a two-mode cavity quantum electrodynamics. In the scheme, a three-level Δ -type atom ensemble prepared in its ground state mediates the interaction between the two-cavity modes. For this theoretical model, we also analyze its performance under practical noise, including spontaneous emission and the decay of the cavity modes. It is shown that our scheme may have a high fidelity under the practical noise.
2011-08-01
heat transfers [49, 52]. However, the DO method has not yet been applied to Boussinesq flows, and the numerical challenges of the DO decomposition for...used a PCE scheme to study mixing in a two-dimensional (2D) microchannel and improved the efficiency of their solution scheme by decoupling the...to several Navier-Stokes flows and their stochastic dynamics has been studied, including mean-mode and mode-mode energy transfers for 2D flows and
Linear optical quantum computing in a single spatial mode.
Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A
2013-10-11
We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.
Data quality enhancement and knowledge discovery from relevant signals in acoustic emission
NASA Astrophysics Data System (ADS)
Mejia, Felipe; Shyu, Mei-Ling; Nanni, Antonio
2015-10-01
The increasing popularity of structural health monitoring has brought with it a growing need for automated data management and data analysis tools. Of great importance are filters that can systematically detect unwanted signals in acoustic emission datasets. This study presents a semi-supervised data mining scheme that detects data belonging to unfamiliar distributions. This type of outlier detection scheme is useful detecting the presence of new acoustic emission sources, given a training dataset of unwanted signals. In addition to classifying new observations (herein referred to as "outliers") within a dataset, the scheme generates a decision tree that classifies sub-clusters within the outlier context set. The obtained tree can be interpreted as a series of characterization rules for newly-observed data, and they can potentially describe the basic structure of different modes within the outlier distribution. The data mining scheme is first validated on a synthetic dataset, and an attempt is made to confirm the algorithms' ability to discriminate outlier acoustic emission sources from a controlled pencil-lead-break experiment. Finally, the scheme is applied to data from two fatigue crack-growth steel specimens, where it is shown that extracted rules can adequately describe crack-growth related acoustic emission sources while filtering out background "noise." Results show promising performance in filter generation, thereby allowing analysts to extract, characterize, and focus only on meaningful signals.
NASA Astrophysics Data System (ADS)
Cao, Jianqiu; Liu, Wenbo; Ying, Hanyuan; Chen, Jinbao; Lu, Qisheng
2018-03-01
The characteristics of a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier are investigated numerically using the rate-equation model while taking thermal transfer into account. It is revealed that the seed power should play an important role in the fiber amplifier and should be large enough to ensure high output efficiency. The effects of three pumping schemes (i.e. the co-, counter- and bi-directional pumping schemes) and the initial refraction index difference are also studied. It is revealed that the optimum fiber length changes with the pumping scheme, and the initial refraction index difference should be lower than 10-4 in order to ensure the linear increment of the output signal power with the pump power. Furthermore, a brief comparison between the thermally induced waveguides in the fiber amplifiers for three pumping schemes is also made.
NASA Astrophysics Data System (ADS)
Wang, Song-Bai; Chen, Ye-Hong; Wu, Qi-Cheng; Shi, Zhi-Cheng; Huang, Bi-Hua; Song, Jie; Xia, Yan
2018-07-01
A scheme is proposed to implement quantum state engineering (QSE) in a four-state system via counterdiabatic driving. In the scheme, single- and multi-mode driving methods are used respectively to drive the system to a target state at a predefined time. It is found that a fast QSE can be realized by utilizing simply designed pulses. In addition, a beneficial discussion on the energy consumption between the single- and multi-mode driving protocols shows that the multi-mode driving method seems to have a wider range of applications than the single-mode driving method with respect to different parameters. Finally, the scheme is also helpful for implementing the generalization QSE in high-dimensional systems via the concept of a dressed state. Therefore, the scheme can be implemented with the present experimental technology, which is useful in quantum information processing.
Fundamental-mode MMF transmission enabled by mode conversion
NASA Astrophysics Data System (ADS)
Wu, Zhongying; Li, Juhao; Tian, Yu; Ge, Dawei; Zhu, Jinglong; Ren, Fang; Mo, Qi; Yu, Jinyi; Li, Zhengbin; Chen, Zhangyuan; He, Yongqi
2018-03-01
Modal dispersion in conventional multi-mode fiber (MMF) will cause serious signal degradation and an effective solution is to restrict the signal transmission in the fundamental mode of MMF. In this paper, unlike previous methods by filtering out higher-order modes, we propose to adopt low-modal-crosstalk mode converters to realize fundamental-mode MMF transmission. We design and fabricate all-fiber mode-selective couplers (MSC), which perform mode conversion between the fundamental mode in single-mode fiber (SMF) and fundamental mode in MMF. The proposed scheme is experimentally compared with center launching method under different MMF links and then its wavelength division multiplexing (WDM) transmission performance is investigated. Experimental results indicate that the proposed mode conversion scheme could achieve better transmission performance and works well for the whole C-band.
Pricing and reimbursement frameworks in Central Eastern Europe: a decision tool to support choices.
Kolasa, Katarzyna; Kalo, Zoltan; Hornby, Edward
2015-02-01
Given limited financial resources in the Central Eastern European (CEE) region, challenges in obtaining access to innovative medical technologies are formidable. The objective of this research was to develop a decision tree that supports decision makers and drug manufacturers from CEE region in their search for optimal innovative pricing and reimbursement scheme (IPRSs). A systematic literature review was performed to search for published IPRSs, and then ten experts from the CEE region were interviewed to ascertain their opinions on these schemes. In total, 33 articles representing 46 unique IPRSs were analyzed. Based on our literature review and subsequent expert input, key decision nodes and branches of the decision tree were developed. The results indicate that outcome-based schemes are better suited to deal with uncertainties surrounding cost effectiveness, while non-outcome-based schemes are more appropriate for pricing and budget impact challenges.
Linear and nonlinear properties of numerical methods for the rotating shallow water equations
NASA Astrophysics Data System (ADS)
Eldred, Chris
The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar conservation laws, many of the same types of waves and a similar (quasi-) balanced state. It is desirable that numerical models posses similar properties, and the prototypical example of such a scheme is the 1981 Arakawa and Lamb (AL81) staggered (C-grid) total energy and potential enstrophy conserving scheme, based on the vector invariant form of the continuous equations. However, this scheme is restricted to a subset of logically square, orthogonal grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos and others) and Discrete Exterior Calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp and others). It is also possible to obtain these properties (along with arguably superior wave dispersion properties) through the use of a collocated (Z-grid) scheme based on the vorticity-divergence form of the continuous equations. Unfortunately, existing examples of these schemes in the literature for general, spherical grids either contain computational modes; or do not conserve total energy and potential enstrophy. This dissertation extends an existing scheme for planar grids to spherical grids, through the use of Nambu brackets (as pioneered by Rick Salmon). To compare these two schemes, the linear modes (balanced states, stationary modes and propagating modes; with and without dissipation) are examined on both uniform planar grids (square, hexagonal) and quasi-uniform spherical grids (geodesic, cubed-sphere). In addition to evaluating the linear modes, the results of the two schemes applied to a set of standard shallow water test cases and a recently developed forced-dissipative turbulence test case from John Thuburn (intended to evaluate the ability the suitability of schemes as the basis for a climate model) on both hexagonal-pentagonal icosahedral grids and cubed-sphere grids are presented. Finally, some remarks and thoughts about the suitability of these two schemes as the basis for atmospheric dynamical development are given.
Passive state preparation in the Gaussian-modulated coherent-states quantum key distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Bing; Evans, Philip G.; Grice, Warren P.
In the Gaussian-modulated coherent-states (GMCS) quantum key distribution (QKD) protocol, Alice prepares quantum states actively: For each transmission, Alice generates a pair of Gaussian-distributed random numbers, encodes them on a weak coherent pulse using optical amplitude and phase modulators, and then transmits the Gaussian-modulated weak coherent pulse to Bob. Here we propose a passive state preparation scheme using a thermal source. In our scheme, Alice splits the output of a thermal source into two spatial modes using a beam splitter. She measures one mode locally using conjugate optical homodyne detectors, and transmits the other mode to Bob after applying appropriatemore » optical attenuation. Under normal conditions, Alice's measurement results are correlated to Bob's, and they can work out a secure key, as in the active state preparation scheme. Given the initial thermal state generated by the source is strong enough, this scheme can tolerate high detector noise at Alice's side. Furthermore, the output of the source does not need to be single mode, since an optical homodyne detector can selectively measure a single mode determined by the local oscillator. Preliminary experimental results suggest that the proposed scheme could be implemented using an off-the-shelf amplified spontaneous emission source.« less
Passive state preparation in the Gaussian-modulated coherent-states quantum key distribution
Qi, Bing; Evans, Philip G.; Grice, Warren P.
2018-01-01
In the Gaussian-modulated coherent-states (GMCS) quantum key distribution (QKD) protocol, Alice prepares quantum states actively: For each transmission, Alice generates a pair of Gaussian-distributed random numbers, encodes them on a weak coherent pulse using optical amplitude and phase modulators, and then transmits the Gaussian-modulated weak coherent pulse to Bob. Here we propose a passive state preparation scheme using a thermal source. In our scheme, Alice splits the output of a thermal source into two spatial modes using a beam splitter. She measures one mode locally using conjugate optical homodyne detectors, and transmits the other mode to Bob after applying appropriatemore » optical attenuation. Under normal conditions, Alice's measurement results are correlated to Bob's, and they can work out a secure key, as in the active state preparation scheme. Given the initial thermal state generated by the source is strong enough, this scheme can tolerate high detector noise at Alice's side. Furthermore, the output of the source does not need to be single mode, since an optical homodyne detector can selectively measure a single mode determined by the local oscillator. Preliminary experimental results suggest that the proposed scheme could be implemented using an off-the-shelf amplified spontaneous emission source.« less
NASA Astrophysics Data System (ADS)
Song, Yong-Won; Yamashita, Shinji; Goh, Chee S.; Set, Sze Y.
2007-01-01
We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.
Song, Yong-Won; Yamashita, Shinji; Goh, Chee S; Set, Sze Y
2007-01-15
We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.
Use of the fractional Fourier transform in {pi}/2 converters of laser modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyutin, A A
2004-02-28
The possibility of using the fractional Fourier transform (FrFT) in optical schemes for astigmatic {pi}/2 converters of Hermite-Gaussian modes to donut Laguerre-Gaussian modes is considered. Several schemes of converters based on the FrFT of the half-integer and irrational orders are presented. The lowest FrFT order than can be used in astigmatic mode converters is found. The properties of converters based on the fractional and ordinary Fourier transforms are compared. (laser beams)
Novel MDM-PON scheme utilizing self-homodyne detection for high-speed/capacity access networks.
Chen, Yuanxiang; Li, Juhao; Zhu, Paikun; Wu, Zhongying; Zhou, Peng; Tian, Yu; Ren, Fang; Yu, Jinyi; Ge, Dawei; Chen, Jingbiao; He, Yongqi; Chen, Zhangyuan
2015-12-14
In this paper, we propose a cost-effective, energy-saving mode-division-multiplexing passive optical network (MDM-PON) scheme utilizing self-homodyne detection for high-speed/capacity access network based on low modal-crosstalk few-mode fiber (FMF) and all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). In the proposed scheme, one of the spatial modes is used to transmit a portion of signal carrier (namely pilot-tone) as the local oscillator (LO), while the others are used for signal-bearing channels. At the receiver, the pilot-tone and the signal can be separated without strong crosstalk and sent to the receiver for coherent detection. The spectral efficiency (SE) is significantly enhanced when multiple spatial channels are used. Meanwhile, the self-homodyne detection scheme can effectively suppress laser phase noise, which relaxes the requirement for the lasers line-width at the optical line terminal or optical network units (OLT/ONUs). The digital signal processing (DSP) at the receiver is also simplified since it removes the need for frequency offset compensation and complex phase correction, which reduces the computational complexity and energy consumption. Polarization division multiplexing (PDM) that offers doubled SE is also supported by the scheme. The proposed scheme is scalable to multi-wavelength application when wavelength MUX/DEMUX is utilized. Utilizing the proposed scheme, we demonstrate a proof of concept 4 × 40-Gb/s orthogonal frequency division multiplexing (OFDM) transmission over 55-km FMF using low modal-crosstalk two-mode FMF and MUX/DEMUX with error free operation. Compared with back to back case, less than 1-dB Q-factor penalty is observed after 55-km FMF of the four channels. Signal power and pilot-tone power are also optimized to achieve the optimal transmission performance.
New methods of multimode fiber interferometer signal processing
NASA Astrophysics Data System (ADS)
Vitrik, Oleg B.; Kulchin, Yuri N.; Maxaev, Oleg G.; Kirichenko, Oleg V.; Kamenev, Oleg T.; Petrov, Yuri S.
1995-06-01
New methods of multimode fiber interferometers signal processing are suggested. For scheme of single fiber multimode interferometers with two excited modes, the method based on using of special fiber unit is developed. This unit provides the modes interaction and further sum optical field filtering. As a result the amplitude of output signal is modulated by external influence on interferometer. The stabilization of interferometer sensitivity is achieved by using additional special modulation of output signal. For scheme of single fiber multimode interferometers with excitation of wide mode spectrum, the signal of intermode interference is registered by photodiode matrix and then special electronic unit performs correlation processing. For elimination of temperature destabilization, the registered signal is adopted to multimode interferometers optical signal temperature changes. The achieved parameters for double mode scheme: temporary stability--0.6% per hour, sensitivity to interferometer length deviations--3,2 nm; for multimode scheme: temperature stability--(0.5%)/(K), temporary nonstability--0.2% per hour, sensitivity to interferometer length deviations--20 nm, dynamic range--35 dB.
NASA Astrophysics Data System (ADS)
Lee, Yuang-Shung; Chiu, Yin-Yuan; Cheng, Ming-Wang; Ko, Yi-Pin; Hsiao, Sung-Hsin
The proposed quasi-resonant (QR) zero current switching (ZCS) switched-capacitor (SC) converter is a new type of bidirectional power flow control conversion scheme. The proposed converter is able to provide voltage conversion ratios from -3/-{1 \\over 3} (triple-mode/trisection-mode) to -n/-{1 \\over n} (-n-mode/-{1 \\over n}-mode) by adding a different number of switched-capacitors and power MOSFET switches with a small series connected resonant inductor for forward and reverse power flow control schemes. It possesses the advantages of low switching losses and current stress in this QR ZCS SC converter. The principle of operation, theoretical analysis of the proposed triple-mode/trisection-mode bidirectional power conversion scheme is described in detail with circuit model analysis. Simulation and experimental studies are carried out to verify the performance of the proposed inverting type ZCS SC QR bidirectional converter. The proposed converters can be applied to battery equalization for battery management system (BMS).
Study on Control Scheme for the Inverters in Low Voltage Microgrid with Nonlinear Loads
NASA Astrophysics Data System (ADS)
Xu, Jiqiang; Lu, Wenzhou; Wu, Lei
2017-05-01
There are a lot of nonlinear loads in real low voltage microgrid system. It will cause serious output voltage and grid current harmonic distortions problems in island and grid-connected modes, respectively. To solve this problem, this paper proposes a droop control scheme with quasi-proportion and resonant (quasi-PR) controller based on αβ stationary reference frame to make microgrid smoothly switch between grid-connected and island modes without changing control method. Moreover, in island mode, not only stable output voltage and frequency, but also reduced output voltage harmonics with added nonlinear loads can be achieved; In grid-connected mode, not only constant power, but also reduced grid current harmonics can be achieved. Simulation results verify the effectiveness of the proposed control scheme.
Accuracy of a teleported trapped field state inside a single bimodal cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Queiros, Iara P. de; Cardoso, W. B.; Souza, Simone
2007-09-15
We propose a simplified scheme to teleport a superposition of coherent states from one mode to another of the same bimodal lossy cavity. Based on current experimental capabilities, we present a calculation of the fidelity that can be achieved, demonstrating accurate teleportation if the mean photon number of each mode is at most 1.5. Our scheme applies as well for teleportation of coherent states from one mode of a cavity to another mode of a second cavity, when both cavities are embedded in a common reservoir.
Modeling Pulse Transmission in the Monterey Bay Using Parabolic Equation Methods
1991-12-01
Collins 9-13 was chosen for this purpose due its energy conservation scheme , and its ability to efficiently incorporate higher order terms in its...pressure field generated by the PE model into normal modes. Additionally, this process provides increased physical understanding of mode coupling and...separation of variables (i.e. normal modes or fast field), as well as pure numerical schemes such as the parabolic equation methods, can be used. However, as
Mergias, I; Moustakas, K; Papadopoulos, A; Loizidou, M
2007-08-25
Each alternative scheme for treating a vehicle at its end of life has its own consequences from a social, environmental, economic and technical point of view. Furthermore, the criteria used to determine these consequences are often contradictory and not equally important. In the presence of multiple conflicting criteria, an optimal alternative scheme never exists. A multiple-criteria decision aid (MCDA) method to aid the Decision Maker (DM) in selecting the best compromise scheme for the management of End-of-Life Vehicles (ELVs) is presented in this paper. The constitution of a set of alternatives schemes, the selection of a list of relevant criteria to evaluate these alternative schemes and the choice of an appropriate management system are also analyzed in this framework. The proposed procedure relies on the PROMETHEE method which belongs to the well-known family of multiple criteria outranking methods. For this purpose, level, linear and Gaussian functions are used as preference functions.
Exploring extra dimensions through inflationary tensor modes
NASA Astrophysics Data System (ADS)
Im, Sang Hui; Nilles, Hans Peter; Trautner, Andreas
2018-03-01
Predictions of inflationary schemes can be influenced by the presence of extra dimensions. This could be of particular relevance for the spectrum of gravitational waves in models where the extra dimensions provide a brane-world solution to the hierarchy problem. Apart from models of large as well as exponentially warped extra dimensions, we analyze the size of tensor modes in the Linear Dilaton scheme recently revived in the discussion of the "clockwork mechanism". The results are model dependent, significantly enhanced tensor modes on one side and a suppression on the other. In some cases we are led to a scheme of "remote inflation", where the expansion is driven by energies at a hidden brane. In all cases where tensor modes are enhanced, the requirement of perturbativity of gravity leads to a stringent upper limit on the allowed Hubble rate during inflation.
NASA Technical Reports Server (NTRS)
Chao, W. C.
1982-01-01
With appropriate modifications, a recently proposed explicit-multiple-time-step scheme (EMTSS) is incorporated into the UCLA model. In this scheme, the linearized terms in the governing equations that generate the gravity waves are split into different vertical modes. Each mode is integrated with an optimal time step, and at periodic intervals these modes are recombined. The other terms are integrated with a time step dictated by the CFL condition for low-frequency waves. This large time step requires a special modification of the advective terms in the polar region to maintain stability. Test runs for 72 h show that EMTSS is a stable, efficient and accurate scheme.
NASA Astrophysics Data System (ADS)
Zeng, Zhi
2018-05-01
An efficient scheme for the discrimination of 16 hyperentangled Bell states of a two-photon system that is entangled in both polarization and spatial-mode degrees of freedom is presented in this paper. Using the interaction between the photons and quantum-dot spins in cavities, the spatial-mode Bell states can be distinguished completely and nondestructively in the first step. Subsequently, the preserved spatial-mode entanglement is utilized as an auxiliary to analyze the polarization Bell states. Compared with a previous scheme (Ren et al 2012 Opt. Express 20 24664-77), our scheme reduces the requirement for nonlinear interaction substantially by utilizing the intrinsic degrees of freedom in hyperentanglement.
NASA Astrophysics Data System (ADS)
Zhang, Junwei; Zhu, Guoxuan; Liu, Jie; Wu, Xiong; Zhu, Jiangbo; Du, Cheng; Luo, Wenyong; Chen, Yujie; Yu, Siyuan
2018-02-01
An orbital-angular-momentum (OAM) mode-group multiplexing (MGM) scheme based on a graded-index ring-core fiber (GIRCF) is proposed, in which a single-input two-output (or receive diversity) architecture is designed for each MG channel and simple digital signal processing (DSP) is utilized to adaptively resist the mode partition noise resulting from random intra-group mode crosstalk. There is no need of complex multiple-input multiple-output (MIMO) equalization in this scheme. Furthermore, the signal-to-noise ratio (SNR) of the received signals can be improved if a simple maximal ratio combining (MRC) technique is employed on the receiver side to efficiently take advantage of the diversity gain of receiver. Intensity-modulated direct-detection (IM-DD) systems transmitting three OAM mode groups with total 100-Gb/s discrete multi-tone (DMT) signals over a 1-km GIRCF and two OAM mode groups with total 40-Gb/s DMT signals over an 18-km GIRCF are experimentally demonstrated, respectively, to confirm the feasibility of our proposed OAM-MGM scheme.
Gait mode recognition and control for a portable-powered ankle-foot orthosis.
David Li, Yifan; Hsiao-Wecksler, Elizabeth T
2013-06-01
Ankle foot orthoses (AFOs) are widely used as assistive/rehabilitation devices to correct the gait of people with lower leg neuromuscular dysfunction and muscle weakness. We have developed a portable powered ankle-foot orthosis (PPAFO), which uses a pneumatic bi-directional rotary actuator powered by compressed CO2 to provide untethered dorsiflexor and plantarflexor assistance at the ankle joint. Since portability is a key to the success of the PPAFO as an assist device, it is critical to recognize and control for gait modes (i.e. level walking, stair ascent/descent). While manual mode switching is implemented in most powered orthotic/prosthetic device control algorithms, we propose an automatic gait mode recognition scheme by tracking the 3D position of the PPAFO from an inertial measurement unit (IMU). The control scheme was designed to match the torque profile of physiological gait data during different gait modes. Experimental results indicate that, with an optimized threshold, the controller was able to identify the position, orientation and gait mode in real time, and properly control the actuation. It was also illustrated that during stair descent, a mode-specific actuation control scheme could better restore gait kinematic and kinetic patterns, compared to using the level ground controller.
Decision-aided ICI mitigation with time-domain average approximation in CO-OFDM
NASA Astrophysics Data System (ADS)
Ren, Hongliang; Cai, Jiaxing; Ye, Xin; Lu, Jin; Cao, Quanjun; Guo, Shuqin; Xue, Lin-lin; Qin, Yali; Hu, Weisheng
2015-07-01
We introduce and investigate the feasibility of a novel iterative blind phase noise inter-carrier interference (ICI) mitigation scheme for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The ICI mitigation scheme is performed through the combination of frequency-domain symbol decision-aided estimation and the ICI phase noise time-average approximation. An additional initial decision process with suitable threshold is introduced in order to suppress the decision error symbols. Our proposed ICI mitigation scheme is proved to be effective in removing the ICI for a simulated CO-OFDM with 16-QAM modulation format. With the slightly high computational complexity, it outperforms the time-domain average blind ICI (Avg-BL-ICI) algorithm at a relatively wide laser line-width and high OSNR.
Zhang, BiTao; Pi, YouGuo; Luo, Ying
2012-09-01
A fractional order sliding mode control (FROSMC) scheme based on parameters auto-tuning for the velocity control of permanent magnet synchronous motor (PMSM) is proposed in this paper. The control law of the proposed F(R)OSMC scheme is designed according to Lyapunov stability theorem. Based on the property of transferring energy with adjustable type in F(R)OSMC, this paper analyzes the chattering phenomenon in classic sliding mode control (SMC) is attenuated with F(R)OSMC system. A fuzzy logic inference scheme (FLIS) is utilized to obtain the gain of switching control. Simulations and experiments demonstrate that the proposed FROSMC not only achieve better control performance with smaller chatting than that with integer order sliding mode control, but also is robust to external load disturbance and parameter variations. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podoshvedov, Sergey A.; Kim, Jaewan
2006-09-15
We suggest an all-optical scheme to generate entangled superposition of a single photon with macroscopic entangled states for testing macroscopic realism. The scheme consists of source of single photons, a Mach-Zehnder interferometer in routes of which a system of coupled-down converters with type-I phase matching is inserted, and a beam splitter for the other auxiliary modes of the scheme. We use quantization of the pumping modes, depletion of the coherent states passing through the system, and interference effect in the pumping modes in the process of erasing which-path information of the single-photon on exit from the Mach-Zehnder interferometer. We showmore » the macroscopic fields of the output superposition are distinguishable states. This scheme generates macroscopic entangled state that violates Bell's inequality. Moreover, the detailed analysis concerning change of amplitudes of entangled superposition by means of repeating this process many times is accomplished. We show our scheme works without photon number resolving detection and it is robust to detector inefficiency.« less
NASA Astrophysics Data System (ADS)
Zou, Li; Wang, Le; Zhao, Sheng-Mei; Chen, Han-Wu
2016-11-01
Atmospheric turbulence (AT) induced crosstalk can significantly impair the performance of a free-space optical (FSO) communication link using orbital angular momentum (OAM) multiplexing. In this paper, we propose a multiple-user detection (MUD) turbulence mitigation scheme in an OAM-multiplexed FSO communication link. First, we present a MUD equivalent communication model for an OAM-multiplexed FSO communication link under AT. In the equivalent model, each input bit stream represents one user’s information. The deformed OAM spatial modes caused by AT, instead of the pure OAM spatial modes, are used as information carriers, and the overlapping between the deformed OAM spatial modes are computed as the correlation coefficients between the users. Then, we present a turbulence mitigation scheme based on MUD idea to enhance AT tolerance of the OAM-multiplexed FSO communication link. In the proposed scheme, the crosstalk caused by AT is used as a useful component to deduce users’ information. The numerical results show that the performance of the OAM-multiplexed communication link has greatly improved by the proposed scheme. When the turbulence strength is 1 × 10-15 m-2/3, the transmission distance is 1000 m and the channel signal-to-noise ratio (SNR) is 26 dB, the bit-error-rate (BER) performance of four spatial multiplexed OAM modes lm = +1,+2,+3,+4 are all close to 10-5, and there is a 2-3 fold increase in the BER performance in comparison with those results without the proposed scheme. In addition, the proposed scheme is more effective for an OAM-multiplexed FSO communication link with a larger OAM mode topological charge interval. The proposed scheme is a promising direction for compensating the interference caused by AT in the OAM-multiplexed FSO communication link. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238 and 61475075), the Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, China (Grant No. NYKL2015011), the Postgraduate Innovation Research Plan of Jiangsu Province, China (Grant No. CXZZ13_0489), and the University Natural Science Foundation of Jiangsu Province, China (Grant No. 16KJB510037).
NASA Astrophysics Data System (ADS)
Moon, Dukjae; Hong, Deukjo; Kwon, Daesung; Hong, Seokhie
We assume that the domain extender is the Merkle-Damgård (MD) scheme and he message is padded by a ‘1’, and minimum number of ‘0’s, followed by a fixed size length information so that the length of padded message is multiple of block length. Under this assumption, we analyze securities of the hash mode when the compression function follows the Davies-Meyer (DM) scheme and the underlying block cipher is one of the plain Feistel or Misty scheme or the generalized Feistel or Misty schemes with Substitution-Permutation (SP) round function. We do this work based on Meet-in-the-Middle (MitM) preimage attack techniques, and develop several useful initial structures.
Sliding mode control of magnetic suspensions for precision pointing and tracking applications
NASA Technical Reports Server (NTRS)
Misovec, Kathleen M.; Flynn, Frederick J.; Johnson, Bruce G.; Hedrick, J. Karl
1991-01-01
A recently developed nonlinear control method, sliding mode control, is examined as a means of advancing the achievable performance of space-based precision pointing and tracking systems that use nonlinear magnetic actuators. Analytic results indicate that sliding mode control improves performance compared to linear control approaches. In order to realize these performance improvements, precise knowledge of the plant is required. Additionally, the interaction of an estimating scheme and the sliding mode controller has not been fully examined in the literature. Estimation schemes were designed for use with this sliding mode controller that do not seriously degrade system performance. The authors designed and built a laboratory testbed to determine the feasibility of utilizing sliding mode control in these types of applications. Using this testbed, experimental verification of the authors' analyses is ongoing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haixia; Zhang, Jing
We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme losesmore » the output of phase-conjugate clones and is regarded as irreversible quantum cloning.« less
Wu, Yunna; Xu, Chuanbo; Ke, Yiming; Chen, Kaifeng; Xu, Hu
2017-12-15
For tidal range power plants to be sustainable, the environmental impacts caused by the implement of various tidal barrage schemes must be assessed before construction. However, several problems exist in the current researches: firstly, evaluation criteria of the tidal barrage schemes environmental impact assessment (EIA) are not adequate; secondly, uncertainty of criteria information fails to be processed properly; thirdly, correlation among criteria is unreasonably measured. Hence the contributions of this paper are as follows: firstly, an evaluation criteria system is established from three dimensions of hydrodynamic, biological and morphological aspects. Secondly, cloud model is applied to describe the uncertainty of criteria information. Thirdly, Choquet integral with respect to λ-fuzzy measure is introduced to measure the correlation among criteria. On the above bases, a multi-criteria decision-making decision framework for tidal barrage scheme EIA is established to select the optimal scheme. Finally, a case study demonstrates the effectiveness of the proposed framework. Copyright © 2017 Elsevier Ltd. All rights reserved.
De Allegri, Manuela; Sanon, Mamadou; Bridges, John; Sauerborn, Rainer
2006-03-01
This paper presents a qualitative investigation of consumers' preferences regarding the single elements of a community-based health insurance (CBI) scheme recently implemented in a rural region in west Africa. The aim is to provide adequate policy-guidance to decision makers in low and middle income countries by producing an in-depth understanding of how consumers' preferences may affect decision to participate in such schemes. Although it has long been suggested that feeble levels of participation may very well be an expression of consumers' dissatisfaction with scheme design, little systematic efforts have so far been channelled towards supporting such argument with empirical evidence. Consumers' preferences were explored through means of 32 individual interviews with household heads. Analysis used the method of constant comparison and was conducted by two independent researchers. Data from 10 focus group discussions provided an additional valuable source of triangulation. Findings suggest that decision to enrol is closely linked to whether the single elements of the scheme match consumers' needs and expectations. In particular, consumers justified decision to join or not to join the insurance scheme in relation to their preference for the unit of enrolment, the premium level and the payment modalities, the benefit package, the health service provider network and the CBI managerial structure. The discussion of the findings focuses on how understanding consumers' preferences and incorporating them in the design of a CBI scheme may result in increased participation rates, ensuring that poor populations gain better access to health services and enjoy greater protection against the cost of illness.
Wang, Mingming; Sweetapple, Chris; Fu, Guangtao; Farmani, Raziyeh; Butler, David
2017-10-01
This paper presents a new framework for decision making in sustainable drainage system (SuDS) scheme design. It integrates resilience, hydraulic performance, pollution control, rainwater usage, energy analysis, greenhouse gas (GHG) emissions and costs, and has 12 indicators. The multi-criteria analysis methods of entropy weight and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) were selected to support SuDS scheme selection. The effectiveness of the framework is demonstrated with a SuDS case in China. Indicators used include flood volume, flood duration, a hydraulic performance indicator, cost and resilience. Resilience is an important design consideration, and it supports scheme selection in the case study. The proposed framework will help a decision maker to choose an appropriate design scheme for implementation without subjectivity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Individual Combatant’s Weapons Firing Algorithm
2010-04-01
target selection prioritization scheme, aim point, mode of fire, and estimates on Phit /Pmiss for a single SME. Also undertaken in this phase of the...5 APPENDIX A: SME FUZZY ESTIMATES ON FACTORS AND ESTIMATES ON PHIT /PMISS.....6...influencing the target selection prioritization scheme, aim point, mode of fire, and estimates on Phit /Pmiss for a single SME. Also undertaken in this
Teleporting a state inside a single bimodal high-Q cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pires, Geisa; Baseia, B.; Avelar, A.T.
2005-06-15
We discuss a simplified scheme to teleport a state from one mode to another of the same bimodal cavity, with these two modes having distinct frequencies and orthogonal polarizations. The scheme employs two two-level (Rydberg) atoms plus classical fields (Ramsey zones) and selective atomic state detectors. The result has potential use for the manipulation of quantum information processing.
A wide bandwidth free-electron laser with mode locking using current modulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kur, E.; Dunning, D. J.; McNeil, B. W. J.
2011-01-20
A new scheme for mode locking a free-electron laser amplifier is proposed based on electron beam current modulation. It is found that certain properties of the original concept, based on the energy modulation of electrons, are improved including the spectral brightness of the source and the purity of the series of short pulses. Numerical comparisons are made between the new and old schemes and between a mode-locked free-electron laser and self-amplified spontaneous emission free-electron laser. Illustrative examples using a hypothetical mode-locked free-electron laser amplifier are provided. The ability to generate intense coherent radiation with a large bandwidth is demonstrated.
Just, Wolfram; Popovich, Svitlana; Amann, Andreas; Baba, Nilüfer; Schöll, Eckehard
2003-02-01
We investigate time-delayed feedback control schemes which are based on the unstable modes of the target state, to stabilize unstable periodic orbits. The periodic time dependence of these modes introduces an external time scale in the control process. Phase shifts that develop between these modes and the controlled periodic orbit may lead to a huge increase of the control performance. We illustrate such a feature on a nonlinear reaction diffusion system with global coupling and give a detailed investigation for the Rössler model. In addition we provide the analytical explanation for the observed control features.
Hybrid estimation of complex systems.
Hofbaur, Michael W; Williams, Brian C
2004-10-01
Modern automated systems evolve both continuously and discretely, and hence require estimation techniques that go well beyond the capability of a typical Kalman Filter. Multiple model (MM) estimation schemes track these system evolutions by applying a bank of filters, one for each discrete system mode. Modern systems, however, are often composed of many interconnected components that exhibit rich behaviors, due to complex, system-wide interactions. Modeling these systems leads to complex stochastic hybrid models that capture the large number of operational and failure modes. This large number of modes makes a typical MM estimation approach infeasible for online estimation. This paper analyzes the shortcomings of MM estimation, and then introduces an alternative hybrid estimation scheme that can efficiently estimate complex systems with large number of modes. It utilizes search techniques from the toolkit of model-based reasoning in order to focus the estimation on the set of most likely modes, without missing symptoms that might be hidden amongst the system noise. In addition, we present a novel approach to hybrid estimation in the presence of unknown behavioral modes. This leads to an overall hybrid estimation scheme for complex systems that robustly copes with unforeseen situations in a degraded, but fail-safe manner.
Sliding mode controllers for a tempered glass furnace.
Almutairi, Naif B; Zribi, Mohamed
2016-01-01
This paper investigates the design of two sliding mode controllers (SMCs) applied to a tempered glass furnace system. The main objective of the proposed controllers is to regulate the glass plate temperature, the upper-wall temperature and the lower-wall temperature in the furnace to a common desired temperature. The first controller is a conventional sliding mode controller. The key step in the design of this controller is the introduction of a nonlinear transformation that maps the dynamic model of the tempered glass furnace into the generalized controller canonical form; this step facilitates the design of the sliding mode controller. The second controller is based on a state-dependent coefficient (SDC) factorization of the tempered glass furnace dynamic model. Using an SDC factorization, a simplified sliding mode controller is designed. The simulation results indicate that the two proposed control schemes work very well. Moreover, the robustness of the control schemes to changes in the system's parameters as well as to disturbances is investigated. In addition, a comparison of the proposed control schemes with a fuzzy PID controller is performed; the results show that the proposed SDC-based sliding mode controller gave better results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Effect of heating scheme on SOL width in DIII-D and EAST
Wang, L.; Makowski, M. A.; Guo, H. Y.; ...
2017-03-10
Joint DIII-D/EAST experiments in the radio-frequency (RF) heated H-mode scheme with comparison to that of neutral beam (NB) heated H-mode scheme were carried out on DIII-D and EAST under similar conditions to examine the effect of heating scheme on scrape-off layer (SOL) width in H-mode plasmas for application to ITER. A dimensionally similar plasma equilibrium was used to match the EAST shape parameters. The divertor heat flux and SOL widths were measured with infra-red camera in DIII-D, while with divertor Langmuir probe array in EAST. It has been demonstrated on both DIII-D and EAST that RF-heated plasma has a broadermore » SOL than NB-heated plasma when the edge electrons are effectively heated in low plasma current and low density regime with low edge collisionality. Detailed edge and pedestal profile analysis on DIII-D suggests that the low edge collisionality and ion orbit loss effect may account for the observed broadening. Finally, the joint experiment in DIII-D has also demonstrated the strong inverse dependence of SOL width on the plasma current in electron cyclotron heated (ECH) H-mode plasmas.« less
Effect of heating scheme on SOL width in DIII-D and EAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L.; Makowski, M. A.; Guo, H. Y.
Joint DIII-D/EAST experiments in the radio-frequency (RF) heated H-mode scheme with comparison to that of neutral beam (NB) heated H-mode scheme were carried out on DIII-D and EAST under similar conditions to examine the effect of heating scheme on scrape-off layer (SOL) width in H-mode plasmas for application to ITER. A dimensionally similar plasma equilibrium was used to match the EAST shape parameters. The divertor heat flux and SOL widths were measured with infra-red camera in DIII-D, while with divertor Langmuir probe array in EAST. It has been demonstrated on both DIII-D and EAST that RF-heated plasma has a broadermore » SOL than NB-heated plasma when the edge electrons are effectively heated in low plasma current and low density regime with low edge collisionality. Detailed edge and pedestal profile analysis on DIII-D suggests that the low edge collisionality and ion orbit loss effect may account for the observed broadening. Finally, the joint experiment in DIII-D has also demonstrated the strong inverse dependence of SOL width on the plasma current in electron cyclotron heated (ECH) H-mode plasmas.« less
Compress compound images in H.264/MPGE-4 AVC by exploiting spatial correlation.
Lan, Cuiling; Shi, Guangming; Wu, Feng
2010-04-01
Compound images are a combination of text, graphics and natural image. They present strong anisotropic features, especially on the text and graphics parts. These anisotropic features often render conventional compression inefficient. Thus, this paper proposes a novel coding scheme from the H.264 intraframe coding. In the scheme, two new intramodes are developed to better exploit spatial correlation in compound images. The first is the residual scalar quantization (RSQ) mode, where intrapredicted residues are directly quantized and coded without transform. The second is the base colors and index map (BCIM) mode that can be viewed as an adaptive color quantization. In this mode, an image block is represented by several representative colors, referred to as base colors, and an index map to compress. Every block selects its coding mode from two new modes and the previous intramodes in H.264 by rate-distortion optimization (RDO). Experimental results show that the proposed scheme improves the coding efficiency even more than 10 dB at most bit rates for compound images and keeps a comparable efficient performance to H.264 for natural images.
A New Seamless Transfer Control Strategy of the Microgrid
Zhang, Zhaoyun; Chen, Wei; Zhang, Zhe
2014-01-01
A microgrid may operate under two typical modes; the seamless transfer control of the microgrid is very important. The mode conversion controller is installed in microgrid and the control logic of master power is optimized for microgrid mode conversion. In the proposed scheme, master power is very important. The master-power is under the PQ control when microgrid is under grid-connected. And it is under V/F control when the microgrid is under islanding. The microgrid mode controller is used to solve the planned conversion. Three types of conversion are simulated in this paper. The simulation results show the correctness and validity of the mode control scheme. Finally, the implementation and application of the operation and control device are described. PMID:24967431
A new seamless transfer control strategy of the microgrid.
Zhang, Zhaoyun; Chen, Wei; Zhang, Zhe
2014-01-01
A microgrid may operate under two typical modes; the seamless transfer control of the microgrid is very important. The mode conversion controller is installed in microgrid and the control logic of master power is optimized for microgrid mode conversion. In the proposed scheme, master power is very important. The master-power is under the PQ control when microgrid is under grid-connected. And it is under V/F control when the microgrid is under islanding. The microgrid mode controller is used to solve the planned conversion. Three types of conversion are simulated in this paper. The simulation results show the correctness and validity of the mode control scheme. Finally, the implementation and application of the operation and control device are described.
Qubit-loss-free fusion of atomic W states via photonic detection
NASA Astrophysics Data System (ADS)
Ding, Cheng-Yun; Kong, Fan-Zhen; Yang, Qing; Yang, Ming; Cao, Zhuo-Liang
2018-06-01
In this paper, we propose two new qubit-loss-free (QLF) fusion schemes for W states in cavity QED system. Resonant interactions between atoms and single cavity mode constitute the main fusion mechanism, with which atomic |W_{n+m}> and |W_{n+m+q}> states can be generated, respectively, from a |Wn> and a |Wm>; and from a |Wn>, a |Wm> and a |Wq>, by detecting the cavity mode. The QLF property of the schemes makes them more efficient and simpler than the currently existing ones, and fewer intermediate steps and memory resources are required for generating a target large-scale W state. Furthermore, the fusion of atomic states can be realized via the detection on cavity mode rather than the much complicated atomic detection, which makes our schemes feasible. In addition, the analyses of the optimal resource cost and the experimental feasibility indicate that the present schemes are simple and efficient, and maybe implementable within the current experimental techniques.
State-projective scheme for generating pair coherent states in traveling-wave optical fields
NASA Astrophysics Data System (ADS)
Gerry, Christopher C.; Mimih, Jihane; Birrittella, Richard
2011-08-01
The pair coherent states of a two-mode quantized electromagnetic field introduced by Agarwal [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.57.827 57, 827 (1986)] have yet to be generated in the laboratory. The states can mathematically be obtained from a product of ordinary coherent states via projection onto a subspace wherein identical photon number states of each mode are paired. We propose a scheme by which this projection can be engineered. The scheme requires relatively weak cross-Kerr nonlinearities, the ability to perform a displacement operation on a beam mode, and photon detection ability able to distinguish between zero and any other number of photons. These requirements can be fulfilled with currently available technology or technology that is on the horizon.
Song, Zhankui; Sun, Kaibiao
2014-01-01
A novel adaptive backstepping sliding mode control (ABSMC) law with fuzzy monitoring strategy is proposed for the tracking-control of a kind of nonlinear mechanical system. The proposed ABSMC scheme combining the sliding mode control and backstepping technique ensure that the occurrence of the sliding motion in finite-time and the trajectory of tracking-error converge to equilibrium point. To obtain a better perturbation rejection property, an adaptive control law is employed to compensate the lumped perturbation. Furthermore, we introduce fuzzy monitoring strategy to improve adaptive capacity and soften the control signal. The convergence and stability of the proposed control scheme are proved by using Lyaponov's method. Finally, numerical simulations demonstrate the effectiveness of the proposed control scheme. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Hyperentanglement purification using imperfect spatial entanglement.
Wang, Tie-Jun; Mi, Si-Chen; Wang, Chuan
2017-02-06
As the interaction between the photons and the environment which will make the entangled photon pairs in less entangled states or even in mixed states, the security and the efficiency of quantum communication will decrease. We present an efficient hyperentanglement purification protocol that distills nonlocal high-fidelity hyper-entangled Bell states in both polarization and spatial-mode degrees of freedom from ensembles of two-photon system in mixed states using linear optics. Here, we consider the influence of the photon loss in the channel which generally is ignored in the conventional entanglement purification and hyperentanglement purification (HEP) schemes. Compared with previous HEP schemes, our HEP scheme decreases the requirement for nonlocal resources by employing high-dimensional mode-check measurement, and leads to a higher fidelity, especially in the range where the conventional HEP schemes become invalid but our scheme still can work.
Monitoring of Ritz modal generation
NASA Technical Reports Server (NTRS)
Chargin, Mladen; Butler, Thomas G.
1990-01-01
A scheme is proposed to monitor the adequacy of a set of Ritz modes to represent a solution by comparing the quantity generated with certain properties involving the forcing function. In so doing an attempt was made to keep this algorithm lean and efficient, so that it will be economical to apply. Using this monitoring scheme during Ritz Mode generation will automatically ensure that the k Ritz modes theta k that are generated are adequate to represent both the spatial and temporal behavior of the structure when forced under the given transient condition defined by F(s,t).
Smith predictor with sliding mode control for processes with large dead times
NASA Astrophysics Data System (ADS)
Mehta, Utkal; Kaya, İbrahim
2017-11-01
The paper discusses the Smith Predictor scheme with Sliding Mode Controller (SP-SMC) for processes with large dead times. This technique gives improved load-disturbance rejection with optimum input control signal variations. A power rate reaching law is incorporated in the sporadic part of sliding mode control such that the overall performance recovers meaningfully. The proposed scheme obtains parameter values by satisfying a new performance index which is based on biobjective constraint. In simulation study, the efficiency of the method is evaluated for robustness and transient performance over reported techniques.
Wang, Jing; Xuan, Yi; Qi, Minghao; Huang, Haiyang; Li, You; Li, Ming; Chen, Xin; Sheng, Zhen; Wu, Aimin; Li, Wei; Wang, Xi; Zou, Shichang; Gan, Fuwan
2015-05-01
A broadband and fabrication-tolerant on-chip scalable mode-division multiplexing (MDM) scheme based on mode-evolution counter-tapered couplers is designed and experimentally demonstrated on a silicon-on-insulator (SOI) platform. Due to the broadband advantage offered by mode evolution, the two-mode MDM link exhibits a very large, -1 dB bandwidth of >180 nm, which is considerably larger than most of the previously reported MDM links whether they are based on mode-interference or evolution. In addition, the performance metrics remain stable for large-device width deviations from the designed valued by -60 nm to 40 nm, and for temperature variations from -25°C to 75°C. This MDM scheme can be readily extended to higher-order mode multiplexing and a three-mode MDM link is measured with less than -10 dB crosstalk from 1.46 to 1.64 μm wavelength range.
NASA Astrophysics Data System (ADS)
Zou, Wenli; Kalescky, Robert; Kraka, Elfi; Cremer, Dieter
2012-08-01
Information on the electronic structure of a molecule and its chemical bonds is encoded in the molecular normal vibrational modes. However, normal vibrational modes result from a coupling of local vibrational modes, which means that only the latter can provide detailed insight into bonding and other structural features. In this work, it is proven that the adiabatic internal coordinate vibrational modes of Konkoli and Cremer [Int. J. Quantum Chem. 67, 29 (1998)], 10.1002/(SICI)1097-461X(1998)67:1<29::AID-QUA3>3.0.CO;2-0 represent a unique set of local modes that is directly related to the normal vibrational modes. The missing link between these two sets of modes are the compliance constants of Decius, which turn out to be the reciprocals of the local mode force constants of Konkoli and Cremer. Using the compliance constants matrix, the local mode frequencies of any molecule can be converted into its normal mode frequencies with the help of an adiabatic connection scheme that defines the coupling of the local modes in terms of coupling frequencies and reveals how avoided crossings between the local modes lead to changes in the character of the normal modes.
Improved Frame Mode Selection for AMR-WB+ Based on Decision Tree
NASA Astrophysics Data System (ADS)
Kim, Jong Kyu; Kim, Nam Soo
In this letter, we propose a coding mode selection method for the AMR-WB+ audio coder based on a decision tree. In order to reduce computation while maintaining good performance, decision tree classifier is adopted with the closed loop mode selection results as the target classification labels. The size of the decision tree is controlled by pruning, so the proposed method does not increase the memory requirement significantly. Through an evaluation test on a database covering both speech and music materials, the proposed method is found to achieve a much better mode selection accuracy compared with the open loop mode selection module in the AMR-WB+.
Niu, Jie; Yang, Qianqian; Wang, Xiaoyun; Song, Rong
2017-01-01
Robot-aided rehabilitation has become an important technology to restore and reinforce motor functions of patients with extremity impairment, whereas it can be extremely challenging to achieve satisfactory tracking performance due to uncertainties and disturbances during rehabilitation training. In this paper, a wire-driven rehabilitation robot that can work over a three-dimensional space is designed for upper-limb rehabilitation, and sliding mode control with nonlinear disturbance observer is designed for the robot to deal with the problem of unpredictable disturbances during robot-assisted training. Then, simulation and experiments of trajectory tracking are carried out to evaluate the performance of the system, the position errors, and the output forces of the designed control scheme are compared with those of the traditional sliding mode control (SMC) scheme. The results show that the designed control scheme can effectively reduce the tracking errors and chattering of the output forces as compared with the traditional SMC scheme, which indicates that the nonlinear disturbance observer can reduce the effect of unpredictable disturbances. The designed control scheme for the wire-driven rehabilitation robot has potential to assist patients with stroke in performing repetitive rehabilitation training.
Real-time diagnostics for a reusable rocket engine
NASA Technical Reports Server (NTRS)
Guo, T. H.; Merrill, W.; Duyar, A.
1992-01-01
A hierarchical, decentralized diagnostic system is proposed for the Real-Time Diagnostic System component of the Intelligent Control System (ICS) for reusable rocket engines. The proposed diagnostic system has three layers of information processing: condition monitoring, fault mode detection, and expert system diagnostics. The condition monitoring layer is the first level of signal processing. Here, important features of the sensor data are extracted. These processed data are then used by the higher level fault mode detection layer to do preliminary diagnosis on potential faults at the component level. Because of the closely coupled nature of the rocket engine propulsion system components, it is expected that a given engine condition may trigger more than one fault mode detector. Expert knowledge is needed to resolve the conflicting reports from the various failure mode detectors. This is the function of the diagnostic expert layer. Here, the heuristic nature of this decision process makes it desirable to use an expert system approach. Implementation of the real-time diagnostic system described above requires a wide spectrum of information processing capability. Generally, in the condition monitoring layer, fast data processing is often needed for feature extraction and signal conditioning. This is usually followed by some detection logic to determine the selected faults on the component level. Three different techniques are used to attack different fault detection problems in the NASA LeRC ICS testbed simulation. The first technique employed is the neural network application for real-time sensor validation which includes failure detection, isolation, and accommodation. The second approach demonstrated is the model-based fault diagnosis system using on-line parameter identification. Besides these model based diagnostic schemes, there are still many failure modes which need to be diagnosed by the heuristic expert knowledge. The heuristic expert knowledge is implemented using a real-time expert system tool called G2 by Gensym Corp. Finally, the distributed diagnostic system requires another level of intelligence to oversee the fault mode reports generated by component fault detectors. The decision making at this level can best be done using a rule-based expert system. This level of expert knowledge is also implemented using G2.
Role of memory errors in quantum repeaters
NASA Astrophysics Data System (ADS)
Hartmann, L.; Kraus, B.; Briegel, H.-J.; Dür, W.
2007-03-01
We investigate the influence of memory errors in the quantum repeater scheme for long-range quantum communication. We show that the communication distance is limited in standard operation mode due to memory errors resulting from unavoidable waiting times for classical signals. We show how to overcome these limitations by (i) improving local memory and (ii) introducing two operational modes of the quantum repeater. In both operational modes, the repeater is run blindly, i.e., without waiting for classical signals to arrive. In the first scheme, entanglement purification protocols based on one-way classical communication are used allowing to communicate over arbitrary distances. However, the error thresholds for noise in local control operations are very stringent. The second scheme makes use of entanglement purification protocols with two-way classical communication and inherits the favorable error thresholds of the repeater run in standard mode. One can increase the possible communication distance by an order of magnitude with reasonable overhead in physical resources. We outline the architecture of a quantum repeater that can possibly ensure intercontinental quantum communication.
NASA Astrophysics Data System (ADS)
Boudjema, Zinelaabidine; Taleb, Rachid; Bounadja, Elhadj
2017-02-01
Traditional filed oriented control strategy including proportional-integral (PI) regulator for the speed drive of the doubly fed induction motor (DFIM) have some drawbacks such as parameter tuning complications, mediocre dynamic performances and reduced robustness. Therefore, based on the analysis of the mathematical model of a DFIM supplied by two five-level SVPWM inverters, this paper proposes a new robust control scheme based on super twisting sliding mode and fuzzy logic. The conventional sliding mode control (SMC) has vast chattering effect on the electromagnetic torque developed by the DFIM. In order to resolve this problem, a second order sliding mode technique based on super twisting algorithm and fuzzy logic functions is employed. The validity of the employed approach was tested by using Matlab/Simulink software. Interesting simulation results were obtained and remarkable advantages of the proposed control scheme were exposed including simple design of the control system, reduced chattering as well as the other advantages.
Quantum state and mode profile tomography by the overlap
NASA Astrophysics Data System (ADS)
Tiedau, J.; Shchesnovich, V. S.; Mogilevtsev, D.; Ansari, V.; Harder, G.; Bartley, T. J.; Korolkova, N.; Silberhorn, Ch
2018-03-01
Any measurement scheme involving interference of quantum states of the electromagnetic field necessarily mixes information about the spatiotemporal structure of these fields and quantum states in the recorded data. We show that in this case, a trade-off is possible between extracting information about the quantum states and the structure of the underlying fields, with the modal overlap being either a goal or a convenient tool of the reconstruction. We show that varying quantum states in a controlled way allows one to infer temporal profiles of modes. Vice versa, for the known quantum state of the probe and controlled variable overlap, one can infer the quantum state of the signal. We demonstrate this trade-off by performing an experiment using the simplest on-off detection in an unbalanced weak homodyning scheme. For the single-mode case, we demonstrate experimentally inference of the overlap and a few-photon signal state. Moreover, we show theoretically that the same single-detector scheme is sufficient even for arbitrary multi-mode fields.
ERIC Educational Resources Information Center
Douglas, Joel M.
1995-01-01
Employee Involvement Schemes (EIS) are modeled after Western European worker participation models. These are grounded in collaborative labor relations and encourage employees to participate in work place decision-making. If employees, as the term is defined in the National Labor Relations Act, take part in EIS decision-making processes, they may…
NASA Astrophysics Data System (ADS)
Amphawan, Angela; Ghazi, Alaan; Al-dawoodi, Aras
2017-11-01
A free-space optics mode-wavelength division multiplexing (MWDM) system using Laguerre-Gaussian (LG) modes is designed using decision feedback equalization for controlling mode coupling and combating inter symbol interference so as to increase channel diversity. In this paper, a data rate of 24 Gbps is achieved for a FSO MWDM channel of 2.6 km in length using feedback equalization. Simulation results show significant improvement in eye diagrams and bit-error rates before and after decision feedback equalization.
On the time-splitting scheme used in the Princeton Ocean Model
NASA Astrophysics Data System (ADS)
Kamenkovich, V. M.; Nechaev, D. A.
2009-05-01
The analysis of the time-splitting procedure implemented in the Princeton Ocean Model (POM) is presented. The time-splitting procedure uses different time steps to describe the evolution of interacting fast and slow propagating modes. In the general case the exact separation of the fast and slow modes is not possible. The main idea of the analyzed procedure is to split the system of primitive equations into two systems of equations for interacting external and internal modes. By definition, the internal mode varies slowly and the crux of the problem is to determine the proper filter, which excludes the fast component of the external mode variables in the relevant equations. The objective of this paper is to examine properties of the POM time-splitting procedure applied to equations governing the simplest linear non-rotating two-layer model of constant depth. The simplicity of the model makes it possible to study these properties analytically. First, the time-split system of differential equations is examined for two types of the determination of the slow component based on an asymptotic approach or time-averaging. Second, the differential-difference scheme is developed and some criteria of its stability are discussed for centered, forward, or backward time-averaging of the external mode variables. Finally, the stability of the POM time-splitting schemes with centered and forward time-averaging is analyzed. The effect of the Asselin filter on solutions of the considered schemes is studied. It is assumed that questions arising in the analysis of the simplest model are inherent in the general model as well.
