Sample records for mode effects analysis

  1. Experimental Analysis of Dampened Breathing Mode Oscillation on Hall Thruster Performance

    DTIC Science & Technology

    2013-03-01

    38 4.5 Analysis of Discharge RMS Effect on Breathing Mode Amplitude...20 xii EXPERIMENTAL ANALYSIS OF DAMPENED BREATHING MODE OSCILLATION ON HALL EFFECT THRUSTER...the large error in the data presented above prevents many conclusions from being drawn. 4.5 Analysis of Discharge RMS Effect on Breathing Mode

  2. Failure-Modes-And-Effects Analysis Of Software Logic

    NASA Technical Reports Server (NTRS)

    Garcia, Danny; Hartline, Thomas; Minor, Terry; Statum, David; Vice, David

    1996-01-01

    Rigorous analysis applied early in design effort. Method of identifying potential inadequacies and modes and effects of failures caused by inadequacies (failure-modes-and-effects analysis or "FMEA" for short) devised for application to software logic.

  3. Failure Mode and Effects Analysis (FMEA) Introductory Overview

    DTIC Science & Technology

    2012-06-14

    Failure Mode and Effects Analysis ( FMEA ) Introductory Overview TARDEC Systems Engineering Risk Management Team POC: Kadry Rizk or Gregor Ratajczak...2. REPORT TYPE Briefing Charts 3. DATES COVERED 01-05-2012 to 23-05-2012 4. TITLE AND SUBTITLE Failure Mode and Effects Analysis ( FMEA ) 5a...18 WELCOME Welcome to “An introductory overview of Failure Mode and Effects Analysis ( FMEA )”, A brief concerning the use and benefits of FMEA

  4. Failure Mode, Effects, and Criticality Analysis (FMECA)

    DTIC Science & Technology

    1993-04-01

    Preliminary Failure Modes, Effects and Criticality Analysis (FMECA) of the Brayton Isotope Power System Ground Demonstration System, Report No. TID 27301...No. TID/SNA - 3015, Aeroject Nuclear Systems Co., Sacramento, California: 1970. 95. Taylor , J.R. A Formalization of Failure Mode Analysis of Control...Roskilde, Denmark: 1973. 96. Taylor , J.R. A Semi-Automatic Method for Oualitative Failure Mode Analysis. Report No. RISO-M-1707. Available from a

  5. Stingray Failure Mode, Effects and Criticality Analysis: WEC Risk Registers

    DOE Data Explorer

    Ken Rhinefrank

    2016-07-25

    Analysis method to systematically identify all potential failure modes and their effects on the Stingray WEC system. This analysis is incorporated early in the development cycle such that the mitigation of the identified failure modes can be achieved cost effectively and efficiently. The FMECA can begin once there is enough detail to functions and failure modes of a given system, and its interfaces with other systems. The FMECA occurs coincidently with the design process and is an iterative process which allows for design changes to overcome deficiencies in the analysis.Risk Registers for major subsystems completed according to the methodology described in "Failure Mode Effects and Criticality Analysis Risk Reduction Program Plan.pdf" document below, in compliance with the DOE Risk Management Framework developed by NREL.

  6. Acceleration effects in solid propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Langhenry, M. T.

    1986-01-01

    The performance variations due to acceleration loads imposed on spinning solid propellant rocket motors are investigated. The four potentially most significant modes of acceleration-induced phenomena are identified from a study of the literature and modeled. The four modes are a mechanical mode which deals with deformations of the propellant and case: a thermodynamic mode which covers acceleration-induced combustion phenomena; a stress mode which covers the stressed propellant's effect on burn rate; and a gas dynamic mode which deals with changes in gas flow in the chamber and through the nozzle. Simplified models of each mode are developed or taken from the literature and are added to an internal ballistics evaluation computer program. The resulting analysis is the first to include all of the modes. In order to do this an original analysis of the mechanical and stress modes was necessary. However, the analysis shows that the stress mode is not important for the circular perforated grains studied. The other effects are shown to have a significant influence on solid rocket motor performance. The magnitude of the different mode effects are such that one may not be ignored over the others as has been done in the past. The results of the analysis are compared to published rocket motor data. The comparisons indicate an erosive burning effect that is a function of spin rate. A qualitative explanation of the erosive effect is presented.

  7. Use of failure mode and effects analysis for proactive identification of communication and handoff failures from organ procurement to transplantation.

    PubMed

    Steinberger, Dina M; Douglas, Stephen V; Kirschbaum, Mark S

    2009-09-01

    A multidisciplinary team from the University of Wisconsin Hospital and Clinics transplant program used failure mode and effects analysis to proactively examine opportunities for communication and handoff failures across the continuum of care from organ procurement to transplantation. The team performed a modified failure mode and effects analysis that isolated the multiple linked, serial, and complex information exchanges occurring during the transplantation of one solid organ. Failure mode and effects analysis proved effective for engaging a diverse group of persons who had an investment in the outcome in analysis and discussion of opportunities to improve the system's resilience for avoiding errors during a time-pressured and complex process.

  8. Independent Orbiter Assessment (IOA): Analysis of the crew equipment subsystem

    NASA Technical Reports Server (NTRS)

    Sinclair, Susan; Graham, L.; Richard, Bill; Saxon, H.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical (PCIs) items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results coresponding to the Orbiter crew equipment hardware are documented. The IOA analysis process utilized available crew equipment hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 352 failure modes analyzed, 78 were determined to be PCIs.

  9. How to apply clinical cases and medical literature in the framework of a modified "failure mode and effects analysis" as a clinical reasoning tool--an illustration using the human biliary system.

    PubMed

    Wong, Kam Cheong

    2016-04-06

    Clinicians use various clinical reasoning tools such as Ishikawa diagram to enhance their clinical experience and reasoning skills. Failure mode and effects analysis, which is an engineering methodology in origin, can be modified and applied to provide inputs into an Ishikawa diagram. The human biliary system is used to illustrate a modified failure mode and effects analysis. The anatomical and physiological processes of the biliary system are reviewed. Failure is defined as an abnormality caused by infective, inflammatory, obstructive, malignancy, autoimmune and other pathological processes. The potential failures, their effect(s), main clinical features, and investigation that can help a clinician to diagnose at each anatomical part and physiological process are reviewed and documented in a modified failure mode and effects analysis table. Relevant medical and surgical cases are retrieved from the medical literature and weaved into the table. A total of 80 clinical cases which are relevant to the modified failure mode and effects analysis for the human biliary system have been reviewed and weaved into a designated table. The table is the backbone and framework for further expansion. Reviewing and updating the table is an iterative and continual process. The relevant clinical features in the modified failure mode and effects analysis are then extracted and included in the relevant Ishikawa diagram. This article illustrates an application of engineering methodology in medicine, and it sows the seeds of potential cross-pollination between engineering and medicine. Establishing a modified failure mode and effects analysis can be a teamwork project or self-directed learning process, or a mix of both. Modified failure mode and effects analysis can be deployed to obtain inputs for an Ishikawa diagram which in turn can be used to enhance clinical experiences and clinical reasoning skills for clinicians, medical educators, and students.

  10. Independent Orbiter Assessment (IOA): Analysis of the pyrotechnics subsystem

    NASA Technical Reports Server (NTRS)

    Robinson, W. W.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Pyrotechnics hardware. The IOA analysis process utilized available pyrotechnics hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  11. Risk Based Reliability Centered Maintenance of DOD Fire Protection Systems

    DTIC Science & Technology

    1999-01-01

    2.2.3 Failure Mode and Effect Analysis ( FMEA )............................ 2.2.4 Failure Mode Risk Characterization...Step 2 - System functions and functional failures definition Step 3 - Failure mode and effect analysis ( FMEA ) Step 4 - Failure mode risk...system). The Interface Location column identifies the location where the FMEA of the fire protection system began or stopped. For example, for the fire

  12. Zero-mode clad waveguides for performing spectroscopy with confined effective observation volumes

    DOEpatents

    Levene, Michael J.; Korlach, Jonas; Turner, Stephen W.; Craighead, Harold G.; Webb, Watt W.

    2005-07-12

    The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode waveguide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.

  13. Product Support Manager Guidebook

    DTIC Science & Technology

    2011-04-01

    package is being developed using supportability analysis concepts such as Failure Mode, Effects and Criticality Analysis (FMECA), Fault Tree Analysis ( FTA ...Analysis (LORA) Condition Based Maintenance + (CBM+) Fault Tree Analysis ( FTA ) Failure Mode, Effects, and Criticality Analysis (FMECA) Maintenance Task...Reporting and Corrective Action System (FRACAS), Fault Tree Analysis ( FTA ), Level of Repair Analysis (LORA), Maintenance Task Analysis (MTA

  14. Mod 1 wind turbine generator failure modes and effects analysis

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A failure modes and effects analysis (FMEA) was directed primarily at identifying those critical failure modes that would be hazardous to life or would result in major damage to the system. Each subsystem was approached from the top down, and broken down to successive lower levels where it appeared that the criticality of the failure mode warranted more detail analysis. The results were reviewed by specialists from outside the Mod 1 program, and corrective action taken wherever recommended.

  15. Independent Orbiter Assessment (IOA): Analysis of the communication and tracking subsystem

    NASA Technical Reports Server (NTRS)

    Gardner, J. R.; Robinson, W. M.; Trahan, W. H.; Daley, E. S.; Long, W. C.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Communication and Tracking hardware. The IOA analysis process utilized available Communication and Tracking hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  16. Zero-mode waveguides

    DOEpatents

    Levene, Michael J.; Korlach, Jonas; Turner, Stephen W.; Craighead, Harold G.; Webb, Watt W.

    2007-02-20

    The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode waveguide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.

  17. A Framework for Creating a Function-based Design Tool for Failure Mode Identification

    NASA Technical Reports Server (NTRS)

    Arunajadai, Srikesh G.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Knowledge of potential failure modes during design is critical for prevention of failures. Currently industries use procedures such as Failure Modes and Effects Analysis (FMEA), Fault Tree analysis, or Failure Modes, Effects and Criticality analysis (FMECA), as well as knowledge and experience, to determine potential failure modes. When new products are being developed there is often a lack of sufficient knowledge of potential failure mode and/or a lack of sufficient experience to identify all failure modes. This gives rise to a situation in which engineers are unable to extract maximum benefits from the above procedures. This work describes a function-based failure identification methodology, which would act as a storehouse of information and experience, providing useful information about the potential failure modes for the design under consideration, as well as enhancing the usefulness of procedures like FMEA. As an example, the method is applied to fifteen products and the benefits are illustrated.

  18. Waveguides for performing spectroscopy with confined effective observation volumes

    DOEpatents

    Levene, Michael J.; Korlach, Jonas; Turner, Stephen W.; Craighead, Harold G.; Webb, Watt W.

    2006-03-14

    The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode waveguide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.

  19. Procedure for Failure Mode, Effects, and Criticality Analysis (FMECA)

    NASA Technical Reports Server (NTRS)

    1966-01-01

    This document provides guidelines for the accomplishment of Failure Mode, Effects, and Criticality Analysis (FMECA) on the Apollo program. It is a procedure for analysis of hardware items to determine those items contributing most to system unreliability and crew safety problems.

  20. Dependence of matrix effect on ionization polarity during LC-ESI-MS analysis of derivatized amino acids in some natural samples.

    PubMed

    Oldekop, Maarja-Liisa; Rebane, Riin; Herodes, Koit

    2017-10-01

    Matrix effect, the influence of co-eluting components on the ionization efficiency of the analyte, affects the trueness and precision of the LC-ESI-MS analysis. Derivatization can reduce or eliminate matrix effect, for example, diethyl ethoxymethylenemalonate (DEEMM) derivatives have shown less matrix effect compared to other derivatives. Moreover, the use of negative ion mode can further reduce matrix effect. In order to investigate the combination of derivatization and different ionization modes, an LC-ESI-MS/MS method using alternating positive/negative ion mode was developed and validated. The analyses in positive and negative ion modes had comparable limit of quantitation values. The influence of ESI polarity on matrix effect was investigated during the analysis of 22 DEEMM-derivatized amino acids in herbal extracts and honeys. Sample dilution approach was used for the evaluation of the presence of matrix effect. Altogether, 4 honeys and 11 herbal extracts were analyzed, and the concentrations of 22 amino acids in the samples are presented. In the positive ion mode, matrix effect was observed for several amino acid derivatives and the matrix effect was stronger in honey samples compared to the herbal extracts. The negative ion mode was free from matrix effect, with only few exceptions in honeys (average relative standard deviation over all analytes and matrices was 8%; SD = 7%). The matrix effect was eliminated in the positive ion mode by sample dilution and agreement between concentrations from the two ion modes was achieved for most amino acids. In conclusion, it was shown that the combination of derivatization and negative ion mode can be a powerful tool for minimizing matrix effect in more complicated applications.

  1. Experimental strain modal analysis for beam-like structure by using distributed fiber optics and its damage detection

    NASA Astrophysics Data System (ADS)

    Cheng, Liangliang; Busca, Giorgio; Cigada, Alfredo

    2017-07-01

    Modal analysis is commonly considered as an effective tool to obtain the intrinsic characteristics of structures including natural frequencies, modal damping ratios, and mode shapes, which are significant indicators for monitoring the health status of engineering structures. The complex mode indicator function (CMIF) can be regarded as an effective numerical tool to perform modal analysis. In this paper, experimental strain modal analysis based on the CMIF has been introduced. Moreover, a distributed fiber-optic sensor, as a dense measuring device, has been applied to acquire strain data along a beam surface. Thanks to the dense spatial resolution of the distributed fiber optics, more detailed mode shapes could be obtained. In order to test the effectiveness of the method, a mass lump—considered as a linear damage component—has been attached to the surface of the beam, and damage detection based on strain mode shape has been carried out. The results manifest that strain modal parameters can be estimated effectively by utilizing the CMIF based on the corresponding simulations and experiments. Furthermore, damage detection based on strain mode shapes benefits from the accuracy of strain mode shape recognition and the excellent performance of the distributed fiber optics.

  2. Independent Orbiter Assessment (IOA): Analysis of the guidance, navigation, and control subsystem

    NASA Technical Reports Server (NTRS)

    Trahan, W. H.; Odonnell, R. A.; Pietz, K. C.; Hiott, J. M.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) is presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Guidance, Navigation, and Control (GNC) Subsystem hardware are documented. The function of the GNC hardware is to respond to guidance, navigation, and control software commands to effect vehicle control and to provide sensor and controller data to GNC software. Some of the GNC hardware for which failure modes analysis was performed includes: hand controllers; Rudder Pedal Transducer Assembly (RPTA); Speed Brake Thrust Controller (SBTC); Inertial Measurement Unit (IMU); Star Tracker (ST); Crew Optical Alignment Site (COAS); Air Data Transducer Assembly (ADTA); Rate Gyro Assemblies; Accelerometer Assembly (AA); Aerosurface Servo Amplifier (ASA); and Ascent Thrust Vector Control (ATVC). The IOA analysis process utilized available GNC hardware drawings, workbooks, specifications, schematics, and systems briefs for defining hardware assemblies, components, and circuits. Each hardware item was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  3. Independent Orbiter Assessment (IOA): Analysis of the life support and airlock support subsystems

    NASA Technical Reports Server (NTRS)

    Arbet, Jim; Duffy, R.; Barickman, K.; Saiidi, Mo J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Life Support System (LSS) and Airlock Support System (ALSS). Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. The LSS provides for the management of the supply water, collection of metabolic waste, management of waste water, smoke detection, and fire suppression. The ALSS provides water, oxygen, and electricity to support an extravehicular activity in the airlock.

  4. Relaxation mode analysis of a peptide system: comparison with principal component analysis.

    PubMed

    Mitsutake, Ayori; Iijima, Hiromitsu; Takano, Hiroshi

    2011-10-28

    This article reports the first attempt to apply the relaxation mode analysis method to a simulation of a biomolecular system. In biomolecular systems, the principal component analysis is a well-known method for analyzing the static properties of fluctuations of structures obtained by a simulation and classifying the structures into some groups. On the other hand, the relaxation mode analysis has been used to analyze the dynamic properties of homopolymer systems. In this article, a long Monte Carlo simulation of Met-enkephalin in gas phase has been performed. The results are analyzed by the principal component analysis and relaxation mode analysis methods. We compare the results of both methods and show the effectiveness of the relaxation mode analysis.

  5. Waveguides for performing enzymatic reactions

    DOEpatents

    Levene; Michael J. , Korlach; Jonas , Turner; Stephen W. , Craighead; Harold G. , Webb; Watt W.

    2007-11-06

    The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode wave guide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.

  6. [Failure modes and effects analysis in the prescription, validation and dispensing process].

    PubMed

    Delgado Silveira, E; Alvarez Díaz, A; Pérez Menéndez-Conde, C; Serna Pérez, J; Rodríguez Sagrado, M A; Bermejo Vicedo, T

    2012-01-01

    To apply a failure modes and effects analysis to the prescription, validation and dispensing process for hospitalised patients. A work group analysed all of the stages included in the process from prescription to dispensing, identifying the most critical errors and establishing potential failure modes which could produce a mistake. The possible causes, their potential effects, and the existing control systems were analysed to try and stop them from developing. The Hazard Score was calculated, choosing those that were ≥ 8, and a Severity Index = 4 was selected independently of the hazard Score value. Corrective measures and an implementation plan were proposed. A flow diagram that describes the whole process was obtained. A risk analysis was conducted of the chosen critical points, indicating: failure mode, cause, effect, severity, probability, Hazard Score, suggested preventative measure and strategy to achieve so. Failure modes chosen: Prescription on the nurse's form; progress or treatment order (paper); Prescription to incorrect patient; Transcription error by nursing staff and pharmacist; Error preparing the trolley. By applying a failure modes and effects analysis to the prescription, validation and dispensing process, we have been able to identify critical aspects, the stages in which errors may occur and the causes. It has allowed us to analyse the effects on the safety of the process, and establish measures to prevent or reduce them. Copyright © 2010 SEFH. Published by Elsevier Espana. All rights reserved.

  7. Hybrid PD and effective multi-mode positive position feedback control for slewing and vibration suppression of a smart flexible manipulator

    NASA Astrophysics Data System (ADS)

    Lou, Jun-qiang; Wei, Yan-ding; Yang, Yi-ling; Xie, Feng-ran

    2015-03-01

    A hybrid control strategy for slewing and vibration suppression of a smart flexible manipulator is presented in this paper. It consists of a proportional derivative controller to realize motion control, and an effective multi-mode positive position feedback (EMPPF) controller to suppress the multi-mode vibration. Rather than treat each mode equally as the standard multi-mode PPF, the essence of the EMPPF is that control forces of different modes are applied according to the mode parameters of the respective modes, so the vibration modes with less vibration energy receive fewer control forces. Stability conditions for the close loop system are established through stability analysis. Optimal parameters of the EMPPF controller are obtained using the method of root locus analysis. The performance of the proposed strategy is demonstrated by simulation and experiments. Experimental results show that the first two vibration modes of the manipulator are effectively suppressed. The setting time of the setup descends approximately 55%, reaching 3.12 s from 5.67 s.

  8. Independent Orbiter Assessment (IOA): Analysis of the atmospheric revitalization pressure control subsystem

    NASA Technical Reports Server (NTRS)

    Saiidi, M. J.; Duffy, R. E.; Mclaughlin, T. D.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis/Critical Items List (FMEA/CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Atmospheric Revitalization and Pressure Control Subsystem (ARPCS) are documented. The ARPCS hardware was categorized into the following subdivisions: (1) Atmospheric Make-up and Control (including the Auxiliary Oxygen Assembly, Oxygen Assembly, and Nitrogen Assembly); and (2) Atmospheric Vent and Control (including the Positive Relief Vent Assembly, Negative Relief Vent Assembly, and Cabin Vent Assembly). The IOA analysis process utilized available ARPCS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  9. Independent Orbiter Assessment (IOA): Analysis of the mechanical actuation subsystem

    NASA Technical Reports Server (NTRS)

    Bacher, J. L.; Montgomery, A. D.; Bradway, M. W.; Slaughter, W. T.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Mechanical Actuation System (MAS) hardware. Specifically, the MAS hardware consists of the following components: Air Data Probe (ADP); Elevon Seal Panel (ESP); External Tank Umbilical (ETU); Ku-Band Deploy (KBD); Payload Bay Doors (PBD); Payload Bay Radiators (PBR); Personnel Hatches (PH); Vent Door Mechanism (VDM); and Startracker Door Mechanism (SDM). The IOA analysis process utilized available MAS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  10. An Analysis of Mode Effects in the 2010 Course Experience Questionnaire

    ERIC Educational Resources Information Center

    Carroll, David

    2011-01-01

    Historically, responses to the Course Experience Questionnaire (CEQ) were required to be collected by self-administered paper or online questionnaire to be eligible for official analysis. CEQ responses collected by telephone were excluded from the final analysis file to minimise the potential for bias due to mode effects: systematic variation in…

  11. Failure Mode Identification Through Clustering Analysis

    NASA Technical Reports Server (NTRS)

    Arunajadai, Srikesh G.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Research has shown that nearly 80% of the costs and problems are created in product development and that cost and quality are essentially designed into products in the conceptual stage. Currently, failure identification procedures (such as FMEA (Failure Modes and Effects Analysis), FMECA (Failure Modes, Effects and Criticality Analysis) and FTA (Fault Tree Analysis)) and design of experiments are being used for quality control and for the detection of potential failure modes during the detail design stage or post-product launch. Though all of these methods have their own advantages, they do not give information as to what are the predominant failures that a designer should focus on while designing a product. This work uses a functional approach to identify failure modes, which hypothesizes that similarities exist between different failure modes based on the functionality of the product/component. In this paper, a statistical clustering procedure is proposed to retrieve information on the set of predominant failures that a function experiences. The various stages of the methodology are illustrated using a hypothetical design example.

  12. Weighted Fuzzy Risk Priority Number Evaluation of Turbine and Compressor Blades Considering Failure Mode Correlations

    NASA Astrophysics Data System (ADS)

    Gan, Luping; Li, Yan-Feng; Zhu, Shun-Peng; Yang, Yuan-Jian; Huang, Hong-Zhong

    2014-06-01

    Failure mode, effects and criticality analysis (FMECA) and Fault tree analysis (FTA) are powerful tools to evaluate reliability of systems. Although single failure mode issue can be efficiently addressed by traditional FMECA, multiple failure modes and component correlations in complex systems cannot be effectively evaluated. In addition, correlated variables and parameters are often assumed to be precisely known in quantitative analysis. In fact, due to the lack of information, epistemic uncertainty commonly exists in engineering design. To solve these problems, the advantages of FMECA, FTA, fuzzy theory, and Copula theory are integrated into a unified hybrid method called fuzzy probability weighted geometric mean (FPWGM) risk priority number (RPN) method. The epistemic uncertainty of risk variables and parameters are characterized by fuzzy number to obtain fuzzy weighted geometric mean (FWGM) RPN for single failure mode. Multiple failure modes are connected using minimum cut sets (MCS), and Boolean logic is used to combine fuzzy risk priority number (FRPN) of each MCS. Moreover, Copula theory is applied to analyze the correlation of multiple failure modes in order to derive the failure probabilities of each MCS. Compared to the case where dependency among multiple failure modes is not considered, the Copula modeling approach eliminates the error of reliability analysis. Furthermore, for purpose of quantitative analysis, probabilities importance weight from failure probabilities are assigned to FWGM RPN to reassess the risk priority, which generalize the definition of probability weight and FRPN, resulting in a more accurate estimation than that of the traditional models. Finally, a basic fatigue analysis case drawn from turbine and compressor blades in aeroengine is used to demonstrate the effectiveness and robustness of the presented method. The result provides some important insights on fatigue reliability analysis and risk priority assessment of structural system under failure correlations.

  13. Independent Orbiter Assessment (IOA): Analysis of the active thermal control subsystem

    NASA Technical Reports Server (NTRS)

    Sinclair, S. K.; Parkman, W. E.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical (PCIs) items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Active Thermal Control Subsystem (ATCS) are documented. The major purpose of the ATCS is to remove the heat, generated during normal Shuttle operations from the Orbiter systems and subsystems. The four major components of the ATCS contributing to the heat removal are: Freon Coolant Loops; Radiator and Flow Control Assembly; Flash Evaporator System; and Ammonia Boiler System. In order to perform the analysis, the IOA process utilized available ATCS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 310 failure modes analyzed, 101 were determined to be PCIs.

  14. Independent Orbiter Assessment (IOA): Analysis of the hydraulics/water spray boiler subsystem

    NASA Technical Reports Server (NTRS)

    Duval, J. D.; Davidson, W. R.; Parkman, William E.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Orbiter Hydraulics/Water Spray Boiler Subsystem. The hydraulic system provides hydraulic power to gimbal the main engines, actuate the main engine propellant control valves, move the aerodynamic flight control surfaces, lower the landing gear, apply wheel brakes, steer the nosewheel, and dampen the external tank (ET) separation. Each hydraulic system has an associated water spray boiler which is used to cool the hydraulic fluid and APU lubricating oil. The IOA analysis process utilized available HYD/WSB hardware drawings, schematics and documents for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 430 failure modes analyzed, 166 were determined to be PCIs.

  15. Independent Orbiter Assessment (IOA): Analysis of the remote manipulator system

    NASA Technical Reports Server (NTRS)

    Tangorra, F.; Grasmeder, R. F.; Montgomery, A. D.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Remote Manipulator System (RMS) are documented. The RMS hardware and software are primarily required for deploying and/or retrieving up to five payloads during a single mission, capture and retrieve free-flying payloads, and for performing Manipulator Foot Restraint operations. Specifically, the RMS hardware consists of the following components: end effector; displays and controls; manipulator controller interface unit; arm based electronics; and the arm. The IOA analysis process utilized available RMS hardware drawings, schematics and documents for defining hardware assemblies, components and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 574 failure modes analyzed, 413 were determined to be PCIs.

  16. Failure Modes and Effects Analysis (FMEA) Assistant Tool Feasibility Study

    NASA Technical Reports Server (NTRS)

    Flores, Melissa; Malin, Jane T.

    2013-01-01

    An effort to determine the feasibility of a software tool to assist in Failure Modes and Effects Analysis (FMEA) has been completed. This new and unique approach to FMEA uses model based systems engineering concepts to recommend failure modes, causes, and effects to the user after they have made several selections from pick lists about a component s functions and inputs/outputs. Recommendations are made based on a library using common failure modes identified over the course of several major human spaceflight programs. However, the tool could be adapted for use in a wide range of applications from NASA to the energy industry.

  17. Failure Modes and Effects Analysis (FMEA) Assistant Tool Feasibility Study

    NASA Astrophysics Data System (ADS)

    Flores, Melissa D.; Malin, Jane T.; Fleming, Land D.

    2013-09-01

    An effort to determine the feasibility of a software tool to assist in Failure Modes and Effects Analysis (FMEA) has been completed. This new and unique approach to FMEA uses model based systems engineering concepts to recommend failure modes, causes, and effects to the user after they have made several selections from pick lists about a component's functions and inputs/outputs. Recommendations are made based on a library using common failure modes identified over the course of several major human spaceflight programs. However, the tool could be adapted for use in a wide range of applications from NASA to the energy industry.

  18. [Failure mode and effects analysis (FMEA) of insulin in a mother-child university-affiliated health center].

    PubMed

    Berruyer, M; Atkinson, S; Lebel, D; Bussières, J-F

    2016-01-01

    Insulin is a high-alert drug. The main objective of this descriptive cross-sectional study was to evaluate the risks associated with insulin use in healthcare centers. The secondary objective was to propose corrective measures to reduce the main risks associated with the most critical failure modes in the analysis. We conducted a failure mode and effects analysis (FMEA) in obstetrics-gynecology, neonatology and pediatrics. Five multidisciplinary meetings occurred in August 2013. A total of 44 out of 49 failure modes were analyzed. Nine out of 44 (20%) failure modes were deemed critical, with a criticality score ranging from 540 to 720. Following the multidisciplinary meetings, everybody agreed that an FMEA was a useful tool to identify failure modes and their relative importance. This approach identified many corrective measures. This shared experience increased awareness of safety issues with insulin in our mother-child center. This study identified the main failure modes and associated corrective measures. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Failure Modes and Effects Analysis (FMEA): A Bibliography

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Failure modes and effects analysis (FMEA) is a bottom-up analytical process that identifies process hazards, which helps managers understand vulnerabilities of systems, as well as assess and mitigate risk. It is one of several engineering tools and techniques available to program and project managers aimed at increasing the likelihood of safe and successful NASA programs and missions. This bibliography references 465 documents in the NASA STI Database that contain the major concepts, failure modes or failure analysis, in either the basic index of the major subject terms.

  20. Independent Orbiter Assessment (IOA): Analysis of the nose wheel steering subsystem

    NASA Technical Reports Server (NTRS)

    Mediavilla, Anthony Scott

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Nose Wheel Steering (NWS) hardware are documented. The NWS hardware provides primary directional control for the Orbiter vehicle during landing rollout. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. The original NWS design was envisioned as a backup system to differential braking for directional control of the Orbiter during landing rollout. No real effort was made to design the NWS system as fail operational. The brakes have much redundancy built into their design but the poor brake/tire performance has forced the NSTS to upgrade NWS to the primary mode of directional control during rollout. As a result, a large percentage of the NWS system components have become Potential Critical Items (PCI).

  1. Clinical risk analysis with failure mode and effect analysis (FMEA) model in a dialysis unit.

    PubMed

    Bonfant, Giovanna; Belfanti, Pietro; Paternoster, Giuseppe; Gabrielli, Danila; Gaiter, Alberto M; Manes, Massimo; Molino, Andrea; Pellu, Valentina; Ponzetti, Clemente; Farina, Massimo; Nebiolo, Pier E

    2010-01-01

    The aim of clinical risk management is to improve the quality of care provided by health care organizations and to assure patients' safety. Failure mode and effect analysis (FMEA) is a tool employed for clinical risk reduction. We applied FMEA to chronic hemodialysis outpatients. FMEA steps: (i) process study: we recorded phases and activities. (ii) Hazard analysis: we listed activity-related failure modes and their effects; described control measures; assigned severity, occurrence and detection scores for each failure mode and calculated the risk priority numbers (RPNs) by multiplying the 3 scores. Total RPN is calculated by adding single failure mode RPN. (iii) Planning: we performed a RPNs prioritization on a priority matrix taking into account the 3 scores, and we analyzed failure modes causes, made recommendations and planned new control measures. (iv) Monitoring: after failure mode elimination or reduction, we compared the resulting RPN with the previous one. Our failure modes with the highest RPN came from communication and organization problems. Two tools have been created to ameliorate information flow: "dialysis agenda" software and nursing datasheets. We scheduled nephrological examinations, and we changed both medical and nursing organization. Total RPN value decreased from 892 to 815 (8.6%) after reorganization. Employing FMEA, we worked on a few critical activities, and we reduced patients' clinical risk. A priority matrix also takes into account the weight of the control measures: we believe this evaluation is quick, because of simple priority selection, and that it decreases action times.

  2. Effect of heterogeneity and assumed mode of inheritance on lod scores.

    PubMed

    Durner, M; Greenberg, D A

    1992-02-01

    Heterogeneity is a major factor in many common, complex diseases and can confound linkage analysis. Using computer-simulated heterogeneous data we tested what effect unlinked families have on a linkage analysis when heterogeneity is not taken into account. We created 60 data sets of 40 nuclear families each with different proportions of linked and unlinked families and with different modes of inheritance. The ascertainment probability was 0.05, the disease had a penetrance of 0.6, and the recombination fraction for the linked families was zero. For the analysis we used a variety of assumed modes of inheritance and penetrances. Under these conditions we looked at the effect of the unlinked families on the lod score, the evaluation of the mode of inheritance, and the estimate of penetrance and of the recombination fraction in the linked families. 1. When the analysis was done under the correct mode of inheritance for the linked families, we found that the mode of inheritance of the unlinked families had minimal influence on the highest maximum lod score (MMLS) (i.e., we maximized the maximum lod score with respect to penetrance). Adding sporadic families decreased the MMLS less than adding recessive or dominant unlinked families. 2. The mixtures of dominant linked families with unlinked families always led to a higher MMLS when analyzed under the correct (dominant) mode of inheritance than when analyzed under the incorrect mode of inheritance. In the mixtures with recessive linked families, assuming the correct mode of inheritance generally led to a higher MMLS, but we observed broad variation.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Independent Orbiter Assessment (IOA): Analysis of the auxiliary power unit

    NASA Technical Reports Server (NTRS)

    Barnes, J. E.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Auxiliary Power Unit (APU). The APUs are required to provide power to the Orbiter hydraulics systems during ascent and entry flight phases for aerosurface actuation, main engine gimballing, landing gear extension, and other vital functions. For analysis purposes, the APU system was broken down into ten functional subsystems. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. A preponderance of 1/1 criticality items were related to failures that allowed the hydrazine fuel to escape into the Orbiter aft compartment, creating a severe fire hazard, and failures that caused loss of the gas generator injector cooling system.

  4. Independent Orbiter Assessment (IOA): Analysis of the electrical power generation/fuel cell powerplant subsystem

    NASA Technical Reports Server (NTRS)

    Brown, K. L.; Bertsch, P. J.

    1986-01-01

    Results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Generation (EPG)/Fuel Cell Powerplant (FCP) hardware. The EPG/FCP hardware is required for performing functions of electrical power generation and product water distribution in the Orbiter. Specifically, the EPG/FCP hardware consists of the following divisions: (1) Power Section Assembly (PSA); (2) Reactant Control Subsystem (RCS); (3) Thermal Control Subsystem (TCS); and (4) Water Removal Subsystem (WRS). The IOA analysis process utilized available EPG/FCP hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  5. Independent Orbiter Assessment (IOA): Analysis of the orbital maneuvering system

    NASA Technical Reports Server (NTRS)

    Prust, C. D.; Paul, D. J.; Burkemper, V. J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbital Maneuvering System (OMS) hardware are documented. The OMS provides the thrust to perform orbit insertion, orbit circularization, orbit transfer, rendezvous, and deorbit. The OMS is housed in two independent pods located one on each side of the tail and consists of the following subsystems: Helium Pressurization; Propellant Storage and Distribution; Orbital Maneuvering Engine; and Electrical Power Distribution and Control. The IOA analysis process utilized available OMS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluted and analyzed for possible failure modes and effects. Criticality was asigned based upon the severity of the effect for each failure mode.

  6. Independent Orbiter Assessment (IOA): Analysis of the displays and controls subsystem

    NASA Technical Reports Server (NTRS)

    Trahan, W. H.; Prust, E. E.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Displays and Controls (D and C) subsystem hardware. The function of the D and C hardware is to provide the crew with the monitor, command, and control capabilities required for management of all normal and contingency mission and flight operations. The D and C hardware for which failure modes analysis was performed consists of the following: Acceleration Indicator (G-METER); Head Up Display (HUD); Display Driver Unit (DDU); Alpha/Mach Indicator (AMI); Horizontal Situation Indicator (HSI); Attitude Director Indicator (ADI); Propellant Quantity Indicator (PQI); Surface Position Indicator (SPI); Altitude/Vertical Velocity Indicator (AVVI); Caution and Warning Assembly (CWA); Annunciator Control Assembly (ACA); Event Timer (ET); Mission Timer (MT); Interior Lighting; and Exterior Lighting. Each hardware item was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  7. Application of ISO22000 and Failure Mode and Effect Analysis (fmea) for Industrial Processing of Poultry Products

    NASA Astrophysics Data System (ADS)

    Varzakas, Theodoros H.; Arvanitoyannis, Ioannis S.

    Failure Mode and Effect Analysis (FMEA) model has been applied for the risk assessment of poultry slaughtering and manufacturing. In this work comparison of ISO22000 analysis with HACCP is carried out over poultry slaughtering, processing and packaging. Critical Control points and Prerequisite programs (PrPs) have been identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram and fishbone diagram).

  8. Analysis of the hygrothermal effects and parametric study of the edge crack torsion (ECT) mode 3 test layups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; O`Brien, T.K.

    1997-12-31

    A shear deformation theory including residual thermal and moisture effects is developed for the analysis of either symmetric or asymmetric laminates with midplane edge delamination under torsional loading. The theory is based on an assumed displacement field that includes shear deformation. The governing equations and boundary conditions are obtained from the principle of virtual work. The analysis of the [90/({+-}45){sub n}/({+-}45){sub n}/90]{sub s} edge crack torsion (ECT) Mode 3 test layup indicates that thee are no hygrothermal effects on the Mode 3 strain energy release rate because the laminate, and both sublaminates above and below the delamination, are symmetric layups.more » A further parametric study reveals that some other layups can have negligible hygrothermal effects even when the sublaminates above and below the delamination are not symmetric about their own midplanes. However, these layups may suffer from distortion after the curing process. Another interesting set of layups investigated is a class of antisymmetric laminates with [{+-}({theta}/{theta} {minus} 90){sub 2}/{theta}]{sub n} layups. It is observed that when n takes on even numbers (2 and 4), both hygrothermal and Mode 1 effects can be neglected. From this point of view, these layups provide a way to determine the Mode 3 toughness between two dissimilar layers. However, when n takes on odd numbers (1 and 3), both hygrothermal and Mode 1 effects may be strong in these layups. In particular, when {theta} equals 45{degree}, the layups are free from both hygrothermal and Mode 1 effects irrespective of n.« less

  9. Meta-analysis of the role of delivery mode in postpartum depression (Iran 1997-2011)

    PubMed Central

    Bahadoran, Parvin; Oreizi, Hamid Reza; Safari, Saeideh

    2014-01-01

    Background: Postpartum period is the riskiest time for mood disorders and psychosis. Postpartum depression is the most important mood disorder after delivery, which can be accompanied by mother-child and family relationship disorders. Meta-analysis with the integration of research results demonstrates to investigate the association between the mode of delivery and postpartum depression. Materials and Methods: This meta-analysis uses the Rosenthal and Robin approach. For this purpose, 18 studies which were acceptable in terms of methodology were selected and meta-analysis was conducted on them. Research instrument was a checklist of meta-analysis. After summarizing the results of the studies, effect sizes were calculated manually and combined based on meta-analysis method. Results: The findings showed that the amount of effect size (in term of Cohen d) of delivery mode on postpartum depression was 0/30 (P < 0.001). Conclusion: Delivery mode on maternal mental health is assessed medium. Meta analysis also indicates moderator variables role, and researcher must focus in these variables. PMID:25540791

  10. AADL Fault Modeling and Analysis Within an ARP4761 Safety Assessment

    DTIC Science & Technology

    2014-10-01

    Analysis Generator 27 3.2.3 Mapping to OpenFTA Format File 27 3.2.4 Mapping to Generic XML Format 28 3.2.5 AADL and FTA Mapping Rules 28 3.2.6 Issues...PSSA), System Safety Assessment (SSA), Common Cause Analysis (CCA), Fault Tree Analysis ( FTA ), Failure Modes and Effects Analysis (FMEA), Failure...Modes and Effects Summary, Mar - kov Analysis (MA), and Dependence Diagrams (DDs), also referred to as Reliability Block Dia- grams (RBDs). The

  11. Orbiter subsystem hardware/software interaction analysis. Volume 8: Forward reaction control system

    NASA Technical Reports Server (NTRS)

    Becker, D. D.

    1980-01-01

    The results of the orbiter hardware/software interaction analysis for the AFT reaction control system are presented. The interaction between hardware failure modes and software are examined in order to identify associated issues and risks. All orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are discussed.

  12. Application of failure mode and effects analysis to intracranial stereotactic radiation surgery by linear accelerator.

    PubMed

    Masini, Laura; Donis, Laura; Loi, Gianfranco; Mones, Eleonora; Molina, Elisa; Bolchini, Cesare; Krengli, Marco

    2014-01-01

    The aim of this study was to analyze the application of the failure modes and effects analysis (FMEA) to intracranial stereotactic radiation surgery (SRS) by linear accelerator in order to identify the potential failure modes in the process tree and adopt appropriate safety measures to prevent adverse events (AEs) and near-misses, thus improving the process quality. A working group was set up to perform FMEA for intracranial SRS in the framework of a quality assurance program. FMEA was performed in 4 consecutive tasks: (1) creation of a visual map of the process; (2) identification of possible failure modes; (3) assignment of a risk probability number (RPN) to each failure mode based on tabulated scores of severity, frequency of occurrence and detectability; and (4) identification of preventive measures to minimize the risk of occurrence. The whole SRS procedure was subdivided into 73 single steps; 116 total possible failure modes were identified and a score of severity, occurrence, and detectability was assigned to each. Based on these scores, RPN was calculated for each failure mode thus obtaining values from 1 to 180. In our analysis, 112/116 (96.6%) RPN values were <60, 2 (1.7%) between 60 and 125 (63, 70), and 2 (1.7%) >125 (135, 180). The 2 highest RPN scores were assigned to the risk of using the wrong collimator's size and incorrect coordinates on the laser target localizer frame. Failure modes and effects analysis is a simple and practical proactive tool for systematic analysis of risks in radiation therapy. In our experience of SRS, FMEA led to the adoption of major changes in various steps of the SRS procedure.

  13. Geometrically nonlinear analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Dattaguru, B.; Everett, R. A., Jr.; Whitcomb, J. D.; Johnson, W. S.

    1982-01-01

    A geometrically nonlinear finite element analysis of cohesive failure in typical joints is presented. Cracked-lap-shear joints were chosen for analysis. Results obtained from linear and nonlinear analysis show that nonlinear effects, due to large rotations, significantly affect the calculated mode 1, crack opening, and mode 2, inplane shear, strain-energy-release rates. The ratio of the mode 1 to mode 2 strain-energy-relase rates (G1/G2) was found to be strongly affected by he adhesive modulus and the adherend thickness. The ratios between 0.2 and 0.8 can be obtained by varying adherend thickness and using either a single or double cracked-lap-shear specimen configuration. Debond growth rate data, together with the analysis, indicate that mode 1 strain-energy-release rate governs debond growth. Results from the present analysis agree well with experimentally measured joint opening displacements.

  14. Faculty Satisfaction with Distance Education: A Comparative Analysis on Effectiveness of Undergraduate Course Delivery Modes

    ERIC Educational Resources Information Center

    Koenig, Robert J.

    2010-01-01

    Higher education faculty can and do teach courses delivered in a variety of ways. But, to date, little research has been done on the effectiveness of different delivery modes. This study sought to fill that void by comparing the effectiveness of three undergraduate course delivery modes: classroom, online, and video conference at a technical…

  15. Application of failure mode and effect analysis in an assisted reproduction technology laboratory.

    PubMed

    Intra, Giulia; Alteri, Alessandra; Corti, Laura; Rabellotti, Elisa; Papaleo, Enrico; Restelli, Liliana; Biondo, Stefania; Garancini, Maria Paola; Candiani, Massimo; Viganò, Paola

    2016-08-01

    Assisted reproduction technology laboratories have a very high degree of complexity. Mismatches of gametes or embryos can occur, with catastrophic consequences for patients. To minimize the risk of error, a multi-institutional working group applied failure mode and effects analysis (FMEA) to each critical activity/step as a method of risk assessment. This analysis led to the identification of the potential failure modes, together with their causes and effects, using the risk priority number (RPN) scoring system. In total, 11 individual steps and 68 different potential failure modes were identified. The highest ranked failure modes, with an RPN score of 25, encompassed 17 failures and pertained to "patient mismatch" and "biological sample mismatch". The maximum reduction in risk, with RPN reduced from 25 to 5, was mostly related to the introduction of witnessing. The critical failure modes in sample processing were improved by 50% in the RPN by focusing on staff training. Three indicators of FMEA success, based on technical skill, competence and traceability, have been evaluated after FMEA implementation. Witnessing by a second human operator should be introduced in the laboratory to avoid sample mix-ups. These findings confirm that FMEA can effectively reduce errors in assisted reproduction technology laboratories. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  16. Theoretical analysis of a ceramic plate thickness-shear mode piezoelectric transformer.

    PubMed

    Xu, Limei; Zhang, Ying; Fan, Hui; Hu, Junhui; Yang, Jiashi

    2009-03-01

    We perform a theoretical analysis on a ceramic plate piezoelectric transformer operating with thickness-shear modes. Mindlin's first-order theory of piezoelectric plates is employed, and a forced vibration solution is obtained. Transforming ratio, resonant frequencies, and vibration mode shapes are calculated, and the effects of plate thickness and electrode dimension are examined.

  17. Independent Orbiter Assessment (IOA): Analysis of the elevon subsystem

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.; Riccio, J. R.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Orbiter Elevon system hardware. The elevon actuators are located at the trailing edge of the wing surface. The proper function of the elevons is essential during the dynamic flight phases of ascent and entry. In the ascent phase of flight, the elevons are used for relieving high wing loads. For entry, the elevons are used to pitch and roll the vehicle. Specifically, the elevon system hardware comprises the following components: flow cutoff valve; switching valve; electro-hydraulic (EH) servoactuator; secondary delta pressure transducer; bypass valve; power valve; power valve check valve; primary actuator; primary delta pressure transducer; and primary actuator position transducer. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 25 failure modes analyzed, 18 were determined to be PCIs.

  18. A preliminary survey on mode choice and its effect in users’ satisfaction on their journey to the railway station

    NASA Astrophysics Data System (ADS)

    Ali, Nur Fahriza Mohd; Sadullah, Ahmad Farhan Mohd; Zulkiple, Adnan

    2018-04-01

    This paper focuses on two lines of investigation with regard to mode choice to Klang Komuter Station. Firstly, the profile of the access modes on journeys to the railway station is analysed. Secondly, the relationship of users’ mode choice towards overall perception on traveling from home to the railway station is estimated. The data collection was conducted via Revealed Preferences / Stated Preferences (RP/SP) Survey. Meanwhile, the analysis that was implemented in this study was correspondence analysis. This paper discussed more on journey purposes and the effects of distances from home to the railway, users’ trip purposes and travel time between car and bus that was found to have an important effect on the users’ mode choice and their satisfaction on their journey to the railway station. The results show that users were more satisfied to reach the station by car instead of the bus.

  19. Independent Orbiter Assessment (IOA): Analysis of the purge, vent and drain subsystem

    NASA Technical Reports Server (NTRS)

    Bynum, M. C., III

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter PV and D (Purge, Vent and Drain) Subsystem hardware. The PV and D Subsystem controls the environment of unpressurized compartments and window cavities, senses hazardous gases, and purges Orbiter/ET Disconnect. The subsystem is divided into six systems: Purge System (controls the environment of unpressurized structural compartments); Vent System (controls the pressure of unpressurized compartments); Drain System (removes water from unpressurized compartments); Hazardous Gas Detection System (HGDS) (monitors hazardous gas concentrations); Window Cavity Conditioning System (WCCS) (maintains clear windows and provides pressure control of the window cavities); and External Tank/Orbiter Disconnect Purge System (prevents cryo-pumping/icing of disconnect hardware). Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Four of the sixty-two failure modes analyzed were determined as single failures which could result in the loss of crew or vehicle. A possible loss of mission could result if any of twelve single failures occurred. Two of the criticality 1/1 failures are in the Window Cavity Conditioning System (WCCS) outer window cavity, where leakage and/or restricted flow will cause failure to depressurize/repressurize the window cavity. Two criticality 1/1 failures represent leakage and/or restricted flow in the Orbiter/ET disconnect purge network which prevent cryopumping/icing of disconnect hardware. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  20. Independent Orbiter Assessment (IOA): Analysis of the body flap subsystem

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.; Riccio, J. R.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Body Flap (BF) subsystem hardware are documented. The BF is a large aerosurface located at the trailing edge of the lower aft fuselage of the Orbiter. The proper function of the BF is essential during the dynamic flight phases of ascent and entry. During the ascent phase of flight, the BF trails in a fixed position. For entry, the BF provides elevon load relief, trim control, and acts as a heat shield for the main engines. Specifically, the BF hardware comprises the following components: Power Drive Unit (PDU), rotary actuators, and torque tubes. The IOA analysis process utilized available BF hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 35 failure modes analyzed, 19 were determined to be PCIs.

  1. Principal regression analysis and the index leverage effect

    NASA Astrophysics Data System (ADS)

    Reigneron, Pierre-Alain; Allez, Romain; Bouchaud, Jean-Philippe

    2011-09-01

    We revisit the index leverage effect, that can be decomposed into a volatility effect and a correlation effect. We investigate the latter using a matrix regression analysis, that we call ‘Principal Regression Analysis' (PRA) and for which we provide some analytical (using Random Matrix Theory) and numerical benchmarks. We find that downward index trends increase the average correlation between stocks (as measured by the most negative eigenvalue of the conditional correlation matrix), and makes the market mode more uniform. Upward trends, on the other hand, also increase the average correlation between stocks but rotates the corresponding market mode away from uniformity. There are two time scales associated to these effects, a short one on the order of a month (20 trading days), and a longer time scale on the order of a year. We also find indications of a leverage effect for sectorial correlations as well, which reveals itself in the second and third mode of the PRA.

  2. SU-E-T-627: Failure Modes and Effect Analysis for Monthly Quality Assurance of Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, J; Xiao, Y; Wang, J

    2014-06-15

    Purpose: To develop and implement a failure mode and effect analysis (FMEA) on routine monthly Quality Assurance (QA) tests (physical tests part) of linear accelerator. Methods: A systematic failure mode and effect analysis method was performed for monthly QA procedures. A detailed process tree of monthly QA was created and potential failure modes were defined. Each failure mode may have many influencing factors. For each factor, a risk probability number (RPN) was calculated from the product of probability of occurrence (O), the severity of effect (S), and detectability of the failure (D). The RPN scores are in a range ofmore » 1 to 1000, with higher scores indicating stronger correlation to a given influencing factor of a failure mode. Five medical physicists in our institution were responsible to discuss and to define the O, S, D values. Results: 15 possible failure modes were identified and all RPN scores of all influencing factors of these 15 failue modes were from 8 to 150, and the checklist of FMEA in monthly QA was drawn. The system showed consistent and accurate response to erroneous conditions. Conclusion: The influencing factors of RPN greater than 50 were considered as highly-correlated factors of a certain out-oftolerance monthly QA test. FMEA is a fast and flexible tool to develop an implement a quality management (QM) frame work of monthly QA, which improved the QA efficiency of our QA team. The FMEA work may incorporate more quantification and monitoring fuctions in future.« less

  3. Risk Assessment Planning for Airborne Systems: An Information Assurance Failure Mode, Effects and Criticality Analysis Methodology

    DTIC Science & Technology

    2012-06-01

    Visa Investigate Data Breach March 30, 2012 Visa and MasterCard are investigating whether a data security breach at one of the main companies that...30). MasterCard and Visa Investigate Data Breach . New York Times . Stamatis, D. (2003). Failure Mode Effect Analysis: FMEA from Theory to Execution

  4. Independent Orbiter Assessment (IOA): Analysis of the electrical power distribution and control/electrical power generation subsystem

    NASA Technical Reports Server (NTRS)

    Patton, Jeff A.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Distribution and Control (EPD and C)/Electrical Power Generation (EPG) hardware. The EPD and C/EPG hardware is required for performing critical functions of cryogenic reactant storage, electrical power generation and product water distribution in the Orbiter. Specifically, the EPD and C/EPG hardware consists of the following components: Power Section Assembly (PSA); Reactant Control Subsystem (RCS); Thermal Control Subsystem (TCS); Water Removal Subsystem (WRS); and Power Reactant Storage and Distribution System (PRSDS). The IOA analysis process utilized available EPD and C/EPG hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  5. Model-OA wind turbine generator - Failure modes and effects analysis

    NASA Technical Reports Server (NTRS)

    Klein, William E.; Lali, Vincent R.

    1990-01-01

    The results failure modes and effects analysis (FMEA) conducted for wind-turbine generators are presented. The FMEA was performed for the functional modes of each system, subsystem, or component. The single-point failures were eliminated for most of the systems. The blade system was the only exception. The qualitative probability of a blade separating was estimated at level D-remote. Many changes were made to the hardware as a result of this analysis. The most significant change was the addition of the safety system. Operational experience and need to improve machine availability have resulted in subsequent changes to the various systems, which are also reflected in this FMEA.

  6. Analysis of the partially filled viscous ring damper. [application as nutation damper for spinning satellite

    NASA Technical Reports Server (NTRS)

    Alfriend, K. T.

    1973-01-01

    A ring partially filled with a viscous fluid has been analyzed as a nutation damper for a spinning satellite. The fluid has been modelled as a rigid slug of finite length moving in a tube and resisted by a linear viscous force. It is shown that there are two distinct modes of motion, called the spin synchronous mode and the nutation synchronous mode. Time constants for each mode are obtained for both the symmetric and asymmetric satellite. The effects of a stop in the tube and an offset of the ring from the spin axis are also investigated. An analysis of test results is also given including a determination of the effect of gravity on the time constants in the two modes.

  7. Availability Analysis of Dual Mode Systems

    DOT National Transportation Integrated Search

    1974-04-01

    The analytical procedures presented define a method of evaluating the effects of failures in a complex dual-mode system based on a worst case steady-state analysis. The computed result is an availability figure of merit and not an absolute prediction...

  8. Application of Failure Mode and Effect Analysis (FMEA), cause and effect analysis, and Pareto diagram in conjunction with HACCP to a corn curl manufacturing plant.

    PubMed

    Varzakas, Theodoros H; Arvanitoyannis, Ioannis S

    2007-01-01

    The Failure Mode and Effect Analysis (FMEA) model has been applied for the risk assessment of corn curl manufacturing. A tentative approach of FMEA application to the snacks industry was attempted in an effort to exclude the presence of GMOs in the final product. This is of crucial importance both from the ethics and the legislation (Regulations EC 1829/2003; EC 1830/2003; Directive EC 18/2001) point of view. The Preliminary Hazard Analysis and the Fault Tree Analysis were used to analyze and predict the occurring failure modes in a food chain system (corn curls processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points have been identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram, and the fishbone diagram). Finally, Pareto diagrams were employed towards the optimization of GMOs detection potential of FMEA.

  9. Measurement-Based Investigation of Inter- and Intra-Area Effects of Wind Power Plant Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Alicia J.; Singh, Mohit; Muljadi, Eduard

    This paper has a two pronged objective: the first objective is to analyze the general effects of wind power plant (WPP) integration and the resulting displacement of conventional power plant (CPP) inertia on power system stability and the second is to demonstrate the efficacy of PMU data in power system stability analyses, specifically when knowledge of the network is incomplete. Traditionally modal analysis applies small signal stability analysis based on Eigenvalues and the assumption of complete knowledge of the network and all of its components. The analysis presented here differs because it is a measurement-based investigation and employs simulated measurementmore » data. Even if knowledge of the network were incomplete, this methodology would allow for monitoring and analysis of modes. This allows non-utility entities and study of power system stability. To generate inter- and intra-area modes, Kundur's well-known two-area four-generator system is modeled in PSCAD/EMTDC. A doubly-fed induction generator based WPP model, based on the Western Electricity Coordination Council (WECC) standard model, is included to analyze the effects of wind power on system modes. The two-area system and WPP are connected in various configurations with respect to WPP placement, CPP inertia and WPP penetration level. Analysis is performed on the data generated by the simulations. For each simulation run, a different configuration is chosen and a large disturbance is applied. The sampling frequency is set to resemble the sampling frequency at which data is available from phasor measurement units (PMUs). The estimate of power spectral density of these signals is made using the Yule-Walker algorithm. The resulting analysis shows that the presence of a WPP does not, of itself, lead to the introduction of new modes. The analysis also shows however that displacement of inertia may lead to introduction of new modes. The effects of location of inertia displacement (i.e. the effects on modes if WPP integration leads to displacement of inertia in its own region or in another region) and of WPP controls such as droop control and synthetic inertia are also examined. In future work, the methods presented here will be applied to real-world phasor data to examine the effects of integration of variable generation and displacement of CPP inertia on inter- and intra-area modes.« less

  10. Effective representation of amide III, II, I, and A modes on local vibrational modes: Analysis of ab initio quantum calculation results.

    PubMed

    Hahn, Seungsoo

    2016-10-28

    The Hamiltonian matrix for the first excited vibrational states of a protein can be effectively represented by local vibrational modes constituting amide III, II, I, and A modes to simulate various vibrational spectra. Methods for obtaining the Hamiltonian matrix from ab initio quantum calculation results are discussed, where the methods consist of three steps: selection of local vibrational mode coordinates, calculation of a reduced Hessian matrix, and extraction of the Hamiltonian matrix from the Hessian matrix. We introduce several methods for each step. The methods were assessed based on the density functional theory calculation results of 24 oligopeptides with four different peptide lengths and six different secondary structures. The completeness of a Hamiltonian matrix represented in the reduced local mode space is improved by adopting a specific atom group for each amide mode and reducing the effect of ignored local modes. The calculation results are also compared to previous models using C=O stretching vibration and transition dipole couplings. We found that local electric transition dipole moments of the amide modes are mainly bound on the local peptide planes. Their direction and magnitude are well conserved except amide A modes, which show large variation. Contrary to amide I modes, the vibrational coupling constants of amide III, II, and A modes obtained by analysis of a dipeptide are not transferable to oligopeptides with the same secondary conformation because coupling constants are affected by the surrounding atomic environment.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheong, S-K; Kim, J

    Purpose: The aim of the study is the application of a Failure Modes and Effects Analysis (FMEA) to access the risks for patients undergoing a Low Dose Rate (LDR) Prostate Brachytherapy Treatment. Methods: FMEA was applied to identify all the sub processes involved in the stages of identifying patient, source handling, treatment preparation, treatment delivery, and post treatment. These processes characterize the radiation treatment associated with LDR Prostate Brachytherapy. The potential failure modes together with their causes and effects were identified and ranked in order of their importance. Three indexes were assigned for each failure mode: the occurrence rating (O),more » the severity rating (S), and the detection rating (D). A ten-point scale was used to score each category, ten being the number indicating most severe, most frequent, and least detectable failure mode, respectively. The risk probability number (RPN) was calculated as a product of the three attributes: RPN = O X S x D. The analysis was carried out by a working group (WG) at UPMC. Results: The total of 56 failure modes were identified including 32 modes before the treatment, 13 modes during the treatment, and 11 modes after the treatment. In addition to the protocols already adopted in the clinical practice, the prioritized risk management will be implanted to the high risk procedures on the basis of RPN score. Conclusion: The effectiveness of the FMEA method was established. The FMEA methodology provides a structured and detailed assessment method for the risk analysis of the LDR Prostate Brachytherapy Procedure and can be applied to other radiation treatment modes.« less

  12. [Failure mode effect analysis applied to preparation of intravenous cytostatics].

    PubMed

    Santos-Rubio, M D; Marín-Gil, R; Muñoz-de la Corte, R; Velázquez-López, M D; Gil-Navarro, M V; Bautista-Paloma, F J

    2016-01-01

    To proactively identify risks in the preparation of intravenous cytostatic drugs, and to prioritise and establish measures to improve safety procedures. Failure Mode Effect Analysis methodology was used. A multidisciplinary team identified potential failure modes of the procedure through a brainstorming session. The impact associated with each failure mode was assessed with the Risk Priority Number (RPN), which involves three variables: occurrence, severity, and detectability. Improvement measures were established for all identified failure modes, with those with RPN>100 considered critical. The final RPN (theoretical) that would result from the proposed measures was also calculated and the process was redesigned. A total of 34 failure modes were identified. The initial accumulated RPN was 3022 (range: 3-252), and after recommended actions the final RPN was 1292 (range: 3-189). RPN scores >100 were obtained in 13 failure modes; only the dispensing sub-process was free of critical points (RPN>100). A final reduction of RPN>50% was achieved in 9 failure modes. This prospective risk analysis methodology allows the weaknesses of the procedure to be prioritised, optimize use of resources, and a substantial improvement in the safety of the preparation of cytostatic drugs through the introduction of double checking and intermediate product labelling. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.

  13. SU-F-T-246: Evaluation of Healthcare Failure Mode And Effect Analysis For Risk Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harry, T; University of California, San Diego, La Jolla, CA; Manger, R

    Purpose: To evaluate the differences between the Veteran Affairs Healthcare Failure Modes and Effect Analysis (HFMEA) and the AAPM Task Group 100 Failure and Effect Analysis (FMEA) risk assessment techniques in the setting of a stereotactic radiosurgery (SRS) procedure were compared respectively. Understanding the differences in the techniques methodologies and outcomes will provide further insight into the applicability and utility of risk assessments exercises in radiation therapy. Methods: HFMEA risk assessment analysis was performed on a stereotactic radiosurgery procedure. A previous study from our institution completed a FMEA of our SRS procedure and the process map generated from this workmore » was used for the HFMEA. The process of performing the HFMEA scoring was analyzed, and the results from both analyses were compared. Results: The key differences between the two risk assessments are the scoring criteria for failure modes and identifying critical failure modes for potential hazards. The general consensus among the team performing the analyses was that scoring for the HFMEA was simpler and more intuitive then the FMEA. The FMEA identified 25 critical failure modes while the HFMEA identified 39. Seven of the FMEA critical failure modes were not identified by the HFMEA and 21 of the HFMEA critical failure modes were not identified by the FMEA. HFMEA as described by the Veteran Affairs provides guidelines on which failure modes to address first. Conclusion: HFMEA is a more efficient model for identifying gross risks in a process than FMEA. Clinics with minimal staff, time and resources can benefit from this type of risk assessment to eliminate or mitigate high risk hazards with nominal effort. FMEA can provide more in depth details but at the cost of elevated effort.« less

  14. A NASTRAN primer for the analysis of rotating flexible blades

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Aiello, Robert A.; Ernst, Michael A.; Mcgee, Oliver G.

    1987-01-01

    This primer provides documentation for using MSC NASTRAN in analyzing rotating flexible blades. The analysis of these blades includes geometrically nonlinear (large displacement) analysis under centrifugal loading, and frequency and mode shape (normal modes) determination. The geometrically nonlinear analysis using NASTRAN Solution sequence 64 is discussed along with the determination of frequencies and mode shapes using Solution Sequence 63. A sample problem with the complete NASTRAN input data is included. Items unique to rotating blade analyses, such as setting angle and centrifugal softening effects are emphasized.

  15. Effects of Crimped Fiber Paths on Mixed Mode Delamination Behaviors in Woven Fabric Composites

    DTIC Science & Technology

    2016-09-01

    continuum finite - element models. Three variations of a plain-woven fabric architecture—each of which had different crimped fiber paths—were considered... Finite - Element Analysis Fracture Mechanics Fracture Toughness Mixed Modes Strain Energy Release Rate 16. SECURITY...polymer FB Fully balanced laminate FEA Finite - element analysis FTCM Fracture toughness conversion mechanism G Shear modulus GI, GII, GIII Mode

  16. Independent Orbiter Assessment (IOA): Analysis of the manned maneuvering unit

    NASA Technical Reports Server (NTRS)

    Bailey, P. S.

    1986-01-01

    Results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve indepedence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Manned Maneuvering Unit (MMU) hardware. The MMU is a propulsive backpack, operated through separate hand controllers that input the pilot's translational and rotational maneuvering commands to the control electronics and then to the thrusters. The IOA analysis process utilized available MMU hardware drawings and schematics for defining hardware subsystems, assemblies, components, and hardware items. Final levels of detail were evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the worst case severity of the effect for each identified failure mode. The IOA analysis of the MMU found that the majority of the PCIs identified are resultant from the loss of either the propulsion or control functions, or are resultant from inability to perform an immediate or future mission. The five most severe criticalities identified are all resultant from failures imposed on the MMU hand controllers which have no redundancy within the MMU.

