Sample records for mode effective radius

  1. Free vibration of multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, C. Y.; Ru, C. Q.; Mioduchowski, A.

    2005-06-01

    A multiple-elastic shell model is applied to systematically study free vibration of multiwall carbon nanotubes (MWNTs). Using Flugge [Stresses in Shells (Springer, Berlin, 1960)] equations of elastic shells, vibrational frequencies and associated modes are calculated for MWNTs of innermost radii 5 and 0.65 nm, respectively. The emphasis is placed on the effect of interlayer van der Waals (vdW) interaction on free vibration of MWNTs. Our results show that the interlayer vdW interaction has a crucial effect on radial (R) modes of large-radius MWNTs (e.g., of the innermost radius 5 nm), but is less pronounced for R modes of small-radius MWNTs (e.g., of the innermost radius 0.65 nm), and usually negligible for torsional (T) and longitudinal (L) modes of MWNTs. This is attributed to the fact that the interlayer vdW interaction, characterized by a radius-independent vdW interaction coefficient, depends on radial deflections only, and is dominant only for large-radius MWNTs of lower radial rigidity but less pronounced for small-radius MWNTs of much higher radial rigidity. As a result, the R modes of large-radius MWNTs are typically collective motions of almost all nested tubes, and the R modes of small-radius MWNTs, as well as the T and L modes of MWNTs, are basically vibrations of individual tubes. In particular, an approximate single-shell model is suggested to replace the multiple-shell model in calculating the lowest frequency of R mode of thin MWNTs (defined by the innermost radius-to-thickness ratio not less than 4) with relative errors less than 10%. In addition, the simplified Flugge single equation is adopted to substitute the exact Flugge equations in determining the R-mode frequencies of MWNTs with relative errors less than 10%.

  2. Effect of Plate Curvature on Blast Response of Structural Steel Plates

    NASA Astrophysics Data System (ADS)

    Veeredhi, Lakshmi Shireen Banu; Ramana Rao, N. V.; Veeredhi, Vasudeva Rao

    2018-04-01

    In the present work an attempt is made, through simulation studies, to determine the effect of plate curvature on the blast response of a door structure made of ASTM A515 grade 50 steel plates. A door structure with dimensions of 5.142 m × 2.56 m × 10 mm having six different radii of curvatures is analyzed which is subjected to blast load. The radii of curvature investigated are infinity (flat plate), 16.63, 10.81, 8.26, 6.61 and 5.56 m. In the present study, a stand-off distance of 11 m is considered for all the cases. Results showed that the door structure with smallest radius of curvature experienced least plastic deformation and yielding when compared to a door with larger radius of curvature with same projected area. From the present Investigation, it is observed that, as the radius of curvature of the plate increases, the deformation mode gradually shifts from indentation mode to flexural mode. The plates with infinity and 16.63 m radius of curvature have undergone flexural mode of deformation and plates with 6.61 and 5.56 m radius of curvature undergo indentation mode of deformation. Whereas, mixed mode of deformation that consists of both flexural and indentation mode of deformations are seen in the plates with radius of curvature 10.81 and 8.26 m. As the radius of curvature of the plate decreases the ability of the plate to mitigate the effect the blast loads increased. It is observed that the plate with smaller radius of curvature deflects most of the blast energy and results in least indentation mode of deformation. The most significant observation made in the present investigation is that the strain energy absorbed by the steel plate gets reduced to 1/3 rd when the radius of curvature is approximately equal to the stand-off distance which could be the critical radius of curvature.

  3. Design and analysis for a bend-resistant and large-mode-area photonic crystal fiber with hybrid cladding.

    PubMed

    Qin, Yan; Yang, Huajun; Jiang, Ping; Gui, Fengji; Caiyang, Weinan; Cao, Biao

    2018-05-10

    In this paper, an asymmetric large-mode-area photonic crystal fiber (LMA-PCF) with low bending loss at a smaller bending radius is designed. The finite-element method with a perfectly matched layer boundary is used to analyze the performance of the PCF. To achieve LMA-PCF with low bending loss, the air holes with double lattice constants and different sizes at the core are designed. Numerical results show that this structure can achieve low bending loss and LMA with a smaller bending radius at the wavelength of 1.55 μm. The effective mode area of the fundamental mode is larger than 1000  μm 2 when the bending radius is ≥10  cm. The bending loss of the fundamental mode is just 0.0113 dB/m, and the difference between the fundamental and high-order modes of the bending loss is larger than 10 3 when the bending radius is 10 cm. Simulation results show this novel PCF can achieve LMA and have effective single-mode operation when the bending orientation angle ranges in ±110°. This novel photonic crystal has potential application in high-power fiber lasers.

  4. Finite Larmor radius effects on the (m = 2, n = 1) cylindrical tearing mode

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Chowdhury, J.; Parker, S. E.; Wan, W.

    2015-04-01

    New field solvers are developed in the gyrokinetic code GEM [Chen and Parker, J. Comput. Phys. 220, 839 (2007)] to simulate low-n modes. A novel discretization is developed for the ion polarization term in the gyrokinetic vorticity equation. An eigenmode analysis with finite Larmor radius effects is developed to study the linear resistive tearing mode. The mode growth rate is shown to scale with resistivity as γ ˜ η1/3, the same as the semi-collisional regime in previous kinetic treatments [Drake and Lee, Phys. Fluids 20, 1341 (1977)]. Tearing mode simulations with gyrokinetic ions are verified with the eigenmode calculation.

  5. Finite Larmor radius effects on the (m = 2, n = 1) cylindrical tearing mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.; Chowdhury, J.; Parker, S. E.

    2015-04-15

    New field solvers are developed in the gyrokinetic code GEM [Chen and Parker, J. Comput. Phys. 220, 839 (2007)] to simulate low-n modes. A novel discretization is developed for the ion polarization term in the gyrokinetic vorticity equation. An eigenmode analysis with finite Larmor radius effects is developed to study the linear resistive tearing mode. The mode growth rate is shown to scale with resistivity as γ ∼ η{sup 1∕3}, the same as the semi-collisional regime in previous kinetic treatments [Drake and Lee, Phys. Fluids 20, 1341 (1977)]. Tearing mode simulations with gyrokinetic ions are verified with the eigenmode calculation.

  6. Critical cladding radius for hybrid cladding modes

    NASA Astrophysics Data System (ADS)

    Guyard, Romain; Leduc, Dominique; Lupi, Cyril; Lecieux, Yann

    2018-05-01

    In this article we explore some properties of the cladding modes guided by a step-index optical fiber. We show that the hybrid modes can be grouped by pairs and that it exists a critical cladding radius for which the modes of a pair share the same electromagnetic structure. We propose a robust method to determine the critical cladding radius and use it to perform a statistical study on the influence of the characteristics of the fiber on the critical cladding radius. Finally we show the importance of the critical cladding radius with respect to the coupling coefficient between the core mode and the cladding modes inside a long period grating.

  7. A small mode volume tunable microcavity: Development and characterization

    NASA Astrophysics Data System (ADS)

    Greuter, Lukas; Starosielec, Sebastian; Najer, Daniel; Ludwig, Arne; Duempelmann, Luc; Rohner, Dominik; Warburton, Richard J.

    2014-09-01

    We report the realization of a spatially and spectrally tunable air-gap Fabry-Pérot type microcavity of high finesse and cubic-wavelength-scale mode volume. These properties are attractive in the fields of opto-mechanics, quantum sensing, and foremost cavity quantum electrodynamics. The major design feature is a miniaturized concave mirror with atomically smooth surface and radius of curvature as low as 10 μm produced by CO2 laser ablation of fused silica. We demonstrate excellent mode-matching of a focussed laser beam to the microcavity mode and confirm from the frequencies of the resonator modes that the effective optical radius matches the physical radius. With these small radii, we demonstrate wavelength-size beam waists. We also show that the microcavity is sufficiently rigid for practical applications: in a cryostat at 4 K, the root-mean-square microcavity length fluctuations are below 5 pm.

  8. Finite-Larmor-radius effects on z-pinch stability

    NASA Astrophysics Data System (ADS)

    Scheffel, Jan; Faghihi, Mostafa

    1989-06-01

    The effect of finite Larmor radius (FLR) on the stability of m = 1 small-axial-wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. We use the incompressible FLR MHD model; a collisionless fluid model that consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD, 2r dp/dr + m2B2/μ0 ≥ 0 predicts instability for internal modes unless the current density is singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the FLR terms are included, a normal-mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall term has a damping (but not absolutely stabilizing) effect - in agreement with earlier work. On specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m = 1 modes are then fully stabilized over the crosssection for wavelengths λ/a ≤ 1, where a denotes the pinch radius. As a general z-pinch result a critical line-density limit Nmax = 5 × 1018 m-1 is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. This limit corresponds to about five Larmor radii along the pinch radius. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 1020 m-1.

  9. EFFECT OF RADIUS OF LOADING NOSE AND SUPPORTS IN SHORT BEAM TEST FIXTURE ON FRACTURE MODE AND INTERLAMINAR SHEAR STRENGTH OF GFRP AT 77 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, A.

    2008-03-03

    A short beam test is useful to evaluate interlaminar shear strength of glass fiber reinforced plastics, especially for material selection. However, effect of test fixture configuration on interlaminar shear strength has not been clarified. This paper describes dependence of fracture mode and interlaminar shear strength on the fixture radius using the same materials and procedure. In addition, global understanding of the role of the fixture is discussed. When small loading nose and supports are used for the tests, bending fracture or translaminar fracture happens and the interlaminar shear strength would become smaller. By adopting the large radius loading nose andmore » supports (6 mm radius is recommended), it is newly recognized that some stress concentration is able to be reduced, and the interlaminar fracture tends to occur and the other fracture modes will be suppressed. The interlaminar shear strength of 2.5 mm thick GFRP plate of G-10CR is evaluated as 130-150 MPa at 77 K.« less

  10. Laser to single-mode-fiber coupling: A laboratory guide

    NASA Technical Reports Server (NTRS)

    Ladany, I.

    1992-01-01

    All the information necessary to achieve reasonably efficient coupling of semiconductor lasers to single mode fibers is collected from the literature, reworked when necessary, and presented in a mostly tabular form. Formulas for determining the laser waist radius and the fiber mode radius are given. Imaging relations connecting these values with the object and image distances are given for three types of lenses: ball, hemisphere, and Gradient Index (GRIN). Sources for these lenses are indicated, and a brief discussion is given about ways of reducing feedback effects.

  11. Regulating Effect of Asymmetrical Impeller on the Flow Distributions of Double-sided Centrifugal Compressor

    NASA Astrophysics Data System (ADS)

    Yang, Ce; Liu, Yixiong; Yang, Dengfeng; Wang, Benjiang

    2017-11-01

    To achieve the rebalance of flow distributions of double-sided impellers, a method of improving the radius of rear impeller is presented in this paper. It is found that the flow distributions of front and rear impeller can be adjusted effectively by increasing the radius of rear impeller, thus improves the balance of flow distributions of front and rear impeller. Meanwhile, the working conversion mode process of double-sided centrifugal compressor is also changed. Further analysis shows that the flowrates of blade channels in front impeller are mainly influenced by the circumferential distributions of static pressure in the volute. But the flowrates of rear impeller blade channels are influenced by the outlet flow field of bent duct besides the effects of static pressure distributions in the volute. In the airflow interaction area downstream, the flowrate of blade channel is obviously smaller. By increasing the radius of rear impeller, the work capacity of rear impeller is enhanced, the working mode conversion process from parallel working mode of double-sided impeller to the single impeller working mode is delayed, and the stable working range of double-sided compressor is broadened.

  12. The Angstrom Exponent and Bimodal Aerosol Size Distributions

    NASA Technical Reports Server (NTRS)

    Schuster, Gregory L.; Dubovik, Oleg; Holben, Brent H.

    2005-01-01

    Powerlaws have long been used to describe the spectral dependence of aerosol extinction, and the wavelength exponent of the aerosol extinction powerlaw is commonly referred to as the Angstrom exponent. The Angstrom exponent is often used as a qualitative indicator of aerosol particle size, with values greater than two indicating small particles associated with combustion byproducts, and values less than one indicating large particles like sea salt and dust. In this study, we investigate the relationship between the Angstrom exponent and the mode parameters of bimodal aerosol size distributions using Mie theory calculations and Aerosol Robotic Network (AERONET) retrievals. We find that Angstrom exponents based upon seven wavelengths (0.34, 0.38, 0.44, 0.5, 0.67, 0.87, and 1.02 micrometers) are sensitive to the volume fraction of aerosols with radii less then 0.6 micrometers, but not to the fine mode effective radius. The Angstrom exponent is also known to vary with wavelength, which is commonly referred to as curvature; we show how the spectral curvature can provide additional information about aerosol size distributions for intermediate values of the Angstrom exponent. Curvature also has a significant effect on the conclusions that can be drawn about two-wavelength Angstrom exponents; long wavelengths (0.67, 0.87 micrometers) are sensitive to fine mode volume fraction of aerosols but not fine mode effective radius, while short wavelengths (0.38, 0.44 micrometers) are sensitive to the fine mode effective radius but not the fine mode volume fraction.

  13. Intramolecular energy transfer and the driving mechanisms for large-amplitude collective motions of clusters

    NASA Astrophysics Data System (ADS)

    Yanao, Tomohiro; Koon, Wang Sang; Marsden, Jerrold E.

    2009-04-01

    This paper uncovers novel and specific dynamical mechanisms that initiate large-amplitude collective motions in polyatomic molecules. These mechanisms are understood in terms of intramolecular energy transfer between modes and driving forces. Structural transition dynamics of a six-atom cluster between a symmetric and an elongated isomer is highlighted as an illustrative example of what is a general message. First, we introduce a general method of hyperspherical mode analysis to analyze the energy transfer among internal modes of polyatomic molecules. In this method, the (3n-6) internal modes of an n-atom molecule are classified generally into three coarse level gyration-radius modes, three fine level twisting modes, and (3n-12) fine level shearing modes. We show that a large amount of kinetic energy flows into the gyration-radius modes when the cluster undergoes structural transitions by changing its mass distribution. Based on this fact, we construct a reactive mode as a linear combination of the three gyration-radius modes. It is shown that before the reactive mode acquires a large amount of kinetic energy, activation or inactivation of the twisting modes, depending on the geometry of the isomer, plays crucial roles for the onset of a structural transition. Specifically, in a symmetric isomer with a spherical mass distribution, activation of specific twisting modes drives the structural transition into an elongated isomer by inducing a strong internal centrifugal force, which has the effect of elongating the mass distribution of the system. On the other hand, in an elongated isomer, inactivation of specific twisting modes initiates the structural transition into a symmetric isomer with lower potential energy by suppressing the elongation effect of the internal centrifugal force and making the effects of the potential force dominant. This driving mechanism for reactions as well as the present method of hyperspherical mode analysis should be widely applicable to molecular reactions in which a system changes its overall mass distribution in a significant way.

  14. Strain sensing using optical fibers

    NASA Technical Reports Server (NTRS)

    Houghton, Richard; Hiles, Steven

    1994-01-01

    The main source of attenuation which will be studied is the optical fiber's sensitivity to bending at radii that are much larger than the radius of the fiber. This type of environmental attenuation causes losses that are a function of the severity of the bend. The average attenuation caused by bending varies exponentially with the bend radius. There are many different fibers, sources, and testing equipment available. This thesis describes tests that were performed to evaluate the variables that effect bending related attenuation and will discuss the consistency of the results. Descriptions and comparisons will be made between single mode and multimode fibers as well as instrumentation comparisons between detection equipment. Detailed analysis of the effects of the whispering gallery mode will be performed along with theorized methods for characterization of these modes.

  15. R-mode constraints from neutron star equation of state

    NASA Astrophysics Data System (ADS)

    Papazoglou, M. C.; Moustakidis, C. C.

    2016-03-01

    The gravitational radiation has been proposed a long time before, as an explanation for the observed relatively low spin frequencies of young neutron stars and of accreting neutron stars in low-mass X-ray binaries as well. In the present work we studied the effects of the neutron star equation of state on the r-mode instability window of rotating neutron stars. Firstly, we employed a set of analytical solution of the Tolman-Oppenheimer-Volkoff equations with special emphasis on the Tolman VII solution. In particular, we tried to clarify the effects of the bulk neutron star properties (mass, radius, density distribution, crust size and elasticity) on the r-mode instability window. We found that the critical angular velocity \\varOmegac depends mainly on the neutron star radius. The effects of the gravitational mass and the mass distribution are almost negligible. Secondly, we studied the effect of the elasticity of the crust, via to the slippage factor S and also the effect of the nuclear equation of state, via the slope parameter L, on the instability window. We found that the crust effects are more pronounced, compared to those originated from the equation of state. Moreover, we proposed simple analytical expressions which relate the macroscopic quantity \\varOmegac to the radius, the parameter L and the factor {S}. We also investigated the possibility to measure the radius of a neutron star and the factor {S} with the help of accurate measures of \\varOmegac and the neutron star temperature. Finally, we studied the effects of the mutual friction on the instability window and discussed the results in comparison with previous similar studies.

  16. The modulational instability in the extended Hasegawa-Mima equation with a finite Larmor radius

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, S.; Hnat, B.; Rowlands, G.

    2012-12-15

    The effects of the finite Larmor radius on the generation of zonal flows by the four-wave modulational instability are investigated using an extended form of the Hasegawa-Mima equation. Growth rates of the zonal mode are quantified using analytical predictions from a four-mode truncated model, as well as from direct numerical simulation of the nonlinear extended Hasegawa-Mima equation. We not only consider purely zonal flows but also examine the generic oblique case and show that, for small Larmor radii, off-axis modes may become dominant. We find a key parameter M{sub {rho}} which characterises the behaviour of the system due to changesmore » in the Larmor radius. We find that, similarly to previous results obtained by changing the driving wave amplitude, two separate dynamical regimes can be accessed. These correspond to oscillatory energy transfer between zonal flows and a driving wave and the fully saturated zonal flow.« less

  17. Theoretical study of mode evolution in active long tapered multimode fiber.

    PubMed

    Shi, Chen; Wang, Xiaolin; Zhou, Pu; Xu, Xiaojun; Lu, Qisheng

    2016-08-22

    A concise and effective model based on coupled mode theory to describe mode evolution in long tapered active fiber is presented in this manuscript. The mode coupling due to variation of core radius and slight perturbation have been analyzed and local gain with transverse spatial hole burning (TSHB) effect, loss and curvature have been taken into consideration in our model. On the base of this model, the mode evolution behaviors under different factors have been numerically investigated. Our model and results can provide instructive suggestions when designing long tapered fiber based laser and amplifiers.

  18. Cascading process in the flute-mode turbulence of a plasma

    NASA Technical Reports Server (NTRS)

    Gonzalez, R.; Gomez, D.; Fontan, C. F.; Schifino, A. C. S.; Montagne, R.

    1993-01-01

    The cascades of ideal invariants in the flute-mode turbulence are analyzed by considering a statistics based on an elementary three-mode coupling process. The statistical dynamics of the system is investigated on the basis of the existence of the physically most important (PMI) triad. When finite ion Larmor radius effects are considered, the PMI triad describes the formation of zonal flows.

  19. Jeans instability of magnetized quantum plasma: Effect of viscosity, rotation and finite Larmor radius corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Shweta, E-mail: jshweta09@gmail.com; Sharma, Prerana; Chhajlani, R. K.

    2015-07-31

    The Jeans instability of self-gravitating quantum plasma is examined considering the effects of viscosity, finite Larmor radius (FLR) corrections and rotation. The analysis is done by normal mode analysis theory with the help of relevant linearized perturbation equations of the problem. The general dispersion relation is obtained using the quantum magneto hydrodynamic model. The modified condition of Jeans instability is obtained and the numerical calculations have been performed to show the effects of various parameters on the growth rate of Jeans instability.

  20. Analytical relation between effective mode field area and waveguide dispersion in microstructure fibers.

    PubMed

    Moenster, Mathias; Steinmeyer, Günter; Iliew, Rumen; Lederer, Falk; Petermann, Klaus

    2006-11-15

    For optical fibers exhibiting a radially symmetric refractive index profile, there exists an analytical relation that connects waveguide dispersion and the Petermann-II mode field radius. We extend the usefulness of this relation to the nonradially symmetric case of microstructure fibers in the anomalous dispersion regime, yielding a simple relation between dispersion and effective mode field area. Assuming a Gaussian mode distribution, we derive a fundamental upper limit for the effective mode field area that is required to obtain a certain amount of anomalous waveguide dispersion. This relation is demonstrated to show excellent agreement for fiber designs suited for supercontinuum generation and soliton lasers in the near infrared.

  1. SANSMIC Validation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Paula D.; Rudeen, David Keith; Lord, David L.

    2014-08-01

    SANSMIC is solution mining software that was developed and utilized by SNL in its role as geotechnical advisor to the US DOE SPR for planning purposes. Three SANSMIC leach modes - withdrawal, direct, and reverse leach - have been revalidated with multiple test cases for each mode. The withdrawal mode was validated using high quality data from recent leach activity while the direct and reverse modes utilized data from historical cavern completion reports. Withdrawal results compared very well with observed data, including the location and size of shelves due to string breaks with relative leached volume differences ranging from 6more » - 10% and relative radius differences from 1.5 - 3%. Profile comparisons for the direct mode were very good with relative leached volume differences ranging from 6 - 12% and relative radius differences from 5 - 7%. First, second, and third reverse configurations were simulated in order to validate SANSMIC over a range of relative hanging string and OBI locations. The first-reverse was simulated reasonably well with relative leached volume differences ranging from 1 - 9% and relative radius differences from 5 - 12%. The second-reverse mode showed the largest discrepancies in leach profile. Leached volume differences ranged from 8 - 12% and relative radius differences from 1 - 10%. In the third-reverse, relative leached volume differences ranged from 10 - 13% and relative radius differences were %7E4 %. Comparisons to historical reports were quite good, indicating that SANSMIC is essentially the same as documented and validated in the early 1980's.« less

  2. Steady-state entanglement in levitated optomechanical systems coupled to a higher order excited atomic ensemble

    NASA Astrophysics Data System (ADS)

    Chen, Aixi; Nie, Wenjie; Li, Ling; Zeng, Wei; Liao, Qinghong; Xiao, Xianbo

    2017-11-01

    We investigate the steady-state entanglement in an optomechanical system with a levitated dielectric nanosphere and a higher order excited atomic ensemble. The single nanosphere is trapped by an external harmonic dipole trap and coupled to the single-mode cavity field by the effective optomechanical coupling, which depends on the steady-state position of the nanosphere. We show that the steady-state optomechanical entanglement can be generated via the effective optomechanical interaction between the mechanical motion and the cavity mode. Further, these exist an optimal effective cavity detuning that maximizes the optomechanical entanglement. We also analyze in detail the influences of the excitation number of atoms, the radius of the nanosphere and the thermal noise strength on the steady-state optomechanical entanglement. It is found that the steady-state entanglement can be enhanced by increasing the excitation number of atoms and the radius of the nanosphere.

  3. The effect of finite Larmor radius corrections on Jeans instability of quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Prerana; Chhajlani, R. K.

    2013-09-15

    The influence of finite Larmor radius (FLR) effects on the Jeans instability of infinitely conducting homogeneous quantum plasma is investigated. The quantum magnetohydrodynamic (QMHD) model is used to formulate the problem. The contribution of FLR is incorporated to the QMHD set of equations in the present analysis. The general dispersion relation is obtained analytically using the normal mode analysis technique which is modified due to the contribution of FLR corrections. From general dispersion relation, the condition of instability is obtained and it is found that Jeans condition is modified due to quantum effect. The general dispersion relation is reduced formore » both transverse and longitudinal mode of propagations. The condition of gravitational instability is modified due to the presence of both FLR and quantum corrections in the transverse mode of propagation. In longitudinal case, it is found to be unaffected by the FLR effects but modified due to the quantum corrections. The growth rate of Jeans instability is discussed numerically for various values of quantum and FLR corrections of the medium. It is found that the quantum parameter and FLR effects have stabilizing influence on the growth rate of instability of the system.« less

  4. Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber.

    PubMed

    Hanson, Frank; Lasher, Mark

    2010-06-01

    We characterize and compare the effects of turbulence on underwater laser propagation with theory. Measurements of the coupling efficiency of the focused beam into a single-mode fiber are reported. A simple tip-tilt control system, based on the position of the image centroid in the focal plane, was shown to maintain good coupling efficiency for a beam radius equal to the transverse coherence length, r(0). These results are relevant to high bandwidth communication technology that requires good spatial mode quality.

  5. Effects of the Kelvin-Helmholtz surface instability on supersonic jets

    NASA Technical Reports Server (NTRS)

    Hardee, P. E.

    1982-01-01

    An exact numerical calculation is provided for of linear growth and phase velocity of Kelvin-Helmholtz unstable wave modes on a supersonic jet of cylindrical cross section. An expression for the maximally unstable wavenumber of each wave mode is found. Provided a sharp velocity discontinuity exists all wave modes are unstable. A combination of rapid jet expansion and velocity shear across a jet can effectively stabilize all wave modes. The more likely case of slow jet expansion and of velocity shear at the jet surface allows wave modes with maximally unstable wavelength longer than or on the order of the jet radius to grow. The relative energy in different wave modes and effect on the jet is investigated. Energy input into a jet resulting from surface instability is discussed.

  6. Handling performance control for hybrid 8-wheel-drive vehicle and simulation verification

    NASA Astrophysics Data System (ADS)

    Ni, Jun; Hu, Jibin

    2016-08-01

    In order to improve handling performance of a hybrid 8-Wheel-Drive vehicle, the handling performance control strategy was proposed. For armoured vehicle, besides handling stability in high speed, the minimum steer radius in low speed is also a key tactical and technical index. Based on that, the proposed handling performance control strategy includes 'Handling Stability' and 'Radius Minimization' control modes. In 'Handling Stability' control mode, 'Neutralsteer Radio' is defined to adjust the steering characteristics to satisfy different demand in different speed range. In 'Radius Minimization' control mode, the independent motors are controlled to provide an additional yaw moment to decrease the minimum steer radius. In order to verify the strategy, a simulation platform was built including engine and continuously variable transmission systems, generator and battery systems, independent motors and controllers systems, vehicle dynamic and tyre mechanical systems. The simulation results show that the handling performance of the vehicle can be enhanced significantly, and the minimum steer radius can be decreased by 20% which is significant improvement compared to the common level of main battle armoured vehicle around the world.

  7. A Compact Trench-Assisted Multi-Orbital-Angular-Momentum Multi-Ring Fiber for Ultrahigh-Density Space-Division Multiplexing (19 Rings × 22 Modes)

    PubMed Central

    Li, Shuhui; Wang, Jian

    2014-01-01

    We present a compact (130 μm cladding diameter) trench-assisted multi-orbital-angular-momentum (OAM) multi-ring fiber with 19 rings each supporting 22 modes with 18 OAM ones. Using the high-contrast-index ring and trench designs, the trench-assisted multi-OAM multi-ring fiber (TA-MOMRF) features both low-level inter-mode crosstalk and inter-ring crosstalk within a wide wavelength range (1520 to 1630 nm), which can potentially enable Pbit/s total transmission capacity and hundreds bit/s/Hz spectral efficiency in a single TA-MOMRF. Moreover, the effective refractive index difference of even and odd fiber eigenmodes induced by the ellipticity of ring and fiber bending and their impacts on the purity of OAM mode and mode coupling/crosstalk are analyzed. It is found that high-order OAM modes show preferable tolerance to the ring ellipticity and fiber bending. The designed fiber offers favorable tolerance to both small ellipticity of ring (<−22 dB crosstalk under an ellipticity of 0.5%) and small bend radius (<−20 dB crosstalk under a bend radius of 2 cm). PMID:24458159

  8. Non-isomorphic radial wavenumber dependencies of residual zonal flows in ion and electron Larmor radius scales, and effects of initial parallel flow and electromagnetic potentials in a circular tokamak

    NASA Astrophysics Data System (ADS)

    Yamagishi, Osamu

    2018-04-01

    Radial wavenumber dependencies of the residual zonal potential for E × B flow in a circular, large aspect ratio tokamak is investigated by means of the collisionless gyrokinetic simulations of Rosenbluth-Hinton (RH) test and the semi-analytic approach using an analytic solution of the gyrokinetic equation Rosenbluth and Hinton (1998 Phys. Rev. Lett. 80 724). By increasing the radial wavenumber from an ion Larmor radius scale {k}r{ρ }i≲ 1 to an electron Larmor radius scale {k}r{ρ }e≲ 1, the well-known level ˜ O[1/(1+1.6{q}2/\\sqrt{r/{R}0})] is retained, while the level remains O(1) when the wavenumber is decreased from the electron to the ion Larmor radius scale, if physically same adiabatic assumption is presumed for species other than the main species that is treated kinetically. The conclusion is not modified by treating both species kinetically, so that in the intermediate scale between the ion and electron Larmor radius scale it seems difficult to determine the level uniquely. The toroidal momentum conservation property in the RH test is also investigated by including an initial parallel flow in addition to the perpendicular flow. It is shown that by taking a balance between the initial parallel flow and perpendicular flows which include both E × B flow and diamagnetic flow in the initial condition, the mechanical toroidal angular momentum is approximately conserved despite the toroidal symmetry breaking due to the finite radial wavenumber zonal modes. Effect of electromagnetic potentials is also investigated. When the electromagnetic potentials are applied initially, fast oscillations which are faster than the geodesic acoustic modes are introduced in the decay phase of the zonal modes. Although the residual level in the long time limit is not modified, this can make the time required to reach the stationary zonal flows longer and may weaken the effectiveness of the turbulent transport suppression by the zonal flows.

  9. Spin eigenmodes of magnetic skyrmions and the problem of the effective skyrmion mass

    NASA Astrophysics Data System (ADS)

    Kravchuk, Volodymyr P.; Sheka, Denis D.; Rößler, Ulrich K.; van den Brink, Jeroen; Gaididei, Yuri

    2018-02-01

    The properties of magnon modes localized on a ferromagnetic skyrmion are studied. Mode eigenfrequencies display three types of asymptotic behavior for large skyrmion radius Rs, namely, ω0∝Rs-2 for the breathing mode and ω-|μ |∝Rs-1 and ω|μ |∝Rs-3 for modes with negative and positive azimuthal quantum numbers, respectively. A number of properties of the magnon eigenfunctions are determined. This enables us to demonstrate that the skyrmion dynamics for a traveling-wave ansatz obeys the massless Thiele equation.

  10. High Voltage K sub a -Band Gyrotron Experiment.

    DTIC Science & Technology

    1985-11-20

    3.8-cm-diam disk-shaped carbon cathode in a foilless diode configuration. Initially, as pointed out by Voronkov et al. (7], the tranverse velocity is...Xmn is the nth zero of dJm(x)/dx, R is the electron orbit guiding center radius, R.w is the cavity wall radius, and kmn=Xmn/Rw is the tranverse wave...possible competing mode. StartingC currents for the TE 6 ,2, TE1 0 ,1 and TE_3 ,3 modes for the experimentally observed e-beam radius of 1.16 cm are

  11. Gyroaverage effects on nontwist Hamiltonians: Separatrix reconnection and chaos suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del-Castillo-Negrete, Diego B; Martinell, J.

    2012-01-01

    A study of finite Larmor radius (FLR) effects on E x B test particle chaotic transport in non-monotonic zonal flows with drift waves in magnetized plasmas is presented. Due to the non-monotonicity of the zonal flow, the Hamiltonian does not satisfy the twist condition. The electrostatic potential is modeled as a linear superposition of a zonal flow and the regular neutral modes of the Hasegawa-Mima equation. FLR effects are incorporated by gyro-averaging the E x B Hamiltonian. It is shown that there is a critical value of the Larmor radius for which the zonal flow transitions from a profile withmore » one maximum to a profile with two maxima and a minimum. This bifurcation leads to the creation of additional shearless curves and resonances. The gyroaveraged nontwist Hamiltonian exhibits complex patterns of separatrix reconnection. A change in the Larmor radius can lead to heteroclinic-homoclinic bifurcations and dipole formation. For Larmor radii for which the zonal flow has bifurcated, double heteroclinic-heteroclinic, homoclinic-homoclinic and heteroclinic-homoclinic separatrix topologies are observed. It is also shown that chaotic transport is typically reduced as the Larmor radius increases. Poincare sections show that, for large enough Larmor radius, chaos can be practically suppressed. In particular, changes of the Larmor radius can restore the shearless curve.« less

  12. Two Distinct Modes in One-Day Rainfall Event during MC3E Field Campaign: Analyses of Disdrometer Observations and WRF-SBM Simulation

    NASA Technical Reports Server (NTRS)

    Iguchi, Takamichi; Matsui, Toshihisa; Tokay, Ali; Kollias, Pavlos; Tao, Wei-Kuo

    2012-01-01

    A unique microphysical structure of rainfall is observed by the surface laser optical Particle Size and Velocity (Parsivel) disdrometers on 25 April 2011 during Midlatitude Continental Convective Clouds Experiment (MC3E). According to the systematic differences in rainfall rate and bulk effective droplet radius, the sampling data can be divided into two groups; the rainfall mostly from the deep convective clouds has relatively high rainfall rate and large bulk effective droplet radius, whereas the reverse is true for the rainfall from the shallow wrm clouds. The Weather Research and Forecasting model coupled with spectral bin microphysics (WRF-SBM) successfully reproduces the two distinct modes in the observed rainfall microphysical structure. The results show that the up-to-date model can demonstrate how the cloud physics and the weather condition on the day are involved in forming the unique rainfall characteristic.

  13. Two distinct modes in one-day rainfall event during MC3E field campaign: Analyses of disdrometer observations and WRF-SBM simulation

    NASA Astrophysics Data System (ADS)

    Iguchi, Takamichi; Matsui, Toshihisa; Tokay, Ali; Kollias, Pavlos; Tao, Wei-Kuo

    2012-12-01

    A unique microphysical structure of rainfall is observed by the surface laser optical Particle Size and Velocity (Parsivel) disdrometers on 25 April 2011 during Midlatitude Continental Convective Clouds Experiment (MC3E). According to the systematic differences in rainfall rate and bulk effective droplet radius, the sampling data can be divided into two groups; the rainfall mostly from the deep convective clouds has relatively high rainfall rate and large bulk effective droplet radius, whereas the reverse is true for the rainfall from the shallow warm clouds. The Weather Research and Forecasting model coupled with spectral bin microphysics (WRF-SBM) successfully reproduces the two distinct modes in the observed rainfall microphysical structure. The results show that the up-to-date model can demonstrate how the cloud physics and the weather condition on the day are involved in forming the unique rainfall characteristic.

  14. Rippled beam free electron laser amplifier

    DOEpatents

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  15. The Sun's Seismic Radius as Measured from the Fundamental Modes of Oscillations and Its Implications for the TSI Variations

    NASA Astrophysics Data System (ADS)

    Jain, Kiran; Tripathy, S. C.; Hill, F.

    2018-05-01

    In this Letter we explore the relationship between the solar seismic radius and total solar irradiance (TSI) during the last two solar cycles using the uninterrupted data from space-borne instruments on board the Solar and Heliospheric Observatory (SoHO) and the Solar Dynamics Observatory (SDO). The seismic radius is calculated from the fundamental (f) modes of solar oscillations utilizing the observations from SoHO/Michelson Doppler Imager (MDI) and SDO/Helioseismic and Magnetic Imager (HMI), and the TSI measurements are obtained from SoHO/VIRGO. Our study suggests that the major contribution to the TSI variation arises from the changes in magnetic field, while the radius variation plays a secondary role. We find that the solar irradiance increases with decreasing seismic radius; however, the anti-correlation between them is moderately weak. The estimated maximum change in seismic radius during a solar cycle is about 5 km, and is consistent in both solar cycles 23 and 24. Previous studies ;suggest a radius change at the surface of the order of 0.06 arcsec to explain the 0.1% variation in the TSI values during the solar cycle; however, our inferred seismic radius change is significantly smaller, hence the TSI variations cannot be fully explained by the temporal changes in seismic radius.

  16. Bend-insensitive single-mode photonic crystal fiber with ultralarge effective area for dual applications

    NASA Astrophysics Data System (ADS)

    Islam, Md. Asiful; Alam, M. Shah

    2013-05-01

    A novel photonic crystal fiber (PCF) having circular arrangement of cladding air holes has been designed and numerically optimized to obtain a bend insensitive single mode fiber with large mode area for both wavelength division multiplexing (WDM) communication and fiber-to-the-home (FTTH) application. The bending loss of the proposed bent PCF lies in the range of 10-3 to 10-4 dB/turn or lower over 1300 to 1700 nm, and 2 × 10-4 dB/turn at the wavelength of 1550 nm for a 30-mm bend radius with a higher order mode (HOM) cut-off frequency below 1200 nm for WDM application. When the whole structure of the PCF is scaled down, a bending loss of 6.78×10-4 dB/turn at 1550 nm for a 4-mm bend radius is obtained, and the loss remains in the order of 10-4 dB/turn over the same range of wavelength with an HOM cut-off frequency below 700 nm, and makes the fiber useful for FTTH applications. Furthermore, this structure is also optimized to show a splice loss near zero for fusion-splicing to a conventional single-mode fiber (SMF).

  17. Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr

    The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order.more » It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.« less

  18. [Acoustic Levitation Methods and Apparatus

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Jacobi, N. (Inventor)

    1982-01-01

    Methods are described for acoustically levitating objects within chambers of spherical and cylindrical shape. The wavelengths for chambers of particular dimensions are given, for generating standing wave patterns of any of a variety of modes within the chambers. For a spherical chamber the lowest resonant mode is excited by applying a wavelength of 3.02R, where R is the chamber radius. The two lowest pure radial modes for that chamber, are excited by applying wavelengths of 1.40R and 0.814R. For a cylindrical chamber of radius R, the lowest mode is at a wavelength of 3.41R, and the lowest pure radial modes are at wavelengths of 1.64R and 0.896R.

  19. Vibrational mode and sound radiation of electrostatic speakers using circular and annular diaphragms

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Hsi; Chiang, Hsin-Yuan

    2016-06-01

    This study modeled two diaphragms comprising a pair of indium tin oxide (ITO) transparent plates sandwiching a vibrating diaphragm to create circular (30 mm radius) and annular (30 mm outer and 3 mm inner radius) push-pull electrostatic speakers. We then measured the displacement amplitudes and mode shapes produced by the devices. Vibration characteristics were used to predict sound pressure levels (SPLs) using the lumped parameter method (LPM) and distributed parameter method (DPM). The two measurement results obtained using a laser system were compared to the SPLs obtained using traditional acoustic measurement (AM) from 20 Hz to 20 kHz in order to verify our predictions. When using LPM and DPM, the SPL prediction results in the first three symmetric modes were in good agreement with the AM results. Under the assumption of linear operations, the DPM and amplitude-fluctuation electronic speckle pattern interferometry (ESPI) techniques proved effective in determining the visualization of mode shape (0,1)-(0,3). The use of ITO plates is a practical technique for the prediction of SPL, as well as measurement of mode shapes. The four evaluation methods, i.e. LPM, DPM, ESPI and AM, present a high degree of consistency with regard to vibrational mode and sound radiation characteristics.

  20. Effects of Passive Porous Walls on the First Mode of Hypersonic Boundary Layers Over a Sharp Cone

    DTIC Science & Technology

    2013-01-01

    perforated with cylindrical blind holes of radius r∗p and equal spacing s ∗ = r∗p √ π/φ0. This model takes into account gas rarefaction effects. We have ρD...admittance Ay and admittance A r y. The flow is unstable above the neutral curves . We see that having a porous coating with phase angle π leads to lower...neutral curves for the higher modes. So there is a destabilising effect in the sense that low frequencies may become unstable. Corresponding results for

  1. Broad ion energy distributions in helicon wave-coupled helium plasma

    NASA Astrophysics Data System (ADS)

    Woller, K. B.; Whyte, D. G.; Wright, G. M.

    2017-05-01

    Helium ion energy distributions were measured in helicon wave-coupled plasmas of the dynamics of ion implantation and sputtering of surface experiment using a retarding field energy analyzer. The shape of the energy distribution is a double-peak, characteristic of radiofrequency plasma potential modulation. The broad distribution is located within a radius of 0.8 cm, while the quartz tube of the plasma source has an inner radius of 2.2 cm. The ion energy distribution rapidly changes from a double-peak to a single peak in the radius range of 0.7-0.9 cm. The average ion energy is approximately uniform across the plasma column including the double-peak and single peak regions. The widths of the broad distribution, ΔE , in the wave-coupled mode are large compared to the time-averaged ion energy, ⟨E ⟩. On the axis (r = 0), ΔE / ⟨E ⟩ ≲ 3.4, and at a radius near the edge of the plasma column (r = 2.2 cm), ΔE / ⟨E ⟩ ˜ 1.2. The discharge parameter space is scanned to investigate the effects of the magnetic field, input power, and chamber fill pressure on the wave-coupled mode that exhibits the sharp radial variation in the ion energy distribution.

  2. Single versus successive pop-in modes in nanoindentation tests of single crystals

    DOE PAGES

    Xia, Yuzhi; Gao, Yanfei; Pharr, George M.; ...

    2016-05-24

    From recent nanoindentation experiments, two types of pop-in modes have been identified: a single pop-in with a large displacement excursion, or a number of pop-ins with comparable and small displacement excursions. Theoretical analyses are developed here to study the roles played by indenter tip radius, pre-existing defect density, heterogeneous nucleation source type, and lattice resistance on the pop-in modes. The evolution of dislocation structures in earlier pop-ins provides input to modeling a stochastic, heterogeneous mechanism that may be responsible for the subsequent pop-ins. It is found that when the first pop-in occurs near theoretical shear stress, the pop-in mode ismore » determined by the lattice resistance and tip radius. When the first pop-in occurs at low shear stress, whether the successive pop-in mode occurs depends on how the heterogeneous dislocation nucleation source density increases as compared to the increase of the total dislocation density. Lastly, the above transitions are found to correlate well with the ratio of indenter tip radius to the mean spacing of dislocation nucleation sources.« less

  3. On fluttering modes for aircraft wing model in subsonic air flow.

    PubMed

    Shubov, Marianna A

    2014-12-08

    The paper deals with unstable aeroelastic modes for aircraft wing model in subsonic, incompressible, inviscid air flow. In recent author's papers asymptotic, spectral and stability analysis of the model has been carried out. The model is governed by a system of two coupled integrodifferential equations and a two-parameter family of boundary conditions modelling action of self-straining actuators. The Laplace transform of the solution is given in terms of the 'generalized resolvent operator', which is a meromorphic operator-valued function of the spectral parameter λ, whose poles are called the aeroelastic modes. The residues at these poles are constructed from the corresponding mode shapes. The spectral characteristics of the model are asymptotically close to the ones of a simpler system, which is called the reduced model. For the reduced model, the following result is shown: for each value of subsonic speed, there exists a radius such that all aeroelastic modes located outside the circle of this radius centred at zero are stable. Unstable modes, whose number is always finite, can occur only inside this 'circle of instability'. Explicit estimate of the 'instability radius' in terms of model parameters is given.

  4. Joint polarization tracking and channel equalization based on radius-directed linear Kalman filter

    NASA Astrophysics Data System (ADS)

    Zhang, Qun; Yang, Yanfu; Zhong, Kangping; Liu, Jie; Wu, Xiong; Yao, Yong

    2018-01-01

    We propose a joint polarization tracking and channel equalization scheme based on radius-directed linear Kalman filter (RD-LKF) by introducing the butterfly finite-impulse-response (FIR) filter in our previously proposed RD-LKF method. Along with the fast polarization tracking, it can also simultaneously compensate the inter-symbol interference (ISI) effects including residual chromatic dispersion and polarization mode dispersion. Compared with the conventional radius-directed equalizer (RDE) algorithm, it is demonstrated experimentally that three times faster convergence speed, one order of magnitude better tracking capability, and better BER performance is obtained in polarization division multiplexing 16 quadrature amplitude modulation system. Besides, the influences of the algorithm parameters on the convergence and the tracking performance are investigated by numerical simulation.

  5. Frequency shift of a crystal quartz resonator in thickness-shear modes induced by an array of hemispherical material units.

    PubMed

    Yuantai Hu; Huiliang Hu; Bin Luo; Huan Xue; Jiemin Xie; Ji Wang

    2013-08-01

    A two-dimensional model was established to study the dynamic characteristics of a quartz crystal resonator with the upper surface covered by an array of hemispherical material units. A frequency-dependent equivalent mass ratio was proposed to simulate the effect of the covered units on frequency shift of the resonator system. It was found that the equivalent mass ratio alternately becomes positive or negative with change of shear modulus and radius of each material unit, which indicates that the equivalent mass ratio is strongly related to the vibration mode of the covered loadings. The further numerical results show the cyclical feature in the relationship of frequency shift and shear modulus/radius as expected. The solutions are useful in the analysis of frequency stability of quartz resonators and acoustic wave sensors.

  6. Instability of a rotating liquid ring

    NASA Astrophysics Data System (ADS)

    Zhao, Sicheng; Tao, Jianjun

    2013-09-01

    It is shown numerically that a rotating inviscid liquid ring has a temporally oscillating state, where the radius of the ring varies periodically because of the competition between the centrifugal force and the centripetal force caused by the surface tension. Stability analysis reveals that an enlarging or shrinking ring is unstable to a varicose-type mode, which is affected by both the radial velocity and the radius ratio between the cross section and the ring. Furthermore, uniform rotation of a ring leads to a traveling unstable mode, whose frequency is determined by a simple sinuous mode, while the surface shape is modulated by the varicose mode and twisted by the rotation-induced Coriolis force.

  7. Instability of a rotating liquid ring.

    PubMed

    Zhao, Sicheng; Tao, Jianjun

    2013-09-01

    It is shown numerically that a rotating inviscid liquid ring has a temporally oscillating state, where the radius of the ring varies periodically because of the competition between the centrifugal force and the centripetal force caused by the surface tension. Stability analysis reveals that an enlarging or shrinking ring is unstable to a varicose-type mode, which is affected by both the radial velocity and the radius ratio between the cross section and the ring. Furthermore, uniform rotation of a ring leads to a traveling unstable mode, whose frequency is determined by a simple sinuous mode, while the surface shape is modulated by the varicose mode and twisted by the rotation-induced Coriolis force.

  8. On the interaction of Tollmien-Schlichting waves in axisymmetric supersonic flows

    NASA Technical Reports Server (NTRS)

    Duck, P. W.; Hall, P.

    1988-01-01

    Two-dimensional lower branch Tollmien-Schlichting waves described by triple-deck theory are always stable for planar supersonic flows. The possible occurrence of axisymmetric unstable modes in the supersonic flow around an axisymmetric body is investigated. In particular flows around bodies with typical radii comparable with the thickness of the upper deck are considered. It is shown that such unstable modes exist below a critical nondimensional radius of the body a sub 0. At values of the radius above a sub 0 all the modes are stable while if unstable modes exist they are found to occur in pairs. The interaction of these modes in the nonlinear regime is investigated using a weakly nonlinear approach and it is found that, dependent on the frequencies of the imposed Tollmien-Schlichting waves, either of the modes can be set up.

  9. On the interaction of Tollmien-Schlichting waves in axisymmetric supersonic flows

    NASA Technical Reports Server (NTRS)

    Duck, P. W.; Hall, P.

    1989-01-01

    Two-dimensional lower branch Tollmien-Schlichting waves described by triple-deck theory are always stable for planar supersonic flows. The possible occurrence of axisymmetric unstable modes in the supersonic flow around an axisymmetric body is investigated. In particular flows around bodies with typical radii comparable with the thickness of the upper deck are considered. It is shown that such unstable modes exist below a critical nondimensional radius of the body a sub O. At values of the radius above a sub O all the modes are stable while if unstable modes exist they are found to occur in pairs. The interaction of these modes in the nonlinear regime is investigated using a weakly nonlinear approach and it is found that, dependent on the frequencies of the imposed Tollmien-Schlichting waves, either of the modes can be set up.

  10. Bend-resistant large mode area fiber with novel segmented cladding

    NASA Astrophysics Data System (ADS)

    Ma, Shaoshuo; Ning, Tigang; Pei, Li; Li, Jing; Zheng, Jingjing

    2018-01-01

    A novel structure of segment cladding fiber (SCF) with characteristics of bend-resistance and large-mode-area (LMA) is proposed. In this new structure, the high refractive index (RI) core is periodically surrounded by high RI fan-segmented claddings. Numerical investigations show that effective single-mode operation of the proposed fiber with mode field area of 700 μm2 can be achieved when the bending radius is 15 cm. Besides, this fiber is insensitive to the bending orientation at the ranging of [-180°, 180°]. The proposed design shows great potential in high power fiber lasers and amplifiers with compact structure.

  11. Using spectral methods to obtain particle size information from optical data: applications to measurements from CARES 2010

    NASA Astrophysics Data System (ADS)

    Atkinson, Dean B.; Pekour, Mikhail; Chand, Duli; Radney, James G.; Kolesar, Katheryn R.; Zhang, Qi; Setyan, Ari; O'Neill, Norman T.; Cappa, Christopher D.

    2018-04-01

    Multi-wavelength in situ aerosol extinction, absorption and scattering measurements made at two ground sites during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are analyzed using a spectral deconvolution method that allows extraction of particle-size-related information, including the fraction of extinction produced by the fine-mode particles and the effective radius of the fine mode. The spectral deconvolution method is typically applied to analysis of remote sensing measurements. Here, its application to in situ measurements allows for comparison with more direct measurement methods and validation of the retrieval approach. Overall, the retrieved fine-mode fraction and effective radius compare well with other in situ measurements, including size distribution measurements and scattering and absorption measurements made separately for PM1 and PM10, although there were some periods during which the different methods yielded different results. One key contributor to differences between the results obtained is the alternative, spectrally based definitions of fine and coarse modes from the optical methods, relative to instruments that use a physically defined cut point. These results indicate that for campaigns where size, composition and multi-wavelength optical property measurements are made, comparison of the results can result in closure or can identify unusual circumstances. The comparison here also demonstrates that in situ multi-wavelength optical property measurements can be used to determine information about particle size distributions in situations where direct size distribution measurements are not available.

  12. Using spectral methods to obtain particle size information from optical data: applications to measurements from CARES 2010

    DOE PAGES

    Atkinson, Dean B.; Pekour, Mikhail; Chand, Duli; ...

    2018-04-23

    Here, multi-wavelength in situ aerosol extinction, absorption and scattering measurements made at two ground sites during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are analyzed using a spectral deconvolution method that allows extraction of particle-size-related information, including the fraction of extinction produced by the fine-mode particles and the effective radius of the fine mode. The spectral deconvolution method is typically applied to analysis of remote sensing measurements. Here, its application to in situ measurements allows for comparison with more direct measurement methods and validation of the retrieval approach. Overall, the retrieved fine-mode fraction and effective radius compare wellmore » with other in situ measurements, including size distribution measurements and scattering and absorption measurements made separately for PM 1 and PM 10, although there were some periods during which the different methods yielded different results. One key contributor to differences between the results obtained is the alternative, spectrally based definitions of fine and coarse modes from the optical methods, relative to instruments that use a physically defined cut point. These results indicate that for campaigns where size, composition and multi-wavelength optical property measurements are made, comparison of the results can result in closure or can identify unusual circumstances. The comparison here also demonstrates that in situ multi-wavelength optical property measurements can be used to determine information about particle size distributions in situations where direct size distribution measurements are not available.« less

  13. Using spectral methods to obtain particle size information from optical data: applications to measurements from CARES 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, Dean B.; Pekour, Mikhail; Chand, Duli

    Here, multi-wavelength in situ aerosol extinction, absorption and scattering measurements made at two ground sites during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are analyzed using a spectral deconvolution method that allows extraction of particle-size-related information, including the fraction of extinction produced by the fine-mode particles and the effective radius of the fine mode. The spectral deconvolution method is typically applied to analysis of remote sensing measurements. Here, its application to in situ measurements allows for comparison with more direct measurement methods and validation of the retrieval approach. Overall, the retrieved fine-mode fraction and effective radius compare wellmore » with other in situ measurements, including size distribution measurements and scattering and absorption measurements made separately for PM 1 and PM 10, although there were some periods during which the different methods yielded different results. One key contributor to differences between the results obtained is the alternative, spectrally based definitions of fine and coarse modes from the optical methods, relative to instruments that use a physically defined cut point. These results indicate that for campaigns where size, composition and multi-wavelength optical property measurements are made, comparison of the results can result in closure or can identify unusual circumstances. The comparison here also demonstrates that in situ multi-wavelength optical property measurements can be used to determine information about particle size distributions in situations where direct size distribution measurements are not available.« less

  14. Using spectral methods to obtain particle size information from optical data: applications to measurements from CARES 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, Dean B.; Pekour, Mikhail; Chand, Duli

    Multi-wavelength in situ aerosol extinction, absorption and scattering measurements made at two ground sites during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are analyzed using a spectral deconvolution method that allows extraction of particle-size-related information, including the fraction of extinction produced by the fine-mode particles and the effective radius of the fine mode. The spectral deconvolution method is typically applied to analysis of remote sensing measurements. Here, its application to in situ measurements allows for comparison with more direct measurement methods and validation of the retrieval approach. Overall, the retrieved fine-mode fraction and effective radius compare well withmore » other in situ measurements, including size distribution measurements and scattering and absorption measurements made separately for PM 1 and PM 10, although there were some periods during which the different methods yielded different results. One key contributor to differences between the results obtained is the alternative, spectrally based definitions of fine and coarse modes from the optical methods, relative to instruments that use a physically defined cut point. These results indicate that for campaigns where size, composition and multi-wavelength optical property measurements are made, comparison of the results can result in closure or can identify unusual circumstances. The comparison here also demonstrates that in situ multi-wavelength optical property measurements can be used to determine information about particle size distributions in situations where direct size distribution measurements are not available.« less

  15. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Formation of large-scale structures with sharp density gradient through Rayleigh-Taylor growth in a two-dimensional slab under the two-fluid and finite Larmor radius effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, R.; Hatori, T.; Miura, H., E-mail: miura.hideaki@nifs.ac.jp

    Two-fluid and the finite Larmor effects on linear and nonlinear growth of the Rayleigh-Taylor instability in a two-dimensional slab are studied numerically with special attention to high-wave-number dynamics and nonlinear structure formation at a low β-value. The two effects stabilize the unstable high wave number modes for a certain range of the β-value. In nonlinear simulations, the absence of the high wave number modes in the linear stage leads to the formation of the density field structure much larger than that in the single-fluid magnetohydrodynamic simulation, together with a sharp density gradient as well as a large velocity difference. Themore » formation of the sharp velocity difference leads to a subsequent Kelvin-Helmholtz-type instability only when both the two-fluid and finite Larmor radius terms are incorporated, whereas it is not observed otherwise. It is shown that the emergence of the secondary instability can modify the outline of the turbulent structures associated with the primary Rayleigh-Taylor instability.« less

  17. Superradiance of charged black holes in Einstein–Gauss–Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Fierro, Octavio; Grandi, Nicolás; Oliva, Julio

    2018-05-01

    In this paper we show that electrically charged black holes in Einstein–Gauss–Bonnet gravity suffer from a superradiant instability. It is triggered by a charged scalar field that fulfils Dirichlet boundary conditions at a mirror located outside the horizon. As in general relativity, the unstable modes exist provided that the mirror is located beyond a critical radius, making the instability a long wavelength one. We explore the effects of the Gauss–Bonnet corrections on the critical radius and find evidence that the critical radius decreases as the Gauss–Bonnet coupling α increases. Due to the, up to date, lack of an analytic rotating solution for Einstein–Gauss–Bonnet theory, this is the first example of a superradiant instability in the presence of higher curvature terms in the action.

  18. The first radial-mode Lorentzian Landau damping of dust acoustic space-charge waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588

    2016-05-15

    The dispersion properties and the first radial-mode Lorentzian Landau damping of a dust acoustic space-charge wave propagating in a cylindrical waveguide dusty plasma which contains nonthermal electrons and ions are investigated by employing the normal mode analysis and the method of separation of variables. It is found that the frequency of dust acoustic space-charge wave increases as the wave number increases as well as the radius of cylindrical plasma does. However, the nonthermal property of the Lorentzian plasma is found to suppress the wave frequency of the dust acoustic space-charge wave. The Landau damping rate of the dust acoustic space-chargemore » wave is derived in a cylindrical waveguide dusty plasma. The damping of the space-charge wave is found to be enhanced as the radius of cylindrical plasma and the nonthermal property increase. The maximum Lorentzian Landau damping rate is also found in a cylindrical waveguide dusty plasma. The variation of the wave frequency and the Landau damping rate due to the nonthermal character and geometric effects are also discussed.« less

  19. Smoke aerosol properties and ageing effects for Northern temperate and boreal regions derived from AERONET source and age attribution

    NASA Astrophysics Data System (ADS)

    Nikonovas, Tadas; North, Peter; Doerr, Stefan H.

    2015-04-01

    Particulate emissions from wildfires impact human health and have a large but uncertain effect on climate. Modelling schemes depend on information about emission factors, emitted particle microphysical and optical properties and ageing effects, while satellite retrieval algorithms make use of characteristic aerosol models to improve retrieval. Ground based remote sensing provides detailed aerosol characterisation, but does not contain information on source. A new method is presented to estimate plume origin land cover type and age for AERONET aerosol observations, employing trajectory modelling using the HYSPLIT model, and satellite active fire and aerosol optical thickness (AOT) observations from MODIS and AATSR. It is applied to AERONET stations located in or near Northern temperate and boreal forests, for the period 2002-2013. The results from 629 fire attributions indicate significant differences insize distributions and particle optical properties between different land cover types. Smallest fine mode median radius are attributed to plumes from cropland/natural vegetation mosaic (0.143 μm) and grasslands (0.147 μm) fires. Evergreen needleleaf forest emissions show a significantly smaller fine mode median radius (0.164 μm) than plumes from woody savannas (0.184 μm) and mixed forest (0.193 μm) fires. Smoke plumes are predominantly scattering for all of the classes with median single scattering albedo at 440 nm (SSA(440)) values close to 0.95 except the cropland emissions which have SSA(440) value of 0.9. Overall fine mode volume median radius increase rate is 0.0095μm per day for the first 4 days of ageing and 0.0084 μm per day for seven days of ageing. Changes in size were consistent with a decrease in Angstrom Exponent and increase in Asymmetry parameter. No significant changes in SSA(λ) with ageing were found. The implications of this work for improved modeling of aerosol radiative effects, which are relevant to both climate modelling and satellite aerosol retrieval schemes, are also discussed.

  20. Anderson localized modes in a disordered glass optical fiber

    NASA Astrophysics Data System (ADS)

    Karbasi, Salman; Hosseini, Seyedrasoul; Koch, Karl W.; Hawkins, Thomas; Ballato, John; Mafi, Arash

    2014-02-01

    A beam of light can propagate in a time-invariant transversely disordered waveguide because of transverse Anderson localization. We developed a disordered glass optical ber from a porous artisan glass (satin quartz). The refractive index pro le of the disordered glass optical ber is composed of a non-uniform distribution of air voids which can be approximated as longitudinally invariant. The ll-fraction of air voids is higher at the regions closer to the boundary compared with the central regions. The experimental results show that the beam radius of a localized beam is smaller at the regions closer to the boundary than the one at the central regions. In order to understand the reason behind these observations, the fully vectorial modes of the disordered glass ber are calculated using the actual scanning electron microscope image of the ber tip. The numerical calculations show that the modes at regions closer to the boundary of the ber are more localized compared with the modes at the central regions. Coupling of an input beam to the less-localized modes with large tails at the central regions of the ber results in a large beam radius. In comparison, a beam of light launched at the regions close to the boundary couples to the highly compact modes of the ber and results in a small localized beam radius.

  1. Non-axisymmetric annular curtain stability

    NASA Astrophysics Data System (ADS)

    Ahmed, Zahir U.; Khayat, Roger E.; Maissa, Philippe; Mathis, Christian

    2013-08-01

    A stability analysis of non-axisymmetric annular curtain is carried out for an axially moving viscous jet subject in surrounding viscous gas media. The effect of inertia, surface tension, gas-to-liquid density ratio, inner-to-outer radius ratio, and gas-to-liquid viscosity ratio on the stability of the jet is studied. In general, the axisymmetric disturbance is found to be the dominant mode. However, for small wavenumber, the non-axisymmetric mode is the most unstable mode and the one likely observed in reality. Inertia and the viscosity ratio for non-axisymmetric disturbances show a similar stability influence as observed for axisymmetric disturbances. The maximum growth rate in non-axisymmetric flow, interestingly, appears at very small wavenumber for all inertia levels. The dominant wavenumber increases (decreases) with inertia for non-axisymmetric (axisymmetric) flow. Gas-to-liquid density ratio, curvature effect, and surface tension, however, exhibit an opposite influence on growth rate compared to axisymmetric disturbances. Surface tension tends to stabilize the flow with reductions of the unstable wavenumber range and the maximum growth rate as well as the dominant wavenumber. The dominant wavenumber remains independent of viscosity ratio indicating the viscosity ratio increases the breakup length of the sheet with very little influence on the size of the drops. The range of unstable wavenumbers is affected only by curvature in axisymmetric flow, whereas all the stability parameters control the range of unstable wavenumbers in non-axisymmetric flow. Inertia and gas density increase the unstable wavenumber range, whereas the radius ratio, surface tension, and the viscosity ratio decrease the unstable wavenumber range. Neutral curves are plotted to separate the stable and unstable domains. Critical radius ratio decreases linearly and nonlinearly with the wavenumber for axisymmetric and non-axisymmetric disturbances, respectively. At smaller Weber numbers, a wider unstable domain is predicted for non-axisymmetric modes. For both axisymmetric and non-axisymmetric modes, the disturbance frequency is found to be the same and equal to the negative of axial wavenumber. Finally, comparison between theory and existing experiment leads to good qualitative agreement. A more accurate comparison is not possible given the difference in flow conditions.

  2. Spatial heterogeneities in aerosol size distribution over Bay of Bengal during Winter-ICARB Experiment

    NASA Astrophysics Data System (ADS)

    Sinha, P. R.; Manchanda, R. K.; Kaskaoutis, D. G.; Sreenivasan, S.; Krishna Moorthy, K.; Suresh Babu, S.

    2011-09-01

    This work examines the aerosol physical properties and size distribution measured in the Marine Atmospheric Boundary Layer (MABL) over entire Bay of Bengal (BoB) and Northern Indian Ocean (NIO) during the Winter Integrated Campaign on Aerosols, Gases and Radiation Budget (W-ICARB). The measurements were taken using the GRIMM optical particle counter from 27th December 2008 to 30th January 2009. The results show large spatial heterogeneities regarding both the total aerosol number concentrations ( N T) and the size distributions over BoB, which in turn indicates the variations in the source strength or advection from different regions. The aerosol number size distribution seems to be bi-modal in the 72% of the cases and can also be parameterized by uni-modal or by a combination of power-law and uni-modal distributions for the rest of the cases. The mode radius for accumulation and coarse-mode particles ranges from ˜0.1-0.2 μm and ˜0.6-0.8 μm, respectively. In the northern BoB and along the Indian coast, the aerosols are mainly of sub-micron size with effective radius ( Reff) ranging between 0.25 and 0.3 μm highlighting the strong anthropogenic influence, while in the open oceanic areas they are much higher (0.4-0.6 μm). It was also found that the sea-surface wind plays a considerable role in the super-micron number concentration, Reff and mode radius for coarse-mode aerosols. Using the relation between N T and columnar AOD from Terra and Aqua-MODIS we found that the majority of the aerosols are within the lower MABL, while in some areas vertical heterogeneities also exist.

  3. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.

    PubMed

    Xu, Wei; Leeladhar, Rajesh; Kang, Yong Tae; Choi, Chang-Hwan

    2013-05-21

    Evaporation modes and kinetics of sessile droplets of water on micropillared superhydrophobic surfaces are experimentally investigated. The results show that a constant contact radius (CCR) mode and a constant contact angle (CCA) mode are two dominating evaporation modes during droplet evaporation on the superhydrophobic surfaces. With the decrease in the solid fraction of the superhydrophobic surfaces, the duration of a CCR mode is reduced and that of a CCA mode is increased. Compared to Rowan's kinetic model, which is based on the vapor diffusion across the droplet boundary, the change in a contact angle in a CCR (pinned) mode shows a remarkable deviation, decreasing at a slower rate on the superhydrophobic surfaces with less-solid fractions. In a CCA (receding) mode, the change in a contact radius agrees well with the theoretical expectation, and the receding speed is slower on the superhydrophobic surfaces with lower solid fractions. The discrepancy between experimental results and Rowan's model is attributed to the initial large contact angle of a droplet on superhydrophobic surfaces. The droplet geometry with a large contact angle results in a narrow wedge region of air along the contact boundary, where the liquid-vapor diffusion is significantly restricted. Such an effect becomes minor as the evaporation proceeds with the decrease in a contact angle. In both the CCR and CCA modes, the evaporative mass transfer shows the linear relationship between mass(2/3) and evaporation time. However, the evaporation rate is slower on the superhydrophobic surfaces, which is more significant on the surfaces with lower solid fractions. As a result, the superhydrophobic surfaces slow down the drying process of a sessile droplet on them.

  4. Quantification of mitral and tricuspid regurgitation by the proximal flow convergence method using two-dimensional colour Doppler and colour Doppler M-mode: influence of the mechanism of regurgitation.

    PubMed

    Grossmann, G; Giesler, M; Stein, M; Kochs, M; Höher, M; Hombach, V

    1998-10-30

    In patients with mitral (n=77: organic=49, functional=28) and tricuspid regurgitation (n=55: functional=54) quantified by angiography, the temporal variation of the proximal flow convergence region throughout systole was assessed by colour Doppler M-Mode, and peak and mean radius of the proximal isovelocity surface area for 28 cm/s blood flow velocity were measured. Additionally, the peak radius derived from two-dimensional colour Doppler was obtained. About 50% of the patients with mitral and tricuspid regurgitation showed a typical temporal variation of the flow convergence region related to the mechanism of regurgitation. The different proximal isovelocity surface area radii were similarly correlated to the angiographic grade in mitral and tricuspid regurgitation (rank correlation coefficients 0.55-0.89) and they differentiated mild to moderate (grade < or =II) from severe (grade > or =III) mitral and tricuspid regurgitation with comparable accuracy (82-96%). However, moderate mitral regurgitation due to leaflet prolapse in two patients was correctly classified by the mean M-mode radius and overestimated by both peak radii. Only half of the patients showed a typical variation of the flow convergence region related to the mechanism of regurgitation. The different proximal isovelocity surface area radii were suitable to quantify mitral and tricuspid regurgitation in most patients. However, in mitral regurgitation due to leaflet prolapse the use of the mean M-mode radius may avoid overestimation.

  5. Precession effects on a liquid planetary core

    NASA Astrophysics Data System (ADS)

    Liu, Min; Li, Li-Gang

    2018-02-01

    Motivated by the desire to understand the rich dynamics of precessionally driven flow in a liquid planetary core, we investigate, through numerical simulations, the precessing fluid motion in a rotating cylindrical annulus, which simultaneously possesses slow precession. The same problemhas been studied extensively in cylinders, where the precessing flow is characterized by three key parameters: the Ekman number E, the Poincaré number Po and the radius-height aspect ratio Γ. While in an annulus, there is another parameter, the inner-radius-height aspect ratio ϒ, which also plays an important role in controlling the structure and evolution of the flow. By decomposing the nonlinear solution into a set of inertial modes, we demonstrate the properties of both weakly and moderately precessing flows. It is found that, when the precessional force is weak, the flow is stable with a constant amplitude of kinetic energy. As the precessional force increases, our simulation suggests that the nonlinear interaction between the boundary effects and the inertial modes can trigger more turbulence, introducing a transitional regime of rich dynamics to disordered flow. The inertial mode u 111, followed by u 113 or u 112, always dominates the precessing flow when 0.001 ≤ Po ≤ 0.05, ranging from weak to moderate precession. Moreover, the precessing flow in an annulus shows more stability than in a cylinder which is likely to be caused by the effect of the inner boundary that restricts the growth of resonant and non-resonant inertial modes. Furthermore, the mechanism of triadic resonance is not found in the transitional regime from a laminar to disordered flow.

  6. Stabilizing Effect of Resistivity towards ELM-free H-mode Discharge in Lithium-conditioned NSTX

    NASA Astrophysics Data System (ADS)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2016-10-01

    The stabilizing effect of edge resistivity on the edge localized modes (ELMs) has been recently recovered through analyzing NSTX experimental profiles of Lithium-conditioned ELM-free H-mode discharge. Comparative studies of ELM-free and a reference NSTX ELMy-H mode equilibriums have been performed using both resistive and 2-fluid MHD models implemented in the initial value extended MHD code NIMROD. Our results indicate that in addition to the pedestal profile refinement in electron pressure, the inclusion of enhanced resistivity due to the increase in the effective electric charge number Zeff, which is observed after Lithium-conditioning in experiment, is further required to account for the full stabilization of the low- n edge localized modes. Such a stabilization from the enhanced edge resistivity only becomes effective when the two-fluid diamagnetic and finite-Larmor-radius (FLR) effects are considered in the MHD model. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of the Chinese Academy of Sciences.

  7. Effects of finite electron temperature on gradient drift instabilities in partially magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.; Marusov, N. A.

    2018-01-01

    The gradient-drift instabilities of partially magnetized plasmas in plasma devices with crossed electric and magnetic fields are investigated in the framework of the two-fluid model with finite electron temperature in an inhomogeneous magnetic field. The finite electron Larmor radius (FLR) effects are also included via the gyroviscosity tensor taking into account the magnetic field gradient. This model correctly describes the electron dynamics for k⊥ρe>1 in the sense of Padé approximants (here, k⊥ and ρe are the wavenumber perpendicular to the magnetic field and the electron Larmor radius, respectively). The local dispersion relation for electrostatic plasma perturbations with the frequency in the range between the ion and electron cyclotron frequencies and propagating strictly perpendicular to the magnetic field is derived. The dispersion relation includes the effects of the equilibrium E ×B electron current, finite ion velocity, electron inertia, electron FLR, magnetic field gradients, and Debye length effects. The necessary and sufficient condition of stability is derived, and the stability boundary is found. It is shown that, in general, the electron inertia and FLR effects stabilize the short-wavelength perturbations. In some cases, such effects completely suppress the high-frequency short-wavelength modes so that only the long-wavelength low-frequency (with respect to the lower-hybrid frequency) modes remain unstable.

  8. Coupled out of plane vibrations of spiral beams for micro-scale applications

    NASA Astrophysics Data System (ADS)

    Amin Karami, M.; Yardimoglu, Bulent; Inman, Daniel J.

    2010-12-01

    An analytical method is proposed to calculate the natural frequencies and the corresponding mode shape functions of an Archimedean spiral beam. The deflection of the beam is due to both bending and torsion, which makes the problem coupled in nature. The governing partial differential equations and the boundary conditions are derived using Hamilton's principle. Two factors make the vibrations of spirals different from oscillations of constant radius arcs. The first is the presence of terms with derivatives of the radius in the governing equations of spirals and the second is the fact that variations of radius of the beam causes the coefficients of the differential equations to be variable. It is demonstrated, using perturbation techniques that the derivative of the radius terms have negligible effect on structure's dynamics. The spiral is then approximated with many merging constant-radius curved sections joined together to approximate the slow change of radius along the spiral. The equations of motion are formulated in non-dimensional form and the effect of all the key parameters on natural frequencies is presented. Non-dimensional curves are used to summarize the results for clarity. We also solve the governing equations using Rayleigh's approximate method. The fundamental frequency results of the exact and Rayleigh's method are in close agreement. This to some extent verifies the exact solutions. The results show that the vibration of spirals is mostly torsional which complicates using the spiral beam as a host for a sensor or energy harvesting device.