Energy-saving scheme based on downstream packet scheduling in ethernet passive optical networks
NASA Astrophysics Data System (ADS)
Zhang, Lincong; Liu, Yejun; Guo, Lei; Gong, Xiaoxue
2013-03-01
With increasing network sizes, the energy consumption of Passive Optical Networks (PONs) has grown significantly. Therefore, it is important to design effective energy-saving schemes in PONs. Generally, energy-saving schemes have focused on sleeping the low-loaded Optical Network Units (ONUs), which tends to bring large packet delays. Further, the traditional ONU sleep modes are not capable of sleeping the transmitter and receiver independently, though they are not required to transmit or receive packets. Clearly, this approach contributes to wasted energy. Thus, in this paper, we propose an Energy-Saving scheme that is based on downstream Packet Scheduling (ESPS) in Ethernet PON (EPON). First, we design both an algorithm and a rule for downstream packet scheduling at the inter- and intra-ONU levels, respectively, to reduce the downstream packet delay. After that, we propose a hybrid sleep mode that contains not only ONU deep sleep mode but also independent sleep modes for the transmitter and the receiver. This ensures that the energy consumed by the ONUs is minimal. To realize the hybrid sleep mode, a modified GATE control message is designed that involves 10 time points for sleep processes. In ESPS, the 10 time points are calculated according to the allocated bandwidths in both the upstream and the downstream. The simulation results show that ESPS outperforms traditional Upstream Centric Scheduling (UCS) scheme in terms of energy consumption and the average delay for both real-time and non-real-time packets downstream. The simulation results also show that the average energy consumption of each ONU in larger-sized networks is less than that in smaller-sized networks; hence, our ESPS is better suited for larger-sized networks.
Fuzzy inference game approach to uncertainty in business decisions and market competitions.
Oderanti, Festus Oluseyi
2013-01-01
The increasing challenges and complexity of business environments are making business decisions and operations more difficult for entrepreneurs to predict the outcomes of these processes. Therefore, we developed a decision support scheme that could be used and adapted to various business decision processes. These involve decisions that are made under uncertain situations such as business competition in the market or wage negotiation within a firm. The scheme uses game strategies and fuzzy inference concepts to effectively grasp the variables in these uncertain situations. The games are played between human and fuzzy players. The accuracy of the fuzzy rule base and the game strategies help to mitigate the adverse effects that a business may suffer from these uncertain factors. We also introduced learning which enables the fuzzy player to adapt over time. We tested this scheme in different scenarios and discover that it could be an invaluable tool in the hand of entrepreneurs that are operating under uncertain and competitive business environments.
NASA Technical Reports Server (NTRS)
Simon, M.; Tkacenko, A.
2006-01-01
In a previous publication [1], an iterative closed-loop carrier synchronization scheme for binary phase-shift keyed (BPSK) modulation was proposed that was based on feeding back data decisions to the input of the loop, the purpose being to remove the modulation prior to carrier synchronization as opposed to the more conventional decision-feedback schemes that incorporate such feedback inside the loop. The idea there was that, with sufficient independence between the received data and the decisions on it that are fed back (as would occur in an error-correction coding environment with sufficient decoding delay), a pure tone in the presence of noise would ultimately be produced (after sufficient iteration and low enough error probability) and thus could be tracked without any squaring loss. This article demonstrates that, with some modification, the same idea of iterative information reduction through decision feedback can be applied to quadrature phase-shift keyed (QPSK) modulation, something that was mentioned in the previous publication but never pursued.
Coding visual features extracted from video sequences.
Baroffio, Luca; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano
2014-05-01
Visual features are successfully exploited in several applications (e.g., visual search, object recognition and tracking, etc.) due to their ability to efficiently represent image content. Several visual analysis tasks require features to be transmitted over a bandwidth-limited network, thus calling for coding techniques to reduce the required bit budget, while attaining a target level of efficiency. In this paper, we propose, for the first time, a coding architecture designed for local features (e.g., SIFT, SURF) extracted from video sequences. To achieve high coding efficiency, we exploit both spatial and temporal redundancy by means of intraframe and interframe coding modes. In addition, we propose a coding mode decision based on rate-distortion optimization. The proposed coding scheme can be conveniently adopted to implement the analyze-then-compress (ATC) paradigm in the context of visual sensor networks. That is, sets of visual features are extracted from video frames, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast to the traditional compress-then-analyze (CTA) paradigm, in which video sequences acquired at a node are compressed and then sent to a central unit for further processing. In this paper, we compare these coding paradigms using metrics that are routinely adopted to evaluate the suitability of visual features in the context of content-based retrieval, object recognition, and tracking. Experimental results demonstrate that, thanks to the significant coding gains achieved by the proposed coding scheme, ATC outperforms CTA with respect to all evaluation metrics.
A hybrid quantum eraser scheme for characterization of free-space and fiber communication channels
NASA Astrophysics Data System (ADS)
Nape, Isaac; Kyeremah, Charlotte; Vallés, Adam; Rosales-Guzmán, Carmelo; Buah-Bassuah, Paul K.; Forbes, Andrew
2018-02-01
We demonstrate a simple projective measurement based on the quantum eraser concept that can be used to characterize the disturbances of any communication channel. Quantum erasers are commonly implemented as spatially separated path interferometric schemes. Here we exploit the advantages of redefining the which-path information in terms of spatial modes, replacing physical paths with abstract paths of orbital angular momentum (OAM). Remarkably, vector modes (natural modes of free-space and fiber) have a non-separable feature of spin-orbit coupled states, equivalent to the description of two independently marked paths. We explore the effects of fiber perturbations by probing a step-index optical fiber channel with a vector mode, relevant to high-order spatial mode encoding of information for ultra-fast fiber communications.
Should learners reason one step at a time? A randomised trial of two diagnostic scheme designs.
Blissett, Sarah; Morrison, Deric; McCarty, David; Sibbald, Matthew
2017-04-01
Making a diagnosis can be difficult for learners as they must integrate multiple clinical variables. Diagnostic schemes can help learners with this complex task. A diagnostic scheme is an algorithm that organises possible diagnoses by assigning signs or symptoms (e.g. systolic murmur) to groups of similar diagnoses (e.g. aortic stenosis and aortic sclerosis) and provides distinguishing features to help discriminate between similar diagnoses (e.g. carotid pulse). The current literature does not identify whether scheme layouts should guide learners to reason one step at a time in a terminally branching scheme or weigh multiple variables simultaneously in a hybrid scheme. We compared diagnostic accuracy, perceptual errors and cognitive load using two scheme layouts for cardiac auscultation. Focused on the task of identifying murmurs on Harvey, a cardiopulmonary simulator, 86 internal medicine residents used two scheme layouts. The terminally branching scheme organised the information into single variable decisions. The hybrid scheme combined single variable decisions with a chart integrating multiple distinguishing features. Using a crossover design, participants completed one set of murmurs (diastolic or systolic) with either the terminally branching or the hybrid scheme. The second set of murmurs was completed with the other scheme. A repeated measures manova was performed to compare diagnostic accuracy, perceptual errors and cognitive load between the scheme layouts. There was a main effect of the scheme layout (Wilks' λ = 0.841, F 3,80 = 5.1, p = 0.003). Use of a terminally branching scheme was associated with increased diagnostic accuracy (65 versus 53%, p = 0.02), fewer perceptual errors (0.61 versus 0.98 errors, p = 0.001) and lower cognitive load (3.1 versus 3.5/7, p = 0.023). The terminally branching scheme was associated with improved diagnostic accuracy, fewer perceptual errors and lower cognitive load, suggesting that terminally branching schemes are effective for improving diagnostic accuracy. These findings can inform the design of schemes and other clinical decision aids. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
NASA Astrophysics Data System (ADS)
Zhang, Jinfang; Yan, Xiaoqing; Wang, Hongfu
2018-02-01
With the rapid development of renewable energy in Northwest China, curtailment phenomena is becoming more and more serve owing to lack of adjustment ability and enough transmission capacity. Based on the existing HVDC projects, exploring the hybrid transmission mode associated with thermal power and renewable power will be necessary and important. This paper has proposed a method on optimal thermal power and renewable energy combination for HVDC lines, based on multi-scheme comparison. Having established the mathematic model for electric power balance in time series mode, ten different schemes have been picked for figuring out the suitable one by test simulation. By the proposed related discriminated principle, including generation device utilization hours, renewable energy electricity proportion and curtailment level, the recommendation scheme has been found. The result has also validated the efficiency of the method.
Detecting free-mass common-mode motion induced by incident gravitational waves
NASA Astrophysics Data System (ADS)
Tobar, Michael Edmund; Suzuki, Toshikazu; Kuroda, Kazuaki
1999-05-01
In this paper we show that information on both the differential and common mode free-mass response to a gravitational wave can provide important information on discriminating the direction of the gravitational wave source and between different theories of gravitation. The conventional Michelson interferometer scheme only measures the differential free-mass response. By changing the orientation of the beam splitter, it is possible to configure the detector so it is sensitive to the common-mode of the free-mass motion. The proposed interferometer is an adaptation of the Fox-Smith interferometer. A major limitation to the new scheme is its enhanced sensitivity to laser frequency fluctuations over the conventional, and we propose a method of cancelling these fluctuations. The configuration could be used in parallel to the conventional differential detection scheme with a significant sensitivity and bandwidth.
Teleportation of a two-mode entangled coherent state encoded with two-qubit information
NASA Astrophysics Data System (ADS)
Mishra, Manoj K.; Prakash, Hari
2010-09-01
We propose a scheme to teleport a two-mode entangled coherent state encoded with two-qubit information, which is better than the two schemes recently proposed by Liao and Kuang (2007 J. Phys. B: At. Mol. Opt. Phys. 40 1183) and by Phien and Nguyen (2008 Phys. Lett. A 372 2825) in that our scheme gives higher value of minimum assured fidelity and minimum average fidelity without using any nonlinear interactions. For involved coherent states | ± αrang, minimum average fidelity in our case is >=0.99 for |α| >= 1.6 (i.e. |α|2 >= 2.6), while previously proposed schemes referred above report the same for |α| >= 5 (i.e. |α|2 >= 25). Since it is very challenging to produce superposed coherent states of high coherent amplitude (|α|), our teleportation scheme is at the reach of modern technology.
Mechanisms of Coupled Vibrational Relaxation and Dissociation in Carbon Dioxide.
Armenise, Iole; Kustova, Elena
2018-05-21
A complete vibrational state-specific kinetic scheme describing dissociating carbon dioxide mixtures is proposed. CO 2 symmetric, bending and asymmetric vibrations and dissociation-recombination are strongly coupled through inter-mode vibrational energy transfers. Comparative study of state-resolved rate coefficients is carried out; the effect of different transitions may vary considerably with temperature. A non-equilibrium 1-D boundary layer flow typical to hypersonic planetary entry is studied in the state-to-state approach. To assess the sensitivity of fluid-dynamic variables and heat transfer to various vibrational transitions and chemical reactions, corresponding processes are successively included to the kinetic scheme. It is shown that vibrational-translational (VT) transitions in the symmetric and asymmetric modes do not alter the flow and can be neglected whereas the VT 2 exchange in the bending mode is the main channel of vibrational relaxation. Inter-mode vibrational exchanges affect the flow implicitly, through energy redistribution enhancing VT relaxation; the dominating role belongs to near-resonant transitions between symmetric and bending modes as well as between CO molecules and CO 2 asymmetric mode. Strong coupling between VT 2 relaxation and chemical reactions is emphasized. While vibrational distributions and average vibrational energy show strong dependence on the kinetic scheme, the heat flux is more sensitive to chemical reactions.
Cao, Cong; Duan, Yu-Wen; Chen, Xi; Zhang, Ru; Wang, Tie-Jun; Wang, Chuan
2017-07-24
Quantum router is a key element needed for the construction of future complex quantum networks. However, quantum routing with photons, and its inverse, quantum decoupling, are difficult to implement as photons do not interact, or interact very weakly in nonlinear media. In this paper, we investigate the possibility of implementing photonic quantum routing based on effects in cavity quantum electrodynamics, and present a scheme for single-photon quantum routing controlled by the other photon using a hybrid system consisting of a single nitrogen-vacancy (NV) center coupled with a whispering-gallery-mode resonator-waveguide structure. Different from the cases in which classical information is used to control the path of quantum signals, both the control and signal photons are quantum in our implementation. Compared with the probabilistic quantum routing protocols based on linear optics, our scheme is deterministic and also scalable to multiple photons. We also present a scheme for single-photon quantum decoupling from an initial state with polarization and spatial-mode encoding, which can implement an inverse operation to the quantum routing. We discuss the feasibility of our schemes by considering current or near-future techniques, and show that both the schemes can operate effectively in the bad-cavity regime. We believe that the schemes could be key building blocks for future complex quantum networks and large-scale quantum information processing.
Control of large flexible systems via eigenvalue relocation
NASA Technical Reports Server (NTRS)
Denman, E. D.; Jeon, G. J.
1985-01-01
For the vibration control of large flexible systems, a control scheme by which the eigenvalues of the closed-loop systems are assigned to predetermined locations within the feasible region through velocity-only feedback is presented. Owing to the properties of second-order lambda-matrices and an efficient model decoupling technique, the control scheme makes it possible that selected modes are damped with the rest of the modes unchanged.
Evaluation of a new microphysical aerosol module in the ECMWF Integrated Forecasting System
NASA Astrophysics Data System (ADS)
Woodhouse, Matthew; Mann, Graham; Carslaw, Ken; Morcrette, Jean-Jacques; Schulz, Michael; Kinne, Stefan; Boucher, Olivier
2013-04-01
The Monitoring Atmospheric Composition and Climate II (MACC-II) project will provide a system for monitoring and predicting atmospheric composition. As part of the first phase of MACC, the GLOMAP-mode microphysical aerosol scheme (Mann et al., 2010, GMD) was incorporated within the ECMWF Integrated Forecasting System (IFS). The two-moment modal GLOMAP-mode scheme includes new particle formation, condensation, coagulation, cloud-processing, and wet and dry deposition. GLOMAP-mode is already incorporated as a module within the TOMCAT chemistry transport model and within the UK Met Office HadGEM3 general circulation model. The microphysical, process-based GLOMAP-mode scheme allows an improved representation of aerosol size and composition and can simulate aerosol evolution in the troposphere and stratosphere. The new aerosol forecasting and re-analysis system (known as IFS-GLOMAP) will also provide improved boundary conditions for regional air quality forecasts, and will benefit from assimilation of observed aerosol optical depths in near real time. Presented here is an evaluation of the performance of the IFS-GLOMAP system in comparison to in situ aerosol mass and number measurements, and remotely-sensed aerosol optical depth measurements. Future development will provide a fully-coupled chemistry-aerosol scheme, and the capability to resolve nitrate aerosol.
On the mechanism of transverse-mode beatings in a Fabry - Perot laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, N; Ledenev, V I
2010-06-23
The mechanism of emergence of fundamental-mode and first-mode beatings in the case of a step-wise increase in the pump rate is studied under the stationary single-mode lasing conditions. Investigation is based on the numerical solution of nonstationary wave equations in a resonator in the quasi-optic approximation and on the equation for a relaxation-type medium as well as on the use of the first two Hermite - Gaussian polynomials {psi}{sub 0,1}(x) to obtain the distribution projections I{sub 0,1}(t), g{sub 0,1}(t) of the radiation intensity and gain, respectively. It is shown that the transverse-mode beatings emerge at early stages of two-mode lasing,more » the appearance of radiation intensity oscillations in the active medium preceding the development of the gain oscillations. The time of the passage of two-mode lasing to the stationary regime is determined. The phase shift {pi}/2 between the oscillations I{sub 1}(t) and g{sub 1}(t) is found for the established beating regime and the modulation depth {Delta}I averaged over the output aperture of the radiation intensity in the established two-mode regime is shown to be proportional to the pump rate excess k over the single-mode lasing threshold. A scheme for controlling the mode composition of laser radiation is proposed, which is based on the rules for determining I{sub 0,1}(t) by the sensor signals. The efficiency of the scheme is studied. The scheme employs two field intensity sensors mounted inside the resonator behind the output aperture. (resonators. modes)« less
Pitting intuitive and analytical thinking against each other: the case of transitivity.
Rusou, Zohar; Zakay, Dan; Usher, Marius
2013-06-01
Identifying which thinking mode, intuitive or analytical, yields better decisions has been a major subject of inquiry by decision-making researchers. Yet studies show contradictory results. One possibility is that the ambiguity is due to the variability in experimental conditions across studies. Our hypothesis is that decision quality depends critically on the level of compatibility between the thinking mode employed in the decision and the nature of the decision-making task. In two experiments, we pitted intuition and analytical thinking against each other on tasks that were either mainly intuitive or mainly analytical. Thinking modes, as well as task characteristics, were manipulated in a factorial design, with choice transitivity as the dependent measure. Results showed higher choice consistency (transitivity) when thinking mode and the characteristics of the decision task were compatible.
Teleportation-based quantum information processing with Majorana zero modes
Vijay, Sagar; Fu, Liang
2016-12-29
In this work, we present a measurement-based scheme for performing braiding operations on Majorana zero modes in mesoscopic superconductor islands and for detecting their non-Abelian statistics without moving or hybridizing them. In our scheme for “braiding without braiding”, the topological qubit encoded in any pair of well-separated Majorana zero modes is read out from the transmission phase shift in electron teleportation through the island in the Coulomb-blockade regime. Finally, we propose experimental setups to measure the teleportation phase shift via conductance in an electron interferometer or persistent current in a closed loop.
Teleportation-based quantum information processing with Majorana zero modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijay, Sagar; Fu, Liang
In this work, we present a measurement-based scheme for performing braiding operations on Majorana zero modes in mesoscopic superconductor islands and for detecting their non-Abelian statistics without moving or hybridizing them. In our scheme for “braiding without braiding”, the topological qubit encoded in any pair of well-separated Majorana zero modes is read out from the transmission phase shift in electron teleportation through the island in the Coulomb-blockade regime. Finally, we propose experimental setups to measure the teleportation phase shift via conductance in an electron interferometer or persistent current in a closed loop.
Sun, Xiaole; Djordjevic, Ivan B; Neifeld, Mark A
2016-11-28
We investigate a multiple spatial modes based quantum key distribution (QKD) scheme that employs multiple independent parallel beams through a marine free-space optical channel over open ocean. This approach provides the potential to increase secret key rate (SKR) linearly with the number of channels. To improve the SKR performance, we describe a back-propagation mode (BPM) method to mitigate the atmospheric turbulence effects. Our simulation results indicate that the secret key rate can be improved significantly by employing the proposed BPM-based multi-channel QKD scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhenyu; Zhou, Ning; Tuffner, Francis K.
Small signal stability problems are one of the major threats to grid stability and reliability in the U.S. power grid. An undamped mode can cause large-amplitude oscillations and may result in system breakups and large-scale blackouts. There have been several incidents of system-wide oscillations. Of those incidents, the most notable is the August 10, 1996 western system breakup, a result of undamped system-wide oscillations. Significant efforts have been devoted to monitoring system oscillatory behaviors from measurements in the past 20 years. The deployment of phasor measurement units (PMU) provides high-precision, time-synchronized data needed for detecting oscillation modes. Measurement-based modal analysis,more » also known as ModeMeter, uses real-time phasor measurements to identify system oscillation modes and their damping. Low damping indicates potential system stability issues. Modal analysis has been demonstrated with phasor measurements to have the capability of estimating system modes from both oscillation signals and ambient data. With more and more phasor measurements available and ModeMeter techniques maturing, there is yet a need for methods to bring modal analysis from monitoring to actions. The methods should be able to associate low damping with grid operating conditions, so operators or automated operation schemes can respond when low damping is observed. The work presented in this report aims to develop such a method and establish a Modal Analysis for Grid Operation (MANGO) procedure to aid grid operation decision making to increase inter-area modal damping. The procedure can provide operation suggestions (such as increasing generation or decreasing load) for mitigating inter-area oscillations.« less
Algorithm for Determination of Orion Ascent Abort Mode Achievability
NASA Technical Reports Server (NTRS)
Tedesco, Mark B.
2011-01-01
For human spaceflight missions, a launch vehicle failure poses the challenge of returning the crew safely to earth through environments that are often much more stressful than the nominal mission. Manned spaceflight vehicles require continuous abort capability throughout the ascent trajectory to protect the crew in the event of a failure of the launch vehicle. To provide continuous abort coverage during the ascent trajectory, different types of Orion abort modes have been developed. If a launch vehicle failure occurs, the crew must be able to quickly and accurately determine the appropriate abort mode to execute. Early in the ascent, while the Launch Abort System (LAS) is attached, abort mode selection is trivial, and any failures will result in a LAS abort. For failures after LAS jettison, the Service Module (SM) effectors are employed to perform abort maneuvers. Several different SM abort mode options are available depending on the current vehicle location and energy state. During this region of flight the selection of the abort mode that maximizes the survivability of the crew becomes non-trivial. To provide the most accurate and timely information to the crew and the onboard abort decision logic, on-board algorithms have been developed to propagate the abort trajectories based on the current launch vehicle performance and to predict the current abort capability of the Orion vehicle. This paper will provide an overview of the algorithm architecture for determining abort achievability as well as the scalar integration scheme that makes the onboard computation possible. Extension of the algorithm to assessing abort coverage impacts from Orion design modifications and launch vehicle trajectory modifications is also presented.
NASA Astrophysics Data System (ADS)
Hardikar, Kedar Y.; Liu, Bill J. J.; Bheemreddy, Venkata
2016-09-01
Gaining an understanding of degradation mechanisms and their characterization are critical in developing relevant accelerated tests to ensure PV module performance warranty over a typical lifetime of 25 years. As newer technologies are adapted for PV, including new PV cell technologies, new packaging materials, and newer product designs, the availability of field data over extended periods of time for product performance assessment cannot be expected within the typical timeframe for business decisions. In this work, to enable product design decisions and product performance assessment for PV modules utilizing newer technologies, Simulation and Mechanism based Accelerated Reliability Testing (SMART) methodology and empirical approaches to predict field performance from accelerated test results are presented. The method is demonstrated for field life assessment of flexible PV modules based on degradation mechanisms observed in two accelerated tests, namely, Damp Heat and Thermal Cycling. The method is based on design of accelerated testing scheme with the intent to develop relevant acceleration factor models. The acceleration factor model is validated by extensive reliability testing under different conditions going beyond the established certification standards. Once the acceleration factor model is validated for the test matrix a modeling scheme is developed to predict field performance from results of accelerated testing for particular failure modes of interest. Further refinement of the model can continue as more field data becomes available. While the demonstration of the method in this work is for thin film flexible PV modules, the framework and methodology can be adapted to other PV products.
Visual saliency-based fast intracoding algorithm for high efficiency video coding
NASA Astrophysics Data System (ADS)
Zhou, Xin; Shi, Guangming; Zhou, Wei; Duan, Zhemin
2017-01-01
Intraprediction has been significantly improved in high efficiency video coding over H.264/AVC with quad-tree-based coding unit (CU) structure from size 64×64 to 8×8 and more prediction modes. However, these techniques cause a dramatic increase in computational complexity. An intracoding algorithm is proposed that consists of perceptual fast CU size decision algorithm and fast intraprediction mode decision algorithm. First, based on the visual saliency detection, an adaptive and fast CU size decision method is proposed to alleviate intraencoding complexity. Furthermore, a fast intraprediction mode decision algorithm with step halving rough mode decision method and early modes pruning algorithm is presented to selectively check the potential modes and effectively reduce the complexity of computation. Experimental results show that our proposed fast method reduces the computational complexity of the current HM to about 57% in encoding time with only 0.37% increases in BD rate. Meanwhile, the proposed fast algorithm has reasonable peak signal-to-noise ratio losses and nearly the same subjective perceptual quality.
Purification and switching protocols for dissipatively stabilized entangled qubit states
NASA Astrophysics Data System (ADS)
Hein, Sven M.; Aron, Camille; Türeci, Hakan E.
2016-06-01
Pure dephasing processes limit the fidelities achievable in driven-dissipative schemes for stabilization of entangled states of qubits. We propose a scheme which, combined with already existing entangling methods, purifies the desired entangled state by driving out of equilibrium auxiliary dissipative cavity modes coupled to the qubits. We lay out the specifics of our scheme and compute its efficiency in the particular context of two superconducting qubits in a cavity-QED architecture, where the strongly coupled auxiliary modes provided by collective cavity excitations can drive and sustain the qubits in maximally entangled Bell states with fidelities reaching 90% for experimentally accessible parameters.
NASA Astrophysics Data System (ADS)
Tjong, Tiffany; Yihaa’ Roodhiyah, Lisa; Nurhasan; Sutarno, Doddy
2018-04-01
In this work, an inversion scheme was performed using a vector finite element (VFE) based 2-D magnetotelluric (MT) forward modelling. We use an inversion scheme with Singular value decomposition (SVD) method toimprove the accuracy of MT inversion.The inversion scheme was applied to transverse electric (TE) mode of MT. SVD method was used in this inversion to decompose the Jacobian matrices. Singular values which obtained from the decomposition process were analyzed. This enabled us to determine the importance of data and therefore to define a threshold for truncation process. The truncation of singular value in inversion processcould improve the resulted model.
Decision support system in an international-voice-services business company
NASA Astrophysics Data System (ADS)
Hadianti, R.; Uttunggadewa, S.; Syamsuddin, M.; Soewono, E.
2017-01-01
We consider a problem facing by an international telecommunication services company in maximizing its profit. From voice services by controlling cost and business partnership. The competitiveness in this industry is very high, so that any efficiency from controlling cost and business partnership can help the company to survive in the very high competitiveness situation. The company trades voice traffic with a large number of business partners. There are four trading schemes that can be chosen by this company, namely, flat rate, class tiering, volume commitment, and revenue capped. Each scheme has a specific characteristic on the rate and volume deal, where the last three schemes are regarded as strategic schemes to be offered to business partner to ensure incoming traffic volume for both parties. This company and each business partner need to choose an optimal agreement in a certain period of time that can maximize the company’s profit. In this agreement, both parties agree to use a certain trading scheme, rate and rate/volume/revenue deal. A decision support system is then needed in order to give a comprehensive information to the sales officers to deal with the business partners. This paper discusses the mathematical model of the optimal decision for incoming traffic volume control, which is a part of the analysis needed to build the decision support system. The mathematical model is built by first performing data analysis to see how elastic the incoming traffic volume is. As the level of elasticity is obtained, we then derive a mathematical modelling that can simulate the impact of any decision on trading to the revenue of the company. The optimal decision can be obtained from these simulations results. To evaluate the performance of the proposed method we implement our decision model to the historical data. A software tool incorporating our methodology is currently in construction.
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Xiao, Nengwu; Chen, Chen; Yuan, Weicheng; Qiu, Kun
2016-02-01
We propose an energy-efficient orthogonal frequency division multiplexing-based passive optical network (OFDM-PON) using adaptive sleep-mode control and dynamic bandwidth allocation. In this scheme, a bidirectional-centralized algorithm named the receiver and transmitter accurate sleep control and dynamic bandwidth allocation (RTASC-DBA), which has an overall bandwidth scheduling policy, is employed to enhance the energy efficiency of the OFDM-PON. The RTASC-DBA algorithm is used in an optical line terminal (OLT) to control the sleep mode of an optical network unit (ONU) sleep and guarantee the quality of service of different services of the OFDM-PON. The obtained results show that, by using the proposed scheme, the average power consumption of the ONU is reduced by ˜40% when the normalized ONU load is less than 80%, compared with the average power consumption without using the proposed scheme.
NASA Technical Reports Server (NTRS)
Schlesinger, R. E.; Johnson, D. R.; Uccellini, L. W.
1983-01-01
In the present investigation, a one-dimensional linearized analysis is used to determine the effect of Asselin's (1972) time filter on both the computational stability and phase error of numerical solutions for the shallow water wave equations, in cases with diffusion but without rotation. An attempt has been made to establish the approximate optimal values of the filtering parameter nu for each of the 'lagged', Dufort-Frankel, and Crank-Nicholson diffusion schemes, suppressing the computational wave mode without materially altering the physical wave mode. It is determined that in the presence of diffusion, the optimum filter length depends on whether waves are undergoing significant propagation. When moderate propagation is present, with or without diffusion, the Asselin filter has little effect on the spatial phase lag of the physical mode for the leapfrog advection scheme of the three diffusion schemes considered.
A CLS-based survivable and energy-saving WDM-PON architecture
NASA Astrophysics Data System (ADS)
Zhu, Min; Zhong, Wen-De; Zhang, Zhenrong; Luan, Feng
2013-11-01
We propose and demonstrate an improved survivable and energy-saving WDM-PON with colorless ONUs. It incorporates both energy-saving and self-healing operations. A simple effective energy-saving scheme is proposed by including an energy-saving control unit in the OLT and a control unit at each ONU. The energy-saving scheme realizes both dozing and sleep (offline) modes, which greatly improves the energy-saving efficiency for WDM-PONs. An intelligent protection switching scheme is designed in the OLT, which can distinguish if an ONU is in dozing/sleep (offline) state or a fiber is faulty. Moreover, by monitoring the optical power of each channel on both working and protection paths, the OLT can know the connection status of every fiber path, thus facilitating an effective protection switching and a faster failure recovery. The improved WDM-PON architecture not only significantly reduces energy consumption, but also performs self-healing operation in practical operation scenarios. The scheme feasibility is experimentally verified with 10 Gbit/s downstream and 1.25 Gbit/s upstream transmissions. We also examine the energy-saving efficiency of our proposed energy-saving scheme by simulation, which reveals that energy saving mainly arises from the dozing mode, not from the sleep mode when the ONU is in the online state.
Energy-saving framework for passive optical networks with ONU sleep/doze mode.
Van, Dung Pham; Valcarenghi, Luca; Dias, Maluge Pubuduni Imali; Kondepu, Koteswararao; Castoldi, Piero; Wong, Elaine
2015-02-09
This paper proposes an energy-saving passive optical network framework (ESPON) that aims to incorporate optical network unit (ONU) sleep/doze mode into dynamic bandwidth allocation (DBA) algorithms to reduce ONU energy consumption. In the ESPON, the optical line terminal (OLT) schedules both downstream (DS) and upstream (US) transmissions in the same slot in an online and dynamic fashion whereas the ONU enters sleep mode outside the slot. The ONU sleep time is maximized based on both DS and US traffic. Moreover, during the slot, the ONU might enter doze mode when only its transmitter is idle to further improve energy efficiency. The scheduling order of data transmission, control message exchange, sleep period, and doze period defines an energy-efficient scheme under the ESPON. Three schemes are designed and evaluated in an extensive FPGA-based evaluation. Results show that whilst all the schemes significantly save ONU energy for different evaluation scenarios, the scheduling order has great impact on their performance. In addition, the ESPON allows for a scheduling order that saves ONU energy independently of the network reach.
One lens optical correlation: application to face recognition.
Jridi, Maher; Napoléon, Thibault; Alfalou, Ayman
2018-03-20
Despite its extensive use, the traditional 4f Vander Lugt Correlator optical setup can be further simplified. We propose a lightweight correlation scheme where the decision is taken in the Fourier plane. For this purpose, the Fourier plane is adapted and used as a decision plane. Then, the offline phase and the decision metric are re-examined in order to keep a reasonable recognition rate. The benefits of the proposed approach are numerous: (1) it overcomes the constraints related to the use of a second lens; (2) the optical correlation setup is simplified; (3) the multiplication with the correlation filter can be done digitally, which offers a higher adaptability according to the application. Moreover, the digital counterpart of the correlation scheme is lightened since with the proposed scheme we get rid of the inverse Fourier transform (IFT) calculation (i.e., decision directly in the Fourier domain without resorting to IFT). To assess the performance of the proposed approach, an insight into digital hardware resources saving is provided. The proposed method involves nearly 100 times fewer arithmetic operators. Moreover, from experimental results in the context of face verification-based correlation, we demonstrate that the proposed scheme provides comparable or better accuracy than the traditional method. One interesting feature of the proposed scheme is that it could greatly outperform the traditional scheme for face identification application in terms of sensitivity to face orientation. The proposed method is found to be digital/optical implementation-friendly, which facilitates its integration on a very broad range of scenarios.
NASA Astrophysics Data System (ADS)
Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schweiger, Gustav
2009-05-01
A novel emerging technique for the label-free analysis of nanoparticles including biomolecules using optical micro cavity resonance of whispering-gallery-type modes is being developed. Schemes of such a method based on microsphere melted by laser on the tip of a standard single mode fiber optical cable with a laser and free microsphere matrix have been developed. Using a calibration principal of ultra high resolution spectroscopy based on such a scheme the method is being transformed to make further development for microbial application. The sensitivity of developed schemes has been tested to refractive index changes by monitoring the magnitude of the whispering gallery modes spectral shift. Water solutions of ethanol, glucose, vitamin C and biotin have been used. Some other schemes using similar principals: stand-alone, array and matrix microsphere resonators, liquid core optical ring resonators are also being under development. The influences of the gap in whispering-gallery modes on energy coupling, resonance quality and frequency have been investigated. An optimum gap for sensing applications has been defined at the half maximum energy coupling where both the Q factor and coupling efficiency are high and the resonance frequency is little affected by the gap variation. Developed schemes have been demonstrated to be a promising technology platform for sensitive, lab-on-chip type sensor which can be used for development of diagnostic tools for different biological molecules, e.g. proteins, oligonucleotides, oligosaccharides, lipids, small molecules, viral particles, cells as well as in different experimental contexts e.g. proteomics, genomics, drug discovery, and membrane studies.
NASA Astrophysics Data System (ADS)
He, Jing; Dai, Min; Chen, Qinghui; Deng, Rui; Xiang, Changqing; Chen, Lin
2017-07-01
In this paper, an effective bit-loading combined with adaptive LDPC code rate algorithm is proposed and investigated in software reconfigurable multiband UWB over fiber system. To compensate the power fading and chromatic dispersion for the high frequency of multiband OFDM UWB signal transmission over standard single mode fiber (SSMF), a Mach-Zehnder modulator (MZM) with negative chirp parameter is utilized. In addition, the negative power penalty of -1 dB for 128 QAM multiband OFDM UWB signal are measured at the hard-decision forward error correction (HD-FEC) limitation of 3.8 × 10-3 after 50 km SSMF transmission. The experimental results show that, compared to the fixed coding scheme with the code rate of 75%, the signal-to-noise (SNR) is improved by 2.79 dB for 128 QAM multiband OFDM UWB system after 100 km SSMF transmission using ALCR algorithm. Moreover, by employing bit-loading combined with ALCR algorithm, the bit error rate (BER) performance of system can be further promoted effectively. The simulation results present that, at the HD-FEC limitation, the value of Q factor is improved by 3.93 dB at the SNR of 19.5 dB over 100 km SSMF transmission, compared to the fixed modulation with uncoded scheme at the same spectrum efficiency (SE).
2014-01-01
This paper analyses how different coordination modes and different multiobjective decision making approaches interfere with each other in hierarchical organizations. The investigation is based on an agent-based simulation. We apply a modified NK-model in which we map multiobjective decision making as adaptive walk on multiple performance landscapes, whereby each landscape represents one objective. We find that the impact of the coordination mode on the performance and the speed of performance improvement is critically affected by the selected multiobjective decision making approach. In certain setups, the performances achieved with the more complex multiobjective decision making approaches turn out to be less sensitive to the coordination mode than the performances achieved with the less complex multiobjective decision making approaches. Furthermore, we present results on the impact of the nature of interactions among decisions on the achieved performance in multiobjective setups. Our results give guidance on how to control the performance contribution of objectives to overall performance and answer the question how effective certain multiobjective decision making approaches perform under certain circumstances (coordination mode and interdependencies among decisions). PMID:25152926
Qin, Youxiang; Zhang, Junjie
2017-07-10
A novel low complexity and energy-efficient scheme by controlling the toggle-rate of ONU with time-domain amplitude identification is proposed for a heavy load downlink in an intensity-modulation and direct-detection orthogonal frequency division multiplexing passive optical network (IM-DD OFDM-PON). In a conventional OFDM-PON downlink, all ONUs have to perform demodulation for all the OFDM frames in a broadcast way no matter whether the frames are targeted to or not, which causes a huge energy waste. However, in our scheme, the optical network unit (ONU) logical link identifications (LLIDs) are inserted into each downlink OFDM frame in time-domain at the optical line terminal (OLT) side. At the ONU side, the LLID is obtained with a low complexity and high precision amplitude identification method. The ONU sets the toggle-rate of demodulation module to zero when the frames are not targeted to, which avoids unnecessary digital signal processing (DSP) energy consumption. Compared with the sleep-mode methods consisting of clock recovery and synchronization, toggle-rate shows its advantage in fast changing, which is more suitable for the heavy load scenarios. Moreover, for the first time to our knowledge, the characteristics of the proposed scheme are investigated in a real-time IM-DD OFDM system, which performs well at the received optical power as low as -21dBm. The experimental results show that 25.1% energy consumption can be saved in the receiver compared to the conventional configurations.
Takeda, Shuntaro; Furusawa, Akira
2017-09-22
We propose a scalable scheme for optical quantum computing using measurement-induced continuous-variable quantum gates in a loop-based architecture. Here, time-bin-encoded quantum information in a single spatial mode is deterministically processed in a nested loop by an electrically programmable gate sequence. This architecture can process any input state and an arbitrary number of modes with almost minimum resources, and offers a universal gate set for both qubits and continuous variables. Furthermore, quantum computing can be performed fault tolerantly by a known scheme for encoding a qubit in an infinite-dimensional Hilbert space of a single light mode.
Huang, Zejia; Wu, Chongqing; Wang, Zhi; Wang, Jian; Liu, Lanlan
2018-02-19
Using a quaternion method, the polarization mode-coupling coefficient can be derived from three components of the Stokes vectors at three adjacent points along a fiber. A complete polarization optical time-domain reflectometry scheme for polarization mode coupling distributed measurement in polarization-maintaining fiber ring is proposed based on the above theoretical derivations. By comparing the measurement results of two opposite incident directions and two orthogonal polarization axes of polarization-maintaining fiber rings with different lengths, the feasibility and repeatability of the measurement scheme are verified experimentally with a positioning spatial resolution of 1 meter.
NASA Astrophysics Data System (ADS)
Takeda, Shuntaro; Furusawa, Akira
2017-09-01
We propose a scalable scheme for optical quantum computing using measurement-induced continuous-variable quantum gates in a loop-based architecture. Here, time-bin-encoded quantum information in a single spatial mode is deterministically processed in a nested loop by an electrically programmable gate sequence. This architecture can process any input state and an arbitrary number of modes with almost minimum resources, and offers a universal gate set for both qubits and continuous variables. Furthermore, quantum computing can be performed fault tolerantly by a known scheme for encoding a qubit in an infinite-dimensional Hilbert space of a single light mode.
An efficient mode-splitting method for a curvilinear nearshore circulation model
Shi, Fengyan; Kirby, James T.; Hanes, Daniel M.
2007-01-01
A mode-splitting method is applied to the quasi-3D nearshore circulation equations in generalized curvilinear coordinates. The gravity wave mode and the vorticity wave mode of the equations are derived using the two-step projection method. Using an implicit algorithm for the gravity mode and an explicit algorithm for the vorticity mode, we combine the two modes to derive a mixed difference–differential equation with respect to surface elevation. McKee et al.'s [McKee, S., Wall, D.P., and Wilson, S.K., 1996. An alternating direction implicit scheme for parabolic equations with mixed derivative and convective terms. J. Comput. Phys., 126, 64–76.] ADI scheme is then used to solve the parabolic-type equation in dealing with the mixed derivative and convective terms from the curvilinear coordinate transformation. Good convergence rates are found in two typical cases which represent respectively the motions dominated by the gravity mode and the vorticity mode. Time step limitations imposed by the vorticity convective Courant number in vorticity-mode-dominant cases are discussed. Model efficiency and accuracy are verified in model application to tidal current simulations in San Francisco Bight.
Analysis of a decision model in the context of equilibrium pricing and order book pricing
NASA Astrophysics Data System (ADS)
Wagner, D. C.; Schmitt, T. A.; Schäfer, R.; Guhr, T.; Wolf, D. E.
2014-12-01
An agent-based model for financial markets has to incorporate two aspects: decision making and price formation. We introduce a simple decision model and consider its implications in two different pricing schemes. First, we study its parameter dependence within a supply-demand balance setting. We find realistic behavior in a wide parameter range. Second, we embed our decision model in an order book setting. Here, we observe interesting features which are not present in the equilibrium pricing scheme. In particular, we find a nontrivial behavior of the order book volumes which reminds of a trend switching phenomenon. Thus, the decision making model alone does not realistically represent the trading and the stylized facts. The order book mechanism is crucial.
High capacity low delay packet broadcasting multiaccess schemes for satellite repeater systems
NASA Astrophysics Data System (ADS)
Bose, S. K.
1980-12-01
Demand assigned packet radio schemes using satellite repeaters can achieve high capacities but often exhibit relatively large delays under low traffic conditions when compared to random access. Several schemes which improve delay performance at low traffic but which have high capacity are presented and analyzed. These schemes allow random acess attempts by users, who are waiting for channel assignments. The performance of these are considered in the context of a multiple point communication system carrying fixed length messages between geographically distributed (ground) user terminals which are linked via a satellite repeater. Channel assignments are done following a BCC queueing discipline by a (ground) central controller on the basis of requests correctly received over a collision type access channel. In TBACR Scheme A, some of the forward message channels are set aside for random access transmissions; the rest are used in a demand assigned mode. Schemes B and C operate all their forward message channels in a demand assignment mode but, by means of appropriate algorithms for trailer channel selection, allow random access attempts on unassigned channels. The latter scheme also introduces framing and slotting of the time axis to implement a more efficient algorithm for trailer channel selection than the former.
An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks
Salim, Shelly; Moh, Sangman
2016-01-01
A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead. PMID:27376290
An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks.
Salim, Shelly; Moh, Sangman
2016-06-30
A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jing; Yun, Peter; Tian, Yuan
2014-03-07
A scheme for a Ramsey-coherent population trapping (CPT) atomic clock that eliminates the acousto-optic modulator (AOM) is proposed and experimentally studied. Driven by a periodically microwave modulated current, the vertical-cavity surface-emitting laser emits a continuous beam that switches between monochromatic and multichromatic modes. Ramsey-CPT interference has been studied with this mode-switching beam. In eliminating the AOM, which is used to generate pulsed laser in conventional Ramsey-CPT atomic clock, the physics package of the proposed scheme is virtually the same as that of a conventional compact CPT atomic clock, although the resource budget for the electronics will slightly increase as amore » microwave switch should be added. By evaluating and comparing experimentally recorded signals from the two Ramsey-CPT schemes, the short-term frequency stability of the proposed scheme was found to be 46% better than the scheme with AOM. The experimental results suggest that the implementation of a compact Ramsey-CPT atomic clock promises better frequency stability.« less
Continuous-variable quantum authentication of physical unclonable keys
NASA Astrophysics Data System (ADS)
Nikolopoulos, Georgios M.; Diamanti, Eleni
2017-04-01
We propose a scheme for authentication of physical keys that are materialized by optical multiple-scattering media. The authentication relies on the optical response of the key when probed by randomly selected coherent states of light, and the use of standard wavefront-shaping techniques that direct the scattered photons coherently to a specific target mode at the output. The quadratures of the electromagnetic field of the scattered light at the target mode are analysed using a homodyne detection scheme, and the acceptance or rejection of the key is decided upon the outcomes of the measurements. The proposed scheme can be implemented with current technology and offers collision resistance and robustness against key cloning.
Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory
NASA Astrophysics Data System (ADS)
Gündoǧan, M.; Mazzera, M.; Ledingham, P. M.; Cristiani, M.; de Riedmatten, H.
2013-04-01
We report on the coherent and multi-temporal mode storage of light using the full atomic frequency comb memory scheme. The scheme involves the transfer of optical atomic excitations in Pr3+:Y2SiO5 to spin waves in hyperfine levels using strong single-frequency transfer pulses. Using this scheme, a total of five temporal modes are stored and recalled on-demand from the memory. The coherence of the storage and retrieval is characterized using a time-bin interference measurement resulting in visibilities higher than 80%, independent of the storage time. This coherent and multimode spin-wave memory is promising as a quantum memory for light.
Multigrid solutions to quasi-elliptic schemes
NASA Technical Reports Server (NTRS)
Brandt, A.; Taasan, S.
1985-01-01
Quasi-elliptic schemes arise from central differencing or finite element discretization of elliptic systems with odd order derivatives on non-staggered grids. They are somewhat unstable and less accurate then corresponding staggered-grid schemes. When usual multigrid solvers are applied to them, the asymptotic algebraic convergence is necessarily slow. Nevertheless, it is shown by mode analyses and numerical experiments that the usual FMG algorithm is very efficient in solving quasi-elliptic equations to the level of truncation errors. Also, a new type of multigrid algorithm is presented, mode analyzed and tested, for which even the asymptotic algebraic convergence is fast. The essence of that algorithm is applicable to other kinds of problems, including highly indefinite ones.
Multigrid solutions to quasi-elliptic schemes
NASA Technical Reports Server (NTRS)
Brandt, A.; Taasan, S.
1985-01-01
Quasi-elliptic schemes arise from central differencing or finite element discretization of elliptic systems with odd order derivatives on non-staggered grids. They are somewhat unstable and less accurate than corresponding staggered-grid schemes. When usual multigrid solvers are applied to them, the asymptotic algebraic convergence is necessarily slow. Nevertheless, it is shown by mode analyses and numerical experiments that the usual FMG algorithm is very efficient in solving quasi-elliptic equations to the level of truncation errors. Also, a new type of multigrid algorithm is presented, mode analyzed and tested, for which even the asymptotic algebraic convergence is fast. The essence of that algorithm is applicable to other kinds of problems, including highly indefinite ones.
Sequential sampling: a novel method in farm animal welfare assessment.
Heath, C A E; Main, D C J; Mullan, S; Haskell, M J; Browne, W J
2016-02-01
Lameness in dairy cows is an important welfare issue. As part of a welfare assessment, herd level lameness prevalence can be estimated from scoring a sample of animals, where higher levels of accuracy are associated with larger sample sizes. As the financial cost is related to the number of cows sampled, smaller samples are preferred. Sequential sampling schemes have been used for informing decision making in clinical trials. Sequential sampling involves taking samples in stages, where sampling can stop early depending on the estimated lameness prevalence. When welfare assessment is used for a pass/fail decision, a similar approach could be applied to reduce the overall sample size. The sampling schemes proposed here apply the principles of sequential sampling within a diagnostic testing framework. This study develops three sequential sampling schemes of increasing complexity to classify 80 fully assessed UK dairy farms, each with known lameness prevalence. Using the Welfare Quality herd-size-based sampling scheme, the first 'basic' scheme involves two sampling events. At the first sampling event half the Welfare Quality sample size is drawn, and then depending on the outcome, sampling either stops or is continued and the same number of animals is sampled again. In the second 'cautious' scheme, an adaptation is made to ensure that correctly classifying a farm as 'bad' is done with greater certainty. The third scheme is the only scheme to go beyond lameness as a binary measure and investigates the potential for increasing accuracy by incorporating the number of severely lame cows into the decision. The three schemes are evaluated with respect to accuracy and average sample size by running 100 000 simulations for each scheme, and a comparison is made with the fixed size Welfare Quality herd-size-based sampling scheme. All three schemes performed almost as well as the fixed size scheme but with much smaller average sample sizes. For the third scheme, an overall association between lameness prevalence and the proportion of lame cows that were severely lame on a farm was found. However, as this association was found to not be consistent across all farms, the sampling scheme did not prove to be as useful as expected. The preferred scheme was therefore the 'cautious' scheme for which a sampling protocol has also been developed.
Nonlinear Fourier transform—towards the construction of nonlinear Fourier modes
NASA Astrophysics Data System (ADS)
Saksida, Pavle
2018-01-01
We study a version of the nonlinear Fourier transform associated with ZS-AKNS systems. This version is suitable for the construction of nonlinear analogues of Fourier modes, and for the perturbation-theoretic study of their superposition. We provide an iterative scheme for computing the inverse of our transform. The relevant formulae are expressed in terms of Bell polynomials and functions related to them. In order to prove the validity of our iterative scheme, we show that our transform has the necessary analytic properties. We show that up to order three of the perturbation parameter, the nonlinear Fourier mode is a complex sinusoid modulated by the second Bernoulli polynomial. We describe an application of the nonlinear superposition of two modes to a problem of transmission through a nonlinear medium.
Gao, Qing; Feng, Gang; Xi, Zhiyu; Wang, Yong; Qiu, Jianbin
2014-09-01
In this paper, a novel dynamic sliding mode control scheme is proposed for a class of uncertain stochastic nonlinear time-delay systems represented by Takagi-Sugeno fuzzy models. The key advantage of the proposed scheme is that two very restrictive assumptions in most existing sliding mode control approaches for stochastic fuzzy systems have been removed. It is shown that the closed-loop control system trajectories can be driven onto the sliding surface in finite time almost certainly. It is also shown that the stochastic stability of the resulting sliding motion can be guaranteed in terms of linear matrix inequalities; moreover, the sliding-mode controller can be obtained simultaneously. Simulation results illustrating the advantages and effectiveness of the proposed approaches are also provided.
MHD control experiments in the Extrap T2R Reversed Field Pinch
NASA Astrophysics Data System (ADS)
Marrelli, L.; Bolzonella, T.; Brunsell, P.; Cecconello, M.; Drake, J.; Franz, P.; Gregoratto, D.; Manduchi, G.; Martin, P.; Ortolani, S.; Paccagnella, R.; Piovesan, P.; Spizzo, G.; Yadikin, D.; Zanca, P.
2004-11-01
We report here on MHD active control experiments performed in the Extrap T2R device, which has been recently equipped with a set of 32 feedback controlled saddle coils couples. Experiments aiming at selectively exciting a resonant resistive instability in order to actively induce Quasi Single Helicity states will be presented. Open loop experiments have in fact shown that a spectrum with one dominant mode can be excited in a high aspect ratio device like T2R. In addition, evidences of controlled braking of tearing modes, which spontaneously rotate in T2R, have been gathered, allowing the determination of a threshold for mode wall locking. Different feedback control schemes have been implemented. In particular, mode suppression schemes proved successful in delaying resistive wall modes growth and in increasing the discharge duration: this suggests a hybrid mode control scenario, in which RWM are suppressed and QSH is induced. Radiation imaging and internal magnetic field reconstructions performed with the ORBIT code will be presented.
NASA Astrophysics Data System (ADS)
Sabanin, V. R.; Starostin, A. A.; Repin, A. I.; Popov, A. I.
2017-02-01
The problems of operation effectiveness increase of steam boilers are considered. To maintain the optimum fuel combustion modes, it is proposed to use an extremal controller (EC) determining the value of airflow rate, at which the boiler generating the desired amount of heat will consume a minimum amount of fuel. EC sets the determined value of airflow rate to airflow rate controller (ARC). The test results of numerical simulation dynamic nonlinear model of steam boiler with the connected system of automatic control of load and combustion efficiency using EC are presented. The model is created in the Simulink modeling package of MATLAB software and can be used to optimize the combustion modes. Based on the modeling results, the conclusion was drawn about the possibility in principle of simultaneously boiler load control and optimizing by EC the combustion modes when changing the fuel combustion heat and the boiler characteristics and its operating mode. It is shown that it is possible to automatically control the operation efficiency of steam boilers when using EC without applying the standard flue gas analyzers. The article considers the numerical simulation dynamic model of steam boiler with the schemes of control of fuel consumption and airflow rate, the steam pressure and EC; the purpose of using EC in the scheme with linear controllers and the requirements to the quality of its operation; the results of operation of boiler control schemes without EC with estimation of influence of roughness of thermal mode maps on the nature of static and dynamic connection of the control units of fuel consumption and airflow rate; the phase trajectories and the diagrams of transient processes occurring in the control scheme with EC with stepped changing the fuel quality and boiler characteristics; analysis of modeling results and prospects for using EC in the control schemes of boilers.
NASA Astrophysics Data System (ADS)
Huang, Wei; Zhang, Xingnan; Li, Chenming; Wang, Jianying
Management of group decision-making is an important issue in water source management development. In order to overcome the defects in lacking of effective communication and cooperation in the existing decision-making models, this paper proposes a multi-layer dynamic model for coordination in water resource allocation and scheduling based group decision making. By introducing the scheme-recognized cooperative satisfaction index and scheme-adjusted rationality index, the proposed model can solve the problem of poor convergence of multi-round decision-making process in water resource allocation and scheduling. Furthermore, the problem about coordination of limited resources-based group decision-making process can be solved based on the effectiveness of distance-based group of conflict resolution. The simulation results show that the proposed model has better convergence than the existing models.
Using Decision Trees for Estimating Mode Choice of Trips in Buca-Izmir
NASA Astrophysics Data System (ADS)
Oral, L. O.; Tecim, V.
2013-05-01
Decision makers develop transportation plans and models for providing sustainable transport systems in urban areas. Mode Choice is one of the stages in transportation modelling. Data mining techniques can discover factors affecting the mode choice. These techniques can be applied with knowledge process approach. In this study a data mining process model is applied to determine the factors affecting the mode choice with decision trees techniques by considering individual trip behaviours from household survey data collected within Izmir Transportation Master Plan. From this perspective transport mode choice problem is solved on a case in district of Buca-Izmir, Turkey with CRISP-DM knowledge process model.
An Adaptive Handover Prediction Scheme for Seamless Mobility Based Wireless Networks
Safa Sadiq, Ali; Fisal, Norsheila Binti; Ghafoor, Kayhan Zrar; Lloret, Jaime
2014-01-01
We propose an adaptive handover prediction (AHP) scheme for seamless mobility based wireless networks. That is, the AHP scheme incorporates fuzzy logic with AP prediction process in order to lend cognitive capability to handover decision making. Selection metrics, including received signal strength, mobile node relative direction towards the access points in the vicinity, and access point load, are collected and considered inputs of the fuzzy decision making system in order to select the best preferable AP around WLANs. The obtained handover decision which is based on the calculated quality cost using fuzzy inference system is also based on adaptable coefficients instead of fixed coefficients. In other words, the mean and the standard deviation of the normalized network prediction metrics of fuzzy inference system, which are collected from available WLANs are obtained adaptively. Accordingly, they are applied as statistical information to adjust or adapt the coefficients of membership functions. In addition, we propose an adjustable weight vector concept for input metrics in order to cope with the continuous, unpredictable variation in their membership degrees. Furthermore, handover decisions are performed in each MN independently after knowing RSS, direction toward APs, and AP load. Finally, performance evaluation of the proposed scheme shows its superiority compared with representatives of the prediction approaches. PMID:25574490
An adaptive handover prediction scheme for seamless mobility based wireless networks.
Sadiq, Ali Safa; Fisal, Norsheila Binti; Ghafoor, Kayhan Zrar; Lloret, Jaime
2014-01-01
We propose an adaptive handover prediction (AHP) scheme for seamless mobility based wireless networks. That is, the AHP scheme incorporates fuzzy logic with AP prediction process in order to lend cognitive capability to handover decision making. Selection metrics, including received signal strength, mobile node relative direction towards the access points in the vicinity, and access point load, are collected and considered inputs of the fuzzy decision making system in order to select the best preferable AP around WLANs. The obtained handover decision which is based on the calculated quality cost using fuzzy inference system is also based on adaptable coefficients instead of fixed coefficients. In other words, the mean and the standard deviation of the normalized network prediction metrics of fuzzy inference system, which are collected from available WLANs are obtained adaptively. Accordingly, they are applied as statistical information to adjust or adapt the coefficients of membership functions. In addition, we propose an adjustable weight vector concept for input metrics in order to cope with the continuous, unpredictable variation in their membership degrees. Furthermore, handover decisions are performed in each MN independently after knowing RSS, direction toward APs, and AP load. Finally, performance evaluation of the proposed scheme shows its superiority compared with representatives of the prediction approaches.