  17. Electrostatic waves driven by electron beam in lunar wake plasma

    NASA Astrophysics Data System (ADS)

    Sreeraj, T.; Singh, S. V.; Lakhina, G. S.

    2018-05-01

    A linear analysis of electrostatic waves propagating parallel to the ambient field in a four component homogeneous, collisionless, magnetised plasma comprising fluid protons, fluid He++, electron beam, and suprathermal electrons following kappa distribution is presented. In the absence of electron beam streaming, numerical analysis of the dispersion relation shows six modes: two electron acoustic modes (modes 1 and 6), two fast ion acoustic modes (modes 2 and 5), and two slow ion acoustic modes (modes 3 and 4). The modes 1, 2 and 3 and modes 4, 5, and 6 have positive and negative phase speeds, respectively. With an increase in electron beam speed, the mode 6 gets affected the most and the phase speed turns positive from negative. The mode 6 thus starts to merge with modes 2 and 3 and generates the electron beam driven fast and slow ion acoustic waves unstable with a finite growth. The electron beam driven slow ion-acoustic waves occur at lower wavenumbers, whereas fast ion-acoustic waves occur at a large value of wavenumbers. The effect of various other parameters has also been studied. We have applied this analysis to the electrostatic waves observed in lunar wake during the first flyby of the ARTEMIS mission. The analysis shows that the low (high) frequency waves observed in the lunar wake could be the electron beam driven slow (fast) ion-acoustic modes.

  18. Analysis of self-homodyne detection for 6-mode fiber with low-modal crosstalk

    NASA Astrophysics Data System (ADS)

    Guo, Meng; Hu, Guijun

    2017-12-01

    In this paper, we present an appropriate analysis on self-homodyne coherent system with 56 × 5 × 3 Gb / s WDM-PDM-MDM quadrature phase-shift keying (QPSK) signals using 6-mode weakly coupled few mode fiber. The mode division technology can effectively improve the spectral efficiency (SE) of self-homodyne detection. Of all the LP modes, LP01 mode is used to transmit the pilot tone (PT), while the others for signal channels. The influence of inter-mode crosstalk is analyzed. The proposed frequency domain MMA shows a better BER performance for intra-mode crosstalk elimination. The path-length misalignment's influence caused by mode differential group delay (MDGD) is also investigated. The system tolerance for different laser's line-width is compared as well as the influence of PT filter's bandwidth.

  19. Independent Orbiter Assessment (IOA): Analysis of the orbiter main propulsion system

    NASA Technical Reports Server (NTRS)

    Mcnicoll, W. J.; Mcneely, M.; Holden, K. A.; Emmons, T. E.; Lowery, H. J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Main Propulsion System (MPS) hardware are documented. The Orbiter MPS consists of two subsystems: the Propellant Management Subsystem (PMS) and the Helium Subsystem. The PMS is a system of manifolds, distribution lines and valves by which the liquid propellants pass from the External Tank (ET) to the Space Shuttle Main Engines (SSMEs) and gaseous propellants pass from the SSMEs to the ET. The Helium Subsystem consists of a series of helium supply tanks and their associated regulators, check valves, distribution lines, and control valves. The Helium Subsystem supplies helium that is used within the SSMEs for inflight purges and provides pressure for actuation of SSME valves during emergency pneumatic shutdowns. The balance of the helium is used to provide pressure to operate the pneumatically actuated valves within the PMS. Each component was evaluated and analyzed for possible failure modes and effects. Criticalities were assigned based on the worst possible effect of each failure mode. Of the 690 failure modes analyzed, 349 were determined to be PCIs.

  20. Effects of Modes, Obesity, and Body Position on Non-invasive Positive Pressure Ventilation Success in the Intensive Care Unit: A Randomized Controlled Study.

    PubMed

    Türk, Murat; Aydoğdu, Müge; Gürsel, Gül

    2018-01-01

    Different outcomes and success rates of non-invasive positive pressure ventilation (NPPV) in patients with acute hypercapnic respiratory failure (AHRF) still pose a significant problem in intensive care units. Previous studies investigating different modes, body positioning, and obesity-associated hypoventilation in patients with chronic respiratory failure showed that these factors may affect ventilator mechanics to achieve a better minute ventilation. This study tried to compare pressure support (BiPAP-S) and average volume targeted pressure support (AVAPS-S) modes in patients with acute or acute-on-chronic hypercapnic respiratory failure. In addition, short-term effects of body position and obesity within both modes were analyzed. We conducted a randomized controlled study in a 7-bed intensive care unit. The course of blood gas analysis and differences in ventilation variables were compared between BiPAP-S (n=33) and AVAPS-S (n=29), and between semi-recumbent and lateral positions in both modes. No difference was found in the length of hospital stay and the course of PaCO2, pH, and HCO3 levels between the modes. There was a mean reduction of 5.7±4.1 mmHg in the PaCO2 levels in the AVAPS-S mode, and 2.7±2.3 mmHg in the BiPAP-S mode per session (p<0.05). Obesity didn't have any effect on the course of PaCO2 in both the modes. Body positioning had no notable effect in both modes. Although the decrease in the PaCO2 levels in the AVAPS-S mode per session was remarkably high, the course was similar in both modes. Furthermore, obesity and body positioning had no prominent effect on the PaCO2 response and ventilator mechanics. Post hoc power analysis showed that the sample size was not adequate to detect a significant difference between the modes.

  1. Independent Orbiter Assessment (IOA): Analysis of the DPS subsystem

    NASA Technical Reports Server (NTRS)

    Lowery, H. J.; Haufler, W. A.; Pietz, K. C.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis/Critical Items List (FMEA/CIL) is presented. The IOA approach features a top-down analysis of the hardware to independently determine failure modes, criticality, and potential critical items. The independent analysis results corresponding to the Orbiter Data Processing System (DPS) hardware are documented. The DPS hardware is required for performing critical functions of data acquisition, data manipulation, data display, and data transfer throughout the Orbiter. Specifically, the DPS hardware consists of the following components: Multiplexer/Demultiplexer (MDM); General Purpose Computer (GPC); Multifunction CRT Display System (MCDS); Data Buses and Data Bus Couplers (DBC); Data Bus Isolation Amplifiers (DBIA); Mass Memory Unit (MMU); and Engine Interface Unit (EIU). The IOA analysis process utilized available DPS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Due to the extensive redundancy built into the DPS the number of critical items are few. Those identified resulted from premature operation and erroneous output of the GPCs.

  2. Failure mode and effects analysis drastically reduced potential risks in clinical trial conduct.

    PubMed

    Lee, Howard; Lee, Heechan; Baik, Jungmi; Kim, Hyunjung; Kim, Rachel

    2017-01-01

    Failure mode and effects analysis (FMEA) is a risk management tool to proactively identify and assess the causes and effects of potential failures in a system, thereby preventing them from happening. The objective of this study was to evaluate effectiveness of FMEA applied to an academic clinical trial center in a tertiary care setting. A multidisciplinary FMEA focus group at the Seoul National University Hospital Clinical Trials Center selected 6 core clinical trial processes, for which potential failure modes were identified and their risk priority number (RPN) was assessed. Remedial action plans for high-risk failure modes (RPN >160) were devised and a follow-up RPN scoring was conducted a year later. A total of 114 failure modes were identified with an RPN score ranging 3-378, which was mainly driven by the severity score. Fourteen failure modes were of high risk, 11 of which were addressed by remedial actions. Rescoring showed a dramatic improvement attributed to reduction in the occurrence and detection scores by >3 and >2 points, respectively. FMEA is a powerful tool to improve quality in clinical trials. The Seoul National University Hospital Clinical Trials Center is expanding its FMEA capability to other core clinical trial processes.

  3. Effective electron mass and phonon modes in n-type hexagonal InN

    NASA Astrophysics Data System (ADS)

    Kasic, A.; Schubert, M.; Saito, Y.; Nanishi, Y.; Wagner, G.

    2002-03-01

    Infrared spectroscopic ellipsometry and micro-Raman scattering are used to study vibrational and electronic properties of high-quality hexagonal InN. The 0.22-μm-thick highly n-conductive InN film was grown on c-plane sapphire by radio-frequency molecular-beam epitaxy. Combining our results from the ellipsometry data analysis with Hall-effect measurements, the isotropically averaged effective electron mass in InN is determined as 0.14m0. The resonantly excited zone center E1 (TO) phonon mode is observed at 477 cm-1 in the ellipsometry spectra. Despite the high electron concentration in the film, a strong Raman mode occurs in the spectral range of the unscreened A1(LO) phonon. Because an extended carrier-depleted region at the sample surface can be excluded from the ellipsometry-model analysis, we assign this mode to the lower branch of the large-wave-vector LO-phonon-plasmon coupled modes arising from nonconserving wave-vector scattering processes. The spectral position of this mode at 590 cm-1 constitutes a lower limit for the unscreened A1(LO) phonon frequency.

  4. Failure mode and effects analysis using intuitionistic fuzzy hybrid weighted Euclidean distance operator

    NASA Astrophysics Data System (ADS)

    Liu, Hu-Chen; Liu, Long; Li, Ping

    2014-10-01

    Failure mode and effects analysis (FMEA) has shown its effectiveness in examining potential failures in products, process, designs or services and has been extensively used for safety and reliability analysis in a wide range of industries. However, its approach to prioritise failure modes through a crisp risk priority number (RPN) has been criticised as having several shortcomings. The aim of this paper is to develop an efficient and comprehensive risk assessment methodology using intuitionistic fuzzy hybrid weighted Euclidean distance (IFHWED) operator to overcome the limitations and improve the effectiveness of the traditional FMEA. The diversified and uncertain assessments given by FMEA team members are treated as linguistic terms expressed in intuitionistic fuzzy numbers (IFNs). Intuitionistic fuzzy weighted averaging (IFWA) operator is used to aggregate the FMEA team members' individual assessments into a group assessment. IFHWED operator is applied thereafter to the prioritisation and selection of failure modes. Particularly, both subjective and objective weights of risk factors are considered during the risk evaluation process. A numerical example for risk assessment is given to illustrate the proposed method finally.

  5. Analysis of Vibration and Noise of Construction Machinery Based on Ensemble Empirical Mode Decomposition and Spectral Correlation Analysis Method

    NASA Astrophysics Data System (ADS)

    Chen, Yuebiao; Zhou, Yiqi; Yu, Gang; Lu, Dan

    In order to analyze the effect of engine vibration on cab noise of construction machinery in multi-frequency bands, a new method based on ensemble empirical mode decomposition (EEMD) and spectral correlation analysis is proposed. Firstly, the intrinsic mode functions (IMFs) of vibration and noise signals were obtained by EEMD method, and then the IMFs which have the same frequency bands were selected. Secondly, we calculated the spectral correlation coefficients between the selected IMFs, getting the main frequency bands in which engine vibration has significant impact on cab noise. Thirdly, the dominated frequencies were picked out and analyzed by spectral analysis method. The study result shows that the main frequency bands and dominated frequencies in which engine vibration have serious impact on cab noise can be identified effectively by the proposed method, which provides effective guidance to noise reduction of construction machinery.

  6. Design and analysis of large-core single-mode windmill single crystal sapphire optical fiber

    DOE PAGES

    Cheng, Yujie; Hill, Cary; Liu, Bo; ...

    2016-06-01

    We present a large-core single-mode “windmill” single crystal sapphire optical fiber (SCSF) design, which exhibits single-mode operation by stripping off the higher-order modes (HOMs) while maintaining the fundamental mode. The “windmill” SCSF design was analyzed using the finite element analysis method, in which all the HOMs are leaky. The numerical simulation results show single-mode operation in the spectral range from 0.4 to 2 μm in the windmill SCSF, with an effective core diameter as large as 14 μm. Such fiber is expected to improve the performance of many of the current sapphire fiber optic sensor structures.

  7. The effects of solvent on the conformation and the collective motions of protein: Normal mode analysis and molecular dynamics simulations of melittin in water and in vacuum

    NASA Astrophysics Data System (ADS)

    Kitao, Akio; Hirata, Fumio; Gō, Nobuhiro

    1991-12-01

    The effects of solvent on the conformation and dynamics of protein is studied by computer simulation. The dynamics is studied by focusing mainly on collective motions of the protein molecule. Three types of simulation, normal mode analysis, molecular dynamics in vacuum, and molecular dynamics in water are applied to melittin, the major component of bee venom. To define collective motions principal, component analysis as well as normal mode analysis has been carried out. The principal components with large fluctuation amplitudes have a very good correspondence with the low-frequency normal modes. Trajectories of the molecular dynamics simulation are projected onto the principal axes. From the projected motions time correlation functions are calculated. The results indicate that the very-low-frequency modes, whose frequencies are less than ≈ 50 cm -1, are overdamping in water with relaxation times roushly twice as long as the period of the oscillatory motion. Effective Langevin mode analysis is carried out by using the friction coefficient matrix determined from the velocity correlation function calculated from the molecular dynamics trajectory in water. This analysis reproduces the results of the simulation in water reasonably well. The presence of the solvent water is found also to affect the shape of the potential energy surface in such a way that it produces many local minima with low-energy barriers in between, the envelope of which is given by the surface in vacuum. Inter-minimum transitions endow the conformational dynamics of proteins in water another diffusive character, which already exists in the intra-minimum collective motions.

  8. Independent Orbiter Assessment (IOA): Analysis of the electrical power distribution and control/remote manipulator system subsystem

    NASA Technical Reports Server (NTRS)

    Robinson, W. W.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the Electrical Power Distribution and Control (EPD and C)/Remote Manipulator System (RMS) hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained in the NASA FMEA/CIL documentation. This report documents the results of the independent analysis of the EPD and C/RMS (both port and starboard) hardware. The EPD and C/RMS subsystem hardware provides the electrical power and power control circuitry required to safely deploy, operate, control, and stow or guillotine and jettison two (one port and one starboard) RMSs. The EPD and C/RMS subsystem is subdivided into the four following functional divisions: Remote Manipulator Arm; Manipulator Deploy Control; Manipulator Latch Control; Manipulator Arm Shoulder Jettison; and Retention Arm Jettison. The IOA analysis process utilized available EPD and C/RMS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based on the severity of the effect for each failure mode.

  9. Meteorological Satellites (METSAT) and Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Failure Modes and Effects Analysis (FMEA) is for the Advanced Microwave Sounding Unit-A (AMSU-A) instruments that are being designed and manufactured for the Meteorological Satellites Project (METSAT) and the Earth Observing System (EOS) integrated programs. The FMEA analyzes the design of the METSAT and EOS instruments as they currently exist. This FMEA is intended to identify METSAT and EOS failure modes and their effect on spacecraft-instrument and instrument-component interfaces. The prime objective of this FMEA is to identify potential catastrophic and critical failures so that susceptibility to the failures and their effects can be eliminated from the METSAT/EOS instruments.

  10. Effect of density gradients in confined supersonic shear layers, part 1

    NASA Astrophysics Data System (ADS)

    Peroomian, Oshin; Kelly, R. E.

    1994-11-01

    The effect of density gradients on the supersonic wall modes (acoustic modes) of a 2-D confined compressible shear layer were investigated using linear analysis. Due to the inadequacies of the hyperbolic tangent profile, the boundary layer basic profiles were used. First a test case was taken with the same parameters as in Tam and Hu's analysis with convective Mach number M(sub c) = 1.836 and density ratio of 1.398. Three generalized inflection points were found giving rise to three modes. The first two show similar properties to the Class A and B modes, and the third is an 'inner mode' which will be called a Class C mode. As the density ratio is increased, the smallest of the three neutral phase speeds tends towards the speed of the lower velocity stream, and the other two eventually coalesce and then disappear. These two effects lead to a linear resonance between the Class B modes which increases the cutoff frequency and growth rate of the lowest mode. In fact, growth rates of 2-4 times the test case were found as the density ratio was increased to 7. A similar trend is observed for the Class A modes when the density ratio is decreased from the test case, but the growth rate is not changed by much from the test case.

  11. Life Cycle Costing: A Working Level Approach

    DTIC Science & Technology

    1981-06-01

    Effects Analysis ( FMEA ) ...... ................ .. 59 Logistics Performance Factors (LPFs) 60 Planning the Use of Life Cycle Cost in the Demonstration...form. Failure Mode and Effects Analysis ( FMEA ). Description. FMEA is a technique that attempts to improve the design of any particular unit. The FMEA ...failure modes and also eliminate extra parts or ones that are used to achieve more performance than is necessary (16:5-14]. Advantages. FMEA forces

  12. Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis.

    PubMed

    Tao, Yunwen; Tian, Chuan; Verma, Niraj; Zou, Wenli; Wang, Chao; Cremer, Dieter; Kraka, Elfi

    2018-05-08

    Normal vibrational modes are generally delocalized over the molecular system, which makes it difficult to assign certain vibrations to specific fragments or functional groups. We introduce a new approach, the Generalized Subsystem Vibrational Analysis (GSVA), to extract the intrinsic fragmental vibrations of any fragment/subsystem from the whole system via the evaluation of the corresponding effective Hessian matrix. The retention of the curvature information with regard to the potential energy surface for the effective Hessian matrix endows our approach with a concrete physical basis and enables the normal vibrational modes of different molecular systems to be legitimately comparable. Furthermore, the intrinsic fragmental vibrations act as a new link between the Konkoli-Cremer local vibrational modes and the normal vibrational modes.

  13. Data analysis using a combination of independent component analysis and empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Lin; Tung, Pi-Cheng; Huang, Norden E.

    2009-06-01

    A combination of independent component analysis and empirical mode decomposition (ICA-EMD) is proposed in this paper to analyze low signal-to-noise ratio data. The advantages of ICA-EMD combination are these: ICA needs few sensory clues to separate the original source from unwanted noise and EMD can effectively separate the data into its constituting parts. The case studies reported here involve original sources contaminated by white Gaussian noise. The simulation results show that the ICA-EMD combination is an effective data analysis tool.

  14. EVALUATION OF SAFETY IN A RADIATION ONCOLOGY SETTING USING FAILURE MODE AND EFFECTS ANALYSIS

    PubMed Central

    Ford, Eric C.; Gaudette, Ray; Myers, Lee; Vanderver, Bruce; Engineer, Lilly; Zellars, Richard; Song, Danny Y.; Wong, John; DeWeese, Theodore L.

    2013-01-01

    Purpose Failure mode and effects analysis (FMEA) is a widely used tool for prospectively evaluating safety and reliability. We report our experiences in applying FMEA in the setting of radiation oncology. Methods and Materials We performed an FMEA analysis for our external beam radiation therapy service, which consisted of the following tasks: (1) create a visual map of the process, (2) identify possible failure modes; assign risk probability numbers (RPN) to each failure mode based on tabulated scores for the severity, frequency of occurrence, and detectability, each on a scale of 1 to 10; and (3) identify improvements that are both feasible and effective. The RPN scores can span a range of 1 to 1000, with higher scores indicating the relative importance of a given failure mode. Results Our process map consisted of 269 different nodes. We identified 127 possible failure modes with RPN scores ranging from 2 to 160. Fifteen of the top-ranked failure modes were considered for process improvements, representing RPN scores of 75 and more. These specific improvement suggestions were incorporated into our practice with a review and implementation by each department team responsible for the process. Conclusions The FMEA technique provides a systematic method for finding vulnerabilities in a process before they result in an error. The FMEA framework can naturally incorporate further quantification and monitoring. A general-use system for incident and near miss reporting would be useful in this regard. PMID:19409731

  15. Failure mode and effect analysis in blood transfusion: a proactive tool to reduce risks.

    PubMed

    Lu, Yao; Teng, Fang; Zhou, Jie; Wen, Aiqing; Bi, Yutian

    2013-12-01

    The aim of blood transfusion risk management is to improve the quality of blood products and to assure patient safety. We utilize failure mode and effect analysis (FMEA), a tool employed for evaluating risks and identifying preventive measures to reduce the risks in blood transfusion. The failure modes and effects occurring throughout the whole process of blood transfusion were studied. Each failure mode was evaluated using three scores: severity of effect (S), likelihood of occurrence (O), and probability of detection (D). Risk priority numbers (RPNs) were calculated by multiplying the S, O, and D scores. The plan-do-check-act cycle was also used for continuous improvement. Analysis has showed that failure modes with the highest RPNs, and therefore the greatest risk, were insufficient preoperative assessment of the blood product requirement (RPN, 245), preparation time before infusion of more than 30 minutes (RPN, 240), blood transfusion reaction occurring during the transfusion process (RPN, 224), blood plasma abuse (RPN, 180), and insufficient and/or incorrect clinical information on request form (RPN, 126). After implementation of preventative measures and reassessment, a reduction in RPN was detected with each risk. The failure mode with the second highest RPN, namely, preparation time before infusion of more than 30 minutes, was shown in detail to prove the efficiency of this tool. FMEA evaluation model is a useful tool in proactively analyzing and reducing the risks associated with the blood transfusion procedure. © 2013 American Association of Blood Banks.

  16. Post-buckling of a pressured biopolymer spherical shell with the mode interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ru, C. Q.

    2018-03-01

    Imperfection sensitivity is essential for mechanical behaviour of biopolymer shells characterized by high geometric heterogeneity. The present work studies initial post-buckling and imperfection sensitivity of a pressured biopolymer spherical shell based on non-axisymmetric buckling modes and associated mode interaction. Our results indicate that for biopolymer spherical shells with moderate radius-to-thickness ratio (say, less than 30) and smaller effective bending thickness (say, less than 0.2 times average shell thickness), the imperfection sensitivity predicted based on the axisymmetric mode without the mode interaction is close to the present results based on non-axisymmetric modes with the mode interaction with a small (typically, less than 10%) relative errors. However, for biopolymer spherical shells with larger effective bending thickness, the maximum load an imperfect shell can sustain predicted by the present non-axisymmetric analysis can be significantly (typically, around 30%) lower than those predicted based on the axisymmetric mode without the mode interaction. In such cases, a more accurate non-axisymmetric analysis with the mode interaction, as given in the present work, is required for imperfection sensitivity of pressured buckling of biopolymer spherical shells. Finally, the implications of the present study to two specific types of biopolymer spherical shells (viral capsids and ultrasound contrast agents) are discussed.

  17. Analytical investigation of the hygrothermal effects and parametric study of the Edge Crack Torsion (ECT) mode 3 test lay-ups

    NASA Technical Reports Server (NTRS)

    Li, Jian; Obrien, T. Kevin

    1995-01-01

    A shear deformation theory including residual thermal and moisture effects is developed for the analysis of either symmetric or unsymmetric laminates with mid-plane edge delamination under torsion loading. The theory is based on an assumed displacement field which includes shear deformation. The governing equations and boundary conditions are obtained from the principle of virtual work. The analysis of the (90/(+/- 45)(n)/(-/+ 45)(n)/90)(s) ECT mode 3 test lay-up indicates that there are no hygrothermal effects on the mode 3 strain energy release rate because the laminate, and both sublaminates above and below the delamination, are symmetric lay-ups. A further parametric study reveals that some other lay-ups can have negligible hygrothermal effects even when the sublaminates above and below the delamination are not symmetric about their own mid-planes. However, these lay-ups may suffer from distortion after the curing process. Another Interesting set of lay-ups investigated is a class of antisymmetric laminates with (+/-(theta/(theta -90)(2)/theta))(n) lay-ups. It is observed that when n takes on even numbers (2 and 4), both hygrothermal and mode 1 effects can be neglected. From this point of view, these lay-ups provide a way to determine the mode 3 toughness between two dissimilar layers. However, when n takes on odd numbers (1 and 3), both hygrothermal and mode 1 effects may be strong in these lay-ups. In particular, when theta equals 45 deg, the lay-ups are free from both hygrothermal and mode 1 effects irrespective of n.

  18. Extended Testability Analysis Tool

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin; Maul, William A.; Fulton, Christopher

    2012-01-01

    The Extended Testability Analysis (ETA) Tool is a software application that supports fault management (FM) by performing testability analyses on the fault propagation model of a given system. Fault management includes the prevention of faults through robust design margins and quality assurance methods, or the mitigation of system failures. Fault management requires an understanding of the system design and operation, potential failure mechanisms within the system, and the propagation of those potential failures through the system. The purpose of the ETA Tool software is to process the testability analysis results from a commercial software program called TEAMS Designer in order to provide a detailed set of diagnostic assessment reports. The ETA Tool is a command-line process with several user-selectable report output options. The ETA Tool also extends the COTS testability analysis and enables variation studies with sensor sensitivity impacts on system diagnostics and component isolation using a single testability output. The ETA Tool can also provide extended analyses from a single set of testability output files. The following analysis reports are available to the user: (1) the Detectability Report provides a breakdown of how each tested failure mode was detected, (2) the Test Utilization Report identifies all the failure modes that each test detects, (3) the Failure Mode Isolation Report demonstrates the system s ability to discriminate between failure modes, (4) the Component Isolation Report demonstrates the system s ability to discriminate between failure modes relative to the components containing the failure modes, (5) the Sensor Sensor Sensitivity Analysis Report shows the diagnostic impact due to loss of sensor information, and (6) the Effect Mapping Report identifies failure modes that result in specified system-level effects.

  19. Risk analysis of analytical validations by probabilistic modification of FMEA.

    PubMed

    Barends, D M; Oldenhof, M T; Vredenbregt, M J; Nauta, M J

    2012-05-01

    Risk analysis is a valuable addition to validation of an analytical chemistry process, enabling not only detecting technical risks, but also risks related to human failures. Failure Mode and Effect Analysis (FMEA) can be applied, using a categorical risk scoring of the occurrence, detection and severity of failure modes, and calculating the Risk Priority Number (RPN) to select failure modes for correction. We propose a probabilistic modification of FMEA, replacing the categorical scoring of occurrence and detection by their estimated relative frequency and maintaining the categorical scoring of severity. In an example, the results of traditional FMEA of a Near Infrared (NIR) analytical procedure used for the screening of suspected counterfeited tablets are re-interpretated by this probabilistic modification of FMEA. Using this probabilistic modification of FMEA, the frequency of occurrence of undetected failure mode(s) can be estimated quantitatively, for each individual failure mode, for a set of failure modes, and the full analytical procedure. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Availability Estimate of a Conceptual ESM System.

    DTIC Science & Technology

    1979-06-01

    affect mission operation.t A functional block level failure modes and effects analysis ( FMEA ) performed on the filter resulted in an assessed failure rate...is based on an FMEA of failures that disable the function (see Appendix A). A further 29 examination of the filter piece-parts reveals that the driver...Digital-to-analog converter DC Direct current DF Direction finding ESM Electronic Support Measures FMEA Failure modes and effects analysis FMPO

  1. Independent Orbiter Assessment (IOA): Analysis of the landing/deceleration subsystem

    NASA Technical Reports Server (NTRS)

    Compton, J. M.; Beaird, H. G.; Weissinger, W. D.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Landing/Deceleration Subsystem hardware. The Landing/Deceleration Subsystem is utilized to allow the Orbiter to perform a safe landing, allowing for landing-gear deploy activities, steering and braking control throughout the landing rollout to wheel-stop, and to allow for ground-handling capability during the ground-processing phase of the flight cycle. Specifically, the Landing/Deceleration hardware consists of the following components: Nose Landing Gear (NLG); Main Landing Gear (MLG); Brake and Antiskid (B and AS) Electrical Power Distribution and Controls (EPD and C); Nose Wheel Steering (NWS); and Hydraulics Actuators. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Due to the lack of redundancy in the Landing/Deceleration Subsystems there is a high number of critical items.

  2. Independent Orbiter Assessment (IOA): Analysis of the ascent thrust vector control actuator subsystem

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.; Riccio, J. R.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Ascent Thrust Vector Control (ATVC) Actuator hardware are documented. The function of the Ascent Thrust Vector Control Actuators (ATVC) is to gimbal the main engines to provide for attitude and flight path control during ascent. During first stage flight, the SRB nozzles provide nearly all the steering. After SRB separation, the Orbiter is steered by gimbaling of its main engines. There are six electrohydraulic servoactuators, one pitch and one yaw for each of the three main engines. Each servoactuator is composed of four electrohydraulic servovalve assemblies, one second stage power spool valve assembly, one primary piston assembly and a switching valve. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Critical failures resulting in loss of ATVC were mainly due to loss of hydraulic fluid, fluid contamination and mechanical failures.

  3. Failure mode and effects analysis drastically reduced potential risks in clinical trial conduct

    PubMed Central

    Baik, Jungmi; Kim, Hyunjung; Kim, Rachel

    2017-01-01

    Background Failure mode and effects analysis (FMEA) is a risk management tool to proactively identify and assess the causes and effects of potential failures in a system, thereby preventing them from happening. The objective of this study was to evaluate effectiveness of FMEA applied to an academic clinical trial center in a tertiary care setting. Methods A multidisciplinary FMEA focus group at the Seoul National University Hospital Clinical Trials Center selected 6 core clinical trial processes, for which potential failure modes were identified and their risk priority number (RPN) was assessed. Remedial action plans for high-risk failure modes (RPN >160) were devised and a follow-up RPN scoring was conducted a year later. Results A total of 114 failure modes were identified with an RPN score ranging 3–378, which was mainly driven by the severity score. Fourteen failure modes were of high risk, 11 of which were addressed by remedial actions. Rescoring showed a dramatic improvement attributed to reduction in the occurrence and detection scores by >3 and >2 points, respectively. Conclusions FMEA is a powerful tool to improve quality in clinical trials. The Seoul National University Hospital Clinical Trials Center is expanding its FMEA capability to other core clinical trial processes. PMID:29089745

  4. Research on Application of FMECA in Missile Equipment Maintenance Decision

    NASA Astrophysics Data System (ADS)

    Kun, Wang

    2018-03-01

    Fault mode effects and criticality analysis (FMECA) is a method widely used in engineering. Studying the application of FMEA technology in military equipment maintenance decision-making, can help us build a better equipment maintenance support system, and increase the using efficiency of weapons and equipment. Through Failure Modes, Effects and Criticality Analysis (FMECA) of equipment, known and potential failure modes and their causes are found out, and the influence on the equipment performance, operation success, personnel security are determined. Furthermore, according to the synthetical effects of the severity of effects and the failure probability, possible measures for prevention and correction are put forward. Through replacing or adjusting the corresponding parts, corresponding maintenance strategy is decided for preventive maintenance of equipment, which helps improve the equipment reliability.

  5. An Innovative Structural Mode Selection Methodology: Application for the X-33 Launch Vehicle Finite Element Model

    NASA Technical Reports Server (NTRS)

    Hidalgo, Homero, Jr.

    2000-01-01

    An innovative methodology for determining structural target mode selection and mode selection based on a specific criterion is presented. An effective approach to single out modes which interact with specific locations on a structure has been developed for the X-33 Launch Vehicle Finite Element Model (FEM). We presented Root-Sum-Square (RSS) displacement method computes resultant modal displacement for each mode at selected degrees of freedom (DOF) and sorts to locate modes with highest values. This method was used to determine modes, which most influenced specific locations/points on the X-33 flight vehicle such as avionics control components, aero-surface control actuators, propellant valve and engine points for use in flight control stability analysis and for flight POGO stability analysis. Additionally, the modal RSS method allows for primary or global target vehicle modes to also be identified in an accurate and efficient manner.

  6. Finite Larmor radius effects on the (m = 2, n = 1) cylindrical tearing mode

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Chowdhury, J.; Parker, S. E.; Wan, W.

    2015-04-01

    New field solvers are developed in the gyrokinetic code GEM [Chen and Parker, J. Comput. Phys. 220, 839 (2007)] to simulate low-n modes. A novel discretization is developed for the ion polarization term in the gyrokinetic vorticity equation. An eigenmode analysis with finite Larmor radius effects is developed to study the linear resistive tearing mode. The mode growth rate is shown to scale with resistivity as γ ˜ η1/3, the same as the semi-collisional regime in previous kinetic treatments [Drake and Lee, Phys. Fluids 20, 1341 (1977)]. Tearing mode simulations with gyrokinetic ions are verified with the eigenmode calculation.

  7. Project Delivery System Mode Decision Based on Uncertain AHP and Fuzzy Sets

    NASA Astrophysics Data System (ADS)

    Kaishan, Liu; Huimin, Li

    2017-12-01

    The project delivery system mode determines the contract pricing type, project management mode and the risk allocation among all participants. Different project delivery system modes have different characteristics and applicable scope. For the owners, the selection of the delivery mode is the key point to decide whether the project can achieve the expected benefits, it relates to the success or failure of project construction. Under the precondition of comprehensively considering the influence factors of the delivery mode, the model of project delivery system mode decision was set up on the basis of uncertain AHP and fuzzy sets, which can well consider the uncertainty and fuzziness when conducting the index evaluation and weight confirmation, so as to rapidly and effectively identify the most suitable delivery mode according to project characteristics. The effectiveness of the model has been verified via the actual case analysis in order to provide reference for the construction project delivery system mode.

  8. Inversed Vernier effect based single-mode laser emission in coupled microdisks

    PubMed Central

    Li, Meng; Zhang, Nan; Wang, Kaiyang; Li, Jiankai; Xiao, Shumin; Song, Qinghai

    2015-01-01

    Recently, on-chip single-mode laser emissions in coupled microdisks have attracted considerable research attention due to their wide applications. While most of single-mode lasers in coupled microdisks or microrings have been qualitatively explained by either Vernier effect or inversed Vernier effect, none of them have been experimentally confirmed. Here, we studied the mechanism of single-mode laser operation in coupled microdisks. We found that the mode numbers had been significantly reduced to nearly single-mode within a large pumping power range from threshold to gain saturation. The detail laser spectra showed that the largest gain and the first lasing peak were mainly generated by one disk and the laser intensity was proportional to the wavelength detuning of two set of modes. The corresponding theoretical analysis showed that the experimental observations were dominated by internal coupling within one cavity, which was similar to the recently explored inversed Vernier effect in two coupled microrings. We believe our finding will be important for understanding the previous experimental findings and the development of on-chip single-mode laser. PMID:26330218

  9. Intramolecular energy transfer and the driving mechanisms for large-amplitude collective motions of clusters

    NASA Astrophysics Data System (ADS)

    Yanao, Tomohiro; Koon, Wang Sang; Marsden, Jerrold E.

    2009-04-01

    This paper uncovers novel and specific dynamical mechanisms that initiate large-amplitude collective motions in polyatomic molecules. These mechanisms are understood in terms of intramolecular energy transfer between modes and driving forces. Structural transition dynamics of a six-atom cluster between a symmetric and an elongated isomer is highlighted as an illustrative example of what is a general message. First, we introduce a general method of hyperspherical mode analysis to analyze the energy transfer among internal modes of polyatomic molecules. In this method, the (3n-6) internal modes of an n-atom molecule are classified generally into three coarse level gyration-radius modes, three fine level twisting modes, and (3n-12) fine level shearing modes. We show that a large amount of kinetic energy flows into the gyration-radius modes when the cluster undergoes structural transitions by changing its mass distribution. Based on this fact, we construct a reactive mode as a linear combination of the three gyration-radius modes. It is shown that before the reactive mode acquires a large amount of kinetic energy, activation or inactivation of the twisting modes, depending on the geometry of the isomer, plays crucial roles for the onset of a structural transition. Specifically, in a symmetric isomer with a spherical mass distribution, activation of specific twisting modes drives the structural transition into an elongated isomer by inducing a strong internal centrifugal force, which has the effect of elongating the mass distribution of the system. On the other hand, in an elongated isomer, inactivation of specific twisting modes initiates the structural transition into a symmetric isomer with lower potential energy by suppressing the elongation effect of the internal centrifugal force and making the effects of the potential force dominant. This driving mechanism for reactions as well as the present method of hyperspherical mode analysis should be widely applicable to molecular reactions in which a system changes its overall mass distribution in a significant way.

  10. A streamlined failure mode and effects analysis.

    PubMed

    Ford, Eric C; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg

    2014-06-01

    Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes had RPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.

  11. Motion of the Mantle in the Translational Modes of the Earth and Mercury

    NASA Technical Reports Server (NTRS)

    Grinfeld, Pavel; Wisdom, Jack

    2005-01-01

    Slichter modes refer to the translational motion of the inner core with respect to the outer core and the mantle. The polar Slichter mode is the motion of the inner core along the axis of rotation. Busse presented an analysis of the polar mode which yielded an expression for its period. Busse's analysis included the assumption that the mantle was stationary. This approximation is valid for planets with small inner cores, such as the Earth whose inner core is about 1/60 of the total planet mass. On the other hand, many believe that Mercury's core may be enormous. If so, the motion of the mantle should be expected to produce a significant effect. We present a formal framework for including the motion of the mantle in the analysis of the translational motion of the inner core. We analyze the effect of the motion of the mantle on the Slichter modes for a non-rotating planet with an inner core of arbitrary size. We omit the effects of viscosity in the outer core, magnetic effects, and solid tides. Our approach is perturbative and is based on a linearization of Euler's equations for the motion of the fluid and Newton's second law for the motion of the inner core. We find an analytical expression for the period of the Slichter mode. Our result agrees with Busse's in the limiting case of small inner core. We present the unexpected result that even for Mercury the motion of the mantle does not significantly change the period of oscillation.

  12. Quantitative Surface Analysis of a Binary Drug Mixture—Suppression Effects in the Detection of Sputtered Ions and Post-Ionized Neutrals

    NASA Astrophysics Data System (ADS)

    Karras, Gabriel; Lockyer, Nicholas P.

    2014-05-01

    A systematic mass spectrometric study of two of the most common analgesic drugs, paracetamol and ibuprofen, is reported. The drugs were studied by means of secondary ion mass spectrometry (SIMS) and secondary neutral mass spectrometry (SNMS) using laser post-ionization (LPI) both in pure samples and in a two-component mixture. Ion suppression within the two-component system observed in SIMS mode is ameliorated using LPI under room temperature analysis. However, suppression effects are apparent in LPI mode on performing the analysis at cryogenic temperatures, which we attribute to changes in the desorption characteristics of sputtered molecules, which influences the subsequent post-ionization efficiency. This suggests different mechanisms of ion suppression in SIMS and LPI modes.

  13. Interactive multi-mode blade impact analysis

    NASA Technical Reports Server (NTRS)

    Alexander, A.; Cornell, R. W.

    1978-01-01

    The theoretical methodology used in developing an analysis for the response of turbine engine fan blades subjected to soft-body (bird) impacts is reported, and the computer program developed using this methodology as its basis is described. This computer program is an outgrowth of two programs that were previously developed for the purpose of studying problems of a similar nature (a 3-mode beam impact analysis and a multi-mode beam impact analysis). The present program utilizes an improved missile model that is interactively coupled with blade motion which is more consistent with actual observations. It takes into account local deformation at the impact area, blade camber effects, and the spreading of the impacted missile mass on the blade surface. In addition, it accommodates plate-type mode shapes. The analysis capability in this computer program represents a significant improvement in the development of the methodology for evaluating potential fan blade materials and designs with regard to foreign object impact resistance.

  14. Bicoherence Analysis of Electrostatic Interchange Mode Coupling in a Turbulent Laboratory Magnetosphere

    NASA Astrophysics Data System (ADS)

    Abler, M. C.; Saperstein, A.; Yan, J. R.; Mauel, M. E.

    2017-10-01

    Plasmas confined by a strong dipole field exhibit interchange and entropy mode turbulence, which previous experiments have shown respond locally to active feedback. On the Collisionless Terrella Experiment (CTX), this turbulence is characterized by low frequency, low order, quasi-coherent modes with complex spectral dynamics. We apply bicoherence analysis to study nonlinear phase coupling in a variety of scenarios. First, we study the self-interaction of the naturally occurring interchange turbulence; this analysis is then expanded to include the effects of driven modes in the frequency range of the background turbulent oscillations. Initial measurements of coupling coefficients are presented in both cases. Driven low frequency interchange modes are observed to generate multiple harmonics which persist throughout the plasma, becoming weaker as they propagate away from the actuator in the direction of the electron magnetic drift. Future work is also discussed, including application of wavelet bicoherence analysis, excitation of interchange modes at multiple frequencies, and applications to planetary magnetospheres. Supported by NSF-DOE Partnership for Plasma Science Grants DOE-DE-FG02-00ER54585.

  15. Finite-element analysis of vibrational modes in piezoelectric ceramic disks.

    PubMed

    Kunkel, H A; Locke, S; Pikeroen, B

    1990-01-01

    The natural vibrational modes of axially symmetric piezoelectric ceramic disks have been calculated by the finite-element method. The disks are of the type used as active elements in compressional wave ultrasonic transducers, and are electrically polarized in thickness with full electrodes on the disk's major faces. To optimize disk geometry for ultrasonic transducer application, the dependence of the vibrational modes on the disk diameter-to-thickness ratio for ratios from 0.2 (a tall cylinder) to 10.0 (a thin disk) has been studied. Series and parallel resonance frequencies for each of the modes are determined through an eigenfrequency analysis, and effective electromechanical coupling coefficients are calculated. The modal displacement fields in the disk are calculated to determine the physical nature of each mode. An analysis of the complete spectrum of piezoelectrically active modes as a function of diameter-thickness ratio is presented for the ceramic PZT-5H, including and identification of radial, edge, length expander, thickness shear, and thickness extensional vibrations. From this analysis, optimal diameter-to-thickness ratios for good transducer performance are discussed.

  16. Independent Orbiter Assessment (IOA): FMEA/CIL assessment

    NASA Technical Reports Server (NTRS)

    Saiidi, Mo J.; Swain, L. J.; Compton, J. M.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. Direction was given by the Orbiter and GFE Projects Office to perform the hardware analysis and assessment using the instructions and ground rules defined in NSTS 22206. The IOA analysis features a top-down approach to determine hardware failure modes, criticality, and potential critical items. To preserve independence, the anlaysis was accomplished without reliance upon the results contained within the NASA and prime contractor FMEA/CIL documentation. The assessment process compares the independently derived failure modes and criticality assignments to the proposed NASA Post 51-L FMEA/CIL documentation. When possible, assessment issues are discussed and resolved with the NASA subsystem managers. The assessment results for each subsystem are summarized. The most important Orbiter assessment finding was the previously unknown stuck autopilot push-button criticality 1/1 failure mode, having a worst case effect of loss of crew/vehicle when a microwave landing system is not active.

  17. Matrix Failure Modes and Effects Analysis as a Knowledge Base for a Real Time Automated Diagnosis Expert System

    NASA Technical Reports Server (NTRS)

    Herrin, Stephanie; Iverson, David; Spukovska, Lilly; Souza, Kenneth A. (Technical Monitor)

    1994-01-01

    Failure Modes and Effects Analysis contain a wealth of information that can be used to create the knowledge base required for building automated diagnostic Expert systems. A real time monitoring and diagnosis expert system based on an actual NASA project's matrix failure modes and effects analysis was developed. This Expert system Was developed at NASA Ames Research Center. This system was first used as a case study to monitor the Research Animal Holding Facility (RAHF), a Space Shuttle payload that is used to house and monitor animals in orbit so the effects of space flight and microgravity can be studied. The techniques developed for the RAHF monitoring and diagnosis Expert system are general enough to be used for monitoring and diagnosis of a variety of other systems that undergo a Matrix FMEA. This automated diagnosis system was successfully used on-line and validated on the Space Shuttle flight STS-58, mission SLS-2 in October 1993.

  18. A comparative critical study between FMEA and FTA risk analysis methods

    NASA Astrophysics Data System (ADS)

    Cristea, G.; Constantinescu, DM

    2017-10-01

    Today there is used an overwhelming number of different risk analyses techniques with acronyms such as: FMEA (Failure Modes and Effects Analysis) and its extension FMECA (Failure Mode, Effects, and Criticality Analysis), DRBFM (Design Review by Failure Mode), FTA (Fault Tree Analysis) and and its extension ETA (Event Tree Analysis), HAZOP (Hazard & Operability Studies), HACCP (Hazard Analysis and Critical Control Points) and What-if/Checklist. However, the most used analysis techniques in the mechanical and electrical industry are FMEA and FTA. In FMEA, which is an inductive method, information about the consequences and effects of the failures is usually collected through interviews with experienced people, and with different knowledge i.e., cross-functional groups. The FMEA is used to capture potential failures/risks & impacts and prioritize them on a numeric scale called Risk Priority Number (RPN) which ranges from 1 to 1000. FTA is a deductive method i.e., a general system state is decomposed into chains of more basic events of components. The logical interrelationship of how such basic events depend on and affect each other is often described analytically in a reliability structure which can be visualized as a tree. Both methods are very time-consuming to be applied thoroughly, and this is why it is oftenly not done so. As a consequence possible failure modes may not be identified. To address these shortcomings, it is proposed to use a combination of FTA and FMEA.

  19. Effects of model error on control of large flexible space antenna with comparisons of decoupled and linear quadratic regulator control procedures

    NASA Technical Reports Server (NTRS)

    Hamer, H. A.; Johnson, K. G.

    1986-01-01

    An analysis was performed to determine the effects of model error on the control of a large flexible space antenna. Control was achieved by employing two three-axis control-moment gyros (CMG's) located on the antenna column. State variables were estimated by including an observer in the control loop that used attitude and attitude-rate sensors on the column. Errors were assumed to exist in the individual model parameters: modal frequency, modal damping, mode slope (control-influence coefficients), and moment of inertia. Their effects on control-system performance were analyzed either for (1) nulling initial disturbances in the rigid-body modes, or (2) nulling initial disturbances in the first three flexible modes. The study includes the effects on stability, time to null, and control requirements (defined as maximum torque and total momentum), as well as on the accuracy of obtaining initial estimates of the disturbances. The effects on the transients of the undisturbed modes are also included. The results, which are compared for decoupled and linear quadratic regulator (LQR) control procedures, are shown in tabular form, parametric plots, and as sample time histories of modal-amplitude and control responses. Results of the analysis showed that the effects of model errors on the control-system performance were generally comparable for both control procedures. The effect of mode-slope error was the most serious of all model errors.

  20. The design and development of an automatic control system for the in-duct cancellation of spinning modes of sound. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Harrington, W. W.

    1973-01-01

    The reduction is discussed of the discrete tones generated by jet engines which is essential for jet aircraft to meet present and proposed noise standards. The discrete tones generated by the blades and vanes propagate in the inlet and exhaust duct in the form of spiraling acoustic waves, or spinning modes. The reduction of these spinning modes by the cancellation effect of the combination of two acoustic fields was investigated. The spinning mode synthesizer provided the means for effective study of this noise reduction scheme. Two sets of electrical-acoustical transducers located in an equally-spaced circular array simultaneously generate a specified spinning mode and the cancelling mode. Analysis of the wave equation for the synthesizer established the optimum cancelling array acoustic parameters for maximum sound pressure level reduction. The parameter dependence of the frequency ranges of propagation of single, specified circumferential modes generated by a single array, and of effective cancellation of the modes generated by two arrays, was determined. Substantial sound pressure level reduction was obtained for modes within these limits.

  1. The Analysis of Three-Way Contingency Tables by Three-Mode Association Models.

    ERIC Educational Resources Information Center

    Anderson, Carolyn J.

    1996-01-01

    Generalizations of L. A. Goodman's RC(M) association model (1991 and earlier) are presented for three-way tables. These three-mode association models use L. R. Tucker's three-mode components model (1964, 1966) to represent the three-factor interaction or the combined effects of two- and three-factor interactions. (SLD)

  2. FIBER AND INTEGRATED OPTICS, LASER APPLICATIONS, AND OTHER PROBLEMS IN QUANTUM ELECTRONICS: Optical components for the analysis and formation of the transverse mode composition

    NASA Astrophysics Data System (ADS)

    Golub, M. A.; Sisakyan, I. N.; Soĭfer, V. A.; Uvarov, G. V.

    1989-04-01

    Theoretical and experimental investigations are reported of new mode optical components (elements) which are analogs of sinusoidal phase diffraction gratings with a variable modulation depth. Expressions are derived for nonlinear predistortion and depth of modulation, which are essential for effective operation of amplitude and phase mode optical components in devices used for analysis and formation of the transverse mode composition of coherent radiation. An estimate is obtained of the energy efficiency of phase and amplitude mode optical components, and a comparison is made with the results of an experimental investigation of a set of phase optical components matched to Gauss-Laguerre modes. It is shown that the improvement in the energy efficiency of phase mode components, compared with amplitude components, is the same as the improvement achieved using a phase diifraction grating, compared with amplitude grating with the same depth of modulation.

  3. Modes and emergent time scales of embayed beach dynamics

    NASA Astrophysics Data System (ADS)

    Ratliff, Katherine M.; Murray, A. Brad

    2014-10-01

    In this study, we use a simple numerical model (the Coastline Evolution Model) to explore alongshore transport-driven shoreline dynamics within generalized embayed beaches (neglecting cross-shore effects). Using principal component analysis (PCA), we identify two primary orthogonal modes of shoreline behavior that describe shoreline variation about its unchanging mean position: the rotation mode, which has been previously identified and describes changes in the mean shoreline orientation, and a newly identified breathing mode, which represents changes in shoreline curvature. Wavelet analysis of the PCA mode time series reveals characteristic time scales of these modes (typically years to decades) that emerge within even a statistically constant white-noise wave climate (without changes in external forcing), suggesting that these time scales can arise from internal system dynamics. The time scales of both modes increase linearly with shoreface depth, suggesting that the embayed beach sediment transport dynamics exhibit a diffusive scaling.

  4. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake: Data collection/analysis techniques

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Heidelberg, Laurence; Konno, Kevin

    1993-01-01

    The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.

  5. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake - Data collection/analysis techniques

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Heidelberg, Laurence; Konno, Kevin

    1993-01-01

    The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.

  6. Pad-mode-induced instantaneous mode instability for simple models of brake systems

    NASA Astrophysics Data System (ADS)

    Oberst, S.; Lai, J. C. S.

    2015-10-01

    Automotive disc brake squeal is fugitive, transient and remains difficult to predict. In particular, instantaneous mode squeal observed experimentally does not seem to be associated with mode coupling and its mechanism is not clear. The effects of contact pressures, friction coefficients as well as material properties (pressure and temperature dependency and anisotropy) for brake squeal propensity have not been systematically explored. By analysing a finite element model of an isotropic pad sliding on a plate similar to that of a previously reported experimental study, pad modes have been identified and found to be stable using conventional complex eigenvalue analysis. However, by subjecting the model to contact pressure harmonic excitation for a range of pressures and friction coefficients, a forced response analysis reveals that the dissipated energy for pad modes is negative and becomes more negative with increasing contact pressures and friction coefficients, indicating the potential for instabilities. The frequency of the pad mode in the sliding direction is within the range of squeal frequencies observed experimentally. Nonlinear time series analysis of the vibration velocity also confirms the evolution of instabilities induced by pad modes as the friction coefficient increases. By extending this analysis to a more realistic but simple brake model in the form of a pad-on-disc system, in-plane pad-modes, which a complex eigenvalue analysis predicts to be stable, have also been identified by negative dissipated energy for both isotropic and anisotropic pad material properties. The influence of contact pressures on potential instabilities has been found to be more dominant than changes in material properties owing to changes in pressure or temperature. Results here suggest that instantaneous mode squeal is likely caused by in-plane pad-mode instabilities.

  7. Study of matrix effects on the direct trace analysis of acidic pesticides in water using various liquid chromatographic modes coupled to tandem mass spectrometric detection.

    PubMed

    Dijkman, E; Mooibroek, D; Hoogerbrugge, R; Hogendoorn, E; Sancho, J V; Pozo, O; Hernández, F

    2001-08-10

    This study investigated the effects of matrix interferences on the analytical performance of a triple quadrupole mass spectrometric (MS-MS) detector coupled to various reversed-phase liquid chromatographic (LC) modes for the on-line determination of various types of acidic herbicides in water using external calibration for quantification of the analytes tested at a level of 0.4 microg/l. The LC modes included (i) a single-column configuration (LC), (ii) precolumn switching (PC-LC) and (iii) coupled-column LC (LC-LC). As regards detection, electrospray (ESI) and atmospheric pressure chemical ionization (APCI) in both positive (PI) and negative (NI) ionization modes were examined. Salinity and dissolved organic carbon (DOC) were selected as interferences to study matrix effects in this type of analysis. Therefore, Milli-Q and tap water samples both fortified with 12 mg/l DOC and spiked with sulfometuron-methyl, bentazone, bromoxynil, 2-methyl-4-chlorophenoxyacetic acid, and 2-methyl-4-chlorophenoxypropionic acid at a level of about 0.4 microg/l were analyzed with the various LC-MS approaches. Direct sample injection was performed with volumes of 0.25 ml or 2.0 ml on a column of 2.1 mm I.D. or 4.6 mm I.D. for the ESI and APCI modes, respectively. The recovery data were used to compare and evaluate the analytical performance of the various LC approaches. As regards matrix effects, the salinity provided a dramatic decrease in response for early eluting analytes (k value of about 1) when using the LC mode. Both PC-LC and LC-LC efficiently eliminated this problem. The high DOC content hardly effected the responses of analytes in the ESI mode, while in most cases the responses increased when using APCI-MS-MS detection. Of all the tested configurations, LC-LC-ESI-MS-MS with the column combination Discovery C18/ABZ+ was the most favorable as regards elimination of matrix effects and provided reliable quantification of all compounds using external calibration at the tested low level. The major observed effects were verified with statistical evaluation of the data employing backwards ordinary least-square regression. All tested column-switching modes hyphenated to ESI- or APCI-MS-MS allowed the on-line multi-residue analysis of acidic pesticides in the reference water down to a level of 0.1 microg/l in less than 10 min, emphasizing the feasibility of such an approach in this field of analysis.

  8. Suppression of the asymmetric modes for experimentally achieving gigawatt-level radiation from a Ku-band Cerenkov type oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hua; Shu, Ting, E-mail: mrtingshu@qq.com; Ju, Jinchuan

    2014-08-15

    We present the analysis and suppression of asymmetric modes in a Ku-band Cerenkov-type oscillator numerically and experimentally. The asymmetric modes generated in the initial experiments were identified to be HE{sub 11}, HE{sub 21}, and HE{sub 31} modes, respectively, by analyzing of the dispersion relationships, the simulation results and the experiment phenomenon. The factors, such as the cathode emission uniformity, the diode voltage, guiding magnetic field, and the concentricity play key roles in the excitation and suppression of these asymmetric modes. In the improved experiments, the asymmetric modes were suppressed effectively. In the improved experiments the asymmetric modes are suppressed effectively,more » and the designed TM{sub 01} mode microwave is generated at a frequency of 13.76 GHz with a power of 1.1 GW, which is in good agreement with numerically predications.« less

  9. Design and characterization of 16-mode PANDA polarization-maintaining few-mode ring-core fiber for spatial division multiplexing

    NASA Astrophysics Data System (ADS)

    Cao, Yuan; Zhao, Yongli; Yu, Xiaosong; Han, Jiawei; Zhang, Jie

    2017-11-01

    A PANDA polarization-maintaining few-mode ring-core fiber (PM-FM-RCF) structure with two air holes around the ring core is proposed. The relative mode multiplicity factor (RMMF) is defined to evaluate the spatial efficiency of the designed PM-FM-RCF. The performance analysis and comparison of the proposed PANDA PM-FM-RCFs considering three different types of step-index profiles are detailed. Through modal characteristic analysis and numerical simulation, the PM-FM-RCF with a lower refractive index difference (Δnoi=1.5%) between the ring core and the inner central circle can support up to 16 polarization modes with large RMMF at C-band, which shows the optimum modal properties compared with the PM-FM-RCF with higher Δnoi. All the supported polarization modes are effectively separated from their adjacent polarization modes with effective refractive index differences (Δn) larger than 10-4, which also show relatively small chromatic dispersion (-20 to 25 ps/nm/km), low attenuation (<1.4 dB/km), and small bending radius (˜8 mm) over the C-band. The designed PM-FM-RCF can be compatible with standard single-mode fibers and applied in multiple-input multiple-output-free spatial division multiplexing optical networks for short-reach optical interconnection.

  10. Analysis of flexible aircraft longitudinal dynamics and handling qualities. Volume 2: Data

    NASA Technical Reports Server (NTRS)

    Waszak, M. R.; Schmidt, D. K.

    1985-01-01

    Two analysis methods are applied to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop modal analysis technique. This method considers the effect of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Both analyses indicated that dynamic aeroelastic effects caused a degradation in vehicle tracking performance, based on the evaluation of some simulation results. Volume 2 consists of the presentation of the state variable models of the flexible aircraft configurations used in the analysis applications mode shape plots for the structural modes, numerical results from the modal analysis frequency response plots from the pilot in the loop analysis and a listing of the modal analysis computer program.

  11. Evaluation of Aeroservoelastic Effects on Flutter

    NASA Technical Reports Server (NTRS)

    Nagaraja, K. S.; Kraft, raymond; Felt, Larry

    1998-01-01

    The HSCT Flight Controls Group is developing a longitudinal control law, known as Gamma-dot / V, for the NASA HSR program. Currently, this control law is based on a quasi-steady aeroelastic (QSAE) model of the vehicle. This control law was implemented into the p-k flutter analysis process for closed loop aeroservoelastic analysis. The available flexible models, developed for the TCA aeroelastic analysis, were used to assess the effect of control laws on flutter at several different Mach numbers and mass conditions. Significant structures and flight control system interaction was observed during the initial assessment. Figures 1 and 2 present a summary of the effect of total closed loop gain and phase on flutter mechanisms, based on ideal sensors and real sensors, for Mach 0.95 and mass M02 condition. Control laws based on ideal sensors gave rise to increased coupling between the rigid body short period mode and the first symmetric elastic mode. This reduced the stability margins for the first elastic mode and does not meet the required 6 dB gain margin requirement. The effect of "real" sensors significantly increased the structures and control system interactions. This caused the elastic,modes to be highly unstable throughout most of the flight envelope. State-space models were developed for several conditions and then MATLAB program was used for the aeroservoelastic stability analysis. These results provided an independent verification of the p-k flutter analysis findings. Good overall agreement was observed between the p-k flutter analysis and state-space model results for both damping and frequency comparisons. These results are also included in this document.

  12. Failure Mode and Effect Analysis (FMEA) may enhance implementation of clinical practice guidelines: An experience from the Middle East.

    PubMed

    Babiker, Amir; Amer, Yasser S; Osman, Mohamed E; Al-Eyadhy, Ayman; Fatani, Solafa; Mohamed, Sarar; Alnemri, Abdulrahman; Titi, Maher A; Shaikh, Farheen; Alswat, Khalid A; Wahabi, Hayfaa A; Al-Ansary, Lubna A

    2018-02-01

    Implementation of clinical practice guidelines (CPGs) has been shown to reduce variation in practice and improve health care quality and patients' safety. There is a limited experience of CPG implementation (CPGI) in the Middle East. The CPG program in our institution was launched in 2009. The Quality Management department conducted a Failure Mode and Effect Analysis (FMEA) for further improvement of CPGI. This is a prospective study of a qualitative/quantitative design. Our FMEA included (1) process review and recording of the steps and activities of CPGI; (2) hazard analysis by recording activity-related failure modes and their effects, identification of actions required, assigned severity, occurrence, and detection scores for each failure mode and calculated the risk priority number (RPN) by using an online interactive FMEA tool; (3) planning: RPNs were prioritized, recommendations, and further planning for new interventions were identified; and (4) monitoring: after reduction or elimination of the failure mode. The calculated RPN will be compared with subsequent analysis in post-implementation phase. The data were scrutinized from a feedback of quality team members using a FMEA framework to enhance the implementation of 29 adapted CPGs. The identified potential common failure modes with the highest RPN (≥ 80) included awareness/training activities, accessibility of CPGs, fewer advocates from clinical champions, and CPGs auditing. Actions included (1) organizing regular awareness activities, (2) making CPGs printed and electronic copies accessible, (3) encouraging senior practitioners to get involved in CPGI, and (4) enhancing CPGs auditing as part of the quality sustainability plan. In our experience, FMEA could be a useful tool to enhance CPGI. It helped us to identify potential barriers and prepare relevant solutions. © 2017 John Wiley & Sons, Ltd.

  13. Finite Larmor radius effects on the (m = 2, n = 1) cylindrical tearing mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.; Chowdhury, J.; Parker, S. E.

    2015-04-15

    New field solvers are developed in the gyrokinetic code GEM [Chen and Parker, J. Comput. Phys. 220, 839 (2007)] to simulate low-n modes. A novel discretization is developed for the ion polarization term in the gyrokinetic vorticity equation. An eigenmode analysis with finite Larmor radius effects is developed to study the linear resistive tearing mode. The mode growth rate is shown to scale with resistivity as γ ∼ η{sup 1∕3}, the same as the semi-collisional regime in previous kinetic treatments [Drake and Lee, Phys. Fluids 20, 1341 (1977)]. Tearing mode simulations with gyrokinetic ions are verified with the eigenmode calculation.

  14. Elastic-Plastic Finite Element Analysis of Fatigue Crack Growth in Mode 1 and Mode 2 Conditions

    NASA Technical Reports Server (NTRS)

    Nakagaki, M.; Atluri, S. N.

    1978-01-01

    Presented is an alternate cost-efficient and accurate elastic-plastic finite element procedure to analyze fatigue crack closure and its effects under general spectrum loading. Both Modes 1 and 2 type cycling loadings are considered. Also presented are the results of an investigation, using the newly developed procedure, of various factors that cause crack growth acceleration or retardation and delay effects under high-to-low, low-to-high, single overload, and constant amplitude type cyclic loading in a Mode 1 situation. Further, the results of an investigation of a centercracked panel under external pure shear (Mode 2) cyclic loading, of constant amplitude, are reported.

  15. A meta-analysis of overall effects of weight loss interventions delivered via mobile phones and effect size differences according to delivery mode, personal contact, and intervention intensity and duration.

    PubMed

    Schippers, M; Adam, P C G; Smolenski, D J; Wong, H T H; de Wit, J B F

    2017-04-01

    Weight loss interventions are delivered through various mediums including, increasingly, mobile phones. This systematic review and meta-analysis assesses whether interventions delivered via mobile phones reduce body weight and which intervention characteristics are associated with efficacy. The study included randomised controlled trials assessing the efficacy of weight loss interventions delivered via mobile phones. A meta-analysis to test intervention efficacy was performed, and subgroup analyses were conducted to determine whether interventions' delivery mode(s), inclusion of personal contact, duration and interaction frequency improve efficacy. Pooled body weight reduction (d = -0.23; 95% confidence interval = -0.38, -0.08) was significant. Interventions delivered via other modes in addition to the mobile phone were associated with weight reduction. Personal contact and more frequent interactions in interventions were also associated with greater weight reduction. In conclusion, the current body of evidence shows that interventions delivered via mobile phones produce a modest reduction in body weight when combined with other delivery modes. Delivering interventions with frequent and personal interactions may in particular benefit weight loss results. © 2017 World Obesity Federation.

  16. Recognizing the Effects of Language Mode on the Cognitive Advantages of Bilingualism.

    PubMed

    Yu, Ziying; Schwieter, John W

    2018-01-01

    For bilinguals, it is argued that a cognitive advantage can be linked to the constant management and need for conflict resolution that occurs when the two languages are co-activated (Bialystok, 2015). Language mode (Grosjean, 1998, 2001) is a significant variable that defines and shapes the language experiences of bilinguals and consequently, the cognitive advantages of bilingualism. Previous work, however, has not sufficiently tested the effects of language mode on the bilingual experience. In this brief conceptual analysis, we discuss the significance of language mode in bilingual work on speech perception, production, and reading. We offer possible explanations for conflicting findings and ways in which future work should control for its modulating effects.