  9. Excitation of Non-Axisymmetric g-MOde Oscillations by Corotation Resonance in Thin Relativistic Disks

    NASA Astrophysics Data System (ADS)

    Kato, Shoji

    2002-02-01

    Various modes of oscillations are trapped in the inner region of geometrically thin relativistic disks. Among these oscillations, non-axisymmetric g-mode oscillations have been less studied compared with other modes of oscillations. The modes are, however, interesting since a corotation resonance appears in the trapped region. We mathematically examine whether the modes can be excited by the effects of the corotation resonance. This examination is made under an assumption that the inner and outer Lindblad radii are sufficiently separated in the opposite directions from the corotation radius. The results of analyses suggest that the waves are excited by the corotation resonance. The presence of the excitation suggests that the non-axisymmetric trapped g-mode oscillations are one of possible candidates for the quasi-periodic oscillations of a few hundred to kHz observed in some X-ray sources.

  10. Impact of a large density gradient on linear and nonlinear edge-localized mode simulations

    DOE PAGES

    Xi, P. W.; Xu, X. Q.; Xia, T. Y.; ...

    2013-09-27

    Here, the impact of a large density gradient on edge-localized modes (ELMs) is studied linearly and nonlinearly by employing both two-fluid and gyro-fluid simulations. In two-fluid simulations, the ion diamagnetic stabilization on high-n modes disappears when the large density gradient is taken into account. But gyro-fluid simulations show that the finite Larmor radius (FLR) effect can effectively stabilize high-n modes, so the ion diamagnetic effect alone is not sufficient to represent the FLR stabilizing effect. We further demonstrate that additional gyroviscous terms must be kept in the two-fluid model to recover the linear results from the gyro-fluid model. Nonlinear simulations show that the density variation significantly weakens the E × B shearing at the top of the pedestal and thus leads to more energy loss during ELMs. The turbulence spectrum after an ELM crash is measured and has the relation ofmore » $$P(k_{z})\\propto k_{z}^{-3.3}$$ .« less

  11. Fog and Cloud Induced Aerosol Modification Observed by AERONET

    NASA Technical Reports Server (NTRS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Giles, D. M.; Rivas, M. A.; Singh, R. P.; Tripathi, S. N.; Bruegge, C. J.; Platnick, S. E.; Arnold, G. T.; hide

    2011-01-01

    Large fine mode (sub-micron radius) dominated aerosols in size distributions retrieved from AERONET have been observed after fog or low-altitude cloud dissipation events. These column-integrated size distributions have been obtained at several sites in many regions of the world, typically after evaporation of low altitude cloud such as stratocumulus or fog. Retrievals with cloud processed aerosol are sometimes bimodal in the accumulation mode with the larger size mode often approx.0.4 - 0.5 microns radius (volume distribution); the smaller mode typically approx.0.12 to aprrox.0.20 microns may be interstitial aerosol that were not modified by incorporation in droplets and/or aerosol that are less hygroscopic in nature. Bimodal accumulation mode size distributions have often been observed from in situ measurements of aerosols that have interacted with clouds, and AERONET size distribution retrievals made after dissipation of cloud or fog are in good agreement with particle sizes measured by in situ techniques for cloud-processed aerosols. Aerosols of this type and large size range (in lower concentrations) may also be formed by cloud processing in partly cloudy conditions and may contribute to the shoulder of larger size particles in the accumulation mode retrievals, especially in regions where sulfate and other soluble aerosol are a significant component of the total aerosol composition. Observed trends of increasing aerosol optical depth (AOD) as fine mode radius increased suggests higher AOD in the near cloud environment and therefore greater aerosol direct radiative forcing than typically obtained from remote sensing, due to bias towards sampling at low cloud fraction.

  12. ON THE EVOLUTION OF THE INNER DISK RADIUS WITH FLUX IN THE NEUTRON STAR LOW-MASS X-RAY BINARY SERPENS X-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Chia-Ying; Morgan, Robert A.; Cackett, Edward M.

    We analyze the latest Suzaku observation of the bright neutron star (NS) low-mass X-ray binary Serpens X-1 taken in 2013 October and 2014 April. The observation was taken using the burst mode and only suffered mild pile-up effects. A broad iron line is clearly detected in the X-ray spectrum. We test different models and find that the iron line is asymmetric and best interpreted by relativistic reflection. The relativistically broadened iron line is generally believed to originate from the innermost regions of the accretion disk, where strong gravity causes a series of special and general relativistic effects. The iron linemore » profile indicates an inner radius of ∼8 R {sub G}, which gives an upper limit on the size of the NS. The asymmetric iron line has been observed in a number of previous observations, which gives several inner radius measurements at different flux states. We find that the inner radius of Serpens X-1 does not evolve significantly over the range of L / L {sub Edd} ∼ 0.4–0.6, and the lack of flux dependence of the inner radius implies that the accretion disk may be truncated outside of the innermost stable circular orbit by the boundary layer, rather than the stellar magnetic field.« less

  13. On the Evolution of the Inner Disk Radius with Flux in the Neutron Star Low-mass X-Ray Binary Serpens X-1

    NASA Technical Reports Server (NTRS)

    Chiang, Chia - Ying; Morgan, Robert A.; Cackett, Edward M.; Miller, Jon M.; Bhattacharyya, Sudip; Strohmayer, Tod E.

    2016-01-01

    We analyze the latest Suzaku observation of the bright neutron star (NS) low-mass X-ray binary Serpens X-1 taken in 2013 October and 2014 April. The observation was taken using the burst mode and only suffered mild pile-up effects. A broad iron line is clearly detected in the X-ray spectrum. We test different models and find that the iron line is asymmetric and best interpreted by relativistic reflection. The relativistically broadened iron line is generally believed to originate from the innermost regions of the accretion disk, where strong gravity causes a series of special and general relativistic effects. The iron line profile indicates an inner radius of approx. 8 R(sub G), which gives an upper limit on the size of the NS. The asymmetric iron line has been observed in a number of previous observations, which gives several inner radius measurements at different flux states. We find that the inner radius of Serpens X-1 does not evolve significantly over the range of L/L(sub Edd) approx. 0.4-0.6, and the lack of flux dependence of the inner radius implies that the accretion disk may be truncated outside of the innermost stable circular orbit by the boundary layer, rather than the stellar magnetic field.

  14. Plasmonic modes and extinction properties of a random nanocomposite cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir

    We study the properties of surface plasmon-polariton waves of a random metal-dielectric nanocomposite cylinder, consisting of bulk metal embedded with dielectric nanoparticles. We use the Maxwell-Garnett formulation to model the effective dielectric function of the composite medium and show that there exist two surface mode bands. We investigate the extinction properties of the system, and obtain the dependence of the extinction spectrum on the nanoparticles’ shape and concentration as well as the cylinder radius and the incidence angle for both TE and TM polarization.

  15. Nonspherical dynamics and shape mode stability of ultrasound contrast agent microbubbles

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael

    2016-11-01

    Ultrasound contrast agents (UCAs) are shell encapsulated microbubbles developed originally for ultrasound imaging enhancement. UCAs are more recently being exploited for therapeutic applications, such as for drug delivery, gene therapy, and tissue ablation. Ultrasound transducer pulses can induce spherical (radial) UCA oscillations, translation, and nonspherical shape oscillations, the dynamics of which are highly coupled. If driven sufficiently strongly, the ultrasound can induce breakup of UCAs, which can facilitate drug or gene delivery but should be minimized for imaging purposes to increase residence time and maximize diagnostic effect. Therefore, an understanding of the interplay between the acoustic driving and nonspherical shape mode stability of UCAs is essential for both diagnostic and therapeutic applications. In this work, we use both analytical and numerical methods to analyze shape mode stability for cases of small and large nonspherical oscillations, respectively. To analyze shape mode stability in the limit of small nonspherical perturbations, we couple a radial model of a lipid-coated microbubble with a model for bubble translation and nonspherical shape oscillation. This hybrid model is used to predict shape mode stability for ultrasound driving frequencies and pressure amplitudes of clinical interest. In addition, calculations of the stability of individual shape modes, residence time, maximum radius, and translation are provided with respect to acoustic driving parameters and compared to an unshelled bubble. The effects of shell elasticity, shell viscosity, and initial radius on stability are investigated. Furthermore, the well-established boundary element method (BEM) is used to investigate the dynamics and shape stability of large amplitude nonspherical oscillations of an ultrasonically-forced, polymer-coated microbubble near a rigid boundary. Different instability modes are identified based on the degree of jetting and proximity to the boundary. This insight is used to develop diagrams that delineate regions of stability from instability based on the breakup mechanism, in parameter ranges of ultrasound frequency and amplitude relevant to medical applications.

  16. H-mode achievement and edge features in RFX-mod tokamak operation

    NASA Astrophysics Data System (ADS)

    Spolaore, M.; Cavazzana, R.; Marrelli, L.; Carraro, L.; Franz, P.; Spagnolo, S.; Zaniol, B.; Zuin, M.; Cordaro, L.; Dal Bello, S.; De Masi, G.; Ferro, A.; Finotti, C.; Grando, L.; Grenfell, G.; Innocente, P.; Kudlacek, O.; Marchiori, G.; Martines, E.; Momo, B.; Paccagnella, R.; Piovesan, P.; Piron, C.; Puiatti, M. E.; Recchia, M.; Scarin, P.; Taliercio, C.; Vianello, N.; Zanotto, L.

    2017-11-01

    The RFX-mod experiment is a fusion device designed to operate as a reversed field pinch (RFP), with a major radius R = 2 m and a minor radius a = 0.459 m. Its high versatility recently allowed operating it also as an ohmic tokamak, allowing comparative studies between the two configurations in the same device. The device is equipped with a state of the art MHD mode feedback control system providing a magnetic boundary effective control, by applying resonant or non-resonant magnetic perturbations (MP), both in RFP and in tokamak configurations. In the fusion community the application of MPs is widely studied as a promising tool to limit the impact of plasma filaments and ELMs (edge localized modes) on plasma facing components. An important new research line is the exploitation of the RFX-mod active control system for ELM mitigation studies. As a first step in this direction, this paper presents the most recent achievements in term of RFX-mod tokamak explored scenarios, which allowed the first investigation of the ohmic and edge biasing induced H-mode. The production of D-shaped tokamak discharges and the design and deployment of an insertable polarized electrode were accomplished. Reproducible H-mode phases were obtained with insertable electrode negative biasing in single null discharges, representing an unexplored scenario with this technique. Important modifications of the edge plasma density and flow properties are observed. During the achieved H-mode ELM-like electromagnetic composite filamentary structures are observed. They are characterized by clear vorticity and parallel current density patterns.

  17. Single transverse mode laser in a center-sunken and cladding-trenched Yb-doped fiber.

    PubMed

    Liu, Yehui; Zhang, Fangfang; Zhao, Nan; Lin, Xianfeng; Liao, Lei; Wang, Yibo; Peng, Jinggang; Li, Haiqing; Yang, LuYun; Dai, NengLi; Li, Jinyan

    2018-02-05

    We report a novel center-sunken and cladding-trenched Yb-doped fiber, which was fabricated by a modified chemical vapor deposition process with a solution-doping technique. The simulation results showed that the fiber with a core diameter of 40 µm and a numerical aperture of 0.043 has a 1217 µm 2 effective mode area at 1080 nm. It is also disclosed that the leakage loss can be reduced lower than 0.01 dB/m for the LP 01 mode, while over 80 dB/m for the LP 11 mode by optimizing the bending radius as 14 cm. A 456 W laser output was observed in a MOPA structure. The laser slope efficiency was measured to be 79% and the M 2 was less than 1.1, which confirmed the single mode operation of the large mode area center-sunken cladding-trenched Yb-doped fiber.

  18. Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement.

    PubMed

    Zhou, Lin; Yu, Xiaoqiang; Zhu, Jia

    2014-02-12

    Nanostructure-based photovoltaic devices have exhibited several advantages, such as reduced reflection, extraordinary light trapping, and so forth. In particular, semiconductor nanostructures provide optical modes that have strong dependence on the size and geometry. Metallic nanostructures also attract a lot of attention because of the appealing plasmonic effect on the near-field enhancement. In this study, we propose a novel design, the metal-core/semiconductor-shell nanocones with the core radius varying in a linearly gradient style. With a thin layer of semiconductor absorber coated on a metallic cone, such a design can lead to significant and broadband absorption enhancement across the entire visible and near-infrared solar spectrum. As an example of demonstration, a layer of 16 nm thick crystalline silicon (c-Si) coated on a silver nanocone can absorb 27% of standard solar radiation across a broad spectral range of 300-1100 nm, which is equivalent to a 700 nm thick flat c-Si film. Therefore, the absorption enhancement factor approaching the Yablonovitch limit is achieved with this design. The significant absorption enhancement can be ascribed to three types of optical modes, that is, Fabry-Perot modes, plasmonic modes, and hybrid modes that combine the features of the previous two. In addition, the unique nanocone geometry enables the linearly gradient radius of the semiconductor shell, which can support multiple optical resonances, critical for the broadband absorption. Our design may find general usage as elements for the low cost, high efficiency solar conversion and water-splitting devices.

  19. Nonlinear saturation amplitude of cylindrical Rayleigh—Taylor instability

    NASA Astrophysics Data System (ADS)

    Liu, Wan-Hai; Yu, Chang-Ping; Ye, Wen-Hua; Wang, Li-Feng

    2014-09-01

    The nonlinear saturation amplitude (NSA) of the fundamental mode in the classical Rayleigh—Taylor instability with a cylindrical geometry for an arbitrary Atwood number is analytically investigated by considering the nonlinear corrections up to the third order. The analytic results indicate that the effects of the initial radius of the interface (r0) and the Atwood number (A) play an important role in the NSA of the fundamental mode. The NSA of the fundamental mode first increases gently and then decreases quickly with increasing A. For a given A, the smaller the r0/λ (λ is the perturbation wavelength), the larger the NSA of the fundamental mode. When r0/λ is large enough (r0 ≫ λ), the NSA of the fundamental mode is reduced to the prediction in the previous literatures within the framework of the third-order perturbation theory.

  20. Assessment of aerosol indirect effects over Indian subcontinent using long term MODIS aerosol and cloud data

    NASA Astrophysics Data System (ADS)

    Das, Saurabh; Maitra, Animesh; Saha, Upal; De, Arijit

    Aerosols have direct consequences on climate research and in climate change study due to its role in radiative forcing. The modulation of cloud properties due to the presence of aerosol is another important factor in understanding of the climate change scenario. However, the relationship between these two is mostly indirect as the meteorological conditions have a strong impact on the relationship. Cloud effective radius and decreases in precipitation efficiency are interlinked with the increase of aerosols. The net effect is that the cloud liquid water path and cloud lifetime increase with AOD. Though these facts are included in the global climate models (GCM), the quantitative estimation of aerosol indirect efficiency (AIE) varied widely. Some recent studies indicate an increasing trend of the aerosol optical depth over the Indian landmass. The anthropogenic activities are linked with this increase in aerosols. In general, aerosol increase can affect the cloud radius and leads to formation of non-precipitating cloud. However, the chemical composition of aerosols may also be an important factor. It is therefore necessary to have better understanding of the relationship for predicting the future climate which may be affected by such human activities. In this paper, the relation of aerosol optical depth (AOD) with cloud effective radius (CER) has been investigated over the Indian subcontinent using the long term MODIS observations. MODIS can able to provide reliable AOD information over the land surface. It also able to provide information of the cloud effective radius of the same observation point. A grid-wise correlation analysis can thus be performed to estimate the relation between AOD and CER. Result indicates both positive and negative AIE of AOD on CER. To identify the possible reason for such variability in the AIE, the role of anthropogenic aerosols and water vapor is investigated. The study on the efficiency of aerosol indirect effect indicates that a large number of grids with positive efficiency correspond to the water vapor amount of less than 2 mm whereas most of the grids have negative efficiency for water vapor amounts greater than 2 mm. Consequently, humidification of aerosols has also been examined for Indian region, which indicates that the variability in this relation may not be fully explained only by the contribution of water vapor. The role of aerosol sizes on this relation is also estimated by differentiating between fine mode and coarse mode aerosol. The presence of fine mode aerosols as estimated by model simulation and satellite observations show that the combined effect of water vapor and aerosol size can explain the observed positive and negative AIE more effectively. The results have important consequences on the GCM by incorporating the AIE more precisely.

  1. Parametric effects on pinch-off modes in liquid/liquid jet systems

    NASA Astrophysics Data System (ADS)

    Milosevic, Ilija N.

    Many industries rely on liquid/liquid extraction systems, where jet pinch off occurs on a regular basis. Inherent short time and length scales make analytical and numerical simulation of the process very challenging. A main objective of this work was to document the details of various pinch-off modes at different length scales using Laser Induced Fluorescence and Particle Image Velocimetry. A water glycerine mixture was injected into ambient either silicone oil or 1-octanol. The resultant viscosity ratios, inner to outer fluid, were 1.6 and 2.8, respectively. Ohnesorge numbers were 0.013 for ambient silicone oil and 0.08 for ambient 1-octanol. Reynolds and Strouhal numbers ranged from 30 to 100 and 0.5 to 3.5, respectively. Decreasing the Strouhal number increased the number of drops formed per forcing. Increasing the Reynolds number suppressed satellite formation, and in some cases the number of drops decreased from two to one per cycle. Increasing the Ohnesorge number to 0.08 suppressed the pinch off yielding a longer jet with three-dimensional threads. At Ohnesorge number 0.013, increasing the forcing amplitude shortened the jet, and eventually led to a dripping mode. High-resolution measurements of pinch-off angles were compared to results from similarity theory. Two modes were investigated: drops breaking from the jet (jet/drop) and, one drop splitting into two (splitting drop). The jet/drop mode angle measurements agreed with similarity predictions. The splitting drop mode converged towards smaller angles. Scaling analysis showed that a Stokesian similarity regime applied for a neck radius of 6 microns or less. The smallest radius observed in experiments was 15 microns. Therefore, it is not known whether splitting drop mode might still converge to same behavior.

  2. RESONATORS. MODES: Modes of a plano - spherical laser resonator with the Gaussian gain distribution of the active medium

    NASA Astrophysics Data System (ADS)

    Malyutin, A. A.

    2007-03-01

    Modes of a laser with plano-spherical degenerate and nondegenerate resonators are calculated upon diode pumping producing the Gaussian gain distribution in the active medium. Axially symmetric and off-axis pumpings are considered. It is shown that in the first case the lowest Hermite-Gaussian mode is excited with the largest weight both in the degenerate and nondegenerate resonator if the pump level is sufficiently high or the characteristic size wg of the amplifying region greatly exceeds the mode radius w0. The high-order Ince-Gaussian modes are excited upon weak off-axis pumping in the nondegenerate resonator both in the absence and presence of the symmetry of the gain distribution with respect to the resonator axis. It is found that when the level of off-axis symmetric pumping of the resonator is high enough, modes with the parameters of the TEM00 mode periodically propagating over a closed path in the resonator can exist. The explanation of this effect is given.

  3. Phase Inversion: Inferring Solar Subphotospheric Flow and Other Asphericity from the Distortion of Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Gough, Douglas; Merryfield, William J.; Toomre, Juri

    1998-01-01

    A method is proposed for analyzing an almost monochromatic train of waves propagating in a single direction in an inhomogeneous medium that is not otherwise changing in time. An effective phase is defined in terms of the Hilbert transform of the wave function, which is related, via the JWKB approximation, to the spatial variation of the background state against which the wave is propagating. The contaminating effect of interference between the truly monochromatic components of the train is eliminated using its propagation properties. Measurement errors, provided they are uncorrelated, are manifest as rapidly varying noise; although that noise can dominate the raw phase-processed signal, it can largely be removed by low-pass filtering. The intended purpose of the analysis is to determine the distortion of solar oscillations induced by horizontal structural variation and material flow. It should be possible to apply the method directly to sectoral modes. The horizontal phase distortion provides a measure of longitudinally averaged properties of the Sun in the vicinity of the equator, averaged also in radius down to the depth to which the modes penetrate. By combining such averages from different modes, the two-dimensional variation can be inferred by standard inversion techniques. After taking due account of horizontal refraction, it should be possible to apply the technique also to locally sectoral modes that propagate obliquely to the equator and thereby build a network of lateral averages at each radius, from which the full three-dimensional structure of the Sun can, in principle, be determined as an inverse Radon transform.

  4. Kinetic shear Alfvén instability in the presence of impurity ions in tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Gaimin; Shen, Y.; Xie, T.

    2013-10-15

    The effects of impurity ions on the kinetic shear Alfvén (KSA) instability in tokamak plasmas are investigated by numerically solving the integral equations for the KSA eigenmode in the toroidal geometry. The kinetic effects of hydrogen and impurity ions, including transit motion, finite ion Larmor radius, and finite-orbit-width, are taken into account. Toroidicity induced linear mode coupling is included through the ballooning-mode representation. Here, the effects of carbon, oxygen, and tungsten ions on the KSA instability in toroidal plasmas are investigated. It is found that, depending on the concentration and density profile of the impurity ions, the latter can bemore » either stabilizing or destabilizing for the KSA modes. The results here confirm the importance of impurity ions in tokamak experiments and should be useful for analyzing experimental data as well as for understanding anomalous transport and control of tokamak plasmas.« less

  5. Smoke aerosol properties and ageing effects for Northern temperate and boreal regions derived from AERONET source and age attribution

    NASA Astrophysics Data System (ADS)

    Nikonovas, T.; North, P. R. J.; Doerr, S. H.

    2015-03-01

    Particulate emissions from wildfires impact human health and have a large but uncertain effect on climate. Modelling schemes depend on information about emission factors, emitted particle microphysical and optical properties and ageing effects, while satellite retrieval algorithms make use of characteristic aerosol models to improve retrieval. Ground based remote sensing provides detailed aerosol characterisation, but does not contain information on source. Here, a method is presented to estimate plume origin land cover type and age for AERONET aerosol observations, employing trajectory modelling using the HYSPLIT model, and satellite active fire and aerosol optical thickness (AOT) observations from MODIS and AATSR. It is applied to AERONET stations located in or near Northern temperate and boreal forests, for the period 2002-2013. The results from 629 fire attributions indicate significant differences in size distributions and particle optical properties between different land cover types. Smallest fine mode median radius are attributed to plumes from cropland - natural vegetation mosaic (0.143 μm) and grasslands (0.147 μm) fires. Evergreen needleleaf forest emissions show a significantly smaller fine mode median radius (0.164 μm) than plumes from woody savannas (0.184 μm) and mixed forest (0.193 μm) fires. Smoke plumes are predominantly scattering for all of the classes with median single scattering albedo at 440 nm (SSA(440)) values close to 0.95 except the cropland emissions which have a SSA(440) value of 0.9. Overall fine mode volume median radius increase rate is 0.0095 μm per day for the first 4 days of ageing and 0.0084 μm per day for seven days of ageing. Changes in size were consistent with a decrease in Angstrom Exponent and increase in Asymmetry parameter. No significant changes in SSA(λ) with ageing were found. These estimates have implications for improved modelling of aerosol radiative effects, relevant to both climate modelling and satellite aerosol retrieval schemes.

  6. Correction of the exciton Bohr radius in monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Li, Run-Ze; Dong, Xi-Ying; Li, Zhi-Qing; Wang, Zi-Wu

    2018-07-01

    We theoretically investigate the correction of exciton Bohr radius in monolayer transition metal dichalcogenides (TMDCs) on different polar substrates arising from the exciton-optical phonon coupling, in which both the intrinsic longitudinal optical phonon and surface optical phonon modes couple with the exciton are taken into account. We find that the exciton Bohr radius is enlarged markedly due to these coupling. Moreover, it can be changed on a large scale by modulating the polarizability of polar substrate and the internal distance between the monolayer TMDCs and polar substrate. Theoretical result provides a potential explanation for the variation of the exciton Bohr radius in experimental measurement.

  7. Strong dipole and higher multi-pole Mie resonance modes with all-dielectric nanoring metasurfaces structure

    NASA Astrophysics Data System (ADS)

    Zhu, Huihui; Jing, Xufeng; Zhou, Pengwei

    2018-01-01

    Strong electric and magnetic dipole in infrared region and higher order multi-pole resonance at visible wavelengths are observed in all-dielectric nanoring metasurfaces. We discuss some of the parameters that influence the optical response of the dielectric nanoring. Adjustment of nanoring radius (inner radius and outer radius) and height can change the absorption intensity and the resonance peaks. Dipole, quadrupole, six-pole and ten-pole resonance modes can be found in the silicon nanoring at resonance wavelength. The transmission spectrum of nanoring with high Q-factor and contrast is achieved with appropriate parameters. Further the nanoring is used to application of sensing in which the sensitivity reaches 228 nm/RIU. This research is an important step to understand resonance in silicon nanoring and paves way for designing some optic devices such as sensor, nanoantennas, and photovoltaics.

  8. Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform.

    PubMed

    Li, Qing; Eftekhar, Ali A; Sodagar, Majid; Xia, Zhixuan; Atabaki, Amir H; Adibi, Ali

    2013-07-29

    We demonstrate a vertical integration of high-Q silicon nitride microresonators into the silicon-on-insulator platform for applications at the telecommunication wavelengths. Low-loss silicon nitride films with a thickness of 400 nm are successfully grown, enabling compact silicon nitride microresonators with ultra-high intrinsic Qs (~ 6 × 10(6) for 60 μm radius and ~ 2 × 10(7) for 240 μm radius). The coupling between the silicon nitride microresonator and the underneath silicon waveguide is based on evanescent coupling with silicon dioxide as buffer. Selective coupling to a desired radial mode of the silicon nitride microresonator is also achievable using a pulley coupling scheme. In this work, a 60-μm-radius silicon nitride microresonator has been successfully integrated into the silicon-on-insulator platform, showing a single-mode operation with an intrinsic Q of 2 × 10(6).

  9. Effects of initial radius of the interface and Atwood number on nonlinear saturation amplitudes in cylindrical Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Liu, Wanhai; Yu, Changping; Li, Xinliang

    2014-11-01

    Nonlinear saturation amplitudes (NSAs) of the first two harmonics in classical Rayleigh-Taylor instability (RTI) in cylindrical geometry for arbitrary Atwood numbers have been analytically investigated considering nonlinear corrections up to the fourth-order. The NSA of the fundamental mode is defined as the linear (purely exponential) growth amplitude of the fundamental mode at the saturation time when the growth of the fundamental mode (first harmonic) is reduced by 10% in comparison to its corresponding linear growth, and the NSA of the second harmonic can be obtained in the same way. The analytic results indicate that the effects of the initial radius of the interface (r0) and the Atwood number (A) play an important role in the NSAs of the first two harmonics in cylindrical RTI. On the one hand, the NSA of the fundamental mode first increases slightly and then decreases quickly with increasing A. For given A, the smaller the r0/λ (with λ perturbation wavelength) is, the larger the NSA of the fundamental mode is. When r0/λ is large enough ( r0≫λ ), the NSA of the fundamental mode is reduced to the prediction of previous literatures within the framework of third-order perturbation theory [J. W. Jacobs and I. Catton, J. Fluid Mech. 187, 329 (1988); S. W. Haan, Phys. Fluids B 3, 2349 (1991)]. On the other hand, the NSA of the second harmonic first decreases quickly with increasing A, reaching a minimum, and then increases slowly. Furthermore, the r0 can reduce the NSA of the second harmonic for arbitrary A at r0≲ 2 λ while increase it for A ≲ 0.6 at r0≳ 2 λ . Thus, it should be included in applications where the NSA has a role, such as inertial confinement fusion ignition target design.

  10. Wave propagation in pulsar magnetospheres - Refraction of rays in the open flux zone

    NASA Technical Reports Server (NTRS)

    Barnard, J. J.; Arons, J.

    1986-01-01

    The propagation of waves through a relativistically outflowing electron-positron plasma in a very strong dipolar magnetic field, conditions expected in pulsar magnetospheres, is investigated. Halmilton's equations is derived for the propagation of rays through a plasma which is inhomogeneous in density, magnetic field directions, and Lorentz factor. These equations are solved for rays propagating through the plasmas outflowing along the 'open' dipolar field lines in which the density decreases inversely as the radius cubed and in the case where gradients transverse to the radial direction exist. In the radial case, the effects of refraction on pulse profiles, spectrum, and polarization are examined, and the effects of a transverse gradient are indicated. Attention is given to models in which the observed broad bandwidth in the radio emission has its origin in a radius to frequency map. Models with broad-band emission at a single radius are also studied. These are compared to observations of pulse width and pulse component separation as a function of frequency. The origin of 'orthogonal modes' is discussed.

  11. Gyroaverage effects on nontwist Hamiltonians: separatrix reconnection and chaos suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del-Castillo-Negrete, Diego B; Martinell, J.

    2012-01-01

    A study of nite Larmor radius (FLR) eects on E B test particle chaotic transport in non- monotonic zonal ows with drift waves in magnetized plasmas is presented. Due to the non- monotonicity of the zonal ow, the Hamiltonian does not satisfy the twist condition. The electro- static potential is modeled as a linear superposition of a zonal ow and regular neutral modes of the Hasegawa-Mima equation. FLR eects are incorporated by gyro-averaging the EB Hamiltonian. It is shown that there is a critical value the Larmor radius for which the zonal ow transitions from a prole with one maximummore » to a prole with two maxima and a minimum. This bifurcation leads to the creation of additional shearless curves and resonances. The gyroaveraged nontwist Hamiltonian exhibits complex patterns of separatrix reconnection. A change in the Larmor ra- dius can lead to heteroclinic-homoclinic bifurcations and dipole formation. For Larmor radii for which the zonal ow has bifurcated, double heteroclinic-heteroclinic, homoclinic-homoclinic and heteroclinic-homoclinic topologies are observed. It is also shown that chaotic transport is typically reduced as the Larmor radius increases. Poincare sections shows that, for large enough Larmor radius, chaos can be practically suppressed. In particular, small changes on the Larmor radius can restore the shearless curve.« less

  12. The MODIS Aerosol Algorithm, Products and Validation

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Kaufman, Y. J.; Tanre, D.; Mattoo, S.; Chu, D. A.; Martins, J. V.; Li, R.-R.; Ichoku, C.; Levy, R. C.; Kleidman, R. G.

    2003-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) aboard both NASA's Terra and Aqua satellites is making near global daily observations of the earth in a wide spectral range. These measurements are used to derive spectral aerosol optical thickness and aerosol size parameters over both land and ocean. The aerosol products available over land include aerosol optical thickness at three visible wavelengths, a measure of the fraction of aerosol optical thickness attributed to the fine mode and several derived parameters including reflected spectral solar flux at top of atmosphere. Over ocean, the aerosol optical thickness is provided in seven wavelengths from 0.47 microns to 2.13 microns. In addition, quantitative aerosol size information includes effective radius of the aerosol and quantitative fraction of optical thickness attributed to the fine mode. Spectral aerosol flux, mass concentration and number of cloud condensation nuclei round out the list of available aerosol products over the ocean. The spectral optical thickness and effective radius of the aerosol over the ocean are validated by comparison with two years of AERONET data gleaned from 133 AERONET stations. 8000 MODIS aerosol retrievals colocated with AERONET measurements confirm that one-standard deviation of MODIS optical thickness retrievals fall within the predicted uncertainty of delta tauapproximately equal to plus or minus 0.03 plus or minus 0.05 tau over ocean and delta tay equal to plus or minus 0.05 plus or minus 0.15 tau over land. 271 MODIS aerosol retrievals co-located with AERONET inversions at island and coastal sites suggest that one-standard deviation of MODIS effective radius retrievals falls within delta r_eff approximately equal to 0.11 microns. The accuracy of the MODIS retrievals suggests that the product can be used to help narrow the uncertainties associated with aerosol radiative forcing of global climate.

  13. Post-buckling of a pressured biopolymer spherical shell with the mode interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ru, C. Q.

    2018-03-01

    Imperfection sensitivity is essential for mechanical behaviour of biopolymer shells characterized by high geometric heterogeneity. The present work studies initial post-buckling and imperfection sensitivity of a pressured biopolymer spherical shell based on non-axisymmetric buckling modes and associated mode interaction. Our results indicate that for biopolymer spherical shells with moderate radius-to-thickness ratio (say, less than 30) and smaller effective bending thickness (say, less than 0.2 times average shell thickness), the imperfection sensitivity predicted based on the axisymmetric mode without the mode interaction is close to the present results based on non-axisymmetric modes with the mode interaction with a small (typically, less than 10%) relative errors. However, for biopolymer spherical shells with larger effective bending thickness, the maximum load an imperfect shell can sustain predicted by the present non-axisymmetric analysis can be significantly (typically, around 30%) lower than those predicted based on the axisymmetric mode without the mode interaction. In such cases, a more accurate non-axisymmetric analysis with the mode interaction, as given in the present work, is required for imperfection sensitivity of pressured buckling of biopolymer spherical shells. Finally, the implications of the present study to two specific types of biopolymer spherical shells (viral capsids and ultrasound contrast agents) are discussed.

  14. Preliminary characterization of the upper haze by SPICAV/SOIR solar occultation in UV to mid-IR onboard Venus Express

    NASA Astrophysics Data System (ADS)

    Wilquet, V.; Fedorova, A.; Montmessin, F.; Drummond, R.; Mahieux, A.; Vandaele, A. C.; Villard, E.; Korablev, O.; Bertaux, J.-L.

    2009-07-01

    The Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus/Solar Occultation at Infrared (SPICAV/SOIR) suite of instruments onboard the Venus Express spacecraft comprises three spectrometers covering a wavelength range from ultraviolet to midinfrared and an altitude range from 70 to >100 km. However, it is only recently (more than 1 year after the beginning of the mission) that the three spectrometers can operate simultaneously in the solar occultation mode. These observations have enabled the study of the properties of the Venusian mesosphere over a broad spectral range. In this manuscript, we briefly describe the instrument characteristics and the method used to infer haze microphysical properties from a data set of three selected orbits. Discussion focuses on the wavelength dependence of the continuum, which is primarily shaped by the extinction caused by the aerosol particles of the upper haze. This wavelength dependence is directly related to the effective particle radius (cross section weighted mean radius) of the particles. Through independent analyses for the three channels, we demonstrate the potential to characterize the aerosols in the mesosphere of Venus. The classical assumption that the upper haze is only composed of submicron particles is not sufficient to explain the observations. We find that at high northern latitudes, two types of particles coexist in the upper haze of Venus: mode 1 of mean radius 0.1 ≤ r g ≤ 0.3 μm and mode 2 of 0.4 ≤ r g ≤ 1.0 μm. An additional population of micron-sized aerosols seems, therefore, needed to reconcile the data of the three spectrometers. Moreover, we observe substantial temporal variations of aerosol extinction over a time scale of 24 h.

  15. Characterization of beam-driven instabilities and current redistribution in MST plasmas

    NASA Astrophysics Data System (ADS)

    Parke, E.

    2015-11-01

    A unique, high-rep-rate (>10 kHz) Thomson scattering diagnostic and a high-bandwidth FIR interferometer-polarimeter on MST have enabled characterization of beam-driven instabilities and magnetic equilibrium changes observed during high power (1 MW) neutral beam injection (NBI). While NBI leads to negligible net current drive, an increase in on-axis current density observed through Faraday rotation is offset by a reduction in mid-radius current. Identification of the phase flip in temperature fluctuations associated with tearing modes provides a sensitive measure of rational surface locations. This technique strongly constrains the safety factor for equilibrium reconstruction and provides a powerful new tool for measuring the equilibrium magnetic field. For example, the n = 6 temperature structure is observed to shift inward 1.1 +/- 0.6 cm, with an estimated reduction of q0 by 5%. This is consistent with a mid-radius reduction in current, and together the Faraday rotation and Thomson scattering measurements corroborate an inductive redistribution of current that compares well with TRANSP/MSTFit predictions. Interpreting tearing mode temperature structures in the RFP remains challenging; the effects of multiple, closely-spaced tearing modes on the mode phase measurement require further verification. In addition to equilibrium changes, previous work has shown that the large fast ion population drives instabilities at higher frequencies near the Alfvén continuum. Recent observations reveal a new instability at much lower frequency (~7 kHz) with strongly chirping behavior. It participates in extensive avalanches of the higher frequency energetic particle and Alfvénic modes to drive enhanced fast ion transport. Internal structures measured from Te and ne fluctuations, their dependence on the safety factor, as well as frequency scaling motivate speculation about mode identity. Work supported by U.S. DOE.

  16. Axisymmetric oscillation modes of a double droplet system

    DOE PAGES

    Ramalingam, Santhosh K.; Basaran, Osman A.

    2010-11-15

    A double droplet system (DDS) consists of a sessile and a pendant drop that are coupled through a liquid filled cylindrical hole in a plate of thickness d. For a small hole radius R, equilibrium shapes of both drops are sections of spheres. While DDSs have a number of applications in microfluidics, a DDS oscillating about its equilibrium state can be used as a fast focusing liquid lens. Here, a DDS consisting of an isothermal, incompressible Newtonian fluid of constant density p and constant viscosity u that is surrounded by a gas is excited by oscillating in time (a) themore » pressure in the gas surrounding either drop (pressure excitation), (b) the plate perpendicular to its plane (axial excitation), and (c) the hole radius (radial excitation). In contrast to previous works that assumed transient drop shapes are spherical, they are determined here by simulation and used to identify the natural modes of axisymmetric oscillations from resonances observed during frequency sweeps with DDSs for which the combined volume V of the two drops is less than (4/3)πR 3. Pressure and axial excitations are found to have identical responses but axial and radial excitations are shown to excite different modes. These modes are compared to those exhibited by single pendant (sessile) drop systems. Specifically, while a single pendant (sessile) drop has one additional oscillation mode compared to a free drop, a DDS is found to exhibit roughly twice as many oscillation modes as a pendant (sessile) drop. The effects of dimensionless volume V/R 3, dimensionless plate thickness d/R, and Ohnesorge number Oh =μ/√ρRσ , where σ is the surface tension of the DDS-gas interface, on the resonance frequencies are also investigated.« less

  17. Experimental investigation of CNT effect on curved beam strength and interlaminar fracture toughness of CFRP laminates

    NASA Astrophysics Data System (ADS)

    Arca, M. A.; Coker, D.

    2014-06-01

    High mechanical properties and light weight structures of composite materials and advances in manufacturing processes have increased the use of composite materials in the aerospace and wind energy industries as a primary load carrying structures in complex shapes. However, use of composite materials in complex geometries such as L-shaped laminates creates weakness at the radius which causes delamination. Carbon nanotubes (CNTs) is preferred as a toughening materials in composite matrices due to their high mechanical properties and aspect ratios. However, effect of CNTs on curved beam strength (CBS) is not investigated in literature comprehensively. The objective of this study is to investigate the effect of CNT on Mode I and Mode II fracture toughness and CBS. L-shaped beams are fabric carbon/epoxy composite laminates manufactured by hand layup technique. Curved beam composite laminates were subjected to four point bending loading according to ASTM D6415/D6415M-06a. Double cantilever beam (DCB) tests and end notch flexure (ENF) tests were conducted to determine mode-I and mode-II fracture toughness, respectively. Preliminary results show that 3% CNT addition to the resin increased the mode-I fracture toughness by %25 and mode-II fracture toughness by %10 compared to base laminates. In contrast, no effect on curved beam strength was found.

  18. Studies on the influence of axial bends on ultrasonic guided waves in hollow cylinders (pipes)

    NASA Astrophysics Data System (ADS)

    Verma, Bhupesh; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2013-01-01

    Ultrasonic guided waves in hollow cylinders (pipes) are today widely applied as rapid screening tools in the inspection of straight pipe segments in oil, power generation and petrochemical processing industries. However, the characteristics of guided wave propagation across features such as bends in the pipe network are complicated, hampering a wider application of the developed techniques. Although a growing number of studies in recent years have considered guided wave propagation across elbows and U-type bends, the topic is still not very well understood for a general bend angle φ, mean bend radius R and pipe thickness b. Here we use 3D Finite Element (FE) simulation to illumine the propagation of fundamental guided pipe modes across bends of several different angles φ. Two different bend radius regimes, R/λ ≈ 1 and 10 (where λ denotes the wavelength of the mode studied) are considered, exemplifying 'sharp' and gradual or 'slow' bends. Different typical pipe thicknesses b within these regimes are also studied. The results confirm the expectation that different bend radius regimes affect the waves differently. Further, while as observed in earlier studies, at moderate bend radii, fundamental modes travel almost unaffected by an elbow (bend angle φ = 90 degrees), we find that as the bend angle is reduced, there is a progressively larger extent of mode-conversion. These trends and results are validated using experiments.

  19. Bernstein modes in a non-neutral plasma column

    NASA Astrophysics Data System (ADS)

    Walsh, Daniel; Dubin, Daniel H. E.

    2018-05-01

    This paper presents theory and numerical calculations of electrostatic Bernstein modes in an inhomogeneous cylindrical plasma column. These modes rely on finite Larmor radius effects to propagate radially across the column until they are reflected when their frequency matches the upper hybrid frequency. This reflection sets up an internal normal mode on the column and also mode-couples to the electrostatic surface cyclotron wave (which allows the normal mode to be excited and observed using external electrodes). Numerical results predicting the mode spectra, using a novel linear Vlasov code on a cylindrical grid, are presented and compared to an analytical Wentzel Kramers Brillouin (WKB) theory. A previous version of the theory [D. H. E. Dubin, Phys. Plasmas 20(4), 042120 (2013)] expanded the plasma response in powers of 1/B, approximating the local upper hybrid frequency, and consequently, its frequency predictions are spuriously shifted with respect to the numerical results presented here. A new version of the WKB theory avoids this approximation using the exact cold fluid plasma response and does a better job of reproducing the numerical frequency spectrum. The effect of multiple ion species on the mode spectrum is also considered, to make contact with experiments that observe cyclotron modes in a multi-species pure ion plasma [M. Affolter et al., Phys. Plasmas 22(5), 055701 (2015)].

  20. Aerosol effect on cloud droplet size as monitored from surface-based remote sensing over East China Sea region

    NASA Astrophysics Data System (ADS)

    Pandithurai, G.; Takamura, T.; Yamaguchi, J.; Miyagi, K.; Takano, T.; Ishizaka, Y.; Dipu, S.; Shimizu, A.

    2009-07-01

    The effect of increased aerosol concentrations on the low-level, non-precipitating, ice-free stratus clouds is examined using a suite of surface-based remote sensing systems. Cloud droplet effective radius and liquid water path are retrieved using cloud radar and microwave radiometer. Collocated measurements of aerosol scattering coefficient, size distribution and cloud condensation nuclei (CCN) concentrations were used to examine the response of cloud droplet size and optical thickness to increased CCN proxies. During the episodic events of increase in aerosol accumulation-mode volume distribution, the decrease in droplet size and increase in cloud optical thickness is observed. The indirect effect estimates are made for both droplet effective radius and cloud optical thickness for different liquid water path ranges and they range 0.02-0.18 and 0.005-0.154, respectively. Data are also categorized into thin and thick clouds based on cloud geometric thickness (Δz) and estimates show IE values are relatively higher for thicker clouds.

  1. The Effects of Gravitational Instabilities on Gas Giant Planet Migration in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Michael, Scott A.; Durisen, R. H.

    2010-05-01

    In this paper we conduct several three-dimensional radiative hydrodynamic simulations to explore the effect of the inclusion of gas giant planets in gravitationally unstable protoplanetary disks. We compare several simulations carried out with the CHYMERA code including: a baseline simulation without a planet, and three simulations including planets of various masses 0.3, 1 and 3 Jupiter masses. The planets are inserted into the baseline simulation after the gravitational instabilities (GIs) have grown to non-linear amplitude. The planets are inserted at the same radius, which coincides with the co-rotation radius of the dominant global mode in the baseline simulation. We examine the effect that the GIs have on migration rates as well as the potential of halting inward migration. We also examine the effect the insertion of the planet has on the global torques caused by the GIs. Furthermore, we explore the relationship between planet mass and migration rates and effect on GIs.

  2. Numerical modelling on stabilizing large magnetic island by RF current for disruption avoidance

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojing; Yu, Qingquan; Zhang, Xiaodong; Zhu, Sizheng; Wang, Xiaoguang; Wu, Bin

    2018-01-01

    Numerical modelling on tearing mode stabilization by RF current due to electron cyclotron current drive (ECCD) has been carried out for the purposes of disruption avoidance, focusing on stabilizing the magnetic island which can grow to a large width and therefore, might cause plasma disruption. When the island has become large, a threshold in driven current for fully stabilizing the mode is found; below this threshold, the island width only slightly decreases. The island’s O-point shifts radially towards the magnetic axis as the mode grows, as a result, applying ECCD at the minor radius of the island’s O-point has a stronger effect than that at the original equilibrium rational surface for stabilizing a large island. During the island growth, the required driven current for mode stabilization increases with the island’s width, indicating that it is more effective to apply ECCD as early as possible for disruption avoidance, as observed in experiments. The numerical results have been compared with those obtained from the modified Rutherford equation.

  3. On fluttering modes for aircraft wing model in subsonic air flow

    PubMed Central

    Shubov, Marianna A.

    2014-01-01

    The paper deals with unstable aeroelastic modes for aircraft wing model in subsonic, incompressible, inviscid air flow. In recent author’s papers asymptotic, spectral and stability analysis of the model has been carried out. The model is governed by a system of two coupled integrodifferential equations and a two-parameter family of boundary conditions modelling action of self-straining actuators. The Laplace transform of the solution is given in terms of the ‘generalized resolvent operator’, which is a meromorphic operator-valued function of the spectral parameter λ, whose poles are called the aeroelastic modes. The residues at these poles are constructed from the corresponding mode shapes. The spectral characteristics of the model are asymptotically close to the ones of a simpler system, which is called the reduced model. For the reduced model, the following result is shown: for each value of subsonic speed, there exists a radius such that all aeroelastic modes located outside the circle of this radius centred at zero are stable. Unstable modes, whose number is always finite, can occur only inside this ‘circle of instability’. Explicit estimate of the ‘instability radius’ in terms of model parameters is given. PMID:25484610

  4. Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng-Nan; Fang, Yun-Tuan

    2017-10-01

    In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA < 0.09a; only dielectric waveguide modes occur for rA > 0.25a; two kinds of modes coexist for 0.09a < rA < 0.25a. The plasmonic waveguide mode has advantages in achieving slow light.

  5. Design and characterization of 16-mode PANDA polarization-maintaining few-mode ring-core fiber for spatial division multiplexing

    NASA Astrophysics Data System (ADS)

    Cao, Yuan; Zhao, Yongli; Yu, Xiaosong; Han, Jiawei; Zhang, Jie

    2017-11-01

    A PANDA polarization-maintaining few-mode ring-core fiber (PM-FM-RCF) structure with two air holes around the ring core is proposed. The relative mode multiplicity factor (RMMF) is defined to evaluate the spatial efficiency of the designed PM-FM-RCF. The performance analysis and comparison of the proposed PANDA PM-FM-RCFs considering three different types of step-index profiles are detailed. Through modal characteristic analysis and numerical simulation, the PM-FM-RCF with a lower refractive index difference (Δnoi=1.5%) between the ring core and the inner central circle can support up to 16 polarization modes with large RMMF at C-band, which shows the optimum modal properties compared with the PM-FM-RCF with higher Δnoi. All the supported polarization modes are effectively separated from their adjacent polarization modes with effective refractive index differences (Δn) larger than 10-4, which also show relatively small chromatic dispersion (-20 to 25 ps/nm/km), low attenuation (<1.4 dB/km), and small bending radius (˜8 mm) over the C-band. The designed PM-FM-RCF can be compatible with standard single-mode fibers and applied in multiple-input multiple-output-free spatial division multiplexing optical networks for short-reach optical interconnection.

  6. Polaronic effects due to quasi-confined optical phonons in wurtzite nitride nanowire in the presence of an electric field

    NASA Astrophysics Data System (ADS)

    Vardanyan, Karen A.; Asatryan, Anna L.; Vartanian, Arshak L.

    2015-07-01

    Considering the effect of an external electric field in wurtzite nitride cylindrical nanowire (NW), the polaron self-energy and effective mass due to the electron interaction with the quasi-confined optical phonons are studied theoretically by means of Lee-Low-Pines variational approach. The analytical expressions for the quasi-one-dimensional Fröhlich polaron self-energy and effective mass are obtained as functions of the wire radius and the strength of the electric field applied perpendicular to the wire axis. It is found that the main contribution to polaron basic parameters is from higher frequency optical phonon modes. The numerical results on the GaN material show that the polaron self-energy increases with the increase of the electric field and is more sensitive to the field when the wire radius is larger. It is also found that the polaron self-energy in GaN NWs is higher than that in zinc-blende GaAs-based cylindrical NWs.

  7. Diamagnetic drift effects on the low-n magnetohydrodynamic modes at the high mode pedestal with plasma rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, L. J.; Kotschenreuther, M. T.; Valanju, P.

    2014-06-15

    The diamagnetic drift effects on the low-n magnetohydrodynamic instabilities at the high-mode (H-mode) pedestal are investigated in this paper with the inclusion of bootstrap current for equilibrium and rotation effects for stability, where n is the toroidal mode number. The AEGIS (Adaptive EiGenfunction Independent Solutions) code [L. J. Zheng and M. T. Kotschenreuther, J. Comp. Phys. 211 (2006)] is extended to include the diamagnetic drift effects. This can be viewed as the lowest order approximation of the finite Larmor radius effects in consideration of the pressure gradient steepness at the pedestal. The H-mode discharges at Jointed European Torus is reconstructedmore » numerically using the VMEC code [P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)], with bootstrap current taken into account. Generally speaking, the diamagnetic drift effects are stabilizing. Our results show that the effectiveness of diamagnetic stabilization depends sensitively on the safe factor value (q{sub s}) at the safety-factor reversal or plateau region. The diamagnetic stabilization are weaker, when q{sub s} is larger than an integer; while stronger, when q{sub s} is smaller or less larger than an integer. We also find that the diamagnetic drift effects also depend sensitively on the rotation direction. The diamagnetic stabilization in the co-rotation case is stronger than in the counter rotation case with respect to the ion diamagnetic drift direction.« less

  8. Low-bending loss and single-mode operation in few-mode optical fiber

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Wang, Hua; Chen, Ming-Yang; Wei, Jin; Cai, Zhi-Min; Li, Lu-Ming; Yang, Ji-Hai; Zhu, Yuan-Feng

    2016-10-01

    The technique of eliminating the higher-order modes in a few-mode optical fiber is proposed. The fiber is designed with a group of defect modes in the cladding. The higher-order modes in the fiber can be eliminated by bending the fiber to induce strong coupling between the defect modes and the higher-order modes. Numerical simulation shows the bending losses of the LP01 mode are lower than 1.5×10-4 dB/turn for the wavelength shorter than 1.625 μm. The proposed fiber can be bent multiple turns at small bending radius which are preferable for FTTH related applications.

  9. Response analysis of holography-based modal wavefront sensor.

    PubMed

    Dong, Shihao; Haist, Tobias; Osten, Wolfgang; Ruppel, Thomas; Sawodny, Oliver

    2012-03-20

    The crosstalk problem of holography-based modal wavefront sensing (HMWS) becomes more severe with increasing aberration. In this paper, crosstalk effects on the sensor response are analyzed statistically for typical aberrations due to atmospheric turbulence. For specific turbulence strength, we optimized the sensor by adjusting the detector radius and the encoded phase bias for each Zernike mode. Calibrated response curves of low-order Zernike modes were further utilized to improve the sensor accuracy. The simulation results validated our strategy. The number of iterations for obtaining a residual RMS wavefront error of 0.1λ is reduced from 18 to 3. © 2012 Optical Society of America

  10. Validation of MODIS Aerosol Retrieval Over Ocean

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Tanre, Didier; Kaufman, Yoram J.; Ichoku, Charles; Mattoo, Shana; Levy, Robert; Chu, D. Allen; Holben, Brent N.; Dubovik, Oleg; Ahmad, Ziauddin; hide

    2001-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) algorithm for determining aerosol characteristics over ocean is performing with remarkable accuracy. A two-month data set of MODIS retrievals co-located with observations from the AErosol RObotic NETwork (AERONET) ground-based sunphotometer network provides the necessary validation. Spectral radiation measured by MODIS (in the range 550 - 2100 nm) is used to retrieve the aerosol optical thickness, effective particle radius and ratio between the submicron and micron size particles. MODIS-retrieved aerosol optical thickness at 660 nm and 870 nm fall within the expected uncertainty, with the ensemble average at 660 nm differing by only 2% from the AERONET observations and having virtually no offset. MODIS retrievals of aerosol effective radius agree with AERONET retrievals to within +/- 0.10 micrometers, while MODIS-derived ratios between large and small mode aerosol show definite correlation with ratios derived from AERONET data.

  11. Drop Impingement on Highly Wetting Micro/Nano Porous Surfaces

    NASA Astrophysics Data System (ADS)

    Buie, Cullen; Joung, Youngsoo

    2011-11-01

    Recently, we developed a novel fabrication method using a combination of electrophoretic deposition (EPD) and break down anodization (BDA) to achieve highly wetting nanoporous surfaces with microscale features. In this study we investigate droplet impingement behavior on these surfaces as a function of impact velocity, droplet size, and liquid properties. We observe impingement modes we denote as ``necking'' (droplet breaks before full penetration in the porous surface), ``spreading'' (continuous wicking into the porous surface), and ``jetting'' (jets of liquid emanate from the edges of the wicking liquid). To predict the droplet impingement modes, we've developed a non-dimensional parameter that is a function of droplet velocity, dynamic viscosity, effective pore radius and contact angle. The novel dimensionless parameter successfully predicts drop impingement modes across multiple fluids. Results of this study will inform the design of spray impingement cooling systems for electronics applications where the ``spreading'' mode is preferred.

  12. The effect of macro-bending on power confinement factor in single mode fibers

    NASA Astrophysics Data System (ADS)

    Waluyo, T. B.; Bayuwati, D.; Mulyanto, I.

    2018-03-01

    One of the methods to determine the macro-bending effect in a single mode fiber is by calculating its power loss coefficient. We describe an alternative method by using the equation of fractional power in the fiber core. Knowing the fiber parameters such as its core radius, refractive indexes, and operating wavelength; we can calculate the V-number and the fractional power in the core. Because the value of the fiber refractive indexes and the propagation constant are affected by bending, we can calculate the value of the fractional power in the core as a function of the bending radius. We calculate the fractional power in the core of an SMF28 and SM600 fiber and, to verify our calculation, we measure its transmission loss using an optical spectrum analyzer. Our calculations and experimental results showed that for SMF28 fiber, there is about 4% power loss due to bending at 633 nm, about 8% at 1310 nm, about 20% at 1550 nm, and about 60% at 1064 nm. For SM600 fiber, there is about 6% power loss due to bending at 633 nm, about 11% at 850 nm, and this fiber is not suitable for operating wavelength beyond 1000 nm.

  13. Ballooning modes localized near the null point of a divertor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, W. A.; Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550

    2014-04-15

    The stability of ballooning modes localized to the null point in both the standard and snowflake divertors is considered. Ideal magnetohydrodynamics is used. A series expansion of the flux function is performed in the vicinity of the null point with the lowest, non-vanishing term retained for each divertor configuration. The energy principle is used with a trial function to determine a sufficient instability threshold. It is shown that this threshold depends on the orientation of the flux surfaces with respect to the major radius with a critical angle appearing due to the convergence of the field lines away from themore » null point. When the angle the major radius forms with respect to the flux surfaces exceeds this critical angle, the system is stabilized. Further, the scaling of the instability threshold with the aspect ratio and the ratio of the scrape-off-layer width to the major radius is shown. It is concluded that ballooning modes are not a likely candidate for driving convection in the vicinity of the null for parameters relevant to existing machines. However, the results place a lower bound on the width of the heat flux in the private flux region. To explain convective mixing in the vicinity of the null point, new consideration should be given to an axisymmetric mixing mode [W. A. Farmer and D. D. Ryutov, Phys. Plasmas 20, 092117 (2013)] as a possible candidate to explain current experimental results.« less

  14. Theoretical and experimental study of bent fully aperiodic large-pitch fibers for enhancing the high-order modes delocalization

    NASA Astrophysics Data System (ADS)

    du Jeu, Rémi; Dauliat, Romain; Darwich, Dia; Auguste, Jean-Louis; Benoît, Aurélien; Leconte, Baptiste; Malleville, Marie-Alicia; Jamier, Raphaël.; Schuster, Kay; Roy, Philippe

    2018-02-01

    The power scaling of fiber lasers and amplifiers has triggered an extensive development of large-mode area fibers among which the most promising are the distributed mode filtering fibers and the large-pitch fibers. These structures enable for an effective higher-order modes delocalization and subsequently a singlemode emission. An interesting alternative consists in using the fully-aperiodic large-pitch fibers, into which the standard air-silica photonic crystal cladding is replaced by an aperiodic pattern made of solid low-index inclusions cladding. However, in such a structure, the core and the background cladding material surrounding it must have rigorously the same refractive index. Current synthesis processes and measurement techniques offer respectively a maximum resolution of 5×10-4 and 1×10-4 while the indexmatching must be as precise as 1×10-5 . Lately a gain material with a refractive index 1.5×10-4 higher than that of the background cladding material was fabricated, thus re-confining the first higher-order modes in the core. A numerical study is carried out on the benefit of bending such fully-aperiodic fiber to counteract this phenomenon. Optimized bending axis and radius have been determined. Experiments are done in a laser cavity operating at 1030 nm using an 88cm-long 51μm core diameter ytterbium-doped fiber. Results demonstrate an improvement of the M2 from 1.7 when the fiber is kept straight to 1.2 when it is bent with a 100 to 60 cm bend radius. These primary results are promising for future power scaling.

  15. New Insights of High-precision Asteroseismology: Acoustic Radius and χ2-matching Method for Solar-like Oscillator KIC 6225718

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Li, Yan

    2017-10-01

    Asteroseismology is a powerful tool for probing stellar interiors and determining stellar fundamental parameters. In the present work, we adopt the χ2-minimization method but only use the observed high-precision seismic observations (i.e., oscillation frequencies) to constrain theoretical models for analyzing solar-like oscillator KIC 6225718. Finally, we find the acoustic radius τ0 is the only global parameter that can be accurately measured by the χ2-matching method between observed frequencies and theoretical model calculations for a pure p-mode oscillation star. We obtain seconds for KIC 6225718. It leads that the mass and radius of the CMMs are degenerate with each other. In addition, we find that the distribution range of acoustic radius is slightly enlarged by some extreme cases, which posses both a larger mass and a higher (or lower) metal abundance, at the lower acoustic radius end.

  16. Electromagnetic drift waves dispersion for arbitrarily collisional plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu; Angus, J. R.

    2015-07-15

    The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionlessmore » and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.« less

  17. Effect of the radial buoyancy on a circular Couette flow

    NASA Astrophysics Data System (ADS)

    Meyer, Antoine; Yoshikawa, Harunori N.; Mutabazi, Innocent

    2015-11-01

    The effect of a radial temperature gradient on the stability of a circular Couette flow is investigated when the gravitational acceleration is neglected. The induced radial stratification of the fluid density coupled with the centrifugal acceleration generates radial buoyancy which is centrifugal for inward heating and centripetal for outward heating. This radial buoyancy modifies the Rayleigh discriminant and induces the asymmetry between inward heating and outward heating in flow behavior. The critical modes are axisymmetric and stationary for inward heating while for outward heating, they can be oscillatory axisymmetric or nonaxisymmetric depending on fluid diffusion properties, i.e., on the Prandtl number Pr. The dependence of the critical modes on Pr is explored for different values of the radius ratio of the annulus. The power input of the radial buoyancy is compared with other power terms. The critical frequency of the oscillatory axisymmetric modes is linked to the Brunt-Väisälä frequency due to the density stratification in the radial gravity field induced by the rotation. These modes are associated with inertial waves. The dispersion relation of the oscillatory axisymmetric modes is derived in the vicinity of the critical conditions. A weakly nonlinear amplitude equation with a forcing term is proposed to explain the domination of these axisymmetric oscillatory modes over the stationary centrifugal mode.

  18. The electromagnetic interchange mode in a partially ionized collisional plasma. [spread F region

    NASA Technical Reports Server (NTRS)

    Hudson, M. K.; Kennel, C. F.

    1974-01-01

    A collisional electromagnetic dispersion relation is derived from two-fluid theory for the interchange mode coupled to the Alfven, acoustic, drift and entropy modes in a partially ionized plasma. The fundamental electromagnetic nature of the interchange model is noted; coupling to the intermediate Alfven mode is strongly stabilizing for finite k sub z. Both ion viscous and ion-neutral stabilization are included, and it was found that collisions destroy the ion finite Larmor radius cutoff at short perpendicular wavelengths.

  19. Convection in Slab and Spheroidal Geometries

    NASA Technical Reports Server (NTRS)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  20. Modeling the burnout of solid polydisperse fuel under the conditions of external heat transfer

    NASA Astrophysics Data System (ADS)

    Skorik, I. A.; Goldobin, Yu. M.; Tolmachev, E. M.; Gal'perin, L. G.

    2013-11-01

    A self-similar burnout mode of solid polydisperse fuel is considered taking into consideration heat transfer between fuel particles, gases, and combustion chamber walls. A polydisperse composition of fuel is taken into account by introducing particle distribution functions by radiuses obtained for the kinetic and diffusion combustion modes. Equations for calculating the temperatures of particles and gases are presented, which are written for particles average with respect to their distribution functions by radiuses taking into account the fuel burnout ratio. The proposed equations take into consideration the influence of fuel composition, air excess factor, and gas recirculation ratio. Calculated graphs depicting the variation of particle and gas temperatures, and the fuel burnout ratio are presented for an anthracite-fired boiler.

  1. Scenario development for high β p low torque plasma with q min above 2 and large-radius internal transport barrier in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, S.; Xu, G. S.; Wang, Q.

    A recent experiment on DIII-D, which was conducted by the joint research team from DIII-D and EAST, has extended the previous high β p, high q min regime, which has been tested in the 2013 DIII-D/EAST joint experiment, to inductive operation at higher plasma current (I p=0.8 MA) and significantly higher normalized fusion performance (G = H 89β N/=qmore » $$2\\atop{95}$$ = 0.16). The experiment aims at exploring high performance scenario with q min > 2 and reduced torque for long pulse operation, which can be potentially extrapolated to EAST. The effort was largely motivated by the interest in developing a feasible scenario for long-pulse high performance operation with low torque on EAST. Very high confinement, H 89 = 3.5 or H 98,y2 = 2.1 with β N ~ 3.0, has been achieved transiently in this experiment together with q min > 2 and reduced NBI torque (3~5 N-m). The excellent confinement is associated with the spontaneous formation of an internal transport barrier (ITB) in plasmas with I p=0.8 MA at large minor radius (normalized p ~ 0.7) in all channels (n e, T e, T i, V Φ, especially strong in the T e channel). Fluctuation measurements show a significant reduction in the fluctuation levels, including AE modes and broadband turbulence, at the location where an ITB forms. Linear gyrokinetic simulations also support the decrease of the growth rate of the most unstable mode during strong ITB formation. The simulation implies that strong suppression of turbulence and a positive feedback loop may be active in this process and is responsible for the spontaneous formation of large-radius ITB. Finally, in an unstable ITB phase, an ELM crash is observed to have a positive effect on transient formation of large-radius ITB. The formation of this kind of ITB is found to have a shielding (protecting) effect on the core plasma while isolating the perturbation due to ELM crash.« less

  2. Scenario development for high β p low torque plasma with q min above 2 and large-radius internal transport barrier in DIII-D

    DOE PAGES

    Ding, S.; Xu, G. S.; Wang, Q.; ...

    2016-09-30

    A recent experiment on DIII-D, which was conducted by the joint research team from DIII-D and EAST, has extended the previous high β p, high q min regime, which has been tested in the 2013 DIII-D/EAST joint experiment, to inductive operation at higher plasma current (I p=0.8 MA) and significantly higher normalized fusion performance (G = H 89β N/=qmore » $$2\\atop{95}$$ = 0.16). The experiment aims at exploring high performance scenario with q min > 2 and reduced torque for long pulse operation, which can be potentially extrapolated to EAST. The effort was largely motivated by the interest in developing a feasible scenario for long-pulse high performance operation with low torque on EAST. Very high confinement, H 89 = 3.5 or H 98,y2 = 2.1 with β N ~ 3.0, has been achieved transiently in this experiment together with q min > 2 and reduced NBI torque (3~5 N-m). The excellent confinement is associated with the spontaneous formation of an internal transport barrier (ITB) in plasmas with I p=0.8 MA at large minor radius (normalized p ~ 0.7) in all channels (n e, T e, T i, V Φ, especially strong in the T e channel). Fluctuation measurements show a significant reduction in the fluctuation levels, including AE modes and broadband turbulence, at the location where an ITB forms. Linear gyrokinetic simulations also support the decrease of the growth rate of the most unstable mode during strong ITB formation. The simulation implies that strong suppression of turbulence and a positive feedback loop may be active in this process and is responsible for the spontaneous formation of large-radius ITB. Finally, in an unstable ITB phase, an ELM crash is observed to have a positive effect on transient formation of large-radius ITB. The formation of this kind of ITB is found to have a shielding (protecting) effect on the core plasma while isolating the perturbation due to ELM crash.« less

  3. Single Null Negative Triangularity Tokamak for Power Handling

    NASA Astrophysics Data System (ADS)

    Kikuchi, Mitsuru; Medvedev, S.; Takizuka, T.; Sauter, O.; Merle, A.; Coda, S.; Chen, D.; Li, J. X.

    2017-10-01

    Power and particle control in fusion reactor is challenge and we proposed the negative triangularity tokamak (NTT) to eliminate ELM by operating L-mode edge with improved core confinement. The SN configuration has more flexibility in shaping by adopting rectangular-shaped TF coils. The limiting normalized beta is 3.56 with wall stabilization and 3.14 without wall. The vertical stability is assured under a reasonable control system. The wetted area on the divertor plates becomes wider in proportion to the larger major radius at the divertor strike points due to the NT configuration. In addition to the major-radius effect, the ``Flux Tune Expansion (FTE)'' is adopted to further reduce the heat load on the divertor plate by factor of 2.6 with a coil current 3 MA. L-mode edge also allows further increase in wetted area. The fusion power of 3 GW is deliverable only at normalized beta 2.1. Therefore this reactor may be operable stably against the serious MHD activities. The CD power for SS operation is 175 MW at Q = 17. AC operation is also possible option. A required HH factor is relatively modest H = 1.12.

  4. Geometric stabilization of the electrostatic ion-temperature-gradient driven instability. I. Nearly axisymmetric systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zocco, A.; Plunk, G. G.; Xanthopoulos, P.

    The effects of a non-axisymmetric (3D) equilibrium magnetic field on the linear ion-temperature-gradient (ITG) driven mode are investigated. We consider the strongly driven, toroidal branch of the instability in a global (on the magnetic surface) setting. Previous studies have focused on particular features of non-axisymmetric systems, such as strong local shear or magnetic ripple, that introduce inhomogeneity in the coordinate along the magnetic field. In contrast, here we include non-axisymmetry explicitly via the dependence of the magnetic drift on the field line label α, i.e., across the magnetic field, but within the magnetic flux surface. We consider the limit wheremore » this variation occurs on a scale much larger than that of the ITG mode, and also the case where these scales are similar. Close to axisymmetry, we find that an averaging effect of the magnetic drift on the flux surface causes global (on the surface) stabilization, as compared to the most unstable local mode. In the absence of scale separation, we find destabilization is also possible, but only if a particular resonance occurs between the magnetic drift and the mode, and finite Larmor radius effects are neglected. We discuss the relative importance of surface global effects and known radially global effects.« less

  5. Exponentially growing tearing modes in Rijnhuizen Tokamak Project plasmas.

    PubMed

    Salzedas, F; Schüller, F C; Oomens, A A M

    2002-02-18

    The local measurement of the island width w, around the resonant surface, allowed a direct test of the extended Rutherford model [P. H. Rutherford, PPPL Report-2277 (1985)], describing the evolution of radiation-induced tearing modes prior to disruptions of tokamak plasmas. It is found that this model accounts very well for the observed exponential growth and supports radiation losses as being the main driving mechanism. The model implies that the effective perpendicular electron heat conductivity in the island is smaller than the global one. Comparison of the local measurements of w with the magnetic perturbed field B showed that w proportional to B1/2 was valid for widths up to 18% of the minor radius.

  6. Air Mass Considerations in Fog Optical Modeling.

    DTIC Science & Technology

    1981-02-01

    Other microphysical quantities whi.-h are frequently used include the mean radius, the mode radius, and the liquid water content. All these quantities...Commerce .a~ il -’ ecommunications and Commander nr1~nAdministration Ja) Arm~y Comined Arms Center *,Y nn-l t n elecommunication Sciences, & Fort !-eav...Forecasting Selected Weather Variables (Emphasizinq Remote Means )," ASL-TR-O001, January 1978. 73. Heaps, Melvin G., "The 1979 Solar Eclipse and Validation

  7. Scalable Top-Down Approach Tailored by Interferometric Lithography to Achieve Large-Area Single-Mode GaN Nanowire Laser Arrays on Sapphire Substrate.

    PubMed

    Behzadirad, Mahmoud; Nami, Mohsen; Wostbrock, Neal; Zamani Kouhpanji, Mohammad Reza; Feezell, Daniel F; Brueck, Steven R J; Busani, Tito

    2018-03-27

    GaN nanowires are promising for optical and optoelectronic applications because of their waveguiding properties and large optical band gap. However, developing a precise, scalable, and cost-effective fabrication method with a high degree of controllability to obtain high-aspect-ratio nanowires with high optical properties and minimum crystal defects remains a challenge. Here, we present a scalable two-step top-down approach using interferometric lithography, for which parameters can be controlled precisely to achieve highly ordered arrays of nanowires with excellent quality and desired aspect ratios. The wet-etch mechanism is investigated, and the etch rates of m-planes {11̅00} (sidewalls) were measured to be 2.5 to 70 nm/h depending on the Si doping concentration. Using this method, uniform nanowire arrays were achieved over a large area (>10 5 μm 2 ) with an spect ratio as large as 50, a radius as small as 17 nm, and atomic-scale sidewall roughness (<1 nm). FDTD modeling demonstrated HE 11 is the dominant transverse mode in the nanowires with a radius of sub-100 nm, and single-mode lasing from vertical cavity nanowire arrays with different doping concentrations on a sapphire substrate was interestingly observed in photoluminescence measurements. High Q-factors of ∼1139-2443 were obtained in nanowire array lasers with a radius and length of 65 nm and 2 μm, respectively, corresponding to a line width of 0.32-0.15 nm (minimum threshold of 3.31 MW/cm 2 ). Our results show that fabrication of high-quality GaN nanowire arrays with adaptable aspect ratio and large-area uniformity is feasible through a top-down approach using interferometric lithography and is promising for fabrication of III-nitride-based nanophotonic devices (radial/axial) on the original substrate.

  8. Joint DIII-D/EAST research on the development of a high poloidal beta scenario for the steady state missions of ITER and CFETR

    NASA Astrophysics Data System (ADS)

    Garofalo, A. M.; Gong, X. Z.; Ding, S. Y.; Huang, J.; McClenaghan, J.; Pan, C. K.; Qian, J.; Ren, Q. L.; Staebler, G. M.; Chen, J.; Cui, L.; Grierson, B. A.; Hanson, J. M.; Holcomb, C. T.; Jian, X.; Li, G.; Li, M.; Pankin, A. Y.; Peysson, Y.; Zhai, X.; Bonoli, P.; Brower, D.; Ding, W. X.; Ferron, J. R.; Guo, W.; Lao, L. L.; Li, K.; Liu, H.; Lyv, B.; Xu, G.; Zang, Q.

