Sample records for mode function imf

  1. Modified complementary ensemble empirical mode decomposition and intrinsic mode functions evaluation index for high-speed train gearbox fault diagnosis

    NASA Astrophysics Data System (ADS)

    Chen, Dongyue; Lin, Jianhui; Li, Yanping

    2018-06-01

    Complementary ensemble empirical mode decomposition (CEEMD) has been developed for the mode-mixing problem in Empirical Mode Decomposition (EMD) method. Compared to the ensemble empirical mode decomposition (EEMD), the CEEMD method reduces residue noise in the signal reconstruction. Both CEEMD and EEMD need enough ensemble number to reduce the residue noise, and hence it would be too much computation cost. Moreover, the selection of intrinsic mode functions (IMFs) for further analysis usually depends on experience. A modified CEEMD method and IMFs evaluation index are proposed with the aim of reducing the computational cost and select IMFs automatically. A simulated signal and in-service high-speed train gearbox vibration signals are employed to validate the proposed method in this paper. The results demonstrate that the modified CEEMD can decompose the signal efficiently with less computation cost, and the IMFs evaluation index can select the meaningful IMFs automatically.

  2. Wavelet-bounded empirical mode decomposition for measured time series analysis

    NASA Astrophysics Data System (ADS)

    Moore, Keegan J.; Kurt, Mehmet; Eriten, Melih; McFarland, D. Michael; Bergman, Lawrence A.; Vakakis, Alexander F.

    2018-01-01

    Empirical mode decomposition (EMD) is a powerful technique for separating the transient responses of nonlinear and nonstationary systems into finite sets of nearly orthogonal components, called intrinsic mode functions (IMFs), which represent the dynamics on different characteristic time scales. However, a deficiency of EMD is the mixing of two or more components in a single IMF, which can drastically affect the physical meaning of the empirical decomposition results. In this paper, we present a new approached based on EMD, designated as wavelet-bounded empirical mode decomposition (WBEMD), which is a closed-loop, optimization-based solution to the problem of mode mixing. The optimization routine relies on maximizing the isolation of an IMF around a characteristic frequency. This isolation is measured by fitting a bounding function around the IMF in the frequency domain and computing the area under this function. It follows that a large (small) area corresponds to a poorly (well) separated IMF. An optimization routine is developed based on this result with the objective of minimizing the bounding-function area and with the masking signal parameters serving as free parameters, such that a well-separated IMF is extracted. As examples of application of WBEMD we apply the proposed method, first to a stationary, two-component signal, and then to the numerically simulated response of a cantilever beam with an essentially nonlinear end attachment. We find that WBEMD vastly improves upon EMD and that the extracted sets of IMFs provide insight into the underlying physics of the response of each system.

  3. Optical diagnosis of cervical cancer by intrinsic mode functions

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sabyasachi; Pratiher, Sawon; Pratiher, Souvik; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.

    2017-03-01

    In this paper, we make use of the empirical mode decomposition (EMD) to discriminate the cervical cancer tissues from normal ones based on elastic scattering spectroscopy. The phase space has been reconstructed through decomposing the optical signal into a finite set of bandlimited signals known as intrinsic mode functions (IMFs). It has been shown that the area measure of the analytic IMFs provides a good discrimination performance. Simulation results validate the efficacy of the IMFs followed by SVM based classification.

  4. Improving prediction accuracy of cooling load using EMD, PSR and RBFNN

    NASA Astrophysics Data System (ADS)

    Shen, Limin; Wen, Yuanmei; Li, Xiaohong

    2017-08-01

    To increase the accuracy for the prediction of cooling load demand, this work presents an EMD (empirical mode decomposition)-PSR (phase space reconstruction) based RBFNN (radial basis function neural networks) method. Firstly, analyzed the chaotic nature of the real cooling load demand, transformed the non-stationary cooling load historical data into several stationary intrinsic mode functions (IMFs) by using EMD. Secondly, compared the RBFNN prediction accuracies of each IMFs and proposed an IMF combining scheme that is combine the lower-frequency components (called IMF4-IMF6 combined) while keep the higher frequency component (IMF1, IMF2, IMF3) and the residual unchanged. Thirdly, reconstruct phase space for each combined components separately, process the highest frequency component (IMF1) by differential method and predict with RBFNN in the reconstructed phase spaces. Real cooling load data of a centralized ice storage cooling systems in Guangzhou are used for simulation. The results show that the proposed hybrid method outperforms the traditional methods.

  5. Towards automated human gait disease classification using phase space representation of intrinsic mode functions

    NASA Astrophysics Data System (ADS)

    Pratiher, Sawon; Patra, Sayantani; Pratiher, Souvik

    2017-06-01

    A novel analytical methodology for segregating healthy and neurological disorders from gait patterns is proposed by employing a set of oscillating components called intrinsic mode functions (IMF's). These IMF's are generated by the Empirical Mode Decomposition of the gait time series and the Hilbert transformed analytic signal representation forms the complex plane trace of the elliptical shaped analytic IMFs. The area measure and the relative change in the centroid position of the polygon formed by the Convex Hull of these analytic IMF's are taken as the discriminative features. Classification accuracy of 79.31% with Ensemble learning based Adaboost classifier validates the adequacy of the proposed methodology for a computer aided diagnostic (CAD) system for gait pattern identification. Also, the efficacy of several potential biomarkers like Bandwidth of Amplitude Modulation and Frequency Modulation IMF's and it's Mean Frequency from the Fourier-Bessel expansion from each of these analytic IMF's has been discussed for its potency in diagnosis of gait pattern identification and classification.

  6. The use of transmission line modelling to test the effectiveness of I-kaz as autonomous selection of intrinsic mode function

    NASA Astrophysics Data System (ADS)

    Yusop, Hanafi M.; Ghazali, M. F.; Yusof, M. F. M.; PiRemli, M. A.; Karollah, B.; Rusman

    2017-10-01

    Pressure transient signal occurred due to sudden changes in fluid propagation filled in pipelines system, which is caused by rapid pressure and flow fluctuation in a system, such as closing and opening valve rapidly. The application of Hilbert-Huang Transform (HHT) as the method to analyse the pressure transient signal utilised in this research. However, this method has the difficulty in selecting the suitable IMF for the further post-processing, which is Hilbert Transform (HT). This paper proposed the implementation of Integrated Kurtosis-based Algorithm for z-filter Technique (I-kaz) to kurtosis ratio (I-kaz-Kurtosis) for that allows automatic selection of intrinsic mode function (IMF) that’s should be used. This work demonstrated the synthetic pressure transient signal generates using transmission line modelling (TLM) in order to test the effectiveness of I-kaz as the autonomous selection of intrinsic mode function (IMF). A straight fluid network was designed using TLM fixing with higher resistance at some point act as a leak and connecting to the pipe feature (junction, pipefitting or blockage). The analysis results using I-kaz-kurtosis ratio revealed that the method can be utilised as an automatic selection of intrinsic mode function (IMF) although the noise level ratio of the signal is lower. I-kaz-kurtosis ratio is recommended and advised to be implemented as automatic selection of intrinsic mode function (IMF) through HHT analysis.

  7. Computer implemented empirical mode decomposition method, apparatus, and article of manufacture for two-dimensional signals

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2001-01-01

    A computer implemented method of processing two-dimensional physical signals includes five basic components and the associated presentation techniques of the results. The first component decomposes the two-dimensional signal into one-dimensional profiles. The second component is a computer implemented Empirical Mode Decomposition that extracts a collection of Intrinsic Mode Functions (IMF's) from each profile based on local extrema and/or curvature extrema. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the profiles. In the third component, the IMF's of each profile are then subjected to a Hilbert Transform. The fourth component collates the Hilbert transformed IMF's of the profiles to form a two-dimensional Hilbert Spectrum. A fifth component manipulates the IMF's by, for example, filtering the two-dimensional signal by reconstructing the two-dimensional signal from selected IMF(s).

  8. Phase space interrogation of the empirical response modes for seismically excited structures

    NASA Astrophysics Data System (ADS)

    Paul, Bibhas; George, Riya C.; Mishra, Sudib K.

    2017-07-01

    Conventional Phase Space Interrogation (PSI) for structural damage assessment relies on exciting the structure with low dimensional chaotic waveform, thereby, significantly limiting their applicability to large structures. The PSI technique is presently extended for structure subjected to seismic excitations. The high dimensionality of the phase space for seismic response(s) are overcome by the Empirical Mode Decomposition (EMD), decomposing the responses to a number of intrinsic low dimensional oscillatory modes, referred as Intrinsic Mode Functions (IMFs). Along with their low dimensionality, a few IMFs, retain sufficient information of the system dynamics to reflect the damage induced changes. The mutually conflicting nature of low-dimensionality and the sufficiency of dynamic information are taken care by the optimal choice of the IMF(s), which is shown to be the third/fourth IMFs. The optimal IMF(s) are employed for the reconstruction of the Phase space attractor following Taken's embedding theorem. The widely referred Changes in Phase Space Topology (CPST) feature is then employed on these Phase portrait(s) to derive the damage sensitive feature, referred as the CPST of the IMFs (CPST-IMF). The legitimacy of the CPST-IMF is established as a damage sensitive feature by assessing its variation with a number of damage scenarios benchmarked in the IASC-ASCE building. The damage localization capability, remarkable tolerance to noise contamination and the robustness under different seismic excitations of the feature are demonstrated.

  9. Identification of significant intrinsic mode functions for the diagnosis of induction motor fault.

    PubMed

    Cho, Sangjin; Shahriar, Md Rifat; Chong, Uipil

    2014-08-01

    For the analysis of non-stationary signals generated by a non-linear process like fault of an induction motor, empirical mode decomposition (EMD) is the best choice as it decomposes the signal into its natural oscillatory modes known as intrinsic mode functions (IMFs). However, some of these oscillatory modes obtained from a fault signal are not significant as they do not bear any fault signature and can cause misclassification of the fault instance. To solve this issue, a novel IMF selection algorithm is proposed in this work.

  10. Analyzing nonstationary financial time series via hilbert-huang transform (HHT)

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2008-01-01

    An apparatus, computer program product and method of analyzing non-stationary time varying phenomena. A representation of a non-stationary time varying phenomenon is recursively sifted using Empirical Mode Decomposition (EMD) to extract intrinsic mode functions (IMFs). The representation is filtered to extract intrinsic trends by combining a number of IMFs. The intrinsic trend is inherent in the data and identifies an IMF indicating the variability of the phenomena. The trend also may be used to detrend the data.

  11. Kelvin-Helmholtz Instability at Dayside Magnetopause, View from Local 3-D MHD Simulations

    NASA Astrophysics Data System (ADS)

    Ma, X.; Otto, A.; Delamere, P. A.

    2014-12-01

    During the past decade, Kelvin-Helmholtz (KH) modes have gained increasing attention for the interaction between the magnetosphere and the solar wind particularly for northward IMF. Recently, several studies showed that the KH mode may also operate near the equatorial plane under southward IMF conditions as well as at high latitudes for IMF mostly along the GSE y direction. It was also demonstrated that three-dimensional aspects are of critical importance for this process. This presentation will particularly address the mass transport rate and the amount of open magnetic flux created by reconnection driven by nonlinear KH modes as a function of IMF orientation. We will also discuss the plausible in situ and ground auroral observation signatures of the interaction between the KH waves and magnetic reconnection.

  12. Completed Ensemble Empirical Mode Decomposition: a Robust Signal Processing Tool to Identify Sequence Strata

    NASA Astrophysics Data System (ADS)

    Purba, H.; Musu, J. T.; Diria, S. A.; Permono, W.; Sadjati, O.; Sopandi, I.; Ruzi, F.

    2018-03-01

    Well logging data provide many geological information and its trends resemble nonlinear or non-stationary signals. As long well log data recorded, there will be external factors can interfere or influence its signal resolution. A sensitive signal analysis is required to improve the accuracy of logging interpretation which it becomes an important thing to determine sequence stratigraphy. Complete Ensemble Empirical Mode Decomposition (CEEMD) is one of nonlinear and non-stationary signal analysis method which decomposes complex signal into a series of intrinsic mode function (IMF). Gamma Ray and Spontaneous Potential well log parameters decomposed into IMF-1 up to IMF-10 and each of its combination and correlation makes physical meaning identification. It identifies the stratigraphy and cycle sequence and provides an effective signal treatment method for sequence interface. This method was applied to BRK- 30 and BRK-13 well logging data. The result shows that the combination of IMF-5, IMF-6, and IMF-7 pattern represent short-term and middle-term while IMF-9 and IMF-10 represent the long-term sedimentation which describe distal front and delta front facies, and inter-distributary mouth bar facies, respectively. Thus, CEEMD clearly can determine the different sedimentary layer interface and better identification of the cycle of stratigraphic base level.

  13. Identification of Dynamic Patterns of Speech-Evoked Auditory Brainstem Response Based on Ensemble Empirical Mode Decomposition and Nonlinear Time Series Analysis Methods

    NASA Astrophysics Data System (ADS)

    Mozaffarilegha, Marjan; Esteki, Ali; Ahadi, Mohsen; Nazeri, Ahmadreza

    The speech-evoked auditory brainstem response (sABR) shows how complex sounds such as speech and music are processed in the auditory system. Speech-ABR could be used to evaluate particular impairments and improvements in auditory processing system. Many researchers used linear approaches for characterizing different components of sABR signal, whereas nonlinear techniques are not applied so commonly. The primary aim of the present study is to examine the underlying dynamics of normal sABR signals. The secondary goal is to evaluate whether some chaotic features exist in this signal. We have presented a methodology for determining various components of sABR signals, by performing Ensemble Empirical Mode Decomposition (EEMD) to get the intrinsic mode functions (IMFs). Then, composite multiscale entropy (CMSE), the largest Lyapunov exponent (LLE) and deterministic nonlinear prediction are computed for each extracted IMF. EEMD decomposes sABR signal into five modes and a residue. The CMSE results of sABR signals obtained from 40 healthy people showed that 1st, and 2nd IMFs were similar to the white noise, IMF-3 with synthetic chaotic time series and 4th, and 5th IMFs with sine waveform. LLE analysis showed positive values for 3rd IMFs. Moreover, 1st, and 2nd IMFs showed overlaps with surrogate data and 3rd, 4th and 5th IMFs showed no overlap with corresponding surrogate data. Results showed the presence of noisy, chaotic and deterministic components in the signal which respectively corresponded to 1st, and 2nd IMFs, IMF-3, and 4th and 5th IMFs. While these findings provide supportive evidence of the chaos conjecture for the 3rd IMF, they do not confirm any such claims. However, they provide a first step towards an understanding of nonlinear behavior of auditory system dynamics in brainstem level.

  14. Signal enhancement based on complex curvelet transform and complementary ensemble empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Dong, Lieqian; Wang, Deying; Zhang, Yimeng; Zhou, Datong

    2017-09-01

    Signal enhancement is a necessary step in seismic data processing. In this paper we utilize the complementary ensemble empirical mode decomposition (CEEMD) and complex curvelet transform (CCT) methods to separate signal from random noise further to improve the signal to noise (S/N) ratio. Firstly, the original data with noise is decomposed into a series of intrinsic mode function (IMF) profiles with the aid of CEEMD. Then the IMFs with noise are transformed into CCT domain. By choosing different thresholds which are based on the noise level difference of each IMF profile, the noise in original data can be suppressed. Finally, we illustrate the effectiveness of the approach by simulated and field datasets.

  15. Fault Detection of a Roller-Bearing System through the EMD of a Wavelet Denoised Signal

    PubMed Central

    Ahn, Jong-Hyo; Kwak, Dae-Ho; Koh, Bong-Hwan

    2014-01-01

    This paper investigates fault detection of a roller bearing system using a wavelet denoising scheme and proper orthogonal value (POV) of an intrinsic mode function (IMF) covariance matrix. The IMF of the bearing vibration signal is obtained through empirical mode decomposition (EMD). The signal screening process in the wavelet domain eliminates noise-corrupted portions that may lead to inaccurate prognosis of bearing conditions. We segmented the denoised bearing signal into several intervals, and decomposed each of them into IMFs. The first IMF of each segment is collected to become a covariance matrix for calculating the POV. We show that covariance matrices from healthy and damaged bearings exhibit different POV profiles, which can be a damage-sensitive feature. We also illustrate the conventional approach of feature extraction, of observing the kurtosis value of the measured signal, to compare the functionality of the proposed technique. The study demonstrates the feasibility of wavelet-based de-noising, and shows through laboratory experiments that tracking the proper orthogonal values of the covariance matrix of the IMF can be an effective and reliable measure for monitoring bearing fault. PMID:25196008

  16. Machine fault feature extraction based on intrinsic mode functions

    NASA Astrophysics Data System (ADS)

    Fan, Xianfeng; Zuo, Ming J.

    2008-04-01

    This work employs empirical mode decomposition (EMD) to decompose raw vibration signals into intrinsic mode functions (IMFs) that represent the oscillatory modes generated by the components that make up the mechanical systems generating the vibration signals. The motivation here is to develop vibration signal analysis programs that are self-adaptive and that can detect machine faults at the earliest onset of deterioration. The change in velocity of the amplitude of some IMFs over a particular unit time will increase when the vibration is stimulated by a component fault. Therefore, the amplitude acceleration energy in the intrinsic mode functions is proposed as an indicator of the impulsive features that are often associated with mechanical component faults. The periodicity of the amplitude acceleration energy for each IMF is extracted by spectrum analysis. A spectrum amplitude index is introduced as a method to select the optimal result. A comparison study of the method proposed here and some well-established techniques for detecting machinery faults is conducted through the analysis of both gear and bearing vibration signals. The results indicate that the proposed method has superior capability to extract machine fault features from vibration signals.

  17. Mental Task Classification Scheme Utilizing Correlation Coefficient Extracted from Interchannel Intrinsic Mode Function.

    PubMed

    Rahman, Md Mostafizur; Fattah, Shaikh Anowarul

    2017-01-01

    In view of recent increase of brain computer interface (BCI) based applications, the importance of efficient classification of various mental tasks has increased prodigiously nowadays. In order to obtain effective classification, efficient feature extraction scheme is necessary, for which, in the proposed method, the interchannel relationship among electroencephalogram (EEG) data is utilized. It is expected that the correlation obtained from different combination of channels will be different for different mental tasks, which can be exploited to extract distinctive feature. The empirical mode decomposition (EMD) technique is employed on a test EEG signal obtained from a channel, which provides a number of intrinsic mode functions (IMFs), and correlation coefficient is extracted from interchannel IMF data. Simultaneously, different statistical features are also obtained from each IMF. Finally, the feature matrix is formed utilizing interchannel correlation features and intrachannel statistical features of the selected IMFs of EEG signal. Different kernels of the support vector machine (SVM) classifier are used to carry out the classification task. An EEG dataset containing ten different combinations of five different mental tasks is utilized to demonstrate the classification performance and a very high level of accuracy is achieved by the proposed scheme compared to existing methods.

  18. Empirical mode decomposition apparatus, method and article of manufacture for analyzing biological signals and performing curve fitting

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2004-01-01

    A computer implemented physical signal analysis method includes four basic steps and the associated presentation techniques of the results. The first step is a computer implemented Empirical Mode Decomposition that extracts a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform which produces a Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum. The third step filters the physical signal by combining a subset of the IMFs. In the fourth step, a curve may be fitted to the filtered signal which may not have been possible with the original, unfiltered signal.

  19. Empirical mode decomposition apparatus, method and article of manufacture for analyzing biological signals and performing curve fitting

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2002-01-01

    A computer implemented physical signal analysis method includes four basic steps and the associated presentation techniques of the results. The first step is a computer implemented Empirical Mode Decomposition that extracts a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform which produces a Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum. The third step filters the physical signal by combining a subset of the IMFs. In the fourth step, a curve may be fitted to the filtered signal which may not have been possible with the original, unfiltered signal.

  20. Noise-assisted data processing with empirical mode decomposition in biomedical signals.

    PubMed

    Karagiannis, Alexandros; Constantinou, Philip

    2011-01-01

    In this paper, a methodology is described in order to investigate the performance of empirical mode decomposition (EMD) in biomedical signals, and especially in the case of electrocardiogram (ECG). Synthetic ECG signals corrupted with white Gaussian noise are employed and time series of various lengths are processed with EMD in order to extract the intrinsic mode functions (IMFs). A statistical significance test is implemented for the identification of IMFs with high-level noise components and their exclusion from denoising procedures. Simulation campaign results reveal that a decrease of processing time is accomplished with the introduction of preprocessing stage, prior to the application of EMD in biomedical time series. Furthermore, the variation in the number of IMFs according to the type of the preprocessing stage is studied as a function of SNR and time-series length. The application of the methodology in MIT-BIH ECG records is also presented in order to verify the findings in real ECG signals.

  1. Computer implemented empirical mode decomposition method, apparatus and article of manufacture

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    1999-01-01

    A computer implemented physical signal analysis method is invented. This method includes two essential steps and the associated presentation techniques of the results. All the steps exist only in a computer: there are no analytic expressions resulting from the method. The first step is a computer implemented Empirical Mode Decomposition to extract a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform. The final result is the Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum.

  2. Analyzing the Multiscale Processes in Tropical Cyclone Genesis Associated with African Easterly Waves using the PEEMD. Part I: Downscaling Processes

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Shen, B. W.; Cheung, S.

    2016-12-01

    Recent advance in high-resolution global hurricane simulations and visualizations have collectively suggested the importance of both downscaling and upscaling processes in the formation and intensification of TCs. To reveal multiscale processes from massive volume of global data for multiple years, a scalable Parallel Ensemble Empirical Mode Decomposition (PEEMD) method has been developed for the analysis. In this study, the PEEMD is applied to analyzing 10-year (2004-2013) ERA-Interim global 0.750 resolution reanalysis data to explore the role of the downscaling processes in tropical cyclogenesis associated with African Easterly Waves (AEWs). Using the PEEMD, raw data are decomposed into oscillatory Intrinsic Function Modes (IMFs) that represent atmospheric systems of the various length scales and the trend mode that represents a non-oscillatory large scale environmental flow. Among oscillatory modes, results suggest that the third oscillatory mode (IMF3) is statistically correlated with the TC/AEW scale systems. Therefore, IMF3 and trend mode are analyzed in details. Our 10-year analysis shows that more than 50% of the AEW associated hurricanes reveal the association of storms' formation with the significant downscaling shear transfer from the larger-scale trend mode to the smaller scale IMF3. Future work will apply the PEEMD to the analysis of higher-resolution datasets to explore the role of the upscaling processes provided by the convection (or TC) in the development of the TC (or AEW). Figure caption: The tendency for horizontal wind shear for the total winds (black line), IMF3 (blue line), and trend mode (red line) and SLP (black dotted line) along the storm track of Helene (2006).

  3. Emotion Recognition from EEG Signals Using Multidimensional Information in EMD Domain.

    PubMed

    Zhuang, Ning; Zeng, Ying; Tong, Li; Zhang, Chi; Zhang, Hanming; Yan, Bin

    2017-01-01

    This paper introduces a method for feature extraction and emotion recognition based on empirical mode decomposition (EMD). By using EMD, EEG signals are decomposed into Intrinsic Mode Functions (IMFs) automatically. Multidimensional information of IMF is utilized as features, the first difference of time series, the first difference of phase, and the normalized energy. The performance of the proposed method is verified on a publicly available emotional database. The results show that the three features are effective for emotion recognition. The role of each IMF is inquired and we find that high frequency component IMF1 has significant effect on different emotional states detection. The informative electrodes based on EMD strategy are analyzed. In addition, the classification accuracy of the proposed method is compared with several classical techniques, including fractal dimension (FD), sample entropy, differential entropy, and discrete wavelet transform (DWT). Experiment results on DEAP datasets demonstrate that our method can improve emotion recognition performance.