Li, Xingang; Li, Jia; Sui, Hong; He, Lin; Cao, Xingtao; Li, Yonghong
2018-07-05
Soil remediation has been considered as one of the most difficult pollution treatment tasks due to its high complexity in contaminants, geological conditions, usage, urgency, etc. The diversity in remediation technologies further makes quick selection of suitable remediation schemes much tougher even the site investigation has been done. Herein, a sustainable decision support hierarchical model has been developed to select, evaluate and determine preferred soil remediation schemes comprehensively based on modified analytic hierarchy process (MAHP). This MAHP method combines competence model and the Grubbs criteria with the conventional AHP. It not only considers the competence differences among experts in group decision, but also adjusts the big deviation caused by different experts' preference through sample analysis. This conversion allows the final remediation decision more reasonable. In this model, different evaluation criteria, including economic effect, environmental effect and technological effect, are employed to evaluate the integrated performance of remediation schemes followed by a strict computation using above MAHP. To confirm the feasibility of this developed model, it has been tested by a benzene workshop contaminated site in Beijing coking plant. Beyond soil remediation, this MAHP model would also be applied in other fields referring to multi-criteria group decision making. Copyright © 2018 Elsevier B.V. All rights reserved.
Yan, Ming; Li, Wenxue; Yang, Kangwen; Zhou, Hui; Shen, Xuling; Zhou, Qian; Ru, Qitian; Bai, Dongbi; Zeng, Heping
2012-05-01
We report on a simple scheme to precisely control carrier-envelope phase of a nonlinear-polarization-rotation mode-locked self-started Yb-fiber laser system with an average output power of ∼7 W and a pulse width of 130 fs. The offset frequency was locked to the repetition rate of ∼64.5 MHz with a relative linewidth of ∼1.4 MHz by using a self-referenced feed-forward scheme based on an acousto-optic frequency shifter. The phase noise and timing jitter were calculated to be 370 mrad and 120 as, respectively.
Okabayashi, M.; Zanca, P.; Strait, E. J.; ...
2016-11-25
Disruptions caused by tearing modes (TMs) are considered to be one of the most critical roadblocks to achieving reliable, steady-state operation of tokamak fusion reactors. We have demonstrated a promising scheme to avoid mode locking by utilizing the electro-magnetic (EM) torque produced with 3D coils that are available in many tokamaks. In this scheme, the EM torque is delivered to the modes by a toroidal phase shift between the externally applied field and the excited TM fields, compensating for the mode momentum loss through the interaction with the resistive wall and uncorrected error fields. Fine control of torque balance ismore » provided by a feedback scheme. We have explored this approach in two widely different devices and plasma conditions: DIII-D and RFX-mod operated in tokamak mode. In DIII-D, the plasma target was high β N in a non-circular divertor tokamak. We define β N as β N = β/(I p /aB t) (%Tm/MA), where β, I p, a, B t are the total stored plasma pressure normalized by the magnetic pressure, plasma current, plasma minor radius and toroidal magnetic field at the plasma center, respectively. The RFX-mod plasma was ohmically-heated with ultra-low safety factor in a circular limiter discharge with active feedback coils outside the thick resistive shell. The DIII-D and RFX-mod experiments showed remarkable consistency with theoretical predictions of torque balance. The application to ignition-oriented devices such as the International Thermonuclear Experimental Reactor (ITER) would expand the horizon of its operational regime. Finally, the internal 3D coil set currently under consideration for edge localized mode suppression in ITER would be well suited for this purpose.« less
NASA Astrophysics Data System (ADS)
Okabayashi, M.; Zanca, P.; Strait, E. J.; Garofalo, A. M.; Hanson, J. M.; In, Y.; La Haye, R. J.; Marrelli, L.; Martin, P.; Paccagnella, R.; Paz-Soldan, C.; Piovesan, P.; Piron, C.; Piron, L.; Shiraki, D.; Volpe, F. A.; DIII-D, The; RFX-mod Teams
2017-01-01
Disruptions caused by tearing modes (TMs) are considered to be one of the most critical roadblocks to achieving reliable, steady-state operation of tokamak fusion reactors. Here we have demonstrated a promising scheme to avoid mode locking by utilizing the electro-magnetic (EM) torque produced with 3D coils that are available in many tokamaks. In this scheme, the EM torque is delivered to the modes by a toroidal phase shift between the externally applied field and the excited TM fields, compensating for the mode momentum loss through the interaction with the resistive wall and uncorrected error fields. Fine control of torque balance is provided by a feedback scheme. We have explored this approach in two widely different devices and plasma conditions: DIII-D and RFX-mod operated in tokamak mode. In DIII-D, the plasma target was high β N in a non-circular divertor tokamak. Here β N is defined as β N = β/(I p /aB t) (%Tm/MA), where β, I p, a, B t are the total stored plasma pressure normalized by the magnetic pressure, plasma current, plasma minor radius and toroidal magnetic field at the plasma center, respectively. The RFX-mod plasma was ohmically-heated with ultra-low safety factor in a circular limiter discharge with active feedback coils outside the thick resistive shell. The DIII-D and RFX-mod experiments showed remarkable consistency with theoretical predictions of torque balance. The application to ignition-oriented devices such as the International Thermonuclear Experimental Reactor (ITER) would expand the horizon of its operational regime. The internal 3D coil set currently under consideration for edge localized mode suppression in ITER would be well suited for this purpose.
Entanglement enhancement in multimode integrated circuits
NASA Astrophysics Data System (ADS)
Léger, Zacharie M.; Brodutch, Aharon; Helmy, Amr S.
2018-06-01
The faithful distribution of entanglement in continuous-variable systems is essential to many quantum information protocols. As such, entanglement distillation and enhancement schemes are a cornerstone of many applications. The photon subtraction scheme offers enhancement with a relatively simple setup and has been studied in various scenarios. Motivated by recent advances in integrated optics, particularly the ability to build stable multimode interferometers with squeezed input states, a multimodal extension to the enhancement via photon subtraction protocol is studied. States generated with multiple squeezed input states, rather than a single input source, are shown to be more sensitive to the enhancement protocol, leading to increased entanglement at the output. Numerical results show the gain in entanglement is not monotonic with the number of modes or the degree of squeezing in the additional modes. Consequently, the advantage due to having multiple squeezed input states can be maximized when the number of modes is still relatively small (e.g., four). The requirement for additional squeezing is within the current realm of implementation, making this scheme achievable with present technologies.
Advanced feedback control methods in EXTRAP T2R reversed field pinch
NASA Astrophysics Data System (ADS)
Yadikin, D.; Brunsell, P. R.; Paccagnella, R.
2006-07-01
Previous experiments in the EXTRAP T2R reversed field pinch device have shown the possibility of suppression of multiple resistive wall modes (RWM). A feedback system has been installed in EXTRAP T2R having 100% coverage of the toroidal surface by the active coil array. Predictions based on theory and the previous experimental results show that the number of active coils should be sufficient for independent stabilization of all unstable RWMs in the EXTRAP T2R. Experiments using different feedback schemes are performed, comparing the intelligent shell, the fake rotating shell, and the mode control with complex feedback gains. Stabilization of all unstable RWMs throughout the discharge duration of td≈10τw is seen using the intelligent shell feedback scheme. Mode rotation and the control of selected Fourier harmonics is obtained simultaneously using the mode control scheme with complex gains. Different sensor signals are studied. A feedback system with toroidal magnetic field sensors could have an advantage of lower feedback gain needed for the RWM suppression compared to the system with radial magnetic field sensors. In this study, RWM suppression is demonstrated, using also the toroidal field component as a sensor signal in the feedback system.
Liu, Hao; Zhu, Lili; Bai, Shuming; Shi, Qiang
2014-04-07
We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly in the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.
Abraham, Roney; Ibrahim, Tamer S
2007-02-01
In this article, a radiofrequency (RF) excitation scheme for 7-Tesla (T) whole-body applications is derived and analyzed using the finite difference time domain (FDTD) method. Important features of the proposed excitation scheme and coil (a potential 7T whole-body transverse electromagnetic [TEM] resonator design), from both operational and electromagnetic perspectives, are discussed. The choice of the coil's operational mode is unconventional; instead of the typical "homogenous mode," we use a mode that provides a null field in the center of the coil at low-field applications. Using a 3D FDTD implementation of Maxwell's equations, we demonstrate that the whole-body 7T TEM coil (tuned to the aforementioned unconventional mode and excited in an optimized near-field, phased-array fashion) can potentially provide 1) homogenous whole-slice (demonstrated in three axial, sagittal, and coronal slices) and 2) 3D localized (demonstrated in the heart) excitations. As RF power was not considered as a part of the optimization in several cases, the significant improvements achieved by whole-slice RF excitation came at the cost of considerable increases in RF power requirements. Copyright (c) 2007 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hao; Zhu, Lili; Bai, Shuming
2014-04-07
We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly inmore » the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.« less
Construction on Practical Talents Training Mode in Environmental Monitoring Curriculum
ERIC Educational Resources Information Center
Wang, Jing-Ping; Wang, Xin-Hong
2017-01-01
Environmental Monitoring is a basic and comprehensive course for students majoring in environmental sciences and engineering. Based on the characteristics of this course, a new teaching mode in application of practical talents training in Environmental Monitoring Curriculum teaching mode is proposed including the new scheme of training applied…
Tappen, Ruth M; Elkins, Deborah; Worch, Sarah; Weglinski, MaryAnn
2016-11-01
The purpose of the current study was to characterize the decision-making processes used by nursing home (NH) residents and their families when confronted with an acute change in condition and the choice of transfer to the hospital or treatment in the NH. Using cognitive task analysis, 96 residents and 75 family members from 19 NHs were asked how they would make this choice. Fifty-one residents (53%) and 61 family members (81%) used a deliberative mode characterized by seeking information and weighing risks and benefits. Ten residents (10%) and five family members (7%) used a predominantly emotion-based mode characterized by references to feelings and prior experiences in these facilities. Thirty-six residents (38%) and nine family members (12%) delegated the decision to a family member or provider. Age and resident/family status were associated with mode used; transfer choice, gender, religion, education, and ethnic group were not. Although classic theories of information processing posit two modes of decision making, deliberative and affective, the current data suggest a third mode, that of delegating the decision to trusted others, particularly family members and providers. [Res Gerontol Nurs. 2016; 9(6):288-299.]. Copyright 2016, SLACK Incorporated.
Ayal, Shahar; Rusou, Zohar; Zakay, Dan; Hochman, Guy
2015-01-01
A framework is presented to better characterize the role of individual differences in information processing style and their interplay with contextual factors in determining decision making quality. In Experiment 1, we show that individual differences in information processing style are flexible and can be modified by situational factors. Specifically, a situational manipulation that induced an analytical mode of thought improved decision quality. In Experiment 2, we show that this improvement in decision quality is highly contingent on the compatibility between the dominant thinking mode and the nature of the task. That is, encouraging an intuitive mode of thought led to better performance on an intuitive task but hampered performance on an analytical task. The reverse pattern was obtained when an analytical mode of thought was encouraged. We discuss the implications of these results for the assessment of decision making competence, and suggest practical directions to help individuals better adjust their information processing style to the situation at hand and make optimal decisions. PMID:26284011
Ayal, Shahar; Rusou, Zohar; Zakay, Dan; Hochman, Guy
2015-01-01
A framework is presented to better characterize the role of individual differences in information processing style and their interplay with contextual factors in determining decision making quality. In Experiment 1, we show that individual differences in information processing style are flexible and can be modified by situational factors. Specifically, a situational manipulation that induced an analytical mode of thought improved decision quality. In Experiment 2, we show that this improvement in decision quality is highly contingent on the compatibility between the dominant thinking mode and the nature of the task. That is, encouraging an intuitive mode of thought led to better performance on an intuitive task but hampered performance on an analytical task. The reverse pattern was obtained when an analytical mode of thought was encouraged. We discuss the implications of these results for the assessment of decision making competence, and suggest practical directions to help individuals better adjust their information processing style to the situation at hand and make optimal decisions.
A cascaded coding scheme for error control
NASA Technical Reports Server (NTRS)
Shu, L.; Kasami, T.
1985-01-01
A cascade coding scheme for error control is investigated. The scheme employs a combination of hard and soft decisions in decoding. Error performance is analyzed. If the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit-error-rate. Some example schemes are evaluated. They seem to be quite suitable for satellite down-link error control.
A cascaded coding scheme for error control
NASA Technical Reports Server (NTRS)
Kasami, T.; Lin, S.
1985-01-01
A cascaded coding scheme for error control was investigated. The scheme employs a combination of hard and soft decisions in decoding. Error performance is analyzed. If the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit-error-rate. Some example schemes are studied which seem to be quite suitable for satellite down-link error control.
A numerical scheme for nonlinear Helmholtz equations with strong nonlinear optical effects.
Xu, Zhengfu; Bao, Gang
2010-11-01
A numerical scheme is presented to solve the nonlinear Helmholtz (NLH) equation modeling second-harmonic generation (SHG) in photonic bandgap material doped with a nonlinear χ((2)) effect and the NLH equation modeling wave propagation in Kerr type gratings with a nonlinear χ((3)) effect in the one-dimensional case. Both of these nonlinear phenomena arise as a result of the combination of high electromagnetic mode density and nonlinear reaction from the medium. When the mode intensity of the incident wave is significantly strong, which makes the nonlinear effect non-negligible, numerical methods based on the linearization of the essentially nonlinear problem will become inadequate. In this work, a robust, stable numerical scheme is designed to simulate the NLH equations with strong nonlinearity.
NASA Astrophysics Data System (ADS)
Jiang, YuXiao; Guo, PengLiang; Gao, ChengYan; Wang, HaiBo; Alzahrani, Faris; Hobiny, Aatef; Deng, FuGuo
2017-12-01
We present an original self-error-rejecting photonic qubit transmission scheme for both the polarization and spatial states of photon systems transmitted over collective noise channels. In our scheme, we use simple linear-optical elements, including half-wave plates, 50:50 beam splitters, and polarization beam splitters, to convert spatial-polarization modes into different time bins. By using postselection in different time bins, the success probability of obtaining the uncorrupted states approaches 1/4 for single-photon transmission, which is not influenced by the coefficients of noisy channels. Our self-error-rejecting transmission scheme can be generalized to hyperentangled n-photon systems and is useful in practical high-capacity quantum communications with photon systems in two degrees of freedom.
A classification scheme for edge-localized modes based on their probability distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shabbir, A., E-mail: aqsa.shabbir@ugent.be; Max Planck Institute for Plasma Physics, D-85748 Garching; Hornung, G.
We present here an automated classification scheme which is particularly well suited to scenarios where the parameters have significant uncertainties or are stochastic quantities. To this end, the parameters are modeled with probability distributions in a metric space and classification is conducted using the notion of nearest neighbors. The presented framework is then applied to the classification of type I and type III edge-localized modes (ELMs) from a set of carbon-wall plasmas at JET. This provides a fast, standardized classification of ELM types which is expected to significantly reduce the effort of ELM experts in identifying ELM types. Further, themore » classification scheme is general and can be applied to various other plasma phenomena as well.« less
Neural adaptive control for vibration suppression in composite fin-tip of aircraft.
Suresh, S; Kannan, N; Sundararajan, N; Saratchandran, P
2008-06-01
In this paper, we present a neural adaptive control scheme for active vibration suppression of a composite aircraft fin tip. The mathematical model of a composite aircraft fin tip is derived using the finite element approach. The finite element model is updated experimentally to reflect the natural frequencies and mode shapes very accurately. Piezo-electric actuators and sensors are placed at optimal locations such that the vibration suppression is a maximum. Model-reference direct adaptive neural network control scheme is proposed to force the vibration level within the minimum acceptable limit. In this scheme, Gaussian neural network with linear filters is used to approximate the inverse dynamics of the system and the parameters of the neural controller are estimated using Lyapunov based update law. In order to reduce the computational burden, which is critical for real-time applications, the number of hidden neurons is also estimated in the proposed scheme. The global asymptotic stability of the overall system is ensured using the principles of Lyapunov approach. Simulation studies are carried-out using sinusoidal force functions of varying frequency. Experimental results show that the proposed neural adaptive control scheme is capable of providing significant vibration suppression in the multiple bending modes of interest. The performance of the proposed scheme is better than the H(infinity) control scheme.
Improved CDMA Performance Using Parallel Interference Cancellation
NASA Technical Reports Server (NTRS)
Simon, Marvin; Divsalar, Dariush
1995-01-01
This report considers a general parallel interference cancellation scheme that significantly reduces the degradation effect of user interference but with a lesser implementation complexity than the maximum-likelihood technique. The scheme operates on the fact that parallel processing simultaneously removes from each user the interference produced by the remaining users accessing the channel in an amount proportional to their reliability. The parallel processing can be done in multiple stages. The proposed scheme uses tentative decision devices with different optimum thresholds at the multiple stages to produce the most reliably received data for generation and cancellation of user interference. The 1-stage interference cancellation is analyzed for three types of tentative decision devices, namely, hard, null zone, and soft decision, and two types of user power distribution, namely, equal and unequal powers. Simulation results are given for a multitude of different situations, in particular, those cases for which the analysis is too complex.
Effective crisis decision-making.
Kaschner, Holger
2017-01-01
When an organisation's reputation is at stake, crisis decision-making (CDM) is challenging and prone to failure. Most CDM schemes are strong at certain aspects of the overall CDM process, but almost none are strong at all of them. This paper defines criteria for good CDM schemes, analyses common approaches and introduces an alternative, stakeholder-driven scheme. Focusing on the most important stakeholders and directing any actions to preserve the relationships with them is crucial. When doing so, the interdependencies between the stakeholders must be identified and considered. Without knowledge of the sometimes less than obvious links, wellmeaning actions can cause adverse effects, so a cross-check for the impacts of potential options is recommended before making the final decision. The paper also gives recommendations on how to implement these steps at any organisation in order to enhance the quality of CDM and thus protect the organisation's reputation.
Hollinghurst, Sandra; Emmett, Clare; Peters, Tim J; Watson, Helen; Fahey, Tom; Murphy, Deirdre J; Montgomery, Alan
2010-01-01
Maternal preferences should be considered in decisions about mode of delivery following a previous cesarean, but risks and benefits are unclear. Decision aids can help decision making, although few studies have assessed costs in conjunction with effectiveness. Economic evaluation of 2 decision aids for women with 1 previous cesarean. Cost-consequences analysis. Data sources were self-reported resource use and outcome and published national unit costs. The target population was women with 1 previous cesarean. The time horizon was 37 weeks' gestation and 6 weeks postnatal. The perspective was health care delivery system. The interventions were usual care, usual care plus an information program, and usual care plus a decision analysis program. The outcome measures were costs to the National Health Service (NHS) in the United Kingdom (UK), score on the Decisional Conflict Scale, and mode of delivery. RESULTS OF MAIN ANALYSIS: Cost of delivery represented 84% of the total cost; mode of delivery was the most important determinant of cost differences across the groups. Mean (SD) total cost per mother and baby: 2033 (677) for usual care, 2069 (738) for information program, and 2019 (741) for decision analysis program. Decision aids reduced decisional conflict. Women using the decision analysis program had fewest cesarean deliveries. Applying a cost premium to emergency cesareans over electives had little effect on group comparisons. Conclusions were unaffected. Disparity in timing of outcomes and costs, data completeness, and quality. Decision aids can reduce decisional conflict in women with a previous cesarean section when deciding on mode of delivery. The information program could be implemented at no extra cost to the NHS. The decision analysis program might reduce the rate of cesarean sections without any increase in costs.
Elenchezhiyan, M; Prakash, J
2015-09-01
In this work, state estimation schemes for non-linear hybrid dynamic systems subjected to stochastic state disturbances and random errors in measurements using interacting multiple-model (IMM) algorithms are formulated. In order to compute both discrete modes and continuous state estimates of a hybrid dynamic system either an IMM extended Kalman filter (IMM-EKF) or an IMM based derivative-free Kalman filters is proposed in this study. The efficacy of the proposed IMM based state estimation schemes is demonstrated by conducting Monte-Carlo simulation studies on the two-tank hybrid system and switched non-isothermal continuous stirred tank reactor system. Extensive simulation studies reveal that the proposed IMM based state estimation schemes are able to generate fairly accurate continuous state estimates and discrete modes. In the presence and absence of sensor bias, the simulation studies reveal that the proposed IMM unscented Kalman filter (IMM-UKF) based simultaneous state and parameter estimation scheme outperforms multiple-model UKF (MM-UKF) based simultaneous state and parameter estimation scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
The Impact of the Mode of Thought in Complex Decisions: Intuitive Decisions are Better
Usher, Marius; Russo, Zohar; Weyers, Mark; Brauner, Ran; Zakay, Dan
2011-01-01
A number of recent studies have reported that decision quality is enhanced under conditions of inattention or distraction (unconscious thought; Dijksterhuis, 2004; Dijksterhuis and Nordgren, 2006; Dijksterhuis et al., 2006). These reports have generated considerable controversy, for both experimental (problems of replication) and theoretical reasons (interpretation). Here we report the results of four experiments. The first experiment replicates the unconscious thought effect, under conditions that validate and control the subjective criterion of decision quality. The second and third experiments examine the impact of a mode of thought manipulation (without distraction) on decision quality in immediate decisions. Here we find that intuitive or affective manipulations improve decision quality compared to analytic/deliberation manipulations. The fourth experiment combines the two methods (distraction and mode of thought manipulations) and demonstrates enhanced decision quality, in a situation that attempts to preserve ecological validity. The results are interpreted within a framework that is based on two interacting subsystems of decision-making: an affective/intuition based system and an analytic/deliberation system. PMID:21716605
Field stabilization studies for a radio frequency quadrupole accelerator
NASA Astrophysics Data System (ADS)
Gaur, R.; Kumar, V.
2014-07-01
The Radio Frequency Quadrupole (RFQ) linear accelerator is an accelerator that efficiently focuses, bunches and accelerates a high intensity DC beam from an ion source, for various applications. Unlike other conventional RF linear accelerators, the electromagnetic mode used for its operation is not the lowest frequency mode supported by the structure. In a four vane type RFQ, there are several undesired electromagnetic modes having frequency close to that of the operating mode. While designing an RFQ accelerator, care must be taken to ensure that the frequencies of these nearby modes are sufficiently separated from the operating mode. If the undesired nearby modes have frequencies close to the operating mode, the electromagnetic field pattern in the presence of geometrical errors will not be stabilized to the desired field profile, and will be perturbed by the nearby modes. This will affect the beam dynamics and reduce the beam transmission. In this paper, we present a detailed study of the electromagnetic modes supported, which is followed by calculations for implementation of suitable techniques to make the desired operating mode stable against mixing with unwanted modes for an RFQ being designed for the proposed Indian Spallation Neutron Source (ISNS) project at Raja Ramanna Centre for Advanced Technology, Indore. Resonant coupling scheme, along with dipole stabilization rods has been proposed to increase the mode separation. The paper discusses the details of a generalized optimization procedure that has been used for the design of mode stabilization scheme.
Bujar, Magdalena; McAuslane, Neil; Walker, Stuart R; Salek, Sam
2017-01-01
Introduction: Although pharmaceutical companies, regulatory authorities, and health technology assessment (HTA) agencies have been increasingly using decision-making frameworks, it is not certain whether these enable better quality decision making. This could be addressed by formally evaluating the quality of decision-making process within those organizations. The aim of this literature review was to identify current techniques (tools, questionnaires, surveys, and studies) for measuring the quality of the decision-making process across the three stakeholders. Methods: Using MEDLINE, Web of Knowledge, and other Internet-based search engines, a literature review was performed to systematically identify techniques for assessing quality of decision making in medicines development, regulatory review, and HTA. A structured search was applied using key words and a secondary review was carried out. In addition, the measurement properties of each technique were assessed and compared. Ten Quality Decision-Making Practices (QDMPs) developed previously were then used as a framework for the evaluation of techniques identified in the review. Due to the variation in studies identified, meta-analysis was inappropriate. Results: This review identified 13 techniques, where 7 were developed specifically to assess decision making in medicines' development, regulatory review, or HTA; 2 examined corporate decision making, and 4 general decision making. Regarding how closely each technique conformed to the 10 QDMPs, the 13 techniques assessed a median of 6 QDMPs, with a mode of 3 QDMPs. Only 2 techniques evaluated all 10 QDMPs, namely the Organizational IQ and the Quality of Decision Making Orientation Scheme (QoDoS), of which only one technique, QoDoS could be applied to assess decision making of both individuals and organizations, and it possessed generalizability to capture issues relevant to companies as well as regulatory authorities. Conclusion: This review confirmed a general paucity of research in this area, particularly regarding the development and systematic application of techniques for evaluating quality decision making, with no consensus around a gold standard. This review has identified QoDoS as the most promising available technique for assessing decision making in the lifecycle of medicines and the next steps would be to further test its validity, sensitivity, and reliability.
Probabilistic Amplitude Shaping With Hard Decision Decoding and Staircase Codes
NASA Astrophysics Data System (ADS)
Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi; Steiner, Fabian
2018-05-01
We consider probabilistic amplitude shaping (PAS) as a means of increasing the spectral efficiency of fiber-optic communication systems. In contrast to previous works in the literature, we consider probabilistic shaping with hard decision decoding (HDD). In particular, we apply the PAS recently introduced by B\\"ocherer \\emph{et al.} to a coded modulation (CM) scheme with bit-wise HDD that uses a staircase code as the forward error correction code. We show that the CM scheme with PAS and staircase codes yields significant gains in spectral efficiency with respect to the baseline scheme using a staircase code and a standard constellation with uniformly distributed signal points. Using a single staircase code, the proposed scheme achieves performance within $0.57$--$1.44$ dB of the corresponding achievable information rate for a wide range of spectral efficiencies.
NASA Astrophysics Data System (ADS)
Lei, Ted Chih-Wei; Tseng, Fan-Shuo
2017-07-01
This paper addresses the problem of high-computational complexity decoding in traditional Wyner-Ziv video coding (WZVC). The key focus is the migration of two traditionally high-computationally complex encoder algorithms, namely motion estimation and mode decision. In order to reduce the computational burden in this process, the proposed architecture adopts the partial boundary matching algorithm and four flexible types of block mode decision at the decoder. This approach does away with the need for motion estimation and mode decision at the encoder. The experimental results show that the proposed padding block-based WZVC not only decreases decoder complexity to approximately one hundredth that of the state-of-the-art DISCOVER decoding but also outperforms DISCOVER codec by up to 3 to 4 dB.
Optimization of Antenna Current Feeding for the Alfvén Eigenmodes Active Diagnostic System of JET
NASA Astrophysics Data System (ADS)
Albarracin Manrique, Marcos A.; Ruchko, L.; Pires, C. J. A.; Galvão, R. M. O.; Elfimov, A. G.
2018-04-01
The possibility of exploring proper phasing of the feeding currents in the existing antenna of the Alfvén Eigenmodes Active Diagnostic system of JET, to excite pure toroidal spectra of Toroidal Alfvén Eigenmodes, is numerically investigated. Special attention is given to the actual perturbed fields excited in the plasma, which are calculated self-consistently using the antenna version of the CASTOR code. It is found that due to the close spacing of the JET antenna modules and quasi degeneracy of modes with medium to high values of the toroidal mode number n, although a proper choice of the phasing of the feeding currents of the antenna modules indeed leads to an increase of the perturbed fields of the selected mode, modes with nearby values of n are also excited with large amplitudes, so that a scheme to proper select the detected modes remains necessary. A scheme using different antenna position distribution is proposed to achieve successful optimization.
NASA Astrophysics Data System (ADS)
Asghar, Haroon; McInerney, John G.
2017-09-01
We demonstrate an asymmetric dual-loop feedback scheme to suppress external cavity side-modes induced in self-mode-locked quantum-dash lasers with conventional single and dual-loop feedback. In this letter, we achieved optimal suppression of spurious tones by optimizing the length of second delay time. We observed that asymmetric dual-loop feedback, with large (~8x) disparity in cavity lengths, eliminates all external-cavity side-modes and produces flat RF spectra close to the main peak with low timing jitter compared to single-loop feedback. Significant reduction in RF linewidth and reduced timing jitter was also observed as a function of increased second feedback delay time. The experimental results based on this feedback configuration validate predictions of recently published numerical simulations. This interesting asymmetric dual-loop feedback scheme provides simplest, efficient and cost effective stabilization of side-band free optoelectronic oscillators based on mode-locked lasers.
Modal split model considering carpool mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyles, R.W.
1979-03-01
Modal split remains a primary concern of transportation planners as the state-of-the art has developed from diversion curves to behavioral models. The approach taken here is to formulate the mode-choice decision for the work trip as a linear combination of real and perceived characteristics of the modes considered. The logit formulation is used with three modes being considered: two automobile modes (drive-alone and carpool) and a public transit mode (bus). The final model provides insight into which factors are important in travel decisions among these three modes and the importance of examining traveler's perceptions of the differences among modes relativemore » to actual measurable differences.« less
A novel approach for clock recovery without pattern effect from degraded signal
NASA Astrophysics Data System (ADS)
Wang, Zhaoxin; Wang, Tong; Lou, Caiyun; Huo, Li; Gao, Yizhi
2003-04-01
A novel clock recovery scheme using two-ring injection mode-locked fiber ring laser based on all 10 GHz bandwidth components was demonstrated. With this scheme, the clock with low timing jitter was obtained from a degraded 10 Gb/s optical data stream. Optical clock recovery was also achieved from a degraded 20 Gb/s optical data train when the clock division technique in the opto-electronic oscillator (OEO) and the rational harmonic mode-locking technique in the fiber ring laser were applied. No pattern effect was observed in the experiments.
Excitation of Higher Order Modes of Cylindrical Dielectric Resonator Antenna using Dual-slot feed
NASA Astrophysics Data System (ADS)
Ojha, A. K.; Praveen Kumar, A. V.
2018-03-01
Excitation of the higher order modes (HOM) of a cylindrical dielectric resonator antenna(DRA) of high relative permittivity, using dual feed scheme is investigated. The feed scheme uses a pair of narrow slots and is chosen on the basis of the field distribution of the desired DRA modes. Numerical studies using ANSYS HFSS show that the dual-feed excited a combination of two HOMs, which are identified as HEM21δ and TM01δ. The mixed-up nature is further verified through studying the radiation pattern of the DRA which shows azimuthal asymmetry and low gain. It is suggested that if one of the HOM is suppressed, better antenna performance can be achieved.
2-kW single-mode fiber laser employing bidirectional-pump scheme
NASA Astrophysics Data System (ADS)
Zhang, Fan; Zheng, Wenyou; Shi, Pengyang; Zhang, Xinhai
2018-01-01
2kW single-mode fiber laser with two cascade home-made cladding light strippers (CLSs) by employing bidirectionalpump scheme has been demonstrated. 2.009 kW signal power is obtained when pump power is 2.63 kW and the slope efficiency is 76.6%. Raman Stokes light is less than -47 dB at 2.009 kW even with a 10-m delivery fiber with core/inner cladding diameter of 20/400um. The beam quality M2<=1.2 and the spectral FWHM bandwidth is 4.34nm. There is no transverse mode instability and the output power stability of +/-0.14% is achieved by special thermal management for a more uniform temperature distribution on the Yb-doped gain fiber.
Scheme for quantum state manipulation in coupled cavities
NASA Astrophysics Data System (ADS)
Lin, Jin-Zhong
By controlling the parameters of the system, the effective interaction between different atoms is achieved in different cavities. Based on the interaction, scheme to generate three-atom Greenberger-Horne-Zeilinger (GHZ) is proposed in coupled cavities. Spontaneous emission of excited states and decay of cavity modes can be suppressed efficiently. In addition, the scheme is robust against the variation of hopping rate between cavities.
Classification of topological phonons in linear mechanical metamaterials
Süsstrunk, Roman
2016-01-01
Topological phononic crystals, alike their electronic counterparts, are characterized by a bulk–edge correspondence where the interior of a material dictates the existence of stable surface or boundary modes. In the mechanical setup, such surface modes can be used for various applications such as wave guiding, vibration isolation, or the design of static properties such as stable floppy modes where parts of a system move freely. Here, we provide a classification scheme of topological phonons based on local symmetries. We import and adapt the classification of noninteracting electron systems and embed it into the mechanical setup. Moreover, we provide an extensive set of examples that illustrate our scheme and can be used to generate models in unexplored symmetry classes. Our work unifies the vast recent literature on topological phonons and paves the way to future applications of topological surface modes in mechanical metamaterials. PMID:27482105
Hao, Li-Ying; Park, Ju H; Ye, Dan
2017-09-01
In this paper, a new robust fault-tolerant compensation control method for uncertain linear systems over networks is proposed, where only quantized signals are assumed to be available. This approach is based on the integral sliding mode (ISM) method where two kinds of integral sliding surfaces are constructed. One is the continuous-state-dependent surface with the aim of sliding mode stability analysis and the other is the quantization-state-dependent surface, which is used for ISM controller design. A scheme that combines the adaptive ISM controller and quantization parameter adjustment strategy is then proposed. Through utilizing H ∞ control analytical technique, once the system is in the sliding mode, the nature of performing disturbance attenuation and fault tolerance from the initial time can be found without requiring any fault information. Finally, the effectiveness of our proposed ISM control fault-tolerant schemes against quantization errors is demonstrated in the simulation.
Selection of lasing direction in single mode semiconductor square ring cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jin-Woong; Kim, Kyoung-Youm; Moon, Hee-Jong
We propose and demonstrate a selection scheme of lasing direction by imposing a loss imbalance structure into the single mode square ring cavity. The control of the traveling direction is realized by introducing a taper-step section in one of the straight waveguides of the square ring cavity. It was shown by semi-analytic calculation that the taper-step section in the cavity provides effective loss imbalance between two travelling directions as the round trip repeats. Various kinds of square cavities were fabricated using InGaAsP/InGaAs multiple quantum well semiconductor materials in order to test the direction selectivity while maintaining the single mode. Wemore » also measured the pump power dependent lasing spectra to investigate the maintenance property of the lasing direction. The experimental results demonstrated that the proposed scheme is an efficient means for a unidirectional lasing in a single mode laser.« less
Diagnostic classification scheme in Iranian breast cancer patients using a decision tree.
Malehi, Amal Saki
2014-01-01
The objective of this study was to determine a diagnostic classification scheme using a decision tree based model. The study was conducted as a retrospective case-control study in Imam Khomeini hospital in Tehran during 2001 to 2009. Data, including demographic and clinical-pathological characteristics, were uniformly collected from 624 females, 312 of them were referred with positive diagnosis of breast cancer (cases) and 312 healthy women (controls). The decision tree was implemented to develop a diagnostic classification scheme using CART 6.0 Software. The AUC (area under curve), was measured as the overall performance of diagnostic classification of the decision tree. Five variables as main risk factors of breast cancer and six subgroups as high risk were identified. The results indicated that increasing age, low age at menarche, single and divorced statues, irregular menarche pattern and family history of breast cancer are the important diagnostic factors in Iranian breast cancer patients. The sensitivity and specificity of the analysis were 66% and 86.9% respectively. The high AUC (0.82) also showed an excellent classification and diagnostic performance of the model. Decision tree based model appears to be suitable for identifying risk factors and high or low risk subgroups. It can also assists clinicians in making a decision, since it can identify underlying prognostic relationships and understanding the model is very explicit.
Interference of Multi-Mode Gaussian States and "non Appearance" of Quantum Correlations
NASA Astrophysics Data System (ADS)
Olivares, Stefano
2012-01-01
We theoretically investigate bilinear, mode-mixing interactions involving two modes of uncorrelated multi-mode Gaussian states. In particular, we introduce the notion of "locally the same states" (LSS) and prove that two uncorrelated LSS modes are invariant under the mode mixing, i.e. the interaction does not lead to the birth of correlations between the outgoing modes. We also study the interference of orthogonally polarized Gaussian states by means of an interferometric scheme based on a beam splitter, rotators of polarization and polarization filters.
Multi-class Mode of Action Classification of Toxic Compounds Using Logic Based Kernel Methods.
Lodhi, Huma; Muggleton, Stephen; Sternberg, Mike J E
2010-09-17
Toxicity prediction is essential for drug design and development of effective therapeutics. In this paper we present an in silico strategy, to identify the mode of action of toxic compounds, that is based on the use of a novel logic based kernel method. The technique uses support vector machines in conjunction with the kernels constructed from first order rules induced by an Inductive Logic Programming system. It constructs multi-class models by using a divide and conquer reduction strategy that splits multi-classes into binary groups and solves each individual problem recursively hence generating an underlying decision list structure. In order to evaluate the effectiveness of the approach for chemoinformatics problems like predictive toxicology, we apply it to toxicity classification in aquatic systems. The method is used to identify and classify 442 compounds with respect to the mode of action. The experimental results show that the technique successfully classifies toxic compounds and can be useful in assessing environmental risks. Experimental comparison of the performance of the proposed multi-class scheme with the standard multi-class Inductive Logic Programming algorithm and multi-class Support Vector Machine yields statistically significant results and demonstrates the potential power and benefits of the approach in identifying compounds of various toxic mechanisms. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pricing decisions from experience: the roles of information-acquisition and response modes.
Golan, Hagai; Ert, Eyal
2015-03-01
While pricing decisions that are based on experience are quite common, e.g., setting a selling price for a used car, this type of decision has been surprisingly overlooked in psychology and decision research. Previous studies have focused on either choice decisions from experience, or pricing decisions from description. Those studies revealed that pricing involves cognitive mechanisms other than choice, while experience-based decisions involve mechanisms that differ from description-based ones. Thus, the mutual effect of pricing and experience on decision-making remains unclear. To test this effect, we experimentally compared real-money pricing decisions from experience with those from description, and with choices from experience. The results show that the mode of acquiring information affects pricing: the tendency to underprice high-probability prospects and overprice low-probability ones is diminished when pricing is based on experience rather than description. The findings further reveal attenuation of the tendency to underweight rare events, which underlies choices from experience, in pricing decisions from experience. The difference occurs because the response mode affects the search effort and decision strategy in decisions from experience. Copyright © 2014 Elsevier B.V. All rights reserved.
Near-Space TOPSAR Large-Scene Full-Aperture Imaging Scheme Based on Two-Step Processing
Zhang, Qianghui; Wu, Junjie; Li, Wenchao; Huang, Yulin; Yang, Jianyu; Yang, Haiguang
2016-01-01
Free of the constraints of orbit mechanisms, weather conditions and minimum antenna area, synthetic aperture radar (SAR) equipped on near-space platform is more suitable for sustained large-scene imaging compared with the spaceborne and airborne counterparts. Terrain observation by progressive scans (TOPS), which is a novel wide-swath imaging mode and allows the beam of SAR to scan along the azimuth, can reduce the time of echo acquisition for large scene. Thus, near-space TOPS-mode SAR (NS-TOPSAR) provides a new opportunity for sustained large-scene imaging. An efficient full-aperture imaging scheme for NS-TOPSAR is proposed in this paper. In this scheme, firstly, two-step processing (TSP) is adopted to eliminate the Doppler aliasing of the echo. Then, the data is focused in two-dimensional frequency domain (FD) based on Stolt interpolation. Finally, a modified TSP (MTSP) is performed to remove the azimuth aliasing. Simulations are presented to demonstrate the validity of the proposed imaging scheme for near-space large-scene imaging application. PMID:27472341
Design and evaluation of nonverbal sound-based input for those with motor handicapped.
Punyabukkana, Proadpran; Chanjaradwichai, Supadaech; Suchato, Atiwong
2013-03-01
Most personal computing interfaces rely on the users' ability to use their hand and arm movements to interact with on-screen graphical widgets via mainstream devices, including keyboards and mice. Without proper assistive devices, this style of input poses difficulties for motor-handicapped users. We propose a sound-based input scheme enabling users to operate Windows' Graphical User Interface by producing hums and fricatives through regular microphones. Hierarchically arranged menus are utilized so that only minimal numbers of different actions are required at a time. The proposed scheme was found to be accurate and capable of responding promptly compared to other sound-based schemes. Being able to select from multiple item-selecting modes helps reducing the average time duration needed for completing tasks in the test scenarios almost by half the time needed when the tasks were performed solely through cursor movements. Still, improvements on facilitating users to select the most appropriate modes for desired tasks should improve the overall usability of the proposed scheme.
Lai, Po-Yen; Chang, Chun-Lin; Huang, Sheng-Lung; Chen, Shih-Hung
2018-05-01
The multipass scheme for a diode-seeded fiber master oscillator power amplifier with a nanojoule-to-millijoule output energy level at a repetition rate of <100 kHz is numerically analyzed for comparison to an experimental benchmark. For a 6/125 single-mode preamplifier with a small input energy (<1 nJ), there is a significant improvement in the output energy from 0.7% to 80% and 95% of the maximum extractable energy using the double-pass and four-pass schemes, respectively. For a 30/250 large-mode-area power amplifier using the double-pass and forward pumping scheme, the required input energy is decreased from 100 μJ to 18 μJ for millijoule energy extraction with accompanying Stokes waves of less than 10% of the total energy. The system based on the full master oscillator power amplifier configuration with an output energy exceeding millijoule level can be optimally simplified to two stages for commercialization.
Improved optical efficiency of bulk laser amplifiers with femtosecond written waveguides
NASA Astrophysics Data System (ADS)
Bukharin, Mikhail A.; Lyashedko, Andrey; Skryabin, Nikolay N.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.
2016-04-01
In the paper we proposed improved technique of three-dimensional waveguides writing with direct femtosecond laser inscription technology. The technique allows, for the first time of our knowledge, production of waveguides with mode field diameter larger than 200 μm. This result broadens field of application of femtosecond writing technology into bulk laser schemes and creates an opportunity to develop novel amplifiers with increased efficiency. We proposed a novel architecture of laser amplifier that combines free-space propagation of signal beam with low divergence and propagation of pump irradiation inside femtosecond written waveguide with large mode field diameter due to total internal reflection effect. Such scheme provides constant tight confinement of pump irradiation over the full length of active laser element (3-10 cm). The novel amplifier architecture was investigated numerically and experimentally in Nd:phosphate glass. Waveguides with 200 μm mode field diameter were written with high frequency femtosecond oscillator. Proposed technique of three-dimensional waveguides writing based on decreasing and compensation of spherical aberration effect due to writing in heat cumulative regime and dynamic pulse energy adjustment at different depths of writing. It was shown, that written waveguides could increase optical efficiency of amplifier up to 4 times compared with corresponding usual free-space schemes. Novelty of the results consists in technique of femtosecond writing of waveguides with large mode field diameter. Actuality of the results consists in originally proposed architecture allows to improve up to 4 times optical efficiency of conventional bulk laser schemes and especially ultrafast pulse laser amplifiers.
Biological competition: Decision rules, pattern formation, and oscillations
Grossberg, Stephen
1980-01-01
Competition solves a universal problem about pattern processing by cellular systems. Competition allows cells to automatically retune their sensitivity to avoid noise and saturation effects. All competitive systems induce decision schemes that permit them to be classified. Systems are identified that achieve global pattern formation, or decision-making, no matter how their parameters are chosen. Oscillations can occur due to contradictions in a system's decision scheme. The pattern formation and oscillation results are extreme examples of a complementarity principle that seems to hold for competitive systems. Nonlinear competitive systems can sometimes appear, to a macroscopic observer, to have linear and cooperative properties, although the two types of systems are not equivalent. This observation is relevant to theories about the evolutionary transition from competitive to cooperative behavior. PMID:16592807
Learners' choices and beliefs about self-testing.
Kornell, Nate; Son, Lisa K
2009-07-01
Students have to make scores of practical decisions when they study. We investigated the effectiveness of, and beliefs underlying, one such practical decision: the decision to test oneself while studying. Using a flashcards-like procedure, participants studied lists of word pairs. On the second of two study trials, participants either saw the entire pair again (pair mode) or saw the cue and attempted to generate the target (test mode). Participants were asked either to rate the effectiveness of each study mode (Experiment 1) or to choose between the two modes (Experiment 2). The results demonstrated a mismatch between metacognitive beliefs and study choices: Participants (incorrectly) judged that the pair mode resulted in the most learning, but chose the test mode most frequently. A post-experimental questionnaire suggested that self-testing was motivated by a desire to diagnose learning rather than a desire to improve learning.
Das, Ashok Kumar
2015-03-01
An integrated EPR (Electronic Patient Record) information system of all the patients provides the medical institutions and the academia with most of the patients' information in details for them to make corrective decisions and clinical decisions in order to maintain and analyze patients' health. In such system, the illegal access must be restricted and the information from theft during transmission over the insecure Internet must be prevented. Lee et al. proposed an efficient password-based remote user authentication scheme using smart card for the integrated EPR information system. Their scheme is very efficient due to usage of one-way hash function and bitwise exclusive-or (XOR) operations. However, in this paper, we show that though their scheme is very efficient, their scheme has three security weaknesses such as (1) it has design flaws in password change phase, (2) it fails to protect privileged insider attack and (3) it lacks the formal security verification. We also find that another recently proposed Wen's scheme has the same security drawbacks as in Lee at al.'s scheme. In order to remedy these security weaknesses found in Lee et al.'s scheme and Wen's scheme, we propose a secure and efficient password-based remote user authentication scheme using smart cards for the integrated EPR information system. We show that our scheme is also efficient as compared to Lee et al.'s scheme and Wen's scheme as our scheme only uses one-way hash function and bitwise exclusive-or (XOR) operations. Through the security analysis, we show that our scheme is secure against possible known attacks. Furthermore, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool and show that our scheme is secure against passive and active attacks.
Whispering gallery mode lithium niobate microresonators for photonics applications
NASA Astrophysics Data System (ADS)
Maleki, Lute; Savchenkov, Anatoliy A.; Ilchenko, Vladimir S.; Matsko, Andrey B.
2003-07-01
We review various photonics applications of whispering gallery mode (WGM) dielectric resonators and focus on the capability of generating trains of short optical pulses using WGM lithium niobate cavities. We introduce schemes of optical frequency comb generators, actively mode-locked lasers, and coupled opto-electronic oscillators where WGM cavities are utilized for the light amplification and modulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Meng-Zheng; School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000; Ye, Liu, E-mail: yeliu@ahu.edu.cn
An efficient scheme is proposed to implement phase-covariant quantum cloning by using a superconducting transmon qubit coupled to a microwave cavity resonator in the strong dispersive limit of circuit quantum electrodynamics (QED). By solving the master equation numerically, we plot the Wigner function and Poisson distribution of the cavity mode after each operation in the cloning transformation sequence according to two logic circuits proposed. The visualizations of the quasi-probability distribution in phase-space for the cavity mode and the occupation probability distribution in the Fock basis enable us to penetrate the evolution process of cavity mode during the phase-covariant cloning (PCC)more » transformation. With the help of numerical simulation method, we find out that the present cloning machine is not the isotropic model because its output fidelity depends on the polar angle and the azimuthal angle of the initial input state on the Bloch sphere. The fidelity for the actual output clone of the present scheme is slightly smaller than one in the theoretical case. The simulation results are consistent with the theoretical ones. This further corroborates our scheme based on circuit QED can implement efficiently PCC transformation.« less
Lee, Ji Min; Park, Sung Hwan; Kim, Jong Shik
2013-01-01
A robust control scheme is proposed for the position control of the electrohydrostatic actuator (EHA) when considering hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. To reduce overshoot due to a saturation of electric motor and to realize robustness against load disturbance and lumped system uncertainties such as varying parameters and modeling error, this paper proposes an adaptive antiwindup PID sliding mode scheme as a robust position controller for the EHA system. An optimal PID controller and an optimal anti-windup PID controller are also designed to compare control performance. An EHA prototype is developed, carrying out system modeling and parameter identification in designing the position controller. The simply identified linear model serves as the basis for the design of the position controllers, while the robustness of the control systems is compared by experiments. The adaptive anti-windup PID sliding mode controller has been found to have the desired performance and become robust against hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. PMID:23983640
Dictionary-learning-based reconstruction method for electron tomography.
Liu, Baodong; Yu, Hengyong; Verbridge, Scott S; Sun, Lizhi; Wang, Ge
2014-01-01
Electron tomography usually suffers from so-called “missing wedge” artifacts caused by limited tilt angle range. An equally sloped tomography (EST) acquisition scheme (which should be called the linogram sampling scheme) was recently applied to achieve 2.4-angstrom resolution. On the other hand, a compressive sensing inspired reconstruction algorithm, known as adaptive dictionary based statistical iterative reconstruction (ADSIR), has been reported for X-ray computed tomography. In this paper, we evaluate the EST, ADSIR, and an ordered-subset simultaneous algebraic reconstruction technique (OS-SART), and compare the ES and equally angled (EA) data acquisition modes. Our results show that OS-SART is comparable to EST, and the ADSIR outperforms EST and OS-SART. Furthermore, the equally sloped projection data acquisition mode has no advantage over the conventional equally angled mode in this context.
NASA Astrophysics Data System (ADS)
Hirai, T.; Bekris, N.; Coad, J. P.; Grisolia, C.; Linke, J.; Maier, H.; Matthews, G. F.; Philipps, V.; Wessel, E.
2009-07-01
Vacuum plasma spray tungsten (VPS-W) coating created on a carbon fibre reinforced composite (CFC) was tested under two thermal load schemes in the electron beam facility to examine the operation limits and failure modes. In cyclic ELM-like short transient thermal loads, the VPS-W coating was destroyed sub-layer by sub-layer at 0.33 GW/m 2 for 1 ms pulse duration. At longer single pulses, simulating steady-state thermal loads, the coating was destroyed at surface temperatures above 2700 °C by melting of the rhenium containing multilayer at the interface between VPS-W and CFC. The operation limits and failure modes of the VPS-W coating in the thermal load schemes are discussed in detail.
Chen, Gang; Song, Yongduan; Guan, Yanfeng
2018-03-01
This brief investigates the finite-time consensus tracking control problem for networked uncertain mechanical systems on digraphs. A new terminal sliding-mode-based cooperative control scheme is developed to guarantee that the tracking errors converge to an arbitrarily small bound around zero in finite time. All the networked systems can have different dynamics and all the dynamics are unknown. A neural network is used at each node to approximate the local unknown dynamics. The control schemes are implemented in a fully distributed manner. The proposed control method eliminates some limitations in the existing terminal sliding-mode-based consensus control methods and extends the existing analysis methods to the case of directed graphs. Simulation results on networked robot manipulators are provided to show the effectiveness of the proposed control algorithms.
Scalar self-force on eccentric geodesics in Schwarzschild spacetime: A time-domain computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, Roland
2007-06-15
We calculate the self-force acting on a particle with scalar charge moving on a generic geodesic around a Schwarzschild black hole. This calculation requires an accurate computation of the retarded scalar field produced by the moving charge; this is done numerically with the help of a fourth-order convergent finite-difference scheme formulated in the time domain. The calculation also requires a regularization procedure, because the retarded field is singular on the particle's world line; this is handled mode-by-mode via the mode-sum regularization scheme first introduced by Barack and Ori. This paper presents the numerical method, various numerical tests, and a samplemore » of results for mildly eccentric orbits as well as ''zoom-whirl'' orbits.« less
Birch, G F; Gunns, T J; Chapman, D; Harrison, D
2016-05-01
As coastal populations increase, considerable pressures are exerted on estuarine environments. Recently, there has been a trend towards the development and use of estuarine assessment schemes as a decision support tool in the management of these environments. These schemes offer a method by which complex environmental data is converted into a readily understandable and communicable format for informed decision making and effective distribution of limited management resources. Reliability and effectiveness of these schemes are often limited due to a complex assessment framework, poor data management and use of ineffective environmental indicators. The current scheme aims to improve reliability in the reporting of estuarine condition by including a concise assessment framework, employing high-value indicators and, in a unique approach, employing fuzzy logic in indicator evaluation. Using Sydney estuary as a case study, each of the 15 sub-catchment/sub-estuary systems were assessed using the current scheme. Results identified that poor sediment quality was a significant issue in Blackwattle/Rozelle Bay, Iron Cove and Hen and Chicken Bay while poor water quality was of particular concern in Duck River, Homebush Bay and the Parramatta River. Overall results of the assessment scheme were used to prioritise the management of each sub-catchment/sub-estuary assessed with Blackwattle/Rozelle Bay, Homebush Bay, Iron Cove and Duck River considered to be in need of a high priority management response. A report card format, using letter grades, was employed to convey the results of the assessment in a readily understood manner to estuarine managers and members of the public. Letter grades also provide benchmarking and performance monitoring ability, allowing estuarine managers to set improvement targets and assesses the effectiveness of management strategies. The current assessment scheme provides an effective, integrated and consistent assessment of estuarine health and provides an effective decision support tool to maximise the efficient distribution of limited management resources.
Ocean Variability Effects on Underwater Acoustic Communications
2011-09-01
schemes for accessing wide frequency bands. Compared with OFDM schemes, the multiband MIMO transmission combined with time reversal processing...systems, or multiple- input/multiple-output ( MIMO ) systems, decision feedback equalization and interference cancellation schemes have been integrated...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 MIMO receiver also iterates channel estimation and symbol demodulation with
Optical communications beyond orbital angular momentum
NASA Astrophysics Data System (ADS)
Rosales-Guzmán, Carmelo; Trichili, Abderrahmen; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew
2016-09-01
Current optical communication technologies are predicted to face a bandwidth capacity limit in the near future. The nature of the limitation is fundamental rather than technological and is set by nonlinearities in optical fibers. One solution, suggested over 30 years ago, comprises the use of spatial modes of light as information carriers. Along this direction, light beams endowed with orbital angular momentum (OAM) have been demonstrated as potential information carriers in both, free space and fibres. However, recent studies suggest that purely OAM modes does not increase the bandwidth of optical communication systems. In fact, in all work to date, only the azimuthal component of transverse spatial modes has been used. Crucially, all transverse spatial modes require two degrees of freedom to be described; in the context of Laguerre-Gaussian (LGp`) beams these are azimuthal (l) and radial (p), the former responsible for OAM. Here, we demonstrate a technique where both degrees of freedom of LG modes are used as information carrier over free space. We transfer images encoded using 100 spatial modes in three wavelengths as our basis, and employ a spatial demultiplexing scheme that detects all 100 modes simultaneously. Our scheme is a hybrid of MIMO and SMM, and serves as a proof-of-principle demonstration. The cross-talk between the modes is small and independent of whether OAM modes are used or not.
Scalable implementation of boson sampling with trapped ions.
Shen, C; Zhang, Z; Duan, L-M
2014-02-07
Boson sampling solves a classically intractable problem by sampling from a probability distribution given by matrix permanents. We propose a scalable implementation of boson sampling using local transverse phonon modes of trapped ions to encode the bosons. The proposed scheme allows deterministic preparation and high-efficiency readout of the bosons in the Fock states and universal mode mixing. With the state-of-the-art trapped ion technology, it is feasible to realize boson sampling with tens of bosons by this scheme, which would outperform the most powerful classical computers and constitute an effective disproof of the famous extended Church-Turing thesis.
NASA Astrophysics Data System (ADS)
Shen, Qian; Bai, Yanfeng; Shi, Xiaohui; Nan, Suqin; Qu, Lijie; Li, Hengxing; Fu, Xiquan
2017-07-01
The difference in imaging quality between different ghost imaging schemes is studied by using coherent-mode representation of partially coherent fields. It is shown that the difference mainly relies on the distribution changes of the decomposition coefficients of the object imaged when the light source is fixed. For a new-designed imaging scheme, we only need to give the distribution of the decomposition coefficients and compare them with that of the existing imaging system, thus one can predict imaging quality. By choosing several typical ghost imaging systems, we theoretically and experimentally verify our results.
Heisenberg-Limited Qubit Read-Out with Two-Mode Squeezed Light.