  17. Independent Orbiter Assessment (IOA): Assessment of the EPD and C/remote manipulator system FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Robinson, W. W.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Electrical Power Distribution and Control (EPD and C)/Remote Manipulator System (RMS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA analysis of the EPD and C/RMS hardware initially generated 345 failure mode worksheets and identified 117 Potential Critical Items (PCIs) before starting the assessment process. These analysis results were compared to the proposed NASA Post 51-L baseline of 132 FMEAs and 66 CIL items.

  18. Active Control of Fan Noise: Feasibility Study. Volume 6; Theoretical Analysis for Coupling of Active Noise Control Actuator Ring Sources to an Annular Duct with Flow

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.

    1996-01-01

    The objective of this effort is to develop an analytical model for the coupling of active noise control (ANC) piston-type actuators that are mounted flush to the inner and outer walls of an annular duct to the modes in the duct generated by the actuator motion. The analysis will be used to couple the ANC actuators to the modal analysis propagation computer program for the annular duct, to predict the effects of active suppression of fan-generated engine noise sources. This combined program will then be available to assist in the design or evaluation of ANC systems in fan engine annular exhaust ducts. An analysis has been developed to predict the modes generated in an annular duct due to the coupling of flush-mounted ring actuators on the inner and outer walls of the duct. The analysis has been combined with a previous analysis for the coupling of modes to a cylindrical duct in a FORTRAN computer program to perform the computations. The method includes the effects of uniform mean flow in the duct. The program can be used for design or evaluation purposes for active noise control hardware for turbofan engines. Predictions for some sample cases modeled after the geometry of the NASA Lewis ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the m = 6 spinning mode at frequencies where only a single radial mode is cut-on. Radial mode content in higher order cut-off modes at the source plane and the required actuator displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted. Equivalent cases with and without flow were examined for the cylindrical and annular geometry, and little difference was found for a duct flow Mach number of 0.1. The actuator ring coupling program will be adapted as a subroutine to the cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the fan source to be defined in terms of characteristic modes at the fan source plane and predict the propagation to the arbitrarily-located ANC source plane. The actuator velocities can then be determined to generate the anti-phase mode. The resulting combined fan source/ANC pressure can then be calculated at any desired wall sensor position. The actuator velocities can be determined manually or using a simulation of a control system feedback loop. This will provide a very useful ANC system design and evaluation tool.

  19. Numerical linear analysis of the effects of diamagnetic and shear flow on ballooning modes

    NASA Astrophysics Data System (ADS)

    Yanqing, HUANG; Tianyang, XIA; Bin, GUI

    2018-04-01

    The linear analysis of the influence of diamagnetic effect and toroidal rotation at the edge of tokamak plasmas with BOUT++ is discussed in this paper. This analysis is done by solving the dispersion relation, which is calculated through the numerical integration of the terms with different physics. This method is able to reveal the contributions of the different terms to the total growth rate. The diamagnetic effect stabilizes the ideal ballooning modes through inhibiting the contribution of curvature. The toroidal rotation effect is also able to suppress the curvature-driving term, and the stronger shearing rate leads to a stronger stabilization effect. In addition, through linear analysis using the energy form, the curvature-driving term provides the free energy absorbed by the line-bending term, diamagnetic term and convective term.

  20. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems

    PubMed Central

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul

    2010-01-01

    Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN≥125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software∕hardware upgrades. System latency was determined to be ∼193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%–3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was ∼35 min, while that taken for comprehensive testing was ∼3.5 h. Conclusions: FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures efficient allocation of clinical resources because the most critical failure modes receive the most attention. It is expected that the set of guidelines proposed here will serve as a living document that is updated with the accumulation of progressively more intrainstitutional and interinstitutional experience with DMLC tracking. PMID:21302802

  1. Rouse mode analysis of chain relaxation in homopolymer melts

    DOE PAGES

    Kalathi, Jagannathan T.; Kumar, Sanat K.; Rubinstein, Michael; ...

    2014-09-15

    We use molecular dynamics simulations of the Kremer–Grest (KG) bead–spring model of polymer chains of length between 10 and 500, and a closely related analogue that allows for chain crossing, to clearly delineate the effects of entanglements on the length-scale-dependent chain relaxation in polymer melts. We analyze the resulting trajectories using the Rouse modes of the chains and find that entanglements strongly affect these modes. The relaxation rates of the chains show two limiting effective monomeric frictions, with the local modes experiencing much lower effective friction than the longer modes. The monomeric relaxation rates of longer modes vary approximately inverselymore » with chain length due to kinetic confinement effects. The time-dependent relaxation of Rouse modes has a stretched exponential character with a minimum of stretching exponent in the vicinity of the entanglement chain length. None of these trends are found in models that allow for chain crossing. As a result, these facts, in combination, argue for the confined motion of chains for time scales between the entanglement time and their ultimate free diffusion.« less

  2. Failure modes and effects analysis automation

    NASA Technical Reports Server (NTRS)

    Kamhieh, Cynthia H.; Cutts, Dannie E.; Purves, R. Byron

    1988-01-01

    A failure modes and effects analysis (FMEA) assistant was implemented as a knowledge based system and will be used during design of the Space Station to aid engineers in performing the complex task of tracking failures throughout the entire design effort. The three major directions in which automation was pursued were the clerical components of the FMEA process, the knowledge acquisition aspects of FMEA, and the failure propagation/analysis portions of the FMEA task. The system is accessible to design, safety, and reliability engineers at single user workstations and, although not designed to replace conventional FMEA, it is expected to decrease by many man years the time required to perform the analysis.

  3. Random safety auditing, root cause analysis, failure mode and effects analysis.

    PubMed

    Ursprung, Robert; Gray, James

    2010-03-01

    Improving quality and safety in health care is a major concern for health care providers, the general public, and policy makers. Errors and quality issues are leading causes of morbidity and mortality across the health care industry. There is evidence that patients in the neonatal intensive care unit (NICU) are at high risk for serious medical errors. To facilitate compliance with safe practices, many institutions have established quality-assurance monitoring procedures. Three techniques that have been found useful in the health care setting are failure mode and effects analysis, root cause analysis, and random safety auditing. When used together, these techniques are effective tools for system analysis and redesign focused on providing safe delivery of care in the complex NICU system. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Independent Orbiter Assessment (IOA): Analysis of the Orbiter Experiment (OEX) subsystem

    NASA Technical Reports Server (NTRS)

    Compton, J. M.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Experiments hardware. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. The Orbiter Experiments (OEX) Program consists of a multiple set of experiments for the purpose of gathering environmental and aerodynamic data to develop more accurate ground models for Shuttle performance and to facilitate the design of future spacecraft. This assessment only addresses currently manifested experiments and their support systems. Specifically this list consists of: Shuttle Entry Air Data System (SEADS); Shuttle Upper Atmosphere Mass Spectrometer (SUMS); Forward Fuselage Support System for OEX (FFSSO); Shuttle Infrared Laced Temperature Sensor (SILTS); Aerodynamic Coefficient Identification Package (ACIP); and Support System for OEX (SSO). There are only two potential critical items for the OEX, since the experiments only gather data for analysis post mission and are totally independent systems except for power. Failure of any experiment component usually only causes a loss of experiment data and in no way jeopardizes the crew or mission.

  5. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...

  6. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...

  7. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...

  8. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...

  9. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...

  10. Failure mode and effects analysis of witnessing protocols for ensuring traceability during IVF.

    PubMed

    Rienzi, Laura; Bariani, Fiorenza; Dalla Zorza, Michela; Romano, Stefania; Scarica, Catello; Maggiulli, Roberta; Nanni Costa, Alessandro; Ubaldi, Filippo Maria

    2015-10-01

    Traceability of cells during IVF is a fundamental aspect of treatment, and involves witnessing protocols. Failure mode and effects analysis (FMEA) is a method of identifying real or potential breakdowns in processes, and allows strategies to mitigate risks to be developed. To examine the risks associated with witnessing protocols, an FMEA was carried out in a busy IVF centre, before and after implementation of an electronic witnessing system (EWS). A multidisciplinary team was formed and moderated by human factors specialists. Possible causes of failures, and their potential effects, were identified and risk priority number (RPN) for each failure calculated. A second FMEA analysis was carried out after implementation of an EWS. The IVF team identified seven main process phases, 19 associated process steps and 32 possible failure modes. The highest RPN was 30, confirming the relatively low risk that mismatches may occur in IVF when a manual witnessing system is used. The introduction of the EWS allowed a reduction in the moderate-risk failure mode by two-thirds (highest RPN = 10). In our experience, FMEA is effective in supporting multidisciplinary IVF groups to understand the witnessing process, identifying critical steps and planning changes in practice to enable safety to be enhanced. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusu, I; Thomas, T; Roeske, J

    Purpose: To identify areas of improvement in our liver stereotactic body radiation therapy (SBRT) program, using failure mode and effect analysis (FMEA). Methods: A multidisciplinary group consisting of one physician, three physicists, one dosimetrist and two therapists was formed. A process map covering 10 major stages of the liver SBRT program from the initial diagnosis to post treatment follow-up was generated. A total of 102 failure modes, together with their causes and effects, were identified. The occurrence (O), severity (S) and lack of detectability (D) were independently scored. The ranking was done using the risk probability number (RPN) defined asmore » the product of average O, S and D numbers for each mode. The scores were normalized to remove inter-observer variability, while preserving individual ranking order. Further, a correlation analysis on the overall agreement on rank order of all failure modes resulted in positive values for successive pairs of evaluators. The failure modes with the highest RPN value were considered for further investigation. Results: The average normalized RPN values for all modes were 39 with a range of 9 to 103. The FMEA analysis resulted in the identification of the top 10 critical failures modes as: Incorrect CT-MR registration, MR scan not performed in treatment position, patient movement between CBCT acquisition and treatment, daily IGRT QA not verified, incorrect or incomplete ITV delineation, OAR contours not verified, inaccurate normal liver effective dose (Veff) calculation, failure of bolus tracking for 4D CT scan, setup instructions not followed for treatment and plan evaluation metrics missed. Conclusion: The application of FMEA to our liver SBRT program led to the identification and possible improvement of areas affecting patient safety.« less

  12. SU-E-T-421: Failure Mode and Effects Analysis (FMEA) of Xoft Electronic Brachytherapy for the Treatment of Superficial Skin Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoisak, J; Manger, R; Dragojevic, I

    Purpose: To perform a failure mode and effects analysis (FMEA) of the process for treating superficial skin cancers with the Xoft Axxent electronic brachytherapy (eBx) system, given the recent introduction of expanded quality control (QC) initiatives at our institution. Methods: A process map was developed listing all steps in superficial treatments with Xoft eBx, from the initial patient consult to the completion of the treatment course. The process map guided the FMEA to identify the failure modes for each step in the treatment workflow and assign Risk Priority Numbers (RPN), calculated as the product of the failure mode’s probability ofmore » occurrence (O), severity (S) and lack of detectability (D). FMEA was done with and without the inclusion of recent QC initiatives such as increased staffing, physics oversight, standardized source calibration, treatment planning and documentation. The failure modes with the highest RPNs were identified and contrasted before and after introduction of the QC initiatives. Results: Based on the FMEA, the failure modes with the highest RPN were related to source calibration, treatment planning, and patient setup/treatment delivery (Fig. 1). The introduction of additional physics oversight, standardized planning and safety initiatives such as checklists and time-outs reduced the RPNs of these failure modes. High-risk failure modes that could be mitigated with improved hardware and software interlocks were identified. Conclusion: The FMEA analysis identified the steps in the treatment process presenting the highest risk. The introduction of enhanced QC initiatives mitigated the risk of some of these failure modes by decreasing their probability of occurrence and increasing their detectability. This analysis demonstrates the importance of well-designed QC policies, procedures and oversight in a Xoft eBx programme for treatment of superficial skin cancers. Unresolved high risk failure modes highlight the need for non-procedural quality initiatives such as improved planning software and more robust hardware interlock systems.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mossahebi, S; Feigenberg, S; Nichols, E

    Purpose: GammaPod™, the first stereotactic radiotherapy device for early stage breast cancer treatment, has been recently installed and commissioned at our institution. A multidisciplinary working group applied the failure mode and effects analysis (FMEA) approach to perform a risk analysis. Methods: FMEA was applied to the GammaPod™ treatment process by: 1) generating process maps for each stage of treatment; 2) identifying potential failure modes and outlining their causes and effects; 3) scoring the potential failure modes using the risk priority number (RPN) system based on the product of severity, frequency of occurrence, and detectability (ranging 1–10). An RPN of highermore » than 150 was set as the threshold for minimal concern of risk. For these high-risk failure modes, potential quality assurance procedures and risk control techniques have been proposed. A new set of severity, occurrence, and detectability values were re-assessed in presence of the suggested mitigation strategies. Results: In the single-day image-and-treat workflow, 19, 22, and 27 sub-processes were identified for the stages of simulation, treatment planning, and delivery processes, respectively. During the simulation stage, 38 potential failure modes were found and scored, in terms of RPN, in the range of 9-392. 34 potential failure modes were analyzed in treatment planning with a score range of 16-200. For the treatment delivery stage, 47 potential failure modes were found with an RPN score range of 16-392. The most critical failure modes consisted of breast-cup pressure loss and incorrect target localization due to patient upper-body alignment inaccuracies. The final RPN score of these failure modes based on recommended actions were assessed to be below 150. Conclusion: FMEA risk analysis technique was applied to the treatment process of GammaPod™, a new stereotactic radiotherapy technology. Application of systematic risk analysis methods is projected to lead to improved quality of GammaPod™ treatments. Ying Niu and Cedric Yu are affiliated with Xcision Medical Systems.« less

  14. A streamlined failure mode and effects analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Eric C., E-mail: eford@uw.edu; Smith, Koren; Terezakis, Stephanie

    Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and usedmore » to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.« less

  15. Proactive risk assessment of blood transfusion process, in pediatric emergency, using the Health Care Failure Mode and Effects Analysis (HFMEA).

    PubMed

    Dehnavieh, Reza; Ebrahimipour, Hossein; Molavi-Taleghani, Yasamin; Vafaee-Najar, Ali; Noori Hekmat, Somayeh; Esmailzdeh, Hamid

    2014-12-25

    Pediatric emergency has been considered as a high risk area, and blood transfusion is known as a unique clinical measure, therefore this study was conducted with the purpose of assessing the proactive risk assessment of blood transfusion process in Pediatric Emergency of Qaem education- treatment center in Mashhad, by the Healthcare Failure Mode and Effects Analysis (HFMEA) methodology. This cross-sectional study analyzed the failure mode and effects of blood transfusion process by a mixture of quantitative-qualitative method. The proactive HFMEA was used to identify and analyze the potential failures of the process. The information of the items in HFMEA forms was collected after obtaining a consensus of experts' panel views via the interview and focus group discussion sessions. The Number of 77 failure modes were identified for 24 sub-processes enlisted in 8 processes of blood transfusion. Totally 13 failure modes were identified as non-acceptable risk (a hazard score above 8) in the blood transfusion process and were transferred to the decision tree. Root causes of high risk modes were discussed in cause-effect meetings and were classified based on the UK national health system (NHS) approved classifications model. Action types were classified in the form of acceptance (11.6%), control (74.2%) and elimination (14.2%). Recommendations were placed in 7 categories using TRIZ ("Theory of Inventive Problem Solving.") The re-engineering process for the required changes, standardizing and updating the blood transfusion procedure, root cause analysis of blood transfusion catastrophic events, patient identification bracelet, training classes and educational pamphlets for raising awareness of personnel, and monthly gathering of transfusion medicine committee have all been considered as executive strategies in work agenda in pediatric emergency.

  16. Proactive Risk Assessment of Blood Transfusion Process, in Pediatric Emergency, Using the Health Care Failure Mode and Effects Analysis (HFMEA)

    PubMed Central

    Dehnavieh, Reza; Ebrahimipour, Hossein; Molavi-Taleghani, Yasamin; Vafaee-Najar, Ali; Hekmat, Somayeh Noori; Esmailzdeh, Hamid

    2015-01-01

    Introduction: Pediatric emergency has been considered as a high risk area, and blood transfusion is known as a unique clinical measure, therefore this study was conducted with the purpose of assessing the proactive risk assessment of blood transfusion process in Pediatric Emergency of Qaem education- treatment center in Mashhad, by the Healthcare Failure Mode and Effects Analysis (HFMEA) methodology. Methodology: This cross-sectional study analyzed the failure mode and effects of blood transfusion process by a mixture of quantitative-qualitative method. The proactive HFMEA was used to identify and analyze the potential failures of the process. The information of the items in HFMEA forms was collected after obtaining a consensus of experts’ panel views via the interview and focus group discussion sessions. Results: The Number of 77 failure modes were identified for 24 sub-processes enlisted in 8 processes of blood transfusion. Totally 13 failure modes were identified as non-acceptable risk (a hazard score above 8) in the blood transfusion process and were transferred to the decision tree. Root causes of high risk modes were discussed in cause-effect meetings and were classified based on the UK national health system (NHS) approved classifications model. Action types were classified in the form of acceptance (11.6%), control (74.2%) and elimination (14.2%). Recommendations were placed in 7 categories using TRIZ (“Theory of Inventive Problem Solving.”) Conclusion: The re-engineering process for the required changes, standardizing and updating the blood transfusion procedure, root cause analysis of blood transfusion catastrophic events, patient identification bracelet, training classes and educational pamphlets for raising awareness of personnel, and monthly gathering of transfusion medicine committee have all been considered as executive strategies in work agenda in pediatric emergency. PMID:25560332

  17. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee C. Cadwallader

    2010-06-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  18. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee C. Cadwallader

    2007-08-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  19. The Application of Failure Modes and Effects Analysis Methodology to Intrathecal Drug Delivery for Pain Management

    PubMed Central

    Patel, Teresa; Fisher, Stanley P.

    2016-01-01

    Objective This study aimed to utilize failure modes and effects analysis (FMEA) to transform clinical insights into a risk mitigation plan for intrathecal (IT) drug delivery in pain management. Methods The FMEA methodology, which has been used for quality improvement, was adapted to assess risks (i.e., failure modes) associated with IT therapy. Ten experienced pain physicians scored 37 failure modes in the following categories: patient selection for therapy initiation (efficacy and safety concerns), patient safety during IT therapy, and product selection for IT therapy. Participants assigned severity, probability, and detection scores for each failure mode, from which a risk priority number (RPN) was calculated. Failure modes with the highest RPNs (i.e., most problematic) were discussed, and strategies were proposed to mitigate risks. Results Strategic discussions focused on 17 failure modes with the most severe outcomes, the highest probabilities of occurrence, and the most challenging detection. The topic of the highest‐ranked failure mode (RPN = 144) was manufactured monotherapy versus compounded combination products. Addressing failure modes associated with appropriate patient and product selection was predicted to be clinically important for the success of IT therapy. Conclusions The methodology of FMEA offers a systematic approach to prioritizing risks in a complex environment such as IT therapy. Unmet needs and information gaps are highlighted through the process. Risk mitigation and strategic planning to prevent and manage critical failure modes can contribute to therapeutic success. PMID:27477689

  20. Failure mode and effects analysis: an empirical comparison of failure mode scoring procedures.

    PubMed

    Ashley, Laura; Armitage, Gerry

    2010-12-01

    To empirically compare 2 different commonly used failure mode and effects analysis (FMEA) scoring procedures with respect to their resultant failure mode scores and prioritization: a mathematical procedure, where scores are assigned independently by FMEA team members and averaged, and a consensus procedure, where scores are agreed on by the FMEA team via discussion. A multidisciplinary team undertook a Healthcare FMEA of chemotherapy administration. This included mapping the chemotherapy process, identifying and scoring failure modes (potential errors) for each process step, and generating remedial strategies to counteract them. Failure modes were scored using both an independent mathematical procedure and a team consensus procedure. Almost three-fifths of the 30 failure modes generated were scored differently by the 2 procedures, and for just more than one-third of cases, the score discrepancy was substantial. Using the Healthcare FMEA prioritization cutoff score, almost twice as many failure modes were prioritized by the consensus procedure than by the mathematical procedure. This is the first study to empirically demonstrate that different FMEA scoring procedures can score and prioritize failure modes differently. It found considerable variability in individual team members' opinions on scores, which highlights the subjective and qualitative nature of failure mode scoring. A consensus scoring procedure may be most appropriate for FMEA as it allows variability in individuals' scores and rationales to become apparent and to be discussed and resolved by the team. It may also yield team learning and communication benefits unlikely to result from a mathematical procedure.

  1. Design and Analysis of a Novel Fully Decoupled Tri-axis Linear Vibratory Gyroscope with Matched Modes.

    PubMed

    Xia, Dunzhu; Kong, Lun; Gao, Haiyu

    2015-07-13

    We present in this paper a novel fully decoupled silicon micromachined tri-axis linear vibratory gyroscope. The proposed gyroscope structure is highly symmetrical and can be limited to an area of about 8.5 mm × 8.5 mm. It can differentially detect three axes' angular velocities at the same time. By elaborately arranging different beams, anchors and sensing frames, the drive and sense modes are fully decoupled from each other. Moreover, the quadrature error correction and frequency tuning functions are taken into consideration in the structure design for all the sense modes. Since there exists an unwanted in-plane rotational mode, theoretical analysis is implemented to eliminate it. To accelerate the mode matching process, the particle swam optimization (PSO) algorithm is adopted and a frequency split of 149 Hz is first achieved by this method. Then, after two steps of manual adjustment of the springs' dimensions, the frequency gap is further decreased to 3 Hz. With the help of the finite element method (FEM) software ANSYS, the natural frequencies of drive, yaw, and pitch/roll modes are found to be 14,017 Hz, 14,018 Hz and 14,020 Hz, respectively. The cross-axis effect and scale factor of each mode are also simulated. All the simulation results are in good accordance with the theoretical analysis, which means the design is effective and worthy of further investigation on the integration of tri-axis accelerometers on the same single chip to form an inertial measurement unit.

  2. Effect of Pressure Anisotropy on the m = 1 Small Wavelength Modes in Z-Pinches

    NASA Astrophysics Data System (ADS)

    Faghihi, M.

    1987-05-01

    A generalization of Freidberg's perpendicular MHD model is used to investigate the effect of pressure anisotropy on the small wavelength internal kink (m = 1) mode instability in a Z-Pinch. A normal mode analysis of perturbed motion of an incompressible, collisionless and cylindrical plasma is performed. The stability criterion is (rΣB2)' <= 0, where Σ = 1 - (P|| - P⊥)/B2. It cannot be fulfilled without violation of the fire hose stability condition Σ >= 0.

  3. Mode and climatic factors effect on energy losses in transient heat modes of transmission lines

    NASA Astrophysics Data System (ADS)

    Bigun, A. Ya; Sidorov, O. A.; Osipov, D. S.; Girshin, S. S.; Goryunov, V. N.; Petrova, E. V.

    2018-01-01

    Electrical energy losses increase in modern grids. The losses are connected with an increase in consumption. Existing models of electric power losses estimation considering climatic factors do not allow estimating the cable temperature in real time. Considering weather and mode factors in real time allows to meet effectively and safely the consumer’s needs to minimize energy losses during transmission, to use electric power equipment effectively. These factors increase an interest in the evaluation of the dynamic thermal mode of overhead transmission lines conductors. The article discusses an approximate analytic solution of the heat balance equation in the transient operation mode of overhead lines based on the least squares method. The accuracy of the results obtained is comparable with the results of solving the heat balance equation of transient thermal mode with the Runge-Kutt method. The analysis of mode and climatic factors effect on the cable temperature in a dynamic thermal mode is presented. The calculation of the maximum permissible current for variation of weather conditions is made. The average electric energy losses during the transient process are calculated with the change of wind, air temperature and solar radiation. The parameters having the greatest effect on the transmission capacity are identified.

  4. Failure mode and effects analysis and fault tree analysis of surface image guided cranial radiosurgery.

    PubMed

    Manger, Ryan P; Paxton, Adam B; Pawlicki, Todd; Kim, Gwe-Ya

    2015-05-01

    Surface image guided, Linac-based radiosurgery (SIG-RS) is a modern approach for delivering radiosurgery that utilizes optical stereoscopic imaging to monitor the surface of the patient during treatment in lieu of using a head frame for patient immobilization. Considering the novelty of the SIG-RS approach and the severity of errors associated with delivery of large doses per fraction, a risk assessment should be conducted to identify potential hazards, determine their causes, and formulate mitigation strategies. The purpose of this work is to investigate SIG-RS using the combined application of failure modes and effects analysis (FMEA) and fault tree analysis (FTA), report on the effort required to complete the analysis, and evaluate the use of FTA in conjunction with FMEA. A multidisciplinary team was assembled to conduct the FMEA on the SIG-RS process. A process map detailing the steps of the SIG-RS was created to guide the FMEA. Failure modes were determined for each step in the SIG-RS process, and risk priority numbers (RPNs) were estimated for each failure mode to facilitate risk stratification. The failure modes were ranked by RPN, and FTA was used to determine the root factors contributing to the riskiest failure modes. Using the FTA, mitigation strategies were formulated to address the root factors and reduce the risk of the process. The RPNs were re-estimated based on the mitigation strategies to determine the margin of risk reduction. The FMEA and FTAs for the top two failure modes required an effort of 36 person-hours (30 person-hours for the FMEA and 6 person-hours for two FTAs). The SIG-RS process consisted of 13 major subprocesses and 91 steps, which amounted to 167 failure modes. Of the 91 steps, 16 were directly related to surface imaging. Twenty-five failure modes resulted in a RPN of 100 or greater. Only one of these top 25 failure modes was specific to surface imaging. The riskiest surface imaging failure mode had an overall RPN-rank of eighth. Mitigation strategies for the top failure mode decreased the RPN from 288 to 72. Based on the FMEA performed in this work, the use of surface imaging for monitoring intrafraction position in Linac-based stereotactic radiosurgery (SRS) did not greatly increase the risk of the Linac-based SRS process. In some cases, SIG helped to reduce the risk of Linac-based RS. The FMEA was augmented by the use of FTA since it divided the failure modes into their fundamental components, which simplified the task of developing mitigation strategies.

  5. SU-E-T-420: Failure Effects Mode Analysis for Trigeminal Neuralgia Frameless Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, J

    2015-06-15

    Purpose: Functional radiosurgery has been used successfully in the treatment of trigeminal neuralgia but presents significant challenges to ensuring the high prescription dose is delivered accurately. A review of existing practice should help direct the focus of quality improvement for this treatment regime. Method: Failure modes and effects analysis was used to identify the processes in preparing radiosurgery treatment for TN. The map was developed by a multidisciplinary team including: neurosurgeon, radiation oncology, physicist and therapist. Potential failure modes were identified for each step in the process map as well as potential causes and end effect. A risk priority numbermore » was assigned to each cause. Results: The process map identified 66 individual steps (see attached supporting document). Corrective actions were developed for areas of high risk priority number. Wrong site treatment is at higher risk for trigeminal neuralgia treatment due to the lack of site specific pathologic imaging on MR and CT – additional site specific checks were implemented to minimize the risk of wrong site treatment. Failed collision checks resulted from an insufficient collision model in the treatment planning system and a plan template was developed to address this problem. Conclusion: Failure modes and effects analysis is an effective tool for developing quality improvement in high risk radiotherapy procedures such as functional radiosurgery.« less

  6. Geometric Effects on the Amplification of First Mode Instability Waves

    NASA Technical Reports Server (NTRS)

    Kirk, Lindsay C.; Candler, Graham V.

    2013-01-01

    The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. The DAKOTA optimization software package was used to optimize an axisymmetric geometry to maximize the amplification of the waves at first mode frequencies as computed by the 2D STABL hypersonic boundary layer stability analysis tool. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature were examined separately to determine the individual effects on the first mode amplification. Finally, all geometric parameters were allowed to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. Since first mode waves are known to be most unstable in the form of oblique wave, the geometries were optimized using a broad range of wave frequencies as well as a wide range of oblique wave angles to determine the geometry that most amplifies the first mode waves. Since first mode waves are seen most often in flows with low Mach numbers at the edge of the boundary layer, the edge Mach number for each geometry was recorded to determine any relationship between edge Mach number and the stability of first mode waves. Results indicate that an axisymmetric cone with a sharp nose and a slight flare at the aft end under the Mach 6 freestream conditions used here will lower the Mach number at the edge of the boundary layer to less than 4, and the corresponding stability analysis showed maximum first mode N factors of 3.

  7. Dynamic analysis to evaluate viscoelastic passive damping augmentation for the Space Shuttle Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    Alberts, Thomas E.; Xia, Houchun; Chen, Yung

    1992-01-01

    The effectiveness of constrained viscoelastic layer damping treatment designs is evaluated separately as passive control measures for low frequency joint dominated modes and higher frequency boom flexure dominated modes using a NASTRAN finite element analysis. Passive damping augmentation is proposed which is based on a constrained viscoelastic layer damping treatment applied to the surface of the manipulators's flexible booms. It is pointed out that even the joint compliance dominated modes can be damped to some degree through appropriate design of the treatment.

  8. Orbiter subsystem hardware/software interaction analysis. Volume 8: AFT reaction control system, part 2

    NASA Technical Reports Server (NTRS)

    Becker, D. D.

    1980-01-01

    The orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are examined. Potential interaction with the software is examined through an evaluation of the software requirements. The analysis is restricted to flight software requirements and excludes utility/checkout software. The results of the hardware/software interaction analysis for the forward reaction control system are presented.

  9. Independent Orbiter Assessment (IOA): Analysis of the electrical power distribution and control subsystem, volume 1

    NASA Technical Reports Server (NTRS)

    Schmeckpeper, K. R.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Distribution and Control (EPD and C) hardware. The EPD and C hardware performs the functions of distributing, sensing, and controlling 28 volt DC power and of inverting, distributing, sensing, and controlling 117 volt 400 Hz AC power to all Orbiter subsystems from the three fuel cells in the Electrical Power Generation (EPG) subsystem. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 1671 failure modes analyzed, 9 single failures were determined to result in loss of crew or vehicle. Three single failures unique to intact abort were determined to result in possible loss of the crew or vehicle. A possible loss of mission could result if any of 136 single failures occurred. Six of the criticality 1/1 failures are in two rotary and two pushbutton switches that control External Tank and Solid Rocket Booster separation. The other 6 criticality 1/1 failures are fuses, one each per Aft Power Control Assembly (APCA) 4, 5, and 6 and one each per Forward Power Control Assembly (FPCA) 1, 2, and 3, that supply power to certain Main Propulsion System (MPS) valves and Forward Reaction Control System (RCS) circuits.

  10. The magnetic particle in a box: Analytic and micromagnetic analysis of probe-localized spin wave modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adur, Rohan, E-mail: adur@physics.osu.edu; Du, Chunhui; Manuilov, Sergei A.

    2015-05-07

    The dipole field from a probe magnet can be used to localize a discrete spectrum of standing spin wave modes in a continuous ferromagnetic thin film without lithographic modification to the film. Obtaining the resonance field for a localized mode is not trivial due to the effect of the confined and inhomogeneous magnetization precession. We compare the results of micromagnetic and analytic methods to find the resonance field of localized modes in a ferromagnetic thin film, and investigate the accuracy of these methods by comparing with a numerical minimization technique that assumes Bessel function modes with pinned boundary conditions. Wemore » find that the micromagnetic technique, while computationally more intensive, reveals that the true magnetization profiles of localized modes are similar to Bessel functions with gradually decaying dynamic magnetization at the mode edges. We also find that an analytic solution, which is simple to implement and computationally much faster than other methods, accurately describes the resonance field of localized modes when exchange fields are negligible, and demonstrating the accessibility of localized mode analysis.« less

  11. The effect of pressure anisotropy on ballooning modes in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Johnston, A.; Hole, M. J.; Qu, Z. S.; Hezaveh, H.

    2018-06-01

    Edge Localised Modes are thought to be caused by a spectrum of magnetohydrodynamic instabilities, including the ballooning mode. While ballooning modes have been studied extensively both theoretically and experimentally, the focus of the vast majority of this research has been on isotropic plasmas. The prevalence of pressure anisotropy in modern tokamaks thus motivates further study of these modes. This paper presents a numerical analysis of ballooning modes in anisotropic equilibria. The investigation was conducted using the newly-developed codes HELENA+ATF and MISHKA-A, which adds anisotropic physics to equilibria and stability analysis. We have examined the impact of anisotropy on the stability of an n = 30 ballooning mode, confirming results conform to previous calculations in the isotropic limit. Growth rates of ballooning modes in equilibria with different levels of anisotropy were then calculated using the stability code MISHKA-A. The key finding was that the level of anisotropy had a significant impact on ballooning mode growth rates. For {T}\\perp > {T}| | , typical of ICRH heating, the growth rate increases, while for {T}\\perp < {T}| | , typical of neutral beam heating, the growth rate decreases.

  12. Simplified data reduction methods for the ECT test for mode 3 interlaminar fracture toughness

    NASA Technical Reports Server (NTRS)

    Li, Jian; Obrien, T. Kevin

    1995-01-01

    Simplified expressions for the parameter controlling the load point compliance and strain energy release rate were obtained for the Edge Crack Torsion (ECT) specimen for mode 3 interlaminar fracture toughness. Data reduction methods for mode 3 toughness based on the present analysis are proposed. The effect of the transverse shear modulus, G(sub 23), on mode 3 interlaminar fracture toughness characterization was evaluated. Parameters influenced by the transverse shear modulus were identified. Analytical results indicate that a higher value of G(sub 23) results in a low load point compliance and lower mode 3 toughness estimation. The effect of G(sub 23) on the mode 3 toughness using the ECT specimen is negligible when an appropriate initial delamination length is chosen. A conservative estimation of mode 3 toughness can be obtained by assuming G(sub 23) = G(sub 12) for any initial delamination length.

  13. An improved method for risk evaluation in failure modes and effects analysis of CNC lathe

    NASA Astrophysics Data System (ADS)

    Rachieru, N.; Belu, N.; Anghel, D. C.

    2015-11-01

    Failure mode and effects analysis (FMEA) is one of the most popular reliability analysis tools for identifying, assessing and eliminating potential failure modes in a wide range of industries. In general, failure modes in FMEA are evaluated and ranked through the risk priority number (RPN), which is obtained by the multiplication of crisp values of the risk factors, such as the occurrence (O), severity (S), and detection (D) of each failure mode. However, the crisp RPN method has been criticized to have several deficiencies. In this paper, linguistic variables, expressed in Gaussian, trapezoidal or triangular fuzzy numbers, are used to assess the ratings and weights for the risk factors S, O and D. A new risk assessment system based on the fuzzy set theory and fuzzy rule base theory is to be applied to assess and rank risks associated to failure modes that could appear in the functioning of Turn 55 Lathe CNC. Two case studies have been shown to demonstrate the methodology thus developed. It is illustrated a parallel between the results obtained by the traditional method and fuzzy logic for determining the RPNs. The results show that the proposed approach can reduce duplicated RPN numbers and get a more accurate, reasonable risk assessment. As a result, the stability of product and process can be assured.

  14. Secondary Instability of Second Modes in Hypersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; White, Jeffery A.

    2012-01-01

    Second mode disturbances dominate the primary instability stage of transition in a number of hypersonic flow configurations. The highest amplification rates of second mode disturbances are usually associated with 2D (or axisymmetric) perturbations and, therefore, a likely scenario for the onset of the three-dimensionality required for laminar-turbulent transition corresponds to the parametric amplification of 3D secondary instabilities in the presence of 2D, finite amplitude second mode disturbances. The secondary instability of second mode disturbances is studied for selected canonical flow configurations. The basic state for the secondary instability analysis is obtained by tracking the linear and nonlinear evolution of 2D, second mode disturbances using nonlinear parabolized stability equations. Unlike in previous studies, the selection of primary disturbances used for the secondary instability analysis was based on their potential relevance to transition in a low disturbance environment and the effects of nonlinearity on the evolution of primary disturbances was accounted for. Strongly nonlinear effects related to the self-interaction of second mode disturbances lead to an upstream shift in the upper branch neutral location. Secondary instability computations confirm the previously known dominance of subharmonic modes at relatively small primary amplitudes. However, for the Purdue Mach 6 compression cone configuration, it was shown that a strong fundamental secondary instability can exist for a range of initial amplitudes of the most amplified second mode disturbance, indicating that the exclusive focus on subharmonic modes in the previous applications of secondary instability theory to second mode primary instability may not have been fully justified.

  15. Does the Addition of M-Mode to B-Mode Ultrasound Increase the Accuracy of Identification of Lung Sliding in Traumatic Pneumothoraces?

    PubMed

    Avila, Jacob; Smith, Ben; Mead, Therese; Jurma, Duane; Dawson, Matthew; Mallin, Michael; Dugan, Adam

    2018-04-24

    It is unknown whether the addition of M-mode to B-mode ultrasound (US) has any effect on the overall accuracy of interpretation of lung sliding in the evaluation of a pneumothorax by emergency physicians. This study aimed to determine what effect, if any, this addition has on US interpretation by emergency physicians of varying training levels. One hundred forty emergency physicians were randomized via online software to receive a quiz with B-mode clips alone or B-mode with corresponding M-mode images and asked to identify the presence or absence of lung sliding. The sensitivity, specificity, and accuracy of the diagnosis of lung sliding with and without M-mode US were compared. Overall, the sensitivities, specificities, and accuracies of B-mode + M-mode US versus B-mode US alone were 93.1% and 93.2% (P = .8), 96.0% and 89.8% (P < .0001), and 91.5% and 94.5% (P = .0091), respectively. A subgroup analysis showed that in those providers with fewer than 250 total US scans done previously, M-mode US increased accuracy from 88.2% (95% confidence interval, 86.2%-90.2%) to 94.4% (92.8%-96.0%; P = .001) and increased the specificity from 87.0% (84.5%-89.5%) to 97.2% (95.4%-99.0%; P < .0001) compared with B-mode US alone. There was no statistically significant difference observed in the sensitivity, specificity, and accuracy of B-mode + M-mode US compared with B-mode US alone in those with more than 250 scans. The addition of M-mode images to B-mode clips aids in the accurate diagnosis of lung sliding by emergency physicians. The subgroup analysis showed that the benefit of M-mode US disappears after emergency physicians have performed more than 250 US examinations. © 2018 by the American Institute of Ultrasound in Medicine.

  16. Independent Orbiter Assessment (IOA): Assessment of the Orbiter Experiment (OEX) subsystem

    NASA Technical Reports Server (NTRS)

    Compton, J. M.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Orbiter Experiments (OEX) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison for the Orbiter OEX hardware are documented. The IOA product for the OEX analysis consisted of 82 failure mode worksheets that resulted in two potential critical items being identified.

  17. Multi-institutional application of Failure Mode and Effects Analysis (FMEA) to CyberKnife Stereotactic Body Radiation Therapy (SBRT).

    PubMed

    Veronese, Ivan; De Martin, Elena; Martinotti, Anna Stefania; Fumagalli, Maria Luisa; Vite, Cristina; Redaelli, Irene; Malatesta, Tiziana; Mancosu, Pietro; Beltramo, Giancarlo; Fariselli, Laura; Cantone, Marie Claire

    2015-06-13

    A multidisciplinary and multi-institutional working group applied the Failure Mode and Effects Analysis (FMEA) approach to assess the risks for patients undergoing Stereotactic Body Radiation Therapy (SBRT) treatments for lesions located in spine and liver in two CyberKnife® Centres. The various sub-processes characterizing the SBRT treatment were identified to generate the process trees of both the treatment planning and delivery phases. This analysis drove to the identification and subsequent scoring of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system. Novel solutions aimed to increase patient safety were accordingly considered. The process-tree characterising the SBRT treatment planning stage was composed with a total of 48 sub-processes. Similarly, 42 sub-processes were identified in the stage of delivery to liver tumours and 30 in the stage of delivery to spine lesions. All the sub-processes were judged to be potentially prone to one or more failure modes. Nineteen failures (i.e. 5 in treatment planning stage, 5 in the delivery to liver lesions and 9 in the delivery to spine lesions) were considered of high concern in view of the high RPN and/or severity index value. The analysis of the potential failures, their causes and effects allowed to improve the safety strategies already adopted in the clinical practice with additional measures for optimizing quality management workflow and increasing patient safety.

  18. TU-FG-201-12: Designing a Risk-Based Quality Assurance Program for a Newly Implemented Y-90 Microspheres Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vile, D; Zhang, L; Cuttino, L

    2016-06-15

    Purpose: To create a quality assurance program based upon a risk-based assessment of a newly implemented SirSpheres Y-90 procedure. Methods: A process map was created for a newly implemented SirSpheres procedure at a community hospital. The process map documented each step of this collaborative procedure, as well as the roles and responsibilities of each member. From the process map, different potential failure modes were determined as well as any current controls in place. From this list, a full failure mode and effects analysis (FMEA) was performed by grading each failure mode’s likelihood of occurrence, likelihood of detection, and potential severity.more » These numbers were then multiplied to compute the risk priority number (RPN) for each potential failure mode. Failure modes were then ranked based on their RPN. Additional controls were then added, with failure modes corresponding to the highest RPNs taking priority. Results: A process map was created that succinctly outlined each step in the SirSpheres procedure in its current implementation. From this, 72 potential failure modes were identified and ranked according to their associated RPN. Quality assurance controls and safety barriers were then added for failure modes associated with the highest risk being addressed first. Conclusion: A quality assurance program was created from a risk-based assessment of the SirSpheres process. Process mapping and FMEA were effective in identifying potential high-risk failure modes for this new procedure, which were prioritized for new quality assurance controls. TG 100 recommends the fault tree analysis methodology to design a comprehensive and effective QC/QM program, yet we found that by simply introducing additional safety barriers to address high RPN failure modes makes the whole process simpler and safer.« less

  19. An Analysis of Intensive Mode Pedagogy in Management Education in India

    ERIC Educational Resources Information Center

    Mishra, Sita; Nargundkar, Rajendra

    2015-01-01

    Purpose: Management education is at its peak in India. But pedagogy and modes of delivery are not always innovative compared to top international Business Schools. It is through experimentation that the paper may be able to discover what works best in our context. The purpose of this paper is to determine the effectiveness of intensive mode of…

  20. A note on the effects of viscosity on the stability of a trailing-line vortex

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.; Khorrami, Mehdi R.

    1992-01-01

    The linear stability of the Batchelor (1964) vortex is examined with emphasis on new viscous modes recently found numerically by Khorrami (1991). Unlike the previously reported inviscid modes of instability, these modes are destabilized by viscosity and exhibit small growth rates at large Reynolds numbers. The analysis presented here uses a combination of asymptotic and numerical techniques. The results confirm the existence of the additional modes of instability due to viscosity.

  1. Effect of dark matter halo on global spiral modes in a collisionless galactic disk

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumavo; Saini, Tarun Deep; Jog, Chanda J.

    2017-07-01

    Low surface brightness (LSB) galaxies are dominated by dark matter halo from the innermost radii; hence they are ideal candidates to investigate the influence of dark matter on different dynamical aspects of spiral galaxies. Here, we study the effect of dark matter halo on grand-design, m = 2 , spiral modes in a galactic disk, treated as a collisionless system, by carrying out a global modal analysis within the WKB approximation. First, we study a superthin, LSB galaxy UGC 7321 and show that it does not support discrete global spiral modes when modeled as a disk-alone system or as a disk plus dark matter system. Even a moderate increase in the stellar central surface density does not yield any global spiral modes. This naturally explains the observed lack of strong large-scale spiral structure in LSBs. An earlier work (Ghosh et al., 2016) where the galactic disk was treated as a fluid system for simplicity had shown that the dominant halo could not arrest global modes. We found that this difference arises due to the different dispersion relation used in the two cases and which plays a crucial role in the search for global spiral modes. Thus the correct treatment of stars as a collisionless system as done here results in the suppression of global spiral modes, in agreement with the observations. We performed a similar modal analysis for the Galaxy, and found that the dark matter halo has a negligible effect on large-scale spiral structure.

  2. Bending strength of delaminated aerospace composites.

    PubMed

    Kinawy, Moustafa; Butler, Richard; Hunt, Giles W

    2012-04-28

    Buckling-driven delamination is considered among the most critical failure modes in composite laminates. This paper examines the propagation of delaminations in a beam under pure bending. A pre-developed analytical model to predict the critical buckling moment of a thin sub-laminate is extended to account for propagation prediction, using mixed-mode fracture analysis. Fractography analysis is performed to distinguish between mode I and mode II contributions to the final failure of specimens. Comparison between experimental results and analysis shows agreement to within 5 per cent in static propagation moment for two different materials. It is concluded that static fracture is almost entirely driven by mode II effects. This result was unexpected because it arises from a buckling mode that opens the delamination. For this reason, and because of the excellent repeatability of the experiments, the method of testing may be a promising means of establishing the critical value of mode II fracture toughness, G(IIC), of the material. Fatigue testing on similar samples showed that buckled delamination resulted in a fatigue threshold that was over 80 per cent lower than the static propagation moment. Such an outcome highlights the significance of predicting snap-buckling moment and subsequent propagation for design purposes.

  3. Mode evolution in polarization maintain few mode fibers and applications in mode-division-multiplexing systems

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zeng, Xinglin; Mo, Qi; Li, Wei; Liu, Zhijian; Wu, Jian

    2016-10-01

    In few-mode polarization-maintaining-fiber (FM-PMF), the effective-index splitting exists not only between orthogonally polarization state but also between degenerated modes within a high-order mode group. Hence besides the polarization state evolution, the mode patterns in each LP set are need to be analyzed. In this letter, the completed firstorder mode (LP11 mode) evolution in PM-FMF is analyzed and represented by analogous Jones vector and Poincarésphere respectively. Furthermore, with Jones matrix analysis, the modal dynamics in FM-PMFs is conveniently analyzed. The conclusions are used to propose a PM-FMF based LP11 mode rotator and an PM-FMF based OAM generator. Both simulation and experiments are conducted to investigate performance of the two devices.

  4. Two-mode mazer injected with V-type three-level atoms

    NASA Astrophysics Data System (ADS)

    Liang, Wen-Qing; Zhang, Zhi-Ming; Xie, Sheng-Wu

    2003-12-01

    The properties of the two-mode mazer operating on V-type three-level atoms are studied. The effect of the one-atom pumping on the two modes of the cavity field in number-state is asymmetric, that is, the atom emits a photon into one mode with some probability and absorbs a photon from the other mode with some other probability. This effect makes the steady-state photon distribution and the steady-state photon statistics asymmetric for the two modes. The diagram of the probability currents for the photon distribution, given by the analysis of the master equation, reveals that there is no detailed balance solution for the master equation. The computations show that the photon statistics of one mode or both modes can be sub-Poissonian, that the two modes can have anticorrelation or correlation, that the photon statistics increases with the increase of thermal photons and that the resonant position and strength of the photon statistics are influenced by the ratio of the two coupling strengths of the two modes. These properties are also discussed physically.

  5. Efficient vibration mode analysis of aircraft with multiple external store configurations

    NASA Technical Reports Server (NTRS)

    Karpel, M.

    1988-01-01

    A coupling method for efficient vibration mode analysis of aircraft with multiple external store configurations is presented. A set of low-frequency vibration modes, including rigid-body modes, represent the aircraft. Each external store is represented by its vibration modes with clamped boundary conditions, and by its rigid-body inertial properties. The aircraft modes are obtained from a finite-element model loaded by dummy rigid external stores with fictitious masses. The coupling procedure unloads the dummy stores and loads the actual stores instead. The analytical development is presented, the effects of the fictitious mass magnitudes are discussed, and a numerical example is given for a combat aircraft with external wing stores. Comparison with vibration modes obtained by a direct (full-size) eigensolution shows very accurate coupling results. Once the aircraft and stores data bases are constructed, the computer time for analyzing any external store configuration is two to three orders of magnitude less than that of a direct solution.

  6. Vibration mode analysis of the proton exchange membrane fuel cell stack

    NASA Astrophysics Data System (ADS)

    Liu, B.; Liu, L. F.; Wei, M. Y.; Wu, C. W.

    2016-11-01

    Proton exchange membrane fuel cell (PEMFC) stacks usually undergo vibration during packing, transportation, and serving time, in particular for those used in the automobiles or portable equipment. To study the stack vibration response, based on finite element method (FEM), a mode analysis is carried out in the present paper. Using this method, we can distinguish the local vibration from the stack global modes, predict the vibration responses, such as deformed shape and direction, and discuss the effects of the clamping configuration and the clamping force magnitude on vibration modes. It is found that when the total clamping force remains the same, increasing the bolt number can strengthen the stack resistance to vibration in the clamping direction, but cannot obviously strengthen stack resistance to vibration in the translations perpendicular to clamping direction and the three axis rotations. Increasing the total clamping force can increase both of the stack global mode and the bolt local mode frequencies, but will decrease the gasket local mode frequency.

  7. Vibration Analysis of the Space Shuttle External Tank Cable Tray Flight Data With and Without PAL Ramp

    NASA Technical Reports Server (NTRS)

    Walker, Bruce E.; Panda, Jayanta; Sutliff, Daniel L.

    2008-01-01

    External Tank Cable Tray vibration data for three successive Space Shuttle flights were analyzed to assess response to buffet and the effect of removal of the Protuberance Air Loads (PAL) ramp. Waveform integration, spectral analysis, cross-correlation analysis and wavelet analysis were employed to estimate vibration modes and temporal development of vibration motion from a sparse array of accelerometers and an on-board system that acquired 16 channels of data for approximately the first 2 min of each flight. The flight data indicated that PAL ramp removal had minimal effect on the fluctuating loads on the cable tray. The measured vibration frequencies and modes agreed well with predicted structural response.

  8. Vibration Analysis of the Space Shuttle External Tank Cable Tray Flight Data with and without PAL Ramp

    NASA Technical Reports Server (NTRS)

    Walker, B. E.; Panda, B. E.; Sutliff, D. L.

    2008-01-01

    External Tank Cable Tray vibration data for three successive Space Shuttle flights were analyzed to assess response to buffet and the effect of removal of the Protuberance Air Loads (PAL) ramp. Waveform integration, spectral analysis, cross-correlation analysis and wavelet analysis were employed to estimate vibration modes and temporal development of vibration motion from a sparse array of accelerometers and an on-board system that acquired 16 channels of data for approximately the first two minutes of each flight. The flight data indicated that PAL ramp removal had minimal effect on the fluctuating loads on the cable tray. The measured vibration frequencies and modes agreed well with predicted structural response.

  9. Capillary jets in normal gravity: Asymptotic stability analysis and excitation using Maxwell and ultrasonic radiation stresses

    NASA Astrophysics Data System (ADS)

    Lonzaga, Joel Barci

    Both modulated ultrasonic radiation pressure and oscillating Maxwell stress from a voltage-modulated ring electrode are employed to excite low-frequency capillary modes of a weakly tapered liquid jet issuing from a nozzle. The capillary modes are waves formed at the surface of the liquid jet. The ultrasound is internally applied to the liquid jet waveguide and is cut off at a location resulting in a significantly enhanced oscillating radiation stress near the cutoff location. Alternatively, the thin electrode can generate a highly localized oscillating Maxwell stress on the jet surface. Experimental evidence shows that a spatially unstable mode with positive group velocity (propagating downstream from the excitation source) and a neutral mode with negative group velocity are both excited. Reflection at the nozzle boundary converts the neutral mode into an unstable one that interferes with the original unstable mode. The interference effect is observed downstream from the source using a laser-based optical extinction technique that detects the surface waves while the modulation frequency is scanned. This technique is very sensitive to small-amplitude disturbances. Existing linear, convective stability analyses on liquid jets accounting for the gravitational effect (i.e. varying radius and velocity) appear to be not applicable to non-slender, slow liquid jets considered here where the gravitational effect is found substantial at low flow rates. The multiple-scales method, asymptotic expansion and WKB approximation are used to derive a dispersion relation for the capillary wave similar to one obtained by Rayleigh but accounting for the gravitational effect. These mathematical tools aided by Langer's transformation are also used to derive a uniformly valid approximation for the acoustic wave propagation in a tapered cylindrical waveguide. The acoustic analytical approximation is validated by finite-element calculations. The jet response is modeled using a hybrid of Fourier analysis and the WKB-type analysis as proposed by Lighthill. The former derives the mode response to a highly localized source while the latter governs the mode propagation in a weakly inhomogeneous jet away from the source.

  10. PHYSIOLOCIGALLY BASED PHARMACOKINETIC (PBPK) MODELING AND MODE OF ACTION IN DOSE-RESPONSE ASSESSMENT

    EPA Science Inventory

    PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODELING AND MODE OF ACTION IN DOSE-RESPONSE ASSESSMENT. Barton HA. Experimental Toxicology Division, National Health and Environmental Effects Laboratory, ORD, U.S. EPA
    Dose-response analysis requires quantitatively linking infor...

  11. Risk analysis by FMEA as an element of analytical validation.

    PubMed

    van Leeuwen, J F; Nauta, M J; de Kaste, D; Odekerken-Rombouts, Y M C F; Oldenhof, M T; Vredenbregt, M J; Barends, D M

    2009-12-05

    We subjected a Near-Infrared (NIR) analytical procedure used for screening drugs on authenticity to a Failure Mode and Effects Analysis (FMEA), including technical risks as well as risks related to human failure. An FMEA team broke down the NIR analytical method into process steps and identified possible failure modes for each step. Each failure mode was ranked on estimated frequency of occurrence (O), probability that the failure would remain undetected later in the process (D) and severity (S), each on a scale of 1-10. Human errors turned out to be the most common cause of failure modes. Failure risks were calculated by Risk Priority Numbers (RPNs)=O x D x S. Failure modes with the highest RPN scores were subjected to corrective actions and the FMEA was repeated, showing reductions in RPN scores and resulting in improvement indices up to 5.0. We recommend risk analysis as an addition to the usual analytical validation, as the FMEA enabled us to detect previously unidentified risks.

  12. Comment on "Parametric Instability Induced by X-Mode Wave Heating at EISCAT" by Wang et al. (2016)

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Yeoman, T. K.

    2017-12-01

    In their recent article Wang et al. (2016) analyzed observations from EISCAT (European Incoherent Scatter) Scientific Association Russian X-mode heating experiments and claimed to explain the potential mechanisms for the parametric decay instability (PDI) and oscillating two-stream instability (OTSI). Wang et al. (2016) claim that they cannot separate the HF-enhanced plasma and ion lines excited by O or X mode in the EISCAT UHF radar spectra. Because of this they distinguished the parametric instability excited by O-/X-mode heating waves according to their different excitation heights. Their reflection heights were determined from ionosonde records, which provide a rough measure of excitation altitudes and cannot be used for the separation of the O- and X-mode effects. The serious limitation in their analysis is the use of a 30 s integration time of the UHF radar data. There are also serious disagreements between their analysis and the real observational facts. The fact is that it is the radical difference in the behavior of the X- and O-mode plasma and ion line spectra derived with a 5 s resolution, which provides the correct separation of the X- and O-mode effects. It is not discussed and explained how the parallel component of the electric field under X-mode heating is generated. Apart from the leakage to the O mode, results by Wang et al. (2016) do not explain the potential mechanisms for PDI and OTSI and add nothing to understanding the physical factors accounting for the parametric instability generated by an X-mode HF pump wave.

  13. Using the Web to Collect Data on Sensitive Behaviours: A Study Looking at Mode Effects on the British National Survey of Sexual Attitudes and Lifestyles

    PubMed Central

    Burkill, Sarah; Copas, Andrew; Couper, Mick P.; Clifton, Soazig; Prah, Philip; Datta, Jessica; Conrad, Frederick; Wellings, Kaye; Johnson, Anne M.; Erens, Bob

    2016-01-01

    Background Interviewer-administered surveys are an important method of collecting population-level epidemiological data, but suffer from declining response rates and increasing costs. Web surveys offer more rapid data collection and lower costs. There are concerns, however, about data quality from web surveys. Previous research has largely focused on selection biases, and few have explored measurement differences. This paper aims to assess the extent to which mode affects the responses given by the same respondents at two points in time, providing information on potential measurement error if web surveys are used in the future. Methods 527 participants from the third British National Survey of Sexual Attitudes and Lifestyles (Natsal-3), which uses computer assisted personal interview (CAPI) and self-interview (CASI) modes, subsequently responded to identically-worded questions in a web survey. McNemar tests assessed whether within-person differences in responses were at random or indicated a mode effect, i.e. higher reporting of more sensitive responses in one mode. An analysis of pooled responses by generalized estimating equations addressed the impact of gender and question type on change. Results Only 10% of responses changed between surveys. However mode effects were found for about a third of variables, with higher reporting of sensitive responses more commonly found on the web compared with Natsal-3. Conclusions The web appears a promising mode for surveys of sensitive behaviours, most likely as part of a mixed-mode design. Our findings suggest that mode effects may vary by question type and content, and by the particular mix of modes used. Mixed-mode surveys need careful development to understand mode effects and how to account for them. PMID:26866687

  14. A DMAP Program for the Selection of Accelerometer Locations in MSC/NASTRAN

    NASA Technical Reports Server (NTRS)

    Peck, Jeff; Torres, Isaias

    2004-01-01

    A new program for selecting sensor locations has been written in the DMAP (Direct Matrix Abstraction Program) language of MSC/NASTRAN. The program implements the method of Effective Independence for selecting sensor locations, and is executed within a single NASTRAN analysis as a "rigid format alter" to the normal modes solution sequence (SOL 103). The user of the program is able to choose among various analysis options using Case Control and Bulk Data entries. Algorithms tailored for the placement of both uni-axial and tri- axial accelerometers are available, as well as several options for including the model s mass distribution into the calculations. Target modes for the Effective Independence analysis are selected from the MSC/NASTRAN ASET modes calculated by the "SOL 103" solution sequence. The initial candidate sensor set is also under user control, and is selected from the ASET degrees of freedom. Analysis results are printed to the MSCINASTRAN output file (*.f06), and may include the current candidate sensors set, and their associated Effective Independence distribution, at user specified iteration intervals. At the conclusion of the analysis, the model is reduced to the final sensor set, and frequencies and orthogonality checks are printed. Example results are given for a pre-test analysis of NASA s five-segment solid rocket booster modal test.

  15. Hazards/Failure Modes and Effects Analysis MK 1 MOD 0 LSO-HUD Console System.

    DTIC Science & Technology

    1980-03-24

    AsI~f~ ! 127 = 3gc Z Isre -0 -q ~sI I I 𔃻~~~ ~ _ _ 3_______ II! -0udC Z Z’ P4 12 d-U * ~s ’:i~i42 S- 60 -, Uh ~ U3l I OM -C ~ . - U 4~ dcd 8U-q Ali...8 VI SCOPE AND METHODOLOGY OF ANALYSIS ........ 1O FIGURE 1: H/ FMEA /(SSA) WORK SHEET FORMAT ........... 14 APPENDIX A: HAZARD/FAILURE MODES AND...EFFECTS ANALYSIS (H/ FMEA ) -- WORK SHEETS ......... 15(A-O) TABLE: SUBSYSTEM: UNIT I Heads-Up Display Console .............. 17(A-1) UNIT 2 Auxiliary

  16. A devil in the detail: parameter cross-talk from the solar cycle and estimation of solar p-mode frequencies

    NASA Astrophysics Data System (ADS)

    Chaplin, W. J.; Jiménez-Reyes, S. J.; Eff-Darwich, A.; Elsworth, Y.; New, R.

    2008-04-01

    Frequencies, powers and damping rates of the solar p modes are all observed to vary over the 11-yr solar activity cycle. Here, we show that simultaneous variations in these parameters give rise to a subtle cross-talk effect, which we call the `devil in the detail', that biases p-mode frequencies estimated from analysis of long power frequency spectra. We also show that the resonant peaks observed in the power frequency spectra show small distortions due to the effect. Most of our paper is devoted to a study of the effect for Sun-as-a-star observations of the low-l p modes. We show that for these data the significance of the effect is marginal. We also touch briefly on the likely l dependence of the effect, and discuss the implications of these results for solar structure inversions.

  17. An Approach for Economic Analysis of Intermodal Transportation

    PubMed Central

    Sahin, Bahri; Ust, Yasin; Guneri, Ali Fuat; Gulsun, Bahadir; Turan, Eda

    2014-01-01

    A different intermodal transportation model based on cost analysis considering technical, economical, and operational parameters is presented. The model consists of such intermodal modes as sea-road, sea-railway, road-railway, and multimode of sea-road-railway. A case study of cargo transportation has been carried out by using the suggested model. Then, the single road transportation mode has been compared to intermodal modes in terms of transportation costs. This comparison takes into account the external costs of intermodal transportation. The research reveals that, in the short distance transportation, single transportation modes always tend to be advantageous. As the transportation distance gets longer, intermodal transportation advantages begin to be effective on the costs. In addition, the proposed method in this study leads to determining the fleet size and capacity for transportation and the appropriate transportation mode. PMID:25152919

  18. An approach for economic analysis of intermodal transportation.

    PubMed

    Sahin, Bahri; Yilmaz, Huseyin; Ust, Yasin; Guneri, Ali Fuat; Gulsun, Bahadir; Turan, Eda

    2014-01-01

    A different intermodal transportation model based on cost analysis considering technical, economical, and operational parameters is presented. The model consists of such intermodal modes as sea-road, sea-railway, road-railway, and multimode of sea-road-railway. A case study of cargo transportation has been carried out by using the suggested model. Then, the single road transportation mode has been compared to intermodal modes in terms of transportation costs. This comparison takes into account the external costs of intermodal transportation. The research reveals that, in the short distance transportation, single transportation modes always tend to be advantageous. As the transportation distance gets longer, intermodal transportation advantages begin to be effective on the costs. In addition, the proposed method in this study leads to determining the fleet size and capacity for transportation and the appropriate transportation mode.

  19. Fuzzy Risk Evaluation in Failure Mode and Effects Analysis Using a D Numbers Based Multi-Sensor Information Fusion Method.

    PubMed

    Deng, Xinyang; Jiang, Wen

    2017-09-12

    Failure mode and effect analysis (FMEA) is a useful tool to define, identify, and eliminate potential failures or errors so as to improve the reliability of systems, designs, and products. Risk evaluation is an important issue in FMEA to determine the risk priorities of failure modes. There are some shortcomings in the traditional risk priority number (RPN) approach for risk evaluation in FMEA, and fuzzy risk evaluation has become an important research direction that attracts increasing attention. In this paper, the fuzzy risk evaluation in FMEA is studied from a perspective of multi-sensor information fusion. By considering the non-exclusiveness between the evaluations of fuzzy linguistic variables to failure modes, a novel model called D numbers is used to model the non-exclusive fuzzy evaluations. A D numbers based multi-sensor information fusion method is proposed to establish a new model for fuzzy risk evaluation in FMEA. An illustrative example is provided and examined using the proposed model and other existing method to show the effectiveness of the proposed model.

  20. Fuzzy Risk Evaluation in Failure Mode and Effects Analysis Using a D Numbers Based Multi-Sensor Information Fusion Method

    PubMed Central

    Deng, Xinyang

    2017-01-01

    Failure mode and effect analysis (FMEA) is a useful tool to define, identify, and eliminate potential failures or errors so as to improve the reliability of systems, designs, and products. Risk evaluation is an important issue in FMEA to determine the risk priorities of failure modes. There are some shortcomings in the traditional risk priority number (RPN) approach for risk evaluation in FMEA, and fuzzy risk evaluation has become an important research direction that attracts increasing attention. In this paper, the fuzzy risk evaluation in FMEA is studied from a perspective of multi-sensor information fusion. By considering the non-exclusiveness between the evaluations of fuzzy linguistic variables to failure modes, a novel model called D numbers is used to model the non-exclusive fuzzy evaluations. A D numbers based multi-sensor information fusion method is proposed to establish a new model for fuzzy risk evaluation in FMEA. An illustrative example is provided and examined using the proposed model and other existing method to show the effectiveness of the proposed model. PMID:28895905

  1. Demonstration Advanced Avionics System (DAAS), Phase 1

    NASA Technical Reports Server (NTRS)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1981-01-01

    Demonstration advanced anionics system (DAAS) function description, hardware description, operational evaluation, and failure mode and effects analysis (FMEA) are provided. Projected advanced avionics system (PAAS) description, reliability analysis, cost analysis, maintainability analysis, and modularity analysis are discussed.