  4. A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine.

    PubMed

    Wang, Deyun; Wei, Shuai; Luo, Hongyuan; Yue, Chenqiang; Grunder, Olivier

    2017-02-15

    The randomness, non-stationarity and irregularity of air quality index (AQI) series bring the difficulty of AQI forecasting. To enhance forecast accuracy, a novel hybrid forecasting model combining two-phase decomposition technique and extreme learning machine (ELM) optimized by differential evolution (DE) algorithm is developed for AQI forecasting in this paper. In phase I, the complementary ensemble empirical mode decomposition (CEEMD) is utilized to decompose the AQI series into a set of intrinsic mode functions (IMFs) with different frequencies; in phase II, in order to further handle the high frequency IMFs which will increase the forecast difficulty, variational mode decomposition (VMD) is employed to decompose the high frequency IMFs into a number of variational modes (VMs). Then, the ELM model optimized by DE algorithm is applied to forecast all the IMFs and VMs. Finally, the forecast value of each high frequency IMF is obtained through adding up the forecast results of all corresponding VMs, and the forecast series of AQI is obtained by aggregating the forecast results of all IMFs. To verify and validate the proposed model, two daily AQI series from July 1, 2014 to June 30, 2016 collected from Beijing and Shanghai located in China are taken as the test cases to conduct the empirical study. The experimental results show that the proposed hybrid model based on two-phase decomposition technique is remarkably superior to all other considered models for its higher forecast accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Signatures of the seismic source in EMD-based characterization of the 1994 Northridge, California, earthquake recordings

    USGS Publications Warehouse

    Zhang, R.R.; Ma, S.; Hartzell, S.

    2003-01-01

    In this article we use empirical mode decomposition (EMD) to characterize the 1994 Northridge, California, earthquake records and investigate the signatures carried over from the source rupture process. Comparison of the current study results with existing source inverse solutions that use traditional data processing suggests that the EMD-based characterization contains information that sheds light on aspects of the earthquake rupture process. We first summarize the fundamentals of the EMD and illustrate its features through the analysis of a hypothetical and a real record. Typically, the Northridge strong-motion records are decomposed into eight or nine intrinsic mode functions (IMF's), each of which emphasizes a different oscillation mode with different amplitude and frequency content. The first IMF has the highest-frequency content; frequency content decreases with an increase in IMF component. With the aid of a finite-fault inversion method, we then examine aspects of the source of the 1994 Northridge earthquake that are reflected in the second to fifth IMF components. This study shows that the second IMF is predominantly wave motion generated near the hypocenter, with high-frequency content that might be related to a large stress drop associated with the initiation of the earthquake. As one progresses from the second to the fifth IMF component, there is a general migration of the source region away from the hypocenter with associated longer-period signals as the rupture propagates. This study suggests that the different IMF components carry information on the earthquake rupture process that is expressed in their different frequency bands.

  6. Computer implemented empirical mode decomposition method apparatus, and article of manufacture utilizing curvature extrema

    NASA Technical Reports Server (NTRS)

    Shen, Zheng (Inventor); Huang, Norden Eh (Inventor)

    2003-01-01

    A computer implemented physical signal analysis method is includes two essential steps and the associated presentation techniques of the results. All the steps exist only in a computer: there are no analytic expressions resulting from the method. The first step is a computer implemented Empirical Mode Decomposition to extract a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals based on local extrema and curvature extrema. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform. The final result is the Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum.

  7. Analysis of Vibration and Noise of Construction Machinery Based on Ensemble Empirical Mode Decomposition and Spectral Correlation Analysis Method

    NASA Astrophysics Data System (ADS)

    Chen, Yuebiao; Zhou, Yiqi; Yu, Gang; Lu, Dan

    In order to analyze the effect of engine vibration on cab noise of construction machinery in multi-frequency bands, a new method based on ensemble empirical mode decomposition (EEMD) and spectral correlation analysis is proposed. Firstly, the intrinsic mode functions (IMFs) of vibration and noise signals were obtained by EEMD method, and then the IMFs which have the same frequency bands were selected. Secondly, we calculated the spectral correlation coefficients between the selected IMFs, getting the main frequency bands in which engine vibration has significant impact on cab noise. Thirdly, the dominated frequencies were picked out and analyzed by spectral analysis method. The study result shows that the main frequency bands and dominated frequencies in which engine vibration have serious impact on cab noise can be identified effectively by the proposed method, which provides effective guidance to noise reduction of construction machinery.

  8. Palm vein recognition based on directional empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Lee, Jen-Chun; Chang, Chien-Ping; Chen, Wei-Kuei

    2014-04-01

    Directional empirical mode decomposition (DEMD) has recently been proposed to make empirical mode decomposition suitable for the processing of texture analysis. Using DEMD, samples are decomposed into a series of images, referred to as two-dimensional intrinsic mode functions (2-D IMFs), from finer to large scale. A DEMD-based 2 linear discriminant analysis (LDA) for palm vein recognition is proposed. The proposed method progresses through three steps: (i) a set of 2-D IMF features of various scale and orientation are extracted using DEMD, (ii) the 2LDA method is then applied to reduce the dimensionality of the feature space in both the row and column directions, and (iii) the nearest neighbor classifier is used for classification. We also propose two strategies for using the set of 2-D IMF features: ensemble DEMD vein representation (EDVR) and multichannel DEMD vein representation (MDVR). In experiments using palm vein databases, the proposed MDVR-based 2LDA method achieved recognition accuracy of 99.73%, thereby demonstrating its feasibility for palm vein recognition.

  9. Appropriate IMFs associated with cepstrum and envelope analysis for ball-bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Tsao, Wen-Chang; Pan, Min-Chun

    2014-03-01

    The traditional envelope analysis is an effective method for the fault detection of rolling bearings. However, all the resonant frequency bands must be examined during the bearing-fault detection process. To handle the above deficiency, this paper proposes using the empirical mode decomposition (EMD) to select a proper intrinsic mode function (IMF) for the subsequent detection tools; here both envelope analysis and cepstrum analysis are employed and compared. By virtue of the band-pass filtering nature of EMD, the resonant frequency bands of structure to be measured are captured in the IMFs. As impulses arising from rolling elements striking bearing faults modulate with structure resonance, proper IMFs potentially enable to characterize fault signatures. In the study, faulty ball bearings are used to justify the proposed method, and comparisons with the traditional envelope analysis are made. Post the use of IMFs highlighting faultybearing features, the performance of using envelope analysis and cepstrum analysis to single out bearing faults is objectively compared and addressed; it is noted that generally envelope analysis offers better performance.

  10. Identifying Decadal to Multi-decadal Variability in the Pacific by Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Sommers, L. A.; Hamlington, B.; Cheon, S. H.

    2016-12-01

    Large scale climate variability in the Pacific Ocean like that associated with ENSO and the Pacific Decadal Oscillation (PDO) has been shown to have a significant impact on climate and sea level across a range of timescales. The changes related to these climate signals have worldwide impacts on fisheries, weather, and precipitation patterns among others. Understanding these inter-annual to multi-decadal oscillations is imperative to longer term climate forecasts and understanding how climate will behave, and its effect on changes in sea level. With a 110-year reconstruction of sea level, we examine decadal to multi-decadal variability seen in the sea level fluctuations in the Pacific Ocean. Using empirical mode decomposition (EMD), we break down regional sea level into a series of intrinsic mode functions (IMFs) and attempt attribution of these IMFs to specific climate modes of variability. In particular, and not unexpectedly, we identify IMFs associated with the PDO, finding correlations between the PDO Index and IMFs in the Pacific Ocean upwards of 0.6-0.8 over the 110-year reconstructed record. Perhaps more significantly, we also find evidence of a longer multi-decadal signal ( 50-60 years) in the higher order IMFs. This lower frequency variability has been suggested in previous literature as influencing GMSL, but here we find a regional pattern associated with this multi-decadal signal. By identifying and separating these periodic climate signals, we can gain a better understanding of how the sea level variability associated with these modes can impact sea level on short timescales and serve to exacerbate the effects of long-term sea level change.

  11. A New Method for Nonlinear and Nonstationary Time Series Analysis and Its Application to the Earthquake and Building Response Records

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.

    1999-01-01

    A new method for analyzing nonlinear and nonstationary data has been developed. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero-crossing and extrema, and also having symmetric envelopes defined by the local maxima and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to nonlinear and nonstationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time that give sharp identifications of imbedded structures. The final presentation of the results is an energy-frequency-time distribution, designated as the Hilbert Spectrum, Example of application of this method to earthquake and building response will be given. The results indicate those low frequency components, totally missed by the Fourier analysis, are clearly identified by the new method. Comparisons with Wavelet and window Fourier analysis show the new method offers much better temporal and frequency resolutions.

  12. Reconstructed phase spaces of intrinsic mode functions. Application to postural stability analysis.

    PubMed

    Snoussi, Hichem; Amoud, Hassan; Doussot, Michel; Hewson, David; Duchêne, Jacques

    2006-01-01

    In this contribution, we propose an efficient nonlinear analysis method characterizing postural steadiness. The analyzed signal is the displacement of the centre of pressure (COP) collected from a force plate used for measuring postural sway. The proposed method consists of analyzing the nonlinear dynamics of the intrinsic mode functions (IMF) of the COP signal. The nonlinear properties are assessed through the reconstructed phase spaces of the different IMFs. This study shows some specific geometries of the attractors of some intrinsic modes. Moreover, the volume spanned by the geometric attractors in the reconstructed phase space represents an efficient indicator of the postural stability of the subject. Experiments results corroborate the effectiveness of the method to blindly discriminate young subjects, elderly subjects and subjects presenting a risk of falling.

  13. A Cutting Pattern Recognition Method for Shearers Based on Improved Ensemble Empirical Mode Decomposition and a Probabilistic Neural Network

    PubMed Central

    Xu, Jing; Wang, Zhongbin; Tan, Chao; Si, Lei; Liu, Xinhua

    2015-01-01

    In order to guarantee the stable operation of shearers and promote construction of an automatic coal mining working face, an online cutting pattern recognition method with high accuracy and speed based on Improved Ensemble Empirical Mode Decomposition (IEEMD) and Probabilistic Neural Network (PNN) is proposed. An industrial microphone is installed on the shearer and the cutting sound is collected as the recognition criterion to overcome the disadvantages of giant size, contact measurement and low identification rate of traditional detectors. To avoid end-point effects and get rid of undesirable intrinsic mode function (IMF) components in the initial signal, IEEMD is conducted on the sound. The end-point continuation based on the practical storage data is performed first to overcome the end-point effect. Next the average correlation coefficient, which is calculated by the correlation of the first IMF with others, is introduced to select essential IMFs. Then the energy and standard deviation of the reminder IMFs are extracted as features and PNN is applied to classify the cutting patterns. Finally, a simulation example, with an accuracy of 92.67%, and an industrial application prove the efficiency and correctness of the proposed method. PMID:26528985

  14. Optimal Averages for Nonlinear Signal Decompositions - Another Alternative for Empirical Mode Decomposition

    DTIC Science & Technology

    2014-10-01

    nonlinear and non-stationary signals. It aims at decomposing a signal, via an iterative sifting procedure, into several intrinsic mode functions ...stationary signals. It aims at decomposing a signal, via an iterative sifting procedure into several intrinsic mode functions (IMFs), and each of the... function , optimization. 1 Introduction It is well known that nonlinear and non-stationary signal analysis is important and difficult. His- torically

  15. Seismic random noise attenuation method based on empirical mode decomposition of Hausdorff dimension

    NASA Astrophysics Data System (ADS)

    Yan, Z.; Luan, X.

    2017-12-01

    Introduction Empirical mode decomposition (EMD) is a noise suppression algorithm by using wave field separation, which is based on the scale differences between effective signal and noise. However, since the complexity of the real seismic wave field results in serious aliasing modes, it is not ideal and effective to denoise with this method alone. Based on the multi-scale decomposition characteristics of the signal EMD algorithm, combining with Hausdorff dimension constraints, we propose a new method for seismic random noise attenuation. First of all, We apply EMD algorithm adaptive decomposition of seismic data and obtain a series of intrinsic mode function (IMF)with different scales. Based on the difference of Hausdorff dimension between effectively signals and random noise, we identify IMF component mixed with random noise. Then we use threshold correlation filtering process to separate the valid signal and random noise effectively. Compared with traditional EMD method, the results show that the new method of seismic random noise attenuation has a better suppression effect. The implementation process The EMD algorithm is used to decompose seismic signals into IMF sets and analyze its spectrum. Since most of the random noise is high frequency noise, the IMF sets can be divided into three categories: the first category is the effective wave composition of the larger scale; the second category is the noise part of the smaller scale; the third category is the IMF component containing random noise. Then, the third kind of IMF component is processed by the Hausdorff dimension algorithm, and the appropriate time window size, initial step and increment amount are selected to calculate the Hausdorff instantaneous dimension of each component. The dimension of the random noise is between 1.0 and 1.05, while the dimension of the effective wave is between 1.05 and 2.0. On the basis of the previous steps, according to the dimension difference between the random noise and effective signal, we extracted the sample points, whose fractal dimension value is less than or equal to 1.05 for the each IMF components, to separate the residual noise. Using the IMF components after dimension filtering processing and the effective wave IMF components after the first selection for reconstruction, we can obtained the results of de-noising.

  16. Applications of Hilbert Spectral Analysis for Speech and Sound Signals

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.

    2003-01-01

    A new method for analyzing nonlinear and nonstationary data has been developed, and the natural applications are to speech and sound signals. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero-crossing and extrema, and also having symmetric envelopes defined by the local maxima and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to nonlinear and nonstationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time, which give sharp identifications of imbedded structures. This method invention can be used to process all acoustic signals. Specifically, it can process the speech signals for Speech synthesis, Speaker identification and verification, Speech recognition, and Sound signal enhancement and filtering. Additionally, as the acoustical signals from machinery are essentially the way the machines are talking to us. Therefore, the acoustical signals, from the machines, either from sound through air or vibration on the machines, can tell us the operating conditions of the machines. Thus, we can use the acoustic signal to diagnosis the problems of machines.

  17. Empirical mode decomposition for analyzing acoustical signals

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2005-01-01

    The present invention discloses a computer implemented signal analysis method through the Hilbert-Huang Transformation (HHT) for analyzing acoustical signals, which are assumed to be nonlinear and nonstationary. The Empirical Decomposition Method (EMD) and the Hilbert Spectral Analysis (HSA) are used to obtain the HHT. Essentially, the acoustical signal will be decomposed into the Intrinsic Mode Function Components (IMFs). Once the invention decomposes the acoustic signal into its constituting components, all operations such as analyzing, identifying, and removing unwanted signals can be performed on these components. Upon transforming the IMFs into Hilbert spectrum, the acoustical signal may be compared with other acoustical signals.

  18. Pipe leak diagnostic using high frequency piezoelectric pressure sensor and automatic selection of intrinsic mode function

    NASA Astrophysics Data System (ADS)

    Yusop, Hanafi M.; Ghazali, M. F.; Yusof, M. F. M.; Remli, M. A. Pi; Kamarulzaman, M. H.

    2017-10-01

    In a recent study, the analysis of pressure transient signals could be seen as an accurate and low-cost method for leak and feature detection in water distribution systems. Transient phenomena occurs due to sudden changes in the fluid’s propagation in pipelines system caused by rapid pressure and flow fluctuation due to events such as closing and opening valves rapidly or through pump failure. In this paper, the feasibility of the Hilbert-Huang transform (HHT) method/technique in analysing the pressure transient signals in presented and discussed. HHT is a way to decompose a signal into intrinsic mode functions (IMF). However, the advantage of HHT is its difficulty in selecting the suitable IMF for the next data postprocessing method which is Hilbert Transform (HT). This paper reveals that utilizing the application of an integrated kurtosis-based algorithm for a z-filter technique (I-Kaz) to kurtosis ratio (I-Kaz-Kurtosis) allows/contributes to/leads to automatic selection of the IMF that should be used. This technique is demonstrated on a 57.90-meter medium high-density polyethylene (MDPE) pipe installed with a single artificial leak. The analysis results using the I-Kaz-kurtosis ratio revealed/confirmed that the method can be used as an automatic selection of the IMF although the noise level ratio of the signal is low. Therefore, the I-Kaz-kurtosis ratio method is recommended as a means to implement an automatic selection technique of the IMF for HHT analysis.

  19. Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS

    PubMed Central

    Kuai, Moshen; Cheng, Gang; Li, Yong

    2018-01-01

    For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) Adaptive Neuro-fuzzy Inference System (ANFIS) in this paper. The original signal is decomposed into 6 intrinsic mode functions (IMF) and residual components by CEEMDAN. Since the IMF contains the main characteristic information of planetary gear faults, time complexity of IMFs are reflected by permutation entropies to quantify the fault features. The permutation entropies of each IMF component are defined as the input of ANFIS, and its parameters and membership functions are adaptively adjusted according to training samples. Finally, the fuzzy inference rules are determined, and the optimal ANFIS is obtained. The overall recognition rate of the test sample used for ANFIS is 90%, and the recognition rate of gear with one missing tooth is relatively high. The recognition rates of different fault gears based on the method can also achieve better results. Therefore, the proposed method can be applied to planetary gear fault diagnosis effectively. PMID:29510569

  20. Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS.

    PubMed

    Kuai, Moshen; Cheng, Gang; Pang, Yusong; Li, Yong

    2018-03-05

    For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) Adaptive Neuro-fuzzy Inference System (ANFIS) in this paper. The original signal is decomposed into 6 intrinsic mode functions (IMF) and residual components by CEEMDAN. Since the IMF contains the main characteristic information of planetary gear faults, time complexity of IMFs are reflected by permutation entropies to quantify the fault features. The permutation entropies of each IMF component are defined as the input of ANFIS, and its parameters and membership functions are adaptively adjusted according to training samples. Finally, the fuzzy inference rules are determined, and the optimal ANFIS is obtained. The overall recognition rate of the test sample used for ANFIS is 90%, and the recognition rate of gear with one missing tooth is relatively high. The recognition rates of different fault gears based on the method can also achieve better results. Therefore, the proposed method can be applied to planetary gear fault diagnosis effectively.

  1. A data-driven method to enhance vibration signal decomposition for rolling bearing fault analysis

    NASA Astrophysics Data System (ADS)

    Grasso, M.; Chatterton, S.; Pennacchi, P.; Colosimo, B. M.

    2016-12-01

    Health condition analysis and diagnostics of rotating machinery requires the capability of properly characterizing the information content of sensor signals in order to detect and identify possible fault features. Time-frequency analysis plays a fundamental role, as it allows determining both the existence and the causes of a fault. The separation of components belonging to different time-frequency scales, either associated to healthy or faulty conditions, represents a challenge that motivates the development of effective methodologies for multi-scale signal decomposition. In this framework, the Empirical Mode Decomposition (EMD) is a flexible tool, thanks to its data-driven and adaptive nature. However, the EMD usually yields an over-decomposition of the original signals into a large number of intrinsic mode functions (IMFs). The selection of most relevant IMFs is a challenging task, and the reference literature lacks automated methods to achieve a synthetic decomposition into few physically meaningful modes by avoiding the generation of spurious or meaningless modes. The paper proposes a novel automated approach aimed at generating a decomposition into a minimal number of relevant modes, called Combined Mode Functions (CMFs), each consisting in a sum of adjacent IMFs that share similar properties. The final number of CMFs is selected in a fully data driven way, leading to an enhanced characterization of the signal content without any information loss. A novel criterion to assess the dissimilarity between adjacent CMFs is proposed, based on probability density functions of frequency spectra. The method is suitable to analyze vibration signals that may be periodically acquired within the operating life of rotating machineries. A rolling element bearing fault analysis based on experimental data is presented to demonstrate the performances of the method and the provided benefits.

  2. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering

    PubMed Central

    Shen, Chong; Li, Jie; Zhang, Xiaoming; Shi, Yunbo; Tang, Jun; Cao, Huiliang; Liu, Jun

    2016-01-01

    The different noise components in a dual-mass micro-electromechanical system (MEMS) gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN), electronic-thermal noise (ETN), flicker noise (FN) and Coriolis signal in-phase noise (IPN). The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD) and time-frequency peak filtering (TFPF). There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs) by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods. PMID:27258276

  3. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering.

    PubMed

    Shen, Chong; Li, Jie; Zhang, Xiaoming; Shi, Yunbo; Tang, Jun; Cao, Huiliang; Liu, Jun

    2016-05-31

    The different noise components in a dual-mass micro-electromechanical system (MEMS) gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN), electronic-thermal noise (ETN), flicker noise (FN) and Coriolis signal in-phase noise (IPN). The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD) and time-frequency peak filtering (TFPF). There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs) by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods.

  4. System and methods for determining masking signals for applying empirical mode decomposition (EMD) and for demodulating intrinsic mode functions obtained from application of EMD

    DOEpatents

    Senroy, Nilanjan [New Delhi, IN; Suryanarayanan, Siddharth [Littleton, CO

    2011-03-15

    A computer-implemented method of signal processing is provided. The method includes generating one or more masking signals based upon a computed Fourier transform of a received signal. The method further includes determining one or more intrinsic mode functions (IMFs) of the received signal by performing a masking-signal-based empirical mode decomposition (EMD) using the at least one masking signal.

  5. Empirical mode decomposition-based facial pose estimation inside video sequences

    NASA Astrophysics Data System (ADS)

    Qing, Chunmei; Jiang, Jianmin; Yang, Zhijing

    2010-03-01

    We describe a new pose-estimation algorithm via integration of the strength in both empirical mode decomposition (EMD) and mutual information. While mutual information is exploited to measure the similarity between facial images to estimate poses, EMD is exploited to decompose input facial images into a number of intrinsic mode function (IMF) components, which redistribute the effect of noise, expression changes, and illumination variations as such that, when the input facial image is described by the selected IMF components, all the negative effects can be minimized. Extensive experiments were carried out in comparisons to existing representative techniques, and the results show that the proposed algorithm achieves better pose-estimation performances with robustness to noise corruption, illumination variation, and facial expressions.

  6. Improved CEEMDAN-wavelet transform de-noising method and its application in well logging noise reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Jingxia; Guo, Yinghai; Shen, Yulin; Zhao, Difei; Li, Mi

    2018-06-01

    The use of geophysical logging data to identify lithology is an important groundwork in logging interpretation. Inevitably, noise is mixed in during data collection due to the equipment and other external factors and this will affect the further lithological identification and other logging interpretation. Therefore, to get a more accurate lithological identification it is necessary to adopt de-noising methods. In this study, a new de-noising method, namely improved complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-wavelet transform, is proposed, which integrates the superiorities of improved CEEMDAN and wavelet transform. Improved CEEMDAN, an effective self-adaptive multi-scale analysis method, is used to decompose non-stationary signals as the logging data to obtain the intrinsic mode function (IMF) of N different scales and one residual. Moreover, one self-adaptive scale selection method is used to determine the reconstruction scale k. Simultaneously, given the possible frequency aliasing problem between adjacent IMFs, a wavelet transform threshold de-noising method is used to reduce the noise of the (k-1)th IMF. Subsequently, the de-noised logging data are reconstructed by the de-noised (k-1)th IMF and the remaining low-frequency IMFs and the residual. Finally, empirical mode decomposition, improved CEEMDAN, wavelet transform and the proposed method are applied for analysis of the simulation and the actual data. Results show diverse performance of these de-noising methods with regard to accuracy for lithological identification. Compared with the other methods, the proposed method has the best self-adaptability and accuracy in lithological identification.