Didier, Nicolas; Kamal, Archana; Oliver, William D; Blais, Alexandre; Clerk, Aashish A
2015-08-28
We show how to use two-mode squeezed light to exponentially enhance cavity-based dispersive qubit measurement. Our scheme enables true Heisenberg-limited scaling of the measurement, and crucially, it is not restricted to small dispersive couplings or unrealistically long measurement times. It involves coupling a qubit dispersively to two cavities and making use of a symmetry in the dynamics of joint cavity quadratures (a so-called quantum-mechanics-free subsystem). We discuss the basic scaling of the scheme and its robustness against imperfections, as well as a realistic implementation in circuit quantum electrodynamics.
Bridge over troubled waters: A Synthesis Session to connect scientific and decision making sectors
Lack of access to relevant scientific data has limited decision makers from incorporating scientific information into their management and policy schemes. Yet, there is increasing interest among decision makers and scientists to integrate coastal and marine science into the polic...
NASA Astrophysics Data System (ADS)
Deng, G. Z.; Xu, J. C.; Liu, X.; Liu, X. J.; Liu, J. B.; Zhang, H.; Liu, S. C.; Chen, L.; Yan, N.; Feng, W.; Liu, H.; Xia, T. Y.; Zhang, B.; Shao, L. M.; Ming, T. F.; Xu, G. S.; Guo, H. Y.; Xu, X. Q.; Gao, X.; Wang, L.
2018-04-01
A comprehensive work of the effects of plasma current and heating schemes on divertor power footprint widths is carried out in the experimental advanced superconducting tokamak (EAST). The divertor power footprint widths, i.e., the scrape-off layer heat flux decay length λ q and the heat spreading S, are crucial physical and engineering parameters for fusion reactors. Strong inverse scaling of λ q and S with plasma current have been demonstrated for both neutral beam (NB) and lower hybrid wave (LHW) heated L-mode and H-mode plasmas at the inner divertor target. For plasmas heated by the combination of the two kinds of auxiliary heating schemes (NB and LHW), the divertor power widths tend to be larger in plasmas with higher ratio of LHW power. Comparison between experimental heat flux profiles at outer mid-plane (OMP) and divertor target for NB heated and LHW heated L-mode plasmas reveals that the magnetic topology changes induced by LHW may be the main reason to the wider divertor power widths in LHW heated discharges. The effect of heating schemes on divertor peak heat flux has also been investigated, and it is found that LHW heated discharges tend to have a lower divertor peak heat flux compared with NB heated discharges under similar input power. All these findings seem to suggest that plasmas with LHW auxiliary heating scheme are better heat exhaust scenarios for fusion reactors and should be the priorities for the design of next-step fusion reactors like China Fusion Engineering Test Reactor.
NASA Astrophysics Data System (ADS)
Ku, Seung-Hoe; Hager, R.; Chang, C. S.; Chacon, L.; Chen, G.; EPSI Team
2016-10-01
The cancelation problem has been a long-standing issue for long wavelengths modes in electromagnetic gyrokinetic PIC simulations in toroidal geometry. As an attempt of resolving this issue, we implemented a fully implicit time integration scheme in the full-f, gyrokinetic PIC code XGC1. The new scheme - based on the implicit Vlasov-Darwin PIC algorithm by G. Chen and L. Chacon - can potentially resolve cancelation problem. The time advance for the field and the particle equations is space-time-centered, with particle sub-cycling. The resulting system of equations is solved by a Picard iteration solver with fixed-point accelerator. The algorithm is implemented in the parallel velocity formalism instead of the canonical parallel momentum formalism. XGC1 specializes in simulating the tokamak edge plasma with magnetic separatrix geometry. A fully implicit scheme could be a way to accurate and efficient gyrokinetic simulations. We will test if this numerical scheme overcomes the cancelation problem, and reproduces the dispersion relation of Alfven waves and tearing modes in cylindrical geometry. Funded by US DOE FES and ASCR, and computing resources provided by OLCF through ALCC.
Top-up injection schemes for future circular lepton collider
NASA Astrophysics Data System (ADS)
Aiba, M.; Goddard, B.; Oide, K.; Papaphilippou, Y.; Saá Hernández, Á.; Shwartz, D.; White, S.; Zimmermann, F.
2018-02-01
Top-up injection is an essential ingredient for the future circular lepton collider (FCC-ee) to maximize the integrated luminosity and it determines the design performance. In ttbar operation mode, with a beam energy of 175 GeV, the design lifetime of ∼1 h is the shortest of the four anticipated operational modes, and the beam lifetime may be even shorter in actual operation. A highly robust top-up injection scheme is consequently imperative. Various top-up methods are investigated and a number of suitable schemes are considered in developing alternative designs for the injection straight section of the collider ring. For the first time, we consider multipole-kicker off-energy injection, for minimizing detector background in top-up operation, and the use of a thin wire septum in a lepton storage ring, for maximizing the luminosity.
Zhao, Bo; Li, Chenghao; Liu, Derong; Li, Yuanchun
2015-01-01
This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations.
Zhao, Bo; Li, Yuanchun
2015-01-01
This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations. PMID:26181826
Shorten, Allison; Shorten, Brett
2014-10-01
To help identify the optimal timing for provision of pregnancy decision-aids, this paper examines temporal patterns in women's preference for mode of birth after previous cesarean, prior to a decision-aid intervention. Pregnant women (n=212) with one prior cesarean responded to surveys regarding their preference for elective repeat cesarean delivery (ERCD) or trial of labor (TOL) at 12-18 weeks and again at 28 weeks gestation. Patterns of adherence or change in preference were examined. Women's preferences for birth were not set in early pregnancy. There was evidence of increasing uncertainty about preferred mode of birth during the first two trimesters of pregnancy (McNemar value=4.41, p=0.04), decrease in preference for TOL (McNemar value=3.79, p=0.05) and stability in preference for ERCD (McNemar value=0.31, p=0.58). Adherence to early pregnancy choice was associated with previous birth experience, maternal country of birth, emotional state and hospital site. Women's growing uncertainty about mode of birth prior to 28 weeks indicates potential readiness for a decision-aid earlier in pregnancy. Pregnancy decision-aids affecting mode of birth could be provided early in pregnancy to increase women's opportunity to improve knowledge, clarify personal values and reduce decision uncertainty. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Cai, Wenli; Lee, June-Goo; Fikry, Karim; Yoshida, Hiroyuki; Novelline, Robert; de Moya, Marc
2012-07-01
It is commonly believed that the size of a pneumothorax is an important determinant of treatment decision, in particular regarding whether chest tube drainage (CTD) is required. However, the volumetric quantification of pneumothoraces has not routinely been performed in clinics. In this paper, we introduced an automated computer-aided volumetry (CAV) scheme for quantification of volume of pneumothoraces in chest multi-detect CT (MDCT) images. Moreover, we investigated the impact of accurate volume of pneumothoraces in the improvement of the performance in decision-making regarding CTD in the management of traumatic pneumothoraces. For this purpose, an occurrence frequency map was calculated for quantitative analysis of the importance of each clinical parameter in the decision-making regarding CTD by a computer simulation of decision-making using a genetic algorithm (GA) and a support vector machine (SVM). A total of 14 clinical parameters, including volume of pneumothorax calculated by our CAV scheme, was collected as parameters available for decision-making. The results showed that volume was the dominant parameter in decision-making regarding CTD, with an occurrence frequency value of 1.00. The results also indicated that the inclusion of volume provided the best performance that was statistically significant compared to the other tests in which volume was excluded from the clinical parameters. This study provides the scientific evidence for the application of CAV scheme in MDCT volumetric quantification of pneumothoraces in the management of clinically stable chest trauma patients with traumatic pneumothorax. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sun, Jin; Kelbert, Anna; Egbert, G.D.
2015-01-01
Long-period global-scale electromagnetic induction studies of deep Earth conductivity are based almost exclusively on magnetovariational methods and require accurate models of external source spatial structure. We describe approaches to inverting for both the external sources and three-dimensional (3-D) conductivity variations and apply these methods to long-period (T≥1.2 days) geomagnetic observatory data. Our scheme involves three steps: (1) Observatory data from 60 years (only partly overlapping and with many large gaps) are reduced and merged into dominant spatial modes using a scheme based on frequency domain principal components. (2) Resulting modes are inverted for corresponding external source spatial structure, using a simplified conductivity model with radial variations overlain by a two-dimensional thin sheet. The source inversion is regularized using a physically based source covariance, generated through superposition of correlated tilted zonal (quasi-dipole) current loops, representing ionospheric source complexity smoothed by Earth rotation. Free parameters in the source covariance model are tuned by a leave-one-out cross-validation scheme. (3) The estimated data modes are inverted for 3-D Earth conductivity, assuming the source excitation estimated in step 2. Together, these developments constitute key components in a practical scheme for simultaneous inversion of the catalogue of historical and modern observatory data for external source spatial structure and 3-D Earth conductivity.
Yang, Xinsong; Feng, Zhiguo; Feng, Jianwen; Cao, Jinde
2017-01-01
In this paper, synchronization in an array of discrete-time neural networks (DTNNs) with time-varying delays coupled by Markov jump topologies is considered. It is assumed that the switching information can be collected by a tracker with a certain probability and transmitted from the tracker to controller precisely. Then the controller selects suitable control gains based on the received switching information to synchronize the network. This new control scheme makes full use of received information and overcomes the shortcomings of mode-dependent and mode-independent control schemes. Moreover, the proposed control method includes both the mode-dependent and mode-independent control techniques as special cases. By using linear matrix inequality (LMI) method and designing new Lyapunov functionals, delay-dependent conditions are derived to guarantee that the DTNNs with Markov jump topologies to be asymptotically synchronized. Compared with existing results on Markov systems which are obtained by separately using mode-dependent and mode-independent methods, our result has great flexibility in practical applications. Numerical simulations are finally given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multi-scale pixel-based image fusion using multivariate empirical mode decomposition.
Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P; McDonald-Maier, Klaus D
2015-05-08
A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences.
Multi-Scale Pixel-Based Image Fusion Using Multivariate Empirical Mode Decomposition
Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P.; McDonald-Maier, Klaus D.
2015-01-01
A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences. PMID:26007714
Capturing reflected cladding modes from a fiber Bragg grating with a double-clad fiber coupler.
Baiad, Mohamad Diaa; Gagné, Mathieu; Lemire-Renaud, Simon; De Montigny, Etienne; Madore, Wendy-Julie; Godbout, Nicolas; Boudoux, Caroline; Kashyap, Raman
2013-03-25
We present a novel measurement scheme using a double-clad fiber coupler (DCFC) and a fiber Bragg grating (FBG) to resolve cladding modes. Direct measurement of the optical spectra and power in the cladding modes is obtained through the use of a specially designed DCFC spliced to a highly reflective FBG written into slightly etched standard photosensitive single mode fiber to match the inner cladding diameter of the DCFC. The DCFC is made by tapering and fusing two double-clad fibers (DCF) together. The device is capable of capturing backward propagating low and high order cladding modes simply and efficiently. Also, we demonstrate the capability of such a device to measure the surrounding refractive index (SRI) with an extremely high sensitivity of 69.769 ± 0.035 μW/RIU and a resolution of 1.433 × 10(-5) ± 8 × 10(-9) RIU between 1.37 and 1.45 RIU. The device provides a large SRI operating range from 1.30 to 1.45 RIU with sufficient discrimination for all individual captured cladding modes. The proposed scheme can be adapted to many different types of bend, temperature, refractive index and other evanescent wave based sensors.
Broadband terahertz-power extracting by using electron cyclotron maser.
Pan, Shi; Du, Chao-Hai; Qi, Xiang-Bo; Liu, Pu-Kun
2017-08-04
Terahertz applications urgently require high performance and room temperature terahertz sources. The gyrotron based on the principle of electron cyclotron maser is able to generate watt-to-megawatt level terahertz radiation, and becomes an exceptional role in the frontiers of energy, security and biomedicine. However, in normal conditions, a terahertz gyrotron could generate terahertz radiation with high efficiency on a single frequency or with low efficiency in a relatively narrow tuning band. Here a frequency tuning scheme for the terahertz gyrotron utilizing sequentially switching among several whispering-gallery modes is proposed to reach high performance with broadband, coherence and high power simultaneously. Such mode-switching gyrotron has the potential of generating broadband radiation with 100-GHz-level bandwidth. Even wider bandwidth is limited by the frequency-dependent effective electrical length of the cavity. Preliminary investigation applies a pre-bunched circuit to the single-mode wide-band tuning. Then, more broadband sweeping is produced by mode switching in great-range magnetic tuning. The effect of mode competition, as well as critical engineering techniques on frequency tuning is discussed to confirm the feasibility for the case close to reality. This multi-mode-switching scheme could make gyrotron a promising device towards bridging the so-called terahertz gap.
Universal fuzzy integral sliding-mode controllers for stochastic nonlinear systems.
Gao, Qing; Liu, Lu; Feng, Gang; Wang, Yong
2014-12-01
In this paper, the universal integral sliding-mode controller problem for the general stochastic nonlinear systems modeled by Itô type stochastic differential equations is investigated. One of the main contributions is that a novel dynamic integral sliding mode control (DISMC) scheme is developed for stochastic nonlinear systems based on their stochastic T-S fuzzy approximation models. The key advantage of the proposed DISMC scheme is that two very restrictive assumptions in most existing ISMC approaches to stochastic fuzzy systems have been removed. Based on the stochastic Lyapunov theory, it is shown that the closed-loop control system trajectories are kept on the integral sliding surface almost surely since the initial time, and moreover, the stochastic stability of the sliding motion can be guaranteed in terms of linear matrix inequalities. Another main contribution is that the results of universal fuzzy integral sliding-mode controllers for two classes of stochastic nonlinear systems, along with constructive procedures to obtain the universal fuzzy integral sliding-mode controllers, are provided, respectively. Simulation results from an inverted pendulum example are presented to illustrate the advantages and effectiveness of the proposed approaches.
Cai, Wenli; Lee, June-Goo; Fikry, Karim; Yoshida, Hiroyuki; Novelline, Robert; de Moya, Marc
2013-01-01
It is commonly believed that the size of a pneumothorax is an important determinant of treatment decision, in particular regarding whether chest tube drainage (CTD) is required. However, the volumetric quantification of pneumothoraces has not routinely been performed in clinics. In this paper, we introduced an automated computer-aided volumetry (CAV) scheme for quantification of volume of pneumothoraces in chest multi-detect CT (MDCT) images. Moreover, we investigated the impact of accurate volume of pneumothoraces in the improvement of the performance in decision-making regarding CTD in the management of traumatic pneumothoraces. For this purpose, an occurrence frequency map was calculated for quantitative analysis of the importance of each clinical parameter in the decision-making regarding CTD by a computer simulation of decision-making using a genetic algorithm (GA) and a support vector machine (SVM). A total of 14 clinical parameters, including volume of pneumothorax calculated by our CAV scheme, was collected as parameters available for decision-making. The results showed that volume was the dominant parameter in decision-making regarding CTD, with an occurrence frequency value of 1.00. The results also indicated that the inclusion of volume provided the best performance that was statistically significant compared to the other tests in which volume was excluded from the clinical parameters. This study provides the scientific evidence for the application of CAV scheme in MDCT volumetric quantification of pneumothoraces in the management of clinically stable chest trauma patients with traumatic pneumothorax. PMID:22560899
NASA Astrophysics Data System (ADS)
Gou, Pengqi; Wang, Kaihui; Qin, Chaoyi; Yu, Jianjun
2017-03-01
We experimentally demonstrate a 16-ary quadrature amplitude modulation (16QAM) DFT-spread optical orthogonal frequency division multiplexing (OFDM) transmission system utilizing a cost-effective directly modulated laser (DML) and direct detection. For 20-Gbaud 16QAM-OFDM signal, with the aid of nonlinear equalization (NLE) algorithm, we respectively provide 6.2-dB and 5.2-dB receiver sensitivity improvement under the hard-decision forward-error-correction (HD-FEC) threshold of 3.8×10-3 for the back-to-back (BTB) case and after transmission over 10-km standard single mode fiber (SSMF) case, related to only adopt post-equalization scheme. To our knowledge, this is the first time to use dynamic nonlinear equalizer (NLE) based on the summation of the square of the difference between samples in one IM/DD OFDM system with DML to mitigate nonlinear distortion.
A full-duplex optical access system with hybrid 64/16/4QAM-OFDM downlink
NASA Astrophysics Data System (ADS)
He, Chao; Tan, Ze-fu; Shao, Yu-feng; Cai, Li; Pu, He-sheng; Zhu, Yun-le; Huang, Si-si; Liu, Yu
2016-09-01
A full-duplex optical passive access scheme is proposed and verified by simulation, in which hybrid 64/16/4-quadrature amplitude modulation (64/16/4QAM) orthogonal frequency division multiplexing (OFDM) optical signal is for downstream transmission and non-return-to-zero (NRZ) optical signal is for upstream transmission. In view of the transmitting and receiving process for downlink optical signal, in-phase/quadrature-phase (I/Q) modulation based on Mach-Zehnder modulator (MZM) and homodyne coherent detection technology are employed, respectively. The simulation results show that the bit error ratio ( BER) less than hardware decision forward error correction (HD-FEC) threshold is successfully obtained over transmission path with 20-km-long standard single mode fiber (SSMF) for hybrid downlink modulation OFDM optical signal. In addition, by dividing the system bandwidth into several subchannels consisting of some continuous subcarriers, it is convenient for users to select different channels depending on requirements of communication.
NASA Astrophysics Data System (ADS)
Weng, Yi; He, Xuan; Yao, Wang; Pacheco, Michelle C.; Wang, Junyi; Pan, Zhongqi
2017-07-01
In this paper, we explored the performance of space-time block-coding (STBC) assisted multiple-input multiple-output (MIMO) scheme for modal dispersion and mode-dependent loss (MDL) mitigation in spatial-division multiplexed optical communication systems, whereas the weight matrices of frequency-domain equalization (FDE) were updated heuristically using decision-directed recursive least squares (RLS) algorithm for convergence and channel estimation. The proposed STBC-RLS algorithm can achieve 43.6% enhancement on convergence rate over conventional least mean squares (LMS) for quadrature phase-shift keying (QPSK) signals with merely 16.2% increase in hardware complexity. The overall optical signal to noise ratio (OSNR) tolerance can be improved via STBC by approximately 3.1, 4.9, 7.8 dB for QPSK, 16-quadrature amplitude modulation (QAM) and 64-QAM with respective bit-error-rates (BER) and minimum-mean-square-error (MMSE).
Fischer, Peter; Fischer, Julia; Weisweiler, Silke; Frey, Dieter
2010-12-01
We investigated whether different modes of decision making (deliberate, intuitive, distracted) affect subsequent confirmatory processing of decision-consistent and inconsistent information. Participants showed higher levels of confirmatory information processing when they made a deliberate or an intuitive decision versus a decision under distraction (Studies 1 and 2). As soon as participants have a cognitive (i.e., deliberate cognitive analysis) or affective (i.e., intuitive and gut feeling) reason for their decision, the subjective confidence in the validity of their decision increases, which results in increased levels of confirmatory information processing (Study 2). In contrast, when participants are distracted during decision making, they are less certain about the validity of their decision and thus are subsequently more balanced in the processing of decision-relevant information.
Seven Measures of the Ways That Deciders Frame Their Career Decisions.
ERIC Educational Resources Information Center
Cochran, Larry
1983-01-01
Illustrates seven different measures of the ways people structure a career decision. Given sets of occupational alternatives and considerations, the career grid is a decisional balance sheet that indicates the way each occupation is judged on each consideration. It can be used to correct faulty decision schemes. (JAC)
Intellectual Production Supervision Perform based on RFID Smart Electricity Meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-03-01
This topic develops the RFID intelligent electricity meter production supervision project management system. The system is designed for energy meter production supervision in the management of the project schedule, quality and cost information management requirements in RFID intelligent power, and provide quantitative information more comprehensive, timely and accurate for supervision engineer and project manager management decisions, and to provide technical information for the product manufacturing stage file. From the angle of scheme analysis, design, implementation and test, the system development of production supervision project management system for RFID smart meter project is discussed. Focus on the development of the system, combined with the main business application and management mode at this stage, focuses on the energy meter to monitor progress information, quality information and cost based information on RFID intelligent power management function. The paper introduces the design scheme of the system, the overall client / server architecture, client oriented graphical user interface universal, complete the supervision of project management and interactive transaction information display, the server system of realizing the main program. The system is programmed with C# language and.NET operating environment, and the client and server platforms use Windows operating system, and the database server software uses Oracle. The overall platform supports mainstream information and standards and has good scalability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okabayashi, M.; Zanca, P.; Strait, E. J.
Disruptions caused by tearing modes (TMs) are considered to be one of the most critical roadblocks to achieving reliable, steady-state operation of tokamak fusion reactors. We have demonstrated a promising scheme to avoid mode locking by utilizing the electro-magnetic (EM) torque produced with 3D coils that are available in many tokamaks. In this scheme, the EM torque is delivered to the modes by a toroidal phase shift between the externally applied field and the excited TM fields, compensating for the mode momentum loss through the interaction with the resistive wall and uncorrected error fields. Fine control of torque balance ismore » provided by a feedback scheme. We have explored this approach in two widely different devices and plasma conditions: DIII-D and RFX-mod operated in tokamak mode. In DIII-D, the plasma target was high β N in a non-circular divertor tokamak. We define β N as β N = β/(I p /aB t) (%Tm/MA), where β, I p, a, B t are the total stored plasma pressure normalized by the magnetic pressure, plasma current, plasma minor radius and toroidal magnetic field at the plasma center, respectively. The RFX-mod plasma was ohmically-heated with ultra-low safety factor in a circular limiter discharge with active feedback coils outside the thick resistive shell. The DIII-D and RFX-mod experiments showed remarkable consistency with theoretical predictions of torque balance. The application to ignition-oriented devices such as the International Thermonuclear Experimental Reactor (ITER) would expand the horizon of its operational regime. Finally, the internal 3D coil set currently under consideration for edge localized mode suppression in ITER would be well suited for this purpose.« less
NASA Astrophysics Data System (ADS)
Evtushenko, Alexander S.; Faskhutdinov, Lenar M.; Kafarova, Anastasia M.; Kuznetzov, Artem A.; Minaeva, Alina Yu.; Sevruk, Nikita L.; Nureev, Ilnur I.; Vasilets, Alexander A.; Andreev, Vladimir A.; Morozov, Oleg G.; Burdin, Vladimir A.; Bourdine, Anton V.
2017-04-01
This work presents results of experimental approbation of earlier on proposed modified fiber optic stress sensor based on a few-mode effects occurring during laser-excited optical signal propagation over silica multimode optical fiber (MMF). Modification is concerned with a passage to quasi-interferometric scheme realized by two multimode Y-couplers with equalized arm lengths improved by fiber Bragg grating (FBG) written on preliminary formed precision macrostructure defects in silica multimode graded-index optical fibers and special offset launching conditions providing laser-based excitation of higher-order modes. The "arms" of quasi-interferometer are two equalized lengths of MMF Cat. OM2 with great central dip of refractive index profile and strong pulse splitting due to high differential mode delay (DMD). We tested FBGs with Bragg wavelength both 1310 nm and 1550 nm written over tapers or up-tapers preliminary formed in short pieces of MMF Cat. OM2+/OM3 and further jointed to the end of one of the arms before output Y-coupler. Researches were focused on comparison analysis of pulse responses under changing of selected excited mode mixing and power diffusion processes due to stress distributed action to sensor fiber depending. Here we considered FBGs not only as particular wavelength reflector during spectral response measurement but also as local periodic microstructure defect which strongly effects on few-mode signal components mixing process also improved by combination with macro-defect like taper or up-taper that should provide response variation. Some results pulse response measurements produced for different scheme configuration and their comparison analysis are represented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Guozhang; Xiang, Nong; Huang, Yueheng
2016-01-15
The propagation and mode conversion of lower hybrid waves in an inhomogeneous plasma are investigated by using the nonlinear δf algorithm in a two-dimensional particle-in-cell simulation code based on the gyrokinetic electron and fully kinetic ion (GeFi) scheme [Lin et al., Plasma Phys. Controlled Fusion 47, 657 (2005)]. The characteristics of the simulated waves, such as wavelength, frequency, phase, and group velocities, agree well with the linear theoretical analysis. It is shown that a significant reflection component emerges in the conversion process between the slow mode and the fast mode when the scale length of the density variation is comparablemore » to the local wavelength. The dependences of the reflection coefficient on the scale length of the density variation are compared with the results based on the linear full wave model for cold plasmas. It is indicated that the mode conversion for the waves with a frequency of 2.45 GHz (ω ∼ 3ω{sub LH}, where ω{sub LH} represents the lower hybrid resonance) and within Tokamak relevant amplitudes can be well described in the linear scheme. As the frequency decreases, the modification due to the nonlinear term becomes important. For the low-frequency waves (ω ∼ 1.3ω{sub LH}), the generations of the high harmonic modes and sidebands through nonlinear mode-mode coupling provide new power channels and thus could reduce the reflection significantly.« less
Montgomery, Alan A; Emmett, Clare L; Fahey, Tom; Jones, Claire; Ricketts, Ian; Patel, Roshni R; Peters, Tim J; Murphy, Deirdre J
2007-06-23
To determine the effects of two computer based decision aids on decisional conflict and mode of delivery among pregnant women with a previous caesarean section. Randomised trial, conducted from May 2004 to August 2006. Four maternity units in south west England, and Scotland. 742 pregnant women with one previous lower segment caesarean section and delivery expected at >or=37 weeks. Non-English speakers were excluded. Usual care: standard care given by obstetric and midwifery staff. Information programme: women navigated through descriptions and probabilities of clinical outcomes for mother and baby associated with planned vaginal birth, elective caesarean section, and emergency caesarean section. Decision analysis: mode of delivery was recommended based on utility assessments performed by the woman combined with probabilities of clinical outcomes within a concealed decision tree. Both interventions were delivered via a laptop computer after brief instructions from a researcher. Total score on decisional conflict scale, and mode of delivery. Women in the information programme (adjusted difference -6.2, 95% confidence interval -8.7 to -3.7) and the decision analysis (-4.0, -6.5 to -1.5) groups had reduced decisional conflict compared with women in the usual care group. The rate of vaginal birth was higher for women in the decision analysis group compared with the usual care group (37% v 30%, adjusted odds ratio 1.42, 0.94 to 2.14), but the rates were similar in the information programme and usual care groups. Decision aids can help women who have had a previous caesarean section to decide on mode of delivery in a subsequent pregnancy. The decision analysis approach might substantially affect national rates of caesarean section. Trial Registration Current Controlled Trials ISRCTN84367722.
Gu, Chunyi; Zhu, Xinli; Ding, Yan; Setterberg Simone; Wang, Xiaojiao; Tao, Hua; Zhang, Yu
2018-07-01
To explore nulliparous women's perceptions of decision making regarding mode of delivery under China's two-child policy. Qualitative descriptive design with in-depth semi-structured interviews. Postnatal wards at a tertiary specialized women's hospital in Shanghai, China. 21 nulliparous women 2-3 days postpartum were purposively sampled until data saturation. In-depth semi-structured interviews were conducted between October 8th, 2015 and January 31st, 2016. Two overarching descriptive categories were identified: (1) women's decision-making process: stability versus variability, and (2) factors affecting decision making: variety versus interactivity. Four key themes emerged from each category: (1) initial decision making with certainty: anticipated trial of labour, failed trial of labour, 'shy away' and compromise, anticipated caesarean delivery; (2) initial decision making with uncertainty: anticipated trial of labour, failed trial of labour, 'shy away' and compromise; (3) internal factors affecting decision making: knowledge and attitude, and childbirth self-efficacy; and (4) external factors affecting decision making: social support, and the situational environment. At the initial period of China's two-child policy, nulliparous women have perceived their decision-making process regarding mode of delivery as one with complexity and uncertainty, influenced by both internal and external factors. This may have implications for the obstetric setting to develop a well-designed decision support system for pregnant women during the entire pregnancy periods. And it is recommended that care providers should assess women's preferences for mode of delivery from early pregnancy and provide adequate perinatal support and continuity of care for them. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tunable Supermode Dielectric Resonators for Axion Dark-Matter Haloscopes
NASA Astrophysics Data System (ADS)
McAllister, Ben T.; Flower, Graeme; Tobar, Lucas E.; Tobar, Michael E.
2018-01-01
We present frequency-tuning mechanisms for dielectric resonators, which undergo "supermode" interactions as they tune. The tunable schemes are based on dielectric materials strategically placed inside traditional cylindrical resonant cavities, necessarily operating in transverse-magnetic modes for use in axion haloscopes. The first technique is based on multiple dielectric disks with radii smaller than that of the cavity. The second scheme relies on hollow dielectric cylinders similar to a Bragg resonator, but with a different location and dimension. Specifically, we engineer a significant increase in form factor for the TM030 mode utilizing a variation of a distributed Bragg reflector resonator. Additionally, we demonstrate an application of traditional distributed Bragg reflectors in TM modes which may be applied to a haloscope. Theoretical and experimental results are presented showing an increase in Q factor and tunability due to the supermode effect. The TM030 ring-resonator mode offers a between 1 and 2-order-of-magnitude improvement in axion sensitivity over current conventional cavity systems and will be employed in the forthcoming ORGAN experiment.
Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope.
Lee, Jungshin; Yun, Sung Wook; Rhim, Jaewook
2016-04-20
A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing the control scheme. In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision controller, the electromechanical modelling and signal processing must be pre-performed accurately. Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric module and charge amplifier is performed by considering the mode shape of a thin hemispherical shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low maneuverability systems. The differential control scheme is easily capable of rejecting the common mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies. In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature and rate control loop. All controllers are designed on basis of a digital PI controller. The signal processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA and DSP board with these algorithms is verified through experiments.
NASA Astrophysics Data System (ADS)
Carroll, Lewis
2014-02-01
We are developing a new dose calibrator for nuclear pharmacies that can measure radioactivity in a vial or syringe without handling it directly or removing it from its transport shield “pig”. The calibrator's detector comprises twin opposing scintillating crystals coupled to Si photodiodes and current-amplifying trans-resistance amplifiers. Such a scheme is inherently linear with respect to dose rate over a wide range of radiation intensities, but accuracy at low activity levels may be impaired, beyond the effects of meager photon statistics, by baseline fluctuation and drift inevitably present in high-gain, current-mode photodiode amplifiers. The work described here is motivated by our desire to enhance accuracy at low excitations while maintaining linearity at high excitations. Thus, we are also evaluating a novel “pulse-mode” analog signal processing scheme that employs a linear threshold discriminator to virtually eliminate baseline fluctuation and drift. We will show the results of a side-by-side comparison of current-mode versus pulse-mode signal processing schemes, including perturbing factors affecting linearity and accuracy at very low and very high excitations. Bench testing over a wide range of excitations is done using a Poisson random pulse generator plus an LED light source to simulate excitations up to ˜106 detected counts per second without the need to handle and store large amounts of radioactive material.
Zhang, Xiaoling; Huang, Kai; Zou, Rui; Liu, Yong; Yu, Yajuan
2013-01-01
The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of "low risk and high return efficiency" in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management.
Zou, Rui; Liu, Yong; Yu, Yajuan
2013-01-01
The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of “low risk and high return efficiency” in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management. PMID:24191144
Smith predictor based-sliding mode controller for integrating processes with elevated deadtime.
Camacho, Oscar; De la Cruz, Francisco
2004-04-01
An approach to control integrating processes with elevated deadtime using a Smith predictor sliding mode controller is presented. A PID sliding surface and an integrating first-order plus deadtime model have been used to synthesize the controller. Since the performance of existing controllers with a Smith predictor decrease in the presence of modeling errors, this paper presents a simple approach to combining the Smith predictor with the sliding mode concept, which is a proven, simple, and robust procedure. The proposed scheme has a set of tuning equations as a function of the characteristic parameters of the model. For implementation of our proposed approach, computer based industrial controllers that execute PID algorithms can be used. The performance and robustness of the proposed controller are compared with the Matausek-Micić scheme for linear systems using simulations.
A fast and efficient segmentation scheme for cell microscopic image.
Lebrun, G; Charrier, C; Lezoray, O; Meurie, C; Cardot, H
2007-04-27
Microscopic cellular image segmentation schemes must be efficient for reliable analysis and fast to process huge quantity of images. Recent studies have focused on improving segmentation quality. Several segmentation schemes have good quality but processing time is too expensive to deal with a great number of images per day. For segmentation schemes based on pixel classification, the classifier design is crucial since it is the one which requires most of the processing time necessary to segment an image. The main contribution of this work is focused on how to reduce the complexity of decision functions produced by support vector machines (SVM) while preserving recognition rate. Vector quantization is used in order to reduce the inherent redundancy present in huge pixel databases (i.e. images with expert pixel segmentation). Hybrid color space design is also used in order to improve data set size reduction rate and recognition rate. A new decision function quality criterion is defined to select good trade-off between recognition rate and processing time of pixel decision function. The first results of this study show that fast and efficient pixel classification with SVM is possible. Moreover posterior class pixel probability estimation is easy to compute with Platt method. Then a new segmentation scheme using probabilistic pixel classification has been developed. This one has several free parameters and an automatic selection must dealt with, but criteria for evaluate segmentation quality are not well adapted for cell segmentation, especially when comparison with expert pixel segmentation must be achieved. Another important contribution in this paper is the definition of a new quality criterion for evaluation of cell segmentation. The results presented here show that the selection of free parameters of the segmentation scheme by optimisation of the new quality cell segmentation criterion produces efficient cell segmentation.
NASA Astrophysics Data System (ADS)
Aksenov, V. L.; Tyutyunnikov, S. I.; Shalyapin, V. N.; Belyaev, A. D.; Artemiev, A. N.; Artemiev, N. A.; Kirillov, B. F.; Kovalchiuk, M. V.; Demkiv, A. A.; Knyazev, G. A.
2017-01-01
The improved X-ray optical scheme, the system of registration, and the measurement procedure of the multifunctional synchrotron radiation spectrometer in the dispersive EXAFS mode are described. The results of the spectrometer energy resolution measurements are given. The advantages and disadvantages of traditional and dispersive EXAFS spectrometers are analyzed. Examples of EXAFS spectra measured in the dispersive mode are given.
A new EEMD-based scheme for detection of insect damaged wheat kernels using impact acoustics
USDA-ARS?s Scientific Manuscript database
Internally feeding insects inside wheat kernels cause significant, but unseen economic damage to stored grain. In this paper, a new scheme based on ensemble empirical mode decomposition (EEMD) using impact acoustics is proposed for detection of insect-damaged wheat kernels, based on its capability t...
College Communicative Teaching and E-Learning: A Training Scheme
ERIC Educational Resources Information Center
Ong, Charito G.
2017-01-01
This study sought to design and try out a training scheme for college teachers on e-learning use as a classroom strategy in a communicative teaching mode. Based on needs analysis the teachers of English were reoriented so that they became equipped with the rationale, strategies and assessment techniques of e-learning alongside communicative…
A Hybrid Data Compression Scheme for Power Reduction in Wireless Sensors for IoT.
Deepu, Chacko John; Heng, Chun-Huat; Lian, Yong
2017-04-01
This paper presents a novel data compression and transmission scheme for power reduction in Internet-of-Things (IoT) enabled wireless sensors. In the proposed scheme, data is compressed with both lossy and lossless techniques, so as to enable hybrid transmission mode, support adaptive data rate selection and save power in wireless transmission. Applying the method to electrocardiogram (ECG), the data is first compressed using a lossy compression technique with a high compression ratio (CR). The residual error between the original data and the decompressed lossy data is preserved using entropy coding, enabling a lossless restoration of the original data when required. Average CR of 2.1 × and 7.8 × were achieved for lossless and lossy compression respectively with MIT/BIH database. The power reduction is demonstrated using a Bluetooth transceiver and is found to be reduced to 18% for lossy and 53% for lossless transmission respectively. Options for hybrid transmission mode, adaptive rate selection and system level power reduction make the proposed scheme attractive for IoT wireless sensors in healthcare applications.
NASA Technical Reports Server (NTRS)
Shen, C. N.; YERAZUNIS
1979-01-01
The feasibility of using range/pointing angle data such as might be obtained by a laser rangefinder for the purpose of terrain evaluation in the 10-40 meter range on which to base the guidance of an autonomous rover was investigated. The decision procedure of the rapid estimation scheme for the detection of discrete obstacles has been modified to reinforce the detection ability. With the introduction of the logarithmic scanning scheme and obstacle identification scheme, previously developed algorithms are combined to demonstrate the overall performance of the intergrated route designation system using laser rangefinder. In an attempt to cover a greater range, 30 m to 100 mm, the problem estimating gradients in the presence of positioning angle noise at middle range is investigated.
Long period gratings in multimode optical fibers: application in chemical sensing
NASA Astrophysics Data System (ADS)
Thomas Lee, S.; Dinesh Kumar, R.; Suresh Kumar, P.; Radhakrishnan, P.; Vallabhan, C. P. G.; Nampoori, V. P. N.
2003-09-01
We propose and demonstrate a new technique for evanescent wave chemical sensing by writing long period gratings in a bare multimode plastic clad silica fiber. The sensing length of the present sensor is only 10 mm, but is as sensitive as a conventional unclad evanescent wave sensor having about 100 mm sensing length. The minimum measurable concentration of the sensor reported here is 10 nmol/l and the operating range is more than 4 orders of magnitude. Moreover, the detection is carried out in two independent detection configurations viz., bright field detection scheme that detects the core-mode power and dark field detection scheme that detects the cladding mode power. The use of such a double detection scheme definitely enhances the reliability and accuracy of the results. Furthermore, the cladding of the present fiber need not be removed as done in conventional evanescent wave fiber sensors.
An upstream burst-mode equalization scheme for 40 Gb/s TWDM PON based on optimized SOA cascade
NASA Astrophysics Data System (ADS)
Sun, Xiao; Chang, Qingjiang; Gao, Zhensen; Ye, Chenhui; Xiao, Simiao; Huang, Xiaoan; Hu, Xiaofeng; Zhang, Kaibin
2016-02-01
We present a novel upstream burst-mode equalization scheme based on optimized SOA cascade for 40 Gb/s TWDMPON. The power equalizer is placed at the OLT which consists of two SOAs, two circulators, an optical NOT gate, and a variable optical attenuator. The first SOA operates in the linear region which acts as a pre-amplifier to let the second SOA operate in the saturation region. The upstream burst signals are equalized through the second SOA via nonlinear amplification. From theoretical analysis, this scheme gives sufficient dynamic range suppression up to 16.7 dB without any dynamic control or signal degradation. In addition, a total power budget extension of 9.3 dB for loud packets and 26 dB for soft packets has been achieved to allow longer transmission distance and increased splitting ratio.
NASA Technical Reports Server (NTRS)
Simon, Marvin; Valles, Esteban; Jones, Christopher
2008-01-01
This paper addresses the carrier-phase estimation problem under low SNR conditions as are typical of turbo- and LDPC-coded applications. In previous publications by the first author, closed-loop carrier synchronization schemes for error-correction coded BPSK and QPSK modulation were proposed that were based on feeding back hard data decisions at the input of the loop, the purpose being to remove the modulation prior to attempting to track the carrier phase as opposed to the more conventional decision-feedback schemes that incorporate such feedback inside the loop. In this paper, we consider an alternative approach wherein the extrinsic soft information from the iterative decoder of turbo or LDPC codes is instead used as the feedback.
Lattice design for the CEPC double ring scheme
NASA Astrophysics Data System (ADS)
Wang, Yiwei; Su, Feng; Bai, Sha; Zhang, Yuan; Bian, Tianjian; Wang, Dou; Yu, Chenghui; Gao, Jie
2018-01-01
A future Circular Electron Positron Collider (CEPC) has been proposed by China with the main goal of studying the Higgs boson. Its baseline design, chosen on the basis of its performance, is a double ring scheme; an alternative design is a partial double ring scheme which reduces the budget while maintaining an adequate performance. This paper will present the collider ring lattice design for the double ring scheme. The CEPC will also work as a W and a Z factory. For the W and Z modes, except in the RF region, compatible lattices were obtained by scaling down the magnet strength with energy.
A Critical Review of Mode of Action (MOA) Assignment Classifications for Ecotoxicology
There are various structure-based classification schemes to categorize chemicals based on mode of action (MOA) which have been applied for both eco and human health toxicology. With increasing calls to assess thousands of chemicals, some of which have little available informatio...
Bujar, Magdalena; McAuslane, Neil; Walker, Stuart R.; Salek, Sam
2017-01-01
Introduction: Although pharmaceutical companies, regulatory authorities, and health technology assessment (HTA) agencies have been increasingly using decision-making frameworks, it is not certain whether these enable better quality decision making. This could be addressed by formally evaluating the quality of decision-making process within those organizations. The aim of this literature review was to identify current techniques (tools, questionnaires, surveys, and studies) for measuring the quality of the decision-making process across the three stakeholders. Methods: Using MEDLINE, Web of Knowledge, and other Internet-based search engines, a literature review was performed to systematically identify techniques for assessing quality of decision making in medicines development, regulatory review, and HTA. A structured search was applied using key words and a secondary review was carried out. In addition, the measurement properties of each technique were assessed and compared. Ten Quality Decision-Making Practices (QDMPs) developed previously were then used as a framework for the evaluation of techniques identified in the review. Due to the variation in studies identified, meta-analysis was inappropriate. Results: This review identified 13 techniques, where 7 were developed specifically to assess decision making in medicines' development, regulatory review, or HTA; 2 examined corporate decision making, and 4 general decision making. Regarding how closely each technique conformed to the 10 QDMPs, the 13 techniques assessed a median of 6 QDMPs, with a mode of 3 QDMPs. Only 2 techniques evaluated all 10 QDMPs, namely the Organizational IQ and the Quality of Decision Making Orientation Scheme (QoDoS), of which only one technique, QoDoS could be applied to assess decision making of both individuals and organizations, and it possessed generalizability to capture issues relevant to companies as well as regulatory authorities. Conclusion: This review confirmed a general paucity of research in this area, particularly regarding the development and systematic application of techniques for evaluating quality decision making, with no consensus around a gold standard. This review has identified QoDoS as the most promising available technique for assessing decision making in the lifecycle of medicines and the next steps would be to further test its validity, sensitivity, and reliability. PMID:28443022
Geneho Kim; Donald Nute; H. Michael Rauscher; David L. Loftis
2000-01-01
A programming environment for developing complex decision support systems (DSSs) should support rapid prototyping and modular design, feature a flexible knowledge representation scheme and sound inference mechanisms, provide project management, and be domain independent. We have previously developed DSSTools (Decision Support System Tools), a reusable, domain-...
Raman-Suppressing Coupling for Optical Parametric Oscillator
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Rubiola, Enrico
2007-01-01
A Raman-scattering-suppressing input/ output coupling scheme has been devised for a whispering-gallery-mode optical resonator that is used as a four-wave-mixing device to effect an all-optical parametric oscillator. Raman scattering is undesired in such a device because (1) it is a nonlinear process that competes with the desired nonlinear four-wave conversion process involved in optical parametric oscillation and (2) as such, it reduces the power of the desired oscillation and contributes to output noise. The essence of the present input/output coupling scheme is to reduce output loading of the desired resonator modes while increasing output loading of the undesired ones.
Continuous-variable quantum computing in optical time-frequency modes using quantum memories.
Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A
2014-09-26
We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.
NASA Astrophysics Data System (ADS)
Ran, Dechao; Chen, Xiaoqian; de Ruiter, Anton; Xiao, Bing
2018-04-01
This study presents an adaptive second-order sliding control scheme to solve the attitude fault tolerant control problem of spacecraft subject to system uncertainties, external disturbances and reaction wheel faults. A novel fast terminal sliding mode is preliminarily designed to guarantee that finite-time convergence of the attitude errors can be achieved globally. Based on this novel sliding mode, an adaptive second-order observer is then designed to reconstruct the system uncertainties and the actuator faults. One feature of the proposed observer is that the design of the observer does not necessitate any priori information of the upper bounds of the system uncertainties and the actuator faults. In view of the reconstructed information supplied by the designed observer, a second-order sliding mode controller is developed to accomplish attitude maneuvers with great robustness and precise tracking accuracy. Theoretical stability analysis proves that the designed fault tolerant control scheme can achieve finite-time stability of the closed-loop system, even in the presence of reaction wheel faults and system uncertainties. Numerical simulations are also presented to demonstrate the effectiveness and superiority of the proposed control scheme over existing methodologies.
Rahman, Md Mostafizur; Fattah, Shaikh Anowarul
2017-01-01
In view of recent increase of brain computer interface (BCI) based applications, the importance of efficient classification of various mental tasks has increased prodigiously nowadays. In order to obtain effective classification, efficient feature extraction scheme is necessary, for which, in the proposed method, the interchannel relationship among electroencephalogram (EEG) data is utilized. It is expected that the correlation obtained from different combination of channels will be different for different mental tasks, which can be exploited to extract distinctive feature. The empirical mode decomposition (EMD) technique is employed on a test EEG signal obtained from a channel, which provides a number of intrinsic mode functions (IMFs), and correlation coefficient is extracted from interchannel IMF data. Simultaneously, different statistical features are also obtained from each IMF. Finally, the feature matrix is formed utilizing interchannel correlation features and intrachannel statistical features of the selected IMFs of EEG signal. Different kernels of the support vector machine (SVM) classifier are used to carry out the classification task. An EEG dataset containing ten different combinations of five different mental tasks is utilized to demonstrate the classification performance and a very high level of accuracy is achieved by the proposed scheme compared to existing methods.
Helfer, Peter; Shultz, Thomas R
2014-12-01
The widespread availability of calorie-dense food is believed to be a contributing cause of an epidemic of obesity and associated diseases throughout the world. One possible countermeasure is to empower consumers to make healthier food choices with useful nutrition labeling. An important part of this endeavor is to determine the usability of existing and proposed labeling schemes. Here, we report an experiment on how four different labeling schemes affect the speed and nutritional value of food choices. We then apply decision field theory, a leading computational model of human decision making, to simulate the experimental results. The psychology experiment shows that quantitative, single-attribute labeling schemes have greater usability than multiattribute and binary ones, and that they remain effective under moderate time pressure. The computational model simulates these psychological results and provides explanatory insights into them. This work shows how experimental psychology and computational modeling can contribute to the evaluation and improvement of nutrition-labeling schemes. © 2014 New York Academy of Sciences.
NASA Astrophysics Data System (ADS)
Elnaggar, Sameh Y.
2017-02-01
Similar to the hybridization of three atoms, three coupled resonators interact to form bonding, anti-bonding, and non-bonding modes. The non-bonding mode enables an electromagnetic induced transparency like transfer of energy. Here, the non-bonding mode, resulting from the strong electric coupling of two dielectric resonators and an enclosure, is exploited to show that it is feasible to transfer power over a distance comparable to the operating wavelength. In this scheme, the enclosure acts as a mediator. The strong coupling permits the excitation of the non-bonding mode with high purity. This approach is different from resonant inductive coupling, which works in the sub-wavelength regime. Optimal loads and the corresponding maximum efficiency are determined using two independent methods: Coupled Mode Theory and Circuit modelling. It is shown that, unlike resonant inductive coupling, the figure of merit depends on the enclosure quality and not on the load, which emphasizes the role of the enclosure as a mediator. Briefly after the input excitation is turned on, the energy in the receiver builds up via all coupled and spurious modes. As time elapses, all modes except the non-bonding cease to sustain. Due to the strong coupling between the dielectrics and the enclosure, such systems have unique properties such as high and uniform efficiency over large distances and minimal fringing fields. These properties suggest that electromagnetic induced transparency like schemes that rely on the use of dielectric resonators can be used to power autonomous systems inside an enclosure or find applications when exposure to the fields needs to be minimal. Finite Element computations are used to verify the theoretical predictions by determining the transfer efficiency, field profile, and coupling coefficients for two different systems. It is shown that the three resonators must be present for efficient power transfer; if one or more are removed, the transfer efficiency reduces significantly.
Local vibrational modes of the water dimer - Comparison of theory and experiment
NASA Astrophysics Data System (ADS)
Kalescky, R.; Zou, W.; Kraka, E.; Cremer, D.
2012-12-01
Local and normal vibrational modes of the water dimer are calculated at the CCSD(T)/CBS level of theory. The local H-bond stretching frequency is 528 cm-1 compared to a normal mode stretching frequency of just 143 cm-1. The adiabatic connection scheme between local and normal vibrational modes reveals that the lowering is due to mass coupling, a change in the anharmonicity, and coupling with the local HOH bending modes. The local mode stretching force constant is related to the strength of the H-bond whereas the normal mode stretching force constant and frequency lead to an erroneous underestimation of the H-bond strength.
NASA Astrophysics Data System (ADS)
Al Hadhrami, Tawfik; Nightingale, James M.; Wang, Qi; Grecos, Christos
2014-05-01
In emergency situations, the ability to remotely monitor unfolding events using high-quality video feeds will significantly improve the incident commander's understanding of the situation and thereby aids effective decision making. This paper presents a novel, adaptive video monitoring system for emergency situations where the normal communications network infrastructure has been severely impaired or is no longer operational. The proposed scheme, operating over a rapidly deployable wireless mesh network, supports real-time video feeds between first responders, forward operating bases and primary command and control centers. Video feeds captured on portable devices carried by first responders and by static visual sensors are encoded in H.264/SVC, the scalable extension to H.264/AVC, allowing efficient, standard-based temporal, spatial, and quality scalability of the video. A three-tier video delivery system is proposed, which balances the need to avoid overuse of mesh nodes with the operational requirements of the emergency management team. In the first tier, the video feeds are delivered at a low spatial and temporal resolution employing only the base layer of the H.264/SVC video stream. Routing in this mode is designed to employ all nodes across the entire mesh network. In the second tier, whenever operational considerations require that commanders or operators focus on a particular video feed, a `fidelity control' mechanism at the monitoring station sends control messages to the routing and scheduling agents in the mesh network, which increase the quality of the received picture using SNR scalability while conserving bandwidth by maintaining a low frame rate. In this mode, routing decisions are based on reliable packet delivery with the most reliable routes being used to deliver the base and lower enhancement layers; as fidelity is increased and more scalable layers are transmitted they will be assigned to routes in descending order of reliability. The third tier of video delivery transmits a high-quality video stream including all available scalable layers using the most reliable routes through the mesh network ensuring the highest possible video quality. The proposed scheme is implemented in a proven simulator, and the performance of the proposed system is numerically evaluated through extensive simulations. We further present an in-depth analysis of the proposed solutions and potential approaches towards supporting high-quality visual communications in such a demanding context.
Effect of feedback mode and task difficulty on quality of timing decisions in a zero-sum game.
Tikuisis, Peter; Vartanian, Oshin; Mandel, David R
2014-09-01
The objective was to investigate the interaction between the mode of performance outcome feedback and task difficulty on timing decisions (i.e., when to act). Feedback is widely acknowledged to affect task performance. However, the extent to which feedback display mode and its impact on timing decisions is moderated by task difficulty remains largely unknown. Participants repeatedly engaged a zero-sum game involving silent duels with a computerized opponent and were given visual performance feedback after each engagement. They were sequentially tested on three different levels of task difficulty (low, intermediate, and high) in counterbalanced order. Half received relatively simple "inside view" binary outcome feedback, and the other half received complex "outside view" hit rate probability feedback. The key dependent variables were response time (i.e., time taken to make a decision) and survival outcome. When task difficulty was low to moderate, participants were more likely to learn and perform better from hit rate probability feedback than binary outcome feedback. However, better performance with hit rate feedback exacted a higher cognitive cost manifested by higher decision response time. The beneficial effect of hit rate probability feedback on timing decisions is partially moderated by task difficulty. Performance feedback mode should be judiciously chosen in relation to task difficulty for optimal performance in tasks involving timing decisions.
Research on comprehensive decision-making of PV power station connecting system
NASA Astrophysics Data System (ADS)
Zhou, Erxiong; Xin, Chaoshan; Ma, Botao; Cheng, Kai
2018-04-01
In allusion to the incomplete indexes system and not making decision on the subjectivity and objectivity of PV power station connecting system, based on the combination of improved Analytic Hierarchy Process (AHP), Criteria Importance Through Intercriteria Correlation (CRITIC) as well as grey correlation degree analysis (GCDA) is comprehensively proposed to select the appropriate system connecting scheme of PV power station. Firstly, indexes of PV power station connecting system are divided the recursion order hierarchy and calculated subjective weight by the improved AHP. Then, CRITIC is adopted to determine the objective weight of each index through the comparison intensity and conflict between indexes. The last the improved GCDA is applied to screen the optimal scheme, so as to, from the subjective and objective angle, select the connecting system. Comprehensive decision of Xinjiang PV power station is conducted and reasonable analysis results are attained. The research results might provide scientific basis for investment decision.
Mode coupling at connectors in mode-division multiplexed transmission over few-mode fiber.
Vuong, Jordi; Ramantanis, Petros; Frignac, Yann; Salsi, Massimiliano; Genevaux, Philippe; Bendimerad, Djalal F; Charlet, Gabriel
2015-01-26
In mode-division multiplexed (MDM) transmission systems, mode coupling is responsible for inter-modal crosstalk. We consider the transmission of modulated signals over a few-mode fiber (FMF) having low mode coupling and large differential mode group delay in the presence of a non-ideal fiber connection responsible for extra mode coupling. In this context, we first analytically derive the coupling matrix of the multimode connector and we numerically study the dependence of the matrix coefficients as a function of the butt-joint connection characteristics. The numerical results are then validated through an experiment with a five-mode setup. Finally, through numerical simulations, we assess the impact of the connector on the signal quality investigating different receiver digital signal processing (DSP) schemes.
Irrigation water policy analysis using a business simulation game
NASA Astrophysics Data System (ADS)
Buchholz, M.; Holst, G.; Musshoff, O.
2016-10-01
Despite numerous studies on farmers' responses to changing irrigation water policies, uncertainties remain about the potential of water pricing schemes and water quotas to reduce irrigation. Thus far, policy impact analysis is predominantly based upon rational choice models that assume behavioral assumptions, such as a perfectly rational profit-maximizing decision maker. Also, econometric techniques are applied which could lack internal validity due to uncontrolled field data. Furthermore, such techniques are not capable of identifying ill-designed policies prior to their implementation. With this in mind, we apply a business simulation game for ex ante policy impact analysis of irrigation water policies at the farm level. Our approach has the potential to reveal the policy-induced behavioral change of the participants in a controlled environment. To do so, we investigate how real farmers from Germany, in an economic experiment, respond to a water pricing scheme and a water quota intending to reduce irrigation. In the business simulation game, the participants manage a "virtual" cash-crop farm for which they make crop allocation and irrigation decisions during several production periods, while facing uncertain product prices and weather conditions. The results reveal that a water quota is able to reduce mean irrigation applications, while a water pricing scheme does not have an impact, even though both policies exhibit equal income effects for the farmers. However, both policies appear to increase the variation of irrigation applications. Compared to a perfectly rational profit-maximizing decision maker, the participants apply less irrigation on average, both when irrigation is not restricted and when a water pricing scheme applies. Moreover, the participants' risk attitude affects the irrigation decisions.