    2018-01-01

    Experimental and modeling investigations on the DIII-D and EAST tokamaks show the attractive transport and stability properties of fully noninductive, high poloidal-beta (β P ) plasmas, and their suitability for steady-state operating scenarios in ITER and CFETR. A key feature of the high-β P regime is the large-radius (ρ > 0.6) internal transport barrier (ITB), often observed in all channels (ne, Te, Ti, rotation), and responsible for both excellent energy confinement quality and excellent stability properties. Experiments on DIII-D have shown that, with a large-radius ITB, very high β N and β P values (both ≥ 4) can be reached by taking advantage of the stabilizing effect of a nearby conducting wall. Synergistically, higher plasma pressure provides turbulence suppression by Shafranov shift, leading to ITB sustainment independent of the plasma rotation. Experiments on EAST have been used to assess the long pulse potential of the high-β P regime. Using RF-only heating and current drive, EAST achieved minute-long fully noninductive steady state H-mode operation with strike points on an ITER-like tungsten divertor. Improved confinement (relative to standard H-mode) and steady state ITB features are observed with a monotonic q-profile with q min ˜ 1.5. Separately, experiments have shown that increasing the density in plasmas driven by lower hybrid wave broadens the q-profile, a technique that could enable a large radius ITB. These experimental results have been used to validate MHD, current drive, and turbulent transport models, and to project the high-β P regime to a burning plasma. These projections suggest the Shafranov shift alone will not suffice to provide improved confinement (over standard H-mode) without rotation and rotation shear. However, increasing the negative magnetic shear (higher q on axis) provides a similar turbulence suppression mechanism to Shafranov shift, and can help devices such as ITER and CFETR achieve their steady-state fusion goals.

  9. The linear tearing instability in three dimensional, toroidal gyro-kinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornsby, W. A., E-mail: william.hornsby@ipp.mpg.de; Migliano, P.; Buchholz, R.

    2015-02-15

    Linear gyro-kinetic simulations of the classical tearing mode in three-dimensional toroidal geometry were performed using the global gyro-kinetic turbulence code, GKW. The results were benchmarked against a cylindrical ideal MHD and analytical theory calculations. The stability, growth rate, and frequency of the mode were investigated by varying the current profile, collisionality, and the pressure gradients. Both collisionless and semi-collisional tearing modes were found with a smooth transition between the two. A residual, finite, rotation frequency of the mode even in the absence of a pressure gradient is observed, which is attributed to toroidal finite Larmor-radius effects. When a pressure gradientmore » is present at low collisionality, the mode rotates at the expected electron diamagnetic frequency. However, the island rotation reverses direction at high collisionality. The growth rate is found to follow a η{sup 1∕7} scaling with collisional resistivity in the semi-collisional regime, closely following the semi-collisional scaling found by Fitzpatrick. The stability of the mode closely follows the stability analysis as performed by Hastie et al. using the same current and safety factor profiles but for cylindrical geometry, however, here a modification due to toroidal coupling and pressure effects is seen.« less

  10. Microfluidic Flows and Heat Transfer and Their Influence on Optical Modes in Microstructure Fibers

    PubMed Central

    Davies, Edward; Christodoulides, Paul; Florides, George; Kalli, Kyriacos

    2014-01-01

    A finite element analysis (FEA) model has been constructed to predict the thermo-fluidic and optical properties of a microstructure optical fiber (MOF) accounting for changes in external temperature, input water velocity and optical fiber geometry. Modeling a water laminar flow within a water channel has shown that the steady-state temperature is dependent on the water channel radius while independent of the input velocity. There is a critical channel radius below which the steady-state temperature of the water channel is constant, while above, the temperature decreases. However, the distance required to reach steady state within the water channel is dependent on both the input velocity and the channel radius. The MOF has been found capable of supporting multiple modes. Despite the large thermo-optic coefficient of water, the bound modes’ response to temperature was dominated by the thermo-optic coefficient of glass. This is attributed to the majority of the light being confined within the glass, which increased with increasing external temperature due to a larger difference in the refractive index between the glass core and the water channel. PMID:28788263

  11. Modeling of the control of the driven current profile in ICRF MCCD on EAST plasma

    NASA Astrophysics Data System (ADS)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Cao, J. J.; Wu, Z. Y.; Chen, Y.; Du, D.

    2018-05-01

    Control of the current profile is a crucial issue for improved confinement and the inhibition of instability in advanced tokamak operation. Using typical discharge data for the Experimental Advanced Superconducting Tokamak, numerical simulations of driven-current profile control in mode conversion current drive (MCCD) in the ion cyclotron range of frequencies were performed employing a full-wave method and Ehst-Karney efficiency formula. Results indicate that the driven current profile in MCCD can be effectively modified by shifting the mode conversion layer. The peak of the driven current can be located at an aimed position in the normalized minor radius range (-0.60 ≤r/a≤0) by changing the radiofrequency and the minority-ion concentration. The efficiency of the off-axis MCCD can reach 233 kA/MW through optimization, and the mode converted ion cyclotron wave plays an important role in such scenarios. The effects of electron temperature and plasma density on the driven current profile are also investigated.

  12. Resonance ultrasonic diagnostics of defects in full-size silicon wafers

    NASA Astrophysics Data System (ADS)

    Belyaev, A.; Ostapenko, S.

    2001-12-01

    A resonance acoustic effect was observed recently in full-size 200 mm Cz-Si wafers and applied to characterize as-grown and process-induced defects. Ultrasonic vibrations can be excited into wafers using an external ultrasonic transducer and their amplitude is recorded using a scanning air-coupled acoustic probe operated in a non-contact mode. By sweeping driving frequency, f, of the transducer, we observed an amplification of a specific acoustic mode referred to as ‘whistle’. In this paper, we performed theoretical modeling of the whistle which allowed in attributing this mode to resonant flexural vibrations in a thin circular plate. We calculated normal frequencies of the flexural vibrations of a circular plate of radius ρ in the case of the free edge. The model gives an excellent fit to experimental data with regard to whistle spatial distribution. The results of calculation allow the evaluation of resonance acoustic effect in wafers of different geometries employed in the industry.

  13. MHD and resonant instabilities in JT-60SA during current ramp-up with off-axis N-NB injection

    NASA Astrophysics Data System (ADS)

    Bierwage, A.; Toma, M.; Shinohara, K.

    2017-12-01

    The excitation of magnetohydrodynamic (MHD) and resonant instabilities and their effect on the plasma profiles during the current ramp-up phase of a beam-driven JT-60SA tokamak plasma is studied using the MHD-PIC hybrid code MEGA. In the simple scenario considered, the plasma is only driven by one negative-ion-based neutral beam, depositing 500 keV deuterons at 5 MW power off-axis at about mid-radius. The beam injection starts half-way in the ramp-up phase. Within 1 s, the beam-driven plasma current and fast ion pressure produce a configuration that is strongly unstable to rapidly growing MHD and resonant modes. Using MEGA, modes with low toroidal mode numbers in the range n = 1-4 are examined in detail and shown to cause substantial changes in the plasma profiles. The necessity to develop reduced models and incorporate the effects of such instabilities in integrated codes used to simulate the evolution of entire plasma discharges is discussed.

  14. Area law microstate entropy from criticality and spherical symmetry

    NASA Astrophysics Data System (ADS)

    Dvali, Gia

    2018-05-01

    It is often assumed that the area law of microstate entropy and the holography are intrinsic properties exclusively of the gravitational systems, such as black holes. We construct a nongravitational model that exhibits an entropy that scales as area of a sphere of one dimension less. It is represented by a nonrelativistic bosonic field living on a d -dimensional sphere of radius R and experiencing an angular-momentum-dependent attractive interaction. We show that the system possesses a quantum critical point with the emergent gapless modes. Their number is equal to the area of a d -1 -dimensional sphere of the same radius R . These gapless modes create an exponentially large number of degenerate microstates with the corresponding microstate entropy given by the area of the same d -1 -dimensional sphere. Thanks to a double-scaling limit, the counting of the entropy and of the number of the gapless modes is made exact. The phenomenon takes place for arbitrary number of dimensions and can be viewed as a version of holography.

  15. Electronic response to nuclear breathing mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludwig, Hendrik; Ruffini, Remo; ICRANet, University of Nice-Sophia Antipolis, 28 Av. de Valrose, 06103 Nice Cedex 2

    2015-12-17

    Based on our previous work on stationary oscillation modes of electrons around giant nuclei, we show how to treat a general driving force on the electron gas, such as the one generated by the breathing mode of the nucleus, by means of the spectral method. As an example we demonstrate this method for a system with Z = 10{sup 4} in β-equilibrium with the electrons compressed up to the nuclear radius. In this case the stationary modes can be obtained analytically, which allows for a very speedy numerical calculation of the final result.

  16. Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model

    NASA Astrophysics Data System (ADS)

    Farajpour, A.; Mohammadi, M.; Shahidi, A. R.; Mahzoon, M.

    2011-08-01

    In this article, the buckling behavior of nanoscale circular plates under uniform radial compression is studied. Small-scale effect is taken into consideration. Using nonlocal elasticity theory the governing equations are derived for the circular single-layered graphene sheets (SLGS). Explicit expressions for the buckling loads are obtained for clamped and simply supported boundary conditions. It is shown that nonlocal effects play an important role in the buckling of circular nanoplates. The effects of the small scale on the buckling loads considering various parameters such as the radius of the plate and mode numbers are investigated.

  17. Assessment of a Three-Dimensional Line-of-Response Probability Density Function System Matrix for PET

    PubMed Central

    Yao, Rutao; Ramachandra, Ranjith M.; Mahajan, Neeraj; Rathod, Vinay; Gunasekar, Noel; Panse, Ashish; Ma, Tianyu; Jian, Yiqiang; Yan, Jianhua; Carson, Richard E.

    2012-01-01

    To achieve optimal PET image reconstruction through better system modeling, we developed a system matrix that is based on the probability density function for each line of response (LOR-PDF). The LOR-PDFs are grouped by LOR-to-detector incident angles to form a highly compact system matrix. The system matrix was implemented in the MOLAR list mode reconstruction algorithm for a small animal PET scanner. The impact of LOR-PDF on reconstructed image quality was assessed qualitatively as well as quantitatively in terms of contrast recovery coefficient (CRC) and coefficient of variance (COV), and its performance was compared with a fixed Gaussian (iso-Gaussian) line spread function. The LOR-PDFs of 3 coincidence signal emitting sources, 1) ideal positron emitter that emits perfect back-to-back γ rays (γγ) in air; 2) fluorine-18 (18F) nuclide in water; and 3) oxygen-15 (15O) nuclide in water, were derived, and assessed with simulated and experimental phantom data. The derived LOR-PDFs showed anisotropic and asymmetric characteristics dependent on LOR-detector angle, coincidence emitting source, and the medium, consistent with common PET physical principles. The comparison of the iso-Gaussian function and LOR-PDF showed that: 1) without positron range and acolinearity effects, the LOR-PDF achieved better or similar trade-offs of contrast recovery and noise for objects of 4-mm radius or larger, and this advantage extended to smaller objects (e.g. 2-mm radius sphere, 0.6-mm radius hot-rods) at higher iteration numbers; and 2) with positron range and acolinearity effects, the iso-Gaussian achieved similar or better resolution recovery depending on the significance of positron range effect. We conclude that the 3-D LOR-PDF approach is an effective method to generate an accurate and compact system matrix. However, when used directly in expectation-maximization based list-mode iterative reconstruction algorithms such as MOLAR, its superiority is not clear. For this application, using an iso-Gaussian function in MOLAR is a simple but effective technique for PET reconstruction. PMID:23032702

  18. Optical Emission Spectroscopy of a 150kW DC Arc Torch: A Comparison of Transferred vs. Non-Transferred Modes

    NASA Astrophysics Data System (ADS)

    Counts, D. A.; Giuliani, J. L.; Peterson, S. H.; Han, Q. Y.; Sartwell, B. D.

    1997-04-01

    DC arc torches are proposed or in use for solid waste remediation at several sites. However, there is no consensus on the optimal mode of operation: transferred or non-transferred arc. As part of a project to investigate plasma treatment of shipboard waste, we have been investigating both modes at atmospheric pressure. This paper reports on the use of visible optical emission spectroscopy to determine the electron temperature, T_e, in the arc discharge for both the transferred and non transferred mode. In each case three industrial gases are compared, nitrogen, air and oxygen, at different flow rates and currents. Te is determined from the Balmer line ratio, wherein 5% hydrogen gas is added to the working gas in the torch flow. Variation of the emission with torch height and across the arc radius will be discussed. Recently, free arcs have shown evidence of non-LTE behavior in the arc mantle. Comparison of arc emission spectra as a function of radius for the transferred vs. non-transferred modes will be reported. Calorimetry results for the chamber walls, exhaust, and waste crucible will be correlated with the spectral results. This work was supported by the Office of Naval Research.

  19. Complementary high performance sensing of gases and liquids using silver nanotube

    NASA Astrophysics Data System (ADS)

    Isro, Suhandoko D.; Iskandar, Alexander A.; Tjia, May-On

    2017-11-01

    A study on refractive index sensing using a silver nanotube is carried out to investigate the relative advantages of sensing gaseous and liquid samples outside the tube (outer sensing) and inside the core (inner sensing). The geometrical and material parameters of the nanotube are varied to explore the favorable sensing performances covering the range of refractive indices between 1.1 and 1.5. It is shown that the performances at the three sensing points considered are consistently improved with decreased shell thickness and core radius in both sensing modes. While the performance is also monotonously and drastically enhanced with decreased counter permittivity in inner sensing, the similarly large variations in the outer sensing mode are less than strictly consistent. The study further shows that the most favorable FOM values are attained by both sensing modes with 2.5 nm Ag shell thickness and 27.5 nm core radius of the nanotube, whereas the most favorable counter permittivities are different for the two modes. Remarkably, the trend of increasing FOM for samples of lower refractive indices in outer sensing is entirely reversed in inner sensing with roughly the same level of performances. Thus, the core/shell structure of the silver nanotube offers the complementary high performance sensing of gases and liquids using the two sensing modes with appropriately chosen system parameters.

  20. The Potential of Multicolor Photometry for Pulsating Subdwarf B Stars

    NASA Astrophysics Data System (ADS)

    Randall, S. K.; Fontaine, G.; Brassard, P.; Bergeron, P.

    2005-12-01

    We investigate the potential of multicolor photometry for partial mode identification in both long- and short-period variable subdwarf B stars. The technique presented is based on the fact that the frequency dependence of an oscillation's amplitude and phase bears the signature of the mode's degree index l, among other things. Unknown contributing factors can be eliminated through the evaluation of the amplitude ratios and phase differences arising from the brightness variation in different wavebands, theoretically enabling the inference of the degree index from observations in two or more bandpasses. Employing a designated model atmosphere code, we calculate the brightness variation expected across the visible disk during a pulsation cycle in terms of temperature, radius, and surface gravity perturbations to the emergent flux for representative EC 14026 and PG 1716 star models. Nonadiabatic effects are considered in detail and found to be significant from nonadiabatic pulsation calculations applied to our state-of-the-art models of subdwarf B stars. Our results indicate that the brightness variations observed in subdwarf B stars are caused primarily by changes in temperature and radius, with surface gravity perturbations playing a small role. For PG 1716 stars, temperature effects dominate in the limit of long periods with the result that the oscillatory amplitudes and phases lose their period dependence and nonadiabatic effects become unimportant. Outside this regime, however, their values are strongly influenced by both factors. We find that the phase shifts between brightness variations in different wavebands are generally small but may lie above the experimental detection threshold in certain cases. The prospect of mode discrimination seems much more promising on the basis of the corresponding amplitude ratios. While in EC 14026 stars the amplitude ratios predicted are very similar for modes with l=0, 1, or 2, they are well separated from those of modes with l=3, l=5, and l=4 or 6, each of which form a distinct group. For the case of the PG 1716 stars it should be possible to discriminate between modes with l=1, 2, 4, or 6 and those of degree indices l=3 and l=5. Identifying modes within a given group is challenging for both types of pulsator and requires multicolor photometry of extremely high quality. Nevertheless, we demonstrate that it is feasible using the example of the largest amplitude peak detected for the fast pulsator KPD 2109+4401 by Jeffery et al. Predicted color-amplitude ratios for a series of representative EC 14026 and PG 1716 stars are available upon request. Interested collaborators please contact S. K. Randall or G. Fontaine.

  1. Gravitational wave asteroseismology with protoneutron stars

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime; Takiwaki, Tomoya

    2016-08-01

    We examine the time evolution of the frequencies of the gravitational wave after the bounce within the framework of relativistic linear perturbation theory using the results of one-dimensional numerical simulations of core-collapse supernovae. Protoneutron star models are constructed in such a way that the mass and the radius of the protoneutron star become equivalent to the results obtained from the numerical simulations. Then we find that the frequencies of gravitational waves radiating from protoneutron stars strongly depend on the mass and the radius of protoneutron stars, but almost independently of the profiles of the electron fraction and the entropy per baryon inside the star. Additionally, we find that the frequencies of gravitational waves can be characterized by the square root of the average density of the protoneutron star irrespective of the progenitor models, which are completely different from the empirical formula for cold neutron stars. The dependence of the spectra on the mass and the radius is different from that of the g -mode: the oscillations around the surface of protoneutron stars due to the convection and the standing accretion-shock instability. Careful observation of these modes of gravitational waves can determine the evolution of the mass and the radius of protoneutron stars after core bounce. Furthermore, the expected frequencies of gravitational waves are around a few hundred hertz in the early stages after bounce, which must be a good candidate for the ground-based gravitational wave detectors.

  2. Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics.

    PubMed

    Ramos, S M M; Dias, J F; Canut, B

    2015-02-15

    In the present study, we experimentally study the evaporation modes and kinetics of sessile drops of water on highly hydrophobic surfaces (contact angle ∼160°), heated to temperatures ranging between 40° and 70 °C. These surfaces were initially constructed by means of controlled tailoring of polytetrafluoroethylene (PTFE) substrates. The evaporation of droplets was observed to occur in three distinct phases, which were the same for the different substrate temperatures. The drops started to evaporate in the constant contact radius (CCR) mode, then switched to a more complex mode characterized by a set of stick-slip events accompanied by a decrease in contact angle, and finally shifted to a mixed mode in which the contact radius and contact angle decreased simultaneously until the drops had completely evaporated. It is shown that in the case of superhydrophobic surfaces, the energy barriers (per unit length) associated with the stick-slip motion of a drop ranges in the nJ m(-1) scale. Furthermore, analysis of the evaporation rates, determined from experimental data show that, even in the CCR mode, a linear relationship between V(2/3) and the evaporation time is verified. The values of the evaporation rate constants are found to be higher in the pinned contact line regime (the CCR mode) than in the moving contact line regime. This behavior is attributed to the drop's higher surface to volume ratio in the CCR mode. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Effects of compressional magnetic perturbation on kinetic Alfven waves

    NASA Astrophysics Data System (ADS)

    Dong, Ge; Bhattacharjee, Amitava; Lin, Zhihong

    2016-10-01

    Kinetic Alfven waves play a very important role in the dynamics of fusion as well as space and astrophysical plasmas. The compressional magnetic perturbation δB|| can play important role in kinetic Alfven waves (KAW) and various instabilities at large plasma β. It could affect the nonlinear behavior of these modes significantly even at small β. In this study, we have implemented δB|| in gyrokinetic toroidal code (GTC). The perpendicular Ampere's law is solved as a force balance equation. Double gyroaveraging is incorporated in the code to treat the finite Larmor radius effects related to δB|| terms. KAW is studied in slab geometry as a benchmark case. A scan in β for the KAW dispersion relation shows that as β approaches 1 (>0.3), the effects of δB|| becomes important. Connections are made with other existing studies of KAWs in the fusion and space plasma literature. This new capability of including δB|| in GTC could be applied to nonlinear simulations of modes such as kinetic ballooning and tearing modes. This research is supported by DOE Contract No. DE-AC02-09CH11466.

  4. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Kolgotin, Alexei; Griaznov, Vadim; Müller, Detlef; Franke, Kathleen; Whiteman, David N.

    2004-02-01

    We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to ~10 μm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of ~50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of <1 μm the real part of the complex refractive index was retrieved to an accuracy of +/-0.05, the imaginary part was retrieved to 50% uncertainty. Simulations dealing with a mode-dependent complex refractive index showed that an average complex refractive index is derived that lies between the values for the two individual modes. Thus it becomes possible to investigate external mixtures of particle size distributions, which, for example, might be present along continental rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.

  5. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution.

    PubMed

    Veselovskii, Igor; Kolgotin, Alexei; Griaznov, Vadim; Müller, Detlef; Franke, Kathleen; Whiteman, David N

    2004-02-10

    We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to approximately 10 microm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of approximately 50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of < 1 microm the real part of the complex refractive index was retrieved to an accuracy of +/- 0.05, the imaginary part was retrieved to 50% uncertainty. Simulations dealing with a mode-dependent complex refractive index showed that an average complex refractive index is derived that lies between the values for the two individual modes. Thus it becomes possible to investigate external mixtures of particle size distributions, which, for example, might be present along continental rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.

  6. Assessing the size distribution of droplets in a cloud chamber from light extinction data during a transient regime

    NASA Astrophysics Data System (ADS)

    Vâjâiac, Sorin Nicolae; Filip, Valeriu; Štefan, Sabina; Boscornea, Andreea

    2014-03-01

    The paper describes a method of assessing the size distribution of fog droplets in a cloud chamber, based on measuring the time variation of the transmission of a light beam during the gravitational settling of droplets. Using a model of light extinction by floating spherical particles, the size distribution of droplets is retrieved, along with characteristic structural parameters of the fog (total droplet concentration, liquid water content and effective radius). Moreover, the time variation of the effective radius can be readily extracted from the model. The errors of the method are also estimated and fall within acceptable limits. The method proves sensitive enough to resolve various modes in the droplet distribution and to point out changes in the distribution due to diverse types of aerosol present in the chamber or to the thermal condition of the fog. It is speculated that the method can be further simplified to reach an in-situ version for real-time field measurements.

  7. Instability of supersonic cold streams feeding galaxies - I. Linear Kelvin-Helmholtz instability with body modes

    NASA Astrophysics Data System (ADS)

    Mandelker, Nir; Padnos, Dan; Dekel, Avishai; Birnboim, Yuval; Burkert, Andreas; Krumholz, Mark R.; Steinberg, Elad

    2016-12-01

    Massive galaxies at high redshift are predicted to be fed from the cosmic web by narrow, dense streams of cold gas that penetrate through the hot medium encompassed by a stable shock near the virial radius of the dark-matter halo. Our long-term goal is to explore the heating and dissipation rate of the streams and their fragmentation and possible breakup, in order to understand how galaxies are fed, and how this affects their star formation rate and morphology. We present here the first step, where we analyse the linear Kelvin-Helmholtz instability (KHI) of a cold, dense slab or cylinder in 3D flowing supersonically through a hot, dilute medium. The current analysis is limited to the adiabatic case with no gravity. By analytically solving the linear dispersion relation, we find a transition from a dominance of the familiar rapidly growing surface modes in the subsonic regime to more slowly growing body modes in the supersonic regime. The system is parametrized by three parameters: the density contrast between stream and medium, the Mach number of stream velocity with respect to the medium and the stream width with respect to the halo virial radius. A realistic choice for these parameters places the streams near the mode transition, with the KHI exponential-growth time in the range 0.01-10 virial crossing times for a perturbation wavelength comparable to the stream width. We confirm our analytic predictions with idealized hydrodynamical simulations. Our linear estimates thus indicate that KHI may be effective in the evolution of streams before they reach the galaxy. More definite conclusions await the extension of the analysis to the non-linear regime and the inclusion of cooling, thermal conduction, the halo potential well, self-gravity and magnetic fields.

  8. Adaptable Optical Fiber Displacement-Curvature Sensor Based on a Modal Michelson Interferometer with a Tapered Single Mode Fiber

    PubMed Central

    Salceda-Delgado, G.; Martinez-Rios, A.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A.; Ibarra-Escamilla, B.; Durán-Ramírez, V. M.; Enriquez-Gomez, L. F.

    2017-01-01

    A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes. PMID:28574421

  9. Adaptable Optical Fiber Displacement-Curvature Sensor Based on a Modal Michelson Interferometer with a Tapered Single Mode Fiber.

    PubMed

    Salceda-Delgado, G; Martinez-Rios, A; Selvas-Aguilar, R; Álvarez-Tamayo, R I; Castillo-Guzman, A; Ibarra-Escamilla, B; Durán-Ramírez, V M; Enriquez-Gomez, L F

    2017-06-02

    A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes.

  10. Numerical analysis of lasing characteristics in highly bend-compensated large-mode-area ytterbium-doped double-clad leakage channel fibers.

    PubMed

    Thavasi Raja, G; Halder, Raktim; Varshney, S K

    2015-12-10

    The bend-induced mode-area reduction and thermal effects are vital factors that affect the power scaling of fiber lasers. Recently, bend-compensated large-mode-area double-clad modified hybrid leakage channel fiber (M-HLCF) has been reported with a mode area greater than 1000  μm, while sustaining the single-mode behavior at 1064 nm for high-temperature environments. In this work, the lasing characteristics of a newly designed ytterbium-doped double-clad M-HLCF (YDMHLCF) have been numerically investigated for strongly pumped conditions. The doped region size is optimally found through simulations, equivalent to the size of core diameter ∼38  μm in order to achieve maximum conversion efficiency for the bent and straight cases. Numerical simulations further confirm that a 2 m long YDMHLCF exhibits slope efficiency of 78% and conversion efficiency of 79% for the straight case and also almost the same for the practical bending radius of 7.5 cm when pumped with a 975 nm laser source.

  11. Electromagnetic radiation in a semi-compact space

    NASA Astrophysics Data System (ADS)

    Iso, Satoshi; Kitazawa, Noriaki; Yokoo, Sumito

    2018-02-01

    In this note, we investigate the electromagnetic radiation emitted from a revolving point charge in a compact space. If the point charge is circulating with an angular frequency ω0 on the (x , y)-plane at z = 0 with boundary conditions, x ∼ x + 2 πR and y ∼ y + 2 πR, it emits radiation into the z-direction of z ∈ [ - ∞ , + ∞ ]. We find that the radiation shows discontinuities as a function of ω0 R at which a new propagating mode with a different Fourier component appears. For a small radius limit ω0 R ≪ 1, all the Fourier modes except the zero mode on (x , y)-plane are killed, but an effect of squeezing the electric field totally enhances the radiation. In the large volume limit ω0 R → ∞, the energy flux of the radiation reduces to the expected Larmor formula.

  12. Quasi-Bessel beams from asymmetric and astigmatic illumination sources.

    PubMed

    Müller, Angelina; Wapler, Matthias C; Schwarz, Ulrich T; Reisacher, Markus; Holc, Katarzyna; Ambacher, Oliver; Wallrabe, Ulrike

    2016-07-25

    We study the spatial intensity distribution and the self-reconstruction of quasi-Bessel beams produced from refractive axicon lenses with edge emitting laser diodes as asymmetric and astigmatic illumination sources. Comparing these to a symmetric mono-mode fiber source, we find that the asymmetry results in a transition of a quasi-Bessel beam into a bow-tie shaped pattern and eventually to a line shaped profile at a larger distance along the optical axis. Furthermore, we analytically estimate and discuss the effects of astigmatism, substrate modes and non-perfect axicons. We find a good agreement between experiment, simulation and analytic considerations. Results include the derivation of a maximal axicon angle related to astigmatism of the illuminating beam, impact of laser diode beam profile imperfections like substrate modes and a longitudinal oscillation of the core intensity and radius caused by a rounded axicon tip.

  13. Disc-oscillation resonance and neutron star QPOs: 3:2 epicyclic orbital model

    NASA Astrophysics Data System (ADS)

    Urbanec, M.; Török, G.; Šrámková, E.; Čech, P.; Stuchlík, Z.; Bakala, P.

    2010-11-01

    The high-frequency quasi-periodic oscillations (HF QPOs) that appear in the X-ray fluxes of low-mass X-ray binaries remain an unexplained phenomenon. Among other ideas, it has been suggested that a non-linear resonance between two oscillation modes in an accretion disc orbiting either a black hole or a neutron star plays a role in exciting the observed modulation. Several possible resonances have been discussed. A particular model assumes resonances in which the disc-oscillation modes have the eigenfrequencies equal to the radial and vertical epicyclic frequencies of geodesic orbital motion. This model has been discussed for black hole microquasar sources as well as for a group of neutron star sources. Assuming several neutron (strange) star equations of state and Hartle-Thorne geometry of rotating stars, we briefly compare the frequencies expected from the model to those observed. Our comparison implies that the inferred neutron star radius RNS is larger than the related radius of the marginally stable circular orbit rms for nuclear matter equations of state and spin frequencies up to 800 Hz. For the same range of spin and a strange star (MIT) equation of state, the inferrred radius is RNS ˜ rms. The “Paczyński modulation” mechanism considered within the model requires that RNS < rms. However, we find this condition to be fulfilled only for the strange matter equation of state, masses below 1 M⊙, and spin frequencies above 800 Hz. This result most likely falsifies the postulation of the neutron star 3:2 resonant eigenfrequencies being equal to the frequencies of geodesic radial and vertical epicyclic modes. We suggest that the 3:2 epicyclic modes could stay among the possible choices only if a fairly non-geodesic accretion flow is assumed, or if a different modulation mechanism operates.

  14. Passive mode locking of 2.09 microm Cr,Tm,Ho:Y3Sc2Al3O12 laser using PbS quantum-dot-doped glass.

    PubMed

    Denisov, Igor A; Skoptsov, Nikolai A; Gaponenko, Maxim S; Malyarevich, Alexander M; Yumashev, Konstantin V; Lipovskii, Andrei A

    2009-11-01

    Passive Q-switched mode locking of a 2.09 microm flashlamp-pumped Cr(3+),Tm(3+),Ho(3+):Y(3)Sc(2)Al(3)O(12) laser by use of a phosphate glass doped with PbS quantum dots of 5 nm in radius was demonstrated. Mode-locked pulses of 290 ps in duration and up to 0.5 mJ in energy were registered.

  15. The Dynamics of Fine Mode Aerosol Optical Properties in South Korea from AERONET and Aircraft Observations with a Focus on Cases with Large Cloud Fraction and/or Fog During KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Kim, J.; Choi, M.; Giles, D. M.; Schafer, J.; Smirnov, A.; Slutsker, I.; Sinyuk, A.; Sorokin, M. G.; Kraft, J.; Beyersdorf, A. J.; Anderson, B. E.; Thornhill, K. L., II; Crawford, J. H.

    2017-12-01

    The focus of our investigation is of major fine mode aerosol pollution events in South Korea, particularly when cloud fraction is high. This work includes the analysis of AERONET data utilizing the Spectral Deconvolution Algorithm to enable detection of fine mode aerosol optical depth (AOD) near to clouds. Additionally we analyze the newly developed AERONET V3 data sets that have significant changes to cloud screening algorithms. Comparisons of aerosol optical depth are made between AERONET Versions 2 and 3 for both long-term climatology data and for specific 2016 cases, especially in May and June 2016 during the KORUS-AQ field campaign. In general the Version 3 cloud screening allows many more fine mode AOD observations to reach Level 2 when cloud amount is high, as compared to Version 2, thereby enabling more thorough analysis of these types of cases. Particular case studies include May 25-26, 2016 when cloud fraction was very high over much of the peninsula, associated with a frontal passage and advection of pollution from China. Another interesting case is June 9, 2016 when there was fog over the West Sea, and this seems to have affected aerosol properties well downwind over the Korean peninsula. Both of these days had KORUS-AQ research aircraft flights that provided observations of aerosol absorption, particle size distributions and vertical profiles of extinction. AERONET retrievals and aircraft in situ measurements both showed high single scattering albedo (weak absorption) on these cloudy days. We also investigate the relationship between aerosol fine mode radius and AOD and the relationship between aerosol single scattering albedo and fine mode particle radius from the AERONET almucantar retrievals for the interval of April through June 2016 for 17 AERONET sites in South Korea. Strongly increasing fine mode radius (leading to greater scattering efficiency) as fine mode AOD increased is one factor contributing to a trend of increasing single scattering albedo as fine AOD increased. Additionally, the new AERONET Hybrid sky radiance scan retrievals that allow for inversions to be made at much smaller solar zenith angles are analyzed and compared to almucantar retrievals.

  16. Collection Mode Lens System

    DOEpatents

    Fletcher, Daniel A.; Kino, Gordon S.

    2002-11-05

    A lens system including a collection lens and a microlens spaced from the collection lens adjacent the region to be observed. The diameter of the observablel region depends substantially on the radius of the microlens.

  17. Impurity confinement and transport in high confinement regimes without edge localized modes on DIII-D [Impurity confinement and transport in high confinement regimes without ELMs on DIII-D

    DOE PAGES

    Grierson, Brian A.; Burrell, Keith H.; Nazikian, Raffi M.; ...

    2015-04-17

    Here, impurity transport in the DIII-D tokamak is investigated in stationary high confinement (H-mode) regimes without edge localized modes (ELMs). In plasmas maintained by resonant magnetic perturbation (RMP) ELM-suppression and QH-mode the confinement time of fluorine (Z=9) is equivalent to that in ELMing discharges with 40 Hz ELMs. For selected discharges with impurity injection the impurity particle confinement time compared to the energy confinement time is in the range of τ p/τ e ≈ 2 $-$ 3. In QH-mode operation the impurity confinement time is shown to be smaller for intense, coherent magnetic and density fluctuations of the edge harmonicmore » oscillation than weaker fluctuations. Transport coefficients are derived from the time evolution of the impurity density profile and compared to neoclassical and turbulent transport models NEO and TGLF. Neoclassical transport of fluorine is found to be small compared to the experimental values. In the ELMing and RMP ELM-suppressed plasma the impurity transport is affected by the presence of tearing modes. For radii larger than the mode radius the TGLF diffusion coefficient is smaller than the experimental value by a factor of 2-3, while the convective velocity is within error estimates. Low levels of diffusion are observed for radii smaller than the tearing mode radius. In the QH-mode plasma investigated, the TGLF diffusion coefficient higher inside of ρ = 0.4 and lower outside of 0.4 than the experiment, and the TGLF convective velocity is more negative by a factor of approximately 1.7.« less

  18. Breaking the glass ceiling: hollow OmniGuide fibers

    NASA Astrophysics Data System (ADS)

    Johnson, Steven G.; Ibanescu, Mihai; Skorobogatiy, Maksim A.; Weisberg, Ori; Engeness, Torkel D.; Soljacic, Marin; Jacobs, Steven A.; Joannopoulos, John D.; Fink, Yoel

    2002-04-01

    We argue that OmniGuide fibers, which guide light within a hollow core by concentric multilayer films having the property of omnidirectional reflection, have the potential to lift several physical limitations of silica fibers. We show how the strong confinement in OmniGuide fibers greatly suppresses the properties of the cladding materials: even if highly lossy and nonlinear materials are employed, both the intrinsic losses and nonlinearities of silica fibers can be surpassed by orders of magnitude. This feat, impossible to duplicate in an index-guided fiber with existing materials, would open up new regimes for long-distance propagation and dense wavelength-division multiplexing (DWDM). The OmniGuide-fiber modes bear a strong analogy to those of hollow metallic waveguides; from this analogy, we are able to derive several general scaling laws with core radius. Moreover, there is strong loss discrimination between guided modes, depending upon their degree of confinement in the hollow core: this allows large, ostensibly multi-mode cores to be used, with the lowest-loss TE01 mode propagating in an effectively single-mode fashion. Finally, because this TE01 mode is a cylindrically symmetrical ('azimuthally' polarized) singlet state, it is immune to polarization-mode dispersion (PMD), unlike the doubly-degenerate linearly-polarized modes in silica fibers that are vulnerable to birefringence.

  19. Hypersonic Boundary Layer Stability Experiments in a Quiet Wind Tunnel with Bluntness Effects

    NASA Technical Reports Server (NTRS)

    Lachowicz, Jason T.; Chokani, Ndaona

    1996-01-01

    Hypersonic boundary layer measurements over a flared cone were conducted in a Mach 6 quiet wind tunnel at a freestream unit Reynolds number of 2.82 million/ft. This Reynolds number provided laminar-to-transitional flow over the cone model in a low-disturbance environment. Four interchangeable nose-tips, including a sharp-tip, were tested. Point measurements with a single hot-wire using a novel constant voltage anemometer were used to measure the boundary layer disturbances. Surface temperature and schlieren measurements were also conducted to characterize the transitional state of the boundary layer and to identify instability modes. Results suggest that second mode disturbances were the most unstable and scaled with the boundary layer thickness. The second mode integrated growth rates compared well with linear stability theory in the linear stability regime. The second mode is responsible for transition onset despite the existence of a second mode subharmonic. The subharmonic disturbance wavelength also scales with the boundary layer thickness. Furthermore, the existence of higher harmonics of the fundamental suggests that nonlinear disturbances are not associated with 'high' free stream disturbance levels. Nose-tip radii greater than 2.7% of the base radius completely stabilized the second mode.

  20. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    NASA Astrophysics Data System (ADS)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-07-01

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. The purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. Unlike an earlier conclusion from an eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. A thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.

  1. Evidence of coupling to Global Alfv{acute e}ne Eigenmodes during Alfv{acute e}n wave current drive experiments on the Phaedrus-T tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukovic, M.; Wukitch, S.; Harper, M.

    1996-02-01

    A series of experiments designed to explore mechanisms of power deposition during Alfv{acute e}n wave current drive experiments on the Phaedrus-T tokamak has shown evidence of power deposition via mode conversion of Global Alfv{acute e}n Eigenmodes at the Alfv{acute e}n resonance. Observation of radially localized RF induced density fluctuations in the plasma and their location vs. {ital B}{sub {ital T}} is in agreement with the predictions of behaviour of GAE damping on the AR by the toroidal code LION. Furthermore, the change in the time evolution of the loop voltage, is consistent with the change of effective power deposition radius,more » {ital r}{sub PD}, and is in agreement with the density fluctuations radius. {copyright} {ital 1996 American Institute of Physics.}« less

  2. Scanning Tunneling Microscopy Observation of Phonon Condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less

  3. Scanning Tunneling Microscopy Observation of Phonon Condensate

    PubMed Central

    Altfeder, Igor; Voevodin, Andrey A.; Check, Michael H.; Eichfeld, Sarah M.; Robinson, Joshua A.; Balatsky, Alexander V.

    2017-01-01

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature. PMID:28225066

  4. Scanning Tunneling Microscopy Observation of Phonon Condensate

    DOE PAGES

    Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.; ...

    2017-02-22

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less

  5. Hypersonic boundary-layer transition measurements at Mach 10 on a large seven-degree cone at angle of attack

    NASA Astrophysics Data System (ADS)

    Moraru, Ciprian G.

    The ability to predict the onset of boundary-layer transition is critical for hypersonic flight vehicles. The development of prediction methods depends on a thorough comprehension of the mechanisms that cause transition. In order to improve the understanding of hypersonic boundary-layer transition, tests were conducted on a large 7° half-angle cone at Mach 10 in the Arnold Engineering Development Complex Wind Tunnel 9. Twenty-four runs were performed at varying unit Reynolds numbers and angles of attack for sharp and blunt nosetip configurations. Heat-transfer measurements were used to determine the start of transition on the cone. Increasing the unit Reynolds number caused a forward movement of transition on the sharp cone at zero angle of attack. Increasing nosetip radius delayed transition up to a radius of 12.7 mm. Larger nose radii caused the start of transition to move forward. At angles of attack up to 10°, transition was leeside forward for nose radii up to 12.7 mm and windside forward for nose radii of 25.4 mm and 50.8 mm. Second-mode instability waves were measured on the sharp cone and cones with small nose radii. At zero angle of attack, waves at a particular streamwise location on the sharp cone were in earlier stages of development as the unit Reynolds number was decreased. The same trend was observed as the nosetip radius was increased. No second-mode waves were apparent for the cones with large nosetip radii. As the angle of attack was increased, waves at a particular streamwise location on the sharp cone moved to earlier stages of growth on the windward ray and later stages of growth on the leeward ray. RMS amplitudes of second-mode waves were computed. Comparison between maximum second-mode amplitudes and edge Mach numbers showed good correlation for various nosetip radii and unit Reynolds numbers. Using the e N method, initial amplitudes were estimated and compared to freestream noise in the second-mode frequency band. Correlations indicate that freestream noise likely has a significant influence on initial second-mode amplitudes.

  6. Strange Quark Magnetic Moment of the Nucleon at the Physical Point.

    PubMed

    Sufian, Raza Sabbir; Yang, Yi-Bo; Alexandru, Andrei; Draper, Terrence; Liang, Jian; Liu, Keh-Fei

    2017-01-27

    We report a lattice QCD calculation of the strange quark contribution to the nucleon's magnetic moment and charge radius. This analysis presents the first direct determination of strange electromagnetic form factors including at the physical pion mass. We perform a model-independent extraction of the strange magnetic moment and the strange charge radius from the electromagnetic form factors in the momentum transfer range of 0.051  GeV^{2}≲Q^{2}≲1.31  GeV^{2}. The finite lattice spacing and finite volume corrections are included in a global fit with 24 valence quark masses on four lattices with different lattice spacings, different volumes, and four sea quark masses including one at the physical pion mass. We obtain the strange magnetic moment G_{M}^{s}(0)=-0.064(14)(09)μ_{N}. The four-sigma precision in statistics is achieved partly due to low-mode averaging of the quark loop and low-mode substitution to improve the statistics of the nucleon propagator. We also obtain the strange charge radius ⟨r_{s}^{2}⟩_{E}=-0.0043(16)(14)  fm^{2}.

  7. Estimation of limit strains in disk-type flywheels made of a compliant elastomeric matrix composite undergoing radial creep

    NASA Astrophysics Data System (ADS)

    Portnov, G. G.; Bakis, Ch. E.

    2000-01-01

    Fiber reinforced elastomeric matrix composites (EMCs) offer several potential advantages for construction of rotors for flywheel energy storage systems. One potential advantage, for safety considerations, is the existence of maximum stresses near the outside radius of thick circumferentially wound EMC disks, which could lead to a desirable self-arresting failure mode at ultimate speeds. Certain unidirectionally reinforced EMCs, however, have been noted to creep readily under the influence of stress transverse to the fibers. In this paper, stress redistribution in a spinning thick disk made of a circumferentially filament wound EMC material on a small rigid hub has been analyzed with the assumption of total radial stress relaxation due to radial creep. It is shown that, following complete relaxation, the circumferential strains and stresses are maximized at the outside radius of the disk. Importantly, the radial tensile strains are three times greater than the circumferential strains at any given radius. Therefore, a unidirectional EMC material system that can safely endure transverse tensile creep strains of at least three times the elastic longitudinal strain capacity of the same material is likely to maintain the theoretically safe failure mode despite complete radial stress relaxation.

  8. Flow of a circulating tumor cell and red blood cells in microvessels

    NASA Astrophysics Data System (ADS)

    Takeishi, Naoki; Imai, Yohsuke; Yamaguchi, Takami; Ishikawa, Takuji

    2015-12-01

    Quantifying the behavior of circulating tumor cells (CTCs) in the blood stream is of fundamental importance for understanding metastasis. Here, we investigate the flow mode and velocity of CTCs interacting with red blood cells (RBCs) in various sized microvessels. The flow of leukocytes in microvessels has been described previously; a leukocyte forms a train with RBCs in small microvessels and exhibits margination in large microvessels. Important differences in the physical properties of leukocytes and CTCs result from size. The dimensions of leukocytes are similar to those of RBCs, but CTCs are significantly larger. We investigate numerically the size effects on the flow mode and the cell velocity, and we identify similarities and differences between leukocytes and CTCs. We find that a transition from train formation to margination occurs when (R -a ) /tR≈1 , where R is the vessel radius, a is the cell radius, and tR is the thickness of RBCs, but that the motion of RBCs differs from the case of leukocytes. Our results also show that the velocities of CTCs and leukocytes are larger than the average blood velocity, but only CTCs move faster than RBCs for microvessels of R /a ≈1.5 -2.0 . These findings are expected to be useful not only for understanding metastasis, but also for developing microfluidic devices.

  9. Coupling intensity between discharge and magnetic circuit in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Wei, Liqiu; Yang, Xinyong; Ding, Yongjie; Yu, Daren; Zhang, Chaohai

    2017-03-01

    Coupling oscillation is a newly discovered plasma oscillation mode that utilizes the coupling between the discharge circuit and magnetic circuit, whose oscillation frequency spectrum ranges from several kilohertz to megahertz. The coupling coefficient parameter represents the intensity of coupling between the discharge and magnetic circuits. According to previous studies, the coupling coefficient is related to the material and the cross-sectional area of the magnetic coils, and the magnetic circuit of the Hall thruster. However, in our recent study on coupling oscillations, it was found that the Hall current equivalent position and radius have important effects on the coupling intensity between the discharge and magnetic circuits. This causes a difference in the coupling coefficient for different operating conditions of Hall thrusters. Through non-intrusive methods for measuring the Hall current equivalent radius and the axial position, it is found that with an increase in the discharge voltage and magnetic field intensity, the Hall current equivalent radius increases and its axial position moves towards the exit plane. Thus, both the coupling coefficient and the coupling intensity between the discharge and magnetic circuits increase. Contribution to the Topical Issue "Physics of Ion Beam Sources", edited by Holger Kersten and Horst Neumann.

  10. Numerical studies of transverse curvature effects on transonic flow stability

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.; Daudpota, Q. I.

    1992-01-01

    A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.

  11. Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory

    NASA Astrophysics Data System (ADS)

    Moosavi, H.; Mohammadi, M.; Farajpour, A.; Shahidi, S. H.

    2011-10-01

    In this article, we use shear deformable ring theory (SDRT) for the analysis of free in-plane vibration of nanorings based on nonlocal elasticity theory. The equations of motion of the nanoring are derived for the aforementioned problem by considering the small scale effect. Analytical solutions for the natural frequencies of the nanorings are presented. It is shown that the nonlocal effects play an important role in the vibration of nanorings and cannot be neglected. The effects of the small scale on the natural frequencies considering various parameters such as the radius of the nanoring, the thickness of the nanoring and mode numbers are investigated.

  12. The Whole Elephant: A Synoptic View of Liquid Rope Coiling

    NASA Astrophysics Data System (ADS)

    Ribe, Neil

    2016-11-01

    Liquid rope coiling is the instability that occurs when e.g. a thin stream of honey is poured onto toast. While we now have a fine-grained understanding of each of the four principal coiling modes (viscous, gravitational, inertio-gravitational and inertial), we still lack a global view of how the modes cohere to form a larger whole. Using a numerical continuation procedure, I determine how the dimensionless coiling frequency depends on the dimensionless fall height and flow rate, for several values of the dimensionless nozzle diameter. Starting with the onset of coiling, I propose a purely geometrical definition of the critical surface between coiling and no coiling as the locus of points where the radius a1 of the rope at the contact point is just equal to the coil radius R. Coiling with a1 > R is impossible because the rope would intersect itself. I characterize the asymptotic limits of the critical surface as well as the structure of the supercritical volume inside that surface. The procedure reveals a new mode of coiling onset that has not yet been identified.

  13. Geometric Effects on the Amplification of First Mode Instability Waves

    NASA Technical Reports Server (NTRS)

    Kirk, Lindsay C.; Candler, Graham V.

    2013-01-01

    The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. The DAKOTA optimization software package was used to optimize an axisymmetric geometry to maximize the amplification of the waves at first mode frequencies as computed by the 2D STABL hypersonic boundary layer stability analysis tool. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature were examined separately to determine the individual effects on the first mode amplification. Finally, all geometric parameters were allowed to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. Since first mode waves are known to be most unstable in the form of oblique wave, the geometries were optimized using a broad range of wave frequencies as well as a wide range of oblique wave angles to determine the geometry that most amplifies the first mode waves. Since first mode waves are seen most often in flows with low Mach numbers at the edge of the boundary layer, the edge Mach number for each geometry was recorded to determine any relationship between edge Mach number and the stability of first mode waves. Results indicate that an axisymmetric cone with a sharp nose and a slight flare at the aft end under the Mach 6 freestream conditions used here will lower the Mach number at the edge of the boundary layer to less than 4, and the corresponding stability analysis showed maximum first mode N factors of 3.

  14. Radiation Effects on the Thermodiffusive Instability of Premixed Flames on a Cylindrical Porous Flame Holder

    NASA Astrophysics Data System (ADS)

    Du, Minglong; Yang, Lijun

    2017-10-01

    A linear analysis method was used to investigate the mechanics of radiation heat loss and mass transfer in the porous wall of premixed annular flames and their effect on thermodiffusive instability. The dispersion relation between the disturbance wave growth rate and wavenumber was calculated numerically. Results showed that radiation heat loss elevated the annular flame slightly away from the porous wall. In the annular flame with small Lewis numbers, radiation heat loss changed the thermodiffusive instability from a pulsating to a cellular state, while for the large Lewis numbers, only the pulsating instability was represented. Increasing radiation heat loss and the radius of the porous wall enhanced the instability of the annular flames. Heat losses decreased with the continued increase in thickness of the porous wall and the decrease in porosity. Annular flames with long-wave mode along the angular direction were more unstable than the shortwave mode.

  15. Performance and Flowfield Measurements on a 10-inch Ducted Rotor VTOL UAV

    NASA Technical Reports Server (NTRS)

    Martin, Preston; Tung, Chee

    2004-01-01

    A ducted fan VTOL UAV with a 10-inch diameter rotor was tested in the US Army 7-by 10-Foot Wind Tunnel. The test conditions covered a range of angle of attack from 0 to 110 degrees to the freestream. The tunnel velocity was varied from 0 (simulating a hover condition) to 128 ft/sec in propeller mode. A six-component internal balance measured the aerodynamic loads for a range of model configurations. including the isolated rotor, the isolated duct, and the full configuration of the duct and rotor. For some conditions, hotwire velocity surveys were conducted along the inner and outer surface of the duct and across the downstream wake. In addition, fluorescent oil flow visualization allowed the flow separation patterns inside and outside of the duct to be mapped for a few test conditions. Two different duct shapes were tested to determine the performance effects of leading edge radius. For each duct, a range of rotor tip gap from 1%R to 4.5%R was tested to determine the performance penalty in hover and axial flight. Measured results are presented in terms of hover performance, hover performance in a crosswind, and high angle of attack performance in propeller mode. In each case, the effects of both tip gap and duct leading edge radius are illustrated using measurements. Some of the hover performance issues were also studied using a simple analytical method, and the results agreed with the measurements.

  16. Nonlinear Two Fluid and Kinetic ELM Simulations

    NASA Astrophysics Data System (ADS)

    Strauss, H. R.; Sugiyama, L.; Chang, C. S.; Ku, S.; Hientzsch, B.; Breslau, J.; Park, W.; Samtaney, R.; Adams, M.; Jardin, S.

    2006-04-01

    Simulations of ELMs using dissipative MHD, two fluid MHD, and neoclassical kinetic physics models are being carried out using the M3D code [1]. Resistive MHD simulations of nonlinear edge pressure and current driven instabilities have been performed, initialized with realistic DIIID equilibria. Simulations show the saturation of the modes and relaxation of equilbrium profiles. Linear simulations including two fluid effects show the stabilization of toroidal mode number n = 10 modes, when the Hall parameter H, the ratio of ion skin depth to major radius, exceeds a threshhold. Nonlinear simulations are being done including gyroviscous stabilization. Kinetic effects are incorporated by coupling with the XGC code [2], which is able to simulate the edge plasma density and pressure pedestal buildup. These profiles are being used to initialize M3D simulations of an ELM crash and pedestal relaxation. The goal is to simulate an ELM cycle. [1] Park, W., Belova, E.V., Fu, G.Y., Tang, X.Z., Strauss, H.R., Sugiyama, L.E., Phys. Plas. 6, 1796 (1999).[2] Chang, C.S., Ku, S., and Weitzner, H., Phys. Plas. 11, 2649 (2004)

  17. The Investigation of the Effects of Gravity on Single Bubble Sonoluminescence

    NASA Technical Reports Server (NTRS)

    Dzikowicz, Ben; Thiessen, David B.; Marston, Philip

    2000-01-01

    In single bubble following it's rapid collapse each cycle of oscillation of an ultrasonic field. Since widely varying length and time scales affect the bubble dynamics and optical emission processes, it is difficult to anticipate the importance of the effects of gravity present for observations on earth. Our bubble is driven in an acoustically resonating cavity at it's first harmonic mode. The acoustical radiation pressure (Bjerknes force) will then keep it suspended in the center near the pressure antinode. When driven in a region where the diffusive processes balance the bubble it acts in a nonlinear but regular way, emitting a short (approx. 200ps) burst of light each acoustic cycle. Balancing the Bjerknes force with buoyancy, as in, we can see that the bubble should be displaced from the velocity node approximately 20m at normal gravity. Therefore, water flows past the bubble at the time of collapse. Gravitation also changes the ambient pressure at the bubble's location, as Delta.P = rho.g.h this gives a change of approximately -0.5% in our experiment when going from 1.8g to 0g. Studies of ambient pressure changes were also done in order to assess these effects. Inside a pressure sealed chamber a spherical glass cell is filled with distilled water which has been degassed to 120mmHg. A bubble is then trapped in the center and driven by a piezoelectric transducer at 32.2kHz attached to the side of the cell. An optical system is then set up to take strobbed video images along and light emission data simultaneously. Temperature, pressure, drive voltage, and listener voltage are also monitored. PMT output in Volts The radii of the bubbles for both experiment s are fit using the Rayleigh-Plesset equation and the acoustic drive amplitude and the ambient bubble radius are found. There is little change in the acoustic drive amplitude as we expect, since we are not varying the drive voltage. However. the ambient bubble radius goes up considerably. These changes (increased light output, increased maximum bubble radius, and increased ambient bubble radius) are also observed when the ambient pressure is varied in the laboratory by an amount similar to that due to gravitation. The changes in the ambient bubble radius and light output with a change in ambient pressure are predicted by the "dissociation hypothesis" and have been observed by other groups in the laboratory. It seems clear that buoyancy's effect on light output and bubble radius, are at best on the same order as the effects of ambient pressure.

  18. Low Velocity Blunt Impact on Lightweight Composite Sandwich Panels

    NASA Astrophysics Data System (ADS)

    Chan, Monica Kar

    There is an increased desire to incorporate more composite sandwich structures into modern aircrafts. Because in-service aircrafts routinely experience impact damage during maintenance due to ground vehicle collision, dropped equipment, or foreign object damage (FOD) impact, it is necessary to understand their impact characteristics, particularly when blunt impact sources create internal damage with little or no external visibility. The objective of this investigation is to explore damage formation in lightweight composite sandwich panels due to low-velocity impacts of variable tip radius and energy level. The correlation between barely visible external dent formation and internal core damage was explored as a function of impact tip radius. A pendulum impactor was used to impact composite sandwich panels having honeycomb core while held in a 165 mm square window fixture. The panels were impacted by hardened steel tips with radii of 12.7, 25.4, 50.8, and 76.2 mm at energy levels ranging from 2 to 14 J. Experimental data showed little dependence of external dent depth on tip radius at very low energies of 2 to 6 J, and thus, there was also little variation in visibility due to tip radius. Four modes of internal core damage were identified. Internal damage span and depth were dependent on impact tip radius. Damage depth was also radius-dependent, but stabilized at constant depth independent of kinetic energy. Internal damage span increased with increasing impact energy, but not with increasing tip radius, suggesting a relationship between maximum damage tip radius with core density/size.

  19. Solar gravitational energy and luminosity variations

    NASA Astrophysics Data System (ADS)

    Fazel, Z.; Rozelot, J. P.; Lefebvre, S.; Ajabshirizadeh, A.; Pireaux, S.

    2008-02-01

    Due to non-homogeneous mass distribution and non-uniform velocity rate inside the Sun, the solar outer shape is distorted in latitude. In this paper, we analyze the consequences of a temporal change in this figure on the luminosity. To do so, we use the Total Solar Irradiance (TSI) as an indicator of luminosity. Considering that most of the authors have explained the largest part of the TSI modulation with magnetic network (spots and faculae) but not the whole, we could set constraints on radius and effective temperature variations. Our best fit of modelled to observed irradiance gives d T = 1.2 K at d R = 10 mas. However computations show that the amplitude of solar irradiance modulation is very sensitive to photospheric temperature variations. In order to understand discrepancies between our best fit and recent observations of [Livingston, W.C., Gray, D., Wallace, L., White, O.R., 2005. In: Sankarasubramanian, K., Penn, M., Pevtsov, A. (Eds.), Large-scale Structures and their Role in Solar Activity, ASP Conference Series, vol. 346. Astronomical Society of the Pacific, p. 353], showing no effective surface temperature variation during the solar cycle, we investigated small effective temperature variation in irradiance modeling. We emphasized a phase-shift (correlated or anticorrelated radius and irradiance variations) in the (d R, d T)-parameter plane. We further obtained an upper limit on the amplitude of cyclic solar radius variations between 3.87 and 5.83 km, deduced from the gravitational energy variations. Our estimate is consistent with both observations of the helioseismic radius through the analysis of f-mode frequencies and observations of the basal photospheric temperature at Kitt Peak. Finally, we suggest a mechanism to explain weak changes in the solar shape due to variation of magnetic pressure which modifies the granules size. This mechanism is supported by an estimate of the asphericity-luminosity parameter, w = -7.61 × 10 -3, which implies an effectiveness of convective heat transfer only in very outer layers of the Sun.

  20. Single-mode optical fiber design with wide-band ultra low bending-loss for FTTH application.

    PubMed

    Watekar, Pramod R; Ju, Seongmin; Han, Won-Taek

    2008-01-21

    We propose a new design of a single-mode optical fiber (SMF) which exhibits ultra low bend sensitivity over a wide communication band (1.3 microm to 1.65 microm). A five-cladding fiber structure has been proposed to minimize the bending loss, estimated to be as low as 4.4x10(-10) dB/turn for the bend radius of 10 mm.

  1. Analytic description of microcylindrical cavity for surface plasmon polariton

    NASA Astrophysics Data System (ADS)

    Tekkozyan, Vahan; Babajanyan, Arsen; Nerkararyan, Khachatur

    2013-09-01

    We consider the formation of the surface plasmon polariton (SPP) mode in the microcylinder cavity. Developed theoretical model allows to analytically calculate the closed-form expressions for the mode field distributions, resonant frequency, as well as the radiation and dissipative parts of quality factor of the structure in a broad wavelength range. For the conditions when a radius of a metallic cylinder is in order of SPP's wavelength, the highest value of Q-factor is achieved in infrared region of the spectrum where the absolute value of the real part of dielectric permittivity of the metal is much more than both the imaginary part of dielectric permittivity of the metal and the dielectric permittivity of surrounding media. Also, the radiation losses decrease with increasing of radius of cylinder. The obtained results give opportunity to find optimal conditions for having efficient emission in microcylinder cavity and it can serve as practical guidelines to design SPP microcavity for stimulated emission.

  2. Lidar- and balloon-borne particle counter comparisons following recent volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.; Reiter, R.; Jager, H.

    1983-01-01

    Balloon-borne particle counter measurements at Laramie, Wyoming (41 deg N) are used to calculate the expected lidar backscatter at 0.694 micron wavelength from July 1979 to February 1982, a period which included at least four detectable perturbations of the stratospheric aerosol layer due to volcanic eruptions. These calculations are compared with lidar measurements conducted at Garmisch-Partenkirchen (47.5 deg N) during the same period. While the agreement is generally good using only the main mode in the particle size distribution (radius about 0.07 micron) during approximately the first 6 months following a major volcanic eruption, a measured secondary mode near 1 micron radius, when included, improves the agreement. Calculations of the expected backscatter at 25-30 km reveal that substantial number of particles diffuse into this high altitude region about 7 months after a major eruption, and these particles should be taken into account when normalizing lidar at these altitudes.

  3. Quasi-linear gyrokinetic predictions of the Coriolis momentum pinch in NSTX

    DOE Data Explorer

    Guttenfelder, W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kaye, S. M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ren, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Solomon, W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bell, R. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Candy, J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); LeBlanc, B. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Yuh, H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-04-01

    This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio NSTX H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostatic ballooning modes are also unstable, which are effective at transporting energy, particles and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes in a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. As the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.

  4. Application of partially coherent modes for studying generation of a Gaussian partially coherent laser beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suvorov, A A

    2010-10-15

    The problem of steady-state generation of a Gaussian partially coherent beam in a stable-cavity laser is considered within the framework of the method of expansion of the radiation coherence function in partially coherent modes. We discuss the conditions whose fulfilment makes it possible to neglect the intermode beatings of the radiation field and the effect of the gain dispersion on the steady-state generation of multimode partially coherent radiation. Based on the simplified model, we solve the self-consistent problem of generation of a Gaussian partially coherent beam for the given laser pump conditions and the resonator parameters. The dependence of themore » beam characteristics (power, radius, etc.) on the active medium properties and the resonator parameters is obtained. (laser beams)« less

  5. Nonlinear oscillations and collapse of elongated bubbles subject to weak viscous effects: Effect of internal overpressure

    NASA Astrophysics Data System (ADS)

    Tsiglifis, Kostas; Pelekasis, Nikos A.

    2007-07-01

    The details of nonlinear oscillations and collapse of elongated bubbles, subject to large internal overpressure, are studied by a boundary integral method. Weak viscous effects on the liquid side are accounted for by integrating the equations of motion across the boundary layer that is formed adjacent to the interface. For relatively large bubbles with initial radius R0 on the order of millimeters, PSt=PSt'/(2σ/R0)˜300 and Oh =μ/(σR0ρ)1/2˜200, and an almost spherical initial shape, S˜1, Rayleigh-Taylor instability prevails and the bubble breaks up as a result of growth of higher modes and the development of regions of very small radius of curvature; σ, ρ, μ, and PSt' denote the surface tension, density, viscosity, and dimensional static pressure in the host liquid while S is the ratio between the length of the minor semiaxis of the bubble, taken as an axisymmetric ellipsoid, and its equivalent radius R0. For finite initial elongations, 0.5⩽S <1, the bubble collapses either via two jets that counterpropagate along the axis of symmetry and eventually coalesce at the equatorial plane, or in the form of a sink flow approaching the center of the bubble along the equatorial plane. This pattern persists for the above range of initial elongations examined and large internal overpressure amplitudes, ɛB⩾1, irrespective of Oh. It is largely due to the phase in the growth of the second Legendre mode during the after-bounce of the oscillating bubble, during which it acquires large enough positive accelerations for collapse to take place. For smaller bubbles with initial radius on the order of micrometers, PSt˜4 and Oh ˜20, and small initial elongations, 0.75

  6. Free-boundary toroidal Alfvén eigenmodes

    NASA Astrophysics Data System (ADS)

    Chen, Eugene Y.; Berk, H. L.; Breizman, B.; Zheng, L. J.

    2011-05-01

    A numerical study is presented for the n = 1 free-boundary toroidal Alfvén eigenmodes (TAE) in tokamaks, which shows that there is considerable sensitivity of n = 1 modes to the position of the conducting wall. An additional branch of the TAE is shown to emerge from the upper continuum as the ratio of conducting wall radius to plasma radius increases. Such phenomena arise in plasma equilibria with both circular and shaped cross sections, where the shaped profile studied here is similar to that found in Alcator C-Mod.

  7. Three-dimensional collimation of in-plane-propagating light using silicon micromachined mirror

    NASA Astrophysics Data System (ADS)

    Sabry, Yasser M.; Khalil, Diaa; Saadany, Bassam; Bourouina, Tarik

    2014-03-01

    We demonstrate light collimation of single-mode optical fibers using deeply-etched three-dimensional curved micromirror on silicon chip. The three-dimensional curvature of the mirror is controlled by a process combining deep reactive ion etching and isotropic etching of silicon. The produced surface is astigmatic with out-of-plane radius of curvature that is about one half the in-plane radius of curvature. Having a 300-μm in-plane radius and incident beam inplane inclined with an angle of 45 degrees with respect to the principal axis, the reflected beam is maintained stigmatic with about 4.25 times reduction in the beam expansion angle in free space and about 12-dB reduction in propagation losses, when received by a limited-aperture detector.

  8. Continuously tunable microdroplet-laser in a microfluidic channel.

    PubMed

    Tang, Sindy K Y; Derda, Ratmir; Quan, Qimin; Lončar, Marko; Whitesides, George M

    2011-01-31

    This paper describes the generation and optical characterization of a series of dye-doped droplet-based optical microcavities with continuously decreasing radius in a microfluidic channel. A flow-focusing nozzle generated the droplets (~21 μm in radius) using benzyl alcohol as the disperse phase and water as the continuous phase. As these drops moved down the channel, they dissolved, and their size decreased. The emission characteristics from the drops could be matched to the whispering gallery modes from spherical micro-cavities. The wavelength of emission from the drops changed from 700 to 620 nm as the radius of the drops decreased from 21 μm to 7 μm. This range of tunability in wavelengths was larger than that reported in previous work on droplet-based cavities.

  9. Onset of Darrieus-Landau Instability in Expanding Flames

    NASA Astrophysics Data System (ADS)

    Mohan, Shikhar; Matalon, Moshe

    2017-11-01

    The effect of small amplitude perturbations on the propagation of circular flames in unconfined domains is investigated, computationally and analytically, within the context of the hydrodynamic theory. The flame, treated as a surface of density discontinuity separating fresh combustible mixture from the burnt gas, propagates at a speed dependent upon local curvature and hydrodynamic strain. For mixtures with Lewis numbers above criticality, thermodiffusive effects have stabilizing influences which largely affect the flame at small radii. The amplitude of these disturbances initially decay and only begin to grow once a critical radius is reached. This instability is hydrodynamic in nature and is a consequence of thermal expansion. Through linear stability analysis, predictions of critical flame radius at the onset of instability are obtained as functions of Markstein length and thermal expansion coefficients. The flame evolution is also examined numerically where the motion of the interface is tracked via a level-set method. Consistent with linear stability results, simulations show the flame initially remaining stable and the existence of a particular mode that will be first to grow and later determine the cellular structure observed experimentally at the onset of instability.

  10. Temporal and Spatial Distribution of Liquid Water and Ice Clouds Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, S.; Gray, M. A.; Hubanks, P. A.

    2004-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODE) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and the Aqua spacecraft on April 26,2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from each polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 pm with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud effective radius), and highlight the global and regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the globe.

  11. Dynamic Roughness Ratio-Based Framework for Modeling Mixed Mode of Droplet Evaporation.

    PubMed

    Gunjan, Madhu Ranjan; Raj, Rishi

    2017-07-18

    The spatiotemporal evolution of an evaporating sessile droplet and its effect on lifetime is crucial to various disciplines of science and technology. Although experimental investigations suggest three distinct modes through which a droplet evaporates, namely, the constant contact radius (CCR), the constant contact angle (CCA), and the mixed, only the CCR and the CCA modes have been modeled reasonably. Here we use experiments with water droplets on flat and micropillared silicon substrates to characterize the mixed mode. We visualize that a perfect CCA mode after the initial CCR mode is an idealization on a flat silicon substrate, and the receding contact line undergoes intermittent but recurring pinning (CCR mode) as it encounters fresh contaminants on the surface. The resulting increase in roughness lowers the contact angle of the droplet during these intermittent CCR modes until the next depinning event, followed by the CCA mode of evaporation. The airborne contaminants in our experiments are mostly loosely adhered to the surface and travel along with the receding contact line. The resulting gradual increase in the apparent roughness and hence the extent of CCR mode over CCA mode forces appreciable decrease in the contact angle observed during the mixed mode of evaporation. Unlike loosely adhered airborne contaminants on flat samples, micropillars act as fixed roughness features. The apparent roughness fluctuates about the mean value as the contact line recedes between pillars. Evaporation on these surfaces exhibits stick-jump motion with a short-duration mixed mode toward the end when the droplet size becomes comparable to the pillar spacing. We incorporate this dynamic roughness into a classical evaporation model to accurately predict the droplet evolution throughout the three modes, for both flat and micropillared silicon surfaces. We believe that this framework can also be extended to model the evaporation of nanofluids and the coffee-ring effect, among others.

  12. A MEMS and agile optics-based dual-mode variable optical power splitter with no moving parts

    NASA Astrophysics Data System (ADS)

    Khwaja, Tariq S.; Suleman, Hamid; Reza, Syed Azer

    2017-06-01

    In this paper, we present a novel design of an optical power splitter. Owing to the inherent variable power split ratios that the proposed design delivers, it is ideal for use in communications, sensing and signal processing applications where variable power splitting is often quintessential. The proposed power splitter module is dual mode as it combines the use of a Micro-Electro-Mechanical Systems (MEMS) based Digital Micro-mirror Device (DMD) and an Electronically Controlled Tunable Lens (ECTL) to split the power of an input optical signal between two output ports - the designated port and the surplus port. The use of a reflective Digital Spatial Light Modulator (DSLM) such as the DMD provides a motion-free digital control of the split ratio between the two output ports. Although the digital step between two possible successive split ratios can be fairly minimal with the use of a high resolution DMD but it is a challenge to correctly ascertain the exact image pattern on the DMD to obtain any desired specific split ratio. To counter this challenge, we propose the synchronized use of a circular pattern on the DMD, which serves as a circular clear aperture with a tunable radius, and an ECTL. The radius of the circular pattern on the DMD provides a digital control of the split ratio between the two ports whereas the ECTL, depending on its controller, can provide either an analog or a digital control by altering the beam radius which is incident at the DMD circular pattern. The radius of the circular pattern on the DMD can be minimally changed by one micro-pixel thickness. Setting the radius of the circular pattern on the DMD to an appropriate value provides the closest "ball-park" split ratio whereas further tuning the ECTL aids in slightly altering from this digitally set value to obtain the exact desired split ratio in-between any two digitally-set successive split ratios that correspond to any clear aperture radius of the DMD pattern and its incremental minimal allowable change of one micropixel. We provide a detailed scheme to calculate the desired DMD aperture radius as well as the focal length setting of the ECTL to obtain any given split ratio. By setting tolerance limits on the split ratio, we also show that our method affords diversity by providing multiple possible solutions to achieve a desired optical power split ratio within the specified tolerances. We also demonstrate the validation of the proposed concept with initial experimental results and discussions. These experimental results show a repeatable splitter operation and the resulting power split ratios according to the theoretical predictions. With the experimental data, we also demonstrate the effectiveness of the method in obtaining any particular split ratio through different DMD and ECTL configurations with specific split ratio tolerance values.

  13. Optical Characteristics of Vertical Cavity Surface Emitting Lasers and Two Dimensional Coherently Coupled Arrays.

    NASA Astrophysics Data System (ADS)

    Catchmark, Jeffrey Michael

    1995-01-01

    The following describes extensive experimental and theoretical research concerning the optical, electrical and thermal characteristics of GaAs/AlGaAs vertical cavity surface emitting lasers (VCSELs) and coherently coupled two dimensional VCSEL arrays grown by molecular beam epitaxy. The temperature and wavelength performance of VCSELs containing various epitaxial designs is discussed in detail. By employing a high barrier confinement spacer region and by blue shifting the optical gain with respect to the Fabry Perot transmission wavelength, greater than 150^circ rm C continuous wave operation was obtained. This is accomplished while maintaining a variation in the threshold current of only +/-0.93mA over a temperature range of 150^circrm C. This exceptional performance is achieved while attaining a minimum threshold current of approximately 4.3mA at 75^circrm C. In addition, the optical characteristics of multi-transverse mode VCSEL arrays are examined experimentally. A total of nine transverse modes have been identified and are found to couple coherently into distinct array modes. While operating in higher order transverse modes, a record 1.4W (pulsed) of optical power is obtained from a 15 x 15 VCSEL array. Array mode formation in coherently coupled VCSEL arrays is also examined theoretically. A numerical model is developed to describe the formation of supermodes in reflectivity modulated VCSEL arrays. Using this model, the effects of depth of reflectivity modulation, cavity length, window size and grid size on mode formation are explored. The array modes predicted by this model are in agreement with those observed experimentally. Analytic models will also be presented describing the effects of thermally induced waveguiding on the optical characteristics of VCSELs operating in the fundamental transverse mode. A thermal waveguide is found to have a significant effect on the spot size and radius of curvature of the phase of the fundamental optical mode. In addition, an analytic model is developed to predict the higher order transverse modes of a VCSEL exhibiting a cruciform type geometry.

  14. Gyro-Landau-Fluid Theory and Simulations of Edge-Localized-Modes

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.