  7. EMD-WVD time-frequency distribution for analysis of multi-component signals

    NASA Astrophysics Data System (ADS)

    Chai, Yunzi; Zhang, Xudong

    2016-10-01

    Time-frequency distribution (TFD) is two-dimensional function that indicates the time-varying frequency content of one-dimensional signals. And The Wigner-Ville distribution (WVD) is an important and effective time-frequency analysis method. The WVD can efficiently show the characteristic of a mono-component signal. However, a major drawback is the extra cross-terms when multi-component signals are analyzed by WVD. In order to eliminating the cross-terms, we decompose signals into single frequency components - Intrinsic Mode Function (IMF) - by using the Empirical Mode decomposition (EMD) first, then use WVD to analyze each single IMF. In this paper, we define this new time-frequency distribution as EMD-WVD. And the experiment results show that the proposed time-frequency method can solve the cross-terms problem effectively and improve the accuracy of WVD time-frequency analysis.

  8. Analysis of turbine-grid interaction of grid-connected wind turbine using HHT

    NASA Astrophysics Data System (ADS)

    Chen, A.; Wu, W.; Miao, J.; Xie, D.

    2018-05-01

    This paper processes the output power of the grid-connected wind turbine with the denoising and extracting method based on Hilbert Huang transform (HHT) to discuss the turbine-grid interaction. At first, the detailed Empirical Mode Decomposition (EMD) and the Hilbert Transform (HT) are introduced. Then, on the premise of decomposing the output power of the grid-connected wind turbine into a series of Intrinsic Mode Functions (IMFs), energy ratio and power volatility are calculated to detect the unessential components. Meanwhile, combined with vibration function of turbine-grid interaction, data fitting of instantaneous amplitude and phase of each IMF is implemented to extract characteristic parameters of different interactions. Finally, utilizing measured data of actual parallel-operated wind turbines in China, this work accurately obtains the characteristic parameters of turbine-grid interaction of grid-connected wind turbine.

  9. Research on Ship-Radiated Noise Denoising Using Secondary Variational Mode Decomposition and Correlation Coefficient.

    PubMed

    Li, Yuxing; Li, Yaan; Chen, Xiao; Yu, Jing

    2017-12-26

    As the sound signal of ships obtained by sensors contains other many significant characteristics of ships and called ship-radiated noise (SN), research into a denoising algorithm and its application has obtained great significance. Using the advantage of variational mode decomposition (VMD) combined with the correlation coefficient for denoising, a hybrid secondary denoising algorithm is proposed using secondary VMD combined with a correlation coefficient (CC). First, different kinds of simulation signals are decomposed into several bandwidth-limited intrinsic mode functions (IMFs) using VMD, where the decomposition number by VMD is equal to the number by empirical mode decomposition (EMD); then, the CCs between the IMFs and the simulation signal are calculated respectively. The noise IMFs are identified by the CC threshold and the rest of the IMFs are reconstructed in order to realize the first denoising process. Finally, secondary denoising of the simulation signal can be accomplished by repeating the above steps of decomposition, screening and reconstruction. The final denoising result is determined according to the CC threshold. The denoising effect is compared under the different signal-to-noise ratio and the time of decomposition by VMD. Experimental results show the validity of the proposed denoising algorithm using secondary VMD (2VMD) combined with CC compared to EMD denoising, ensemble EMD (EEMD) denoising, VMD denoising and cubic VMD (3VMD) denoising, as well as two denoising algorithms presented recently. The proposed denoising algorithm is applied to feature extraction and classification for SN signals, which can effectively improve the recognition rate of different kinds of ships.

  10. Empirical Mode Decomposition of Geophysical Well-log Data of Bombay Offshore Basin, Mumbai, India

    NASA Astrophysics Data System (ADS)

    Siddharth Gairola, Gaurav; Chandrasekhar, Enamundram

    2016-04-01

    Geophysical well-log data manifest the nonlinear behaviour of their respective physical properties of the heterogeneous subsurface layers as a function of depth. Therefore, nonlinear data analysis techniques must be implemented, to quantify the degree of heterogeneity in the subsurface lithologies. One such nonlinear data adaptive technique is empirical mode decomposition (EMD) technique, which facilitates to decompose the data into oscillatory signals of different wavelengths called intrinsic mode functions (IMF). In the present study EMD has been applied to gamma-ray log and neutron porosity log of two different wells: Well B and Well C located in the western offshore basin of India to perform heterogeneity analysis and compare the results with those obtained by multifractal studies of the same data sets. By establishing a relationship between the IMF number (m) and the mean wavelength associated with each IMF (Im), a heterogeneity index (ρ) associated with subsurface layers can be determined using the relation, Im=kρm, where 'k' is a constant. The ρ values bear an inverse relation with the heterogeneity of the subsurface: smaller ρ values designate higher heterogeneity and vice-versa. The ρ values estimated for different limestone payzones identified in the wells clearly show that Well C has higher degree of heterogeneity than Well B. This correlates well with the estimated Vshale values for the limestone reservoir zone showing higher shale content in Well C than Well B. The ρ values determined for different payzones of both wells will be used to quantify the degree of heterogeneity in different wells. The multifractal behaviour of each IMF of both the logs of both the wells will be compared with one another and discussed on the lines of their heterogeneity indices.

  11. A novel technique for phase synchrony measurement from the complex motor imaginary potential of combined body and limb action

    NASA Astrophysics Data System (ADS)

    Zhou, Zhong-xing; Wan, Bai-kun; Ming, Dong; Qi, Hong-zhi

    2010-08-01

    In this study, we proposed and evaluated the use of the empirical mode decomposition (EMD) technique combined with phase synchronization analysis to investigate the human brain synchrony of the supplementary motor area (SMA) and primary motor area (M1) during complex motor imagination of combined body and limb action. We separated the EEG data of the SMA and M1 into intrinsic mode functions (IMFs) using the EMD method and determined the characteristic IMFs by power spectral density (PSD) analysis. Thereafter, the instantaneous phases of the characteristic IMFs were obtained by the Hilbert transformation, and the single-trial phase-locking value (PLV) features for brain synchrony measurement between the SMA and M1 were investigated separately. The classification performance suggests that the proposed approach is effective for phase synchronization analysis and is promising for the application of a brain-computer interface in motor nerve reconstruction of the lower limbs.

  12. Phase correlation of foreign exchange time series

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chya

    2007-03-01

    Correlation of foreign exchange rates in currency markets is investigated based on the empirical data of USD/DEM and USD/JPY exchange rates for a period from February 1 1986 to December 31 1996. The return of exchange time series is first decomposed into a number of intrinsic mode functions (IMFs) by the empirical mode decomposition method. The instantaneous phases of the resultant IMFs calculated by the Hilbert transform are then used to characterize the behaviors of pricing transmissions, and the correlation is probed by measuring the phase differences between two IMFs in the same order. From the distribution of phase differences, our results show explicitly that the correlations are stronger in daily time scale than in longer time scales. The demonstration for the correlations in periods of 1986-1989 and 1990-1993 indicates two exchange rates in the former period were more correlated than in the latter period. The result is consistent with the observations from the cross-correlation calculation.

  13. Image fusion method based on regional feature and improved bidimensional empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Qin, Xinqiang; Hu, Gang; Hu, Kai

    2018-01-01

    The decomposition of multiple source images using bidimensional empirical mode decomposition (BEMD) often produces mismatched bidimensional intrinsic mode functions, either by their number or their frequency, making image fusion difficult. A solution to this problem is proposed using a fixed number of iterations and a union operation in the sifting process. By combining the local regional features of the images, an image fusion method has been developed. First, the source images are decomposed using the proposed BEMD to produce the first intrinsic mode function (IMF) and residue component. Second, for the IMF component, a selection and weighted average strategy based on local area energy is used to obtain a high-frequency fusion component. Third, for the residue component, a selection and weighted average strategy based on local average gray difference is used to obtain a low-frequency fusion component. Finally, the fused image is obtained by applying the inverse BEMD transform. Experimental results show that the proposed algorithm provides superior performance over methods based on wavelet transform, line and column-based EMD, and complex empirical mode decomposition, both in terms of visual quality and objective evaluation criteria.

  14. Defects diagnosis in laser brazing using near-infrared signals based on empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Cheng, Liyong; Mi, Gaoyang; Li, Shuo; Wang, Chunming; Hu, Xiyuan

    2018-03-01

    Real-time monitoring of laser welding plays a very important role in the modern automated production and online defects diagnosis is necessary to be implemented. In this study, the status of laser brazing was monitored in real time using an infrared photoelectric sensor. Four kinds of braze seams (including healthy weld, unfilled weld, hole weld and rough surface weld) along with corresponding near-infrared signals were obtained. Further, a new method called Empirical Mode Decomposition (EMD) was proposed to analyze the near-infrared signals. The results showed that the EMD method had a good performance in eliminating the noise on the near-infrared signals. And then, the correlation coefficient was developed for selecting the Intrinsic Mode Function (IMF) more sensitive to the weld defects. A more accurate signal was reconstructed with the selected IMF components. Simultaneously, the spectrum of selected IMF components was solved using fast Fourier transform, and the frequency characteristics were clearly revealed. The frequency energy of different frequency bands was computed to diagnose the defects. There was a significant difference in four types of weld defects. This approach has been proved to be an effective and efficient method for monitoring laser brazing defects.

  15. Daily air quality index forecasting with hybrid models: A case in China.

    PubMed

    Zhu, Suling; Lian, Xiuyuan; Liu, Haixia; Hu, Jianming; Wang, Yuanyuan; Che, Jinxing

    2017-12-01

    Air quality is closely related to quality of life. Air pollution forecasting plays a vital role in air pollution warnings and controlling. However, it is difficult to attain accurate forecasts for air pollution indexes because the original data are non-stationary and chaotic. The existing forecasting methods, such as multiple linear models, autoregressive integrated moving average (ARIMA) and support vector regression (SVR), cannot fully capture the information from series of pollution indexes. Therefore, new effective techniques need to be proposed to forecast air pollution indexes. The main purpose of this research is to develop effective forecasting models for regional air quality indexes (AQI) to address the problems above and enhance forecasting accuracy. Therefore, two hybrid models (EMD-SVR-Hybrid and EMD-IMFs-Hybrid) are proposed to forecast AQI data. The main steps of the EMD-SVR-Hybrid model are as follows: the data preprocessing technique EMD (empirical mode decomposition) is utilized to sift the original AQI data to obtain one group of smoother IMFs (intrinsic mode functions) and a noise series, where the IMFs contain the important information (level, fluctuations and others) from the original AQI series. LS-SVR is applied to forecast the sum of the IMFs, and then, S-ARIMA (seasonal ARIMA) is employed to forecast the residual sequence of LS-SVR. In addition, EMD-IMFs-Hybrid first separately forecasts the IMFs via statistical models and sums the forecasting results of the IMFs as EMD-IMFs. Then, S-ARIMA is employed to forecast the residuals of EMD-IMFs. To certify the proposed hybrid model, AQI data from June 2014 to August 2015 collected from Xingtai in China are utilized as a test case to investigate the empirical research. In terms of some of the forecasting assessment measures, the AQI forecasting results of Xingtai show that the two proposed hybrid models are superior to ARIMA, SVR, GRNN, EMD-GRNN, Wavelet-GRNN and Wavelet-SVR. Therefore, the proposed hybrid models can be used as effective and simple tools for air pollution forecasting and warning as well as for management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Adaptive photoacoustic imaging quality optimization with EMD and reconstruction

    NASA Astrophysics Data System (ADS)

    Guo, Chengwen; Ding, Yao; Yuan, Jie; Xu, Guan; Wang, Xueding; Carson, Paul L.

    2016-10-01

    Biomedical photoacoustic (PA) signal is characterized with extremely low signal to noise ratio which will yield significant artifacts in photoacoustic tomography (PAT) images. Since PA signals acquired by ultrasound transducers are non-linear and non-stationary, traditional data analysis methods such as Fourier and wavelet method cannot give useful information for further research. In this paper, we introduce an adaptive method to improve the quality of PA imaging based on empirical mode decomposition (EMD) and reconstruction. Data acquired by ultrasound transducers are adaptively decomposed into several intrinsic mode functions (IMFs) after a sifting pre-process. Since noise is randomly distributed in different IMFs, depressing IMFs with more noise while enhancing IMFs with less noise can effectively enhance the quality of reconstructed PAT images. However, searching optimal parameters by means of brute force searching algorithms will cost too much time, which prevent this method from practical use. To find parameters within reasonable time, heuristic algorithms, which are designed for finding good solutions more efficiently when traditional methods are too slow, are adopted in our method. Two of the heuristic algorithms, Simulated Annealing Algorithm, a probabilistic method to approximate the global optimal solution, and Artificial Bee Colony Algorithm, an optimization method inspired by the foraging behavior of bee swarm, are selected to search optimal parameters of IMFs in this paper. The effectiveness of our proposed method is proved both on simulated data and PA signals from real biomedical tissue, which might bear the potential for future clinical PA imaging de-noising.

  17. Tourism forecasting using modified empirical mode decomposition and group method of data handling

    NASA Astrophysics Data System (ADS)

    Yahya, N. A.; Samsudin, R.; Shabri, A.

    2017-09-01

    In this study, a hybrid model using modified Empirical Mode Decomposition (EMD) and Group Method of Data Handling (GMDH) model is proposed for tourism forecasting. This approach reconstructs intrinsic mode functions (IMFs) produced by EMD using trial and error method. The new component and the remaining IMFs is then predicted respectively using GMDH model. Finally, the forecasted results for each component are aggregated to construct an ensemble forecast. The data used in this experiment are monthly time series data of tourist arrivals from China, Thailand and India to Malaysia from year 2000 to 2016. The performance of the model is evaluated using Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) where conventional GMDH model and EMD-GMDH model are used as benchmark models. Empirical results proved that the proposed model performed better forecasts than the benchmarked models.

  18. An epileptic seizures detection algorithm based on the empirical mode decomposition of EEG.

    PubMed

    Orosco, Lorena; Laciar, Eric; Correa, Agustina Garces; Torres, Abel; Graffigna, Juan P

    2009-01-01

    Epilepsy is a neurological disorder that affects around 50 million people worldwide. The seizure detection is an important component in the diagnosis of epilepsy. In this study, the Empirical Mode Decomposition (EMD) method was proposed on the development of an automatic epileptic seizure detection algorithm. The algorithm first computes the Intrinsic Mode Functions (IMFs) of EEG records, then calculates the energy of each IMF and performs the detection based on an energy threshold and a minimum duration decision. The algorithm was tested in 9 invasive EEG records provided and validated by the Epilepsy Center of the University Hospital of Freiburg. In 90 segments analyzed (39 with epileptic seizures) the sensitivity and specificity obtained with the method were of 56.41% and 75.86% respectively. It could be concluded that EMD is a promissory method for epileptic seizure detection in EEG records.

  19. Multi-Fault Diagnosis of Rolling Bearings via Adaptive Projection Intrinsically Transformed Multivariate Empirical Mode Decomposition and High Order Singular Value Decomposition

    PubMed Central

    Lv, Yong; Song, Gangbing

    2018-01-01

    Rolling bearings are important components in rotary machinery systems. In the field of multi-fault diagnosis of rolling bearings, the vibration signal collected from single channels tends to miss some fault characteristic information. Using multiple sensors to collect signals at different locations on the machine to obtain multivariate signal can remedy this problem. The adverse effect of a power imbalance between the various channels is inevitable, and unfavorable for multivariate signal processing. As a useful, multivariate signal processing method, Adaptive-projection has intrinsically transformed multivariate empirical mode decomposition (APIT-MEMD), and exhibits better performance than MEMD by adopting adaptive projection strategy in order to alleviate power imbalances. The filter bank properties of APIT-MEMD are also adopted to enable more accurate and stable intrinsic mode functions (IMFs), and to ease mode mixing problems in multi-fault frequency extractions. By aligning IMF sets into a third order tensor, high order singular value decomposition (HOSVD) can be employed to estimate the fault number. The fault correlation factor (FCF) analysis is used to conduct correlation analysis, in order to determine effective IMFs; the characteristic frequencies of multi-faults can then be extracted. Numerical simulations and the application of multi-fault situation can demonstrate that the proposed method is promising in multi-fault diagnoses of multivariate rolling bearing signal. PMID:29659510

  20. Multi-Fault Diagnosis of Rolling Bearings via Adaptive Projection Intrinsically Transformed Multivariate Empirical Mode Decomposition and High Order Singular Value Decomposition.

    PubMed

    Yuan, Rui; Lv, Yong; Song, Gangbing

    2018-04-16

    Rolling bearings are important components in rotary machinery systems. In the field of multi-fault diagnosis of rolling bearings, the vibration signal collected from single channels tends to miss some fault characteristic information. Using multiple sensors to collect signals at different locations on the machine to obtain multivariate signal can remedy this problem. The adverse effect of a power imbalance between the various channels is inevitable, and unfavorable for multivariate signal processing. As a useful, multivariate signal processing method, Adaptive-projection has intrinsically transformed multivariate empirical mode decomposition (APIT-MEMD), and exhibits better performance than MEMD by adopting adaptive projection strategy in order to alleviate power imbalances. The filter bank properties of APIT-MEMD are also adopted to enable more accurate and stable intrinsic mode functions (IMFs), and to ease mode mixing problems in multi-fault frequency extractions. By aligning IMF sets into a third order tensor, high order singular value decomposition (HOSVD) can be employed to estimate the fault number. The fault correlation factor (FCF) analysis is used to conduct correlation analysis, in order to determine effective IMFs; the characteristic frequencies of multi-faults can then be extracted. Numerical simulations and the application of multi-fault situation can demonstrate that the proposed method is promising in multi-fault diagnoses of multivariate rolling bearing signal.

  1. Fault Detection of Roller-Bearings Using Signal Processing and Optimization Algorithms

    PubMed Central

    Kwak, Dae-Ho; Lee, Dong-Han; Ahn, Jong-Hyo; Koh, Bong-Hwan

    2014-01-01

    This study presents a fault detection of roller bearings through signal processing and optimization techniques. After the occurrence of scratch-type defects on the inner race of bearings, variations of kurtosis values are investigated in terms of two different data processing techniques: minimum entropy deconvolution (MED), and the Teager-Kaiser Energy Operator (TKEO). MED and the TKEO are employed to qualitatively enhance the discrimination of defect-induced repeating peaks on bearing vibration data with measurement noise. Given the perspective of the execution sequence of MED and the TKEO, the study found that the kurtosis sensitivity towards a defect on bearings could be highly improved. Also, the vibration signal from both healthy and damaged bearings is decomposed into multiple intrinsic mode functions (IMFs), through empirical mode decomposition (EMD). The weight vectors of IMFs become design variables for a genetic algorithm (GA). The weights of each IMF can be optimized through the genetic algorithm, to enhance the sensitivity of kurtosis on damaged bearing signals. Experimental results show that the EMD-GA approach successfully improved the resolution of detectability between a roller bearing with defect, and an intact system. PMID:24368701

  2. Temporal structure of neuronal population oscillations with empirical model decomposition

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli

    2006-08-01

    Frequency analysis of neuronal oscillation is very important for understanding the neural information processing and mechanism of disorder in the brain. This Letter addresses a new method to analyze the neuronal population oscillations with empirical mode decomposition (EMD). Following EMD of neuronal oscillation, a series of intrinsic mode functions (IMFs) are obtained, then Hilbert transform of IMFs can be used to extract the instantaneous time frequency structure of neuronal oscillation. The method is applied to analyze the neuronal oscillation in the hippocampus of epileptic rats in vivo, the results show the neuronal oscillations have different descriptions during the pre-ictal, seizure onset and ictal periods of the epileptic EEG at the different frequency band. This new method is very helpful to provide a view for the temporal structure of neural oscillation.

  3. Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition.

    PubMed

    Wang, Fu-Tai; Chan, Hsiao-Lung; Wang, Chun-Li; Jian, Hung-Ming; Lin, Sheng-Hsiung

    2015-07-07

    Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD) can decompose a signal into several intrinsic mode functions (IMFs) that disclose nonstationary components as well as stationary components and, similarly, capture respiratory episodes from thoracic impedance. However, upper-body movements usually produce motion artifacts that are not easily removed by digital filtering. Moreover, large motion artifacts disable the EMD to decompose respiratory components. In this paper, motion artifacts are detected and replaced by the data mirrored from the prior and the posterior before EMD processing. A novel intrinsic respiratory reconstruction index that considers both global and local properties of IMFs is proposed to define respiration-related IMFs for respiration reconstruction and instantaneous respiratory estimation. Based on the experiments performing a series of static and dynamic physical activates, our results showed the proposed method had higher cross correlations between respiratory frequencies estimated from thoracic impedance and those from oronasal airflow based on small window size compared to the Fourier transform-based method.

  4. Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition

    PubMed Central

    Wang, Fu-Tai; Chan, Hsiao-Lung; Wang, Chun-Li; Jian, Hung-Ming; Lin, Sheng-Hsiung

    2015-01-01

    Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD) can decompose a signal into several intrinsic mode functions (IMFs) that disclose nonstationary components as well as stationary components and, similarly, capture respiratory episodes from thoracic impedance. However, upper-body movements usually produce motion artifacts that are not easily removed by digital filtering. Moreover, large motion artifacts disable the EMD to decompose respiratory components. In this paper, motion artifacts are detected and replaced by the data mirrored from the prior and the posterior before EMD processing. A novel intrinsic respiratory reconstruction index that considers both global and local properties of IMFs is proposed to define respiration-related IMFs for respiration reconstruction and instantaneous respiratory estimation. Based on the experiments performing a series of static and dynamic physical activates, our results showed the proposed method had higher cross correlations between respiratory frequencies estimated from thoracic impedance and those from oronasal airflow based on small window size compared to the Fourier transform-based method. PMID:26198231

  5. High and low frequency unfolded partial least squares regression based on empirical mode decomposition for quantitative analysis of fuel oil samples.

    PubMed

    Bian, Xihui; Li, Shujuan; Lin, Ligang; Tan, Xiaoyao; Fan, Qingjie; Li, Ming

    2016-06-21

    Accurate prediction of the model is fundamental to the successful analysis of complex samples. To utilize abundant information embedded over frequency and time domains, a novel regression model is presented for quantitative analysis of hydrocarbon contents in the fuel oil samples. The proposed method named as high and low frequency unfolded PLSR (HLUPLSR), which integrates empirical mode decomposition (EMD) and unfolded strategy with partial least squares regression (PLSR). In the proposed method, the original signals are firstly decomposed into a finite number of intrinsic mode functions (IMFs) and a residue by EMD. Secondly, the former high frequency IMFs are summed as a high frequency matrix and the latter IMFs and residue are summed as a low frequency matrix. Finally, the two matrices are unfolded to an extended matrix in variable dimension, and then the PLSR model is built between the extended matrix and the target values. Coupled with Ultraviolet (UV) spectroscopy, HLUPLSR has been applied to determine hydrocarbon contents of light gas oil and diesel fuels samples. Comparing with single PLSR and other signal processing techniques, the proposed method shows superiority in prediction ability and better model interpretation. Therefore, HLUPLSR method provides a promising tool for quantitative analysis of complex samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Temporal Associations between Weather and Headache: Analysis by Empirical Mode Decomposition

    PubMed Central

    Yang, Albert C.; Fuh, Jong-Ling; Huang, Norden E.; Shia, Ben-Chang; Peng, Chung-Kang; Wang, Shuu-Jiun

    2011-01-01

    Background Patients frequently report that weather changes trigger headache or worsen existing headache symptoms. Recently, the method of empirical mode decomposition (EMD) has been used to delineate temporal relationships in certain diseases, and we applied this technique to identify intrinsic weather components associated with headache incidence data derived from a large-scale epidemiological survey of headache in the Greater Taipei area. Methodology/Principal Findings The study sample consisted of 52 randomly selected headache patients. The weather time-series parameters were detrended by the EMD method into a set of embedded oscillatory components, i.e. intrinsic mode functions (IMFs). Multiple linear regression models with forward stepwise methods were used to analyze the temporal associations between weather and headaches. We found no associations between the raw time series of weather variables and headache incidence. For decomposed intrinsic weather IMFs, temperature, sunshine duration, humidity, pressure, and maximal wind speed were associated with headache incidence during the cold period, whereas only maximal wind speed was associated during the warm period. In analyses examining all significant weather variables, IMFs derived from temperature and sunshine duration data accounted for up to 33.3% of the variance in headache incidence during the cold period. The association of headache incidence and weather IMFs in the cold period coincided with the cold fronts. Conclusions/Significance Using EMD analysis, we found a significant association between headache and intrinsic weather components, which was not detected by direct comparisons of raw weather data. Contributing weather parameters may vary in different geographic regions and different seasons. PMID:21297940

  7. Incipient fault feature extraction of rolling bearings based on the MVMD and Teager energy operator.

    PubMed

    Ma, Jun; Wu, Jiande; Wang, Xiaodong

    2018-06-04

    Aiming at the problems that the incipient fault of rolling bearings is difficult to recognize and the number of intrinsic mode functions (IMFs) decomposed by variational mode decomposition (VMD) must be set in advance and can not be adaptively selected, taking full advantages of the adaptive segmentation of scale spectrum and Teager energy operator (TEO) demodulation, a new method for early fault feature extraction of rolling bearings based on the modified VMD and Teager energy operator (MVMD-TEO) is proposed. Firstly, the vibration signal of rolling bearings is analyzed by adaptive scale space spectrum segmentation to obtain the spectrum segmentation support boundary, and then the number K of IMFs decomposed by VMD is adaptively determined. Secondly, the original vibration signal is adaptively decomposed into K IMFs, and the effective IMF components are extracted based on the correlation coefficient criterion. Finally, the Teager energy spectrum of the reconstructed signal of the effective IMF components is calculated by the TEO, and then the early fault features of rolling bearings are extracted to realize the fault identification and location. Comparative experiments of the proposed method and the existing fault feature extraction method based on Local Mean Decomposition and Teager energy operator (LMD-TEO) have been implemented using experimental data-sets and a measured data-set. The results of comparative experiments in three application cases show that the presented method can achieve a fairly or slightly better performance than LMD-TEO method, and the validity and feasibility of the proposed method are proved. Copyright © 2018. Published by Elsevier Ltd.