2011-01-01
In the past the root rot pathogen Roesleria subterranea (Ascomycota) was generally considered as a minor parasite, a view with which we were often confronted during field work in German wine-growing regions where this ascomycete recently caused serious problems in established vineyards and at replant sites. To irrevocably demonstrate that R. subterranea is not a minor, but a primary pathogen of grapevines (and fruit trees) a pest risk analysis was carried out according to the guidelines defined by EPPO standard series PM 5, which defines the information needed, and contains standardised, detailed key questions and a decision support scheme for risk analysis. Following the provided decision scheme, it becomes apparent that R. subterranea must be considered as a serious, primary pathogen for grapevines and fruit trees that can cause massive economic losses. Based on the literature, the pathogen seems to be ubiquitous in wine growing regions in cool climates of the northern hemisphere. It is likely that because of its growth below ground, the small fruiting bodies, and ambiguous symptoms above ground, R. subterranea has been overlooked in the past and therefore, has not been considered as primary pathogen for grapevine. Available published information together with experience from field trials was implemented into a diagnostic decision scheme which will, together with the comprehensive literature provided, be the basis (a) to implement quick and efficient diagnosis of this pathogen in the field and (b) to conduct risk analysis and management in areas where R. subterranea has not established yet. PMID:22318129
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, Hany F; Lashway, Christopher R; Mohammed, Osama A
One main challenge in the practical implementation of a microgrid is the design of an adequate protection scheme in both grid connected and islanded modes. Conventional overcurrent protection schemes face selectivity and sensitivity issues during grid and microgrid faults since the fault current level is different in both cases for the same relay. Various approaches have been implemented in the past to deal with this problem, yet the most promising ones are the implementation of adaptive protection techniques abiding by the IEC 61850 communication standard. This paper presents a critical review of existing adaptive protection schemes, the technical challenges formore » the use of classical protection techniques and the need for an adaptive, smart protection system. However, the risk of communication link failures and cyber security threats still remain a challenge in implementing a reliable adaptive protection scheme. A contingency is needed where a communication issue prevents the relay from adjusting to a lower current level during islanded mode. An adaptive protection scheme is proposed that utilizes energy storage (ES) and hybrid ES (HESS) already available in the network as a mechanism to source the higher fault current. Four common grid ES and HESS are reviewed for their suitability in feeding the fault while some solutions are proposed.« less
NASA Astrophysics Data System (ADS)
Wang, Dan; Yan, Lixin; Du, YingChao; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang
2018-02-01
Premodulated comblike electron bunch trains are used in a wide range of research fields, such as for wakefield-based particle acceleration and tunable radiation sources. We propose an optimized compression scheme for bunch trains in which a traveling wave accelerator tube and a downstream drift segment are together used as a compressor. When the phase injected into the accelerator tube for the bunch train is set to ≪-10 0 ° , velocity bunching occurs in a deep overcompression mode, which reverses the phase space and maintains a velocity difference within the injected beam, thereby giving rise to a compressed comblike electron bunch train after a few-meter-long drift segment; we call this the deep overcompression scheme. The main benefits of this scheme are the relatively large phase acceptance and the uniformity of compression for the bunch train. The comblike bunch train generated via this scheme is widely tunable: For the two-bunch case, the energy and time spacings can be continuously adjusted from +1 to -1 MeV and from 13 to 3 ps, respectively, by varying the injected phase of the bunch train from -22 0 ° to -14 0 ° . Both theoretical analysis and beam dynamics simulations are presented to study the properties of the deep overcompression scheme.
Experimental circular quantum secret sharing over telecom fiber network.
Wei, Ke-Jin; Ma, Hai-Qiang; Yang, Jian-Hui
2013-07-15
We present a robust single photon circular quantum secret sharing (QSS) scheme with phase encoding over 50 km single mode fiber network using a circular QSS protocol. Our scheme can automatically provide a perfect compensation of birefringence and remain stable for a long time. A high visibility of 99.3% is obtained. Furthermore, our scheme realizes a polarization insensitive phase modulators. The visibility of this system can be maintained perpetually without any adjustment to the system every time we test the system.
Photonic sensing based on variation of propagation properties of photonic crystal fibres
NASA Astrophysics Data System (ADS)
Rothwell, John H.; Flavin, Dónal A.; MacPherson, William N.; Jones, Julian D.; Knight, Jonathan C.; Russell, Philip St. J.
2006-12-01
We report on a low-coherence interferometric scheme for the measurement of the strain and temperature dependences of group delay and dispersion in short, index-guiding, 'endlessly-single-mode' photonic crystal fibre elements in the 840 nm and 1550 nm regions. Based on the measurements, we propose two schemes for simultaneous strain and temperature measurement using a single unmodified PCF element, without a requirement for any compensating components, and we project the measurement accuracies of these schemes.
Project Delivery System Mode Decision Based on Uncertain AHP and Fuzzy Sets
NASA Astrophysics Data System (ADS)
Kaishan, Liu; Huimin, Li
2017-12-01
The project delivery system mode determines the contract pricing type, project management mode and the risk allocation among all participants. Different project delivery system modes have different characteristics and applicable scope. For the owners, the selection of the delivery mode is the key point to decide whether the project can achieve the expected benefits, it relates to the success or failure of project construction. Under the precondition of comprehensively considering the influence factors of the delivery mode, the model of project delivery system mode decision was set up on the basis of uncertain AHP and fuzzy sets, which can well consider the uncertainty and fuzziness when conducting the index evaluation and weight confirmation, so as to rapidly and effectively identify the most suitable delivery mode according to project characteristics. The effectiveness of the model has been verified via the actual case analysis in order to provide reference for the construction project delivery system mode.
Mode of Action (MOA) Assignment Classifications for Ecotoxicology: Evaluation of Available Methods
There are various structure-based classification schemes to categorize chemicals based on mode of action (MOA) which have been applied for both eco and human toxicology. With increasing calls to assess 1000s of chemicals, some of which have little available information other tha...
NASA Astrophysics Data System (ADS)
Cui, Chenxuan
When cognitive radio (CR) operates, it starts by sensing spectrum and looking for idle bandwidth. There are several methods for CR to make a decision on either the channel is occupied or idle, for example, energy detection scheme, cyclostationary detection scheme and matching filtering detection scheme [1]. Among them, the most common method is energy detection scheme because of its algorithm and implementation simplicities [2]. There are two major methods for sensing, the first one is to sense single channel slot with varying bandwidth, whereas the second one is to sense multiple channels and each with same bandwidth. After sensing periods, samples are compared with a preset detection threshold and a decision is made on either the primary user (PU) is transmitting or not. Sometimes the sensing and decision results can be erroneous, for example, false alarm error and misdetection error may occur. In order to better control error probabilities and improve CR network performance (i.e. energy efficiency), we introduce cooperative sensing; in which several CR within a certain range detect and make decisions on channel availability together. The decisions are transmitted to and analyzed by a data fusion center (DFC) to make a final decision on channel availability. After the final decision is been made, DFC sends back the decision to the CRs in order to tell them to stay idle or start to transmit data to secondary receiver (SR) within a preset transmission time. After the transmission, a new cycle starts again with sensing. This thesis report is organized as followed: Chapter II review some of the papers on optimizing CR energy efficiency. In Chapter III, we study how to achieve maximal energy efficiency when CR senses single channel with changing bandwidth and with constrain on misdetection threshold in order to protect PU; furthermore, a case study is given and we calculate the energy efficiency. In Chapter IV, we study how to achieve maximal energy efficiency when CR senses multiple channels and each channel with same bandwidth, also, we preset a misdetection threshold and calculate the energy efficiency. A comparison will be shown between two sensing methods at the end of the chapter. Finally, Chapter V concludes this thesis.
Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning
2016-03-01
Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roux, A.; Gicquel, L.Y.M.; Staffelbach, G.
2010-01-15
Among all the undesired phenomena observed in ramjet combustors, combustion instabilities are of foremost importance and predicting them using Large Eddy Simulation (LES) is an active research field. While acoustics are naturally captured by compressible LES provided that the proper boundary conditions are applied, combustion/chemistry modelling remains a critical issue and its impact on numerical predictions must still be assessed for complex applications. To do so, two different ramjet LES's are compared here. The first simulation is based on a standard one-step chemistry known to over-estimate the laminar flame speed in fuel rich conditions. The second simulation uses the samemore » scheme but introduces a correction of reaction rates for rich flames to match a detailed mechanism provided by Peters (1993). Even though the two chemical schemes are very similar and very few points burn in rich regimes, distinct limit-cycles are obtained with LES depending on which scheme is used. Results obtained with the standard one-step chemistry exhibit high frequency self-sustained oscillations. Multiple flame fronts are stabilized in the vicinity of the shear layer developing at the exit of the air inlets. When compared to the experiment, the fitted one-step scheme yields better predictions than the standard scheme. With the fitted scheme, the flame is detached from the air inlets and stabilizes in the regions identified in the experiment (Ristori et al. (2005), Heid and Ristori (2003), Heid and Ristori (2005), Ristori et al. (1999)). LES and experiments exhibit all main low-frequency modes including the first longitudinal acoustic mode. The high frequencies excited with the standard scheme are damped with the fitted scheme. The chemical scheme is found, for this ramjet burner, to have a strong impact on the predicted stability: approximate chemical schemes even in a limited range of equivalence ratio can lead to the occurence of non-physical combustion oscillations. (author)« less
NASA Astrophysics Data System (ADS)
Chen, Wen-Yuan; Liu, Chen-Chung
2006-01-01
The problems with binary watermarking schemes are that they have only a small amount of embeddable space and are not robust enough. We develop a slice-based large-cluster algorithm (SBLCA) to construct a robust watermarking scheme for binary images. In SBLCA, a small-amount cluster selection (SACS) strategy is used to search for a feasible slice in a large-cluster flappable-pixel decision (LCFPD) method, which is used to search for the best location for concealing a secret bit from a selected slice. This method has four major advantages over the others: (a) SBLCA has a simple and effective decision function to select appropriate concealment locations, (b) SBLCA utilizes a blind watermarking scheme without the original image in the watermark extracting process, (c) SBLCA uses slice-based shuffling capability to transfer the regular image into a hash state without remembering the state before shuffling, and finally, (d) SBLCA has enough embeddable space that every 64 pixels could accommodate a secret bit of the binary image. Furthermore, empirical results on test images reveal that our approach is a robust watermarking scheme for binary images.
Acoustic one-way mode conversion and transmission by sonic crystal waveguides
NASA Astrophysics Data System (ADS)
Ouyang, Shiliang; He, Hailong; He, Zhaojian; Deng, Ke; Zhao, Heping
2016-09-01
We proposed a scheme to achieve one-way acoustic propagation and even-odd mode switching in two mutually perpendicular sonic crystal waveguides connected by a resonant cavity. The even mode in the entrance waveguide is able to switch to the odd mode in the exit waveguide through a symmetry match between the cavity resonant modes and the waveguide modes. Conversely, the odd mode in the exit waveguide is unable to be converted into the even mode in the entrance waveguide as incident waves and eigenmodes are mismatched in their symmetries at the waveguide exit. This one-way mechanism can be applied to design an acoustic diode for acoustic integration devices and can be used as a convertor of the acoustic waveguide modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitagawa, Akira; Takeoka, Masahiro; Sasaki, Masahide
2005-08-15
We study the measurement-induced non-Gaussian operation on the single- and two-mode Gaussian squeezed vacuum states with beam splitters and on-off type photon detectors, with which mixed non-Gaussian states are generally obtained in the conditional process. It is known that the entanglement can be enhanced via this non-Gaussian operation on the two-mode squeezed vacuum state. We show that, in the range of practical squeezing parameters, the conditional outputs are still close to Gaussian states, but their second order variances of quantum fluctuations and correlations are effectively suppressed and enhanced, respectively. To investigate an operational meaning of these states, especially entangled states,more » we also evaluate the quantum dense coding scheme from the viewpoint of the mutual information, and we show that non-Gaussian entangled state can be advantageous compared with the original two-mode squeezed state.« less
Finite-time control for nonlinear spacecraft attitude based on terminal sliding mode technique.
Song, Zhankui; Li, Hongxing; Sun, Kaibiao
2014-01-01
In this paper, a fast terminal sliding mode control (FTSMC) scheme with double closed loops is proposed for the spacecraft attitude control. The FTSMC laws are included both in an inner control loop and an outer control loop. Firstly, a fast terminal sliding surface (FTSS) is constructed, which can drive the inner loop tracking-error and the outer loop tracking-error on the FTSS to converge to zero in finite time. Secondly, FTSMC strategy is designed by using Lyaponov's method for ensuring the occurrence of the sliding motion in finite time, which can hold the character of fast transient response and improve the tracking accuracy. It is proved that FTSMC can guarantee the convergence of tracking-error in both approaching and sliding mode surface. Finally, simulation results demonstrate the effectiveness of the proposed control scheme. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mrejen, Michael; Suchowski, Haim; Bachelard, Nicolas; Wang, Yuan; Zhang, Xiang
2017-07-01
High-speed Silicon Photonics calls for solutions providing a small footprint, high density, and minimum crosstalk, as exemplified by the recent development of integrated optical modulators. Yet, the performances of such modulators are hindered by intrinsic material losses, which results in low energy efficiency. Using the concept of Adiabatic Elimination, here, we introduce a scheme allowing for the low-loss modulation in densely packed waveguides. Our system is composed of two waveguides, whose coupling is mediated by an intermediate third waveguide. The signal is carried by the two outer modes, while the active control of their coupling is achieved via the intermediate dark mode. The modulation is performed by the manipulation of the central-waveguide mode index, leaving the signal-carrying waveguides unaffected by the loss. We discuss how Adiabatic Elimination provides a solution for mitigating signal losses and designing relatively compact, broadband, and energy-efficient integrated optical modulators.
Cargo Logistics Airlift Systems Study (CLASS). Volume 2: Case study approach and results
NASA Technical Reports Server (NTRS)
Burby, R. J.; Kuhlman, W. H.
1978-01-01
Models of transportation mode decision making were developed. The user's view of the present and future air cargo systems is discussed. Issues summarized include: (1) organization of the distribution function; (2) mode choice decision making; (3) air freight system; and (4) the future of air freight.
A study of malware detection on smart mobile devices
NASA Astrophysics Data System (ADS)
Yu, Wei; Zhang, Hanlin; Xu, Guobin
2013-05-01
The growing in use of smart mobile devices for everyday applications has stimulated the spread of mobile malware, especially on popular mobile platforms. As a consequence, malware detection becomes ever more critical in sustaining the mobile market and providing a better user experience. In this paper, we review the existing malware and detection schemes. Using real-world malware samples with known signatures, we evaluate four popular commercial anti-virus tools and our data shows that these tools can achieve high detection accuracy. To deal with the new malware with unknown signatures, we study the anomaly based detection using decision tree algorithm. We evaluate the effectiveness of our detection scheme using malware and legitimate software samples. Our data shows that the detection scheme using decision tree can achieve a detection rate up to 90% and a false positive rate as low as 10%.
Organization of functional interaction of corporate information systems
NASA Astrophysics Data System (ADS)
Safronov, V. V.; Barabanov, V. F.; Podvalniy, S. L.; Nuzhnyy, A. M.
2018-03-01
In this article the methods of specialized software systems integration are analyzed and the concept of seamless integration of production decisions is offered. In view of this concept developed structural and functional schemes of the specialized software are shown. The proposed schemes and models are improved for a machine-building enterprise.
NASA Astrophysics Data System (ADS)
Shinya, A.; Ishihara, T.; Inoue, K.; Nozaki, K.; Kita, S.; Notomi, M.
2018-02-01
We propose an optical parallel adder based on a binary decision diagram that can calculate simply by propagating light through electrically controlled optical pass gates. The CARRY and CARRY operations are multiplexed in one circuit by a wavelength division multiplexing scheme to reduce the number of optical elements, and only a single gate constitutes the critical path for one digit calculation. The processing time reaches picoseconds per digit when we use a 100-μm-long optical path gates, which is ten times faster than a CMOS circuit.
A Multimetric Approach for Handoff Decision in Heterogeneous Wireless Networks
NASA Astrophysics Data System (ADS)
Kustiawan, I.; Purnama, W.
2018-02-01
Seamless mobility and service continuity anywhere at any time are an important issue in the wireless Internet. This research proposes a scheme to make handoff decisions effectively in heterogeneous wireless networks using a fuzzy system. Our design lies in an inference engine which takes RSS (received signal strength), data rate, network latency, and user preference as strategic determinants. The logic of our engine is realized on a UE (user equipment) side in faster reaction to network dynamics while roaming across different radio access technologies. The fuzzy system handles four metrics jointly to deduce a moderate decision about when to initiate handoff. The performance of our design is evaluated by simulating move-out mobility scenarios. Simulation results show that our scheme outperforms other approaches in terms of reducing unnecessary handoff.
Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope
Lee, Jungshin; Yun, Sung Wook; Rhim, Jaewook
2016-01-01
A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing the control scheme. In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision controller, the electromechanical modelling and signal processing must be pre-performed accurately. Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric module and charge amplifier is performed by considering the mode shape of a thin hemispherical shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low maneuverability systems. The differential control scheme is easily capable of rejecting the common mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies. In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature and rate control loop. All controllers are designed on basis of a digital PI controller. The signal processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA and DSP board with these algorithms is verified through experiments. PMID:27104539
NASA Astrophysics Data System (ADS)
Mishra, C.; Samantaray, A. K.; Chakraborty, G.
2016-09-01
Vibration analysis for diagnosis of faults in rolling element bearings is complicated when the rotor speed is variable or slow. In the former case, the time interval between the fault-induced impact responses in the vibration signal are non-uniform and the signal strength is variable. In the latter case, the fault-induced impact response strength is weak and generally gets buried in the noise, i.e. noise dominates the signal. This article proposes a diagnosis scheme based on a combination of a few signal processing techniques. The proposed scheme initially represents the vibration signal in terms of uniformly resampled angular position of the rotor shaft by using the interpolated instantaneous angular position measurements. Thereafter, intrinsic mode functions (IMFs) are generated through empirical mode decomposition (EMD) of resampled vibration signal which is followed by thresholding of IMFs and signal reconstruction to de-noise the signal and envelope order tracking to diagnose the faults. Data for validating the proposed diagnosis scheme are initially generated from a multi-body simulation model of rolling element bearing which is developed using bond graph approach. This bond graph model includes the ball and cage dynamics, localized fault geometry, contact mechanics, rotor unbalance, and friction and slip effects. The diagnosis scheme is finally validated with experiments performed with the help of a machine fault simulator (MFS) system. Some fault scenarios which could not be experimentally recreated are then generated through simulations and analyzed through the developed diagnosis scheme.
Finite Control Set Model Predictive Control for Multiple Distributed Generators Microgrids
NASA Astrophysics Data System (ADS)
Babqi, Abdulrahman Jamal
This dissertation proposes two control strategies for AC microgrids that consist of multiple distributed generators (DGs). The control strategies are valid for both grid-connected and islanded modes of operation. In general, microgrid can operate as a stand-alone system (i.e., islanded mode) or while it is connected to the utility grid (i.e., grid connected mode). To enhance the performance of a micrgorid, a sophisticated control scheme should be employed. The control strategies of microgrids can be divided into primary and secondary controls. The primary control regulates the output active and reactive powers of each DG in grid-connected mode as well as the output voltage and frequency of each DG in islanded mode. The secondary control is responsible for regulating the microgrid voltage and frequency in the islanded mode. Moreover, it provides power sharing schemes among the DGs. In other words, the secondary control specifies the set points (i.e. reference values) for the primary controllers. In this dissertation, Finite Control Set Model Predictive Control (FCS-MPC) was proposed for controlling microgrids. FCS-MPC was used as the primary controller to regulate the output power of each DG (in the grid-connected mode) or the voltage of the point of DG coupling (in the islanded mode of operation). In the grid-connected mode, Direct Power Model Predictive Control (DPMPC) was implemented to manage the power flow between each DG and the utility grid. In the islanded mode, Voltage Model Predictive Control (VMPC), as the primary control, and droop control, as the secondary control, were employed to control the output voltage of each DG and system frequency. The controller was equipped with a supplementary current limiting technique in order to limit the output current of each DG in abnormal incidents. The control approach also enabled smooth transition between the two modes. The performance of the control strategy was investigated and verified using PSCAD/EMTDC software platform. This dissertation also proposes a control and power sharing strategy for small-scale microgrids in both grid-connected and islanded modes based on centralized FCS-MPC. In grid-connected mode, the controller was capable of managing the output power of each DG and enabling flexible power regulation between the microgrid and the utility grid. In islanded mode, the controller regulated the microgrid voltage and frequency, and provided a precise power sharing scheme among the DGs. In addition, the power sharing can be adjusted flexibly by changing the sharing ratio. The proposed control also enabled plug-and-play operation. Moreover, a smooth transition between the two modes of operation was achieved without any disturbance in the system. Case studies were carried out in order to validate the proposed control strategy with the PSCAD/EMTDA software package.
Decision Accuracy in Computer-Mediated versus Face-to-Face Decision-Making Teams.
Hedlund; Ilgen; Hollenbeck
1998-10-01
Changes in the way organizations are structured and advances in communication technologies are two factors that have altered the conditions under which group decisions are made. Decisions are increasingly made by teams that have a hierarchical structure and whose members have different areas of expertise. In addition, many decisions are no longer made via strictly face-to-face interaction. The present study examines the effects of two modes of communication (face-to-face or computer-mediated) on the accuracy of teams' decisions. The teams are characterized by a hierarchical structure and their members differ in expertise consistent with the framework outlined in the Multilevel Theory of team decision making presented by Hollenbeck, Ilgen, Sego, Hedlund, Major, and Phillips (1995). Sixty-four four-person teams worked for 3 h on a computer simulation interacting either face-to-face (FtF) or over a computer network. The communication mode had mixed effects on team processes in that members of FtF teams were better informed and made recommendations that were more predictive of the correct team decision, but leaders of CM teams were better able to differentiate staff members on the quality of their decisions. Controlling for the negative impact of FtF communication on staff member differentiation increased the beneficial effect of the FtF mode on overall decision making accuracy. Copyright 1998 Academic Press.
Secure Distributed Detection under Energy Constraint in IoT-Oriented Sensor Networks.
Zhang, Guomei; Sun, Hao
2016-12-16
We study the secure distributed detection problems under energy constraint for IoT-oriented sensor networks. The conventional channel-aware encryption (CAE) is an efficient physical-layer secure distributed detection scheme in light of its energy efficiency, good scalability and robustness over diverse eavesdropping scenarios. However, in the CAE scheme, it remains an open problem of how to optimize the key thresholds for the estimated channel gain, which are used to determine the sensor's reporting action. Moreover, the CAE scheme does not jointly consider the accuracy of local detection results in determining whether to stay dormant for a sensor. To solve these problems, we first analyze the error probability and derive the optimal thresholds in the CAE scheme under a specified energy constraint. These results build a convenient mathematic framework for our further innovative design. Under this framework, we propose a hybrid secure distributed detection scheme. Our proposal can satisfy the energy constraint by keeping some sensors inactive according to the local detection confidence level, which is characterized by likelihood ratio. In the meanwhile, the security is guaranteed through randomly flipping the local decisions forwarded to the fusion center based on the channel amplitude. We further optimize the key parameters of our hybrid scheme, including two local decision thresholds and one channel comparison threshold. Performance evaluation results demonstrate that our hybrid scheme outperforms the CAE under stringent energy constraints, especially in the high signal-to-noise ratio scenario, while the security is still assured.
Secure Distributed Detection under Energy Constraint in IoT-Oriented Sensor Networks
Zhang, Guomei; Sun, Hao
2016-01-01
We study the secure distributed detection problems under energy constraint for IoT-oriented sensor networks. The conventional channel-aware encryption (CAE) is an efficient physical-layer secure distributed detection scheme in light of its energy efficiency, good scalability and robustness over diverse eavesdropping scenarios. However, in the CAE scheme, it remains an open problem of how to optimize the key thresholds for the estimated channel gain, which are used to determine the sensor’s reporting action. Moreover, the CAE scheme does not jointly consider the accuracy of local detection results in determining whether to stay dormant for a sensor. To solve these problems, we first analyze the error probability and derive the optimal thresholds in the CAE scheme under a specified energy constraint. These results build a convenient mathematic framework for our further innovative design. Under this framework, we propose a hybrid secure distributed detection scheme. Our proposal can satisfy the energy constraint by keeping some sensors inactive according to the local detection confidence level, which is characterized by likelihood ratio. In the meanwhile, the security is guaranteed through randomly flipping the local decisions forwarded to the fusion center based on the channel amplitude. We further optimize the key parameters of our hybrid scheme, including two local decision thresholds and one channel comparison threshold. Performance evaluation results demonstrate that our hybrid scheme outperforms the CAE under stringent energy constraints, especially in the high signal-to-noise ratio scenario, while the security is still assured. PMID:27999282
Range Sensor-Based Efficient Obstacle Avoidance through Selective Decision-Making.
Shim, Youngbo; Kim, Gon-Woo
2018-03-29
In this paper, we address a collision avoidance method for mobile robots. Many conventional obstacle avoidance methods have been focused solely on avoiding obstacles. However, this can cause instability when passing through a narrow passage, and can also generate zig-zag motions. We define two strategies for obstacle avoidance, known as Entry mode and Bypass mode. Entry mode is a pattern for passing through the gap between obstacles, while Bypass mode is a pattern for making a detour around obstacles safely. With these two modes, we propose an efficient obstacle avoidance method based on the Expanded Guide Circle (EGC) method with selective decision-making. The simulation and experiment results show the validity of the proposed method.
Gong, Yan-Xiao; Zhang, ShengLi; Xu, P; Zhu, S N
2016-03-21
We propose to generate a single-mode-squeezing two-mode squeezed vacuum state via a single χ(2) nonlinear photonic crystal. The state is favorable for existing Gaussian entanglement distillation schemes, since local squeezing operations can enhance the final entanglement and the success probability. The crystal is designed for enabling three concurrent quasi-phase-matching parametric-down conversions, and hence relieves the auxiliary on-line bi-side local squeezing operations. The compact source opens up a way for continuous-variable quantum technologies and could find more potential applications in future large-scale quantum networks.
Distillation and purification of symmetric entangled Gaussian states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiurasek, Jaromir
2010-10-15
We propose an entanglement distillation and purification scheme for symmetric two-mode entangled Gaussian states that allows to asymptotically extract a pure entangled Gaussian state from any input entangled symmetric Gaussian state. The proposed scheme is a modified and extended version of the entanglement distillation protocol originally developed by Browne et al. [Phys. Rev. A 67, 062320 (2003)]. A key feature of the present protocol is that it utilizes a two-copy degaussification procedure that involves a Mach-Zehnder interferometer with single-mode non-Gaussian filters inserted in its two arms. The required non-Gaussian filtering operations can be implemented by coherently combining two sequences ofmore » single-photon addition and subtraction operations.« less
A Framework for Simulating Turbine-Based Combined-Cycle Inlet Mode-Transition
NASA Technical Reports Server (NTRS)
Le, Dzu K.; Vrnak, Daniel R.; Slater, John W.; Hessel, Emil O.
2012-01-01
A simulation framework based on the Memory-Mapped-Files technique was created to operate multiple numerical processes in locked time-steps and send I/O data synchronously across to one-another to simulate system-dynamics. This simulation scheme is currently used to study the complex interactions between inlet flow-dynamics, variable-geometry actuation mechanisms, and flow-controls in the transition from the supersonic to hypersonic conditions and vice-versa. A study of Mode-Transition Control for a high-speed inlet wind-tunnel model with this MMF-based framework is presented to illustrate this scheme and demonstrate its usefulness in simulating supersonic and hypersonic inlet dynamics and controls or other types of complex systems.
NASA Astrophysics Data System (ADS)
An, Nguyen Ba
2009-04-01
Three novel probabilistic yet conclusive schemes are proposed to teleport a general two-mode coherent-state superposition via attenuated quantum channels with ideal and/or threshold detectors. The calculated total success probability is highest (lowest) when only ideal (threshold) detectors are used.
Sun, Zhijian; Zhang, Guoqing; Lu, Yu; Zhang, Weidong
2018-01-01
This paper studies the leader-follower formation control of underactuated surface vehicles with model uncertainties and environmental disturbances. A parameter estimation and upper bound estimation based sliding mode control scheme is proposed to solve the problem of the unknown plant parameters and environmental disturbances. For each of these leader-follower formation systems, the dynamic equations of position and attitude are analyzed using coordinate transformation with the aid of the backstepping technique. All the variables are guaranteed to be uniformly ultimately bounded stable in the closed-loop system, which is proven by the distribution design Lyapunov function synthesis. The main advantages of this approach are that: first, parameter estimation based sliding mode control can enhance the robustness of the closed-loop system in presence of model uncertainties and environmental disturbances; second, a continuous function is developed to replace the signum function in the design of sliding mode scheme, which devotes to reduce the chattering of the control system. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Qingguana; Wang, Cheng; Han, Yong; Gao, Dayuan; Duan, Yingliang
2017-06-01
Since detonation often initiates and propagates in the non-homogeneous mixtures, investigating its behavior in non-uniform mixtures is significant not only for the industrial explosion in the leakage combustible gas, but also for the experimental investigations with a vertical concentration gradient caused by the difference in the molecular weight of gas mixture. Objective of this work is to show the detonation behavior in the mixture with different concentration gradients with detailed chemical reaction mechanism. A globally planar detonation in H2-O2 system is simulated by a high-resolution code based on the fifth-order weighted essentially non-oscillatory (WENO) scheme in spatial discretization and the third-order Additive Runge-Kutta schemes in time discretization. The different shocked combustion modes appear in the rich-fuel and poor-fuel layers due to the concentration gradient effect. Globally, for the cases with the lower gradient detonation can be sustained in a way of the alternation of the multi-heads mode and single-head mode, whereas for the cases with the higher gradient detonation propagates with a single-head mode. Institute of Chemical Materials, CAEP.
Sensing Floquet-Majorana fermions via heat transfer
NASA Astrophysics Data System (ADS)
Molignini, Paolo; van Nieuwenburg, Evert; Chitra, R.
2017-09-01
Time periodic modulations of the transverse field in the closed X Y spin-1/2 chain generate a very rich dynamical phase diagram, with a hierarchy of Zn topological phases characterized by differing numbers of Floquet-Majorana modes. This rich phase diagram survives when the system is coupled to dissipative end reservoirs. Circumventing the obstacle of preparing and measuring quasienergy configurations endemic to Floquet-Majorana detection schemes, we show that stroboscopic heat transport and spin density are robust observables to detect both the dynamical phase transitions and Majorana modes in dissipative settings. We find that the heat current provides very clear signatures of these Floquet topological phase transitions. In particular, we observe that the derivative of the heat current, with respect to a control parameter, changes sign at the boundaries separating topological phases with differing nonzero numbers of Floquet-Majorana modes. We present a simple scheme to directly count the number of Floquet-Majorana modes in a phase from the Fourier transform of the local spin density profile. Our results are valid provided the anisotropies are not strong and can be easily implemented in quantum engineered systems.
Heralded creation of photonic qudits from parametric down-conversion using linear optics
NASA Astrophysics Data System (ADS)
Yoshikawa, Jun-ichi; Bergmann, Marcel; van Loock, Peter; Fuwa, Maria; Okada, Masanori; Takase, Kan; Toyama, Takeshi; Makino, Kenzo; Takeda, Shuntaro; Furusawa, Akira
2018-05-01
We propose an experimental scheme to generate, in a heralded fashion, arbitrary quantum superpositions of two-mode optical states with a fixed total photon number n based on weakly squeezed two-mode squeezed state resources (obtained via weak parametric down-conversion), linear optics, and photon detection. Arbitrary d -level (qudit) states can be created this way where d =n +1 . Furthermore, we experimentally demonstrate our scheme for n =2 . The resulting qutrit states are characterized via optical homodyne tomography. We also discuss possible extensions to more than two modes concluding that, in general, our approach ceases to work in this case. For illustration and with regards to possible applications, we explicitly calculate a few examples such as NOON states and logical qubit states for quantum error correction. In particular, our approach enables one to construct bosonic qubit error-correction codes against amplitude damping (photon loss) with a typical suppression of √{n }-1 losses and spanned by two logical codewords that each correspond to an n -photon superposition for two bosonic modes.
Coordination games, anti-coordination games, and imitative learning.
McCain, Roger A; Hamilton, Richard
2014-02-01
Bentley et al.'s scheme generates distributions characteristic of situations of high and low social influence on decisions and of high and low salience ("transparency") of rewards. Another element of decisions that may influence the placement of a decision process in their map is the way in which individual decisions interact to determine the payoffs. This commentary discusses the role of Nash equilibria in game theory, focusing especially on coordination and anti-coordination games.
Objective consensus from decision trees.
Putora, Paul Martin; Panje, Cedric M; Papachristofilou, Alexandros; Dal Pra, Alan; Hundsberger, Thomas; Plasswilm, Ludwig
2014-12-05
Consensus-based approaches provide an alternative to evidence-based decision making, especially in situations where high-level evidence is limited. Our aim was to demonstrate a novel source of information, objective consensus based on recommendations in decision tree format from multiple sources. Based on nine sample recommendations in decision tree format a representative analysis was performed. The most common (mode) recommendations for each eventuality (each permutation of parameters) were determined. The same procedure was applied to real clinical recommendations for primary radiotherapy for prostate cancer. Data was collected from 16 radiation oncology centres, converted into decision tree format and analyzed in order to determine the objective consensus. Based on information from multiple sources in decision tree format, treatment recommendations can be assessed for every parameter combination. An objective consensus can be determined by means of mode recommendations without compromise or confrontation among the parties. In the clinical example involving prostate cancer therapy, three parameters were used with two cut-off values each (Gleason score, PSA, T-stage) resulting in a total of 27 possible combinations per decision tree. Despite significant variations among the recommendations, a mode recommendation could be found for specific combinations of parameters. Recommendations represented as decision trees can serve as a basis for objective consensus among multiple parties.
Multispectral Image Enhancement Through Adaptive Wavelet Fusion
2016-09-14
13. SUPPLEMENTARY NOTES 14. ABSTRACT This research developed a multiresolution image fusion scheme based on guided filtering . Guided filtering can...effectively reduce noise while preserving detail boundaries. When applied in an iterative mode, guided filtering selectively eliminates small scale...details while restoring larger scale edges. The proposed multi-scale image fusion scheme achieves spatial consistency by using guided filtering both at
NASA Astrophysics Data System (ADS)
Abramov, E. Y.; Sopov, V. I.
2017-10-01
In a given research using the example of traction network area with high asymmetry of power supply parameters, the sequence of comparative assessment of power losses in DC traction network with parallel and traditional separated operating modes of traction substation feeders was shown. Experimental measurements were carried out under these modes of operation. The calculation data results based on statistic processing showed the power losses decrease in contact network and the increase in feeders. The changes proved to be critical ones and this demonstrates the significance of potential effects when converting traction network areas into parallel feeder operation. An analytical method of calculation the average power losses for different feed schemes of the traction network was developed. On its basis, the dependences of the relative losses were obtained by varying the difference in feeder voltages. The calculation results showed unreasonableness transition to a two-sided feed scheme for the considered traction network area. A larger reduction in the total power loss can be obtained with a smaller difference of the feeders’ resistance and / or a more symmetrical sectioning scheme of contact network.
Scheme for the generation of freely traveling optical trio coherent states
NASA Astrophysics Data System (ADS)
Duc, Truong Minh; Dat, Tran Quang; An, Nguyen Ba; Kim, Jaewan
2013-08-01
Trio coherent states (TCSs) are non-Gaussian three-mode entangled states which can serve as a useful resource for continuous-variable quantum tasks, so their generation is of primary importance. Schemes exist to generate stable TCSs in terms of vibrational motion of a trapped ion inside a crystal. However, to perform quantum communication and distributed quantum computation the states should be shared beforehand among distant parties. That is, their modes should be able to be directed to different desired locations in space. In this work, we propose an experimental setup to generate such free-traveling TCSs in terms of optical fields. Our scheme uses standard physical resources, such as coherent states, balanced beam splitters, phase shifters, nonideal on-off photodetectors, and realistic weak cross-Kerr nonlinearities, without the need of single photons or homodyne or heterodyne measurements. We study the dependences of the fidelity of the state generated by our scheme with respect to the target TCS and the corresponding generation probability for the parameters involved. In theory, the fidelity could be nearly perfect for whatever weak nonlinearities τ and low photodetector efficiency η, provided that the amplitude |α| of an input coherent state is large enough, namely, |α|≥5/(ητ).
Adaptive Q–V Scheme for the Voltage Control of a DFIG-Based Wind Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jinho; Seok, Jul-Ki; Muljadi, Eduard
Wind generators within a wind power plant (WPP) will produce different amounts of active power because of the wake effect, and therefore, they have different reactive power capabilities. This paper proposes an adaptive reactive power to the voltage (Q-V) scheme for the voltage control of a doubly fed induction generator (DFIG)-based WPP. In the proposed scheme, the WPP controller uses a voltage control mode and sends a voltage error signal to each DFIG. The DFIG controller also employs a voltage control mode utilizing the adaptive Q-V characteristics depending on the reactive power capability such that a DFIG with a largermore » reactive power capability will inject more reactive power to ensure fast voltage recovery. Test results indicate that the proposed scheme can recover the voltage within a short time, even for a grid fault with a small short-circuit ratio, by making use of the available reactive power of a WPP and differentiating the reactive power injection in proportion to the reactive power capability. This will, therefore, help to reduce the additional reactive power and ensure fast voltage recovery.« less
Lee, Tian-Fu; Chang, I-Pin; Lin, Tsung-Hung; Wang, Ching-Cheng
2013-06-01
The integrated EPR information system supports convenient and rapid e-medicine services. A secure and efficient authentication scheme for the integrated EPR information system provides safeguarding patients' electronic patient records (EPRs) and helps health care workers and medical personnel to rapidly making correct clinical decisions. Recently, Wu et al. proposed an efficient password-based user authentication scheme using smart cards for the integrated EPR information system, and claimed that the proposed scheme could resist various malicious attacks. However, their scheme is still vulnerable to lost smart card and stolen verifier attacks. This investigation discusses these weaknesses and proposes a secure and efficient authentication scheme for the integrated EPR information system as alternative. Compared with related approaches, the proposed scheme not only retains a lower computational cost and does not require verifier tables for storing users' secrets, but also solves the security problems in previous schemes and withstands possible attacks.
Kwon, Osung; Park, Kwang-Kyoon; Ra, Young-Sik; Kim, Yong-Su; Kim, Yoon-Ho
2013-10-21
Generation of time-bin entangled photon pairs requires the use of the Franson interferometer which consists of two spatially separated unbalanced Mach-Zehnder interferometers through which the signal and idler photons from spontaneous parametric down-conversion (SPDC) are made to transmit individually. There have been two SPDC pumping regimes where the scheme works: the narrowband regime and the double-pulse regime. In the narrowband regime, the SPDC process is pumped by a narrowband cw laser with the coherence length much longer than the path length difference of the Franson interferometer. In the double-pulse regime, the longitudinal separation between the pulse pair is made equal to the path length difference of the Franson interferometer. In this paper, we propose another regime by which the generation of time-bin entanglement is possible and demonstrate the scheme experimentally. In our scheme, differently from the previous approaches, the SPDC process is pumped by a cw multi-mode (i.e., short coherence length) laser and makes use of the coherence revival property of such a laser. The high-visibility two-photon Franson interference demonstrates clearly that high-quality time-bin entanglement source can be developed using inexpensive cw multi-mode diode lasers for various quantum communication applications.
Shalom, Erez; Shahar, Yuval; Parmet, Yisrael; Lunenfeld, Eitan
2015-04-01
To quantify the effect of a new continuous-care guideline (GL)-application engine, the Picard decision support system (DSS) engine, on the correctness and completeness of clinicians' decisions relative to an established clinical GL, and to assess the clinicians' attitudes towards a specific DSS. Thirty-six clinicians, including residents at different training levels and board-certified specialists at an academic OB/GYN department that handles around 15,000 deliveries annually, agreed to evaluate our continuous-care guideline-based DSS and to perform a cross-over assessment of the effects of using our guideline-based DSS. We generated electronic patient records that realistically simulated the longitudinal course of six different clinical scenarios of the preeclampsia/eclampsia/toxemia (PET) GL, encompassing 60 different decision points in total. Each clinician managed three scenarios manually without the Picard DSS engine (Non-DSS mode) and three scenarios when assisted by the Picard DSS engine (DSS mode). The main measures in both modes were correctness and completeness of actions relative to the PET GL. Correctness was further decomposed into necessary and redundant actions, relative to the guideline and the actual patient data. At the end of the assessment, a questionnaire was administered to the clinicians to assess their perceptions regarding use of the DSS. With respect to completeness, the clinicians applied approximately 41% of the GL's recommended actions in the non-DSS mode. Completeness increased to the performance of approximately 93% of the guideline's recommended actions, when using the DSS mode. With respect to correctness, approximately 94.5% of the clinicians' decisions in the non-DSS mode were correct. However, these included 68% of the actions that were correct but redundant, given the patient's data (e.g., repeating tests that had been performed), and 27% of the actions, which were necessary in the context of the GL and of the given scenario. Only 5.5% of the decisions were definite errors. In the DSS mode, 94% of the clinicians' decisions were correct, which included 3% that were correct but redundant, and 91% of the actions that were correct and necessary in the context of the GL and of the given scenario. Only 6% of the DSS-mode decisions were erroneous. The DSS was assessed by the clinicians as potentially useful. Support from the GL-based DSS led to uniformity in the quality of the decisions, regardless of the particular clinician, any particular clinical scenario, any particular decision point, or any decision type within the scenarios. Using the DSS dramatically enhances completeness (i.e., performance of guideline-based recommendations) and seems to prevent the performance of most of the redundant actions, but does not seem to affect the rate of performance of incorrect actions. The redundancy rate is enhanced by similar recent findings in recent studies. Clinicians mostly find this support to be potentially useful for their daily practice. A continuous-care GL-based DSS, such as the Picard DSS engine, has the potential to prevent most errors of omission by ensuring uniformly high quality of clinical decision making (relative to a GL-based norm), due to the increased adherence (i.e., completeness) to the GL, and most of the errors of commission that increase therapy costs, by reducing the rate of redundant actions. However, to prevent clinical errors of commission, the DSS needs to be accompanied by additional modules, such as automated control of the quality of the physician's actual actions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Adaptive threshold control for auto-rate fallback algorithm in IEEE 802.11 multi-rate WLANs
NASA Astrophysics Data System (ADS)
Wu, Qilin; Lu, Yang; Zhu, Xiaolin; Ge, Fangzhen
2012-03-01
The IEEE 802.11 standard supports multiple rates for data transmission in the physical layer. Nowadays, to improve network performance, a rate adaptation scheme called auto-rate fallback (ARF) is widely adopted in practice. However, ARF scheme suffers performance degradation in multiple contending nodes environments. In this article, we propose a novel rate adaptation scheme called ARF with adaptive threshold control. In multiple contending nodes environment, the proposed scheme can effectively mitigate the frame collision effect on rate adaptation decision by adaptively adjusting rate-up and rate-down threshold according to the current collision level. Simulation results show that the proposed scheme can achieve significantly higher throughput than the other existing rate adaptation schemes. Furthermore, the simulation results also demonstrate that the proposed scheme can effectively respond to the varying channel condition.
Time as a Tool for Policy Analysis in Aging.
ERIC Educational Resources Information Center
Pastorello, Thomas
National policy makers have put forth different life cycle planning proposals for the more satisfying integration of education, work and leisure over the life course. This speech describes a decision making scheme, the Time Paradigm, for researched-based choice among various proposals. The scheme is defined in terms of a typology of time-related…
Adaptive Failure Compensation for Aircraft Tracking Control Using Engine Differential Based Model
NASA Technical Reports Server (NTRS)
Liu, Yu; Tang, Xidong; Tao, Gang; Joshi, Suresh M.
2006-01-01
An aircraft model that incorporates independently adjustable engine throttles and ailerons is employed to develop an adaptive control scheme in the presence of actuator failures. This model captures the key features of aircraft flight dynamics when in the engine differential mode. Based on this model an adaptive feedback control scheme for asymptotic state tracking is developed and applied to a transport aircraft model in the presence of two types of failures during operation, rudder failure and aileron failure. Simulation results are presented to demonstrate the adaptive failure compensation scheme.
A Cross-Layer, Anomaly-Based IDS for WSN and MANET
Amouri, Amar; Manthena, Raju
2018-01-01
Intrusion detection system (IDS) design for mobile adhoc networks (MANET) is a crucial component for maintaining the integrity of the network. The need for rapid deployment of IDS capability with minimal data availability for training and testing is an important requirement of such systems, especially for MANETs deployed in highly dynamic scenarios, such as battlefields. This work proposes a two-level detection scheme for detecting malicious nodes in MANETs. The first level deploys dedicated sniffers working in promiscuous mode. Each sniffer utilizes a decision-tree-based classifier that generates quantities which we refer to as correctly classified instances (CCIs) every reporting time. In the second level, the CCIs are sent to an algorithmically run supernode that calculates quantities, which we refer to as the accumulated measure of fluctuation (AMoF) of the received CCIs for each node under test (NUT). A key concept that is used in this work is that the variability of the smaller size population which represents the number of malicious nodes in the network is greater than the variance of the larger size population which represents the number of normal nodes in the network. A linear regression process is then performed in parallel with the calculation of the AMoF for fitting purposes and to set a proper threshold based on the slope of the fitted lines. As a result, the malicious nodes are efficiently and effectively separated from the normal nodes. The proposed scheme is tested for various node velocities and power levels and shows promising detection performance even at low-power levels. The results presented also apply to wireless sensor networks (WSN) and represent a novel IDS scheme for such networks. PMID:29470446
A Cross-Layer, Anomaly-Based IDS for WSN and MANET.
Amouri, Amar; Morgera, Salvatore D; Bencherif, Mohamed A; Manthena, Raju
2018-02-22
Intrusion detection system (IDS) design for mobile adhoc networks (MANET) is a crucial component for maintaining the integrity of the network. The need for rapid deployment of IDS capability with minimal data availability for training and testing is an important requirement of such systems, especially for MANETs deployed in highly dynamic scenarios, such as battlefields. This work proposes a two-level detection scheme for detecting malicious nodes in MANETs. The first level deploys dedicated sniffers working in promiscuous mode. Each sniffer utilizes a decision-tree-based classifier that generates quantities which we refer to as correctly classified instances (CCIs) every reporting time. In the second level, the CCIs are sent to an algorithmically run supernode that calculates quantities, which we refer to as the accumulated measure of fluctuation (AMoF) of the received CCIs for each node under test (NUT). A key concept that is used in this work is that the variability of the smaller size population which represents the number of malicious nodes in the network is greater than the variance of the larger size population which represents the number of normal nodes in the network. A linear regression process is then performed in parallel with the calculation of the AMoF for fitting purposes and to set a proper threshold based on the slope of the fitted lines. As a result, the malicious nodes are efficiently and effectively separated from the normal nodes. The proposed scheme is tested for various node velocities and power levels and shows promising detection performance even at low-power levels. The results presented also apply to wireless sensor networks (WSN) and represent a novel IDS scheme for such networks.
Eulerian-Lagrangian Simulations of Transonic Flutter Instabilities
NASA Technical Reports Server (NTRS)
Bendiksen, Oddvar O.
1994-01-01
This paper presents an overview of recent applications of Eulerian-Lagrangian computational schemes in simulating transonic flutter instabilities. This approach, the fluid-structure system is treated as a single continuum dynamics problem, by switching from an Eulerian to a Lagrangian formulation at the fluid-structure boundary. This computational approach effectively eliminates the phase integration errors associated with previous methods, where the fluid and structure are integrated sequentially using different schemes. The formulation is based on Hamilton's Principle in mixed coordinates, and both finite volume and finite element discretization schemes are considered. Results from numerical simulations of transonic flutter instabilities are presented for isolated wings, thin panels, and turbomachinery blades. The results suggest that the method is capable of reproducing the energy exchange between the fluid and the structure with significantly less error than existing methods. Localized flutter modes and panel flutter modes involving traveling waves can also be simulated effectively with no a priori knowledge of the type of instability involved.
NASA Astrophysics Data System (ADS)
Cho, Minhaeng
2018-05-01
Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usman, Yasir; Kim, Jinho; Muljadi, Eduard
Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gainmore » of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Furthermore, simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.« less
Cho, Minhaeng
2018-05-14
Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.
Driving a car with custom-designed fuzzy inferencing VLSI chips and boards
NASA Technical Reports Server (NTRS)
Pin, Francois G.; Watanabe, Yutaka
1993-01-01
Vehicle control in a-priori unknown, unpredictable, and dynamic environments requires many calculational and reasoning schemes to operate on the basis of very imprecise, incomplete, or unreliable data. For such systems, in which all the uncertainties can not be engineered away, approximate reasoning may provide an alternative to the complexity and computational requirements of conventional uncertainty analysis and propagation techniques. Two types of computer boards including custom-designed VLSI chips were developed to add a fuzzy inferencing capability to real-time control systems. All inferencing rules on a chip are processed in parallel, allowing execution of the entire rule base in about 30 microseconds, and therefore, making control of 'reflex-type' of motions envisionable. The use of these boards and the approach using superposition of elemental sensor-based behaviors for the development of qualitative reasoning schemes emulating human-like navigation in a-priori unknown environments are first discussed. Then how the human-like navigation scheme implemented on one of the qualitative inferencing boards was installed on a test-bed platform to investigate two control modes for driving a car in a-priori unknown environments on the basis of sparse and imprecise sensor data is described. In the first mode, the car navigates fully autonomously, while in the second mode, the system acts as a driver's aid providing the driver with linguistic (fuzzy) commands to turn left or right and speed up or slow down depending on the obstacles perceived by the sensors. Experiments with both modes of control are described in which the system uses only three acoustic range (sonar) sensor channels to perceive the environment. Simulation results as well as indoors and outdoors experiments are presented and discussed to illustrate the feasibility and robustness of autonomous navigation and/or safety enhancing driver's aid using the new fuzzy inferencing hardware system and some human-like reasoning schemes which may include as little as six elemental behaviors embodied in fourteen qualitative rules.
A critical review on sustainability assessment of recycled water schemes.
Chen, Zhuo; Ngo, Huu Hao; Guo, Wenshan
2012-06-01
Recycled water provides a viable opportunity to supplement water supplies as well as alleviate environmental loads. To further expand current schemes and explore new recycled water end uses, this study reviews several environmental assessment tools, including Life Cycle Assessment (LCA), Material Flow Analysis (MFA) and Environmental Risk Assessment (ERA) in terms of their types, characteristics and weaknesses in evaluating the sustainability of recycled water schemes. Due to the limitations in individual models, the integrated approaches are recommended in most cases, of which the outputs could be further combined with additional economic and social assessments in multi-criteria decision making framework. The study also proposes several management strategies in improving the environmental scores. The discussion and suggestions could help decision makers in making a sound judgement as well as recognising the challenges and tasks in the future. Copyright © 2012 Elsevier B.V. All rights reserved.
Bai, Xiao-ping; Zhang, Xi-wei
2013-01-01
Selecting construction schemes of the building engineering project is a complex multiobjective optimization decision process, in which many indexes need to be selected to find the optimum scheme. Aiming at this problem, this paper selects cost, progress, quality, and safety as the four first-order evaluation indexes, uses the quantitative method for the cost index, uses integrated qualitative and quantitative methodologies for progress, quality, and safety indexes, and integrates engineering economics, reliability theories, and information entropy theory to present a new evaluation method for building construction project. Combined with a practical case, this paper also presents detailed computing processes and steps, including selecting all order indexes, establishing the index matrix, computing score values of all order indexes, computing the synthesis score, sorting all selected schemes, and making analysis and decision. Presented method can offer valuable references for risk computing of building construction projects.
On-Line Modal State Monitoring of Slowly Time-Varying Structures
NASA Technical Reports Server (NTRS)
Johnson, Erik A.; Bergman, Lawrence A.; Voulgaris, Petros G.
1997-01-01
Monitoring the dynamic response of structures is often performed for a variety of reasons. These reasons include condition-based maintenance, health monitoring, performance improvements, and control. In many cases the data analysis that is performed is part of a repetitive decision-making process, and in these cases the development of effective on-line monitoring schemes help to speed the decision-making process and reduce the risk of erroneous decisions. This report investigates the use of spatial modal filters for tracking the dynamics of slowly time-varying linear structures. The report includes an overview of modal filter theory followed by an overview of several structural system identification methods. Included in this discussion and comparison are H-infinity, eigensystem realization, and several time-domain least squares approaches. Finally, a two-stage adaptive on-line monitoring scheme is developed and evaluated.
East Asian winter monsoon forecasting schemes based on the NCEP's climate forecast system
NASA Astrophysics Data System (ADS)
Tian, Baoqiang; Fan, Ke; Yang, Hongqing
2017-12-01
The East Asian winter monsoon (EAWM) is the major climate system in the Northern Hemisphere during boreal winter. In this study, we developed two schemes to improve the forecasting skill of the interannual variability of the EAWM index (EAWMI) using the interannual increment prediction method, also known as the DY method. First, we found that version 2 of the NCEP's Climate Forecast System (CFSv2) showed higher skill in predicting the EAWMI in DY form than not. So, based on the advantage of the DY method, Scheme-I was obtained by adding the EAWMI DY predicted by CFSv2 to the observed EAWMI in the previous year. This scheme showed higher forecasting skill than CFSv2. Specifically, during 1983-2016, the temporal correlation coefficient between the Scheme-I-predicted and observed EAWMI was 0.47, exceeding the 99% significance level, with the root-mean-square error (RMSE) decreased by 12%. The autumn Arctic sea ice and North Pacific sea surface temperature (SST) are two important external forcing factors for the interannual variability of the EAWM. Therefore, a second (hybrid) prediction scheme, Scheme-II, was also developed. This scheme not only involved the EAWMI DY of CFSv2, but also the sea-ice concentration (SIC) observed the previous autumn in the Laptev and East Siberian seas and the temporal coefficients of the third mode of the North Pacific SST in DY form. We found that a negative SIC anomaly in the preceding autumn over the Laptev and the East Siberian seas could lead to a significant enhancement of the Aleutian low and East Asian westerly jet in the following winter. However, the intensity of the winter Siberian high was mainly affected by the third mode of the North Pacific autumn SST. Scheme-I and Scheme-II also showed higher predictive ability for the EAWMI in negative anomaly years compared to CFSv2. More importantly, the improvement in the prediction skill of the EAWMI by the new schemes, especially for Scheme-II, could enhance the forecasting skill of the winter 2-m air temperature (T-2m) in most parts of China, as well as the intensity of the Aleutian low and Siberian high in winter. The new schemes provide a theoretical basis for improving the prediction of winter climate in China.
Stützer, Paul Philipp; Berlit, Sebastian; Lis, Stefanie; Schmahl, Christian; Sütterlin, Marc; Tuschy, Benjamin
2017-05-01
To investigate sociopsychological factors of women undergoing a caesarean section on maternal request (CSMR). Twenty-eight women who underwent CSMR and 29 women with vaginal delivery (VD) filled in standardized questionnaires concerning psychological burden (SCL-R 90), fear of childbirth (W-DEQ, STAI), personality structure (HEXACO-Pi-R) and social support (F-SozU) as well as one questionnaire assessing potential factors influencing their mode of delivery. Women with CSMR were older (36.5 ± 5.4 vs. 30.6 ± 5.2 years; p < 0.001) and suffered more from fear of childbirth (W-DEQ 4.3 ± 0.8 vs. 3.7 ± 1.2; p = 0.041), concerns for their child (W-DEQ 2.0 ± 1.5 vs. 1.3 ± 0.7; p = 0.026) and appraised the birth less negative (W-DEQ 2.0 ± 0.7 vs. 2.7 ± 1.1; p = 0.008). The majority of parturients had chosen their preferred mode of delivery before pregnancy (CS 61% vs. VD 82%, p = 0.328). In the decision-making process for the mode of delivery, the advice of the partner (85 and 90%) played an important role. 82% of the women who delivered via CSMR did not regret the decision for this mode of delivery. Women who underwent CS had higher fear of childbirth and appraised the birth less negative. The majority did not regret the decision for the CS and would even choose this mode of delivery for their next pregnancy. Although the partner and the physician seem to be important in the decision process for of the mode of delivery, reasons for the choice for CSMR appear to be multifactorial.