  2. Giant magneto-optical Raman effect in a layered transition metal compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Jianting; Zhang, Anmin; Fan, Jiahe

    2016-02-16

    Here, we report a dramatic change in the intensity of a Raman mode with applied magnetic field, displaying a gigantic magneto-optical effect. Using the nonmagnetic layered material MoS 2 as a prototype system, we demonstrate that the application of a magnetic field perpendicular to the layers produces a dramatic change in intensity for the out-of-plane vibrations of S atoms, but no change for the in-plane breathing mode. The distinct intensity variation between these two modes results from the effect of field-induced broken symmetry on Raman scattering cross-section. A quantitative analysis on the field-dependent integrated Raman intensity provides a unique methodmore » to precisely determine optical mobility. Our analysis is symmetry-based and material-independent, and thus the observations should be general and inspire a new branch of inelastic light scattering and magneto-optical applications.« less

  3. Understanding Student Travel Behaviour in Semarang City

    NASA Astrophysics Data System (ADS)

    Manullang, O. R.; Tyas, W. P.; Anas, N.; Aji, F. N.

    2018-02-01

    The highest movement in Semarang City is dominated by motorcycles, which reached 79% of the number of vehicles. Highest percentage movement use motorcycle caused the highest percentage accident by motorcycle users, which reached 66% and 9% involving high school students. This happens because of the dependence of motorcycles usage in fulfilling the needs of movement in the city of Semarang. Understanding student travel behavior based on their activities is used to know travel needs and the cause of dependence on motorcycle usage. Analysis method in this study use network analysis to compare the potential accessibility and actual accessibility to known why motorcycle chosen by students as the main mode. In addition, phenomenology analysis is used to explain the intent and reasons the data produced by network analysis. The analysis result indicates that the high use of motorcycles by high school students in the Semarang city due to the absence of other effective and efficient modes in fulfilling the movement needs. Even, the student which can potentially use public transport preferred to use a motorcycle. This mode is more effective and efficient because of its flexibility and lower costs.

  4. Failure modes and effects criticality analysis and accelerated life testing of LEDs for medical applications

    NASA Astrophysics Data System (ADS)

    Sawant, M.; Christou, A.

    2012-12-01

    While use of LEDs in Fiber Optics and lighting applications is common, their use in medical diagnostic applications is not very extensive. Since the precise value of light intensity will be used to interpret patient results, understanding failure modes [1-4] is very important. We used the Failure Modes and Effects Criticality Analysis (FMECA) tool to identify the critical failure modes of the LEDs. FMECA involves identification of various failure modes, their effects on the system (LED optical output in this context), their frequency of occurrence, severity and the criticality of the failure modes. The competing failure modes/mechanisms were degradation of: active layer (where electron-hole recombination occurs to emit light), electrodes (provides electrical contact to the semiconductor chip), Indium Tin Oxide (ITO) surface layer (used to improve current spreading and light extraction), plastic encapsulation (protective polymer layer) and packaging failures (bond wires, heat sink separation). A FMECA table is constructed and the criticality is calculated by estimating the failure effect probability (β), failure mode ratio (α), failure rate (λ) and the operating time. Once the critical failure modes were identified, the next steps were generation of prior time to failure distribution and comparing with our accelerated life test data. To generate the prior distributions, data and results from previous investigations were utilized [5-33] where reliability test results of similar LEDs were reported. From the graphs or tabular data, we extracted the time required for the optical power output to reach 80% of its initial value. This is our failure criterion for the medical diagnostic application. Analysis of published data for different LED materials (AlGaInP, GaN, AlGaAs), the Semiconductor Structures (DH, MQW) and the mode of testing (DC, Pulsed) was carried out. The data was categorized according to the materials system and LED structure such as AlGaInP-DH-DC, AlGaInP-MQW-DC, GaN-DH-DC, and GaN-DH-DC. Although the reported testing was carried out at different temperature and current, the reported data was converted to the present application conditions of the medical environment. Comparisons between the model data and accelerated test results carried out in the present are reported. The use of accelerating agent modeling and regression analysis was also carried out. We have used the Inverse Power Law model with the current density J as the accelerating agent and the Arrhenius model with temperature as the accelerating agent. Finally, our reported methodology is presented as an approach for analyzing LED suitability for the target medical diagnostic applications.

  5. Use of shift gradient in the second dimension to improve the separation space in comprehensive two-dimensional liquid chromatography.

    PubMed

    Li, Duxin; Schmitz, Oliver J

    2013-08-01

    Comprehensive two-dimensional liquid chromatography (LC × LC) has received much attention because it offers much higher peak capacities than separation in a single dimension. The advantageous peak capacity makes it attractive for the separation of complex samples. Various gradient methods have been used in LC × LC systems. The use of continuous shift gradient is advantageous because it combines the peak compression effect of full gradient mode and the tailed gradient program in parallel gradient mode. Here, a comparison of LC × LC analysis of Chinese herbal medicine with full gradient mode and shift gradient mode in the second dimension was performed. A correlation between the first and second dimensions was found in full gradient mode, and this was significantly reduced with shift gradient mode. The orthogonality increased by 43.7%. The effective peak distribution area increased significantly, which produced better separation.

  6. A new optimal sliding mode controller design using scalar sign function.

    PubMed

    Singla, Mithun; Shieh, Leang-San; Song, Gangbing; Xie, Linbo; Zhang, Yongpeng

    2014-03-01

    This paper presents a new optimal sliding mode controller using the scalar sign function method. A smooth, continuous-time scalar sign function is used to replace the discontinuous switching function in the design of a sliding mode controller. The proposed sliding mode controller is designed using an optimal Linear Quadratic Regulator (LQR) approach. The sliding surface of the system is designed using stable eigenvectors and the scalar sign function. Controller simulations are compared with another existing optimal sliding mode controller. To test the effectiveness of the proposed controller, the controller is implemented on an aluminum beam with piezoceramic sensor and actuator for vibration control. This paper includes the control design and stability analysis of the new optimal sliding mode controller, followed by simulation and experimental results. The simulation and experimental results show that the proposed approach is very effective. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  7. [Failure mode and effects analysis to improve quality in clinical trials].

    PubMed

    Mañes-Sevilla, M; Marzal-Alfaro, M B; Romero Jiménez, R; Herranz-Alonso, A; Sanchez Fresneda, M N; Benedi Gonzalez, J; Sanjurjo-Sáez, M

    The failure mode and effects analysis (FMEA) has been used as a tool in risk management and quality improvement. The objective of this study is to identify the weaknesses in processes in the clinical trials area, of a Pharmacy Department (PD) with great research activity, in order to improve the safety of the usual procedures. A multidisciplinary team was created to analyse each of the critical points, identified as possible failure modes, in the development of clinical trial in the PD. For each failure mode, the possible cause and effect were identified, criticality was calculated using the risk priority number and the possible corrective actions were discussed. Six sub-processes were defined in the development of the clinical trials in PD. The FMEA identified 67 failure modes, being the dispensing and prescription/validation sub-processes the most likely to generate errors. All the improvement actions established in the AMFE were implemented in the Clinical Trials area. The FMEA is a useful tool in proactive risk management because it allows us to identify where we are making mistakes and analyze the causes that originate them, to prioritize and to adopt solutions to risk reduction. The FMEA improves process safety and quality in PD. Copyright © 2018 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Particle-in-cell simulation study on halo formation in anisotropic beams

    NASA Astrophysics Data System (ADS)

    Ikegami, Masanori

    2000-11-01

    In a recent paper (M. Ikegami, Nucl. Instr. and Meth. A 435 (1999) 284), we investigated halo formation processes in transversely anisotropic beams based on the particle-core model. The effect of simultaneous excitation of two normal modes of core oscillation, i.e., high- and low-frequency modes, was examined. In the present study, self-consistent particle simulations are performed to confirm the results obtained in the particle-core analysis. In these simulations, it is confirmed that the particle-core analysis can predict the halo extent accurately even in anisotropic situations. Furthermore, we find that the halo intensity is enhanced in some cases where two normal modes of core oscillation are simultaneously excited as expected in the particle-core analysis. This result is of practical importance because pure high-frequency mode oscillation has frequently been assumed in preceding halo studies. The dependence of halo intensity on the 2:1 fixed point locations is also discussed.

  9. Ray propagation path analysis of acousto-ultrasonic signals in composites

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1987-01-01

    The most important result was the demonstration that acousto-ultrasonic (AU) energy introduced into a laminated graphite/resin propagates by two modes through the structure. The first mode, along the graphite fibers, is the faster. The second mode, through the resin matrix, besides being slower is also more strongly attenuated at the higher frequencies. This demonstration was accomplished by analyzing the time and frequency domain of the composite AU signal and comparing them to the same for a neat resin specimen of the same chemistry and geometry as the composite matrix. Analysis of the fine structure of AU spectra was accomplished by various geometrical strategies. It was shown that the multitude of narrow peaks associated with AU spectra are the effect of the many pulse arrivals in the signal. The shape and distribution of the peaks is mainly determined by the condition of nonnormal reflections of ray paths. A cepstrum analysis was employed which can be useful in detecting characteristic times. Analysis of propagation modes can be accomplished while ignoring the fine structure.

  10. Cellular instability in rapid directional solidification - Bifurcation theory

    NASA Technical Reports Server (NTRS)

    Braun, R. J.; Davis, S. H.

    1992-01-01

    Merchant and Davis performed a linear stability analysis on a model for the directional solidification of a dilute binary alloy valid for all speeds. The analysis revealed that nonequilibrium segregation effects modify the Mullins and Sekerka cellular mode, whereas attachment kinetics has no effect on these cells. In this paper, the nonlinear stability of the steady cellular mode is analyzed. A Landau equation is obtained that determines the amplitude of the cells. The Landau coefficient here depends on both nonequilibrium segregation effects and attachment kinetics. This equation gives the ranges of parameters for subcritical bifurcation (jump transition) or supercritical bifurcation (smooth transition) to cells.

  11. Economic evaluation of the DiAMOND randomized trial: cost and outcomes of 2 decision aids for mode of delivery among women with a previous cesarean section.

    PubMed

    Hollinghurst, Sandra; Emmett, Clare; Peters, Tim J; Watson, Helen; Fahey, Tom; Murphy, Deirdre J; Montgomery, Alan

    2010-01-01

    Maternal preferences should be considered in decisions about mode of delivery following a previous cesarean, but risks and benefits are unclear. Decision aids can help decision making, although few studies have assessed costs in conjunction with effectiveness. Economic evaluation of 2 decision aids for women with 1 previous cesarean. Cost-consequences analysis. Data sources were self-reported resource use and outcome and published national unit costs. The target population was women with 1 previous cesarean. The time horizon was 37 weeks' gestation and 6 weeks postnatal. The perspective was health care delivery system. The interventions were usual care, usual care plus an information program, and usual care plus a decision analysis program. The outcome measures were costs to the National Health Service (NHS) in the United Kingdom (UK), score on the Decisional Conflict Scale, and mode of delivery. RESULTS OF MAIN ANALYSIS: Cost of delivery represented 84% of the total cost; mode of delivery was the most important determinant of cost differences across the groups. Mean (SD) total cost per mother and baby: 2033 (677) for usual care, 2069 (738) for information program, and 2019 (741) for decision analysis program. Decision aids reduced decisional conflict. Women using the decision analysis program had fewest cesarean deliveries. Applying a cost premium to emergency cesareans over electives had little effect on group comparisons. Conclusions were unaffected. Disparity in timing of outcomes and costs, data completeness, and quality. Decision aids can reduce decisional conflict in women with a previous cesarean section when deciding on mode of delivery. The information program could be implemented at no extra cost to the NHS. The decision analysis program might reduce the rate of cesarean sections without any increase in costs.

  12. Cost Analysis of Direct versus Indirect and Individual versus Group Modes of Manual-Based Speech-and-Language Therapy for Primary School-Age Children with Primary Language Impairment

    ERIC Educational Resources Information Center

    Dickson, Kirstin; Marshall, Marjorie; Boyle, James; McCartney, Elspeth; O'Hare, Anne; Forbes, John

    2009-01-01

    Background: The study is the first within trial cost analysis of direct versus indirect and individual versus group modes of speech-and-language therapy for children with primary language impairment. Aims: To compare the short-run resource consequences of the four interventions alongside the effects achieved measured by standardized scores on a…

  13. Analysis of nonreciprocal noise based on mode splitting in a high-Q optical microresonator

    NASA Astrophysics Data System (ADS)

    Yang, Zhaohua; Xiao, Yarong; Huo, Jiayan; Shao, Hui

    2018-01-01

    The whispering gallery mode optical microresonator offers a high quality factor, which enables it to act as the core component of a high sensitivity resonator optic gyro; however, nonreciprocal noise limits its precision. Considering the Sagnac effect, i.e. mode splitting in high-quality optical micro-resonators, we derive the explicit expression for the angular velocity versus the splitting amount, and verify the sensing mechanism by simulation using finite element method. Remarkably, the accuracy of the angular velocity measurement in the whispering gallery mode optical microresonator with a quality factor of 108 is 106 °/s. We obtain the optimal coupling position of the novel angular velocity sensing system by detecting the output transmittance spectra of different vertical coupling distances and axial coupling positions. In addition, the reason for the nonreciprocal phenomenon is determined by theoretical analysis of the evanescent distribution of a tapered fiber. These results will provide an effective method and a theoretical basis for suppression of the nonreciprocal noise.

  14. Fuzzy-based failure mode and effect analysis (FMEA) of a hybrid molten carbonate fuel cell (MCFC) and gas turbine system for marine propulsion

    NASA Astrophysics Data System (ADS)

    Ahn, Junkeon; Noh, Yeelyong; Park, Sung Ho; Choi, Byung Il; Chang, Daejun

    2017-10-01

    This study proposes a fuzzy-based FMEA (failure mode and effect analysis) for a hybrid molten carbonate fuel cell and gas turbine system for liquefied hydrogen tankers. An FMEA-based regulatory framework is adopted to analyze the non-conventional propulsion system and to understand the risk picture of the system. Since the participants of the FMEA rely on their subjective and qualitative experiences, the conventional FMEA used for identifying failures that affect system performance inevitably involves inherent uncertainties. A fuzzy-based FMEA is introduced to express such uncertainties appropriately and to provide flexible access to a risk picture for a new system using fuzzy modeling. The hybrid system has 35 components and has 70 potential failure modes, respectively. Significant failure modes occur in the fuel cell stack and rotary machine. The fuzzy risk priority number is used to validate the crisp risk priority number in the FMEA.

  15. Utility of Failure Mode and Effect Analysis to Improve Safety in Suctioning by Orotracheal Tube.

    PubMed

    Vázquez-Valencia, Agustín; Santiago-Sáez, Andrés; Perea-Pérez, Bernardo; Labajo-González, Elena; Albarrán-Juan, Maria Elena

    2017-02-01

    The objective of the study was to use the Failure Mode and Effect Analysis (FMEA) tool to analyze the technique of secretion suctioning on patients with an endotracheal tube who were admitted into an intensive care unit. Brainstorming was carried out within the service to determine the potential errors most frequent in the process. After this, the FMEA was applied, including its stages, prioritizing risk in accordance with the risk prioritization number (RPN), selecting improvement actions in which they have an RPN of more than 300. We obtained 32 failure modes, of which 13 surpassed an RPN of 300. After our result, 21 improvement actions were proposed for those failure modes with RPN scores above 300. FMEA allows us to ascertain possible failures so as to later propose improvement actions for those which have an RPN of more than 300. Copyright © 2016 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  16. How to make the most of failure mode and effect analysis.

    PubMed

    Stalhandske, Erik; DeRosier, Joseph; Patail, Bryanne; Gosbee, John

    2003-01-01

    Current accreditation standards issued by the Joint Commission for the Accreditation of Healthcare Organizations (JCAHO) require hospitals to carry out a proactive risk assessment on at least 1 high-risk activity each year for each accredited program. Because hospital risk managers and patient safety managers generally do not have the knowledge or level of comfort for conducting a proactive risk assessment, they will appreciate the expertise offered by biomedical equipment technicians (BMETs), occupational safety and health professionals, and others. The skills that have been developed by BMETs and others while conducting job safety analyses or failure mode effect analysis can now be applied to a health care proactive analysis. This article touches on the Health Care Failure Mode and Effect Analysis (HFMEA) model that the Department of Veterans Affairs (VA) National Center for Patient Safety developed for proactive risk assessment within the health care community. The goal of this article is to enlighten BMETs and others on the growth of proactive risk assessment within health care and also on the support documents and materials produced by the VA. For additional information on HFMEA, visit the VA website at www.patientsafety.gov/HFMEA.html.

  17. Comparative study of dual-pulsed 1064 nm Q-switched Nd:YAG laser and single-pulsed 1064 nm Q-switched Nd:YAG laser by using zebrafish model and prospective split-face analysis of facial melasma.

    PubMed

    Jang, Hee Won; Chun, Seung Hyun; Park, Hae Chul; Ryu, Hwa Jung; Kim, Il-Hwan

    2017-04-01

    Recently dual-pulsed low-fluence 1064-nm Q-switched Nd:YAG (QSNY) laser has been developed for reducing complication during melasma treatment. Comparison of the efficacy and safety between dual-pulsed mode and single-pulsed mode for the treatment of melasma. In preclinical study, adult zebrafish were irradiated with dual-pulsed and single-pulsed mode. Changes of melanophore and cell death were assessed. In split-face clinical study, dual-pulsed and single-pulsed mode were irradiated on the left and right side of the face, respectively. L* value, clinical digital photos, modified Melasma Area and Severity Index (MASI) scores, and side effects were measured. As compared to single-pulsed mode and dual-pulsed mode with longer intervals, zebrafish melanophore was cleared quickly at dual-pulsed mode with 80-μsec interval and 0.3 J/cm 2 fluence. Dual-pulsed mode showed the least regeneration of melanophore at 4 weeks after irradiation and no cell death was observed with 80-μsec interval. Both pulse modes improved melasma significantly but modified MASI score and L* value were not significantly different between each other. Lesser pain and shorter duration of post-laser erythema were observed with dual-pulsed mode. Dual-pulsed mode was as effective as single-pulsed mode for the treatment of melasma and revealed less side effects.

  18. Practical Implementation of Failure Mode and Effects Analysis for Safety and Efficiency in Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younge, Kelly Cooper, E-mail: kyounge@med.umich.edu; Wang, Yizhen; Thompson, John

    2015-04-01

    Purpose: To improve the safety and efficiency of a new stereotactic radiosurgery program with the application of failure mode and effects analysis (FMEA) performed by a multidisciplinary team of health care professionals. Methods and Materials: Representatives included physicists, therapists, dosimetrists, oncologists, and administrators. A detailed process tree was created from an initial high-level process tree to facilitate the identification of possible failure modes. Group members were asked to determine failure modes that they considered to be the highest risk before scoring failure modes. Risk priority numbers (RPNs) were determined by each group member individually and then averaged. Results: A totalmore » of 99 failure modes were identified. The 5 failure modes with an RPN above 150 were further analyzed to attempt to reduce these RPNs. Only 1 of the initial items that the group presumed to be high-risk (magnetic resonance imaging laterality reversed) was ranked in these top 5 items. New process controls were put in place to reduce the severity, occurrence, and detectability scores for all of the top 5 failure modes. Conclusions: FMEA is a valuable team activity that can assist in the creation or restructuring of a quality assurance program with the aim of improved safety, quality, and efficiency. Performing the FMEA helped group members to see how they fit into the bigger picture of the program, and it served to reduce biases and preconceived notions about which elements of the program were the riskiest.« less

  19. Control of 3-D Modes in a Boundary Layer Undergoing Subharmonic Transition.

    NASA Astrophysics Data System (ADS)

    Corke, T. C.; Peto, J.; Speer, A.; Paroozan, P.; Sciammarella, C.

    1997-11-01

    The effect of alternating standing patterns of wall displacements in the transition region of a Falkner-Skan boundary layer with an adverse pressure gradient is investigated. Transition is controlled by introducing disturbances to excite a pair of oblique modes along with a plane TS mode. The oblique modes are at the TS subharmonic frequency in order to promote subharmonic resonance. Measurements consist of a spanwise rake of hot-wire sensors placed near the wall below the critical layer, and a 2-D (15 x 15) array of optical pressure sensors. The space-time data series are processed using 2-D Fourier analysis to determine the spanwise wave number content of the flow. Of particular interest is the streamwise vortex mode which results from a difference interaction of the subharmonic oblique modes. We examine the effect of different patterns and amplitudes of upstream wall displacements on the development of the travelling and stationary modes in this case leading to transition. Supported by ARO Grant No. DAAH04-93-G-0212

  20. Decoupled and linear quadratic regulator control of a large, flexible space antenna with an observer in the control loop

    NASA Technical Reports Server (NTRS)

    Hamer, H. A.; Johnson, K. G.; Young, J. W.

    1985-01-01

    An analysis is performed to compare decoupled and linear quadratic regulator (LQR) procedures for the control of a large, flexible space antenna. Control objectives involve: (1) commanding changes in the rigid-body modes, (2) nulling initial disturbances in the rigid-body modes, or (3) nulling initial disturbances in the first three flexible modes. Control is achieved with two three-axis control-moment gyros located on the antenna column. Results are presented to illustrate various effects on control requirements for the two procedures. These effects include errors in the initial estimates of state variables, variations in the type, number, and location of sensors, and deletions of state-variable estimates for certain flexible modes after control activation. The advantages of incorporating a time lag in the control feedback are also illustrated. In addition, the effects of inoperative-control situations are analyzed with regard to control requirements and resultant modal responses. Comparisons are included which show the effects of perfect state feedback with no residual modes (ideal case). Time-history responses are presented to illustrate the various effects on the control procedures.

  1. The use of failure mode and effects analysis to construct an effective disposal and prevention mechanism for infectious hospital waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Chao Chung, E-mail: ho919@pchome.com.tw; Liao, Ching-Jong

    Highlights: > This study is based on a real case in a regional teaching hospital in Taiwan. > We use Failure mode and effects analysis (FMEA) as the evaluation method. > We successfully identify the risk factors of infectious waste disposal. > We propose plans for the detection of exceptional cases of infectious waste. - Abstract: In recent times, the quality of medical care has been continuously improving in medical institutions wherein patient-centred care has been emphasized. Failure mode and effects analysis (FMEA) has also been promoted as a method of basic risk management and as part of total qualitymore » management (TQM) for improving the quality of medical care and preventing mistakes. Therefore, a study was conducted using FMEA to evaluate the potential risk causes in the process of infectious medical waste disposal, devise standard procedures concerning the waste, and propose feasible plans for facilitating the detection of exceptional cases of infectious waste. The analysis revealed the following results regarding medical institutions: (a) FMEA can be used to identify the risk factors of infectious waste disposal. (b) During the infectious waste disposal process, six items were scored over 100 in the assessment of uncontrolled risks: erroneous discarding of infectious waste by patients and their families, erroneous discarding by nursing staff, erroneous discarding by medical staff, cleaning drivers pierced by sharp articles, cleaning staff pierced by sharp articles, and unmarked output units. Therefore, the study concluded that it was necessary to (1) provide education and training about waste classification to the medical staff, patients and their families, nursing staff, and cleaning staff; (2) clarify the signs of caution; and (3) evaluate the failure mode and strengthen the effects.« less

  2. Spanwise effects on instabilities of compressible flow over a long rectangular cavity

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Taira, K.; Cattafesta, L. N.; Ukeiley, L. S.

    2017-12-01

    The stability properties of two-dimensional (2D) and three-dimensional (3D) compressible flows over a rectangular cavity with length-to-depth ratio of L/D=6 are analyzed at a free-stream Mach number of M_∞ =0.6 and depth-based Reynolds number of Re_D=502. In this study, we closely examine the influence of three-dimensionality on the wake mode that has been reported to exhibit high-amplitude fluctuations from the formation and ejection of large-scale spanwise vortices. Direct numerical simulation (DNS) and bi-global stability analysis are utilized to study the stability characteristics of the wake mode. Using the bi-global stability analysis with the time-averaged flow as the base state, we capture the global stability properties of the wake mode at a spanwise wavenumber of β =0. To uncover spanwise effects on the 2D wake mode, 3D DNS are performed with cavity width-to-depth ratio of W/D=1 and 2. We find that the 2D wake mode is not present in the 3D cavity flow with W/D=2, in which spanwise structures are observed near the rear region of the cavity. These 3D instabilities are further investigated via bi-global stability analysis for spanwise wavelengths of λ /D=0.5{-}2.0 to reveal the eigenspectra of the 3D eigenmodes. Based on the findings of 2D and 3D global stability analysis, we conclude that the absence of the wake mode in 3D rectangular cavity flows is due to the release of kinetic energy from the spanwise vortices to the streamwise vortical structures that develops from the spanwise instabilities.

  3. New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis.

    PubMed

    Meek, M E; Boobis, A; Cote, I; Dellarco, V; Fotakis, G; Munn, S; Seed, J; Vickers, C

    2014-01-01

    The World Health Organization/International Programme on Chemical Safety mode of action/human relevance framework has been updated to reflect the experience acquired in its application and extend its utility to emerging areas in toxicity testing and non-testing methods. The underlying principles have not changed, but the framework's scope has been extended to enable integration of information at different levels of biological organization and reflect evolving experience in a much broader range of potential applications. Mode of action/species concordance analysis can also inform hypothesis-based data generation and research priorities in support of risk assessment. The modified framework is incorporated within a roadmap, with feedback loops encouraging continuous refinement of fit-for-purpose testing strategies and risk assessment. Important in this construct is consideration of dose-response relationships and species concordance analysis in weight of evidence. The modified Bradford Hill considerations have been updated and additionally articulated to reflect increasing experience in application for cases where the toxicological outcome of chemical exposure is known. The modified framework can be used as originally intended, where the toxicological effects of chemical exposure are known, or in hypothesizing effects resulting from chemical exposure, using information on putative key events in established modes of action from appropriate in vitro or in silico systems and other lines of evidence. This modified mode of action framework and accompanying roadmap and case examples are expected to contribute to improving transparency in explicitly addressing weight of evidence considerations in mode of action/species concordance analysis based on both conventional data sources and evolving methods. Copyright © 2013 John Wiley & Sons, Ltd. The World Health Organization retains copyright and all other rights in the manuscript of this article as submitted for publication.

  4. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific

    PubMed Central

    Xu, Lixiao; Li, Peiliang; Xie, Shang-Ping; Liu, Qinyu; Liu, Cong; Gao, Wendian

    2016-01-01

    While modelling studies suggest that mesoscale eddies strengthen the subduction of mode waters, this eddy effect has never been observed in the field. Here we report results from a field campaign from March 2014 that captured the eddy effects on mode-water subduction south of the Kuroshio Extension east of Japan. The experiment deployed 17 Argo floats in an anticyclonic eddy (AC) with enhanced daily sampling. Analysis of over 3,000 hydrographic profiles following the AC reveals that potential vorticity and apparent oxygen utilization distributions are asymmetric outside the AC core, with enhanced subduction near the southeastern rim of the AC. There, the southward eddy flow advects newly ventilated mode water from the north into the main thermocline. Our results show that subduction by eddy lateral advection is comparable in magnitude to that by the mean flow—an effect that needs to be better represented in climate models. PMID:26829888

  5. Evaluating the operational risks of biomedical waste using failure mode and effects analysis.

    PubMed

    Chen, Ying-Chu; Tsai, Pei-Yi

    2017-06-01

    The potential problems and risks of biomedical waste generation have become increasingly apparent in recent years. This study applied a failure mode and effects analysis to evaluate the operational problems and risks of biomedical waste. The microbiological contamination of biomedical waste seldom receives the attention of researchers. In this study, the biomedical waste lifecycle was divided into seven processes: Production, classification, packaging, sterilisation, weighing, storage, and transportation. Twenty main failure modes were identified in these phases and risks were assessed based on their risk priority numbers. The failure modes in the production phase accounted for the highest proportion of the risk priority number score (27.7%). In the packaging phase, the failure mode 'sharp articles not placed in solid containers' had the highest risk priority number score, mainly owing to its high severity rating. The sterilisation process is the main difference in the treatment of infectious and non-infectious biomedical waste. The failure modes in the sterilisation phase were mainly owing to human factors (mostly related to operators). This study increases the understanding of the potential problems and risks associated with biomedical waste, thereby increasing awareness of how to improve the management of biomedical waste to better protect workers, the public, and the environment.

  6. Isotope effect in normal-to-local transition of acetylene bending modes

    DOE PAGES

    Ma, Jianyi; Xu, Dingguo; Guo, Hua; ...

    2012-01-01

    The normal-to-local transition for the bending modes of acetylene is considered a prelude to its isomerization to vinylidene. Here, such a transition in fully deuterated acetylene is investigated using a full-dimensional quantum model. It is found that the local benders emerge at much lower energies and bending quantum numbers than in the hydrogen isotopomer HCCH. This is accompanied by a transition to a second kind of bending mode called counter-rotator, again at lower energies and quantum numbers than in HCCH. These transitions are also investigated using bifurcation analysis of two empirical spectroscopic fitting Hamiltonians for pure bending modes, which helpsmore » to understand the origin of the transitions semiclassically as branchings or bifurcations out of the trans and normal bend modes when the latter become dynamically unstable. The results of the quantum model and the empirical bifurcation analysis are in very good agreement.« less

  7. Fracture Mechanics Analysis of Stitched Stiffener-Skin Debonding

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1998-01-01

    An analysis based on plate finite elements and the virtual crack closure technique has been implemented to study the effect of stitching on mode I and mode II strain energy release rates for debond configurations. The stitches were modeled as discrete nonlinear fastener elements with a compliance determined by experiment. The axial and shear behavior of the stitches was considered, however, the two compliances and failure loads were assumed to be independent. Both a double cantilever beam (mode I) and a mixed mode skin-stiffener debond configuration were studied. In the double cantilever beam configurations, G(sub I) began to decrease once the debond had grown beyond the first row of stitches and was reduced to zero for long debonds. In the mixed-mode skin-stiffener configurations, G(sub I) showed a similar behavior as in the double cantilever beam configurations, however, G(sub u), continued to increase with increasing debond length.

  8. Probing the statistical properties of CMB B-mode polarization through Minkowski functionals

    NASA Astrophysics Data System (ADS)

    Santos, Larissa; Wang, Kai; Zhao, Wen

    2016-07-01

    The detection of the magnetic type B-mode polarization is the main goal of future cosmic microwave background (CMB) experiments. In the standard model, the B-mode map is a strong non-gaussian field due to the CMB lensing component. Besides the two-point correlation function, the other statistics are also very important to dig the information of the polarization map. In this paper, we employ the Minkowski functionals to study the morphological properties of the lensed B-mode maps. We find that the deviations from Gaussianity are very significant for both full and partial-sky surveys. As an application of the analysis, we investigate the morphological imprints of the foreground residuals in the B-mode map. We find that even for very tiny foreground residuals, the effects on the map can be detected by the Minkowski functional analysis. Therefore, it provides a complementary way to investigate the foreground contaminations in the CMB studies.

  9. Use of FMEA analysis to reduce risk of errors in prescribing and administering drugs in paediatric wards: a quality improvement report

    PubMed Central

    Lago, Paola; Bizzarri, Giancarlo; Scalzotto, Francesca; Parpaiola, Antonella; Amigoni, Angela; Putoto, Giovanni; Perilongo, Giorgio

    2012-01-01

    Objective Administering medication to hospitalised infants and children is a complex process at high risk of error. Failure mode and effect analysis (FMEA) is a proactive tool used to analyse risks, identify failures before they happen and prioritise remedial measures. To examine the hazards associated with the process of drug delivery to children, we performed a proactive risk-assessment analysis. Design and setting Five multidisciplinary teams, representing different divisions of the paediatric department at Padua University Hospital, were trained to analyse the drug-delivery process, to identify possible causes of failures and their potential effects, to calculate a risk priority number (RPN) for each failure and plan changes in practices. Primary outcome To identify higher-priority potential failure modes as defined by RPNs and planning changes in clinical practice to reduce the risk of patients harm and improve safety in the process of medication use in children. Results In all, 37 higher-priority potential failure modes and 71 associated causes and effects were identified. The highest RPNs related (>48) mainly to errors in calculating drug doses and concentrations. Many of these failure modes were found in all the five units, suggesting the presence of common targets for improvement, particularly in enhancing the safety of prescription and preparation of endovenous drugs. The introductions of new activities in the revised process of administering drugs allowed reducing the high-risk failure modes of 60%. Conclusions FMEA is an effective proactive risk-assessment tool useful to aid multidisciplinary groups in understanding a process care and identifying errors that may occur, prioritising remedial interventions and possibly enhancing the safety of drug delivery in children. PMID:23253870

  10. Use of FMEA analysis to reduce risk of errors in prescribing and administering drugs in paediatric wards: a quality improvement report.

    PubMed

    Lago, Paola; Bizzarri, Giancarlo; Scalzotto, Francesca; Parpaiola, Antonella; Amigoni, Angela; Putoto, Giovanni; Perilongo, Giorgio

    2012-01-01

    Administering medication to hospitalised infants and children is a complex process at high risk of error. Failure mode and effect analysis (FMEA) is a proactive tool used to analyse risks, identify failures before they happen and prioritise remedial measures. To examine the hazards associated with the process of drug delivery to children, we performed a proactive risk-assessment analysis. Five multidisciplinary teams, representing different divisions of the paediatric department at Padua University Hospital, were trained to analyse the drug-delivery process, to identify possible causes of failures and their potential effects, to calculate a risk priority number (RPN) for each failure and plan changes in practices. To identify higher-priority potential failure modes as defined by RPNs and planning changes in clinical practice to reduce the risk of patients harm and improve safety in the process of medication use in children. In all, 37 higher-priority potential failure modes and 71 associated causes and effects were identified. The highest RPNs related (>48) mainly to errors in calculating drug doses and concentrations. Many of these failure modes were found in all the five units, suggesting the presence of common targets for improvement, particularly in enhancing the safety of prescription and preparation of endovenous drugs. The introductions of new activities in the revised process of administering drugs allowed reducing the high-risk failure modes of 60%. FMEA is an effective proactive risk-assessment tool useful to aid multidisciplinary groups in understanding a process care and identifying errors that may occur, prioritising remedial interventions and possibly enhancing the safety of drug delivery in children.

  11. Modal shifts in short-haul passenger travel and the consequent energy impacts. [Intercity travel under 500 miles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-03-01

    A study was performed to evaluate the impacts of strategies to effect modal shifts in short-haul passenger travel (defined herein as intercity travel under 500 miles) from energy-intensive modes to those modes that are less energy-intensive. A series of individual strategies, ranging from incentives to the less energy-intensive modes (bus, rail) to penalties to the more energy-intensive modes (auto, air) was examined to determine energy saved and policy implications relative to strategy implementation. The most effective of the individual strategies were then combined in all permutations, and the analysis was repeated. As part of the analytical process, effects of factorsmore » other than energy (user cost and time, emissions, government subsidy, and travel fatailities) were examined in a benefit/cost analysis. Finally, energy savings, benefit/cost impacts, implementation considerations, and policy implications were evaluated to arrive at conclusions as to the effectiveness of the more-influential strategies and to the overall effectiveness of induced modal shifts. The principal conclusion of the study is that the maximum 1980 energy saving that might be realized by modal shifts, discounting the concurrent effects of demand suppression and improvement of mode efficiency, is approximately 83 x 10/sup 12/ Btu (46,500 bbl gasoline per day), 3.8% of the total projected 1980 energy consumption in the short-haul transportation sector and 0.23% of the total US petroleum use. It was also concluded that strategies to achieve these small savings by modal shifts would result in significant economic, social, and business disruptions.« less

  12. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    NASA Astrophysics Data System (ADS)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-07-01

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. The purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. Unlike an earlier conclusion from an eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. A thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.

  13. Bicoherence Analysis of Electrostatic Interchange Mode Coupling in a Turbulent Laboratory Magnetosphere

    NASA Astrophysics Data System (ADS)

    Abler, M. C.; Mauel, M. E.; Saperstein, A.

    2017-12-01

    Plasmas confined by a strong dipole field exhibit interchange and entropy mode turbulence, which previous experiments have shown respond locally to active feedback [1]. On the Collisionless Terrella Experiment (CTX), this turbulence is characterized by low frequency, low order, quasi-coherent modes with complex spectral dynamics. We apply bicoherence analysis [2] to study nonlinear phase coupling in a variety of scenarios. First, we study the self-interaction of the naturally occurring interchange turbulence; this analysis is then expanded to include the effects of single or multiple driven modes in the frequency range of the background turbulent oscillations. Initial measurements of coupling coefficients are presented in both cases. Driven low frequency interchange modes are observed to generate multiple harmonics which persist throughout the plasma, becoming weaker as they propagate away from the actuator in the direction of the electron magnetic drift. Future work is also discussed, including application of wavelet bicoherence analysis and applications to planetary magnetospheres. [1] Roberts, Mauel, and Worstell, Phys Plasmas (2015). [2] Grierson, Worstell, and Mauel, Phys Plasmas (2009). Supported by NSF-DOE Partnership for Plasma Science Grants DOE-DE-FG02-00ER54585 and NSF-PHY-1201896.

  14. Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process

    NASA Astrophysics Data System (ADS)

    Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.

    2018-03-01

    A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.

  15. Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process

    NASA Astrophysics Data System (ADS)

    Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.

    2018-06-01

    A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.

  16. Study Of The Risks Arising From Natural Disasters And Hazards On Urban And Intercity Motorways By Using Failure Mode Effect Analysis (FMEA) Methods

    NASA Astrophysics Data System (ADS)

    DELİCE, Yavuz

    2015-04-01

    Highways, Located in the city and intercity locations are generally prone to many kind of natural disaster risks. Natural hazards and disasters that may occur firstly from highway project making to construction and operation stages and later during the implementation of highway maintenance and repair stages have to be taken into consideration. And assessment of risks that may occur against adverse situations is very important in terms of project design, construction, operation maintenance and repair costs. Making hazard and natural disaster risk analysis is largely depending on the definition of the likelihood of the probable hazards on the highways. However, assets at risk , and the impacts of the events must be examined and to be rated in their own. With the realization of these activities, intended improvements against natural hazards and disasters will be made with the utilization of Failure Mode Effects Analysis (FMEA) method and their effects will be analyzed with further works. FMEA, is a useful method to identify the failure mode and effects depending on the type of failure rate effects priorities and finding the most optimum economic and effective solution. Although relevant measures being taken for the identified risks by this analysis method , it may also provide some information for some public institutions about the nature of these risks when required. Thus, the necessary measures will have been taken in advance in the city and intercity highways. Many hazards and natural disasters are taken into account in risk assessments. The most important of these dangers can be listed as follows; • Natural disasters 1. Meteorological based natural disasters (floods, severe storms, tropical storms, winter storms, avalanches, etc.). 2. Geological based natural disasters (earthquakes, tsunamis, landslides, subsidence, sinkholes, etc) • Human originated disasters 1. Transport accidents (traffic accidents), originating from the road surface defects (icing, signaling caused malfunctions and risks), fire or explosion etc.- In this study, with FMEA method, risk analysis of the urban and intercity motorways against natural disasters and hazards have been performed and found solutions were brought against these risks. Keywords: Failure Modes Effects Analysis (FMEA), Pareto Analyses (PA), Highways, Risk Management.

  17. Multi-mode reliability-based design of horizontal curves.

    PubMed

    Essa, Mohamed; Sayed, Tarek; Hussein, Mohamed

    2016-08-01

    Recently, reliability analysis has been advocated as an effective approach to account for uncertainty in the geometric design process and to evaluate the risk associated with a particular design. In this approach, a risk measure (e.g. probability of noncompliance) is calculated to represent the probability that a specific design would not meet standard requirements. The majority of previous applications of reliability analysis in geometric design focused on evaluating the probability of noncompliance for only one mode of noncompliance such as insufficient sight distance. However, in many design situations, more than one mode of noncompliance may be present (e.g. insufficient sight distance and vehicle skidding at horizontal curves). In these situations, utilizing a multi-mode reliability approach that considers more than one failure (noncompliance) mode is required. The main objective of this paper is to demonstrate the application of multi-mode (system) reliability analysis to the design of horizontal curves. The process is demonstrated by a case study of Sea-to-Sky Highway located between Vancouver and Whistler, in southern British Columbia, Canada. Two noncompliance modes were considered: insufficient sight distance and vehicle skidding. The results show the importance of accounting for several noncompliance modes in the reliability model. The system reliability concept could be used in future studies to calibrate the design of various design elements in order to achieve consistent safety levels based on all possible modes of noncompliance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Engine performance analysis and optimization of a dual-mode scramjet with varied inlet conditions

    NASA Astrophysics Data System (ADS)

    Tian, Lu; Chen, Li-Hong; Chen, Qiang; Zhong, Feng-Quan; Chang, Xin-Yu

    2016-02-01

    A dual-mode scramjet can operate in a wide range of flight conditions. Higher thrust can be generated by adopting suitable combustion modes. Based on the net thrust, an analysis and preliminary optimal design of a kerosene-fueled parameterized dual-mode scramjet at a crucial flight Mach number of 6 were investigated by using a modified quasi-one-dimensional method and simulated annealing strategy. Engine structure and heat release distributions, affecting the engine thrust, were chosen as analytical parameters for varied inlet conditions (isolator entrance Mach number: 1.5-3.5). Results show that different optimal heat release distributions and structural conditions can be obtained at five different inlet conditions. The highest net thrust of the parameterized dual-mode engine can be achieved by a subsonic combustion mode at an isolator entrance Mach number of 2.5. Additionally, the effects of heat release and scramjet structure on net thrust have been discussed. The present results and the developed analytical method can provide guidance for the design and optimization of high-performance dual-mode scramjets.

  19. The effect of spin induced magnetization on Jeans instability of viscous and resistive quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Prerana, E-mail: preranaiitd@rediffmail.com; Chhajlani, R. K.

    2014-03-15

    The effect of spin induced magnetization and electrical resistivity incorporating the viscosity of the medium is examined on the Jeans instability of quantum magnetoplasma. Formulation of the system is done by using the quantum magnetohydrodynamic model. The analysis of the problem is carried out by normal mode analysis theory. The general dispersion relation is derived from set of perturbed equations to analyse the growth rate and condition of self-gravitational Jeans instability. To discuss the influence of resistivity, magnetization, and viscosity parameters on Jeans instability, the general dispersion relation is reduced for both transverse and longitudinal mode of propagations. In themore » case of transverse propagation, the gravitating mode is found to be affected by the viscosity, magnetization, resistivity, and magnetic field strength whereas Jeans criterion of instability is modified by the magnetization and quantum parameter. In the longitudinal mode of propagation, the gravitating mode is found to be modified due to the viscosity and quantum correction in which the Jeans condition of instability is influenced only by quantum parameter. The other non-gravitating Alfven mode in this direction is affected by finite electrical resistivity, spin induced magnetization, and viscosity. The numerical study for the growth rate of Jeans instability is carried out for both in the transverse and longitudinal direction of propagation to the magnetic field. The effect of various parameters on the growth rate of Jeans instability in quantum plasma is analysed.« less

  20. Independent Orbiter Assessment (IOA): Assessment of the life support and airlock support systems, volume 1

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Duffy, R. E.; Barickman, K.; Saiidi, M. J.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Life Support and Airlock Support Systems (LSS and ALSS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. The discrepancies were flagged for potential future resolution. This report documents the results of that comparison for the Orbiter LSS and ALSS hardware. The IOA product for the LSS and ALSS analysis consisted of 511 failure mode worksheets that resulted in 140 potential critical items. Comparison was made to the NASA baseline which consisted of 456 FMEAs and 101 CIL items. The IOA analysis identified 39 failure modes, 6 of which were classified as CIL items, for components not covered by the NASA FMEAs. It was recommended that these failure modes be added to the NASA FMEA baseline. The overall assessment produced agreement on all but 301 FMEAs which caused differences in 111 CIL items.

  1. Amplitude-dependent topological edge states in nonlinear phononic lattices

    NASA Astrophysics Data System (ADS)

    Pal, Raj Kumar; Vila, Javier; Leamy, Michael; Ruzzene, Massimo

    2018-03-01

    This work investigates the effect of nonlinearities on topologically protected edge states in one- and two-dimensional phononic lattices. We first show that localized modes arise at the interface between two spring-mass chains that are inverted copies of each other. Explicit expressions derived for the frequencies of the localized modes guide the study of the effect of cubic nonlinearities on the resonant characteristics of the interface, which are shown to be described by a Duffing-like equation. Nonlinearities produce amplitude-dependent frequency shifts, which in the case of a softening nonlinearity cause the localized mode to migrate to the bulk spectrum. The case of a hexagonal lattice implementing a phononic analog of a crystal exhibiting the quantum spin Hall effect is also investigated in the presence of weakly nonlinear cubic springs. An asymptotic analysis provides estimates of the amplitude dependence of the localized modes, while numerical simulations illustrate how the lattice response transitions from bulk-to-edge mode-dominated by varying the excitation amplitude. In contrast with the interface mode of the first example studies, this occurs both for hardening and softening springs. The results of this study provide a theoretical framework for the investigation of nonlinear effects that induce and control topologically protected wave modes through nonlinear interactions and amplitude tuning.

  2. Model authoring system for fail safe analysis

    NASA Technical Reports Server (NTRS)

    Sikora, Scott E.

    1990-01-01

    The Model Authoring System is a prototype software application for generating fault tree analyses and failure mode and effects analyses for circuit designs. Utilizing established artificial intelligence and expert system techniques, the circuits are modeled as a frame-based knowledge base in an expert system shell, which allows the use of object oriented programming and an inference engine. The behavior of the circuit is then captured through IF-THEN rules, which then are searched to generate either a graphical fault tree analysis or failure modes and effects analysis. Sophisticated authoring techniques allow the circuit to be easily modeled, permit its behavior to be quickly defined, and provide abstraction features to deal with complexity.

  3. A modal analysis of flexible aircraft dynamics with handling qualities implications

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1983-01-01

    A multivariable modal analysis technique is presented for evaluating flexible aircraft dynamics, focusing on meaningful vehicle responses to pilot inputs and atmospheric turbulence. Although modal analysis is the tool, vehicle time response is emphasized, and the analysis is performed on the linear, time-domain vehicle model. In evaluating previously obtained experimental pitch tracking data for a family of vehicle dynamic models, it is shown that flexible aeroelastic effects can significantly affect pitch attitude handling qualities. Consideration of the eigenvalues alone, of both rigid-body and aeroelastic modes, does not explain the simulation results. Modal analysis revealed, however, that although the lowest aeroelastic mode frequency was still three times greater than the short-period frequency, the rigid-body attitude response was dominated by this aeroelastic mode. This dominance was defined in terms of the relative magnitudes of the modal residues in selected vehicle responses.

  4. Independent Orbiter Assessment (IOA): Assessment of the crew equipment subsystem

    NASA Technical Reports Server (NTRS)

    Saxon, H.; Richard, Bill; Sinclair, S. K.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Crew Equipment hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Crew Equipment hardware. The IOA product for the Crew Equipment analysis consisted of 352 failure mode worksheets that resulted in 78 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 351 FMEAs and 82 CIL items.

  5. SU-E-T-635: Process Mapping of Eye Plaque Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huynh, J; Kim, Y

    Purpose: To apply a risk-based assessment and analysis technique (AAPM TG 100) to eye plaque brachytherapy treatment of ocular melanoma. Methods: The role and responsibility of personnel involved in the eye plaque brachytherapy is defined for retinal specialist, radiation oncologist, nurse and medical physicist. The entire procedure was examined carefully. First, major processes were identified and then details for each major process were followed. Results: Seventy-one total potential modes were identified. Eight major processes (corresponding detailed number of modes) are patient consultation (2 modes), pretreatment tumor localization (11), treatment planning (13), seed ordering and calibration (10), eye plaque assembly (10),more » implantation (11), removal (11), and deconstruction (3), respectively. Half of the total modes (36 modes) are related to physicist while physicist is not involved in processes such as during the actual procedure of suturing and removing the plaque. Conclusion: Not only can failure modes arise from physicist-related procedures such as treatment planning and source activity calibration, but it can also exist in more clinical procedures by other medical staff. The improvement of the accurate communication for non-physicist-related clinical procedures could potentially be an approach to prevent human errors. More rigorous physics double check would reduce the error for physicist-related procedures. Eventually, based on this detailed process map, failure mode and effect analysis (FMEA) will identify top tiers of modes by ranking all possible modes with risk priority number (RPN). For those high risk modes, fault tree analysis (FTA) will provide possible preventive action plans.« less

  6. Effect of density gradients in confined supersonic shear layers. Part 2: 3-D modes

    NASA Astrophysics Data System (ADS)

    Peroomian, Oshin; Kelly, R. E.

    1994-11-01

    The effect of basic flow density gradients on the supersonic wall modes were investigated in Part 1 of this analysis. In that investigation only the 2-D modes were studied. Tam and Hu investigated the 3-D modes in a confined vortex sheet and reported that the first 2-D Class A mode (A01) had the highest growth rate compared to all other 2-D and 3-D modes present in the vortex sheet for that particular set of flow patterns. They also showed that this result also held true for finite thickness shear layers with delta(sub w) less than 0.125. For free shear layers, Sandham and Reynolds showed that the 3-D K-H mode became the dominant mode for M(sub c) greater than 0.6. Jackson and Grosch investigated the effect of crossflow and obliqueness on the slow and fast odes present in a M(sub c) greater than 1 environment and showed that for certain combination of crossflow and wave angles the growth rates could be increased by up to a factor of 2 with respect to the 2-D case. The case studied here is a confined shear layer shown in Part 1. All solution procedures and basic low profiles are the same as in Part 1. The effect of density gradients on the 3-D modes present in the density ratios considered in Part 1 are investigated.

  7. Debonding of Stitched Composite Joints: Testing and Analysis

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1999-01-01

    The effect of stitches on the failure of a single lap joint configuration was determined in a combined experimental and analytical study. The experimental study was conducted to determine debond growth under static monotonic loading. The stitches were shown to delay the initiation ofthe debond and provide load transfer beyond the load necessary to completely debond the stitched lap joint. The strain energy release rates at the debond front were calculated using a finite element-based technique. Models of the unstitched configuration showed significant values of modes I and II across the width of the joint and showed that mode III is zero at the centerline but increases near the free edge. Models of the stitched configuration showed that the stitches effectively reduced mode I to zero, but had less of an effect on modes II and III.

  8. Population of collective modes in light scattering by many atoms

    NASA Astrophysics Data System (ADS)

    Guerin, William; Kaiser, Robin

    2017-05-01

    The interaction of light with an atomic sample containing a large number of particles gives rise to many collective (or cooperative) effects, such as multiple scattering, superradiance, and subradiance, even if the atomic density is low and the incident optical intensity weak (linear optics regime). Tracing over the degrees of freedom of the light field, the system can be well described by an effective atomic Hamiltonian, which contains the light-mediated dipole-dipole interaction between atoms. This long-range interaction is at the origin of the various collective effects, or of collective excitation modes of the system. Even though an analysis of the eigenvalues and eigenfunctions of these collective modes does allow distinguishing superradiant modes, for instance, from other collective modes, this is not sufficient to understand the dynamics of a driven system, as not all collective modes are significantly populated. Here, we study how the excitation parameters, i.e., the driving field, determines the population of the collective modes. We investigate in particular the role of the laser detuning from the atomic transition, and demonstrate a simple relation between the detuning and the steady-state population of the modes. This relation allows understanding several properties of cooperative scattering, such as why superradiance and subradiance become independent of the detuning at large enough detuning without vanishing, and why superradiance, but not subradiance, is suppressed near resonance. We also show that the spatial properties of the collective modes allow distinguishing diffusive modes, responsible for radiation trapping, from subradiant modes.

  9. Theoretical investigation of flutter of two-dimensional flat panels with one surface exposed to supersonic potential flow

    NASA Technical Reports Server (NTRS)

    Nelson, Herbert C; Cunningham, Herbert J

    1956-01-01

    A Rayleigh type analysis involving chosen modes of the panel as degrees of freedom is used to treat the flutter of a two-dimensional flat panel supported at its leading and trailing edges and subjected to a middle-plane tensile force. The panel has a supersonic stream passing over its upper surface and still air below. The aerodynamic forces due to the supersonic stream are obtained from the theory for linearized two-dimensional unsteady flow and the forces due to the still air are obtained from acoustical theory. In order to study the effect of increasing the number of modes in the analysis, two and then four modes are employed. The modes used are the first four natural modes of the panel in a vacuum with no tensile force acting. The analysis includes these variables: Mach number, structural damping, tensile force, density of the still air, and edge fixity (clamped and pinned). For certain combinations of these variables, stability boundaries are obtained which can be used to determine the panel thickness required to prevent flutter for any panel material and altitude.

  10. Structural dynamic model obtained from flight use with piloted simulation and handling qualities analysis

    NASA Technical Reports Server (NTRS)

    Powers, Bruce G.

    1996-01-01

    The ability to use flight data to determine an aircraft model with structural dynamic effects suitable for piloted simulation. and handling qualities analysis has been developed. This technique was demonstrated using SR-71 flight test data. For the SR-71 aircraft, the most significant structural response is the longitudinal first-bending mode. This mode was modeled as a second-order system, and the other higher order modes were modeled as a time delay. The distribution of the modal response at various fuselage locations was developed using a uniform beam solution, which can be calibrated using flight data. This approach was compared to the mode shape obtained from the ground vibration test, and the general form of the uniform beam solution was found to be a good representation of the mode shape in the areas of interest. To calibrate the solution, pitch-rate and normal-acceleration instrumentation is required for at least two locations. With the resulting structural model incorporated into the simulation, a good representation of the flight characteristics was provided for handling qualities analysis and piloted simulation.

  11. Correction of Motion Artifacts From Shuttle Mode Computed Tomography Acquisitions for Body Perfusion Imaging Applications.

    PubMed

    Ghosh, Payel; Chandler, Adam G; Altinmakas, Emre; Rong, John; Ng, Chaan S

    2016-01-01

    The aim of this study was to investigate the feasibility of shuttle-mode computed tomography (CT) technology for body perfusion applications by quantitatively assessing and correcting motion artifacts. Noncontrast shuttle-mode CT scans (10 phases, 2 nonoverlapping bed locations) were acquired from 4 patients on a GE 750HD CT scanner. Shuttling effects were quantified using Euclidean distances (between-phase and between-bed locations) of corresponding fiducial points on the shuttle and reference phase scans (prior to shuttle mode). Motion correction with nonrigid registration was evaluated using sum-of-squares differences and distances between centers of segmented volumes of interest on shuttle and references images. Fiducial point analysis showed an average shuttling motion of 0.85 ± 1.05 mm (between-bed) and 1.18 ± 1.46 mm (between-phase), respectively. The volume-of-interest analysis of the nonrigid registration results showed improved sum-of-squares differences from 2950 to 597, between-bed distance from 1.64 to 1.20 mm, and between-phase distance from 2.64 to 1.33 mm, respectively, averaged over all cases. Shuttling effects introduced during shuttle-mode CT acquisitions can be computationally corrected for body perfusion applications.

  12. Acoustics flow analysis in circular duct using sound intensity and dynamic mode decomposition

    NASA Astrophysics Data System (ADS)

    Weyna, S.

    2014-08-01

    Sound intensity generation in hard-walled duct with acoustic flow (no mean-flow) is treated experimentally and shown graphically. In paper, numerous methods of visualization illustrating the vortex flow (2D, 3D) can graphically explain diffraction and scattering phenomena occurring inside the duct and around open end area. Sound intensity investigation in annular duct gives a physical picture of sound waves in any duct mode. In the paper, modal energy analysis are discussed with particular reference to acoustics acoustic orthogonal decomposition (AOD). The image of sound intensity fields before and above "cut-off" frequency region are found to compare acoustic modes which might resonate in duct. The experimental results show also the effects of axial and swirling flow. However acoustic field is extremely complicated, because pressures in non-propagating (cut-off) modes cooperate with the particle velocities in propagating modes, and vice versa. Measurement in cylindrical duct demonstrates also the cut-off phenomenon and the effect of reflection from open end. The aim of experimental study was to obtain information on low Mach number flows in ducts in order to improve physical understanding and validate theoretical CFD and CAA models that still may be improved.

  13. Application of Failure Mode and Effect Analysis (FMEA) and cause and effect analysis in conjunction with ISO 22000 to a snails (Helix aspersa) processing plant; A case study.

    PubMed

    Arvanitoyannis, Ioannis S; Varzakas, Theodoros H

    2009-08-01

    Failure Mode and Effect Analysis (FMEA) has been applied for the risk assessment of snails manufacturing. A tentative approach of FMEA application to the snails industry was attempted in conjunction with ISO 22000. Preliminary Hazard Analysis was used to analyze and predict the occurring failure modes in a food chain system (snails processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points have been identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram, and fishbone diagram). In this work a comparison of ISO22000 analysis with HACCP is carried out over snails processing and packaging. However, the main emphasis was put on the quantification of risk assessment by determining the RPN per identified processing hazard. Sterilization of tins, bioaccumulation of heavy metals, packaging of shells and poisonous mushrooms, were the processes identified as the ones with the highest RPN (280, 240, 147, 144, respectively) and corrective actions were undertaken. Following the application of corrective actions, a second calculation of RPN values was carried out leading to considerably lower values (below the upper acceptable limit of 130). It is noteworthy that the application of Ishikawa (Cause and Effect or Tree diagram) led to converging results thus corroborating the validity of conclusions derived from risk assessment and FMEA. Therefore, the incorporation of FMEA analysis within the ISO22000 system of a snails processing industry is considered imperative.

  14. A quality risk management model approach for cell therapy manufacturing.

    PubMed

    Lopez, Fabio; Di Bartolo, Chiara; Piazza, Tommaso; Passannanti, Antonino; Gerlach, Jörg C; Gridelli, Bruno; Triolo, Fabio

    2010-12-01

    International regulatory authorities view risk management as an essential production need for the development of innovative, somatic cell-based therapies in regenerative medicine. The available risk management guidelines, however, provide little guidance on specific risk analysis approaches and procedures applicable in clinical cell therapy manufacturing. This raises a number of problems. Cell manufacturing is a poorly automated process, prone to operator-introduced variations, and affected by heterogeneity of the processed organs/tissues and lot-dependent variability of reagent (e.g., collagenase) efficiency. In this study, the principal challenges faced in a cell-based product manufacturing context (i.e., high dependence on human intervention and absence of reference standards for acceptable risk levels) are identified and addressed, and a risk management model approach applicable to manufacturing of cells for clinical use is described for the first time. The use of the heuristic and pseudo-quantitative failure mode and effect analysis/failure mode and critical effect analysis risk analysis technique associated with direct estimation of severity, occurrence, and detection is, in this specific context, as effective as, but more efficient than, the analytic hierarchy process. Moreover, a severity/occurrence matrix and Pareto analysis can be successfully adopted to identify priority failure modes on which to act to mitigate risks. The application of this approach to clinical cell therapy manufacturing in regenerative medicine is also discussed. © 2010 Society for Risk Analysis.

  15. Effect of helicopter blade dynamics on blade aerodynamic and structural loads

    NASA Technical Reports Server (NTRS)

    Heffernan, Ruth M.

    1987-01-01

    The effect of rotor blade dynamics on aerodynamic and structural loads is examined for a conventional, main-rotor helicopter using a comprehensive rotorcraft analysis (CAMRAD) and flight-test data. The impact of blade dynamics on blade section lift-coefficient time histories is studied by comparing predictions from a rigid-blade analysis and an elastic-blade analysis with helicopter flight test data. The elastic blade analysis better predicts high-frequency behavior of section lift. In addition, components of the blade angle of attack such as elastic blade twist, blade flap rate, blade slope velocity, and inflow are examined as a function of blade mode. Elastic blade motion changed blade angle of attack by a few tenths of a degree, and up to the sixth rotor harmonic. A similar study of the influence of blade dynamics on bending and torsion moments was also conducted. A correlation study comparing predictions from several elastic-blade analyses with flight-test data revealed that an elastic-blade model consisting of only three elastic bending modes (first and second flap and first lag), and two elastic torsion modes was sufficient for good correlation.

  16. Analysis of shear buckling of cylindrical shells. II - Effects of combined loadings

    NASA Astrophysics Data System (ADS)

    Kokubo, Kunio; Nagashima, Hideaki; Takayanagi, Masaaki; Madokoro, Manabu; Mochizuki, Akira; Ikeuchi, Hisaaki

    1992-03-01

    Cylindrical shells subjected to lateral loads buckle in shear or bending buckling modes. The effects of combined loadings are investigated by developing a special-purpose FEM program using the 8-node isoparametric shell element. Three types of loading, lateral and axial loads, and pure bending moments are considered. For short cylindrical shells, shear buckling modes are dominant, but elephant-foot bulges take place with an increase in bending moments. Effects of axial loads on shear buckling and the elephant-foot bulge are investigated. In the case of shear buckling the axial load affects the buckling mode as well as the buckling load. For bending bucklings, the axial loads have a great effect on the buckling load.

  17. Analysis of polariton dispersion in metal nanocomposite based novel superlattice system

    NASA Astrophysics Data System (ADS)

    DoniPon, V.; Joseph Wilson, K. S.; Malarkodi, A.

    2018-06-01

    The influence of metal nanoparticles in tuning the polaritonic gap in a novel piezoelectric superlattice is studied. Dielectric function of the metal nanoparticles is analyzed using Kawabata-Kubo effect and Drude's theory. The effective dielectric function of the nanocomposite system is studied using Maxwell Garnett approximation. Nanocomposite based LiTaO3 novel superlattice is formed by arranging the nanocomposite systems in such a way that their orientations are in the opposite direction. Hence there are two additional modes of propagation. The top most modes reflect the metal behavior of the nanoparticles. It is found that these modes of propagation vary with the filling factor. These additional modes of propagations can be exploited in the field of communication.

  18. Discriminant analysis to predict the occurrence of ELMS in H-mode discharges

    NASA Astrophysics Data System (ADS)

    Kardaun, O. J. W. F.; Itoh, S.-I.; Itoh, K.; Kardaun, J. W. P. F.

    1993-08-01

    After an exposition of its theoretical background, discriminant analysis is applied to the H-mode confinement database to find the region in plasma parameter space in which H-mode with small ELM's (Edge Localized Modes) is likely to occur. The boundary of this region is determined by the condition that the probability of appearance of such a type of H-mode, as a function of the plasma parameters, should be larger than some threshold value and larger than the corresponding probability for other types of H-mode (i.e., H-mode without ELM's or with giant ELM's). In practice, the discrimination has been performed for the ASDEX, JET and JFT-2M tokamaks using four instantaneous plasma parameters (injected power Pinj, magnetic field Bt, plasma current Ip and line averaged electron density ne) and taking also memory effects of the plasma and the distance between the plasma and the wall into account, while using variables that are normalized with respect to machine size. Generally speaking, it is found that there is a substantial overlap between the region of H-mode with small ELM's and the region of the two other types of H-mode. However, the ELM-free and the giant ELM H-modes relatively rarely appear in the region, that, according to the analysis, is allocated to small ELM's. A reliable production of H-mode with only small ELM's seems well possible by choosing this regime in parameter space. In the present study, it was not attempted to arrive at a unified discrimination across the machines. So, projection from one machine to another remains difficult, and a reliable determination of the region where small ELM's occur still requires a training sample from the device under consideration.