  8. Multi-scale pixel-based image fusion using multivariate empirical mode decomposition.

    PubMed

    Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P; McDonald-Maier, Klaus D

    2015-05-08

    A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences.

  9. Multi-Scale Pixel-Based Image Fusion Using Multivariate Empirical Mode Decomposition

    PubMed Central

    Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P.; McDonald-Maier, Klaus D.

    2015-01-01

    A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences. PMID:26007714

  10. [A Feature Extraction Method for Brain Computer Interface Based on Multivariate Empirical Mode Decomposition].

    PubMed

    Wang, Jinjia; Liu, Yuan

    2015-04-01

    This paper presents a feature extraction method based on multivariate empirical mode decomposition (MEMD) combining with the power spectrum feature, and the method aims at the non-stationary electroencephalogram (EEG) or magnetoencephalogram (MEG) signal in brain-computer interface (BCI) system. Firstly, we utilized MEMD algorithm to decompose multichannel brain signals into a series of multiple intrinsic mode function (IMF), which was proximate stationary and with multi-scale. Then we extracted and reduced the power characteristic from each IMF to a lower dimensions using principal component analysis (PCA). Finally, we classified the motor imagery tasks by linear discriminant analysis classifier. The experimental verification showed that the correct recognition rates of the two-class and four-class tasks of the BCI competition III and competition IV reached 92.0% and 46.2%, respectively, which were superior to the winner of the BCI competition. The experimental proved that the proposed method was reasonably effective and stable and it would provide a new way for feature extraction.

  11. A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting

    NASA Astrophysics Data System (ADS)

    Niu, Mingfei; Wang, Yufang; Sun, Shaolong; Li, Yongwu

    2016-06-01

    To enhance prediction reliability and accuracy, a hybrid model based on the promising principle of "decomposition and ensemble" and a recently proposed meta-heuristic called grey wolf optimizer (GWO) is introduced for daily PM2.5 concentration forecasting. Compared with existing PM2.5 forecasting methods, this proposed model has improved the prediction accuracy and hit rates of directional prediction. The proposed model involves three main steps, i.e., decomposing the original PM2.5 series into several intrinsic mode functions (IMFs) via complementary ensemble empirical mode decomposition (CEEMD) for simplifying the complex data; individually predicting each IMF with support vector regression (SVR) optimized by GWO; integrating all predicted IMFs for the ensemble result as the final prediction by another SVR optimized by GWO. Seven benchmark models, including single artificial intelligence (AI) models, other decomposition-ensemble models with different decomposition methods and models with the same decomposition-ensemble method but optimized by different algorithms, are considered to verify the superiority of the proposed hybrid model. The empirical study indicates that the proposed hybrid decomposition-ensemble model is remarkably superior to all considered benchmark models for its higher prediction accuracy and hit rates of directional prediction.

  12. Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition.

    PubMed

    Wang, Wen-chuan; Chau, Kwok-wing; Qiu, Lin; Chen, Yang-bo

    2015-05-01

    Hydrological time series forecasting is one of the most important applications in modern hydrology, especially for the effective reservoir management. In this research, an artificial neural network (ANN) model coupled with the ensemble empirical mode decomposition (EEMD) is presented for forecasting medium and long-term runoff time series. First, the original runoff time series is decomposed into a finite and often small number of intrinsic mode functions (IMFs) and a residual series using EEMD technique for attaining deeper insight into the data characteristics. Then all IMF components and residue are predicted, respectively, through appropriate ANN models. Finally, the forecasted results of the modeled IMFs and residual series are summed to formulate an ensemble forecast for the original annual runoff series. Two annual reservoir runoff time series from Biuliuhe and Mopanshan in China, are investigated using the developed model based on four performance evaluation measures (RMSE, MAPE, R and NSEC). The results obtained in this work indicate that EEMD can effectively enhance forecasting accuracy and the proposed EEMD-ANN model can attain significant improvement over ANN approach in medium and long-term runoff time series forecasting. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. New procedure for gear fault detection and diagnosis using instantaneous angular speed

    NASA Astrophysics Data System (ADS)

    Li, Bing; Zhang, Xining; Wu, Jili

    2017-02-01

    Besides the extreme complexity of gear dynamics, the fault diagnosis results in terms of vibration signal are sometimes easily misled and even distorted by the interference of transmission channel or other components like bearings, bars. Recently, the research field of Instantaneous Angular Speed (IAS) has attracted significant attentions due to its own advantages over conventional vibration analysis. On the basis of IAS signal's advantages, this paper presents a new feature extraction method by combining the Empirical Mode Decomposition (EMD) and Autocorrelation Local Cepstrum (ALC) for fault diagnosis of sophisticated multistage gearbox. Firstly, as a pre-processing step, signal reconstruction is employed to address the oversampled issue caused by the high resolution of the angular sensor and the test speed. Then the adaptive EMD is used to acquire a number of Intrinsic Mode Functions (IMFs). Nevertheless, not all the IMFs are needed for the further analysis since different IMFs have different sensitivities to fault. Hence, the cosine similarity metric is introduced to select the most sensitive IMF. Even though, the sensitive IMF is still insufficient for the gear fault diagnosis due to the weakness of the fault component related to the gear fault. Therefore, as the final step, ALC is used for the purpose of signal de-noising and feature extraction. The effectiveness and robustness of the new approach has been validated experimentally on the basis of two gear test rigs with gears under different working conditions. Diagnosis results show that the new approach is capable of effectively handling the gear fault diagnosis i.e., the highlighted quefrency and its rahmonics corresponding to the rotary period and its multiple are displayed clearly in the cepstrum record of the proposed method.

  14. A Compound Fault Diagnosis for Rolling Bearings Method Based on Blind Source Separation and Ensemble Empirical Mode Decomposition

    PubMed Central

    Wang, Huaqing; Li, Ruitong; Tang, Gang; Yuan, Hongfang; Zhao, Qingliang; Cao, Xi

    2014-01-01

    A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to improve the compound faults diagnose of rolling bearings via signals’ separation, the present paper proposes a new method to identify compound faults from measured mixed-signals, which is based on ensemble empirical mode decomposition (EEMD) method and independent component analysis (ICA) technique. With the approach, a vibration signal is firstly decomposed into intrinsic mode functions (IMF) by EEMD method to obtain multichannel signals. Then, according to a cross correlation criterion, the corresponding IMF is selected as the input matrix of ICA. Finally, the compound faults can be separated effectively by executing ICA method, which makes the fault features more easily extracted and more clearly identified. Experimental results validate the effectiveness of the proposed method in compound fault separating, which works not only for the outer race defect, but also for the rollers defect and the unbalance fault of the experimental system. PMID:25289644

  15. Fault detection, isolation, and diagnosis of self-validating multifunctional sensors.

    PubMed

    Yang, Jing-Li; Chen, Yin-Sheng; Zhang, Li-Li; Sun, Zhen

    2016-06-01

    A novel fault detection, isolation, and diagnosis (FDID) strategy for self-validating multifunctional sensors is presented in this paper. The sparse non-negative matrix factorization-based method can effectively detect faults by using the squared prediction error (SPE) statistic, and the variables contribution plots based on SPE statistic can help to locate and isolate the faulty sensitive units. The complete ensemble empirical mode decomposition is employed to decompose the fault signals to a series of intrinsic mode functions (IMFs) and a residual. The sample entropy (SampEn)-weighted energy values of each IMFs and the residual are estimated to represent the characteristics of the fault signals. Multi-class support vector machine is introduced to identify the fault mode with the purpose of diagnosing status of the faulty sensitive units. The performance of the proposed strategy is compared with other fault detection strategies such as principal component analysis, independent component analysis, and fault diagnosis strategies such as empirical mode decomposition coupled with support vector machine. The proposed strategy is fully evaluated in a real self-validating multifunctional sensors experimental system, and the experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID research topic of self-validating multifunctional sensors.

  16. Bi-spectrum based-EMD applied to the non-stationary vibration signals for bearing faults diagnosis.

    PubMed

    Saidi, Lotfi; Ali, Jaouher Ben; Fnaiech, Farhat

    2014-09-01

    Empirical mode decomposition (EMD) has been widely applied to analyze vibration signals behavior for bearing failures detection. Vibration signals are almost always non-stationary since bearings are inherently dynamic (e.g., speed and load condition change over time). By using EMD, the complicated non-stationary vibration signal is decomposed into a number of stationary intrinsic mode functions (IMFs) based on the local characteristic time scale of the signal. Bi-spectrum, a third-order statistic, helps to identify phase coupling effects, the bi-spectrum is theoretically zero for Gaussian noise and it is flat for non-Gaussian white noise, consequently the bi-spectrum analysis is insensitive to random noise, which are useful for detecting faults in induction machines. Utilizing the advantages of EMD and bi-spectrum, this article proposes a joint method for detecting such faults, called bi-spectrum based EMD (BSEMD). First, original vibration signals collected from accelerometers are decomposed by EMD and a set of IMFs is produced. Then, the IMF signals are analyzed via bi-spectrum to detect outer race bearing defects. The procedure is illustrated with the experimental bearing vibration data. The experimental results show that BSEMD techniques can effectively diagnosis bearing failures. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Improving EMG based classification of basic hand movements using EMD.

    PubMed

    Sapsanis, Christos; Georgoulas, George; Tzes, Anthony; Lymberopoulos, Dimitrios

    2013-01-01

    This paper presents a pattern recognition approach for the identification of basic hand movements using surface electromyographic (EMG) data. The EMG signal is decomposed using Empirical Mode Decomposition (EMD) into Intrinsic Mode Functions (IMFs) and subsequently a feature extraction stage takes place. Various combinations of feature subsets are tested using a simple linear classifier for the detection task. Our results suggest that the use of EMD can increase the discrimination ability of the conventional feature sets extracted from the raw EMG signal.

  18. Coherent seasonal, annual, and quasi-biennial variations in ionospheric tidal/SPW amplitudes

    NASA Astrophysics Data System (ADS)

    Chang, Loren C.; Sun, Yan-Yi; Yue, Jia; Wang, Jack Chieh; Chien, Shih-Han

    2016-07-01

    In this study, we examine the coherent spatial and temporal modes dominating the variation of selected ionospheric tidal and stationary planetary wave (SPW) signatures from 2007 to 2013 FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) total electron content observations using multidimensional ensemble empirical mode decomposition (MEEMD) from the Hilbert-Huang Transform. We examine the DW1, SW2, DE3, and SPW4 components, which are driven by a variety of in situ and vertical coupling sources. The intrinsic mode functions (IMFs) resolved by MEEMD analysis allows for the isolation of the dominant modes of variability for prominent ionospheric tidal/SPW signatures in a manner not previously used, allowing the effects of specific drivers to be examined individually. The time scales of the individual IMFs isolated for all tidal/SPW signatures correspond to a semiannual variation at equatorial ionization anomaly (EIA) latitudes maximizing at the equinoxes, as well as annual oscillations at the EIA crests and troughs. All tidal/SPW signatures show one IMF isolating an ionospheric quasi-biennial oscillation (QBO) in the equatorial latitudes maximizing around January of odd-numbered years. This total electron content QBO variation is in phase with a similar QBO variation isolated in both the Global Ultraviolet Imager (GUVI) zonal mean column O/N2 density ratio (ΣO/N2) and the F10.7 solar radio flux index around solar maximum, while showing temporal variation more similar to that of GUVI ΣO/N2 during the time around the 2008/2009 extended solar minimum. These results point to both quasi-biennial variations in solar irradiance and thermosphere/ionosphere composition as a generation mechanism for the ionospheric QBO.

  19. On the Hilbert-Huang Transform Theoretical Developments

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Blank, Karin; Flatley, Thomas; Huang, Norden E.; Patrick, David; Hestnes, Phyllis

    2005-01-01

    One of the main heritage tools used in scientific and engineering data spectrum analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). Both carry strong a-priori assumptions about the source data, such as linearity, of being stationary, and of satisfying the Dirichlet conditions. A recent development at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), known as the Hilbert-Huang Transform (HHT), proposes a novel approach to the solution for the nonlinear class of spectrum analysis problems. Using a-posteriori data processing based on the Empirical Mode Decomposition (EMD) sifting process (algorithm), followed by the normalized Hilbert Transform of the decomposition data, the HHT allows spectrum analysis of nonlinear and nonstationary data. The EMD sifting process results in a non-constrained decomposition of a source real value data vector into a finite set of Intrinsic Mode Functions (IMF). These functions form a near orthogonal adaptive basis, a basis that is derived from the data. The IMFs can be further analyzed for spectrum interpretation by the classical Hilbert Transform. A new engineering spectrum analysis tool using HHT has been developed at NASA GSFC, the HHT Data Processing System (HHT-DPS). As the HHT-DPS has been successfully used and commercialized, new applications post additional questions about the theoretical basis behind the HHT and EMD algorithms. Why is the fastest changing component of a composite signal being sifted out first in the EMD sifting process? Why does the EMD sifting process seemingly converge and why does it converge rapidly? Does an IMF have a distinctive structure? Why are the IMFs near orthogonal? We address these questions and develop the initial theoretical background for the HHT. This will contribute to the developments of new HHT processing options, such as real-time and 2-D processing using Field Programmable Array (FPGA) computational resources, enhanced HHT synthesis, and broaden the scope of HHT applications for signal processing.

  20. On Certain Theoretical Developments Underlying the Hilbert-Huang Transform

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Blank, Karin; Flatley, Thomas; Huang, Norden E.; Petrick, David; Hestness, Phyllis

    2006-01-01

    One of the main traditional tools used in scientific and engineering data spectral analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). Both carry strong a-priori assumptions about the source data, such as being linear and stationary, and of satisfying the Dirichlet conditions. A recent development at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), known as the Hilbert-Huang Transform (HHT), proposes a novel approach to the solution for the nonlinear class of spectral analysis problems. Using a-posteriori data processing based on the Empirical Mode Decomposition (EMD) sifting process (algorithm), followed by the normalized Hilbert Transform of the decomposed data, the HHT allows spectral analysis of nonlinear and nonstationary data. The EMD sifting process results in a non-constrained decomposition of a source real-value data vector into a finite set of Intrinsic Mode Functions (IMF). These functions form a nearly orthogonal derived from the data (adaptive) basis. The IMFs can be further analyzed for spectrum content by using the classical Hilbert Transform. A new engineering spectral analysis tool using HHT has been developed at NASA GSFC, the HHT Data Processing System (HHT-DPS). As the HHT-DPS has been successfully used and commercialized, new applications pose additional questions about the theoretical basis behind the HHT and EMD algorithms. Why is the fastest changing component of a composite signal being sifted out first in the EMD sifting process? Why does the EMD sifting process seemingly converge and why does it converge rapidly? Does an IMF have a distinctive structure? Why are the IMFs nearly orthogonal? We address these questions and develop the initial theoretical background for the HHT. This will contribute to the development of new HHT processing options, such as real-time and 2-D processing using Field Programmable Gate Array (FPGA) computational resources,

  1. Statistical analysis of geomagnetic field intensity differences between ASM and VFM instruments onboard Swarm constellation

    NASA Astrophysics Data System (ADS)

    De Michelis, Paola; Tozzi, Roberta; Consolini, Giuseppe

    2017-02-01

    From the very first measurements made by the magnetometers onboard Swarm satellites launched by European Space Agency (ESA) in late 2013, it emerged a discrepancy between scalar and vector measurements. An accurate analysis of this phenomenon brought to build an empirical model of the disturbance, highly correlated with the Sun incidence angle, and to correct vector data accordingly. The empirical model adopted by ESA results in a significant decrease in the amplitude of the disturbance affecting VFM measurements so greatly improving the vector magnetic data quality. This study is focused on the characterization of the difference between magnetic field intensity measured by the absolute scalar magnetometer (ASM) and that reconstructed using the vector field magnetometer (VFM) installed on Swarm constellation. Applying empirical mode decomposition method, we find the intrinsic mode functions (IMFs) associated with ASM-VFM total intensity differences obtained with data both uncorrected and corrected for the disturbance correlated with the Sun incidence angle. Surprisingly, no differences are found in the nature of the IMFs embedded in the analyzed signals, being these IMFs characterized by the same dominant periodicities before and after correction. The effect of correction manifests in the decrease in the energy associated with some IMFs contributing to corrected data. Some IMFs identified by analyzing the ASM-VFM intensity discrepancy are characterized by the same dominant periodicities of those obtained by analyzing the temperature fluctuations of the VFM electronic unit. Thus, the disturbance correlated with the Sun incidence angle could be still present in the corrected magnetic data. Furthermore, the ASM-VFM total intensity difference and the VFM electronic unit temperature display a maximal shared information with a time delay that depends on local time. Taken together, these findings may help to relate the features of the observed VFM-ASM total intensity difference to the physical characteristics of the real disturbance thus contributing to improve the empirical model proposed for the correction of data.[Figure not available: see fulltext.

  2. Signals of dynamical and statistical process from IMF-IMF correlation function

    NASA Astrophysics Data System (ADS)

    Pagano, E. V.; Acosta, L.; Auditore, L.; Baran, V.; Cap, T.; Cardella, G.; Colonna, M.; De Luca, S.; De Filippo, E.; Dell'Aquila, D.; Francalanza, L.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Maiolino, C.; Martorana, N. S.; Norella, S.; Pagano, A.; Papa, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Rosato, E.; Russotto, P.; Siwek-Wilczyńska, K.; Trifiro, A.; Trimarchi, M.; Verde, G.; Vigilante, M.; Wilczyńsky, J.

    2017-11-01

    In this paper we briefly discuss about a novel application of the IMF-IMF correlation function to the physical case of binary massive projectile-like (PLF) splitting for dynamical and statistical breakup/fission in heavy ion collisions at Fermi energy. Theoretical simulations are also shown for comparisons with the data. These preliminary results have been obtained for the reverse kinematics reaction 124Sn + 64Ni at 35 AMeV that was studied using the forward part of CHIMERA detector. In that reaction a strong competition between a dynamical and a statistical components and its evolution with the charge asymmetry of the binary break up was already shown. In this work we show that the IMF-IMF correlation function can be used to pin down the timescale of the fragments production in binary fission-like phenomena. We also made simulations with the CoMDII model in order to compare to the experimental IMF-IMF correlation function. In future we plan to extend these studies to different reaction mechanisms and nuclear systems and to compare with different theoretical transport simulations.

  3. Ensemble Empirical Mode Decomposition based methodology for ultrasonic testing of coarse grain austenitic stainless steels.

    PubMed

    Sharma, Govind K; Kumar, Anish; Jayakumar, T; Purnachandra Rao, B; Mariyappa, N

    2015-03-01

    A signal processing methodology is proposed in this paper for effective reconstruction of ultrasonic signals in coarse grained high scattering austenitic stainless steel. The proposed methodology is comprised of the Ensemble Empirical Mode Decomposition (EEMD) processing of ultrasonic signals and application of signal minimisation algorithm on selected Intrinsic Mode Functions (IMFs) obtained by EEMD. The methodology is applied to ultrasonic signals obtained from austenitic stainless steel specimens of different grain size, with and without defects. The influence of probe frequency and data length of a signal on EEMD decomposition is also investigated. For a particular sampling rate and probe frequency, the same range of IMFs can be used to reconstruct the ultrasonic signal, irrespective of the grain size in the range of 30-210 μm investigated in this study. This methodology is successfully employed for detection of defects in a 50mm thick coarse grain austenitic stainless steel specimens. Signal to noise ratio improvement of better than 15 dB is observed for the ultrasonic signal obtained from a 25 mm deep flat bottom hole in 200 μm grain size specimen. For ultrasonic signals obtained from defects at different depths, a minimum of 7 dB extra enhancement in SNR is achieved as compared to the sum of selected IMF approach. The application of minimisation algorithm with EEMD processed signal in the proposed methodology proves to be effective for adaptive signal reconstruction with improved signal to noise ratio. This methodology was further employed for successful imaging of defects in a B-scan. Copyright © 2014. Published by Elsevier B.V.

  4. Monte Carlo study for physiological interference reduction in near-infrared spectroscopy based on empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Sun, JinWei; Rolfe, Peter

    2010-12-01

    Near-infrared spectroscopy (NIRS) can be used as the basis of non-invasive neuroimaging that may allow the measurement of haemodynamic changes in the human brain evoked by applied stimuli. Since this technique is very sensitive, physiological interference arising from the cardiac cycle and breathing can significantly affect the signal quality. Such interference is difficult to remove by conventional techniques because it occurs not only in the extracerebral layer but also in the brain tissue itself. Previous work on this problem employing temporal filtering, spatial filtering, and adaptive filtering have exhibited good performance for recovering brain activity data in evoked response studies. However, in this study, we present a time-frequency adaptive method for physiological interference reduction based on the combination of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). Monte Carlo simulations based on a five-layered slab model of a human adult head were implemented to evaluate our methodology. We applied an EMD algorithm to decompose the NIRS time series derived from Monte Carlo simulations into a series of intrinsic mode functions (IMFs). In order to identify the IMFs associated with symmetric interference, the extracted components were then Hilbert transformed from which the instantaneous frequencies could be acquired. By reconstructing the NIRS signal by properly selecting IMFs, we determined that the evoked brain response is effectively filtered out with even higher signal-to-noise ratio (SNR). The results obtained demonstrated that EMD, combined with HSA, can effectively separate, identify and remove the contamination from the evoked brain response obtained with NIRS using a simple single source-detector pair.