    2012-10-01

    We report on the theory and simulations of edge-localized-modes (ELMs) using a gyro-Landau-fluid (GLF) extension of the BOUT++ code. Consistent with the two-fluid model (including 1st order FLR corrections), large ELMs, which are low-to-intermediate toroidal mode number (n) peeling-ballooning (P-B) modes, are suppressed by finite Larmor radius (FLR) effects as the ion temperature increases, while small ELMs (at intermediate n's) remain unstable. This result is good news for high ion temperatures in ITER due to the large stabilizing effects of FLR. Because the FLR effects are proportional to both Ti and n, the maximum growth rate is inversely proportional to Ti and the P-B mode is stabilized at high n. Nonlinear gyro-fluid simulations show results similar to those from the two-fluid model, namely that the P-B modes trigger magnetic reconnection, which drives the collapse of the pedestal pressure. Hyper-resistivity limits the radial spreading of ELMs by facilitating magnetic reconnection. The gyro-fluid ion model further limits the radial spreading of ELMs due to FLR-corrected nonlinear ExB convection of the ion gyro-center density. A gyro-fluid ETG model is being developed to self-consistently calculate the hyper-resistivity. Zonal magnetic fields arise from an ELM event and finite beta drift-wave turbulence when electron inertia effects are included. These lead to current generation and self-consistent current transport as a result of ExB convection in the generalized Ohm's law. Because edge plasmas have significant spatial inhomogeneities and complicated boundary conditions, we have developed a fast non-Fourier method for the computation of Landau-fluid closure terms based on an accurate and tunable approximation. The accuracy and the fast computational scaling of the method are demonstrated.

  15. Localized surface plasmon resonance properties of symmetry-broken Au-ITO-Ag multilayered nanoshells

    NASA Astrophysics Data System (ADS)

    Lv, Jingwei; Mu, Haiwei; Lu, Xili; Liu, Qiang; Liu, Chao; Sun, Tao; Chu, Paul K.

    2018-06-01

    The plasmonic properties of symmetry-broken Au-ITO-Ag multilayered nanoshells by shell cutting are studied by the finite element method. The influence of the polarization of incident light and geometrical parameters on the plasmon resonances of the multilayered nanoshells are investigated. The polarization-dependent multiple plasmon resonances appear from the multilayered nanoshells due to symmetry breaking. In nanostructures with a broken symmetry, the localized surface plasmon resonance modes are enhanced resulting in higher order resonances. According to the plasmon hybridization theory, these resonance modes and greater spectral tunability derive from the interactions of an admixture of both primitive and multipolar modes between the inner Au core and outer Ag shell. By changing the radius of the Au core, the extinction resonance modes of the multilayered nanoshells can be easily tuned to the near-infrared region. To elucidate the symmetry-broken effects of multilayered nanoshells, we link the geometrical asymmetry to the asymmetrical distributions of surface charges and demonstrate dipolar and higher order plasmon modes with large associated field enhancements at the edge of the Ag rim. The spectral tunability of the multiple resonance modes from visible to near-infrared is investigated and the unique properties are attractive to applications including angularly selective filtering to biosensing.

  16. Overmoded subterahertz surface wave oscillator with pure TM{sub 01} mode output

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guangqiang; Zeng, Peng; Wang, Dongyang

    2016-02-15

    Overmoded O-type Cerenkov generators using annular electron beams are facing the problem of multi-modes output due to the inevitable structural discontinuities. A simple but effective method to achieve the pure TM{sub 01} mode output is applied on the 0.14 THz overmoded surface wave oscillator (SWO) in this paper. In spite of still using an overmoded slow wave structure to ensure the easy fabrication, the followed smooth circular waveguide is shrinkingly tapered to the output waveguide with appropriate radius that it cuts off other higher modes except TM{sub 01} mode. Moreover, the modified device here has the same power capacity as themore » previous one according to the numerical analysis. By optimized lengths of the transition waveguide and tapered waveguide, particle-in-cell simulation results indicate that the subterahertz wave with output power increased 14.2% at the same frequency is obtained from the proposed SWO under the previous input conditions, and importantly, the output power is all carried by TM{sub 01} mode as expected. Further simulation results in the pulse regime confirm the feasibility of the optimized structure in the actual experiments. This simple and viable design is also applicable to overmoded devices in the lower frequency band of subterahertz wave.« less

  17. Optimization of the ITER electron cyclotron equatorial launcher for improved heating and current drive functional capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, D.; Figini, L.; Henderson, M.

    2014-06-15

    The design of the ITER Electron Cyclotron Heating and Current Drive (EC H and CD) system has evolved in the last years both in goals and functionalities by considering an expanded range of applications. A large effort has been devoted to a better integration of the equatorial and the upper launchers, both from the point of view of the performance and of the design impact on the engineering constraints. However, from the analysis of the ECCD performance in two references H-mode scenarios at burn (the inductive H-mode and the advanced non-inductive scenario), it was clear that the EC power depositionmore » was not optimal for steady-state applications in the plasma region around mid radius. An optimization study of the equatorial launcher is presented here aiming at removing this limitation of the EC system capabilities. Changing the steering of the equatorial launcher from toroidal to poloidal ensures EC power deposition out to the normalized toroidal radius ρ ≈ 0.6, and nearly doubles the EC driven current around mid radius, without significant performance degradation in the core plasma region. In addition to the improved performance, the proposed design change is able to relax some engineering design constraints on both launchers.« less

  18. Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes.

    PubMed

    Beck, Paul G; Montalban, Josefina; Kallinger, Thomas; De Ridder, Joris; Aerts, Conny; García, Rafael A; Hekker, Saskia; Dupret, Marc-Antoine; Mosser, Benoit; Eggenberger, Patrick; Stello, Dennis; Elsworth, Yvonne; Frandsen, Søren; Carrier, Fabien; Hillen, Michel; Gruberbauer, Michael; Christensen-Dalsgaard, Jørgen; Miglio, Andrea; Valentini, Marica; Bedding, Timothy R; Kjeldsen, Hans; Girouard, Forrest R; Hall, Jennifer R; Ibrahim, Khadeejah A

    2011-12-07

    When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star's radius. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes; indirect evidence supports this. Information about the angular-momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here we report an increasing rotation rate from the surface of the star to the stellar core in the interiors of red giants, obtained using the rotational frequency splitting of recently detected 'mixed modes'. By comparison with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior.

  19. Global Alfvén eigenmodes in the H-1 heliac

    NASA Astrophysics Data System (ADS)

    Hole, M. J.; Blackwell, B. D.; Bowden, G.; Cole, M.; Könies, A.; Michael, C.; Zhao, F.; Haskey, S. R.

    2017-12-01

    Recent upgrades in H-1 power supplies have enabled the operation of the H-1 experiment at higher heating powers than previously attainable. A heating power scan in mixed hydrogen/helium plasmas reveals a change in mode activity with increasing heating power. At low power (< 50 kW) modes with beta-induced Alfvén eigenmode frequency scaling are observed. At higher power modes consistent with an analysis of nonconventional global Alfvén eigenmodes (GAEs) are observed, the subject of this work. We have computed the mode continuum, and identified GAE structures using the ideal MHD solver CKA and the gyrokinetic code EUTERPE. An analytic model for ICRH-heated minority ions is used to estimate the fast ion temperature from the hydrogen species. Linear growth rate scans using a local flux surface stability calculation, LGRO, are performed. These studies demonstrate drive from the radial spatial gradient of circulating particles whose speed is significantly less than the Alfvén speed, and are resonant with the mode through harmonics of the Fourier decomposition of the strongly shaped heliac magnetic field. They reveal drive is possible with a small ({n}f/{n}0< 0.2) hot energetic tail of the hydrogen species, for which {T}f> 300 {eV}. Local linear growth rate scans are also complemented with global calculations from CKA and EUTERPE. These qualitatively confirm the findings from the LGRO study, and show that the inclusion of finite Larmor radius effects can reduce the growth rate by a factor of up to ten, and increases the marginal stability fast ion temperature by a factor of two. Finally, a study of damping of the global mode with the thermal plasma is conducted, computing continuum damping , and the damping arising from finite Larmor radius and parallel electric fields (via resistivity). We find that continuum damping is of order 0.1% for the configuration studied. A similar calculation in the cylindrical plasma model produces a frequency 35% higher and a damping 30% of the three-dimensional result: this confirms the importance of strong magnetic shaping to the frequency and damping. The inclusion of resistivity lifts the damping to γ /ω =-0.189. Such large damping is consistent with experimental observations that in absence of drive the mode decays rapidly (∼0.1 ms).

  20. Analysis of radiative and phase-change phenomena with application to space-based thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lund, Kurt O.

    1991-01-01

    The simplified geometry for the analysis is an infinite, axis symmetric annulus with a specified solar flux at the outer radius. The inner radius is either adiabatic (modeling Flight Experiment conditions), or convective (modeling Solar Dynamic conditions). Liquid LiF either contacts the outer wall (modeling ground based testing), or faces a void gap at the outer wall (modeling possible space based conditions). The analysis is presented in three parts: Part 3 considers and adiabatic inner wall and linearized radiation equations; part 2 adds effects of convection at the inner wall; and part 1 includes the effect of the void gap, as well as previous effects, and develops the radiation model further. The main results are the differences in melting behavior which can occur between ground based 1 g experiments and the microgravity flight experiments. Under 1 gravity, melted PCM will always contact the outer wall having the heat flux source, thus providing conductance from this source to the phase change front. In space based tests where a void gap may likely form during solidification, the situation is reversed; radiation is now the only mode of heat transfer and the majority of melting takes place from the inner wall.

  1. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less

  2. Anatomy of the binary black hole recoil: A multipolar analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnittman, Jeremy D.; Buonanno, Alessandra; Meter, James R. van

    2008-02-15

    We present a multipolar analysis of the gravitational recoil computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and nonzero, nonprecessing spins. We show that multipole moments up to and including l=4 are sufficient to accurately reproduce the final recoil velocity (within {approx_equal}2%) and that only a few dominant modes contribute significantly to it (within {approx_equal}5%). We describe how the relative amplitudes, and more importantly, the relative phases, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ringdown phases. We also find that the numerical resultsmore » can be reproduced by an 'effective Newtonian' formula for the multipole moments obtained by replacing the radial separation in the Newtonian formulas with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasinormal modes. Analytic formulas, obtained by expressing the multipole moments in terms of the fundamental quasinormal modes of a Kerr black hole, are able to explain the onset and amount of 'antikick' for each of the simulations. Lastly, we apply this multipolar analysis to help explain the remarkable difference between the amplitudes of planar and nonplanar kicks for equal-mass spinning black holes.« less

  3. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    DOE PAGES

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-05-12

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less

  4. Non-axisymmetric viscous lower-branch modes in axisymmetric supersonic flows

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.; Hall, Philip

    1990-01-01

    A previous paper by Duck and Hall (1989) considered the weakly nonlinear interaction of a pair of axisymmetric lower-branch Tollmien-Schlichting instabilities in cylindrical supersonic flows. Here, the possibility that nonaxisymmetric modes might also exist is investigated. In fact, it is found that such modes do exist and, on the basis of linear theory, it appears that these modes are the most important. The nonaxisymmetric modes are found to exist for flows around cylinders with nondimensional radius a less than some critical value a(c). This critical value a(c) is found to increase monotonically with the azimuthal wavenumber n of the disturbance, and it is found that unstable modes always occur in pairs. It is shown that, in general, instability in the form of lower-branch Tollmien-Schlichting waves will occur first for nonaxisymmetric modes and that, in the unstable regime, the largest growth rates correspond to the latter modes.

  5. Nonaxisymmetric viscous lower branch modes in axisymmetric supersonic flows

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.; Hall, Philip

    1988-01-01

    In a previous paper, the weakly nonlinear interaction of a pair of axisymmetric lower branch Tollmien-Schlichting instabilities in cylindrical supersonic flows was considered. Here the possibility that nonaxisymmetric modes might also exist is investigated. In fact, it is found that such modes do exist and, on the basis of linear theory, it appears that these modes are the most important. The nonaxisymmetric modes are found to exist for flows around cylinders with nondimensional radius alpha less than some critical value alpha sub c. This critical value alpha sub c is found to increase monotonically with the azimuthal wavenumber nu of the disturbance and it is found that unstable modes always occur in pairs. It is also shown that, in general, instability in the form of lower branch Tollmien-Schlichting waves will occur first for nonaxisymmetric modes and that in the unstable regime the largest growth rates correspond to the latter modes.

  6. Normal modes in an overmoded circular waveguide coated with lossy material

    NASA Technical Reports Server (NTRS)

    Lee, C. S.; Lee, S. W.; Chuang, S. L.

    1985-01-01

    The normal modes in an overmoded waveguide coated with a lossy material are analyzed, particularly for their attenuation properties as a function of coating material, layer thickness, and frequency. When the coating material is not too lossy, the low-order modes are highly attenuated even with a thin layer of coating. This coated guide serves as a mode suppressor of the low-order modes, which can be particularly useful for reducing the radar cross section (RCS) of a cavity structure such as a jet inlet. When the coating material is very lossy, low-order modes fall into two distinct groups: highly and lowly attenuated modes. However, as a/lambda (a = radius of the cylinder; lambda = the free-space wavelength) increases, the separation between these two groups becomes less distinctive. The attenuation constants of most of the low-order modes become small, and decrease as a function of lambda sup 2/a sup 3.

  7. ESTIMATING THE RADIUS OF THE CONVECTIVE CORE OF MAIN-SEQUENCE STARS FROM OBSERVED OSCILLATION FREQUENCIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wuming, E-mail: yangwuming@bnu.edu.cn, E-mail: yangwuming@ynao.ac.cn

    The determination of the size of the convective core of main-sequence stars is usually dependent on the construction of models of stars. Here we introduce a method to estimate the radius of the convective core of main-sequence stars with masses between about 1.1 and 1.5 M {sub ⊙} from observed frequencies of low-degree p -modes. A formula is proposed to achieve the estimation. The values of the radius of the convective core of four known stars are successfully estimated by the formula. The radius of the convective core of KIC 9812850 estimated by the formula is 0.140 ± 0.028 Rmore » {sub ⊙}. In order to confirm this prediction, a grid of evolutionary models was computed. The value of the convective-core radius of the best-fit model of KIC 9812850 is 0.149 R {sub ⊙}, which is in good agreement with that estimated by the formula from observed frequencies. The formula aids in understanding the interior structure of stars directly from observed frequencies. The understanding is not dependent on the construction of models.« less

  8. Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory.

    PubMed

    Kolgotin, Alexei; Müller, Detlef; Chemyakin, Eduard; Romanov, Anton

    2016-12-01

    Multiwavelength Raman/high spectral resolution lidars that measure backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm can be used for the retrieval of particle microphysical parameters, such as effective and mean radius, number, surface-area and volume concentrations, and complex refractive index, from inversion algorithms. In this study, we carry out a correlation analysis in order to investigate the degree of dependence that may exist between the optical data taken with lidar and the underlying microphysical parameters. We also investigate if the correlation properties identified in our study can be used as a priori or a posteriori constraints for our inversion scheme so that the inversion results can be improved. We made the simplifying assumption of error-free optical data in order to find out what correlations exist in the best case situation. Clearly, for practical applications, erroneous data need to be considered too. On the basis of simulations with synthetic optical data, we find the following results, which hold true for arbitrary particle size distributions, i.e., regardless of the modality or the shape of the size distribution function: surface-area concentrations and extinction coefficients are linearly correlated with a correlation coefficient above 0.99. We also find a correlation coefficient above 0.99 for the extinction coefficient versus (1) the ratio of the volume concentration to effective radius and (2) the product of the number concentration times the sum of the squares of the mean radius and standard deviation of the investigated particle size distributions. Besides that, we find that for particles of any mode fraction of the particle size distribution, the complex refractive index is uniquely defined by extinction- and backscatter-related Ångström exponents, lidar ratios at two wavelengths, and an effective radius.

  9. Inhibiting the TE1-mode diffraction losses in terahertz parallel-plate waveguides using concave plates.

    PubMed

    Mbonye, Marx; Mendis, Rajind; Mittleman, Daniel M

    2012-12-03

    We present numerical and experimental results on inhibiting diffraction losses associated with the lowest order transverse electric (TE1) mode of a terahertz (THz) parallel-plate waveguide (PPWG) via the use of slightly concave plates. We find that there is an optimal radius of curvature that inhibits the diffraction for a given waveguide operating at a given frequency. We also find that introducing this curvature does not introduce any additional group-velocity dispersion. These results support the possibility of realizing long range transport of THz radiation using the TE1 mode of the PPWG.

  10. Particle transport in low-collisionality H-mode plasmas on DIII-D

    DOE PAGES

    Mordijck, Saskia; Wang, Xin; Doyle, Edward J.; ...

    2015-10-05

    In this article we show that changing from an ion temperature gradient (ITG) to trapped electron mode (TEM) dominant turbulence regime (based on linear gyrokinetic simulations) results experimentally in a strong density pump-out (defined as a reduction in line-averaged density) in low collisionality, low power H-mode plasmas. We vary the turbulence drive by changing the heating from pre-dominantly ion heatedusing neutral beam injection to electron heated using electron cyclotron heating, which changes the T e/T i ratio and the temperature gradients. Perturbed gas puff experiments show an increase in transport outside ρ = 0.6, through a strong increase in themore » perturbed diffusion coefficient and a decrease in the inward pinch. Linear gyrokinetic simulations with TGLF show an increase in the particle flux outside the mid-radius. In conjunction an increase in intermediate-scale length density fluctuations is observed, which indicates an increase in turbulence intensity at typical TEM wavelengths. However, although the experimental changes in particle transport agree with a change from ITG to TEM turbulence regimes, we do not observe a reduction in the core rotation at mid-radius, nor a rotation reversal.« less

  11. Global Radius of Curvature Estimation and Control for the Hobby-Eberly Telescope

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Hall, Drew; Howard, Ricky; Ly, William; Weir, John; Montgomery, Edward; Brantley, Lott W. (Technical Monitor)

    2002-01-01

    A system, which estimates the global radius of curvature (GroC) and corrects for changes in GroC on a segmented primary mirror has been developed for and verified on McDonald Observatory's Hobby Eberly Telescope (HET). The GroC estimation and control system utilizes HET's primary mirror control (PMC) system and the Segment Alignment Maintenance System (SAMS), an inductive edge sensor system. A special set of boundary conditions is applied to the derivation of the optimal edge match control. The special boundary conditions allow the further derivation of an observer, which enables estimation and control of the Groc mode to within HET's specification. The magnitude of the GroC mode can then be controlled despite the inability of the SAMS edge sensor system, by itself, to observe or control the GroC mode. The observer can be extended to any segmented mirror telescope. It will be shown that the observer improves with accuracy as the number of segments increases. This paper presents the mathematical theory of the observer. Simulation results will demonstrate the inherent accuracy and robustness of the system. Performance verification data from the HET will be presented.

  12. Self-force on a scalar charge in Kerr spacetime: Circular equatorial orbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warburton, Niels; Barack, Leor

    2010-04-15

    We present a calculation of the scalar-field self-force (SSF) acting on a scalar-charge particle in a strong-field orbit around a Kerr black hole. Our calculation specializes to circular and equatorial geodesic orbits. The analysis is an implementation of the standard mode-sum regularization scheme: We first calculate the multipole modes of the scalar-field perturbation using numerical integration in the frequency domain, and then apply a certain regularization procedure to each of the modes. The dissipative piece of the SSF is found to be consistent with the flux of energy and angular-momentum carried by the scalar waves through the event horizon andmore » out to infinity. The conservative (radial) component of the SSF is calculated here for the first time. When the motion is retrograde this component is found to be repulsive (outward pointing, as in the Schwarzschild case) for any spin parameter a and (Boyer-Lindquist) orbital radius r{sub 0}. However, for prograde orbits we find that the radial SSF becomes attractive (inward pointing) for r{sub 0}>r{sub c}(a), where r{sub c} is a critical a-dependent radius at which the radial SSF vanishes. The dominant conservative effect of the SSF in Schwarzschild spacetime is known to be of third post-Newtonian (3PN) order (with a logarithmic running). Our numerical results suggest that the leading-order PN correction due to the black hole's spin arises from spin-orbit coupling at 3PN order, which dominates the overall SSF effect at large r{sub 0}. In PN language, the change of sign of the radial SSF is attributed to an interplay between the spin-orbit term ({proportional_to}-ar{sub 0}{sup -4.5}) and the Schwarzschild term ({proportional_to}r{sub 0}{sup -5}logr{sub 0}).« less

  13. Relativistic stars in vector-tensor theories

    NASA Astrophysics Data System (ADS)

    Kase, Ryotaro; Minamitsuji, Masato; Tsujikawa, Shinji

    2018-04-01

    We study relativistic star solutions in second-order generalized Proca theories characterized by a U (1 )-breaking vector field with derivative couplings. In the models with cubic and quartic derivative coupling, the mass and radius of stars become larger than those in general relativity for negative derivative coupling constants. This phenomenon is mostly attributed to the increase of star radius induced by a slower decrease of the matter pressure compared to general relativity. There is a tendency that the relativistic star with a smaller mass is not gravitationally bound for a low central density and hence is dynamically unstable, but that with a larger mass is gravitationally bound. On the other hand, we show that the intrinsic vector-mode couplings give rise to general relativistic solutions with a trivial field profile, so the mass and radius are not modified from those in general relativity.

  14. The simulation of thermal characteristics of 980 nm vertical cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Fang, Tianxiao; Cui, Bifeng; Hao, Shuai; Wang, Yang

    2018-02-01

    In order to design a single mode 980 nm vertical cavity surface emitting laser (VCSEL), a 2 μm output aperture is designed to guarantee the single mode output. The effects of different mesa sizes on the lattice temperature, the output power and the voltage are simulated under the condition of continuous working at room temperature, to obtain the optimum process parameters of mesa. It is obtained by results of the crosslight simulation software that the sizes of mesa radius are between 9.5 to 12.5 μm, which cannot only obtain the maximum output power, but also improve the heat dissipation of the device. Project supported by the Beijing Municipal Eduaction Commission (No. PXM2016_014204_500018) and the Construction of Scientific and Technological Innovation Service Ability in 2017 (No. PXM2017_014204_500034).

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180–3590

    The influence of electron spin-interaction on the propagation of the electrostatic space-charge quantum wave is investigated in a cylindrically bounded quantum plasma. The dispersion relation of the space-charge quantum electrostatic wave is derived including the influence of the electron spin-current in a cylindrical waveguide. It is found that the influence of electron spin-interaction enhances the wave frequency for large wave number regions. It is shown that the wave frequencies with higher-solution modes are always smaller than those with lower-solution modes in small wave number domains. In addition, it is found that the wave frequency increases with an increase of themore » radius of the plasma cylinder as well as the Fermi wave number. We discuss the effects due to the quantum and geometric on the variation of the dispersion properties of the space-charge plasma wave.« less

  16. Quasi-linear gyrokinetic predictions of the Coriolis momentum pinch in National Spherical Torus Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guttenfelder, W.; Kaye, S. M.; Ren, Y.

    This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio National Spherical Torus Experiment (NSTX) H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostaticballooning modes are also unstable, which are effective at transporting energy, particles, and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes inmore » a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at a finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. Lastly, as the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.« less

  17. Quasi-linear gyrokinetic predictions of the Coriolis momentum pinch in National Spherical Torus Experiment

    DOE PAGES

    Guttenfelder, W.; Kaye, S. M.; Ren, Y.; ...

    2016-05-11

    This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio National Spherical Torus Experiment (NSTX) H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostaticballooning modes are also unstable, which are effective at transporting energy, particles, and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes inmore » a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at a finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. Lastly, as the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.« less

  18. Self-gravitational instability of dense degenerate viscous anisotropic plasma with rotation

    NASA Astrophysics Data System (ADS)

    Sharma, Prerana; Patidar, Archana

    2017-12-01

    The influence of finite Larmor radius correction, tensor viscosity and uniform rotation on self-gravitational and firehose instabilities is discussed in the framework of the quantum magnetohydrodynamic and Chew-Goldberger-Low (CGL) fluid models. The general dispersion relation is obtained for transverse and longitudinal modes of propagation. In both the modes of propagation the dispersion relation is further analysed with respect to the direction of the rotational axis. In the analytical discussion the axis of rotation is considered in parallel and in the perpendicular direction to the magnetic field. (i) In the transverse mode of propagation, when rotation is parallel to the direction of the magnetic field, the Jeans instability criterion is affected by the rotation, finite Larmor radius (FLR) and quantum parameter but remains unaffected due to the presence of tensor viscosity. The calculated critical Jeans masses for rotating and non-rotating dense degenerate plasma systems are \\odot $ and \\odot $ respectively. It is clear that the presence of rotation enhances the threshold mass of the considered system. (ii) In the case of longitudinal mode of propagation when rotation is parallel to the direction of the magnetic field, Alfvén and viscous self-gravitating modes are obtained. The Alfvén mode is modified by FLR corrections and rotation. The analytical as well as graphical results show that the presence of FLR and rotation play significant roles in stabilizing the growth rate of the firehose instability by suppressing the parallel anisotropic pressure. The viscous self-gravitating mode is significantly affected by tensor viscosity, anisotropic pressure and the quantum parameter while it remains free from rotation and FLR corrections. When the direction of rotation is perpendicular to the magnetic field, the rotation of the considered system coupled the Alfvén and viscous self-gravitating modes to each other. The finding of the present work is applicable to strongly magnetized dense degenerate plasma.

  19. Radial oscillations of strange quark stars admixed with condensed dark matter

    NASA Astrophysics Data System (ADS)

    Panotopoulos, G.; Lopes, Ilídio

    2017-10-01

    We compute the 20 lowest frequency radial oscillation modes of strange stars admixed with condensed dark matter. We assume a self-interacting bosonic dark matter, and we model dark matter inside the star as a Bose-Einstein condensate. In this case the equation of state is a polytropic one with index 1 +1 /n =2 and a constant K that is computed in terms of the mass of the dark matter particle and the scattering length. Assuming a mass and a scattering length compatible with current observational bounds for self-interacting dark matter, we have integrated numerically first the Tolman-Oppenheimer-Volkoff equations for the hydrostatic equilibrium, and then the equations for the perturbations ξ =Δ r /r and η =Δ P /P . For a compact object with certain mass and radius we have considered here three cases, namely no dark matter at all and two different dark matter scenarios. Our results show that (i) the separation between consecutive modes increases with the amount of dark matter, and (ii) the effect is more pronounced for higher order modes. These effects are relevant even for a strange star made of 5% dark matter.

  20. Effects of fast ions on interchange modes in the Large Helical Device plasmas

    NASA Astrophysics Data System (ADS)

    Pinon, Jonhathan; Todo, Yasushi; Wang, Hao

    2018-07-01

    Effects of fast ions on the magnetohydrodynamic (MHD) instabilities in a Large Helical Device (LHD) plasma with the central beta value (=pressure normalized by the magnetic pressure) 4% have been investigated with hybrid simulations for energetic particles interacting with an MHD fluid. When fast ions are neglected, it is found that the dominant instability is an ideal interchange mode with the dominant harmonic m/n = 2/1, where m, n are respectively the poloidal and toroidal numbers. The spatial peak location of the m/n = 2/1 harmonic is close to the ι = 1/2 magnetic surface located at r/a = 0.29, where ι is the rotational transform and r/a is the normalized radius. The second unstable mode is a resistive interchange mode with m/n =3/2 that peaks at r/a = 0.65 nearby the ι = 2/3 surface, which grows more slowly than the m/n = 2/1 mode. The nonlinear coupling of the m/n = 3/2 and 2/1 mode results in the growth of the m/n = 5/3 mode and other modes leading to the global reduction and flattening of the pressure profile. When fast ions are considered with the central beta value 0.2% and the total pressure profile is kept the same, the ideal interchange mode with m/n = 2/1 located close to the plasma center is stabilized while the resistive interchange mode with m/n = 3/2 located far from the plasma center is less affected. The stabilization is attributed to the reduction of bulk pressure gradient, which is the dilution of the free energy source, because the energy transfer between the fast ions and the interchange modes is found to be negligible. For higher fast-ion pressure, Alfvén eigenmodes are destabilized by fast ions.

  1. Terahertz plasmon and surface-plasmon modes in hollow nanospheres

    PubMed Central

    2012-01-01

    We present a theoretical study of the electronic subband structure and collective electronic excitation associated with plasmon and surface plasmon modes in metal-based hollow nanosphere. The dependence of the electronic subband energy on the sample parameters of the hollow nanosphere is examined. We find that the subband states with different quantum numbers l degenerate roughly when the outer radius of the sphere is r2 ≥ 100 nm. In this case, the energy spectrum of a sphere is mainly determined by quantum number n. Moreover, the plasmon and surface plasmon excitations can be achieved mainly via inter-subband transitions from occupied subbands to unoccupied subbands. We examine the dependence of the plasmon and surface-plasmon frequencies on the shell thickness d and the outer radius r2 of the sphere using the standard random-phase approximation. We find that when a four-state model is employed for calculations, four branches of the plasmon and surface plasmon oscillations with terahertz frequencies can be observed, respectively. PMID:23092121

  2. System and method of operating toroidal magnetic confinement devices

    DOEpatents

    Chance, Morrell S.; Jardin, Stephen C.; Stix, Thomas H.; Grimm, deceased, Ray C.; Manickam, Janardhan; Okabayashi, Michio

    1987-01-01

    For toroidal magnetic confinement devices the second region of stability against ballooning modes can be accessed with controlled operation. Under certain modes of operation, the first and second stability regions may be joined together. Accessing the second region of stability is accomplished by forming a bean-shaped plasma and increasing the indentation until a critical value of indentation is reached. A pusher coil, located at the inner-major-radius side of the device, is engaged to form a bean-shaped poloidal cross-section in the plasma.

  3. Determination of stellar ages from asteroseismology

    NASA Technical Reports Server (NTRS)

    Ulrich, R. K.

    1986-01-01

    This Letter shows that measurements of the stellar analog of the solar five minute oscillations can permit the determination of the radius and age of isolated stars. The key frequencies of oscillation correspond to pairs of modes differing by two in the degree of the spherical harmonic describing the angular dependence of the motion and by one in the overtone order of the modes. The frequency pairs are very nearly degenerate, and adequate frequency resolution will require a nearly unbroken time sequence extending over 15 days.

  4. Temporal length-scale cascade and expansion rate on planar liquid jet instability

    NASA Astrophysics Data System (ADS)

    Sirignano, William; Zandian, Arash; Hussain, Fazle

    2016-11-01

    Using the local radius of curvature of the surface and the local transverse dimension of the two-phase (i.e., spray) domain as length scales, we obtained two PDFs over a wide range of length-scales at different times and for different Reynolds and Weber (We) numbers. The PDFs were developed via post-processing of DNS Navier-Stokes results for a 3D planar liquid sheet segment with level-set and Volume-of-Fluid surface tracking, giving better statistical data for the length scales compared to the former methods. The radius PDF shows that, with increasing We , the average radius of curvature decreases, number of small droplets increases, and cascade occurs at a faster rate. In time, the mean of the radius PDF decreases while the rms increases. The other PDF represents the spray expansion in a more realistic and meaningful form, showing that the spray angle is larger at higher We and density-ratios. Both the mean and the rms of the spray-size PDF increase with time. The PDFs also track the transitions between symmetric and anti-symmetric modes.

  5. Mode-filtered large-core fiber for optical coherence tomography

    PubMed Central

    Moon, Sucbei; Chen, Zhongping

    2013-01-01

    We have investigated the use of multimode fiber in optical coherence tomography (OCT) with a mode filter that selectively suppresses the power of the high-order modes (HOMs). A large-core fiber (LCF) that has a moderate number of guiding modes was found to be an attractive alternative to the conventional single-mode fiber for its large mode area and the consequentially wide Rayleigh range of the output beam if the HOMs of the LCF were efficiently filtered out by a mode filter installed in the middle. For this, a simple mode filtering scheme of a fiber-coil mode filter was developed in this study. The LCF was uniformly coiled by an optimal bend radius with a fiber winder, specially devised for making a low-loss mode filter. The feasibility of the mode-filtered LCF in OCT imaging was tested with a common-path OCT system. It has been successfully demonstrated that our mode-filtered LCF can provide a useful imaging or sensing probe without an objective lens that greatly simplifies the structure of the probing optics. PMID:23207399

  6. Tip Effect of the Tapping Mode of Atomic Force Microscope in Viscous Fluid Environments.

    PubMed

    Shih, Hua-Ju; Shih, Po-Jen

    2015-07-28

    Atomic force microscope with applicable types of operation in a liquid environment is widely used to scan the contours of biological specimens. The contact mode of operation allows a tip to touch a specimen directly but sometimes it damages the specimen; thus, a tapping mode of operation may replace the contact mode. The tapping mode triggers the cantilever of the microscope approximately at resonance frequencies, and so the tip periodically knocks the specimen. It is well known that the cantilever induces extra liquid pressure that leads to drift in the resonance frequency. Studies have noted that the heights of protein surfaces measured via the tapping mode of an atomic force microscope are ~25% smaller than those measured by other methods. This discrepancy may be attributable to the induced superficial hydrodynamic pressure, which is worth investigating. In this paper, we introduce a semi-analytical method to analyze the pressure distribution of various tip geometries. According to our analysis, the maximum hydrodynamic pressure on the specimen caused by a cone-shaped tip is ~0.5 Pa, which can, for example, pre-deform a cell by several nanometers in compression before the tip taps it. Moreover, the pressure calculated on the surface of the specimen is 20 times larger than the pressure without considering the tip effect; these results have not been motioned in other papers. Dominating factors, such as surface heights of protein surface, mechanical stiffness of protein increasing with loading velocity, and radius of tip affecting the local pressure of specimen, are also addressed in this study.

  7. Active Galactic Nucleus Feedback in an Isolated Elliptical Galaxy: The Effect of Strong Radiative Feedback in the Kinetic Mode

    NASA Astrophysics Data System (ADS)

    Gan, Zhaoming; Yuan, Feng; Ostriker, Jeremiah P.; Ciotti, Luca; Novak, Gregory S.

    2014-07-01

    Based on two-dimensional high-resolution hydrodynamic numerical simulation, we study the mechanical and radiative feedback effects from the central active galactic nucleus (AGN) on the cosmological evolution of an isolated elliptical galaxy. The inner boundary of the simulation domain is carefully chosen so that the fiducial Bondi radius is resolved and the accretion rate of the black hole is determined self-consistently. It is well known that when the accretion rates are high and low, the central AGNs will be in cold and hot accretion modes, which correspond to the radiative and kinetic feedback modes, respectively. The emitted spectrum from the hot accretion flows is harder than that from the cold accretion flows, which could result in a higher Compton temperature accompanied by a more efficient radiative heating, according to previous theoretical works. Such a difference of the Compton temperature between the two feedback modes, the focus of this study, has been neglected in previous works. Significant differences in the kinetic feedback mode are found as a result of the stronger Compton heating. More importantly, if we constrain models to correctly predict black hole growth and AGN duty cycle after cosmological evolution, we find that the favored model parameters are constrained: mechanical feedback efficiency diminishes with decreasing luminosity (the maximum efficiency being ~= 10-3.5), and X-ray Compton temperature increases with decreasing luminosity, although models with fixed mechanical efficiency and Compton temperature can be found that are satisfactory as well. We conclude that radiative feedback in the kinetic mode is much more important than previously thought.

  8. Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes.

    PubMed

    Habib, Md Selim; Bang, Ole; Bache, Morten

    2015-06-29

    We report on numerical design optimization of hollow-core anti-resonant fibers with the aim of reducing transmission losses. We show that re-arranging the nested anti-resonant tubes in the cladding to be adjacent has the effect of significantly reducing leakage as well as bending losses, and for reaching high loss extinction ratios between the fundamental mode and higher order modes. We investigate two versions of the proposed design, one optimized for the mid-IR and another scaled down version for the near-IR and compare them in detail with previously proposed anti-resonant fiber designs including nested elements. Our proposed design is superior with respect to obtaining the lowest leakage losses and the bend losses are also much lower than for the previous designs. Leakage losses as low as 0.0015 dB/km and bending losses of 0.006 dB/km at 5 cm bending radius are predicted at the ytterbium lasing wavelength 1.06 µm. When optimizing the higher-order-mode extinction ratio, the low leakage loss is sacrificed to get an effective single-mode behavior of the fiber. We show that the higher-order-mode extinction ratio is more than 1500 in the range 1.0-1.1 µm around the ytterbium lasing wavelength, while in the mid-IR it can be over 100 around λ = 2.94 μm. This is higher than the previously considered structures in the literature using nested tubes.

  9. Holding characteristics of planar objects suspended by near-field acoustic levitation

    PubMed

    Matsuo; Koike; Nakamura; Ueha; Hashimoto

    2000-03-01

    The authors have found the acoustic levitation phenomenon where planar objects of 10 kg weight can be levitated near a vibration surface. This phenomenon has been studied for non-contact transportation. A circular planar object can be suspended without contacting a circular vibration plate. We have studied the holding force which acts horizontally on the levitated objects. The horizontal position of the object is stabilized by this force. In this paper, we discuss the effect of the radius of a levitated object, levitation distance, displacement amplitude of the vibration plate and the vibration mode on the suspending force.

  10. Pellet injection into H-mode ITER plasma with the presence of internal transport barriers

    NASA Astrophysics Data System (ADS)

    Leekhaphan, P.; Onjun, T.

    2011-04-01

    The impacts of pellet injection into ITER type-1 ELMy H-mode plasma with the presence of internal transport barriers (ITBs) are investigated using self-consistent core-edge simulations of 1.5D BALDUR integrated predictive modeling code. In these simulations, the plasma core transport is predicted using a combination of a semi-empirical Mixed B/gB anomalous transport model, which can self-consistently predict the formation of ITBs, and the NCLASS neoclassical model. For simplicity, it is assumed that toroidal velocity for ω E× B calculation is proportional to local ion temperature. In addition, the boundary conditions are predicted using the pedestal temperature model based on magnetic and flow shear stabilization width scaling; while the density of each plasma species, including both hydrogenic and impurity species, at the boundary are assumed to be a large fraction of its line averaged density. For the pellet's behaviors in the hot plasma, the Neutral Gas Shielding (NGS) model by Milora-Foster is used. It was found that the injection of pellet could result in further improvement of fusion performance from that of the formation of ITB. However, the impact of pellet injection is quite complicated. It is also found that the pellets cannot penetrate into a deep core of the plasma. The injection of the pellet results in a formation of density peak in the region close to the plasma edge. The injection of pellet can result in an improved nuclear fusion performance depending on the properties of pellet (i.e., increase up to 5% with a speed of 1 km/s and radius of 2 mm). A sensitivity analysis is carried out to determine the impact of pellet parameters, which are: the pellet radius, the pellet velocity, and the frequency of injection. The increase in the pellet radius and frequency were found to greatly improve the performance and effectiveness of fuelling. However, changing the velocity is observed to exert small impact.

  11. Surface wave and linear operating mode of a plasma antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogachev, N. N., E-mail: bgniknik@yandex.ru; Bogdankevich, I. L.; Gusein-zade, N. G.

    The relation between the propagation conditions of a surface electromagnetic wave along a finiteradius plasma cylinder and the linear operating mode of a plasma antenna is investigated. The solution to the dispersion relation for a surface wave propagating along a finite-radius plasma cylinder is analyzed for weakly and strongly collisional plasmas. Computer simulations of an asymmetrical plasma dipole antenna are performed using the KARAT code, wherein the dielectric properties of plasma are described in terms of the Drude model. The plasma parameters corresponding to the linear operating mode of a plasma antenna are determined. It is demonstrated that the characteristicsmore » of the plasma antenna in this mode are close to those of an analogous metal antenna.« less

  12. The properties of the extraordinary mode and surface plasmon modes in the three-dimensional magnetized plasma photonic crystals based on the magneto-optical Voigt effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hai-Feng, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn; Nanjing Artillery Academy, Nanjing 211132; Liu, Shao-Bin, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn

    2014-06-15

    In this paper, the properties of the extraordinary mode and surface plasmon modes in the three-dimensional (3D) magnetized plasma photonic crystals (MPPCs) with face-centered-cubic lattices that are composed of the core tellurium (Te) spheres with surrounded by the homogeneous magnetized plasma shells inserted in the air, are theoretically investigated in detail by the plane wave expansion method, as the magneto-optical Voigt effects of magnetized plasma are considered (the incidence electromagnetic wave vector is perpendicular to the external magnetic field at any time). The optical switching or wavelength division multiplexer can be realized by the proposed 3D MPPCs. Our analyses demonstratemore » that the complete photonic band gaps (PBGs) and two flatbands regions for the extraordinary mode can be observed obviously. PBGs can be tuned by the radius of core Te sphere, the plasma density and the external magnetic field. The flatbands regions are determined by the existence of surface plasmon modes. Numerical simulations also show that if the thickness of magnetized plasma shell is larger than a threshold value, the band structures of the extraordinary mode will be similar to those obtained from the same structure containing the pure magnetized plasma spheres. In this case, the band structures also will not be affected by the inserted core spheres. It is also provided that the upper edges of two flatbands regions will not depend on the topology of lattice. However, the frequencies of lower edges of two flatbands regions will be convergent to the different constants for different lattices, as the thickness of magnetized plasma shell is close to zero.« less

  13. Vibration characteristics of a steadily rotating slender ring

    NASA Technical Reports Server (NTRS)

    Lallman, F. J.

    1980-01-01

    Partial differential equations are derived to describe the structural vibrations of a uniform homogeneous ring which is very flexible because the radius is very large compared with the cross sectional dimensions. Elementary beam theory is used and small deflections are assumed in the derivation. Four sets of structural modes are examined: bending and compression modes in the plane of the ring; bending modes perpendicular to the plane of the ring; and twisting modes about the centroid of the ring cross section. Spatial and temporal characteristics of these modes, presented in terms of vibration frequencies and ratios between vibration amplitudes, are demonstrated in several figures. Given a sufficiently high rotational rate, the dynamics of the ring approach those of a vibrating string. In this case, the velocity of traveling wave in the material of the ring approaches in velocity of the material relative to inertial space, resulting in structural modes which are almost stationary in space.

  14. Instability of g-mode oscillations in white dwarf stars

    NASA Technical Reports Server (NTRS)

    Keeley, D. A.

    1979-01-01

    A white dwarf model with M = 6 solar masses, Te = 12,000 K, and L = 1.2 x 10 to the 31st erg/sec provided by Cox has been tested for linear stability of radial oscillations. The radial mode instability first reported for this model by Cox, et al. (1979) has been confirmed. The growth rates obtained are comparable to the rates found by Cox. A sequence of l = 2 g-modes has also been found to be unstable. The e-folding times range from around 10 to the 11th periods for a 137 second mode (1 radial node) to less than 100 periods for a 629 second mode (17 nodes). It is likely that the latter rate is too high because the eigenfunction has been forced to vanish at the non-zero inner radius of the model, at which the Brunt-Vaisala frequency is barely less than the mode frequency.

  15. 50 CFR 216.217 - Requirements for monitoring and reporting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... summarizes the required mitigation and monitoring survey modes, duration and zones for all blasting scenarios... blast scenario shown in Table 1. Table 1. Blast Categories, Mitigation Scenarios, Survey and Time...) Species Delineation Zone Mitgation Scenario Impact Zone Radius Pre Det Surface Survey (min) Pre Det Aerial...

  16. 50 CFR 216.217 - Requirements for monitoring and reporting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... summarizes the required mitigation and monitoring survey modes, duration and zones for all blasting scenarios... blast scenario shown in Table 1. Table 1. Blast Categories, Mitigation Scenarios, Survey and Time...) Species Delineation Zone Mitgation Scenario Impact Zone Radius Pre Det Surface Survey (min) Pre Det Aerial...

  17. 50 CFR 216.217 - Requirements for monitoring and reporting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... summarizes the required mitigation and monitoring survey modes, duration and zones for all blasting scenarios... blast scenario shown in Table 1. Table 1. Blast Categories, Mitigation Scenarios, Survey and Time...) Species Delineation Zone Mitgation Scenario Impact Zone Radius Pre Det Surface Survey (min) Pre Det Aerial...

  18. Investigation of 100 mJ all solid state end-pumped 1064 nm Q-switched laser

    NASA Astrophysics Data System (ADS)

    Xie, Shiyong; Wang, Caili; Liu, Hui; Bo, Yong; Xu, Zuyan

    2017-11-01

    High energy 1064 nm Q-switched laser output is obtained by LD vertical array end pumping Nd:YAG. Cylindrical lens are used for beam shaping of LD array for different divergence angle of fast and slow axis. Based on the theoretical simulation of fundamental mode radius using ABCD transfer matrix, the resonant cavity is optimized and curvature radius of cavity mirrors is determined. The intracavity power density is calculated according to the output laser pulse energy and transmittance of output coupling mirror is optimized under the condition that optical device is not damaged. 1064 nm laser with a maximum output of 110 mJ is generated under LD pump energy of 600 mJ, corresponding to optical conversion efficiency of 18.3%. The laser pulse width is 11 ns and divergence angle is 1.2 mrad. For saturation phenomenon of Q-switched laser output, LD temperature is adjusted to make wavelength deviate from absorption peak of Nd:YAG crystal. The parasitic oscillation, which affects the enhancement of Q-switched laser energy, can be effectively suppressed by reducing gain of pump end of laser medium, which provides an effective technical means for obtaining high energy end-pumped Q-switched laser.

  19. Fabrication of mirror templates in silica with micron-sized radii of curvature

    NASA Astrophysics Data System (ADS)

    Najer, Daniel; Renggli, Martina; Riedel, Daniel; Starosielec, Sebastian; Warburton, Richard J.

    2017-01-01

    We present the fabrication of exceptionally small-radius concave microoptics on fused silica substrates using CO2 laser ablation and subsequent reactive ion etching. The protocol yields on-axis near-Gaussian depressions with a radius of curvature ≲5 μm at shallow depth and low surface roughness of 2 Å. This geometry is appealing for cavity quantum electrodynamics where small mode volumes and low scattering losses are desired. We study the optical performance of the structures within a tunable Fabry-Pérot type microcavity and demonstrate near-coating-limited loss rates ( F = 25 000 ) and small focal lengths consistent with their geometrical dimensions.

  20. The Effects of Acoustic Treatment on Pressure Disturbances From a Supersonic Jet in a Circular Duct

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    1996-01-01

    The pressure disturbances generated by an instability wave in the shear layer of a supersonic jet are studied for an axisymmetric jet inside a lined circular duct. For the supersonic jet, locally linear stability analysis with duct wall boundary conditions is used to calculate the eigenvalues and the eigenfunctions at each axial location. These values are used to determine the growth rates and phase velocities of the instability waves and the near field pressure disturbance patterns. The study is confined to the dominant Kelvin-Helmholtz instability mode and to the region just downstream of the nozzle exit where the shear layer is growing but is still small in size compared to the radius of the duct. Numerical results are used to study the effects of changes in the outer flow, growth in the shear layer thickness, wall distance, and wall impedance, and the effects of these changes on non-axisymmetric modes. The primary results indicate that the effects of the duct wall on stability characteristics diminish as the outer flow increases and as the jet azimuthal mode number increases. Also, wall reflections are reduced when using a finite impedance boundary condition at the wall; but in addition, reflections are reduced and growth rates diminished by keeping the imaginary part of the impedance negative when using the negative exponential for the harmonic dependence.

  1. Gas release and conductivity modification studies

    NASA Technical Reports Server (NTRS)

    Linson, L. M.; Baxter, D. C.

    1979-01-01

    The behavior of gas clouds produced by releases from orbital velocity in either a point release or venting mode is described by the modification of snowplow equations valid in an intermediate altitude regime. Quantitative estimates are produced for the time dependence of the radius of the cloud, the average internal energy, the translational velocity, and the distance traveled. The dependence of these quantities on the assumed density profile, the internal energy of the gas, and the ratio of specific heats is examined. The new feature is the inclusion of the effect of the large orbital velocity. The resulting gas cloud models are used to calculate the characteristics of the field line integrated Pedersen conductivity enhancements that would be produced by the release of barium thermite at orbital velocity in either the point release or venting modes as a function of release altitude and chemical payload weight.

  2. Aerosol Retrievals from ARM SGP MFRSR Data

    DOE Data Explorer

    Alexandrov, Mikhail

    2008-01-15

    The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous measurements of the solar direct normal and diffuse horizontal irradiances at six wavelengths (nominally 415, 500, 615, 673, 870, and 940 nm) at short intervals (20 sec for ARM instruments) throughout the day. Time series of spectral optical depth are derived from these measurements. Besides water vapor at 940 nm, the other gaseous absorbers within the MFRSR channels are NO2 (at 415, 500, and 615 nm) and ozone (at 500, 615, and 670 nm). Aerosols and Rayleigh scattering contribute atmospheric extinction in all MFRSR channels. Our recently updated MFRSR data analysis algorithm allows us to partition the spectral aerosol optical depth into fine and coarse modes and to retrieve the fine mode effective radius. In this approach we rely on climatological amounts of NO2 from SCIAMACHY satellite retrievals and use daily ozone columns from TOMS.

  3. Hollow core waveguide as mid-infrared laser modal beam filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patimisco, P.; Giglio, M.; Spagnolo, V.

    2015-09-21

    A novel method for mid-IR laser beam mode cleaning employing hollow core waveguide as a modal filter element is reported. The influence of the input laser beam quality on fiber optical losses and output beam profile using a hollow core waveguide with 200 μm-bore size was investigated. Our results demonstrate that even when using a laser with a poor spatial profile, there will exist a minimum fiber length that allows transmission of only the Gaussian-like fundamental waveguide mode from the fiber, filtering out all the higher order modes. This essentially single mode output is preserved also when the waveguide is bentmore » to a radius of curvature of 7.5 cm, which demonstrates that laser mode filtering can be realized even if a curved light path is required.« less

  4. Excitation of a nonlinear plasma ion wake by intense energy sources with applications to the crunch-in regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahai, Aakash A.

    We show the excitation of a nonlinear ion-wake mode by plasma electron modes in the bubble regime driven by intense energy sources, using analytical theory and simulations. The ion wake is shown to be a driven nonlinear ion-acoustic wave in the form of a long-lived cylindrical ion soliton which limits the repetition rate of a plasma-based particle accelerator in the bubble regime. We present the application of this evacuated and radially outwards propagating ion-wake channel with an electron skin-depth scale radius for the “crunch-in” regime of hollow-channel plasma. It is shown that the time-asymmetric focusing force phases in the bubblemore » couple to ion motion significantly differently than in the linear electron mode. The electron compression in the back of the bubble sucks in the ions whereas the space charge within the bubble cavity expels them, driving a cylindrical ion-soliton structure at the bubble radius. Once formed, the soliton is sustained and driven radially outwards by the thermal pressure of the wake energy in electrons. Particle-in-cell simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration in the crunch-in regime.« less

  5. Excitation of a nonlinear plasma ion wake by intense energy sources with applications to the crunch-in regime

    DOE PAGES

    Sahai, Aakash A.

    2017-08-23

    We show the excitation of a nonlinear ion-wake mode by plasma electron modes in the bubble regime driven by intense energy sources, using analytical theory and simulations. The ion wake is shown to be a driven nonlinear ion-acoustic wave in the form of a long-lived cylindrical ion soliton which limits the repetition rate of a plasma-based particle accelerator in the bubble regime. We present the application of this evacuated and radially outwards propagating ion-wake channel with an electron skin-depth scale radius for the “crunch-in” regime of hollow-channel plasma. It is shown that the time-asymmetric focusing force phases in the bubblemore » couple to ion motion significantly differently than in the linear electron mode. The electron compression in the back of the bubble sucks in the ions whereas the space charge within the bubble cavity expels them, driving a cylindrical ion-soliton structure at the bubble radius. Once formed, the soliton is sustained and driven radially outwards by the thermal pressure of the wake energy in electrons. Particle-in-cell simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration in the crunch-in regime.« less

  6. Detecting single viruses and nanoparticles using whispering gallery microlasers.

    PubMed

    He, Lina; Ozdemir, Sahin Kaya; Zhu, Jiangang; Kim, Woosung; Yang, Lan

    2011-06-26

    There is a strong demand for portable systems that can detect and characterize individual pathogens and other nanoscale objects without the use of labels, for applications in human health, homeland security, environmental monitoring and diagnostics. However, most nanoscale objects of interest have low polarizabilities due to their small size and low refractive index contrast with the surrounding medium. This leads to weak light-matter interactions, and thus makes the label-free detection of single nanoparticles very difficult. Micro- and nano-photonic devices have emerged as highly sensitive platforms for such applications, because the combination of high quality factor Q and small mode volume V leads to significantly enhanced light-matter interactions. For example, whispering gallery mode microresonators have been used to detect and characterize single influenza virions and polystyrene nanoparticles with a radius of 30 nm (ref. 12) by measuring in the transmission spectrum either the resonance shift or mode splitting induced by the nanoscale objects. Increasing Q leads to a narrower resonance linewidth, which makes it possible to resolve smaller changes in the transmission spectrum, and thus leads to improved performance. Here, we report a whispering gallery mode microlaser-based real-time and label-free detection method that can detect individual 15-nm-radius polystyrene nanoparticles, 10-nm gold nanoparticles and influenza A virions in air, and 30 nm polystyrene nanoparticles in water. Our approach relies on measuring changes in the beat note that is produced when an ultra-narrow emission line from a whispering gallery mode microlaser is split into two modes by a nanoscale object, and these two modes then interfere. The ultimate detection limit is set by the laser linewidth, which can be made much narrower than the resonance linewidth of any passive resonator. This means that microlaser sensors have the potential to detect objects that are too small to be detected by passive resonator sensors.

  7. Dependence of acoustic levitation capabilities on geometric parameters.

    PubMed

    Xie, W J; Wei, B

    2002-08-01

    A two-cylinder model incorporating boundary element method simulations is developed, which builds up the relationship between the levitation capabilities and the geometric parameters of a single-axis acoustic levitator with reference to wavelength. This model proves to be successful in predicting resonant modes of the acoustic field and explaining axial symmetry deviation of the levitated samples near the reflector and emitter. Concave reflecting surfaces of a spherical cap, a paraboloid, and a hyperboloid of revolution are investigated systematically with regard to the dependence of the levitation force on the section radius R(b) and curvature radius R (or depth D) of the reflector. It is found that the levitation force can be remarkably enhanced by choosing an optimum value of R or D, and the possible degree of this enhancement for spherically curved reflectors is the largest. The degree of levitation force enhancement by this means can also be facilitated by enlarging R(b) and employing a lower resonant mode. The deviation of the sample near the reflector is found likely to occur in case of smaller R(b), larger D, and a higher resonant mode. The calculated dependence of levitation force on R, R(b), and the resonant mode is also verified by experiment and finally demonstrated to be in good agreement with experimental results, in which considerably a strong levitation force is achieved to levitate an iridium sphere which has the largest density of 22.6 g/cm(3).

  8. Quasinormal acoustic oscillations in the Michel flow

    NASA Astrophysics Data System (ADS)

    Chaverra, Eliana; Morales, Manuel D.; Sarbach, Olivier

    2015-05-01

    We study spherical and nonspherical linear acoustic perturbations of the Michel flow, which describes the steady radial accretion of a perfect fluid into a nonrotating black hole. The dynamics of such perturbations are governed by a scalar wave equation on an effective curved background geometry determined by the acoustic metric, which is constructed from the spacetime metric and the particle density and four-velocity of the fluid. For the problem under consideration in this paper the acoustic metric has the same qualitative features as an asymptotically flat, static and spherically symmetric black hole, and thus it represents a natural astrophysical analogue black hole. As for the case of a scalar field propagating on a Schwarzschild background, we show that acoustic perturbations of the Michel flow exhibit quasinormal oscillations. Based on a new numerical method for determining the solutions of the radial mode equation, we compute the associated frequencies and analyze their dependency on the mass of the black hole, the radius of the sonic horizon and the angular momentum number. Our results for the fundamental frequencies are compared to those obtained from an independent numerical Cauchy evolution, finding good agreement between the two approaches. When the radius of the sonic horizon is large compared to the event horizon radius, we find that the quasinormal frequencies scale approximately like the surface gravity associated with the sonic horizon.

  9. Oscillations of Static Discs around Schwarzschild Black Holes: Effect of Self-Gravitation

    NASA Astrophysics Data System (ADS)

    Semerák, Oldřich; Žáček, Miroslav

    2000-12-01

    The oscillations of accretion-disc matter about roughly circular motion may produce a quasi-periodic variation in the observed signal (Ipser 1996, AAA 65.067.047). They were studied theoretically on non-gravitating, test discs, in a pseudo-Newtonian manner as well as in general relativity, both in static and in stationary fields. The present paper shows how the radial profiles of oscillation frequencies can be modified by the self-gravity of the disc. Exact superpositions of a Schwarzschild black hole with the Lemos and Letelier (1994, AAA 61.067.077) annular discs (static thin discs obtained by inversion of the first Morgan-Morgan solution) are considered to be simple (static) models of an accretion system. Both the epicyclic and perpendicular frequencies are plotted against the Schwarzschild radius, the circumferential radius, and the proper distance from the horizon. The curves indicate that in the innermost parts more massive discs are more stable with respect to horizontal perturbations, whereas they are less stable with respect to vertical perturbations. In the case of a sequence of discs interpretable as counter-rotating particles on stable time-like circular geodesics and having their inner rims just on marginally stable circular orbits, oscillations of the inner parts get faster with increasing disc mass; the maximum of the epicyclic frequency, important for trapping of the low-frequency modes near the inner radius, moves to smaller radii and becomes somewhat higher.

  10. Overview of long pulse H-mode operation on EAST

    NASA Astrophysics Data System (ADS)

    Gong, X.; Garofalo, A. M.; Wan, B.; Li, J.; Qian, J.; Li, E.; Liu, F.; Zhao, Y.; Wang, M.; Xu, H.; EAST Team

    2017-10-01

    The EAST research program aims to demonstrate steady-state long-pulse high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. In the recent experimental campaign, a long pulse fully non-inductive H-mode discharge lasting over 100 seconds using the upper ITER-like tungsten divertor has been achieved in EAST. This scenario used only RF heating and current drive, but also benefitted from an integrated control of the wall conditioning, plasma configuration, divertor heat flux, particle exhaust, impurity management and superconducting coils safety. Maintaining effective coupling of multiple RF heating and current drive sources on EAST is a critical ingredient. This long pulse discharge had good energy confinement, H98,y2 1.1-1.2, and all of the plasma parameters reach a true steady-state. Power balance indicates that the confinement improvement is due partly to a significantly reduced core electron transport inside minor radius rho<0.4. This work was supported by the National Magnetic Confinement Fusion Program of China Contract No. 2015GB10200 and the US Department of Energy Contract No. DE-SC0010685.

  11. Sharp inflaton potentials and bi-spectra: effects of smoothening the discontinuity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Jérôme; Sriramkumar, L.; Hazra, Dhiraj Kumar, E-mail: jmartin@iap.fr, E-mail: sriram@physics.iitm.ac.in, E-mail: dhiraj@apctp.org

    Sharp shapes in the inflaton potentials often lead to short departures from slow roll which, in turn, result in deviations from scale invariance in the scalar power spectrum. Typically, in such situations, the scalar power spectrum exhibits a burst of features associated with modes that leave the Hubble radius either immediately before or during the epoch of fast roll. Moreover, one also finds that the power spectrum turns scale invariant at smaller scales corresponding to modes that leave the Hubble radius at later stages, when slow roll has been restored. In other words, the imprints of brief departures from slowmore » roll, arising out of sharp shapes in the inflaton potential, are usually of a finite width in the scalar power spectrum. Intuitively, one may imagine that the scalar bi-spectrum too may exhibit a similar behavior, i.e. a restoration of scale invariance at small scales, when slow roll has been reestablished. However, in the case of the Starobinsky model (viz. the model described by a linear inflaton potential with a sudden change in its slope) involving the canonical scalar field, it has been found that, a rather sharp, though short, departure from slow roll can leave a lasting and significant imprint on the bi-spectrum. The bi-spectrum in this case is found to grow linearly with the wavenumber at small scales, a behavior which is clearly unphysical. In this work, we study the effects of smoothening the discontinuity in the Starobinsky model on the scalar bi-spectrum. Focusing on the equilateral limit, we analytically show that, for smoother potentials, the bi-spectrum indeed turns scale invariant at suitably large wavenumbers. We also confirm the analytical results numerically using our newly developed code BINGO. We conclude with a few comments on certain related points.« less

  12. Research on key factors and their interaction effects of electromagnetic force of high-speed solenoid valve.

    PubMed

    Liu, Peng; Fan, Liyun; Hayat, Qaisar; Xu, De; Ma, Xiuzhen; Song, Enzhe

    2014-01-01

    Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined.

  13. Research on Key Factors and Their Interaction Effects of Electromagnetic Force of High-Speed Solenoid Valve

    PubMed Central

    Fan, Liyun; Xu, De; Ma, Xiuzhen; Song, Enzhe

    2014-01-01

    Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined. PMID:25243217

  14. Evolution of the f-mode instability in neutron stars and gravitational wave detectability

    NASA Astrophysics Data System (ADS)

    Passamonti, A.; Gaertig, E.; Kokkotas, K. D.; Doneva, D.

    2013-04-01

    We study the dynamical evolution of the gravitational-wave driven instability of the f mode in rapidly rotating relativistic stars. With an approach based on linear perturbation theory we describe the evolution of the mode amplitude and follow the trajectory of a newborn neutron star through its instability window. The influence on the f-mode instability of the magnetic field and the presence of an unstable r mode is also considered. Two different configurations are studied in more detail, an N=1 polytrope with a typical mass and radius and a more massive polytropic N=0.62 model with gravitational mass M=1.98M⊙. We study several evolutions with different initial rotation rates and temperature and determine the gravitational waves radiated during the instability. In more massive models, an unstable f mode with a saturation energy of about 10-6M⊙c2 may generate a gravitational wave signal which can be detected by the Advanced LIGO/Virgo detector from the Virgo cluster. The magnetic field affects the evolution and then the detectability of the gravitational radiation when its strength is higher than 1012G, while the effects of an unstable r mode become dominant when this mode reaches the maximum saturation value allowed by nonlinear mode couplings. However, the relative saturation amplitude of the f and r modes must be known more accurately in order to provide a definitive answer to this issue. From the thermal evolution we find also that the heat generated by shear viscosity during the saturation phase completely balances the neutrinos’ cooling and prevents the star from entering the regime of mutual friction. The evolution time of the instability is therefore longer and the star loses significantly larger amounts of angular momentum via gravitational waves.

  15. Integrated simulations of saturated neoclassical tearing modes in DIII-D, Joint European Torus, and ITER plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halpern, Federico D.; Bateman, Glenn; Kritz, Arnold H.

    2006-06-15

    A revised version of the ISLAND module [C. N. Nguyen et al., Phys. Plasmas 11, 3604 (2004)] is used in the BALDUR code [C. E. Singer et al., Comput. Phys. Commun. 49, 275 (1988)] to carry out integrated modeling simulations of DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)], Joint European Torus (JET) [P. H. Rebut et al., Nucl. Fusion 25, 1011 (1985)], and ITER [R. Aymar et al., Plasma Phys. Control. Fusion 44, 519 (2002)] tokamak discharges in order to investigate the adverse effects of multiple saturated magnetic islands driven by neoclassical tearing modes (NTMs). Simulations are carried outmore » with a predictive model for the temperature and density pedestal at the edge of the high confinement mode (H-mode) plasma and with core transport described using the Multi-Mode model. The ISLAND module, which is used to compute magnetic island widths, includes the effects of an arbitrary aspect ratio and plasma cross sectional shape, the effect of the neoclassical bootstrap current, and the effect of the distortion in the shape of each magnetic island caused by the radial variation of the perturbed magnetic field. Radial transport is enhanced across the width of each magnetic island within the BALDUR integrated modeling simulations in order to produce a self-consistent local flattening of the plasma profiles. It is found that the main consequence of the NTM magnetic islands is a decrease in the central plasma temperature and total energy. For the DIII-D and JET discharges, it is found that inclusion of the NTMs typically results in a decrease in total energy of the order of 15%. In simulations of ITER, it is found that the saturated magnetic island widths normalized by the plasma minor radius, for the lowest order individual tearing modes, are approximately 24% for the 2/1 mode and 12% for the 3/2 mode. As a result, the ratio of ITER fusion power to heating power (fusion Q) is reduced from Q=10.6 in simulations with no NTM islands to Q=2.6 in simulations with fully saturated NTM islands.« less

  16. Capillary jets in normal gravity: Asymptotic stability analysis and excitation using Maxwell and ultrasonic radiation stresses

    NASA Astrophysics Data System (ADS)

    Lonzaga, Joel Barci

    Both modulated ultrasonic radiation pressure and oscillating Maxwell stress from a voltage-modulated ring electrode are employed to excite low-frequency capillary modes of a weakly tapered liquid jet issuing from a nozzle. The capillary modes are waves formed at the surface of the liquid jet. The ultrasound is internally applied to the liquid jet waveguide and is cut off at a location resulting in a significantly enhanced oscillating radiation stress near the cutoff location. Alternatively, the thin electrode can generate a highly localized oscillating Maxwell stress on the jet surface. Experimental evidence shows that a spatially unstable mode with positive group velocity (propagating downstream from the excitation source) and a neutral mode with negative group velocity are both excited. Reflection at the nozzle boundary converts the neutral mode into an unstable one that interferes with the original unstable mode. The interference effect is observed downstream from the source using a laser-based optical extinction technique that detects the surface waves while the modulation frequency is scanned. This technique is very sensitive to small-amplitude disturbances. Existing linear, convective stability analyses on liquid jets accounting for the gravitational effect (i.e. varying radius and velocity) appear to be not applicable to non-slender, slow liquid jets considered here where the gravitational effect is found substantial at low flow rates. The multiple-scales method, asymptotic expansion and WKB approximation are used to derive a dispersion relation for the capillary wave similar to one obtained by Rayleigh but accounting for the gravitational effect. These mathematical tools aided by Langer's transformation are also used to derive a uniformly valid approximation for the acoustic wave propagation in a tapered cylindrical waveguide. The acoustic analytical approximation is validated by finite-element calculations. The jet response is modeled using a hybrid of Fourier analysis and the WKB-type analysis as proposed by Lighthill. The former derives the mode response to a highly localized source while the latter governs the mode propagation in a weakly inhomogeneous jet away from the source.

  17. Characteristics of columnar aerosol optical and microphysical properties retrieved from the sun photometer and its impact on radiative forcing over Skukuza (South Africa) during 1999-2010.

    PubMed

    Adesina, Ayodele Joseph; Piketh, Stuart; Kanike, Raghavendra Kumar; Venkataraman, Sivakumar

    2017-07-01

    The detailed analysis of columnar optical and microphysical properties of aerosols obtained from the AErosol RObotic NETwork (AERONET) Cimel sun photometer operated at Skukuza (24.98° S, 31.60° E, 150 m above sea level), South Africa was carried out using the level 2.0 direct sun and inversion products measured during 1999-2010. The observed aerosol optical depth (AOD) was generally low over the region, with high values noted in late winter (August) and mid-spring (September and October) seasons. The major aerosol types found during the study period were made of 3.74, 69.63, 9.34, 8.83, and 8.41% for polluted dust (PD), polluted continental (PC), non-absorbing (NA), slightly absorbing (SA), and moderately absorbing (MA) aerosols, respectively. Much attention was given to the aerosol fine- and coarse-modes deduced from the particle volume concentration, effective radius, and fine-mode volume fraction. The aerosol volume size distribution pattern was found to be bimodal with the fine-mode showing predominance relative to coarse-mode during the winter and spring seasons, owing to the onset of the biomass burning season. The mean values of total, fine-, and coarse-mode volume particle concentrations were 0.07 ± 0.04, 0.03 ± 0.03, and 0.04 ± 0.02 μm 3  μm -2 , respectively, whereas the mean respective effective radii observed at Skukuza for the abovementioned modes were 0.35 ± 0.17, 0.14 ± 0.02, and 2.08 ± 0.02 μm. The averaged shortwave direct aerosol radiative forcing (ARF) observed within the atmosphere was found to be positive (absorption or heating effect), whereas the negative forcing in the surface and TOA depicted significant cooling effect due to more scattering type particles.

  18. Experiments on tip vortices interacting with downstream wings

    NASA Astrophysics Data System (ADS)

    Chen, C.; Wang, Z.; Gursul, I.

    2018-05-01

    The interaction of meandering tip vortices shed from a leading wing with a downstream wing was investigated experimentally in a water tunnel using flow visualization, particle image velocimetry measurements, and volumetric velocity measurements. Counter-rotating upstream vortices may exhibit sudden variations of the vortex core location when the wing-tip separation is within approximately twice the vortex core radius. This is caused by the formation of vortex dipoles near the wing tip. In contrast, co-rotating upstream vortices do not exhibit such sensitivity. Large spanwise displacement of the trajectory due to the image vortex is possible when the incident vortex is further inboard. For both co-rotating and counter-rotating vortices, as long as there is no direct impingement upon the wing, there is a little change in the structure of the time-averaged vortex past the wing, even though the tip vortex shed from the downstream wing may be substantially weakened or strengthened. In the absence of the downstream wing, as well as for weak interactions, the most energetic unsteady modes represent the first helical mode | m| = 1, which is estimated from the three-dimensional Proper Orthogonal Decomposition modes and has a very large wavelength, on the order of 102 times the vortex core radius, λ/ a = O(102). Instantaneous vorticity measurements as well as flow visualization suggest the existence of a smaller wavelength, λ/ a = 5-6, which is not among the most energetic modes. These two-orders of magnitude different wavelengths are in agreement with the previous measurements of tip vortices and also exhibit qualitative agreement with the transient energy growth analysis. The very long wavelength mode in the upstream vortex may persist during the interaction, and reveal coupling with the trailing vortex as well as increased meandering.

  19. Coronal loop seismology using damping of standing kink oscillations by mode coupling

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Goddard, C. R.; Nisticò, G.; Anfinogentov, S.; Nakariakov, V. M.

    2016-05-01

    Context. Kink oscillations of solar coronal loops are frequently observed to be strongly damped. The damping can be explained by mode coupling on the condition that loops have a finite inhomogeneous layer between the higher density core and lower density background. The damping rate depends on the loop density contrast ratio and inhomogeneous layer width. Aims: The theoretical description for mode coupling of kink waves has been extended to include the initial Gaussian damping regime in addition to the exponential asymptotic state. Observation of these damping regimes would provide information about the structuring of the coronal loop and so provide a seismological tool. Methods: We consider three examples of standing kink oscillations observed by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) for which the general damping profile (Gaussian and exponential regimes) can be fitted. Determining the Gaussian and exponential damping times allows us to perform seismological inversions for the loop density contrast ratio and the inhomogeneous layer width normalised to the loop radius. The layer width and loop minor radius are found separately by comparing the observed loop intensity profile with forward modelling based on our seismological results. Results: The seismological method which allows the density contrast ratio and inhomogeneous layer width to be simultaneously determined from the kink mode damping profile has been applied to observational data for the first time. This allows the internal and external Alfvén speeds to be calculated, and estimates for the magnetic field strength can be dramatically improved using the given plasma density. Conclusions: The kink mode damping rate can be used as a powerful diagnostic tool to determine the coronal loop density profile. This information can be used for further calculations such as the magnetic field strength or phase mixing rate.

  20. Effective ion charge (Zeff) measurements and impurity behavior in KSTAR

    NASA Astrophysics Data System (ADS)

    Sarwar, S.; Na, H. K.; Park, J. M.

    2018-04-01

    A visible bremsstrahlung detector array diagnostic system has been developed on the Korea Superconducting Tokamak Advanced Research (KSTAR) to view the whole minor radius in a narrow region of the continuum free of spectral lines. The interference filters coupled with photomultiplier tubes have been employed to determine the effective charge Zeff by using visible bremsstrahlung data during neutral beam injection in the KSTAR plasma. The Zeff profiles are typically flat for L-mode plasmas and evolve to hollow profiles during the H mode in the KSTAR. A comparison of the visible bremsstrahlung emission based on the calculated Zeff profiles is consistent with measured values of Zeff from a visible spectrometer in the core plasma. The electron temperature is measured by X-ray imaging crystal spectrometry, and electron density needed for the analysis is taken by the assumption of parabolic profiles of these parameters. The line of sight averaged local bremsstrahlung emissivity is determined with low uncertainty, and the radial emissivity is obtained by using the Abel inversion technique. In addition, a dependence of effective charge Zeff on the line-averaged electron density is evaluated, and Zeff is also determined to observe the effect of boronization.