  19. Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift.

    PubMed

    Wu, Hao; Wang, Ruoxu; Liu, Deming; Fu, Songnian; Zhao, Can; Wei, Huifeng; Tong, Weijun; Shum, Perry Ping; Tang, Ming

    2016-04-01

    We proposed and demonstrated a few-mode fiber (FMF) based optical-fiber sensor for distributed curvature measurement through quasi-single-mode Brillouin frequency shift (BFS). By central-alignment splicing FMF and single-mode fiber (SMF) with a fusion taper, a SMF-components-compatible distributed curvature sensor based on FMF is realized using the conventional Brillouin optical time-domain analysis system. The distributed BFS change induced by bending in FMF has been theoretically and experimentally investigated. The precise BFS response to the curvature along the fiber link has been calibrated. A proof-of-concept experiment is implemented to validate its effectiveness in distributed curvature measurement.

  20. Application of failure mode and effect analysis in a radiology department.

    PubMed

    Thornton, Eavan; Brook, Olga R; Mendiratta-Lala, Mishal; Hallett, Donna T; Kruskal, Jonathan B

    2011-01-01

    With increasing deployment, complexity, and sophistication of equipment and related processes within the clinical imaging environment, system failures are more likely to occur. These failures may have varying effects on the patient, ranging from no harm to devastating harm. Failure mode and effect analysis (FMEA) is a tool that permits the proactive identification of possible failures in complex processes and provides a basis for continuous improvement. This overview of the basic principles and methodology of FMEA provides an explanation of how FMEA can be applied to clinical operations in a radiology department to reduce, predict, or prevent errors. The six sequential steps in the FMEA process are explained, and clinical magnetic resonance imaging services are used as an example for which FMEA is particularly applicable. A modified version of traditional FMEA called Healthcare Failure Mode and Effect Analysis, which was introduced by the U.S. Department of Veterans Affairs National Center for Patient Safety, is briefly reviewed. In conclusion, FMEA is an effective and reliable method to proactively examine complex processes in the radiology department. FMEA can be used to highlight the high-risk subprocesses and allows these to be targeted to minimize the future occurrence of failures, thus improving patient safety and streamlining the efficiency of the radiology department. RSNA, 2010

  1. SU-F-T-247: Collision Risks in a Modern Radiation Oncology Department: An Efficient Approach to Failure Modes and Effects Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubert, L; Westerly, D; Vinogradskiy, Y

    Purpose: Collisions between treatment equipment and patients are potentially catastrophic. Modern technology now commonly involves automated remote motion during imaging and treatment, yet a systematic assessment to identify and mitigate collision risks has yet to be performed. Failure modes and effects analysis (FMEA) is a method of risk assessment that has been increasingly used in healthcare, yet can be resource intensive. This work presents an efficient approach to FMEA to identify collision risks and implement practical interventions within a modern radiation therapy department. Methods: Potential collisions (e.g. failure modes) were assessed for all treatment and simulation rooms by teams consistingmore » of physicists, therapists, and radiation oncologists. Failure modes were grouped into classes according to similar characteristics. A single group meeting was held to identify implementable interventions for the highest priority classes of failure modes. Results: A total of 60 unique failure modes were identified by 6 different teams of physicists, therapists, and radiation oncologists. Failure modes were grouped into four main classes: specific patient setups, automated equipment motion, manual equipment motion, and actions in QA or service mode. Two of these classes, unusual patient setups and automated machine motion, were identified as being high priority in terms severity of consequence and addressability by interventions. The two highest risk classes consisted of 33 failure modes (55% of the total). In a single one hour group meeting, 6 interventions were identified. Those interventions addressed 100% of the high risk classes of failure modes (55% of all failure modes identified). Conclusion: A class-based approach to FMEA was developed to efficiently identify collision risks and implement interventions in a modern radiation oncology department. Failure modes and interventions will be listed, and a comparison of this approach against traditional FMEA methods will be presented.« less

  2. Effects of intermode nonlinearity and intramode nonlinearity on modulation instability in randomly birefringent two-mode optical fibers

    NASA Astrophysics Data System (ADS)

    Li, Jin Hua; Xu, Hui; Sun, Ting Ting; Pei, Shi Xin; Ren, Hai Dong

    2018-05-01

    We analyze in detail the effects of the intermode nonlinearity (IEMN) and intramode nonlinearity (IRMN) on modulation instability (MI) in randomly birefringent two-mode optical fibers (RB-TMFs). In the anomalous dispersion regime, the MI gain enhances significantly as the IEMN and IRMN coefficients increases. In the normal dispersion regime, MI can be generated without the differential mode group delay (DMGD) effect, as long as the IEMN coefficient between two distinct modes is above a critical value, or the IRMN coefficient inside a mode is below a critical value. This critical IEMN (IRMN) coefficient depends strongly on the given IRMN (IEMN) coefficient and DMGD for a given nonlinear RB-TMF structure, and is independent on the input total power, the power ratio distribution and the group velocity dispersion (GVD) ratio between the two modes. On the other hand, in contrast to the MI band arising from the pure effect of DMGD in the normal dispersion regime, where MI vanishes after a critical total power, the generated MI band under the combined effects of IEMN and IRMN without DMGD exists for any total power and enhances with the total power. The MI analysis is verified numerically by launching perturbed continuous waves (CWs) with wave propagation method.

  3. Key performance outcomes of patient safety curricula: root cause analysis, failure mode and effects analysis, and structured communications skills.

    PubMed

    Fassett, William E

    2011-10-10

    As colleges and schools of pharmacy develop core courses related to patient safety, course-level outcomes will need to include both knowledge and performance measures. Three key performance outcomes for patient safety coursework, measured at the course level, are the ability to perform root cause analyses and healthcare failure mode effects analyses, and the ability to generate effective safety communications using structured formats such as the Situation-Background-Assessment-Recommendation (SBAR) situational briefing model. Each of these skills is widely used in patient safety work and competence in their use is essential for a pharmacist's ability to contribute as a member of a patient safety team.

  4. Risk Analysis Methods for Deepwater Port Oil Transfer Systems

    DOT National Transportation Integrated Search

    1976-06-01

    This report deals with the risk analysis methodology for oil spills from the oil transfer systems in deepwater ports. Failure mode and effect analysis in combination with fault tree analysis are identified as the methods best suited for the assessmen...

  5. Stabilization effect of Weibel modes in relativistic laser fusion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belghit, Slimen, E-mail: Belghit.slimen@gmail.com; Sid, Abdelaziz, E-mail: Sid-abdelaziz@hotmail.com

    In this work, the Weibel instability (WI) due to inverse bremsstrahlung (IB) absorption in a laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self-generated magnetic field by WI with the laser wave field is explicitly shown. In this study, the relativistic effects are taken into account. Here, the basic equation is the relativistic Fokker-Planck (F-P) equation. The main obtained result is that the coupling of self-generated magnetic field with the laser wave causes a stabilizing effect of excited Weibel modes. We found a decrease in the spectral range of Weibel unstable modes. Thismore » decreasing is accompanied by a reduction of two orders in the growth rate of instable Weibel modes or even stabilization of these modes. It has been shown that the previous analysis of the Weibel instability due to IB has overestimated the values of the generated magnetic fields. Therefore, the generation of magnetic fields by the WI due to IB should not affect the experiences of an inertial confinement fusion.« less

  6. A comparative study of the effect of some nutritional medicinal plants effect on lead accumulation in the liver following different modes of administration

    PubMed Central

    Nwokocha, Chukwuemeka; Younger-Coleman, Novie; Nwokocha, Magdalene; Owu, Daniel; Iwuala, Moses

    2014-01-01

    Context and Objectives: Lead (Pb) toxicity leads to cell damage in many organs of the body. Using different treatment interventions and modes of administration we comparatively examined the protective ability of some medicinal plants on liver Pb accumulation. Materials and Methods: Rats were fed on either 7% w/w Zingiber officinale, 7% w/w Allium sativum, 10% w/w Lycopersicon esculentum, 5%, w/w Garcinia kola (all in rat chow), while Pb (100 ppm) was given in drinking water. The additives were administered together with (mode 1), a week after exposure to (mode 2) or a week before metal exposure to (mode 3) the metal for a period of 6 weeks. The metal accumulations in the liver were determined using atomic absorption spectrometry and compared using analysis of variance. Results: Some additives significantly (P < 0.05) reduced, while others enhanced Pb accumulation. Mode 2 yielded the highest mean % protection and mode 3 the lowest, no significant interaction between modes of administration and time of measurement in their relationships to percentage protection, but there was statistically significant (P < 0.05) interaction between modes of administration and additive used in their relationships to percentage protection. Conclusion: Protective effects of medicinal plants are varied and depend on the nature of lead exposure. PMID:25276068

  7. Failure mode effect analysis and fault tree analysis as a combined methodology in risk management

    NASA Astrophysics Data System (ADS)

    Wessiani, N. A.; Yoshio, F.

    2018-04-01

    There have been many studies reported the implementation of Failure Mode Effect Analysis (FMEA) and Fault Tree Analysis (FTA) as a method in risk management. However, most of the studies usually only choose one of these two methods in their risk management methodology. On the other side, combining these two methods will reduce the drawbacks of each methods when implemented separately. This paper aims to combine the methodology of FMEA and FTA in assessing risk. A case study in the metal company will illustrate how this methodology can be implemented. In the case study, this combined methodology will assess the internal risks that occur in the production process. Further, those internal risks should be mitigated based on their level of risks.

  8. Gravitational Waves from F-modes Excited by the Inspiral of Highly Eccentric Neutron Star Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chirenti, Cecilia; Gold, Roman; Miller, M. Coleman

    As gravitational wave instrumentation becomes more sensitive, it is interesting to speculate about subtle effects that could be analyzed using upcoming generations of detectors. One such effect that has great potential for revealing the properties of very dense matter is fluid oscillations of neutron stars. These have been found in numerical simulations of the hypermassive remnants of double neutron star mergers and of highly eccentric neutron star orbits. Here we focus on the latter and sketch out some ideas for the production, gravitational-wave detection, and analysis of neutron star oscillations. These events will be rare (perhaps up to several tensmore » per year could be detected using third-generation detectors such as the Einstein Telescope or the Cosmic Explorer), but they would have unique diagnostic power for the analysis of cold, catalyzed, dense matter. Furthermore, these systems are unusual in that analysis of the tidally excited f-modes of the stars could yield simultaneous measurements of their masses, moments of inertia, and tidal Love numbers, using the frequency, damping time, and amplitude of the modes. They would thus present a nearly unique opportunity to test the I-Love-Q relation observationally. The analysis of such events will require significant further work in nuclear physics and general relativistic nonlinear mode coupling, and thus we discuss further directions that will need to be pursued. For example, we note that for nearly grazing encounters, numerical simulations show that the energy delivered to the f-modes may be up to two orders of magnitude greater than predicted in the linear theory.« less

  9. Transport simulation of EAST long-pulse H-mode discharge with integrated modeling

    NASA Astrophysics Data System (ADS)

    Wu, M. Q.; Li, G. Q.; Chen, J. L.; Du, H. F.; Gao, X.; Ren, Q. L.; Li, K.; Chan, Vincent; Pan, C. K.; Ding, S. Y.; Jian, X.; Zhu, X.; Lian, H.; Qian, J. P.; Gong, X. Z.; Zang, Q.; Duan, Y. M.; Liu, H. Q.; Lyu, B.

    2018-04-01

    In the 2017 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than 100 s has been obtained using only radio frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H98y2 ~ 1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge in the 2016 EAST experimental campaign has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2 MW LHW, ~0.3 MW ECH and ~1.1 MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (I p ~ 0.45 MA) and electron density are kept constantly. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~28%, the RF drive current fraction is ~72%. The predicted current density profile matches the experimental one well. Analysis shows that electron cyclotron heating (ECH) makes large contribution to the plasma confinement when heating in the core region while heating in large radius does smaller improvement, also a more peaked LHW driven current profile is got when heating in the core. Linear analysis shows that the high-k modes instability (electron temperature gradient driven modes) is suppressed in the core region where exists weak electron internal transport barriers. The trapped electron modes dominates in the low-k region, which is mainly responsible for driving the electron energy flux. It is found that the ECH heating effect is very local and not the main cause to sustained the good confinement, the peaked current density profile has the most important effect on plasma confinement improvement. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments.

  10. Numerical analysis of deposition frequency for successive droplets coalescence dynamics

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoding; Zhu, Yunlong; Zhang, Lei; Zhang, Dingyi; Ku, Tao

    2018-04-01

    A pseudopotential based multi-relaxation-time lattice Boltzmann model is employed to investigate the dynamic behaviors of successive droplets' impact and coalescence on a solid surface. The effects of deposition frequency on the morphology of the formed line are investigated with a zero receding contact angle by analyzing the droplet-to-droplet coalescence dynamics. Two collision modes (in-phase mode and out-of-phase mode) between the pre-deposited bead and the subsequent droplet are identified depending on the deposition frequency. A uniform line can be obtained at the optimal droplet spacing in the in-phase mode (Δt* < 1.875). However, a scalloped line pattern is formed in the out-of-phase mode (Δt* > 1.875). It is found that decreasing the droplet spacing or advancing contact angle can improve the smoothness of line in the out-of-phase mode. Furthermore, the effects of deposition frequency on the morphology of the formed lines are validated to be applicable to cases with a finite receding contact angle.

  11. A method to identify the main mode of machine tool under operating conditions

    NASA Astrophysics Data System (ADS)

    Wang, Daming; Pan, Yabing

    2017-04-01

    The identification of the modal parameters under experimental conditions is the most common procedure when solving the problem of machine tool structure vibration. However, the influence of each mode on the machine tool vibration in real working conditions remains unknown. In fact, the contributions each mode makes to the machine tool vibration during machining process are different. In this article, an active excitation modal analysis is applied to identify the modal parameters in operational condition, and the Operating Deflection Shapes (ODS) in frequencies of high level vibration that affect the quality of machining in real working conditions are obtained. Then, the ODS is decomposed by the mode shapes which are identified in operational conditions. So, the contributions each mode makes to machine tool vibration during machining process are got by decomposition coefficients. From the previous steps, we can find out the main modes which effect the machine tool more significantly in working conditions. This method was also verified to be effective by experiments.

  12. Nature of microscopic heat carriers in nanoporous silicon

    NASA Astrophysics Data System (ADS)

    Antidormi, Aleandro; Cartoixà, Xavier; Colombo, Luciano

    2018-05-01

    We performed a systematic analysis of the vibrational modes in nanoporous silicon for different values of porosity, separating them into extended modes (diffusons and propagons) and localized vibrations (locons). By calculating the density of states, the participation ratio, and the systems' dispersion curves, the spatial character of each mode as well as the effect of porosity on the thermal conductivity have been investigated. An increase of porosity is shown to promote the existence of increasingly localized modes on one side, and the progressive transformation of propagons to diffusons on the other. Finally, we provide evidence of the sizable contribution of locons to thermal transport found in large porosity samples and discuss the mechanism of energy transfer in terms of mode-mode autocorrelations and cross-correlations.

  13. Resonator modes and mode dynamics for an external cavity-coupled laser array

    NASA Astrophysics Data System (ADS)

    Nair, Niketh; Bochove, Erik J.; Aceves, Alejandro B.; Zunoubi, Mohammad R.; Braiman, Yehuda

    2015-03-01

    Employing a Fox-Li approach, we derived the cold-cavity mode structure and a coupled mode theory for a phased array of N single-transverse-mode active waveguides with feedback from an external cavity. We applied the analysis to a system with arbitrary laser lengths, external cavity design and coupling strengths to the external cavity. The entire system was treated as a single resonator. The effect of the external cavity was modeled by a set of boundary conditions expressed by an N-by-N frequency-dependent matrix relation between incident and reflected fields at the interface with the external cavity. The coupled mode theory can be adapted to various types of gain media and internal and external cavity designs.

  14. Tensile failure criteria for fiber composite materials

    NASA Technical Reports Server (NTRS)

    Rosen, B. W.; Zweben, C. H.

    1972-01-01

    The analysis provides insight into the failure mechanics of these materials and defines criteria which serve as tools for preliminary design material selection and for material reliability assessment. The model incorporates both dispersed and propagation type failures and includes the influence of material heterogeneity. The important effects of localized matrix damage and post-failure matrix shear stress transfer are included in the treatment. The model is used to evaluate the influence of key parameters on the failure of several commonly used fiber-matrix systems. Analyses of three possible failure modes were developed. These modes are the fiber break propagation mode, the cumulative group fracture mode, and the weakest link mode. Application of the new model to composite material systems has indicated several results which require attention in the development of reliable structural composites. Prominent among these are the size effect and the influence of fiber strength variability.

  15. Numerical analysis of two-fluid tearing mode instability in a finite aspect ratio cylinder

    NASA Astrophysics Data System (ADS)

    Ito, Atsushi; Ramos, Jesús J.

    2018-01-01

    The two-fluid resistive tearing mode instability in a periodic plasma cylinder of finite aspect ratio is investigated numerically for parameters such that the cylindrical aspect ratio and two-fluid effects are of order unity, hence the real and imaginary parts of the mode eigenfunctions and growth rate are comparable. Considering a force-free equilibrium, numerical solutions of the complete eigenmode equations for general aspect ratios and ion skin depths are compared and found to be in very good agreement with the corresponding analytic solutions derived by means of the boundary layer theory [A. Ito and J. J. Ramos, Phys. Plasmas 24, 072102 (2017)]. Scaling laws for the growth rate and the real frequency of the mode are derived from the analytic dispersion relation by using Taylor expansions and Padé approximations. The cylindrical finite aspect ratio effect is inferred from the scaling law for the real frequency of the mode.

  16. Spatiotemporal Filtering Using Principal Component Analysis and Karhunen-Loeve Expansion Approaches for Regional GPS Network Analysis

    NASA Technical Reports Server (NTRS)

    Dong, D.; Fang, P.; Bock, F.; Webb, F.; Prawirondirdjo, L.; Kedar, S.; Jamason, P.

    2006-01-01

    Spatial filtering is an effective way to improve the precision of coordinate time series for regional GPS networks by reducing so-called common mode errors, thereby providing better resolution for detecting weak or transient deformation signals. The commonly used approach to regional filtering assumes that the common mode error is spatially uniform, which is a good approximation for networks of hundreds of kilometers extent, but breaks down as the spatial extent increases. A more rigorous approach should remove the assumption of spatially uniform distribution and let the data themselves reveal the spatial distribution of the common mode error. The principal component analysis (PCA) and the Karhunen-Loeve expansion (KLE) both decompose network time series into a set of temporally varying modes and their spatial responses. Therefore they provide a mathematical framework to perform spatiotemporal filtering.We apply the combination of PCA and KLE to daily station coordinate time series of the Southern California Integrated GPS Network (SCIGN) for the period 2000 to 2004. We demonstrate that spatially and temporally correlated common mode errors are the dominant error source in daily GPS solutions. The spatial characteristics of the common mode errors are close to uniform for all east, north, and vertical components, which implies a very long wavelength source for the common mode errors, compared to the spatial extent of the GPS network in southern California. Furthermore, the common mode errors exhibit temporally nonrandom patterns.

  17. Motion-mode energy method for vehicle dynamics analysis and control

    NASA Astrophysics Data System (ADS)

    Zhang, Nong; Wang, Lifu; Du, Haiping

    2014-01-01

    Vehicle motion and vibration control is a fundamental motivation for the development of advanced vehicle suspension systems. In a vehicle-fixed coordinate system, the relative motions of the vehicle between body and wheel can be classified into several dynamic stages based on energy intensity, and can be decomposed into sets of uncoupled motion-modes according to modal parameters. Vehicle motions are coupled, but motion-modes are orthogonal. By detecting and controlling the predominating vehicle motion-mode, the system cost and energy consumption of active suspensions could be reduced. A motion-mode energy method (MEM) is presented in this paper to quantify the energy contribution of each motion-mode to vehicle dynamics in real time. The control of motion-modes is prioritised according to the level of motion-mode energy. Simulation results on a 10 degree-of-freedom nonlinear full-car model with the magic-formula tyre model illustrate the effectiveness of the proposed MEM. The contribution of each motion-mode to the vehicle's dynamic behaviour is analysed under different excitation inputs from road irregularities, directional manoeuvres and braking. With the identified dominant motion-mode, novel cost-effective suspension systems, such as active reconfigurable hydraulically interconnected suspension, can possibly be used to control full-car motions with reduced energy consumption. Finally, discussion, conclusions and suggestions for future work are provided.

  18. Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems.

    PubMed

    Chen, Mou; Wu, Qing-Xian; Cui, Rong-Xin

    2013-03-01

    In this paper, the terminal sliding mode tracking control is proposed for the uncertain single-input and single-output (SISO) nonlinear system with unknown external disturbance. For the unmeasured disturbance of nonlinear systems, terminal sliding mode disturbance observer is presented. The developed disturbance observer can guarantee the disturbance approximation error to converge to zero in the finite time. Based on the output of designed disturbance observer, the terminal sliding mode tracking control is presented for uncertain SISO nonlinear systems. Subsequently, terminal sliding mode tracking control is developed using disturbance observer technique for the uncertain SISO nonlinear system with control singularity and unknown non-symmetric input saturation. The effects of the control singularity and unknown input saturation are combined with the external disturbance which is approximated using the disturbance observer. Under the proposed terminal sliding mode tracking control techniques, the finite time convergence of all closed-loop signals are guaranteed via Lyapunov analysis. Numerical simulation results are given to illustrate the effectiveness of the proposed terminal sliding mode tracking control. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Qualification of computerized monitoring systems in a cell therapy facility compliant with the good manufacturing practices.

    PubMed

    Del Mazo-Barbara, Anna; Mirabel, Clémentine; Nieto, Valentín; Reyes, Blanca; García-López, Joan; Oliver-Vila, Irene; Vives, Joaquim

    2016-09-01

    Computerized systems (CS) are essential in the development and manufacture of cell-based medicines and must comply with good manufacturing practice, thus pushing academic developers to implement methods that are typically found within pharmaceutical industry environments. Qualitative and quantitative risk analyses were performed by Ishikawa and Failure Mode and Effects Analysis, respectively. A process for qualification of a CS that keeps track of environmental conditions was designed and executed. The simplicity of the Ishikawa analysis permitted to identify critical parameters that were subsequently quantified by Failure Mode Effects Analysis, resulting in a list of test included in the qualification protocols. The approach presented here contributes to simplify and streamline the qualification of CS in compliance with pharmaceutical quality standards.

  20. Propagation of Love waves with surface effects in an electrically-shorted piezoelectric nanofilm on a half-space elastic substrate.

    PubMed

    Zhang, Sijia; Gu, Bin; Zhang, Hongbin; Feng, Xi-Qiao; Pan, Rongying; Alamusi; Hu, Ning

    2016-03-01

    The propagation of Love waves in the structure consisting of a nanosized piezoelectric film and a semi-infinite elastic substrate is investigated in the present paper with the consideration of surface effects. In our analysis, surface effects are taken into account in terms of the surface elasticity theory and the electrically-shorted conditions are adopted on the free surface of the piezoelectric film and the interface between the film and the substrate. This work focuses on the new features in the dispersion relations of different modes due to surface effects. It is found that with the existence of surface effects, the frequency dispersion of Love waves shows the distinct dependence on the thickness and the surface constants when the film thickness reduces to nanometers. In general, phase velocities of all dispersion modes increase with the decrease of the film thickness and the increase of the surface constants. However, surface effects play different functions in the frequency dispersions of different modes, especially for the first mode dispersion. Moreover, different forms of Love waves are observed in the first mode dispersion, depending on the presence of the surface effects on the surface and the interface. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Independent Orbiter Assessment (IOA): Assessment of the active thermal control system

    NASA Technical Reports Server (NTRS)

    Sinclair, S. K.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Active Thermal Control System (ATCS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the available NASA FMEA/CIL data. Discrepancies from the comparison were documented, and where enough information was available, recommendations for resolution of the discrepancies were made. This report documents the results of that comparison for the Orbiter ATCS hardware. The IOA product for the ATCS independent analysis consisted of 310 failure mode worksheets that resulted in 101 potential critical items (PCI) being identified. A comparison was made to the available NASA data which consisted of 252 FMEAs and 109 CIL items.

  2. Mode Deactivation Therapy (MDT): A Theoretical Case Analysis on a Suicidal Adolescent

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Siv, Alexander M.

    2005-01-01

    This case study presents a case study of the effectiveness of Mode deactivation therapy (MDT) (Apsche, Bass, Jennings, Murphy, Hunter, and Siv, 2005) with an adolescent male, with reactive conduct disorder, PTSD and 8 lethal suicide attempts. The youngster was hospitalized four times for suicide attempts, three previous placements in residential…

  3. Variability common to global sea surface temperatures and runoff in the conterminous United States

    USGS Publications Warehouse

    McCabe, Gregory J.; Wolock, David M.

    2014-01-01

    Singular value decomposition (SVD) is used to identify the variability common to global sea surface temperatures (SSTs) and water-balance-modeled water-year (WY) runoff in the conterminous United States (CONUS) for the 1900–2012 period. Two modes were identified from the SVD analysis; the two modes explain 25% of the variability in WY runoff and 33% of the variability in WY SSTs. The first SVD mode reflects the variability of the El Niño–Southern Oscillation (ENSO) in the SST data and the hydroclimatic effects of ENSO on WY runoff in the CONUS. The second SVD mode is related to variability of the Atlantic multidecadal oscillation (AMO). An interesting aspect of these results is that both ENSO and AMO appear to have nearly equivalent effects on runoff variability in the CONUS. However, the relatively small amount of variance explained by the SVD analysis indicates that there is little covariation between runoff and SSTs, suggesting that SSTs may not be a viable predictor of runoff variability for most of the conterminous United States.

  4. Stochastic modeling of mode interactions via linear parabolized stability equations

    NASA Astrophysics Data System (ADS)

    Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo

    2017-11-01

    Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.

  5. WE-G-BRA-09: Microsphere Brachytherapy Failure Mode and Effects Analysis in a Dual-Vendor Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younge, K C; Lee, C I; Feng, M

    2015-06-15

    Purpose: To improve the safety and quality of a dual-vendor microsphere brachytherapy program with failure mode and effects analysis (FMEA). Methods: A multidisciplinary team including physicists, dosimetrists, a radiation oncologist, an interventional radiologist, and radiation safety personnel performed an FMEA for our dual-vendor microsphere brachytherapy program employing SIR-Spheres (Sirtex Medical Limited, Australia) and Theraspheres (BTG, England). We developed a program process tree and step-by-step instructions which were used to generate a comprehensive list of failure modes. These modes were then ranked according to severity, occurrence rate, and detectability. Risk priority numbers (RPNs) were calculated by multiplying these three scores together.more » Three different severity scales were created: one each for harmful effects to the patient, staff, or the institution. Each failure mode was ranked on one or more of these scales. Results: The group identified 164 failure modes for the microsphere program. 113 of these were ranked using the patient severity scale, 52 using the staff severity scale, and 50 using the institution severity scale. The highest ranked items on the patient severity scale were an error in the automated dosimetry worksheet (RPN = 297.5), and the incorrect target specified on the planning study (RPN = 135). Some failure modes ranked differently between vendors, especially those corresponding to dose vial preparation because of the different methods used. Based on our findings, we made several improvements to our QA program, including documentation to easily identify which product is being used, an additional hand calculation during planning, and reorganization of QA steps before treatment delivery. We will continue to periodically review and revise the FMEA. Conclusion: We have applied FMEA to our dual-vendor microsphere brachytherapy program to identify potential key weaknesses in the treatment chain. Our FMEA results were used to improve the effectiveness of our overall microsphere program.« less

  6. Instantaneous normal mode analysis of the vibrational relaxation of the amide I mode of alanine dipeptide in water.

    PubMed

    Farag, Marwa H; Zúñiga, José; Requena, Alberto; Bastida, Adolfo

    2013-05-28

    Nonequilibrium Molecular Dynamics (MD) simulations coupled to instantaneous normal modes (INMs) analysis are used to study the vibrational relaxation of the acetyl and amino-end amide I modes of the alanine dipeptide (AlaD) molecule dissolved in water (D2O). The INMs are assigned in terms of the equilibrium normal modes using the Effective Atomic Min-Cost algorithm as adapted to make use of the outputs of standard MD packages, a method which is well suited for the description of flexible molecules. The relaxation energy curves of both amide I modes show multiexponential decays, in good agreement with the experimental findings. It is found that ~85%-90% of the energy relaxes through intramolecular vibrational redistribution. The main relaxation pathways are also identified. The rate at which energy is transferred into the solvent is similar for the acetyl-end and amino-end amide I modes. The conformational changes occurring during relaxation are investigated, showing that the populations of the alpha and beta region conformers are altered by energy transfer in such a way that it takes 15 ps for the equilibrium conformational populations to be recovered after the initial excitation of the AlaD molecule.

  7. CMB delensing beyond the B modes

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Meyers, Joel; van Engelen, Alexander

    2017-12-01

    Gravitational lensing by large-scale structure significantly impacts observations of the cosmic microwave background (CMB): it smooths the acoustic peaks in temperature and E-mode polarization power spectra, correlating previously uncorrelated modes; and it converts E-mode polarization into B-mode polarization. The act of measuring and removing the effect of lensing from CMB maps, or delensing, has been well studied in the context of B modes, but little attention has been given to the delensing of the temperature and E modes. In this paper, we model the expected delensed T and E power spectra to all orders in the lensing potential, demonstrating the sharpening of the acoustic peaks and a significant reduction in lens-induced power spectrum covariances. We then perform cosmological forecasts, demonstrating that delensing will yield improved sensitivity to parameters with upcoming surveys. We highlight the breaking of the degeneracy between the effective number of neutrino species and primordial helium fraction as a concrete application. We also show that delensing increases cosmological information as long as the measured lensing reconstruction is included in the analysis. We conclude that with future data, delensing will be crucial not only for primordial B-mode science but for a range of other observables as well.

  8. The reform of the teaching mode of Applied Optics curriculum and analysis of teaching effect

    NASA Astrophysics Data System (ADS)

    Ning, Yu; Xu, Zhongjie; Li, Dun; Chen, Zilun; Cheng, Xiangai; Zhong, Hairong

    2017-08-01

    Military academies have two distinctive characteristics on talent training: Firstly, we must teach facing actual combat and connecting with academic frontier. Secondly, the bachelor's degree education and the military education should be balanced. The teaching mode of basic curriculum in military academies must be reformed and optimized on the basis of the traditional teaching mode, so as to ensure the high quality of teaching and provide enough guidance and help for students to support their academic burden. In this paper, our main work on "Applied Optics" teaching mode reform is introduced: First of all, we research extensively and learn fully from advanced teaching modes of the well-known universities at home and abroad, a whole design is made for the teaching mode of the core curriculum of optical engineering in our school "Applied Optics", building a new teaching mode which takes the methods of teaching basic parts as details, teaching application parts as emphases, teaching frontier parts as topics and teaching actual combat parts on site. Then combining with the questionnaire survey of students and opinions proposed by relevant experts in the teaching seminar, teaching effect and generalizability of the new teaching mode are analyzed and evaluated.

  9. Task Analytic Models to Guide Analysis and Design: Use of the Operator Function Model to Represent Pilot-Autoflight System Mode Problems

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Mitchell, Christine M.; Chappell, Alan R.; Shafto, Mike (Technical Monitor)

    1995-01-01

    Task-analytic models structure essential information about operator interaction with complex systems, in this case pilot interaction with the autoflight system. Such models serve two purposes: (1) they allow researchers and practitioners to understand pilots' actions; and (2) they provide a compact, computational representation needed to design 'intelligent' aids, e.g., displays, assistants, and training systems. This paper demonstrates the use of the operator function model to trace the process of mode engagements while a pilot is controlling an aircraft via the, autoflight system. The operator function model is a normative and nondeterministic model of how a well-trained, well-motivated operator manages multiple concurrent activities for effective real-time control. For each function, the model links the pilot's actions with the required information. Using the operator function model, this paper describes several mode engagement scenarios. These scenarios were observed and documented during a field study that focused on mode engagements and mode transitions during normal line operations. Data including time, ATC clearances, altitude, system states, and active modes and sub-modes, engagement of modes, were recorded during sixty-six flights. Using these data, seven prototypical mode engagement scenarios were extracted. One scenario details the decision of the crew to disengage a fully automatic mode in favor of a semi-automatic mode, and the consequences of this action. Another describes a mode error involving updating aircraft speed following the engagement of a speed submode. Other scenarios detail mode confusion at various phases of the flight. This analysis uses the operator function model to identify three aspects of mode engagement: (1) the progress of pilot-aircraft-autoflight system interaction; (2) control/display information required to perform mode management activities; and (3) the potential cause(s) of mode confusion. The goal of this paper is twofold: (1) to demonstrate the use of the operator functio model methodology to describe pilot-system interaction while engaging modes And monitoring the system, and (2) to initiate a discussion of how task-analytic models might inform design processes. While the operator function model is only one type of task-analytic representation, the hypothesis of this paper is that some type of task analytic structure is a prerequisite for the design of effective human-automation interaction.

  10. Stability and time-domain analysis of the dispersive tristability in microresonators under modal coupling

    NASA Astrophysics Data System (ADS)

    Dumeige, Yannick; Féron, Patrice

    2011-10-01

    Coupled nonlinear resonators have potential applications for the integration of multistable photonic devices. The dynamic properties of two coupled-mode nonlinear microcavities made of Kerr material are studied by linear stability analysis. Using a suitable combination of the modal coupling rate and the frequency detuning, it is possible to obtain configurations where a hysteresis loop is included inside other bistable cycles. We show that a single resonator with two modes both linearly and nonlinearly coupled via the cross-Kerr effect can have a multistable behavior. This could be implemented in semiconductor nonlinear whispering-gallery-mode microresonators under modal coupling for all optical signal processing or ternary optical logic applications.

  11. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less

  12. Anatomy of the binary black hole recoil: A multipolar analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnittman, Jeremy D.; Buonanno, Alessandra; Meter, James R. van

    2008-02-15

    We present a multipolar analysis of the gravitational recoil computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and nonzero, nonprecessing spins. We show that multipole moments up to and including l=4 are sufficient to accurately reproduce the final recoil velocity (within {approx_equal}2%) and that only a few dominant modes contribute significantly to it (within {approx_equal}5%). We describe how the relative amplitudes, and more importantly, the relative phases, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ringdown phases. We also find that the numerical resultsmore » can be reproduced by an 'effective Newtonian' formula for the multipole moments obtained by replacing the radial separation in the Newtonian formulas with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasinormal modes. Analytic formulas, obtained by expressing the multipole moments in terms of the fundamental quasinormal modes of a Kerr black hole, are able to explain the onset and amount of 'antikick' for each of the simulations. Lastly, we apply this multipolar analysis to help explain the remarkable difference between the amplitudes of planar and nonplanar kicks for equal-mass spinning black holes.« less

  13. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    DOE PAGES

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-05-12

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less

  14. Recognising and referring children exposed to domestic abuse: a multi-professional, proactive systems-based evaluation using a modified Failure Mode and Effects Analysis (FMEA).

    PubMed

    Ashley, Laura; Armitage, Gerry; Taylor, Julie

    2017-03-01

    Failure Modes and Effects Analysis (FMEA) is a prospective quality assurance methodology increasingly used in healthcare, which identifies potential vulnerabilities in complex, high-risk processes and generates remedial actions. We aimed, for the first time, to apply FMEA in a social care context to evaluate the process for recognising and referring children exposed to domestic abuse within one Midlands city safeguarding area in England. A multidisciplinary, multi-agency team of 10 front-line professionals undertook the FMEA, using a modified methodology, over seven group meetings. The FMEA included mapping out the process under evaluation to identify its component steps, identifying failure modes (potential errors) and possible causes for each step and generating corrective actions. In this article, we report the output from the FMEA, including illustrative examples of the failure modes and corrective actions generated. We also present an analysis of feedback from the FMEA team and provide future recommendations for the use of FMEA in appraising social care processes and practice. Although challenging, the FMEA was unequivocally valuable for team members and generated a significant number of corrective actions locally for the safeguarding board to consider in its response to children exposed to domestic abuse. © 2016 John Wiley & Sons Ltd.

  15. Poster - Thur Eve - 05: Safety systems and failure modes and effects analysis for a magnetic resonance image guided radiation therapy system.

    PubMed

    Lamey, M; Carlone, M; Alasti, H; Bissonnette, J P; Borg, J; Breen, S; Coolens, C; Heaton, R; Islam, M; van Proojen, M; Sharpe, M; Stanescu, T; Jaffray, D

    2012-07-01

    An online Magnetic Resonance guided Radiation Therapy (MRgRT) system is under development. The system is comprised of an MRI with the capability of travel between and into HDR brachytherapy and external beam radiation therapy vaults. The system will provide on-line MR images immediately prior to radiation therapy. The MR images will be registered to a planning image and used for image guidance. With the intention of system safety we have performed a failure modes and effects analysis. A process tree of the facility function was developed. Using the process tree as well as an initial design of the facility as guidelines possible failure modes were identified, for each of these failure modes root causes were identified. For each possible failure the assignment of severity, detectability and occurrence scores was performed. Finally suggestions were developed to reduce the possibility of an event. The process tree consists of nine main inputs and each of these main inputs consisted of 5 - 10 sub inputs and tertiary inputs were also defined. The process tree ensures that the overall safety of the system has been considered. Several possible failure modes were identified and were relevant to the design, construction, commissioning and operating phases of the facility. The utility of the analysis can be seen in that it has spawned projects prior to installation and has lead to suggestions in the design of the facility. © 2012 American Association of Physicists in Medicine.

  16. Vibration modes interference in the MEMS resonant pressure sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Fangfang; Li, Anlin; Bu, Zhenxiang; Wang, Lingyun; Sun, Daoheng; Du, Xiaohui; Gu, Dandan

    2017-11-01

    A new type of coupled balanced-mass double-ended tuning fork resonator (CBDETF) pressure sensor is fabricated and tested. However, the low accuracy of the CBDETF pressure sensor is not satisfied to us. Based on systematic analysis and tests, the coupling effect between the operational mode and interference mode is considered to be the main cause for the sensor in accuracy. To solve this problem, the stiffness of the serpentine beams is increased to pull up the resonant frequency of the interfering mode and make it separate far from the operational mode. Finally, the accuracy of the CBDETF pressure sensor is improved from + /-0.5% to less than + /-0.03% of the Full Scale (F.S.).

  17. Advantages of reaction cell ICP-MS on doubly charged interferences for arsenic and selenium analysis in foods

    PubMed Central

    Jackson, Brian; Liba, Amir; Nelson, Jenny

    2014-01-01

    Recent reports of As concentrations in certain food and drinks have garnered public concern and led to a lowering of the US guideline maximum concentration for inorganic As in apple juice and proposed limits for As in rice products. In contrast Se is an essential micro-nutrient that can be limiting when Se-poor soils yield Se-poor food crops. Rare earth element (REE) doubly charged interferences on As and Se can be significant even when initial ICP-MS tuning minimizes doubly charged formation. We analyzed NIST 1547 (peach leaves) and 1515 (apple leaves), which contain high levels of REEs, by quadrupole ICP-MS with (He) collision mode, H2 reaction mode or triple quadrupole ICP-MS (ICP-QQQ) in mass-shift mode (O2 and O2/H2). Analysis by collision cell ICP-MS significantly over-estimated As and Se concentration due to REE doubly charged formation; mathematical correction increased the accuracy of analysis but is prone to error when analyte concentration and sensitivity is low and interferent is high. For Se, H2 reaction mode was effective in suppressing Gd2+ leading to accurate determination of Se in both SRMs without the need for mathematical correction. ICP-QQQ using mass-shift mode for As+ from m/z 75 to AsO+ at m/z 91 and Se+ from m/z 78 to SeO+ at m/z 94 alleviated doubly charged effects and resulted in accurate determination of As and Se in both SRMs without the need for correction equations. Zr and Mo isobars at 91 and 94 were shown to be effectively rejected by the MS/MS capability of the ICP-QQQ. PMID:25609851

  18. Quantitative Analysis of Temperature Dependence of Raman shift of monolayer WS2

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoting; Gao, Yang; Yang, Tianqi; Ren, Wencai; Cheng, Hui-Ming; Lai, Tianshu

    2016-08-01

    We report the temperature-dependent evolution of Raman spectra of monolayer WS2 directly CVD-grown on a gold foil and then transferred onto quartz substrates over a wide temperature range from 84 to 543 K. The nonlinear temperature dependence of Raman shifts for both and A1g modes has been observed. The first-order temperature coefficients of Raman shifts are obtained to be -0.0093 (cm-1/K) and -0.0122 (cm-1/K) for and A1g peaks, respectively. A physical model, including thermal expansion and three- and four-phonon anharmonic effects, is used quantitatively to analyze the observed nonlinear temperature dependence. Thermal expansion coefficient (TEC) of monolayer WS2 is extracted from the experimental data for the first time. It is found that thermal expansion coefficient of out-plane mode is larger than one of in-plane mode, and TECs of and A1g modes are temperature-dependent weakly and strongly, respectively. It is also found that the nonlinear temperature dependence of Raman shift of mode mainly originates from the anharmonic effect of three-phonon process, whereas one of A1g mode is mainly contributed by thermal expansion effect in high temperature region, revealing that thermal expansion effect cannot be ignored.

  19. Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations - Part 1: Nonhydrostatic inertia-gravity modes

    NASA Astrophysics Data System (ADS)

    Konor, Celal S.; Randall, David A.

    2018-05-01

    We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia-gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by running linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.

  20. Failure mode and effects analysis (FMEA) for the Space Shuttle solid rocket motor

    NASA Technical Reports Server (NTRS)

    Russell, D. L.; Blacklock, K.; Langhenry, M. T.

    1988-01-01

    The recertification of the Space Shuttle Solid Rocket Booster (SRB) and Solid Rocket Motor (SRM) has included an extensive rewriting of the Failure Mode and Effects Analysis (FMEA) and Critical Items List (CIL). The evolution of the groundrules and methodology used in the analysis is discussed and compared to standard FMEA techniques. Especially highlighted are aspects of the FMEA/CIL which are unique to the analysis of an SRM. The criticality category definitions are presented and the rationale for assigning criticality is presented. The various data required by the CIL and contribution of this data to the retention rationale is also presented. As an example, the FMEA and CIL for the SRM nozzle assembly is discussed in detail. This highlights some of the difficulties associated with the analysis of a system with the unique mission requirements of the Space Shuttle.

  1. Safety and feasibility of STAT RAD: Improvement of a novel rapid tomotherapy-based radiation therapy workflow by failure mode and effects analysis.

    PubMed

    Jones, Ryan T; Handsfield, Lydia; Read, Paul W; Wilson, David D; Van Ausdal, Ray; Schlesinger, David J; Siebers, Jeffrey V; Chen, Quan

    2015-01-01

    The clinical challenge of radiation therapy (RT) for painful bone metastases requires clinicians to consider both treatment efficacy and patient prognosis when selecting a radiation therapy regimen. The traditional RT workflow requires several weeks for common palliative RT schedules of 30 Gy in 10 fractions or 20 Gy in 5 fractions. At our institution, we have created a new RT workflow termed "STAT RAD" that allows clinicians to perform computed tomographic (CT) simulation, planning, and highly conformal single fraction treatment delivery within 2 hours. In this study, we evaluate the safety and feasibility of the STAT RAD workflow. A failure mode and effects analysis (FMEA) was performed on the STAT RAD workflow, including development of a process map, identification of potential failure modes, description of the cause and effect, temporal occurrence, and team member involvement in each failure mode, and examination of existing safety controls. A risk probability number (RPN) was calculated for each failure mode. As necessary, workflow adjustments were then made to safeguard failure modes of significant RPN values. After workflow alterations, RPN numbers were again recomputed. A total of 72 potential failure modes were identified in the pre-FMEA STAT RAD workflow, of which 22 met the RPN threshold for clinical significance. Workflow adjustments included the addition of a team member checklist, changing simulation from megavoltage CT to kilovoltage CT, alteration of patient-specific quality assurance testing, and allocating increased time for critical workflow steps. After these modifications, only 1 failure mode maintained RPN significance; patient motion after alignment or during treatment. Performing the FMEA for the STAT RAD workflow before clinical implementation has significantly strengthened the safety and feasibility of STAT RAD. The FMEA proved a valuable evaluation tool, identifying potential problem areas so that we could create a safer workflow. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  2. Principal Component Relaxation Mode Analysis of an All-Atom Molecular Dynamics Simulation of Human Lysozyme

    NASA Astrophysics Data System (ADS)

    Nagai, Toshiki; Mitsutake, Ayori; Takano, Hiroshi

    2013-02-01

    A new relaxation mode analysis method, which is referred to as the principal component relaxation mode analysis method, has been proposed to handle a large number of degrees of freedom of protein systems. In this method, principal component analysis is carried out first and then relaxation mode analysis is applied to a small number of principal components with large fluctuations. To reduce the contribution of fast relaxation modes in these principal components efficiently, we have also proposed a relaxation mode analysis method using multiple evolution times. The principal component relaxation mode analysis method using two evolution times has been applied to an all-atom molecular dynamics simulation of human lysozyme in aqueous solution. Slow relaxation modes and corresponding relaxation times have been appropriately estimated, demonstrating that the method is applicable to protein systems.

  3. Independent Orbiter Assessment (IOA): Assessment of the main propulsion subsystem FMEA/CIL, volume 4

    NASA Technical Reports Server (NTRS)

    Slaughter, B. C.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Main Propulsion System (MPS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were than compared to available data from the Rockwell Downey/NASA JSC FMEA/CIL review. Volume 4 contains the IOA analysis worksheets and the NASA FMEA to IOA worksheet cross reference and recommendations.

  4. Independent Orbiter Assessment (IOA): Assessment of the nose wheel steering subsystem

    NASA Technical Reports Server (NTRS)

    Mediavilla, Anthony Scott

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Nose Wheel Steering (NWS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed NASA post 51-L FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter NWS hardware.

  5. The engine fuel system fault analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Song, Hanqiang; Yang, Changsheng; Zhao, Wei

    2017-05-01

    For improving the reliability of the engine fuel system, the typical fault factor of the engine fuel system was analyzed from the point view of structure and functional. The fault character was gotten by building the fuel system fault tree. According the utilizing of fault mode effect analysis method (FMEA), several factors of key component fuel regulator was obtained, which include the fault mode, the fault cause, and the fault influences. All of this made foundation for next development of fault diagnosis system.

  6. Unstalled flutter stability predictions and comparisons to test data for a composite prop-fan model

    NASA Technical Reports Server (NTRS)

    Turnberg, J. E.

    1986-01-01

    The aeroelastic stability analyses for three graphite/epoxy composite Prop-Fan designs and post-test stability analysis for one of the designs, the SR-3C-X2 are presented. It was shown that Prop-Fan stability can be effectively analyzed using the F203 modal aeroelastic stability analysis developed at Hamilton Standard and that first mode torsion-bending coupling has a direct effect on blade stability. Positive first mode torsion-bending coupling is a destabilizing factor and the minimization of this parameter will increase Prop-Fan stability. It was also shown that Prop-Fan stability analysis using F203 is sensitive to the blade modal data used as input. Calculated blade modal properties varied significantly with the structural analysis used, and these variations are reflected in the F203 calculations.

  7. Failure mode and effects analysis based risk profile assessment for stereotactic radiosurgery programs at three cancer centers in Brazil.

    PubMed

    Teixeira, Flavia C; de Almeida, Carlos E; Saiful Huq, M

    2016-01-01

    The goal of this study was to evaluate the safety and quality management program for stereotactic radiosurgery (SRS) treatment processes at three radiotherapy centers in Brazil by using three industrial engineering tools (1) process mapping, (2) failure modes and effects analysis (FMEA), and (3) fault tree analysis. The recommendations of Task Group 100 of American Association of Physicists in Medicine were followed to apply the three tools described above to create a process tree for SRS procedure for each radiotherapy center and then FMEA was performed. Failure modes were identified for all process steps and values of risk priority number (RPN) were calculated from O, S, and D (RPN = O × S × D) values assigned by a professional team responsible for patient care. The subprocess treatment planning was presented with the highest number of failure modes for all centers. The total number of failure modes were 135, 104, and 131 for centers I, II, and III, respectively. The highest RPN value for each center is as follows: center I (204), center II (372), and center III (370). Failure modes with RPN ≥ 100: center I (22), center II (115), and center III (110). Failure modes characterized by S ≥ 7, represented 68% of the failure modes for center III, 62% for center II, and 45% for center I. Failure modes with RPNs values ≥100 and S ≥ 7, D ≥ 5, and O ≥ 5 were considered as high priority in this study. The results of the present study show that the safety risk profiles for the same stereotactic radiotherapy process are different at three radiotherapy centers in Brazil. Although this is the same treatment process, this present study showed that the risk priority is different and it will lead to implementation of different safety interventions among the centers. Therefore, the current practice of applying universal device-centric QA is not adequate to address all possible failures in clinical processes at different radiotherapy centers. Integrated approaches to device-centric and process specific quality management program specific to each radiotherapy center are the key to a safe quality management program.

  8. Numerical simulation and stability analysis of solutocapillary effect in ultrathin films

    NASA Astrophysics Data System (ADS)

    Gordeeva, V. Yu.; Lyushnin, A. V.

    2017-04-01

    Polar fluids, like water or polydimethylsiloxane, are widely used in technical and medical applications. Capillary effects arising from surface tension gradients can be significant in thin liquid films. The present paper is dedicated to investigation of capillary flow due to a surfactant added to a polar liquid under conditions when intermolecular forces and disjoining pressure play an important role. Evolution equations are formulated for a film profile and the surfactant concentration. Stability analysis shows that the Marangoni effect destabilizes the film, and oscillatory modes appear at slow evaporation rates. We find that the film has four stability modes of at slow evaporation: monotonic stable, monotonic unstable, oscillatory stable, and oscillatory unstable, depending on the wave number of disturbances.

  9. Independent Orbiter Assessment (IOA): Assessment of the main propulsion subsystem FMEA/CIL, volume 3

    NASA Technical Reports Server (NTRS)

    Holden, K. A.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Main Propulsion System (MPS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to available data from the Rockwell Downey/NASA JSC FMEA/CIL review. Volume 3 continues the presentation of IOA worksheets and includes the potential critical items list.

  10. Independent Orbiter Assessment (IOA): Assessment of the main propulsion subsystem FMEA/CIL, volume 2

    NASA Technical Reports Server (NTRS)

    Holden, K. A.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Main Propulsion System (MPS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were than compared to available data from the Rockwell Downey/NASA JSC FMEA/CIL review. Volume 2 continues the presentation of IOA worksheets for MPS hardware items.

  11. Independent Orbiter Assessment (IOA): Assessment of the communication and tracking subsystem, volume 2

    NASA Technical Reports Server (NTRS)

    Long, W. C.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed and analysis of the Communication and Tracking hardware, generating draft failure modes and potential critical items. The IOA results were then compared to the NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Communication and Tracking hardware. Volume 2 continues the presentation of IOA worksheets.

  12. Independent Orbiter Assessment (IOA): Assessment of the remote manipulator system FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Tangorra, F.; Grasmeder, R. F.; Montgomery, A. D.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Remote Manipulator System (RMS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were than compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison for the Orbiter RMS hardware are documented. The IOA product for the RMS analysis consisted of 604 failure mode worksheets that resulted in 458 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 45 FMEAs and 321 CIL items. This comparison produced agreement on all but 154 FMEAs which caused differences in 137 CIL items.

  13. Buckling analysis of Big Dee Vacuum Vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lightner, S.; Gallix, R.

    1983-12-01

    A simplified three-dimensional shell buckling analysis of the GA Technologies Inc., Big Dee Vacuum Vessel (V/V) was performed using the finite element program TRICO. A coarse-mesh linear elastic model, which accommodated the support boundary conditions, was used to determine the buckling mode shape under a uniform external pressure. Using this buckling mode shape, refined models were used to calculate the linear buckling load (P/sub crit/) more accurately. Several different designs of the Big Dee V/V were considered in this analysis. The supports for the V/V were equally-spaced radial pins at the outer diameter of the mid-plane. For all the casesmore » considered, the buckling mode was axisymmetric in the toroidal direction. Therefore, it was possible to use only a small angular sector of a toric shell for the refined analysis. P/sub crit/ for the Big Dee is about 60 atm for a uniform external pressure. Also investigated in this analysis were the effects of geometrical imperfections and non-uniform pressure distributions.« less

  14. Risk management of key issues of FPSO

    NASA Astrophysics Data System (ADS)

    Sun, Liping; Sun, Hai

    2012-12-01

    Risk analysis of key systems have become a growing topic late of because of the development of offshore structures. Equipment failures of offloading system and fire accidents were analyzed based on the floating production, storage and offloading (FPSO) features. Fault tree analysis (FTA), and failure modes and effects analysis (FMEA) methods were examined based on information already researched on modules of relex reliability studio (RRS). Equipment failures were also analyzed qualitatively by establishing a fault tree and Boolean structure function based on the shortage of failure cases, statistical data, and risk control measures examined. Failure modes of fire accident were classified according to the different areas of fire occurrences during the FMEA process, using risk priority number (RPN) methods to evaluate their severity rank. The qualitative analysis of FTA gave the basic insight of forming the failure modes of FPSO offloading, and the fire FMEA gave the priorities and suggested processes. The research has practical importance for the security analysis problems of FPSO.

  15. Independent Orbiter Assessment (IOA): Assessment of the hydraulics/water spray boiler subsystem

    NASA Technical Reports Server (NTRS)

    Bynum, M. C.; Duval, J. D.; Parkman, W. E.; Davidson, W. R.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Hydraulics/Water Spray Boiler (HYD/WSB) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter HYD/WSB hardware. The IOA product for the HYD/WSB analysis consisted of 447 failure mode worksheets that resulted in 183 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 364 FMEAs and 111 CIL items. This comparison produced agreement on all but 68 FMEAs which caused differences in 23 CIL items.

  16. Independent Orbiter Assessment (IOA): Assessment of the Electrical Power Distribution and Control/Electrical Power Generation (EPD and C/EPG) FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Mccants, C. N.; Bearrow, M.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Electrical Power Distribution and Control/Electrical Power Generation (EPD and C/EPG) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison was provided through additional analysis as required. The results of that comparison is documented for the Orbiter EPD and C/EPG hardware. The IOA product for the EPD and C/EPG analysis consisted of 263 failure mode worksheets that resulted in 42 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 211 FMEA and 47 CIL items.

  17. Independent Orbiter Assessment (IOA): Assessment of the auxiliary power unit

    NASA Technical Reports Server (NTRS)

    Barnes, J. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Auxiliary Power Unit (APU) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter APU hardware. The IOA product for the APU analysis, covering both APU hardware and APU electrical components, consisted of 344 failure mode worksheets that resulted in 178 potential critical items being identified. A comparison was made of the IOA product to the NASA APU hardware FMEA/CIL baseline which consisted of 184 FMEAs and 57 CIL items. The comparison identified 72 discrepancies.

  18. Independent Orbiter Assessment (IOA): Assessment of the guidance, navigation, and control subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Trahan, W. H.; Odonnell, R. A.; Pietz, K. C.; Drapela, L. J.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Guidance, Navigation, and Control System (GNC) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison for the Orbiter GNC hardware is documented. The IOA product for the GNC analysis consisted of 141 failure mode worksheets that resulted in 24 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 148 FMEAs and 36 CIL items. This comparison produced agreement on all but 56 FMEAs which caused differences in zero CIL items.

  19. Independent Orbiter Assessment (IOA): Assessment of the body flap subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Body Flap (BF) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter BF hardware. The IOA product for the BF analysis consisted of 43 failure mode worksheets that resulted in 19 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 34 FMEAs and 15 CIL items. This comparison produced agreement on all CIL items. Based on the Pre 51-L baseline, all non-CIL FMEAs were also in agreement.

  20. Independent Orbiter Assessment (IOA): Assessment of the elevon actuator subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Elevon Subsystem hardware, generating draft failure modes, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Elevon hardware. The IOA product for the Elevon analysis consisted of 25 failure mode worksheets that resulted in 17 potential critical items being identified. Comparison was made to the NASA FMEA/CIL, which consisted of 23 FMEAs and 13 CIL items. This comparison produced agreement on all CIL items. Based on the Pre 51-L baseline, all non-CIL FMEAs were also in agreement.

  1. Independent Orbiter Assessment (IOA): Assessment of instrumental subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Gardner, J. R.; Addis, A. W.

    1988-01-01

    The McDonnell Douglas Astronautics Company (MDAC) was selected in June 1986 to perform an Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL). The IOA effort first completed an analysis of the Instrumentation hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison for the Orbiter Instrumentation hardware are documented. The IOA product for Instrumentation analysis consisted of 107 failure mode worksheets that resulted in 22 critical items being identified. Comparison was made to the Pre 51-L NASA baseline with 14 Post 51-L FMEAs added, which consists of 96 FMEAs and 18 CIL items. This comparison produced agreement on all but 25 FMEAs which caused differences in 5 CIL items.

  2. NONLINEAR AND FIBER OPTICS: Analysis of the mode noise in interference fiber channels used for the distribution of microwave signals

    NASA Astrophysics Data System (ADS)

    Bratchikov, A. N.; Glukhov, I. P.

    1991-03-01

    The results are given of a statistical theory of the speckle generalized to interference channels used for the distribution of microwave signals using multimode fiber waveguides with step and graded refractive-index profiles. A method is described for estimating the mode noise level in the open and closed regimes with one longitudinal speckle. The influence of the degree of mode filtering, losses at microbends, and spectral properties of a laser source on the statistical properties and the mode noise level is demonstrated. Numerical estimates are obtained of the ratio of the powers of the signal and mode noise for interference channels with typical parameters of fiber waveguides and a qualitative description is given of the effect of the mode noise.

  3. Use of a systematic risk analysis method to improve safety in the production of paediatric parenteral nutrition solutions

    PubMed Central

    Bonnabry, P; Cingria, L; Sadeghipour, F; Ing, H; Fonzo-Christe, C; Pfister, R

    2005-01-01

    Background: Until recently, the preparation of paediatric parenteral nutrition formulations in our institution included re-transcription and manual compounding of the mixture. Although no significant clinical problems have occurred, re-engineering of this high risk activity was undertaken to improve its safety. Several changes have been implemented including new prescription software, direct recording on a server, automatic printing of the labels, and creation of a file used to pilot a BAXA MM 12 automatic compounder. The objectives of this study were to compare the risks associated with the old and new processes, to quantify the improved safety with the new process, and to identify the major residual risks. Methods: A failure modes, effects, and criticality analysis (FMECA) was performed by a multidisciplinary team. A cause-effect diagram was built, the failure modes were defined, and the criticality index (CI) was determined for each of them on the basis of the likelihood of occurrence, the severity of the potential effect, and the detection probability. The CIs for each failure mode were compared for the old and new processes and the risk reduction was quantified. Results: The sum of the CIs of all 18 identified failure modes was 3415 for the old process and 1397 for the new (reduction of 59%). The new process reduced the CIs of the different failure modes by a mean factor of 7. The CI was smaller with the new process for 15 failure modes, unchanged for two, and slightly increased for one. The greatest reduction (by a factor of 36) concerned re-transcription errors, followed by readability problems (by a factor of 30) and chemical cross contamination (by a factor of 10). The most critical steps in the new process were labelling mistakes (CI 315, maximum 810), failure to detect a dosage or product mistake (CI 288), failure to detect a typing error during the prescription (CI 175), and microbial contamination (CI 126). Conclusions: Modification of the process resulted in a significant risk reduction as shown by risk analysis. Residual failure opportunities were also quantified, allowing additional actions to be taken to reduce the risk of labelling mistakes. This study illustrates the usefulness of prospective risk analysis methods in healthcare processes. More systematic use of risk analysis is needed to guide continuous safety improvement of high risk activities. PMID:15805453

  4. Use of a systematic risk analysis method to improve safety in the production of paediatric parenteral nutrition solutions.

    PubMed

    Bonnabry, P; Cingria, L; Sadeghipour, F; Ing, H; Fonzo-Christe, C; Pfister, R E

    2005-04-01

    Until recently, the preparation of paediatric parenteral nutrition formulations in our institution included re-transcription and manual compounding of the mixture. Although no significant clinical problems have occurred, re-engineering of this high risk activity was undertaken to improve its safety. Several changes have been implemented including new prescription software, direct recording on a server, automatic printing of the labels, and creation of a file used to pilot a BAXA MM 12 automatic compounder. The objectives of this study were to compare the risks associated with the old and new processes, to quantify the improved safety with the new process, and to identify the major residual risks. A failure modes, effects, and criticality analysis (FMECA) was performed by a multidisciplinary team. A cause-effect diagram was built, the failure modes were defined, and the criticality index (CI) was determined for each of them on the basis of the likelihood of occurrence, the severity of the potential effect, and the detection probability. The CIs for each failure mode were compared for the old and new processes and the risk reduction was quantified. The sum of the CIs of all 18 identified failure modes was 3415 for the old process and 1397 for the new (reduction of 59%). The new process reduced the CIs of the different failure modes by a mean factor of 7. The CI was smaller with the new process for 15 failure modes, unchanged for two, and slightly increased for one. The greatest reduction (by a factor of 36) concerned re-transcription errors, followed by readability problems (by a factor of 30) and chemical cross contamination (by a factor of 10). The most critical steps in the new process were labelling mistakes (CI 315, maximum 810), failure to detect a dosage or product mistake (CI 288), failure to detect a typing error during the prescription (CI 175), and microbial contamination (CI 126). Modification of the process resulted in a significant risk reduction as shown by risk analysis. Residual failure opportunities were also quantified, allowing additional actions to be taken to reduce the risk of labelling mistakes. This study illustrates the usefulness of prospective risk analysis methods in healthcare processes. More systematic use of risk analysis is needed to guide continuous safety improvement of high risk activities.

  5. Failure mode and effect analysis oriented to risk-reduction interventions in intraoperative electron radiation therapy: the specific impact of patient transportation, automation, and treatment planning availability.

    PubMed

    López-Tarjuelo, Juan; Bouché-Babiloni, Ana; Santos-Serra, Agustín; Morillo-Macías, Virginia; Calvo, Felipe A; Kubyshin, Yuri; Ferrer-Albiach, Carlos

    2014-11-01

    Industrial companies use failure mode and effect analysis (FMEA) to improve quality. Our objective was to describe an FMEA and subsequent interventions for an automated intraoperative electron radiotherapy (IOERT) procedure with computed tomography simulation, pre-planning, and a fixed conventional linear accelerator. A process map, an FMEA, and a fault tree analysis are reported. The equipment considered was the radiance treatment planning system (TPS), the Elekta Precise linac, and TN-502RDM-H metal-oxide-semiconductor-field-effect transistor in vivo dosimeters. Computerized order-entry and treatment-automation were also analyzed. Fifty-seven potential modes and effects were identified and classified into 'treatment cancellation' and 'delivering an unintended dose'. They were graded from 'inconvenience' or 'suboptimal treatment' to 'total cancellation' or 'potentially wrong' or 'very wrong administered dose', although these latter effects were never experienced. Risk priority numbers (RPNs) ranged from 3 to 324 and totaled 4804. After interventions such as double checking, interlocking, automation, and structural changes the final total RPN was reduced to 1320. FMEA is crucial for prioritizing risk-reduction interventions. In a semi-surgical procedure like IOERT double checking has the potential to reduce risk and improve quality. Interlocks and automation should also be implemented to increase the safety of the procedure. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Independent Orbiter Assessment (IOA): Assessment of the mechanical actuation subsystem, volume 1

    NASA Technical Reports Server (NTRS)

    Bradway, M. W.; Slaughter, W. T.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine draft failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline that was available. A resolution of each discrepancy from the comparison was provided through additional analysis as required. These discrepancies were flagged as issues, and recommendations were made based on the FMEA data available at the time. This report documents the results of that comparison for the Orbiter Mechanical Actuation System (MAS) hardware. Specifically, the MAS hardware consists of the following components: Air Data Probe (ADP); Elevon Seal Panel (ESP); External Tank Umbilical (ETU); Ku-Band Deploy (KBD); Payload Bay Doors (PBD); Payload Bay Radiators (PBR); Personnel Hatches (PH); Vent Door Mechanism (VDM); and Startracker Door Mechanism (SDM). Criticality was assigned based upon the severity of the effect for each failure mode.