  5. A novel hybrid ensemble learning paradigm for tourism forecasting

    NASA Astrophysics Data System (ADS)

    Shabri, Ani

    2015-02-01

    In this paper, a hybrid forecasting model based on Empirical Mode Decomposition (EMD) and Group Method of Data Handling (GMDH) is proposed to forecast tourism demand. This methodology first decomposes the original visitor arrival series into several Intrinsic Model Function (IMFs) components and one residual component by EMD technique. Then, IMFs components and the residual components is forecasted respectively using GMDH model whose input variables are selected by using Partial Autocorrelation Function (PACF). The final forecasted result for tourism series is produced by aggregating all the forecasted results. For evaluating the performance of the proposed EMD-GMDH methodologies, the monthly data of tourist arrivals from Singapore to Malaysia are used as an illustrative example. Empirical results show that the proposed EMD-GMDH model outperforms the EMD-ARIMA as well as the GMDH and ARIMA (Autoregressive Integrated Moving Average) models without time series decomposition.

  6. Feature Extraction and Classification of EHG between Pregnancy and Labour Group Using Hilbert-Huang Transform and Extreme Learning Machine.

    PubMed

    Chen, Lili; Hao, Yaru

    2017-01-01

    Preterm birth (PTB) is the leading cause of perinatal mortality and long-term morbidity, which results in significant health and economic problems. The early detection of PTB has great significance for its prevention. The electrohysterogram (EHG) related to uterine contraction is a noninvasive, real-time, and automatic novel technology which can be used to detect, diagnose, or predict PTB. This paper presents a method for feature extraction and classification of EHG between pregnancy and labour group, based on Hilbert-Huang transform (HHT) and extreme learning machine (ELM). For each sample, each channel was decomposed into a set of intrinsic mode functions (IMFs) using empirical mode decomposition (EMD). Then, the Hilbert transform was applied to IMF to obtain analytic function. The maximum amplitude of analytic function was extracted as feature. The identification model was constructed based on ELM. Experimental results reveal that the best classification performance of the proposed method can reach an accuracy of 88.00%, a sensitivity of 91.30%, and a specificity of 85.19%. The area under receiver operating characteristic (ROC) curve is 0.88. Finally, experimental results indicate that the method developed in this work could be effective in the classification of EHG between pregnancy and labour group.

  7. Application of the Hilbert-Huang Transform to Financial Data

    NASA Technical Reports Server (NTRS)

    Huang, Norden

    2005-01-01

    A paper discusses the application of the Hilbert-Huang transform (HHT) method to time-series financial-market data. The method was described, variously without and with the HHT name, in several prior NASA Tech Briefs articles and supporting documents. To recapitulate: The method is especially suitable for analyzing time-series data that represent nonstationary and nonlinear phenomena including physical phenomena and, in the present case, financial-market processes. The method involves the empirical mode decomposition (EMD), in which a complicated signal is decomposed into a finite number of functions, called "intrinsic mode functions" (IMFs), that admit well-behaved Hilbert transforms. The HHT consists of the combination of EMD and Hilbert spectral analysis. The local energies and the instantaneous frequencies derived from the IMFs through Hilbert transforms can be used to construct an energy-frequency-time distribution, denoted a Hilbert spectrum. The instant paper begins with a discussion of prior approaches to quantification of market volatility, summarizes the HHT method, then describes the application of the method in performing time-frequency analysis of mortgage-market data from the years 1972 through 2000. Filtering by use of the EMD is shown to be useful for quantifying market volatility.

  8. Bearing damage assessment using Jensen-Rényi Divergence based on EEMD

    NASA Astrophysics Data System (ADS)

    Singh, Jaskaran; Darpe, A. K.; Singh, S. P.

    2017-03-01

    An Ensemble Empirical Mode Decomposition (EEMD) and Jensen Rényi divergence (JRD) based methodology is proposed for the degradation assessment of rolling element bearings using vibration data. The EEMD decomposes vibration signals into a set of intrinsic mode functions (IMFs). A systematic methodology to select IMFs that are sensitive and closely related to the fault is proposed in the paper. The change in probability distribution of the energies of the sensitive IMFs is measured through JRD which acts as a damage identification parameter. Evaluation of JRD with sensitive IMFs makes it largely unaffected by change/fluctuations in operating conditions. Further, an algorithm based on Chebyshev's inequality is applied to JRD to identify exact points of change in bearing health and remove outliers. The identified change points are investigated for fault classification as possible locations where specific defect initiation could have taken place. For fault classification, two new parameters are proposed: 'α value' and Probable Fault Index, which together classify the fault. To standardize the degradation process, a Confidence Value parameter is proposed to quantify the bearing degradation value in a range of zero to unity. A simulation study is first carried out to demonstrate the robustness of the proposed JRD parameter under variable operating conditions of load and speed. The proposed methodology is then validated on experimental data (seeded defect data and accelerated bearing life test data). The first validation on two different vibration datasets (inner/outer) obtained from seeded defect experiments demonstrate the effectiveness of JRD parameter in detecting a change in health state as the severity of fault changes. The second validation is on two accelerated life tests. The results demonstrate the proposed approach as a potential tool for bearing performance degradation assessment.

  9. Computational Pipeline for NIRS-EEG Joint Imaging of tDCS-Evoked Cerebral Responses-An Application in Ischemic Stroke.

    PubMed

    Guhathakurta, Debarpan; Dutta, Anirban

    2016-01-01

    Transcranial direct current stimulation (tDCS) modulates cortical neural activity and hemodynamics. Electrophysiological methods (electroencephalography-EEG) measure neural activity while optical methods (near-infrared spectroscopy-NIRS) measure hemodynamics coupled through neurovascular coupling (NVC). Assessment of NVC requires development of NIRS-EEG joint-imaging sensor montages that are sensitive to the tDCS affected brain areas. In this methods paper, we present a software pipeline incorporating freely available software tools that can be used to target vascular territories with tDCS and develop a NIRS-EEG probe for joint imaging of tDCS-evoked responses. We apply this software pipeline to target primarily the outer convexity of the brain territory (superficial divisions) of the middle cerebral artery (MCA). We then present a computational method based on Empirical Mode Decomposition of NIRS and EEG time series into a set of intrinsic mode functions (IMFs), and then perform a cross-correlation analysis on those IMFs from NIRS and EEG signals to model NVC at the lesional and contralesional hemispheres of an ischemic stroke patient. For the contralesional hemisphere, a strong positive correlation between IMFs of regional cerebral hemoglobin oxygen saturation and the log-transformed mean-power time-series of IMFs for EEG with a lag of about -15 s was found after a cumulative 550 s stimulation of anodal tDCS. It is postulated that system identification, for example using a continuous-time autoregressive model, of this coupling relation under tDCS perturbation may provide spatiotemporal discriminatory features for the identification of ischemia. Furthermore, portable NIRS-EEG joint imaging can be incorporated into brain computer interfaces to monitor tDCS-facilitated neurointervention as well as cortical reorganization.

  10. Computational Pipeline for NIRS-EEG Joint Imaging of tDCS-Evoked Cerebral Responses—An Application in Ischemic Stroke

    PubMed Central

    Guhathakurta, Debarpan; Dutta, Anirban

    2016-01-01

    Transcranial direct current stimulation (tDCS) modulates cortical neural activity and hemodynamics. Electrophysiological methods (electroencephalography-EEG) measure neural activity while optical methods (near-infrared spectroscopy-NIRS) measure hemodynamics coupled through neurovascular coupling (NVC). Assessment of NVC requires development of NIRS-EEG joint-imaging sensor montages that are sensitive to the tDCS affected brain areas. In this methods paper, we present a software pipeline incorporating freely available software tools that can be used to target vascular territories with tDCS and develop a NIRS-EEG probe for joint imaging of tDCS-evoked responses. We apply this software pipeline to target primarily the outer convexity of the brain territory (superficial divisions) of the middle cerebral artery (MCA). We then present a computational method based on Empirical Mode Decomposition of NIRS and EEG time series into a set of intrinsic mode functions (IMFs), and then perform a cross-correlation analysis on those IMFs from NIRS and EEG signals to model NVC at the lesional and contralesional hemispheres of an ischemic stroke patient. For the contralesional hemisphere, a strong positive correlation between IMFs of regional cerebral hemoglobin oxygen saturation and the log-transformed mean-power time-series of IMFs for EEG with a lag of about −15 s was found after a cumulative 550 s stimulation of anodal tDCS. It is postulated that system identification, for example using a continuous-time autoregressive model, of this coupling relation under tDCS perturbation may provide spatiotemporal discriminatory features for the identification of ischemia. Furthermore, portable NIRS-EEG joint imaging can be incorporated into brain computer interfaces to monitor tDCS-facilitated neurointervention as well as cortical reorganization. PMID:27378836

  11. Acoustical Applications of the HHT Method

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.

    2003-01-01

    A document discusses applications of a method based on the Huang-Hilbert transform (HHT). The method was described, without the HHT name, in Analyzing Time Series Using EMD and Hilbert Spectra (GSC-13817), NASA Tech Briefs, Vol. 24, No. 10 (October 2000), page 63. To recapitulate: The method is especially suitable for analyzing time-series data that represent nonstationary and nonlinear physical phenomena. The method involves the empirical mode decomposition (EMD), in which a complicated signal is decomposed into a finite number of functions, called intrinsic mode functions (IMFs), that admit well-behaved Hilbert transforms. The HHT consists of the combination of EMD and Hilbert spectral analysis.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, N. B.; Qu, Z. N., E-mail: znqu@ynao.ac.cn

    The ensemble empirical mode decomposition (EEMD) analysis is utilized to extract the intrinsic mode functions (IMFs) of the solar mean magnetic field (SMMF) observed at the Wilcox Solar Observatory of Stanford University from 1975 to 2014, and then we analyze the periods of these IMFs as well as the relation of IMFs (SMMF) with some solar activity indices. The two special rotation cycles of 26.6 and 28.5 days should be derived from different magnetic flux elements in the SMMF. The rotation cycle of the weak magnetic flux element in the SMMF is 26.6 days, while the rotation cycle of themore » strong magnetic flux element in the SMMF is 28.5 days. The two rotation periods of the structure of the interplanetary magnetic field near the ecliptic plane are essentially related to weak and strong magnetic flux elements in the SMMF, respectively. The rotation cycle of weak magnetic flux in the SMMF did not vary over the last 40 years because the weak magnetic flux element derived from the weak magnetic activity on the full disk is not influenced by latitudinal migration. Neither the internal rotation of the Sun nor the solar magnetic activity on the disk (including the solar polar fields) causes the annual variation of SMMF. The variation of SMMF at timescales of a solar cycle is more related to weak magnetic activity on the full solar disk.« less

  13. Leak detection in medium density polyethylene (MDPE) pipe using pressure transient method

    NASA Astrophysics Data System (ADS)

    Amin, M. M.; Ghazali, M. F.; PiRemli, M. A.; Hamat, A. M. A.; Adnan, N. F.

    2015-12-01

    Water is an essential part of commodity for a daily life usage for an average person, from personal uses such as residential or commercial consumers to industries utilization. This study emphasizes on detection of leaking in medium density polyethylene (MDPE) pipe using pressure transient method. This type of pipe is used to analyze the position of the leakage in the pipeline by using Ensemble Empirical Mode Decomposition Method (EEMD) with signal masking. Water hammer would induce an impulse throughout the pipeline that caused the system turns into a surge of water wave. Thus, solenoid valve is used to create a water hammer through the pipelines. The data from the pressure sensor is collected using DASYLab software. The data analysis of the pressure signal will be decomposed into a series of wave composition using EEMD signal masking method in matrix laboratory (MATLAB) software. The series of decomposition of signals is then carefully selected which reflected intrinsic mode function (IMF). These IMFs will be displayed by using a mathematical algorithm, known as Hilbert transform (HT) spectrum. The IMF signal was analysed to capture the differences. The analyzed data is compared with the actual measurement of the leakage in term of percentage error. The error recorded is below than 1% and it is proved that this method highly reliable and accurate for leak detection.

  14. The emergence of the galactic stellar mass function from a non-universal IMF in clusters

    NASA Astrophysics Data System (ADS)

    Dib, Sami; Basu, Shantanu

    2018-06-01

    We investigate the dependence of a single-generation galactic mass function (SGMF) on variations in the initial stellar mass functions (IMF) of stellar clusters. We show that cluster-to-cluster variations of the IMF lead to a multi-component SGMF where each component in a given mass range can be described by a distinct power-law function. We also show that a dispersion of ≈0.3 M⊙ in the characteristic mass of the IMF, as observed for young Galactic clusters, leads to a low-mass slope of the SGMF that matches the observed Galactic stellar mass function even when the IMFs in the low-mass end of individual clusters are much steeper.

  15. Steepest Ascent Low/Non-Low-Frequency Ratio in Empirical Mode Decomposition to Separate Deterministic and Stochastic Velocities From a Single Lagrangian Drifter

    NASA Astrophysics Data System (ADS)

    Chu, Peter C.

    2018-03-01

    SOund Fixing And Ranging (RAFOS) floats deployed by the Naval Postgraduate School (NPS) in the California Current system from 1992 to 2001 at depth between 150 and 600 m (http://www.oc.nps.edu/npsRAFOS/) are used to study 2-D turbulent characteristics. Each drifter trajectory is adaptively decomposed using the empirical mode decomposition (EMD) into a series of intrinsic mode functions (IMFs) with corresponding specific scale for each IMF. A new steepest ascent low/non-low-frequency ratio is proposed in this paper to separate a Lagrangian trajectory into low-frequency (nondiffusive, i.e., deterministic) and high-frequency (diffusive, i.e., stochastic) components. The 2-D turbulent (or called eddy) diffusion coefficients are calculated on the base of the classical turbulent diffusion with mixing length theory from stochastic component of a single drifter. Statistical characteristics of the calculated 2-D turbulence length scale, strength, and diffusion coefficients from the NPS RAFOS data are presented with the mean values (over the whole drifters) of the 2-D diffusion coefficients comparable to the commonly used diffusivity tensor method.

  16. Pseudo-fault signal assisted EMD for fault detection and isolation in rotating machines

    NASA Astrophysics Data System (ADS)

    Singh, Dheeraj Sharan; Zhao, Qing

    2016-12-01

    This paper presents a novel data driven technique for the detection and isolation of faults, which generate impacts in a rotating equipment. The technique is built upon the principles of empirical mode decomposition (EMD), envelope analysis and pseudo-fault signal for fault separation. Firstly, the most dominant intrinsic mode function (IMF) is identified using EMD of a raw signal, which contains all the necessary information about the faults. The envelope of this IMF is often modulated with multiple vibration sources and noise. A second level decomposition is performed by applying pseudo-fault signal (PFS) assisted EMD on the envelope. A pseudo-fault signal is constructed based on the known fault characteristic frequency of the particular machine. The objective of using external (pseudo-fault) signal is to isolate different fault frequencies, present in the envelope . The pseudo-fault signal serves dual purposes: (i) it solves the mode mixing problem inherent in EMD, (ii) it isolates and quantifies a particular fault frequency component. The proposed technique is suitable for real-time implementation, which has also been validated on simulated fault and experimental data corresponding to a bearing and a gear-box set-up, respectively.

  17. Hilbert-Huang Transformation Based Analyses of FP1, FP2, and Fz Electroencephalogram Signals in Alcoholism.

    PubMed

    Lin, Chin-Feng; Su, Jiun-Yi; Wang, Hao-Min

    2015-09-01

    Chronic alcoholism may damage the central nervous system, causing imbalance in the excitation-inhibition homeostasis in the cortex, which may lead to hyper-arousal of the central nervous system, and impairments in cognitive function. In this paper, we use the Hilbert-Huang transformation (HHT) method to analyze the electroencephalogram (EEG) signals from control and alcoholic observers who watched two different pictures. We examined the intrinsic mode function (IMF) based energy distribution features of FP1, FP2, and Fz EEG signals in the time and frequency domains for alcoholics. The HHT-based characteristics of the IMFs, the instantaneous frequencies, and the time-frequency-energy distributions of the IMFs of the clinical FP1, FP2, and Fz EEG signals recorded from normal and alcoholic observers who watched two different pictures were analyzed. We observed that the number of peak amplitudes of the alcoholic subjects is larger than that of the control. In addition, the Pearson correlation coefficients of the IMFs, and the energy-IMF distributions of the clinical FP1, FP2, and Fz EEG signals recorded from normal and alcoholic observers were analyzed. The analysis results show that the energy ratios of IMF4, IMF5, and IMF7 waves of the normal observers to the refereed total energy were larger than 10 %, respectively. In addition, the energy ratios of IMF3, IMF4, and IMF5 waves of the alcoholic observers to the refereed total energy were larger than 10 %. The FP1 and FP2 waves of the normal observers, the FP1 and FP2 waves of the alcoholic observers, and the FP1 and Fz waves of the alcoholic observers demonstrated extremely high correlations. On the other hand, the FP1 waves of the normal and alcoholic observers, the FP1 wave of the normal observer and the FP2 wave of the alcoholic observer, the FP1 wave of the normal observer and the Fz wave of the alcoholic observer, the FP2 waves of the normal and alcoholic FP2 observers, and the FP2 wave of the normal observer and the Fz wave of the alcoholic observer demonstrated extremely low correlations. The IMF4 of the FP1 and FP2 signals of the normal observer, and the IMF5 of the FP1 and FP2 signals of the alcoholic observer were correlated. The IMF4 of the FP1 signal of the normal observer and that of the FP2 signal of the alcoholic observer as well as the IMF5 of the FP1 signal of the normal observer and that of the FP2 signal of the alcoholic observer exhibited extremely low correlations. In this manner, our experiment leads to a better understanding of the HHT-based IMFs features of FP1, FP2, and Fz EEG signals in alcoholism. The analysis results show that the energy ratios of the wave of an alcoholic observer to its refereed total energy for IMF4, and IMF5 in the δ band for FP1, FP2, and Fz channels were larger than those of the respective waves of the normal observer. The alcoholic EEG signals constitute more than 1 % of the total energy in the δ wave, and the reaction times were 0_4, 4_8, 8_12, and 12_16 s. For normal EEG signals, more than 1 % of the total energy is distributed in the δ wave, with a reaction time 0 to 4 s. We observed that the alcoholic subject reaction times were slower than those of the normal subjects, and the alcoholic subjects could have experienced a cognitive error. This phenomenon is due to the intoxicated central nervous systems of the alcoholic subjects.

  18. Mirror-mode structures at Comet 1P/Halley: A comparison between VEGA1 and Giotto Flyby

    NASA Astrophysics Data System (ADS)

    Volwerk, M.; Glassmeier, K.-H.; Schmid, D.; Delva, M.; Koenders, C.

    2014-04-01

    The pickup of freshly ionized particles emitted by the cometary nucleus creates a particle distribution in phase-space which is, amongst others, mirror-mode unstable. Many detailed studies have shown the presence of mirror-mode structures in the vicinity of comet 1P/Halley, using data from VEGA1/2 and Giotto. In the current presentation the almost similar flybys of VEGA1 and Giotto are compared with respect to the presence and occurrence rate of mirrormode structures. An automated search on the magnetic field data is performed, using minimum variance analysis, which has proved its usefulness in earlier mirror-mode studies at Earth, Venus and comets. It is found that there is an asymmetry between the two flybys: both missions show many events before closest approach and magnetic pile up region, however, after closest approach and magnetic pile up region the mirror-modes are strongly reduced at Giotto, whereas they increase in number for VEGA1. One source of influence could be the solar wind IMF, which is different: VEGA1 IMF ≈ (0, 0, 15) nT, Vsw ≈ 500 km/s and Giotto IMF ≈ (-3/3, -4, 5) nT (Bx rotating over the passage), Vsw ≈ 370 km/s. In this presentation we will discuss the occurrence rate, sizes and other characteristics of the mirror-mode structures.

  19. Merger-driven evolution of the effective stellar initial mass function of massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso

    2017-02-01

    The stellar initial mass function (IMF) of early-type galaxies is the combination of the IMF of the stellar population formed in situ and that of accreted stellar populations. Using as an observable the effective IMF αIMF, defined as the ratio between the true stellar mass of a galaxy and the stellar mass inferred assuming a Salpeter IMF, we present a theoretical model for its evolution as a result of dry mergers. We use a simple dry-merger evolution model, based on cosmological N-body simulations, together with empirically motivated prescriptions for the IMF to make predictions on how the effective IMF of massive early-type galaxies changes from z = 2 to z = 0. We find that the IMF normalization of individual galaxies becomes lighter with time. At fixed velocity dispersion, αIMF is predicted to be constant with redshift. Current dynamical constraints on the evolution of the IMF are in slight tension with this prediction, even though systematic uncertainties, including the effect of radial gradients in the IMF, prevent a conclusive statement. The correlation of αIMF with stellar mass becomes shallower with time, while the correlation between αIMF and velocity dispersion is mostly preserved by dry mergers. We also find that dry mergers can mix the dependence of the IMF on stellar mass and velocity dispersion, making it challenging to infer, from z = 0 observations of global galactic properties, what is the quantity that is originally coupled with the IMF.

  20. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen.

    PubMed

    Fang, Shaoming; Xiong, Xingwei; Su, Ying; Huang, Lusheng; Chen, Congying

    2017-07-19

    Intramuscular fat (IMF) that deposits among muscle fibers or within muscle cells is an important meat quality trait in pigs. Previous studies observed the effects of dietary nutrients and additives on improving the pork IMF. Gut microbiome plays an important role in host metabolism and energy harvest. Whether gut microbiota exerts effect on IMF remains unknown. In this study, we investigated the microbial community structure of 500 samples from porcine cecum and feces using high-throughput 16S rRNA gene sequencing. We found that phylogenetic composition and potential function capacity of microbiome varied between two types of samples. Bacteria wide association study identified 119 OTUs significantly associated with IMF in the two types of samples (FDR < 0.1). Most of the IMF-associated OTUs belong to the bacteria related to polysaccharide degradation and amino acid metabolism (such as Prevotella, Treponema, Bacteroides and Clostridium). Potential function capacities related to metabolisms of carbohydrate, energy and amino acids, cell motility, and membrane transport were significantly associated with IMF content. FishTaco analysis suggested that the shifts of potential function capacities of microbiome associated with IMF might be caused by the IMF-associated microbial taxa. This study firstly evaluated the contribution of gut microbiome to porcine IMF content. The results presented a potential capacity for improving IMF through modulating gut microbiota.

  1. Multi-Fault Detection of Rolling Element Bearings under Harsh Working Condition Using IMF-Based Adaptive Envelope Order Analysis

    PubMed Central

    Zhao, Ming; Lin, Jing; Xu, Xiaoqiang; Li, Xuejun

    2014-01-01

    When operating under harsh condition (e.g., time-varying speed and load, large shocks), the vibration signals of rolling element bearings are always manifested as low signal noise ratio, non-stationary statistical parameters, which cause difficulties for current diagnostic methods. As such, an IMF-based adaptive envelope order analysis (IMF-AEOA) is proposed for bearing fault detection under such conditions. This approach is established through combining the ensemble empirical mode decomposition (EEMD), envelope order tracking and fault sensitive analysis. In this scheme, EEMD provides an effective way to adaptively decompose the raw vibration signal into IMFs with different frequency bands. The envelope order tracking is further employed to transform the envelope of each IMF to angular domain to eliminate the spectral smearing induced by speed variation, which makes the bearing characteristic frequencies more clear and discernible in the envelope order spectrum. Finally, a fault sensitive matrix is established to select the optimal IMF containing the richest diagnostic information for final decision making. The effectiveness of IMF-AEOA is validated by simulated signal and experimental data from locomotive bearings. The result shows that IMF-AEOA could accurately identify both single and multiple faults of bearing even under time-varying rotating speed and large extraneous shocks. PMID:25353982

  2. Multiscale Characterization of PM2.5 in Southern Taiwan based on Noise-assisted Multivariate Empirical Mode Decomposition and Time-dependent Intrinsic Correlation

    NASA Astrophysics Data System (ADS)

    Hsiao, Y. R.; Tsai, C.