  1. Active galactic nucleus feedback in an isolated elliptical galaxy: The effect of strong radiative feedback in the kinetic mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Zhaoming; Yuan, Feng; Ostriker, Jeremiah P.

    2014-07-10

    Based on two-dimensional high-resolution hydrodynamic numerical simulation, we study the mechanical and radiative feedback effects from the central active galactic nucleus (AGN) on the cosmological evolution of an isolated elliptical galaxy. The inner boundary of the simulation domain is carefully chosen so that the fiducial Bondi radius is resolved and the accretion rate of the black hole is determined self-consistently. It is well known that when the accretion rates are high and low, the central AGNs will be in cold and hot accretion modes, which correspond to the radiative and kinetic feedback modes, respectively. The emitted spectrum from the hotmore » accretion flows is harder than that from the cold accretion flows, which could result in a higher Compton temperature accompanied by a more efficient radiative heating, according to previous theoretical works. Such a difference of the Compton temperature between the two feedback modes, the focus of this study, has been neglected in previous works. Significant differences in the kinetic feedback mode are found as a result of the stronger Compton heating. More importantly, if we constrain models to correctly predict black hole growth and AGN duty cycle after cosmological evolution, we find that the favored model parameters are constrained: mechanical feedback efficiency diminishes with decreasing luminosity (the maximum efficiency being ≅ 10{sup –3.5}), and X-ray Compton temperature increases with decreasing luminosity, although models with fixed mechanical efficiency and Compton temperature can be found that are satisfactory as well. We conclude that radiative feedback in the kinetic mode is much more important than previously thought.« less

  2. Investigation of thermal energy transport interface of hybrid graphene-carbon nanotube/polyethylene nanocomposites.

    PubMed

    Liu, Feng; Liu, Xuyang; Hu, Ning; Ning, Huiming; Atobe, Satoshi; Yan, Cheng; Mo, Fuhao; Fu, Shaoyun; Zhang, Jianyu; Wang, Yu; Mu, Xiaojing

    2017-10-31

    It is well known the thermal properties of three-dimensional (3-D) hybrid graphene (GR)-carbon nanotube (CNT) structures are not superior to that of the individual GR and CNT, however, the 3-D hybrid GR-CNT structures can effectively improve the thermal properties of polymer matrix. Therefore, understanding the thermal energy transport in the interface between polymer matrix and 3-D hybrid GR-CNT structure is essential. Here, the enhancement mechanism of interfacial thermal transport of hybrid GR-CNT structure was explored by applying non-equilibrium molecular dynamics (NEMD) simulations. Three different types of hybrid GR-CNT structures were built. The influences of CNT radius and CNT type for the hybrid GR-CNT on the interfacial thermal properties were also analyzed. Computational results show that among the three different types of hybrid GR-CNT structures, the Model-I, i.e., the covalent bond hybrid GR-CNT structures are of the best interfacial thermal properties. Meanwhile, the CNT radius of hybrid GR-CNT structure has a great influence on the interfacial thermal properties.

  3. Effect of Gamma Ray Irradiation on Interlaminar Shear Strength of Glass Fiber Reinforced Plastics at 77 K

    NASA Astrophysics Data System (ADS)

    Nishimura, A.; Nishijima, S.; Izumi, Y.

    2008-03-01

    It is known that an organic material is damaged by gamma ray irradiation, and the strength after irradiation has dependence on the gamma ray dose. These issues are important not only to make global understanding of electric insulating performance of glass fiber reinforced plastics (GFRP) under irradiation condition but also to develop new insulation materials. This paper presents the dependence of fracture mode and interlaminar shear strength (ILSS) on the material and the gamma ray irradiation effect on the fracture mode and the ILSS. 6 mm radius loading nose and supports were used to prompt ILS fracture for a short beam test. A 2.5 mm thick small specimen machined out of a 13 mm thick G-10CR GFRP plate (sliced specimen) showed lower ILSS and translaminar shear (TLS) fracture, although the same size specimen prepared from a 2.5 mm G-10CR GFRP plate (non-sliced specimen) showed ILS fracture and the higher ILSS. Both type of specimens showed the degradation of ILSS after gamma ray irradiation. The fracture mode of the non-sliced specimen changed from ILS to TLS fracture and no bending fracture was observed. The resistance to shear deformation of glass cloth/epoxy laminate structure would be damaged by the irradiation.

  4. Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.

    2007-01-01

    We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.

  5. Steering characteristic of an articulated bus under quasi steady maneuvering

    NASA Astrophysics Data System (ADS)

    Ubaidillah, Setiawan, Budi Agus; Aridharma, Airlangga Putra; Lenggana, Bhre Wangsa; Caesar, Bernardus Placenta Previo

    2018-02-01

    Articulated buses have been being preferred as public transportation modes due to their operational capacity. Therefore, passenger safety must be the priority of this public service vehicle. This research focused on the analytical approach of steering characteristics of an articulated bus when it maneuvered steadily. Such turning condition could be referred as a stability parameter of the bus for preliminary handling assessment. The analytical approach employed kinematics relationship between front and rear bodies as well as steering capabilities. The quasi steady model was developed to determine steering parameters such as turning radius, oversteer, and understeer. The mathematical model was useful for determining both coefficients of understeer and oversteer. The dimension of articulated bus followed a commonly used bus as utilized in Trans Jakarta busses. Based on the simulation, for one minimum center of the body, the turning radius was calculated about 8.8 m and 7.6 m at steady turning speed of 10 km/h. In neutral condition, the minimum road radius should be 6.5 m at 10 km/h and 6.9 m at 40 km/h. For two centers of the body and oversteer condition, the front body has the turning radius of 8.8 m, while, the rear body has the turning radius of 9.8 m at both turning speeds of 40 km/h. The other steering parameters were discussed accordingly.

  6. Effects of the nucleon radius on neutron stars in a quark mean field model

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen-Yu; Li, Ang

    2018-03-01

    We study the effects of free space nucleon radius on nuclear matter and neutron stars within the framework of the quark mean field model. The nucleon radius is treated self-consistently with this model, where quark confinement is adjusted to fit different values of nucleon radius. Corrections due to center-of-mass motion, quark-pion coupling, and one gluon exchange are included to obtain the nucleon mass in vacuum. The meson coupling constants that describe the behavior of the many-body nucleonic system are constructed by reproducing the empirical saturation properties of nuclear matter, including the recent determinations of symmetry energy parameters. Our results show that the nucleon radius in free space has negligible effects on the nuclear matter equation of state and neutron star mass-radius relations, which is different from the conclusion drawn in previous studies. We further explore that the sensitivity of star radius on the nucleon radius found in earlier publications is actually from the symmetry energy and its slope.

  7. Improving fast-ion confinement in high-performance discharges by suppressing Alfvén eigenmodes

    DOE PAGES

    Kramer, Geritt J.; Podestà, Mario; Holcomb, Christopher; ...

    2017-03-28

    Here, we show that the degradation of fast-ion confinement in steady-state DIII-D discharges is quantitatively consistent with predictions based on the effects of multiple unstable Alfven eigenmodes on beam-ion transport. Simulation and experiment show that increasing the radius where the magnetic safety factor has its minimum is effective in minimizing beam-ion transport. This is favorable for achieving high performance steady-state operation in DIII-D and future reactors. A comparison between the experiments and a critical gradient model, in which only equilibrium profiles were used to predict the most unstable modes, show that in a number of cases this model reproduces themore » measured neutron rate well.« less

  8. Dual-hole Photonic Crystal Fiber Intermodal Interference based Refractometer

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Guo, Xuan; Zhang, Qing; Fu, Xinghu

    2017-12-01

    A refractive-index (RI) sensor and its sensing characteristics based on intermodal interference of dual-hole Polarization Maintaining Photonic Crystal Fiber (PM-PCF) are demonstrated in this letter. The sensor works from the interference between LP01 and LP11 modes of hydrofluoric acid etched PM-PCF. The influence of corrosion zone radius on the RI sensing sensitivity is also discussed. Via choosing a 2.5 cm etched PM-PCF(the etched area radius is 27.5 μm) and 650 nm laser, the sensor exhibits the RI sensitivity of 7.48 V/RIU. The simple sensor structure and inexpensive demodulation method can make this technology for online refractive index measurement in widespread areas.

  9. Functional dependence of resonant harmonics on nanomechanical parameters in dynamic mode atomic force microscopy.

    PubMed

    Gramazio, Federico; Lorenzoni, Matteo; Pérez-Murano, Francesc; Rull Trinidad, Enrique; Staufer, Urs; Fraxedas, Jordi

    2017-01-01

    We present a combined theoretical and experimental study of the dependence of resonant higher harmonics of rectangular cantilevers of an atomic force microscope (AFM) as a function of relevant parameters such as the cantilever force constant, tip radius and free oscillation amplitude as well as the stiffness of the sample's surface. The simulations reveal a universal functional dependence of the amplitude of the 6th harmonic (in resonance with the 2nd flexural mode) on these parameters, which can be expressed in terms of a gun-shaped function. This analytical expression can be regarded as a practical tool for extracting qualitative information from AFM measurements and it can be extended to any resonant harmonics. The experiments confirm the predicted dependence in the explored 3-45 N/m force constant range and 2-345 GPa sample's stiffness range. For force constants around 25 N/m, the amplitude of the 6th harmonic exhibits the largest sensitivity for ultrasharp tips (tip radius below 10 nm) and polymers (Young's modulus below 20 GPa).

  10. Measurements of the ablation-front trajectory and low-mode nonuniformity in direct-drive implosions using x-ray self-emission shadowgraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, D. T.; Davis, A. K.; Armstrong, W.

    Self-emission x-ray shadowgraphy provides a method to measure the ablation-front trajectory and low-mode nonuniformity of a target imploded by directly illuminating a fusion capsule with laser beams. The technique uses time-resolved images of soft x-rays (> 1 keV) emitted from the coronal plasma of the target imaged onto an x-ray framing camera to determine the position of the ablation front. Methods used to accurately measure the ablation-front radius (more » $${\\it\\delta}R=\\pm 1.15~{\\rm\\mu}\\text{m}$$), image-to-image timing ($${\\it\\delta}({\\rm\\Delta}t)=\\pm 2.5$$ ps) and absolute timing ($${\\it\\delta}t=\\pm 10$$ ps) are presented. Angular averaging of the images provides an average radius measurement of$${\\it\\delta}(R_{\\text{av}})=\\pm 0.15~{\\rm\\mu}\\text{m}$$and an error in velocity of$${\\it\\delta}V/V=\\pm 3\\%$$. This technique was applied on the Omega Laser Facility and the National Ignition Facility.« less

  11. Measurements of the ablation-front trajectory and low-mode nonuniformity in direct-drive implosions using x-ray self-emission shadowgraphy

    DOE PAGES

    Michel, D. T.; Davis, A. K.; Armstrong, W.; ...

    2015-07-08

    Self-emission x-ray shadowgraphy provides a method to measure the ablation-front trajectory and low-mode nonuniformity of a target imploded by directly illuminating a fusion capsule with laser beams. The technique uses time-resolved images of soft x-rays (> 1 keV) emitted from the coronal plasma of the target imaged onto an x-ray framing camera to determine the position of the ablation front. Methods used to accurately measure the ablation-front radius (more » $${\\it\\delta}R=\\pm 1.15~{\\rm\\mu}\\text{m}$$), image-to-image timing ($${\\it\\delta}({\\rm\\Delta}t)=\\pm 2.5$$ ps) and absolute timing ($${\\it\\delta}t=\\pm 10$$ ps) are presented. Angular averaging of the images provides an average radius measurement of$${\\it\\delta}(R_{\\text{av}})=\\pm 0.15~{\\rm\\mu}\\text{m}$$and an error in velocity of$${\\it\\delta}V/V=\\pm 3\\%$$. This technique was applied on the Omega Laser Facility and the National Ignition Facility.« less

  12. Numerical methods for analyzing electromagnetic scattering

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Lo, Y. T.; Chuang, S. L.; Lee, C. S.

    1985-01-01

    Numerical methods to analyze electromagnetic scattering are presented. The dispersions and attenuations of the normal modes in a circular waveguide coated with lossy material were completely analyzed. The radar cross section (RCS) from a circular waveguide coated with lossy material was calculated. The following is observed: (1) the interior irradiation contributes to the RCS much more than does the rim diffraction; (2) at low frequency, the RCS from the circular waveguide terminated by a perfect electric conductor (PEC) can be reduced more than 13 dB down with a coating thickness less than 1% of the radius using the best lossy material available in a 6 radius-long cylinder; (3) at high frequency, a modal separation between the highly attenuated and the lowly attenuated modes is evident if the coating material is too lossy, however, a large RCS reduction can be achieved for a small incident angle with a thin layer of coating. It is found that the waveguide coated with a lossy magnetic material can be used as a substitute for a corrugated waveguide to produce a circularly polarized radiation yield.

  13. Effects of beam configurations on wire melting and transfer behaviors in dual beam laser welding with filler wire

    NASA Astrophysics Data System (ADS)

    Ma, Guolong; Li, Liqun; Chen, Yanbin

    2017-06-01

    Butt joints of 2 mm thick stainless steel with 0.5 mm gap were fabricated by dual beam laser welding with filler wire technique. The wire melting and transfer behaviors with different beam configurations were investigated detailedly in a stable liquid bridge mode and an unstable droplet mode. A high speed video system assisted by a high pulse diode laser as an illumination source was utilized to record the process in real time. The difference of welding stability between single and dual beam laser welding with filler wire was also compartively studied. In liquid bridge transfer mode, the results indicated that the transfer process and welding stability were disturbed in the form of "broken-reformed" liquid bridge in tandem configuration, while improved by stabilizing the molten pool dynamics with a proper fluid pattern in side-by-side configuration, compared to sigle beam laser welding with filler wire. The droplet transfer period and critical radius were studied in droplet transfer mode. The transfer stability of side-by-side configuration with the minium transfer period and critical droplet size was better than the other two configurations. This was attributed to that the action direction and good stability of the resultant force which were beneficial to transfer process in this case. The side-by-side configuration showed obvious superiority on improving welding stability in both transfer modes. An acceptable weld bead was successfully generated even in undesirable droplet transfer mode under the present conditions.

  14. Transport simulation of EAST long-pulse H-mode discharge with integrated modeling

    NASA Astrophysics Data System (ADS)

    Wu, M. Q.; Li, G. Q.; Chen, J. L.; Du, H. F.; Gao, X.; Ren, Q. L.; Li, K.; Chan, Vincent; Pan, C. K.; Ding, S. Y.; Jian, X.; Zhu, X.; Lian, H.; Qian, J. P.; Gong, X. Z.; Zang, Q.; Duan, Y. M.; Liu, H. Q.; Lyu, B.

    2018-04-01

    In the 2017 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than 100 s has been obtained using only radio frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H98y2 ~ 1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge in the 2016 EAST experimental campaign has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2 MW LHW, ~0.3 MW ECH and ~1.1 MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (I p ~ 0.45 MA) and electron density are kept constantly. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~28%, the RF drive current fraction is ~72%. The predicted current density profile matches the experimental one well. Analysis shows that electron cyclotron heating (ECH) makes large contribution to the plasma confinement when heating in the core region while heating in large radius does smaller improvement, also a more peaked LHW driven current profile is got when heating in the core. Linear analysis shows that the high-k modes instability (electron temperature gradient driven modes) is suppressed in the core region where exists weak electron internal transport barriers. The trapped electron modes dominates in the low-k region, which is mainly responsible for driving the electron energy flux. It is found that the ECH heating effect is very local and not the main cause to sustained the good confinement, the peaked current density profile has the most important effect on plasma confinement improvement. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments.

  15. Raman lidar observations of a Saharan dust outbreak event: Characterization of the dust optical properties and determination of particle size and microphysical parameters

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Bhawar, Rohini; Di Iorio, Tatiana; Cacciani, Marco; Veselovskii, Igor; Dubovik, Oleg; Kolgotin, Alexey

    2012-04-01

    The Raman lidar system BASIL was operational in Achern (Black Forest) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). The system performed continuous measurements over a period of approx. 36 h from 06:22 UTC on 1 August to 18:28 UTC on 2 August 2007, capturing the signature of a severe Saharan dust outbreak episode. The data clearly reveal the presence of two almost separate aerosol layers: a lower layer located between 1.5 and 3.5 km above ground level (a.g.l.) and an upper layer extending between 3.0 and 6.0 km a.g.l. The time evolution of the dust cloud is illustrated and discussed in the paper in terms of several optical parameters (particle backscatter ratio at 532 and 1064 nm, the colour ratio and the backscatter Angström parameter). An inversion algorithm was used to retrieve particle size and microphysical parameters, i.e., mean and effective radius, number, surface area, volume concentration, and complex refractive index, as well as the parameters of a bimodal particle size distribution (PSD), from the multi-wavelength lidar data of particle backscattering, extinction and depolarization. The retrieval scheme employs Tikhonov's inversion with regularization and makes use of kernel functions for randomly oriented spheroids. Size and microphysical parameters of dust particles are estimated as a function of altitude at different times during the dust outbreak event. Retrieval results reveal the presence of a fine mode with radii of 0.1-0.2 μm and a coarse mode with radii of 3-5 μm both in the lower and upper dust layers, and the dominance in the upper dust layer of a coarse mode with radii of 4-5 μm. Effective radius varies with altitude in the range 0.1-1.5 μm, while volume concentration is found to not exceed 92 μm3 cm-3. The real and imaginary part of the complex refractive index vary in the range 1.4-1.6 and 0.004-0.008, respectively.

  16. Resonant tidal excitation of oscillation modes in merging binary neutron stars: Inertial-gravity modes

    NASA Astrophysics Data System (ADS)

    Xu, Wenrui; Lai, Dong

    2017-10-01

    In coalescing neutron star (NS) binaries, tidal force can resonantly excite low-frequency (≲500 Hz ) oscillation modes in the NS, transferring energy between the orbit and the NS. This resonant tide can induce phase shift in the gravitational waveforms, and potentially provide a new window of studying NS interior using gravitational waves. Previous works have considered tidal excitations of pure g-modes (due to stable stratification of the star) and pure inertial modes (due to Coriolis force), with the rotational effect treated in an approximate manner. However, for realistic NSs, the buoyancy and rotational effects can be comparable, giving rise to mixed inertial-gravity modes. We develop a nonperturbative numerical spectral code to compute the frequencies and tidal coupling coefficients of these modes. We then calculate the phase shift in the gravitational waveform due to each resonance during binary inspiral. Given the uncertainties in the NS equation of state and stratification property, we adopt polytropic NS models with a parametrized stratification. We derive relevant scaling relations and survey how the phase shift depends on various properties of the NS. We find that for canonical NSs (with mass M =1.4 M⊙ and radius R =10 km ) and modest rotation rates (≲300 Hz ), the gravitational wave phase shift due to a resonance is generally less than 0.01 radian. But the phase shift is a strong function of R and M , and can reach a radian or more for low-mass NSs with larger radii (R ≳15 km ). Significant phase shift can also be produced when the combination of stratification and rotation gives rise to a very low frequency (≲20 Hz in the inertial frame) modified g-mode. As a by-product of our precise calculation of oscillation modes in rotating NSs, we find that some inertial modes can be strongly affected by stratification; we also find that the m =1 r -mode, previously identified to have a small but finite inertial-frame frequency based on the Cowling approximation, in fact has essentially zero frequency, and therefore cannot be excited during the inspiral phase of NS binaries.

  17. Determination of effective droplet radius and optical depth of liquid water clouds over a tropical site in northern Thailand using passive microwave soundings, aircraft measurements and spectral irradiance data

    NASA Astrophysics Data System (ADS)

    Nimnuan, P.; Janjai, S.; Nunez, M.; Pratummasoot, N.; Buntoung, S.; Charuchittipan, D.; Chanyatham, T.; Chantraket, P.; Tantiplubthong, N.

    2017-08-01

    This paper presents an algorithm for deriving the effective droplet radius and optical depth of liquid water clouds using ground-based measurements, aircraft observations and an adiabatic model of cloud liquid water. The algorithm derives cloud effective radius and cloud optical depth over a tropical site at Omkoi (17.80°N, 98.43°E), Thailand. Monthly averages of cloud optical depth are highest in April (54.5), which is the month with the lowest average cloud effective radius (4.2 μm), both occurring before the start of the rainy season and at the end of the high contamination period. By contrast, the monsoon period extending from May to October brings higher cloud effective radius and lower cloud optical depth to the region on average. At the diurnal scale there is a gradual increase in average cloud optical depth and decrease in cloud effective radius as the day progresses.

  18. 2D Kinetic Particle in Cell Simulations of a Shear-Flow Stabilized Z-Pinch

    NASA Astrophysics Data System (ADS)

    Tummel, Kurt; Higginson, Drew; Schmidt, Andrea; Link, Anthony; McLean, Harry; Shumlak, Uri; Nelson, Brian; Golingo, Raymond; Claveau, Elliot; Lawrence Livermore National Lab Team; University of Washington Team

    2016-10-01

    The Z-pinch is a relatively simple and attractive potential fusion reactor design, but attempts to develop such a reactor have consistently struggled to overcome Z-pinch instabilities. The ``sausage'' and ``kink'' modes are among the most robust and prevalent Z-pinch instabilities, but theory and simulations suggest that axial flow-shear, dvz / dr ≠ 0 , can suppress these modes. Experiments have confirmed that Z-pinch plasmas with embedded axial flow-shear display a significantly enhanced resilience to the sausage and kink modes at a demonstration current of 50kAmps. A new experiment is under way to test the concept at higher current, and efforts to model these plasmas are being expanded. The performance and stability of these devices will depend on features like the plasma viscosity, anomalous resistivity, and finite Larmor radius effects, which are most accurately characterized in kinetic models. To predict these features, kinetic simulations using the particle in cell code LSP are now in development, and initial benchmarking and 2D stability analyses of the sausage mode are presented here. These results represent the first kinetic modeling of the flow-shear stabilized Z-pinch. This work is funded by the USDOE/ARPAe Alpha Program. Prepared by LLNL under Contract DE-AC52-07NA27344.

  19. Dynamic control of mode field diameter and effective area by germanium doping of hexagonal photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Miyagi, Kazuya; Namihira, Yoshinori; Kasamatsu, Yuho; Hossain, Md. Anwar

    2013-07-01

    We demonstrate dynamic control of the effective area ( A eff) of photonic crystal fibers (PCFs) in the range of 18.1-8.22 μm2 and the mode field diameter in the range of 4.78-3.42 μm. This control was realized by altering their structural properties and varying the germanium (Ge) doping rate, which changed the refractive index difference (Δ n Ge) between 1.0 and 3.0% relative to the refractive index of the silica cladding. This was achieved by adjusting the Ge doping rate in the core and changing the radius ( d core) of the doped region, i.e., by changing the equivalent refractive index, using numerical calculations. Numerical results were verified by comparison with experimental results for a fabricated Gedoped PCF obtained by far-field scanning based on the ITU-T Petermann II definition. The proposed approach will simultaneously decrease Aeff and achieves high light confinement and high nonlinearity in PCFs. It enables architectonics/controllability of highly nonlinear PCFs with passive optical devices in photonic networks and life science applications.

  20. Theory of the mode stabilization mechanism in concave-micromirror-capped vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Park, Si-Hyun; Park, Yeonsang; Jeon, Heonsu

    2003-08-01

    We have investigated theoretically the transverse mode stabilization mechanism in oxide-confined concave-micromirror-capped vertical-cavity surface-emitting lasers (CMC-VCSELs) as reported by Park et al. [Appl. Phys. Lett. 80, 183 (2002)]. From detailed numerical calculations on a model CMC-VCSEL structure, we found that mode discrimination factors appear to be periodic in the micromirror layer thickness with a periodicity of λ/2. We also found that there are two possible concave micromirror structures for the fundamental transverse mode laser operation. These structures can be grouped according to the thickness of the concave micromirror layer: whether it is an integer or a half-integer multiple of λ/2. The optimal micromirror curvature radius differs accordingly for each case. In an optimally designed CMC-VCSEL model structure, the fundamental transverse mode can be favored as much as 4, 8, and 13 times more strongly than the first, second, and third excited modes, respectively.

  1. Flux-driven algebraic damping of diocotron modes

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung; O'Neil, Thomas M.

    2015-06-01

    Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 and m = 2 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius Rm, where there is a matching of ωm = mωE (Rm) for the mode frequency ωm and E × B-drift rotation frequency ωE. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This new mechanism of damping is due to transfer of canonical angular momentum from the mode to halo particles, as they are swept around the "cat's eye" orbits of the resonant wave-particle interaction. This paper provides a simple derivation of the time dependence of the mode amplitudes.

  2. Generation of Magnetohydrodynamic Waves in Low Solar Atmospheric Flux Tubes by Photospheric Motions

    NASA Astrophysics Data System (ADS)

    Mumford, S. J.; Fedun, V.; Erdélyi, R.

    2015-01-01

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  3. A simulation of atomic force microscope microcantilever in the tapping mode utilizing couple stress theory.

    PubMed

    Abbasi, Mohammad

    2018-04-01

    The nonlinear vibration behavior of a Tapping mode atomic force microscopy (TM-AFM) microcantilever under acoustic excitation force has been modeled and investigated. In dynamic AFM, the tip-surface interactions are strongly nonlinear, rapidly changing and hysteretic. First, the governing differential equation of motion and boundary conditions for dynamic analysis are obtained using the modified couple stress theory. Afterwards, closed-form expressions for nonlinear frequency and effective nonlinear damping ratio are derived utilizing perturbation method. The effect of tip connection position on the vibration behavior of the microcantilever are also analyzed. The results show that nonlinear frequency is size dependent. According to the results, an increase in the equilibrium separation between the tip and the sample surface reduces the overall effect of van der Waals forces on the nonlinear frequency, but its effect on the effective nonlinear damping ratio is negligible. The results also indicate that both the change in the distance between tip and cantilever free end and the reduction of tip radius have significant effects on the accuracy and sensitivity of the TM-AFM in the measurement of surface forces. The hysteretic behavior has been observed in the near resonance frequency response due to softening and hardening of the forced vibration response. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Loss of gas from echogenic liposomes exposed to pulsed ultrasound

    PubMed Central

    Raymond, Jason L.; Luan, Ying; Peng, Tao; Huang, Shao-Ling; McPherson, David D.; Versluis, Michel; de Jong, Nico; Holland, Christy K.

    2017-01-01

    The destruction of echogenic liposomes (ELIP) in response to pulsed ultrasound excitations has been studied acoustically previously. However, the mechanism underlying the loss of echogenicity due to cavitation of ELIP has not been fully clarified. In this study, an ultra-high speed imaging approach was employed to observe the destruction phenomena of single ELIP exposed to ultrasound bursts at a center frequency of 6- MHz. We observed a rapid size reduction during the ultrasound excitation in 139 out of 397 (35 %) ultra-high-speed recordings. The shell dilation rate, which is defined as the microbubble wall velocity divided by the instantaneous radius, Ṙ/R, was extracted from the radius versus time response of each ELIP, and was found to be correlated with the deflation. Fragmentation and surface mode vibrations were also observed and are shown to depend on the applied acoustic pressure and initial radius. Results from this study can be utilized to optimize the theranostic application of ELIP, e.g., by tuning the size distribution or the excitation frequency. PMID:27811382

  5. High numerical aperture large-core photonic crystal fiber for a broadband infrared transmission

    NASA Astrophysics Data System (ADS)

    Pniewski, J.; Stepniewski, G.; Kasztelanic, R.; Siwicki, B.; Pierscinska, D.; Pierscinski, K.; Pysz, D.; Borzycki, K.; Stepien, R.; Bugajski, M.; Buczynski, R.

    2016-11-01

    In this paper we present a large mode area photonic crystal fiber made of the heavy metal oxide glass CS-740, dedicated for a broadband light guidance in the visible, near- and mid-infrared regions of wavelengths from 0.4 to 4.7 μm. The fiber is effectively multi-mode in the considered wavelength range. It is composed of a ring of air-holes surrounding the core, with a high linear filling factor of 0.97. The fiber was made using a standard stack-and-draw technique. Each hole has a size of approx. 2.5 × 3.0 μm and diameter of core is 80 μm. Fiber attenuation is below 3 dB/m in the 0.9-1.7 μm wavelength range, while at 4.4 μm (mid-IR) it is approx. 5 dB/cm. Bending loss at the 1.55 μm wavelength is 0.45 dB per loop of 8 mm radius. Fiber numerical aperture is 0.53 at 1.55 μm. The effective mode area of the fundamental mode is approx. 2400 μm2 in the wavelength range of 0.8-1.7 μm. We present a proof-of-concept demonstration that our large core photonic crystal fiber is able to efficiently collect light directly from a mid-IR quantum cascade laser without use of additional optics and can be used for pigtailing mid-IR sources and detectors.

  6. Resistive edge mode instability in stellarator and tokamak geometries

    NASA Astrophysics Data System (ADS)

    Mahmood, M. Ansar; Rafiq, T.; Persson, M.; Weiland, J.

    2008-09-01

    Geometrical effects on linear stability of electrostatic resistive edge modes are investigated in the three-dimensional Wendelstein 7-X stellarator [G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] and the International Thermonuclear Experimental Reactor [Progress in the ITER Physics Basis, Nucl. Fusion 7, S1, S285 (2007)]-like equilibria. An advanced fluid model is used for the ions together with the reduced Braghinskii equations for the electrons. Using the ballooning mode representation, the drift wave problem is set as an eigenvalue equation along a field line and is solved numerically using a standard shooting technique. A significantly larger magnetic shear and a less unfavorable normal curvature in the tokamak equilibrium are found to give a stronger finite-Larmor radius stabilization and a more narrow mode spectrum than in the stellarator. The effect of negative global magnetic shear in the tokamak is found to be stabilizing. The growth rate on a tokamak magnetic flux surface is found to be comparable to that on a stellarator surface with the same global magnetic shear but the eigenfunction in the tokamak is broader than in the stellarator due to the presence of large negative local magnetic shear (LMS) on the tokamak surface. A large absolute value of the LMS in a region of unfavorable normal curvature is found to be stabilizing in the stellarator, while in the tokamak case, negative LMS is found to be stabilizing and positive LMS destabilizing.

  7. Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures

    NASA Astrophysics Data System (ADS)

    Freytag, B.; Liljegren, S.; Höfner, S.

    2017-04-01

    Context. Observations of asymptotic giant branch (AGB) stars with increasing spatial resolution reveal new layers of complexity of atmospheric processes on a variety of scales. Aims: To analyze the physical mechanisms that cause asymmetries and surface structures in observed images, we use detailed 3D dynamical simulations of AGB stars; these simulations self-consistently describe convection and pulsations. Methods: We used the CO5BOLD radiation-hydrodynamics code to produce an exploratory grid of global "star-in-a-box" models of the outer convective envelope and the inner atmosphere of AGB stars to study convection, pulsations, and shock waves and their dependence on stellar and numerical parameters. Results: The model dynamics are governed by the interaction of long-lasting giant convection cells, short-lived surface granules, and strong, radial, fundamental-mode pulsations. Radial pulsations and shorter wavelength, traveling, acoustic waves induce shocks on various scales in the atmosphere. Convection, waves, and shocks all contribute to the dynamical pressure and, thus, to an increase of the stellar radius and to a levitation of material into layers where dust can form. Consequently, the resulting relation of pulsation period and stellar radius is shifted toward larger radii compared to that of non-linear 1D models. The dependence of pulsation period on luminosity agrees well with observed relations. The interaction of the pulsation mode with the non-stationary convective flow causes occasional amplitude changes and phase shifts. The regularity of the pulsations decreases with decreasing gravity as the relative size of convection cells increases. The model stars do not have a well-defined surface. Instead, the light is emitted from a very extended inhomogeneous atmosphere with a complex dynamic pattern of high-contrast features. Conclusions: Our models self-consistently describe convection, convectively generated acoustic noise, fundamental-mode radial pulsations, and atmospheric shocks of various scales, which give rise to complex changing structures in the atmospheres of AGB stars.

  8. Study of impurity transport in HL-2A ECRH L-mode plasmas with radially different ECRH power depositions

    NASA Astrophysics Data System (ADS)

    Cui, Z. Y.; Zhang, K.; Morita, S.; Ji, X. Q.; Ding, X. T.; Xu, Y.; Sun, P.; Gao, J. M.; Dong, C. F.; Zheng, D. L.; Li, Y. G.; Jiang, M.; Li, D.; Zhong, W. L.; Liu, Yi; Dong, Y. B.; Song, S. D.; Yu, L. M.; Shi, Z. B.; Fu, B. Z.; Lu, P.; Huang, M.; Yuan, B. S.; Yang, Q. W.; Duan, X. R.

    2018-05-01

    In HL-2A, an inverse sawtooth oscillation is observed with a long-lasting m/n  =  1/1 mode during ECRH phase with power deposition inside sawtooth inversion radius (inner-deposited ECRH), while a normal sawtooth instead appears when the ECRH power is deposited outside sawtooth inversion radius (outer-deposited ECRH). Aluminum is then injected as a trace impurity with laser blow-off (LBO) method into the inner- and outer-deposited ECRH phases of HL-2A discharges to investigate the effect of ECRH on impurity transport. Temporal behavior of soft x-ray (SXR) array signals is analyzed with a 1D impurity transport code, and radial structures of impurity transport coefficients are obtained. The result shows that the radial transport of Al ions is strongly enhanced during the inner-deposited ECRH phase. In particular, an outward convection velocity is developed with positive values of 0  ⩽  V(ρ)  ⩽  3.8 m s-1 in ρ  ⩽  0.5, while the convection velocity is inward in ρ  ⩾  0.6. In the outer-deposited ECRH discharge, on the other hand, the convection velocity takes a big negative value in ρ  ⩽  0.4 and close to zero at ρ ~ 0.6. In ohmic discharges, an inward V(ρ) always appears in the whole plasma radii and gradually increases toward the plasma edge (-3.2 m s-1 at ρ  =  1). The simulation result also indicates that centrally-peaked Al ion density profiles presented in the outer-deposited ECRH discharge can be flattened by the inner-deposited ECRH. Modification of impurity transport is discussed in the presence of long-lasting m/n  =  1/1 MHD mode.

  9. Hydraulic characterisation of iron-oxide-coated sand and gravel based on nuclear magnetic resonance relaxation mode analyses

    NASA Astrophysics Data System (ADS)

    Costabel, Stephan; Weidner, Christoph; Müller-Petke, Mike; Houben, Georg

    2018-03-01

    The capability of nuclear magnetic resonance (NMR) relaxometry to characterise hydraulic properties of iron-oxide-coated sand and gravel was evaluated in a laboratory study. Past studies have shown that the presence of paramagnetic iron oxides and large pores in coarse sand and gravel disturbs the otherwise linear relationship between relaxation time and pore size. Consequently, the commonly applied empirical approaches fail when deriving hydraulic quantities from NMR parameters. Recent research demonstrates that higher relaxation modes must be taken into account to relate the size of a large pore to its NMR relaxation behaviour in the presence of significant paramagnetic impurities at its pore wall. We performed NMR relaxation experiments with water-saturated natural and reworked sands and gravels, coated with natural and synthetic ferric oxides (goethite, ferrihydrite), and show that the impact of the higher relaxation modes increases significantly with increasing iron content. Since the investigated materials exhibit narrow pore size distributions, and can thus be described by a virtual bundle of capillaries with identical apparent pore radius, recently presented inversion approaches allow for estimation of a unique solution yielding the apparent capillary radius from the NMR data. We found the NMR-based apparent radii to correspond well to the effective hydraulic radii estimated from the grain size distributions of the samples for the entire range of observed iron contents. Consequently, they can be used to estimate the hydraulic conductivity using the well-known Kozeny-Carman equation without any calibration that is otherwise necessary when predicting hydraulic conductivities from NMR data. Our future research will focus on the development of relaxation time models that consider pore size distributions. Furthermore, we plan to establish a measurement system based on borehole NMR for localising iron clogging and controlling its remediation in the gravel pack of groundwater wells.

  10. Benchmark studies of the gyro-Landau-fluid code and gyro-kinetic codes on kinetic ballooning modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, T. F.; Lawrence Livermore National Laboratory, Livermore, California 94550; Xu, X. Q.

    2016-03-15

    A Gyro-Landau-Fluid (GLF) 3 + 1 model has been recently implemented in BOUT++ framework, which contains full Finite-Larmor-Radius effects, Landau damping, and toroidal resonance [Ma et al., Phys. Plasmas 22, 055903 (2015)]. A linear global beta scan has been conducted using the JET-like circular equilibria (cbm18 series), showing that the unstable modes are kinetic ballooning modes (KBMs). In this work, we use the GYRO code, which is a gyrokinetic continuum code widely used for simulation of the plasma microturbulence, to benchmark with GLF 3 + 1 code on KBMs. To verify our code on the KBM case, we first perform the beta scan basedmore » on “Cyclone base case parameter set.” We find that the growth rate is almost the same for two codes, and the KBM mode is further destabilized as beta increases. For JET-like global circular equilibria, as the modes localize in peak pressure gradient region, a linear local beta scan using the same set of equilibria has been performed at this position for comparison. With the drift kinetic electron module in the GYRO code by including small electron-electron collision to damp electron modes, GYRO generated mode structures and parity suggest that they are kinetic ballooning modes, and the growth rate is comparable to the GLF results. However, a radial scan of the pedestal for a particular set of cbm18 equilibria, using GYRO code, shows different trends for the low-n and high-n modes. The low-n modes show that the linear growth rate peaks at peak pressure gradient position as GLF results. However, for high-n modes, the growth rate of the most unstable mode shifts outward to the bottom of pedestal and the real frequency of what was originally the KBMs in ion diamagnetic drift direction steadily approaches and crosses over to the electron diamagnetic drift direction.« less

  11. A possible explanation of the parallel tracks in kilohertz quasi-periodic oscillations from low-mass-X-ray binaries

    NASA Astrophysics Data System (ADS)

    Shi, Chang-Sheng; Zhang, Shuang-Nan; Li, Xiang-Dong

    2018-05-01

    We recalculate the modes of the magnetohydrodynamics (MHD) waves in the MHD model (Shi, Zhang & Li 2014) of the kilohertz quasi-periodic oscillations (kHz QPOs) in neutron star low mass X-ray binaries (NS-LMXBs), in which the compressed magnetosphere is considered. A method on point-by-point scanning for every parameter of a normal LMXBs is proposed to determine the wave number in a NS-LMXB. Then dependence of the twin kHz QPO frequencies on accretion rates (\\dot{M}) is obtained with the wave number and magnetic field (B*) determined by our method. Based on the MHD model, a new explanation of the parallel tracks, i.e. the slowly varying effective magnetic field leads to the shift of parallel tracks in a source, is presented. In this study, we obtain a simple power-law relation between the kHz QPO frequencies and \\dot{M}/B_{\\ast }^2 in those sources. Finally, we study the dependence of kHz quasi-periodic oscillation frequencies on the spin, mass and radius of a neutron star. We find that the effective magnetic field, the spin, mass and radius of a neutron star lead to the parallel tracks in different sources.

  12. Effect of the tidal-seismic resonance

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Zheng, Y.

    2017-12-01

    For a moon spiraling inward to its planet, the tidal force frequency of a moon is increasing. When the distance of the moon to the planet is close enough, the tidal force frequency can intrude into the frequency range of planet normal modes. Usually the football mode, also known as 0S2, has the lowest frequency. This mode is most likely to be excited and coupled first. When the tidal force has the same frequency with the normal modes, the resonance can happen. The existence of the topography or internal heterogeneities of the planet can have mode coupling. So the energy of gravity force with higher spatial frequencies can be transferred to the low spatial 0S2 mode. The resonant mode 0S2 can exert a negative torque to the rotating moon so its orbit decays. With our 3D numerical boundary element method which takes into account planet surface topography (i.e., Mars as example), we found that the closer the moon is to the planet, the greater falling rate of the moon would be. We applied our method to a planet with equal size of Mars and elastic constants in possible range. The vibration amplitude on the planet surface can reach to the scale of meters when as the moon drop down to about 1.04 radius of the planet to achieve resonance with the 0S2 mode. Our modeling showed that the influence of tidal force caused resonance could not be neglected in the process of moon falling. On the other hand, the resonance may also be able to speed up the accretion of the early forming planet by absorbing the dust of small asteroid nearby by the tidal-seismic resonance.

  13. Stabilization of Hypersonic Boundary Layers by Linear and Nonlinear Optimal Perturbations

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2017-01-01

    The effect of stationary, finite-amplitude, linear and nonlinear optimal perturbations on the modal disturbance growth in a Mach 6 axisymmetric flow over a 7 deg. half-angle cone with 0:126 mm nose radius and 0:305 m length is investigated. The freestream parameters (M = 6, Re(exp 1) = 18 x 10(exp. 6) /m) are selected to match the flow conditions of a previous experiment in the VKI H3 hypersonic tunnel. Plane-marching parabolized stability equations are used in conjunction with a partial-differential equation based planar eigenvalue analysis to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode and first-mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone; however, subharmonic first-mode instabilities, which are destabilized by the presence of the streaks, do reach N = 6 near the end of the cone. The highest stabilization is observed at streak amplitudes of approximately 20 percent of the freestream velocity. Because the use of initial disturbance profiles based on linear optimal growth theory may yield suboptimal control in the context of nonlinear streaks, the computational predictions are extended to nonlinear optimal growth theory. Results show that by using nonlinearly optimal perturbation leads to slightly enhanced stabilization of plane Mack mode disturbances as well as reduced destabilization of subharmonic first-mode disturbances.

  14. Suppression criteria of parasitic mode oscillations in a gyrotron beam tunnel

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Singh, T. P.; Sinha, A. K.

    2011-02-01

    This paper presents the design criteria of the parasitic mode oscillations suppression for a periodic, ceramic, and copper loaded gyrotron beam tunnel. In such a type of beam tunnel, the suppression of parasitic mode oscillations is an important design problem. A method of beam-wave coupling coefficient and its mathematical formulation are presented. The developed design criteria are used in the beam tunnel design of a 42 GHz gyrotron to be developed for the Indian TOKAMAK system. The role of the thickness and the radius of the beam tunnel copper rings to obtain the developed design criteria are also discussed. The commercially available electromagnetic code CST and the electron trajectory code EGUN are used for the simulations.

  15. Analysis of parasitic oscillations in 42 GHz gyrotron beam tunnel

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Singh, U.; Singh, T. P.; Sinha, A. K.

    2011-02-01

    Parasitic oscillation excitation analysis has been carried out for the 42 GHz gyrotron beam tunnel. This article presents a systematic approach for the analysis of parasitic oscillation excitation. The electron trajectory code EGUN has been used for the estimation of the electron beam parameters in the beam tunnel. The electromagnetic simulation code CST-MS has been used for the eigenmode and Q value analysis. The analysis of the parasitic oscillations has been performed for the symmetric TE modes and the first three cavity side copper rings. Four different approaches- the Q value study, the mode maxima-electron beam radius mismatching, the electron cyclotron frequency-mode excitation frequency mismatching and the backward wave interaction analysis- have been used for the parasitic oscillation analysis.

  16. Fourier mode analysis of slab-geometry transport iterations in spatially periodic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, E; Zika, M

    1999-04-01

    We describe a Fourier analysis of the diffusion-synthetic acceleration (DSA) and transport-synthetic acceleration (TSA) iteration schemes for a spatially periodic, but otherwise arbitrarily heterogeneous, medium. Both DSA and TSA converge more slowly in a heterogeneous medium than in a homogeneous medium composed of the volume-averaged scattering ratio. In the limit of a homogeneous medium, our heterogeneous analysis contains eigenvalues of multiplicity two at ''resonant'' wave numbers. In the presence of material heterogeneities, error modes corresponding to these resonant wave numbers are ''excited'' more than other error modes. For DSA and TSA, the iteration spectral radius may occur at these resonantmore » wave numbers, in which case the material heterogeneities most strongly affect iterative performance.« less

  17. Renormalization shielding effect on the Wannier-ridge mode for double-electron continua in partially ionized dense hydrogen plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590

    2016-01-15

    The influence of renormalization shielding on the Wannier threshold law for the double-electron escapes by the electron-impact ionization is investigated in partially ionized dense plasmas. The renormalized electron charge and Wannier exponent are obtained by considering the equation of motion in the Wannier-ridge including the renormalization shielding effect. It is found that the renormalization shielding effect reduces the magnitude of effective electron charge, especially, within the Bohr radius in partially ionized dense plasmas. The maximum position of the renormalized electron charge approaches to the center of the target atom with an increase of the renormalization parameter. In addition, the Wanniermore » exponent increases with an increase of the renormalization parameter. The variations of the renormalized electron charge and Wannier exponent due to the renormalization shielding effect are also discussed.« less

  18. Factors influencing the temporal growth rate of the high order TM{sub 0n} modes in the Ka-band overmoded Cherenkov oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Dapeng, E-mail: vipbenjamin@163.com; Shu, Ting; Ju, Jinchuan

    2015-06-15

    When the wavelength of overmoded Cherenkov oscillator goes into Ka-band, power handling capacity becomes an essential issue. Using the TM{sub 02} mode or higher order TM{sub 0n} modes as the operating mode is a potential solution. This paper is aimed to find some proper parameters to make the temporal growth rate of the TM{sub 02} mode higher in our previously studied Gigawatt (GW)-class Ka band oscillator. An accurate and fast calculation method of the “hot” dispersion equation is derived for rectangular corrugated SWSs, which are widely used in the high frequency Cherenkov devices. Then, factors that affect the temporal growthmore » rate of the high order TM{sub 0n} modes are analyzed, including the depth of corrugation, the radius of drift tube, and the diode voltage. Results show that, when parameters are chosen properly, the temporal growth rate of the TM{sub 02} mode can be as high as 0.3 ns{sup −1}.« less

  19. Sub-Alfvénic reduced magnetohydrodynamic equations for tokamaks

    NASA Astrophysics Data System (ADS)

    Sengupta, W.; Hassam, A. B.; Antonsen, T. M.

    2017-06-01

    A reduced set of magnetohydrodynamic (MHD) equations is derived, applicable to large aspect ratio tokamaks and relevant for dynamics that is sub-Alfvénic with respect to ideal ballooning modes. This ordering optimally allows sound waves, Mercier modes, drift modes, geodesic-acoustic modes (GAM), zonal flows and shear Alfvén waves. Wavelengths long compared to the gyroradius but comparable to the minor radius of a typical tokamak are considered. With the inclusion of resistivity, tearing modes, resistive ballooning modes, Pfirsch-Schluter cells and the Stringer spin-up are also included. A major advantage is that the resulting system is two-dimensional in space, and the system incorporates self-consistent and dynamic Shafranov shifts. A limitation is that the system is valid only in radial domains where the tokamak safety factor, , is close to rational. In the tokamak core, the system is well suited to study the sawtooth discharge in the presence of Mercier modes. The systematic ordering scheme and methodology developed are versatile enough to reduce the more general collisional two-fluid equations or possibly the Vlasov-Maxwell system in the MHD ordering.

  20. Transmission characteristics of femtosecond optical pulses in hollow-core fibers

    NASA Astrophysics Data System (ADS)

    Mohebbi, Mohammad

    2005-09-01

    Hollow-core fibers with fused silica and metal claddings are studied for transmission of femtosecond optical pulses at a wavelength of 800 nm. The measured transmission loss of a silver-coated hollow fiber with a core diameter of 250 μm is 0.44 dB/m. A bending loss of 1.1 dB/m was measured for this waveguide with a radius of curvature of 1 m. It is shown that the fundamental hybrid mode HE 11 has negligible pulse spreading. In the presence of higher order modes modal dispersion becomes dominant and depends strongly on the core diameter.

  1. Resolving the multipolar scattering modes of a submicron particle using parametric indirect microscopic imaging

    NASA Astrophysics Data System (ADS)

    Ullah, Kaleem; Liu, Xuefeng; Krasnok, Alex; Habib, Muhammad; Song, Li; Garcia-Camara, Braulio

    2018-07-01

    In this work, we show the spatial distribution of the scattered electromagnetic field of dielectric particles by using a new super-resolution method based on polarization modulation. Applying this technique, we were able to resolve the multipolar distribution of a Cu2O particle with a radius of 450 nm. In addition, FDTD and Mie simulations have been carried out to validate and confirm the experimental results. The results are helpful to understand the resonant modes of dielectric submicron particles which have a broad range of potential applications, such as all-optical devices or nanoantennas.

  2. Intercode comparison of gyrokinetic global electromagnetic modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Görler, T., E-mail: tobias.goerler@ipp.mpg.de; Tronko, N.; Hornsby, W. A.

    Aiming to fill a corresponding lack of sophisticated test cases for global electromagnetic gyrokinetic codes, a new hierarchical benchmark is proposed. Starting from established test sets with adiabatic electrons, fully gyrokinetic electrons, and electrostatic fluctuations are taken into account before finally studying the global electromagnetic micro-instabilities. Results from up to five codes involving representatives from different numerical approaches as particle-in-cell methods, Eulerian and Semi-Lagrangian are shown. By means of spectrally resolved growth rates and frequencies and mode structure comparisons, agreement can be confirmed on ion-gyro-radius scales, thus providing confidence in the correct implementation of the underlying equations.

  3. Control of neoclassical tearing modes by sawtooth control.

    PubMed

    Sauter, O; Westerhof, E; Mayoral, M L; Alper, B; Belo, P A; Buttery, R J; Gondhalekar, A; Hellsten, T; Hender, T C; Howell, D F; Johnson, T; Lamalle, P; Mantsinen, M J; Milani, F; Nave, M F F; Nguyen, F; Pecquet, A L; Pinches, S D; Podda, S; Rapp, J

    2002-03-11

    The onset of a neoclassical tearing mode (NTM) depends on the existence of a large enough seed island. It is shown in the Joint European Torus that NTMs can be readily destabilized by long-period sawteeth, such as obtained by sawtooth stabilization from ion-cyclotron heating or current drive. This has important implications for burning plasma scenarios, as alpha particles strongly stabilize the sawteeth. It is also shown that, by adding heating and current drive just outside the inversion radius, sawteeth are destabilized, resulting in shorter sawtooth periods and larger beta values being obtained without NTMs.

  4. Surface vibrational modes in disk-shaped resonators.

    PubMed

    Dmitriev, A V; Gritsenko, D S; Mitrofanov, V P

    2014-03-01

    The natural frequencies and distributions of displacement components for the surface vibrational modes in thin isotropic elastic disks are calculated. In particular, the research is focused on even solutions for low-lying resonant vibrations with large angular wave numbers. Several families of modes are found which are interpreted as modified surface modes of an infinitely long cylinder and Lamb modes of a plate. The results of calculation are compared with the results of the experimental measurements of vibrational modes generated by means of resonant excitation in duraluminum disk with radius of ≈90 mm and thickness of 16 mm in the frequency range of 130-200 kHz. An excellent agreement between the calculated and measured frequencies is found. Measurements of the structure of the resonant peaks show splitting of some modes. About a half of the measured modes has splitting Δfsplit/fmode at the level of the order of 10(-5). The Q-factors of all modes measured in vacuum lie in the interval (2…3)×10(5). This value is typical for duraluminum mechanical resonators in the ultrasonic frequency range. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Aerosol particle size distribution in the stratosphere retrieved from SCIAMACHY limb measurements

    NASA Astrophysics Data System (ADS)

    Malinina, Elizaveta; Rozanov, Alexei; Rozanov, Vladimir; Liebing, Patricia; Bovensmann, Heinrich; Burrows, John P.

    2018-04-01

  6. EFFECTS OF A DEEP MIXED SHELL ON SOLAR g-MODES, p-MODES, AND NEUTRINO FLUX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Charles L.

    2009-08-10

    A mixed-shell model that reflects g-modes away from the Sun's center is developed further by calibrating its parameters and evaluating a mixing mechanism: buoyancy. The shell roughly doubles g-mode oscillation periods and would explain why there is no definitive detection of their periods. But the shell has only minor effects on most p-modes. The model provides a mechanism for causing short-term fluctuations in neutrino flux and makes plausible the correlations between this flux and solar activity levels. Relations are derived for a shell heated asymmetrically by transient increases in nuclear burning in small 'hot spots'. The size of these spotsmore » and the timing of a heating event are governed by sets(l) of standing asymptotic g-modes, coupled by a maximal principle that greatly enhances their excitation and concentrates power toward the equator, assisting the detection of higher-l sets. Signals from all sets, except one, in the range 2 {<=} l {<=} 8 are identified by difference periods between consecutive radial states using the method of Garcia et al. and reinterpreting their latest spectrum. This confirms two detections of sets in a similar range of l by their rotation rates. The mean radius of shell mixing is r{sub m} = 0.16 R{sub sun}, which improves an earlier independent estimate of 0.18 by the author. The shell may cause the unexplained dip in measured sound speed at its location. Another sound speed error, centered near 0.67 R{sub sun}, and reversing flows in the same place with a period originally near 1.3 yr suggest that the g-modes are depositing there about 3% of the solar luminosity. That implies the shell at r{sub m} is receiving a similar magnitude of power, which would be enough energy to mix the corresponding shell in a standard solar model in <<10{sup 7} yr.« less

  7. Analysis of performance degradation in an electron heating dominant H-mode plasma after ECRH termination in EAST

    NASA Astrophysics Data System (ADS)

    Du, Hongfei; Ding, Siye; Chen, Jiale; Wang, Yifeng; Lian, Hui; Xu, Guosheng; Zhai, Xuemei; Liu, Haiqing; Zang, Qing; Lyu, Bo; Duan, Yanmin; Qian, Jinping; Gong, Xianzu

    2018-06-01

    In recent EAST experiments, significant performance degradation accompanied by a decrease of internal inductance is observed in an electron heating dominant H-mode plasma after the electron cyclotron resonance heating termination. The lower hybrid wave (LHW) deposition and effective electron heat diffusivity are calculated to explain this phenomenon. Analysis shows that the changes of LHW heating deposition rather than the increase of transport are responsible for the significant decrease in energy confinement (). The reason why the confinement degradation occurred on a long time scale could be attributed to both good local energy confinement in the core and also the dependence of LHW deposition on the magnetic shear. The electron temperature profile shows weaker stiffness in near axis region where electron heating is dominant, compared to that in large radius region. Unstable electron modes from low to high k in the core plasma have been calculated in the linear GYRO simulations, which qualitatively agree with the experimental observation. This understanding of the plasma performance degradation mechanism will help to find ways of improving the global confinement in the radio-frequency dominant scenario in EAST.

  8. Improving Calculation Accuracies of Accumulation-Mode Fractions Based on Spectral of Aerosol Optical Depths

    NASA Astrophysics Data System (ADS)

    Ying, Zhang; Zhengqiang, Li; Yan, Wang

    2014-03-01

    Anthropogenic aerosols are released into the atmosphere, which cause scattering and absorption of incoming solar radiation, thus exerting a direct radiative forcing on the climate system. Anthropogenic Aerosol Optical Depth (AOD) calculations are important in the research of climate changes. Accumulation-Mode Fractions (AMFs) as an anthropogenic aerosol parameter, which are the fractions of AODs between the particulates with diameters smaller than 1μm and total particulates, could be calculated by AOD spectral deconvolution algorithm, and then the anthropogenic AODs are obtained using AMFs. In this study, we present a parameterization method coupled with an AOD spectral deconvolution algorithm to calculate AMFs in Beijing over 2011. All of data are derived from AErosol RObotic NETwork (AERONET) website. The parameterization method is used to improve the accuracies of AMFs compared with constant truncation radius method. We find a good correlation using parameterization method with the square relation coefficient of 0.96, and mean deviation of AMFs is 0.028. The parameterization method could also effectively solve AMF underestimate in winter. It is suggested that the variations of Angstrom indexes in coarse mode have significant impacts on AMF inversions.

  9. Numerical aperture limits on efficient ball lens coupling of laser diodes to single-mode fibers with defocus to balance spherical aberration

    NASA Technical Reports Server (NTRS)

    Wilson, R. Gale

    1994-01-01

    The potential capabilities and limitations of single ball lenses for coupling laser diode radiation to single-mode optical fibers have been analyzed; parameters important to optical communications were specifically considered. These parameters included coupling efficiency, effective numerical apertures, lens radius, lens refractive index, wavelength, magnification in imaging the laser diode on the fiber, and defocus to counterbalance spherical aberration of the lens. Limiting numerical apertures in object and image space were determined under the constraint that the lens perform to the Rayleigh criterion of 0.25-wavelength (Strehl ratio = 0.80). The spherical aberration-defocus balance to provide an optical path difference of 0.25 wavelength units was shown to define a constant coupling efficiency (i.e., 0.56). The relative numerical aperture capabilities of the ball lens were determined for a set of wavelengths and associated fiber-core diameters of particular interest for single-mode fiber-optic communication. The results support general continuing efforts in the optical fiber communications industry to improve coupling links within such systems with emphasis on manufacturing simplicity, system packaging flexibility, relaxation of assembly alignment tolerances, cost reduction of opto-electronic components and long term reliability and stability.

  10. Sensitivity optimization in whispering gallery mode optical cylindrical biosensors

    NASA Astrophysics Data System (ADS)

    Khozeymeh, F.; Razaghi, M.

    2018-01-01

    Whispering-gallery-mode resonances propagated in cylindrical resonators have two angular and radial orders of l and i. In this work, the higher radial order whispering-gallery-mode resonances, (i = 1 - 4), at a fixed l are examined. The sensitivity of theses resonances is analysed as a function of the structural parameters of the cylindrical resonator like different radii and refractive index of composed material of the resonator. A practical application where cylindrical resonators are used for the measurement of glucose concentration in water is presented as a biosensor demonstrator. We calculate the wavelength shifts of the WG1-4, in several glucose/water solutions, with concentrations spanning from 0.0% to 9.0.% (weight/weight). Improved sensitivity can be achieved using multi-WGM cylindrical resonators with radius of R = 100 μm and resonator composed material of MgF 2 with refractive index of nc = 1.38. Also the effect of polarization on sensitivity is considered for all four WGMs. The best sensitivity of 83.07 nm/RIU for the fourth WGM with transverse magnetic polarization, is reported. These results propose optimized parameters aimed to fast designing of cylindrical resonators as optical biosensors, where both the sensitivity and the geometries can be optimized.

  11. An iterative algorithm for calculating stylus radius unambiguously

    NASA Astrophysics Data System (ADS)

    Vorburger, T. V.; Zheng, A.; Renegar, T. B.; Song, J.-F.; Ma, L.

    2011-08-01

    The stylus radius is an important specification for stylus instruments and is commonly provided by instrument manufacturers. However, it is difficult to measure the stylus radius unambiguously. Accurate profiles of the stylus tip may be obtained by profiling over an object sharper than itself, such as a razor blade. However, the stylus profile thus obtained is a partial arc, and unless the shape of the stylus tip is a perfect sphere or circle, the effective value of the radius depends on the length of the tip profile over which the radius is determined. We have developed an iterative, least squares algorithm aimed to determine the effective least squares stylus radius unambiguously. So far, the algorithm converges to reasonable results for the least squares stylus radius. We suggest that the algorithm be considered for adoption in documentary standards describing the properties of stylus instruments.

  12. Influence of modes of metal transfer on grain structure and direction of grain growth in low nickel austenitic stainless steel weld metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Manidipto; Saha, Saptarshi; Pal, Tapan Kumar, E-mail: tkpal.ju@gmail.com

    2015-04-15

    The present study elaborately discussed the effect of different modes of metal transfer (i.e., short circuit mode, spray mode and pulse mode) on grain structure and direction of grain growth in low nickel austenitic stainless steel weld metals. Electron backscattered diffraction (EBSD) analysis was used to study the grain growth direction and grain structure in weld metals. The changes in grain structure and grain growth direction were found to be essentially varied with the weld pool shape and acting forces induced by modes of metal transfer at a constant welding speed. Short circuit mode of metal transfer owing to highermore » Marangoni force (M{sub a}) and low electromagnetic force (R{sub m}) promotes the lower weld pool volume (Γ) and higher weld pool maximum radius (r{sub m}). Short circuit mode also shows curved and tapered columnar grain structures and the grain growth preferentially occurred in <001> direction. In contrast, spray mode of metal transfer increases the Γ and reduces the r{sub m} values due to very high R{sub m} and typically reveals straight and broad columnar grain structures with preferential growth direction in <111>. In the pulse mode of metal transfer relatively high M{sub a} and R{sub m} simultaneously increase the weld pool width and the primary penetration which might encourage relatively complex grain growth directions in the weld pool and cause a shift of major intensity from <001> to <111> direction. It can also be concluded that the fusion zone grain structure and direction of grain growth are solely dependent on modes of metal transfer and remain constant for a particular mode of metal transfer irrespective of filler wire used. - Highlights: • Welded joints of LNiASS were prepared by varying modes of metal transfer. • Weld pool shape, grain structure and grain growth direction were studied. • Short circuit mode shows curved and tapered grain growth in <001> direction. • Spray mode shows straight and broad columnar grain growth in <111> direction. • Pulse mode shows complex grain growth with a shift in growth direction.« less

  13. Optical extinction efficiency measurements on fine and accumulation mode aerosol using single particle cavity ring-down spectroscopy.

    PubMed

    Cotterell, Michael I; Mason, Bernard J; Preston, Thomas C; Orr-Ewing, Andrew J; Reid, Jonathan P

    2015-06-28

    A new experiment is presented for the measurement of single aerosol particle extinction efficiencies, Qext, combining cavity ring-down spectroscopy (CRDS, λ = 405 nm) with a Bessel beam trap (λ = 532 nm) in tandem with phase function (PF) measurements. This approach allows direct measurements of the changing optical cross sections of individual aerosol particles over indefinite time-frames facilitating some of the most comprehensive measurements of the optical properties of aerosol particles so far made. Using volatile 1,2,6-hexanetriol droplets, Qext is measured over a continuous radius range with the measured Qext envelope well described by fitted cavity standing wave (CSW) Mie simulations. These fits allow the refractive index at 405 nm to be determined. Measurements are also presented of Qext variation with RH for two hygroscopic aqueous inorganic systems ((NH4)2SO4 and NaNO3). For the PF and the CSW Mie simulations, the refractive index, nλ, is parameterised in terms of the particle radius. The radius and refractive index at 532 nm are determined from PFs, while the refractive index at 405 nm is determined by comparison of the measured Qext to CSW Mie simulations. The refractive indices determined at the shorter wavelength are larger than at the longer wavelength consistent with the expected dispersion behaviour. The measured values at 405 nm are compared to estimates from volume mixing and molar refraction mixing rules, with the latter giving superior agreement. In addition, the first single-particle Qext measurements for accumulation mode aerosol are presented for droplets with radii as small as ∼300 nm.

  14. Simple Correctors for Elimination of High-Order Modes in Corrugated Waveguide Transmission Lines

    PubMed Central

    Kowalski, Elizabeth J.; Shapiro, Michael A.; Temkin, Richard J.

    2014-01-01

    When using overmoded corrugated waveguide transmission lines for high power applications, it is necessary to control the mode content of the system. Ideally, overmoded corrugated transmission lines operate in the fundamental HE11 mode and provide low losses for long distances. Unwanted higher order modes (HOMs), particularly LP11 and HE12, are often excited in the experimental systems due to practical misalignments in the transmission line system. This paper discusses how the unwanted modes propagate along with the fundamental mode in the transmission line system by formulating an equation that relates the center of power offset and angle of propagation of a beam (for the HE11 and LP11 modes) or the waist size and phase front radius of curvature of a beam (for the HE11 and HE12 modes). By introducing two miter bend correctors into the transmission system—miter bends that have slightly angled or ellipsoidal mirrors—the HOMs can be precisely manipulated in the system. This technique can be used to eliminate small quantities of unwanted modes, thereby creating a nearly pure fundamental mode beam with minimal losses. Examples of these applications are calculated and show the theoretical conversion of up to 10% HOM content into the fundamental HE11 mode with minimal losses. PMID:25067859

  15. Hysteresis in the tearing mode locking/unlocking due to resonant magnetic perturbations in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Fridström, R.; Frassinetti, L.; Brunsell, P. R.

    2015-10-01

    The physical mechanisms behind the hysteresis in the tearing mode locking and unlocking to a resonant magnetic perturbation (RMP) are experimentally studied in EXTRAP T2R reversed-field pinch. The experiments show that the electromagnetic and the viscous torque increase with increasing perturbation amplitude until the mode locks to the wall. At the wall-locking, the plasma velocity reduction profile is peaked at the radius where the RMP is resonant. Thereafter, the viscous torque drops due to the relaxation of the velocity in the central plasma. This is the main reason for the hysteresis in the RMP locking and unlocking amplitude. The increased amplitude of the locked tearing mode produces further deepening of the hysteresis. Both experimental results are in qualitative agreement with the model in Fitzpatrick et al (2001 Phys. Plasmas 8 4489)

  16. Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis.

    PubMed

    Xu, Pengbai; Dong, Yongkang; Zhang, Juwang; Zhou, Dengwang; Jiang, Taofei; Xu, Jinlong; Zhang, Hongying; Zhu, Tao; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi

    2015-08-24

    We propose a bend-insensitive distributed Brillouin optical fiber sensing by using a singlemode-multimode-singlemode optical fiber structure for the first time to the best of our knowledge. The sensing fiber is a graded-index multimode fiber (GI-MMF) sandwiched by two standard single-mode fibers (SMFs) with central-alignment splicing at the interface between GI-MMF and SMF to excite the fundamental mode in GI-MMF. The sensing system can resist a minimal bend radius of 1.25mm while maintain the measurement performance, with which the measured coefficients of strain and temperature are 421.6MHz/% and 0.826MHz/°C, respectively. We also demonstrate that the higher-order modes excited in GI-MMF can be easily influenced by bending, so that exciting the fundamental mode is essential for bend-insensitive distributed sensing.

  17. Lasing in optimized two-dimensional iron-nail-shaped rod photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Soon-Yong; Moon, Seul-Ki; Yang, Jin-Kyu, E-mail: jinkyuyang@kongju.ac.kr

    2016-03-15

    We demonstrated lasing at the Γ-point band-edge (BE) modes in optimized two-dimensional iron-nail-shaped rod photonic crystals by optical pulse pumping at room temperature. As the radius of the rod increased quadratically toward the edge of the pattern, the quality factor of the Γ-point BE mode increased up to three times, and the modal volume decreased to 56% compared with the values of the original Γ-point BE mode because of the reduction of the optical loss in the horizontal direction. Single-mode lasing from an optimized iron-nail-shaped rod array with an InGaAsP multiple quantum well embedded in the nail heads was observedmore » at a low threshold pump power of 160 μW. Real-image-based numerical simulations showed that the lasing actions originated from the optimized Γ-point BE mode and agreed well with the measurement results, including the lasing polarization, wavelength, and near-field image.« less

  18. A Simple Model of Global Aerosol Indirect Effects

    NASA Technical Reports Server (NTRS)

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, Kirsty; Carslaw, Kenneth; Pierce, Jeffrey; Bauer, Susanne; Adams, Peter

    2013-01-01

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically based model expresses the aerosol indirect effect (AIE) using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of AIEs that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present-day AIEs as low as 5 W/sq m and as high as 0.3 W/sq m are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on AIE uncertainty on uncertainty in parameter values.

  19. Computational fluid mechanics

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.

    1993-01-01

    Two papers are included in this progress report. In the first, the compressible Navier-Stokes equations have been used to compute leading edge receptivity of boundary layers over parabolic cylinders. Natural receptivity at the leading edge was simulated and Tollmien-Schlichting waves were observed to develop in response to an acoustic disturbance, applied through the farfield boundary conditions. To facilitate comparison with previous work, all computations were carried out at a free stream Mach number of 0.3. The spatial and temporal behavior of the flowfields are calculated through the use of finite volume algorithms and Runge-Kutta integration. The results are dominated by strong decay of the Tollmien-Schlichting wave due to the presence of the mean flow favorable pressure gradient. The effects of numerical dissipation, forcing frequency, and nose radius are studied. The Strouhal number is shown to have the greatest effect on the unsteady results. In the second paper, a transition model for low-speed flows, previously developed by Young et al., which incorporates first-mode (Tollmien-Schlichting) disturbance information from linear stability theory has been extended to high-speed flow by incorporating the effects of second mode disturbances. The transition model is incorporated into a Reynolds-averaged Navier-Stokes solver with a one-equation turbulence model. Results using a variable turbulent Prandtl number approach demonstrate that the current model accurately reproduces available experimental data for first and second-mode dominated transitional flows. The performance of the present model shows significant improvement over previous transition modeling attempts.

  20. Study of optical reflectance properties in 1D annular photonic crystal containing double negative (DNG) metamaterials

    NASA Astrophysics Data System (ADS)

    Srivastava, Sanjeev K.; Aghajamali, Alireza

    2016-05-01

    Theoretical investigation of photonic band gaps or reflection bands in one-dimensional annular photonic crystal (APC) containing double negative (DNG) metamaterials and air has been presented. The proposed structure consists of the alternate layers of dispersive DNG material and air immersed in free space. In order to study photonic band gaps we obtain the reflectance spectrum of the annular PC by employing the transfer matrix method (TMM) in the cylindrical waves for both TE and TM polarizations. In this work we study the effect of azimuthal mode number (m) and starting radius (ρ0) on the three band gaps viz. zero averaged refractive index (zero-nbar) gap, zero permittivity (zero- ε) and zero permeability (zero- μ) gaps. It is found that for m ≥ 1 , zero- μ gap appears in TE mode and zero- ε gap appears in TM mode. The width of both zero- μ and zero- ε gap increases by increasing m values, but the enhancement of zero- μ gap is more appreciable. Also, the effect of ρ0 on the three band gaps (reflection bands) of annular PC structure at the given m-number has been studied, for both TE and TM polarizations. The result shows that in both polarizations zero- ε and zero- μ gaps decreases when ρ0 increases, whereas zero-nbar gap remains invariant.

  1. Plasma response measurements of non-axisymmetric magnetic perturbations on DIII-D via soft x-ray imaging

    DOE PAGES

    Shafer, Morgan W.; Unterberg, Ezekial A.; Wingen, Andreas; ...

    2014-12-29

    Recent observations on DIII-D have advanced the understanding of plasma response to applied resonant magnetic perturbations (RMPs) in both H-mode and L-mode plasmas. Three distinct 3D features localized in minor radius are imaged via filtered soft x-ray emission: (i) the formation of lobes extending from the unperturbed separatrix in the X-point region at the plasma boundary, (ii) helical kink-like perturbations in the steep-gradient region inside the separatrix, and (iii) amplified islands in the core of a low-rotation L-mode plasma. In this study, these measurements are used to test and to validate plasma response models, which are crucial for providing predictivemore » capability of edge-localized mode control. In particular, vacuum and two-fluid resistive magnetohydrodynamic(MHD) responses are tested in the regions of these measurements. At the plasma boundary in H-mode discharges with n = 3 RMPs applied, measurements compare well to vacuum-field calculations that predict lobe structures. Yet in the steep-gradient region, measurements agree better with calculations from the linear resistive two-fluid MHD code, M3D-C1. Relative to the vacuum fields, the resistive two-fluid MHD calculations show a reduction in the pitch-resonant components of the normal magnetic field (screening), and amplification of non-resonant components associated with ideal kink modes. However, the calculations still over-predict the amplitude of the measuredperturbation by a factor of 4. In a slowly rotating L-mode plasma with n = 1 RMPs, core islands are observed amplified from vacuum predictions. Finally, these results indicate that while the vacuum approach describes measurements in the edge region well, it is important to include effects of extended MHD in the pedestal and deeper in the plasma core.« less

  2. A static acoustic signature system for the analysis of dynamic flight information

    NASA Technical Reports Server (NTRS)

    Ramer, D. J.

    1978-01-01

    The Army family of helicopters was analyzed to measure the polar octave band acoustic signature in various modes of flight. A static array of calibrated microphones was used to simultaneously acquire the signature and differential times required to mathematically position the aircraft in space. The signature was then reconstructed, mathematically normalized to a fixed radius around the aircraft.