[GIS and scenario analysis aid to water pollution control planning of river basin].
Wang, Shao-ping; Cheng, Sheng-tong; Jia, Hai-feng; Ou, Zhi-dan; Tan, Bin
2004-07-01
The forward and backward algorithms for watershed water pollution control planning were summarized in this paper as well as their advantages and shortages. The spatial databases of water environmental function region, pollution sources, monitoring sections and sewer outlets were built with ARCGIS8.1 as the platform in the case study of Ganjiang valley, Jiangxi province. Based on the principles of the forward algorithm, four scenarios were designed for the watershed pollution control. Under these scenarios, ten sets of planning schemes were generated to implement cascade pollution source control. The investment costs of sewage treatment for these schemes were estimated by means of a series of cost-effective functions; with pollution source prediction, the water quality was modeled with CSTR model for each planning scheme. The modeled results of different planning schemes were visualized through GIS to aid decision-making. With the results of investment cost and water quality attainment as decision-making accords and based on the analysis of the economic endurable capacity for water pollution control in Ganjiang river basin, two optimized schemes were proposed. The research shows that GIS technology and scenario analysis can provide a good guidance to the synthesis, integrity and sustainability aspects for river basin water quality planning.
Preserving flying qubit in single-mode fiber with Knill Dynamical Decoupling (KDD)
NASA Astrophysics Data System (ADS)
Gupta, Manish; Navarro, Erik; Moulder, Todd; Mueller, Jason; Balouchi, Ashkan; Brown, Katherine; Lee, Hwang; Dowling, Jonathan
2015-03-01
The implementation of information-theoretic-crypto protocol is limited by decoherence caused by the birefringence of a single-mode fiber. We propose the Knill dynamical decoupling scheme, implemented using half-wave plates, to minimize decoherence and show that a fidelity greater than 96% can be achieved even in presence of rotation error.
Kingkaew, Pritaporn; Werayingyong, Pitsaphun; Aye, San San; Tin, Nilar; Singh, Alaka; Myint, Phone; Teerawattananon, Yot
2016-01-01
Reducing child and maternal mortality in order to meet the health-related Millennium Development Goals (MDGs) 4 and 5 remains a major challenge in Myanmar. Inadequate care during pregnancy and labour plays an important role in the maternal mortality rate in Myanmar. A Maternal and Child Health (MCH) Voucher Scheme comprising a subsidization for pregnant women to receive four antenatal care (ANC), delivery and postnatal care (PNC) free-of-charge was planned to help women overcome financial barriers in addition to raising awareness of ANC and delivery with skilled birth attendants (SBA), which can reduce the rate of maternal and neonatal death. This study is part of an ex-ante evaluation of a feasibility study of the MCH Voucher Scheme. A cost-utility analysis was conducted using a decision tree model to assess the cost per disability-adjusted life years (DALYs) averted from the MCH Voucher Scheme compared with the current situation. Most input parameters were obtained from Myanmar context. From the base-case analysis, where the financial burden on households was fully subsidized, the MCH Voucher Scheme increased utilization for ANC from 73% up to 93% and for delivery from SBAs from 51% up to and 71%, respectively; hence, it is considered to be very cost-effective with an incremental cost-effectiveness ratio of 381 027 kyats per DALY averted (2010, price year). From the probabilistic sensitivity analysis, the MCH Voucher Scheme had a 52% chance of being a cost-effective option at 1 GDP per capita threshold compared to the current situation. Given that the Voucher Scheme is currently being implemented in one township in Myanmar as a result of this study, ongoing evaluation of the effectiveness and cost-effectiveness of this scheme is warranted. PMID:26412858
On-chip optical mode conversion based on dynamic grating in photonic-phononic hybrid waveguide
Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang
2015-01-01
We present a scheme for reversible and tunable on-chip optical mode conversion based on dynamic grating in a hybrid photonic-phononic waveguide. The dynamic grating is built up through the acousto-optic effect and the theoretical model of the optical mode conversion is developed by considering the geometrical deformation and refractive index change. Three kinds of mode conversions are able to be realized using the same hybrid waveguide structure in a large bandwidth by only changing the launched acoustic frequency. The complete mode conversion can be achieved by choosing a proper acoustic power under a given waveguide length. PMID:25996236
Special purpose modes in photonic band gap fibers
Spencer, James; Noble, Robert; Campbell, Sara
2013-04-02
Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.
Quasi-regenerative mode locking in a compact all-polarisation-maintaining-fibre laser
NASA Astrophysics Data System (ADS)
Nyushkov, B. N.; Ivanenko, A. V.; Kobtsev, S. M.; Pivtsov, V. S.; Farnosov, S. A.; Pokasov, P. V.; Korel, I. I.
2017-12-01
A novel technique of mode locking in erbium-doped all-polarisation-maintaining-fibre laser has been developed and preliminary investigated. The proposed quasi-regenerative technique combines the advantages of conventional active mode locking (when an intracavity modulator is driven by an independent RF oscillator) and regenerative mode locking (when a modulator is driven by an intermode beat signal from the laser itself). This scheme is based on intracavity intensity modulation driven by an RF oscillator being phase-locked to the actual intermode frequency of the laser. It features also possibilities of operation at multiple frequencies and harmonic mode-locking operation.
One Way of Thinking About Decision Making.
ERIC Educational Resources Information Center
Dalis, Gus T.; Strasser, Ben B.
The authors present the DALSTRA model of decision making, a descriptive statement of ways individuals or groups respond to different kinds of decision-making problems they encounter. Decision making is viewed in two phases: the decision-making antecedents (whether to decide, how to decide) and the modes of decision making (Chance/Impulse,…
A taxonomy for mechanical ventilation: 10 fundamental maxims.
Chatburn, Robert L; El-Khatib, Mohamad; Mireles-Cabodevila, Eduardo
2014-11-01
The American Association for Respiratory Care has declared a benchmark for competency in mechanical ventilation that includes the ability to "apply to practice all ventilation modes currently available on all invasive and noninvasive mechanical ventilators." This level of competency presupposes the ability to identify, classify, compare, and contrast all modes of ventilation. Unfortunately, current educational paradigms do not supply the tools to achieve such goals. To fill this gap, we expand and refine a previously described taxonomy for classifying modes of ventilation and explain how it can be understood in terms of 10 fundamental constructs of ventilator technology: (1) defining a breath, (2) defining an assisted breath, (3) specifying the means of assisting breaths based on control variables specified by the equation of motion, (4) classifying breaths in terms of how inspiration is started and stopped, (5) identifying ventilator-initiated versus patient-initiated start and stop events, (6) defining spontaneous and mandatory breaths, (7) defining breath sequences (8), combining control variables and breath sequences into ventilatory patterns, (9) describing targeting schemes, and (10) constructing a formal taxonomy for modes of ventilation composed of control variable, breath sequence, and targeting schemes. Having established the theoretical basis of the taxonomy, we demonstrate a step-by-step procedure to classify any mode on any mechanical ventilator. Copyright © 2014 by Daedalus Enterprises.
A Novel IEEE 802.15.4e DSME MAC for Wireless Sensor Networks
Sahoo, Prasan Kumar; Pattanaik, Sudhir Ranjan; Wu, Shih-Lin
2017-01-01
IEEE 802.15.4e standard proposes Deterministic and Synchronous Multichannel Extension (DSME) mode for wireless sensor networks (WSNs) to support industrial, commercial and health care applications. In this paper, a new channel access scheme and beacon scheduling schemes are designed for the IEEE 802.15.4e enabled WSNs in star topology to reduce the network discovery time and energy consumption. In addition, a new dynamic guaranteed retransmission slot allocation scheme is designed for devices with the failure Guaranteed Time Slot (GTS) transmission to reduce the retransmission delay. To evaluate our schemes, analytical models are designed to analyze the performance of WSNs in terms of reliability, delay, throughput and energy consumption. Our schemes are validated with simulation and analytical results and are observed that simulation results well match with the analytical one. The evaluated results of our designed schemes can improve the reliability, throughput, delay, and energy consumptions significantly. PMID:28275216
A Novel IEEE 802.15.4e DSME MAC for Wireless Sensor Networks.
Sahoo, Prasan Kumar; Pattanaik, Sudhir Ranjan; Wu, Shih-Lin
2017-01-16
IEEE 802.15.4e standard proposes Deterministic and Synchronous Multichannel Extension (DSME) mode for wireless sensor networks (WSNs) to support industrial, commercial and health care applications. In this paper, a new channel access scheme and beacon scheduling schemes are designed for the IEEE 802.15.4e enabled WSNs in star topology to reduce the network discovery time and energy consumption. In addition, a new dynamic guaranteed retransmission slot allocation scheme is designed for devices with the failure Guaranteed Time Slot (GTS) transmission to reduce the retransmission delay. To evaluate our schemes, analytical models are designed to analyze the performance of WSNs in terms of reliability, delay, throughput and energy consumption. Our schemes are validated with simulation and analytical results and are observed that simulation results well match with the analytical one. The evaluated results of our designed schemes can improve the reliability, throughput, delay, and energy consumptions significantly.
The generalized zero-mode supersymmetry scheme and the confluent algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contreras-Astorga, Alonso, E-mail: aloncont@iun.edu; Schulze-Halberg, Axel, E-mail: axgeschu@iun.edu; Department of Physics, Indiana University Northwest, 3400 Broadway, Gary IN 46408
We show the relationship between the mathematical framework used in recent papers by Rosu et al. (2014) [1–3] and the second-order confluent supersymmetric quantum mechanics. In addition, we point out several immediate generalizations of the approach taken in the latter references. Furthermore, it is shown how to apply the generalized scheme to the Dirac and to the Fokker–Planck equation.
Design and implementation of telephone dialer based on Arduino
NASA Astrophysics Data System (ADS)
Ma, Zilong; Lei, Ying
2017-03-01
Introduces a system design scheme of the telephone dialer based on Arduino, including the design principle, hardware and software design and the experimental results in this paper. The scheme is based on the dual tone multi frequency (DTMF) dialing mode, using the Arduino UNO as the main controller, the serial port send out the telephone number to be dialed, speaker synthesize the voice.
MIMO transmit scheme based on morphological perceptron with competitive learning.
Valente, Raul Ambrozio; Abrão, Taufik
2016-08-01
This paper proposes a new multi-input multi-output (MIMO) transmit scheme aided by artificial neural network (ANN). The morphological perceptron with competitive learning (MP/CL) concept is deployed as a decision rule in the MIMO detection stage. The proposed MIMO transmission scheme is able to achieve double spectral efficiency; hence, in each time-slot the receiver decodes two symbols at a time instead one as Alamouti scheme. Other advantage of the proposed transmit scheme with MP/CL-aided detector is its polynomial complexity according to modulation order, while it becomes linear when the data stream length is greater than modulation order. The performance of the proposed scheme is compared to the traditional MIMO schemes, namely Alamouti scheme and maximum-likelihood MIMO (ML-MIMO) detector. Also, the proposed scheme is evaluated in a scenario with variable channel information along the frame. Numerical results have shown that the diversity gain under space-time coding Alamouti scheme is partially lost, which slightly reduces the bit-error rate (BER) performance of the proposed MP/CL-NN MIMO scheme. Copyright © 2016 Elsevier Ltd. All rights reserved.
Finite-time fault tolerant attitude stabilization control for rigid spacecraft.
Huo, Xing; Hu, Qinglei; Xiao, Bing
2014-03-01
A sliding mode based finite-time control scheme is presented to address the problem of attitude stabilization for rigid spacecraft in the presence of actuator fault and external disturbances. More specifically, a nonlinear observer is first proposed to reconstruct the amplitude of actuator faults and external disturbances. It is proved that precise reconstruction with zero observer error is achieved in finite time. Then, together with the system states, the reconstructed information is used to synthesize a nonsingular terminal sliding mode attitude controller. The attitude and the angular velocity are asymptotically governed to zero with finite-time convergence. A numerical example is presented to demonstrate the effectiveness of the proposed scheme. © 2013 Published by ISA on behalf of ISA.
Time reversal of arbitrary photonic temporal modes via nonlinear optical frequency conversion
NASA Astrophysics Data System (ADS)
Raymer, Michael G.; Reddy, Dileep V.; van Enk, Steven J.; McKinstrie, Colin J.
2018-05-01
Single-photon wave packets can carry quantum information between nodes of a quantum network. An important general operation in photon-based quantum information systems is ‘blind’ reversal of a photon’s temporal wave packet envelope, that is, the ability to reverse an envelope without knowing the temporal state of the photon. We present an all-optical means for doing so, using nonlinear-optical frequency conversion driven by a short pump pulse. The process used may be sum-frequency generation or four-wave Bragg scattering. This scheme allows for quantum operations such as a temporal-mode parity sorter. We also verify that the scheme works for arbitrary states (not only single-photon ones) of an unknown wave packet.
Approximation of Optimal Infinite Dimensional Compensators for Flexible Structures
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Mingori, D. L.; Adamian, A.; Jabbari, F.
1985-01-01
The infinite dimensional compensator for a large class of flexible structures, modeled as distributed systems are discussed, as well as an approximation scheme for designing finite dimensional compensators to approximate the infinite dimensional compensator. The approximation scheme is applied to develop a compensator for a space antenna model based on wrap-rib antennas being built currently. While the present model has been simplified, it retains the salient features of rigid body modes and several distributed components of different characteristics. The control and estimator gains are represented by functional gains, which provide graphical representations of the control and estimator laws. These functional gains also indicate the convergence of the finite dimensional compensators and show which modes the optimal compensator ignores.
A flexible docking scheme to explore the binding selectivity of PDZ domains.
Gerek, Z Nevin; Ozkan, S Banu
2010-05-01
Modeling of protein binding site flexibility in molecular docking is still a challenging problem due to the large conformational space that needs sampling. Here, we propose a flexible receptor docking scheme: A dihedral restrained replica exchange molecular dynamics (REMD), where we incorporate the normal modes obtained by the Elastic Network Model (ENM) as dihedral restraints to speed up the search towards correct binding site conformations. To our knowledge, this is the first approach that uses ENM modes to bias REMD simulations towards binding induced fluctuations in docking studies. In our docking scheme, we first obtain the deformed structures of the unbound protein as initial conformations by moving along the binding fluctuation mode, and perform REMD using the ENM modes as dihedral restraints. Then, we generate an ensemble of multiple receptor conformations (MRCs) by clustering the lowest replica trajectory. Using ROSETTALIGAND, we dock ligands to the clustered conformations to predict the binding pose and affinity. We apply this method to postsynaptic density-95/Dlg/ZO-1 (PDZ) domains; whose dynamics govern their binding specificity. Our approach produces the lowest energy bound complexes with an average ligand root mean square deviation of 0.36 A. We further test our method on (i) homologs and (ii) mutant structures of PDZ where mutations alter the binding selectivity. In both cases, our approach succeeds to predict the correct pose and the affinity of binding peptides. Overall, with this approach, we generate an ensemble of MRCs that leads to predict the binding poses and specificities of a protein complex accurately.
A flexible docking scheme to explore the binding selectivity of PDZ domains
Gerek, Z Nevin; Ozkan, S Banu
2010-01-01
Modeling of protein binding site flexibility in molecular docking is still a challenging problem due to the large conformational space that needs sampling. Here, we propose a flexible receptor docking scheme: A dihedral restrained replica exchange molecular dynamics (REMD), where we incorporate the normal modes obtained by the Elastic Network Model (ENM) as dihedral restraints to speed up the search towards correct binding site conformations. To our knowledge, this is the first approach that uses ENM modes to bias REMD simulations towards binding induced fluctuations in docking studies. In our docking scheme, we first obtain the deformed structures of the unbound protein as initial conformations by moving along the binding fluctuation mode, and perform REMD using the ENM modes as dihedral restraints. Then, we generate an ensemble of multiple receptor conformations (MRCs) by clustering the lowest replica trajectory. Using RosettaLigand, we dock ligands to the clustered conformations to predict the binding pose and affinity. We apply this method to postsynaptic density-95/Dlg/ZO-1 (PDZ) domains; whose dynamics govern their binding specificity. Our approach produces the lowest energy bound complexes with an average ligand root mean square deviation of 0.36 Å. We further test our method on (i) homologs and (ii) mutant structures of PDZ where mutations alter the binding selectivity. In both cases, our approach succeeds to predict the correct pose and the affinity of binding peptides. Overall, with this approach, we generate an ensemble of MRCs that leads to predict the binding poses and specificities of a protein complex accurately. PMID:20196074
Ali, Ali; Bailey, Claire; Abdelhafiz, Ahmed H
2012-08-01
With advancing age, the prevalence of both stroke and non valvular atrial fibrillation (NVAF) is increasing. NVAF in old age has a high embolic potential if not anticoagulated. Oral anticoagulation therapy is cost effective in older people with NVAF due to their high base line stroke risk. The current stroke and bleeding risk scoring schemes have been based on complex scoring systems that are difficult to apply in clinical practice. Both scoring schemes include similar risk factors for ischemic and bleeding events which may lead to confusion in clinical decision making to balance the risks of bleeding against the risks of stroke, thereby limiting the applicability of such schemes. The difficulty in application of such schemes combined with physicians' fear of inducing bleeding complications has resulted in under use of anticoagulation therapy in older people. As older people (≥75 years) with NVAF are all at high risk of stroke, we are suggesting a pragmatic approach based on a yes/no decision rather than a risk scoring stratification which involves an opt out rather an opt in approach unless there is a contraindication for oral anticoagulation. Antiplatelet agents should not be an alternative option for antithrombotic treatment in older people with NVAF due to lack of efficacy and the potential of being used as an excuse of not prescribing anticoagulation. Bleeding risk should be assessed on individual basis and the decision to anticoagulate should include patients' views.
Ali, Ali; Bailey, Claire; Abdelhafiz, Ahmed H
2012-01-01
With advancing age, the prevalence of both stroke and non valvular atrial fibrillation (NVAF) is increasing. NVAF in old age has a high embolic potential if not anticoagulated. Oral anticoagulation therapy is cost effective in older people with NVAF due to their high base line stroke risk. The current stroke and bleeding risk scoring schemes have been based on complex scoring systems that are difficult to apply in clinical practice. Both scoring schemes include similar risk factors for ischemic and bleeding events which may lead to confusion in clinical decision making to balance the risks of bleeding against the risks of stroke, thereby limiting the applicability of such schemes. The difficulty in application of such schemes combined with physicians’ fear of inducing bleeding complications has resulted in under use of anticoagulation therapy in older people. As older people (≥75 years) with NVAF are all at high risk of stroke, we are suggesting a pragmatic approach based on a yes/no decision rather than a risk scoring stratification which involves an opt out rather an opt in approach unless there is a contraindication for oral anticoagulation. Antiplatelet agents should not be an alternative option for antithrombotic treatment in older people with NVAF due to lack of efficacy and the potential of being used as an excuse of not prescribing anticoagulation. Bleeding risk should be assessed on individual basis and the decision to anticoagulate should include patients’ views. PMID:23185715
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolan, Sam R.; Barack, Leor
2011-01-15
To model the radiative evolution of extreme mass-ratio binary inspirals (a key target of the LISA mission), the community needs efficient methods for computation of the gravitational self-force (SF) on the Kerr spacetime. Here we further develop a practical 'm-mode regularization' scheme for SF calculations, and give the details of a first implementation. The key steps in the method are (i) removal of a singular part of the perturbation field with a suitable 'puncture' to leave a sufficiently regular residual within a finite worldtube surrounding the particle's worldline, (ii) decomposition in azimuthal (m) modes, (iii) numerical evolution of the mmore » modes in 2+1D with a finite-difference scheme, and (iv) reconstruction of the SF from the mode sum. The method relies on a judicious choice of puncture, based on the Detweiler-Whiting decomposition. We give a working definition for the ''order'' of the puncture, and show how it determines the convergence rate of the m-mode sum. The dissipative piece of the SF displays an exponentially convergent mode sum, while the m-mode sum for the conservative piece converges with a power law. In the latter case, the individual modal contributions fall off at large m as m{sup -n} for even n and as m{sup -n+1} for odd n, where n is the puncture order. We describe an m-mode implementation with a 4th-order puncture to compute the scalar-field SF along circular geodesics on Schwarzschild. In a forthcoming companion paper we extend the calculation to the Kerr spacetime.« less
Colin L. O' Loughlin
1991-01-01
In New Zealand responsibility for funding flood protection and erosion prevention and control projects rests largely with local regional authorities. However, in 1988 Central Government decided to provide direct funding for a major forestry conservation scheme in the erosion-susceptible East Coast region. Government's investment decision was influenced by a number...
Factors Affecting Self-Referral to Counselling Services in the Workplace: A Qualitative Study
ERIC Educational Resources Information Center
Athanasiades, Chrysostomos; Winthrop, Allan; Gough, Brendan
2008-01-01
The benefits of psychological support in the workplace (also known as workplace counselling) are well documented. Most large organisations in the UK have staff counselling schemes. However, it is unclear what, if any, factors affect employee decisions to use such schemes. This study has used a qualitative methodology to explore the reasons that…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polgar, T.T.; Summers, J.K.; Haire, M.S.
1979-10-01
Power plant cooling system entrainment and plume entrainment may reduce the sizes of fish, benthic and other populations through the destruction of early life stages. This document has been prepared to estimate the potential effects and impacts of entrainment by the Morgantown (PEPCO) and Possum Point (VEPCO) steam electric generating stations. Maryland water quality regulation requires the determination of entrainment effects on spawning and nursery areas of consequence for the Representative Important Species (RIS) designated within the regulation. The purpose of this evaluation is to provide information for regulatory decisions regarding the need for alternative cooling modes at existing facilities.more » Caclulation schemes are presented to estimate the individual and cumulative entrainment effects due to the operations of both the Morgantown and Possum Point facilities. Potential adult population losses due to the entrainment of early life stages were estimated for 24 RIS populations.« less
Low-complexity transcoding algorithm from H.264/AVC to SVC using data mining
NASA Astrophysics Data System (ADS)
Garrido-Cantos, Rosario; De Cock, Jan; Martínez, Jose Luis; Van Leuven, Sebastian; Cuenca, Pedro; Garrido, Antonio
2013-12-01
Nowadays, networks and terminals with diverse characteristics of bandwidth and capabilities coexist. To ensure a good quality of experience, this diverse environment demands adaptability of the video stream. In general, video contents are compressed to save storage capacity and to reduce the bandwidth required for its transmission. Therefore, if these compressed video streams were compressed using scalable video coding schemes, they would be able to adapt to those heterogeneous networks and a wide range of terminals. Since the majority of the multimedia contents are compressed using H.264/AVC, they cannot benefit from that scalability. This paper proposes a low-complexity algorithm to convert an H.264/AVC bitstream without scalability to scalable bitstreams with temporal scalability in baseline and main profiles by accelerating the mode decision task of the scalable video coding encoding stage using machine learning tools. The results show that when our technique is applied, the complexity is reduced by 87% while maintaining coding efficiency.
TCP performance in ATM networks: ABR parameter tuning and ABR/UBR comparisons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien Fang; Lin, A.
1996-02-27
This paper explores two issues on TOP performance over ATM networks: ABR parameter tuning and performance comparison of binary mode ABR with enhanced UBR services. Of the fifteen parameters defined for ABR, two parameters dominate binary mode ABR performance: Rate Increase Factor (RIF) and Rate Decrease Factor (RDF). Using simulations, we study the effects of these two parameters on TOP over ABR performance. We compare TOP performance with different ABR parameter settings in terms of through-puts and fairness. The effects of different buffer sizes and LAN/WAN distances are also examined. We then compare TOP performance with the best ABR parametermore » setting with corresponding UBR service enhanced with Early Packet Discard and also with a fair buffer allocation scheme. The results show that TOP performance over binary mode ABR is very sensitive to parameter value settings, and that a poor choice of parameters can result in ABR performance worse than that of the much less expensive UBR-EPD scheme.« less
Extreme Wave-Induced Oscillation in Paradip Port Under the Resonance Conditions
NASA Astrophysics Data System (ADS)
Kumar, Prashant; Gulshan
2017-12-01
A mathematical model is constructed to analyze the long wave-induced oscillation in Paradip Port, Odisha, India under the resonance conditions to avert any extreme wave hazards. Boundary element method (BEM) with corner contribution is utilized to solve the Helmholtz equation under the partial reflection boundary conditions. Furthermore, convergence analysis is also performed for the boundary element scheme with uniform and non-uniform discretization of the boundary. The numerical scheme is also validated with analytic approximation and existing studies based on harbor resonance. Then, the amplification factor is estimated at six key record stations in the Paradip Port with multidirectional incident waves and resonance modes are also estimated at the boundary of the port. Ocean surface wave field is predicted in the interior of Paradip Port for the different directional incident wave at various resonance modes. Moreover, the safe locations in the port have been identified for loading and unloading of moored ship with different resonance modes and directional incident waves.
Finite element analysis of the end notched flexure specimen for measuring Mode II fracture toughness
NASA Technical Reports Server (NTRS)
Gillespie, J. W., Jr.; Carlsson, L. A.; Pipes, R. B.
1986-01-01
The paper presents a finite element analysis of the end-notched flexure (ENF) test specimen for Mode II interlaminar fracture testing of composite materials. Virtual crack closure and compliance techniques employed to calculate strain energy release rates from linear elastic two-dimensional analysis indicate that the ENF specimen is a pure Mode II fracture test within the constraints of small deflection theory. Furthermore, the ENF fracture specimen is shown to be relatively insensitive to process-induced cracks, offset from the laminate midplane. Frictional effects are investigated by including the contact problem in the finite element model. A parametric study investigating the influence of delamination length, span, thickness, and material properties assessed the accuracy of beam theory expressions for compliance and strain energy release rate, GII. Finite element results indicate that data reduction schemes based upon beam theory underestimate GII by approximately 20-40 percent for typical unidirectional graphite fiber composite test specimen geometries. Consequently, an improved data reduction scheme is proposed.
Spontaneous mode switching in coupled oscillators competing for constant amounts of resources
NASA Astrophysics Data System (ADS)
Hirata, Yoshito; Aono, Masashi; Hara, Masahiko; Aihara, Kazuyuki
2010-03-01
We propose a widely applicable scheme of coupling that models competitions among dynamical systems for fixed amounts of resources. Two oscillators coupled in this way synchronize in antiphase. Three oscillators coupled circularly show a number of oscillation modes such as rotation and partially in-phase synchronization. Intriguingly, simple oscillators in the model also produce complex behavior such as spontaneous switching among different modes. The dynamics reproduces well the spatiotemporal oscillatory behavior of a true slime mold Physarum, which is capable of computational optimization.
Constructing an Urban Population Model for Medical Insurance Scheme Using Microsimulation Techniques
Xiong, Linping; Zhang, Lulu; Tang, Weidong; Ma, Yuqin
2012-01-01
China launched a pilot project of medical insurance reform in 79 cities in 2007 to cover urban nonworking residents. An urban population model was created in this paper for China's medical insurance scheme using microsimulation model techniques. The model made it clear for the policy makers the population distributions of different groups of people, the potential urban residents entering the medical insurance scheme. The income trends of units of individuals and families were also obtained. These factors are essential in making the challenging policy decisions when considering to balance the long-term financial sustainability of the medical insurance scheme. PMID:22481973
Is the Door in the Invisible Wall Closing?
ERIC Educational Resources Information Center
Windsor, Duane; Greanias, George
Several Supreme Court decisions in the 1970s have rejected constitutional arguments aimed at eliminating exclusionary zoning and growth management schemes which allegedly maintain existing problems of racial and income segregation in major metropolitan areas. These decisions have led observers to conclude that the Supreme Court has greatly…
Mode-locking of a terahertz laser by direct phase synchronization.
Maysonnave, J; Maussang, K; Freeman, J R; Jukam, N; Madéo, J; Cavalié, P; Rungsawang, R; Khanna, S P; Linfield, E H; Davies, A G; Beere, H E; Ritchie, D A; Dhillon, S S; Tignon, J
2012-09-10
A novel scheme to achieve mode-locking of a multimode laser is demonstrated. Traditional methods to produce ultrashort laser pulses are based on modulating the cavity gain or losses at the cavity roundtrip frequency, favoring the pulsed emission. Here, we rather directly act on the phases of the modes, resulting in constructive interference for the appropriated phase relationship. This was performed on a terahertz quantum cascade laser by multimode injection seeding with an external terahertz pulse, resulting in phase mode-locked terahertz laser pulses of 9 ps duration, characterized unambiguously in the time domain.
Chen, Shu-Wen; Hutchinson, Alison M; Nagle, Cate; Bucknall, Tracey K
2018-01-17
Vaginal birth after caesarean (VBAC) is an alternative option for women who have had a previous caesarean section (CS); however, uptake is limited because of concern about the risks of uterine rupture. The aim of this study was to explore women's decision-making processes and the influences on their mode of birth following a previous CS. A qualitative approach was used. The research comprised three stages. Stage I consisted of naturalistic observation at 33-34 weeks' gestation. Stage II involved interviews with pregnant women at 35-37 weeks' gestation. Stage III consisted of interviews with the same women who were interviewed postnatally, 1 month after birth. The research was conducted in a private medical centre in northern Taiwan. Using a purposive sampling, 21 women and 9 obstetricians were recruited. Data collection involved in-depth interviews, observation and field notes. Constant comparative analysis was employed for data analysis. Ensuring the safety of mother and baby was the focus of women's decisions. Women's decisions-making influences included previous birth experience, concern about the risks of vaginal birth, evaluation of mode of birth, current pregnancy situation, information resources and health insurance. In communicating with obstetricians, some women complied with obstetricians' recommendations for repeat caesarean section (RCS) without being informed of alternatives. Others used four step decision-making processes that included searching for information, listening to obstetricians' professional judgement, evaluating alternatives, and making a decision regarding mode of birth. After birth, women reflected on their decisions in three aspects: reflection on birth choices; reflection on factors influencing decisions; and reflection on outcomes of decisions. The health and wellbeing of mother and baby were the major concerns for women. In response to the decision-making influences, women's interactions with obstetricians regarding birth choices varied from passive decision-making to shared decision-making. All women have the right to be informed of alternative birthing options. Routine provision of explanations by obstetricians regarding risks associated with alternative birth options, in addition to financial coverage for RCS from National Health Insurance, would assist women's decision-making. Establishment of a website to provide women with reliable information about birthing options may also assist women's decision-making.
Evidence-based decision-making within Australia's pharmaceutical benefits scheme.
Lopert, Ruth
2009-07-01
In Australia, most prescription drugs are subsidized through the Pharmaceutical Benefits Scheme (PBS), one of several government programs in which evidence-based decision making is applied to the funding of health technologies. PBS processes are intended to ensure "value for money" for the Australian taxpayer and to support affordable, equitable access to prescription medicines; they are not intended as a mechanism for cost containment. The inclusion of a drug on the national formulary depends on the recommendation of the Pharmaceutical Benefits Advisory Committee (PBAC), which considers not only the comparative effectiveness but also the comparative cost-effectiveness of drugs proposed for listing. While some decisions have been controversial, the PBS retains strong public support. Moreover, evidence does not suggest that the consideration of cost-effectiveness has created a negative environment for the drug industry: Australia has a high penetration of patented medicines, with prices for some recently approved drugs at U.S. levels.
Double dissociation of value computations in orbitofrontal and anterior cingulate neurons
Kennerley, Steven W.; Behrens, Timothy E. J.; Wallis, Jonathan D.
2011-01-01
Damage to prefrontal cortex (PFC) impairs decision-making, but the underlying value computations that might cause such impairments remain unclear. Here we report that value computations are doubly dissociable within PFC neurons. While many PFC neurons encoded chosen value, they used opponent encoding schemes such that averaging the neuronal population eliminated value coding. However, a special population of neurons in anterior cingulate cortex (ACC) - but not orbitofrontal cortex (OFC) - multiplex chosen value across decision parameters using a unified encoding scheme, and encoded reward prediction errors. In contrast, neurons in OFC - but not ACC - encoded chosen value relative to the recent history of choice values. Together, these results suggest complementary valuation processes across PFC areas: OFC neurons dynamically evaluate current choices relative to recent choice values, while ACC neurons encode choice predictions and prediction errors using a common valuation currency reflecting the integration of multiple decision parameters. PMID:22037498
Acoustic fatigue life prediction for nonlinear structures with multiple resonant modes
NASA Technical Reports Server (NTRS)
Miles, R. N.
1992-01-01
This report documents an effort to develop practical and accurate methods for estimating the fatigue lives of complex aerospace structures subjected to intense random excitations. The emphasis of the current program is to construct analytical schemes for performing fatigue life estimates for structures that exhibit nonlinear vibration behavior and that have numerous resonant modes contributing to the response.
One-dimensional energetic particle quasilinear diffusion for realistic TAE instabilities
NASA Astrophysics Data System (ADS)
Duarte, Vinicius; Ghantous, Katy; Berk, Herbert; Gorelenkov, Nikolai
2014-10-01
Owing to the proximity of the characteristic phase (Alfvén) velocity and typical energetic particle (EP) superthermal velocities, toroidicity-induced Alfvén eigenmodes (TAEs) can be resonantly destabilized endangering the plasma performance. Thus, it is of ultimate importance to understand the deleterious effects on the confinement resulting from fast ion driven instabilities expected in fusion-grade plasmas. We propose to study the interaction of EPs and TAEs using a line broadened quasilinear model, which captures the interaction in both regimes of isolated and overlapping modes. The resonance particles diffuse in the phase space where the problem essentially reduces to one dimension with constant kinetic energy and the diffusion mainly along the canonical toroidal angular momentum. Mode structure and wave particle resonances are computed by the NOVA code and are used in a quasilinear diffusion code that is being written to study the evolution of the distribution function, under the assumption that they can be considered virtually unalterable during the diffusion. A new scheme for the resonant particle diffusion is being proposed that builds on the 1-D nature of the diffusion from a single mode, which leads to a momentum conserving difference scheme even when there is mode overlap.
Finite-time stabilization of chaotic gyros based on a homogeneous supertwisting-like algorithm
NASA Astrophysics Data System (ADS)
Khamsuwan, Pitcha; Sangpet, Teerawat; Kuntanapreeda, Suwat
2018-01-01
This paper presents a finite-time stabilization scheme for nonlinear chaotic gyros. The scheme utilizes a supertwisting-like continuous control algorithm for the systems of dimension more than one with a Lipschitz disturbance. The algorithm yields finite-time convergence similar to that produces by discontinuous sliding mode control algorithms. To design the controller, the nonlinearities in the gyro are treated as a disturbance in the system. Thanks to the dissipativeness of chaotic systems, the nonlinearities also possess the Lipschitz property. Numerical results are provided to illustrate the effectiveness of the scheme.
All-optical wavelength conversion for mode division multiplexed superchannels.
Gong, Jiaxin; Xu, Jing; Luo, Ming; Li, Xiang; Qiu, Ying; Yang, Qi; Zhang, Xinliang; Yu, Shaohua
2016-04-18
We report in this work the first all-optical wavelength conversion (AOWC) of a mode division multiplexed (MDM) superchannel consisting of 2N modes by dividing the superchannel into N single-mode (SM) tributaries, wavelength converting N SM signals using well developed SM-AOWC techniques, and finally combining the N SM tributaries back to an MDM superchannel at the converted wavelength, inspired by the idea of using SM filtering techniques to filter multimode signals in astronomy. The conversions between multimode and SM are realized by 3D laser-writing photonic lanterns and SM-AOWCs are realized based on polarization insensitive four wave mixing (FWM) configuration in N semiconductor optical amplifiers (SOAs). As a proof of concept demonstration, the conversion of a 6-mode MDM superchannel with each mode modulated with orthogonal frequency division multiplexed (OFDM) quadrature phase-shift keying (QPSK)/16 quadrature amplitude modulation (QAM) signals is demonstrated in this work, indicating that the scheme is transparent to data format, polarization and compatible with multi-carrier signals. Data integrity of the converted superchannel has been verified by using coherent detection and digital signal processing (DSP). Bit error rates (BERs) below the forward error correction (FEC) hard limit (3.8 × 10-3) have been obtained for QPSK modulation at a net bitrate of 104.2 Gbit/s and BERs below the soft decision FEC threshold (1.98 × 10-2) have been achieved for 16-QAM format, giving a total aggregate bit rate of 185.8 Gbit/s when taking 20% coding overhead into account. Add and drop functionalities that usually come along with wavelength conversion in flexible network nodes have also been demonstrated. The working conditions of the SOAs, especially the pump and signal power levels, are critical for the quality of the converted signal and have been thoroughly discussed. The impact of imbalanced FWM conversion efficiency among different SM tributaries has also been analyzed. This work illustrates a promising way to perform all-optical signal processing for MDM superchannels.
NASA Astrophysics Data System (ADS)
Yoshikawa, Jun-ichi; Yokoyama, Shota; Kaji, Toshiyuki; Sornphiphatphong, Chanond; Shiozawa, Yu; Makino, Kenzo; Furusawa, Akira
2016-09-01
In recent quantum optical continuous-variable experiments, the number of fully inseparable light modes has drastically increased by introducing a multiplexing scheme either in the time domain or in the frequency domain. Here, modifying the time-domain multiplexing experiment reported in the work of Yokoyama et al. [Nat. Photonics 7, 982 (2013)], we demonstrate the successive generation of fully inseparable light modes for more than one million modes. The resulting multi-mode state is useful as a dual-rail continuous variable cluster state. We circumvent the previous problem of optical phase drifts, which has limited the number of fully inseparable light modes to around ten thousands, by continuous feedback control of the optical system.
Optimal second order sliding mode control for nonlinear uncertain systems.
Das, Madhulika; Mahanta, Chitralekha
2014-07-01
In this paper, a chattering free optimal second order sliding mode control (OSOSMC) method is proposed to stabilize nonlinear systems affected by uncertainties. The nonlinear optimal control strategy is based on the control Lyapunov function (CLF). For ensuring robustness of the optimal controller in the presence of parametric uncertainty and external disturbances, a sliding mode control scheme is realized by combining an integral and a terminal sliding surface. The resulting second order sliding mode can effectively reduce chattering in the control input. Simulation results confirm the supremacy of the proposed optimal second order sliding mode control over some existing sliding mode controllers in controlling nonlinear systems affected by uncertainty. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Unified powered flight guidance
NASA Technical Reports Server (NTRS)
Brand, T. J.; Brown, D. W.; Higgins, J. P.
1973-01-01
A complete revision of the orbiter powered flight guidance scheme is presented. A unified approach to powered flight guidance was taken to accommodate all phases of exo-atmospheric orbiter powered flight, from ascent through deorbit. The guidance scheme was changed from the previous modified version of the Lambert Aim Point Maneuver Mode used in Apollo to one that employs linear tangent guidance concepts. This document replaces the previous ascent phase equation document.
Finite Volume Element (FVE) discretization and multilevel solution of the axisymmetric heat equation
NASA Astrophysics Data System (ADS)
Litaker, Eric T.
1994-12-01
The axisymmetric heat equation, resulting from a point-source of heat applied to a metal block, is solved numerically; both iterative and multilevel solutions are computed in order to compare the two processes. The continuum problem is discretized in two stages: finite differences are used to discretize the time derivatives, resulting is a fully implicit backward time-stepping scheme, and the Finite Volume Element (FVE) method is used to discretize the spatial derivatives. The application of the FVE method to a problem in cylindrical coordinates is new, and results in stencils which are analyzed extensively. Several iteration schemes are considered, including both Jacobi and Gauss-Seidel; a thorough analysis of these schemes is done, using both the spectral radii of the iteration matrices and local mode analysis. Using this discretization, a Gauss-Seidel relaxation scheme is used to solve the heat equation iteratively. A multilevel solution process is then constructed, including the development of intergrid transfer and coarse grid operators. Local mode analysis is performed on the components of the amplification matrix, resulting in the two-level convergence factors for various combinations of the operators. A multilevel solution process is implemented by using multigrid V-cycles; the iterative and multilevel results are compared and discussed in detail. The computational savings resulting from the multilevel process are then discussed.
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Hur, Min Sup; Chung, Moses
2017-06-01
Extremely short X-ray pulses in the attosecond (as) range are important tools for ultrafast dynamics, high resolution microscopy, and nuclear dynamics study. In this paper, we numerically examine the generation of gigawatt (GW) mode-locked (ML) multichromatic X-rays using the parameters of the Pohang Accelerator Laboratory (PAL)-X-ray free electron laser (XFEL), the Korean XFEL. In this vein, we analyze the ML-FEL [Thompson and McNeil, Phys. Rev. Lett. 100, 203901 (2008)] and mode-locked afterburner (MLAB) FEL [Dunning et al., Phys. Rev. Lett. 110, 104801 (2013)] schemes on the hard X-ray beamline of the PAL-XFEL. Using the ML scheme, we numerically demonstrate a train of radiation pulses in the hard X-ray (photon energy ˜12.4 keV) with 3.5 GW power and 16 as full-width half maximum (FWHM) pulse duration. On the other hand, using the MLAB scheme, a train of radiation pulses with 3 GW power and 1 as FWHM (900 zs in RMS) pulse duration has been obtained at 12.4 keV photon energy. Both schemes generate broadband, discrete, and coherent spectrum compared to the XFEL's narrowband spectrum. Furthermore, the effect of slotted foil is also studied first time on the MLAB-FEL output. Numerical comparisons show that the temporal structure of the MLAB-FEL output can be improved significantly by the use of the slotted foil. Such short X-ray pulses at XFEL facilities will allow the studies of electron-nuclear and nuclear dynamics in atoms or molecules, and the broadband radiation will substantially improve the efficiency of the experimental techniques such as X-ray crystallography and spectroscopy, paving the way for outstanding progress in biology and material science.
NASA Astrophysics Data System (ADS)
Yang, Qingchun; Chetehouna, Khaled; Gascoin, Nicolas; Bao, Wen
2016-05-01
To enable the scramjet operate in a wider flight Mach number, a staged-combustor with dual-strut is introduced to hold more heat release at low flight Mach conditions. The behavior of mode transition was examined using a direct-connect model scramjet experiment along with pressure measurements. The typical operating modes of the staged-combustor are analyzed. Fuel injection scheme has a significant effect on the combustor operating modes, particularly for the supersonic combustion mode. Thrust performances of the combustor with different combustion modes and fuel distributions are reported in this paper. The first-staged strut injection has a better engine performance in the operation of subsonic combustion mode. On the contrast, the second-staged strut injection has a better engine performance in the operation of supersonic combustion mode.
Nakarmi, Bikash; Hoai, Tran Quoc; Won, Yong-Hyub; Zhang, Xuping
2014-06-30
We propose and demonstrate a novel scheme for short pulse controlled all-optical switch using external cavity based single mode Fabry- Pérot laser diode (SMFP-LD). The proposed scheme consists of control unit and switching unit as two essential blocks. The basic principle of the proposed scheme is the optical bistability property of SMFP-LD for the control unit and the suppression of the dominant beam of SMFP-LD with injection locking for the switching unit. We also present the analysis of hysteresis width and rising/falling time with change in wavelength detuning which helps to find the optimum wavelength detuning value and power of light beams at different stages of the proposed scheme that gives wide input dynamic power range, high ON/OFF contrast ratio, and low rising/falling time. Input data of 10 Gb/s Non Return to Zero (NRZ) signal is switched at output ports depending upon the control signal generated by the control unit, which comprises of optical SR latch. Output waveforms, clear eye diagrams with extinction ratio of about 11 dB, rising/falling time of about 30 ps and 40 ps, and bit error rate (BER) are measured to validate proposed scheme. No noise floor is observed at output ports up to BER of 10-(12) and the maximum power penalty recorded is about 1.7 dB at a BER of 10-(9) which shows good performance of the proposed short pulse controlled optical switch using SMFP-LDs.
NASA Astrophysics Data System (ADS)
Vandersypen, Klaartje; Keita, Abdoulaye C. T.; Coulibaly, Y.; Raes, D.; Jamin, J.-Y.
2007-06-01
Water Users Associations (WUAs) are all too often considered a panacea for improving water management in irrigation schemes. Where grassroots movements are absent, they are usually imposed on farmers by national governments, NGOs, and international donors, without fully considering existing forms of organization. This also happened in the Office du Niger irrigation scheme in Mali, where after a partial irrigation management transfer, WUAs were created to fill the resulting power vacuum. This paper demonstrates that, despite active efforts to organize farmers in WUAs, informal patterns of decision making remain dominant. Given the shortcomings of these informal patterns, WUAs could provide a much-needed platform for institutionalizing collective action, on the condition that farmers accept them. Therefore WUAs should adopt some crucial characteristics of informal patterns of decision making while avoiding their weaknesses. First, making use of the existing authority of village leadership and the central management can improve the credibility of WUAs. Second, allowing flexibility in procedures and rules can make them more appropriate for dealing with collective action problems that are typically temporary and specific. Last, formalizing the current pattern of conflict management and sanctioning might enhance its sphere of action and tackle the current absence of firm engagement with respect to some informal management decisions. In addition, WUAs should represent and be accountable to all farmers, including those residing outside the village community.
Fast Track Teacher Education: A Review of the Research Literature on "Teach For All" Schemes
ERIC Educational Resources Information Center
McConney, Andrew; Price, Anne; Woods-McConney, Amanda
2012-01-01
This review of the research literature was commissioned by the New Zealand Post-Primary Teachers Association (PPTA) Te Wehengarua as a means of informing the decision-making of the Association and its members about the Teach For All (TFA) scheme seeking to prepare teachers for New Zealand's schools. The systematic review is about fast track…
An Effective and Robust Decentralized Target Tracking Scheme in Wireless Camera Sensor Networks.
Fu, Pengcheng; Cheng, Yongbo; Tang, Hongying; Li, Baoqing; Pei, Jun; Yuan, Xiaobing
2017-03-20
In this paper, we propose an effective and robust decentralized tracking scheme based on the square root cubature information filter (SRCIF) to balance the energy consumption and tracking accuracy in wireless camera sensor networks (WCNs). More specifically, regarding the characteristics and constraints of camera nodes in WCNs, some special mechanisms are put forward and integrated in this tracking scheme. First, a decentralized tracking approach is adopted so that the tracking can be implemented energy-efficiently and steadily. Subsequently, task cluster nodes are dynamically selected by adopting a greedy on-line decision approach based on the defined contribution decision (CD) considering the limited energy of camera nodes. Additionally, we design an efficient cluster head (CH) selection mechanism that casts such selection problem as an optimization problem based on the remaining energy and distance-to-target. Finally, we also perform analysis on the target detection probability when selecting the task cluster nodes and their CH, owing to the directional sensing and observation limitations in field of view (FOV) of camera nodes in WCNs. From simulation results, the proposed tracking scheme shows an obvious improvement in balancing the energy consumption and tracking accuracy over the existing methods.
An Effective and Robust Decentralized Target Tracking Scheme in Wireless Camera Sensor Networks
Fu, Pengcheng; Cheng, Yongbo; Tang, Hongying; Li, Baoqing; Pei, Jun; Yuan, Xiaobing
2017-01-01
In this paper, we propose an effective and robust decentralized tracking scheme based on the square root cubature information filter (SRCIF) to balance the energy consumption and tracking accuracy in wireless camera sensor networks (WCNs). More specifically, regarding the characteristics and constraints of camera nodes in WCNs, some special mechanisms are put forward and integrated in this tracking scheme. First, a decentralized tracking approach is adopted so that the tracking can be implemented energy-efficiently and steadily. Subsequently, task cluster nodes are dynamically selected by adopting a greedy on-line decision approach based on the defined contribution decision (CD) considering the limited energy of camera nodes. Additionally, we design an efficient cluster head (CH) selection mechanism that casts such selection problem as an optimization problem based on the remaining energy and distance-to-target. Finally, we also perform analysis on the target detection probability when selecting the task cluster nodes and their CH, owing to the directional sensing and observation limitations in field of view (FOV) of camera nodes in WCNs. From simulation results, the proposed tracking scheme shows an obvious improvement in balancing the energy consumption and tracking accuracy over the existing methods. PMID:28335537
Attitude control system of the Delfi-n3Xt satellite
NASA Astrophysics Data System (ADS)
Reijneveld, J.; Choukroun, D.
2013-12-01
This work is concerned with the development of the attitude control algorithms that will be implemented on board of the Delfi-n3xt nanosatellite, which is to be launched in 2013. One of the mission objectives is to demonstrate Sun pointing and three axis stabilization. The attitude control modes and the associated algorithms are described. The control authority is shared between three body-mounted magnetorquers (MTQ) and three orthogonal reaction wheels. The attitude information is retrieved from Sun vector measurements, Earth magnetic field measurements, and gyro measurements. The design of the control is achieved as a trade between simplicity and performance. Stabilization and Sun pointing are achieved via the successive application of the classical Bdot control law and a quaternion feedback control. For the purpose of Sun pointing, a simple quaternion estimation scheme is implemented based on geometric arguments, where the need for a costly optimal filtering algorithm is alleviated, and a single line of sight (LoS) measurement is required - here the Sun vector. Beyond the three-axis Sun pointing mode, spinning Sun pointing modes are also described and used as demonstration modes. The three-axis Sun pointing mode requires reaction wheels and magnetic control while the spinning control modes are implemented with magnetic control only. In addition, a simple scheme for angular rates estimation using Sun vector and Earth magnetic measurements is tested in the case of gyro failures. The various control modes performances are illustrated via extensive simulations over several orbits time spans. The simulated models of the dynamical space environment, of the attitude hardware, and the onboard controller logic are using realistic assumptions. All control modes satisfy the minimal Sun pointing requirements allowed for power generation.
Robust symmetry-protected metrology with the Haldane phase
NASA Astrophysics Data System (ADS)
Bartlett, Stephen D.; Brennen, Gavin K.; Miyake, Akimasa
2018-01-01
We propose a metrology scheme that is made robust to a wide range of noise processes by using the passive, error-preventing properties of symmetry-protected topological phases. The so-called fractionalized edge mode of an antiferromagnetic Heisenberg spin-1 chain in a rotationally- symmetric Haldane phase can be used to measure the direction of an unknown electric field, by exploiting the way in which the field direction reduces the symmetry of the chain. Specifically, the direction (and when supplementing with a known background field, also the strength) of the field is registered in the holonomy under an adiabatic sensing protocol, and the degenerate fractionalized edge mode is protected through this process by the remaining reduced symmetry. We illustrate the scheme with respect to a potential realization by Rydberg dressed atoms.
Pointing Reference Scheme for Free-Space Optical Communications Systems
NASA Technical Reports Server (NTRS)
Wright, Malcolm; Ortiz, Gerardo; Jeganathan, Muthu
2006-01-01
A scheme is proposed for referencing the propagation direction of the transmit laser signal in pointing a free-space optical communications terminal. This recently developed scheme enables the use of low-cost, commercial silicon-based sensors for tracking the direction of the transmit laser, regardless of the transmit wavelength. Compared with previous methods, the scheme offers some advantages of less mechanical and optical complexity and avoids expensive and exotic sensor technologies. In free-space optical communications, the transmit beam must be accurately pointed toward the receiver in order to maintain the communication link. The current approaches to achieve this function call for part of the transmit beam to be split off and projected onto an optical sensor used to infer the pointed direction. This requires that the optical sensor be sensitive to the wavelength of the transmit laser. If a different transmit wavelength is desired, for example to obtain a source capable of higher data rates, this can become quite impractical because of the unavailability or inefficiency of sensors at these wavelengths. The innovation proposed here decouples this requirement by allowing any transmit wavelength to be used with any sensor. We have applied this idea to a particular system that transmits at the standard telecommunication wavelength of 1,550 nm and uses a silicon-based sensor, sensitive from 0.5 to 1.0 micrometers, to determine the pointing direction. The scheme shown in the figure involves integrating a low-power 980-nm reference or boresight laser beam coupled to the 1,550-nm transmit beam via a wavelength-division-multiplexed fiber coupler. Both of these signals propagate through the optical fiber where they achieve an extremely high level of co-alignment before they are launched into the telescope. The telescope uses a dichroic beam splitter to reflect the 980- nm beam onto the silicon image sensor (a quad detector, charge-coupled device, or active-pixel-sensor array) while the 1,550- nm signal beam is transmitted through the optical assembly toward the remotely located receiver. Since the 980-nm reference signal originates from the same single-mode fiber-coupled source as the transmit signal, its position on the sensor is used to accurately determine the propagation direction of the transmit signal. The optics are considerably simpler in the proposed scheme due to the use of a single aperture for transmitting and receiving. Moreover, the issue of mechanical misalignment does not arise because the reference signal and transmitted laser beams are inherently co-aligned. The beam quality of the 980-nm reference signal used for tracking is required to be circularly symmetric and stable at the tracking-plane sensor array in order to minimize error in the centroiding algorithm of the pointing system. However, since the transmit signal is delivered through a fiber that supports a single mode at 1,550 nm, propagation of higher order 980-nm modes is possible. Preliminary analysis shows that the overall mode profile is dominated by the fundamental mode, giving a near symmetric profile. The instability of the mode was also measured and found to be negligible in comparison to the other error contributions in the centroid position on the sensor array.
On the security of two remote user authentication schemes for telecare medical information systems.
Kim, Kee-Won; Lee, Jae-Dong
2014-05-01
The telecare medical information systems (TMISs) support convenient and rapid health-care services. A secure and efficient authentication scheme for TMIS provides safeguarding patients' electronic patient records (EPRs) and helps health care workers and medical personnel to rapidly making correct clinical decisions. Recently, Kumari et al. proposed a password based user authentication scheme using smart cards for TMIS, and claimed that the proposed scheme could resist various malicious attacks. However, we point out that their scheme is still vulnerable to lost smart card and cannot provide forward secrecy. Subsequently, Das and Goswami proposed a secure and efficient uniqueness-and-anonymity-preserving remote user authentication scheme for connected health care. They simulated their scheme for the formal security verification using the widely-accepted automated validation of Internet security protocols and applications (AVISPA) tool to ensure that their scheme is secure against passive and active attacks. However, we show that their scheme is still vulnerable to smart card loss attacks and cannot provide forward secrecy property. The proposed cryptanalysis discourages any use of the two schemes under investigation in practice and reveals some subtleties and challenges in designing this type of schemes.
A soft-hard combination-based cooperative spectrum sensing scheme for cognitive radio networks.
Do, Nhu Tri; An, Beongku
2015-02-13
In this paper we propose a soft-hard combination scheme, called SHC scheme, for cooperative spectrum sensing in cognitive radio networks. The SHC scheme deploys a cluster based network in which Likelihood Ratio Test (LRT)-based soft combination is applied at each cluster, and weighted decision fusion rule-based hard combination is utilized at the fusion center. The novelties of the SHC scheme are as follows: the structure of the SHC scheme reduces the complexity of cooperative detection which is an inherent limitation of soft combination schemes. By using the LRT, we can detect primary signals in a low signal-to-noise ratio regime (around an average of -15 dB). In addition, the computational complexity of the LRT is reduced since we derive the closed-form expression of the probability density function of LRT value. The SHC scheme also takes into account the different effects of large scale fading on different users in the wide area network. The simulation results show that the SHC scheme not only provides the better sensing performance compared to the conventional hard combination schemes, but also reduces sensing overhead in terms of reporting time compared to the conventional soft combination scheme using the LRT.