    2017-12-01

    As the WHO Air Quality Guideline indicates, ambient air pollution exposes world populations under threat of fatal symptoms (e.g. heart disease, lung cancer, asthma etc.), raising concerns of air pollution sources and relative factors. This study presents a novel approach to investigating the multiscale variations of PM2.5 in southern Taiwan over the past decade, with four meteorological influencing factors (Temperature, relative humidity, precipitation and wind speed),based on Noise-assisted Multivariate Empirical Mode Decomposition(NAMEMD) algorithm, Hilbert Spectral Analysis(HSA) and Time-dependent Intrinsic Correlation(TDIC) method. NAMEMD algorithm is a fully data-driven approach designed for nonlinear and nonstationary multivariate signals, and is performed to decompose multivariate signals into a collection of channels of Intrinsic Mode Functions (IMFs). TDIC method is an EMD-based method using a set of sliding window sizes to quantify localized correlation coefficients for multiscale signals. With the alignment property and quasi-dyadic filter bank of NAMEMD algorithm, one is able to produce same number of IMFs for all variables and estimates the cross correlation in a more accurate way. The performance of spectral representation of NAMEMD-HSA method is compared with Complementary Empirical Mode Decomposition/ Hilbert Spectral Analysis (CEEMD-HSA) and Wavelet Analysis. The nature of NAMAMD-based TDICC analysis is then compared with CEEMD-based TDIC analysis and the traditional correlation analysis.

  3. Auroral Substorms during Prolonged Northward IMF

    NASA Astrophysics Data System (ADS)

    Du, Aimin

    Multiple observations by satellites and ground-based magnetometers identify the occurrence of substorm events during prolonged northward interplanetary magnetic field (IMF). The func-tion, as an expression of the solar wind energy flow, and the energy dissipation in the ionosphere (UI) are calculated during substorm periods. The delay time of the UI to the function and UI for seven substorm events with AL values of -231 -1500 nT under northward IMF condition are 45 95 min with a mean value of 70.86 min. For comparison, 23 substorm events with the AL index of -316 -1685 nT under southward IMF condition are detected to have the delay time of 21 66 min with a mean value of 42.04 min. The longer delay time for substorms during northward IMF can be presumably attributed to the contribution of IMF By component to merging between IMF and the Earth's magnetic field. A tendency of the decrease of the delay time with increasing absolute values of IMF By is noted. Acknowledgement: This work is supported by NSFC(40774086).

  4. Robust multitask learning with three-dimensional empirical mode decomposition-based features for hyperspectral classification

    NASA Astrophysics Data System (ADS)

    He, Zhi; Liu, Lin

    2016-11-01

    Empirical mode decomposition (EMD) and its variants have recently been applied for hyperspectral image (HSI) classification due to their ability to extract useful features from the original HSI. However, it remains a challenging task to effectively exploit the spectral-spatial information by the traditional vector or image-based methods. In this paper, a three-dimensional (3D) extension of EMD (3D-EMD) is proposed to naturally treat the HSI as a cube and decompose the HSI into varying oscillations (i.e. 3D intrinsic mode functions (3D-IMFs)). To achieve fast 3D-EMD implementation, 3D Delaunay triangulation (3D-DT) is utilized to determine the distances of extrema, while separable filters are adopted to generate the envelopes. Taking the extracted 3D-IMFs as features of different tasks, robust multitask learning (RMTL) is further proposed for HSI classification. In RMTL, pairs of low-rank and sparse structures are formulated by trace-norm and l1,2 -norm to capture task relatedness and specificity, respectively. Moreover, the optimization problems of RMTL can be efficiently solved by the inexact augmented Lagrangian method (IALM). Compared with several state-of-the-art feature extraction and classification methods, the experimental results conducted on three benchmark data sets demonstrate the superiority of the proposed methods.

  5. Partial differential equation transform — Variational formulation and Fourier analysis

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    Nonlinear partial differential equation (PDE) models are established approaches for image/signal processing, data analysis and surface construction. Most previous geometric PDEs are utilized as low-pass filters which give rise to image trend information. In an earlier work, we introduced mode decomposition evolution equations (MoDEEs), which behave like high-pass filters and are able to systematically provide intrinsic mode functions (IMFs) of signals and images. Due to their tunable time-frequency localization and perfect reconstruction, the operation of MoDEEs is called a PDE transform. By appropriate selection of PDE transform parameters, we can tune IMFs into trends, edges, textures, noise etc., which can be further utilized in the secondary processing for various purposes. This work introduces the variational formulation, performs the Fourier analysis, and conducts biomedical and biological applications of the proposed PDE transform. The variational formulation offers an algorithm to incorporate two image functions and two sets of low-pass PDE operators in the total energy functional. Two low-pass PDE operators have different signs, leading to energy disparity, while a coupling term, acting as a relative fidelity of two image functions, is introduced to reduce the disparity of two energy components. We construct variational PDE transforms by using Euler-Lagrange equation and artificial time propagation. Fourier analysis of a simplified PDE transform is presented to shed light on the filter properties of high order PDE transforms. Such an analysis also offers insight on the parameter selection of the PDE transform. The proposed PDE transform algorithm is validated by numerous benchmark tests. In one selected challenging example, we illustrate the ability of PDE transform to separate two adjacent frequencies of sin(x) and sin(1.1x). Such an ability is due to PDE transform’s controllable frequency localization obtained by adjusting the order of PDEs. The frequency selection is achieved either by diffusion coefficients or by propagation time. Finally, we explore a large number of practical applications to further demonstrate the utility of proposed PDE transform. PMID:22207904

  6. Timescales Of The Influence Of IMF Clock Angle In Controlling The Characteristics Of Magnetospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Grocott, A.; Milan, S. E.

    2013-12-01

    We exploit a database of high-latitude ionospheric electric potential patterns, derived from radar observations of plasma convection in the northern hemisphere from the years 2000 - 2006, to investigate the timescales of interplanetary magnetic field (IMF) penetration into the magnetosphere. We parameterise the convection observations by IMF clock angle, θ (the angle between geocentric solar magnetic (GSM) north and the projection of the IMF vector onto the GSM Y-Z plane), and by an IMF timescale, τB (the length of time that a similar clock angle has been maintained prior to the convection observations being made). We find that the nature of the ionospheric convection changes with IMF clock angle, as expected from previous time-averaged studies, and that for τB ~ 30 mins the convection patterns closely resemble their time-averaged counterparts. However, we also find that for certain IMF clock angles, in particular those with a northward BZ component and significant BY (dusk-dawn) component, the patterns evolve with increasing τB to less resemble their time-averaged counterparts, showing a marked enhancement in dusk-dawn asymmetry as τB approaches 10 hours. We discuss these findings in terms of the effects of the persistent penetration of a quasi-steady IMF into the magnetosphere, and its implications for understanding different modes of magnetospheric dynamics.

  7. A hybrid filtering method based on a novel empirical mode decomposition for friction signals

    NASA Astrophysics Data System (ADS)

    Li, Chengwei; Zhan, Liwei

    2015-12-01

    During a measurement, the measured signal usually contains noise. To remove the noise and preserve the important feature of the signal, we introduce a hybrid filtering method that uses a new intrinsic mode function (NIMF) and a modified Hausdorff distance. The NIMF is defined as the difference between the noisy signal and each intrinsic mode function (IMF), which is obtained by empirical mode decomposition (EMD), ensemble EMD, complementary ensemble EMD, or complete ensemble EMD with adaptive noise (CEEMDAN). The relevant mode selecting is based on the similarity between the first NIMF and the rest of the NIMFs. With this filtering method, the EMD and improved versions are used to filter the simulation and friction signals. The friction signal between an airplane tire and the runaway is recorded during a simulated airplane touchdown and features spikes of various amplitudes and noise. The filtering effectiveness of the four hybrid filtering methods are compared and discussed. The results show that the filtering method based on CEEMDAN outperforms other signal filtering methods.

  8. Galaxy and Mass Assembly (GAMA): the star formation rate dependence of the stellar initial mass function

    NASA Astrophysics Data System (ADS)

    Gunawardhana, M. L. P.; Hopkins, A. M.; Sharp, R. G.; Brough, S.; Taylor, E.; Bland-Hawthorn, J.; Maraston, C.; Tuffs, R. J.; Popescu, C. C.; Wijesinghe, D.; Jones, D. H.; Croom, S.; Sadler, E.; Wilkins, S.; Driver, S. P.; Liske, J.; Norberg, P.; Baldry, I. K.; Bamford, S. P.; Loveday, J.; Peacock, J. A.; Robotham, A. S. G.; Zucker, D. B.; Parker, Q. A.; Conselice, C. J.; Cameron, E.; Frenk, C. S.; Hill, D. T.; Kelvin, L. S.; Kuijken, K.; Madore, B. F.; Nichol, B.; Parkinson, H. R.; Pimbblet, K. A.; Prescott, M.; Sutherland, W. J.; Thomas, D.; van Kampen, E.

    2011-08-01

    The stellar initial mass function (IMF) describes the distribution in stellar masses produced from a burst of star formation. For more than 50 yr, the implicit assumption underpinning most areas of research involving the IMF has been that it is universal, regardless of time and environment. We measure the high-mass IMF slope for a sample of low-to-moderate redshift galaxies from the Galaxy and Mass Assembly survey. The large range in luminosities and galaxy masses of the sample permits the exploration of underlying IMF dependencies. A strong IMF-star formation rate dependency is discovered, which shows that highly star-forming galaxies form proportionally more massive stars (they have IMFs with flatter power-law slopes) than galaxies with low star formation rates. This has a significant impact on a wide variety of galaxy evolution studies, all of which rely on assumptions about the slope of the IMF. Our result is supported by, and provides an explanation for, the results of numerous recent explorations suggesting a variation of or evolution in the IMF.

  9. Hierarchical Bayesian inference of the initial mass function in composite stellar populations

    NASA Astrophysics Data System (ADS)

    Dries, M.; Trager, S. C.; Koopmans, L. V. E.; Popping, G.; Somerville, R. S.

    2018-03-01

    The initial mass function (IMF) is a key ingredient in many studies of galaxy formation and evolution. Although the IMF is often assumed to be universal, there is continuing evidence that it is not universal. Spectroscopic studies that derive the IMF of the unresolved stellar populations of a galaxy often assume that this spectrum can be described by a single stellar population (SSP). To alleviate these limitations, in this paper we have developed a unique hierarchical Bayesian framework for modelling composite stellar populations (CSPs). Within this framework, we use a parametrized IMF prior to regulate a direct inference of the IMF. We use this new framework to determine the number of SSPs that is required to fit a set of realistic CSP mock spectra. The CSP mock spectra that we use are based on semi-analytic models and have an IMF that varies as a function of stellar velocity dispersion of the galaxy. Our results suggest that using a single SSP biases the determination of the IMF slope to a higher value than the true slope, although the trend with stellar velocity dispersion is overall recovered. If we include more SSPs in the fit, the Bayesian evidence increases significantly and the inferred IMF slopes of our mock spectra converge, within the errors, to their true values. Most of the bias is already removed by using two SSPs instead of one. We show that we can reconstruct the variable IMF of our mock spectra for signal-to-noise ratios exceeding ˜75.

  10. Water Stage Forecasting in Tidal streams during High Water Using EEMD

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Chang; Kao, Su-Pai; Su, Pei-Yi

    2017-04-01

    There are so many factors may affect the water stages in tidal streams. Not only the ocean wave but also the stream flow affects the water stage in a tidal stream. During high water, two of the most important factors affecting water stages in tidal streams are flood and tide. However the hydrological processes in tidal streams during high water are nonlinear and nonstationary. Generally the conventional methods used for forecasting water stages in tidal streams are very complicated. It explains the accurately forecasting water stages, especially during high water, in tidal streams is always a difficult task. The study makes used of Ensemble Empirical Model Decomposition (EEMD) to analyze the water stages in tidal streams. One of the advantages of the EEMD is it can be used to analyze the nonlinear and nonstationary data. The EEMD divides the water stage into several intrinsic mode functions (IMFs) and a residual; meanwhile, the physical meaning still remains during the process. By comparing the IMF frequency with tidal frequency, it is possible to identify if the IMF is affected by tides. Then the IMFs is separated into two groups, affected by tide or not by tide. The IMFs in each group are assembled to become a factor. Therefore the water stages in tidal streams are only affected by two factors, tidal factor and flood factor. Finally the regression analysis is used to establish the relationship between the factors of the gaging stations in the tidal stream. The available data during 15 typhoon periods of the Tanshui River whose downstream reach is in estuary area is used to illustrate the accuracy and reliability of the proposed method. The results show that the simple but reliable method is capable of forecasting water stages in tidal streams.

  11. The First in situ Observation of Kelvin-Helmholtz Waves at High-Latitude Magnetopause during Strongly Dawnward Interplanetary Magnetic Field Conditions

    NASA Technical Reports Server (NTRS)

    Hwang, K.-J.; Goldstein, M. L.; Kuznetsova, M. M.; Wang, Y.; Vinas, A. F.; Sibeck, D. G.

    2012-01-01

    We report the first in situ observation of high-latitude magnetopause (near the northern duskward cusp) Kelvin-Helmholtz waves (KHW) by Cluster on January 12, 2003, under strongly dawnward interplanetary magnetic field (IMF) conditions. The fluctuations unstable to Kelvin-Helmholtz instability (KHI) are found to propagate mostly tailward, i.e., along the direction almost 90 deg. to both the magnetosheath and geomagnetic fields, which lowers the threshold of the KHI. The magnetic configuration across the boundary layer near the northern duskward cusp region during dawnward IMF is similar to that in the low-latitude boundary layer under northward IMF, in that (1) both magnetosheath and magnetospheric fields across the local boundary layer constitute the lowest magnetic shear and (2) the tailward propagation of the KHW is perpendicular to both fields. Approximately 3-hour-long periods of the KHW during dawnward IMF are followed by the rapid expansion of the dayside magnetosphere associated with the passage of an IMF discontinuity that characterizes an abrupt change in IMF cone angle, Phi = acos (B(sub x) / absolute value of Beta), from approx. 90 to approx. 10. Cluster, which was on its outbound trajectory, continued observing the boundary waves at the northern evening-side magnetopause during sunward IMF conditions following the passage of the IMF discontinuity. By comparing the signatures of boundary fluctuations before and after the IMF discontinuity, we report that the frequencies of the most unstable KH modes increased after the discontinuity passed. This result demonstrates that differences in IMF orientations (especially in f) are associated with the properties of KHW at the high-latitude magnetopause due to variations in thickness of the boundary layer, and/or width of the KH-unstable band on the surface of the dayside magnetopause.

  12. Strong gravitational lensing and the stellar IMF of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Leier, Dominik; Ferreras, Ignacio; Saha, Prasenjit; Charlot, Stéphane; Bruzual, Gustavo; La Barbera, Francesco

    2016-07-01

    Systematic variations of the initial mass function (IMF) in early-type galaxies, and their connection with possible drivers such as velocity dispersion or metallicity, have been much debated in recent years. Strong lensing over galaxy scales combined with photometric and spectroscopic data provides a powerful method to constrain the stellar mass-to-light ratio and hence the functional form of the IMF. We combine photometric and spectroscopic constraints from the latest set of population synthesis models of Charlot & Bruzual, including a varying IMF, with a non-parametric analysis of the lens masses of 18 ETGs from the SLACS survey, with velocity dispersions in the range 200-300 km s-1. We find that very bottom-heavy IMFs are excluded. However, the upper limit to the bimodal IMF slope (μ ≲ 2.2, accounting for a dark matter fraction of 20-30 per cent, where μ = 1.3 corresponds to a Kroupa-like IMF) is compatible at the 1σ level with constraints imposed by gravity-sensitive line strengths. A two-segment power-law parametrization of the IMF (Salpeter-like for high masses) is more constrained (Γ ≲ 1.5, where Γ is the power index at low masses) but requires a dark matter contribution of ≳25 per cent to reconcile the results with a Salpeter IMF. For a standard Milky Way-like IMF to be applicable, a significant dark matter contribution is required within 1Re. Our results reveal a large range of allowed IMF slopes, which, when interpreted as intrinsic scatter in the IMF properties of ETGs, could explain the recent results of Smith et al., who find Milky Way-like IMF normalizations in a few massive lensing ETGs.

  13. Size and Shape of the Distant Magnetotail

    NASA Technical Reports Server (NTRS)

    Sibeck, D.G.; Lin, R.-Q.

    2014-01-01

    We employ a global magnetohydrodynamic model to study the effects of the interplanetary magnetic field (IMF) strength and direction upon the cross-section of the magnetotail at lunar distances. The anisotropic pressure of draped magnetosheath magnetic field lines and the inclusion of a reconnection-generated standing slow mode wave fan bounded by a rotational discontinuity within the definition of the magnetotail result in cross-sections elongated in the direction parallel to the component of the IMF in the plane perpendicular to the Sun-Earth line. Tilted cross-tail plasma sheets separate the northern and southern lobes within these cross-sections. Greater fast mode speeds perpendicular than parallel to the draped magnetos heath magnetic field lines result in greater distances to the bow shock in the direction perpendicular than parallel to the component of the IMF in the plane transverse to the Sun-Earth line. The magnetotail cross-section responds rapidly to reconnected magnetic field lines requires no more than the magnetosheath convection time to appear at any distance downstream, and further adjustments of the cross-section in response to the anisotropic pressures of the draped magnetic field lines require no more than 10-20 minutes. Consequently for typical ecliptic IMF orientations and strengths, the magnetotail cross-section is oblate while the bow shock is prolate.

  14. VizieR Online Data Catalog: GalIMF version 1.0.0 (Yan+, 2017)

    NASA Astrophysics Data System (ADS)

    Yan, Z.; Jerabkova, T.; Kroupa, P.

    2017-08-01

    GalIMF stands for the Galaxy-wide Initial Mass Function. It is a Python 3 module that allows users to compute galaxy-wide initial stellar mass functions based on locally derived empirical constraints following the IGIMF theory. See the GalIMF homepage https://sites.google.com/view/galimf/home for more information. (1 data file).

  15. Dominant modes of variability in large-scale Birkeland currents

    NASA Astrophysics Data System (ADS)

    Cousins, E. D. P.; Matsuo, Tomoko; Richmond, A. D.; Anderson, B. J.

    2015-08-01

    Properties of variability in large-scale Birkeland currents are investigated through empirical orthogonal function (EOF) analysis of 1 week of data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). Mean distributions and dominant modes of variability are identified for both the Northern and Southern Hemispheres. Differences in the results from the two hemispheres are observed, which are attributed to seasonal differences in conductivity (the study period occurred near solstice). A universal mean and set of dominant modes of variability are obtained through combining the hemispheric results, and it is found that the mean and first three modes of variability (EOFs) account for 38% of the total observed squared magnetic perturbations (δB2) from both hemispheres. The mean distribution represents a standard Region 1/Region 2 (R1/R2) morphology of currents and EOF 1 captures the strengthening/weakening of the average distribution and is well correlated with the north-south component of the interplanetary magnetic field (IMF). EOF 2 captures a mixture of effects including the expansion/contraction and rotation of the (R1/R2) currents; this mode correlates only weakly with possible external driving parameters. EOF 3 captures changes in the morphology of the currents in the dayside cusp region and is well correlated with the dawn-dusk component of the IMF. The higher-order EOFs capture more complex, smaller-scale variations in the Birkeland currents and appear generally uncorrelated with external driving parameters. The results of the EOF analysis described here are used for describing error covariance in a data assimilation procedure utilizing AMPERE data, as described in a companion paper.

  16. The effects of the initial mass function on the chemical evolution of elliptical galaxies

    NASA Astrophysics Data System (ADS)

    De Masi, Carlo; Matteucci, F.; Vincenzo, F.

    2018-03-01

    We describe the use of our chemical evolution model to reproduce the abundance patterns observed in a catalogue of elliptical galaxies from the Sloan Digital Sky Survey Data Release 4. The model assumes ellipticals form by fast gas accretion, and suffer a strong burst of star formation followed by a galactic wind, which quenches star formation. Models with fixed initial mass function (IMF) failed in simultaneously reproducing the observed trends with the galactic mass. So, we tested a varying IMF; contrary to the diffused claim that the IMF should become bottom heavier in more massive galaxies, we find a better agreement with data by assuming an inverse trend, where the IMF goes from being bottom heavy in less massive galaxies to top heavy in more massive ones. This naturally produces a downsizing in star formation, favouring massive stars in largest galaxies. Finally, we tested the use of the integrated Galactic IMF, obtained by averaging the canonical IMF over the mass distribution function of the clusters where star formation is assumed to take place. We combined two prescriptions, valid for different SFR regimes, to obtain the Integrated Initial Mass Function values along the whole evolution of the galaxies in our models. Predicted abundance trends reproduce the observed slopes, but they have an offset relative to the data. We conclude that bottom-heavier IMFs do not reproduce the properties of the most massive ellipticals, at variance with previous suggestions. On the other hand, an IMF varying with galactic mass from bottom heavier to top heavier should be preferred.

  17. [An EMD based time-frequency distribution and its application in EEG analysis].

    PubMed

    Li, Xiaobing; Chu, Meng; Qiu, Tianshuang; Bao, Haiping

    2007-10-01

    Hilbert-Huang transform (HHT) is a new time-frequency analytic method to analyze the nonlinear and the non-stationary signals. The key step of this method is the empirical mode decomposition (EMD), with which any complicated signal can be decomposed into a finite and small number of intrinsic mode functions (IMF). In this paper, a new EMD based method for suppressing the cross-term of Wigner-Ville distribution (WVD) is developed and is applied to analyze the epileptic EEG signals. The simulation data and analysis results show that the new method suppresses the cross-term of the WVD effectively with an excellent resolution.

  18. A Novel Bearing Multi-Fault Diagnosis Approach Based on Weighted Permutation Entropy and an Improved SVM Ensemble Classifier.

    PubMed

    Zhou, Shenghan; Qian, Silin; Chang, Wenbing; Xiao, Yiyong; Cheng, Yang

    2018-06-14

    Timely and accurate state detection and fault diagnosis of rolling element bearings are very critical to ensuring the reliability of rotating machinery. This paper proposes a novel method of rolling bearing fault diagnosis based on a combination of ensemble empirical mode decomposition (EEMD), weighted permutation entropy (WPE) and an improved support vector machine (SVM) ensemble classifier. A hybrid voting (HV) strategy that combines SVM-based classifiers and cloud similarity measurement (CSM) was employed to improve the classification accuracy. First, the WPE value of the bearing vibration signal was calculated to detect the fault. Secondly, if a bearing fault occurred, the vibration signal was decomposed into a set of intrinsic mode functions (IMFs) by EEMD. The WPE values of the first several IMFs were calculated to form the fault feature vectors. Then, the SVM ensemble classifier was composed of binary SVM and the HV strategy to identify the bearing multi-fault types. Finally, the proposed model was fully evaluated by experiments and comparative studies. The results demonstrate that the proposed method can effectively detect bearing faults and maintain a high accuracy rate of fault recognition when a small number of training samples are available.

  19. Hilbert-Huang transform analysis of dynamic and earthquake motion recordings

    USGS Publications Warehouse

    Zhang, R.R.; Ma, S.; Safak, E.; Hartzell, S.

    2003-01-01

    This study examines the rationale of Hilbert-Huang transform (HHT) for analyzing dynamic and earthquake motion recordings in studies of seismology and engineering. In particular, this paper first provides the fundamentals of the HHT method, which consist of the empirical mode decomposition (EMD) and the Hilbert spectral analysis. It then uses the HHT to analyze recordings of hypothetical and real wave motion, the results of which are compared with the results obtained by the Fourier data processing technique. The analysis of the two recordings indicates that the HHT method is able to extract some motion characteristics useful in studies of seismology and engineering, which might not be exposed effectively and efficiently by Fourier data processing technique. Specifically, the study indicates that the decomposed components in EMD of HHT, namely, the intrinsic mode function (IMF) components, contain observable, physical information inherent to the original data. It also shows that the grouped IMF components, namely, the EMD-based low- and high-frequency components, can faithfully capture low-frequency pulse-like as well as high-frequency wave signals. Finally, the study illustrates that the HHT-based Hilbert spectra are able to reveal the temporal-frequency energy distribution for motion recordings precisely and clearly.