  3. Electromagnetic holographic sensitivity field of two-phase flow in horizontal wells

    NASA Astrophysics Data System (ADS)

    Zhang, Kuo; Wu, Xi-Ling; Yan, Jing-Fu; Cai, Jia-Tie

    2017-03-01

    Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography theory and Radon inverse transform to derive the expression of the electromagnetic holographic sensitivity field (EMHSF). Then, we apply the EMHSF calculated by using finite-element methods to flow simulations and holographic imaging. The results suggest that the EMHSF based on the partial derivative of radius of the complex electric potential φ is closely linked to the Radon inverse transform and encompasses the sensitivities of the amplitude and phase data. The flow images obtained with inversion using EMHSF better agree with the actual flow patterns. The EMHSF overcomes the limitations of traditional single-mode sensitivity fields.

  4. Evaluation of a series hybrid thrust bearing at DN values to three million. 2: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Eusepi, M.; Winn, L. W.

    1975-01-01

    Results of tests made to determine the experimental performance of a series hybrid bearing are reported. The bearing consists of a 150 mm ball bearing and a centrifugally actuated, conical, fluid film bearing fitting an envelope with an outer radius of 86.4 mm (3.4 in.) and inner radius of 71 mm (2.8 in.). Tests were conducted up to 16,500 rpm, at which speed an axial load of 15,568 N (3500 lb) was safely supported by the hybrid bearing system. Through the employment of the series hybrid bearing principle, it was possible to reduce the effective ball bearing speed to approximately one-half of the shaft speed. A reduction of this magnitude should result in a tenfold increase in the ball bearing fatigue life. A successful simulation of fluid film bearing lubricant supply failure, performed repeatedly at an operating speed of 10,000 rpm, resulted in complete and smooth change over to full scale ball bearing operation when the oil supply to the fluid film bearing was discontinued. Reactivation of the fluid film supply system produced a flawless return to the original mode of hybrid operation.

  5. Direct numerical simulation of turbulence in a bent pipe

    NASA Astrophysics Data System (ADS)

    Schlatter, Philipp; Noorani, Azad

    2013-11-01

    A series of direct numerical simulations of turbulent flow in a bent pipe is presented. The setup employs periodic (cyclic) boundary conditions in the axial direction, leading to a nominally infinitely long pipe. The discretisation is based on the high-order spectral element method, using the code Nek5000. Four different curvatures, defined as the ratio between pipe radius and coil radius, are considered: κ = 0 (straight), 0.01 (mild curvature), 0.1 and 0.3 (strong curvature), at bulk Reynolds numbers of up to 11700 (corresponding to Reτ = 360 in the straight pipe case). The result show the turbulence-reducing effect of the curvature (similar to rotation), leading close to relaminarisation in the inner side; the outer side, however, remains fully turbulent. Prpoer orthogonal decomposition (POD) is used to extract the dominant modes, in an effort to explain low-frequency switching of sides inside the pipe. A number of additional interesting features are explored, which include sub-straight and sub-laminar drag for specific choices of curvature and Reynolds number: In particular the case with sub-laminar drag is investigated further, and our analysis shows the existence of a spanwise wave in the bent pipe, which in fact leads to lower overall pressure drop.

  6. A demonstration of beam intensity modulation without loss of charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackenzie, G.H.; Rawnsley, W.R.; Lee, R.

    1995-09-01

    The large acceptance and the simplicity of H{sup {minus}} extraction makes practical unusual modes of cyclotron operation. RF equipment, initially installed for H{sup {minus}} extraction at TRIUMF, has been used to modulate the beam intensity at the extraction radius. This equipment consists of a 92 MHz, 150 kV cavity (AAC) and an RFD (11.5 MHz, 20 kV). The AAC augments the acceleration provided by the main 23 MHz, RF system; the RFD excites radial betatron oscillations. These devices may be operated at frequencies slightly different from their design multiple; their effect then beats with the main RF. In this modemore » the AAC, for example, alternately reduces the rate of acceleration, thus increasing the overlap of turns, then enhances it, sweeping the clustered turns onto a probe or foil. Operating the AAC or RFD in this manner gathers the bulk of the charge into peaks a few microseconds wide and spaced between 6 and 50 {micro}s. Changing the frequency offset alters the spacing. The peak to valley ratio was 23:1 and all beam was transmitted to the extraction radius.« less

  7. Mass and Radius Constraints Using Magnetar Giant Flare Oscillations

    NASA Astrophysics Data System (ADS)

    Deibel, Alex T.; Steiner, A. W.; Brown, E. F.

    2013-04-01

    We extend the study of oscillating neutron stars to include observed magnetic field strengths. The strong magnetic field will alter the equilibrium composition of the outer neutron star crust. We construct a new neutron star crust model which predicts nuclear masses with an accuracy very close to that of the Finite Range Droplet Model. The mass model for equilibrium nuclei also includes recent developments in the nuclear physics, in particular, shell corrections and an updated neutron-drip line. We perturb our crust model to predict axial crust modes and assign them to observed giant flare quasi-periodic oscillation (QPO) frequencies from SGR 1806-20. The QPOs associated with the fundamental and harmonic crust modes can be used to constrain magnetar masses and radii. We use these modes and the phenomenological equations of state from Steiner et al. to find a magnetar crust which reproduces observations of SGR 1806-20. We find magnetar crusts which match observations for various magnetic field strengths and values of entrainment of the free neutron gas in the inner crust. For a crust without a magnetic field we obtain the approximate values of M = 1.35 Msun and R = 11.85 km. For a magnetized crust with the surface dipole field of SGR 1806-20 we obtain the approximate values of M = 1.25 Msun and R = 12.41 km. If there is less entrainment of the free neutron gas the magnetar requires a larger mass and radius to reproduce observations.

  8. Bidirectional tornado modes on the Joint European Torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandquist, P.; Sharapov, S. E.; Lisak, M.

    In discharges on the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] with safety factor q(0)<1 and high-power ion cyclotron resonance heating (ICRH), monster sawtooth crashes are preceded by frequency sweeping 'tornado modes' in the toroidal Alfven eigenmode frequency range. A suite of equilibrium and spectral magnetohydrodynamical codes is used for explaining the observed evolution of the tornado mode frequency and for identifying temporal evolution of the safety factor inside the q=1 radius just before sawtooth crashes. In some cases, the tornado modes are observed simultaneously with both positive and negative toroidal modemore » numbers. Hence, a free energy source other than the radial gradient of the energetic ion pressure exciting these modes is sought. The distribution function of the ICRH-accelerated ions is assessed with the SELFO code [J. Hedin et al., Nucl. Fusion 42, 527 (2002)] and energetic particle drive due to the velocity space anisotropy of ICRH-accelerated ions is considered analytically as the possible source for excitation of bidirectional tornado modes.« less

  9. Electrostatic drift instability in a magnetotail configuration: The role of bouncing electrons

    NASA Astrophysics Data System (ADS)

    Fruit, G.; Louarn, P.; Tur, A.

    2017-03-01

    To understand the possible destabilization of two-dimensional current sheets, a kinetic model is proposed to describe the resonant interaction between electrostatic modes and trapped electrons that bounce within the sheet. This work follows the initial investigation by Tur, Louarn, and Yanovsky [Phys. Plasmas 17, 102905 (2010)] and Fruit, Louarn, and Tur [Phys. Plasmas 20, 022113 (2013)] that is revised and extended. Using a quasi-dipolar equilibrium state, the linearized gyro-kinetic Vlasov equation is solved for electrostatic fluctuations with a period of the order of the electron bounce period. Using an appropriated Fourier expansion of the particle motion along the magnetic field, the complete time integration of the non-local perturbed distribution functions is performed. The dispersion relation for electrostatic modes is then obtained through the quasineutrality condition. It is found that for a mildly stretched configuration ( L ˜8 ), strongly unstable electrostatic modes may develop in the current sheet with the growth rate of the order of a few seconds provided that the background density gradient responsible for the diamagnetic drift effects is sharp enough: typical length scale over one Earth radius or less. However, when this condition in the density gradient is not met, these electrostatic modes grow too slowly to be accountable for a rapid destabilization of the magnetic structure. This strong but finely tuned instability may offer opportunities to explain features in magnetospheric substorms.

  10. Reynolds Number Effects on Leading Edge Radius Variations of a Supersonic Transport at Transonic Conditions

    NASA Technical Reports Server (NTRS)

    Rivers, S. M. B.; Wahls, R. A.; Owens, L. R.

    2001-01-01

    A computational study focused on leading-edge radius effects and associated Reynolds number sensitivity for a High Speed Civil Transport configuration at transonic conditions was conducted as part of NASA's High Speed Research Program. The primary purposes were to assess the capabilities of computational fluid dynamics to predict Reynolds number effects for a range of leading-edge radius distributions on a second-generation supersonic transport configuration, and to evaluate the potential performance benefits of each at the transonic cruise condition. Five leading-edge radius distributions are described, and the potential performance benefit including the Reynolds number sensitivity for each is presented. Computational results for two leading-edge radius distributions are compared with experimental results acquired in the National Transonic Facility over a broad Reynolds number range.

  11. Shape of a slowly rotating star measured by asteroseismology

    PubMed Central

    Gizon, Laurent; Sekii, Takashi; Takata, Masao; Kurtz, Donald W.; Shibahashi, Hiromoto; Bazot, Michael; Benomar, Othman; Birch, Aaron C.; Sreenivasan, Katepalli R.

    2016-01-01

    Stars are not perfectly spherically symmetric. They are deformed by rotation and magnetic fields. Until now, the study of stellar shapes has only been possible with optical interferometry for a few of the fastest-rotating nearby stars. We report an asteroseismic measurement, with much better precision than interferometry, of the asphericity of an A-type star with a rotation period of 100 days. Using the fact that different modes of oscillation probe different stellar latitudes, we infer a tiny but significant flattening of the star’s shape of ΔR/R = (1.8 ± 0.6) × 10−6. For a stellar radius R that is 2.24 times the solar radius, the difference in radius between the equator and the poles is ΔR = 3 ± 1 km. Because the observed ΔR/R is only one-third of the expected rotational oblateness, we conjecture the presence of a weak magnetic field on a star that does not have an extended convective envelope. This calls to question the origin of the magnetic field. PMID:28138541

  12. Plastic deformation of tubular crystals by dislocation glide.

    PubMed

    Beller, Daniel A; Nelson, David R

    2016-09-01

    Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.

  13. Birefringent corrugated waveguide

    DOEpatents

    Moeller, Charles P.

    1990-01-01

    A corrugated waveguide having a circular bore and noncircularly symmetric corrugations, and preferably elliptical corrugations, provides birefringence for rotation of polarization in the HE.sub.11 mode. The corrugated waveguide may be fabricated by cutting circular grooves on a lathe in a cylindrical tube or rod of aluminum of a diameter suitable for the bore of the waveguide, and then cutting an approximation to ellipses for the corrugations using a cutting radius R.sub.0 from the bore axis that is greater than the bore radius, and then making two circular cuts using a radius R.sub.1 less than R.sub.0 at centers +b and -b from the axis of the waveguide bore. Alternatively, stock for the mandrel may be formed with an elliptical transverse cross section, and then only the circular grooves need be cut on a lathe, leaving elliptical corrugations between the grooves. In either case, the mandrel is first electroplated and then dissolved leaving a corrugated waveguide with noncircularly symmetric corrugations. A transition waveguide is used that gradually varies from circular to elliptical corrugations to couple a circularly corrugated waveguide to an elliptically corrugated waveguide.

  14. Transverse-electric plasmonic modes of cylindrical graphene-based waveguide at near-infrared and visible frequencies

    PubMed Central

    Kuzmin, Dmitry A.; Bychkov, Igor V.; Shavrov, Vladimir G.; Kotov, Leonid N.

    2016-01-01

    Transverse-electric (TE) surface plasmons (SPs) are very unusual for plasmonics phenomenon. Graphene proposes a unique possibility to observe these plasmons. Due to transverse motion of carriers, TE SPs speed is usually close to bulk light one. In this work we discuss conditions of TE SPs propagation in cylindrical graphene-based waveguides. We found that the negativity of graphene conductivity’s imaginary part is not a sufficient condition. The structure supports TE SPs when the core radius of waveguide is larger than the critical value Rcr. Critical radius depends on the light frequency and the difference of permittivities inside and outside the waveguide. Minimum value of Rcr is comparable with the wavelength of volume wave and corresponds to interband carriers transition in graphene. We predict that use of multilayer graphene will lead to decrease of critical radius. TE SPs speed may differ more significantly from bulk light one in case of epsilon-near-zero core and shell of the waveguide. Results may open the door for practical applications of TE SPs in optics, including telecommunications. PMID:27225745

  15. Plastic deformation of tubular crystals by dislocation glide

    NASA Astrophysics Data System (ADS)

    Beller, Daniel A.; Nelson, David R.

    2016-09-01

    Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.

  16. Bispectrum from open inflation

    NASA Astrophysics Data System (ADS)

    Sugimura, Kazuyuki; Komatsu, Eiichiro

    2013-11-01

    We calculate the bispectrum of primordial curvature perturbations, ζ, generated during ``open inflation.'' Inflation occurs inside a bubble nucleated via quantum tunneling from the background false vacuum state. Our universe lives inside the bubble, which can be described as a Friedmann-Lemaȋtre-Robertson-Walker (FLRW) universe with negative spatial curvature, undergoing slow-roll inflation. We pay special attention to the issue of an initial state for quantum fluctuations. A ``vacuum state'' defined by a positive-frequency mode in de Sitter space charted by open coordinates is different from the Euclidean vacuum (which is equivalent to the so-called ``Bunch-Davies vacuum'' defined by a positive-frequency mode in de Sitter space charted by flat coordinates). Quantum tunneling (bubble nucleation) then modifies the initial state away from the original Euclidean vacuum. While most of the previous study on modifications of the initial quantum state introduces, by hand, an initial time at which the quantum state is modified as well as the form of the modification, an effective initial time naturally emerges and the form is fixed by quantum tunneling in open inflation models. Therefore, open inflation enables a self-consistent computation of the effect of a modified initial state on the bispectrum. We find a term which goes as langleζk1ζk2ζk3ranglepropto1/k12k34 in the so-called squeezed configurations, k3 << k1 ≈ k2, in agreement with the previous study on modifications of the initial state. The bispectrum in the exact folded limit, e.g., k1 = k2+k3, is also enhanced and remains finite. However, these terms are exponentially suppressed when the wavelength of ζ is smaller than the curvature radius of the universe. The leading-order bispectrum is equal to the usual one from single-field slow-roll inflation; the terms specific for open inflation arise only in the sub-leading order when the wavelength of ζ is smaller than the curvature radius.

  17. Dimensionless size scaling of intrinsic rotation in DIII-D

    DOE PAGES

    deGrassie, John S.; Solomon, Wayne M.; Rice, J. E.; ...

    2016-08-01

    A dimensionless empirical scaling for intrinsic toroidal rotation is given; M A ~β Nρ*, where M A is the toroidal velocity divided by the Alfvén velocity, β N the usual normalized β value, and ρ* is the ion gyroradius divided by the minor radius. This scaling describes well experimental data from DIII-D, and also some published data from C-Mod and JET. The velocity used in this scaling is in an outer location in minor radius, outside of the interior core and inside of the large gradient edge region in H-mode conditions. Furthermore, this scaling establishes the basic magnitude of themore » intrinsic toroidal rotation and its relation to the rich variety of rotation profiles that can be realized for intrinsic conditions is discussed.« less

  18. Differences in liquid cloud droplet effective radius and number concentration estimates between MODIS Collections 5.1 and 6 over global oceans.

    PubMed

    Rausch, John; Meyer, Kerry; Bennartz, Ralf; Platnick, Steven

    2017-01-01

    Differences in cloud droplet effective radius and cloud droplet number concentration (CDNC) estimates inferred from the Aqua MODIS Collections 5.1 and 6 cloud products (MYD06) are examined for warm clouds over global oceans for the year 2008. Individual pixel level retrievals for both collections are aggregated to 1° × 1° and compared globally and regionally for the three main spectral channel pairs used for MODIS cloud optical property retrievals. Comparisons between both collections are performed for cases in which all three effective radii retrievals are classified by the MODIS Cloud Product as valid. The contribution to the observed differences of several key MYD06 Collection 6 algorithm updates are also explored, with a focus on changes to the surface reflectance model, assumed solar irradiance, above cloud emission, cloud top pressure, and pixel registration. Global results show a neutral to positive (> 50 cm -3 ) change for C6-derived CDNC relative to C5.1 for the 1.6 µm and 2.1 µm channel retrievals, corresponding to a neutral to -2 µm difference in droplet effective radius. For 3.7 µm retrievals, CDNC results show a negative change in the tropics, with differences transitioning toward positive values with increasing latitude spanning -25 to +50 cm -3 related to a +2.5 to -1 µm transition in effective radius. Cloud optical thickness differences were small relative to effective radius, and found to not significantly impact CDNC estimates. Regionally, the magnitude and behavior of the annual CDNC cycle are compared for each effective radius retrieval. Results from this study indicate significant intercollection differences in aggregated values of effective radius due to changes to the pre-computed retrieval lookup tables for ocean scenes, changes to retrieved cloud top pressure, solar irradiance, or above cloud thermal emission, depending upon spectral channel. The observed differences between collections may have implications for existing MODIS derived climatologies and validation studies of effective radius and CDNC.

  19. Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Matsko, Andrey; Maleki, Lute

    2004-01-01

    An experimental tunable, narrow-band-pass electro-optical filter is based on a whispering-gallery resonator. This device is a prototype of tunable filters needed for the further development of reconfigurable networking wavelength-division multiplexers and communication systems that utilize radio-frequency (more specifically, microwave) subcarrier signals on optical carrier signals. The characteristics of whispering-gallery resonators that make them attractive for such applications include high tuning speed, compactness, wide tuning range, low power consumption, and compatibility with single-mode optical fibers. In addition, relative to Fabry-Perot resonators, these devices offer advantages of greater robustness and lower cost. As described in several prior NASA Tech Briefs articles, a whispering-gallery resonator is a spheroidal, disk-like, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. The experimental whispering-gallery tunable filter (see figure) is made from a disk of Z-cut LiNbO3 of 4.8-mm diameter and 0.17-mm thickness. The perimeter of the disk is rounded to a radius of curvature of 100 m. Metal coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery modes by means of a diamond prism. Another diamond prism is used to couple light from the whispering-gallery modes to an output optical fiber. This device is designed and operated to exploit transverse magnetic (TM) whispering- gallery modes, rather than transverse electric (TE) modes because the resonance quality factors (Q values) of the TM modes are higher. If Q values were not of major concern, it would be better to use the TE modes because the electro-optical shifts of the TE modes are 3 times those of the TM modes.

  20. Ion and electron dynamics generating the Hall current in the exhaust far downstream of the reconnection x-line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimoto, Keizo, E-mail: keizo.fujimoto@nao.ac.jp; Takamoto, Makoto

    2016-01-15

    We have investigated the ion and electron dynamics generating the Hall current in the reconnection exhaust far downstream of the x-line where the exhaust width is much larger than the ion gyro-radius. A large-scale particle-in-cell simulation shows that most ions are accelerated through the Speiser-type motion in the current sheet formed at the center of the exhaust. The transition layers formed at the exhaust boundary are not identified as slow mode shocks. (The layers satisfy mostly the Rankine-Hugoniot conditions for a slow mode shock, but the energy conversion hardly occurs there.) We find that the ion drift velocity is modifiedmore » around the layer due to a finite Larmor radius effect. As a result, the ions are accumulated in the downstream side of the layer, so that collimated ion jets are generated. The electrons experience two steps of acceleration in the exhaust. The first is a parallel acceleration due to the out-of-plane electric field E{sub y} which has a parallel component in most area of the exhaust. The second is a perpendicular acceleration due to E{sub y} at the center of the current sheet and the motion is converted to the parallel direction. Because of the second acceleration, the electron outflow velocity becomes almost uniform over the exhaust. The difference in the outflow profile between the ions and electrons results in the Hall current in large area of the exhaust. The present study demonstrates the importance of the kinetic treatments for collisionless magnetic reconnection even far downstream from the x-line.« less

  1. Physics basis for an advanced physics and advanced technology tokamak power plant configuration: ARIES-ACT1

    DOE PAGES

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; ...

    2015-01-01

    Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized β N ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches β N = 5.28 with B T = 6.75, while the peaked pressure case reaches β N < 5.15. Fast particle magnetohydrodynamicmore » stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×10 20/m 3, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/n Gr = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.« less

  2. Effects of initial radius of the interface and Atwood number on nonlinear saturation amplitudes in cylindrical Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wanhai; LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190; Yu, Changping

    2014-11-15

    Nonlinear saturation amplitudes (NSAs) of the first two harmonics in classical Rayleigh-Taylor instability (RTI) in cylindrical geometry for arbitrary Atwood numbers have been analytically investigated considering nonlinear corrections up to the fourth-order. The NSA of the fundamental mode is defined as the linear (purely exponential) growth amplitude of the fundamental mode at the saturation time when the growth of the fundamental mode (first harmonic) is reduced by 10% in comparison to its corresponding linear growth, and the NSA of the second harmonic can be obtained in the same way. The analytic results indicate that the effects of the initial radiusmore » of the interface (r{sub 0}) and the Atwood number (A) play an important role in the NSAs of the first two harmonics in cylindrical RTI. On the one hand, the NSA of the fundamental mode first increases slightly and then decreases quickly with increasing A. For given A, the smaller the r{sub 0}/λ (with λ perturbation wavelength) is, the larger the NSA of the fundamental mode is. When r{sub 0}/λ is large enough (r{sub 0}≫λ), the NSA of the fundamental mode is reduced to the prediction of previous literatures within the framework of third-order perturbation theory [J. W. Jacobs and I. Catton, J. Fluid Mech. 187, 329 (1988); S. W. Haan, Phys. Fluids B 3, 2349 (1991)]. On the other hand, the NSA of the second harmonic first decreases quickly with increasing A, reaching a minimum, and then increases slowly. Furthermore, the r{sub 0} can reduce the NSA of the second harmonic for arbitrary A at r{sub 0}≲2λ while increase it for A ≲ 0.6 at r{sub 0}≳2λ. Thus, it should be included in applications where the NSA has a role, such as inertial confinement fusion ignition target design.« less

  3. New dimensions for wound strings: The modular transformation of geometry to topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGreevy, John; Silverstein, Eva; Starr, David

    2007-02-15

    We show, using a theorem of Milnor and Margulis, that string theory on compact negatively curved spaces grows new effective dimensions as the space shrinks, generalizing and contextualizing the results in E. Silverstein, Phys. Rev. D 73, 086004 (2006).. Milnor's theorem relates negative sectional curvature on a compact Riemannian manifold to exponential growth of its fundamental group, which translates in string theory to a higher effective central charge arising from winding strings. This exponential density of winding modes is related by modular invariance to the infrared small perturbation spectrum. Using self-consistent approximations valid at large radius, we analyze this correspondencemore » explicitly in a broad set of time-dependent solutions, finding precise agreement between the effective central charge and the corresponding infrared small perturbation spectrum. This indicates a basic relation between geometry, topology, and dimensionality in string theory.« less

  4. Combined multispectral/hyperspectral remote sensing of tropospheric aerosols for quantification of their direct radiative effect

    NASA Astrophysics Data System (ADS)

    McGarragh, Gregory R.

    Scattering and absorption of solar radiation by aerosols in the atmosphere has a direct radiative effect on the climate of the Earth. Unfortunately, according to the IPCC the uncertainties in aerosol properties and their effect on the climate system represent one of the largest uncertainties in climate change research. Related to aerosols, one of the largest uncertainties is the fraction of the incident radiation that is scattered rather than absorbed, or their single scattering albedo. In fact, differences in single scattering albedo have a significant impact on the magnitude of the cooling effect of aerosols (opposite to that of greenhouse gasses) which can even have a warming effect for strongly absorbing aerosols. Satellites provide a unique opportunity to measure aerosol properties on a global scale. Traditional approaches use multispectral measurements of intensity at a single view angle to retrieve at most two aerosol parameters over land but it is being realized that more detail is required for accurate quantification of the direct effect of aerosols, in particular its anthropogenic component, and therefore more measurement information is required. One approach to more advanced measurements is to use not only intensity measurements but also polarimetric measurements and to use multiple view angles. In this work we explore another alternative: the use of hyperspectral measurements in molecular absorption bands. Our study can be divided into three stages the first of which is the development of a fast radiative transfer model for rapid simulation of measurements. Our approach is matrix operator based and uses the Pade approximation for the matrix exponential to evaluate the homogeneous solution. It is shown that the method is two to four times faster than the standard and efficient discrete ordinate technique and is accurate to the 6th decimal place. The second part of our study forms the core and is divided into two chapters the first of which is a rigorous sensitivity and optimal estimation based information content study that explores the use of measurements made by a MODIS type instrument combined with measurements made by an instrument similar to GOSAT TANSO-FTS which supplies hyperspectral measurements of intensity and polarization in the O2 A-band and the 1.61- and 2.06-mu CO 2 bands. It is found that the use of the hyperspectral bands provides a means to separate the effects of the surface and aerosol absorption from effects related to aerosol single scattering parameters. The amount of information increases significantly when the CO2 bands are included rather than just the more traditional O2 A-band, when polarization measurements are included, and when measurements are made at multiple view angles. We then present a retrieval using co-located observations of MODIS and GOSAT TANSO-FTS which are both also co-located with AERONET sites for validation purposes. We introduce an optimal estimation retrieval and perform this retrieval on our co-located observations. We choose a complete state vector to maximize the use of the information in our measurements and use an a priori constraint and regularization to arrive at a stable solution. In addition to the retrieved parameters, we also calculate a self contained estimation of the retrieval error. Validation with AERONET, for retrievals using MODIS plus TANSO-FTS measurements of intensity and polarization in all three bands indicate accuracies within 15% for optical thickness, 10% for fine mode mean radius, 35% for coarse mode mean radius, 15% for the standard deviation of fine mode mean radius, 25% for the standard deviation of the coarse mode mean radius, 0.04 for the real part of the index of refraction, and 0.05 for single scattering albedo. In addition to the retrieved parameters, we also validate the estimated retrieval error and find that the estimations have distributions that are tighter and within the broader distributions of real errors relative to AERONET. The third part of our study uses the retrieval results to calculate radiative fluxes, errors, and sensitivities at solar wavelengths along with aerosol radiative effect and effect efficiency. In addition, we outline how to propagate the errors in the retrieval through the flux calculations to provide an error estimation of the fluxes. These results are then validated against the corresponding AERONET products. It was found that the flux results were most sensitive to single scattering albedo while the size distribution and real part of the index of refraction also have significant effects. Relative to AERONET our fluxes are less accurate than an independent AERONET validation, due to uncertainties in our satellite based retrieval with accuracies within 13 Wm-2 for TOA upward, 9 Wm-2 for BOA upward, and 30 Wm-2 for BOA downward. The estimated errors also contained uncertainties but were in fact more conservative than the actual errors.

  5. Column Aerosol Optical Properties and Aerosol Radiative Forcing During a Serious Haze-Fog Month over North China Plain in 2013 Based on Ground-Based Sunphotometer Measurements

    NASA Technical Reports Server (NTRS)

    Che, H.; Xia, X.; Zhu, J.; Li, Z.; Dubovik, O.; Holben, Brent N.; Goloub, P.; Chen, H.; Estelles, V.; Cuevas-Agullo, E.

    2014-01-01

    In January 2013, North China Plain experienced several serious haze events. Cimel sunphotometer measurements at seven sites over rural, suburban and urban regions of North China Plain from 1 to 30 January 2013 were used to further our understanding of spatial-temporal variation of aerosol optical parameters and aerosol radiative forcing (ARF). It was found that Aerosol Optical Depth at 500 nm (AOD500nm) during non-pollution periods at all stations was lower than 0.30 and increased significantly to greater than 1.00 as pollution events developed. The Angstrom exponent (Alpha) was larger than 0.80 for all stations most of the time. AOD500nm averages increased from north to south during both polluted and non-polluted periods on the three urban sites in Beijing. The fine mode AOD during pollution periods is about a factor of 2.5 times larger than that during the non-pollution period at urban sites but a factor of 5.0 at suburban and rural sites. The fine mode fraction of AOD675nm was higher than 80% for all sites during January 2013. The absorption AOD675nm at rural sites was only about 0.01 during pollution periods, while 0.03-0.07 and 0.01-0.03 during pollution and non-pollution periods at other sites, respectively. Single scattering albedo varied between 0.87 and 0.95 during January 2013 over North China Plain. The size distribution showed an obvious tri-peak pattern during the most serious period. The fine mode effective radius in the pollution period was about 0.01-0.08 microns larger than during nonpollution periods, while the coarse mode radius in pollution periods was about 0.06-0.38 microns less than that during nonpollution periods. The total, fine and coarse mode particle volumes varied by about 0.06-0.34 cu microns, 0.03-0.23 cu microns, and 0.03-0.10 cu microns, respectively, throughout January 2013. During the most intense period (1-16 January), ARF at the surface exceeded -50W/sq m, -180W/sq m, and -200W/sq m at rural, suburban, and urban sites, respectively. The ARF readings at the top of the atmosphere were approximately -30W/sq m in rural and -40-60W/sq m in urban areas.

  6. Terahertz response of fractal meta-atoms based on concentric rectangular square resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Zhiqiang; Zhao, Zhenyu, E-mail: zyzhao@shnu.edu.cn; Shi, Wangzhou

    We investigate the terahertz electromagnetic responses of fractal meta-atoms (MAs) induced by different mode coupling mechanisms. Two types of MAs based on concentric rectangular square (CRS) resonators are presented: independent CRS (I-CRS) and junctional-CRS (J-CRS). In I-CRS, each resonator works as an independent dipole so as to result in the multiple resonance modes when the fractal level is above 1. In J-CRS, however, the generated layer is rotated by π/2 radius to the adjacent CRS in one MA. The multiple resonance modes are coupled into a single mode resonance. The fractal level increasing induces resonance modes redshift in I-CRS whilemore » blueshift in J-CRS. When the fractal level is below 4, the mode Q factor of J-CRS is in between the two modes of I-CRS; when the fractal level is 4 or above, the mode Q factor of J-CRS exceeds the two modes of I-CRS. Furthermore, the modulation depth (MD) decreases in I-CRS while it increases in J-CRS with the increase in fractal levels. The surface currents analysis reveals that the capacitive coupling of modes in I-CRS results in the modes redshift, while the conductive coupling of modes in J-CRS induces the mode blueshift. A high Q mode with large MD can be achieved via conductive coupling between the resonators of different scales in a fractal MA.« less

  7. Raman parametric excitation effect upon the third harmonic generation by a metallic nanoparticle lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepehri Javan, N., E-mail: sepehri-javan@uma.ac.ir

    2015-08-21

    This work is a theoretical study on third harmonic generation in the nonlinear propagation of an intense laser pulse through a periodic three-dimensional lattice of nanoparticles. Using a perturbative method, the nonlinear equations that describe the laser–nanoparticle interaction in the weakly relativistic regime are derived. Additionally, the nonlinear dispersion relation and the amplitude of the third harmonic are obtained. Finally, the effects of the nanoparticle radius and separation length, the distribution of the nanoparticle electron density, and the laser frequency upon the third harmonic efficiency are investigated. In addition to the expected resonance that occurs when the third harmonic resonatesmore » with the plasmon wave, another resonance appears when the nonlinear interaction of the fundamental mode with the third harmonic excites a longitudinal collective plasmon wave via the parametric Raman mechanism.« less

  8. Gear Crack Propagation Path Studies: Guidelines for Ultra-Safe Design

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    2001-01-01

    Design guidelines have been established to prevent catastrophic rim fracture failure modes when considering gear tooth bending fatigue. Analysis was performed using the finite element method with principles of linear elastic fracture mechanics. Crack propagation paths were predicted for a variety of gear tooth and rim configurations. The effects of rim and web thicknesses, initial crack locations, and gear tooth geometry factors such as diametral pitch, number of teeth, pitch radius, and tooth pressure angle were considered. Design maps of tooth/rim fracture modes including effects of gear geometry, applied load, crack size, and material properties were developed. The occurrence of rim fractures significantly increased as the backup ratio (rim thickness divided by tooth height) decreased. The occurrence of rim fractures also increased as the initial crack location was moved down the root of the tooth. Increased rim and web compliance increased the occurrence of rim fractures. For gears with constant pitch radii, coarser-pitch teeth increased the occurrence of tooth fractures over rim fractures. Also, 25 deg pressure angle teeth had an increased occurrence of tooth fractures over rim fractures when compared to 20 deg pressure angle teeth. For gears with constant number of teeth or gears with constant diametral pitch, varying size had little or no effect on crack propagation paths.

  9. Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments.

    PubMed

    Haïkel, Y; Serfaty, R; Bateman, G; Senger, B; Allemann, C

    1999-06-01

    The absence of adequate testing standards for engine-driven nickel-titanium (NiTi) instruments necessitates further study of these instruments in all areas. This study examined three groups of engine-driven rotary NiTi endodontic instruments (Profile, Hero, and Quantec) and assessed the times for dynamic fracture in relation to the radius of curvature to which the instruments were subjected during preparation, with the instrument diameter determined by size and taper and the mode by which the fracture occurred. Ten instruments were randomly selected representing each size and taper for each group and for each radius of curvature: 600 in total. The instruments were rotated at 350 rpm and introduced into a tempered steel curve that simulated a canal. Two radii of curvature of canals were used: 5 and 10 mm. Time at fracture was noted for all files, and the fracture faces of each file were analyzed with scanning electron microscopy. Radius of curvature was found to be the most significant factor in determining the fatigue resistance of the files. As radius of curvature decreased, fracture time decreased. Taper of files was found to be significant in determining fracture time. As diameter increased, fracture time decreased. In all cases, fracture was found to be of a ductile nature, thus implicating cyclic fatigue as a major cause of failure and necessitating further analyses and setting of standards in this area.

  10. Experiments on helical modes in magnetized thin foil-plasmas

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, David

    2017-10-01

    This paper gives an in-depth experimental study of helical features on magnetized, ultrathin foil-plasmas driven by the 1-MA linear transformer driver at University of Michigan. Three types of cylindrical liner loads were designed to produce: (a) pure magneto-hydrodynamic (MHD) modes (defined as being void of the acceleration-driven magneto-Rayleigh-Taylor instability, MRT) using a non-imploding geometry, (b) pure kink modes using a non-imploding, kink-seeded geometry, and (c) MRT-MHD coupled modes in an unseeded, imploding geometry. For each configuration, we applied relatively small axial magnetic fields of Bz = 0.2-2.0 T (compared to peak azimuthal fields of 30-40 T). The resulting liner-plasmas and instabilities were imaged using 12-frame laser shadowgraphy and visible self-emission on a fast framing camera. The azimuthal mode number was carefully identified with a tracking algorithm of self-emission minima. Our experiments show that the helical structures are a manifestation of discrete eigenmodes. The pitch angle of the helix is simply m / kR , from implosion to explosion, where m, k, and R are the azimuthal mode number, axial wavenumber, and radius of the helical instability. Thus, the pitch angle increases (decreases) during implosion (explosion) as R becomes smaller (larger). We found that there are one, or at most two, discrete helical modes that arise for magnetized liners, with no apparent threshold on the applied Bz for the appearance of helical modes; increasing the axial magnetic field from zero to 0.5 T changes the relative weight between the m = 0 and m = 1 modes. Further increasing the applied axial magnetic fields yield higher m modes. Finally, the seeded kink instability overwhelms the intrinsic instability modes of the plasma. These results are corroborated with our analytic theory on the effects of radial acceleration on the classical sausage, kink, and higher m modes. Work supported by US DOE award DE-SC0012328, Sandia National Laboratories, and the National Science Foundation. D.Y.E. was supported by NSF fellowship Grant Number DGE 1256260. The fast framing camera was supported by a DURIP, AFOSR Grant FA9550-15-1-0419.

  11. Impacts of Mass-dimension and Area-dimension relationships on retrieval ice particle effective radius from radar and lidar measurements

    NASA Astrophysics Data System (ADS)

    Ham, S. H.; Kato, S.; Rose, F. G.

    2016-12-01

    In the retrieval of ice clouds from Radar and Lidar Measurements, mass-Dimension (m-D) and Area-Dimension (A-D) relationships are often used to describe nonspherical ice particle shapes. This study analytically investigates how the assumption of m-D and A-D relationships affects retrieval of ice effective radius. We use gamma and lognormal particle distributions and integrate optical parameters over the size distribution. The effective radius is expressed as a function of radar reflectivity factor, visible extinction coefficient, and parameters describing m-D and A-D relationships. The analytic expressions are used for converting effective radius retrieved from one set of m-D and A-D relationships into that with another set of m-D and A-D, including plates, solid columns, bullets, and mixture of different habits. The conversion method can be used for consistent radiative transfer simulation with cloud retrieval algorithms. In addition, when we want to merge cloud effective radii retrieved from different m-D and A-D, the conversion method can be efficiently used to remove undesired biases caused by m-D and A-D assumptions. Furthermore, the sensitivity of the effective radius to m-D and A-D relationships can be quantified by taking the first derivative of the effective radius with respect to parameters expressing the m-D and A-D relationships.

  12. Pinning transition in shrinking nanobubbles

    NASA Astrophysics Data System (ADS)

    Tan, Beng Hau; An, Hongjie; Ohl, Claus-Dieter

    Surface nanobubbles are unusually long-lived gaseous domains that form on immersed substrates. Although liquid droplets are known to grow or shrink in either an unpinned (constant contact angle) or a pinned (constant footprint radius) mode, surface nanobubbles have only ever been observed in the pinned state. Theory suggests that, provided the nanobubbles are sustained by supersaturated liquid, they are indefinitely stable in the pinned mode, but rapidly dissolve into bulk liquid if not. Yet many basic aspects of the line pinning are not yet clarified, such as its magnitude or the conditions in which it becomes dominant. In this talk we present experiments with total internal fluorescence microscopy in which nanobubbles nucleated with a temperature difference method initially shrink in an unpinned mode, before transitioning to a pinned state. Using a simple energy balance we recover an estimate for the pinning force on each nanobubble.

  13. Dispersion relations for circular single and double dusty plasma chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkachenko, D. V.; Misko, V. R.; Sheridan, T. E.

    2011-10-15

    We derive dispersion relations for a system of identical particles confined in a two-dimensional annular harmonic well and which interact through a Yukawa potential, e.g., a dusty plasma ring. When the particles are in a single chain (i.e., a one-dimensional ring), we find a longitudinal acoustic mode and a transverse optical mode which show approximate agreement with the dispersion relation for a straight configuration for large radii of the ring. When the radius decreases, the dispersion relations modify: there appears an anticrossing of the modes near the crossing point resulting in a frequency gap between the lower and upper branchesmore » of the modified dispersion relations. For the double chain (i.e., a two-dimensional zigzag configuration), the dispersion relation has four branches: longitudinal acoustic and optical and transverse acoustic and optical.« less

  14. Dispersion relations for circular single and double dusty plasma chains

    NASA Astrophysics Data System (ADS)

    Tkachenko, D. V.; Sheridan, T. E.; Misko, V. R.

    2011-10-01

    We derive dispersion relations for a system of identical particles confined in a two-dimensional annular harmonic well and which interact through a Yukawa potential, e.g., a dusty plasma ring. When the particles are in a single chain (i.e., a one-dimensional ring), we find a longitudinal acoustic mode and a transverse optical mode which show approximate agreement with the dispersion relation for a straight configuration for large radii of the ring. When the radius decreases, the dispersion relations modify: there appears an anticrossing of the modes near the crossing point resulting in a frequency gap between the lower and upper branches of the modified dispersion relations. For the double chain (i.e., a two-dimensional zigzag configuration), the dispersion relation has four branches: longitudinal acoustic and optical and transverse acoustic and optical.

  15. Asymmetric spin-wave dispersion in ferromagnetic nanotubes induced by surface curvature

    NASA Astrophysics Data System (ADS)

    Otálora, Jorge A.; Yan, Ming; Schultheiss, Helmut; Hertel, Riccardo; Kákay, Attila

    2017-05-01

    We present a detailed analytical derivation of the spin wave (SW) dispersion relation in magnetic nanotubes with magnetization along the azimuthal direction. The obtained formula can be used to calculate the dispersion relation for any longitudinal and azimuthal mode. The obtained dispersion is asymmetric for all azimuthal modes traveling along the axial direction. As reported in our recent publication [Phys. Rev. Lett. 117, 227203 (2016), 10.1103/PhysRevLett.117.227203], the asymmetry is a curvature-induced effect originating from the dipole-dipole interaction. Here, we discuss the asymmetry of the dispersion for azimuthal modes by analyzing the SW asymmetry Δ f (kz) =fn(kz) -fn(-kz) , where fn(kz) is the eigenfrequency of a magnon with a longitudinal and azimuthal wave vectors, kz and n , respectively; and the dependence of the maximum asymmetry with the nanotube radius R . The analytical results are in perfect agreement with micromagnetic simulations. Furthermore, we show that the dispersion relation simplifies to the thin-film dispersion relation with in-plane magnetization when analyzing the three limiting cases: (i) kz=0 , (ii) kz≫1 /R , and (iii) kz≪1 /R . In the first case, for the zeroth-order modes the thin-film Kittel formula is obtained. For modes with higher order the dispersion relation for the Backward-Volume geometry is recovered. In the second case, for the zeroth-order mode the exchange dominated dispersion relation for SW in Damon-Esbach configuration is obtained. For the case kz≪1 /R , we find that the dispersion relation can be reduced to a formula similar to the Kalinikos-Slavin [J. Phys. C: Sol. State Phys. 19, 7013 (1986), 10.1088/0022-3719/19/35/014] type.

  16. Scale Effects on Magnet Systems of Heliotron-Type Reactors

    NASA Astrophysics Data System (ADS)

    S, Imagawa; A, Sagara

    2005-02-01

    For power plants heliotron-type reactors have attractive advantages, such as no current-disruptions, no current-drive, and wide space between helical coils for the maintenance of in-vessel components. However, one disadvantage is that a major radius has to be large enough to obtain large Q-value or to produce sufficient space for blankets. Although the larger radius is considered to increase the construction cost, the influence has not been understood clearly, yet. Scale effects on superconducting magnet systems have been estimated under the conditions of a constant energy confinement time and similar geometrical parameters. Since the necessary magnetic field with a larger radius becomes lower, the increase rate of the weight of the coil support to the major radius is less than the square root. The necessary major radius will be determined mainly by the blanket space. The appropriate major radius will be around 13 m for a reactor similar to the Large Helical Device (LHD).

  17. Retrievals and Comparisons of Various MODIS-Spectrum Inferred Water Cloud Droplet Effective Radii

    NASA Technical Reports Server (NTRS)

    Fu-Lung, Chang; Minnis, Patrick; Lin, Bin; Sunny, Sun-Mack; Khaiyer, Mandana M.

    2007-01-01

    Cloud droplet effective radius retrievals from different Aqua MODIS nearinfrared channels (2.1- micrometer, 3.7- micrometer, and 1.6- micrometer) show considerable differences even among most confident QC pixels. Both Collection 004 and Collection 005 MOD06 show smaller mean effective radii at 3.7- micrometer wavelength than at 2.1- micrometer and 1.6- micrometer wavelengths. Differences in effective radius retrievals between Collection 004 and Collection 005 may be affected by cloud top height/temperature differences, which mainly occur for optically thin clouds. Changes in cloud top height and temperature for thin clouds have different impacts on the effective radius retrievals from 2.1- micrometer, 3.7- micrometer, and 1.6- micrometer channels. Independent retrievals (this study) show, on average, more consistency in the three effective radius retrievals. This study is for Aqua MODIS only.

  18. Electromagnetic nonlinear gyrokinetics with polarization drift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duthoit, F.-X.; Hahm, T. S., E-mail: tshahm@snu.ac.kr; Wang, Lu

    2014-08-15

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen,more » Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.« less

  19. Electromagnetic nonlinear gyrokinetics with polarization drift

    NASA Astrophysics Data System (ADS)

    Duthoit, F.-X.; Hahm, T. S.; Wang, Lu

    2014-08-01

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.

  20. Elastic moduli in nano-size samples of amorphous solids: System size dependence

    NASA Astrophysics Data System (ADS)

    Cohen, Yossi; Procaccia, Itamar

    2012-08-01

    This letter is motivated by some recent experiments on pan-cake-shaped nano-samples of metallic glass that indicate a decline in the measured shear modulus upon decreasing the sample radius. Similar measurements on crystalline samples of the same dimensions showed a much more modest change. In this letter we offer a theory of this phenomenon; we argue that such results are generically expected for any amorphous solid, with the main effect being related to the increased contribution of surfaces with respect to the bulk when the samples get smaller. We employ exact relations between the shear modulus and the eigenvalues of the system's Hessian matrix to explore the role of surface modes in affecting the elastic moduli.

  1. High temperature sensing using higher-order-mode rejected sapphire-crystal fiber gratings

    NASA Astrophysics Data System (ADS)

    Zhan, Chun; Kim, Jae Hun; Lee, Jon; Yin, Stuart; Ruffin, Paul; Luo, Claire

    2007-09-01

    In this paper, we report the fabrication of higher-order-mode rejected fiber Bragg gratings (FBGs) in sapphire crystal fiber using infrared (IR) femtosecond laser illumination. The grating is tested in high temperature furnace up to 1600 degree Celsius. As sapphire fiber is only available as highly multimode fiber, a scheme to filter out higher order modes in favor for the fundamental mode is theoretically evaluated and experimentally demonstrated. The approach is to use an ultra thin sapphire crystal fiber (60 micron in diameter) to decrease the number of modes. The small diameter fiber also enables bending the fiber to certain radius which is carefully chosen to provide low loss for the fundamental mode LP01 and high loss for the other high-order modes. After bending, less-than-2-nm resonant peak bandwidth is achieved. The grating spectrum is improved, and higher resolution sensing measurement can be achieved. This mode filtering method is very easy to implement. Furthermore, the sapphire fiber is sealed with hi-purity alumina ceramic cement inside a flexible high temperature titanium tube, and the highly flexible titanium tube offers a robust packaging to sapphire fiber. Our high temperature sapphire grating sensor is very promising in extremely high temperature sensing application.

  2. Detection of Rotational Sequences for Global Oscillation Modes inside the Sun

    NASA Technical Reports Server (NTRS)

    Wolff, Charles L.; Niemann, Hasso B. (Technical Monitor)

    2002-01-01

    A very simple mathematical sequence is detected in a half century of thermal radio flux from the Sun. Since the only known physical cause of the sequence is global oscillations trapped in the nonconvecting solar interior, g-modes and probably r-modes are active. If so, their rotation frequencies are detected and some previously reported difference frequencies are confirmed with high confidence. All angular harmonics for 2 less than or = l less than or = 7 are detected as well as some others up to the limit l less than or = 14 resolvable by the observations (a Fourier spectrum of the 10.7 cm flux time series). The mean sidereal rotation of the nonconvecting interior is 428.2 nHz as averaged by g-modes and 429.8 nHz by the r-modes, indicating that g-mode energy is a bit more centrally concentrated. Helioseismology measures such rotation rates near 0.36R (R = solar radius), so the global modes would have about half their kinetic energy above and below that level. This, and the known log(r) energy dependence of most modes implies that these oscillations are significantly reflected near 0.18R, the same level at which sound speed measurements display a maximum departure from theoretical models.

  3. Design principles for single standing nanowire solar cells: going beyond the planar efficiency limits.

    PubMed

    Zeng, Yang; Ye, Qinghao; Shen, Wenzhong

    2014-05-09

    Semiconductor nanowires (NWs) have long been used in photovoltaic applications but restricted to approaching the fundamental efficiency limits of the planar devices with less material. However, recent researches on standing NWs have started to reveal their potential of surpassing these limits when their unique optical property is utilized in novel manners. Here, we present a theoretical guideline for maximizing the conversion efficiency of a single standing NW cell based on a detailed study of its optical absorption mechanism. Under normal incidence, a standing NW behaves as a dielectric resonator antenna, and its optical cross-section shows its maximum when the lowest hybrid mode (HE11δ) is excited along with the presence of a back-reflector. The promotion of the cell efficiency beyond the planar limits is attributed to two effects: the built-in concentration caused by the enlarged optical cross-section, and the shifting of the absorption front resulted from the excited mode profile. By choosing an optimal NW radius to support the HE11δ mode within the main absorption spectrum, we demonstrate a relative conversion-efficiency enhancement of 33% above the planar cell limit on the exemplary a-Si solar cells. This work has provided a new basis for designing and analyzing standing NW based solar cells.

  4. Design principles for single standing nanowire solar cells: going beyond the planar efficiency limits

    PubMed Central

    Zeng, Yang; Ye, Qinghao; Shen, Wenzhong

    2014-01-01

    Semiconductor nanowires (NWs) have long been used in photovoltaic applications but restricted to approaching the fundamental efficiency limits of the planar devices with less material. However, recent researches on standing NWs have started to reveal their potential of surpassing these limits when their unique optical property is utilized in novel manners. Here, we present a theoretical guideline for maximizing the conversion efficiency of a single standing NW cell based on a detailed study of its optical absorption mechanism. Under normal incidence, a standing NW behaves as a dielectric resonator antenna, and its optical cross-section shows its maximum when the lowest hybrid mode (HE11δ) is excited along with the presence of a back-reflector. The promotion of the cell efficiency beyond the planar limits is attributed to two effects: the built-in concentration caused by the enlarged optical cross-section, and the shifting of the absorption front resulted from the excited mode profile. By choosing an optimal NW radius to support the HE11δ mode within the main absorption spectrum, we demonstrate a relative conversion-efficiency enhancement of 33% above the planar cell limit on the exemplary a-Si solar cells. This work has provided a new basis for designing and analyzing standing NW based solar cells. PMID:24810591

  5. Eigenmodes of Ducted Flows With Radially-Dependent Axial and Swirl Velocity Components

    NASA Technical Reports Server (NTRS)

    Kousen, Kenneth A.

    1999-01-01

    This report characterizes the sets of small disturbances possible in cylindrical and annular ducts with mean flow whose axial and tangential components vary arbitrarily with radius. The linearized equations of motion are presented and discussed, and then exponential forms for the axial, circumferential, and time dependencies of any unsteady disturbances are assumed. The resultant equations form a generalized eigenvalue problem, the solution of which yields the axial wavenumbers and radial mode shapes of the unsteady disturbances. Two numerical discretizations are applied to the system of equations: (1) a spectral collocation technique based on Chebyshev polynomial expansions on the Gauss-Lobatto points, and (2) second and fourth order finite differences on uniform grids. The discretized equations are solved using a standard eigensystem package employing the QR algorithm. The eigenvalues fall into two primary categories: a discrete set (analogous to the acoustic modes found in uniform mean flows) and a continuous band (analogous to convected disturbances in uniform mean flows) where the phase velocities of the disturbances correspond to the local mean flow velocities. Sample mode shapes and eigensystem distributions are presented for both sheared axial and swirling flows. The physics of swirling flows is examined with reference to hydrodynamic stability and completeness of the eigensystem expansions. The effect of assuming exponential dependence in the axial direction is discussed.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaothekar, Sachin, E-mail: sackaothekar@gmail.com

    I have studied the effects of finite electron inertia, finite ion Larmor radius (FLR) corrections, and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effect of thermal conductivity for star formation in interstellar medium (ISM). A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instabilitymore » criterion is get modified into radiative instability criterion by inclusion of radiative heat-loss functions with thermal conductivity. The viscosity of medium removes the effect of FLR corrections from the condition of radiative instability. Numerical calculation shows stabilizing effect of heat-loss function, viscosity and FLR corrections, and destabilizing effect of finite electron inertia on the thermal instability. Results carried out in this paper shows that stars are formed in interstellar medium mainly due to thermal instability.« less

  7. Test facility for the evaluation of microwave transmission components

    NASA Astrophysics Data System (ADS)

    Fong, C. G.; Poole, B. R.

    1985-10-01

    A Low Power Test Facility (LPTF) was developed to evaluate the performance of Electron Cyclotron Resonance Heating (ECRH) microwave transmission components for the Mirror Fusion Test Facility (MFTF-B). The facility generates 26 to 60 GHz in modes of TE01, TE02, or TE03 launched at power levels of 1/2 milliwatt. The propagation of the RF as it radiates from either transmitting or secondary reflecting microwave transmission components is recorded by a discriminating crystal detector mechanically manipulated at constant radius in spherical coordinates. The facility is used to test, calibrate, and verify the design of overmoded, circular waveguide components, quasi-optical reflecting elements before high power use. The test facility consists of microwave sources and metering components, such as VSWR, power and frequency meters, a rectangular TE10 to circular TE01 mode transducer, mode filter, circular TE01 to 2.5 in. diameter overmoded waveguide with mode converters for combination of TE01 to TE03 modes. This assembly then connects to a circular waveguide launcher or the waveguide component under test.

  8. Design of a low-bending-loss large-mode-area photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Napierala, Marek; Beres-Pawlik, Elzbieta; Nasilowski, Tomasz; Mergo, Pawel; Berghmans, Francis; Thienpont, Hugo

    2012-04-01

    We present a design of a photonic crystal fiber for high power laser and amplifier applications. Our fiber comprises a core with a diameter larger than 60 μm and exhibits single mode operation when the fiber is bent around a 10 cm radius at a wavelength of 1064 nm. Single mode guidance is enforced by the high loss of higher order modes which exceeds 80 dB/m whereas the loss of the fundamental mode (FM) is lower than 0.03 dB/m. The fiber can therefore be considered as an active medium for compact high power fiber lasers and amplifiers with a nearly diffraction limited beam output. We also analyze our fiber in terms of tolerance to manufacturing imperfections. To do so we employ a statistical design methodology. This analysis reveals those crucial parameters of the fiber that have to be controlled precisely during the fabrication process not to deteriorate the fiber performance. Finally we show that the fiber can be fabricated according to our design and we present experimental results that confirm the expected fiber performance.

  9. Flux-driven algebraic damping of m=2 diocotron mode

    NASA Astrophysics Data System (ADS)

    Chim, C. Y.; O'Neil, T. M.

    2016-10-01

    Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 2 diocotron modes. Due to small field asymmetries a low density halo of electrons is transported radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius rres, where f = mfE × B (rres) . The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from the exponential spatial Landau damping in a linear wave-particle resonance. This poster uses analytic theory and simulations to explain the new flux-driven algebraic damping of the mode. As electrons are swept around the nonlinear ``cat's eye'' orbits of the resonant wave-particle interaction, they form a quadrupole (m = 2) density distribution, which sets up an electric field that acts back on the plasma core. The field causes an E × B drift motion that symmetrizes the core, i.e. damps the m = 2 mode. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451.

  10. Flux-driven algebraic damping of m = 1 diocotron mode

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung; O'Neil, Thomas M.

    2016-07-01

    Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius r = Rw at the wall of the trap. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This paper explains with analytic theory the new algebraic damping due to particle transport by both mobility and diffusion. As electrons are swept around the "cat's eye" orbits of the resonant wave-particle interaction, they form a dipole (m = 1) density distribution. From this distribution, the electric field component perpendicular to the core displacement produces E × B-drift of the core back to the axis, that is, damps the m = 1 mode. The parallel component produces drift in the azimuthal direction, that is, causes a shift in the mode frequency.

  11. Frequency Identification and Asteroseismic Analysis of the Red Giant KIC 9145955: Fundamental Parameters and Helium Core Size

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyi; Wu, Tao; Li, Yan

    2018-03-01

    We have analyzed 18 quarters of long-cadence data of KIC 9145955 provided by Kepler, and extracted 61 oscillation frequencies from these high-precision photometric data. The oscillation frequencies include 7 l = 0 modes, 44 l = 1 modes, 7 l = 2 modes, and 3 l = 3 modes. We identify l = 0 modes as p modes and l = 2 modes as p-dominated modes. For l = 1 modes, all of them are identified as mixed modes. These mixed modes can be used to determine the size of the helium core. We conduct a series of asteroseismic models and the size of the helium core is determined to be M He = 0.210 ± 0.002 M ⊙ and {R}He}=0.0307+/- 0.0002 {R}ȯ . Furthermore, we find that only the acoustic radius τ 0 can be precisely determined with the asteroseismic method independently. The value of τ 0 is determined to be 0.494 ± 0.001 days. By combining asteroseismic results and spectroscopic observations, we obtain the best-fitting model. The physical parameters of this model are M = 1.24 M ⊙, Z = 0.009, α = 2.0, T eff = 5069 K, log g = 3.029, R = 5.636 R ⊙, and L = 18.759 L ⊙. In addition, we think that the observed frequency F39 (96.397 μHz) is more appropriate to be identified as a mixed mode of the most p-dominated.

  12. On the thermodynamics of phase transitions in metal hydrides

    NASA Astrophysics Data System (ADS)

    di Vita, Andrea

    2012-02-01

    Metal hydrides are solutions of hydrogen in a metal, where phase transitions may occur depending on temperature, pressure etc. We apply Le Chatelier's principle of thermodynamics to a particular phase transition in TiH x , which can approximately be described as a second-order phase transition. We show that the fluctuations of the order parameter correspond to fluctuations both of the density of H+ ions and of the distance between adjacent H+ ions. Moreover, as the system approaches the transition and the correlation radius increases, we show -with the help of statistical mechanics-that the statistical weight of modes involving a large number of H+ ions (`collective modes') increases sharply, in spite of the fact that the Boltzmann factor of each collective mode is exponentially small. As a result, the interaction of the H+ ions with collective modes makes a tiny suprathermal fraction of the H+ population appear. Our results hold for similar transitions in metal deuterides, too. A violation of an -insofar undisputed-upper bound on hydrogen loading follows.

  13. Far-field emission characteristics and linewidth measurements of surface micro-machined MEMS tunable VCSELs

    NASA Astrophysics Data System (ADS)

    Paul, Sujoy; Gierl, Christian; Gründl, Tobias; Zogal, Karolina; Meissner, Peter; Amann, Markus-Christian; Küppers, Franko

    2013-03-01

    In this paper, we demonstrate for the first time the far-field experimental results and the linewidth characteris- tics for widely tunable surface-micromachined micro-electro-mechanical system (MEMS) vertical-cavity surface- emitting lasers (VCSELs) operating at 1550 nm. The fundamental Gaussian mode emission is confirmed by optimizing the radius of curvature of top distributed Bragg reflector (DBR) membrane and by choosing an ap- propriate diameter of circular buried tunnel junctions (BTJs) so that only the fundamental Gaussian mode can sustain. For these VCSELs, a mode-hop free continuous tuning over 100 nm has already been demonstrated, which is achieved by electro-thermal tuning of the MEMS mirror. The fiber-coupled optical power of 2mW over the entire tuning range has been reported. The singlemode laser emission has more than 40 dB of side-mode suppression ratio (SMSR). The smallest linewidth achieved with these of MEMS tunable VCSELs is 98MHz which is one order of magnitude higher than that of fixed-wavelength VCSELs.

  14. Mutual friction in a cold color-flavor-locked superfluid and r-mode instabilities in compact stars.

    PubMed

    Mannarelli, Massimo; Manuel, Cristina; Sa'd, Basil A

    2008-12-12

    Dissipative processes acting in rotating neutron stars are essential in preventing the growth of the r-mode instability. We estimate the damping time of r modes of a hypothetical compact quark star made up by color-flavor-locked quark matter at a temperature T < or approximately 0.01 MeV. The dissipation that we consider is due to the mutual friction force between the normal and the superfluid component arising from the elastic scattering of phonons with quantized vortices. This process is the dominant one for temperatures T < or approximately 0.01 MeV, where the mean free path of phonons due to their self-interactions is larger than the radius of the star. We find that r-mode oscillations are efficiently damped by this mechanism for pulsars rotating at frequencies of the order of 1 Hz at most. Our analysis rules out the possibility that cold pulsars rotating at higher frequencies are entirely made up by color-flavor-locked quark matter.

  15. Recent Doppler Backscattering results from EAST tokamak

    NASA Astrophysics Data System (ADS)

    Zhou, Chu; Liu, Adi; Zhang, Xiaohui; Hu, Jianqiang; Wang, Mingyuan; Yu, Changxuan; Liu, Wandong; Li, Hong; Lan, Tao; Sun, Xuan; Xie, Jinlin; Ding, Weixing; CAS Key Laboratory of Geospace Environment, University of Science and Technology of China Team; Department of Physics and Astronomy, University of California at Los Angeles Collaboration

    2013-10-01

    A Doppler reflectometer system has recently been installed in the EAST tokamak. It includes two separated systems, one for Q-band and the other for V-band. The optical system consists of a fixed flat mirror and a steerable parabolic mirror, which enabling the measurement of perpendicular wave number in the range of 4-22/cm, with the wave number resolution around 2/cm, while the radial location can cover the whole minor radius for L mode and the whole pedestal for H mode on EAST. A 2D Gaussion Ray tracing code is used to calculate the scattering location, the perpendicular wave number and the resolution. In EAST last experimental campaign the Doppler shifted signals have been obtained and the radial profiles of the perpendicular propagation velocity during L-mode and H-mode are calculated. The Er evolution during L-H and H-L transition have also been measured. The two separated systems are also used as a poloidal coherent system together to study the GAM in EAST tokamak.

  16. Flux-driven algebraic damping of m = 1 diocotron mode

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung; O'Neil, Thomas

    2015-11-01

    Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 diocotron modes. Transport due to small field asymmetries produce a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius rres, where f = mfE × B (rres) . The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This poster explains with analytic theory and simulations the new algebraic damping due to both mobility and diffusive fluxes. As electrons are swept around the ``cat's eye'' orbits of resonant wave-particle interaction, they form a dipole (m = 1) density distribution, and the electric field from this distribution produces an E × B drift of the core back to the axis, i.e. damps the m = 1 mode. Supported by National Science Foundation Grant PHY-1414570.

  17. Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST

    DOE PAGES

    Ding, Siye; Garofalo, A. M.; Qian, J.; ...

    2017-05-03

    Systematic experimental and modeling investigations on DIII-D and EAST show attractive transport properties of fully non-inductive high β p plasmas. Experiments on DIII-D show that the large-radius internal transport barrier (ITB), a key feature providing excellent confinement in the high β p regime, is maintained when the scenario is extended from q 95 ~ 12 to 7 and from rapid to near-zero toroidal rotation. The robustness of confinement versus rotation was predicted by gyro fluid modeling showing dominant neoclassical ion energy transport even without E B shear effect. The physics mechanism of turbulence suppression, we found, is the Shafranov shift,more » which is essential and sets a β p threshold for large-radius ITB formation in the high β p scenario on DIII-D. This is confirmed by two different parameter-scan experiments, one for β N scan and the other for q 95 scan. They both give the same p threshold at 1.9 in the experiment. Furthermore, the experiment trend of increasing thermal transport with decreasing β p is consistent with transport modeling. The very first step of extending high β p scenario on DIII-D to long pulse on EAST is to establish long pulse H-mode with ITB on EAST. Our paper shows the first 61 sec fully non-inductive H-mode with stationary ITB feature and actively cooled ITER-like tungsten divertor in the very recent EAST experiment. The successful use of lower hybrid wave (LWH) as a key tool to optimize current profile in EAST experiment is also introduced. Results show that as the electron density is increased, the fully non-inductive current profile broadens on EAST. The improved understanding and modeling capability is also used to develop advanced scenarios for CFETR. These results provide encouragement that the high β p regime can be extended to lower safety factor and very low rotation, providing a potential path to high performance steady state operation in future devices.« less

  18. Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST

    NASA Astrophysics Data System (ADS)

    Ding, S.; Garofalo, A. M.; Qian, J.; Cui, L.; McClenaghan, J. T.; Pan, C.; Chen, J.; Zhai, X.; McKee, G.; Ren, Q.; Gong, X.; Holcomb, C. T.; Guo, W.; Lao, L.; Ferron, J.; Hyatt, A.; Staebler, G.; Solomon, W.; Du, H.; Zang, Q.; Huang, J.; Wan, B.

    2017-05-01

    Systematic experimental and modeling investigations on DIII-D show attractive transport properties of fully non-inductive high βp plasmas. Experiments on DIII-D show that the large-radius internal transport barrier (ITB), a key feature providing excellent confinement in the high βp regime, is maintained when the scenario is extended from q95 ˜ 12 to 7 and from rapid to near-zero toroidal rotation. The robustness of confinement versus rotation was predicted by gyrofluid modeling showing dominant neoclassical ion energy transport even without the E × B shear effect. The physics mechanism of turbulence suppression, we found, is the Shafranov shift, which is essential and sets a βp threshold for large-radius ITB formation in the high βp scenario on DIII-D. This is confirmed by two different parameter-scan experiments, one for a βN scan and the other for a q95 scan. They both give the same βp threshold at 1.9 in the experiment. The experimental trend of increasing thermal transport with decreasing βp is consistent with transport modeling. The progress toward the high βp scenario on Experimental Advanced Superconducting Tokamak (EAST) is reported. The very first step of extending the high βp scenario on DIII-D to long pulse on EAST is to establish a long pulse H-mode with ITB on EAST. This paper shows the first 61 s fully non-inductive H-mode with stationary ITB feature and actively cooled ITER-like tungsten divertor in the very recent EAST experiment. The successful use of lower hybrid wave as a key tool to optimize the current profile in the EAST experiment is also introduced. Results show that as the electron density is increased, the fully non-inductive current profile broadens on EAST. The improved understanding and modeling capability are also used to develop advanced scenarios for the China Fusion Engineering Test Reactor. Overall, these results provide encouragement that the high βp regime can be extended to a lower safety factor and very low rotation, providing a potential path to high performance steady state operation in future devices.

  19. Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Siye; Garofalo, A. M.; Qian, J.

    Systematic experimental and modeling investigations on DIII-D and EAST show attractive transport properties of fully non-inductive high β p plasmas. Experiments on DIII-D show that the large-radius internal transport barrier (ITB), a key feature providing excellent confinement in the high β p regime, is maintained when the scenario is extended from q 95 ~ 12 to 7 and from rapid to near-zero toroidal rotation. The robustness of confinement versus rotation was predicted by gyro fluid modeling showing dominant neoclassical ion energy transport even without E B shear effect. The physics mechanism of turbulence suppression, we found, is the Shafranov shift,more » which is essential and sets a β p threshold for large-radius ITB formation in the high β p scenario on DIII-D. This is confirmed by two different parameter-scan experiments, one for β N scan and the other for q 95 scan. They both give the same p threshold at 1.9 in the experiment. Furthermore, the experiment trend of increasing thermal transport with decreasing β p is consistent with transport modeling. The very first step of extending high β p scenario on DIII-D to long pulse on EAST is to establish long pulse H-mode with ITB on EAST. Our paper shows the first 61 sec fully non-inductive H-mode with stationary ITB feature and actively cooled ITER-like tungsten divertor in the very recent EAST experiment. The successful use of lower hybrid wave (LWH) as a key tool to optimize current profile in EAST experiment is also introduced. Results show that as the electron density is increased, the fully non-inductive current profile broadens on EAST. The improved understanding and modeling capability is also used to develop advanced scenarios for CFETR. These results provide encouragement that the high β p regime can be extended to lower safety factor and very low rotation, providing a potential path to high performance steady state operation in future devices.« less

  20. The three-dimensional structure of swirl-switching in bent pipe flow

    DOE PAGES

    Hufnagel, Lorenz; Canton, Jacopo; Örlü, Ramis; ...

    2017-11-27

    Swirl-switching is a low-frequency oscillatory phenomenon which affects the Dean vortices in bent pipes and may cause fatigue in piping systems. Despite thirty years worth of research, the mechanism that causes these oscillations and the frequencies that characterise them remain unclear. In this paper, we show that a three-dimensional wave-like structure is responsible for the low-frequency switching of the dominant Dean vortex. The present study, performed via direct numerical simulation, focuses on the turbulent flow through amore » $$90^{\\circ }$$pipe bend preceded and followed by straight pipe segments. A pipe with curvature 0.3 (defined as ratio between pipe radius and bend radius) is studied for a bulk Reynolds number $$Re=11\\,700$$, corresponding to a friction Reynolds number $$Re_{\\unicode[STIX]{x1D70F}}\\approx 360$$. Synthetic turbulence is generated at the inflow section and used instead of the classical recycling method in order to avoid the interference between recycling and swirl-switching frequencies. The flow field is analysed by three-dimensional proper orthogonal decomposition (POD) which for the first time allows the identification of the source of swirl-switching: a wave-like structure that originates in the pipe bend. Contrary to some previous studies, the flow in the upstream pipe does not show any direct influence on the swirl-switching modes. Finally, our analysis further shows that a three-dimensional characterisation of the modes is crucial to understand the mechanism, and that reconstructions based on two-dimensional POD modes are incomplete.« less

  1. The three-dimensional structure of swirl-switching in bent pipe flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hufnagel, Lorenz; Canton, Jacopo; Örlü, Ramis

    Swirl-switching is a low-frequency oscillatory phenomenon which affects the Dean vortices in bent pipes and may cause fatigue in piping systems. Despite thirty years worth of research, the mechanism that causes these oscillations and the frequencies that characterise them remain unclear. In this paper, we show that a three-dimensional wave-like structure is responsible for the low-frequency switching of the dominant Dean vortex. The present study, performed via direct numerical simulation, focuses on the turbulent flow through amore » $$90^{\\circ }$$pipe bend preceded and followed by straight pipe segments. A pipe with curvature 0.3 (defined as ratio between pipe radius and bend radius) is studied for a bulk Reynolds number $$Re=11\\,700$$, corresponding to a friction Reynolds number $$Re_{\\unicode[STIX]{x1D70F}}\\approx 360$$. Synthetic turbulence is generated at the inflow section and used instead of the classical recycling method in order to avoid the interference between recycling and swirl-switching frequencies. The flow field is analysed by three-dimensional proper orthogonal decomposition (POD) which for the first time allows the identification of the source of swirl-switching: a wave-like structure that originates in the pipe bend. Contrary to some previous studies, the flow in the upstream pipe does not show any direct influence on the swirl-switching modes. Finally, our analysis further shows that a three-dimensional characterisation of the modes is crucial to understand the mechanism, and that reconstructions based on two-dimensional POD modes are incomplete.« less

  2. Flight dynamics of a pterosaur-inspired aircraft utilizing a variable-placement vertical tail.

    PubMed

    Roberts, Brian; Lind, Rick; Chatterjee, Sankar

    2011-06-01

    Mission performance for small aircraft is often dependent on the turn radius. Various biologically inspired concepts have demonstrated that performance can be improved by morphing the wings in a manner similar to birds and bats; however, the morphing of the vertical tail has received less attention since neither birds nor bats have an appreciable vertical tail. This paper investigates a design that incorporates the morphing of the vertical tail based on the cranial crest of a pterosaur. The aerodynamics demonstrate a reduction in the turn radius of 14% when placing the tail over the nose in comparison to a traditional aft-placed vertical tail. The flight dynamics associated with this configuration has unique characteristics such as a Dutch-roll mode with excessive roll motion and a skid divergence that replaces the roll convergence.

  3. A model for inferring transport rates from observed confinement times in field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Steinhauer, Loren C.; Milroy, Richard D.; Slough, John T.

    1985-03-01

    A one-dimensional transport model is developed to simulate the confinement of plasma and magnetic flux in a field-reversed configuration. Given the resistivity, the confinement times can be calculated. Approximate expressions are found which yield the magnitude and gross profile of the resistivity if the confinement times are known. These results are applied to experimental data from experiments, primarily TRX-1, to uncover trends in the transport properties. Several important conclusions emerge. The transport depends profoundly, and inexplicably, on the plasma formation mode. The inferred transport differs in several ways from the predictions of local lower-hybrid-drift turbulence theory. Finally, the gross resistivity exhibits an unusual trend with xs (separatrix radius rs divided by the conducting wall radius rc ), and is peaked near the magnetic axis for certain predictable conditions.