  7. The effect of finite Larmor radius corrections on Jeans instability of quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Prerana; Chhajlani, R. K.

    2013-09-15

    The influence of finite Larmor radius (FLR) effects on the Jeans instability of infinitely conducting homogeneous quantum plasma is investigated. The quantum magnetohydrodynamic (QMHD) model is used to formulate the problem. The contribution of FLR is incorporated to the QMHD set of equations in the present analysis. The general dispersion relation is obtained analytically using the normal mode analysis technique which is modified due to the contribution of FLR corrections. From general dispersion relation, the condition of instability is obtained and it is found that Jeans condition is modified due to quantum effect. The general dispersion relation is reduced formore » both transverse and longitudinal mode of propagations. The condition of gravitational instability is modified due to the presence of both FLR and quantum corrections in the transverse mode of propagation. In longitudinal case, it is found to be unaffected by the FLR effects but modified due to the quantum corrections. The growth rate of Jeans instability is discussed numerically for various values of quantum and FLR corrections of the medium. It is found that the quantum parameter and FLR effects have stabilizing influence on the growth rate of instability of the system.« less

  8. WE-G-BRA-08: Failure Modes and Effects Analysis (FMEA) for Gamma Knife Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Y; Bhatnagar, J; Bednarz, G

    2015-06-15

    Purpose: To perform a failure modes and effects analysis (FMEA) study for Gamma Knife (GK) radiosurgery processes at our institution based on our experience with the treatment of more than 13,000 patients. Methods: A team consisting of medical physicists, nurses, radiation oncologists, neurosurgeons at the University of Pittsburgh Medical Center and an external physicist expert was formed for the FMEA study. A process tree and a failure mode table were created for the GK procedures using the Leksell GK Perfexion and 4C units. Three scores for the probability of occurrence (O), the severity (S), and the probability of no detectionmore » (D) for failure modes were assigned to each failure mode by each professional on a scale from 1 to 10. The risk priority number (RPN) for each failure mode was then calculated (RPN = OxSxD) as the average scores from all data sets collected. Results: The established process tree for GK radiosurgery consists of 10 sub-processes and 53 steps, including a sub-process for frame placement and 11 steps that are directly related to the frame-based nature of the GK radiosurgery. Out of the 86 failure modes identified, 40 failure modes are GK specific, caused by the potential for inappropriate use of the radiosurgery head frame, the imaging fiducial boxes, the GK helmets and plugs, and the GammaPlan treatment planning system. The other 46 failure modes are associated with the registration, imaging, image transfer, contouring processes that are common for all radiation therapy techniques. The failure modes with the highest hazard scores are related to imperfect frame adaptor attachment, bad fiducial box assembly, overlooked target areas, inaccurate previous treatment information and excessive patient movement during MRI scan. Conclusion: The implementation of the FMEA approach for Gamma Knife radiosurgery enabled deeper understanding of the overall process among all professionals involved in the care of the patient and helped identify potential weaknesses in the overall process.« less

  9. Independent Orbiter Assessment (IOA): Assessment of the electrical power distribution and control subsystem, volume 1

    NASA Technical Reports Server (NTRS)

    Schmeckpeper, K. R.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA first completed an analysis of the Electrical Power Distribution and Control (EPD and C) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter EPD and C hardware. The IOA product for the EPD and C analysis consisted of 1671 failure mode analysis worksheets that resulted in 468 potential critical items being identified. Comparison was made to the proposed NASA Post 51-L baseline which consisted of FMEAs and 158 CIL items. Volume 1 contains the EPD and C subsystem description, analysis results, ground rules and assumptions, and some of the IOA worksheets.

  10. An Efficient Power Saving Mechanism for Delay-Guaranteed Services in IEEE 802.16e

    NASA Astrophysics Data System (ADS)

    Park, Yunju; Hwang, Gang Uk

    As the IEEE 802.16e Wireless Metropolitan Access Network (WMAN) supports the mobility of a mobile station (MS), increasing MS power efficiency has become an important issue. In this paper, we analyze the sleep-mode operation for an efficient power saving mechanism for delay-guaranteed services in the IEEE 802.16e WMAN and observe the effects of the operating parameters related to this operation. For the analysis we use the M/GI/1/K queueing system with multiple vacations, exhaustive services and setup times. In the analysis, we consider the power consumption during the wake-mode period as well as the sleep-mode period. As a performance measure for the power consumption, we propose the power consumption per unit time per effective arrival which considers the power consumption and the packet blocking probability simultaneously. In addition, since we consider delay-guaranteed services, the average packet response delay is also considered as a performance measure. Based on the performance measures, we obtain the optimal sleep-mode operation which minimizes the power consumption per unit time per effective arrival with a given delay requirement. Numerical studies are also provided to investigate the system performance and to show how to achieve our objective.

  11. Dual-Mode Gas Sensor Composed of a Silicon Nanoribbon Field Effect Transistor and a Bulk Acoustic Wave Resonator: A Case Study in Freons

    PubMed Central

    Chang, Ye; Hui, Zhipeng; Wang, Xiayu; Qu, Hemi; Pang, Wei

    2018-01-01

    In this paper, we develop a novel dual-mode gas sensor system which comprises a silicon nanoribbon field effect transistor (Si-NR FET) and a film bulk acoustic resonator (FBAR). We investigate their sensing characteristics using polar and nonpolar organic compounds, and demonstrate that polarity has a significant effect on the response of the Si-NR FET sensor, and only a minor effect on the FBAR sensor. In this dual-mode system, qualitative discrimination can be achieved by analyzing polarity with the Si-NR FET and quantitative concentration information can be obtained using a polymer-coated FBAR with a detection limit at the ppm level. The complementary performance of the sensing elements provides higher analytical efficiency. Additionally, a dual mixture of two types of freons (CFC-113 and HCFC-141b) is further analyzed with the dual-mode gas sensor. Owing to the small size and complementary metal-oxide semiconductor (CMOS)-compatibility of the system, the dual-mode gas sensor shows potential as a portable integrated sensing system for the analysis of gas mixtures in the future. PMID:29370109

  12. Dual-Mode Gas Sensor Composed of a Silicon Nanoribbon Field Effect Transistor and a Bulk Acoustic Wave Resonator: A Case Study in Freons.

    PubMed

    Chang, Ye; Hui, Zhipeng; Wang, Xiayu; Qu, Hemi; Pang, Wei; Duan, Xuexin

    2018-01-25

    In this paper, we develop a novel dual-mode gas sensor system which comprises a silicon nanoribbon field effect transistor (Si-NR FET) and a film bulk acoustic resonator (FBAR). We investigate their sensing characteristics using polar and nonpolar organic compounds, and demonstrate that polarity has a significant effect on the response of the Si-NR FET sensor, and only a minor effect on the FBAR sensor. In this dual-mode system, qualitative discrimination can be achieved by analyzing polarity with the Si-NR FET and quantitative concentration information can be obtained using a polymer-coated FBAR with a detection limit at the ppm level. The complementary performance of the sensing elements provides higher analytical efficiency. Additionally, a dual mixture of two types of freons (CFC-113 and HCFC-141b) is further analyzed with the dual-mode gas sensor. Owing to the small size and complementary metal-oxide semiconductor (CMOS)-compatibility of the system, the dual-mode gas sensor shows potential as a portable integrated sensing system for the analysis of gas mixtures in the future.

  13. Metabonomic strategy for the investigation of the mode of action of the phytotoxin (5S,8R,13S,16R)-(-)-pyrenophorol using 1H nuclear magnetic resonance fingerprinting.

    PubMed

    Aliferis, Konstantinos A; Chrysayi-Tokousbalides, Maria

    2006-03-08

    The biochemical mode of action of (5S,8R,13S,16R)-(-)-pyrenophorol isolated from a Drechslera avenae pathotype was investigated by using metabolic fingerprinting. (1)H NMR spectra of crude leaf extracts from untreated Avena sterilis seedlings and A. sterilis seedlings treated with pyrenophorol were compared with those obtained from treatments with the herbicides diuron, glyphosate, mesotrione, norflurazon, oxadiazon, and paraquat. Multivariate analysis was carried out to group treatments according to the mode of action of the phytotoxic substances applied. Analysis results revealed that none of the herbicide treatments fitted the pyrenophorol model and indicate that the effect of the phytotoxin on A. sterilis differs than those caused by glyphosate, mesotrione, norflurazon, oxadiazon, paraquat, and diuron, which inhibit 5-enolpyruvylshikimate-3-phosphate synthase, 4-hydroxyphenyl-pyruvate-dioxygenase, phytoene desaturase, protoporphyrinogen oxidase, photosystem I, and photosystem II, respectively. The method applied, combined with appropriate data preprocessing and analysis, was found to be rapid for the screening of phytotoxic substances for metabolic effects.

  14. Disclosure of sensitive behaviors across self-administered survey modes: a meta-analysis.

    PubMed

    Gnambs, Timo; Kaspar, Kai

    2015-12-01

    In surveys, individuals tend to misreport behaviors that are in contrast to prevalent social norms or regulations. Several design features of the survey procedure have been suggested to counteract this problem; particularly, computerized surveys are supposed to elicit more truthful responding. This assumption was tested in a meta-analysis of survey experiments reporting 460 effect sizes (total N =125,672). Self-reported prevalence rates of several sensitive behaviors for which motivated misreporting has been frequently observed were compared across self-administered paper-and-pencil versus computerized surveys. The results revealed that computerized surveys led to significantly more reporting of socially undesirable behaviors than comparable surveys administered on paper. This effect was strongest for highly sensitive behaviors and surveys administered individually to respondents. Moderator analyses did not identify interviewer effects or benefits of audio-enhanced computer surveys. The meta-analysis highlighted the advantages of computerized survey modes for the assessment of sensitive topics.

  15. Observations of intermediate degree solar oscillations - 1989 April-June

    NASA Technical Reports Server (NTRS)

    Bachmann, Kurt T.; Schou, Jesper; Brown, Timothy M.

    1993-01-01

    Frequencies, splittings, and line widths from 85 d of full disk Doppler observations of solar p-modes taken between April 4 and June 30, 1989 are presented. Comparison of the present mode parameters with published Big Bear Solar Observatory (BBSO) results yields good agreement in general and is thus a confirmation of their work using an independent instrument and set of analysis routines. Average differences in p-mode frequencies measured by the two experiments in spring-summer 1989 are explained as a result of differences in the exact periods of data collection during a time of rapidly changing solar activity. It is shown that the present a(1) splitting coefficients for p-modes with nu/L less than 45 micro-Hz suffer from a significant systematic error. Evidence is presented to the effect that a detector distortion or alignment problem, not a problem with the power spectra analysis, is the most likely explanation of this a(1) anomaly.

  16. Integrative Analysis of Omics Big Data.

    PubMed

    Yu, Xiang-Tian; Zeng, Tao

    2018-01-01

    The diversity and huge omics data take biology and biomedicine research and application into a big data era, just like that popular in human society a decade ago. They are opening a new challenge from horizontal data ensemble (e.g., the similar types of data collected from different labs or companies) to vertical data ensemble (e.g., the different types of data collected for a group of person with match information), which requires the integrative analysis in biology and biomedicine and also asks for emergent development of data integration to address the great changes from previous population-guided to newly individual-guided investigations.Data integration is an effective concept to solve the complex problem or understand the complicate system. Several benchmark studies have revealed the heterogeneity and trade-off that existed in the analysis of omics data. Integrative analysis can combine and investigate many datasets in a cost-effective reproducible way. Current integration approaches on biological data have two modes: one is "bottom-up integration" mode with follow-up manual integration, and the other one is "top-down integration" mode with follow-up in silico integration.This paper will firstly summarize the combinatory analysis approaches to give candidate protocol on biological experiment design for effectively integrative study on genomics and then survey the data fusion approaches to give helpful instruction on computational model development for biological significance detection, which have also provided newly data resources and analysis tools to support the precision medicine dependent on the big biomedical data. Finally, the problems and future directions are highlighted for integrative analysis of omics big data.

  17. Independent Orbiter Assessment (IOA): Analysis of the extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Raffaelli, Gary G.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Extravehicular Mobility Unit (EMU) hardware. The EMU is an independent anthropomorphic system that provides environmental protection, mobility, life support, and communications for the Shuttle crewmember to perform Extravehicular Activity (EVA) in Earth orbit. Two EMUs are included on each baseline Orbiter mission, and consumables are provided for three two-man EVAs. The EMU consists of the Life Support System (LSS), Caution and Warning System (CWS), and the Space Suit Assembly (SSA). Each level of hardware was evaluated and analyzed for possible failure modes and effects. The majority of these PCIs are resultant from failures which cause loss of one or more primary functions: pressurization, oxygen delivery, environmental maintenance, and thermal maintenance. It should also be noted that the quantity of PCIs would significantly increase if the SOP were to be treated as an emergency system rather than as an unlike redundant element.

  18. Dielectric Metasurface as a Platform for Spatial Mode Conversion in Nanoscale Waveguides.

    PubMed

    Ohana, David; Desiatov, Boris; Mazurski, Noa; Levy, Uriel

    2016-12-14

    We experimentally demonstrate a nanoscale mode converter that performs coupling between the first two transverse electric-like modes of a silicon-on-insulator waveguide. The device operates by introducing a nanoscale periodic perturbation in its effective refractive index along the propagation direction and a graded effective index profile along its transverse direction. The periodic perturbation provides phase matching between the modes, while the graded index profile, which is realized by the implementation of nanoscale dielectric metasurface consisting of silicon features that are etched into the waveguide taking advantage of the effective medium concept, provides the overlap between the modes. Following the device design and numerical analysis using three-dimensional finite difference time domain simulations, we have fabricated the device and characterized it by directly measuring the modal content using optical imaging microscopy. From these measurements, the mode purity is estimated to be 95% and the transmission relative to an unperturbed strip waveguide is as high as 88%. Finally, we extend this approach to accommodate for the coupling between photonic and plasmonic modes. Specifically, we design and numerically demonstrate photonic to plasmonic mode conversion in a hybrid waveguide in which photonic and surface plasmon polariton modes can be guided in the silicon core and in the silicon/metal interface, respectively. The same method can also be used for coupling between symmetric and antisymmetric plasmonic modes in metal-insulator-metal or insulator-metal-insulator structures. On the basis of the current demonstration, we believe that such nanoscale dielectric metasurface-based mode converters can now be realized and become an important building block in future nanoscale photonic and plasmonic devices. Furthermore, the demonstrated platform can be used for the implementation of other chip scale components such as splitters, combiners couplers, and more.

  19. A failure modes and effects analysis study for gynecologic high-dose-rate brachytherapy.

    PubMed

    Mayadev, Jyoti; Dieterich, Sonja; Harse, Rick; Lentz, Susan; Mathai, Mathew; Boddu, Sunita; Kern, Marianne; Courquin, Jean; Stern, Robin L

    2015-01-01

    To improve the quality of our gynecologic brachytherapy practice and reduce reportable events, we performed a process analysis after the failure modes and effects analysis (FMEA). The FMEA included a multidisciplinary team specifically targeting the tandem and ring brachytherapy procedure. The treatment process was divided into six subprocesses and failure modes (FMs). A scoring guideline was developed based on published FMEA studies and assigned through team consensus. FMs were ranked according to overall and severity scores. FM ranking >5% of the highest risk priority number (RPN) score was selected for in-depth analysis. The efficiency of each existing quality assurance to detect each FM was analyzed. We identified 170 FMs, and 99 were scored. RPN scores ranged from 1 to 192. Of the 13 highest-ranking FMs with RPN scores >80, half had severity scores of 8 or 9, with no mode having severity of 10. Of these FM, the originating process steps were simulation (5), treatment planning (5), treatment delivery (2), and insertion (1). Our high-ranking FM focused on communication and the potential for applicator movement. Evaluation of the efficiency and the comprehensiveness of our quality assurance program showed coverage of all but three of the top 49 FMs ranked by RPN. This is the first reported FMEA process for a comprehensive gynecologic brachytherapy procedure overview. We were able to identify FMs that could potentially and severely impact the patient's treatment. We continue to adjust our quality assurance program based on the results of our FMEA analysis. Published by Elsevier Inc.

  20. Statistical analysis of m/ n = 2/1 locked and quasi-stationary modes with rotating precursors at DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, Ryan Myles; Choi, W.; La Haye, R. J.

    A database has been developed to study the evolution, the nonlinear effects on equilibria, and the disruptivity of locked and quasi-stationary modes with poloidal and toroidal mode numbers m = 2 and n = 1 at DIII-D. The analysis of 22500 discharges shows that more than 18% of disruptions are due to locked or quasi-stationary modes with rotating precursors (not including born locked modes). A parameter formulated by the plasma internal inductance l i divided by the safety factor at 95% of the poloidal flux, q 95, is found to exhibit predictive capability over whether a locked mode will cause a disruption or not, and does so up to hundreds of milliseconds before the disruption. Within 20 ms of the disruption, the shortest distance between the island separatrix and the unperturbed last closed flux surface, referred to as d edge, performs comparably tomore » $${{l}_{i}}/{{q}_{95}}$$ in its ability to discriminate disruptive locked modes. Out of all parameters considered, d edge also correlates best with the duration of the locked mode. Disruptivity following a m/n = 2/1 locked mode as a function of the normalized beta, $${{\\beta}_{\\text{N}}}$$ , is observed to peak at an intermediate value, and decrease for high values. The decrease is attributed to the correlation between $${{\\beta}_{\\text{N}}}$$ and q 95 in the DIII-D operational space. Within 50 ms of a locked mode disruption, average behavior includes exponential growth of the n = 1 perturbed field, which might be due to the 2/1 locked mode. Surprisingly, even assuming the aforementioned 2/1 growth, disruptivity following a locked mode shows little dependence on island width up to 20 ms before the disruption. Separately, greater deceleration of the rotating precursor is observed when the wall torque is large. At locking, modes are often observed to align at a particular phase, which is likely related to a residual error field. Timescales associated with the mode evolution are also studied and dictate the response times necessary for disruption avoidance and mitigation. Lastly, observations of the evolution of $${{\\beta}_{\\text{N}}}$$ during a locked mode, the effects of poloidal beta on the saturated width, and the reduction in Shafranov shift during locking are also presented.« less

  1. Statistical analysis of m/ n = 2/1 locked and quasi-stationary modes with rotating precursors at DIII-D

    DOE PAGES

    Sweeney, Ryan Myles; Choi, W.; La Haye, R. J.; ...

    2016-11-01

    A database has been developed to study the evolution, the nonlinear effects on equilibria, and the disruptivity of locked and quasi-stationary modes with poloidal and toroidal mode numbers m = 2 and n = 1 at DIII-D. The analysis of 22500 discharges shows that more than 18% of disruptions are due to locked or quasi-stationary modes with rotating precursors (not including born locked modes). A parameter formulated by the plasma internal inductance l i divided by the safety factor at 95% of the poloidal flux, q 95, is found to exhibit predictive capability over whether a locked mode will cause a disruption or not, and does so up to hundreds of milliseconds before the disruption. Within 20 ms of the disruption, the shortest distance between the island separatrix and the unperturbed last closed flux surface, referred to as d edge, performs comparably tomore » $${{l}_{i}}/{{q}_{95}}$$ in its ability to discriminate disruptive locked modes. Out of all parameters considered, d edge also correlates best with the duration of the locked mode. Disruptivity following a m/n = 2/1 locked mode as a function of the normalized beta, $${{\\beta}_{\\text{N}}}$$ , is observed to peak at an intermediate value, and decrease for high values. The decrease is attributed to the correlation between $${{\\beta}_{\\text{N}}}$$ and q 95 in the DIII-D operational space. Within 50 ms of a locked mode disruption, average behavior includes exponential growth of the n = 1 perturbed field, which might be due to the 2/1 locked mode. Surprisingly, even assuming the aforementioned 2/1 growth, disruptivity following a locked mode shows little dependence on island width up to 20 ms before the disruption. Separately, greater deceleration of the rotating precursor is observed when the wall torque is large. At locking, modes are often observed to align at a particular phase, which is likely related to a residual error field. Timescales associated with the mode evolution are also studied and dictate the response times necessary for disruption avoidance and mitigation. Lastly, observations of the evolution of $${{\\beta}_{\\text{N}}}$$ during a locked mode, the effects of poloidal beta on the saturated width, and the reduction in Shafranov shift during locking are also presented.« less

  2. Parasitic Effects of Grounding Paths on Common-Mode EMI Filter's Performance in Power Electronics Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shuo; Maillet, Yoann; Wang, Fei

    2010-01-01

    High-frequency common-mode (CM) electromagnetic-interference (EMI) noise is difficult to suppress in electronics systems. EMI filters are used to suppress CM noise, but their performance is greatly affected by the parasitic effects of the grounding paths. In this paper, the parasitic effects of the grounding paths on an EMI filter's performance are investigated in a motor-drive system. The effects of the mutual inductance between two grounding paths are explored. Guidelines for the grounding of CM EMI filters are derived. Simulations and experiments are finally carried out to verify the theoretical analysis.

  3. Independent Orbiter Assessment (IOA): FMEA/CIL assessment

    NASA Technical Reports Server (NTRS)

    Hinsdale, L. W.; Swain, L. J.; Barnes, J. E.

    1988-01-01

    The McDonnell Douglas Astronautics Company (MDAC) was selected to perform an Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL). Direction was given by the Orbiter and GFE Projects Office to perform the hardware analysis and assessment using the instructions and ground rules defined in NSTS 22206. The IOA analysis featured a top-down approach to determine hardware failure modes, criticality, and potential critical items. To preserve independence, the analysis was accomplished without reliance upon the results contained within the NASA and Prime Contractor FMEA/CIL documentation. The assessment process compared the independently derived failure modes and criticality assignments to the proposed NASA post 51-L FMEA/CIL documentation. When possible, assessment issues were discussed and resolved with the NASA subsystem managers. Unresolved issues were elevated to the Orbiter and GFE Projects Office manager, Configuration Control Board (CCB), or Program Requirements Control Board (PRCB) for further resolution. The most important Orbiter assessment finding was the previously unknown stuck autopilot push-button criticality 1/1 failure mode. The worst case effect could cause loss of crew/vehicle when the microwave landing system is not active. It is concluded that NASA and Prime Contractor Post 51-L FMEA/CIL documentation assessed by IOA is believed to be technically accurate and complete. All CIL issues were resolved. No FMEA issues remain that have safety implications. Consideration should be given, however, to upgrading NSTS 22206 with definitive ground rules which more clearly spell out the limits of redundancy.

  4. The effects of viscosity on the stability of a trailing-line vortex in compressible flow

    NASA Technical Reports Server (NTRS)

    Stott, Jillian A. K.; Duck, Peter W.

    1994-01-01

    We consider the effects of viscosity on the inviscid stability of the Batchelor vortex in a compressible flow. The problem is tackled asymptotically, in the limit of large (streamwise and azimuthal) wavenumbers, together with large Mach numbers. Previous studies, with viscous effects neglected, found that the nature of the solution passes through different regimes as the Mach number increases, relative to the wavenumber. This structure persists when viscous effects are included in the analysis. In the present study the mode present in the incompressible case ceases to be unstable at high Mach numbers and a center mode forms, whose stability characteristics are determined primarily by conditions close to the vortex axis. We find generally that viscosity has a stabilizing influence on the flow, while in the case of center modes, viscous effects become important at much larger Reynolds numbers than for the first class of disturbance.

  5. Simulating the effect of non-linear mode coupling in cosmological parameter estimation

    NASA Astrophysics Data System (ADS)

    Kiessling, A.; Taylor, A. N.; Heavens, A. F.

    2011-09-01

    Fisher Information Matrix methods are commonly used in cosmology to estimate the accuracy that cosmological parameters can be measured with a given experiment and to optimize the design of experiments. However, the standard approach usually assumes both data and parameter estimates are Gaussian-distributed. Further, for survey forecasts and optimization it is usually assumed that the power-spectrum covariance matrix is diagonal in Fourier space. However, in the low-redshift Universe, non-linear mode coupling will tend to correlate small-scale power, moving information from lower to higher order moments of the field. This movement of information will change the predictions of cosmological parameter accuracy. In this paper we quantify this loss of information by comparing naïve Gaussian Fisher matrix forecasts with a maximum likelihood parameter estimation analysis of a suite of mock weak lensing catalogues derived from N-body simulations, based on the SUNGLASS pipeline, for a 2D and tomographic shear analysis of a Euclid-like survey. In both cases, we find that the 68 per cent confidence area of the Ωm-σ8 plane increases by a factor of 5. However, the marginal errors increase by just 20-40 per cent. We propose a new method to model the effects of non-linear shear-power mode coupling in the Fisher matrix by approximating the shear-power distribution as a multivariate Gaussian with a covariance matrix derived from the mock weak lensing survey. We find that this approximation can reproduce the 68 per cent confidence regions of the full maximum likelihood analysis in the Ωm-σ8 plane to high accuracy for both 2D and tomographic weak lensing surveys. Finally, we perform a multiparameter analysis of Ωm, σ8, h, ns, w0 and wa to compare the Gaussian and non-linear mode-coupled Fisher matrix contours. The 6D volume of the 1σ error contours for the non-linear Fisher analysis is a factor of 3 larger than for the Gaussian case, and the shape of the 68 per cent confidence volume is modified. We propose that future Fisher matrix estimates of cosmological parameter accuracies should include mode-coupling effects.

  6. Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Xi; Liang, Liangbo; Huang, Shengxi

    2015-05-08

    As a new two-dimensional layered material, black phosphorus (BP) is a very promising material for nanoelectronics and nano-optoelectronics. We use Raman spectroscopy and first-principles theory to characterize and understand low-frequency (LF) interlayer breathing modes (<100 cm-1) in few-layer BP for the first time. Using laser polarization dependence study and group theory analysis the breathing modes are assigned to Ag symmetry. Compared to the high-frequency (HF) Raman modes, the LF breathing modes are considerably more sensitive to interlayer coupling and thus their frequencies show stronger dependence on the number of layers. Hence, they constitute an effective means to probe both themore » crystalline orientation and thickness of few-layer BP. Furthermore, the temperature dependence shows that the breathing modes have a harmonic behavior, in contrast to HF Raman modes which exhibit anharmonicity.« less

  7. Application of ISO 22000 and Failure Mode and Effect Analysis (FMEA) for industrial processing of salmon: a case study.

    PubMed

    Arvanitoyannis, Ioannis S; Varzakas, Theodoros H

    2008-05-01

    The Failure Mode and Effect Analysis (FMEA) model was applied for risk assessment of salmon manufacturing. A tentative approach of FMEA application to the salmon industry was attempted in conjunction with ISO 22000. Preliminary Hazard Analysis was used to analyze and predict the occurring failure modes in a food chain system (salmon processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points were identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram and fishbone diagram). In this work, a comparison of ISO 22000 analysis with HACCP is carried out over salmon processing and packaging. However, the main emphasis was put on the quantification of risk assessment by determining the RPN per identified processing hazard. Fish receiving, casing/marking, blood removal, evisceration, filet-making cooling/freezing, and distribution were the processes identified as the ones with the highest RPN (252, 240, 210, 210, 210, 210, 200 respectively) and corrective actions were undertaken. After the application of corrective actions, a second calculation of RPN values was carried out resulting in substantially lower values (below the upper acceptable limit of 130). It is noteworthy that the application of Ishikawa (Cause and Effect or Tree diagram) led to converging results thus corroborating the validity of conclusions derived from risk assessment and FMEA. Therefore, the incorporation of FMEA analysis within the ISO 22000 system of a salmon processing industry is anticipated to prove advantageous to industrialists, state food inspectors, and consumers.

  8. The effects of suction on the nonlinear stability of the three-dimensional boundary layer above a rotating disc

    NASA Technical Reports Server (NTRS)

    Bassom, Andrew P.; Seddougui, Sharon O.

    1991-01-01

    There exist two types of stationary instability of the flow over a rotating disc corresponding to the upper branch, inviscid mode and the lower branch mode, which has a triple deck structure, of the neutral stability curve. A theoretical study of the linear problem and an account of the weakly nonlinear properties of the lower branch modes have been undertaken by Hall and MacKerrell respectively. Motivated by recent reports of experimental sightings of the lower branch mode and an examination of the role of suction on the linear stability properties of the flow here, the effects are studied of suction on the nonlinear disturbance described by MacKerrell. The additional analysis required in order to incorporate suction is relatively straightforward and enables the derivation of an amplitude equation which describes the evolution of the mode. For each value of the suction, a threshold value of the disturbance amplitude is obtained; modes of size greater than this threshold grow without limit as they develop away from the point of neutral stability.

  9. Mode of action characterization for adverse effect of propranolol in Daphnia magna based on behavior and physiology monitoring and metabolite profiling.

    PubMed

    Jeong, Tae-Yong; Yoon, Dahye; Kim, Suhkmann; Kim, Hyun Young; Kim, Sang Don

    2018-02-01

    Studies are underway to gather information about the mode of action (MOA) of emerging pollutants that could guide practical environmental decision making. Previously, we showed that propranolol, an active pharmaceutical ingredient, had adverse effects on Daphnia magna that were similar to its pharmaceutical action. In order to characterize the mode of action of propranolol in D. magna, which is suspected to be organ-specific pharmaceutical action or baseline toxicity, we performed time-series monitoring of behavior along with heart rate measurements and nuclear magnetic resonance (NMR) based metabolite profiling. Principle component analysis (PCA) and hierarchical clustering were used to categorize the mode of action of propranolol among 5 chemicals with different modes of action. The findings showed that the mode of action of propranolol in D. magna is organ-specific and vastly different from those of narcotics, even though metabolite regulation is similar between narcotic and non-narcotic candidates. The method applied in this study seems applicable to rapid characterization of the MOA of other cardiovascular pharmaceutical ingredients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Stability and time-domain analysis of the dispersive tristability in microresonators under modal coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumeige, Yannick; Feron, Patrice

    Coupled nonlinear resonators have potential applications for the integration of multistable photonic devices. The dynamic properties of two coupled-mode nonlinear microcavities made of Kerr material are studied by linear stability analysis. Using a suitable combination of the modal coupling rate and the frequency detuning, it is possible to obtain configurations where a hysteresis loop is included inside other bistable cycles. We show that a single resonator with two modes both linearly and nonlinearly coupled via the cross-Kerr effect can have a multistable behavior. This could be implemented in semiconductor nonlinear whispering-gallery-mode microresonators under modal coupling for all optical signal processingmore » or ternary optical logic applications.« less

  11. Digital computer program DF1758 fully coupled natural frequencies and mode shapes of a helicopter rotor blade

    NASA Technical Reports Server (NTRS)

    Bennett, R. L.

    1975-01-01

    The analytical techniques and computer program developed in the fully-coupled rotor vibration study are described. The rotor blade natural frequency and mode shape analysis was implemented in a digital computer program designated DF1758. The program computes collective, cyclic, and scissor modes for a single blade within a specified range of frequency for specified values of rotor RPM and collective angle. The analysis includes effects of blade twist, cg offset from reference axis, and shear center offset from reference axis. Coupled inplane, out-of-plane, and torsional vibrations are considered. Normalized displacements, shear forces and moments may be printed out and Calcomp plots of natural frequencies as a function of rotor RPM may be produced.

  12. Cost analysis of direct versus indirect and individual versus group modes of manual-based speech-and-language therapy for primary school-age children with primary language impairment.

    PubMed

    Dickson, Kirstin; Marshall, Marjorie; Boyle, James; McCartney, Elspeth; O'Hare, Anne; Forbes, John

    2009-01-01

    The study is the first within trial cost analysis of direct versus indirect and individual versus group modes of speech-and-language therapy for children with primary language impairment. To compare the short-run resource consequences of the four interventions alongside the effects achieved measured by standardized scores on a test of expressive and receptive language. The study design was a cost analysis integrated within a randomized controlled trial using a 2x2 factorial design (direct/indirect versus individual/group therapy) together with a control group that received usual levels of community-based speech-and-language therapy. Research interventions were delivered in school settings in Scotland, UK. Children aged between 6 and 11 years, attending a mainstream school, with standard scores on the Clinical Evaluation of Language Fundamentals (CELF-III(UK)) of less than -1.25 standard deviation (SD) (receptive and/or expressive) and non-verbal IQ on the Wechsler Abbreviated Scale of Intelligence (WASI) above 75, and no reported hearing loss, no moderate/severe articulation/phonology/dysfluency problems or otherwise requiring individual work with a speech-and-language therapist. The intervention involved speech-and-language therapists and speech-and-language therapy assistants working with individual children or small groups of children. A therapy manual was constructed to assist the choice of procedures and activities for intervention. The cost analysis focused on the salary and travel costs associated with each mode of intervention. The cumulative distribution of total costs arising from the time of randomization to post-intervention assessment was estimated. Arithmetic mean costs were compared and reported with their 95% confidence intervals. The results of the intention-to-treat analysis revealed that there were no significant post-intervention differences between direct and indirect modes of therapy, or between individual and group modes on any of the primary language outcome measures. The cost analysis identified indirect therapy, particularly indirect group therapy, as the least costly of the intervention modes with direct individual therapy as the most costly option. The programme cost of providing therapy in practice over 30 weeks for children could represent between 30% and 75% of the total gross revenue spend in primary school per pupil, depending on the choice of assistant led group therapy or therapist-led individual therapy. This study suggests that speech-and-language therapy assistants can act as effective surrogates for speech-and-language therapists in delivering cost-effective services to children with primary language impairment. The resource gains from adopting a group-based approach may ensure that effective therapy is provided to more children in a more efficient way.

  13. Effects of inflow distortion profiles on fan tone noise calculated using a 3-D theory

    NASA Technical Reports Server (NTRS)

    Kobayashi, H.; Groeneweg, J. F.

    1979-01-01

    Calculations of the fan tone acoustic power and modal structure generated by complex distortions in axial inflow velocity are presented. The model used treats the motor as a rotating three-dimensional cascade and calculates the acoustic field from the distortion-produced dipole distribution on the blades including noncompact source effects. Radial and circumferential distortion shapes are synthesized from Fourier-Bessel components representing individual distortion modes. The relation between individual distortion modes and the generated acoustic modes is examined for particular distortion cases. Comparisons between theoretical and experimental results for distortions produced by wakes from upstream radial rods show that the analysis is a good predictor of acoustic power dependence on disturbance strength.

  14. Study of roles of remote manipulator systems and EVA for shuttle mission support, volume 1

    NASA Technical Reports Server (NTRS)

    Malone, T. B.; Micocci, A. J.

    1974-01-01

    Alternate extravehicular activity (EVA) and remote manipulator system (RMS) configurations were examined for their relative effectiveness in performing an array of representative shuttle and payload support tasks. Initially a comprehensive analysis was performed of payload and shuttle support missions required to be conducted exterior to a pressurized inclosure. A set of task selection criteria was established, and study tasks were identified. The EVA and RMS modes were evaluated according to their applicability for each task and task condition. The results are summarized in tabular form, showing the modes which are chosen as most effective or as feasible for each task/condition. Conclusions concerning the requirements and recommendations for each mode are presented.

  15. Vibration analysis of rotor blades with an attached concentrated mass

    NASA Technical Reports Server (NTRS)

    Murthy, V. R.; Barna, P. S.

    1977-01-01

    The effect of an attached concentrated mass on the dynamics of helicopter rotor blades is determined. The point transmission matrix method was used to define, through three completely automated computer programs, the natural vibrational characteristics (natural frequencies and mode shapes) of rotor blades. The problems of coupled flapwise bending, chordwise bending, and torsional vibration of a twisted nonuniform blade and its special subcase pure torsional vibration are discussed. The orthogonality relations that exist between the natural modes of rotor blades with an attached concentrated mass are derived. The effect of pitch, rotation, and point mass parameters on the collective, cyclic, scissor, and pure torsional modes of a seesaw rotor blade is determined.

  16. Independent Orbiter Assessment (IOA): Assessment of the electrical power generation/power reactant storage and distribution subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Ames, B. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) is presented. The IOA effort first completed an analysis of the Electrical Power Generation/Power Reactant Storage and Distribution (EPG/PRSD) subsystem hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baselines with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison are documented for the Orbiter EPG/PRSD hardware. The comparison produced agreement on all but 27 FMEAs and 9 CIL items. The discrepancy between the number of IOA findings and NASA FMEAs can be partially explained by the different approaches used by IOA and NASA to group failure modes together to form one FMEA. Also, several IOA items represented inner tank components and ground operations failure modes which were not in the NASA baseline.

  17. Computational Simulation of Acoustic Modes in Rocket Combustors

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Merkle, C. L.; Sankaran, V.; Ellis, M.

    2004-01-01

    A combination of computational fluid dynamic analysis and analytical solutions is being used to characterize the dominant modes in liquid rocket engines in conjunction with laboratory experiments. The analytical solutions are based on simplified geometries and flow conditions and are used for careful validation of the numerical formulation. The validated computational model is then extended to realistic geometries and flow conditions to test the effects of various parameters on chamber modes, to guide and interpret companion laboratory experiments in simplified combustors, and to scale the measurements to engine operating conditions. In turn, the experiments are used to validate and improve the model. The present paper gives an overview of the numerical and analytical techniques along with comparisons illustrating the accuracy of the computations as a function of grid resolution. A representative parametric study of the effect of combustor mean flow Mach number and combustor aspect ratio on the chamber modes is then presented for both transverse and longitudinal modes. The results show that higher mean flow Mach numbers drive the modes to lower frequencies. Estimates of transverse wave mechanics in a high aspect ratio combustor are then contrasted with longitudinal modes in a long and narrow combustor to provide understanding of potential experimental simulations.

  18. Guiding and amplification properties of rod-type photonic crystal fibers with sectioned core doping

    NASA Astrophysics Data System (ADS)

    Selleri, S.; Poli, F.; Passaro, D.; Cucinotta, A.; Lægsgaard, J.; Broeng, J.

    2009-05-01

    Rod-type photonic crystal fibers are large mode area double-cladding fibers with an outer diameter of few millimeters which can provide important advantages for high-power lasers and amplifiers. Numerical studies have recently demonstrated the guidance of higher-order modes in these fibers, which can worsen the output beam quality of lasers and amplifiers. In the present analysis a sectioned core doping has been proposed for Ybdoped rod-type photonic crystal fibers, with the aim to improve the higher-order mode suppression. A full-vector modal solver based on the finite element method has been applied to properly design the low refractive index ring in the fiber core, which can provide an increase of the differential overlap between the fundamental and the higher-order mode. Then, the gain competition among the guided modes along the Yb-doped rod-type fibers has been investigated with a spatial and spectral amplifier model. Simulation results have shown the effectiveness of the sectioned core doping in worsening the higher-order mode overlap on the doped area, thus providing an effective single-mode behavior of the Yb-doped rod-type photonic crystal fibers.

  19. Analysis of optimal design of low temperature economizer

    NASA Astrophysics Data System (ADS)

    Song, J. H.; Wang, S.

    2017-11-01

    This paper has studied the Off-design characteristic of low temperature economizer system based on thermodynamics analysis. Based on the data from one 1000 MW coal-fired unit, two modes of operation are contrasted and analyzed. One is to fix exhaust gas temperature and the other one is to take into account both of the average temperature difference and the exhaust gas temperature. Meanwhile, the cause of energy saving effect change is explored. Result shows that: in mode 1, the amount of decrease in coal consumption reduces from 1.11 g/kWh (under full load) to 0.54 g/kWh (under half load), and in mode 2, when the load decreases from 90% to 50%, the decrease in coal consumption reduces from 1.29 g/kWh to 0.84 g/kWh. From the result, under high load, the energy saving effect is superior, and under lower work load, energy saving effect declines rapidly when load is reduced. When load changes, the temperature difference of heat transfer, gas flow, the flue gas heat rejection and the waste heat recovery change. The energy saving effect corresponding changes result in that the energy saving effect under high load is superior and more stable. However, rational adjustment to the temperature of outlet gas can alleviate the decline of the energy saving effect under low load. The result provides theoretical analysis data for the optimal design and operation of low temperature economizer system of power plant.

  20. Application of ISO22000, failure mode, and effect analysis (FMEA) cause and effect diagrams and pareto in conjunction with HACCP and risk assessment for processing of pastry products.

    PubMed

    Varzakas, Theodoros H

    2011-09-01

    The Failure Mode and Effect Analysis (FMEA) model has been applied for the risk assessment of pastry processing. A tentative approach of FMEA application to the pastry industry was attempted in conjunction with ISO22000. Preliminary Hazard Analysis was used to analyze and predict the occurring failure modes in a food chain system (pastry processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points have been identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram, and fishbone diagram). In this work a comparison of ISO22000 analysis with HACCP is carried out over pastry processing and packaging. However, the main emphasis was put on the quantification of risk assessment by determining the Risk Priority Number (RPN) per identified processing hazard. Storage of raw materials and storage of final products at -18°C followed by freezing were the processes identified as the ones with the highest RPN (225, 225, and 144 respectively) and corrective actions were undertaken. Following the application of corrective actions, a second calculation of RPN values was carried out leading to considerably lower values (below the upper acceptable limit of 130). It is noteworthy that the application of Ishikawa (Cause and Effect or Tree diagram) led to converging results thus corroborating the validity of conclusions derived from risk assessment and FMEA. Therefore, the incorporation of FMEA analysis within the ISO22000 system of a pastry processing industry is considered imperative.

  1. Effects of auditory and visual modalities in recall of words.

    PubMed

    Gadzella, B M; Whitehead, D A

    1975-02-01

    Ten experimental conditions were used to study the effects of auditory and visual (printed words, uncolored and colored pictures) modalities and their various combinations with college students. A recall paradigm was employed in which subjects responded in a written test. Analysis of data showed the auditory modality was superior to visual (pictures) ones but was not significantly different from visual (printed words) modality. In visual modalities, printed words were superior to colored pictures. Generally, conditions with multiple modes of representation of stimuli were significantly higher than for conditions with single modes. Multiple modalities, consisting of two or three modes, did not differ significantly from each other. It was concluded that any two modalities of the stimuli presented simultaneously were just as effective as three in recall of stimulus words.

  2. Effect of rotation on Jeans instability of magnetized radiative quantum plasma

    NASA Astrophysics Data System (ADS)

    Joshi, H.; Pensia, R. K.

    2017-03-01

    The influence of rotation on the Jeans instability of homogeneous magnetized radiative quantum plasma is investigated. The basic equations of the problem are constructed and linearized by using the Quantum Magnetohydrodynamics (QMHD) model. The general dispersion relation is obtained by using the normal mode analysis technique, which is reduced for both the transverse and the longitudinal mode of propagations and further it is reduced for the axis of rotation parallel and perpendicular to the magnetic field. We found that the stabilizing effects of rotation are decreases for a strong magnetic field which is shown in the graphical representation. We also found that the quantum correction modified the condition of Jeans instability in both modes of propagation. The stabilizing effect of rotation is more increased in the presence of quantum correction.

  3. Quantitative Approach to Failure Mode and Effect Analysis for Linear Accelerator Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Daniel, Jennifer C., E-mail: jennifer.odaniel@duke.edu; Yin, Fang-Fang

    Purpose: To determine clinic-specific linear accelerator quality assurance (QA) TG-142 test frequencies, to maximize physicist time efficiency and patient treatment quality. Methods and Materials: A novel quantitative approach to failure mode and effect analysis is proposed. Nine linear accelerator-years of QA records provided data on failure occurrence rates. The severity of test failure was modeled by introducing corresponding errors into head and neck intensity modulated radiation therapy treatment plans. The relative risk of daily linear accelerator QA was calculated as a function of frequency of test performance. Results: Although the failure severity was greatest for daily imaging QA (imaging vsmore » treatment isocenter and imaging positioning/repositioning), the failure occurrence rate was greatest for output and laser testing. The composite ranking results suggest that performing output and lasers tests daily, imaging versus treatment isocenter and imaging positioning/repositioning tests weekly, and optical distance indicator and jaws versus light field tests biweekly would be acceptable for non-stereotactic radiosurgery/stereotactic body radiation therapy linear accelerators. Conclusions: Failure mode and effect analysis is a useful tool to determine the relative importance of QA tests from TG-142. Because there are practical time limitations on how many QA tests can be performed, this analysis highlights which tests are the most important and suggests the frequency of testing based on each test's risk priority number.« less

  4. IDA/OSD(Institute for Defense Analyses/Office of the Secretary of Defense) Reliability and Maintainability Study. Volume 3. Case Study Analysis.

    DTIC Science & Technology

    1983-11-01

    Isolation FIT Fault Isolation Test FMC Fully Mission Capable FMEA Failure Modes and Effects Analysis FMECA Failure Modes, Effects and Criticality...8217 ..* ,/- " , " A ’’"""¢ 9 % ’ k " . " ~ .[:, .- v," . , , .’ % , o4,o 100 92 88 0 80 76 PERCENT -- __ OF F-16 60 FLIGHTS WITHOUT NATO NATO RADAR HILL BASE BASE...to manage a growth program adequately. 822/1-13 IV-13 %. - 70 60 F-ill 50 F-1 5 40- CL. C.c 30 - IF-1 S20 ICIC p 10 I~* -. -. - - -____ F-5E -4 -3 -2

  5. Pricing Models for Dual-channel Reverse Supply Chain Considering Regional Differences under “Internet Recycling” Mode in China

    NASA Astrophysics Data System (ADS)

    Wu, Di; Li, Peng; Chen, Juhong

    2018-01-01

    In recent years, the Internet technology has been deeply influencing recycling industry to make it more intelligent and interconnected. However, most existing papers on “Internet Recycling” neglected the problem of pricing strategy under online and offline channels for different levels of recyclers. Moreover, the effect of regional differences has been emphasized a lot in dual-channel forward supply chain, but recycling field has seldom been concerned about it. In this paper, a recycling system consisting of one recycling center and several third-party recyclers (TPR) was investigated based on traditional mode and dual-channel mode. The dual-channel reverse supply chain model is transformed from traditional mode by the introduction of online channel. It involves two recycling modes, as recycling centre for online recovery and “Recycling center+TPR” for offline recovery. By establishing pricing strategies based on Stackelberg game model, the impacts of regional differences were analysed. Finally, numerical analysis was given to illustrate the effectiveness of the pricing mechanisms and strategies.

  6. Dynamic analysis of beam-cable coupled systems using Chebyshev spectral element method

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Xin; Tian, Hao; Zhao, Yang

    2017-10-01

    The dynamic characteristics of a beam-cable coupled system are investigated using an improved Chebyshev spectral element method in order to observe the effects of adding cables on the beam. The system is modeled as a double Timoshenko beam system interconnected by discrete springs. Utilizing Chebyshev series expansion and meshing the system according to the locations of its connections, numerical results of the natural frequencies and mode shapes are obtained using only a few elements, and the results are validated by comparing them with the results of a finite-element method. Then the effects of the cable parameters and layout of connections on the natural frequencies and mode shapes of a fixed-pinned beam are studied. The results show that the modes of a beam-cable coupled system can be classified into two types, beam mode and cable mode, according to the dominant deformation. To avoid undesirable vibrations of the cable, its parameters should be controlled in a reasonable range, or the layout of the connections should be optimized.

  7. Design and analysis of three-layer-core optical fiber

    NASA Astrophysics Data System (ADS)

    Zheng, Siwen; Liu, Yazhuo; Chang, Guangjian

    2018-03-01

    A three-layer-core single-mode large-mode-area fiber is investigated. The three-layer structure in the core, which is composed of a core-index layer, a cladding-index layer, and a depression-index layer, could achieve a large effective area Aeff while maintaining an ultralow bending loss without deteriorating cutoff behaviors. The single-mode large mode area of 100 to 330 μm2 could be achieved in the fiber. The effective area Aeff can be further enlarged by adjusting the layer parameters. Furthermore, the bending property could be improved in this three-layer-core structure. The bending loss could decrease by 2 to 4 orders of magnitude compared with the conventional step-index fiber with the same Aeff. These characteristics of three-layer-core fiber suggest that it can be used in large-mode-area wide-bandwidth high-capacity transmission or high-power optical fiber laser and amplifier in optical communications, which could be used for the basic physical layer structure of big data storage, reading, calculation, and transmission applications.

  8. Effect of ripple taper on band-gap overlap in a coaxial Bragg structure operating at terahertz frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Xueyong; Li Hongfan; Lv Zhensu

    Based on the mode-coupling method, numerical analysis is presented to demonstrate the influence of ripple taper on band-gap overlap in a coaxial Bragg structure operating at terahertz frequency. Results show that the interval between the band-gaps of the competing mode and the desired working mode is narrowed by use of positive-taper ripples, but is expanded if negative-taper ripples are employed, and the influence of the negative-taper ripples is obviously more advantageous than the positive-taper ripples; the band-gap overlap of modes can be efficiently separated by use of negative-taper ripples. The residual side-lobes of the frequency response in a coaxial Braggmore » structure with ripple taper also can be effectively suppressed by employing the windowing-function technique. These peculiarities provide potential advantage in constructing a coaxial Bragg cavity with high quality factor for single higher-order-mode operation of a high-power free-electron maser in the terahertz frequency range.« less

  9. Independent Orbiter Assessment (IOA): Assessment of the mechanical actuation subsystem, volume 2

    NASA Technical Reports Server (NTRS)

    Bradway, M. W.; Slaughter, W. T.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine draft failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline that was available. A resolution of each discrepancy from the comparison was provided through additional analysis as required. These discrepancies were flagged as issues, and recommendations were made based on the FMEA data available at the time. This report documents the results of that comparison for the Orbiter Mechanical Actuation System (MAS) hardware. Specifically, the MAS hardware consists of the following components: Air Data Probe (ADP); Elevon Seal Panel (ESP); External Tank Umbilical (ETU); Ku-Band Deploy (KBD); Payload Bay Doors (PBD); Payload Bay Radiators (PBR); Personnel Hatches (PH); Vent Door Mechanism (VDM); and Startracker Door Mechanism (SDM). Criticality was assigned based upon the severity of the effect for each failure mode. Volume 2 continues the presentation of IOA analysis worksheets and contains the potential critical items list, detailed analysis, and NASA FMEA/CIL to IOA worksheet cross reference and recommendations.

  10. Independent Orbiter Assessment (IOA): Assessment of the reaction control system, volume 5

    NASA Technical Reports Server (NTRS)

    Prust, Chet D.; Hartman, Dan W.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the aft and forward Reaction Control System (RCS) hardware and Electrical Power Distribution and Control (EPD and C), generating draft failure modes and potential critical items. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter RCS hardware and EPD and C systems. Volume 5 contains detailed analysis and superseded analysis worksheets and the NASA FMEA to IOA worksheet cross reference and recommendations.

  11. Independent Orbiter Assessment (IOA): Assessment of the communication and tracking subsystem, volume 3

    NASA Technical Reports Server (NTRS)

    Long, W. C.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed and analysis of the Communication and Tracking hardware, generating draft failure modes and potential critical items. The IOA results were then compared to the NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Communication and Tracking hardware. Volume 3 continues the presentation of IOA worksheets and contains the potential critical items list, detailed analysis, and the NASA FMEA to IOA worksheet cross reference and recommendations.

  12. Independent Orbiter Assessment (IOA): Assessment of the extravehicular mobility unit, volume 1

    NASA Technical Reports Server (NTRS)

    Raffaelli, Gary G.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort performed an independent analysis of the Extravehicular Mobility Unit (EMU) hardware and system, generating draft failure modes criticalities and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were than compared to the most recent proposed Post 51-L NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison was provided through additional analysis as required. This report documents the results of that comparison for the Orbiter EMU hardware.

  13. Independent Orbiter Assessment (IOA): Assessment of the data processing system FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Lowery, H. J.; Haufler, W. A.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Data Processing System (DPS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison is documented for the Orbiter DPS hardware.

  14. Control of atomic transition rates via laser-light shaping

    NASA Astrophysics Data System (ADS)

    Jáuregui, R.

    2015-04-01

    A modular systematic analysis of the feasibility of modifying atomic transition rates by tailoring the electromagnetic field of an external coherent light source is presented. The formalism considers both the center of mass and internal degrees of freedom of the atom, and all properties of the field: frequency, angular spectrum, and polarization. General features of recoil effects for internal forbidden transitions are discussed. A comparative analysis of different structured light sources is explicitly worked out. It includes spherical waves, Gaussian beams, Laguerre-Gaussian beams, and propagation invariant beams with closed analytical expressions. It is shown that increments in the order of magnitude of the transition rates for Gaussian and Laguerre-Gaussian beams, with respect to those obtained in the paraxial limit, require waists of the order of the wavelength, while propagation invariant modes may considerably enhance transition rates under more favorable conditions. For transitions that can be naturally described as modifications of the atomic angular momentum, this enhancement is maximal (within propagation invariant beams) for Bessel modes, Mathieu modes can be used to entangle the internal and center-of-mass involved states, and Weber beams suppress this kind of transition unless they have a significant component of odd modes. However, if a recoil effect of the transition with an adequate symmetry is allowed, the global transition rate (center of mass and internal motion) can also be enhanced using Weber modes. The global analysis presented reinforces the idea that a better control of the transitions between internal atomic states requires both a proper control of the available states of the atomic center of mass, and shaping of the background electromagnetic field.

  15. Failure Modes and Effects Analysis of bilateral same-day cataract surgery

    PubMed Central

    Shorstein, Neal H.; Lucido, Carol; Carolan, James; Liu, Liyan; Slean, Geraldine; Herrinton, Lisa J.

    2017-01-01

    PURPOSE To systematically analyze potential process failures related to bilateral same-day cataract surgery toward the goal of improving patient safety. SETTING Twenty-one Kaiser Permanente surgery centers, Northern California, USA. DESIGN Retrospective cohort study. METHODS Quality experts performed a Failure Modes and Effects Analysis (FMEA) that included an evaluation of sterile processing, pharmaceuticals, perioperative clinic and surgical center visits, and biometry. Potential failures in human factors and communication (modes) were identified. Rates of endophthalmitis, toxic anterior segment syndrome (TASS), and unintended intraocular lens (IOL) implantation were assessed in eyes having bilateral same-day surgery from 2010 through 2014. RESULTS The study comprised 4754 eyes. The analysis identified 15 significant potential failure modes. These included lapses in instrument processing and compounding error of intracameral antibiotic that could lead to endophthalmitis or TASS and ambiguous documentation of IOL selection by surgeons, which could lead to unintended IOL implantation. Of the study sample, 1 eye developed endophthalmitis, 1 eye had unintended IOL implantation (rates, 2 per 10 000; 95% confidence intervals [CI] 0.1–12.0 per 10 000), and no eyes developed TASS (upper 95% CI, 8 per 10 000). Recommendations included improving oversight of cleaning and sterilization practices, separating lots of compounded drugs for each eye, and enhancing IOL verification procedures. CONCLUSIONS Potential failure modes and recommended actions in bilateral same-day cataract surgery were determined using a FMEA. These findings might help improve the reliability and safety of bilateral same-day cataract surgery based on current evidence and standards. PMID:28410711

  16. Independent Orbiter Assessment (IOA): Analysis of the instrumentation subsystem

    NASA Technical Reports Server (NTRS)

    Howard, B. S.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Instrumentation Subsystem are documented. The Instrumentation Subsystem (SS) consists of transducers, signal conditioning equipment, pulse code modulation (PCM) encoding equipment, tape recorders, frequency division multiplexers, and timing equipment. For this analysis, the SS is broken into two major groupings: Operational Instrumentation (OI) equipment and Modular Auxiliary Data System (MADS) equipment. The OI equipment is required to acquire, condition, scale, digitize, interleave/multiplex, format, and distribute operational Orbiter and payload data and voice for display, recording, telemetry, and checkout. It also must provide accurate timing for time critical functions for crew and payload specialist use. The MADS provides additional instrumentation to measure and record selected pressure, temperature, strain, vibration, and event data for post-flight playback and analysis. MADS data is used to assess vehicle responses to the flight environment and to permit correlation of such data from flight to flight. The IOA analysis utilized available SS hardware drawings and schematics for identifying hardware assemblies and components and their interfaces. Criticality for each item was assigned on the basis of the worst-case effect of the failure modes identified.

  17. Integrating FMEA in a Model-Driven Methodology

    NASA Astrophysics Data System (ADS)

    Scippacercola, Fabio; Pietrantuono, Roberto; Russo, Stefano; Esper, Alexandre; Silva, Nuno

    2016-08-01

    Failure Mode and Effects Analysis (FMEA) is a well known technique for evaluating the effects of potential failures of components of a system. FMEA demands for engineering methods and tools able to support the time- consuming tasks of the analyst. We propose to make FMEA part of the design of a critical system, by integration into a model-driven methodology. We show how to conduct the analysis of failure modes, propagation and effects from SysML design models, by means of custom diagrams, which we name FMEA Diagrams. They offer an additional view of the system, tailored to FMEA goals. The enriched model can then be exploited to automatically generate FMEA worksheet and to conduct qualitative and quantitative analyses. We present a case study from a real-world project.

  18. Terminal Sliding Mode Tracking Controller Design for Automatic Guided Vehicle

    NASA Astrophysics Data System (ADS)

    Chen, Hongbin

    2018-03-01

    Based on sliding mode variable structure control theory, the path tracking problem of automatic guided vehicle is studied, proposed a controller design method based on the terminal sliding mode. First of all, through analyzing the characteristics of the automatic guided vehicle movement, the kinematics model is presented. Then to improve the traditional expression of terminal sliding mode, design a nonlinear sliding mode which the convergence speed is faster than the former, verified by theoretical analysis, the design of sliding mode is steady and fast convergence in the limited time. Finally combining Lyapunov method to design the tracking control law of automatic guided vehicle, the controller can make the automatic guided vehicle track the desired trajectory in the global sense as well as in finite time. The simulation results verify the correctness and effectiveness of the control law.

  19. Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations – Part 1: Nonhydrostatic inertia–gravity modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konor, Celal S.; Randall, David A.

    We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia–gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by runningmore » linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.« less

  20. Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations – Part 1: Nonhydrostatic inertia–gravity modes

    DOE PAGES

    Konor, Celal S.; Randall, David A.

    2018-05-08

    We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia–gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by runningmore » linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.« less

  1. Relaxation mode analysis and Markov state relaxation mode analysis for chignolin in aqueous solution near a transition temperature

    NASA Astrophysics Data System (ADS)

    Mitsutake, Ayori; Takano, Hiroshi

    2015-09-01

    It is important to extract reaction coordinates or order parameters from protein simulations in order to investigate the local minimum-energy states and the transitions between them. The most popular method to obtain such data is principal component analysis, which extracts modes of large conformational fluctuations around an average structure. We recently applied relaxation mode analysis for protein systems, which approximately estimates the slow relaxation modes and times from a simulation and enables investigations of the dynamic properties underlying the structural fluctuations of proteins. In this study, we apply this relaxation mode analysis to extract reaction coordinates for a system in which there are large conformational changes such as those commonly observed in protein folding/unfolding. We performed a 750-ns simulation of chignolin protein near its folding transition temperature and observed many transitions between the most stable, misfolded, intermediate, and unfolded states. We then applied principal component analysis and relaxation mode analysis to the system. In the relaxation mode analysis, we could automatically extract good reaction coordinates. The free-energy surfaces provide a clearer understanding of the transitions not only between local minimum-energy states but also between the folded and unfolded states, even though the simulation involved large conformational changes. Moreover, we propose a new analysis method called Markov state relaxation mode analysis. We applied the new method to states with slow relaxation, which are defined by the free-energy surface obtained in the relaxation mode analysis. Finally, the relaxation times of the states obtained with a simple Markov state model and the proposed Markov state relaxation mode analysis are compared and discussed.

  2. Spectral Analysis of Non-ideal MRI Modes: The Effect of Hall Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohandas, Gopakumar; Pessah, Martin E., E-mail: gopakumar@nbi.ku.dk, E-mail: mpessah@nbi.ku.dk

    The effect of magnetic field diffusion on the stability of accretion disks is a problem that has attracted considerable interest of late. In particular, the Hall effect has the potential to bring about remarkable changes in the dynamical behavior of disks that are without parallel. In this paper, we conduct a systematic examination of the linear eigenmodes in a weakly magnetized differentially rotating gas with a special focus on Hall diffusion. We first develop a geometrical representation of the eigenmodes and provide a detailed quantitative description of the polarization properties of the oscillatory modes under the combined influence of themore » Coriolis and Hall effects. We also analyze the effects of magnetic diffusion on the structure of the unstable modes and derive analytical expressions for the kinetic and magnetic stresses and energy densities associated with the non-ideal magnetorotational instability (MRI). Our analysis explicitly demonstrates that, if the dissipative effects are relatively weak, the kinetic stresses and energies make up the dominant contribution to the total stress and energy density when the equilibrium angular momentum and magnetic field vectors are anti-parallel. This is in sharp contrast to what is observed in the case of the ideal or dissipative MRI. We conduct shearing box simulations and find very good agreement with the results derived from linear theory. Because the modes under consideration are also exact solutions of the nonlinear equations, the unconventional nature of the kinetic and magnetic stresses may have significant implications for the nonlinear evolution in some regions of protoplanetary disks.« less

  3. Relativistic stellar stability - Preferred-frame effects

    NASA Technical Reports Server (NTRS)

    Ni, W.-T.

    1974-01-01

    In a previous paper, the PPN (parametrized post-Newtonian) formalism was used to analyze relativistic influences on stellar stability in nearly all metric theories of gravity. That analysis omitted all preferred-frame terms. In this paper, possible preferred-frame effects on stellar stability are examined and no new instabilities are found. Although terms linear in the preferred-frame velocity w (time-odd terms, analogous to viscosity and energy generation) change the shapes of the normal modes, their symmetry properties prevent them from changing the characteristic frequencies. Thus, no new vibrational or secular instabilities can occur. Terms quadratic in w do not change either the shapes of the normal modes or the characteristic frequencies for radial pulsations (except for the effects due to the renormalization of the gravitation constant which does not affect stability). Thus, they have no influence on radial stability. Terms quadratic in w do change both the normal modes and the characteristic frequencies of nonradial pulsations; but in the limit of a neutral mode these changes vanish.

  4. Alternatives to Three-Mode Factor Analysis: A Case Study with Data Evaluating Perceived Barriers to Medical School Training.

    ERIC Educational Resources Information Center

    Thomson, William A.; And Others

    While educational researchers frequently collect data from a sample of individuals on a sample of variables, they sometimes collect data involving samples of: (1) subjects; (2) variables; and (3) occasions of measurement. A multistage procedure for analyzing such three-mode data is presented, focusing on effect sizes and graphic confidence…

  5. Risk assessment of component failure modes and human errors using a new FMECA approach: application in the safety analysis of HDR brachytherapy.