  20. Measuring the High-Mass IMF in Low-Metallicity Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel

    2017-08-01

    We propose to measure the stellar initial mass function above >1-2 Msun in 46 nearby dwarf galaxies with archival HST observations. This novel approach leverages the redundant age information provided by the main sequence and blue core helium burning stars <500 years old to break the well-known degeneracy between the IMF and star formation history (SFH), enabling a direct measurement of the high-mass IMF in dwarf galaxies. We will be able to constrain the high-mass IMF slope to a precision better than 0.1 to 0.3 dex in each galaxy. Our sample spans a factor of 6 in metallicity ( 5-30% Zsun), 4 decades in star formation rate, and 3 decades in both stellar and gas mass, allowing us to explore the IMF over a wide range of extreme environments.Current observational evidence suggests that nearby dwarf galaxies are the most likely candidates to host significant and systematic variations in the high-mass IMF (e.g., Halpha/UV ratios). However, to date there have been no direct measurements of the high-mass IMF in environments with lower star formation rates and/or more metal poor than the Magellanic Clouds. Our program remedies this shortcoming allowing us to (1) make the first-ever measurement of the high-mass IMF in extremely metal-poor environments; (2) empirically quantify environmental the (lack of) variations in the high-mass IMF; (3) directly test the integrated galactic mass initial mass function (IGIMF), which predicts environmental sensitivity of the IMF in dwarf galaxies.

  1. The Effect of Star Formation History on the Inferred Stellar Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.; Scalo, John

    2006-01-01

    Peaks and lulls in the star formation rate (SFR) over the history of the Galaxy produce plateaus and declines in the present-day mass function (PDMF) where the main-sequence lifetime overlaps the age and duration of the SFR variation. These PDMF features can be misinterpreted as the form of the intrinsic stellar initial mass function (IMF) if the star formation rate is assumed to be constant or slowly varying with time. This effect applies to all regions that have formed stars for longer than the age of the most massive stars, including OB associations, star complexes, and especially galactic field stars. Related problems may apply to embedded clusters. Evidence is summarized for temporal SFR variations from parsec scales to entire galaxies, all of which should contribute to inferred IMF distortions. We give examples of various star formation histories to demonstrate the types of false IMF structures that might be seen. These include short-duration bursts, stochastic histories with lognormal amplitude distributions, and oscillating histories with various periods and phases. The inferred IMF should appear steeper than the intrinsic IMF over mass ranges where the stellar lifetimes correspond to times of decreasing SFRs; shallow portions of the inferred IMF correspond to times of increasing SFRs. If field regions are populated by dispersed clusters and defined by their low current SFRs, then they should have steeper inferred IMFs than the clusters. The SFRs required to give the steep field IMFs in the LMC and SMC are determined. Structure observed in several determinations of the Milky Way field star IMF can be accounted for by a stochastic and bursty star formation history.

  2. EVIDENCE FOR A CONSTANT IMF IN EARLY-TYPE GALAXIES BASED ON THEIR X-RAY BINARY POPULATIONS

    NASA Astrophysics Data System (ADS)

    Zepf, Stephen E.; Maccarone, T. J.; Kundu, A.; Gonzalez, A. H.; Lehmer, B.; Maraston, C.

    2014-01-01

    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having steeper IMFs. These steeper IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars and black holes. In this paper, we specifically predict the variation in the number of black holes and neutron stars in early type galaxies based on the IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. We then test whether such variations are observed by studying the field low-mass X-ray binary populations (LMXBs) of nearby early-type galaxies. These binaries are field neutron stars or black holes accreting from a low-mass donor star. We specifically compare the number of field LMXBs per K-band light in a well-studied sample of elliptical galaxies, and use this result to distinguish between an invariant IMF and one that is Kroupa/Chabrier-like at low masses and steeper at high masses. We discuss how these observations constrain the possible forms of the IMF variations and how future Chandra observations can enable sharper tests of the IMF.

  3. Pediatric mandibular fractures: a free hand technique.

    PubMed

    Davison, S P; Clifton, M S; Davison, M N; Hedrick, M; Sotereanos, G

    2001-01-01

    The treatment of pediatric mandibular fractures is rare, controversial, and complicated by mixed dentition. To determine if open mandibular fracture repair with intraoral and extraoral rigid plate placement, after free hand occlusal and bone reduction, without intermaxillary fixation (IMF), is appropriate and to discuss postoperative advantages, namely, maximal early return of function and minimal oral hygiene issues. A group of 29 pediatric patients with a mandibular fracture were examined. Twenty pediatric patients (13 males and 7 females) with a mean age of 9 years (age range, 1-17 years) were treated using IMF. All patients were treated by the same surgeon (G.S.). Surgical time for plating was reduced by 1 hour, the average time to place patients in IMF. The patients who underwent open reduction internal fixation without IMF ate a soft mechanical diet by postoperative day 3 compared with postoperative day 16 for those who underwent IMF. Complication rates related to fixation technique were comparable at 20% for those who did not undergo IMF and 33% for those who did. We believe that free hand reduction is a valuable technique to reduce operative time for pediatric mandibular fractures. It maximizes return to function while minimizing the oral hygiene issues and hardware removal of intermaxillary function.

  4. Intestinal myofibroblast-specific Tpl2-Cox-2-PGE2 pathway links innate sensing to epithelial homeostasis

    PubMed Central

    Roulis, Manolis; Nikolaou, Christoforos; Kotsaki, Elena; Kaffe, Eleanna; Karagianni, Niki; Koliaraki, Vasiliki; Salpea, Klelia; Ragoussis, Jiannis; Aidinis, Vassilis; Martini, Eva; Becker, Christoph; Herschman, Harvey R.; Vetrano, Stefania; Danese, Silvio; Kollias, George

    2014-01-01

    Tumor progression locus-2 (Tpl2) kinase is a major inflammatory mediator in immune cell types recently found to be genetically associated with inflammatory bowel diseases (IBDs). Here we show that Tpl2 may exert a dominant homeostatic rather than inflammatory function in the intestine mediated specifically by subepithelial intestinal myofibroblasts (IMFs). Mice with complete or IMF-specific Tpl2 ablation are highly susceptible to epithelial injury-induced colitis showing impaired compensatory proliferation in crypts and extensive ulcerations without significant changes in inflammatory responses. Following epithelial injury, IMFs sense innate or inflammatory signals and activate, via Tpl2, the cyclooxygenase-2 (Cox-2)-prostaglandin E2 (PGE2) pathway, which we show here to be essential for the epithelial homeostatic response. Exogenous PGE2 administration rescues mice with complete or IMF-specific Tpl2 ablation from defects in crypt function and susceptibility to colitis. We also show that Tpl2 expression is decreased in IMFs isolated from the inflamed ileum of IBD patients indicating that Tpl2 function in IMFs may be highly relevant to human disease. The IMF-mediated mechanism we propose also involves the IBD-associated genes IL1R1, MAPK1, and the PGE2 receptor-encoding PTGER4. Our results establish a previously unidentified myofibroblast-specific innate pathway that regulates intestinal homeostasis and may underlie IBD susceptibility in humans. PMID:25316791

  5. Microstructure of the IMF turbulences at 2.5 AU

    NASA Technical Reports Server (NTRS)

    Mavromichalaki, H.; Vassilaki, A.; Marmatsouri, L.; Moussas, X.; Quenby, J. J.; Smith, E. J.

    1995-01-01

    A detailed analysis of small period (15-900 sec) magnetohydrodynamic (MHD) turbulences of the interplanetary magnetic field (IMF) has been made using Pioneer-11 high time resolution data (0.75 sec) inside a Corotating Interaction Region (CIR) at a heliocentric distance of 2.5 AU in 1973. The methods used are the hodogram analysis, the minimum variance matrix analysis and the cohenrence analysis. The minimum variance analysis gives evidence of linear polarized wave modes. Coherence analysis has shown that the field fluctuations are dominated by the magnetosonic fast modes with periods 15 sec to 15 min. However, it is also shown that some small amplitude Alfven waves are present in the trailing edge of this region with characteristic periods (15-200 sec). The observed wave modes are locally generated and possibly attributed to the scattering of Alfven waves energy into random magnetosonic waves.

  6. Multivariate EMD and full spectrum based condition monitoring for rotating machinery

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaomin; Patel, Tejas H.; Zuo, Ming J.

    2012-02-01

    Early assessment of machinery health condition is of paramount importance today. A sensor network with sensors in multiple directions and locations is usually employed for monitoring the condition of rotating machinery. Extraction of health condition information from these sensors for effective fault detection and fault tracking is always challenging. Empirical mode decomposition (EMD) is an advanced signal processing technology that has been widely used for this purpose. Standard EMD has the limitation in that it works only for a single real-valued signal. When dealing with data from multiple sensors and multiple health conditions, standard EMD faces two problems. First, because of the local and self-adaptive nature of standard EMD, the decomposition of signals from different sources may not match in either number or frequency content. Second, it may not be possible to express the joint information between different sensors. The present study proposes a method of extracting fault information by employing multivariate EMD and full spectrum. Multivariate EMD can overcome the limitations of standard EMD when dealing with data from multiple sources. It is used to extract the intrinsic mode functions (IMFs) embedded in raw multivariate signals. A criterion based on mutual information is proposed for selecting a sensitive IMF. A full spectral feature is then extracted from the selected fault-sensitive IMF to capture the joint information between signals measured from two orthogonal directions. The proposed method is first explained using simple simulated data, and then is tested for the condition monitoring of rotating machinery applications. The effectiveness of the proposed method is demonstrated through monitoring damage on the vane trailing edge of an impeller and rotor-stator rub in an experimental rotor rig.

  7. Evidence for a Constant Initial Mass Function in Early-type Galaxies Based on Their X-Ray Binary Populations

    NASA Astrophysics Data System (ADS)

    Peacock, Mark B.; Zepf, Stephen E.; Maccarone, Thomas J.; Kundu, Arunav; Gonzalez, Anthony H.; Lehmer, Bret D.; Maraston, Claudia

    2014-04-01

    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having bottom-heavy IMFs. These bottom-heavy IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars (NSs) and black holes (BHs). In this paper, we specifically predict the variation in the number of BHs and NSs based on the power-law IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. We then test whether such variations are observed by studying the field low-mass X-ray binary (LMXB) populations of nearby early-type galaxies. In these binaries, an NS or BH accretes matter from a low-mass donor star. Their number is therefore expected to scale with the number of BHs and NSs present in a galaxy. We find that the number of LMXBs per K-band light is similar among the galaxies in our sample. These data therefore demonstrate the uniformity of the slope of the IMF from massive stars down to those now dominating the K-band light and are consistent with an invariant IMF. Our results are inconsistent with an IMF which varies from a Kroupa/Chabrier like IMF for low-mass galaxies to a steep power-law IMF (with slope x = 2.8) for high mass galaxies. We discuss how these observations constrain the possible forms of the IMF variations and how future Chandra observations can enable sharper tests of the IMF. Based in part on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA). The scientific results reported in this article are based in part on data obtained from the Chandra Data Archive and observations made by the Chandra X-ray Observatory and published previously in cited articles.

  8. A Four-Stage Hybrid Model for Hydrological Time Series Forecasting

    PubMed Central

    Di, Chongli; Yang, Xiaohua; Wang, Xiaochao

    2014-01-01

    Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of ‘denoising, decomposition and ensemble’. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models. PMID:25111782

  9. A four-stage hybrid model for hydrological time series forecasting.

    PubMed

    Di, Chongli; Yang, Xiaohua; Wang, Xiaochao

    2014-01-01

    Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of 'denoising, decomposition and ensemble'. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models.

  10. Implications of Galaxy Buildup for Putative IMF Variations in Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Blancato, Kirsten; Genel, Shy; Bryan, Greg

    2017-08-01

    Recent observational evidence for initial mass function (IMF) variations in massive quiescent galaxies at z = 0 challenges the long-established paradigm of a universal IMF. While a few theoretical models relate the IMF to birth cloud conditions, the physical driver underlying these putative IMF variations is still largely unclear. Here we use post-processing analysis of the Illustris cosmological hydrodynamical simulation to investigate possible physical origins of IMF variability with galactic properties. We do so by tagging stellar particles in the simulation (each representing a stellar population of ≈ {10}6 {M}⊙ ) with individual IMFs that depend on various physical conditions, such as velocity dispersion, metallicity, or star formation rate, at the time and place in which the stars are formed. We then follow the assembly of these populations throughout cosmic time and reconstruct the overall IMF of each z = 0 galaxy from the many distinct IMFs it is composed of. Our main result is that applying the observed relations between IMF and galactic properties to the conditions at the star formation sites does not result in strong enough IMF variations between z = 0 galaxies. Steeper physical IMF relations are required for reproducing the observed IMF trends, and some stellar populations must form with more extreme IMFs than those observed. The origin of this result is the hierarchical nature of massive galaxy assembly, and it has implications for the reliability of the strong observed trends, for the ability of cosmological simulations to capture certain physical conditions in galaxies, and for theories of star formation aiming to explain the physical origin of a variable IMF.

  11. Magnetic Flux Circulation During Dawn-Dusk Oriented Interplanetary Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mitchell, E. J.; Lopez, R. E.; Fok, M.-C.; Deng, Y.; Wiltberger, M.; Lyon, J.

    2010-01-01

    Magnetic flux circulation is a primary mode of energy transfer from the solar wind into the ionosphere and inner magnetosphere. For southward interplanetary magnetic field (IMF), magnetic flux circulation is described by the Dungey cycle (dayside merging, night side reconnection, and magnetospheric convection), and both the ionosphere and inner magnetosphere receive energy. For dawn-dusk oriented IMF, magnetic flux circulation is not well understood, and the inner magnetosphere does not receive energy. Several models have been suggested for possible reconnection patterns; the general pattern is: dayside merging; reconnection on the dayside or along the dawn/dusk regions; and, return flow on dayside only. These models are consistent with the lack of energy in the inner magnetosphere. We will present evidence that the Dungey cycle does not explain the energy transfer during dawn-dusk oriented IMF. We will also present evidence of how magnetic flux does circulate during dawn-dusk oriented IMF, specifically how the magnetic flux reconnects and circulates back.

  12. Constraining the intermediate-mass range of the Initial Mass Function using Galactic Cepheids

    NASA Astrophysics Data System (ADS)

    Mor, R.; Figueras, F.; Robin, A. C.; Lemasle, B.

    2015-05-01

    Aims. To use the Besançon Galaxy Model (Robin A.C. et al., 2003) and the most complete observational catalogues of Galactic Cepheids to constrain the intermediate-mass range of the Initial Mass Function (IMF) in the Milky Way Galactic thin disc. Methods. We have optimized the flexibility of the new Besançon Galaxy Model (Czekaj et al., 2014) to simulate magnitude and distance complete samples of young intermediate mass stars assuming different IMFs and Star Formation Histories (SFH). Comparing the simulated synthetic catalogues with the observational data, we studied which IMF reproduces better the observational number of Cepheids in the Galactic thin disc. We analysed three different IMFs: (1) Salpeter, (2) Kroupa-Haywood and (3) Haywood-Robin, all of them with a decreasing SFH from Aumer and Binney, 2009. Results. For the first time the Besançon Galaxy Model is used to characterize the Galactic Cepheids. We find that for most of the cases the Salpeter IMF overestimates the number of observed Cepheids and Haywood-Robin IMF underestimates it. The Kroupa-Haywood IMF, with a slope α=3.2, is the one that best reproduces the observed Cepheids. From the comparison of the predicted and observed number of Cepheids up to V=12, we point that the model might underestimate the scale-height of the young population. The effects of the variation of the model ingredients need to be quantified. Conclusions. In agreement with Kroupa and Weidner (2003), our study shows that the Salpeter IMF (α=2.35) overestimates the star counts in the range 4 ≤ M/M_{⊙} ≤ 10 and supports the idea that the slope of the intermediate and massive stars IMF is steeper than the Salpeter IMF.

  13. Systematic variation of the stellar initial mass function in early-type galaxies.

    PubMed

    Cappellari, Michele; McDermid, Richard M; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2012-04-25

    Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars, which depends on the present number of each type of star in the galaxy. The present number depends on the stellar initial mass function (IMF), which describes the distribution of stellar masses when the population formed, and knowledge of it is critical to almost every aspect of galaxy evolution. More than 50 years after the first IMF determination, no consensus has emerged on whether it is universal among different types of galaxies. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot both be universal, but they could not convincingly discriminate between the two possibilities. Only recently were indications found that massive elliptical galaxies may not have the same IMF as the Milky Way. Here we report a study of the two-dimensional stellar kinematics for the large representative ATLAS(3D) sample of nearby early-type galaxies spanning two orders of magnitude in stellar mass, using detailed dynamical models. We find a strong systematic variation in IMF in early-type galaxies as a function of their stellar mass-to-light ratios, producing differences of a factor of up to three in galactic stellar mass. This implies that a galaxy's IMF depends intimately on the galaxy's formation history.

  14. Denoising of chaotic signal using independent component analysis and empirical mode decomposition with circulate translating

    NASA Astrophysics Data System (ADS)

    Wen-Bo, Wang; Xiao-Dong, Zhang; Yuchan, Chang; Xiang-Li, Wang; Zhao, Wang; Xi, Chen; Lei, Zheng

    2016-01-01

    In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the independent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor. Project supported by the National Science and Technology, China (Grant No. 2012BAJ15B04), the National Natural Science Foundation of China (Grant Nos. 41071270 and 61473213), the Natural Science Foundation of Hubei Province, China (Grant No. 2015CFB424), the State Key Laboratory Foundation of Satellite Ocean Environment Dynamics, China (Grant No. SOED1405), the Hubei Provincial Key Laboratory Foundation of Metallurgical Industry Process System Science, China (Grant No. Z201303), and the Hubei Key Laboratory Foundation of Transportation Internet of Things, Wuhan University of Technology, China (Grant No.2015III015-B02).

  15. Investigating the low-mass slope and possible turnover in the LMC IMF

    NASA Astrophysics Data System (ADS)

    Gennaro, Mario

    2014-10-01

    We propose to derive the Initial Mass Function (IMF) of the field population of the Large Magellanic Cloud (LMC) down to 0.2 solar masses, probing the mass regime where the characteristic IMF turnover is observed in our Galaxy. The power of the HST, using the WFC3 IR channel, is necessary to obtain photometric mass estimates for the faint, cool, dwarf stars with masses below the expected IMF turnover point. Only by probing the IMF down to such masses, it will be possible to clearly distinguish between a bottom-heavy or bottom-light IMF in the LMC. Recent studies, using the deepest available observations for the Small Magellanic Cloud, cannot find clear evidence of a turnover in the IMF for this galaxy, suggesting a bottom-heavy IMF in contrast to the Milky Way. A similar study of the LMC is needed to confirm a possible dependence of the low-mass IMF with galactic environment. Studies of giant ellipticals have recently challenged the picture of a universal IMF, and suggest an enviromental dependence of the IMF, with the most massive galaxies having a larger fraction of low mass stars and no IMF turnover. A study of possible IMF variations from resolved stellar populations in nearby galaxies is of great importance in sheding light on this issue. Our simple approach, using direct evidence from basic star counts, is much less prone to systematic errors with respect to studies of more distant objects which have to rely on the observations of integrated properties.

  16. Computing frequency by using generalized zero-crossing applied to intrinsic mode functions

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2006-01-01

    This invention presents a method for computing Instantaneous Frequency by applying Empirical Mode Decomposition to a signal and using Generalized Zero-Crossing (GZC) and Extrema Sifting. The GZC approach is the most direct, local, and also the most accurate in the mean. Furthermore, this approach will also give a statistical measure of the scattering of the frequency value. For most practical applications, this mean frequency localized down to quarter of a wave period is already a well-accepted result. As this method physically measures the period, or part of it, the values obtained can serve as the best local mean over the period to which it applies. Through Extrema Sifting, instead of the cubic spline fitting, this invention constructs the upper envelope and the lower envelope by connecting local maxima points and local minima points of the signal with straight lines, respectively, when extracting a collection of Intrinsic Mode Functions (IMFs) from a signal under consideration.

  17. A Coupling Function Linking Solar Wind /IMF Variations and Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Lyatsky, W.; Lyatskaya, S.; Tan, A.

    2006-12-01

    From a theoretical consideration we have obtained expressions for the coupling function linking solar wind and IMF parameters to geomagnetic activity. While deriving these expressions, we took into account (1) a scaling factor due to polar cap expansion while increasing a reconnected magnetic flux in the dayside magnetosphere, and (2) a modified Akasofu function for the reconnected flux for combined IMF Bz and By components. The resulting coupling function may be written as Fa = aVsw B^1/2 sina (q/2), where Vsw is the solar wind speed, B^ is the magnitude of the IMF vector in the Y-Z plane, q is the clock angle between the Z axis and IMF vector in the Y-Z plane, a is a coefficient, and the exponent, a, is derived from the experimental data and equals approximately to 2. The Fa function differs primary by the power of B^ from coupling functions proposed earlier. For testing the obtained coupling function, we used solar wind and interplanetary magnetic field data for four years for maximum and minimum solar activity. We computed 2-D contour plots for correlation coefficients for the dependence of geomagnetic activity indices on solar wind parameters for different coupling functions. The obtained diagrams showed a good correspondence to the theoretic coupling function Fa for a »2. The maximum correlation coefficient for the dependence of the polar cap PC index on the Fa coupling function is significantly higher than that computed for other coupling functions used researchers, for the same time intervals.

  18. Transcriptome analysis of mRNA and microRNAs in intramuscular fat tissues of castrated and intact male Chinese Qinchuan cattle

    PubMed Central

    Wang, Ya-Ning; Wang, Hong-Cheng; Zhang, Song; Hong, Jie-Yun; Guo, Hong-Fang; Chen, Dai; Yang, Yang; Zan, Lin-Sen

    2017-01-01

    Intramuscular fat (IMF) is known to enhance beef palatability and can be markedly increased by castration. However, there is little understanding of the molecular mechanism underlying the IMF deposition after castration of beef cattle. We hypothesize that genetic regulators function differently in IMF from bulls and steers. Therefore, after detecting serum testosterone and lipid parameter, as well as the contents of IMF at 6, 12, 18 and 24 months, we have investigated differentially expressed (DE) microRNAs (miRNAs) and mRNAs in IMF of bulls and steers at 24 months of age in Qinchuan cattle using next-generation sequencing, and then explored the possible biopathways regulating IMF deposition. Serum testosterone levels were significantly decreased in steers, whereas IMF content, serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglycerides (TGs) were markedly increased in steers. Comparing the results of steers and bulls, 580 upregulated genes and 1,120 downregulated genes in IMF tissues were identified as DE genes correlated with IMF deposition. The upregulated genes were mainly associated with lipid metabolism, lipogenesis and fatty acid transportation signalling pathways, and the downregulated genes were correlated with immune response and intracellular signal transduction. Concurrently, the DE miRNAs—important players in adipose tissue accumulation induced by castration—were also examined in IMF tissues; 52 DE miRNAs were identified. The expression profiles of selected genes and miRNAs were also confirmed by quantitative real-time PCR (qRT-PCR) assays. Using integrated analysis, we constructed the microRNA-target regulatory network which was supported by target validation using the dual luciferase reporter system. Moreover, Ingenuity Pathway Analysis (IPA) software was used to construct a molecular interaction network that could be involved in regulating IMF after castration. The detected molecular network is closely associated with lipid metabolism and adipocyte differentiation, which is supported by functional identification results of bta-let-7i on bovine preadipocytes. These results provided valuable insights into the molecular mechanisms of the IMF phenotype differences between steers and bulls. PMID:29073274

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Charlie; Van Dokkum, Pieter G.; Villaume, Alexa

    It is now well-established that the stellar initial mass function (IMF) can be determined from the absorption line spectra of old stellar systems, and this has been used to measure the IMF and its variation across the early-type galaxy population. Previous work focused on measuring the slope of the IMF over one or more stellar mass intervals, implicitly assuming that this is a good description of the IMF and that the IMF has a universal low-mass cutoff. In this work we consider more flexible IMFs, including two-component power laws with a variable low-mass cutoff and a general non-parametric model. Wemore » demonstrate with mock spectra that the detailed shape of the IMF can be accurately recovered as long as the data quality is high (S/N ≳ 300 Å{sup −1}) and cover a wide wavelength range (0.4–1.0 μ m). We apply these flexible IMF models to a high S/N spectrum of the center of the massive elliptical galaxy NGC 1407. Fitting the spectrum with non-parametric IMFs, we find that the IMF in the center shows a continuous rise extending toward the hydrogen-burning limit, with a behavior that is well-approximated by a power law with an index of −2.7. These results provide strong evidence for the existence of extreme (super-Salpeter) IMFs in the cores of massive galaxies.« less

  20. Statistical against dynamical PLF fission as seen by the IMF-IMF correlation functions and comparisons with CoMD model

    NASA Astrophysics Data System (ADS)

    Pagano, E. V.; Acosta, L.; Auditore, L.; Cap, T.; Cardella, G.; Colonna, M.; De Filippo, E.; Geraci, E.; Gnoffo, B.; Lanzalone, G.; Maiolino, C.; Martorana, N.; Pagano, A.; Papa, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Trifiro’, A.; Trimarchi, M.; Siwek-Wilczynska, K.