  4. Differences in liquid cloud droplet effective radius and number concentration estimates between MODIS Collections 5.1 and 6 over global oceans

    PubMed Central

    Rausch, John; Meyer, Kerry; Bennartz, Ralf; Platnick, Steven

    2017-01-01

    Differences in cloud droplet effective radius and cloud droplet number concentration (CDNC) estimates inferred from the Aqua MODIS Collections 5.1 and 6 cloud products (MYD06) are examined for warm clouds over global oceans for the year 2008. Individual pixel level retrievals for both collections are aggregated to 1° × 1° and compared globally and regionally for the three main spectral channel pairs used for MODIS cloud optical property retrievals. Comparisons between both collections are performed for cases in which all three effective radii retrievals are classified by the MODIS Cloud Product as valid. The contribution to the observed differences of several key MYD06 Collection 6 algorithm updates are also explored, with a focus on changes to the surface reflectance model, assumed solar irradiance, above cloud emission, cloud top pressure, and pixel registration. Global results show a neutral to positive (> 50 cm−3) change for C6-derived CDNC relative to C5.1 for the 1.6 µm and 2.1 µm channel retrievals, corresponding to a neutral to −2 µm difference in droplet effective radius. For 3.7 µm retrievals, CDNC results show a negative change in the tropics, with differences transitioning toward positive values with increasing latitude spanning −25 to +50 cm−3 related to a +2.5 to −1 µm transition in effective radius. Cloud optical thickness differences were small relative to effective radius, and found to not significantly impact CDNC estimates. Regionally, the magnitude and behavior of the annual CDNC cycle are compared for each effective radius retrieval. Results from this study indicate significant intercollection differences in aggregated values of effective radius due to changes to the pre-computed retrieval lookup tables for ocean scenes, changes to retrieved cloud top pressure, solar irradiance, or above cloud thermal emission, depending upon spectral channel. The observed differences between collections may have implications for existing MODIS derived climatologies and validation studies of effective radius and CDNC. PMID:29098040

  5. Differences in Liquid Cloud Droplet Effective Radius and Number Concentration Estimates Between MODIS Collections 5.1 and 6 Over Global Oceans

    NASA Technical Reports Server (NTRS)

    Rausch, John; Meyer, Kerry; Bennartz, Ralf; Platnick, Steven

    2017-01-01

    Differences in cloud droplet effective radius and cloud droplet number concentration (CDNC) estimates inferred from the Aqua MODIS Collections 5.1 and 6 cloud products (MYD06) are examined for warm clouds over global oceans for the year 2008. Individual pixel level retrievals for both collections are aggregated to 1 degree x 1 degree and compared globally and regionally for the three main spectral channel pairs used for MODIS cloud optical property retrievals. Comparisons between both collections are performed for cases in which all three effective radii retrievals are classified by the MODIS Cloud Product as valid. The contribution to the observed differences of several key MYD06 Collection 6 algorithm updates are also explored, with a focus on changes to the surface reflectance model, assumed solar irradiance, above cloud emission, cloud top pressure, and pixel registration. Global results show a neutral to positive ( greater than 50cm(exp. -3) change for C6-derived CDNC relative to C5.1 for the 1.6 micrometers and 2.1 micrometers channel retrievals, corresponding to a neutral to -2 micrometers difference in droplet effective radius. For 3.7 micrometer retrievals, CDNC results show a negative change in the tropics, with differences transitioning toward positive values with increasing latitude spanning -25 to +50 cm(exp. -3) related to a +2.5 to -1 micrometers transition in effective radius. Cloud optical thickness differences were small relative to effective radius, and found to not significantly impact CDNC estimates. Regionally, the magnitude and behavior of the annual CDNC cycle are compared for each effective radius retrieval. Results from this study indicate significant intercollection differences in aggregated values of effective radius due to changes to the pre-computed retrieval lookup tables for ocean scenes, changes to retrieved cloud top pressure, solar irradiance, or above cloud thermal emission, depending upon spectral channel. The observed differences between collections may have implications for existing MODIS derived climatologies and validation studies of effective radius and CDNC.

  6. P2 Asymmetry of Au's M-band Flux and its smoothing effect due to high-Z ablator dopants

    NASA Astrophysics Data System (ADS)

    Li, Yongsheng; Zhai, Chuanlei; Ren, Guoli; Gu, Jianfa; Huo, Wenyi; Meng, Xujun; Ye, Wenhua; Lan, Ke; Zhang, Weiyan

    2017-10-01

    X-ray drive asymmetry is one of the main seeds of low-mode implosion asymmetry that blocks further improvement of the nuclear performance of ``high-foot'' experiments on the National Ignition Facility. More particularly, the P2 asymmetry of Au's M-band flux can also severely influence the implosion performance. Here we study the smoothing effect of mid- and/or high-Z dopants in ablator on M-band flux asymmetries, by modeling and comparing the implosion processes of a Ge-doped and a Si-doped ignition capsule driven by x-ray sources with asymmetric M-band flux. As the results, (1) mid- or high-Z dopants absorb M-band flux and re-emit isotropically, helping to smooth M-band flux arriving at the ablation front, therefore reducing the P2 asymmetries of the imploding shell and hot spot; (2) the smoothing effect of Ge-dopant is more remarkable than Si-dopant due to its higher opacity than the latter in Au's M-band; and (3) placing the doped layer at a larger radius in ablator is more efficient. Applying this effect may not be a main measure to reduce the low-mode implosion asymmetry, but might be of significance in some critical situations such as Inertial Confinement Fusion (ICF) experiments very near the performance cliffs of asymmetric x-ray drives.

  7. Proposal for ultrasmall deep ultraviolet diamond Raman nanolaser

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Hyon; Choe, Song-Hyok

    2016-10-01

    We propose diamond nanoparticle Raman laser operating in the spectral range of deep ultraviolet. High Raman gain and low cavity loss of diamond nanoparticles enable low-threshold Raman lasing. Based on the coupled-mode theory, we numerically study its lasing dynamics. For the diamond nanoparticle with a radius of about 130 nm, the lasing threshold energy is below 10 pJ for a pump spot size of 1 μm.

  8. Analysis of radially cracked ring segments subject to forces and couples

    NASA Technical Reports Server (NTRS)

    Gross, B.; Srawley, J. E.

    1977-01-01

    Results of planar boundary collocation analysis are given for ring segment (C-shaped) specimens with radial cracks, subjected to combined forces and couples. Mode I stress intensity factors and crack mouth opening displacements were determined for ratios of outer to inner radius in the range 1.1 to 2.5 and ratios of crack length to segment width in the range 0.1 to 0.8.

  9. Analysis of radially cracked ring segments subject to forces and couples

    NASA Technical Reports Server (NTRS)

    Gross, B.; Strawley, J. E.

    1975-01-01

    Results of planar boundary collocation analysis are given for ring segment (C shaped) specimens with radial cracks, subjected to combined forces and couples. Mode I stress intensity factors and crack mouth opening displacements were determined for ratios of outer to inner radius in the range 1.1 to 2.5, and ratios of crack length to segment width in the range 0.1 to 0.8.

  10. A 160 kJ dual plasma focus (DuPF) for fusion-relevant materials testing and nano-materials fabrication

    NASA Astrophysics Data System (ADS)

    Saw, S. H.; Damideh, V.; Chong, P. L.; Lee, P.; Rawat, R. S.; Lee, S.

    2014-08-01

    This paper summarizes PF-160 Dual Plasma Focus (DuPF) numerical experiments using the Lee Model code and preliminary 3D design drawings using SolidWorks software. This DuPF consists of two interchangeable electrodes enabling it to be optimized for both Slow Pinch Mode (SFM) and Fast Pinch Mode (FFM); the latter using a speed factor (SF) of 90 kA cm-1 Torr-0.5 for FFM in deuterium [S Lee et al, IEEE Trans Plasma Science 24, 1101-1105 (1996)]; and the former with SF of less than half that value for SFM. Starting with available 6 × 450 µF capacitors rated at 11kV (10% reversal), numerical experiments indicate safe operation at 9 kV, 6 Torr deuterium with FFM anode of 5 cm radius; producing intense ion beam and streaming plasma pulses which would be useful for studies of potential fusion reactor wall materials. On the other hand operating at 5 kV, 10 Torr deuterium with SFM anode of 10 cm radius leads to long-duration, uniform large-area flow which could be more suitable for synthesis of nano-materials. The dual plasma focus design is illustrated here with two figures showing FFM and SFM electrodes.

  11. Dual-mode nonlinear instability analysis of a confined planar liquid sheet sandwiched between two gas streams of unequal velocities and prediction of droplet size and velocity distribution using maximum entropy formulation

    NASA Astrophysics Data System (ADS)

    Dasgupta, Debayan; Nath, Sujit; Bhanja, Dipankar

    2018-04-01

    Twin fluid atomizers utilize the kinetic energy of high speed gases to disintegrate a liquid sheet into fine uniform droplets. Quite often, the gas streams are injected at unequal velocities to enhance the aerodynamic interaction between the liquid sheet and surrounding atmosphere. In order to improve the mixing characteristics, practical atomizers confine the gas flows within ducts. Though the liquid sheet coming out of an injector is usually annular in shape, it can be considered to be planar as the mean radius of curvature is much larger than the sheet thickness. There are numerous studies on breakup of the planar liquid sheet, but none of them considered the simultaneous effects of confinement and unequal gas velocities on the spray characteristics. The present study performs a nonlinear temporal analysis of instabilities in the planar liquid sheet, produced by two co-flowing gas streams moving with unequal velocities within two solid walls. The results show that the para-sinuous mode dominates the breakup process at all flow conditions over the para-varicose mode of breakup. The sheet pattern is strongly influenced by gas velocities, particularly for the para-varicose mode. Spray characteristics are influenced by both gas velocity and proximity to the confining wall, but the former has a much more pronounced effect on droplet size. An increase in the difference between gas velocities at two interfaces drastically shifts the droplet size distribution toward finer droplets. Moreover, asymmetry in gas phase velocities affects the droplet velocity distribution more, only at low liquid Weber numbers for the input conditions chosen in the present study.

  12. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes.

    PubMed

    Smirnov, A; Yasinskii, V M; Filimonenko, D S; Rostova, E; Dietler, G; Sekatskii, S K

    2018-01-01

    In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO 2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000-6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.

  13. A singularity free approach to post glacial rebound calculations

    NASA Technical Reports Server (NTRS)

    Fang, Ming; Hager, Bradford H.

    1994-01-01

    Calculating the post glacial response of a viscoelastic Earth model using the exponential decay normal mode technique leads to intrinsic singularities if viscosity varies continuously as a function of radius. We develop a numerical implementation of the Complex Real Fourier transform (CRFT) method as an accurate and stable procedure to avoid these singularities. Using CRFT, we investigate the response of a set of Maxwell Earth models to surface loading. We find that the effect of expanding a layered viscosity structure into a continuously varying structure is to destroy the modes associated with the boundary between layers. Horizontal motion is more sensitive than vertical motion to the viscosity structure just below the lithosphere. Horizontal motion is less sensitive to the viscosity of the lower mantle than the vertical motion is. When the viscosity increases at 670 km depth by a factor of about 60, the response of the lower mantle is close to its elastic limit. Any further increase of the viscosity contrast at 670 km depth or further increase of viscosity as a continuous function of depth starting from 670 km depth is unlikely to be resolved.

  14. Scrape-off layer reflectometer for Alcator C-Mod.

    PubMed

    Lau, Cornwall; Hanson, Greg; Wilgen, John; Lin, Yijun; Wukitch, Steve

    2010-10-01

    A swept-frequency X-mode reflectometer is being built for Alcator C-Mod to measure the scrape-off layer density profiles at the top, middle, and bottom locations in front of both the new lower hybrid launcher and the new ion cyclotron range of frequencies antenna. The system is planned to operate between 100 and 146 GHz at sweep rates from 10 μs to 1 ms, and will cover a density range of approximately 10(16)-10(20) m(-3) at B(0)=5-5.4 T. To minimize the effects of density fluctuations, both differential phase and full phase reflectometry will be employed. Design, test data, and calibration results of this electronics system will be discussed. To reduce attenuation losses, tallguide (TE(01)) will be used for most of the transmission line system. Simulations of high mode conversion in tallguide components, such as e-plane hyperbolic secant radius of curvature bends, tapers, and horn antennas will be shown. Experimental measurements of the total attenuation losses of these components in the lower hybrid waveguide run will also be presented.

  15. Circular lasers for telecommunications and rf/photonics applications

    NASA Astrophysics Data System (ADS)

    Griffel, Giora

    2000-04-01

    Following a review of ring resonator research in the past decade we shall report a novel bi-level etching technique that permits the use of standard photolithography for coupling to deeply-etched ring resonator structures. The technique is employed to demonstrate InGaAsP laterally- coupled racetrack ring resonators laser with record low threshold currents of 66 mA. The racetrack laser have curved sections of 150 micrometers radius with negligible bending loss. The lasers operate CW single mode up to nearly twice threshold with a 26 dB side-mode-suppression ratio. We shall also present a transfer matrix formalism for the analysis of ring resonator arrays and indicate application examples for flat band filter synthesis.

  16. Kinetic description of cyclotron-range oscillations of a non-neutral plasma column

    NASA Astrophysics Data System (ADS)

    Neu, S. C.; Morales, G. J.

    1998-04-01

    The kinetic analysis introduced by Prasad, Morales, and Fried [Prasad et al., Phys. Fluids 30, 3093 (1987)] is used to derive damping conditions and a differential equation for azimuthally propagating waves in a non-neutral plasma column in the limits rl/L≪1 and krl≪1 (where rl is the Larmor radius, k is the wave number, and L is the density scale length). The predictions of the kinetic analysis are verified using a two-dimensional particle-in-cell simulation of Bernstein modes in a thermal rigid-rotor equilibrium. Differences between modes in a strongly magnetized limit and near the Brillouin limit are studied in the simulation.

  17. Quasinormal modes and quantization of area/entropy for noncommutative BTZ black hole

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Chen, Juhua; Wang, Yongjiu

    2018-04-01

    We investigate the quasinormal modes and area/entropy spectrum for the noncommutative BTZ black hole. The exact expressions for QNM frequencies are presented by expanding the noncommutative parameter in horizon radius. We find that the noncommutativity does not affect conformal weights (hL, hR), but it influences the thermal equilibrium. The intuitive expressions of the area/entropy spectrum are calculated in terms of Bohr-Sommerfeld quantization, and our results show that the noncommutativity leads to a nonuniform area/entropy spectrum. We also find that the coupling constant ξ , which is the coupling between the scalar and the gravitational fields, shifts the QNM frequencies but not influences the structure of area/entorpy spectrum.

  18. Mid-term functional outcome after the internal fixation of distal radius fractures

    PubMed Central

    2012-01-01

    Background Distal radius fracture is a common injury with a variety of operative and non-operative management options. There remains debate as to the optimal treatment for a given patient and fracture. Despite the popularity of volar locking plate fixation, there are few large cohort or long term follow up studies to justify this modality. Our aim was to report the functional outcome of a large number of patients at a significant follow up time after fixation of their distal radius with a volar locking plate. Methods 180 patients with 183 fractures and a mean age of 62.4 years were followed up retrospectively at a mean of 30 months (Standard deviation = 10.4). Functional assessment was performed using the Disabilities of the Arm, Shoulder and Hand (DASH) and modified MAYO wrist scores. Statistical analysis was performed to identify possible variables affecting outcome and radiographs were assessed to determine time to fracture union. Results The median DASH score was 2.3 and median MAYO score was 90 for the whole group. Overall, 133 patients (74%) had a good or excellent DASH and MAYO score. Statistical analysis showed that no specific variable including gender, age, fracture type, post-operative immobilisation or surgeon grade significantly affected outcome. Complications occurred in 27 patients (15%) and in 11 patients were major (6%). Conclusion This single centre large population series demonstrates good to excellent results in the majority of patients after volar locking plate fixation of the distal radius, with complication rates comparable to other non-operative and operative treatment modalities. On this basis we recommend this mode of fixation for distal radius fractures requiting operative intervention. PMID:22280557

  19. Mid-term functional outcome after the internal fixation of distal radius fractures.

    PubMed

    Phadnis, Joideep; Trompeter, Alex; Gallagher, Kieran; Bradshaw, Lucy; Elliott, David S; Newman, Kevin J

    2012-01-26

    Distal radius fracture is a common injury with a variety of operative and non-operative management options. There remains debate as to the optimal treatment for a given patient and fracture. Despite the popularity of volar locking plate fixation, there are few large cohort or long term follow up studies to justify this modality. Our aim was to report the functional outcome of a large number of patients at a significant follow up time after fixation of their distal radius with a volar locking plate. 180 patients with 183 fractures and a mean age of 62.4 years were followed up retrospectively at a mean of 30 months (Standard deviation=10.4). Functional assessment was performed using the Disabilities of the Arm, Shoulder and Hand (DASH) and modified MAYO wrist scores. Statistical analysis was performed to identify possible variables affecting outcome and radiographs were assessed to determine time to fracture union. The median DASH score was 2.3 and median MAYO score was 90 for the whole group. Overall, 133 patients (74%) had a good or excellent DASH and MAYO score. Statistical analysis showed that no specific variable including gender, age, fracture type, post-operative immobilisation or surgeon grade significantly affected outcome. Complications occurred in 27 patients (15%) and in 11 patients were major (6%). This single centre large population series demonstrates good to excellent results in the majority of patients after volar locking plate fixation of the distal radius, with complication rates comparable to other non-operative and operative treatment modalities. On this basis we recommend this mode of fixation for distal radius fractures requiting operative intervention.

  20. Cyclic fatigue testing of nickel-titanium endodontic instruments.

    PubMed

    Pruett, J P; Clement, D J; Carnes, D L

    1997-02-01

    Cyclic fatigue of nickel-titanium, engine-driven instruments was studied by determining the effect of canal curvature and operating speed on the breakage of Lightspeed instruments. A new method of canal curvature evaluation that addressed both angle and abruptness of curvature was introduced. Canal curvature was simulated by constructing six curved stainless-steel guide tubes with angles of curvature of 30, 45, or 60 degrees, and radii of curvature of 2 or 5 mm. Size #30 and #40 Light-speed instruments were placed through the guide tubes and the heads secured in the collet of a Mangtrol Dynamometer. A simulated operating load of 10 g-cm was applied. Instruments were able to rotate freely in the test apparatus at speeds of 750, 1300, or 2000 rpm until separation occurred. Cycles to failure were determined. Cycles to failure were not affected by rpm. Instruments did not separate at the head, but rather at the point of maximum flexure of the shaft, corresponding to the midpoint of curvature within the guide tube. The instruments with larger diameter shafts, #40, failed after significantly fewer cycles than did #30 instruments under identical test conditions. Multivariable analysis of variance indicated that cycles to failure significantly decreased as the radius of curvature decreased from 5 mm to 2 mm and as the angle of curvature increased greater than 30 degrees (p < 0.05, power = 0.9). Scanning electron microscopic evaluation revealed ductile fracture as the fatigue failure mode. These results indicate that, for nickel-titanium, engine-driven rotary instruments, the radius of curvature, angle of curvature, and instrument size are more important than operating speed for predicting separation. This study supports engineering concepts of cyclic fatigue failure and suggests that standardized fatigue tests of nickel-titanium rotary instruments should include dynamic operation in a flexed state. The results also suggest that the effect of the radius of curvature as an independent variable should be considered when evaluating studies of root canal instrumentation.

  1. Numerical and experimental investigation of the bending response of thin-walled composite cylinders

    NASA Technical Reports Server (NTRS)

    Fuchs, J. P.; Hyer, M. W.; Starnes, J. H., Jr.

    1993-01-01

    A numerical and experimental investigation of the bending behavior of six eight-ply graphite-epoxy circular cylinders is presented. Bending is induced by applying a known end-rotation to each end of the cylinders, analogous to a beam in bending. The cylinders have a nominal radius of 6 inches, a length-to-radius ratio of 2 and 5, and a radius-to-thickness ratio of approximately 160. A (+/- 45/0/90)S quasi-isotropic layup and two orthotropic layups, (+/- 45/0 sub 2)S and (+/- 45/90 sub 2)S, are studied. A geometrically nonlinear special-purpose analysis, based on Donnell's nonlinear shell equations, is developed to study the prebuckling responses and gain insight into the effects of non-ideal boundary conditions and initial geometric imperfections. A geometrically nonlinear finite element analysis is utilized to compare with the prebuckling solutions of the special-purpose analysis and to study the buckling and post buckling responses of both geometrically perfect and imperfect cylinders. The imperfect cylinder geometries are represented by an analytical approximation of the measured shape imperfections. Extensive experimental data are obtained from quasi-static tests of the cylinders using a test fixture specifically designed for the present investigation. A description of the test fixture is included. The experimental data are compared to predictions for both perfect and imperfect cylinder geometries. Prebuckling results are presented in the form of displacement and strain profiles. Buckling end-rotations, moments, and strains are reported, and predicted mode shapes are presented. Observed and predicted moment vs. end-rotation relations, deflection patterns, and strain profiles are illustrated for the post buckling responses. It is found that a geometrically nonlinear boundary layer behavior characterizes the prebuckling responses. The boundary layer behavior is sensitive to laminate orthotropy, cylinder geometry, initial geometric imperfections, applied end-rotation, and non-ideal boundary conditions. Buckling end-rotations, strains, and moments are influenced by laminate orthotropy and initial geometric imperfections. Measured buckling results correlate well with predictions for the geometrically imperfect specimens. The postbuckling analyses predict equilibrium paths with a number of scallop-shaped branches that correspond to unique deflection patterns. The observed postbuckling deflection patterns and measured strain profiles show striking similarities to the predictions in some cases. Ultimate failure of the cylinders is attributed to an interlaminar shear failure mode along the nodal lines of the postbuckling deflection patterns.

  2. An evanescent wave biosensor--Part I: Fluorescent signal acquisition from step-etched fiber optic probes.

    PubMed

    Anderson, G P; Golden, J P; Ligler, F S

    1994-06-01

    A fiber-optic biosensor capable of remote continuous monitoring has recently been designed. To permit sensing at locations separate from the optoelectronic instrumentation, long optical fibers are utilized. An evanescent wave immuno-probe is prepared by removing the cladding near the distal end of the fiber and covalently attaching antibodies to the core. Probes with a radius unaltered from that of the original core inefficiently returned the signal produced upon binding the fluorescent-labelled antigen. To elucidate the limiting factors in signal acquisition, a series of fibers with increasingly reduced probe core radius was examined. The results were consistent with the V-number mismatch, the difference in mode carrying capacity between the clad and unclad fiber, being a critical factor in limiting signal coupling from the fiber probe. However, it was also delineated that conditions which conserve excitation power, such that power in the evanescent wave is optimized, must also be met to obtain a maximal signal. The threshold sensitivity for the optimal step-etched fiber probe was improved by over 20-fold in an immunoassay, although, it was demonstrated that signal acquisition decreased along the probe length, suggesting that a sensor region of uniform radius is not ideal.

  3. Advances towards high performance low-torque qmin > 2 operations with large-radius ITB on DIII-D

    NASA Astrophysics Data System (ADS)

    Xu, G. S.; Solomon, W. M.; Garofalo, A. M.; Ferron, J. R.; Hyatt, A. W.; Wang, Q.; Yan, Z.; McKee, G. R.; Holcomb, C. T.; EAST Team

    2015-11-01

    A joint DIII-D/EAST experiment was performed aimed at extending a fully noninductive scenario with high βP and qmin > 2 to inductive operation at lower torque and higher Ip (0.6 --> 0.8 MA) for better performance. Extremely high confinement was obtained, i.e., H98y2 ~ 2.1 at βN ~ 3, which was associated with a strong ITB at large minor radius (ρ ~ 0.7). Alfvén Eigenmodes and broadband turbulence were significantly suppressed in the core, and fast-ion confinement was improved. ITB collapses at 0.8 MA were induced by ELM-triggered n = 1 MHD modes at the ITB location, which is different from the ``relaxation oscillations'' associated with the steady-state plasmas at lower current (0.6 MA). This successful joint experiment may open up a new avenue towards high performance low-torque qmin > 2 plasmas with large-radius ITBs, which will be demonstrated on EAST in the near future. Work supported by NMCFSP 2015GB102000, 2015GB110001 and the US DOE under DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-89ER53296 and DE-AC52-07NA27344.

  4. Tunable plasmon-induced absorption effects in a graphene-based waveguide coupled with graphene ring resonators

    NASA Astrophysics Data System (ADS)

    Huang, Pei-Nian; Xia, Sheng-Xuan; Fu, Guang-Lai; Liang, Mei-Zhen; Qin, Meng; Zhai, Xiang; Wang, Ling-Ling

    2018-03-01

    In this paper, we propose a structure composed of two graphene waveguides and dual coupled graphene ring resonators (GRRs) to achieve a plasmon-induced absorption (PIA) effect. A three-level plasmonic system and a temporal coupled mode theory (CMT) are utilized to verify the simulation results. Moreover, a double-window-PIA effect can be conveniently attained by introducing another GRR with proper parameters to meet more specific acquirement in optical modulation process. The pronounced PIA resonances can be tuned in a number of ways, such as by adjusting the coupling distance between the GRRs and the couplings between the GRR and the waveguide, and tuning the radius and the Fermi energy of the GRRs. Besides, the produced PIA effect shows a high group delay up to - 1 . 87 ps, exhibiting a particularly prominent fast-light feature. Our results have potential applications in the realization of THz-integrated spectral control and graphene plasmonic devices such as sensors, filters, ultra-fast optical switches and so on.

  5. Van der waals forces on thin liquid films in capillary tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herdt, G.C.; Swanson, L.W.

    1993-10-01

    A theory of the van der Waals attraction between a thin liquid films and a capillary tube is presented assuming the presence of a vapor-liquid interface. The model is based on the surface mode analysis method of van Kampen et al. Values for the van der Waals interaction energy per unit area were calculated for liquid films of pentane on a gold substrate assuming a thin liquid film. Results indicate that the effect of capillary curvature on the van der Waals interaction increases as the ratio of the liquid film thickness to the capillary radius is increased. This trend ismore » consistent with predictions based on the Hamaker theory. Deviations from results based on the Hamaker theory are easily explained in terms of retardation of the van der Waals interaction. Because the effect of capillary curvature increases in the regime where retardation effects become important, curvature effects constitute a small correction to the van der Waals forces in a capillary tube.« less

  6. Evaluation of long-term surface-retrieved cloud droplet number concentration with in situ aircraft observations: ARM Cloud Droplet Number Concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Kyo-Sun Sunny; Riihimaki, Laura; Comstock, Jennifer M.

    A new cloud-droplet number concentration (NDROP) value added product (VAP) has been produced at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site for the 13 years from January 1998 to January 2011. The retrieval is based on surface radiometer measurements of cloud optical depth from the multi-filter rotating shadow-band radiometer (MFRSR) and liquid water path from the microwave radiometer (MWR). It is only applicable for single-layered warm clouds. Validation with in situ aircraft measurements during the extended-term aircraft field campaign, Routine ARM Aerial Facility (AAF) CLOWD Optical Radiative Observations (RACORO), shows that the NDROP VAP robustly reproduces themore » primary mode of the in situ measured probability density function (PDF), but produces a too wide distribution, primarily caused by frequent high cloud-droplet number concentration. Our analysis shows that the error in the MWR retrievals at low liquid water paths is one possible reason for this deficiency. Modification through the diagnosed liquid water path from the coordinate solution improves not only the PDF of the NDROP VAP but also the relationship between the cloud-droplet number concentration and cloud-droplet effective radius. Consideration of entrainment effects rather than assuming an adiabatic cloud improves the values of the NDROP retrieval by reducing the magnitude of cloud-droplet number concentration. Aircraft measurements and retrieval comparisons suggest that retrieving the vertical distribution of cloud-droplet number concentration and effective radius is feasible with an improvement of the parameter representing the mixing effects between environment and clouds and with a better understanding of the effect of mixing degree on cloud properties.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bane, K.L.F.; Adolphsen, C.; Li, Z.

    In a future linear collider, such as the International Linear Collider (ILC), trains of high current, low emittance bunches will be accelerated in a linac before colliding at the interaction point. Asymmetries in the accelerating cavities of the linac will generate fields that will kick the beam transversely and degrade the beam emittance and thus the collider performance. In the main linac of the ILC, which is filled with TESLA-type superconducting cavities, it is the fundamental (FM) and higher mode (HM) couplers that are asymmetric and thus the source of such kicks. The kicks are of two types: one, duemore » to (the asymmetry in) the fundamental RF fields and the other, due to transverse wakefields that are generated by the beam even when it is on axis. In this report we calculate the strength of these kicks and estimate their effect on the ILC beam. The TESLA cavity comprises nine cells, one HM coupler in the upstream end, and one (identical, though rotated) HM coupler and one FM coupler in the downstream end (for their shapes and location see Figs. 1, 2) [1]. The cavity is 1.1 m long, the iris radius 35 mm, and the coupler beam pipe radius 39 mm. Note that the couplers reach closer to the axis than the irises, down to a distance of 30 mm.« less

  8. Analysis of a log periodic nano-antenna for multi-resonant broadband field enhancement and the Purcell factor

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Kong, Fanmin; Li, Kang; Sheng, Shiwei

    2015-05-01

    Broadband nano-antennas play a central role in many areas of science and technology. However, a more intuitive understanding for rational design of nano-antennas with broadband response is desirable. A log periodic nano-antenna was studied in the paper. The finite-difference time-domain method was used to explore the spectral characteristics of the log periodic nano-antenna by the excitation mode of reception and emission. The effects of geometry on field enhancement and the Purcell factor were systematically described and investigated. The field enhancement of the nano-antenna can be tuned by geometric parameters such as the outer radius, the tooth angle, and the ratio of the radial sizes of successive teeth, which provide control over both the spectral resonance position and the field enhancement peak amplitude. The Purcell factor mainly depends on the outer radius, the tooth angle, and the bow angle. In addition, multi-resonant field enhancement was analyzed in detail by conformal transformation. Furthermore, a careful comparison of the characteristics of a bowtie nano-antenna demonstrated that the log periodic nano-antenna has considerable potential for multi-resonant field enhancement and improvement of the Purcell factor. The results provide a promising prospect for designing and optimizing the log periodic nano-antenna in a broad range of wavelengths.

  9. [Matrimonial radius and anthropologic differentiation of the population of the Peloponnese, Greece].

    PubMed

    Pitsios, T K

    1983-09-01

    Mean matrimonial radius (MMR) and mean breeding radius (MBR) were studied in the population of the Peloponnese (Greece). The historical and geographical causes of these important genetical variables are discussed considering, too, their effects on the anthropological differentiation of this population.

  10. Magellan: Radar performance and data products

    USGS Publications Warehouse

    Pettengill, G.H.; Ford, P.G.; Johnson, W.T.K.; Raney, R.K.; Soderblom, L.A.

    1991-01-01

    The Magellan Venus orbiter carries only one scientific instrument: a 12.6-centimeter-wavelength radar system shared among three data-taking modes. The syntheticaperture mode images radar echoes from the Venus surface at a resolution of between 120 and 300 meters, depending on spacecraft altitude. In the altimetric mode, relative height measurement accuracies may approach 5 meters, depending on the terrain's roughness, although orbital uncertainties place a floor of about 50 meters on the absolute uncertainty. In areas of extremely rough topography, accuracy is limited by the inherent line-of-sight radar resolution of about 88 meters. The maximum elevation observed to date, corresponding to a planetary radius of 6062 kilometers, lies within Maxwell Mons. When used as a thermal emission radiometer, the system can determine surface emissivities to an absolute accuracy of about 0.02. Mosaicked and archival digital data products will be released in compact disk (CDROM) format.

  11. Dynamics of contact line depinning during droplet evaporation based on thermodynamics.

    PubMed

    Yu, Dong In; Kwak, Ho Jae; Doh, Seung Woo; Ahn, Ho Seon; Park, Hyun Sun; Kiyofumi, Moriyama; Kim, Moo Hwan

    2015-02-17

    For several decades, evaporation phenomena have been intensively investigated for a broad range of applications. However, the dynamics of contact line depinning during droplet evaporation has only been inductively inferred on the basis of experimental data and remains unclear. This study focuses on the dynamics of contact line depinning during droplet evaporation based on thermodynamics. Considering the decrease in the Gibbs free energy of a system with different evaporation modes, a theoretical model was developed to estimate the receding contact angle during contact line depinning as a function of surface conditions. Comparison of experimentally measured and theoretically modeled receding contact angles indicated that the dynamics of contact line depinning during droplet evaporation was caused by the most favorable thermodynamic process encountered during constant contact radius (CCR mode) and constant contact angle (CCA mode) evaporation to rapidly reach an equilibrium state during droplet evaporation.

  12. Influence of the thrust bearing on the natural frequencies of a 72-MW hydropower rotor

    NASA Astrophysics Data System (ADS)

    Cupillard, S.; Aidanpää, J.-O.

    2016-11-01

    The thrust bearing is an essential element of a hydropower machine. Not only does it carry the total axial load but it also introduces stiffness and damping properties in the system. The focus of this study is on the influence of the thrust bearing on the lateral vibrations of the shaft of a 72-MW propeller turbine. The thrust bearing has a non-conventional design with a large radius and two rows of thrust pads. A numerical model is developed to estimate natural frequencies. Numerical results are analyzed and related to experimental measurements of a runaway test. The results show the need to include the thrust bearing in the model. In fact, the vibration modes are substantially increased towards higher frequencies with the added properties from the thrust bearing. The second mode of vibration has been identified in the experimental measurements. Its frequency and mode shape compare well with numerical results.

  13. Characterization of damage modes in dental ceramic bilayer structures.

    PubMed

    Deng, Yan; Lawn, Brian R; Lloyd, Isabel K

    2002-01-01

    Results of contact tests using spherical indenters on flat ceramic coating layers bonded to compliant substrates are reported for selected dental ceramics. Critical loads to produce various damage modes, cone cracking, and quasiplasticity at the top surfaces and radial cracking at the lower (inner) surfaces are measured as a function of ceramic-layer thickness. It is proposed that these damage modes, especially radial cracking, are directly relevant to the failure of all-ceramic dental crowns. The critical load data are analyzed with the use of explicit fracture-mechanics relations, expressible in terms of routinely measurable material parameters (elastic modulus, strength, toughness, hardness) and essential geometrical variables (layer thickness, contact radius). The utility of such analyses in the design of ceramic/substrate bilayer systems for optimal resistance to lifetime-threatening damage is discussed. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 137--145, 2002; DOI 10.1002/jbm.10091

  14. Comparison of hand laid-up tape and filament wound composite cylinders and panels with and without impact damage

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Lopez, Osvaldo F.

    1991-01-01

    Experimentally determined axial compressive failure loads, strains and failure modes of composite flat panels and cylinders are presented. A comparison of two types of filament wound flat graphite-epoxy panels indicates that the winding pattern can influence structural response. A comparison of hand laid-up tape and filament wound composite cylinders indicates that fabrication method may not significantly influence the failure mode or average failure strain of thick-walled (radius-to-thickness ratio less than 15) graphite-epoxy cylinders. The interaction of manufacturing-induced features (fiber cross-overs) and low-speed impact damage for graphite-epoxy specimens is also presented. Filament would flat panels with many fiber cross-overs exhibited lower failure strains than filament wound panels without fiber cross-overs for all impact speeds examined. Graphite-thermoplastic cylinders exhibited a significantly different failure mode from the graphite-epoxy cylinders.

  15. Nonradial Pulsations in Post-outburst Novae

    NASA Astrophysics Data System (ADS)

    Wolf, William M.; Townsend, Richard H. D.; Bildsten, Lars

    2018-03-01

    After an optical peak, a classical or recurrent nova settles into a brief (days to years) period of quasi-stable thermonuclear burning in a compact configuration nearly at the white dwarf (WD) radius. During this time, the underlying WD becomes visible as a strong emitter of supersoft X-rays. Observations during this phase have revealed oscillations in the X-ray emission with periods on the order of tens of seconds. A proposed explanation for the source of these oscillations is internal gravity waves excited by nuclear reactions at the base of the hydrogen-burning layer. In this work, we present the first models exhibiting unstable surface g-modes with periods similar to oscillation periods found in galactic novae. However, when comparing mode periods of our models to the observed oscillations of several novae, we find that the modes that are excited have periods shorter than that observed.

  16. Evolution of Pinatubo aerosol near 19 km altitude over western North America

    NASA Technical Reports Server (NTRS)

    Goodman, Jindra; Snetsinger, K. G.; Pueschel, R. F.; Ferry, G. V.; Verma, S.

    1994-01-01

    Stratospheric aerosols, collected near 19 km altitude on wire impactors over western North America from August 20, 1991 to May 11, 1993, show strong influence of the June 1991 Mt. Pinatubo eruption. Lognormal size distributions are bimodal; each of the mode radii increases and reaches maximum value at about 15 months after eruption. The second (large particle) mode becomes well developed then, and about 40% of the droplets are larger than 0.4 micron radius. The eruption of Mt. Spurr (Alaska) may also have contributed to this. Sulfate mass loading decays exponentially (e-folding 216 days), similar to El Chichon. Silicates are present in samples only immediately after eruption. Two years after eruption, sulfate mass loading is about 0.4 micrograms/cu m, about an order of magnitude higher than background pre-volcanic values. Aerosol size distributions are still bimodal with a very well-defined large droplet mode.

  17. Excitation of high frequency pressure driven modes in non-axisymmetric equilibrium at high βpol in PBX-M

    NASA Astrophysics Data System (ADS)

    Sesnic, S.; Holland, A.; Kaita, R.; Kaye, S. M.; Okabayashi, M.; Takahashi, H.; Asakura, N.; Bell, R. E.; Bernabei, S.; Chance, M. S.; Duperrex, P.-A.; Fonck, R. J.; Gammel, G. M.; Greene, G. J.; Hatcher, R. E.; Jardin, S. C.; Jiang, T.; Kessel, C. E.; Kugel, H. W.; Leblanc, B.; Levinton, F. M.; Manickam, J.; Ono, M.; Paul, S. F.; Powell, E. T.; Qin, Y.; Roberts, D. W.; Sauthoff, N. R.

    1993-12-01

    High frequency pressure driven modes have been observed in high poloidal beta discharges in the Princeton Beta Experiment Modification (PBX-M). These modes are excited in a non-axisymmetric equilibrium characterized by a large, low frequency mt = 1/nt = 1 island, and they are capable of expelling fast ions. The modes reside on or very close to the q = 1 surface and have mode numbers with either mh = nh or (less probably) mh/nh = mh/(mh-1), with mh varying between 3 and 10. Occasionally these modes are simultaneously localized in the vicinity of the ml = 2/nl = 1 island. The high frequency modes near the q = 1 surface also exhibit a ballooning character, being significantly stronger on the large major radius side of the plasma. When a large mt = 1/nt = 1 island is present, the mode is poloidally localized in the immediate vicinity of the X point of the island. The modes occur exclusively in high beta beam heated discharges and are likely to be driven by the beam ions. They can thus be a manifestation of either a toroidicity induced shear Alfven eigenmode (TAE) at q = (2mh+1)/2nh, a kinetic ballooning mode, or some other type of pressure driven (high β) mode. Most of the data are consistent with the theoretical predictions for the TAE gap mode. Since the high frequency modes in PBX-M, however, are found exclusively on or in the immediate neighbourhood of magnetic surfaces with low rational numbers (q = 1, 2,...), other possibilities are not excluded

  18. Effect of microstructure and notch root radius on fracture toughness of an aluminum metal matrix composite

    NASA Technical Reports Server (NTRS)

    Manoharan, M.; Lewandowski, J. J.

    1989-01-01

    Recent results on the effects of matrix aging condition (matrix temper) and notch root radius on the measured fracture toughness of a SiC particulate reinforced aluminum alloy are reviewed. Stress intensity factors at catastrophic fracture were obtained for both underaged and overaged composites reveal. The linear relation found between apparent fracture toughness and the square root of the notch root radius implies a linear dependence of the crack opening displacement on the notch root radius. The results suggest a strain controlled fracture process, and indicate that there are differences in the fracture micromechanisms of the two aging conditions.

  19. Noncircular features in Saturn's rings I: The edge of the B ring

    NASA Astrophysics Data System (ADS)

    Nicholson, Philip D.; French, Richard G.; Hedman, Matthew M.; Marouf, Essam A.; Colwell, Joshua E.

    2014-01-01

    A comprehensive investigation of all available radio and stellar occultation data for the outer edge of Saturn's B ring, spanning the period 1980-2010, confirms that the m = 2 distortion due to the strong Mimas 2:1 inner Lindblad resonance circulates slowly relative to Mimas in a prograde direction, with a frequency ΩL = 0.1819° d-1. Our best-fitting model implies that the radial amplitude of this distortion ranges from a minimum of 3 km to a maximum of 71 km, with short-lived minima recurring every 5.42 yrs. In addition to the dominant m = 2 pattern, the edge of the B ring also exhibits at least four other perturbations. An m = 1 component with a radial amplitude of ˜20 km rotates at a rate very close to the expected local apsidal precession rate of ϖ˜5.059° d-1, while smaller perturbations are seen with m = 3 (amplitude 12.5 km), m = 4 (5.9 km), and m = 5 (5.6 km), each of which has a pattern speed consistent with that expected for a spontaneously-generated "normal mode" (French, R.G. et al. [1988]. Icarus 73, 349-378). Our results for m = 1, m = 2 and m = 3 are compatible with those obtained by Spitale and Porco (Spitale, J.N., Porco, C.C. [2010]. Astron. J. 140, 1747-1757), which were based on Cassini imaging data. The pattern speed of each normal mode slightly exceeds that expected at the mean edge radius, supporting their conclusion that they may represent a series of free modes, each of which is trapped in a narrow region between the mode's resonant radius and the ring's edge. However, both our model and that of Spitale and Porco fail to provide complete descriptions of this surprisingly complex feature, with post-fit root-mean-square residuals of ˜8 km considerably exceeding typical measurement errors of 1 km or less.

  20. Numerical Modeling of Fluid Flow in Solid Tumors

    PubMed Central

    Soltani, M.; Chen, P.

    2011-01-01

    A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for a predefined tumor geometry. The interstitial fluid pressure and velocity are calculated using a numerical method, element based finite volume. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, because of the interstitial pressure distribution, the distribution of drug particles is non-uniform. Pressure distribution for different values of necrotic radii is examined and two new parameters, the critical tumor radius and critical necrotic radius, are defined. Simulation results show that: 1) tumor radii have a critical size. Below this size, the maximum interstitial fluid pressure is less than what is generally considered to be effective pressure (a parameter determined by vascular pressure, plasma osmotic pressure, and interstitial osmotic pressure). Above this size, the maximum interstitial fluid pressure is equal to effective pressure. As a consequence, drugs transport to the center of smaller tumors is much easier than transport to the center of a tumor whose radius is greater than the critical tumor radius; 2) there is a critical necrotic radius, below which the interstitial fluid pressure at the tumor center is at its maximum value. If the tumor radius is greater than the critical tumor radius, this maximum pressure is equal to effective pressure. Above this critical necrotic radius, the interstitial fluid pressure at the tumor center is below effective pressure. In specific ranges of these critical sizes, drug amount and therefore therapeutic effects are higher because the opposing force, interstitial fluid pressure, is low in these ranges. PMID:21673952

  1. Nonlinear Evolution of Short-wavelength Torsional Alfvén Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shestov, S. V.; Nakariakov, V. M.; Ulyanov, A. S.

    2017-05-10

    We analyze nonlinear evolution of torsional Alfvén waves in a straight magnetic flux tube filled in with a low- β plasma, and surrounded with a plasma of lower density. Such magnetic tubes model, in particular, a segment of a coronal loop or a polar plume. The wavelength is taken comparable to the tube radius. We perform a numerical simulation of the wave propagation using ideal magnetohydrodynamics. We find that a torsional wave nonlinearly induces three kinds of compressive flows: the parallel flow at the Alfvén speed, which constitutes a bulk plasma motion along the magnetic field, the tube wave, andmore » also transverse flows in the radial direction, associated with sausage fast magnetoacoustic modes. In addition, the nonlinear torsional wave steepens and its propagation speed increases. The latter effect leads to the progressive distortion of the torsional wave front, i.e., nonlinear phase mixing. Because of the intrinsic non-uniformity of the torsional wave amplitude across the tube radius, the nonlinear effects are more pronounced in regions with higher wave amplitudes. They are always absent at the axes of the flux tube. In the case of a linear radial profile of the wave amplitude, the nonlinear effects are localized in an annulus region near the tube boundary. Thus, the parallel compressive flows driven by torsional Alfvén waves in the solar and stellar coronae, are essentially non-uniform in the perpendicular direction. The presence of additional sinks for the wave energy reduces the efficiency of the nonlinear parallel cascade in torsional Alfvén waves.« less

  2. Nonlinear Evolution of Short-wavelength Torsional Alfvén Waves

    NASA Astrophysics Data System (ADS)

    Shestov, S. V.; Nakariakov, V. M.; Ulyanov, A. S.; Reva, A. A.; Kuzin, S. V.

    2017-05-01

    We analyze nonlinear evolution of torsional Alfvén waves in a straight magnetic flux tube filled in with a low-β plasma, and surrounded with a plasma of lower density. Such magnetic tubes model, in particular, a segment of a coronal loop or a polar plume. The wavelength is taken comparable to the tube radius. We perform a numerical simulation of the wave propagation using ideal magnetohydrodynamics. We find that a torsional wave nonlinearly induces three kinds of compressive flows: the parallel flow at the Alfvén speed, which constitutes a bulk plasma motion along the magnetic field, the tube wave, and also transverse flows in the radial direction, associated with sausage fast magnetoacoustic modes. In addition, the nonlinear torsional wave steepens and its propagation speed increases. The latter effect leads to the progressive distortion of the torsional wave front, I.e., nonlinear phase mixing. Because of the intrinsic non-uniformity of the torsional wave amplitude across the tube radius, the nonlinear effects are more pronounced in regions with higher wave amplitudes. They are always absent at the axes of the flux tube. In the case of a linear radial profile of the wave amplitude, the nonlinear effects are localized in an annulus region near the tube boundary. Thus, the parallel compressive flows driven by torsional Alfvén waves in the solar and stellar coronae, are essentially non-uniform in the perpendicular direction. The presence of additional sinks for the wave energy reduces the efficiency of the nonlinear parallel cascade in torsional Alfvén waves.

  3. Faraday Wave Turbulence on a Spherical Liquid Shell

    NASA Technical Reports Server (NTRS)

    Holt, R. Glynn; Trinh, Eugene H.

    1996-01-01

    Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.

  4. Radiative characteristics of aerosol during extreme fire event over Siberia in summer 2012

    NASA Astrophysics Data System (ADS)

    Zhuravleva, Tatiana B.; Kabanov, Dmitriy M.; Nasrtdinov, Ilmir M.; Russkova, Tatiana V.; Sakerin, Sergey M.; Smirnov, Alexander; Holben, Brent N.

    2017-01-01

    Microphysical and optical properties of aerosol were studied during a mega-fire event in summer 2012 over Siberia using ground-based measurements of spectral solar radiation at the AERONET site in Tomsk and satellite observations. The data were analysed using multi-year (2003-2013) measurements of aerosol characteristics under background conditions and for less intense fires, differing in burning biomass type, stage of fire, remoteness from observation site, etc. (ordinary smoke). In June-August 2012, the average aerosol optical depth (AOD, 500 nm) had been 0.95 ± 0.86, about a factor of 6 larger than background values (0.16 ± 0.08), and a factor of 2.5 larger than in ordinary smoke. The AOD values were extremely high on 24-28 July and reached 3-5. A comparison with satellite observations showed that ground-based measurements in the region of Tomsk not only reflect the local AOD features, but are also characteristic for the territory of Western Siberia as a whole. Single scattering albedo (SSA, 440 nm) in this period ranged from 0.91 to 0.99 with an average of ˜ 0.96 in the entire wavelength range of 440-1020 nm. The increase in absorptance of aerosol particles (SSA(440 nm) = 0.92) and decrease in SSA with wavelength observed in ordinary smoke agree with the data from multi-year observations in analogous situations in the boreal zone of USA and Canada. Volume aerosol size distribution in extreme and ordinary smoke had a bimodal character with significant prevalence of fine-mode particles, but in summer 2012 the mean median radius and the width of the fine-mode distribution somewhat increased. In contrast to data from multi-year observations, in summer 2012 an increase in the volume concentration and median radius of the coarse mode was observed with growing AOD. The calculations of the average radiative effects of smoke and background aerosol are presented. Compared to background conditions and ordinary smoke, under the extreme smoke conditions the cooling effect of aerosol considerably intensifies: direct radiative effects (DRE) at the bottom (BOA) and at the top of the atmosphere (TOA) are -13, -35, and -60 W m-2 and -5, -14, and -35 W m-2 respectively. The maximal values of DRE were observed on 27 July (AOD(500 nm) = 3.5), when DRE(BOA) reached -150 W m-2, while DRE(TOA) and DRE of the atmosphere were -75 W m-2. During the fire event in summer 2012 the direct radiative effect efficiency varied in range: at the BOA it was -80-40 W m-2, at the TOA it was -50-20 W m-2 and in the atmosphere it was -35-20 W m-2.

  5. H-ATLAS: PACS imaging for the Science Demonstration Phase

    NASA Astrophysics Data System (ADS)

    Ibar, Edo; Ivison, R. J.; Cava, A.; Rodighiero, G.; Buttiglione, S.; Temi, P.; Frayer, D.; Fritz, J.; Leeuw, L.; Baes, M.; Rigby, E.; Verma, A.; Serjeant, S.; Müller, T.; Auld, R.; Dariush, A.; Dunne, L.; Eales, S.; Maddox, S.; Panuzzo, P.; Pascale, E.; Pohlen, M.; Smith, D.; de Zotti, G.; Vaccari, M.; Hopwood, R.; Cooray, A.; Burgarella, D.; Jarvis, M.

    2010-11-01

    We describe the reduction of data taken with the PACS instrument on board the Herschel Space Observatory in the Science Demonstration Phase of the Herschel-ATLAS (H-ATLAS) survey, specifically data obtained for a 4 × 4 deg2 region using Herschel's fast-scan (60arcsecs-1) parallel mode. We describe in detail a pipeline for data reduction using customized procedures within HIPE from data retrieval to the production of science-quality images. We found that the standard procedure for removing cosmic ray glitches also removed parts of bright sources and so implemented an effective two-stage process to minimize these problems. The pronounced 1/f noise is removed from the timelines using 3.4- and 2.5-arcmin boxcar high-pass filters at 100 and 160μm. Empirical measurements of the point spread function (PSF) are used to determine the encircled energy fraction as a function of aperture size. For the 100- and 160-μm bands, the effective PSFs are ~9 and ~13arcsec (FWHM), and the 90-per cent encircled energy radii are 13 and 18arcsec. Astrometric accuracy is good to <~2arcsec. The noise in the final maps is correlated between neighbouring pixels and rather higher than advertised prior to launch. For a pair of cross-scans, the 5σ point-source sensitivities are 125-165mJy for 9-13 arcsec radius apertures at 100μm and 150-240mJy for 13-18 arcsec radius apertures at 160μm.

  6. Theoretical Study of Methods for Improving the Energy Efficiency of NOx Removal from Diesel Exhaust Gases by Silent Discharge

    NASA Astrophysics Data System (ADS)

    Shoyama, Taiji; Yoshioka, Yoshio

    To improve the NO removal performance in silent discharge process, we investigated the influence of the physical parameters such as current density, channel radius and pulse duration of the one micro discharge under the constant reduced electric field strength. And influence of the micro discharges occurrence locations were also discussed. In order to analyze the NO removal process, we assumed that the pulse micro discharges occur repeatedly at the same location in static gas and that the chemical reactions induced by micro discharge forms many radicals, which react with pollutants and by-products. The conclusions we obtained are that lower current density, smaller discharge radius and shorter discharge duration improve NO removal efficiency. These results also mean that the lower discharge energy of the one micro discharge and the larger number of parallel micro discharges increase the NO removal performance. Therefore, to make the area of one micro discharge small is a desirable way to improve the NO removal performance. So we think that the glow like discharge might be more effective than the streamer like discharge mode. Next, using the two-dimensional model, which considered the influence of gas flow, we obtained a conclusion that the repeated micro discharges at different positions are very effective to increase the De-NOx performance. The reason is that the reaction of NO2+O→NO+O2 and ozone dissociation reactions are suppressed by the movement of the location of micro discharges.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Eester, D.; Lerche, E.

    Both at low and higher cyclotron harmonics, properly accounting for finite Larmor radius effects is crucial in many ion cyclotron resonance frequency heating scenarios creating high energy tails. The present paper discusses ongoing work to extend the 1D TOMCAT wave equation solver [D. Van Eester and R. Koch, Plasma Phys. Contr. Fusion 40 (1998) 1949] to arbitrary harmonics and arbitrary wavelengths. Rather than adopting the particle position, the guiding center position is used as the independent variable when writing down an expression for the dielectric response. Adopting a philosophy originally due to Kaufman [A.N. Kaufman, Phys. Fluids 15 (1972) 1063],more » the relevant dielectric response in the Galerkin formalism is written in a form where the electric field and the test function vector appear symmetrically, which yields a power balance equation that guarantees non-negative absorption for any wave type for Maxwellian plasmas. Moreover, this choice of independent variable yields intuitive expressions that can directly be linked to the corresponding expressions in the RF diffusion operator. It also guarantees that a positive definite power transfer from waves to particles is ensured for any of the wave modes in a plasma in which all populations have a Maxwellian distribution, as is expected from first principles. Rather than relying on a truncated Taylor series expansion of the dielectric response, an integro-differential approach that retains all finite Larmor radius effects [D. Van Eester and E. Lerche, Plasma Phys. Control. Fusion 55 (2013) 055008] is proposed.« less

  8. Integro-differential modeling of ICRH wave propagation and damping at arbitrary cyclotron harmonics and wavelengths in tokamaks

    NASA Astrophysics Data System (ADS)

    Van Eester, D.; Lerche, E.

    2014-02-01

    Both at low and higher cyclotron harmonics, properly accounting for finite Larmor radius effects is crucial in many ion cyclotron resonance frequency heating scenarios creating high energy tails. The present paper discusses ongoing work to extend the 1D TOMCAT wave equation solver [D. Van Eester & R. Koch, Plasma Phys. Contr. Fusion 40 (1998) 1949] to arbitrary harmonics and arbitrary wavelengths. Rather than adopting the particle position, the guiding center position is used as the independent variable when writing down an expression for the dielectric response. Adopting a philosophy originally due to Kaufman [A.N. Kaufman, Phys. Fluids 15 (1972) 1063], the relevant dielectric response in the Galerkin formalism is written in a form where the electric field and the test function vector appear symmetrically, which yields a power balance equation that guarantees non-negative absorption for any wave type for Maxwellian plasmas. Moreover, this choice of independent variable yields intuitive expressions that can directly be linked to the corresponding expressions in the RF diffusion operator. It also guarantees that a positive definite power transfer from waves to particles is ensured for any of the wave modes in a plasma in which all populations have a Maxwellian distribution, as is expected from first principles. Rather than relying on a truncated Taylor series expansion of the dielectric response, an integro-differential approach that retains all finite Larmor radius effects [D. Van Eester & E. Lerche, Plasma Phys. Control. Fusion 55 (2013) 055008] is proposed.

  9. Role of turbulence regime on determining the local density gradient

    DOE PAGES

    Wang, X.; Mordijck, Saskia; Doyle, E. J.; ...

    2017-11-16

    In this study we show that the local density gradient in the plasma core depends on the calculated mode-frequency of the most unstable linear mode and reaches a maximum when this frequency is close to zero. Previous theoretical and experimental work on AUG has shown that the ratio of electron to ion temperature, and as such the frequency of the dominant linear gyrokinetic mode, affects the local density gradient close to ρ = 0.3 [1, 2]. On DIII-D we find that by adding Electron Cyclotron Heating (ECH), we modify the dominant unstable linear gyro kinetic mode from an Ion Temperaturemore » Gradient (ITG) mode to a Trapped Electron Mode (TEM), which means that the frequency of the dominant mode changes sign (from the ion to the electron direction). Local density peaking around mid-radius increases by 50% right around the cross-over between the ITG and TEM regimes. By comparing how the particle flux changes, through the derivative of the electron density, n e, with respect to time, ∂n e/∂t, we find that the particle flux also exhibits the same trend versus mode frequency. As a result, we find that the changes in local particle transport are inversely proportional to the changes in electron density, indicating that the changes are driven by a change in thermo-diffusive pinch.« less

  10. Analysis of ripple formation in single crystal spot welds

    NASA Technical Reports Server (NTRS)

    Rappaz, M.; Corrigan, D.; Boatner, L. A.

    1997-01-01

    Stationary spot welds have been made at the (001) surface of Fe-l5%Ni-15%Cr single crystals using a Gas Tungsten Arc (GTA). On the top surface of the spot welds, very regular and concentric ripples were observed after solidification by differential interference color microscopy. Their height (typically 1--5 micrometers and spacing, typically approximately 60 micrometers) decreased with the radius of the pool. These ripples were successfully accounted for in terms of capillary-wave theory using the fundamental mode frequency f(sub 0) given by the first zero of the zero-order Bessel function. The spacing d between the ripples was then equated to v(sub s)/f(sub 0), where v(sub s) is the solidification rate. From the measured ripple spacing, the velocity of the pool was deduced as a function of the radius, and this velocity was in good agreement with the results of a heat-flow simulation.

  11. Design of pseudo-symmetric high bit rate, bend insensitive optical fiber applicable for high speed FTTH

    NASA Astrophysics Data System (ADS)

    Makouei, Somayeh; Koozekanani, Z. D.

    2014-12-01

    In this paper, with sophisticated modification on modal-field distribution and introducing new design procedure, the single-mode fiber with ultra-low bending-loss and pseudo-symmetric high bit-rate of uplink and downlink, appropriate for fiber-to-the-home (FTTH) operation is presented. The bending-loss reduction and dispersion management are done by the means of Genetic Algorithm. The remarkable feature of this methodology is designing a bend-insensitive fiber without reduction of core radius and MFD. Simulation results show bending loss of 1.27×10-2 dB/turn at 1.55 μm for 5 mm curvature radius. The MFD and Aeff are 9.03 μm and 59.11 μm2. Moreover, the upstream and downstream bit-rates are approximately 2.38 Gbit/s-km and 3.05 Gbit/s-km.

  12. Connections between centrifugal, stratorotational, and radiative instabilities in viscous Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Leclercq, Colin; Nguyen, Florian; Kerswell, Rich R.

    2016-10-01

    The "Rayleigh line" μ =η2 , where μ =Ωo/Ωi and η =ri/ro are respectively the rotation and radius ratios between inner (subscript i ) and outer (subscript o ) cylinders, is regarded as marking the limit of centrifugal instability (CI) in unstratified inviscid Taylor-Couette flow, for both axisymmetric and nonaxisymmetric modes. Nonaxisymmetric stratorotational instability (SRI) is known to set in for anticyclonic rotation ratios beyond that line, i.e., η2<μ <1 for axially stably stratified Taylor-Couette flow, but the competition between CI and SRI in the range μ <η2 has not yet been addressed. In this paper, we establish continuous connections between the two instabilities at finite Reynolds number Re, as previously suggested by Le Bars and Le Gal [Phys. Rev. Lett. 99, 064502 (2007), 10.1103/PhysRevLett.99.064502], making them indistinguishable at onset. Both instabilities are also continuously connected to the radiative instability at finite Re. These results demonstrate the complex impact viscosity has on the linear stability properties of this flow. Several other qualitative differences with inviscid theory were found, among which are the instability of a nonaxisymmetric mode localized at the outer cylinder without stratification and the instability of a mode propagating against the inner cylinder rotation with stratification. The combination of viscosity and stratification can also lead to a "collision" between (axisymmetric) Taylor vortex branches, causing the axisymmetric oscillatory state already observed in past experiments. Perhaps more surprising is the instability of a centrifugal-like helical mode beyond the Rayleigh line, caused by the joint effects of stratification and viscosity. The threshold μ =η2 seems to remain, however, an impassable instability limit for axisymmetric modes, regardless of stratification, viscosity, and even disturbance amplitude.

  13. Stability of miscible core?annular flows with viscosity stratification

    NASA Astrophysics Data System (ADS)

    Selvam, B.; Merk, S.; Govindarajan, Rama; Meiburg, E.

    The linear stability of variable viscosity, miscible core-annular flows is investigated. Consistent with pipe flow of a single fluid, the flow is stable at any Reynolds number when the magnitude of the viscosity ratio is less than a critical value. This is in contrast to the immiscible case without interfacial tension, which is unstable at any viscosity ratio. Beyond the critical value of the viscosity ratio, the flow can be unstable even when the more viscous fluid is in the core. This is in contrast to plane channel flows with finite interface thickness, which are always stabilized relative to single fluid flow when the less viscous fluid is in contact with the wall. If the more viscous fluid occupies the core, the axisymmetric mode usually dominates over the corkscrew mode. It is demonstrated that, for a less viscous core, the corkscrew mode is inviscidly unstable, whereas the axisymmetric mode is unstable for small Reynolds numbers at high Schmidt numbers. For the parameters under consideration, the switchover occurs at an intermediate Schmidt number of about 500. The occurrence of inviscid instability for the corkscrew mode is shown to be consistent with the Rayleigh criterion for pipe flows. In some parameter ranges, the miscible flow is seen to be more unstable than its immiscible counterpart, and the physical reasons for this behaviour are discussed.A detailed parametric study shows that increasing the interface thickness has a uniformly stabilizing effect. The flow is least stable when the interface between the two fluids is located at approximately 0.6 times the tube radius. Unlike for channel flow, there is no sudden change in the stability with radial location of the interface. The instability originates mainly in the less viscous fluid, close to the interface.

  14. Charge radius of the 13N* proton halo nucleus with Halo Effective Field Theory

    NASA Astrophysics Data System (ADS)

    Mosavi Khansari, M.; Khalili, H.; Sadeghi, H.

    2018-02-01

    We evaluated the charge radius of the first excited state of 13N with halo Effective Field Theory (hEFT) at the low energies. The halo effective field theory without pion is used to examine the halo nucleus bound state with a large S-wave scattering length. We built Lagrangian from the effective core and the valence proton of the fields and obtained the charge form factor at Leading-Order (LO). The charge radius at leading order for the first excited state of the proton halo nucleus, 13N, has been estimated as rc = 2.52 fm. This result is without any finite-size contributions included from the core and the proton. If we consider the contributions of the charge radius of the proton and the core, the result will be [rC]13N* = 5.85 fm.

  15. Probing large extra dimensions with IceCube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esmaili, Arman; Peres, O.L.G.; Tabrizi, Zahra, E-mail: arman@ipm.ir, E-mail: orlando@ifi.unicamp.br, E-mail: tabrizi.physics@ipm.ir

    2014-12-01

    In models with Large Extra Dimensions the smallness of neutrino masses can be naturally explained by introducing gauge singlet fermions which propagate in the bulk. The Kaluza-Klein modes of these fermions appear as towers of sterile neutrino states on the brane. We study the phenomenological consequences of this picture for the high energy atmospheric neutrinos. For this purpose we construct a detailed equivalence between a model with large extra dimensions and a (3+n) scenario consisting of three active and n extra sterile neutrino states, which provides a clear intuitive understanding of Kaluza-Klein modes. Finally, we analyze the collected data ofmore » high energy atmospheric neutrinos by IceCube experiment and obtain bounds on the radius of extra dimensions.« less

  16. Dynamical instabilities in axisymmetric stellar systems. I - Oblate E6 models

    NASA Technical Reports Server (NTRS)

    Levison, Harold F.; Duncan, Martin J.; Smith, Bruce F.

    1990-01-01

    The stability of a set of models based on isothermal oblate E6 elliptical galaxies is studied using N-body techniques. The only stable models are those that are near the isotropic model and have nearly equal number of stars in retrograde and prograde orbits. Fast rotators are unstable to modes that appear to be analogous to the classical streaming instability seen in many disk systems. Systems with a large velocity dispersion in the direction of the cylindrical radius are unstable to modes that appear to be similar to the radial orbit instability observed in some spherical systems. However, evidence is presented that these two instabilities may be related, and an instability criterion that applies to both is constructed.

  17. Balance of the stored energies sustained by the internal and edge transport barriers and effects of ELMs and L-H transitions in JT-60U

    NASA Astrophysics Data System (ADS)

    Kamada, Y.; Yoshida, M.; Sakamoto, Y.; Koide, Y.; Oyama, N.; Urano, H.; Kamiya, K.; Suzuki, T.; Isayama, A.; JT-60 Team

    2009-09-01

    To understand key physics processes determining radial profiles of the kinetic plasma parameters in the advanced tokamak operation scenarios, correlations between the edge transport barrier (ETB) and the internal transport barrier (ITB) have been studied in the JT-60U tokamak device. It has been found that the edge pedestal poloidal beta, βp-ped, increases almost linearly with the total poloidal beta, βp-tot, over a wide range of the plasma current for type I ELMing H-mode plasmas, and this dependence becomes stronger with increasing triangularity. This dependence is not due to the profile stiffness, since the dependence is the same regardless of the existence of ITB. As the stored energy inside the ITB-foot radius (WITB) increases, the total thermal stored energy (Wth) increases and then the pedestal stored energy (Wped) increases. On the other hand, as Wped increases, the ELM penetration expands more inwards and finally reaches the ITB-foot radius. At this situation, the ITB-foot radius cannot move outwards because of the erosion by ELMs. Then the fractions of WITB/Wth and Wped/Wth become almost constant. It has also been found that the type I ELM expels/decreases the edge toroidal momentum larger than the edge ion thermal energy. The ELM penetration for the toroidal rotation tends to be deeper than that for the ion temperature and can exceed the ITB-foot radius. The ELM penetration is deeper for CO-rotating plasmas than CTR rotating plasmas. In both cases, the ELM penetration is deeper in the order of the toroidal rotation (Vt), the ion temperature (Ti) and then the electron temperature (Te). The L-H transition also changes the Vt profile more significantly than the Ti profile. At the L-H transition, the pedestal Vt shifts into the CTR-direction deeply and suddenly without a change in Ti, and then the pedestal Vt grows further together with a growth of the pedestal Ti in a slower timescale. Such changes in Vt by ELMs and L-H transitions may affect degradation/evolution of ITBs.

  18. Observation of the dispersion of wedge waves propagating along cylinder wedge with different truncations by laser ultrasound technique

    NASA Astrophysics Data System (ADS)

    Jia, Jing; Zhang, Yu; Han, Qingbang; Jing, Xueping

    2017-10-01

    The research focuses on study the influence of truncations on the dispersion of wedge waves propagating along cylinder wedge with different truncations by using the laser ultrasound technique. The wedge waveguide models with different truncations were built by using finite element method (FEM). The dispersion curves were obtained by using 2D Fourier transformation method. Multiple mode wedge waves were observed, which was well agreed with the results estimated from Lagasse's empirical formula. We established cylinder wedge with radius of 3mm, 20° and 60°angle, with 0μm, 5μm, 10μm, 20μm, 30μm, 40μm, and 50μm truncations, respectively. It was found that non-ideal wedge tip caused abnormal dispersion of the mode of cylinder wedge, the modes of 20° cylinder wedge presents the characteristics of guide waves which propagating along hollow cylinder as the truncation increasing. Meanwhile, the modes of 60° cylinder wedge with truncations appears the characteristics of guide waves propagating along hollow cylinder, and its mode are observed clearly. The study can be used to evaluate and detect wedge structure.

  19. A Novel Damping Mechanism for Diocotron Modes

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung; O'Neil, Thomas M.

    2014-10-01

    Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 and m = 2 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius, where f = mfE × B (r) . The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This poster explains with analytic theory and simulations the new algebraic damping due to both mobility and diffusive fluxes. The damping is due to transfer of canonical angular momentum from the mode to halo particles, as they are swept around the ``cat's eye'' orbits of resonant wave-particle interaction. Another picture is that the electrons in the resonant layer form a dipole (m = 1) or quadrupole (m = 2) density distribution, and the electric field for this distribution produces E × B drifts that symmetrizes the core and damps the mode. Supported by NSF/DOE Partnership Grants PHY-0903877 and DE-SC0002451.

  20. Characterizing the radial content of orbital-angular-momentum photonic states impaired by weak-to-strong atmospheric turbulence.

    PubMed

    Chen, Chunyi; Yang, Huamin

    2016-08-22

    The changes in the radial content of orbital-angular-momentum (OAM) photonic states described by Laguerre-Gaussian (LG) modes with a radial index of zero, suffering from turbulence-induced distortions, are explored by numerical simulations. For a single-photon field with a given LG mode propagating through weak-to-strong atmospheric turbulence, both the average LG and OAM mode densities are dependent only on two nondimensional parameters, i.e., the Fresnel ratio and coherence-width-to-beam-radius (CWBR) ratio. It is found that atmospheric turbulence causes the radially-adjacent-mode mixing, besides the azimuthally-adjacent-mode mixing, in the propagated photonic states; the former is relatively slighter than the latter. With the same Fresnel ratio, the probabilities that a photon can be found in the zero-index radial mode of intended OAM states in terms of the relative turbulence strength behave very similarly; a smaller Fresnel ratio leads to a slower decrease in the probabilities as the relative turbulence strength increases. A photon can be found in various radial modes with approximately equal probability when the relative turbulence strength turns great enough. The use of a single-mode fiber in OAM measurements can result in photon loss and hence alter the observed transition probability between various OAM states. The bit error probability in OAM-based free-space optical communication systems that transmit photonic modes belonging to the same orthogonal LG basis may depend on what digit is sent.

  1. Ionization of short polymethacrylic acid: titration, DLS, and model calculations.

    PubMed

    Pohlmeier, A; Haber-Pohlmeier, S

    2004-05-15

    In this work the charging of polymethacrylic acid in excess electrolyte solution is investigated experimentally by titration and dynamic light scattering. The results are analyzed by a penetrable sphere model, which employs the Poisson-Boltzmann equation for the description of electrostatic interactions and takes into account specific binding of H+ and Na+. The evaluation of the DLS data yields two relaxation modes. The slow mode is present only at finite degrees of charging and is therefore caused by collective diffusion. The fast mode, which corresponds to diffusion coefficients in the range from (1.1 to 1.5) x 10(-10) m2 s(-1), is present over the whole pH range. This reflects the diffusional dynamics of the polyion itself and allows the calculation of hydrodynamic radii for equivalent spheres (RH). These increase from 1.5 nm at pH 2.14 up to 1.8 nm for a degree of deprotonation alpha=0.47 at pH 5.86. With a further increase of pH the radii slightly decrease to 1.6 nm. Setting the radius of the penetrable sphere equal to RH, we can successfully model the overall charging curve with logK0H=4.85 and logK0Na=-0.6. This means that weak complexes of the type COO---Na are formed, which reduce the effective charge inside the polyelectrolyte coil.

  2. LIGKA: A linear gyrokinetic code for the description of background kinetic and fast particle effects on the MHD stability in tokamaks

    NASA Astrophysics Data System (ADS)

    Lauber, Ph.; Günter, S.; Könies, A.; Pinches, S. D.

    2007-09-01

    In a plasma with a population of super-thermal particles generated by heating or fusion processes, kinetic effects can lead to the additional destabilisation of MHD modes or even to additional energetic particle modes. In order to describe these modes, a new linear gyrokinetic MHD code has been developed and tested, LIGKA (linear gyrokinetic shear Alfvén physics) [Ph. Lauber, Linear gyrokinetic description of fast particle effects on the MHD stability in tokamaks, Ph.D. Thesis, TU München, 2003; Ph. Lauber, S. Günter, S.D. Pinches, Phys. Plasmas 12 (2005) 122501], based on a gyrokinetic model [H. Qin, Gyrokinetic theory and computational methods for electromagnetic perturbations in tokamaks, Ph.D. Thesis, Princeton University, 1998]. A finite Larmor radius expansion together with the construction of some fluid moments and specification to the shear Alfvén regime results in a self-consistent, electromagnetic, non-perturbative model, that allows not only for growing or damped eigenvalues but also for a change in mode-structure of the magnetic perturbation due to the energetic particles and background kinetic effects. Compared to previous implementations [H. Qin, mentioned above], this model is coded in a more general and comprehensive way. LIGKA uses a Fourier decomposition in the poloidal coordinate and a finite element discretisation in the radial direction. Both analytical and numerical equilibria can be treated. Integration over the unperturbed particle orbits is performed with the drift-kinetic HAGIS code [S.D. Pinches, Ph.D. Thesis, The University of Nottingham, 1996; S.D. Pinches et al., CPC 111 (1998) 131] which accurately describes the particles' trajectories. This allows finite-banana-width effects to be implemented in a rigorous way since the linear formulation of the model allows the exchange of the unperturbed orbit integration and the discretisation of the perturbed potentials in the radial direction. Successful benchmarks for toroidal Alfvén eigenmodes (TAEs) and kinetic Alfvén waves (KAWs) with analytical results, ideal MHD codes, drift-kinetic codes and other codes based on kinetic models are reported.