    PubMed

    Giardina, M; Castiglia, F; Tomarchio, E

    2014-12-01

    Failure mode, effects and criticality analysis (FMECA) is a safety technique extensively used in many different industrial fields to identify and prevent potential failures. In the application of traditional FMECA, the risk priority number (RPN) is determined to rank the failure modes; however, the method has been criticised for having several weaknesses. Moreover, it is unable to adequately deal with human errors or negligence. In this paper, a new versatile fuzzy rule-based assessment model is proposed to evaluate the RPN index to rank both component failure and human error. The proposed methodology is applied to potential radiological over-exposure of patients during high-dose-rate brachytherapy treatments. The critical analysis of the results can provide recommendations and suggestions regarding safety provisions for the equipment and procedures required to reduce the occurrence of accidental events.

  6. Nonlocal stability analysis of the MHD Kelvin-Helmholtz instability in a compressible plasma. [solar wind-magnetosphere interaction

    NASA Technical Reports Server (NTRS)

    Miura, A.; Pritchett, P. L.

    1982-01-01

    A general stability analysis is given of the Kevin-Helmholtz instability, for the case of sheared MHD flow of finite thickness in a compressible plasma which allows for the arbitrary orientation of the magnetic field, velocity flow, and wave vector in the plane perpendicular to the velocity gradient. The stability problem is reduced to the solution of a single second-order differential equation including a gravitational term to represent the coupling between the Kelvin-Helmholtz mode and the interchange mode. Compressibility and a magnetic field component parallel to the flow are found to be stabilizing effects, with destabilization of only the fast magnetosonic mode in the transverse case, and the presence of both Alfven and slow magnetosonic components in the parallel case. Analysis results are used in a discussion of the stability of sheared plasma flow at the magnetopause boundary and in the solar wind.

  7. Resolvent analysis of suboptimal control for turbulent skin friction drag reduction

    NASA Astrophysics Data System (ADS)

    Nakashima, Satoshi; Fukagata, Koji; Luhar, Mitul

    2017-11-01

    We study the drag reduction mechanisms of suboptimal control (Lee et al. 1998) via the resolvent formulation developed by McKeon and Sharma (2010). Under this formulation, the nonlinear term in the Navier-Stokes equations is regarded as a forcing which acts upon the linear dynamics to output a velocity response across Fourier space. This analysis enables targeted analyses of the effects of the control on modes resembling dynamically important coherent structures such as the near-wall (NW) cycle. Suboptimal control generates blowing and suction at the wall that is proportional to the streamwise (Case ST) or spanwise (Case SP) wall shear-stress, with the magnitude of blowing and suction being a design parameter. Both Case ST and SP can suppress resolvent modes resembling the NW cycle. However, for Case ST, the analysis reveals that the control leads to substantial increase in amplification for structures that are long in the spanwise direction. High actuation of such energetic spanwise structures was confirmed by conducting limited direct numerical simulations. In addition to the study of modes resembling the NW cycle, we will discuss modes of varying propagating speed and wavelength to provide insight into the effects of suboptimal control across spectral space. This work was supported through Grant-in-Aid for Scientific Research (C) (No. 25420129) by Japan Society for the Promotion of Science (JSPS).

  8. A randomised trial and economic evaluation of the effect of response mode on response rate, response bias, and item non-response in a survey of doctors.

    PubMed

    Scott, Anthony; Jeon, Sung-Hee; Joyce, Catherine M; Humphreys, John S; Kalb, Guyonne; Witt, Julia; Leahy, Anne

    2011-09-05

    Surveys of doctors are an important data collection method in health services research. Ways to improve response rates, minimise survey response bias and item non-response, within a given budget, have not previously been addressed in the same study. The aim of this paper is to compare the effects and costs of three different modes of survey administration in a national survey of doctors. A stratified random sample of 4.9% (2,702/54,160) of doctors undertaking clinical practice was drawn from a national directory of all doctors in Australia. Stratification was by four doctor types: general practitioners, specialists, specialists-in-training, and hospital non-specialists, and by six rural/remote categories. A three-arm parallel trial design with equal randomisation across arms was used. Doctors were randomly allocated to: online questionnaire (902); simultaneous mixed mode (a paper questionnaire and login details sent together) (900); or, sequential mixed mode (online followed by a paper questionnaire with the reminder) (900). Analysis was by intention to treat, as within each primary mode, doctors could choose either paper or online. Primary outcome measures were response rate, survey response bias, item non-response, and cost. The online mode had a response rate 12.95%, followed by the simultaneous mixed mode with 19.7%, and the sequential mixed mode with 20.7%. After adjusting for observed differences between the groups, the online mode had a 7 percentage point lower response rate compared to the simultaneous mixed mode, and a 7.7 percentage point lower response rate compared to sequential mixed mode. The difference in response rate between the sequential and simultaneous modes was not statistically significant. Both mixed modes showed evidence of response bias, whilst the characteristics of online respondents were similar to the population. However, the online mode had a higher rate of item non-response compared to both mixed modes. The total cost of the online survey was 38% lower than simultaneous mixed mode and 22% lower than sequential mixed mode. The cost of the sequential mixed mode was 14% lower than simultaneous mixed mode. Compared to the online mode, the sequential mixed mode was the most cost-effective, although exhibiting some evidence of response bias. Decisions on which survey mode to use depend on response rates, response bias, item non-response and costs. The sequential mixed mode appears to be the most cost-effective mode of survey administration for surveys of the population of doctors, if one is prepared to accept a degree of response bias. Online surveys are not yet suitable to be used exclusively for surveys of the doctor population.

  9. A randomised trial and economic evaluation of the effect of response mode on response rate, response bias, and item non-response in a survey of doctors

    PubMed Central

    2011-01-01

    Background Surveys of doctors are an important data collection method in health services research. Ways to improve response rates, minimise survey response bias and item non-response, within a given budget, have not previously been addressed in the same study. The aim of this paper is to compare the effects and costs of three different modes of survey administration in a national survey of doctors. Methods A stratified random sample of 4.9% (2,702/54,160) of doctors undertaking clinical practice was drawn from a national directory of all doctors in Australia. Stratification was by four doctor types: general practitioners, specialists, specialists-in-training, and hospital non-specialists, and by six rural/remote categories. A three-arm parallel trial design with equal randomisation across arms was used. Doctors were randomly allocated to: online questionnaire (902); simultaneous mixed mode (a paper questionnaire and login details sent together) (900); or, sequential mixed mode (online followed by a paper questionnaire with the reminder) (900). Analysis was by intention to treat, as within each primary mode, doctors could choose either paper or online. Primary outcome measures were response rate, survey response bias, item non-response, and cost. Results The online mode had a response rate 12.95%, followed by the simultaneous mixed mode with 19.7%, and the sequential mixed mode with 20.7%. After adjusting for observed differences between the groups, the online mode had a 7 percentage point lower response rate compared to the simultaneous mixed mode, and a 7.7 percentage point lower response rate compared to sequential mixed mode. The difference in response rate between the sequential and simultaneous modes was not statistically significant. Both mixed modes showed evidence of response bias, whilst the characteristics of online respondents were similar to the population. However, the online mode had a higher rate of item non-response compared to both mixed modes. The total cost of the online survey was 38% lower than simultaneous mixed mode and 22% lower than sequential mixed mode. The cost of the sequential mixed mode was 14% lower than simultaneous mixed mode. Compared to the online mode, the sequential mixed mode was the most cost-effective, although exhibiting some evidence of response bias. Conclusions Decisions on which survey mode to use depend on response rates, response bias, item non-response and costs. The sequential mixed mode appears to be the most cost-effective mode of survey administration for surveys of the population of doctors, if one is prepared to accept a degree of response bias. Online surveys are not yet suitable to be used exclusively for surveys of the doctor population. PMID:21888678

  10. Coupling of damped and growing modes in unstable shear flow

    DOE PAGES

    Fraser, A. E.; Terry, P. W.; Zweibel, E. G.; ...

    2017-06-14

    Analysis of the saturation of the Kelvin-Helmholtz instability is undertaken to determine the extent to which the conjugate linearly stable mode plays a role. For a piecewise-continuous mean flow profile with constant shear in a fixed layer, it is shown that the stable mode is nonlinearly excited, providing an injection-scale sink of the fluctuation energy similar to what has been found for gyroradius-scale drift-wave turbulence. Quantitative evaluation of the contribution of the stable mode to the energy balance at the onset of saturation shows that nonlinear energy transfer to the stable mode is as significant as energy transfer to smallmore » scales in balancing energy injected into the spectrum by the instability. The effect of the stable mode on momentum transport is quantified by expressing the Reynolds stress in terms of stable and unstable mode amplitudes at saturation, from which it is found that the stable mode can produce a sizable reduction in the momentum flux.« less

  11. Coupling of damped and growing modes in unstable shear flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraser, A. E.; Terry, P. W.; Zweibel, E. G.

    Analysis of the saturation of the Kelvin-Helmholtz instability is undertaken to determine the extent to which the conjugate linearly stable mode plays a role. For a piecewise-continuous mean flow profile with constant shear in a fixed layer, it is shown that the stable mode is nonlinearly excited, providing an injection-scale sink of the fluctuation energy similar to what has been found for gyroradius-scale drift-wave turbulence. Quantitative evaluation of the contribution of the stable mode to the energy balance at the onset of saturation shows that nonlinear energy transfer to the stable mode is as significant as energy transfer to smallmore » scales in balancing energy injected into the spectrum by the instability. The effect of the stable mode on momentum transport is quantified by expressing the Reynolds stress in terms of stable and unstable mode amplitudes at saturation, from which it is found that the stable mode can produce a sizable reduction in the momentum flux.« less

  12. Assessing the effect of cognitive styles with different learning modes on learning outcome.

    PubMed

    Liao, Chechen; Chuang, Shu-Hui

    2007-08-01

    In this study, similarities and differences in learning outcome associated with individual differences in cognitive styles are examined using the traditional (face-to-face) and web-based learning modes. 140 undergraduate students were categorized as having analytic or holistic cognitive styles by their scores on the Style of Learning and Thinking questionnaire. Four different conditions were studies; students with analytic cognitive style in a traditional learning mode, analytic cognitive style in a web-based learning mode, holistic cognitive style in a traditional learning mode, and holistic cognitive style in a web-based learning mode. Analysis of the data show that analytic style in traditional mode lead to significantly higher performance and perceived satisfaction than in other conditions. Satisfaction did not differ significantly between students with analytic style in web-based learning and those with holistic style in traditional learning. This suggest that integrating different learning modes into the learning environment may be insufficient to improve learners' satisfaction.

  13. Structure of micro-instabilities in tokamak plasmas: Stiff transport or plasma eruptions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickinson, D., E-mail: dd502@york.ac.uk; EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB; Roach, C. M.

    2014-01-15

    Solutions to a model 2D eigenmode equation describing micro-instabilities in tokamak plasmas are presented that demonstrate a sensitivity of the mode structure and stability to plasma profiles. In narrow regions of parameter space, with special plasma profiles, a maximally unstable mode is found that balloons on the outboard side of the tokamak. This corresponds to the conventional picture of a ballooning mode. However, for most profiles, this mode cannot exist, and instead, a more stable mode is found that balloons closer to the top or bottom of the plasma. Good quantitative agreement with a 1D ballooning analysis is found, providedmore » the constraints associated with higher order profile effects, often neglected, are taken into account. A sudden transition from this general mode to the more unstable ballooning mode can occur for a critical flow shear, providing a candidate model for why some experiments observe small plasma eruptions (Edge Localised Modes, or ELMs) in place of large Type I ELMs.« less

  14. Mid-infrared thermal imaging for an effective mapping of surface materials and sub-surface detachments in mural paintings: integration of thermography and thermal quasi-reflectography

    NASA Astrophysics Data System (ADS)

    Daffara, C.; Parisotto, S.; Mariotti, P. I.

    2015-06-01

    Cultural Heritage is discovering how precious is thermal analysis as a tool to improve the restoration, thanks to its ability to inspect hidden details. In this work a novel dual mode imaging approach, based on the integration of thermography and thermal quasi-reflectography (TQR) in the mid-IR is demonstrated for an effective mapping of surface materials and of sub-surface detachments in mural painting. The tool was validated through a unique application: the "Monocromo" by Leonardo da Vinci in Italy. The dual mode acquisition provided two spatially aligned dataset: the TQR image and the thermal sequence. Main steps of the workflow included: 1) TQR analysis to map surface features and 2) to estimate the emissivity; 3) projection of the TQR frame on reference orthophoto and TQR mosaicking; 4) thermography analysis to map detachments; 5) use TQR to solve spatial referencing and mosaicking for the thermal-processed frames. Referencing of thermal images in the visible is a difficult aspect of the thermography technique that the dual mode approach allows to solve in effective way. We finally obtained the TQR and the thermal maps spatially referenced to the mural painting, thus providing the restorer a valuable tool for the restoration of the detachments.

  15. Instability waves and low-frequency noise radiation in the subsonic chevron jet

    NASA Astrophysics Data System (ADS)

    Ran, Lingke; Ye, Chuangchao; Wan, Zhenhua; Yang, Haihua; Sun, Dejun

    2017-11-01

    Spatial instability waves associated with low-frequency noise radiation at shallow polar angles in the chevron jet are investigated and are compared to the round counterpart. The Reynolds-averaged Navier-Stokes equations are solved to obtain the mean flow fields, which serve as the baseflow for linear stability analysis. The chevron jet has more complicated instability waves than the round jet, where three types of instability modes are identified in the vicinity of the nozzle, corresponding to radial shear, azimuthal shear, and their integrated effect of the baseflow, respectively. The most unstable frequency of all chevron modes and round modes in both jets decrease as the axial location moves downstream. Besides, the azimuthal shear effect related modes are more unstable than radial shear effect related modes at low frequencies. Compared to a round jet, a chevron jet reduces the growth rate of the most unstable modes at downstream locations. Moreover, linearized Euler equations are employed to obtain the beam pattern of pressure generated by spatially evolving instability waves at a dominant low frequency St=0.3 , and the acoustic efficiencies of these linear wavepackets are evaluated for both jets. It is found that the acoustic efficiency of linear wavepacket is able to be reduced greatly in the chevron jet, compared to the round jet.

  16. Instability waves and low-frequency noise radiation in the subsonic chevron jet

    NASA Astrophysics Data System (ADS)

    Ran, Lingke; Ye, Chuangchao; Wan, Zhenhua; Yang, Haihua; Sun, Dejun

    2018-06-01

    Spatial instability waves associated with low-frequency noise radiation at shallow polar angles in the chevron jet are investigated and are compared to the round counterpart. The Reynolds-averaged Navier-Stokes equations are solved to obtain the mean flow fields, which serve as the baseflow for linear stability analysis. The chevron jet has more complicated instability waves than the round jet, where three types of instability modes are identified in the vicinity of the nozzle, corresponding to radial shear, azimuthal shear, and their integrated effect of the baseflow, respectively. The most unstable frequency of all chevron modes and round modes in both jets decrease as the axial location moves downstream. Besides, the azimuthal shear effect related modes are more unstable than radial shear effect related modes at low frequencies. Compared to a round jet, a chevron jet reduces the growth rate of the most unstable modes at downstream locations. Moreover, linearized Euler equations are employed to obtain the beam pattern of pressure generated by spatially evolving instability waves at a dominant low frequency St=0.3, and the acoustic efficiencies of these linear wavepackets are evaluated for both jets. It is found that the acoustic efficiency of linear wavepacket is able to be reduced greatly in the chevron jet, compared to the round jet.

  17. Substructure Versus Property-Level Dispersed Modes Calculation

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.; Peck, Jeff A.; Bush, T. Jason; Fulcher, Clay W.

    2016-01-01

    This paper calculates the effect of perturbed finite element mass and stiffness values on the eigenvectors and eigenvalues of the finite element model. The structure is perturbed in two ways: at the "subelement" level and at the material property level. In the subelement eigenvalue uncertainty analysis the mass and stiffness of each subelement is perturbed by a factor before being assembled into the global matrices. In the property-level eigenvalue uncertainty analysis all material density and stiffness parameters of the structure are perturbed modified prior to the eigenvalue analysis. The eigenvalue and eigenvector dispersions of each analysis (subelement and property-level) are also calculated using an analytical sensitivity approximation. Two structural models are used to compare these methods: a cantilevered beam model, and a model of the Space Launch System. For each structural model it is shown how well the analytical sensitivity modes approximate the exact modes when the uncertainties are applied at the subelement level and at the property level.

  18. Effect of moderate learning style–teaching mode mismatch on academic performance among 2nd year medical students in Pakistan

    PubMed Central

    Hamza, Muhammad; Inam-Ul-Haq; Hamid, Sidra; Nadir, Maha; Mehmood, Nadir

    2018-01-01

    Introduction: The vagueness surrounding “learning style–teaching mode mismatch” makes its effects uncertain. This study tried to tackle that controversy by comparing and assessing the effect of different learning styles on performance in physiology examination when teaching mode was somewhat different than learning preferences of the 2nd year medical students. Methods: A total of 102 2nd year medical students participated in this study. Honey and Mumford learning style questionnaire was used to categorize the participants into one of the four learning styles (activist, reflector, theorist, and pragmatist). Many teaching modes were used in the medical college. The first professional theory and practical physiology scores of these 102 students of University of Health Sciences were obtained online. Learning styles were compared with physiology scores and age using one-way analysis of variance and post hoc statistical analysis and between males and females by using Chi-square test. Results: Pragmatists had the lowest total physiology score (P < 0.001), while theorists had the highest total physiology scores (P < 0.001). Activists and reflectors had scores in between pragmatists and theorists, and there was no statistical difference between these two styles of learning (P = 0.9). No student scored below 60%. Conclusion: This study demonstrated that the effect of moderate teaching–learning mismatch is different for different learners. Theorists excelled as they had the highest physiology score, while pragmatists lagged in comparison. Reflectors and activists performed better than pragmatists but were worse than theorists. Despite this, none of the students scored below 60%. This shows that a moderate learning style–teaching mode mismatch is not harmful for learning. PMID:29736072

  19. Effect of moderate learning style-teaching mode mismatch on academic performance among 2nd year medical students in Pakistan.

    PubMed

    Hamza, Muhammad; Inam-Ul-Haq; Hamid, Sidra; Nadir, Maha; Mehmood, Nadir

    2018-01-01

    The vagueness surrounding "learning style-teaching mode mismatch" makes its effects uncertain. This study tried to tackle that controversy by comparing and assessing the effect of different learning styles on performance in physiology examination when teaching mode was somewhat different than learning preferences of the 2 nd year medical students. A total of 102 2 nd year medical students participated in this study. Honey and Mumford learning style questionnaire was used to categorize the participants into one of the four learning styles (activist, reflector, theorist, and pragmatist). Many teaching modes were used in the medical college. The first professional theory and practical physiology scores of these 102 students of University of Health Sciences were obtained online. Learning styles were compared with physiology scores and age using one-way analysis of variance and post hoc statistical analysis and between males and females by using Chi-square test. Pragmatists had the lowest total physiology score ( P < 0.001), while theorists had the highest total physiology scores ( P < 0.001). Activists and reflectors had scores in between pragmatists and theorists, and there was no statistical difference between these two styles of learning ( P = 0.9). No student scored below 60%. This study demonstrated that the effect of moderate teaching-learning mismatch is different for different learners. Theorists excelled as they had the highest physiology score, while pragmatists lagged in comparison. Reflectors and activists performed better than pragmatists but were worse than theorists. Despite this, none of the students scored below 60%. This shows that a moderate learning style-teaching mode mismatch is not harmful for learning.

  20. Stability analysis of ELMs in long-pulse discharges with ELITE code on EAST tokamak

    NASA Astrophysics Data System (ADS)

    Wang, Y. F.; Xu, G. S.; Wan, B. N.; Li, G. Q.; Yan, N.; Li, Y. L.; Wang, H. Q.; Peng, Y.-K. Martin; Xia, T. Y.; Ding, S. Y.; Chen, R.; Yang, Q. Q.; Liu, H. Q.; Zang, Q.; Zhang, T.; Lyu, B.; Xu, J. C.; Feng, W.; Wang, L.; Chen, Y. J.; Luo, Z. P.; Hu, G. H.; Zhang, W.; Shao, L. M.; Ye, Y.; Lan, H.; Chen, L.; Li, J.; Zhao, N.; Wang, Q.; Snyder, P. B.; Liang, Y.; Qian, J. P.; Gong, X. Z.; EAST team

    2018-05-01

    One challenge in long-pulse and high performance tokamak operation is to control the edge localized modes (ELMs) to reduce the transient heat load on plasma facing components. Minute-scale discharges in H-mode have been achieved repeatedly on Experimental Advanced Superconducting Tokamak (EAST) since the 2016 campaign and understanding the characteristics of the ELMs in these discharges can be helpful for effective ELM control in long-pulse discharges. The kinetic profile diagnostics recently developed on EAST make it possible to perform the pedestal stability analysis quantitatively. Pedestal stability calculation of a typical long-pulse discharge with ELITE code is presented. The ideal linear stability results show that the ELM is dominated by toroidal mode number n around 10–15 and the most unstable mode structure is mainly localized in the steep pressure gradient region, which is consistent with experimental results. Compared with a typical type-I ELM discharge with larger total plasma current (I p = 600 kA), pedestal in the long-pulse H-mode discharge (I p = 450 kA) is more stable in peeling-ballooning instability and its critical peak pressure gradient is evaluated to be 65% of the former. Two important features of EAST tokamak in the long-pulse discharge are presented by comparison with other tokamaks, including a wider pedestal correlated with the poloidal pedestal beta and a smaller inverse aspect ratio and their effects on the pedestal stability are discussed. The effects of uncertainties in measurements on the linear stability results are also analyzed, including the edge electron density profile position, the separatrix position and the line-averaged effective ion charge {Z}{{e}{{f}}{{f}}} value.

  1. The Use of Probabilistic Methods to Evaluate the Systems Impact of Component Design Improvements on Large Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Packard, Michael H.

    2002-01-01

    Probabilistic Structural Analysis (PSA) is now commonly used for predicting the distribution of time/cycles to failure of turbine blades and other engine components. These distributions are typically based on fatigue/fracture and creep failure modes of these components. Additionally, reliability analysis is used for taking test data related to particular failure modes and calculating failure rate distributions of electronic and electromechanical components. How can these individual failure time distributions of structural, electronic and electromechanical component failure modes be effectively combined into a top level model for overall system evaluation of component upgrades, changes in maintenance intervals, or line replaceable unit (LRU) redesign? This paper shows an example of how various probabilistic failure predictions for turbine engine components can be evaluated and combined to show their effect on overall engine performance. A generic model of a turbofan engine was modeled using various Probabilistic Risk Assessment (PRA) tools (Quantitative Risk Assessment Software (QRAS) etc.). Hypothetical PSA results for a number of structural components along with mitigation factors that would restrict the failure mode from propagating to a Loss of Mission (LOM) failure were used in the models. The output of this program includes an overall failure distribution for LOM of the system. The rank and contribution to the overall Mission Success (MS) is also given for each failure mode and each subsystem. This application methodology demonstrates the effectiveness of PRA for assessing the performance of large turbine engines. Additionally, the effects of system changes and upgrades, the application of different maintenance intervals, inclusion of new sensor detection of faults and other upgrades were evaluated in determining overall turbine engine reliability.

  2. Effect of 830 nm Diode Laser Irradiation of Root Canal on Bond Strength of Metal and Fiber Post.

    PubMed

    Strefezza, Claudia; Amaral, Marcello Magri; Quinto, José; Gouw-Soares, Sheila Cynthia; Zamataro, Claudia Bianchi; Zezell, Denise Maria

    2018-05-16

    The correct selections of the cementing agent, the endodontic post material and placement protocol are critical to provide an increased longevity of the teeth that went through endodontic treatment. The irradiation with diode laser before post cementation, can promote an antimicrobial effect. However, there is a lack of information about the effect of 830 nm diode laser on the post bond strength. This study analyzed the effect of dentin root canal irradiation with high-intensity diode laser, at 830 nm, operating in continuous or pulsed mode, on the retention of metal or fiber posts, cemented with self-etching resinous composite (Panavia F) and zinc phosphate cement (ZnPO 4 ). Human roots were irradiated with diode laser (continuous and pulsed mode). The fiber posts were luted with Panavia F and the metal posts with Panavia F or ZnPO 4 cement. Specimens were sectioned into three sections (cervical, middle, and apical). The bond strength was measured by a push-out mechanical analysis. For the statistical analysis, a three-way ANOVA test was applied following a Tukey's pairwise comparison with a significance level of p = 0.05. The irradiated groups presented higher bond strength compared with nonirradiated group (p < 0.05), and the cervical and middle thirds presented higher on bond strength than the apical. The association of metal post and Panavia F presented higher bond strength when irradiated on continuous mode (p < 0.05). Fiber post and Panavia F presented higher bond strength associated to pulsed mode. The mode seems not to make a significant difference. These results corroborate the importance of the post bond to dentin and root canal debris removal to increase the tooth longevity. It was shown that the dentin to post bond strength were enhanced by the diode laser irradiation either on continuous or pulsed modes.

  3. Interpretive analysis of 85 systematic reviews suggests that narrative syntheses and meta‐analyses are incommensurate in argumentation

    PubMed Central

    O'Mara‐Eves, A.; Thomas, J.; Brunton, G.; Caird, J.; Petticrew, M.

    2016-01-01

    Using Toulmin's argumentation theory, we analysed the texts of systematic reviews in the area of workplace health promotion to explore differences in the modes of reasoning embedded in reports of narrative synthesis as compared with reports of meta‐analysis. We used framework synthesis, grounded theory and cross‐case analysis methods to analyse 85 systematic reviews addressing intervention effectiveness in workplace health promotion. Two core categories, or ‘modes of reasoning’, emerged to frame the contrast between narrative synthesis and meta‐analysis: practical–configurational reasoning in narrative synthesis (‘what is going on here? What picture emerges?’) and inferential–predictive reasoning in meta‐analysis (‘does it work, and how well? Will it work again?’). Modes of reasoning examined quality and consistency of the included evidence differently. Meta‐analyses clearly distinguished between warrant and claim, whereas narrative syntheses often presented joint warrant–claims. Narrative syntheses and meta‐analyses represent different modes of reasoning. Systematic reviewers are likely to be addressing research questions in different ways with each method. It is important to consider narrative synthesis in its own right as a method and to develop specific quality criteria and understandings of how it is carried out, not merely as a complement to, or second‐best option for, meta‐analysis. © 2016 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. PMID:27860329

  4. Distinct Neural-Functional Effects of Treatments With Selective Serotonin Reuptake Inhibitors, Electroconvulsive Therapy, and Transcranial Magnetic Stimulation and Their Relations to Regional Brain Function in Major Depression: A Meta-analysis.

    PubMed

    Chau, David T; Fogelman, Phoebe; Nordanskog, Pia; Drevets, Wayne C; Hamilton, J Paul

    2017-05-01

    Functional neuroimaging studies have examined the neural substrates of treatments for major depressive disorder (MDD). Low sample size and methodological heterogeneity, however, undermine the generalizability of findings from individual studies. We conducted a meta-analysis to identify reliable neural changes resulting from different modes of treatment for MDD and compared them with each other and with reliable neural functional abnormalities observed in depressed versus control samples. We conducted a meta-analysis of studies reporting changes in brain activity (e.g., as indexed by positron emission tomography) following treatments with selective serotonin reuptake inhibitors (SSRIs), electroconvulsive therapy (ECT), or transcranial magnetic stimulation. Additionally, we examined the statistical reliability of overlap among thresholded meta-analytic SSRI, ECT, and transcranial magnetic stimulation maps as well as a map of abnormal neural function in MDD. Our meta-analysis revealed that 1) SSRIs decrease activity in the anterior insula, 2) ECT decreases activity in central nodes of the default mode network, 3) transcranial magnetic stimulation does not result in reliable neural changes, and 4) regional effects of these modes of treatment do not significantly overlap with each other or with regions showing reliable functional abnormality in MDD. SSRIs and ECT produce neurally distinct effects relative to each other and to the functional abnormalities implicated in depression. These treatments therefore may exert antidepressant effects by diminishing neural functions not implicated in depression but that nonetheless impact mood. We discuss how the distinct neural changes resulting from SSRIs and ECT can account for both treatment effects and side effects from these therapies as well as how to individualize these treatments. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Buckling of Cracked Laminated Composite Cylindrical Shells Subjected to Combined Loading

    NASA Astrophysics Data System (ADS)

    Allahbakhsh, Hamidreza; Shariati, Mahmoud

    2013-10-01

    A series of finite element analysis on the cracked composite cylindrical shells under combined loading is carried out to study the effect of loading condition, crack size and orientation on the buckling behavior of laminated composite cylindrical shells. The interaction buckling curves of cracked laminated composite cylinders subject to different combinations of axial compression, bending, internal pressure and external pressure are obtained, using the finite element method. Results show that the internal pressure increases the critical buckling load of the CFRP cylindrical shells and bending and external pressure decrease it. Numerical analysis show that axial crack has the most detrimental effect on the buckling load of a cylindrical shell and results show that for lower values of the axial compressive load and higher values of the external pressure, the buckling is usually in the global mode and for higher values of axial compressive load and lower levels of external pressure the buckling mode is mostly in the local mode.

  6. Using Failure Mode and Effects Analysis to design a comfortable automotive driver seat.

    PubMed

    Kolich, Mike

    2014-07-01

    Given enough time and use, all designs will fail. There are no fail-free designs. This is especially true when it comes to automotive seating comfort where the characteristics and preferences of individual customers are many and varied. To address this problem, individuals charged with automotive seating comfort development have, traditionally, relied on iterative and, as a result, expensive build-test cycles. Cost pressures being placed on today's vehicle manufacturers have necessitated the search for more efficient alternatives. This contribution aims to fill this need by proposing the application of an analytical technique common to engineering circles (but new to seating comfort development), namely Design Failure Mode and Effects Analysis (DFMEA). An example is offered to describe how development teams can use this systematic and disciplined approach to highlight potential seating comfort failure modes, reduce their risk, and bring capable designs to life. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  7. EMD-WVD time-frequency distribution for analysis of multi-component signals

    NASA Astrophysics Data System (ADS)

    Chai, Yunzi; Zhang, Xudong

    2016-10-01

    Time-frequency distribution (TFD) is two-dimensional function that indicates the time-varying frequency content of one-dimensional signals. And The Wigner-Ville distribution (WVD) is an important and effective time-frequency analysis method. The WVD can efficiently show the characteristic of a mono-component signal. However, a major drawback is the extra cross-terms when multi-component signals are analyzed by WVD. In order to eliminating the cross-terms, we decompose signals into single frequency components - Intrinsic Mode Function (IMF) - by using the Empirical Mode decomposition (EMD) first, then use WVD to analyze each single IMF. In this paper, we define this new time-frequency distribution as EMD-WVD. And the experiment results show that the proposed time-frequency method can solve the cross-terms problem effectively and improve the accuracy of WVD time-frequency analysis.

  8. The Effect of Basis Selection on Static and Random Acoustic Response Prediction Using a Nonlinear Modal Simulation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Przekop, Adam

    2005-01-01

    An investigation of the effect of basis selection on geometric nonlinear response prediction using a reduced-order nonlinear modal simulation is presented. The accuracy is dictated by the selection of the basis used to determine the nonlinear modal stiffness. This study considers a suite of available bases including bending modes only, bending and membrane modes, coupled bending and companion modes, and uncoupled bending and companion modes. The nonlinear modal simulation presented is broadly applicable and is demonstrated for nonlinear quasi-static and random acoustic response of flat beam and plate structures with isotropic material properties. Reduced-order analysis predictions are compared with those made using a numerical simulation in physical degrees-of-freedom to quantify the error associated with the selected modal bases. Bending and membrane responses are separately presented to help differentiate the bases.

  9. Composite fuzzy sliding mode control of nonlinear singularly perturbed systems.

    PubMed

    Nagarale, Ravindrakumar M; Patre, B M

    2014-05-01

    This paper deals with the robust asymptotic stabilization for a class of nonlinear singularly perturbed systems using the fuzzy sliding mode control technique. In the proposed approach the original system is decomposed into two subsystems as slow and fast models by the singularly perturbed method. The composite fuzzy sliding mode controller is designed for stabilizing the full order system by combining separately designed slow and fast fuzzy sliding mode controllers. The two-time scale design approach minimizes the effect of boundary layer system on the full order system. A stability analysis allows us to provide sufficient conditions for the asymptotic stability of the full order closed-loop system. The simulation results show improved system performance of the proposed controller as compared to existing methods. The experimentation results validate the effectiveness of the proposed controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Application of failure mode and effect analysis in managing catheter-related blood stream infection in intensive care unit

    PubMed Central

    Li, Xixi; He, Mei; Wang, Haiyan

    2017-01-01

    Abstract In this study, failure mode and effect analysis (FMEA), a proactive tool, was applied to reduce errors associated with the process which begins with assessment of patient and ends with treatment of complications. The aim of this study is to assess whether FMEA implementation will significantly reduce the incidence of catheter-related bloodstream infections (CRBSIs) in intensive care unit. The FMEA team was constructed. A team of 15 medical staff from different departments were recruited and trained. Their main responsibility was to analyze and score all possible processes of central venous catheterization failures. Failure modes with risk priority number (RPN) ≥100 (top 10 RPN scores) were deemed as high-priority-risks, meaning that they needed immediate corrective action. After modifications were put, the resulting RPN was compared with the previous one. A centralized nursing care system was designed. A total of 25 failure modes were identified. High-priority risks were “Unqualified medical device sterilization” (RPN, 337), “leukopenia, very low immunity” (RPN, 222), and “Poor hand hygiene Basic diseases” (RPN, 160). The corrective measures that we took allowed a decrease in the RPNs, especially for the high-priority risks. The maximum reduction was approximately 80%, as observed for the failure mode “Not creating the maximal barrier for patient.” The averaged incidence of CRBSIs was reduced from 5.19% to 1.45%, with 3 months of 0 infection rate. The FMEA can effectively reduce incidence of CRBSIs, improve the security of central venous catheterization technology, decrease overall medical expenses, and improve nursing quality. PMID:29390515

  11. Novel control modes to improve the performance of rectilinear ion trap mass spectrometer with dual pressure chambers

    NASA Astrophysics Data System (ADS)

    Huo, Xinming; Tang, Fei; Zhang, Xiaohua; Chen, Jin; Zhang, Yan; Guo, Cheng'an; Wang, Xiaohao

    2016-10-01

    The rectilinear ion trap (RIT) has gradually become one of the preferred mass analyzers for portable mass spectrometers because of its simple configuration. In order to enhance the performance, including sensitivity, quantitation capability, throughput, and resolution, a novel RIT mass spectrometer with dual pressure chambers was designed and characterized. The studied system constituted a quadrupole linear ion trap (QLIT) in the first chamber and a RIT in the second chamber. Two control modes are hereby proposed: Storage Quadrupole Linear Ion Trap-Rectilinear Ion Trap (SQLIT-RIT) mode, in which the QLIT was used at high pressure for ion storage and isolation, and the RIT was used for analysis; and Analysis Quadrupole Linear Ion Trap-Rectilinear Ion Trap (AQLIT-RIT) mode, in which the QLIT was used for ion storage and cooling. Subsequently, synchronous scanning and analysis were carried out by QLIT and RIT. In SQLIT-RIT mode, signal intensity was improved by a factor of 30; the limit of quantitation was reduced more than tenfold to 50 ng mL-1, and an optimal duty cycle of 96.4% was achieved. In AQLIT-RIT mode, the number of ions coexisting in the RIT was reduced, which weakened the space-charge effect and reduced the mass shift. Furthermore, the mass resolution was enhanced by a factor of 3. The results indicate that the novel control modes achieve satisfactory performance without adding any system complexity, which provides a viable pathway to guarantee good analytical performance in miniaturization of the mass spectrometer.

  12. A Case Study of a Combat Aircraft’s Single Hit Vulnerability

    DTIC Science & Technology

    1986-09-01

    Survivability Life Cycle 21 3.2 Interfaces of the FMECA Process 27 3.3 Example FMEA Format 29 3.4 Example DMEA Matrix 33 3.5 Example Disablement Diagram 34...Typical Hi-Hi/Hi-Hi Mission 58 5.5 A-20 Conceptual Tactics 60 7.1 A-20 Fuel System 73 7.2 A-20 Hydraulics System 75 7.3 A-20 Flight Controls System 77 7.4...effect severity. The FMECA procedure is performed in two steps, (1) a Fail- ure Mode and Effects Analysis ( FMEA ) and (2) a Damage Mode and Effects

  13. Improved Numerical Calculation of the Single-Mode-No-Core-Single-Mode Fiber Structure Using the Fields Far from Cutoff Approximation

    PubMed Central

    Yang, Xianchao; Xu, Degang; Rong, Feng; Zhao, Junfa; Yao, Jianquan

    2017-01-01

    Multimode interferometers based on the single-mode-no-core-single-mode fiber (SNCS) structure have been widely investigated as functional devices and sensors. However, the theoretical support for the sensing mechanism is still imperfect, especially for the cladding refractive index response. In this paper, a modified model of no-core fiber (NCF) based on far from cut-off approximation is proposed to investigate the spectrum characteristic and sensing mechanism of the SNCS structure. Guided-mode propagation analysis (MPA) is used to analyze the self-image effect and spectrum response to the cladding refractive index and temperature. Verified by experiments, the performance of the SNCS structure can be estimated specifically and easily by the proposed method. PMID:28961174

  14. PRIMORDIAL GRAVITATIONAL WAVES AND RESCATTERED ELECTROMAGNETIC RADIATION IN THE COSMIC MICROWAVE BACKGROUND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong-Hoon; Trippe, Sascha, E-mail: ki13130@gmail.com, E-mail: trippe@astro.snu.ac.kr

    Understanding the interaction of primordial gravitational waves (GWs) with the Cosmic Microwave Background (CMB) plasma is important for observational cosmology. In this article, we provide an analysis of an apparently as-yet-overlooked effect. We consider a single free electric charge and suppose that it can be agitated by primordial GWs propagating through the CMB plasma, resulting in periodic, regular motion along particular directions. Light reflected by the charge will be partially polarized, and this will imprint a characteristic pattern on the CMB. We study this effect by considering a simple model in which anisotropic incident electromagnetic (EM) radiation is rescattered bymore » a charge sitting in spacetime perturbed by GWs, and becomes polarized. As the charge is driven to move along particular directions, we calculate its dipole moment to determine the leading-order rescattered EM radiation. The Stokes parameters of the rescattered radiation exhibit a net linear polarization. We investigate how this polarization effect can be schematically represented out of the Stokes parameters. We work out the representations of gradient modes (E-modes) and curl modes (B-modes) to produce polarization maps. Although the polarization effect results from GWs, we find that its representations, the E- and B-modes, do not practically reflect the GW properties such as strain amplitude, frequency, and polarization states.« less

  15. Reduced-Order Blade Mistuning Analysis Techniques Developed for the Robust Design of Engine Rotors

    NASA Technical Reports Server (NTRS)

    Min, James B.

    2004-01-01

    The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo-Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using eigenfrequency curve veerings to identify "danger zones" in the operating conditions--ranges of rotational speeds and engine orders in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued. Several methods will be investigated, including the use of intentional mistuning patterns to mitigate the harmful effects of random mistuning, and the modification of disk stiffness to avoid reaching critical values of interblade coupling in the desired operating range. Recent research progress is summarized in the following paragraphs. First, significant progress was made in the development of the component mode mistuning (CMM) and static mode compensation (SMC) methods for reduced-order modeling of mistuned bladed disks (see the following figure). The CMM method has been formalized and extended to allow a general treatment of mistuning. In addition, CMM allows individual mode mistuning, which accounts for the realistic effects of local variations in blade properties that lead to different mistuning values for different mode types (e.g., mistuning of the first torsion mode versus the second flexural mode). The accuracy and efficiency of the CMM method and the corresponding Turbo-Reduce code were validated for an example finite element model of a bladed disk.

  16. Time-frequency analysis : mathematical analysis of the empirical mode decomposition.

    DOT National Transportation Integrated Search

    2009-01-01

    Invented over 10 years ago, empirical mode : decomposition (EMD) provides a nonlinear : time-frequency analysis with the ability to successfully : analyze nonstationary signals. Mathematical : Analysis of the Empirical Mode Decomposition : is a...

  17. Analysis of Biomechanical Effects of Different Sites and Modes of Orthodontic Loading On Arch Expansion in a Preadolescent Mandible: An FEA Study.

    PubMed

    Haresh, Ajmera Deepal; Pradeep, Singh; Song, Jinlin; Wang, Chao; Fan, Yubo

    2018-05-11

    The aim of commencing treatment in younger age is to rectify the developing dento-alveolar, skeletal and muscular imbalances. With growing dependence on arch development and expansion, the pendulum is oscillating more towards the non-extraction treatment lately, in resolving constriction and crowding issues. Since, a limited number of attempts have been made for mandibular expansion, this study aimes to evaluate the effect of different modes and sites of loading on the expansion of preadolescent mandible using biomechanics. To address the research purpose, a total of 9 Finite Element models were simulated. Biomechanical response of the mandibular bone and dentition was analyzed under different loading conditions including site and mode, using the simulated FE models. The values of displacement envisaged by the FE models, predict hybrid mode to offer substantial expansion of the mandibular bone as compared to tooth borne and bone borne. In addition, biomechanical effect of site II on mandibular expansion in terms of displacement on X-axis, was significant. In conclusion, the results of our study suggest hybrid mode at site II to be better option for true bony expansion in preadolescent mandible.

  18. 40 CFR Appendix D to Subpart B of... - SAE J2810 Standard for Recovery Only Equipment for HFC-134a Refrigerant

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) refrigerant to be returned to a refrigerant reclamation facility that will process it to the appropriate ARI... and Assembly Processes (Process FMEA) and Effects Analysis for Machinery (Machinery FMEA). SAE... Manufacturing and Assembly Processes (Process FMEA), and Potential Failure Mode and Effects Analysis for...

  19. 40 CFR Appendix D to Subpart B of... - SAE J2810 Standard for Recovery Only Equipment for HFC-134a Refrigerant

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) refrigerant to be returned to a refrigerant reclamation facility that will process it to the appropriate ARI... and Assembly Processes (Process FMEA) and Effects Analysis for Machinery (Machinery FMEA). SAE... Manufacturing and Assembly Processes (Process FMEA), and Potential Failure Mode and Effects Analysis for...

  20. 40 CFR Appendix D to Subpart B of... - SAE J2810 Standard for Recovery Only Equipment for HFC-134a Refrigerant

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) refrigerant to be returned to a refrigerant reclamation facility that will process it to the appropriate ARI... and Assembly Processes (Process FMEA) and Effects Analysis for Machinery (Machinery FMEA). SAE... Manufacturing and Assembly Processes (Process FMEA), and Potential Failure Mode and Effects Analysis for...

  1. 40 CFR Appendix D to Subpart B of... - SAE J2810 Standard for Recovery Only Equipment for HFC-134a Refrigerant

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) refrigerant to be returned to a refrigerant reclamation facility that will process it to the appropriate ARI... and Assembly Processes (Process FMEA) and Effects Analysis for Machinery (Machinery FMEA). SAE... Manufacturing and Assembly Processes (Process FMEA), and Potential Failure Mode and Effects Analysis for...

  2. 40 CFR Appendix D to Subpart B of... - SAE J2810 Standard for Recovery Only Equipment for HFC-134a Refrigerant

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) refrigerant to be returned to a refrigerant reclamation facility that will process it to the appropriate ARI... and Assembly Processes (Process FMEA) and Effects Analysis for Machinery (Machinery FMEA). SAE... Manufacturing and Assembly Processes (Process FMEA), and Potential Failure Mode and Effects Analysis for...

  3. Time-dependent, multimode interaction analysis of the gyroklystron amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swati, M. V., E-mail: swati.mv.ece10@iitbhu.ac.in; Chauhan, M. S.; Jain, P. K.

    2016-08-15

    In this paper, a time-dependent multimode nonlinear analysis for the gyroklystron amplifier has been developed by extending the analysis of gyrotron oscillators by employing the self-consistent approach. The nonlinear analysis developed here has been validated by taking into account the reported experimental results for a 32.3 GHz, three cavity, second harmonic gyroklystron operating in the TE{sub 02} mode. The analysis has been used to estimate the temporal RF growth in the operating mode as well as the nearby competing modes. Device gain and bandwidth have been computed for different drive powers and frequencies. The effect of various beam parameters, such asmore » beam voltage, beam current, and pitch factor, has also been studied. The computational results have estimated the gyroklystron saturated RF power ∼319 kW at 32.3 GHz with efficiency ∼23% and gain ∼26.3 dB with device bandwidth ∼0.027% (8 MHz) for a 70 kV, 20 A electron beam. The computed results are found to be in agreement with the experimental values within 10%.« less

  4. Independent Orbiter Assessment (IOA): Assessment of the rudder/speed brake subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Rudder/Speed Brake (RSB) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline along with the proposed Post 51-L CIL updates included. A resolution of each discrepancy from the comparison was provided through additional analysis as required. This report documents the results of that comparison for the Orbiter RSB hardware. The IOA product for the RSB analysis consisted of 38 failure mode worksheets that resulted in 27 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 34 FMEAs and 18 CIL items. This comparison produced agreement on all CIL items. Based on the Pre 51-L baseline, all non-CIL FMEAs were also in agreement.

  5. Independent Orbiter Assessment (IOA): Assessment of the manned maneuvering unit

    NASA Technical Reports Server (NTRS)

    Huynh, M.; Duffy, R. E.; Saiidi, M. J.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Manned Maneuvering Unit (MMU) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contain within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Martin Marietta FMEA/CIL Post 51-L updates. A discussion of each discrepancy from the comparison is provided through additional analysis as required. These discrepancies were flagged as issues, and recommendations were made based on the FMEA data available at the time. The results of this comparison for the Orbiter MMU hardware are documented. The IOA product for the MMU analysis consisted of 204 failure mode worksheets that resulted in 95 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 179 FMEAs and 110 CIL items. This comparison produced agreement on all 121 FMEAs which caused differences in 92 CIL items.

  6. Independent Orbiter Assessment (IOA): Analysis of the reaction control system, volume 1

    NASA Technical Reports Server (NTRS)

    Burkemper, V. J.; Haufler, W. A.; Odonnell, R. A.; Paul, D. J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Reaction Control System (RCS). The purpose of the RCS is to provide thrust in and about the X, Y, Z axes for External Tank (ET) separation; orbit insertion maneuvers; orbit translation maneuvers; on-orbit attitude control; rendezvous; proximity operations (payload deploy and capture); deorbit maneuvers; and abort attitude control. The RCS is situated in three independent modules, one forward in the orbiter nose and one in each OMS/RCS pod. Each RCS module consists of the following subsystems: Helium Pressurization Subsystem; Propellant Storage and Distribution Subsystem; Thruster Subsystem; and Electrical Power Distribution and Control Subsystem. Of the failure modes analyzed, 307 could potentially result in a loss of life and/or loss of vehicle.

  7. Independent Orbiter Assessment (IOA): Assessment of the landing/deceleration (LDG/DEC) subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Odonnell, R. A.; Weissinger, D.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Landing/Deceleration (LDG/DEC) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter LDG/DEC hardware. The IOA product for the LDG/DEC analysis consisted of 259 failure mode worksheets that resulted in 124 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 267 FMEA's and 120 CIL items. This comparison produced agreement on all but 75 FMEA's which caused differences in 51 CIL items.

  8. Independent Orbiter Assessment (IOA): Assessment of the ascent thrust vector control actuator subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Ascent Thrust Vector Control Actuator (ATVD) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter ATVC hardware. The IOA product for the ATVC actuator analysis consisted of 25 failure mode worksheets that resulted in 16 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 21 FMEAs and 13 CIL items. This comparison produced agreement on all CIL items. Based on the Pre 51-L baseline, all non-CIL FMEAs were also in agreement.

  9. Analysis of influence of different pressure and different depth of pvd on soft foundation treatment

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, XueKui

    2018-02-01

    According to the depth of plastic vertical drainage (pvd), the arrangement mode and the loading mode to analyze the influence of Vacuum preloading near the existing road. An arrangement mode of vacuum preloading to reduce the impact was put forward. The combination of different depth of pvd and loading modes are used to analyze the effect of vacuum preloading treatment and its influence range. The calculations show that the deformation and the influence distance are smaller by using the 40kPa vacuum loading and 41kPa surcharge load preloading. Reducing the depth of the pvd and vacuum combined surcharge preloading can weaken the influence to the existing highway.

  10. Verification of GENE and GYRO with L-mode and I-mode plasmas in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Mikkelsen, D. R.; Howard, N. T.; White, A. E.; Creely, A. J.

    2018-04-01

    Verification comparisons are carried out for L-mode and I-mode plasma conditions in Alcator C-Mod. We compare linear and nonlinear ion-scale calculations by the gyrokinetic codes GENE and GYRO to each other and to the experimental power balance analysis. The two gyrokinetic codes' linear growth rates and real frequencies are in good agreement throughout all the ion temperature gradient mode branches and most of the trapped electron mode branches of the kyρs spectra at r/a = 0.65, 0.7, and 0.8. The shapes of the toroidal mode spectra of heat fluxes in nonlinear simulations are very similar for kyρs ≤ 0.5, but in most cases GENE has a relatively higher heat flux than GYRO at higher mode numbers. The ratio of ion to electron heat flux is similar in the two codes' simulations, but the heat fluxes themselves do not agree in almost all cases. In the I-mode regime, GENE's heat fluxes are ˜3 times those from GYRO, and they are ˜60%-100% higher than GYRO in the L-mode conditions. The GYRO under-prediction of Qe is much reduced in GENE's L-mode simulations, and it is eliminated in the I-mode simulations. This largely improved agreement with the experimental electron heat flux is offset, however, by the large overshoot of GENE's ion heat fluxes, which are 2-3 times the experimental level, and its electron heat flux overshoot at r/a = 0.80 in the I-mode. Rotation effects can explain part of the difference between the two codes' predictions, but very significant differences remain in simulations without any rotation effects.

  11. Reconstructed phase spaces of intrinsic mode functions. Application to postural stability analysis.

    PubMed

    Snoussi, Hichem; Amoud, Hassan; Doussot, Michel; Hewson, David; Duchêne, Jacques

    2006-01-01

    In this contribution, we propose an efficient nonlinear analysis method characterizing postural steadiness. The analyzed signal is the displacement of the centre of pressure (COP) collected from a force plate used for measuring postural sway. The proposed method consists of analyzing the nonlinear dynamics of the intrinsic mode functions (IMF) of the COP signal. The nonlinear properties are assessed through the reconstructed phase spaces of the different IMFs. This study shows some specific geometries of the attractors of some intrinsic modes. Moreover, the volume spanned by the geometric attractors in the reconstructed phase space represents an efficient indicator of the postural stability of the subject. Experiments results corroborate the effectiveness of the method to blindly discriminate young subjects, elderly subjects and subjects presenting a risk of falling.

  12. The two-mode multi-photon intensity-dependent Rabi model

    NASA Astrophysics Data System (ADS)

    Lo, C. F.

    2014-06-01

    We have investigated the energy eigen-spectrum of the two-mode k-photon intensity-dependent Rabi (IDR) model for k ≥ 2. Our analysis shows that the model does not have eigenstates in the Hilbert space spanned by the eigenstates of the two-mode k-photon intensity-dependent Jaynes-Cummings (IDJC) model, which is obtained by applying the rotating-wave approximation (RWA) to the two-mode k-photon IDR model. That is, the two-mode k-photon IDR model is ill-defined for k ≥ 2, and it is qualitatively different from the RWA counterpart which is valid for all values of k, implying that the counter-rotating term does drastically alter the nature of the RWA counterpart. Hence, the previous study of the effect of the counter-rotating term in the two-mode k-photon IDJC model via the time-dependent perturbation expansion is completely invalid.

  13. Effect of Helicopter Blade Dynamics on Blade Aerodynamic and Structural Loads

    NASA Technical Reports Server (NTRS)

    Heffernan, Ruth M.

    1987-01-01

    The effect of rotor blade dynamics on aerodynamic and structural loads is examined for a conventional, main- rotor helicopter using both a comprehensive rotorcraft analysis (CAMRAD) and night test data. The impact of blade dynamics on blade section lift-coefficient time histories is studied by comparing predictions from both a rigid blade analysis and an elastic blade analysis with helicopter flight test data. The elastic blade analysis better predicts high-frequency behavior of section lift. In addition, components of the blade angle of attack, such as elastic blade twist, blade nap rate, blade slope velocity, and inflow, are examined as a function of blade mode. Elastic blade motion affects the blade angle of attack by a few tenths of a degree, and up to the sixth rotor harmonic. A similar study of the influence of blade dynamics on bending and torsion moments was also conducted. The modal analysis of the predicted blade structural loads suggested that five elastic bending deg of freedom (four flap and one lag) and three elastic torsion deg of freedom contributed to calculations of the blade structural loads. However, when structural bending load predictions from several elastic blade analyses were compared with flight test data, an elastic blade model consisting of only three elastic bending modes (first and second flap, and first lag), and two elastic torsion modes was found to be sufficient for maximum correlation.

  14. Human factors process failure modes and effects analysis (HF PFMEA) software tool

    NASA Technical Reports Server (NTRS)

    Chandler, Faith T. (Inventor); Relvini, Kristine M. (Inventor); Shedd, Nathaneal P. (Inventor); Valentino, William D. (Inventor); Philippart, Monica F. (Inventor); Bessette, Colette I. (Inventor)

    2011-01-01

    Methods, computer-readable media, and systems for automatically performing Human Factors Process Failure Modes and Effects Analysis for a process are provided. At least one task involved in a process is identified, where the task includes at least one human activity. The human activity is described using at least one verb. A human error potentially resulting from the human activity is automatically identified, the human error is related to the verb used in describing the task. A likelihood of occurrence, detection, and correction of the human error is identified. The severity of the effect of the human error is identified. The likelihood of occurrence, and the severity of the risk of potential harm is identified. The risk of potential harm is compared with a risk threshold to identify the appropriateness of corrective measures.

  15. Minimizing treatment planning errors in proton therapy using failure mode and effects analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yuanshui, E-mail: yuanshui.zheng@okc.procure.com; Johnson, Randall; Larson, Gary

    Purpose: Failure mode and effects analysis (FMEA) is a widely used tool to evaluate safety or reliability in conventional photon radiation therapy. However, reports about FMEA application in proton therapy are scarce. The purpose of this study is to apply FMEA in safety improvement of proton treatment planning at their center. Methods: The authors performed an FMEA analysis of their proton therapy treatment planning process using uniform scanning proton beams. The authors identified possible failure modes in various planning processes, including image fusion, contouring, beam arrangement, dose calculation, plan export, documents, billing, and so on. For each error, the authorsmore » estimated the frequency of occurrence, the likelihood of being undetected, and the severity of the error if it went undetected and calculated the risk priority number (RPN). The FMEA results were used to design their quality management program. In addition, the authors created a database to track the identified dosimetric errors. Periodically, the authors reevaluated the risk of errors by reviewing the internal error database and improved their quality assurance program as needed. Results: In total, the authors identified over 36 possible treatment planning related failure modes and estimated the associated occurrence, detectability, and severity to calculate the overall risk priority number. Based on the FMEA, the authors implemented various safety improvement procedures into their practice, such as education, peer review, and automatic check tools. The ongoing error tracking database provided realistic data on the frequency of occurrence with which to reevaluate the RPNs for various failure modes. Conclusions: The FMEA technique provides a systematic method for identifying and evaluating potential errors in proton treatment planning before they result in an error in patient dose delivery. The application of FMEA framework and the implementation of an ongoing error tracking system at their clinic have proven to be useful in error reduction in proton treatment planning, thus improving the effectiveness and safety of proton therapy.« less

  16. Minimizing treatment planning errors in proton therapy using failure mode and effects analysis.

    PubMed

    Zheng, Yuanshui; Johnson, Randall; Larson, Gary

    2016-06-01

    Failure mode and effects analysis (FMEA) is a widely used tool to evaluate safety or reliability in conventional photon radiation therapy. However, reports about FMEA application in proton therapy are scarce. The purpose of this study is to apply FMEA in safety improvement of proton treatment planning at their center. The authors performed an FMEA analysis of their proton therapy treatment planning process using uniform scanning proton beams. The authors identified possible failure modes in various planning processes, including image fusion, contouring, beam arrangement, dose calculation, plan export, documents, billing, and so on. For each error, the authors estimated the frequency of occurrence, the likelihood of being undetected, and the severity of the error if it went undetected and calculated the risk priority number (RPN). The FMEA results were used to design their quality management program. In addition, the authors created a database to track the identified dosimetric errors. Periodically, the authors reevaluated the risk of errors by reviewing the internal error database and improved their quality assurance program as needed. In total, the authors identified over 36 possible treatment planning related failure modes and estimated the associated occurrence, detectability, and severity to calculate the overall risk priority number. Based on the FMEA, the authors implemented various safety improvement procedures into their practice, such as education, peer review, and automatic check tools. The ongoing error tracking database provided realistic data on the frequency of occurrence with which to reevaluate the RPNs for various failure modes. The FMEA technique provides a systematic method for identifying and evaluating potential errors in proton treatment planning before they result in an error in patient dose delivery. The application of FMEA framework and the implementation of an ongoing error tracking system at their clinic have proven to be useful in error reduction in proton treatment planning, thus improving the effectiveness and safety of proton therapy.

  17. Independent Orbiter Assessment (IOA): Assessment of the electrical power generation/fuel cell powerplant subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Brown, K. L.; Bertsch, P. J.

    1987-01-01

    Results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Electrical Power Generation/Fuel Cell Powerplant (EPG/FCP) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison was provided through additional analysis as required. This report documents the results of that comparison for the Orbiter EPG/FCP hardware.

  18. Theoretical analysis of HVAC duct hanger systems

    NASA Technical Reports Server (NTRS)

    Miller, R. D.

    1987-01-01

    Several methods are presented which, together, may be used in the analysis of duct hanger systems over a wide range of frequencies. The finite element method (FEM) and component mode synthesis (CMS) method are used for low- to mid-frequency range computations and have been shown to yield reasonably close results. The statistical energy analysis (SEA) method yields predictions which agree with the CMS results for the 800 to 1000 Hz range provided that a sufficient number of modes participate. The CMS approach has been shown to yield valuable insight into the mid-frequency range of the analysis. It has been demonstrated that it is possible to conduct an analysis of a duct/hanger system in a cost-effective way for a wide frequency range, using several methods which overlap for several frequency bands.

  19. TU-AB-BRD-02: Failure Modes and Effects Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huq, M.

    2015-06-15

    Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before amore » failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn how to perform failure modes and effects analysis analysis for a given process Learn what fault trees are all about Learn how to design a quality management program based upon the information obtained from process mapping, failure modes and effects analysis and fault tree analysis. Dunscombe: Director, TreatSafely, LLC and Center for the Assessment of Radiological Sciences; Consultant to IAEA and Varian Thomadsen: President, Center for the Assessment of Radiological Sciences Palta: Vice President of the Center for the Assessment of Radiological Sciences.« less

  20. Analysis of failure and maintenance experiences of motor operated valves in a Finnish nuclear power plant

    NASA Astrophysics Data System (ADS)

    Simola, Kaisa; Laakso, Kari

    1992-01-01

    Eight years of operating experiences of 104 motor operated closing valves in different safety systems in nuclear power units were analyzed in a systematic way. The qualitative methods used were Failure Mode and Effect Analysis (FMEA) and Maintenance Effects and Criticality Analysis (MECA). These reliability engineering methods are commonly used in the design stage of equipment. The successful application of these methods for analysis and utilization of operating experiences was demonstrated.

  1. Design and analysis for a bend-resistant and large-mode-area photonic crystal fiber with hybrid cladding.

    PubMed

    Qin, Yan; Yang, Huajun; Jiang, Ping; Gui, Fengji; Caiyang, Weinan; Cao, Biao

    2018-05-10

    In this paper, an asymmetric large-mode-area photonic crystal fiber (LMA-PCF) with low bending loss at a smaller bending radius is designed. The finite-element method with a perfectly matched layer boundary is used to analyze the performance of the PCF. To achieve LMA-PCF with low bending loss, the air holes with double lattice constants and different sizes at the core are designed. Numerical results show that this structure can achieve low bending loss and LMA with a smaller bending radius at the wavelength of 1.55 μm. The effective mode area of the fundamental mode is larger than 1000  μm 2 when the bending radius is ≥10  cm. The bending loss of the fundamental mode is just 0.0113 dB/m, and the difference between the fundamental and high-order modes of the bending loss is larger than 10 3 when the bending radius is 10 cm. Simulation results show this novel PCF can achieve LMA and have effective single-mode operation when the bending orientation angle ranges in ±110°. This novel photonic crystal has potential application in high-power fiber lasers.

  2. The effect of regulatory mode on procrastination: Bi-stable parahippocampus connectivity with dorsal anterior cingulate and anterior prefrontal cortex.

    PubMed

    Zhang, Chenyan; Ni, Yan; Feng, Tingyong

    2017-06-30

    Previous research has elucidated that procrastination can be influenced by regulatory mode orientations. However, the neural mechanism of regulatory modes affecting procrastination is not well understood. To address this question, we employed resting-state functional magnetic resonance imaging (RS-fMRI) to test the influence of two regulatory modes (assessment and locomotion) on procrastination. The behavioral results showed that procrastination was positively correlated with assessment orientation but negatively correlated with locomotion orientation. Neuroimaging results indicated that the functional connectivity between parahippocampal cortex (PHC) and dorsal anterior cingulate (dACC) was negatively correlated with assessment scores, while the functional connectivity between anterior prefrontal cortex (aPFC) and parahippocampal cortex (PHC) was negatively correlated with locomotion scores. Critically, mediation analysis showed that the different effects of two distinct regulatory modes on procrastination were mediated by PHC-dACC and aPFC-PHC functional connectivity respectively. These results suggested that people's procrastination could be predicted by regulatory mode orientations, which is mediated by PHC connectivity with dACC and aPFC respectively. The present study extends our knowledge on procrastination and provides neural mechanism for understanding the link between regulatory mode orientations and procrastination. Copyright © 2017. Published by Elsevier B.V.

  3. Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes.