Smith, Anita; Sullivan, Danny
2012-09-01
The United Nations Convention on the Rights of Persons with Disabilities is a powerful international instrument which imposes significant responsibilities on signatories. This column discusses changes in the definition of legal capacity which will have significant impacts on decision-making related to people with dementia. Various restrictions and limitations on personal freedoms are discussed in light of the Convention. The main focus is on challenges to existing paradigms of substitute decision-making, which are in wide use through a guardianship model. Under Art 12 of the Convention, moves to supported decision-making will result in significant changes in ensuring the rights of people with dementia. There are challenges ahead in implementing supported decision-making schemes, not only due to tension with existing practices and legislation, but also the difficulty of developing and resourcing workable schemes. This is particularly so with advanced dementia, which is acknowledged as a pressing issue for Australia due to effective health care, an ageing population and changing expectations.
Frantzidis, Christos A; Gilou, Sotiria; Billis, Antonis; Karagianni, Maria; Bratsas, Charalampos D; Bamidis, Panagiotis
2016-03-01
Recent neuroscientific studies focused on the identification of pathological neurophysiological patterns (emotions, geriatric depression, memory impairment and sleep disturbances) through computerised clinical decision-support systems. Almost all these research attempts employed either resting-state condition (e.g. eyes-closed) or event-related potentials extracted during a cognitive task known to be affected by the disease under consideration. This Letter reviews existing data mining techniques and aims to enhance their robustness by proposing a holistic decision framework dealing with comorbidities and early symptoms' identification, while it could be applied in realistic occasions. Multivariate features are elicited and fused in order to be compared with average activities characteristic of each neuropathology group. A proposed model of the specific cognitive function which may be based on previous findings (a priori information) and/or validated by current experimental data should be then formed. So, the proposed scheme facilitates the early identification and prevention of neurodegenerative phenomena. Neurophysiological semantic annotation is hypothesised to enhance the importance of the proposed framework in facilitating the personalised healthcare of the information society and medical informatics research community.
The Hilbert-Huang Transform-Based Denoising Method for the TEM Response of a PRBS Source Signal
NASA Astrophysics Data System (ADS)
Hai, Li; Guo-qiang, Xue; Pan, Zhao; Hua-sen, Zhong; Khan, Muhammad Younis
2016-08-01
The denoising process is critical in processing transient electromagnetic (TEM) sounding data. For the full waveform pseudo-random binary sequences (PRBS) response, an inadequate noise estimation may result in an erroneous interpretation. We consider the Hilbert-Huang transform (HHT) and its application to suppress the noise in the PRBS response. The focus is on the thresholding scheme to suppress the noise and the analysis of the signal based on its Hilbert time-frequency representation. The method first decomposes the signal into the intrinsic mode function, and then, inspired by the thresholding scheme in wavelet analysis; an adaptive and interval thresholding is conducted to set to zero all the components in intrinsic mode function which are lower than a threshold related to the noise level. The algorithm is based on the characteristic of the PRBS response. The HHT-based denoising scheme is tested on the synthetic and field data with the different noise levels. The result shows that the proposed method has a good capability in denoising and detail preservation.
NASA Astrophysics Data System (ADS)
Zhao, Shengmei; Wang, Le; Zou, Li; Gong, Longyan; Cheng, Weiwen; Zheng, Baoyu; Chen, Hanwu
2016-10-01
A free-space optical (FSO) communication link with multiplexed orbital angular momentum (OAM) modes has been demonstrated to largely enhance the system capacity without a corresponding increase in spectral bandwidth, but the performance of the link is unavoidably degraded by atmospheric turbulence (AT). In this paper, we propose a turbulence mitigation scheme to improve AT tolerance of the OAM-multiplexed FSO communication link using both channel coding and wavefront correction. In the scheme, we utilize a wavefront correction method to mitigate the phase distortion first, and then we use a channel code to further correct the errors in each OAM mode. The improvement of AT tolerance is discussed over the performance of the link with or without channel coding/wavefront correction. The results show that the bit error rate performance has been improved greatly. The detrimental effect of AT on the OAM-multiplexed FSO communication link could be removed by the proposed scheme even in the relatively strong turbulence regime, such as Cn2 = 3.6 ×10-14m - 2 / 3.
Zhao, Kaihui; Li, Peng; Zhang, Changfan; Li, Xiangfei; He, Jing; Lin, Yuliang
2017-12-06
This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system.
NASA Astrophysics Data System (ADS)
Bao, J.; Liu, D.; Lin, Z.
2017-10-01
A conservative scheme of drift kinetic electrons for gyrokinetic simulations of kinetic-magnetohydrodynamic processes in toroidal plasmas has been formulated and verified. Both vector potential and electron perturbed distribution function are decomposed into adiabatic part with analytic solution and non-adiabatic part solved numerically. The adiabatic parallel electric field is solved directly from the electron adiabatic response, resulting in a high degree of accuracy. The consistency between electrostatic potential and parallel vector potential is enforced by using the electron continuity equation. Since particles are only used to calculate the non-adiabatic response, which is used to calculate the non-adiabatic vector potential through Ohm's law, the conservative scheme minimizes the electron particle noise and mitigates the cancellation problem. Linear dispersion relations of the kinetic Alfvén wave and the collisionless tearing mode in cylindrical geometry have been verified in gyrokinetic toroidal code simulations, which show that the perpendicular grid size can be larger than the electron collisionless skin depth when the mode wavelength is longer than the electron skin depth.
Sensor data monitoring and decision level fusion scheme for early fire detection
NASA Astrophysics Data System (ADS)
Rizogiannis, Constantinos; Thanos, Konstantinos Georgios; Astyakopoulos, Alkiviadis; Kyriazanos, Dimitris M.; Thomopoulos, Stelios C. A.
2017-05-01
The aim of this paper is to present the sensor monitoring and decision level fusion scheme for early fire detection which has been developed in the context of the AF3 Advanced Forest Fire Fighting European FP7 research project, adopted specifically in the OCULUS-Fire control and command system and tested during a firefighting field test in Greece with prescribed real fire, generating early-warning detection alerts and notifications. For this purpose and in order to improve the reliability of the fire detection system, a two-level fusion scheme is developed exploiting a variety of observation solutions from air e.g. UAV infrared cameras, ground e.g. meteorological and atmospheric sensors and ancillary sources e.g. public information channels, citizens smartphone applications and social media. In the first level, a change point detection technique is applied to detect changes in the mean value of each measured parameter by the ground sensors such as temperature, humidity and CO2 and then the Rate-of-Rise of each changed parameter is calculated. In the second level the fire event Basic Probability Assignment (BPA) function is determined for each ground sensor using Fuzzy-logic theory and then the corresponding mass values are combined in a decision level fusion process using Evidential Reasoning theory to estimate the final fire event probability.
An Optimized Handover Scheme with Movement Trend Awareness for Body Sensor Networks
Sun, Wen; Zhang, Zhiqiang; Ji, Lianying; Wong, Wai-Choong
2013-01-01
When a body sensor network (BSN) that is linked to the backbone via a wireless network interface moves from one coverage zone to another, a handover is required to maintain network connectivity. This paper presents an optimized handover scheme with movement trend awareness for BSNs. The proposed scheme predicts the future position of a BSN user using the movement trend extracted from the historical position, and adjusts the handover decision accordingly. Handover initiation time is optimized when the unnecessary handover rate is estimated to meet the requirement and the outage probability is minimized. The proposed handover scheme is simulated in a BSN deployment area in a hospital environment in UK. Simulation results show that the proposed scheme reduces the outage probability by 22% as compared with the existing hysteresis-based handover scheme under the constraint of acceptable handover rate. PMID:23736852
Choi, Dae Sik; Rao, B Jayachander; Kim, Doyeon; Shim, Sang-Hee; Rhee, Hanju; Cho, Minhaeng
2018-06-14
Coherent Raman scattering spectroscopy and microscopy are useful methods for studying the chemical and biological structures of molecules with Raman-active modes. In particular, coherent anti-Stokes Raman scattering (CARS) microscopy, which is a label-free method capable of imaging structures by displaying the vibrational contrast of the molecules, has been widely used. However, the lack of a technique for switching-off the CARS signal has prevented the development of the super-resolution Raman imaging method. Here, we demonstrate that a selective suppression of the CARS signal is possible by using a three-beam double stimulated Raman scattering (SRS) scheme; the three beams are the pump, Stokes, and depletion lights in order of frequency. Both pump-Stokes and pump-depletion beam pairs can generate SRS processes by tuning their beat frequencies to match two different vibrational modes, then two CARS signals induced by pump-Stokes-pump and pump-depletion-pump interactions can be generated, where the two CARS signals are coupled with each other because they both involve interactions with the common pump beam. Herein, we show that as the intensity of the depletion beam is increased, one can selectively suppress the pump-Stokes-pump CARS signal because the pump-depletion SRS depletes the pump photons. A detailed theoretical description of the coupled differential equations for the three incident fields and the generated CARS signal fields is presented. Taking benzene as a molecular system, we obtained a maximum CARS suppression efficiency of about 97% with our experimental scheme, where the ring breathing mode of the benzene is associated with pump-Stokes-pump CARS, while the C-H stretching mode is associated with the competing pump-depletion SRS process. We anticipate that this selective switching-off scheme will be of use in developing super-resolution label-free CARS microscopy.
Park, Chanhun; Nam, Hee-Geun; Jo, Se-Hee; Wang, Nien-Hwa Linda; Mun, Sungyong
2016-02-26
The economical efficiency of valine production in related industries is largely affected by the performance of a valine separation process, in which valine is to be separated from leucine, alanine, and ammonium sulfate. Such separation is currently handled by a batch-mode hybrid process based on ion-exchange and crystallization schemes. To make a substantial improvement in the economical efficiency of an industrial valine production, such a batch-mode process based on two different separation schemes needs to be converted into a continuous-mode separation process based on a single separation scheme. To address this issue, a simulated moving bed (SMB) technology was applied in this study to the development of a continuous-mode valine-separation chromatographic process with uniformity in adsorbent and liquid phases. It was first found that a Chromalite-PCG600C resin could be eligible for the adsorbent of such process, particularly in an industrial scale. The intrinsic parameters of each component on the Chromalite-PCG600C adsorbent were determined and then utilized in selecting a proper set of configurations for SMB units, columns, and ports, under which the SMB operating parameters were optimized with a genetic algorithm. Finally, the optimized SMB based on the selected configurations was tested experimentally, which confirmed its effectiveness in continuous separation of valine from leucine, alanine, ammonium sulfate with high purity, high yield, high throughput, and high valine product concentration. It is thus expected that the developed SMB process in this study will be able to serve as one of the trustworthy ways of improving the economical efficiency of an industrial valine production process. Copyright © 2016 Elsevier B.V. All rights reserved.
Dror, David Mark; Hossain, S A Shahed; Majumdar, Atanu; Pérez Koehlmoos, Tracey Lynn; John, Denny; Panda, Pradeep Kumar
2016-01-01
This research article reports on factors influencing initial voluntary uptake of community-based health insurance (CBHI) schemes in low- and middle-income countries (LMIC), and renewal decisions. Following PRISMA protocol, we conducted a comprehensive search of academic and gray literature, including academic databases in social science, economics and medical sciences (e.g., Econlit, Global health, Medline, Proquest) and other electronic resources (e.g., Eldis and Google scholar). Search strategies were developed using the thesaurus or index terms (e.g., MeSH) specific to the databases, combined with free text terms related to CBHI or health insurance. Searches were conducted from May 2013 to November 2013 in English, French, German, and Spanish. From the initial search yield of 15,770 hits, 54 relevant studies were retained for analysis of factors influencing enrolment and renewal decisions. The quantitative synthesis (informed by meta-analysis) and the qualitative analysis (informed by thematic synthesis) were compared to gain insight for an overall synthesis of findings/statements. Meta-analysis suggests that enrolments in CBHI were positively associated with household income, education and age of the household head (HHH), household size, female-headed household, married HHH and chronic illness episodes in the household. The thematic synthesis suggests the following factors as enablers for enrolment: (a) knowledge and understanding of insurance and CBHI, (b) quality of healthcare, (c) trust in scheme management. Factors found to be barriers to enrolment include: (a) inappropriate benefits package, (b) cultural beliefs, (c) affordability, (d) distance to healthcare facility, (e) lack of adequate legal and policy frameworks to support CBHI, and (f) stringent rules of some CBHI schemes. HHH education, household size and trust in the scheme management were positively associated with member renewal decisions. Other motivators were: (a) knowledge and understanding of insurance and CBHI, (b) healthcare quality, (c) trust in scheme management, and (d) receipt of an insurance payout the previous year. The barriers to renewal decisions were: (a) stringent rules of some CBHI schemes, (b) inadequate legal and policy frameworks to support CBHI and (c) inappropriate benefits package. The demand-side factors positively affecting enrolment in CBHI include education, age, female household heads, and the socioeconomic status of households. Moreover, when individuals understand how their CBHI functions they are more likely to enroll and when people have a positive claims experience, they are more likely to renew. A higher prevalence of chronic conditions or the perception that healthcare is of good quality and nearby act as factors enhancing enrolment. The perception that services are distant or deficient leads to lower enrolments. The second insight is that trust in the scheme enables enrolment. Thirdly, clarity about the legal or policy framework acts as a factor influencing enrolments. This is significant, as it points to hitherto unpublished evidence that governments can effectively broaden their outreach to grassroots groups that are excluded from social protection by formulating supportive regulatory and policy provisions even if they cannot fund such schemes in full, by leveraging people's willingness to exercise voluntary and contributory enrolment in a community-based health insurance.
Studies on low-loss coupling of non-node anti-resonant hollow-core fiber and tapered fiber
NASA Astrophysics Data System (ADS)
Zhang, Naiqian; Wang, Zefeng; Liu, Wenbo; Xi, Xiaoming
2017-10-01
Up to now, near almost optical fiber gas lasers employ/adopt the scheme of free-space coupling, which increases the difficulty to adjust the optical path, and has poor stability. All-fiber structure fiber-gas lasers are important development directions in the future. We established the numerical model of SMF-28 type tapered single-mode fiber and non-node hollow-core fiber. When the SMF-28 type single-mode fiber has a waist diameter of 40μm when the light source is LP01 fundamental mode with 1550nm wavelength, the mode field diameter is the largest. Meanwhile, we simulated that the equivalent mode field diameter of non-node anti-resonant hollow-core fiber is about 75μm at the same 1550nm wavelength light source. Then, we use different waist diameters of SMF-28 type tapered fibers injected to the non-node anti-resonant hollow-core fiber in simulation and experiments. In the scheme of the single-ended low-loss coupling, the simulation results indicate that the best waist diameter of tapered fiber is 40μm, and the calculated maximum coupling efficiency is 83.55%. Meanwhile, the experimental result of maximum coupling efficiency is 80.74% when the best waist diameter of tapered fiber is also 40μm. As for the double-ended low-loss coupling, the calculated maximum coupling efficiency is near 83.38%.
Continuous scanning mode for ptychography
Clark, Jesse N.; Huang, Xiaojing; Harder, Ross J.; ...
2014-10-15
We outline how ptychographic imaging can be performed without the need for discrete scan positions. Through an idealized experiment, we demonstrate how a discrete-position scan regime can be replaced with a continuously scanned one with suitable modification of the reconstruction scheme based on coherent modes. Thus, the impact of this is that acquisition times can be reduced, significantly aiding ptychographic imaging with x rays, electrons, or visible light.
Supersonic Free-Jet Combustion in a Ramjet Burner
NASA Technical Reports Server (NTRS)
Trefny, Charles J.; Dippold, Vance F., III
2010-01-01
A new dual-mode ramjet combustor concept intended for operation over a wide flight Mach number range is described. Subsonic combustion mode is similar to that of a traditional ram combustor which allows operation at higher efficiency, and to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle. The maximum flight Mach number of this scheme is governed largely by the same physics as its classical counterpart. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated. Given the parallel nature of the present scheme, overall flowpath length is less than that of present dual-mode configurations. Cycle analysis was done to define the flowpath geometry for computational fluid dynamics (CFD) analysis, and then to determine performance based on the CFD results. CFD results for Mach 5, 8, and 12 flight conditions indicate stable supersonic free-jet formation and nozzle reattachment, thereby establishing the basic feasibility of the concept. These results also reveal the structure of, and interactions between the free-jet and recirculating combustion chamber flows. Performance based on these CFD results is slightly less than that of the constant-pressure-combustion cycle analysis primarily due to these interactions. These differences are quantified and discussed. Additional CFD results at the Mach 8 flight condition show the effects of nozzle throat area variation on combustion chamber pressure, flow structure, and performance. Calculations with constant temperature walls were also done to evaluate heat flux and overall heat loads. Aspects of the concept that warrant further study are outlined. These include diffuser design, ramjet operation, mode transition, loss mechanisms, and the effects of secondary flow for wall cooling and combustion chamber pressurization. Also recommended is an examination of system-level aspects such as weight, thermal management and rocket integration as well as alternate geometries and variable geometry schemes.
Two-body open charm decays of Z{sup +}(4430)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Xiang; Centro de Fisica Teorica, Departamento de Fisica, Universidade de Coimbra, P-3004-516, Coimbra; Zhang Bo
2008-06-01
The two-body open charm decays Z{sup +}(4430){yields}D{sup +}D*{sup 0}, D*{sup +}D{sup 0}, D*{sup +}D*{sup 0} occur through the rescattering mechanism and their branching ratios are strongly suppressed if Z{sup +}(4430) is a D{sub 1}D* molecular state. In contrast, Z{sup +}(4430) falls apart into these modes easily with large phase space and they become the main decay modes if Z{sup +}(4430) is a tetraquark state. Experimental search of these two-body open charm modes and the hidden charm mode {chi}{sub cJ}{rho} will help distinguish different theoretical schemes.
Analog nonlinear MIMO receiver for optical mode division multiplexing transmission.
Spalvieri, Arnaldo; Boffi, Pierpaolo; Pecorino, Simone; Barletta, Luca; Magarini, Maurizio; Gatto, Alberto; Martelli, Paolo; Martinelli, Mario
2013-10-21
The complexity and the power consumption of digital signal processing are crucial issues in optical transmission systems based on mode division multiplexing and coherent multiple-input multiple-output (MIMO) processing at the receiver. In this paper the inherent characteristic of spatial separation between fiber modes is exploited, getting a MIMO system where joint demultiplexing and detection is based on spatially separated photodetectors. After photodetection, one has a MIMO system with nonlinear crosstalk between modes. The paper shows that the nonlinear crosstalk can be dealt with by a low-complexity and non-adaptive detection scheme, at least in the cases presented in the paper.
Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot.
Niu, Jie; Yang, Qianqian; Chen, Guangtao; Song, Rong
2017-07-01
This paper introduces a cable-driven robot for upper-limb rehabilitation. Kinematic and dynamic of this rehabilitation robot is analyzed. A sliding mode controller combined with a nonlinear disturbance observer is proposed to control this robot in the presence of disturbances. Simulation is carried out to prove the effectiveness of the proposed control scheme, and the results of the proposed controller is compared with a PID controller and a traditional sliding mode controller. Results show that the proposed controller can effectively improve the tracking performance as compared with the other two controllers and cause lower chattering as compared with a traditional sliding mode controller.
Diffusion of Zonal Variables Using Node-Centered Diffusion Solver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, T B
2007-08-06
Tom Kaiser [1] has done some preliminary work to use the node-centered diffusion solver (originally developed by T. Palmer [2]) in Kull for diffusion of zonal variables such as electron temperature. To avoid numerical diffusion, Tom used a scheme developed by Shestakov et al. [3] and found their scheme could, in the vicinity of steep gradients, decouple nearest-neighbor zonal sub-meshes leading to 'alternating-zone' (red-black mode) errors. Tom extended their scheme to couple the sub-meshes with appropriate chosen artificial diffusion and thereby solved the 'alternating-zone' problem. Because the choice of the artificial diffusion coefficient could be very delicate, it is desirablemore » to use a scheme that does not require the artificial diffusion but still able to avoid both numerical diffusion and the 'alternating-zone' problem. In this document we present such a scheme.« less
Generation of steady entanglement via unilateral qubit driving in bad cavities.
Jin, Zhao; Su, Shi-Lei; Zhu, Ai-Dong; Wang, Hong-Fu; Shen, Li-Tuo; Zhang, Shou
2017-12-15
We propose a scheme for generating an entangled state for two atoms trapped in two separate cavities coupled to each other. The scheme is based on the competition between the unitary dynamics induced by the classical fields and the collective decays induced by the dissipation of two non-local bosonic modes. In this scheme, only one qubit is driven by external classical fields, whereas the other need not be manipulated via classical driving. This is meaningful for experimental implementation between separate nodes of a quantum network. The steady entanglement can be obtained regardless of the initial state, and the robustness of the scheme against parameter fluctuations is numerically demonstrated. We also give an analytical derivation of the stationary fidelity to enable a discussion of the validity of this regime. Furthermore, based on the dissipative entanglement preparation scheme, we construct a quantum state transfer setup with multiple nodes as a practical application.
All-optical OFDM network coding scheme for all-optical virtual private communication in PON
NASA Astrophysics Data System (ADS)
Li, Lijun; Gu, Rentao; Ji, Yuefeng; Bai, Lin; Huang, Zhitong
2014-03-01
A novel optical orthogonal frequency division multiplexing (OFDM) network coding scheme is proposed over passive optical network (PON) system. The proposed scheme for all-optical virtual private network (VPN) does not only improve transmission efficiency, but also realize full-duplex communication mode in a single fiber. Compared with the traditional all-optical VPN architectures, the all-optical OFDM network coding scheme can support higher speed, more flexible bandwidth allocation, and higher spectrum efficiency. In order to reduce the difficulty of alignment for encoding operation between inter-communication traffic, the width of OFDM subcarrier pulse is stretched in our proposed scheme. The feasibility of all-optical OFDM network coding scheme for VPN is verified, and the relevant simulation results show that the full-duplex inter-communication traffic stream can be transmitted successfully. Furthermore, the tolerance of misalignment existing in inter-ONUs traffic is investigated and analyzed for all-optical encoding operation, and the difficulty of pulse alignment is proved to be lower.
LP01 to LP11 mode convertor based on side-polished small-core single-mode fiber
NASA Astrophysics Data System (ADS)
Liu, Yan; Li, Yang; Li, Wei-dong
2018-03-01
An all-fiber LP01-LP11 mode convertor based on side-polished small-core single-mode fibers (SMFs) is numerically demonstrated. The linearly polarized incident beam in one arm experiences π shift through a fiber half waveplate, and the side-polished parts merge into an equivalent twin-core fiber (TCF) which spatially shapes the incident LP01 modes to the LP11 mode supported by the step-index few-mode fiber (FMF). Optimum conditions for the highest conversion efficiency are investigated using the beam propagation method (BPM) with an approximate efficiency as high as 96.7%. The proposed scheme can operate within a wide wavelength range from 1.3 μm to1.7 μm with overall conversion efficiency greater than 95%. The effective mode area and coupling loss are also characterized in detail by finite element method (FEM).
Experimental demonstration of time- and mode-division multiplexed passive optical network
NASA Astrophysics Data System (ADS)
Ren, Fang; Li, Juhao; Tang, Ruizhi; Hu, Tao; Yu, Jinyi; Mo, Qi; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin
2017-07-01
A time- and mode-division multiplexed passive optical network (TMDM-PON) architecture is proposed, in which each optical network unit (ONU) communicates with the optical line terminal (OLT) independently utilizing both different time slots and switched optical linearly polarized (LP) spatial modes. Combination of a mode multiplexer/demultiplexer (MUX/DEUX) and a simple N × 1 optical switch is employed to select the specific LP mode in each ONU. A mode-insensitive power splitter is used for signal broadcast/combination between OLT and ONUs. We theoretically propose a dynamic mode and time slot assignment scheme for TMDM-PON based on inter-ONU priority rating, in which the time delay and packet loss ratio's variation tendency are investigated by simulation. Moreover, we experimentally demonstrate 2-mode TMDM-PON transmission over 10 km FMF with 10-Gb/s on-off keying (OOK) signal and direct detection.
NASA Technical Reports Server (NTRS)
Navon, I. M.; Bloom, S.; Takacs, L. L.
1985-01-01
An attempt was made to use the GLAS global 4th order shallow water equations to perform a Machenhauer nonlinear normal mode initialization (NLNMI) for the external vertical mode. A new algorithm was defined for identifying and filtering out computational modes which affect the convergence of the Machenhauer iterative procedure. The computational modes and zonal waves were linearly initialized and gravitational modes were nonlinearly initialized. The Machenhauer NLNMI was insensitive to the absence of high zonal wave numbers. The effects of the Machenhauer scheme were evaluated by performing 24 hr integrations with nondissipative and dissipative explicit time integration models. The NLNMI was found to be inferior to the Rasch (1984) pseudo-secant technique for obtaining convergence when the time scales of nonlinear forcing were much smaller than the time scales expected from the natural frequency of the mode.
NASA Astrophysics Data System (ADS)
Belovolov, M. I.; Vitrik, O. B.; Dianov, Evgenii M.; Kulchin, Yurii N.; Obukh, V. F.
1989-11-01
An investigation was made of modulation of the phase and polarization of modes in a few-mode fiber waveguide subjected to axial deformation. The simplest and most convenient (for analysis) controlled interference pattern was obtained on addition, at the exit from a waveguide, of the fields of two modes of different order or of components of two orthogonally polarized waves of the same mode when an additional phase shift between these waves was induced by deformation. The two investigated schemes were suitable for the construction of simple and highly sensitive sensors capable of detecting small strains with characteristics which could be varied by suitable selection of the waveguide parameters and of the signal processing method.
Adiabatic transfer of energy fluctuations between membranes inside an optical cavity
NASA Astrophysics Data System (ADS)
Garg, Devender; Chauhan, Anil K.; Biswas, Asoka
2017-08-01
A scheme is presented for the adiabatic transfer of average fluctuations in the phonon number between two membranes in an optical cavity. We show that by driving the cavity modes with external time-delayed pulses, one can obtain an effect analogous to stimulated Raman adiabatic passage in the atomic systems. The adiabatic transfer of fluctuations from one membrane to the other is attained through a "dark" mode, which is robust against decay of the mediating cavity mode. The results are supported with analytical and numerical calculations with experimentally feasible parameters.
NASA Technical Reports Server (NTRS)
Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.
2005-01-01
We report the demonstration of a terahertz quantum-cascade laser that operates up to 164 K in pulsed mode and 117 K in continuous-wave mod e at approximately 3.0 THz. The active region was based on a resonant -phonon depopulation scheme and a metal-metal waveguide was used for modal confinement. Copper to copper thermocompression wafer bonding w as used to fabricate the waveguide, which displayed improved thermal properties compared to a previous indium-gold bonding method.
Determining the Impact of Personal Mobility Carbon Allowance Schemes in Transportation Networks
Aziz, H. M. Abdul; Ukkusuri, Satish V.; Zhan, Xianyuan
2016-10-17
We know that personal mobility carbon allowance (PMCA) schemes are designed to reduce carbon consumption from transportation networks. PMCA schemes influence the travel decision process of users and accordingly impact the system metrics including travel time and greenhouse gas (GHG) emissions. Here, we develop a multi-user class dynamic user equilibrium model to evaluate the transportation system performance when PMCA scheme is implemented. The results using Sioux-Falls test network indicate that PMCA schemes can achieve the emissions reduction goals for transportation networks. Further, users characterized by high value of travel time are found to be less sensitive to carbon budget inmore » the context of work trips. Results also show that PMCA scheme can lead to higher emissions for a path compared with the case without PMCA because of flow redistribution. The developed network equilibrium model allows us to examine the change in system states at different carbon allocation levels and to design parameters of PMCA schemes accounting for population heterogeneity.« less
Determining the Impact of Personal Mobility Carbon Allowance Schemes in Transportation Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, H. M. Abdul; Ukkusuri, Satish V.; Zhan, Xianyuan
We know that personal mobility carbon allowance (PMCA) schemes are designed to reduce carbon consumption from transportation networks. PMCA schemes influence the travel decision process of users and accordingly impact the system metrics including travel time and greenhouse gas (GHG) emissions. Here, we develop a multi-user class dynamic user equilibrium model to evaluate the transportation system performance when PMCA scheme is implemented. The results using Sioux-Falls test network indicate that PMCA schemes can achieve the emissions reduction goals for transportation networks. Further, users characterized by high value of travel time are found to be less sensitive to carbon budget inmore » the context of work trips. Results also show that PMCA scheme can lead to higher emissions for a path compared with the case without PMCA because of flow redistribution. The developed network equilibrium model allows us to examine the change in system states at different carbon allocation levels and to design parameters of PMCA schemes accounting for population heterogeneity.« less
Factors affecting sustainability of rural water schemes in Swaziland
NASA Astrophysics Data System (ADS)
Peter, Graciana; Nkambule, Sizwe E.
The Millennium Development Goal (MDG) target to reduce the proportion of people without sustainable access to safe drinking water by the year 2015 has been met as of 2010, but huge disparities exist. Some regions, particularly Sub-Saharan Africa are lagging behind it is also in this region where up to 30% of the rural schemes are not functional at any given time. There is need for more studies on factors affecting sustainability and necessary measures which when implemented will improve the sustainability of rural water schemes. The main objective of this study was to assess the main factors affecting the sustainability of rural water schemes in Swaziland using a Multi-Criteria Analysis Approach. The main factors considered were: financial, social, technical, environmental and institutional. The study was done in Lubombo region. Fifteen functional water schemes in 11 communities were studied. Data was collected using questionnaires, checklist and focused group discussion guide. A total of 174 heads of households were interviewed. Statistical Package for Social Sciences (SPSS) was used to analyse the data and to calculate sustainability scores for water schemes. SPSS was also used to classify sustainability scores according to sustainability categories: sustainable, partially sustainable and non-sustainable. The averages of the ratings for the different sub-factors studied and the results on the sustainability scores for the sustainable, partially sustainable and non-sustainable schemes were then computed and compared to establish the main factors influencing sustainability of the water schemes. The results indicated technical and social factors as most critical while financial and institutional, although important, played a lesser role. Factors which contributed to the sustainability of water schemes were: functionality; design flow; water fetching time; ability to meet additional demand; use by population; equity; participation in decision making on operation and maintenance; existence of fund for operation and maintenance; willingness to contribute money; existence of a user’s committee; participation in the initial planning and design of the water scheme; and coordination between the local leaders and user’s committee. The main factors which made the schemes unsustainable were: long fetching time; non-involvement in decision making; lack of willingness to contribute funds; absence of users committee; and lack of cooperation between local leaders and the users committee. Water service providers should address the technical, social, financial and institutional factors identified affecting sustainability in their planning and implementation of rural water schemes.
A Hybrid Nonlinear Control Scheme for Active Magnetic Bearings
NASA Technical Reports Server (NTRS)
Xia, F.; Albritton, N. G.; Hung, J. Y.; Nelms, R. M.
1996-01-01
A nonlinear control scheme for active magnetic bearings is presented in this work. Magnet winding currents are chosen as control inputs for the electromechanical dynamics, which are linearized using feedback linearization. Then, the desired magnet currents are enforced by sliding mode control design of the electromagnetic dynamics. The overall control scheme is described by a multiple loop block diagram; the approach also falls in the class of nonlinear controls that are collectively known as the 'integrator backstepping' method. Control system hardware and new switching power electronics for implementing the controller are described. Various experiments and simulation results are presented to demonstrate the concepts' potentials.
Sociality Mental Modes Modulate the Processing of Advice-Giving: An Event-Related Potentials Study
Li, Jin; Zhan, Youlong; Fan, Wei; Liu, Lei; Li, Mei; Sun, Yu; Zhong, Yiping
2018-01-01
People have different motivations to get along with others in different sociality mental modes (i.e., communal mode and market mode), which might affect social decision-making. The present study examined how these two types of sociality mental modes affect the processing of advice-giving using the event-related potentials (ERPs). After primed with the communal mode and market mode, participants were instructed to decide whether or not give an advice (profitable or damnous) to a stranger without any feedback. The behavioral results showed that participants preferred to give the profitable advice to the stranger more slowly compared with the damnous advice, but this difference was only observed in the market mode condition. The ERP results indicated that participants demonstrated more negative N1 amplitude for the damnous advice compared with the profitable advice, and larger P300 was elicited in the market mode relative to both the communal mode and the control group. More importantly, participants in the market mode demonstrated larger P300 for the profitable advice than the damnous advice, whereas this difference was not observed at the communal mode and the control group. These findings are consistent with the dual-process system during decision-making and suggest that market mode may lead to deliberate calculation for costs and benefits when giving the profitable advice to others. PMID:29467689
Kingkaew, Pritaporn; Werayingyong, Pitsaphun; Aye, San San; Tin, Nilar; Singh, Alaka; Myint, Phone; Teerawattananon, Yot
2016-05-01
Reducing child and maternal mortality in order to meet the health-related Millennium Development Goals (MDGs) 4 and 5 remains a major challenge in Myanmar. Inadequate care during pregnancy and labour plays an important role in the maternal mortality rate in Myanmar. A Maternal and Child Health (MCH) Voucher Scheme comprising a subsidization for pregnant women to receive four antenatal care (ANC), delivery and postnatal care (PNC) free-of-charge was planned to help women overcome financial barriers in addition to raising awareness of ANC and delivery with skilled birth attendants (SBA), which can reduce the rate of maternal and neonatal death. This study is part of an ex-ante evaluation of a feasibility study of the MCH Voucher Scheme. A cost-utility analysis was conducted using a decision tree model to assess the cost per disability-adjusted life years (DALYs) averted from the MCH Voucher Scheme compared with the current situation. Most input parameters were obtained from Myanmar context. From the base-case analysis, where the financial burden on households was fully subsidized, the MCH Voucher Scheme increased utilization for ANC from 73% up to 93% and for delivery from SBAs from 51% up to and 71%, respectively; hence, it is considered to be very cost-effective with an incremental cost-effectiveness ratio of 381 027 kyats per DALY averted (2010, price year). From the probabilistic sensitivity analysis, the MCH Voucher Scheme had a 52% chance of being a cost-effective option at 1 GDP per capita threshold compared to the current situation. Given that the Voucher Scheme is currently being implemented in one township in Myanmar as a result of this study, ongoing evaluation of the effectiveness and cost-effectiveness of this scheme is warranted. © The Author 2015. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.
NASA Astrophysics Data System (ADS)
Mazzega, Pierre; Therond, Olivier; Debril, Thomas; March, Hug; Sibertin-Blanc, Christophe; Lardy, Romain; Sant'ana, Daniel
2014-11-01
This paper presents the experience gained related to the development of an integrated simulation model of water policy. Within this context, we analyze particular difficulties raised by the inclusion of multi-level governance that assigns the responsibility of individual or collective decision-making to a variety of actors, regarding measures of which the implementation has significant effects toward the sustainability of socio-hydrosystems. Multi-level governance procedures are compared with the potential of model-based impact assessment. Our discussion is illustrated on the basis of the exploitation of the multi-agent platform MAELIA dedicated to the simulation of social, economic and environmental impacts of low-water management in a context of climate and regulatory changes. We focus on three major decision-making processes occurring in the Adour-Garonne basin, France: (i) the participatory development of the Master Scheme for Water Planning and Management (SDAGE) under the auspices of the Water Agency; (ii) the publication of water use restrictions in situations of water scarcity; and (iii) the determination of the abstraction volumes for irrigation and their allocation. The MAELIA platform explicitly takes into account the mode of decision-making when it is framed by a procedure set beforehand, focusing on the actors' participation and on the nature and parameters of the measures to be implemented. It is observed that in some water organizations decision-making follows patterns that can be represented as rule-based actions triggered by thresholds of resource states. When decisions are resulting from individual choice, endowing virtual agents with bounded rationality allows us to reproduce (in silico) their behavior and decisions in a reliable way. However, the negotiation processes taking place during the period of time simulated by the models in arenas of collective choices are not all reproducible. Outcomes of some collective decisions are very little or not at all predictable. The development and simulation of a priori policy scenarios capturing the most plausible or interesting outcomes of such collective decisions on measures for low-water management allows these difficulties to be overcome. The building of these kind of scenarios requires close collaboration between researchers and stakeholders involved in arenas of collective choice, and implies the integration of the production of model and the analysis of scenarios as one component of the polycentric political process of water management.
University Choice: What Influences the Decisions of Academically Successful Post-16 Students?
ERIC Educational Resources Information Center
Whitehead, Joan M.; Raffan, John; Deaney, Rosemary
2006-01-01
The questionnaire survey reported in this paper is part of an ongoing evaluation of the effect of a bursary scheme on recruitment to Cambridge University. It sought to identify factors that encouraged or discouraged highly successful A Level students from applying to Cambridge. Findings reveal three main dimensions associated with the decision to…
NASA Technical Reports Server (NTRS)
Scholz, D.; Fuhs, N.; Hixson, M.
1979-01-01
The overall objective of this study was to apply and evaluate several of the currently available classification schemes for crop identification. The approaches examined were: (1) a per point Gaussian maximum likelihood classifier, (2) a per point sum of normal densities classifier, (3) a per point linear classifier, (4) a per point Gaussian maximum likelihood decision tree classifier, and (5) a texture sensitive per field Gaussian maximum likelihood classifier. Three agricultural data sets were used in the study: areas from Fayette County, Illinois, and Pottawattamie and Shelby Counties in Iowa. The segments were located in two distinct regions of the Corn Belt to sample variability in soils, climate, and agricultural practices.
Schoorel, E N C; Vankan, E; Scheepers, H C J; Augustijn, B C C; Dirksen, C D; de Koning, M; van Kuijk, S M J; Kwee, A; Melman, S; Nijhuis, J G; Aardenburg, R; de Boer, K; Hasaart, T H M; Mol, B W J; Nieuwenhuijze, M; van Pampus, M G; van Roosmalen, J; Roumen, F J M E; de Vries, R; Wouters, M G A J; van der Weijden, T; Hermens, R P M G
2014-01-01
To develop a patient decision aid (PtDA) for mode of delivery after caesarean section that integrates personalised prediction of vaginal birth after caesarean (VBAC) with the elicitation of patient preferences and evidence-based information. A PtDA was developed and pilot tested using the International Patients Decision Aid Standards (IPDAS) criteria. Obstetric health care in the Netherlands. A multidisciplinary steering group, an expert panel, and 25 future users of the PtDA, i.e. women with a previous caesarean section. The development consisted of a construction phase (definition of scope and purpose, and selection of content, framework, and format) and a pilot testing phase by interview. The process was supervised by a multidisciplinary steering group. Usability, clarity, and relevance. The construction phase resulted in a booklet including unbiased balanced information on mode of birth after caesarean section, a preference elicitation exercise, and tailored risk information, including a prediction model for successful VBAC. During pilot testing, visualisation of risks and clarity formed the main basis for revisions. Pilot testing showed the availability of tailored structured information to be the main factor involving women in decision-making. The PtDA meets 39 out of 50 IPDAS criteria (78%): 23 out of 23 criteria for content (100%) and 16 out of 20 criteria for the development process (80%). Criteria for effectiveness (n = 7) were not evaluated. An evidence-based PtDA was developed, with the probability of successful VBAC and the availability of structured information as key items. It is likely that the PtDA enhances the quality of decision-making on mode of birth after caesarean section. © 2013 Royal College of Obstetricians and Gynaecologists.
Second-order sliding mode controller with model reference adaptation for automatic train operation
NASA Astrophysics Data System (ADS)
Ganesan, M.; Ezhilarasi, D.; Benni, Jijo
2017-11-01
In this paper, a new approach to model reference based adaptive second-order sliding mode control together with adaptive state feedback is presented to control the longitudinal dynamic motion of a high speed train for automatic train operation with the objective of minimal jerk travel by the passengers. The nonlinear dynamic model for the longitudinal motion of the train comprises of a locomotive and coach subsystems is constructed using multiple point-mass model by considering the forces acting on the vehicle. An adaptation scheme using Lyapunov criterion is derived to tune the controller gains by considering a linear, stable reference model that ensures the stability of the system in closed loop. The effectiveness of the controller tracking performance is tested under uncertain passenger load, coupler-draft gear parameters, propulsion resistance coefficients variations and environmental disturbances due to side wind and wet rail conditions. The results demonstrate improved tracking performance of the proposed control scheme with a least jerk under maximum parameter uncertainties when compared to constant gain second-order sliding mode control.
Mekki, Hemza; Benzineb, Omar; Boukhetala, Djamel; Tadjine, Mohamed; Benbouzid, Mohamed
2015-07-01
The fault-tolerant control problem belongs to the domain of complex control systems in which inter-control-disciplinary information and expertise are required. This paper proposes an improved faults detection, reconstruction and fault-tolerant control (FTC) scheme for motor systems (MS) with typical faults. For this purpose, a sliding mode controller (SMC) with an integral sliding surface is adopted. This controller can make the output of system to track the desired position reference signal in finite-time and obtain a better dynamic response and anti-disturbance performance. But this controller cannot deal directly with total system failures. However an appropriate combination of the adopted SMC and sliding mode observer (SMO), later it is designed to on-line detect and reconstruct the faults and also to give a sensorless control strategy which can achieve tolerance to a wide class of total additive failures. The closed-loop stability is proved, using the Lyapunov stability theory. Simulation results in healthy and faulty conditions confirm the reliability of the suggested framework. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Usman, Yasir; Kim, Jinho; Muljadi, Eduard; ...
2016-01-01
Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gainmore » of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Furthermore, simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.« less
Adaptive fuzzy-neural-network control for maglev transportation system.
Wai, Rong-Jong; Lee, Jeng-Dao
2008-01-01
A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.
Solid-state Yb : YAG amplifier pumped by a single-mode laser at 920 nm
NASA Astrophysics Data System (ADS)
Obronov, I. V.; Demkin, A. S.; Myasnikov, D. V.
2018-03-01
An optical amplifier scheme for ultrashort 1030-nm pulses is proposed based on an Yb : YAG crystal with axial pumping by a transverse single-mode laser at a wavelength of 920 nm. A small-signal gain up to 40 dB per pass with a high output beam quality is demonstrated. The maximum average power is 14 W with a slope efficiency exceeding 50%.
Method for operating a spark-ignition, direct-injection internal combustion engine
Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.
2015-06-02
A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.
Dynamic modeling and Super-Twisting Sliding Mode Control for Tethered Space Robot
NASA Astrophysics Data System (ADS)
Zhao, Yakun; Huang, Panfeng; Zhang, Fan
2018-02-01
Recent years, tethered space capturing systems have been considered as one of the most promising solutions for active space debris removal due to the increasing threat of space debris to spacecraft and astronauts. In this paper, one of the tethered space capturing systems, Tethered Space Robot (TSR), is investigated. TSR includes a space platform, a space tether, and a gripper as the terminal device. Based on the assumptions that the platform and the gripper are point masses and the tether is rigid, inextensible and remaining straight, the dynamic model of TSR is presented, in which the disturbances from space environment is considered. According to the previous study, the in-plane and out-of-plane angles of the tether oscillate periodically although the tether is released to the desired length. A super-twisting adaptive sliding mode control scheme is designed for TSR to eliminate the vibration of the tether to assure a successful capture in station-keeping phase. Both uncontrolled and controlled situations are simulated. The simulation results show that the proposed controller is effective. Additionally, after comparing with normal sliding mode control algorithm, it is verified that the proposed control scheme can avoid the chattering of normal sliding mode control and is robust for unknown boundary perturbations.
Real-time qualitative reasoning for telerobotic systems
NASA Technical Reports Server (NTRS)
Pin, Eancois G.
1993-01-01
This paper discusses the sensor-based telerobotic driving of a car in a-priori unknown environments using 'human-like' reasoning schemes implemented on custom-designed VLSI fuzzy inferencing boards. These boards use the Fuzzy Set theoretic framework to allow very vast (30 kHz) processing of full sets of information that are expressed in qualitative form using membership functions. The sensor-based and fuzzy inferencing system was incorporated on an outdoor test-bed platform to investigate two control modes for driving a car on the basis of very sparse and imprecise range data. In the first mode, the car navigates fully autonomously to a goal specified by the operator, while in the second mode, the system acts as a telerobotic driver's aid providing the driver with linguistic (fuzzy) commands to turn left or right, speed up, slow down, stop, or back up depending on the obstacles perceived by the sensors. Indoor and outdoor experiments with both modes of control are described in which the system uses only three acoustic range (sonar) sensor channels to perceive the environment. Sample results are presented that illustrate the feasibility of developing autonomous navigation modules and robust, safety-enhancing driver's aids for telerobotic systems using the new fuzzy inferencing VLSI hardware and 'human-like' reasoning schemes.
NASA Astrophysics Data System (ADS)
Thuburn, J.; Cotter, C. J.; Dubos, T.
2013-12-01
A new algorithm is presented for the solution of the shallow water equations on quasi-uniform spherical grids. It combines a mimetic finite volume spatial discretization with a Crank-Nicolson time discretization of fast waves and an accurate and conservative forward-in-time advection scheme for mass and potential vorticity (PV). The algorithm is implemented and tested on two families of grids: hexagonal-icosahedral Voronoi grids, and modified equiangular cubed-sphere grids. Results of a variety of tests are presented, including convergence of the discrete scalar Laplacian and Coriolis operators, advection, solid body rotation, flow over an isolated mountain, and a barotropically unstable jet. The results confirm a number of desirable properties for which the scheme was designed: exact mass conservation, very good available energy and potential enstrophy conservation, consistent mass, PV and tracer transport, and good preservation of balance including vanishing ∇ × ∇, steady geostrophic modes, and accurate PV advection. The scheme is stable for large wave Courant numbers and advective Courant numbers up to about 1. In the most idealized tests the overall accuracy of the scheme appears to be limited by the accuracy of the Coriolis and other mimetic spatial operators, particularly on the cubed sphere grid. On the hexagonal grid there is no evidence for damaging effects of computational Rossby modes, despite attempts to force them explicitly.
NASA Astrophysics Data System (ADS)
Thuburn, J.; Cotter, C. J.; Dubos, T.
2014-05-01
A new algorithm is presented for the solution of the shallow water equations on quasi-uniform spherical grids. It combines a mimetic finite volume spatial discretization with a Crank-Nicolson time discretization of fast waves and an accurate and conservative forward-in-time advection scheme for mass and potential vorticity (PV). The algorithm is implemented and tested on two families of grids: hexagonal-icosahedral Voronoi grids, and modified equiangular cubed-sphere grids. Results of a variety of tests are presented, including convergence of the discrete scalar Laplacian and Coriolis operators, advection, solid body rotation, flow over an isolated mountain, and a barotropically unstable jet. The results confirm a number of desirable properties for which the scheme was designed: exact mass conservation, very good available energy and potential enstrophy conservation, consistent mass, PV and tracer transport, and good preservation of balance including vanishing ∇ × ∇, steady geostrophic modes, and accurate PV advection. The scheme is stable for large wave Courant numbers and advective Courant numbers up to about 1. In the most idealized tests the overall accuracy of the scheme appears to be limited by the accuracy of the Coriolis and other mimetic spatial operators, particularly on the cubed-sphere grid. On the hexagonal grid there is no evidence for damaging effects of computational Rossby modes, despite attempts to force them explicitly.
Demultiplexing of photonic temporal modes by a linear system
NASA Astrophysics Data System (ADS)
Xu, Shuang; Shen, H. Z.; Yi, X. X.
2018-03-01
Temporally and spatially overlapping but field-orthogonal photonic temporal modes (TMs) that intrinsically span a high-dimensional Hilbert space are recently suggested as a promising means of encoding information on photons. Presently, the realization of photonic TM technology, particularly to retrieve the information it carries, i.e., demultiplexing of photonic TMs, is mostly dependent on nonlinear medium and frequency conversion. Meanwhile, its miniaturization, simplification, and optimization remain the focus of research. In this paper, we propose a scheme of TM demultiplexing using linear systems consisting of resonators with linear couplings. Specifically, we examine a unidirectional array of identical resonators with short environment correlations. For both situations with and without tunable couplers, propagation formulas are derived to demonstrate photonic TM demultiplexing capabilities. The proposed scheme, being entirely feasible with current technologies, might find potential applications in quantum information processing.
A multichannel EEG acquisition scheme based on single ended amplifiers and digital DRL.
Haberman, Marcelo Alejandro; Spinelli, Enrique Mario
2012-12-01
Single ended (SE) amplifiers allow implementing biopotential front-ends with a reduced number of parts, being well suited for preamplified electrodes or compact EEG headboxes. On the other hand, given that each channel has independent gain; mismatching between these gains results in poor common-mode rejection ratios (CMRRs) (about 30 dB considering 1% tolerance components). This work proposes a scheme for multichannel EEG acquisition systems based on SE amplifiers and a novel digital driven right leg (DDRL) circuit, which overcome the poor CMRR of the front-end stage providing a high common mode reduction at power line frequency (up to 80 dB). A functional prototype was built and tested showing the feasibility of the proposed technique. It provided EEG records with negligible power line interference, even in very aggressive EMI environments.
NASA Astrophysics Data System (ADS)
Schuster, E.; Wehner, W. P.; Barton, J. E.; Boyer, M. D.; Luce, T. C.; Ferron, J. R.; Holcomb, C. T.; Walker, M. L.; Humphreys, D. A.; Solomon, W. M.; Penaflor, B. G.; Johnson, R. D.
2017-11-01
Recent experiments on DIII-D demonstrate the potential of physics-model-based q-profile control to improve reproducibility of plasma discharges. A combined feedforward + feedback control scheme is employed to optimize the current ramp-up phase by consistently achieving target q profiles (Target 1: q_min=1.3, q95=4.4 ; Target 2: q_min=1.65, q95=5.0 ; Target 3: q_min=2.1, q95=6.2 ) at prescribed times during the plasma formation phase (Target 1: t=1.5 s; Target 2: t=1.3 s; Target 3: t=1.0 s). At the core of the control scheme is a nonlinear, first-principles-driven, physics-based, control-oriented model of the plasma dynamics valid for low confinement (L-mode) scenarios. To prevent undesired L-H transitions, a constraint on the maximum allowable total auxiliary power is imposed in addition to the maximum powers for the individual heating and current-drive sources. Experimental results are presented to demonstrate the effectiveness of the combined feedforward + feedback control scheme to consistently achieve the desired target profiles at the predefined times. These results also show how the addition of feedback control significantly improves upon the feedforward-only control solution by reducing the matching error and also how the feedback controller is able to reduce the matching error as the constraint on the maximum allowable total auxiliary power is relaxed while keeping the plasma in L-mode.
Nonlinear control of voltage source converters in AC-DC power system.
Dash, P K; Nayak, N
2014-07-01
This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
On the Interaction Between Gravity Waves and Atmospheric Thermal Tides
NASA Astrophysics Data System (ADS)
Agner, Ryan Matthew
Gravity waves and thermal tides are two of the most important dynamical features of the atmosphere. They are both generated in the lower atmosphere and propagate upward transporting energy and momentum to the upper atmosphere. This dissertation focuses on the interaction of these waves in the Mesosphere and Lower Thermosphere (MLT) region of the atmosphere using both observational data and Global Circulation Model (GCMs). The first part of this work focuses on observations of gravity wave interactions with the tides using both LIDAR data at the Star Fire Optical Range (SOR, 35?N, 106.5?W) and a meteor radar data at the Andes LIDAR Observatory (ALO, 30.3?S, 70.7?W). At SOR, the gravity waves are shown to enhance or damp the amplitude of the diurnal variations dependent on altitude while the phase is always delayed. The results compare well with previous mechanistic model results and with the Japanese Atmospheric General circulation model for Upper Atmosphere Research (JAGUAR) high resolution global circulation model. The meteor radar observed the GWs to almost always enhance the tidal amplitudes and either delay or advance the phase depending on the altitude. When compared to previous radar results from the same meteor radar when it was located in Maui, Hawaii, the Chile results are very similar while the LIDAR results show significant differences. This is because of several instrument biases when calculating GW momentum fluxes that is not significant when determining the winds. The radar needs to perform large amounts of all-sky averaging across many weeks, while the LIDAR directly detects waves in a small section of sky. The second part of this work focuses on gravity wave parameterization scheme effects on the tides in GCMs. The Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM) and the extended Canadian Middle Atmosphere Model (eCMAM) are used for this analysis. The gravity wave parameterization schemes in the eCMAM (Hines scheme) have been shown to enhance the tidal amplitudes compared to observations while the parameterization scheme in SD-WACCM (Lindzen scheme) overdamps the tides. It is shown here that the Hines scheme assumption that only small scale gravity waves force the atmosphere do not create enough drag to properly constrain the tidal amplitudes. The Lindzen scheme produces too much drag because all wave scales are assumed to be saturated thus continuing to provide forcing on the atmosphere above the breaking altitude. The final part of this work investigates GWs, tides and their interactions on a local time scale instead of a global scale in the two GCMs. The local time GWs in eCMAM are found to have a strong seasonal dependence, with the majority of the forcings at the winter pole at latitudes where the diurnal variations are weak limiting their interactions. In SD-WACCM, the largest local GW forcings are located at mid latitudes near where the diurnal variations peak causing them to dampen the diurnal amplitudes. On a local time level the diurnal variations may be a summation of many tidal modes. The analysis reveals that in eCMAM the DW1 tidal mode is by far the dominant mode accounting for the local time variations. The high amount of modulation of GWs by the DW1 tidal winds does not allow it to be properly constrained, causing it to dominate the local time diurnal variations. Similarly, the DW1 projection of GW forcing is dominant over all other other modes and contributes the most to the local time diurnal GW variations. The local time wind variations in SD-WACCM are in uenced by several tidal modes because the DW1 tide is of compatible amplitudes to other modes. This is because of the increased damping on the tide by the GWs. It is also found that the local GW diurnal variations have significant contributions from all tidal modes due to the time and location of the forcing being dependent only on the tropospheric source regions and not the at altitude tidal winds.
Parameterizations of Dry Deposition for the Industrial Source Complex Model
NASA Astrophysics Data System (ADS)
Wesely, M. L.; Doskey, P. V.; Touma, J. S.
2002-05-01
Improved algorithms have been developed to simulate the dry deposition of hazardous air pollutants (HAPs) with the Industrial Source Complex model system. The dry deposition velocities are described in conventional resistance schemes, for which micrometeorological formulas are applied to describe the aerodynamic resistances above the surface. Pathways to uptake of gases at the ground and in vegetative canopies are depicted with several resistances that are affected by variations in air temperature, humidity, solar irradiance, and soil moisture. Standardized land use types and seasonal categories provide sets of resistances to uptake by various components of the surface. To describe the dry deposition of the large number of gaseous organic HAPS, a new technique based on laboratory study results and theoretical considerations has been developed to provide a means to evaluate the role of lipid solubility on uptake by the waxy outer cuticle of vegetative plant leaves. The dry deposition velocities of particulate HAPs are simulated with a resistance scheme in which deposition velocity is described for two size modes: a fine mode with particles less than about 2.5 microns in diameter and a coarse mode with larger particles but excluding very coarse particles larger than about 10 microns in diameter. For the fine mode, the deposition velocity is calculated with a parameterization based on observations of sulfate dry deposition. For the coarse mode, a representative settling velocity is assumed. Then the total deposition velocity is estimated as the sum of the two deposition velocities weighted according to the amount of mass expected in the two modes.
Optimal throughput for cognitive radio with energy harvesting in fading wireless channel.
Vu-Van, Hiep; Koo, Insoo
2014-01-01
Energy resource management is a crucial problem of a device with a finite capacity battery. In this paper, cognitive radio is considered to be a device with an energy harvester that can harvest energy from a non-RF energy resource while performing other actions of cognitive radio. Harvested energy will be stored in a finite capacity battery. At the start of the time slot of cognitive radio, the radio needs to determine if it should remain silent or carry out spectrum sensing based on the idle probability of the primary user and the remaining energy in order to maximize the throughput of the cognitive radio system. In addition, optimal sensing energy and adaptive transmission power control are also investigated in this paper to effectively utilize the limited energy of cognitive radio. Finding an optimal approach is formulated as a partially observable Markov decision process. The simulation results show that the proposed optimal decision scheme outperforms the myopic scheme in which current throughput is only considered when making a decision.