  3. Transport properties of NSTX-U L- and H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Kaye, Stanley; Guttenfelder, Walter; Bell, Ron; Diallo, Ahmed; Leblanc, Ben; Podesta, Mario

    2016-10-01

    The confinement and transport properties of L- and H-mode plasmas in NSTX-U has been studied using the TRANSP code. A dedicated series of L-mode discharges was obtained to study the dependence of confinement and transport on power level and beam aiming angle. The latter is made possible by having two beamlines with 3 sources each, capable of injecting with tangency radii from Rtan = 50 to 130 cm (Rgeo = 92 cm). L-mode plasmas typically have confinement enhancement factors with H98y,2 =0.6 to 0.65, exhibiting a 25% decrease in confinement time as the beam power is raised from 1 to 3 MW. Associated with this is an increase in the electron thermal diffusivity in the core of the plasma from 3.5 to 10 m2/s. Electron thermal transport is the dominant energy loss channel in these plasmas. H-mode plasmas exhibit improved confinement, with H98y,2 =1 or above, and core electron thermal diffusivity values <1 m2/s. Details of these studies will be presented, along with the results of the beam tangency radius scan in L-mode plasmas. This research was supported by the U.S. Department of Energy contract # DE-AC02-09CH11466.

  4. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes

    PubMed Central

    Yasinskii, V. M.; Filimonenko, D. S.; Rostova, E.; Dietler, G.; Sekatskii, S. K.

    2018-01-01

    In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000–6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation. PMID:29849857

  5. Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. II - Marine stratocumulus observations

    NASA Technical Reports Server (NTRS)

    Nakajima, Teruyuki; King, Michael D.; Spinhirne, James D.; Radke, Lawrence F.

    1991-01-01

    A multispectral scanning radiometer has been used to obtain measurements of the reflection function of marine stratocumulus clouds at 0.75 micron and at 1.65 and 2.16 microns. These observations were obtained from the NASA ER-2 aircraft as part of the FIRE, conducted off the coast of southern California during July 1987. Multispectral images of the reflection function were used to derive the optical thickness and the effective particle radius of stratiform cloud layers on four days. In addition to the radiation measurements, in situ microphysical measurements were obtained from an aircraft. In this paper, the remote sensing results are compared with in situ observations, which show a good spatial correlation for both optical thickness and effective radius. These comparisons further show systematic differences between remote sensing and in situ values, with a tendency for remote sensing to overestimate the effective radius by about 2-3 microns, independent of particle radius. The optical thickness, in contrast, is somewhat overestimated for small optical thicknesses and underestimated for large optical thicknesses. An introduction of enhanced gaseous absorption at a wavelength of 2.16 microns successfully explains some of these observed discrepancies.

  6. On non-local energy transfer via zonal flow in the Dimits shift

    NASA Astrophysics Data System (ADS)

    St-Onge, Denis A.

    2017-10-01

    The two-dimensional Terry-Horton equation is shown to exhibit the Dimits shift when suitably modified to capture both the nonlinear enhancement of zonal/drift-wave interactions and the existence of residual Rosenbluth-Hinton states. This phenomenon persists through numerous simplifications of the equation, including a quasilinear approximation as well as a four-mode truncation. It is shown that the use of an appropriate adiabatic electron response, for which the electrons are not affected by the flux-averaged potential, results in an nonlinearity that can efficiently transfer energy non-locally to length scales of the order of the sound radius. The size of the shift for the nonlinear system is heuristically calculated and found to be in excellent agreement with numerical solutions. The existence of the Dimits shift for this system is then understood as an ability of the unstable primary modes to efficiently couple to stable modes at smaller scales, and the shift ends when these stable modes eventually destabilize as the density gradient is increased. This non-local mechanism of energy transfer is argued to be generically important even for more physically complete systems.

  7. Observations of Cepheids with the MOST satellite: contrast between pulsation modes

    NASA Astrophysics Data System (ADS)

    Evans, N. R.; Szabó, R.; Derekas, A.; Szabados, L.; Cameron, C.; Matthews, J. M.; Sasselov, D.; Kuschnig, R.; Rowe, J. F.; Guenther, D. B.; Moffat, A. F. J.; Rucinski, S. M.; Weiss, W. W.

    2015-02-01

    The quantity and quality of satellite photometric data strings is revealing details in Cepheid variation at very low levels. Specifically, we observed a Cepheid pulsating in the fundamental mode and one pulsating in the first overtone with the Canadian MOST (Microvariability and Oscillations of Stars) satellite. The 3.7-d period fundamental mode pulsator (RT Aur) has a light curve that repeats precisely, and can be modelled by a Fourier series very accurately. The overtone pulsator (SZ Tau, 3.1 d period) on the other hand shows light-curve variation from cycle to cycle which we characterize by the variations in the Fourier parameters. We present arguments that we are seeing instability in the pulsation cycle of the overtone pulsator, and that this is also a characteristic of the O - C curves of overtone pulsators. On the other hand, deviations from cycle to cycle as a function of pulsation phase follow a similar pattern in both stars, increasing after minimum radius. In summary, pulsation in the overtone pulsator is less stable than that of the fundamental mode pulsator at both long and short time-scales.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    St-Onge, Denis A.

    The two-dimensional Terry–Horton equation is shown to exhibit the Dimits shift when suitably modified to capture both the nonlinear enhancement of zonal/drift-wave interactions and the existence of residual Rosenbluth–Hinton states. This phenomenon persists through numerous simplifications of the equation, including a quasilinear approximation as well as a four-mode truncation. It is shown that the use of an appropriate adiabatic electron response, for which the electrons are not affected by the flux-averaged potential, results in anmore » $$\\boldsymbol{E}\\times \\boldsymbol{B}$$ nonlinearity that can efficiently transfer energy non-locally to length scales of the order of the sound radius. The size of the shift for the nonlinear system is heuristically calculated and found to be in excellent agreement with numerical solutions. The existence of the Dimits shift for this system is then understood as an ability of the unstable primary modes to efficiently couple to stable modes at smaller scales, and the shift ends when these stable modes eventually destabilize as the density gradient is increased. This non-local mechanism of energy transfer is argued to be generically important even for more physically complete systems.« less

  9. The onset of fluid-dynamical behavior in relativistic kinetic theory

    NASA Astrophysics Data System (ADS)

    Noronha, Jorge; Denicol, Gabriel S.

    2017-11-01

    In this proceedings we discuss recent findings regarding the large order behavior of the Chapman-Enskog expansion in relativistic kinetic theory. It is shown that this series in powers of the Knudsen number has zero radius of convergence in the case of a Bjorken expanding fluid described by the Boltzmann equation in the relaxation time approximation. This divergence stems from the presence of non-hydrodynamic modes, which give non-perturbative contributions to the Knudsen series.

  10. System Estimates Radius of Curvature of a Segmented Mirror

    NASA Technical Reports Server (NTRS)

    Rakoczy, John

    2008-01-01

    A system that estimates the global radius of curvature (GRoC) of a segmented telescope mirror has been developed for use as one of the subsystems of a larger system that exerts precise control over the displacements of the mirror segments. This GRoC-estimating system, when integrated into the overall control system along with a mirror-segment- actuation subsystem and edge sensors (sensors that measure displacements at selected points on the edges of the segments), makes it possible to control the GROC mirror-deformation mode, to which mode contemporary edge sensors are insufficiently sensitive. This system thus makes it possible to control the GRoC of the mirror with sufficient precision to obtain the best possible image quality and/or to impose a required wavefront correction on incoming or outgoing light. In its mathematical aspect, the system utilizes all the information available from the edge-sensor subsystem in a unique manner that yields estimates of all the states of the segmented mirror. The system does this by exploiting a special set of mirror boundary conditions and mirror influence functions in such a way as to sense displacements in degrees of freedom that would otherwise be unobservable by means of an edge-sensor subsystem, all without need to augment the edge-sensor system with additional metrological hardware. Moreover, the accuracy of the estimates increases with the number of mirror segments.

  11. Radius morphology and its effects on rotation with contoured and noncontoured plating of the proximal radius.

    PubMed

    Rupasinghe, Shavantha L; Poon, Peter C

    2012-05-01

    The radius has a sagittal bow and a coronal bow. Fractures are often treated with volar anterior plating. However, the sagittal bow is often overlooked when plating. This study looks at radial morphology and the effect of plating the proximal radius with straight plates and then contoured plates bowed in the sagittal plane. We report our findings and their effect on forearm rotation. Morphology was investigated in 14 radii. Attention was paid to the proximal shaft of the radius and its sagittal bow; from this, 6-, 7-, and 8-hole plates were contoured to fit this bow. A simple transverse fracture was then made at the apex of this bow in 23 cadaver arms. Supination and pronation were compared when plating with a straight plate and a contoured plate. Ten cadavers underwent ulna plating at the same level. The effect on rotation of fractures plated in the distal-third shaft was also measured. A significant reduction in rotation was found when a proximal radius fracture was plated with a straight plate compared with a contoured plate: 10.8°, 12.8°, and 21.7° for 6-, 7-, and 8-hole plates, respectively (P < .05). Forearm rotation was decreased further when a longer plate was used. Ulna or distal shaft plating did not reduce rotation. This study has shown a significant sagittal bow of the proximal shaft of the radius. Plating this with contoured plates in the sagittal plane improves rotation when compared with straight plates. Additional ulna plating is not a source of reduced forearm rotation. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  12. Optimal design for crosstalk analysis in 12-core 5-LP mode homogeneous multicore fiber for different lattice structure

    NASA Astrophysics Data System (ADS)

    Kumar, Dablu; Ranjan, Rakesh

    2018-03-01

    12-Core 5-LP mode homogeneous multicore fibers have been proposed for analysis of inter-core crosstalk and dispersion, with four different lattice structures (circular, 2-ring, square lattice, and triangular lattice) having cladding diameter of 200 μm and a fixed cladding thickness of 35 μm. The core-to-core crosstalk impact has been studied numerically with respect to bending radius, core pitch, transmission distance, wavelength, and core diameter for all 5-LP modes. In anticipation of further reduction in crosstalk levels, the trench-assisted cores have been incorporated for all respective designs. Ultra-low crosstalk (-138 dB/100 km) has been achieved through the triangular lattice arrangement, with trench depth Δ2 = -1.40% for fundamental (LP01) mode. It has been noted that the impact of mode polarization on crosstalk behavior is minor, with difference in crosstalk levels between two polarized spatial modes as ≤0.2 dB. Moreover, the optimized cladding diameter has been obtained for all 5-LP modes for a target value of crosstalk of -50 dB/100 km, with all the core arrangements. The dispersion characteristic has also been analyzed with respect to wavelength, which is nearly 2.5 ps/nm km at operating wavelength 1550 nm. The relative core multiplicity factor (RCMF) for the proposed design is obtained as 64.

  13. Lense-Thirring Precession and Quasi-periodic Oscillations in X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Marković , Dragoljub; Lamb, Frederick K.

    1998-11-01

    It has recently been suggested that gravitomagnetic precession of the inner part of the accretion disk, possibly driven by radiation torques, may be responsible for some of the quasi-periodic X-ray brightness oscillations (QPOs) and other spectral features with frequencies between 20 and 300 Hz observed in the power spectra of some low-mass binary systems containing accreting neutron stars and black hole candidates. We have explored the free and driven normal modes of geometrically thin disks in the presence of gravitomagnetic and radiation warping torques. We have found a family of low-frequency gravitomagnetic (LFGM) modes with precession frequencies that range from the lowest frequency allowed by the size of the disk up to a certain critical frequency ωcrit, which is ~1 Hz for a compact object of solar mass. The lowest frequency (lowest order) LFGM modes are similar to the previously known radiation warping modes, extend over much of the disk, and have damping rates >~10 times their precession frequencies. The highest frequency LFGM modes are tightly wound spiral corrugations of the disk that extend to ~10 times its inner radius and have damping rates >~103 times their precession frequencies. A radiation warping torque can cause a few of the lowest frequency LFGM modes to grow with time, but even a strong radiation warping torque has essentially no effect on the LFGM modes with frequencies >~10-4 Hz. We have also discovered a second family of high-frequency gravitomagnetic (HFGM) modes with precession frequencies that range from ωcrit up to slightly less than the gravitomagnetic precession frequency ωgm,i of a particle at the inner edge of the disk, which is 30 Hz if the disk extends inward to the innermost stable circular orbit around a 2 M⊙ compact object with dimensionless angular momentum cJ/GM2 = 0.2. The lowest frequency HFGM modes are very strongly damped and have warp functions and precession frequencies very similar to those of the highest frequency LFGM modes. In contrast, the highest frequency (lowest order) HFGM modes are very localized spiral corrugations of the inner disk and are weakly damped, with Q-values of ~2-50. We discuss the implications of our results for the observability of Lense-Thirring precession in X-ray binaries.

  14. Emissions from Ships with respect to Their Effects on Clouds.

    NASA Astrophysics Data System (ADS)

    Hobbs, Peter V.; Garrett, Timothy J.; Ferek, Ronald J.; Strader, Scott R.; Hegg, Dean A.; Frick, Glendon M.; Hoppel, William A.; Gasparovic, Richard F.; Russell, Lynn M.; Johnson, Douglas W.; O'Dowd, Colin; Durkee, Philip A.; Nielsen, Kurt E.; Innis, George

    2000-08-01

    Emissions of particles, gases, heat, and water vapor from ships are discussed with respect to their potential for changing the microstructure of marine stratiform clouds and producing the phenomenon known as `ship tracks.' Airborne measurements are used to derive emission factors of SO2 and NO from diesel-powered and steam turbine-powered ships, burning low-grade marine fuel oil (MFO); they were 15-89 and 2-25 g kg1 of fuel burned, respectively. By contrast a steam turbine-powered ship burning high-grade navy distillate fuel had an SO2 emission factor of 6 g kg1.Various types of ships, burning both MFO and navy distillate fuel, emitted from 4 × 1015 to 2 × 1016 total particles per kilogram of fuel burned (4 × 1015-1.5 × 1016 particles per second). However, diesel-powered ships burning MFO emitted particles with a larger mode radius (0.03-0.05 m) and larger maximum sizes than those powered by steam turbines burning navy distillate fuel (mode radius 0.02 m). Consequently, if the particles have similar chemical compositions, those emitted by diesel ships burning MFO will serve as cloud condensation nuclei (CCN) at lower supersaturations (and will therefore be more likely to produce ship tracks) than the particles emitted by steam turbine ships burning distillate fuel. Since steam turbine-powered ships fueled by MFO emit particles with a mode radius similar to that of diesel-powered ships fueled by MFO, it appears that, for given ambient conditions, the type of fuel burned by a ship is more important than the type of ship engine in determining whether or not a ship will produce a ship track. However, more measurements are needed to test this hypothesis.The particles emitted from ships appear to be primarily organics, possibly combined with sulfuric acid produced by gas-to-particle conversion of SO2. Comparison of model results with measurements in ship tracks suggests that the particles from ships contain only about 10% water-soluble materials. Measurements of the total particles entering marine stratiform clouds from diesel-powered ships fueled by MFO, and increases in droplet concentrations produced by these particles, show that only about 12% of the particles serve as CCN.The fluxes of heat and water vapor from ships are estimated to be 2-22 MW and 0.5-1.5 kg s1, respectively. These emissions rarely produced measurable temperature perturbations, and never produced detectable perturbations in water vapor, in the plumes from ships. Nuclear-powered ships, which emit heat but negligible particles, do not produce ship tracks. Therefore, it is concluded that heat and water vapor emissions do not play a significant role in ship track formation and that particle emissions, particularly from those burning low-grade fuel oil, are responsible for ship track formation. Subsequent papers in this special issue discuss and test these hypotheses.

  15. RADIUS-DEPENDENT ANGULAR MOMENTUM EVOLUTION IN LOW-MASS STARS. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiners, Ansgar; Mohanty, Subhanjoy, E-mail: Ansgar.Reiners@phys.uni-goettingen.de

    2012-02-10

    Angular momentum evolution in low-mass stars is determined by initial conditions during star formation, stellar structure evolution, and the behavior of stellar magnetic fields. Here we show that the empirical picture of angular momentum evolution arises naturally if rotation is related to magnetic field strength instead of to magnetic flux and formulate a corrected braking law based on this. Angular momentum evolution then becomes a strong function of stellar radius, explaining the main trends observed in open clusters and field stars at a few Gyr: the steep transition in rotation at the boundary to full convection arises primarily from themore » large change in radius across this boundary and does not require changes in dynamo mode or field topology. Additionally, the data suggest transient core-envelope decoupling among solar-type stars and field saturation at longer periods in very low mass stars. For solar-type stars, our model is also in good agreement with the empirical Skumanich law. Finally, in further support of the theory, we show that the predicted age at which low-mass stars spin down from the saturated to unsaturated field regimes in our model corresponds remarkably well to the observed lifetime of magnetic activity in these stars.« less

  16. Magnetic shear effects on plasma transport and turbulence at high electron to ion temperature ratio in DIII-D and JT-60U plasmas

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; McKee, G. R.; Murakami, M.; Grierson, B. A.; Nakata, M.; Davis, E. M.; Marinoni, A.; Ono, M.; Rhodes, T. L.; Sung, C.; Schmitz, L.; Petty, C. C.; Ferron, J. R.; Turco, F.; Garofalo, A. M.; Holcomb, C. T.; Collins, C. M.; Solomon, W. M.

    2017-05-01

    Negative magnetic shear has been demonstrated in DIII-D and JT-60U to mitigate the confinement degradation typically observed with increasing the electron to ion temperature ratio (T e/T i). In recent experiments in DIII-D negative central magnetic shear (NCS) discharges, the thermal transport in the internal transport barrier formed around the radius of the minimum safety factor (q min) remained almost constant and modestly increased in the region outside of q min compared to the positive shear (PS) case, when T e/T i increased from about 0.8 to 1.1 through electron cyclotron heating (ECH). The benefit of NCS extending into the region outside of q min can be explained by the lower magnetic shear in the NCS plasma over the plasma radius relative to the PS plasma. Reduced confinement degradation at high T e/T i with NCS plasmas was commonly observed in DIII-D and JT-60U. The mechanism of the different transport responses between the NCS and PS plasmas has been assessed in terms of fluctuation measurements and gyrokinetic simulations in DIII-D; NCS gave a smaller rise in the low-wavenumber broadband turbulent fluctuations with the increase in T e/T i compared with the PS case. This is consistent with gyrokinetic simulations, which show a smaller rise in the growth rates of the ion temperature gradient mode in the NCS plasmas, with increasing T e/T i. Gyrokinetic simulations also showed a change in the stability of the electron modes with ECH applied, consistent with higher-wavenumber fluctuation measurements, although more detailed simulations are needed to give a quantitative explanation for the experimental observations. Control of q-profile and magnetic shear will allow confinement improvement in future machines with dominant electron heating.

  17. Magnetic shear effects on plasma transport and turbulence at high electron to ion temperature ratio in DIII-D and JT-60U plasmas

    DOE PAGES

    Yoshida, Maiko; McKee, George R.; Murakami, Masanori; ...

    2017-03-30

    We demonstrated negative magnetic shear in DIII-D and JT-60U in order to mitigate the confinement degradation typically observed with increasing the electron to ion temperature ratio (T-e/T-i). In recent experiments in DIII-D negative central magnetic shear (NCS) discharges, the thermal transport in the internal transport barrier formed around the radius of the minimum safety factor (q(min)) remained almost constant and modestly increased in the region outside of q(min) compared to the positive shear (PS) case, when T-e/T-i increased from about 0.8 to 1.1 through electron cyclotron heating (ECH). The benefit of NCS extending into the region outside of qmin canmore » be explained by the lower magnetic shear in the NCS plasma over the plasma radius relative to the PS plasma. Reduced confinement degradation at high T-e/T-i with NCS plasmas was commonly observed in DIII-D and JT-60U. Furthermore, the mechanism of the different transport responses between the NCS and PS plasmas has been assessed in terms of fluctuation measurements and gyrokinetic simulations in DIII-D; NCS gave a smaller rise in the low-wavenumber broadband turbulent fluctuations with the increase in T-e/T-i compared with the PS case. This is consistent with gyrokinetic simulations, and this shows a smaller rise in the growth rates of the ion temperature gradient mode in the NCS plasmas, with increasing T-e/T-i. Gyrokinetic simulations also showed a change in the stability of the electron modes with ECH applied, consistent with higher-wavenumber fluctuation measurements, although more detailed simulations are needed to give a quantitative explanation for the experimental observations. Control of q-profile and magnetic shear will allow confinement improvement in future machines with dominant electron heating.« less

  18. Estimation of the effective heating systems radius as a method of the reliability improving and energy efficiency

    NASA Astrophysics Data System (ADS)

    Akhmetova, I. G.; Chichirova, N. D.

    2017-11-01

    When conducting an energy survey of heat supply enterprise operating several boilers located not far from each other, it is advisable to assess the degree of heat supply efficiency from individual boiler, the possibility of energy consumption reducing in the whole enterprise by switching consumers to a more efficient source, to close in effective boilers. It is necessary to consider the temporal dynamics of perspective load connection, conditions in the market changes. To solve this problem the radius calculation of the effective heat supply from the thermal energy source can be used. The disadvantage of existing methods is the high complexity, the need to collect large amounts of source data and conduct a significant amount of computational efforts. When conducting an energy survey of heat supply enterprise operating a large number of thermal energy sources, rapid assessment of the magnitude of the effective heating radius requires. Taking into account the specifics of conduct and objectives of the energy survey method of calculation of effective heating systems radius, to use while conducting the energy audit should be based on data available heat supply organization in open access, minimize efforts, but the result should be to match the results obtained by other methods. To determine the efficiency radius of Kazan heat supply system were determined share of cost for generation and transmission of thermal energy, capital investment to connect new consumers. The result were compared with the values obtained with the previously known methods. The suggested Express-method allows to determine the effective radius of the centralized heat supply from heat sources, in conducting energy audits with the effort minimum and the required accuracy.

  19. ON THE VARIATION OF SOLAR RADIUS IN ROTATION CYCLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Z. N.; Kong, D. F.; Xiang, N. B.

    2015-01-10

    The Date Compensated Discrete Fourier Transform and CLEANest algorithm are used to study the temporal variations of the solar radius observed at Rio de Janeiro Observatory from 1998 March 2 to 2009 November 6. The CLEANest spectra show several significant periodicities around 400, 312, 93.5, 86.2, 79.4, 70.9, 53.2, and 26.3 days. Then, combining the data on the daily solar radius measured at Calern Observatory and Rio de Janeiro Observatory and the corresponding daily sunspot areas, we study the short-term periodicity of the solar radius and the role of magnetic field in the variation of the solar radius. The rotation periodmore » of the daily solar radius is determined to be statistically significant. Moreover, its temporal evolution is anti-phase with that of sunspot activity, and it is found anti-phase with solar activity. Generally, the stronger solar activity is, the more obvious is the anti-phase relation of radius with solar activity. This indicates that strong magnetic fields have a greater inhibitive effect than weak magnetic fields on the variation of the radius.« less

  20. Estimation of weapon-radius versus maneuverability trade-off for air-to-air combat

    NASA Technical Reports Server (NTRS)

    Kelley, H. J.; Lefton, L.

    1977-01-01

    A chase in a horizontal plane between a pursuer with a large capture radius and a more maneuverable evading vehicle is examined with constant-speed vehicle models. An approximation to the 'sidestepping' maneuver of the Homicidal Chauffeur Game is modified to account for the effect of evader turning rate, and an estimate of capture radius required is so obtained which agrees remarkably well with Cockayne's point-capture result. The maneuver assumes central importance for barrier surfaces appearing in the Game of Two Cars. Results are given for required weapon capture-radius in terms of the maneuverability of the two vehicles. Some calculations of capture radius are presented.

  1. Simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822-09

    NASA Astrophysics Data System (ADS)

    Hermsen, W.; Kuiper, L.; Hessels, J. W. T.; Mitra, D.; Rankin, J. M.; Stappers, B. W.; Wright, G. A. E.; Basu, R.; Szary, A.; van Leeuwen, J.

    2017-04-01

    We report on simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822-09 with ESA's XMM-Newton and the Westerbork Synthesis Radio Telescope, Giant Metrewave Radio Telescope and Lovell radio telescopes. PSR B1822-09 switches between a radio-bright and radio-quiet mode, and we discovered a relationship between the durations of its modes and a known underlying radio-modulation time-scale within the modes. We discovered X-ray (energies 0.2-1.4 keV) pulsations with a broad sinusoidal pulse, slightly lagging the radio main pulse in phase by 0.094 ± 0.017, with an energy-dependent pulsed fraction varying from ˜0.15 at 0.3 keV to ˜0.6 at 1 keV. No evidence is found for simultaneous X-ray and radio mode switching. The total X-ray spectrum consists of a cool component (T ˜0.96 × 106 K, hotspot radius R ˜2.0 km) and a hot component (T ˜2.2 × 106 K, R ˜100 m). The hot component can be ascribed to the pulsed emission and the cool component to the unpulsed emission. The high-energy characteristics of PSR B1822-09 resemble those of middle-aged pulsars such as PSR B0656+14, PSR B1055-52 and Geminga, including an indication for pulsed high-energy gamma-ray emission in Fermi Large Area Telescope data. Explanations for the high pulsed fraction seem to require different temperatures at the two poles of this orthogonal rotator, or magnetic anisotropic beaming effects in its strong magnetic field. In our X-ray skymap, we found a harder source at only 5.1 ± 0.5 arcsec from PSR B1822-09, which might be a pulsar wind nebula.

  2. Simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822$-$09

    DOE PAGES

    Hermsen, W.; Kuiper, L.; Hessels, J. W. T.; ...

    2016-12-05

    Here, we report on simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822–09 with ESA's XMM–Newton and the Westerbork Synthesis Radio Telescope, Giant Metrewave Radio Telescope and Lovell radio telescopes. PSR B1822–09 switches between a radio-bright and radio-quiet mode, and we discovered a relationship between the durations of its modes and a known underlying radio-modulation time-scale within the modes. We discovered X-ray (energies 0.2–1.4 keV) pulsations with a broad sinusoidal pulse, slightly lagging the radio main pulse in phase by 0.094 ± 0.017, with an energy-dependent pulsed fraction varying from ~0.15 at 0.3 keV to ~0.6 at 1more » keV. No evidence is found for simultaneous X-ray and radio mode switching. The total X-ray spectrum consists of a cool component (T ~0.96 × 10 6 K, hotspot radius R ~2.0 km) and a hot component (T ~2.2 × 10 6 K, R ~100 m). The hot component can be ascribed to the pulsed emission and the cool component to the unpulsed emission. The high-energy characteristics of PSR B1822–09 resemble those of middle-aged pulsars such as PSR B0656+14, PSR B1055–52 and Geminga, including an indication for pulsed high-energy gamma-ray emission in Fermi Large Area Telescope data. Explanations for the high pulsed fraction seem to require different temperatures at the two poles of this orthogonal rotator, or magnetic anisotropic beaming effects in its strong magnetic field. In our X-ray skymap, we found a harder source at only 5.1 ± 0.5 arcsec from PSR B1822–09, which might be a pulsar wind nebula.« less

  3. Simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822$-$09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermsen, W.; Kuiper, L.; Hessels, J. W. T.

    Here, we report on simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822–09 with ESA's XMM–Newton and the Westerbork Synthesis Radio Telescope, Giant Metrewave Radio Telescope and Lovell radio telescopes. PSR B1822–09 switches between a radio-bright and radio-quiet mode, and we discovered a relationship between the durations of its modes and a known underlying radio-modulation time-scale within the modes. We discovered X-ray (energies 0.2–1.4 keV) pulsations with a broad sinusoidal pulse, slightly lagging the radio main pulse in phase by 0.094 ± 0.017, with an energy-dependent pulsed fraction varying from ~0.15 at 0.3 keV to ~0.6 at 1more » keV. No evidence is found for simultaneous X-ray and radio mode switching. The total X-ray spectrum consists of a cool component (T ~0.96 × 10 6 K, hotspot radius R ~2.0 km) and a hot component (T ~2.2 × 10 6 K, R ~100 m). The hot component can be ascribed to the pulsed emission and the cool component to the unpulsed emission. The high-energy characteristics of PSR B1822–09 resemble those of middle-aged pulsars such as PSR B0656+14, PSR B1055–52 and Geminga, including an indication for pulsed high-energy gamma-ray emission in Fermi Large Area Telescope data. Explanations for the high pulsed fraction seem to require different temperatures at the two poles of this orthogonal rotator, or magnetic anisotropic beaming effects in its strong magnetic field. In our X-ray skymap, we found a harder source at only 5.1 ± 0.5 arcsec from PSR B1822–09, which might be a pulsar wind nebula.« less

  4. Optimization of post-column reactor radius in capillary high performance liquid chromatography Effect of chromatographic column diameter and particle diameter

    PubMed Central

    Xu, Hongjuan; Weber, Stephen G.

    2006-01-01

    A post-column reactor consisting of a simple open tube (Capillary Taylor Reactor) affects the performance of a capillary LC in two ways: stealing pressure from the column and adding band spreading. The former is a problem for very small radius reactors, while the latter shows itself for large reactor diameters. We derived an equation that defines the observed number of theoretical plates (Nobs) taking into account the two effects stated above. Making some assumptions and asserting certain conditions led to a final equation with a limited number of variables, namely chromatographic column radius, reactor radius and chromatographic particle diameter. The assumptions and conditions are that the van Deemter equation applies, the mass transfer limitation is for intraparticle diffusion in spherical particles, the velocity is at the optimum, the analyte’s retention factor, k′, is zero, the post-column reactor is only long enough to allow complete mixing of reagents and analytes and the maximum operating pressure of the pumping system is used. Optimal ranges of the reactor radius (ar) are obtained by comparing the number of observed theoretical plates (and theoretical plates per time) with and without a reactor. Results show that the acceptable reactor radii depend on column diameter, particle diameter, and maximum available pressure. Optimal ranges of ar become narrower as column diameter increases, particle diameter decreases or the maximum pressure is decreased. When the available pressure is 4000 psi, a Capillary Taylor Reactor with 12 μm radius is suitable for all columns smaller than 150 μm (radius) packed with 2–5 μm particles. For 1 μm packing particles, only columns smaller than 42.5 μm (radius) can be used and the reactor radius needs to be 5 μm. PMID:16494886

  5. Effect of Positioning of the ROI on BMD of the Forearm and Its Subregions.

    PubMed

    Rosen, Elizabeth O; McNamara, Elizabeth A; Whittaker, LaTarsha G; Malabanan, Alan O; Rosen, Harold N

    2018-03-21

    Inconsistent positioning of patients and region of interest (ROI) is known to influence the precision of bone mineral density (BMD) measurements in the spine and hip. However, it is unknown whether minor shifts in the positioning of the ROI along the shaft of the radius affect the measurement of forearm BMD and its subregions. The ultradistal (UD-), mid-, one-third, and total radius BMDs of 50 consecutive clinical densitometry patients were acquired. At baseline the distal end of the ROI was placed at the tip of the ulnar styloid as usual, and then the forearm was reanalyzed 10 more times, each time shifting the ROI 1 mm proximally. No corrections for multiple comparisons were necessary since the differences that were significant were significant at p < 0.001. The UD-radius BMD increased as the ROI was shifted proximally; the increase was significant when shifted even 1 mm proximally (p < 0.001). These same findings held true for the mid- and total radius bone density, though the percent increase with moving proximally was significantly greater for the UD radius than for the other subregions. However, there was no significant change in the one-third radius BMD when shifted proximally 1-10 mm. Minor proximal shifts of the forearm ROI substantially affect the BMD of the UD-, mid- and total radius, while having no effect on the one-third radius BMD. Since the one-third radius is the only forearm region usually reported, minor proximal shifts of the ROI should not influence forearm BMD results significantly. Copyright © 2018 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  6. Anti-correlation between X-ray luminosity and pulsed fraction in the Small Magellanic Cloud pulsar SXP 1323

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Zezas, Andreas; Coe, Malcolm J.; Drake, Jeremy J.; Hong, JaeSub; Laycock, Silas G. T.; Wik, Daniel R.

    2018-05-01

    We report the evidence for the anti-correlation between pulsed fraction (PF) and luminosity of the X-ray pulsar SXP 1323, found for the first time in a luminosity range 1035-1037 erg s-1 from observations spanning 15 years. The phenomenon of a decrease in X-ray PF when the source flux increases has been observed in our pipeline analysis of other X-ray pulsars in the Small Magellanic Cloud (SMC). It is expected that the luminosity under a certain value decreases as the PF decreases due to the propeller effect. Above the propeller region, an anti-correlation between the PF and flux might occur either as a result of an increase in the un-pulsed component of the total emission or a decrease of the pulsed component. Additional modes of accretion may also be possible, such as spherical accretion and a change in emission geometry. At higher mass accretion rates, the accretion disk could also extend closer to the neutron star (NS) surface, where a reduced inner radius leads to hotter inner disk emission. These modes of plasma accretion may affect the change in the beam configuration to fan-beam dominant emission.

  7. Magnetic field detection using magnetorheological optical resonators

    NASA Astrophysics Data System (ADS)

    Rubino, Edoardo; Ioppolo, Tindaro

    2018-02-01

    In this paper, we investigate the feasibility of a magnetic field sensor that is based on a magnetorheological micro-optical resonator. The optical resonator has a spherical shape and a diameter of a few hundred micrometers. The resonator is fabricated by using a polymeric matrix made of polyvinyl chloride (PVC) plastisol with embedded magnetically polarizable micro-particles. When the optical resonator is subjected to an external magnetic field, the morphology (radius and refractive index) of the resonator is perturbed by the magnetic forces acting on it, leading to a shift of the optical resonances also known as whispering gallery modes (WGM). In this study, the effect of a static and harmonic magnetic field, as well as the concentration of the magnetic micro-particles on the optical mode shift is investigated. The optical resonances obtained with the PVC plastisol resonator showed a quality factor of 106 . The dynamical behavior of the optical resonator is investigated in the range between 0 and 200 Hz. The sensitivity of the optical resonator reaches a maximum value for a ratio between micro-particles and the polymeric matrix of 2:1 in weight. Experimental results indicate a sensitivity of 0.297 pm/mT leading to a resolution of 336 μT.

  8. Core turbulence behavior moving from ion-temperature-gradient regime towards trapped-electron-mode regime in the ASDEX Upgrade tokamak and comparison with gyrokinetic simulation

    NASA Astrophysics Data System (ADS)

    Happel, T.; Navarro, A. Bañón; Conway, G. D.; Angioni, C.; Bernert, M.; Dunne, M.; Fable, E.; Geiger, B.; Görler, T.; Jenko, F.; McDermott, R. M.; Ryter, F.; Stroth, U.

    2015-03-01

    Additional electron cyclotron resonance heating (ECRH) is used in an ion-temperature-gradient instability dominated regime to increase R / L Te in order to approach the trapped-electron-mode instability regime. The radial ECRH deposition location determines to a large degree the effect on R / L Te . Accompanying scale-selective turbulence measurements at perpendicular wavenumbers between k⊥ = 4-18 cm-1 (k⊥ρs = 0.7-4.2) show a pronounced increase of large-scale density fluctuations close to the ECRH radial deposition location at mid-radius, along with a reduction in phase velocity of large-scale density fluctuations. Measurements are compared with results from linear and non-linear flux-matched gyrokinetic (GK) simulations with the gyrokinetic code GENE. Linear GK simulations show a reduction of phase velocity, indicating a pronounced change in the character of the dominant instability. Comparing measurement and non-linear GK simulation, as a central result, agreement is obtained in the shape of radial turbulence level profiles. However, the turbulence intensity is increasing with additional heating in the experiment, while gyrokinetic simulations show a decrease.

  9. Scattering of aerosol particles by a Hermite-Gaussian beam in marine atmosphere.

    PubMed

    Huang, Qingqing; Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Yan, Xu; Liu, Songhua

    2017-07-01

    Based on the complex-source-point method and the generalized Lorenz-Mie theory, the scattering properties and polarization of aerosol particles by a Hermite-Gaussian (HG) beam in marine atmosphere is investigated. The influences of beam mode, beam width, and humidity on the scattered field are analyzed numerically. Results indicate that when the number of HG beam modes u (v) increase, the radar cross section of aerosol particles alternating appears at maximum and minimum values in the forward and backward scattering, respectively, because of the special petal-shaped distribution of the HG beam. The forward and backward scattering of aerosol particles decreases with the increase in beam waist. When beam waist is less than the radius of the aerosol particle, a minimum value is observed in the forward direction. The scattering properties of aerosol particles by the HG beam are more sensitive to the change in relative humidity compared with those by the plane wave and the Gaussian beam (GB). The HG beam shows superiority over the plane wave and the GB in detecting changes in the relative humidity of marine atmosphere aerosol. The effects of relative humidity on the polarization of the HG beam have been numerically analyzed in detail.

  10. Mirror instability near the threshold: Hybrid simulations

    NASA Astrophysics Data System (ADS)

    Hellinger, P.; Trávníček, P.; Passot, T.; Sulem, P.; Kuznetsov, E. A.; Califano, F.

    2007-12-01

    Nonlinear behavior of the mirror instability near the threshold is investigated using 1-D hybrid simulations. The simulations demonstrate the presence of an early phase where quasi-linear effects dominate [ Shapiro and Shevchenko, 1964]. The quasi-linear diffusion is however not the main saturation mechanism. A second phase is observed where the mirror mode is linearly stable (the stability is evaluated using the instantaneous ion distribution function) but where the instability nevertheless continues to develop, leading to nonlinear coherent structures in the form of magnetic humps. This regime is well modeled by a nonlinear equation for the magnetic field evolution, derived from a reductive perturbative expansion of the Vlasov-Maxwell equations [ Kuznetsov et al., 2007] with a phenomenological term which represents local variations of the ion Larmor radius. In contrast with previous models where saturation is due to the cooling of a population of trapped particles, the resulting equation correctly reproduces the development of magnetic humps from an initial noise. References Kuznetsov, E., T. Passot and P. L. Sulem (2007), Dynamical model for nonlinear mirror modes near threshold, Phys. Rev. Lett., 98, 235003. Shapiro, V. D., and V. I. Shevchenko (1964), Sov. JETP, 18, 1109.

  11. Heat transfer in a conical porous medium due to inner and top surface heating: Effect of radius ratio

    NASA Astrophysics Data System (ADS)

    Ahamad, N. Ameer; Khan, T. M. Yunus

    2018-05-01

    The present study investigates the effect of radius ratio and Rayleigh number on beat transfer characteristics of an annular cone subjected to two side heating and one side cooling. Finite element method is used to convert the partial differential equations into algebraic equations. The resulting equations are solved with the help of in-house computer code developed for specific purpose of heat transfer in conical porous medium. The results are discussed with respect to the radius ratio and Rayleigh number.

  12. Gyration-radius dynamics in structural transitions of atomic clusters.

    PubMed

    Yanao, Tomohiro; Koon, Wang S; Marsden, Jerrold E; Kevrekidis, Ioannis G

    2007-03-28

    This paper is concerned with the structural transition dynamics of the six-atom Morse cluster with zero total angular momentum, which serves as an illustrative example of the general reaction dynamics of isolated polyatomic molecules. It develops a methodology that highlights the interplay between the effects of the potential energy topography and those of the intrinsic geometry of the molecular internal space. The method focuses on the dynamics of three coarse variables, the molecular gyration radii. By using the framework of geometric mechanics and hyperspherical coordinates, the internal motions of a molecule are described in terms of these three gyration radii and hyperangular modes. The gyration radii serve as slow collective variables, while the remaining hyperangular modes serve as rapidly oscillating "bath" modes. Internal equations of motion reveal that the gyration radii are subject to two different kinds of forces: One is the ordinary force that originates from the potential energy function of the system, while the other is an internal centrifugal force. The latter originates from the dynamical coupling of the gyration radii with the hyperangular modes. The effects of these two forces often counteract each other: The potential force generally works to keep the internal mass distribution of the system compact and symmetric, while the internal centrifugal force works to inflate and elongate it. Averaged fields of these two forces are calculated numerically along a reaction path for the structural transition of the molecule in the three-dimensional space of gyration radii. By integrating the sum of these two force fields along the reaction path, an effective energy curve is deduced, which quantifies the gross work necessary for the system to change its mass distribution along the reaction path. This effective energy curve elucidates the energy-dependent switching of the structural preference between symmetric and asymmetric conformations. The present methodology should be of wide use for the systematic reduction of dimensionality as well as for the identification of kinematic barriers associated with the rearrangement of mass distribution in a variety of molecular reaction dynamics in vacuum.

  13. Gyration-radius dynamics in structural transitions of atomic clusters

    NASA Astrophysics Data System (ADS)

    Yanao, Tomohiro; Koon, Wang S.; Marsden, Jerrold E.; Kevrekidis, Ioannis G.

    2007-03-01

    This paper is concerned with the structural transition dynamics of the six-atom Morse cluster with zero total angular momentum, which serves as an illustrative example of the general reaction dynamics of isolated polyatomic molecules. It develops a methodology that highlights the interplay between the effects of the potential energy topography and those of the intrinsic geometry of the molecular internal space. The method focuses on the dynamics of three coarse variables, the molecular gyration radii. By using the framework of geometric mechanics and hyperspherical coordinates, the internal motions of a molecule are described in terms of these three gyration radii and hyperangular modes. The gyration radii serve as slow collective variables, while the remaining hyperangular modes serve as rapidly oscillating "bath" modes. Internal equations of motion reveal that the gyration radii are subject to two different kinds of forces: One is the ordinary force that originates from the potential energy function of the system, while the other is an internal centrifugal force. The latter originates from the dynamical coupling of the gyration radii with the hyperangular modes. The effects of these two forces often counteract each other: The potential force generally works to keep the internal mass distribution of the system compact and symmetric, while the internal centrifugal force works to inflate and elongate it. Averaged fields of these two forces are calculated numerically along a reaction path for the structural transition of the molecule in the three-dimensional space of gyration radii. By integrating the sum of these two force fields along the reaction path, an effective energy curve is deduced, which quantifies the gross work necessary for the system to change its mass distribution along the reaction path. This effective energy curve elucidates the energy-dependent switching of the structural preference between symmetric and asymmetric conformations. The present methodology should be of wide use for the systematic reduction of dimensionality as well as for the identification of kinematic barriers associated with the rearrangement of mass distribution in a variety of molecular reaction dynamics in vacuum.

  14. Gear Crack Propagation Path Studies-- Guidelines Developed for Ultrasafe Design

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    2002-01-01

    Effective gear designs balance strength, durability, reliability, size, weight, and cost. However, unexpected gear failures may occur even with adequate gear tooth design. To design an extremely safe system, the designer must ask and address the question "What happens when a failure occurs?" With regard to gear-tooth bending fatigue, tooth or rim fractures may occur. For aircraft, a crack that propagated through a rim would be catastrophic, leading to the disengagement of a rotor or propeller, the loss of an aircraft, and possible fatalities. This failure mode should be avoided. However, a crack that propagated through a tooth might or might not be catastrophic, depending on the design and operating conditions. Also, early warning of this failure mode might be possible because of advances in modern diagnostic systems. An analysis was performed at the NASA Glenn Research Center to develop design guidelines to prevent catastrophic rim fracture failure modes in the event of gear-tooth bending fatigue. The finite element method was used with principles of linear elastic fracture mechanics. Crack propagation paths were predicted for a variety of gear tooth and rim configurations. The effects of rim and web thicknesses, initial crack locations, and gear-tooth geometry factors such as diametral pitch, number of teeth, pitch radius, and tooth pressure angle were considered. Design maps of tooth and rim fracture modes, including the effects of gear geometry, applied load, crack size, and material properties were developed. The occurrence of rim fractures significantly increased as the backup ratio (rim thickness divided by tooth height) decreased. The occurrence of rim fractures also increased as the initial crack location was moved down the root of the tooth. Increased rim and web compliance increased the occurrence of rim fractures. For gears with constant-pitch radii, coarser-pitch teeth increased the occurrence of tooth fractures over rim fractures. Also, 25 degree pressure angle teeth increased the occurrence of tooth fractures over rim fractures in comparison to 20 pressure angle teeth. For gears with a constant number of teeth or for gears with constant diametral pitch, varying size had little or no effect on crack propagation paths.

  15. Bending and coupling losses in terahertz wire waveguides.

    PubMed

    Astley, Victoria; Scheiman, Julianna; Mendis, Rajind; Mittleman, Daniel M

    2010-02-15

    We present an experimental study of several common perturbations of wire waveguides for terahertz pulses. Sommerfeld waves retain significant signal strength and bandwidth even with large gaps in the wire, exhibiting more efficient recoupling at higher frequencies. We also describe a detailed study of bending losses. For a given turn angle, we observe an optimum radius of curvature that minimizes the overall propagation loss. These results emphasize the impact of the distortion of the spatial mode on the radiative bend loss.

  16. Disorder-induced losses in photonic crystal waveguides with line defects.

    PubMed

    Gerace, Dario; Andreani, Lucio Claudio

    2004-08-15

    A numerical analysis of extrinsic diffraction losses in two-dimensional photonic crystal slabs with line defects is reported. To model disorder, a Gaussian distribution of hole radii in the triangular lattice of airholes is assumed. The extrinsic losses below the light line increase quadratically with the disorder parameter, decrease slightly with increasing core thickness, and depend weakly on the hole radius. For typical values of the disorder parameter the calculated loss values of guided modes below the light line compare favorably with available experimental results.

  17. Laser Cooling With Ultrafast Pulse Trains

    DTIC Science & Technology

    2005-09-30

    MHz] FIG. 5: Transmission spectrum of the FPI for (a) correct FPI length with p = 1, q = 2; ( b ) FPI length mismatched by - 700 ym. The transmission...signal for (a) is a factor of - 50 higher and narrower than for ( b ), and the signal-to-noise ratio is increased by a factor of - 2500. lasers. An...the positions of the laser beams with respect to the ion cloud, ( b ) adjusted the mode-locked beam waist radius to optimize total two-photon transition

  18. Silica-Based Optical Time-Shift Network.

    DTIC Science & Technology

    1996-03-01

    consisted of semiconductor lasers and detectors, RF transfer -switches, low noise RF amplifiers (LNA), and T2L circuitries installed to enable switching...F/O TRANSFER BOX (1) RADIATING ELEMENTS 1:8 POWER DIVIDER (24 CARDS) 1.4 POWER DIVIDER (24) Tr/R MODULE (24) F/O DELAY WITH 2 TRANSFER SWITCHES AND 1...of the mode can travel is the velocity of light (= c/ni) in the outer clad, the part of it that lies beyond a critical radius Rc would not be able to

  19. Swift J1822.3-1606: Enhanced Swift-XRT position

    NASA Astrophysics Data System (ADS)

    Pagani, C.; Beardmore, A. P.; Kennea, J. A.

    2011-07-01

    Using 1046 s of XRT Photon Counting mode data and 1 UVOT image for Swift J1822.3-1606, we find an astrometrically corrected X-ray position (using the XRT-UVOT alignment and matching UVOT field sources to the USNO-B1 catalogue) of RA, Dec = 275.57500, -16.07412 which is equivalent to: RA (J2000): 18h 22m 18.00s Dec (J2000): -16d 04' 26.8" with an uncertainty of 1.8 arcsec (radius, 90% confidence).

  20. Distal radius reconstruction with vascularized proximal fibular autograft after en-bloc resection of recurrent giant cell tumor.

    PubMed

    Yang, Yun-Fa; Wang, Jian-Wei; Huang, Pin; Xu, Zhong-He

    2016-08-17

    Giant cell tumors (GCTs) located in the distal radius are likely to recur, and the treatment of such recurrent tumors is very difficult. Here, we report our clinical experience in distal radius reconstruction with vascularized proximal fibular autografts after en-bloc excision of the entire distal radius in 17 patients with recurrent GCT (RGCT) of the distal radius. All 17 patients with RGCT in distal radius underwent plain radiography and/or magnetic resonance imaging (MRI) of the distal radius as the initial evaluation after hospitalization. Then the distal radius were replaced by vascularized proximal fibular autografts after en-bloc RGCT resection. We assessed all patients by using clinical examinations, plain radiography of the wrist and chest, and Mayo wrist scores in the follow-ups. After an average follow-up of 4.3 years (range: 1.5-10.0 years), no lung metastasis or local recurrence was detected in any of the 17 patients. In total, 14 patients had excellent or good functional wrist scores, 16 were pain free or had occasional pain, and 15 patients returned to work. The mean range of motion of the wrist was 101° (flexion-extension), and the mean grip strength was 77.2 % of the contralateral normal hand. En-bloc excision of the entire distal radius and distal radius reconstruction with a vascularized proximal fibular autograft can effectively achieve local tumor control and preserve wrist function in patients with RGCT of the distal radius.

  1. Light impurity transport in JET ILW L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Bonanomi, N.; Mantica, P.; Giroud, C.; Angioni, C.; Manas, P.; Menmuir, S.; Contributors, JET

    2018-03-01

    A series of experimental observations of light impurity profiles was carried out in JET (Joint European Torus) ITER-like wall (ILW) L-mode plasmas in order to investigate their transport mechanisms. These discharges feature the presence of 3He, Be, C, N, Ne, whose profiles measured by active Charge Exchange diagnostics are compared with quasi-linear and non-linear gyro-kinetic simulations. The peaking of 3He density follows the electron density peaking, Be and Ne are also peaked, while the density profiles of C and N are flat in the mid plasma region. Gyro-kinetic simulations predict peaked density profiles for all the light impurities studied and at all the radial positions considered, and fail predicting the flat or hollow profiles observed for C and N at mid radius in our cases.

  2. Interaction of pulsating and spinning waves in condensed phase combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booty, M.R.; Margolis, S.B.; Matkowsky, B.J.

    1986-10-01

    The authors employ a nonlinear stability analysis in the neighborhood of a multiple bifurcation point to describe the interaction of pulsating and spinning modes of condensed phase combustion. Such phenomena occur in the synthesis of refractory materials. In particular, they consider the propagation of combustion waves in a long thermally insulated cylindrical sample and show that steady, planar combustion is stable for a modified activation energy/melting parameter less than a critical value. Above this critical value primary bifurcation states, corresponding to time-periodic pulsating and spinning modes of combustion, emanate from the steadily propagating solution. By varying the sample radius, themore » authors split a multiple bifurcation point to obtain bifurcation diagrams which exhibit secondary, tertiary, and quarternary branching to various types of quasi-periodic combustion waves.« less

  3. Star-shaped oscillations of Leidenfrost drops

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Liétor-Santos, Juan-José; Burton, Justin C.

    2017-03-01

    We experimentally investigate the self-sustained, star-shaped oscillations of Leidenfrost drops. The drops levitate on a cushion of evaporated vapor over a heated, curved surface. We observe modes with n =2 -13 lobes around the drop periphery. We find that the wavelength of the oscillations depends only on the capillary length of the liquid and is independent of the drop radius and substrate temperature. However, the number of observed modes depends sensitively on the liquid viscosity. The dominant frequency of pressure variations in the vapor layer is approximately twice the drop oscillation frequency, consistent with a parametric forcing mechanism. Our results show that the star-shaped oscillations are driven by capillary waves of a characteristic wavelength beneath the drop and that the waves are generated by a large shear stress at the liquid-vapor interface.

  4. Improved MICROBASE Product with Uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Meng

    The data set contains four primary microphysics, including liquid water content, ice water content, liquid effective radius, and ice effective radius. Bit QC and data quality QC are also calculated. Quantification of uncertainties (incorporating the work of Zhao et al. 2013) are included for all four microphysics.

  5. In-Plane Ultrasound Propagation in an Elastic Silicone Tube as a Function of Tension

    NASA Astrophysics Data System (ADS)

    Rajakenttä, Tina; Salmi, Ari; Akujärvi, Altti; Haapalainen, Jonne; Hæggström, Edward

    2007-03-01

    The mechanical properties of a silicone tube blood vessel phantom (outer radius 4.04±0.04 mm and wall thickness 1.00±0.02 mm) carrying in-plane ultrasound wave propagation, was studied as function of applied axial tension. A 23 kHz, 1-cycle square signal was excited into the tube with a piezoceramic pickup and received with an inductive pickup. The wave phase velocities in the tube were determined by measuring the time-of-flight (TOF) at different inter-transducer distances. The longitudinal mode sound velocity ranged from 83 m/s to 88 m/s, and from 51 m/s to 58 m/s for the shear mode respectively with tensions ranging from 31 to 364 kPa. This compares with the FEM estimate. A laser-Doppler vibrometer (LDV) detected an out-of-plane mode propagating along the tube. An increase in the sound velocity caused by artificially induced lesions was detected.

  6. Deviations from a uniform period spacing of gravity modes in a massive star.

    PubMed

    Degroote, Pieter; Aerts, Conny; Baglin, Annie; Miglio, Andrea; Briquet, Maryline; Noels, Arlette; Niemczura, Ewa; Montalban, Josefina; Bloemen, Steven; Oreiro, Raquel; Vucković, Maja; Smolders, Kristof; Auvergne, Michel; Baudin, Frederic; Catala, Claude; Michel, Eric

    2010-03-11

    The life of a star is dominantly determined by the physical processes in the stellar interior. Unfortunately, we still have a poor understanding of how the stellar gas mixes near the stellar core, preventing precise predictions of stellar evolution. The unknown nature of the mixing processes as well as the extent of the central mixed region is particularly problematic for massive stars. Oscillations in stars with masses a few times that of the Sun offer a unique opportunity to disentangle the nature of various mixing processes, through the distinct signature they leave on period spacings in the gravity mode spectrum. Here we report the detection of numerous gravity modes in a young star with a mass of about seven solar masses. The mean period spacing allows us to estimate the extent of the convective core, and the clear periodic deviation from the mean constrains the location of the chemical transition zone to be at about 10 per cent of the radius and rules out a clear-cut profile.

  7. Short-Range-Order for fcc-based Binary Alloys Revisited from Microscopic Geometry

    NASA Astrophysics Data System (ADS)

    Yuge, Koretaka

    2018-04-01

    Short-range order (SRO) in disordered alloys is typically interpreted as competition between chemical effect of negative (or positive) energy gain by mixing constituent elements and geometric effects comes from difference in effective atomic radius. Although we have a number of theoretical approaches to quantitatively estimate SRO at given temperatures, it is still unclear to systematically understand trends in SRO for binary alloys in terms of geometric character, e.g., effective atomic radius for constituents. Since chemical effect plays significant role on SRO, it has been believed that purely geometric character cannot capture the SRO trends. Despite these considerations, based on the density functional theory (DFT) calculations on fcc-based 28 equiatomic binary alloys, we find that while conventional Goldschmidt or DFT-based atomic radius for constituents have no significant correlation with SRO, atomic radius for specially selected structure, constructed purely from information about underlying lattice, can successfully capture the magnitude of SRO. These facts strongly indicate that purely geometric information of the system plays central role to determine characteristic disordered structure.

  8. Demarcating Circulation Regimes of Synchronously Rotating Terrestrial Planets within the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Haqq-Misra, Jacob; Wolf, Eric. T.; Joshi, Manoj; Zhang, Xi; Kopparapu, Ravi Kumar

    2018-01-01

    We investigate the atmospheric dynamics of terrestrial planets in synchronous rotation within the habitable zone of low-mass stars using the Community Atmosphere Model. The surface temperature contrast between the day and night hemispheres decreases with an increase in incident stellar flux, which is opposite the trend seen in gas giants. We define three dynamical regimes in terms of the equatorial Rossby deformation radius and the Rhines length. The slow rotation regime has a mean zonal circulation that spans from the day to the night sides, which occurs for planets around stars with effective temperatures of 3300–4500 K (rotation period > 20 days), with both the Rossby deformation radius and the Rhines length exceeding the planetary radius. Rapid rotators have a mean zonal circulation that partially spans a hemisphere and with banded cloud formation beneath the substellar point, which occurs for planets orbiting stars with effective temperatures of less than 3000 K (rotation period < 5 days), with the Rossby deformation radius less than the planetary radius. In between is the Rhines rotation regime, which retains a thermally direct circulation from the day side to the night side but also features midlatitude turbulence-driven zonal jets. Rhines rotators occur for planets around stars in the range of 3000–3300 K (rotation period ∼5–20 days), where the Rhines length is greater than the planetary radius but the Rossby deformation radius is less than the planetary radius. The dynamical state can be observationally inferred from a comparison of the morphologies of the thermal emission phase curves of synchronously rotating planets.

  9. The Observed Behavior of the Bias in MODIS-retrieved Cloud Droplet Effective Radius through MISR-MODIS Data Fusion

    NASA Astrophysics Data System (ADS)

    Fu, D.; Di Girolamo, L.; Liang, L.; Zhao, G.

    2017-12-01

    Listed as one of the Essential Climate Variables by the Global Climate Observing System, the effective radius (Re) of the cloud drop size distribution plays an important role in the energy and water cycles of the Earth system. Re is retrieved from several passive sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), based on a visible and near-infrared bi-spectral technique that had its foundation more than a quarter century ago. This technique makes a wide range of assumptions, including 1-D radiative transfer, assumed single-mode drop size distribution, and cloud horizontal and vertical homogeneity. It is well known that deviations from these assumptions lead to bias in the retrieved Re. Recently, an effort to characterize the bias in MODIS-retrieved Re through MISR-MODIS data fusion revealed biases in the zonal-mean values of MODIS-retrieved Re that varied from 2 to 11 µm, depending on latitude (Liang et al., 2015). Here, in a push towards bias-correction of MODIS-retrieved Re, we further examine the bias with MISR-MODIS data fusion as it relates to other observed cloud properties, such as cloud-top height and the spatial variability of the radiance field, sun-view geometry, and the driving meteorology had from reanalysis data. Our results show interesting relationships in Re bias behavior with these observed properties, revealing that while Re bias do show a certain degree of dependence on some properties, no single property dominates the behavior in MODIS-retrieved Re bias.

  10. Study of insertion force and deformation for suturing with precurved NiTi guidewire.

    PubMed

    Wang, Yancheng; Chen, Roland K; Tai, Bruce L; Xu, Kai; Shih, Albert J

    2015-04-01

    This research presents an experimental study evaluating stomach suturing using a precurved nickel-titanium (NiTi) guidewire for an endoscopic minimally invasive obesity treatment. Precise path planning is critical for accurate and effective suturing. A position measurement system utilizing a hand-held magnetic sensor was used to measure the shape of a precurved guidewire and to determine the radius of curvature before and after suturing. Ex vivo stomach suturing experiments using four different guidewire tip designs varying the radius of curvature and bevel angles were conducted. The changes in radius of curvature and suturing force during suturing were measured. A model was developed to predict the guidewire radius of curvature based on the measured suturing force. Results show that a small bevel angle and a large radius of curvature reduce the suturing force and the combination of small bevel angle and small radius of curvature can maintain the shape of guidewire for accurate suturing.

  11. Point Counts Modifications and Breeding Bird Abundances in Central Appalachian Forests

    Treesearch

    J. Edwards Gates

    1995-01-01

    The effects of point count duration and radius on detection of breeding birds were compared by recording all birds seen or heard within two consecutive 5-minute intervals and for fixed-radius (within 30 m) or unlimited radius counts. Counts were conducted on Green Ridge State Forest (GRSF) and Savage River State Forest (SRSF) in western Maryland. More than 70 percent...

  12. Computational Evaluation of the Steady and Pulsed Jet Effects on the Performance of a Circulation Control Wing Section

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Sankar, Lakshmi N.; Englar, Robert; Ahuja, K.; Gaeta, R.

    2003-01-01

    Circulation Control Wing (CCW) technology is a very effective way of achieving very high lift coefficients needed by aircraft during take-off and landing. This technology can also be used to directly control the flow field over the wing. Compared to a conventional high-lift system, a Circulation Control Wing (CCW) can generate the required values of lift coefficient C(sub L,max) during take-off/landing with fewer or no moving parts and much less complexity. Earlier designs of CCW configurations used airfoils with a large radius rounded trailing edge to maximize the lift benefit. However, these designs also produced very high drag. These high drag levels associated with the blunt, large radius trailing edge can be prohibitive under cruise conditions when Circulation Control is no longer necessary. To overcome this difficulty, an advanced CCW section, i.e., a circulation hinged flap was developed to replace the original rounded trailing edge CC airfoil. This concept developed by Englar is shown. The upper surface of the CCW flap is a large-radius arc surface, but the lower surface of the flap is flat. The flap could be deflected from 0 degrees to 90 degrees. When an aircraft takes-off or lands, the flap is deflected as in a conventional high lift system. Then this large radius on the upper surface produces a large jet turning angle, leading to high lift. When the aircraft is in cruise, the flap is retracted and a conventional sharp trailing edge shape results, greatly reducing the drag. This kind of flap does have some moving elements that increase the weight and complexity over an earlier CCW design. But overall, the hinged flap design still maintains most of the Circulation Control high lift advantages, while greatly reducing the drag in cruising condition associated with the rounded trailing edge CCW design. In the present work, an unsteady three-dimensional Navier-Stokes analysis procedure has been developed and applied to this advanced CCW configuration. The solver can be used in both a 2-D and a 3-D mode, and can thus model airfoils as well as finite wings. The jet slot location, slot height, and the flap angle can all be varied easily and individually in the grid generator and the flow solver. Steady jets, pulsed jets, the leading edge and trailing edge blowing can all be studied with this solver.

  13. Evidence for a bimodal size distribution for the suspended aerosol particles on Mars

    NASA Astrophysics Data System (ADS)

    Fedorova, A. A.; Montmessin, F.; Rodin, A. V.; Korablev, O. I.; Määttänen, A.; Maltagliati, L.; Bertaux, J.-L.

    2014-03-01

    First simultaneous analysis of the ultraviolet (UV) and infrared (IR) atmospheric extinctions from SPICAM/Mars Express solar occultations in the beginning of the Northern summer (Ls = 56-97°) is presented. The two SPICAM channels allow sounding of the martian atmosphere in the spectral range from 0.118 to 1.7 μm at the altitudes from 10 to 80 km. Based on Mie scattering theory with adequate refraction indices for dust and H2O ice, a bimodal distribution of aerosol has been inferred from the SPICAM measurements. The coarser mode is represented by both dust and H2O particles with average radius of 0.7 and 1.2 μm, respectively, with number density from 0.01 to 10 particles in cm3. Clouds belonging to the aphelion cloud belt have been observed in midlatitudes in the Southern and the Northern hemispheres at altitudes of 20-30 km. The clouds are formed of large particles, and their opacity in the UV and the IR is below 0.03. The finer mode with a radius of 0.04-0.07 μm and a number density from 1 cm-3 at 60 km to 1000 cm-3 at 20 km has been detected in both hemispheres. In the Southern hemisphere the finer mode extends up to 70 km, whereas in the Northern hemisphere it is confined below 30-40 km. The lack of condensation nuclei is consistent, but could not fully explain the high water supersaturation observed between 30 and 50 km in the same Northern hemisphere dataset (Maltagliati L., Montmessin, F., Fedorova, A., Korablev, O., Forget, F., Bertaux, J.-L. [2011]. Science 333, 1868-1871). The average size of the fine mode (∼50 nm) and the large number density (up to 1000 cm-3) most likely corresponds to Aitken particles (r < 0.1 μm). This mode is unstable against coagulation and requires a continuous source of particles to be maintained, at least one order of magnitude more than estimations for the meteoric flux. A possible source is the dust lifting from the surface and dust devils. A detailed microphysical modeling is required to study the probability of survival of the observed bimodal distribution.

  14. Analysis of the attenuation of railway squeal noise by preloaded rings inserted in wheels.

    PubMed

    Brunel, J F; Dufrénoy, P; Charley, J; Demilly, F

    2010-03-01

    Squeal from railway wheels occurring in short radius curves produces a very intense and highly annoying noise in the range 400-8000 Hz. When the excitation, due to lateral forces acting on the wheel, cannot be avoided, additional systems can be added on the wheel to limit acoustic emission. A very economical approach is the use of metal rings inserted into grooves machined in the wheels. Unfortunately the effectiveness of these so called damping rings varies from one wheel to another and for different rings. Because the mechanisms of attenuation are not well understood, these variations have not to date been explained. The aim of this paper is to clarify the attenuation mechanisms for damping rings especially for the first three axial wheel modes, which are the predominant sound radiated ones in curve passage and for which the effectiveness of the treatment is lower. It has been generally assumed that friction between the ring and the groove has been the mechanism for squeal noise attenuation. Here it is shown that the vibration attenuation is due to modal coupling between the wheel and the ring. The validity of this proposed mechanism is investigated using experimental measurements and theoretical and numerical models. The results presented here will provide an avenue for optimization of the damping ring noise control treatment to obtain significant levels of squeal noise attenuation notably for the first three axial modes.

  15. XV-15 Structural-Acoustic Data

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.

    1997-01-01

    Tiltrotor aircraft are a potentially viable means of intercity travel. The tiltrotor is able to transport passengers relatively quickly from the center of a city to destinations within a 300-mile radius. For such vehicles to be commercially viable, the interior noise and vibration levels must be acceptable to the passengers. A review of the literature revealed very little structural-acoustic data related to the tiltrotor. For this reason, structural-acoustic measurements were taken aboard an XV-15 tiltrotor. The six flight conditions included five in level flight, nominally 140-220 knots, for airplane mode (nacelle at 0 degrees) and one out-of-ground-effect (OGE) hover (nacelle at 90 degrees). The flight test measurements included nine exterior surface pressures, five structural accelerations, and two interior pressures. These sensors were located near the tip path plane on the port side of the aircraft. One minute of data was acquired at each condition. The data is presented as time histories, autospectra, coherence functions, and cross-spectra. In general, for level flight, the measured data showed very little effect of forward flight speed except to change the amplitude of the response; however, the character of the response was found to be dependent on spatial location. In contrast, in the hover mode the spatial location had very little effect on the character of the response. Additionally, the report highlights: the coherence between the transducer data and the rotor tach signal; and transfer function calculations between the exterior pressures.

  16. Finite temperature m=0 upper-hybrid modes in a non-neutral plasma, theory and simulation.

    NASA Astrophysics Data System (ADS)

    Hart, Grant W.; Takeshi Nakata, M.; Spencer, Ross L.

    2007-11-01

    Axisymmetric upper-hybrid oscillations have been known to exist in non-neutral plasmas and FTICR/MS devices for a number of years^1,2. However, because they are electrostatic in nature and axisymmetric, they are self-shielding and therefore difficult to detect in long systems. Previous theoretical studies have assumed a zero temperature plasma. In the zero temperature limit these oscillations are not properly represented as a mode, because the frequency at a given radius depends only on the local density and is not coupled to neighboring radii, much like the zero temperature plasma oscillation. Finite temperature provides the coupling which links the oscillation into a coherent mode. We have analyzed the finite-temperature theory of these modes and find that they form an infinite set of modes with frequencies above 2̂c- 2̂p. For a constant density plasma the eigenmodes are Bessel functions. For a more general plasma the eigenmodes must be numerically calculated. We have simulated these modes in our r-θ particle-in-cell code that includes a full Lorentz-force mover^3 and find that the eigenmodes correspond well with the theory.^1 J.J. Bollinger, et al., Phys. Rev. A 48, 525 (1993).^2 S.E. Barlow, et al., Int. J. Mass Spectrom. Ion Processes 74, 97 (1986).^3 M. Takeshi Nakata, et al., Bull. Am. Phys. Soc. 51, 245 (2006).

  17. Finite temperature m=0 Bernstein modes in a non-neutral plasma, theory and simulation

    NASA Astrophysics Data System (ADS)

    Hart, Grant W.; Spencer, Ross L.; Takeshi Nakata, M.

    2008-11-01

    Axisymmetric upper-hybrid oscillations have been known to exist in non-neutral plasmas and FTICR/MS devices for a number of years. However, because they are electrostatic in nature and axisymmetric, they are self-shielding and therefore difficult to detect in long systems. Previous theoretical studies have assumed a zero temperature plasma. In the zero temperature limit these oscillations are not properly represented as a mode, because the frequency at a given radius depends only on the local density and is not coupled to neighboring radii, much like the zero temperature plasma oscillation. Finite temperature provides the coupling which links the oscillation into a coherent mode. We have analyzed the finite-temperature theory of these modes and find that they form an infinite set of modes with frequencies above 2̂c- 2̂p. We have simulated these modes in our r-θ particle-in-cell code that includes a full Lorentz-force mover and find that in a mostly flat-top plasma there are two eigenmodes that have essentially the same shape in the bulk of the plasma, but different frequencies. It appears likely that they have different boundary conditions in the boundary region. J.J. Bollinger, et al., Phys. Rev. A 48, 525 (1993). S.E. Barlow, et al., Int. J. Mass Spectrom. Ion Processes 74, 97 (1986). M. Takeshi Nakata, et al., Bull. Am. Phys. Soc. 51, 245 (2006).

  18. Contactless transport of matter in the first five resonance modes of a line-focused acoustic manipulator.

    PubMed

    Foresti, Daniele; Nabavi, Majid; Poulikakos, Dimos

    2012-02-01

    The first five resonance modes for transport of matter in a line-focused acoustic levitation system are investigated. Contactless transport was achieved by varying the height between the radiating plate and the reflector. Transport and levitation of droplets in particular involve two limits of the acoustic forces. The lower limit corresponds to the minimum force required to overcome the gravitational force. The upper limit corresponds to the maximum acoustic pressure beyond which atomization of the droplet occurs. As the droplet size increases, the lower limit increases and the upper limit decreases. Therefore to have large droplets levitated, relatively flat radiation pressure amplitude during the translation is needed. In this study, using a finite element model, the Gor'kov potential was calculated for different heights between the reflector and the radiating plate. The application of the Gor'kov potential was extended to study the range of droplet sizes for which the droplets can be levitated and transported without atomization. It was found that the third resonant mode (H(3)-mode) represents the best compromise between high levitation force and smooth pattern transition, and water droplets of millimeter radius can be levitated and transported. The H(3)-mode also allows for three translation lines in parallel. © 2012 Acoustical Society of America

  19. Liquid Water Cloud Properties During the Polarimeter Definition Experiment (PODEX)

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail D.; Cairns, Brian; Wasilewski, Andrzei P.; Ackerman, Andrew S.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven; Arnold, George; Van Diedenhoven, Bastiaan; hide

    2015-01-01

    We present retrievals of water cloud properties from the measurements made by the Research Scanning Polarimeter (RSP) during the Polarimeter Definition Experiment (PODEX) held between January 14 and February 6, 2013. The RSP was onboard the high-altitude NASA ER-2 aircraft based at NASA Dryden Aircraft Operation Facility in Palmdale, California. The retrieved cloud characteristics include cloud optical thickness, effective radius and variance of cloud droplet size distribution derived using a parameter-fitting technique, as well as the complete droplet size distribution function obtained by means of Rainbow Fourier Transform. Multi-modal size distributions are decomposed into several modes and the respective effective radii and variances are computed. The methodology used to produce the retrieval dataset is illustrated on the examples of a marine stratocumulus deck off California coast and stratus/fog over California's Central Valley. In the latter case the observed bimodal droplet size distributions were attributed to two-layer cloud structure. All retrieval data are available online from NASA GISS website.

  20. Fixed-Radius Point Counts in Forests: Factors Influencing Effectiveness and Efficiency

    Treesearch

    Daniel R. Petit; Lisa J. Petit; Victoria A. Saab; Thomas E. Martin

    1995-01-01

    The effectiveness of fixed-radius point counts in quantifying abundance and richness of bird species in oak-hickory, pine-hardwoods, mixed-mesophytic, beech-maple, and riparian cottonwood forests was evaluated in Arkansas, Ohio, Kentucky, and Idaho. Effects of count duration and numbers of stations and visits per stand were evaluated in May to July 1991 by conducting...

Top