    PubMed

    Wu, Tangqin; Chen, Haodong; Wang, Qingsong; Sun, Jinhua

    2018-02-15

    The thermal stability evaluation of materials in a soft-pack commercial cell is tested using C80 calorimeter, including anode, cathode, separator and full cell (mixing of the three materials including additional electrolyte). Thermal runaway characteristic of the commercial cell is tested on the accelerating rate calorimeter (ARC) with two heating modes, including internal heating mode and external heating mode. The results show that the thermal stability of internal material for tested cell follows the below order: anode

  4. Hierarchical structure of the energy landscape of proteins revisited by time series analysis. II. Investigation of explicit solvent effects

    NASA Astrophysics Data System (ADS)

    Alakent, Burak; Camurdan, Mehmet C.; Doruker, Pemra

    2005-10-01

    Time series analysis tools are employed on the principal modes obtained from the Cα trajectories from two independent molecular-dynamics simulations of α-amylase inhibitor (tendamistat). Fluctuations inside an energy minimum (intraminimum motions), transitions between minima (interminimum motions), and relaxations in different hierarchical energy levels are investigated and compared with those encountered in vacuum by using different sampling window sizes and intervals. The low-frequency low-indexed mode relationship, established in vacuum, is also encountered in water, which shows the reliability of the important dynamics information offered by principal components analysis in water. It has been shown that examining a short data collection period (100ps) may result in a high population of overdamped modes, while some of the low-frequency oscillations (<10cm-1) can be captured in water by using a longer data collection period (1200ps). Simultaneous analysis of short and long sampling window sizes gives the following picture of the effect of water on protein dynamics. Water makes the protein lose its memory: future conformations are less dependent on previous conformations due to the lowering of energy barriers in hierarchical levels of the energy landscape. In short-time dynamics (<10ps), damping factors extracted from time series model parameters are lowered. For tendamistat, the friction coefficient in the Langevin equation is found to be around 40-60cm-1 for the low-indexed modes, compatible with literature. The fact that water has increased the friction and that on the other hand has lubrication effect at first sight contradicts. However, this comes about because water enhances the transitions between minima and forces the protein to reduce its already inherent inability to maintain oscillations observed in vacuum. Some of the frequencies lower than 10cm-1 are found to be overdamped, while those higher than 20cm-1 are slightly increased. As for the long-time dynamics in water, it is found that random-walk motion is maintained for approximately 200ps (about five times of that in vacuum) in the low-indexed modes, showing the lowering of energy barriers between the higher-level minima.

  5. The effects of computer-assisted instruction and locus of control upon preservice elementary teachers' acquisition of the integrated science process skills

    NASA Astrophysics Data System (ADS)

    Wesley, Beth Eddinger; Krockover, Gerald H.; Devito, Alfred

    The purpose of this study was to determine the effects of computer-assisted instruction (CAI) versus a text mode of programmed instruction (PI), and the cognitive style of locus of control, on preservice elementary teachers' achievement of the integrated science process skills. Eighty-one preservice elementary teachers in six sections of a science methods class were classified as internally or externally controlled. The sections were randomly assigned to receive instruction in the integrated science process skills via a microcomputer or printed text. The study used a pretest-posttest control group design. Before assessing main and interaction effects, analysis of covariance was used to adjust posttest scores using the pretest scores. Statistical analysis revealed that main effects were not significant. Additionally, no interaction effects between treatments and loci of control were demonstrated. The results suggest that printed PI and tutorial CAI are equally effective modes of instruction for teaching internally and externally oriented preservice elementary teachers the integrated science process skills.

  6. Resistive MHD Stability Analysis in Near Real-time

    NASA Astrophysics Data System (ADS)

    Glasser, Alexander; Kolemen, Egemen

    2017-10-01

    We discuss the feasibility of a near real-time calculation of the tokamak Δ' matrix, which summarizes MHD stability to resistive modes, such as tearing and interchange modes. As the operational phase of ITER approaches, solutions for active feedback tokamak stability control are needed. It has been previously demonstrated that an ideal MHD stability analysis is achievable on a sub- O (1 s) timescale, as is required to control phenomena comparable with the MHD-evolution timescale of ITER. In the present work, we broaden this result to incorporate the effects of resistive MHD modes. Such modes satisfy ideal MHD equations in regions outside narrow resistive layers that form at singular surfaces. We demonstrate that the use of asymptotic expansions at the singular surfaces, as well as the application of state transition matrices, enable a fast, parallelized solution to the singular outer layer boundary value problem, and thereby rapidly compute Δ'. Sponsored by US DOE under DE-SC0015878 and DE-FC02-04ER54698.

  7. Desorption electrospray ionization mass spectrometry for the analysis of pharmaceuticals and metabolites.

    PubMed

    Kauppila, Tiina J; Wiseman, Justin M; Ketola, Raimo A; Kotiaho, Tapio; Cooks, R Graham; Kostiainen, Risto

    2006-01-01

    The performance of desorption electrospray ionization (DESI) in the analysis of a group of pharmaceuticals and their glucuronic acid conjugates is reported. The suitability of different sprayer solvents and different surfaces was examined. In the positive ion mode, water/methanol/trifluoroacetic acid performed best, whereas, in the negative ion mode, water/methanol/ammonium hydroxide was found to be the most suitable spray solvent. Of the surfaces investigated, polymethylmethacrylate (PMMA) was found to give the best performance in terms of sensitivity. Spray solution flow rate and the distance of the sprayer tip from the surface were also found to have significant effects on the signal intensity. Analytes with basic groups efficiently formed the corresponding protonated molecules in the positive ion mode, whereas acidic analytes, such as the glucuronic acid conjugates, formed intense signals due to the deprotonated molecules in the negative ion mode. Ionization of neutral compounds was less efficient and in many cases it was achieved through adduct formation with simple anions or cations. Copyright (c) 2005 John Wiley & Sons, Ltd.

  8. Effects of planar shear on the three-dimensional instability in flow past a circular cylinder

    NASA Astrophysics Data System (ADS)

    Park, Doohyun; Yang, Kyung-Soo

    2018-03-01

    A Floquet stability analysis has been carried out in order to investigate how a planar shear in wake flow affects the three-dimensional (3D) instability in the near-wake region. We consider a circular cylinder immersed in a freestream with planar shear. The cylinder was implemented in a Cartesian grid system by means of an immersed boundary method. Planar shear tends to promote the primary instability, known as Hopf bifurcation where steady flow bifurcates into time-periodic flow, in the sense that its critical Reynolds number decreases with increasing planar shear. The effects of planar shear on the 3D instability are different depending on the type of 3D instability. The flow asymmetry caused by the planar shear suppresses a QP-type mode but generates a C-type mode. The conventional A and B modes are stabilized by the planar shear, whereas mode C is intensified with increasing shear. The criticality of each 3D mode is discussed, and the neutral stability curves for each 3D mode are presented. The current Floquet results have been validated by using direct numerical simulation for some selected cases of flow parameters.

  9. Interannual Variations in Synoptic-Scale Disturbances over the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Zhou, Xingyan; Lu, Riyu; Chen, Guanghua; Wu, Liang

    2018-05-01

    The present study investigates the interannual variation of June-November synoptic disturbance activity over the western North Pacific (WNP) and its relationship with large-scale circulation for the period 1958-2014. Two leading modes of eddy kinetic energy for the disturbance variability over the WNP are obtained by EOF analysis, characterized by anomalous eddy kinetic energy over the subtropical WNP and around the Philippines, respectively. These modes explain a large portion of the interannual variance of synoptic disturbance activity over the WNP. Both are associated with lower-level cyclonic anomalies, but with different locations: over the subtropical WNP for the first mode and over the South China Sea for the second mode. Considering the impact of ENSO on synoptic disturbance activity over the WNP, we repeat the analyses after removing the effect of ENSO, which is simply defined as the components linearly regressed onto the Niño3.4 index, and find similar results, suggesting that the leading modes and their relationships with large-scale circulation exist without SST effects. Further analyses suggest that the meridional shear of zonal winds caused by cyclonic anomalies is crucial for maintaining the leading modes through barotropic conversion.

  10. Quasi-steady Bingham plastic analysis of an electrorheological flow mode bypass damper with piston bleed

    NASA Astrophysics Data System (ADS)

    Lindler, Jason; Wereley, Norman M.

    2003-06-01

    We present an improved experimental validation of our nonlinear quasi-steady electrorheological (ER) and magnetorheological damper analysis, using an idealized Bingham plastic shear flow mechanism, for the flow mode of damper operation with leakage effect. To validate the model, a double-acting ER valve or bypass damper was designed and fabricated. Both the hydraulic cylinder and the bypass duct have cylindrical geometry, and damping forces are developed in the annular bypass via Poiseuille flow. The ER fluid damper contains a controlled amount of leakage around the piston head. The leakage allows ER fluid to flow from one side of the piston head to the opposite side without passing through the ER bypass. For this flow mode damper, the damping coefficient, defined as the ratio of equivalent viscous damping of the Bingham plastic material, Ceq, to the Newtonian viscous damping, C, is a function of the non-dimensional plug thickness only. The damper was tested for varying conditions of applied electric field and frequency using a mechanical damper dynamometer. In this analysis, the leakage damping coefficient with incorporated leakage effects, predict the amount of energy dissipated for a complete cycle of the piston rod. Measured force verses displacement cycles for multiple frequencies and electric fields validate the ability of the non-dimensional groups and the leakage damping coefficient to predict the damping levels for an ER bypass damper with leakage. Based on the experimental validation of the model using these data, the Bingham plastic analysis is shown to be an effective tool for the analysis-based design of double-acting ER bypass dampers.

  11. A Case Study on Improving Intensive Care Unit (ICU) Services Reliability: By Using Process Failure Mode and Effects Analysis (PFMEA)

    PubMed Central

    Yousefinezhadi, Taraneh; Jannesar Nobari, Farnaz Attar; Goodari, Faranak Behzadi; Arab, Mohammad

    2016-01-01

    Introduction: In any complex human system, human error is inevitable and shows that can’t be eliminated by blaming wrong doers. So with the aim of improving Intensive Care Units (ICU) reliability in hospitals, this research tries to identify and analyze ICU’s process failure modes at the point of systematic approach to errors. Methods: In this descriptive research, data was gathered qualitatively by observations, document reviews, and Focus Group Discussions (FGDs) with the process owners in two selected ICUs in Tehran in 2014. But, data analysis was quantitative, based on failures’ Risk Priority Number (RPN) at the base of Failure Modes and Effects Analysis (FMEA) method used. Besides, some causes of failures were analyzed by qualitative Eindhoven Classification Model (ECM). Results: Through FMEA methodology, 378 potential failure modes from 180 ICU activities in hospital A and 184 potential failures from 99 ICU activities in hospital B were identified and evaluated. Then with 90% reliability (RPN≥100), totally 18 failures in hospital A and 42 ones in hospital B were identified as non-acceptable risks and then their causes were analyzed by ECM. Conclusions: Applying of modified PFMEA for improving two selected ICUs’ processes reliability in two different kinds of hospitals shows that this method empowers staff to identify, evaluate, prioritize and analyze all potential failure modes and also make them eager to identify their causes, recommend corrective actions and even participate in improving process without feeling blamed by top management. Moreover, by combining FMEA and ECM, team members can easily identify failure causes at the point of health care perspectives. PMID:27157162

  12. Mode competition and selection in overmoded surface wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guangqiang; Zeng, Peng; Wang, Dongyang

    2016-05-15

    The overmoded surface wave oscillator (SWO) is one of the promising devices to generate high-power millimeter and subterahertz waves for its merits of high efficiency and easy fabrication. But the employed slow wave structure with large diameter may introduce mode competition as the adverse effects. Therefore, the mode competition and selection in the overmoded surface wave oscillator are investigated in detail in this paper. By using the theoretical analysis and particle-in-cell simulation, the potential transverse mode and axial mode competition is pointed out, and the physical mechanisms and methods for mode selection are investigated. At last, the results are verifiedmore » in the design of a 0.14 THz overmoded SWO without mode competition, which can generate the output power up to 70 MW at the frequency of 146.3 GHz with conversion efficiency almost 20% when beam voltage and current are, respectively, about 313 kV and 1.13 kA.« less

  13. Design and analysis of adaptive Super-Twisting sliding mode control for a microgyroscope.

    PubMed

    Feng, Zhilin; Fei, Juntao

    2018-01-01

    This paper proposes a novel adaptive Super-Twisting sliding mode control for a microgyroscope under unknown model uncertainties and external disturbances. In order to improve the convergence rate of reaching the sliding surface and the accuracy of regulating and trajectory tracking, a high order Super-Twisting sliding mode control strategy is employed, which not only can combine the advantages of the traditional sliding mode control with the Super-Twisting sliding mode control, but also guarantee that the designed control system can reach the sliding surface and equilibrium point in a shorter finite time from any initial state and avoid chattering problems. In consideration of unknown parameters of micro gyroscope system, an adaptive algorithm based on Lyapunov stability theory is designed to estimate the unknown parameters and angular velocity of microgyroscope. Finally, the effectiveness of the proposed scheme is demonstrated by simulation results. The comparative study between adaptive Super-Twisting sliding mode control and conventional sliding mode control demonstrate the superiority of the proposed method.

  14. Rayleigh-wave mode separation by high-resolution linear radon transform

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.

    2009-01-01

    Multichannel analysis of surface waves (MASW) method is an effective tool for obtaining vertical shear wave profiles from a single non-invasive measurement. One key step of the MASW method is generation of a dispersion image and extraction of a reliable dispersion curve from raw multichannel shot records. Because different Rayleigh-wave modes normally interfere with each other in the time and space domain, it is necessary to perform mode separation and reconstruction to increase the accuracy of phase velocities determined from a dispersion image. In this paper, we demonstrate the effectiveness of high-resolution linear Radon transform (LRT) as a means of separating and reconstructing multimode, dispersive Rayleigh-wave energy. We first introduce high-resolution LRT methods and Rayleigh-wave mode separation using high-resolution LRT. Next, we use synthetic data and a real-world example to demonstrate the effectiveness of Rayleigh-wave mode separation using high-resolution LRT. Our synthetic and real-world results demonstrate that (1) high-resolution LRT successfully separates and reconstructs multimode dispersive Rayleigh-wave energy with high resolution allowing the multimode energy to be more accurately determined. The horizontal resolution of the Rayleigh-wave method can be increased by extraction of dispersion curves from a pair of traces in the mode-separated shot gather and (2) multimode separation and reconstruction expand the usable frequency range of higher mode dispersive energy, which increases the depth of investigation and provides a means for accurately determining cut-off frequencies. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  15. Active control of helicopter air resonance in hover and forward flight

    NASA Technical Reports Server (NTRS)

    Takahashi, M. D.; Friedman, P. P.

    1988-01-01

    A coupled rotor/fuselage helicopter analysis is presented. The accuracy of the model is illustrated by comparing it with experimental data. The sensitivity of the open loop damping of the unstable resonance mode to such modeling effects as blade torsional flexibility, unsteady aerodynamics, forward flight, periodic terms, and trim solution is illustrated by numerous examples. Subsequently, the model is used in conjunction with linear optimal control theory to stabilize the air resonance mode. The influence of the modeling effects mentioned before on active resonance control is then investigated.

  16. Methodologies for Verification and Validation of Space Launch System (SLS) Structural Dynamic Models

    NASA Technical Reports Server (NTRS)

    Coppolino, Robert N.

    2018-01-01

    Responses to challenges associated with verification and validation (V&V) of Space Launch System (SLS) structural dynamics models are presented in this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA), which has gained acceptance by various principals in the NASA community, defines efficient and accurate FEM modal sensitivity models that are useful in test-analysis correlation and reconciliation and parametric uncertainty studies. (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976), developed to remedy difficulties encountered with the widely used Classical Guyan Reduction (CGR) method, are presented. MGR and HR are particularly relevant for estimation of "body dominant" target modes of shell-type SLS assemblies that have numerous "body", "breathing" and local component constituents. Realities associated with configuration features and "imperfections" cause "body" and "breathing" mode characteristics to mix resulting in a lack of clarity in the understanding and correlation of FEM- and test-derived modal data. (3) Mode Consolidation (MC) is a newly introduced procedure designed to effectively "de-feature" FEM and experimental modes of detailed structural shell assemblies for unambiguous estimation of "body" dominant target modes. Finally, (4) Experimental Mode Verification (EMV) is a procedure that addresses ambiguities associated with experimental modal analysis of complex structural systems. Specifically, EMV directly separates well-defined modal data from spurious and poorly excited modal data employing newly introduced graphical and coherence metrics.

  17. Modes of asymmetry: The application of harmonic analysis to symmetric quantum dynamics and quantum reference frames

    NASA Astrophysics Data System (ADS)

    Marvian, Iman; Spekkens, Robert W.

    2014-12-01

    Finding the consequences of symmetry for open-system quantum dynamics is a problem with broad applications, including describing thermal relaxation, deriving quantum limits on the performance of amplifiers, and exploring quantum metrology in the presence of noise. The symmetry of the dynamics may reflect a symmetry of the fundamental laws of nature or a symmetry of a low-energy effective theory, or it may describe a practical restriction such as the lack of a reference frame. In this paper, we apply some tools of harmonic analysis together with ideas from quantum information theory to this problem. The central idea is to study the decomposition of quantum operations—in particular, states, measurements, and channels—into different modes, which we call modes of asymmetry. Under symmetric processing, a given mode of the input is mapped to the corresponding mode of the output, implying that one can only generate a given output if the input contains all of the necessary modes. By defining monotones that quantify the asymmetry in a particular mode, we also derive quantitative constraints on the resources of asymmetry that are required to simulate a given asymmetric operation. We present applications of our results for deriving bounds on the probability of success in nondeterministic state transitions, such as quantum amplification, and a simplified formalism for studying the degradation of quantum reference frames.

  18. [EMD Time-Frequency Analysis of Raman Spectrum and NIR].

    PubMed

    Zhao, Xiao-yu; Fang, Yi-ming; Tan, Feng; Tong, Liang; Zhai, Zhe

    2016-02-01

    This paper analyzes the Raman spectrum and Near Infrared Spectrum (NIR) with time-frequency method. The empirical mode decomposition spectrum becomes intrinsic mode functions, which the proportion calculation reveals the Raman spectral energy is uniform distributed in each component, while the NIR's low order intrinsic mode functions only undertakes fewer primary spectroscopic effective information. Both the real spectrum and numerical experiments show that the empirical mode decomposition (EMD) regard Raman spectrum as the amplitude-modulated signal, which possessed with high frequency adsorption property; and EMD regards NIR as the frequency-modulated signal, which could be preferably realized high frequency narrow-band demodulation during first-order intrinsic mode functions. The first-order intrinsic mode functions Hilbert transform reveals that during the period of empirical mode decomposes Raman spectrum, modal aliasing happened. Through further analysis of corn leaf's NIR in time-frequency domain, after EMD, the first and second orders components of low energy are cut off, and reconstruct spectral signal by using the remaining intrinsic mode functions, the root-mean-square error is 1.001 1, and the correlation coefficient is 0.981 3, both of these two indexes indicated higher accuracy in re-construction; the decomposition trend term indicates the absorbency is ascending along with the decreasing to wave length in the near-infrared light wave band; and the Hilbert transform of characteristic modal component displays, 657 cm⁻¹ is the specific frequency by the corn leaf stress spectrum, which could be regarded as characteristic frequency for identification.

  19. Human Factors Process Task Analysis: Liquid Oxygen Pump Acceptance Test Procedure at the Advanced Technology Development Center

    NASA Technical Reports Server (NTRS)

    Diorio, Kimberly A.; Voska, Ned (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on Human Factors Process Failure Modes and Effects Analysis (HF PFMEA). HF PFMEA includes the following 10 steps: Describe mission; Define System; Identify human-machine; List human actions; Identify potential errors; Identify factors that effect error; Determine likelihood of error; Determine potential effects of errors; Evaluate risk; Generate solutions (manage error). The presentation also describes how this analysis was applied to a liquid oxygen pump acceptance test.

  20. Analysis of Short Ramps for Dual-Mode and PRT Stations

    DOT National Transportation Integrated Search

    1977-07-01

    The report documents a novel methodology and analysis procedure for measuring a program's effect, and it is based on data from case studies of a representative group of twenty urban areas, conducted during 1976, which are reported in a companion repo...

  1. Periodicity analysis of δ18O in precipitation over Central Europe: Time-frequency considerations of the isotopic 'temperature' effect

    NASA Astrophysics Data System (ADS)

    Salamalikis, V.; Argiriou, A. A.; Dotsika, E.

    2016-03-01

    In this paper the periodic patterns of the isotopic composition of precipitation (δ18O) for 22 stations located around Central Europe are investigated through sinusoidal models and wavelet analysis over a 23 years period (1980/01-2002/12). The seasonal distribution of δ18O follows the temporal variability of air temperature providing seasonal amplitudes ranging from 0.94‰ to 4.47‰; the monthly isotopic maximum is observed in July. The isotopic amplitude reflects the geographical dependencies of the isotopic composition of precipitation providing higher values when moving inland. In order to describe the dominant oscillation modes included in δ18O time series, the Morlet Continuous Wavelet Transform is evaluated. The main periodicity is represented at 12-months (annual periodicity) where the wavelet power is mainly concentrated. Stations (i.e. Cuxhaven, Trier, etc.) with limited seasonal isotopic effect provide sparse wavelet power areas at the annual periodicity mode explaining the fact that precipitation has a complex isotopic fingerprint that cannot be examined solely by the seasonality effect. Since temperature is the main contributor of the isotopic variability in mid-latitudes, the isotope-temperature effect is also investigated. The isotope-temperature slope ranges from 0.11‰/°C to 0.47‰/°C with steeper values observed at the southernmost stations of the study area. Bivariate wavelet analysis is applied in order to determine the correlation and the slope of the δ18O - temperature relationship over the time-frequency plane. High coherencies are detected at the annual periodicity mode. The time-frequency slope is calculated at the annual periodicity mode ranging from 0.45‰/°C to 0.83‰/°C with higher values at stations that show a more distinguishable seasonal isotopic behavior. Generally the slope fluctuates around a mean value but in certain cases (sites with low seasonal effect) abrupt slope changes are derived and the slope becomes strongly unstable.

  2. Independent Orbiter Assessment (IOA): Analysis of the reaction control system, volume 3

    NASA Technical Reports Server (NTRS)

    Burkemper, V. J.; Haufler, W. A.; Odonnell, R. A.; Paul, D. J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Reaction Control System (RCS). The RCS is situated in three independent modules, one forward in the orbiter nose and one in each OMS/RCS pod. Each RCS module consists of the following subsystems: Helium Pressurization Subsystem; Propellant Storage and Distribution Subsystem; Thruster Subsystem; and Electrical Power Distribution and Control Subsystem. Volume 3 continues the presentation of IOA analysis worksheets and the potential critical items list.

  3. A data-driven method to enhance vibration signal decomposition for rolling bearing fault analysis

    NASA Astrophysics Data System (ADS)

    Grasso, M.; Chatterton, S.; Pennacchi, P.; Colosimo, B. M.

    2016-12-01

    Health condition analysis and diagnostics of rotating machinery requires the capability of properly characterizing the information content of sensor signals in order to detect and identify possible fault features. Time-frequency analysis plays a fundamental role, as it allows determining both the existence and the causes of a fault. The separation of components belonging to different time-frequency scales, either associated to healthy or faulty conditions, represents a challenge that motivates the development of effective methodologies for multi-scale signal decomposition. In this framework, the Empirical Mode Decomposition (EMD) is a flexible tool, thanks to its data-driven and adaptive nature. However, the EMD usually yields an over-decomposition of the original signals into a large number of intrinsic mode functions (IMFs). The selection of most relevant IMFs is a challenging task, and the reference literature lacks automated methods to achieve a synthetic decomposition into few physically meaningful modes by avoiding the generation of spurious or meaningless modes. The paper proposes a novel automated approach aimed at generating a decomposition into a minimal number of relevant modes, called Combined Mode Functions (CMFs), each consisting in a sum of adjacent IMFs that share similar properties. The final number of CMFs is selected in a fully data driven way, leading to an enhanced characterization of the signal content without any information loss. A novel criterion to assess the dissimilarity between adjacent CMFs is proposed, based on probability density functions of frequency spectra. The method is suitable to analyze vibration signals that may be periodically acquired within the operating life of rotating machineries. A rolling element bearing fault analysis based on experimental data is presented to demonstrate the performances of the method and the provided benefits.

  4. Influence of Stationary Crossflow Modulation on Secondary Instability

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Li, Fei; Paredes, Pedro

    2016-01-01

    A likely scenario for swept wing transition on subsonic aircraft with natural laminar flow involves the breakdown of stationary crossflow vortices via high frequency secondary instability. A majority of the prior research on this secondary instability has focused on crossflow vortices with a single dominant spanwise wavelength. This paper investigates the effects of the spanwise modulation of stationary crossflow vortices at a specified wavelength by a subharmonic stationary mode. Secondary instability of the modulated crossflow pattern is studied using planar, partial-differential-equation based eigenvalue analysis. Computations reveal that weak modulation by the first subharmonic of the input stationary mode leads to mode splitting that is particularly obvious for Y-type secondary modes that are driven by the wall-normal shear of the basic state. Thus, for each Y mode corresponding to the fundamental wavelength of results in unmodulated train of crossflow vortices, the modulated flow supports a pair of secondary modes with somewhat different amplification rates. The mode splitting phenomenon suggests that a more complex stationary modulation such as that induced by natural surface roughness would yield a considerably richer spectrum of secondary instability modes. Even modest levels of subharmonic modulation are shown to have a strong effect on the overall amplification of secondary disturbances, particularly the Z-modes driven by the spanwise shear of the basic state. Preliminary computations related to the nonlinear breakdown of these secondary disturbances provide interesting insights into the process of crossflow transition in the presence of the first subharmonic of the dominant stationary vortex.

  5. Open-Mode Debonding Analysis of Curved Sandwich Panels Subjected to Heating and Cryogenic Cooling on Opposite Faces

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1999-01-01

    Increasing use of curved sandwich panels as aerospace structure components makes it vital to fully understand their thermostructural behavior and identify key factors affecting the open-mode debonding failure. Open-mode debonding analysis is performed on a family of curved honeycomb-core sandwich panels with different radii of curvature. The curved sandwich panels are either simply supported or clamped, and are subjected to uniform heating on the convex side and uniform cryogenic cooling on the concave side. The finite-element method was used to study the effects of panel curvature and boundary condition on the open-mode stress (radial tensile stress) and displacement fields in the curved sandwich panels. The critical stress point, where potential debonding failure could initiate, was found to be at the midspan (or outer span) of the inner bonding interface between the sandwich core and face sheet on the concave side, depending on the boundary condition and panel curvature. Open-mode stress increases with increasing panel curvature, reaching a maximum value at certain high curvature, and then decreases slightly as the panel curvature continues to increase and approach that of quarter circle. Changing the boundary condition from simply supported to clamped reduces the magnitudes of open-mode stresses and the associated sandwich core depth stretching.

  6. Failure mode analysis to predict product reliability.

    NASA Technical Reports Server (NTRS)

    Zemanick, P. P.

    1972-01-01

    The failure mode analysis (FMA) is described as a design tool to predict and improve product reliability. The objectives of the failure mode analysis are presented as they influence component design, configuration selection, the product test program, the quality assurance plan, and engineering analysis priorities. The detailed mechanics of performing a failure mode analysis are discussed, including one suggested format. Some practical difficulties of implementation are indicated, drawn from experience with preparing FMAs on the nuclear rocket engine program.

  7. Independent Orbiter Assessment (IOA): Assessment of the reaction control system, volume 3

    NASA Technical Reports Server (NTRS)

    Prust, Chet D.; Hartman, Dan W.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the aft and forward Reaction Control System (RCS) hardware and Electrical Power Distribution and Control (EPD and C), generating draft failure modes and potential critical items. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter RCS hardware and EPD and C systems. Volume 3 continues the presentation of IOA worksheets.

  8. Independent Orbiter Assessment (IOA): Assessment of the reaction control system, volume 2

    NASA Technical Reports Server (NTRS)

    Prust, Chet D.; Hartman, Dan W.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the aft and forward Reaction Control System (RCS) hardware and Electrical Power Distribution and Control (EPD and C), generating draft failure modes and potential critical items. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter RCS hardware and EPD and C systems. Volume 2 continues the presentation of IOA worksheets.

  9. Common mode error in Antarctic GPS coordinate time series on its effect on bedrock-uplift estimates

    NASA Astrophysics Data System (ADS)

    Liu, Bin; King, Matt; Dai, Wujiao

    2018-05-01

    Spatially-correlated common mode error always exists in regional, or-larger, GPS networks. We applied independent component analysis (ICA) to GPS vertical coordinate time series in Antarctica from 2010 to 2014 and made a comparison with the principal component analysis (PCA). Using PCA/ICA, the time series can be decomposed into a set of temporal components and their spatial responses. We assume the components with common spatial responses are common mode error (CME). An average reduction of ˜40% about the RMS values was achieved in both PCA and ICA filtering. However, the common mode components obtained from the two approaches have different spatial and temporal features. ICA time series present interesting correlations with modeled atmospheric and non-tidal ocean loading displacements. A white noise (WN) plus power law noise (PL) model was adopted in the GPS velocity estimation using maximum likelihood estimation (MLE) analysis, with ˜55% reduction of the velocity uncertainties after filtering using ICA. Meanwhile, spatiotemporal filtering reduces the amplitude of PL and periodic terms in the GPS time series. Finally, we compare the GPS uplift velocities, after correction for elastic effects, with recent models of glacial isostatic adjustment (GIA). The agreements of the GPS observed velocities and four GIA models are generally improved after the spatiotemporal filtering, with a mean reduction of ˜0.9 mm/yr of the WRMS values, possibly allowing for more confident separation of various GIA model predictions.

  10. Analysis of rosen piezoelectric transformers with a varying cross-section.

    PubMed

    Xue, H; Yang, J; Hu, Y

    2008-07-01

    We study the effects of a varying cross-section on the performance of Rosen piezoelectric transformers operating with length extensional modes of rods. A theoretical analysis is performed using an extended version of a one-dimensional model developed in a previous paper. Numerical results based on the theoretical analysis are presented.

  11. Oblique propagation of solitary waves in weakly relativistic magnetized plasma with kappa distributed electrons in the presence of negative ions

    NASA Astrophysics Data System (ADS)

    Salmanpoor, H.; Sharifian, M.; Gholipour, S.; Borhani Zarandi, M.; Shokri, B.

    2018-03-01

    The oblique propagation of nonlinear ion acoustic solitary waves (solitons) in magnetized collisionless and weakly relativistic plasma with positive and negative ions and super thermal electrons has been examined by using reduced perturbation method to obtain the Korteweg-de Vries equation that admits an obliquely propagating soliton solution. We have investigated the effects of plasma parameters like negative ion density, electrons temperature, angle between wave vector and magnetic field, ions velocity, and k (spectral index in kappa distribution) on the amplitude and width of solitary waves. It has been found out that four modes exist in our plasma model, but the analysis of the results showed that only two types of ion acoustic modes (fast and slow) exist in the plasma and in special cases only one mode could be propagated. The parameters of plasma for these two modes (or one mode) determine which one is rarefactive and which one is compressive. The main parameter is negative ions density (β) indicating which mode is compressive or rarefactive. The effects of the other plasma parameters on amplitude and width of the ion acoustic solitary waves have been studied. The main conclusion is that the effects of the plasma parameters on amplitude and width of the solitary wave strongly depend on the value of the negative ion density.

  12. Teaching practice of the course of Laser Principle and Application based on PBL mode

    NASA Astrophysics Data System (ADS)

    Li, Yongliang; Lv, Beibei; Wang, Siqi

    2017-08-01

    The primary task of university education is to stimulate students' autonomic learning and cultivate students' creative thinking. This paper put to use problem based learning (PBL) teaching mode, to enable students master flexible knowledge as the goal, and a detailed analysis of the implementation method and concrete measures of PBL teaching reform in the course of Laser Principle and Application, then compared with the former teaching methods. From the feedback of students and teaching experience, we get good teaching effect and prove the feasibility of PBL teaching mode in practice.

  13. Microstructured plastic optical fibers for applications in FTTH systems

    NASA Astrophysics Data System (ADS)

    Welikow, K.; Gdula, P.; Szczepański, P.; Buczyński, R.; Piramidowicz, R.

    2012-04-01

    This work is focused on the selected aspects of designing of microstructured POF (mPOF) with relatively large core, limited modal dispersion and improved resistance to bending losses, discussed in the context of its possible application in FTTH systems. The calculations confirmed the possibility of effective controlling both, the propagation and macrobending losses, as well as manipulation on the number of modes and modal area. The careful theoretical analysis allowed to design a series of geometries supporting the propagation of limited number of modes and, simultaneously, relatively large mode area together with limited bending losses.

  14. Sliding mode control for a two-joint coupling nonlinear system based on extended state observer.

    PubMed

    Zhao, Ling; Cheng, Haiyan; Wang, Tao

    2018-02-01

    A two-joint coupling nonlinear system driven by pneumatic artificial muscles is introduced in this paper. A sliding mode controller with extended state observer is proposed to cope with nonlinearities and disturbances for the two-joint coupling nonlinear system. In addition, convergence of the extended state observer is presented and stability analysis of the closed-loop system is also demonstrated with the sliding mode controller. Lastly, some experiments are carried out to show the reality effectiveness of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Application of empirical mode decomposition in removing fidgeting interference in doppler radar life signs monitoring devices.

    PubMed

    Mostafanezhad, Isar; Boric-Lubecke, Olga; Lubecke, Victor; Mandic, Danilo P

    2009-01-01

    Empirical Mode Decomposition has been shown effective in the analysis of non-stationary and non-linear signals. As an application in wireless life signs monitoring in this paper we use this method in conditioning the signals obtained from the Doppler device. Random physical movements, fidgeting, of the human subject during a measurement can fall on the same frequency of the heart or respiration rate and interfere with the measurement. It will be shown how Empirical Mode Decomposition can break the radar signal down into its components and help separate and remove the fidgeting interference.

  16. Simulation Assisted Risk Assessment: Blast Overpressure Modeling

    NASA Technical Reports Server (NTRS)

    Lawrence, Scott L.; Gee, Ken; Mathias, Donovan; Olsen, Michael

    2006-01-01

    A probabilistic risk assessment (PRA) approach has been developed and applied to the risk analysis of capsule abort during ascent. The PRA is used to assist in the identification of modeling and simulation applications that can significantly impact the understanding of crew risk during this potentially dangerous maneuver. The PRA approach is also being used to identify the appropriate level of fidelity for the modeling of those critical failure modes. The Apollo launch escape system (LES) was chosen as a test problem for application of this approach. Failure modes that have been modeled and/or simulated to date include explosive overpressure-based failure, explosive fragment-based failure, land landing failures (range limits exceeded either near launch or Mode III trajectories ending on the African continent), capsule-booster re-contact during separation, and failure due to plume-induced instability. These failure modes have been investigated using analysis tools in a variety of technical disciplines at various levels of fidelity. The current paper focuses on the development and application of a blast overpressure model for the prediction of structural failure due to overpressure, including the application of high-fidelity analysis to predict near-field and headwinds effects.

  17. Characterization of distinct Arctic aerosol accumulation modes and their sources

    NASA Astrophysics Data System (ADS)

    Lange, R.; Dall'Osto, M.; Skov, H.; Nøjgaard, J. K.; Nielsen, I. E.; Beddows, D. C. S.; Simo, R.; Harrison, R. M.; Massling, A.

    2018-06-01

    In this work we use cluster analysis of long term particle size distribution data to expand an array of different shorter term atmospheric measurements, thereby gaining insights into longer term patterns and properties of Arctic aerosol. Measurements of aerosol number size distributions (9-915 nm) were conducted at Villum Research Station (VRS), Station Nord in North Greenland during a 5 year record (2012-2016). Alongside this, measurements of aerosol composition, meteorological parameters, gaseous compounds and cloud condensation nuclei (CCN) activity were performed during different shorter occasions. K-means clustering analysis of particle number size distributions on daily basis identified several clusters. Clusters of accumulation mode aerosols (main size modes > 100 nm) accounted for 56% of the total aerosol during the sampling period (89-91% during February-April, 1-3% during June-August). By association to chemical composition, cloud condensation nuclei properties, and meteorological variables, three typical accumulation mode aerosol clusters were identified: Haze (32% of the time), Bimodal (14%) and Aged (6%). In brief: (1) Haze accumulation mode aerosol shows a single mode at 150 nm, peaking in February-April, with highest loadings of sulfate and black carbon concentrations. (2) Accumulation mode Bimodal aerosol shows two modes, at 38 nm and 150 nm, peaking in June-August, with the highest ratio of organics to sulfate concentrations. (3) Aged accumulation mode aerosol shows a single mode at 213 nm, peaking in September-October and is associated with cloudy and humid weather conditions during autumn. The three aerosol clusters were considered alongside CCN concentrations. We suggest that organic compounds, that are likely marine biogenic in nature, greatly influence the Bimodal cluster and contribute significantly to its CCN activity. This stresses the importance of better characterizing the marine ecosystem and the aerosol-mediated climate effects in the Arctic.

  18. Observations of ELM stabilization during neutral beam injection in DIII-D

    NASA Astrophysics Data System (ADS)

    Bortolon, Alessandro; Kramer, Gerrit; Diallo, Ahmed; Knolker, Matthias; Maingi, Rajesh; Nazikian, Raffi; Degrassie, John; Osborne, Thomas

    2017-10-01

    Edge localized modes (ELMs) are generally interpreted as peeling-ballooning instabilities, driven by the pedestal current and pressure gradient, with other subdominant effects possibly relevant close to marginal stability. We report observations of transient stabilization of type-I ELMs during neutral beam injection (NBI), emerging from a combined dataset of DIII-D ELMy H-mode plasmas with moderate heating obtained through pulsed NBI waveforms. Statistical analysis of ELM onset times indicates that, in the selected dataset, the likelihood of onset of an ELM lowers significantly during NBI modulation pulses, with the stronger correlation found with counter-current NBI. The effect is also found in rf-heated H-modes, where ELMs appear inhibited when isolated diagnostic beam pulses are applied. Coherent average analysis is used to determine how plasma density, temperature, rotation as well as beam ion quantities evolve during a NB modulation cycle, finding relatively small changes ( 3%) of pedestal Te and ne and toroidal and poloidal rotation variations up to 5 km/s. The effect of these changes on pedestal stability will be discussed. Work supported by US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466.

  19. An Analysis of Fundamental Mode Surface Wave Amplitude Measurements

    NASA Astrophysics Data System (ADS)

    Schardong, L.; Ferreira, A. M.; van Heijst, H. J.; Ritsema, J.

    2014-12-01

    Seismic tomography is a powerful tool to decipher the Earth's interior structure at various scales. Traveltimes of seismic waves are widely used to build velocity models, whereas amplitudes are still only seldomly accounted for. This mainly results from our limited ability to separate the various physical effects responsible for observed amplitude variations, such as focussing/defocussing, scattering and source effects. We present new measurements from 50 global earthquakes of fundamental-mode Rayleigh and Love wave amplitude anomalies measured in the period range 35-275 seconds using two different schemes: (i) a standard time-domain amplitude power ratio technique; and (ii) a mode-branch stripping scheme. For minor-arc data, we observe amplitude anomalies with respect to PREM in the range of 0-4, for which the two measurement techniques show a very good overall agreement. We present here a statistical analysis and comparison of these datasets, as well as comparisons with theoretical calculations for a variety of 3-D Earth models. We assess the geographical coherency of the measurements, and investigate the impact of source, path and receiver effects on surface wave amplitudes, as well as their variations with frequency in a wider range than previously studied.

  20. Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.

    PubMed

    Fang, Yurui; Zhang, Zhenglong; Chen, Li; Sun, Mengtao

    2015-01-14

    Near field gradient effects in high vacuum tip-enhanced Raman spectroscopy (HV-TERS) are a recent developing ultra-sensitive optical and spectral analysis technology on the nanoscale, based on the plasmons and plasmonic gradient enhancement in the near field and under high vacuum. HV-TERS can not only be used to detect ultra-sensitive Raman spectra enhanced by surface plasmon, but also to detect clear molecular IR-active modes enhanced by strongly plasmonic gradient. Furthermore, the molecular overtone modes and combinational modes can also be experimentally measured, where the Fermi resonance and Darling-Dennison resonance were successfully observed in HV-TERS. Theoretical calculations using electromagnetic field theory firmly supported experimental observation. The intensity ratio of the plasmon gradient term over the linear plasmon term can reach values greater than 1. Theoretical calculations also revealed that with the increase in gap distance between tip and substrate, the decrease in the plasmon gradient was more significant than the decrease in plasmon intensity, which is the reason that the gradient Raman can be only observed in the near field. Recent experimental results of near field gradient effects on HV-TERS were summarized, following the section of the theoretical analysis.

  1. Error field penetration and locking to the backward propagating wave

    DOE PAGES

    Finn, John M.; Cole, Andrew J.; Brennan, Dylan P.

    2015-12-30

    In this letter we investigate error field penetration, or locking, behavior in plasmas having stable tearing modes with finite real frequencies w r in the plasma frame. In particular, we address the fact that locking can drive a significant equilibrium flow. We show that this occurs at a velocity slightly above v = w r/k, corresponding to the interaction with a backward propagating tearing mode in the plasma frame. Results are discussed for a few typical tearing mode regimes, including a new derivation showing that the existence of real frequencies occurs for viscoresistive tearing modes, in an analysis including themore » effects of pressure gradient, curvature and parallel dynamics. The general result of locking to a finite velocity flow is applicable to a wide range of tearing mode regimes, indeed any regime where real frequencies occur.« less

  2. Stress Distribution and Damage Mode of Ceramic-Dentin Bilayer Systems

    NASA Astrophysics Data System (ADS)

    Kurtoglu, Cem; Demiroz, S. Suna; Mehmetov, Emirullah; Uysal, Hakan

    The aim of this study was to evaluate the damage modes of ceramic systems bonded to dentin under Hertzian indentation. Single-cycle Hertzian contact test over 150-850 N load range was applied randomly to 210 ceramic-dentin bilayer disc specimens of zirconia or IPS Empress II -1 mm, -1.5 mm and of feldspathic porcelain -1 mm, -1.5 mm, -2 mm. Optical microscopy was employed for the identification of quasiplastic mode and radial cracks. Finite element analysis was used to analyze the stress distribution. Our results showed that the degree of damage in both modes evolved progressively and the origin changed with contact load. Stress location and value were consistent with the mechanical test results. It was concluded that microstructure and thickness of the material have a significant effect on the damage modes of ceramic layer systems.

  3. Independent Orbiter Assessment (IOA): Assessment of the backup flight system FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Prust, E. E.; Ewell, J. J., Jr.; Hinsdale, L. W.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Backup Flight System (BFS) hardware, generating draft failure modes and Potential Critical Items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed NASA Post 51-L FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter BFS hardware. The IOA product for the BFS analysis consisted of 29 failure mode worksheets that resulted in 21 Potential Critical Items (PCI) being identified. This product was originally compared with the proposed NASA BFS baseline and subsequently compared with the applicable Data Processing System (DPS), Electrical Power Distribution and Control (EPD and C), and Displays and Controls NASA CIL items. The comparisons determined if there were any results which had been found by the IOA but were not in the NASA baseline. The original assessment determined there were numerous failure modes and potential critical items in the IOA analysis that were not contained in the NASA BFS baseline. Conversely, the NASA baseline contained three FMEAs (IMU, ADTA, and Air Data Probe) for CIL items that were not identified in the IOA product.

  4. MAP stability, design, and analysis

    NASA Technical Reports Server (NTRS)

    Ericsson-Jackson, A. J.; Andrews, S. F.; O'Donnell, J. R., Jr.; Markley, F. L.

    1998-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L(2) Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L(2), aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. Thruster plume impingement torques that could affect the performance of the thruster modes were estimated and simulated, and a simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.

  5. Interpretive analysis of 85 systematic reviews suggests that narrative syntheses and meta-analyses are incommensurate in argumentation.

    PubMed

    Melendez-Torres, G J; O'Mara-Eves, A; Thomas, J; Brunton, G; Caird, J; Petticrew, M

    2017-03-01

    Using Toulmin's argumentation theory, we analysed the texts of systematic reviews in the area of workplace health promotion to explore differences in the modes of reasoning embedded in reports of narrative synthesis as compared with reports of meta-analysis. We used framework synthesis, grounded theory and cross-case analysis methods to analyse 85 systematic reviews addressing intervention effectiveness in workplace health promotion. Two core categories, or 'modes of reasoning', emerged to frame the contrast between narrative synthesis and meta-analysis: practical-configurational reasoning in narrative synthesis ('what is going on here? What picture emerges?') and inferential-predictive reasoning in meta-analysis ('does it work, and how well? Will it work again?'). Modes of reasoning examined quality and consistency of the included evidence differently. Meta-analyses clearly distinguished between warrant and claim, whereas narrative syntheses often presented joint warrant-claims. Narrative syntheses and meta-analyses represent different modes of reasoning. Systematic reviewers are likely to be addressing research questions in different ways with each method. It is important to consider narrative synthesis in its own right as a method and to develop specific quality criteria and understandings of how it is carried out, not merely as a complement to, or second-best option for, meta-analysis. © 2016 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. © 2016 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.

  6. Improving the treatment planning and delivery process of Xoft electronic skin brachytherapy.

    PubMed

    Manger, Ryan; Rahn, Douglas; Hoisak, Jeremy; Dragojević, Irena

    2018-05-14

    To develop an improved Xoft electronic skin brachytherapy process and identify areas of further improvement. A multidisciplinary team conducted a failure modes and effects analysis (FMEA) by developing a process map and a corresponding list of failure modes. The failure modes were scored for their occurrence, severity, and detectability, and a risk priority number (RPN) was calculated for each failure mode as the product of occurrence, severity, and detectability. Corrective actions were implemented to address the higher risk failure modes, and a revised process was generated. The RPNs of the failure modes were compared between the initial process and final process to assess the perceived benefits of the corrective actions. The final treatment process consists of 100 steps and 114 failure modes. The FMEA took approximately 20 person-hours (one physician, three physicists, and two therapists) to complete. The 10 most dangerous failure modes had RPNs ranging from 336 to 630. Corrective actions were effective at addressing most failure modes (10 riskiest RPNs ranging from 189 to 310), yet the RPNs were higher than those published for alternative systems. Many of these high-risk failure modes remained due to hardware design limitations. FMEA helps guide process improvement efforts by emphasizing the riskiest steps. Significant risks are apparent when using a Xoft treatment unit for skin brachytherapy due to hardware limitations such as the lack of several interlocks, a short source lifespan, and variability in source output. The process presented in this article is expected to reduce but not eliminate these risks. Copyright © 2018 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  7. MEM spectral analysis for predicting influenza epidemics in Japan.

    PubMed

    Sumi, Ayako; Kamo, Ken-ichi

    2012-03-01

    The prediction of influenza epidemics has long been the focus of attention in epidemiology and mathematical biology. In this study, we tested whether time series analysis was useful for predicting the incidence of influenza in Japan. The method of time series analysis we used consists of spectral analysis based on the maximum entropy method (MEM) in the frequency domain and the nonlinear least squares method in the time domain. Using this time series analysis, we analyzed the incidence data of influenza in Japan from January 1948 to December 1998; these data are unique in that they covered the periods of pandemics in Japan in 1957, 1968, and 1977. On the basis of the MEM spectral analysis, we identified the periodic modes explaining the underlying variations of the incidence data. The optimum least squares fitting (LSF) curve calculated with the periodic modes reproduced the underlying variation of the incidence data. An extension of the LSF curve could be used to predict the incidence of influenza quantitatively. Our study suggested that MEM spectral analysis would allow us to model temporal variations of influenza epidemics with multiple periodic modes much more effectively than by using the method of conventional time series analysis, which has been used previously to investigate the behavior of temporal variations in influenza data.

  8. [Effects of different vegetation restoration patterns on the diversity of soil nitrogen-fixing microbes in Hulunbeier sandy land, Inner Mongolia of North China].

    PubMed

    Li, Gang; Wang, Li-Juan; Li, Yu-Jie; Qiao, Jiang; Zhang, Hai-Fang; Song, Xiao-Long; Yang, Dian-Lin

    2013-06-01

    By using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and sequence analysis, this paper studied the nifH gene diversity and community structure of soil nitrogen-fixing microbes in Hulunbeier sandy land of Inner Mongolia under four years management of five vegetation restoration modes, i. e., mixed-planting of Agropyron cristatum, Hedysarum fruticosum, Caragana korshinskii, and Elymus nutans (ACHE) and of Agropyron cristatum and Hedysarum fruticosum (AC), and mono-planting of Caragana korshinskii (UC), Agropyron cristatum (UA), and Hedysarum fruticosum (UH), taking the bare land as the control (CK). There existed significant differences in the community composition of nitrogen-fixing microbes among the five vegetation restoration patterns. The Shannon index of the nifH gene was the highest under ACHE, followed by under AC, UC, UA, and UH, and the lowest in CK. Except that UH and CK had less difference in the Shannon index, the other four vegetation restoration modes had a significantly higher Shannon index than CK (P < 0.05). The phylogenetic analysis showed that the soil nitrogen-fixing microbes under UA, UH, and UC were mainly of cyanobacteria, but the soil nitrogen-fixing microbes under AC and ACHE changed obviously, mainly of proteobacteria, and also of cyanobacteria. The canonical correlation analysis showed that the soil total phosphorus, available phosphorus, total nitrogen, and nitrate nitrogen contents under the five vegetation restoration modes had significant effects on the nitrogen-fixing microbial communities, and there existed significant correlations among the soil total phosphorus, available phosphorus, total nitrogen, and nitrate nitrogen. It was suggested that the variations of the community composition of soil nitrogen-fixing microbes under the five vegetation restoration modes were resulted from the interactive and combined effects of the soil physical and chemical factors.

  9. Risk management for outsourcing biomedical waste disposal – Using the failure mode and effects analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Ching-Jong; Ho, Chao Chung, E-mail: ho919@pchome.com.tw

    Highlights: • This study is based on a real case in hospital in Taiwan. • We use Failure Mode and Effects Analysis (FMEA) as the evaluation method. • We successfully identify the evaluation factors of bio-medical waste disposal risk. - Abstract: Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposalmore » units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included “availability of freezing devices”, “availability of containers for sharp items”, “disposal frequency”, “disposal volume”, “disposal method”, “vehicles meeting the regulations”, and “declaration of three lists”. This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal.« less

  10. Failure mode and effects analysis of the universal anaesthesia machine in two tertiary care hospitals in Sierra Leone

    PubMed Central

    Rosen, M. A.; Sampson, J. B.; Jackson, E. V.; Koka, R.; Chima, A. M.; Ogbuagu, O. U.; Marx, M. K.; Koroma, M.; Lee, B. H.

    2014-01-01

    Background Anaesthesia care in developed countries involves sophisticated technology and experienced providers. However, advanced machines may be inoperable or fail frequently when placed into the austere medical environment of a developing country. Failure mode and effects analysis (FMEA) is a method for engaging local staff in identifying real or potential breakdowns in processes or work systems and to develop strategies to mitigate risks. Methods Nurse anaesthetists from the two tertiary care hospitals in Freetown, Sierra Leone, participated in three sessions moderated by a human factors specialist and an anaesthesiologist. Sessions were audio recorded, and group discussion graphically mapped by the session facilitator for analysis and commentary. These sessions sought to identify potential barriers to implementing an anaesthesia machine designed for austere medical environments—the universal anaesthesia machine (UAM)—and also engaging local nurse anaesthetists in identifying potential solutions to these barriers. Results Participating Sierra Leonean clinicians identified five main categories of failure modes (resource availability, environmental issues, staff knowledge and attitudes, and workload and staffing issues) and four categories of mitigation strategies (resource management plans, engaging and educating stakeholders, peer support for new machine use, and collectively advocating for needed resources). Conclusions We identified factors that may limit the impact of a UAM and devised likely effective strategies for mitigating those risks. PMID:24833727

  11. Delamination and Stitched Failure in Stitched Composite Joints

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1999-01-01

    The effect of stitches on the failure of a single lap joint configuration was determined in a combined experimental and finite element study. The experimental program was conducted to determine debond growth under static monotonic loading. The stitches were shown to delay the initiation of the debond and provide load transfer beyond the load necessary to completely debond the stitched lap joint. The experimentally determined debond length vs. applied load was used as an input parameter in the finite element analysis of both configurations. The strain energy release rates at the debond from were calculated using plate finite elements. Nonlinear fastener elements were used to model the stitches and multipoint constraints were used to model the contact problem. Models of the unstitched configuration showed significant values of modes I and II across the width of the joint and showed that mode III is zero at the centerline but increases near the free edge. Models of the stitched configuration showed that the stitches were effective in reducing mode I to zero, but had less of an effect on modes II and III.

  12. Sputter crater formation in the case of microsecond pulsed glow discharge in a Grimm-type source. Comparison of direct current and radio frequency modes

    NASA Astrophysics Data System (ADS)

    Efimova, Varvara; Hoffmann, Volker; Eckert, Jürgen

    2012-10-01

    Depth profiling with pulsed glow discharge is a promising technique. The application of pulsed voltage for sputtering reduces the sputtering rate and thermal stress and hereby improves the analysis of thin layered and thermally fragile samples. However pulsed glow discharge is not well studied and this limits its practical use. The current work deals with the questions which usually arise when the pulsed mode is applied: Which duty cycle, frequency and pulse length must be chosen to get the optimal sputtering rate and crater shape? Are the well-known sputtering effects of the continuous mode valid also for the pulsed regime? Is there any difference between dc and rf pulsing in terms of sputtering? It is found that the pulse length is a crucial parameter for the crater shape and thermal effects. Sputtering with pulsed dc and rf modes is found to be similar. The observed sputtering effects at various pulsing parameters helped to interpret and optimize the depth resolution of GD OES depth profiles.

  13. Effect of experimental and sample factors on dehydration kinetics of mildronate dihydrate: mechanism of dehydration and determination of kinetic parameters.

    PubMed

    Bērziņš, Agris; Actiņš, Andris

    2014-06-01

    The dehydration kinetics of mildronate dihydrate [3-(1,1,1-trimethylhydrazin-1-ium-2-yl)propionate dihydrate] was analyzed in isothermal and nonisothermal modes. The particle size, sample preparation and storage, sample weight, nitrogen flow rate, relative humidity, and sample history were varied in order to evaluate the effect of these factors and to more accurately interpret the data obtained from such analysis. It was determined that comparable kinetic parameters can be obtained in both isothermal and nonisothermal mode. However, dehydration activation energy values obtained in nonisothermal mode showed variation with conversion degree because of different rate-limiting step energy at higher temperature. Moreover, carrying out experiments in this mode required consideration of additional experimental complications. Our study of the different sample and experimental factor effect revealed information about changes of the dehydration rate-limiting step energy, variable contribution from different rate limiting steps, as well as clarified the dehydration mechanism. Procedures for convenient and fast determination of dehydration kinetic parameters were offered. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Association of TNF-α-308(G/A) and -238(G/A) polymorphisms with non-traumatic osteonecrosis of the femoral head risks: a meta-analysis.

    PubMed

    Peng, Yizhong; Liu, Yuenan; Huang, Donghua; Huang, Wei; Shao, Zengwu

    2018-03-07

    The association between TNF-α-308(G/A) and -238(G/A) polymorphisms and the susceptibility of non-traumatic osteonecrosis of the femoral head (NONFH) was investigated in many studies with conflicting results. We aimed to conduct a meta-analysis to evaluate the relationship between them comprehensively. Relevant literatures published in PubMed, Web of Science, Embase, Cochrane library databases, China National Knowledge Infrastructure (CNKI), WANFANG Data, and China Science and Technology Journal Database (CSTJ) updated to January 30, 2018, were reviewed by two investigators independently. Odds ratios (ORs) and its 95% confidence intervals (95% CIs) were calculated by a fixed-effect model based on the indistinctive heterogeneity. For TNF-α-308(G/A) polymorphism, we recruited five studies including 432 NONFH patients and 760 controls and a statistically significant association was identified in Asians in four modes consisting of alleles mode (OR = 0.648, 95% CI 0.475-0.885), homozygote mode (OR = 0.330, 95% CI 0.136-0.802), dominant mode (OR = 0.344, 95% CI 0.143-0.827), and recessive mode (OR = 0.674, 95% CI 0.468-0.971), but no significant association was observed in Caucasians. For TNF-α-238(G/A) polymorphism, three eligible studies including 275 cases and 610 controls were evaluated and there was a significant association in alleles mode (OR = 0.270, 95% CI 0.4148-0.490) as well as recessive mode (OR = 0.254, 95% CI 0.138-0.468). This meta-analysis shows that TNF-α-308(G/A) and -238(G/A) polymorphisms are associated with the susceptibility of NONFH, while the significant association for 308(G/A) is mainly observed in Asians.

  15. The use of transmission line modelling to test the effectiveness of I-kaz as autonomous selection of intrinsic mode function

    NASA Astrophysics Data System (ADS)

    Yusop, Hanafi M.; Ghazali, M. F.; Yusof, M. F. M.; PiRemli, M. A.; Karollah, B.; Rusman

    2017-10-01

    Pressure transient signal occurred due to sudden changes in fluid propagation filled in pipelines system, which is caused by rapid pressure and flow fluctuation in a system, such as closing and opening valve rapidly. The application of Hilbert-Huang Transform (HHT) as the method to analyse the pressure transient signal utilised in this research. However, this method has the difficulty in selecting the suitable IMF for the further post-processing, which is Hilbert Transform (HT). This paper proposed the implementation of Integrated Kurtosis-based Algorithm for z-filter Technique (I-kaz) to kurtosis ratio (I-kaz-Kurtosis) for that allows automatic selection of intrinsic mode function (IMF) that’s should be used. This work demonstrated the synthetic pressure transient signal generates using transmission line modelling (TLM) in order to test the effectiveness of I-kaz as the autonomous selection of intrinsic mode function (IMF). A straight fluid network was designed using TLM fixing with higher resistance at some point act as a leak and connecting to the pipe feature (junction, pipefitting or blockage). The analysis results using I-kaz-kurtosis ratio revealed that the method can be utilised as an automatic selection of intrinsic mode function (IMF) although the noise level ratio of the signal is lower. I-kaz-kurtosis ratio is recommended and advised to be implemented as automatic selection of intrinsic mode function (IMF) through HHT analysis.

  16. The effects of the Asselin time filter on numerical solutions to the linearized shallow-water wave equations

    NASA Technical Reports Server (NTRS)

    Schlesinger, R. E.; Johnson, D. R.; Uccellini, L. W.

    1983-01-01

    In the present investigation, a one-dimensional linearized analysis is used to determine the effect of Asselin's (1972) time filter on both the computational stability and phase error of numerical solutions for the shallow water wave equations, in cases with diffusion but without rotation. An attempt has been made to establish the approximate optimal values of the filtering parameter nu for each of the 'lagged', Dufort-Frankel, and Crank-Nicholson diffusion schemes, suppressing the computational wave mode without materially altering the physical wave mode. It is determined that in the presence of diffusion, the optimum filter length depends on whether waves are undergoing significant propagation. When moderate propagation is present, with or without diffusion, the Asselin filter has little effect on the spatial phase lag of the physical mode for the leapfrog advection scheme of the three diffusion schemes considered.

  17. Parametric study of the mode coupling instability for a simple system with planar or rectilinear friction

    NASA Astrophysics Data System (ADS)

    Charroyer, L.; Chiello, O.; Sinou, J.-J.

    2016-12-01

    In this paper, the study of a damped mass-spring system of three degrees of freedom with friction is proposed in order to highlight the differences in mode coupling instabilities between planar and rectilinear friction assumptions. Well-known results on the effect of structural damping in the field of friction-induced vibration are extended to the specific case of a damped mechanical system with planar friction. It is emphasised that the lowering and smoothing effects are not so intuitive in this latter case. The stability analysis is performed by calculating the complex eigenvalues of the linearised system and by using the Routh-Hurwitz criterion. Parametric studies are carried out in order to evaluate the effects of various system parameters on stability. Special attention is paid to the understanding of the role of damping and the associated destabilisation paradox in mode-coupling instabilities with planar and rectilinear friction assumptions.

  18. Use-related risk analysis for medical devices based on improved FMEA.

    PubMed

    Liu, Long; Shuai, Ma; Wang, Zhu; Li, Ping

    2012-01-01

    In order to effectively analyze and control use-related risk of medical devices, quantitative methodologies must be applied. Failure Mode and Effects Analysis (FMEA) is a proactive technique for error detection and risk reduction. In this article, an improved FMEA based on Fuzzy Mathematics and Grey Relational Theory is developed to better carry out user-related risk analysis for medical devices. As an example, the analysis process using this improved FMEA method for a certain medical device (C-arm X-ray machine) is described.

  19. Overview of results from the MST reversed field pinch experiment

    NASA Astrophysics Data System (ADS)

    Sarff, J. S.; Almagri, A. F.; Anderson, J. K.; Borchardt, M.; Carmody, D.; Caspary, K.; Chapman, B. E.; Den Hartog, D. J.; Duff, J.; Eilerman, S.; Falkowski, A.; Forest, C. B.; Goetz, J. A.; Holly, D. J.; Kim, J.-H.; King, J.; Ko, J.; Koliner, J.; Kumar, S.; Lee, J. D.; Liu, D.; Magee, R.; McCollam, K. J.; McGarry, M.; Mirnov, V. V.; Nornberg, M. D.; Nonn, P. D.; Oliva, S. P.; Parke, E.; Reusch, J. A.; Sauppe, J. P.; Seltzman, A.; Sovinec, C. R.; Stephens, H.; Stone, D.; Theucks, D.; Thomas, M.; Triana, J.; Terry, P. W.; Waksman, J.; Bergerson, W. F.; Brower, D. L.; Ding, W. X.; Lin, L.; Demers, D. R.; Fimognari, P.; Titus, J.; Auriemma, F.; Cappello, S.; Franz, P.; Innocente, P.; Lorenzini, R.; Martines, E.; Momo, B.; Piovesan, P.; Puiatti, M.; Spolaore, M.; Terranova, D.; Zanca, P.; Belykh, V.; Davydenko, V. I.; Deichuli, P.; Ivanov, A. A.; Polosatkin, S.; Stupishin, N. V.; Spong, D.; Craig, D.; Harvey, R. W.; Cianciosa, M.; Hanson, J. D.

    2013-10-01

    An overview of recent results from the MST programme on physics important for the advancement of the reversed field pinch (RFP) as well as for improved understanding of toroidal magnetic confinement more generally is reported. Evidence for the classical confinement of ions in the RFP is provided by analysis of impurity ions and energetic ions created by 1 MW neutral beam injection (NBI). The first appearance of energetic-particle-driven modes by NBI in a RFP plasma is described. MST plasmas robustly access the quasi-single-helicity state that has commonalities to the stellarator and ‘snake’ formation in tokamaks. In MST the dominant mode grows to 8% of the axisymmetric field strength, while the remaining modes are reduced. Predictive capability for tearing mode behaviour has been improved through nonlinear, 3D, resistive magnetohydrodynamic computation using the measured resistivity profile and Lundquist number, which reproduces the sawtooth cycle dynamics. Experimental evidence and computational analysis indicates two-fluid effects, e.g., Hall physics and gyro-viscosity, are needed to understand the coupling of parallel momentum transport and current profile relaxation. Large Reynolds and Maxwell stresses, plus separately measured kinetic stress, indicate an intricate momentum balance and a possible origin for MST's intrinsic plasma rotation. Gyrokinetic analysis indicates that micro-tearing modes can be unstable at high beta, with a critical gradient for the electron temperature that is larger than for tokamak plasmas by roughly the aspect ratio.

  20. The effect of ring distortions on buckling of blunt conical shells. [Viking mission aeroshell

    NASA Technical Reports Server (NTRS)

    Heard, W. L., Jr.; Anderson, M. S.; Stephens, W. B.

    1975-01-01

    A rigorous analytical study of cones stiffened by many thin-gage, open-section rings is presented. The results are compared with data previously obtained from uniform pressure tests of the Viking mission flight aeroshell and of the Viking structural prototype aeroshells. A conventional analysis, in which the rings are modeled as discrete rigid cross sections, is shown to lead to large, unconservative strength predictions. A more sophisticated technique of modeling the rings as shell branches leads to much more realistic strength predictions and more accurately predicts the failure modes. It is also shown that if a small initial imperfection proportional to the shape of the buckling mode is assumed, the critical buckling modes from analysis and test are in agreement. However, the reduction in buckling strength from the perfect-shell predictions is small.

Top