Game-Theoretic Models for Usage-based Maintenance Contract
NASA Astrophysics Data System (ADS)
Husniah, H.; Wangsaputra, R.; Cakravastia, A.; Iskandar, B. P.
2018-03-01
A usage-based maintenance contracts with coordination and non coordination between two parties is studied in this paper. The contract is applied to a dump truck operated in a mining industry. The situation under study is that an agent offers service contract to the owner of the truck after warranty ends. This contract has only a time limit but no usage limit. If the total usage per period exceeds the maximum usage allowed in the contract, then the owner will be charged an additional cost. In general, the agent (Original Equipment Manufacturer/OEM) provides a full coverage of maintenance, which includes PM and CM under the lease contract. The decision problem for the owner is to select the best option offered that fits to its requirement, and the decision problem for the agent is to find the optimal maintenance efforts for a given price of the service option offered. We first find the optimal decisions using coordination scheme and then with non coordination scheme for both parties.
Intrinsic hybrid modes in a corrugated conical horn
NASA Astrophysics Data System (ADS)
Dendane, A.; Arnold, J. M.
1988-08-01
Computational requirements for the generation of intrinsic modes in a nonseparable waveguide geometry requiring a full vector field description with anistropic impedance boundaries were derived. Good agreement is shown between computed and measured radiation patterns in copolar and crosspolar configurations. This agreement establishes that the intrinsic mode correctly accounts for the local normal mode conversion which takes place along the horn in a conventional mode coupling scheme, at least for cone semiangles up to 15 deg. The advantage of the intrinsic mode formulation over the conventional mode-coupling theory is that, to construct a single intrinsic mode throughout the horn, only one local normal mode field is required at each cross section, whereas mode conversion from the HE11 mode would require all the HE1n modes to be known at each cross section. The intrinsic mode accounts also for fields which would appear as backward modes in coupled-mode theory. A complete coupled-mode theory solution requires the inversion of a large matrix at each cross section, whereas the intrinsic mode can be constructed explicitly using a simple Fourier-like integral; the perturbation solution of Dragone (1977) is difficult to make rigorous.
Kim, Dong-Sun; Kwon, Jin-San
2014-01-01
Research on real-time health systems have received great attention during recent years and the needs of high-quality personal multichannel medical signal compression for personal medical product applications are increasing. The international MPEG-4 audio lossless coding (ALS) standard supports a joint channel-coding scheme for improving compression performance of multichannel signals and it is very efficient compression method for multi-channel biosignals. However, the computational complexity of such a multichannel coding scheme is significantly greater than that of other lossless audio encoders. In this paper, we present a multichannel hardware encoder based on a low-complexity joint-coding technique and shared multiplier scheme for portable devices. A joint-coding decision method and a reference channel selection scheme are modified for a low-complexity joint coder. The proposed joint coding decision method determines the optimized joint-coding operation based on the relationship between the cross correlation of residual signals and the compression ratio. The reference channel selection is designed to select a channel for the entropy coding of the joint coding. The hardware encoder operates at a 40 MHz clock frequency and supports two-channel parallel encoding for the multichannel monitoring system. Experimental results show that the compression ratio increases by 0.06%, whereas the computational complexity decreases by 20.72% compared to the MPEG-4 ALS reference software encoder. In addition, the compression ratio increases by about 11.92%, compared to the single channel based bio-signal lossless data compressor. PMID:25237900
Think, blink or sleep on it? The impact of modes of thought on complex decision making.
Newell, Ben R; Wong, Kwan Yao; Cheung, Jeremy C H; Rakow, Tim
2009-04-01
This paper examines controversial claims about the merit of "unconscious thought" for making complex decisions. In four experiments, participants were presented with complex decisions and were asked to choose the best option immediately, after a period of conscious deliberation, or after a period of distraction (said to encourage "unconscious thought processes"). In all experiments the majority of participants chose the option predicted by their own subjective attribute weighting scores, regardless of the mode of thought employed. There was little evidence for the superiority of choices made "unconsciously", but some evidence that conscious deliberation can lead to better choices. The final experiment suggested that the task is best conceptualized as one involving "online judgement" rather than one in which decisions are made after periods of deliberation or distraction. The results suggest that we should be cautious in accepting the advice to "stop thinking" about complex decisions.
Combined monitoring, decision and control model for the human operator in a command and control desk
NASA Technical Reports Server (NTRS)
Muralidharan, R.; Baron, S.
1978-01-01
A report is given on the ongoing efforts to mode the human operator in the context of the task during the enroute/return phases in the ground based control of multiple flights of remotely piloted vehicles (RPV). The approach employed here uses models that have their analytical bases in control theory and in statistical estimation and decision theory. In particular, it draws heavily on the modes and the concepts of the optimal control model (OCM) of the human operator. The OCM is being extended into a combined monitoring, decision, and control model (DEMON) of the human operator by infusing decision theoretic notions that make it suitable for application to problems in which human control actions are infrequent and in which monitoring and decision-making are the operator's main activities. Some results obtained with a specialized version of DEMON for the RPV control problem are included.
Aziz, H. M. Abdul; Nagle, Nicholas N.; Morton, April M.; ...
2017-02-06
Here, this study finds the effects of traffic safety, walk-bike network facilities, and land use attributes on walk and bicycle mode choice decision in the New York City for home-to-work commute. Applying the flexible econometric structure of random parameter models, we capture the heterogeneity in the decision making process and simulate scenarios considering improvement in walk-bike infrastructure such as sidewalk width and length of bike lane. Our results indicate that increasing sidewalk width, total length of bike lane, and proportion of protected bike lane will increase the likelihood of more people taking active transportation mode This suggests that the localmore » authorities and planning agencies to invest more on building and maintaining the infrastructure for pedestrians. Furthermore, improvement in traffic safety by reducing traffic crashes involving pedestrians and bicyclists will increase the likelihood of taking active transportation modes. Our results also show positive correlation between number of non-motorized trips by the other family members and the likelihood to choose active transportation mode. The findings will help to make smart investment decisions in context of building sustainable transportation systems accounting for active transportation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, H. M. Abdul; Nagle, Nicholas N.; Morton, April M.
Here, this study finds the effects of traffic safety, walk-bike network facilities, and land use attributes on walk and bicycle mode choice decision in the New York City for home-to-work commute. Applying the flexible econometric structure of random parameter models, we capture the heterogeneity in the decision making process and simulate scenarios considering improvement in walk-bike infrastructure such as sidewalk width and length of bike lane. Our results indicate that increasing sidewalk width, total length of bike lane, and proportion of protected bike lane will increase the likelihood of more people taking active transportation mode This suggests that the localmore » authorities and planning agencies to invest more on building and maintaining the infrastructure for pedestrians. Furthermore, improvement in traffic safety by reducing traffic crashes involving pedestrians and bicyclists will increase the likelihood of taking active transportation modes. Our results also show positive correlation between number of non-motorized trips by the other family members and the likelihood to choose active transportation mode. The findings will help to make smart investment decisions in context of building sustainable transportation systems accounting for active transportation.« less
Mode-filtered large-core fiber for optical coherence tomography
Moon, Sucbei; Chen, Zhongping
2013-01-01
We have investigated the use of multimode fiber in optical coherence tomography (OCT) with a mode filter that selectively suppresses the power of the high-order modes (HOMs). A large-core fiber (LCF) that has a moderate number of guiding modes was found to be an attractive alternative to the conventional single-mode fiber for its large mode area and the consequentially wide Rayleigh range of the output beam if the HOMs of the LCF were efficiently filtered out by a mode filter installed in the middle. For this, a simple mode filtering scheme of a fiber-coil mode filter was developed in this study. The LCF was uniformly coiled by an optimal bend radius with a fiber winder, specially devised for making a low-loss mode filter. The feasibility of the mode-filtered LCF in OCT imaging was tested with a common-path OCT system. It has been successfully demonstrated that our mode-filtered LCF can provide a useful imaging or sensing probe without an objective lens that greatly simplifies the structure of the probing optics. PMID:23207399
Azadmanjir, Zahra; Safdari, Reza; Ghazisaeedi, Marjan; Mokhtaran, Mehrshad; Kameli, Mohammad Esmail
2017-06-01
Accurate coded data in the healthcare are critical. Computer-Assisted Coding (CAC) is an effective tool to improve clinical coding in particular when a new classification will be developed and implemented. But determine the appropriate method for development need to consider the specifications of existing CAC systems, requirements for each type, our infrastructure and also, the classification scheme. The aim of the study was the development of a decision model for determining accurate code of each medical intervention in Iranian Classification of Health Interventions (IRCHI) that can be implemented as a suitable CAC system. first, a sample of existing CAC systems was reviewed. Then feasibility of each one of CAC types was examined with regard to their prerequisites for their implementation. The next step, proper model was proposed according to the structure of the classification scheme and was implemented as an interactive system. There is a significant relationship between the level of assistance of a CAC system and integration of it with electronic medical documents. Implementation of fully automated CAC systems is impossible due to immature development of electronic medical record and problems in using language for medical documenting. So, a model was proposed to develop semi-automated CAC system based on hierarchical relationships between entities in the classification scheme and also the logic of decision making to specify the characters of code step by step through a web-based interactive user interface for CAC. It was composed of three phases to select Target, Action and Means respectively for an intervention. The proposed model was suitable the current status of clinical documentation and coding in Iran and also, the structure of new classification scheme. Our results show it was practical. However, the model needs to be evaluated in the next stage of the research.
Measuring Shared Decision Making in Psychiatric Care
Salyers, Michelle P.; Matthias, Marianne S.; Fukui, Sadaaki; Holter, Mark C.; Collins, Linda; Rose, Nichole; Thompson, John; Coffman, Melinda; Torrey, William C.
2014-01-01
Objective Shared decision making is widely recognized to facilitate effective health care; tools are needed to measure the level of shared decision making in psychiatric practice. Methods A coding scheme assessing shared decision making in medical settings (1) was adapted, including creation of a manual. Trained raters analyzed 170 audio recordings of psychiatric medication check-up visits. Results Inter-rater reliability among three raters for a subset of 20 recordings ranged from 67% to 100% agreement for the presence of each of nine elements of shared decision making and 100% for the overall agreement between provider and consumer. Just over half of the decisions met minimum criteria for shared decision making. Shared decision making was not related to length of visit after controlling for complexity of decision. Conclusions The shared decision making rating scale appears to reliably assess shared decision making in psychiatric practice and could be helpful for future research, training, and implementation efforts. PMID:22854725
FPGA implementation of concatenated non-binary QC-LDPC codes for high-speed optical transport.
Zou, Ding; Djordjevic, Ivan B
2015-06-01
In this paper, we propose a soft-decision-based FEC scheme that is the concatenation of a non-binary LDPC code and hard-decision FEC code. The proposed NB-LDPC + RS with overhead of 27.06% provides a superior NCG of 11.9dB at a post-FEC BER of 10-15. As a result, the proposed NB-LDPC codes represent the strong FEC candidate of soft-decision FEC for beyond 100Gb/s optical transmission systems.
NASA Astrophysics Data System (ADS)
Danilova, Olga; Semenova, Zinaida
2018-04-01
The objective of this study is a detailed analysis of physical protection systems development for information resources. The optimization theory and decision-making mathematical apparatus is used to formulate correctly and create an algorithm of selection procedure for security systems optimal configuration considering the location of the secured object’s access point and zones. The result of this study is a software implementation scheme of decision-making system for optimal placement of the physical access control system’s elements.
Active flutter suppression using dipole filters
NASA Technical Reports Server (NTRS)
Srinathkumar, S.; Waszak, Martin R.
1992-01-01
By using traditional control concepts of gain root locus, the active suppression of a flutter mode of a flexible wing is examined. It is shown that the attraction of the unstable mode towards a critical system zero determines the degree to which the flutter mode can be stabilized. For control situations where the critical zero is adversely placed in the complex plane, a novel compensation scheme called a 'Dipole' filter is proposed. This filter ensures that the flutter mode is stabilized with acceptable control energy. The control strategy is illustrated by designing flutter suppression laws for an active flexible wing (AFW) wind-tunnel model, where minimal control effort solutions are mandated by control rate saturation problems caused by wind-tunnel turbulence.
Stabilization and tracking control of X-Z inverted pendulum with sliding-mode control.
Wang, Jia-Jun
2012-11-01
X-Z inverted pendulum is a new kind of inverted pendulum which can move with the combination of the vertical and horizontal forces. Through a new transformation, the X-Z inverted pendulum is decomposed into three simple models. Based on the simple models, sliding-mode control is applied to stabilization and tracking control of the inverted pendulum. The performance of the sliding mode control is compared with that of the PID control. Simulation results show that the design scheme of sliding-mode control is effective for the stabilization and tracking control of the X-Z inverted pendulum. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Automated Guideway Network Traffic Modeling
DOT National Transportation Integrated Search
1972-02-01
In the literature concerning automated guideway transportation systems, such as dual mode, a great deal of effort has been expended on the use of deterministic reservation schemes and the problem of merging streams of vehicles. However, little attent...
Matching Impedances and Modes in Acoustic Levitation
NASA Technical Reports Server (NTRS)
Barmatz, M. B.
1985-01-01
Temperature differences accommodated with tunable coupler. Report discusses schemes for coupling sound efficiently from cool outside atmosphere into hot acoustic-levitation chamber. Theoretical studies have practical implications for material-processing systems that employ acoustic levitation.
Airborne Data Link Study Report
DOT National Transportation Integrated Search
1996-01-01
This report represents evaluations of Data Link products and services in a simulated aviation opearation. The study addresses key issues related to alerting schemes for Data Link messages, positioning of Data Link displays, and mode of presentation o...
Clayton, Margaret F; Latimer, Seth; Dunn, Todd W; Haas, Leonard
2011-09-01
This study evaluated variables thought to influence patient's perceptions of patient-centeredness. We also compared results from two coding schemes that purport to evaluate patient-centeredness, the Measure of Patient-Centered Communication (MPCC) and the 4 Habits Coding Scheme (4HCS). 174 videotaped family practice office visits, and patient self-report measures were analyzed. Patient factors contributing to positive perceptions of patient-centeredness were successful negotiation of decision-making roles and lower post-visit uncertainty. MPCC coding found visits were on average 59% patient-centered (range 12-85%). 4HCS coding showed an average of 83 points (maximum possible 115). However, patients felt their visits were highly patient-centered (mean 3.7, range 1.9-4; maximum possible 4). There was a weak correlation between coding schemes, but no association between coding results and patient variables (number of pre-visit concerns, attainment of desired decision-making role, post-visit uncertainty, patients' perception of patient-centeredness). Coder inter-rater reliability was lower than expected; convergent and divergent validity were not supported. The 4HCS and MPCC operationalize patient-centeredness differently, illustrating a lack of conceptual clarity. The patient's perspective is important. Family practice providers can facilitate a more positive patient perception of patient-centeredness by addressing patient concerns to help reduce patient uncertainty, and by negotiating decision-making roles. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Hossain, S. A. Shahed; Pérez Koehlmoos, Tracey Lynn; John, Denny
2016-01-01
Introduction This research article reports on factors influencing initial voluntary uptake of community-based health insurance (CBHI) schemes in low- and middle-income countries (LMIC), and renewal decisions. Methods Following PRISMA protocol, we conducted a comprehensive search of academic and gray literature, including academic databases in social science, economics and medical sciences (e.g., Econlit, Global health, Medline, Proquest) and other electronic resources (e.g., Eldis and Google scholar). Search strategies were developed using the thesaurus or index terms (e.g., MeSH) specific to the databases, combined with free text terms related to CBHI or health insurance. Searches were conducted from May 2013 to November 2013 in English, French, German, and Spanish. From the initial search yield of 15,770 hits, 54 relevant studies were retained for analysis of factors influencing enrolment and renewal decisions. The quantitative synthesis (informed by meta-analysis) and the qualitative analysis (informed by thematic synthesis) were compared to gain insight for an overall synthesis of findings/statements. Results Meta-analysis suggests that enrolments in CBHI were positively associated with household income, education and age of the household head (HHH), household size, female-headed household, married HHH and chronic illness episodes in the household. The thematic synthesis suggests the following factors as enablers for enrolment: (a) knowledge and understanding of insurance and CBHI, (b) quality of healthcare, (c) trust in scheme management. Factors found to be barriers to enrolment include: (a) inappropriate benefits package, (b) cultural beliefs, (c) affordability, (d) distance to healthcare facility, (e) lack of adequate legal and policy frameworks to support CBHI, and (f) stringent rules of some CBHI schemes. HHH education, household size and trust in the scheme management were positively associated with member renewal decisions. Other motivators were: (a) knowledge and understanding of insurance and CBHI, (b) healthcare quality, (c) trust in scheme management, and (d) receipt of an insurance payout the previous year. The barriers to renewal decisions were: (a) stringent rules of some CBHI schemes, (b) inadequate legal and policy frameworks to support CBHI and (c) inappropriate benefits package. Conclusion and Policy Implications The demand-side factors positively affecting enrolment in CBHI include education, age, female household heads, and the socioeconomic status of households. Moreover, when individuals understand how their CBHI functions they are more likely to enroll and when people have a positive claims experience, they are more likely to renew. A higher prevalence of chronic conditions or the perception that healthcare is of good quality and nearby act as factors enhancing enrolment. The perception that services are distant or deficient leads to lower enrolments. The second insight is that trust in the scheme enables enrolment. Thirdly, clarity about the legal or policy framework acts as a factor influencing enrolments. This is significant, as it points to hitherto unpublished evidence that governments can effectively broaden their outreach to grassroots groups that are excluded from social protection by formulating supportive regulatory and policy provisions even if they cannot fund such schemes in full, by leveraging people’s willingness to exercise voluntary and contributory enrolment in a community-based health insurance. PMID:27579731
Effect of noise in intelligent cellular decision making.
Bates, Russell; Blyuss, Oleg; Alsaedi, Ahmed; Zaikin, Alexey
2015-01-01
Similar to intelligent multicellular neural networks controlling human brains, even single cells, surprisingly, are able to make intelligent decisions to classify several external stimuli or to associate them. This happens because of the fact that gene regulatory networks can perform as perceptrons, simple intelligent schemes known from studies on Artificial Intelligence. We study the role of genetic noise in intelligent decision making at the genetic level and show that noise can play a constructive role helping cells to make a proper decision. We show this using the example of a simple genetic classifier able to classify two external stimuli.
Opinion Dynamics and Decision of Vote in Bipolar Political Systems
NASA Astrophysics Data System (ADS)
Caruso, Filippo; Castorina, Paolo
A model of the opinion dynamics underlying the political decision is proposed. The analysis is restricted to a bipolar scheme with a possible third political area. The interaction among voters is local but the final decision strongly depends on global effects such as the rating of the governments. As in the realistic case, the individual decision making process is determined by the most relevant personal interests and problems. The phenomenological analysis of the national vote in Italy and Germany has been carried out and a prediction of the next Italian vote as a function of the government rating is presented.
Gallego, Gisselle
2011-12-01
Decisions about spending on medicines occur at different levels in the Australian health care system. This commentary describes the role of economic evaluation at the institutional (public hospital) level. In contrast to the decisions taken at the level of Federal subsidy (listing on the Pharmaceutical Benefits Scheme) formal pharmacoeonomic data analyses are usually not available, and arguably often not relevant to decision making within the public hospital setting. Future research is needed to develop and explore models of best practice and how to incorporate pharmacoeconomic evidence into local decisions.
The anatomy of choice: dopamine and decision-making
Friston, Karl; Schwartenbeck, Philipp; FitzGerald, Thomas; Moutoussis, Michael; Behrens, Timothy; Dolan, Raymond J.
2014-01-01
This paper considers goal-directed decision-making in terms of embodied or active inference. We associate bounded rationality with approximate Bayesian inference that optimizes a free energy bound on model evidence. Several constructs such as expected utility, exploration or novelty bonuses, softmax choice rules and optimism bias emerge as natural consequences of free energy minimization. Previous accounts of active inference have focused on predictive coding. In this paper, we consider variational Bayes as a scheme that the brain might use for approximate Bayesian inference. This scheme provides formal constraints on the computational anatomy of inference and action, which appear to be remarkably consistent with neuroanatomy. Active inference contextualizes optimal decision theory within embodied inference, where goals become prior beliefs. For example, expected utility theory emerges as a special case of free energy minimization, where the sensitivity or inverse temperature (associated with softmax functions and quantal response equilibria) has a unique and Bayes-optimal solution. Crucially, this sensitivity corresponds to the precision of beliefs about behaviour. The changes in precision during variational updates are remarkably reminiscent of empirical dopaminergic responses—and they may provide a new perspective on the role of dopamine in assimilating reward prediction errors to optimize decision-making. PMID:25267823
The anatomy of choice: dopamine and decision-making.
Friston, Karl; Schwartenbeck, Philipp; FitzGerald, Thomas; Moutoussis, Michael; Behrens, Timothy; Dolan, Raymond J
2014-11-05
This paper considers goal-directed decision-making in terms of embodied or active inference. We associate bounded rationality with approximate Bayesian inference that optimizes a free energy bound on model evidence. Several constructs such as expected utility, exploration or novelty bonuses, softmax choice rules and optimism bias emerge as natural consequences of free energy minimization. Previous accounts of active inference have focused on predictive coding. In this paper, we consider variational Bayes as a scheme that the brain might use for approximate Bayesian inference. This scheme provides formal constraints on the computational anatomy of inference and action, which appear to be remarkably consistent with neuroanatomy. Active inference contextualizes optimal decision theory within embodied inference, where goals become prior beliefs. For example, expected utility theory emerges as a special case of free energy minimization, where the sensitivity or inverse temperature (associated with softmax functions and quantal response equilibria) has a unique and Bayes-optimal solution. Crucially, this sensitivity corresponds to the precision of beliefs about behaviour. The changes in precision during variational updates are remarkably reminiscent of empirical dopaminergic responses-and they may provide a new perspective on the role of dopamine in assimilating reward prediction errors to optimize decision-making.
Towse, Adrian
2010-01-01
The National Health Service (NHS) should reward innovation it values. This will enable the NHS and the United Kingdom (UK) economy to benefit and impact positively on the Research and Development (R&D) decision making of companies. The National Institute for Health and Clinical Excellence (NICE) currently seeks to do this on behalf of the NHS. Yet the Office of Fair Trading proposals for Value Based Pricing add price setting powers – initially for the Department of Health (DH) and then for NICE. This introduces an additional substantial uncertainty that will impact on R&D and, conditional on R&D proceeding, on launch (or not) in the UK. Instead of adding to uncertainty the institutional arrangements for assessing value should seek to be predictable and science based, building on NICE's current arrangements. The real challenge is to increase understanding of the underlying cost-effectiveness of the technology itself by collecting evidence alongside use. The 2009 Pharmaceutical Price Regulation Scheme sought to help do this with Flexible Pricing (FP) and Patient Access Schemes (PASs). The PASs to date have increased access to medicines, but no schemes proposed to date have yet helped to tackle outcomes uncertainty. The 2010 Innovation Pass can also be seen as a form of ‘coverage with evidence development.’ The NHS is understandably concerned about the costs of running such evidence collection schemes. Enabling the NHS to deliver on such schemes will impact favourably on R&D decisions. Increasing the uncertainty in the UK NHS market through government price setting will reduce incentives for R&D and for early UK launch. PMID:20716236
Towse, Adrian
2010-09-01
The National Health Service (NHS) should reward innovation it values. This will enable the NHS and the United Kingdom (UK) economy to benefit and impact positively on the Research and Development (R&D) decision making of companies. The National Institute for Health and Clinical Excellence (NICE) currently seeks to do this on behalf of the NHS. Yet the Office of Fair Trading proposals for Value Based Pricing add price setting powers--initially for the Department of Health (DH) and then for NICE. This introduces an additional substantial uncertainty that will impact on R&D and, conditional on R&D proceeding, on launch (or not) in the UK. Instead of adding to uncertainty the institutional arrangements for assessing value should seek to be predictable and science based, building on NICE's current arrangements. The real challenge is to increase understanding of the underlying cost-effectiveness of the technology itself by collecting evidence alongside use. The 2009 Pharmaceutical Price Regulation Scheme sought to help do this with Flexible Pricing (FP) and Patient Access Schemes (PASs). The PASs to date have increased access to medicines, but no schemes proposed to date have yet helped to tackle outcomes uncertainty. The 2010 Innovation Pass can also be seen as a form of 'coverage with evidence development.' The NHS is understandably concerned about the costs of running such evidence collection schemes. Enabling the NHS to deliver on such schemes will impact favourably on R&D decisions. Increasing the uncertainty in the UK NHS market through government price setting will reduce incentives for R&D and for early UK launch.
Ezeome, I V; Ezugworie, J O; Udealor, P C
2018-04-01
Through the process of socialization, women and men are conditioned to behave and play different roles in society. While the African culture "rewards" women who have vaginal birth despite the cost to their health, the burden of reproductive decision-making is placed on the menfolk. However, these seem to be changing. Our aim was to assess the beliefs and perceptions of pregnant women about cesarean section (CS), including their views regarding decision-making on the mode of delivery, in Enugu, Southeast Nigeria. A cross-sectional descriptive study. A structured questionnaire was administered to 200 pregnant women, following an oral informed consent. : Statistical Package for the Social Sciences version 17 with descriptive statistics of frequencies and percentages. All the respondents believe that CS is done for the safety of the mother/baby. Thirteen percent reject the procedure for themselves no matter the circumstance. Joint decision-making was the view of two-thirds of the women. Majority of them will accept CS if their husbands consent. Younger women were of the view that husbands decide on the delivery mode (P = 0.019). Culture remains an impediment to CS uptake. Most women preferred joint decision-making on the mode of delivery.
Polarization-basis tracking scheme for quantum key distribution using revealed sifted key bits.
Ding, Yu-Yang; Chen, Wei; Chen, Hua; Wang, Chao; Li, Ya-Ping; Wang, Shuang; Yin, Zhen-Qiang; Guo, Guang-Can; Han, Zheng-Fu
2017-03-15
The calibration of the polarization basis between the transmitter and receiver is an important task in quantum key distribution. A continuously working polarization-basis tracking scheme (PBTS) will effectively promote the efficiency of the system and reduce the potential security risk when switching between the transmission and calibration modes. Here, we proposed a single-photon level continuously working PBTS using only sifted key bits revealed during an error correction procedure, without introducing additional reference light or interrupting the transmission of quantum signals. We applied the scheme to a polarization-encoding BB84 QKD system in a 50 km fiber channel, and obtained an average quantum bit error rate (QBER) of 2.32% and a standard derivation of 0.87% during 24 h of continuous operation. The stable and relatively low QBER validates the effectiveness of the scheme.
2015-09-17
the literature, such as mode-locked lasers, optoelectronic oscillators , and laser optical heterodyne, our scheme is (1) up to 100 times better in... Optoelectronic oscillator : This scheme generates microwaves that are tunable only within a few gigahertz and that are stable with a linewidth down to 1 Hz... oscillation frequency, which can be easily adjusted by changing the power and frequency of the optical input. Tens to hundreds of GHz or even THz of
Batch mode grid generation: An endangered species
NASA Technical Reports Server (NTRS)
Schuster, David M.
1992-01-01
Non-interactive grid generation schemes should thrive as emphasis shifts from development of numerical analysis and design methods to application of these tools to real engineering problems. A strong case is presented for the continued development and application of non-interactive geometry modeling methods. Guidelines, strategies, and techniques for developing and implementing these tools are presented using current non-interactive grid generation methods as examples. These schemes play an important role in the development of multidisciplinary analysis methods and some of these applications are also discussed.
A privacy-preserving parallel and homomorphic encryption scheme
NASA Astrophysics Data System (ADS)
Min, Zhaoe; Yang, Geng; Shi, Jingqi
2017-04-01
In order to protect data privacy whilst allowing efficient access to data in multi-nodes cloud environments, a parallel homomorphic encryption (PHE) scheme is proposed based on the additive homomorphism of the Paillier encryption algorithm. In this paper we propose a PHE algorithm, in which plaintext is divided into several blocks and blocks are encrypted with a parallel mode. Experiment results demonstrate that the encryption algorithm can reach a speed-up ratio at about 7.1 in the MapReduce environment with 16 cores and 4 nodes.
The solution of the optimization problem of small energy complexes using linear programming methods
NASA Astrophysics Data System (ADS)
Ivanin, O. A.; Director, L. B.
2016-11-01
Linear programming methods were used for solving the optimization problem of schemes and operation modes of distributed generation energy complexes. Applicability conditions of simplex method, applied to energy complexes, including installations of renewable energy (solar, wind), diesel-generators and energy storage, considered. The analysis of decomposition algorithms for various schemes of energy complexes was made. The results of optimization calculations for energy complexes, operated autonomously and as a part of distribution grid, are presented.
Multichannel temperature controller for hot air solar house
NASA Technical Reports Server (NTRS)
Currie, J. R.
1979-01-01
This paper describes an electronic controller that is optimized to operate a hot air solar system. Thermal information is obtained from copper constantan thermocouples and a wall-type thermostat. The signals from the thermocouples are processed through a single amplifier using a multiplexing scheme. The multiplexing reduces the component count and automatically calibrates the thermocouple amplifier. The processed signals connect to some simple logic that selects one of the four operating modes. This simple, inexpensive, and reliable scheme is well suited to control hot air solar systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Doncker, Rik W. A. A.
The direct (d) and quadrature (q) components of flux, as sensed by flux sensors or determined from voltage and current measurements in a direct field orientation scheme, are processed rapidly and accurately to provide flux amplitude and angular position values for use by the vector rotator of a universal field-oriented (UFO) controller. Flux amplitude (linear or squared) is provided as feedback to tune the UFO controller for operation in direct and indirect field orientation modes and enables smooth transitions from one mode to the other.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Doncker, R.W.A.A.
The direct (d) and quadrature (q) components of flux, as sensed by flux sensors or determined from voltage and current measurements in a direct field orientation scheme, are processed rapidly and accurately to provide flux amplitude and angular position values for use by the vector rotator of a universal field-oriented (UFO) controller. Flux amplitude (linear or squared) is provided as feedback to tune the UFO controller for operation in direct and indirect field orientation modes and enables smooth transitions from one mode to the other. 3 figs.
De Doncker, R.W.A.A.
1992-09-01
The direct (d) and quadrature (q) components of flux, as sensed by flux sensors or determined from voltage and current measurements in a direct field orientation scheme, are processed rapidly and accurately to provide flux amplitude and angular position values for use by the vector rotator of a universal field-oriented (UFO) controller. Flux amplitude (linear or squared) is provided as feedback to tune the UFO controller for operation in direct and indirect field orientation modes and enables smooth transitions from one mode to the other. 3 figs.
NASA Astrophysics Data System (ADS)
Delord, T.; Nicolas, L.; Chassagneux, Y.; Hétet, G.
2017-12-01
A scheme for strong coupling between a single atomic spin and the rotational mode of levitating nanoparticles is proposed. The idea is based on spin readout of nitrogen-vacancy centers embedded in aspherical nanodiamonds levitating in an ion trap. We show that the asymmetry of the diamond induces a rotational confinement in the ion trap. Using a weak homogeneous magnetic field and a strong microwave driving we then demonstrate that the spin of the nitrogen-vacancy center can be strongly coupled to the rotational mode of the diamond.
Optical single photons on-demand teleported from microwave cavities
NASA Astrophysics Data System (ADS)
Barzanjeh, Sh; Vitali, D.; Tombesi, P.
2013-03-01
We propose a scheme for entangling the optical and microwave output modes of the respective cavities by using a micro mechanical resonator. The micro mechanical resonator, on one side, is capacitively coupled to the microwave cavity and, on the other side, it is coupled to a high-finesses optical cavity. We then show how this continuous variable entanglement can be profitably used to teleport the non-Gaussian number state |1> and the superposition (|0\\rangle +|1\\rangle )/\\sqrt 2 from the microwave cavity output mode onto an output of the optical cavity mode with fidelity much larger than the no-cloning limit.
A Dual Mode BPF with Improved Spurious Response Using DGS Cells Embedded on the Ground Plane of CPW
NASA Astrophysics Data System (ADS)
Weng, Min-Hang; Ye, Chang-Sin; Hung, Cheng-Yuan; Huang, Chun-Yueh
A novel dual mode bandpass filter (BPF) with improved spurious response is presented in this letter. To obtain low insertion loss, the coupling structure using the dual mode resonator and the feeding scheme using coplanar-waveguide (CPW) are constructed on the two sides of a dielectric substrate. A defected ground structure (DGS) is designed on the ground plane of the CPW to achieve the goal of spurious suppression of the filter. The filter has been investigated numerically and experimentally. Measured results show a good agreement with the simulated analysis.
Radiation of sound from unflanged cylindrical ducts
NASA Technical Reports Server (NTRS)
Hartharan, S. L.; Bayliss, A.
1983-01-01
Calculations of sound radiated from unflanged cylindrical ducts are presented. The numerical simulation models the problem of an aero-engine inlet. The time dependent linearized Euler equations are solved from a state of rest until a harmonic solution is attained. A fourth order accurate finite difference scheme is used and solutions are obtained from a fully vectorized Cyber-203 computer program. Cases of both plane waves and spin modes are treated. Spin modes model the sound generated by a turbofan engine. Boundary conditions for both plane waves and spin modes are treated. Solutions obtained are compared with experiments conducted at NASA Langley Research Center.
2015-11-24
spatial concerns: ¤ how well are gradients captured? (resolution requirement) spatial/temporal concerns: ¤ dispersion and dissipation error...distribution is unlimited. Gradient Capture vs. Resolution: Single Mode FFT: Solution/Derivative: Convergence: f x( )= sin(x) with x∈[0,2π ] df dx...distribution is unlimited. Gradient Capture vs. Resolution: Multiple Modes FFT: Solution/Derivative: Convergence: 6 __ CD02 __ CD04 __ CD06
Analytical and Experimental Random Vibration of Nonlinear Aeroelastic Structures.
1987-01-28
firstorder differential equations. In view of the system complexi- ty an attempt s made to close the infinite hierarchy by using a Gaussian scheme. This sc...year of this project-. When the first normal mode is externally excited by a band-limited random excitation, the system mean square response is found...governed mainly by the internal detuning parameter and the system damping ratios. The results are completely different when the second normal mode is
Joseph, Carol A; Ricketts, Katherine D
2007-12-01
EWGLINET, the European surveillance scheme for travel associated Legionnaires' disease, was established in 1987 following the identification of the disease in 1976. In 1998, the European Commission's Decision 2119/98/EC provided a legal framework for EWGLINET's operation, and its aims and objectives were formalised. Since its inception, the scheme has encountered a number of challenges which have influenced its development as a Disease Specific Network. The solutions to these challenges, and their successes, may be of interest to similar schemes. This article traces the development of the scheme and its responses to the challenges it has encountered. One especially significant document developed by the scheme is the European Guidelines for Control and Prevention of Travel Associated Legionnaires' Disease;(1) its history is explored. In addition, EWGLINET's relationship with collaborating centres and other groups such as tour operators is highlighted. Despite changing over time, the collaborations and partnerships have been maintained and continue to ensure a close cooperation, maximizing public health effects.
An Adaptive Ship Detection Scheme for Spaceborne SAR Imagery
Leng, Xiangguang; Ji, Kefeng; Zhou, Shilin; Xing, Xiangwei; Zou, Huanxin
2016-01-01
With the rapid development of spaceborne synthetic aperture radar (SAR) and the increasing need of ship detection, research on adaptive ship detection in spaceborne SAR imagery is of great importance. Focusing on practical problems of ship detection, this paper presents a highly adaptive ship detection scheme for spaceborne SAR imagery. It is able to process a wide range of sensors, imaging modes and resolutions. Two main stages are identified in this paper, namely: ship candidate detection and ship discrimination. Firstly, this paper proposes an adaptive land masking method using ship size and pixel size. Secondly, taking into account the imaging mode, incidence angle, and polarization channel of SAR imagery, it implements adaptive ship candidate detection in spaceborne SAR imagery by applying different strategies to different resolution SAR images. Finally, aiming at different types of typical false alarms, this paper proposes a comprehensive ship discrimination method in spaceborne SAR imagery based on confidence level and complexity analysis. Experimental results based on RADARSAT-1, RADARSAT-2, TerraSAR-X, RS-1, and RS-3 images demonstrate that the adaptive scheme proposed in this paper is able to detect ship targets in a fast, efficient and robust way. PMID:27563902
Li, Xiangfei; Lin, Yuliang
2017-01-01
This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system. PMID:29211017
Overview of the preliminary design of the ITER plasma control system
NASA Astrophysics Data System (ADS)
Snipes, J. A.; Albanese, R.; Ambrosino, G.; Ambrosino, R.; Amoskov, V.; Blanken, T. C.; Bremond, S.; Cinque, M.; de Tommasi, G.; de Vries, P. C.; Eidietis, N.; Felici, F.; Felton, R.; Ferron, J.; Formisano, A.; Gribov, Y.; Hosokawa, M.; Hyatt, A.; Humphreys, D.; Jackson, G.; Kavin, A.; Khayrutdinov, R.; Kim, D.; Kim, S. H.; Konovalov, S.; Lamzin, E.; Lehnen, M.; Lukash, V.; Lomas, P.; Mattei, M.; Mineev, A.; Moreau, P.; Neu, G.; Nouailletas, R.; Pautasso, G.; Pironti, A.; Rapson, C.; Raupp, G.; Ravensbergen, T.; Rimini, F.; Schneider, M.; Travere, J.-M.; Treutterer, W.; Villone, F.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.
2017-12-01
An overview of the preliminary design of the ITER plasma control system (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemes for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.
An implict LU scheme for the Euler equations applied to arbitrary cascades. [new method of factoring
NASA Technical Reports Server (NTRS)
Buratynski, E. K.; Caughey, D. A.
1984-01-01
An implicit scheme for solving the Euler equations is derived and demonstrated. The alternating-direction implicit (ADI) technique is modified, using two implicit-operator factors corresponding to lower-block-diagonal (L) or upper-block-diagonal (U) algebraic systems which can be easily inverted. The resulting LU scheme is implemented in finite-volume mode and applied to 2D subsonic and transonic cascade flows with differing degrees of geometric complexity. The results are presented graphically and found to be in good agreement with those of other numerical and analytical approaches. The LU method is also 2.0-3.4 times faster than ADI, suggesting its value in calculating 3D problems.
Fault Analysis and Detection in Microgrids with High PV Penetration
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Khatib, Mohamed; Hernandez Alvidrez, Javier; Ellis, Abraham
In this report we focus on analyzing current-controlled PV inverters behaviour under faults in order to develop fault detection schemes for microgrids with high PV penetration. Inverter model suitable for steady state fault studies is presented and the impact of PV inverters on two protection elements is analyzed. The studied protection elements are superimposed quantities based directional element and negative sequence directional element. Additionally, several non-overcurrent fault detection schemes are discussed in this report for microgrids with high PV penetration. A detailed time-domain simulation study is presented to assess the performance of the presented fault detection schemes under different microgridmore » modes of operation.« less
Stability control of a flexible maneuverable tethered space net robot
NASA Astrophysics Data System (ADS)
Zhang, Fan; Huang, Panfeng
2018-04-01
As a promising solution for active space debris capture and removal, a maneuverable Tethered Space Net Robot (TSNR) is proposed as an improved Space Tethered Net (TSN). In addition to the advantages inherit to the TSN, the TSNR's maneuverability expands the capture's potential. However, oscillations caused by the TSNR's flexibility and elasticity of make higher requests of the control scheme. Based on the dynamics model, a modified adaptive super-twisting sliding mode control scheme is proposed in this paper for TSNR stability control. The proposed continuous control force can effectively suppress oscillations. Theoretical verification and numerical simulations demonstrate that the desired trajectory can be tracked steadily and efficiently by employing the proposed control scheme.
Comparing the diversity of information by word-of-mouth vs. web spread
NASA Astrophysics Data System (ADS)
Sela, Alon; Shekhtman, Louis; Havlin, Shlomo; Ben-Gal, Irad
2016-06-01
Many studies have explored spreading and diffusion through complex networks. The following study examines a specific case of spreading of opinions in modern society through two spreading schemes —defined as being either through “word of mouth” (WOM), or through online search engines (WEB). We apply both modelling and real experimental results and compare the opinions people adopt through an exposure to their friend's opinions, as opposed to the opinions they adopt when using a search engine based on the PageRank algorithm. A simulated study shows that when members in a population adopt decisions through the use of the WEB scheme, the population ends up with a few dominant views, while other views are barely expressed. In contrast, when members adopt decisions based on the WOM scheme, there is a far more diverse distribution of opinions in that population. The simulative results are further supported by an online experiment which finds that people searching information through a search engine end up with far more homogenous opinions as compared to those asking their friends.
Djordjevic, Ivan B; Vasic, Bane
2006-05-29
A maximum a posteriori probability (MAP) symbol decoding supplemented with iterative decoding is proposed as an effective mean for suppression of intrachannel nonlinearities. The MAP detector, based on Bahl-Cocke-Jelinek-Raviv algorithm, operates on the channel trellis, a dynamical model of intersymbol interference, and provides soft-decision outputs processed further in an iterative decoder. A dramatic performance improvement is demonstrated. The main reason is that the conventional maximum-likelihood sequence detector based on Viterbi algorithm provides hard-decision outputs only, hence preventing the soft iterative decoding. The proposed scheme operates very well in the presence of strong intrachannel intersymbol interference, when other advanced forward error correction schemes fail, and it is also suitable for 40 Gb/s upgrade over existing 10 Gb/s infrastructure.
Implementation science: a role for parallel dual processing models of reasoning?
Sladek, Ruth M; Phillips, Paddy A; Bond, Malcolm J
2006-01-01
Background A better theoretical base for understanding professional behaviour change is needed to support evidence-based changes in medical practice. Traditionally strategies to encourage changes in clinical practices have been guided empirically, without explicit consideration of underlying theoretical rationales for such strategies. This paper considers a theoretical framework for reasoning from within psychology for identifying individual differences in cognitive processing between doctors that could moderate the decision to incorporate new evidence into their clinical decision-making. Discussion Parallel dual processing models of reasoning posit two cognitive modes of information processing that are in constant operation as humans reason. One mode has been described as experiential, fast and heuristic; the other as rational, conscious and rule based. Within such models, the uptake of new research evidence can be represented by the latter mode; it is reflective, explicit and intentional. On the other hand, well practiced clinical judgments can be positioned in the experiential mode, being automatic, reflexive and swift. Research suggests that individual differences between people in both cognitive capacity (e.g., intelligence) and cognitive processing (e.g., thinking styles) influence how both reasoning modes interact. This being so, it is proposed that these same differences between doctors may moderate the uptake of new research evidence. Such dispositional characteristics have largely been ignored in research investigating effective strategies in implementing research evidence. Whilst medical decision-making occurs in a complex social environment with multiple influences and decision makers, it remains true that an individual doctor's judgment still retains a key position in terms of diagnostic and treatment decisions for individual patients. This paper argues therefore, that individual differences between doctors in terms of reasoning are important considerations in any discussion relating to changing clinical practice. Summary It is imperative that change strategies in healthcare consider relevant theoretical frameworks from other disciplines such as psychology. Generic dual processing models of reasoning are proposed as potentially useful in identifying factors within doctors that may moderate their individual uptake of evidence into clinical decision-making. Such factors can then inform strategies to change practice. PMID:16725023
Implementation science: a role for parallel dual processing models of reasoning?
Sladek, Ruth M; Phillips, Paddy A; Bond, Malcolm J
2006-05-25
A better theoretical base for understanding professional behaviour change is needed to support evidence-based changes in medical practice. Traditionally strategies to encourage changes in clinical practices have been guided empirically, without explicit consideration of underlying theoretical rationales for such strategies. This paper considers a theoretical framework for reasoning from within psychology for identifying individual differences in cognitive processing between doctors that could moderate the decision to incorporate new evidence into their clinical decision-making. Parallel dual processing models of reasoning posit two cognitive modes of information processing that are in constant operation as humans reason. One mode has been described as experiential, fast and heuristic; the other as rational, conscious and rule based. Within such models, the uptake of new research evidence can be represented by the latter mode; it is reflective, explicit and intentional. On the other hand, well practiced clinical judgments can be positioned in the experiential mode, being automatic, reflexive and swift. Research suggests that individual differences between people in both cognitive capacity (e.g., intelligence) and cognitive processing (e.g., thinking styles) influence how both reasoning modes interact. This being so, it is proposed that these same differences between doctors may moderate the uptake of new research evidence. Such dispositional characteristics have largely been ignored in research investigating effective strategies in implementing research evidence. Whilst medical decision-making occurs in a complex social environment with multiple influences and decision makers, it remains true that an individual doctor's judgment still retains a key position in terms of diagnostic and treatment decisions for individual patients. This paper argues therefore, that individual differences between doctors in terms of reasoning are important considerations in any discussion relating to changing clinical practice. It is imperative that change strategies in healthcare consider relevant theoretical frameworks from other disciplines such as psychology. Generic dual processing models of reasoning are proposed as potentially useful in identifying factors within doctors that may moderate their individual uptake of evidence into clinical decision-making. Such factors can then inform strategies to change practice.
Zhang, Yichuan; Wang, Jiangping
2015-07-01
Rivers serve as a highly valued component in ecosystem and urban infrastructures. River planning should follow basic principles of maintaining or reconstructing the natural landscape and ecological functions of rivers. Optimization of planning scheme is a prerequisite for successful construction of urban rivers. Therefore, relevant studies on optimization of scheme for natural ecology planning of rivers is crucial. In the present study, four planning schemes for Zhaodingpal River in Xinxiang City, Henan Province were included as the objects for optimization. Fourteen factors that influenced the natural ecology planning of urban rivers were selected from five aspects so as to establish the ANP model. The data processing was done using Super Decisions software. The results showed that important degree of scheme 3 was highest. A scientific, reasonable and accurate evaluation of schemes could be made by ANP method on natural ecology planning of urban rivers. This method could be used to provide references for sustainable development and construction of urban rivers. ANP method is also suitable for optimization of schemes for urban green space planning and design.
NASA Astrophysics Data System (ADS)
Jin, Juliang; Li, Lei; Wang, Wensheng; Zhang, Ming
2006-10-01
The optimal selection of schemes of water transportation projects is a process of choosing a relatively optimal scheme from a number of schemes of water transportation programming and management projects, which is of importance in both theory and practice in water resource systems engineering. In order to achieve consistency and eliminate the dimensions of fuzzy qualitative and fuzzy quantitative evaluation indexes, to determine the weights of the indexes objectively, and to increase the differences among the comprehensive evaluation index values of water transportation project schemes, a projection pursuit method, named FPRM-PP for short, was developed in this work for selecting the optimal water transportation project scheme based on the fuzzy preference relation matrix. The research results show that FPRM-PP is intuitive and practical, the correction range of the fuzzy preference relation matrix
NASA Technical Reports Server (NTRS)
Lin, Shu; Rhee, Dojun; Rajpal, Sandeep
1993-01-01
This report presents a low-complexity and high performance concatenated coding scheme for high-speed satellite communications. In this proposed scheme, the NASA Standard Reed-Solomon (RS) code over GF(2(exp 8) is used as the outer code and the second-order Reed-Muller (RM) code of Hamming distance 8 is used as the inner code. The RM inner code has a very simple trellis structure and is decoded with the soft-decision Viterbi decoding algorithm. It is shown that the proposed concatenated coding scheme achieves an error performance which is comparable to that of the NASA TDRS concatenated coding scheme in which the NASA Standard rate-1/2 convolutional code of constraint length 7 and d sub free = 10 is used as the inner code. However, the proposed RM inner code has much smaller decoding complexity, less decoding delay, and much higher decoding speed. Consequently, the proposed concatenated coding scheme is suitable for reliable high-speed satellite communications, and it may be considered as an alternate coding scheme for the NASA TDRS system.
NASA Astrophysics Data System (ADS)
Li, Mian-Shiuan; Chen, Mei-Juan; Tai, Kuang-Han; Sue, Kuen-Liang
2013-12-01
This article proposes a fast mode decision algorithm based on the correlation of the just-noticeable-difference (JND) and the rate distortion cost (RD cost) to reduce the computational complexity of H.264/AVC. First, the relationship between the average RD cost and the number of JND pixels is established by Gaussian distributions. Thus, the RD cost of the Inter 16 × 16 mode is compared with the predicted thresholds from these models for fast mode selection. In addition, we use the image content, the residual data, and JND visual model for horizontal/vertical detection, and then utilize the result to predict the partition in a macroblock. From the experimental results, a greater time saving can be achieved while the proposed algorithm also maintains performance and quality effectively.
Basic Brackets of a 2D Model for the Hodge Theory Without its Canonical Conjugate Momenta
NASA Astrophysics Data System (ADS)
Kumar, R.; Gupta, S.; Malik, R. P.
2016-06-01
We deduce the canonical brackets for a two (1+1)-dimensional (2D) free Abelian 1-form gauge theory by exploiting the beauty and strength of the continuous symmetries of a Becchi-Rouet-Stora-Tyutin (BRST) invariant Lagrangian density that respects, in totality, six continuous symmetries. These symmetries entail upon this model to become a field theoretic example of Hodge theory. Taken together, these symmetries enforce the existence of exactly the same canonical brackets amongst the creation and annihilation operators that are found to exist within the standard canonical quantization scheme. These creation and annihilation operators appear in the normal mode expansion of the basic fields of this theory. In other words, we provide an alternative to the canonical method of quantization for our present model of Hodge theory where the continuous internal symmetries play a decisive role. We conjecture that our method of quantization is valid for a class of field theories that are tractable physical examples for the Hodge theory. This statement is true in any arbitrary dimension of spacetime.
NASA Astrophysics Data System (ADS)
Roselyn, J. Preetha; Devaraj, D.; Dash, Subhransu Sekhar
2013-11-01
Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal front obtained from MODE is compared with reference pareto front and the best compromise solution for all the cases are obtained from fuzzy decision making strategy. The performance measures of proposed MODE in two test systems are calculated using suitable performance metrices. The simulation results show that the proposed approach provides considerable improvement in the congestion management by generation rescheduling and load shedding while enhancing the voltage stability in deregulated power system.
Optimal updating magnitude in adaptive flat-distribution sampling
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Drake, Justin A.; Ma, Jianpeng; Pettitt, B. Montgomery
2017-11-01
We present a study on the optimization of the updating magnitude for a class of free energy methods based on flat-distribution sampling, including the Wang-Landau (WL) algorithm and metadynamics. These methods rely on adaptive construction of a bias potential that offsets the potential of mean force by histogram-based updates. The convergence of the bias potential can be improved by decreasing the updating magnitude with an optimal schedule. We show that while the asymptotically optimal schedule for the single-bin updating scheme (commonly used in the WL algorithm) is given by the known inverse-time formula, that for the Gaussian updating scheme (commonly used in metadynamics) is often more complex. We further show that the single-bin updating scheme is optimal for very long simulations, and it can be generalized to a class of bandpass updating schemes that are similarly optimal. These bandpass updating schemes target only a few long-range distribution modes and their optimal schedule is also given by the inverse-time formula. Constructed from orthogonal polynomials, the bandpass updating schemes generalize the WL and Langfeld-Lucini-Rago algorithms as an automatic parameter tuning scheme for umbrella sampling.
Optimal updating magnitude in adaptive flat-distribution sampling.
Zhang, Cheng; Drake, Justin A; Ma, Jianpeng; Pettitt, B Montgomery
2017-11-07
We present a study on the optimization of the updating magnitude for a class of free energy methods based on flat-distribution sampling, including the Wang-Landau (WL) algorithm and metadynamics. These methods rely on adaptive construction of a bias potential that offsets the potential of mean force by histogram-based updates. The convergence of the bias potential can be improved by decreasing the updating magnitude with an optimal schedule. We show that while the asymptotically optimal schedule for the single-bin updating scheme (commonly used in the WL algorithm) is given by the known inverse-time formula, that for the Gaussian updating scheme (commonly used in metadynamics) is often more complex. We further show that the single-bin updating scheme is optimal for very long simulations, and it can be generalized to a class of bandpass updating schemes that are similarly optimal. These bandpass updating schemes target only a few long-range distribution modes and their optimal schedule is also given by the inverse-time formula. Constructed from orthogonal polynomials, the bandpass updating schemes generalize the WL and Langfeld-Lucini-Rago algorithms as an automatic parameter tuning scheme for umbrella sampling.
On metaheuristic "failure modes": a case study in Tabu search for job-shop scheduling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, Jean-Paul
2005-06-01
In this paper, we analyze the relationship between pool maintenance schemes, long-term memory mechanisms, and search space structure, with the goal of placing metaheuristic design on a more concrete foundation.
NASA Astrophysics Data System (ADS)
Glasser, Ryan T.; Cable, Hugo; Dowling, Jonathan P.; de Martini, Francesco; Sciarrino, Fabio; Vitelli, Chiara
2008-07-01
The study of optical parametric amplifiers (OPAs) has been successful in describing and creating nonclassical light for use in fields such as quantum metrology and quantum lithography [Agarwal , J. Opt. Soc. Am. B 24, 2 (2007)]. In this paper we present the theory of an OPA scheme utilizing an entangled state input. The scheme involves two identical OPAs seeded with the maximally path-entangled ∣N00N⟩ state (∣2,0⟩+∣0,2⟩)/2 . The stimulated amplification results in output state probability amplitudes that have a dependence on the number of photons in each mode, which differs greatly from two-mode squeezed vacuum. A large family of entangled output states are found. Specific output states allow for the heralded creation of N=4 N00N states, which may be used for quantum lithography, to write sub-Rayleigh fringe patterns, and for quantum interferometry, to achieve Heisenberg-limited phase measurement sensitivity.
Carrier recovery methods for a dual-mode modem: A design approach
NASA Technical Reports Server (NTRS)
Richards, C. W.; Wilson, S. G.
1984-01-01
A dual mode model with selectable QPSK or 16-QASK modulation schemes is discussed. The theoretical reasoning as well as the practical trade-offs made during the development of a modem are presented, with attention given to the carrier recovery method used for coherent demodulation. Particular attention is given to carrier recovery methods that can provide little degradation due to phase error for both QPSK and 16-QASK, while being insensitive to the amplitude characteristic of a 16-QASK modulation scheme. A computer analysis of the degradation is symbol error rate (SER) for QPSK and 16-QASK due to phase error is prresented. Results find that an energy increase of roughly 4 dB is needed to maintain a SER of 1X10(-5) for QPSK with 20 deg of phase error and 16-QASK with 7 deg phase error.
Dai, Li; Kuo, Watson; Chung, Ming-Chiang
2015-01-01
We propose a scheme for extracting entangled charge qubits from quantum-dot chains that support zero-energy edge modes. The edge mode is composed of Majorana fermions localized at the ends of each chain. The qubit, logically encoded in double quantum dots, can be manipulated through tunneling and pairing interactions between them. The detailed form of the entangled state depends on both the parity measurement (an even or odd number) of the boundary-site electrons in each chain and the teleportation between the chains. The parity measurement is realized through the dispersive coupling of coherent-state microwave photons to the boundary sites, while the teleportation is performed via Bell measurements. Our scheme illustrates localizable entanglement in a fermionic system, which serves feasibly as a quantum repeater under realistic experimental conditions, as it allows for finite temperature effect and is robust against disorders, decoherence and quasi-particle poisoning. PMID:26062033