    2018-05-01

    In nuclear reactions at Fermi energies two and multi particles intensity interferometry correlation methods are powerful tools in order to pin down the characteristic time scale of the emission processes. In this paper we summarize an improved application of the fragment-fragment correlation function in the specific physics case of heavy projectile-like (PLF) binary massive splitting in two fragments of intermediate mass(IMF). Results are shown for the reverse kinematics reaction 124 Sn+64 Ni at 35 AMeV that has been investigated by using the forward part of CHIMERA multi-detector. The analysis was performed as a function of the charge asymmetry of the observed couples of IMF. We show a coexistence of dynamical and statistical components as a function of the charge asymmetry. Transport CoMD simulations are compared with the data in order to pin down the timescale of the fragments production and the relevant ingredients of the in medium effective interaction used in the transport calculations.

  1. Integrated ensemble noise-reconstructed empirical mode decomposition for mechanical fault detection

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Ji, Feng; Gao, Yuan; Zhu, Jun; Wei, Chenjun; Zhou, Yu

    2018-05-01

    A new branch of fault detection is utilizing the noise such as enhancing, adding or estimating the noise so as to improve the signal-to-noise ratio (SNR) and extract the fault signatures. Hereinto, ensemble noise-reconstructed empirical mode decomposition (ENEMD) is a novel noise utilization method to ameliorate the mode mixing and denoised the intrinsic mode functions (IMFs). Despite the possibility of superior performance in detecting weak and multiple faults, the method still suffers from the major problems of the user-defined parameter and the powerless capability for a high SNR case. Hence, integrated ensemble noise-reconstructed empirical mode decomposition is proposed to overcome the drawbacks, improved by two noise estimation techniques for different SNRs as well as the noise estimation strategy. Independent from the artificial setup, the noise estimation by the minimax thresholding is improved for a low SNR case, which especially shows an outstanding interpretation for signature enhancement. For approximating the weak noise precisely, the noise estimation by the local reconfiguration using singular value decomposition (SVD) is proposed for a high SNR case, which is particularly powerful for reducing the mode mixing. Thereinto, the sliding window for projecting the phase space is optimally designed by the correlation minimization. Meanwhile, the reasonable singular order for the local reconfiguration to estimate the noise is determined by the inflection point of the increment trend of normalized singular entropy. Furthermore, the noise estimation strategy, i.e. the selection approaches of the two estimation techniques along with the critical case, is developed and discussed for different SNRs by means of the possible noise-only IMF family. The method is validated by the repeatable simulations to demonstrate the synthetical performance and especially confirm the capability of noise estimation. Finally, the method is applied to detect the local wear fault from a dual-axis stabilized platform and the gear crack from an operating electric locomotive to verify its effectiveness and feasibility.

  2. Stellar Initial Mass Function: Trends With Galaxy Mass And Radius

    NASA Astrophysics Data System (ADS)

    Parikh, Taniya

    2017-06-01

    There is currently no consensus about the exact shape and, in particular, the universality of the stellar initial mass function (IMF). For massive galaxies, it has been found that near-infrared (NIR) absorption features, which are sensitive to the ratio of dwarf to giant stars, deviate from a Milky Way-like IMF; their modelling seems to require a larger fraction of low mass stars. There are now increasing results looking at whether the IMF varies not only with galaxy mass, but also radially within galaxies. The SDSS-IV/MaNGA integral-field survey will provide spatially resolved spectroscopy for 10,000 galaxies at R 2000 from 360-1000nm. Spectra of early-type galaxies were stacked to achieve high S/N which is particularly important for features in the NIR. Trends with galaxy radius and mass were compared to stellar population models for a range of absorption features in order to separate degeneracies due to changes in stellar population parameters, such as age, metallicity and element abundances, with potential changes in the IMF. Results for 611 galaxies show that we do not require an IMF steeper than Kroupa as a function of galaxy mass or radius based on the NaI index. The Wing-Ford band hints towards a steeper IMF at large radii however we do not have reliable measurements for the most massive galaxies.

  3. Comparing models for IMF variation across cosmological time in Milky Way-like galaxies

    NASA Astrophysics Data System (ADS)

    Guszejnov, Dávid; Hopkins, Philip F.; Ma, Xiangcheng

    2017-12-01

    One of the key observations regarding the stellar initial mass function (IMF) is its near-universality in the Milky Way (MW), which provides a powerful way to constrain different star formation models that predict the IMF. However, those models are almost universally 'cloud-scale' or smaller - they take as input or simulate single molecular clouds (GMCs), clumps or cores, and predict the resulting IMF as a function of the cloud properties. Without a model for the progenitor properties of all clouds that formed the stars at different locations in the MW (including ancient stellar populations formed in high redshift, likely gas-rich dwarf progenitor galaxies that looked little like the Galaxy today), the predictions cannot be fully explored nor safely applied to 'live' cosmological calculations of the IMF in different galaxies at different cosmological times. We therefore combine a suite of high-resolution cosmological simulations (from the Feedback In Realistic Environments project), which form MW-like galaxies with reasonable star formation properties and explicitly resolve massive GMCs, with various proposed cloud-scale IMF models. We apply the models independently to every star particle formed in the simulations to synthesize the predicted IMF in the present-day galaxy. We explore models where the IMF depends on Jeans mass, sonic or 'turbulent Bonnor-Ebert' mass, fragmentation with a polytropic equation of state, or where it is self-regulated by protostellar feedback. We show that all of these models, except the feedback-regulated ones, predict far more variation (∼0.6-1 dex 1σ scatter in the IMF turnover mass) in the simulations than is observed in the MW.

  4. THE NON-UNIVERSALITY OF THE LOW-MASS END OF THE IMF IS ROBUST AGAINST THE CHOICE OF SSP MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spiniello, C.; Trager, S. C.; Koopmans, L. V. E.

    2015-04-20

    We perform a direct comparison of two state-of-the art single stellar population (SSP) models that have been used to demonstrate the non-universality of the low-mass end of the initial mass function (IMF) slope. The two public versions of the SSP models are restricted to either solar abundance patterns or solar metallicity, too restrictive if one aims to disentangle elemental enhancements, metallicity changes, and IMF variations in massive early-type galaxies (ETGs) with star formation histories different from those in the solar neighborhood. We define response functions (to metallicity and α-abundance) to extend the parameter space for each set of models. Wemore » compare these extended models with a sample of Sloan Digital Sky Survey (SDSS) ETG spectra with varying velocity dispersions. We measure equivalent widths of optical IMF-sensitive stellar features to examine the effect of the underlying model assumptions and ingredients, such as stellar libraries or isochrones, on the inference of the IMF slope down to ∼0.1 M{sub ⊙}. We demonstrate that the steepening of the low-mass end of the IMF based on a non-degenerate set of spectroscopic optical indicators is robust against the choice of the stellar population model. Although the models agree in a relative sense (i.e., both imply more bottom-heavy IMFs for more massive systems), we find non-negligible differences in the absolute values of the IMF slope inferred at each velocity dispersion by using the two different models. In particular, we find large inconsistencies in the quantitative predictions of the IMF slope variations and abundance patterns when sodium lines are used. We investigate the possible reasons for these inconsistencies.« less

  5. Further Constraints on Variations in the Initial Mass Function from Low-mass X-ray Binary Populations

    NASA Astrophysics Data System (ADS)

    Peacock, Mark B.; Zepf, Stephen E.; Kundu, Arunav; Maccarone, Thomas J.; Lehmer, Bret D.; Maraston, Claudia; Gonzalez, Anthony H.; Eufrasio, Rafael T.; Coulter, David A.

    2017-05-01

    We present constraints on variations in the initial mass function (IMF) of nine local early-type galaxies based on their low-mass X-ray binary (LMXB) populations. Comprised of accreting black holes and neutron stars, these LMXBs can be used to constrain the important high-mass end of the IMF. We consider LMXB populations beyond the cores of the galaxies (>0.2R e; covering 75%-90% of their stellar light) and find no evidence for systematic variations of the IMF with velocity dispersion (σ). We reject IMFs which become increasingly bottom-heavy with σ, up to steep power laws (exponent, α > 2.8) in massive galaxies (σ > 300 {km} {{{s}}}-1), for galactocentric radii >1/4 R e. Previously proposed IMFs that become increasingly bottom-heavy with σ are consistent with these data if only the number of low-mass stars (<0.5 M ⊙) varies. We note that our results are consistent with some recent work which proposes that extreme IMFs are only present in the central regions of these galaxies. We also consider IMFs that become increasingly top-heavy with σ, resulting in significantly more LMXBs. Such a model is consistent with these observations, but additional data are required to significantly distinguish between this and an invariant IMF. For six of these galaxies, we directly compare with published “IMF mismatch” parameters from the Atlas3D survey, α dyn. We find good agreement with the LMXB population if galaxies with higher α dyn have more top-heavy IMFs—although we caution that our sample is quite small. Future LMXB observations can provide further insights into the origin of α dyn variations.

  6. The unexpectedly large proportion of high-mass star-forming cores in a Galactic mini-starburst

    NASA Astrophysics Data System (ADS)

    Motte, F.; Nony, T.; Louvet, F.; Marsh, K. A.; Bontemps, S.; Whitworth, A. P.; Men'shchikov, A.; Nguyáën Luong, Q.; Csengeri, T.; Maury, A. J.; Gusdorf, A.; Chapillon, E.; Könyves, V.; Schilke, P.; Duarte-Cabral, A.; Didelon, P.; Gaudel, M.

    2018-04-01

    Understanding the processes that determine the stellar initial mass function (IMF) is a critical unsolved problem, with profound implications for many areas of astrophysics1. In molecular clouds, stars are formed in cores—gas condensations sufficiently dense that gravitational collapse converts a large fraction of their mass into a star or small clutch of stars. In nearby star-formation regions, the core mass function (CMF) is strikingly similar to the IMF, suggesting that the shape of the IMF may simply be inherited from the CMF2-5. Here, we present 1.3 mm observations, obtained with the Atacama Large Millimeter/submillimeter Array telescope, of the active star-formation region W43-MM1, which may be more representative of the Galactic-arm regions where most stars form6,7. The unprecedented resolution of these observations reveals a statistically robust CMF at high masses, with a slope that is markedly shallower than the IMF. This seriously challenges our understanding of the origin of the IMF.

  7. SDSS-IV MaNGA: Variation of the Stellar Initial Mass Function in Spiral and Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Ge, Junqiang; Mao, Shude; Cappellari, Michele; Long, R. J.; Li, Ran; Emsellem, Eric; Dutton, Aaron A.; Li, Cheng; Bundy, Kevin; Thomas, Daniel; Drory, Niv; Lopes, Alexandre Roman

    2017-04-01

    We perform Jeans anisotropic modeling (JAM) on elliptical and spiral galaxies from the MaNGA DR13 sample. By comparing the stellar mass-to-light ratios estimated from stellar population synthesis and from JAM, we find a systematic variation of the initial mass function (IMF) similar to that in the earlier {{ATLAS}}3{{D}} results. Early-type galaxies (elliptical and lenticular) with lower velocity dispersions within one effective radius are consistent with a Chabrier-like IMF, while galaxies with higher velocity dispersions are consistent with a more bottom-heavy IMF such as the Salpeter IMF. Spiral galaxies have similar systematic IMF variations, but with slightly different slopes and larger scatters, due to the uncertainties caused by the higher gas fractions and extinctions for these galaxies. Furthermore, we examine the effects of stellar mass-to-light ratio gradients on our JAM modeling, and we find that the trends become stronger after considering the gradients.

  8. The unexpectedly large proportion of high-mass star-forming cores in a Galactic mini-starburst

    NASA Astrophysics Data System (ADS)

    Motte, F.; Nony, T.; Louvet, F.; Marsh, K. A.; Bontemps, S.; Whitworth, A. P.; Men'shchikov, A.; Nguyen Luong, Q.; Csengeri, T.; Maury, A. J.; Gusdorf, A.; Chapillon, E.; Könyves, V.; Schilke, P.; Duarte-Cabral, A.; Didelon, P.; Gaudel, M.

    2018-06-01

    Understanding the processes that determine the stellar initial mass function (IMF) is a critical unsolved problem, with profound implications for many areas of astrophysics1. In molecular clouds, stars are formed in cores—gas condensations sufficiently dense that gravitational collapse converts a large fraction of their mass into a star or small clutch of stars. In nearby star-formation regions, the core mass function (CMF) is strikingly similar to the IMF, suggesting that the shape of the IMF may simply be inherited from the CMF2-5. Here, we present 1.3 mm observations, obtained with the Atacama Large Millimeter/submillimeter Array telescope, of the active star-formation region W43-MM1, which may be more representative of the Galactic-arm regions where most stars form6,7. The unprecedented resolution of these observations reveals a statistically robust CMF at high masses, with a slope that is markedly shallower than the IMF. This seriously challenges our understanding of the origin of the IMF.

  9. The Low-Mass Stellar Initial Mass Function: Ultra-Faint Dwarf Galaxies Revisited

    NASA Astrophysics Data System (ADS)

    Platais, Imants

    2017-08-01

    The stellar Initial Mass Function plays a critical role in the evolution of the baryonic content of the Universe. The form of the low-mass IMF - stars of mass less than the solar mass - determines the fraction of baryons locked up for a Hubble time, and thus indicates how gas and metals are cycled through galaxies. Inferences from resolved stellar populations, where the low-mass luminosity function and associated IMF can be derived from direct star counts, generally favor an invariant and universal IMF. However, a recent study of ultra-faint dwarf galaxies Hercules and Leo IV indicates a bottom-lite IMF, over a narrow range of stellar mass (only 0.55-0.75 M_sun), correlated with the internal velocity dispersion and/or metallicity. We propose to obtain ultra-deep imaging for a significantly closer ultra-faint dwarf, Bootes I, which will allow us to construct the luminosity function down to M_v=+10 (equivalent to 0.35 solar mass). We will also re-analyze the HST archival observations for the Hercules and Leo IV dwarfs using the same updated techniques as for Bootes I. The combined datasets should provide a reliable answer to the question of how variable is the low-mass stellar IMF.

  10. The Mass Function in h+(chi) Persei

    NASA Astrophysics Data System (ADS)

    Bragg, Ann; Kenyon, Scott

    2000-08-01

    Knowledge of the stellar initial mass function (IMF) is critical to understanding star formation and galaxy evolution. Past studies of the IMF in open clusters have primarily used luminosity functions to determine mass functions, frequently in relatively sparse clusters. Our goal with this project is to derive a reliable, well- sampled IMF for a pair of very dense young clusters (h+(chi) Persei) with ages, 1-2 × 10^7 yr (e.g., Vogt A& A 11:359), where stellar evolution theory is robust. We will construct the HR diagram using both photometry and spectral types to derive more accurate stellar masses and ages than are possible using photometry alone. Results from the two clusters will be compared to examine the universality of the IMF. We currently have a spectroscopic sample covering an area within 9 arc-minutes of the center of each cluster taken with the FAST Spectrograph. The sample is complete to V=15.4 and contains ~ 1000 stars. We request 2 nights at WIYN/HYDRA to extend this sample to deeper magnitudes, allowing us to determine the IMF of the clusters to a lower limiting mass and to search for a pre-main sequence, theoretically predicted to be present for clusters of this age. Note that both clusters are contained within a single HYDRA field.

  11. Low-end mass function of the Quintuplet cluster

    NASA Astrophysics Data System (ADS)

    Shin, Jihye; Kim, Sungsoo S.

    2016-08-01

    The Quintuplet and Arches clusters, which were formed in the harsh environment of the Galactic Centre (GC) a few million years ago, have been excellent targets for studying the effects of a star-forming environment on the initial mass function (IMF). In order to estimate the shape of the low-end IMF of the Arches cluster, Shin & Kim devised a novel photometric method that utilizes pixel intensity histograms (PIHs) of the observed images. Here, we apply the PIH method to the Quintuplet cluster and estimate the shape of its low-end IMF below the magnitude of completeness limit as set by conventional photometry. We found that the low-end IMF of the Quintuplet is consistent with that found for the Arches cluster-Kroupa MF, with a significant number of low-mass stars below 1 M⊙. We conclude that the most likely IMFs of the Quintuplet and the Arches clusters are not too different from the IMFs found in the Galactic disc. We also find that the observed PIHs and stellar number density profiles of both clusters are best reproduced when the clusters are assumed to be at three-dimensional distances of approximately 100 pc from the GC.

  12. What is the Relationship between the Solar Wind and Storms/Substorms?

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.; Burlaga, L. F.

    1999-01-01

    The interplanetary magnetic field (IMF) carried past the Earth by the solar wind has long been known to be the principal quantity that controls geomagnetic storms and substorms. Intervals of strong southward IMF with durations of at least a significant fraction of a day produce storms, while more typical, shorter intervals of less-intense southward fields produce substorms. The strong, long-duration southward fields are generally associated with coronal mass ejections and magnetic clouds or else they are produced by interplanetary dynamics initiated by fast solar wind flows that compress preexisting southward fields. Smaller, short-duration southward fields that occur on most days are related to long period waves, turbulence, or random variations in the IMF. Southward IMF enhances dayside reconnection between the IMF and the Earth's dipole with the reconnected field lines supplementing open field lines of the geomagnetic tail and producing an expanded polar cap and increased tail energy. Although the frequent storage of solar wind energy and its release during substorms is the most common mode of solar wind/magnetosphere interaction, under certain circumstances, steady southward IMF seems to produce intervals of relatively steady magnetosphere convection without substorms. During these latter times, the inner magnetosphere remains in a stressed tail-like state while the more distant magnetotail has larger northward field and more dipolar-like field lines. Recent evidence suggests that enhanced magnetosphere particle densities associated with enhanced solar wind densities allow more particles to be accelerated for the ring current, thus creating larger storms.

  13. Investigation of isolated substorms: Generation conditions and characteristics of different phases

    NASA Astrophysics Data System (ADS)

    Vorobjev, V. G.; Yagodkina, O. I.; Zverev, V. L.

    2016-11-01

    Characteristics of isolated substorms selected by variations in the 1-min values of the AL index are analyzed. The substorms were divided into several types with respect to the behavior of the Bz component of the interplanetary magnetic field (IMF) during the expansion phase. The probability of observations of substorms associated with the northward turn of the Bz component of IMF was 19%, while the substorms taking place at Bz < 0 were observed in 53% of cases. A substantial number of events in which no substorm magnetic activity was observed in the auroral zone after a long (>30 min) period of the southward IMF and a following sharp turn of the Bz component of IMF before the north was detected. The data suggest that a northward IMF turn is neither a necessary nor sufficient condition for generating substorms. It has been shown for substorms of the both types that the average duration of the southward IMF to moment T 0 and the average intensity of the magnetic perturbation in the maximum are approximately the same and amount to 80 min and-650 nT, respectively. However, for substorms at Bz < 0, their mean duration, including the expansive and recovery phases, is on average 30 min longer than that at a northward turn of IMF. Correlations between the loading-unloading processes in the magnetosphere in the periods of magnetospheric substorms were investigated with different functions that determine the efficiency of the energy transfer from the solar wind to the magnetosphere. It has been shown that the highest correlation coefficient ( r = 0.84) is observed when the function suggested by Newell et al. (2007) is used. It has been detected that a simple function VB S yields a high correlation coefficient ( r = 0.75).

  14. Variations of the stellar initial mass function in semi-analytical models - II. The impact of cosmic ray regulation

    NASA Astrophysics Data System (ADS)

    Fontanot, Fabio; De Lucia, Gabriella; Xie, Lizhi; Hirschmann, Michaela; Bruzual, Gustavo; Charlot, Stéphane

    2018-04-01

    Recent studies proposed that cosmic rays (CRs) are a key ingredient in setting the conditions for star formation, thanks to their ability to alter the thermal and chemical state of dense gas in the ultraviolet-shielded cores of molecular clouds. In this paper, we explore their role as regulators of the stellar initial mass function (IMF) variations, using the semi-analytic model for GAlaxy Evolution and Assembly (GAEA). The new model confirms our previous results obtained using the integrated galaxy-wide IMF (IGIMF) theory. Both variable IMF models reproduce the observed increase of α-enhancement as a function of stellar mass and the measured z = 0 excess of dynamical mass-to-light ratios with respect to photometric estimates assuming a universal IMF. We focus here on the mismatch between the photometrically derived (M^app_{\\star }) and intrinsic (M⋆) stellar masses, by analysing in detail the evolution of model galaxies with different values of M_{\\star }/M^app_{\\star }. We find that galaxies with small deviations (i.e. formally consistent with a universal IMF hypothesis) are characterized by more extended star formation histories and live in less massive haloes with respect to the bulk of the galaxy population. In particular, the IGIMF theory does not change significantly the mean evolution of model galaxies with respect to the reference model, a CR-regulated IMF instead implies shorter star formation histories and higher peaks of star formation for objects more massive than 1010.5 M⊙. However, we also show that it is difficult to unveil this behaviour from observations, as the key physical quantities are typically derived assuming a universal IMF.

  15. A hybrid model for PM₂.₅ forecasting based on ensemble empirical mode decomposition and a general regression neural network.

    PubMed

    Zhou, Qingping; Jiang, Haiyan; Wang, Jianzhou; Zhou, Jianling

    2014-10-15

    Exposure to high concentrations of fine particulate matter (PM₂.₅) can cause serious health problems because PM₂.₅ contains microscopic solid or liquid droplets that are sufficiently small to be ingested deep into human lungs. Thus, daily prediction of PM₂.₅ levels is notably important for regulatory plans that inform the public and restrict social activities in advance when harmful episodes are foreseen. A hybrid EEMD-GRNN (ensemble empirical mode decomposition-general regression neural network) model based on data preprocessing and analysis is firstly proposed in this paper for one-day-ahead prediction of PM₂.₅ concentrations. The EEMD part is utilized to decompose original PM₂.₅ data into several intrinsic mode functions (IMFs), while the GRNN part is used for the prediction of each IMF. The hybrid EEMD-GRNN model is trained using input variables obtained from principal component regression (PCR) model to remove redundancy. These input variables accurately and succinctly reflect the relationships between PM₂.₅ and both air quality and meteorological data. The model is trained with data from January 1 to November 1, 2013 and is validated with data from November 2 to November 21, 2013 in Xi'an Province, China. The experimental results show that the developed hybrid EEMD-GRNN model outperforms a single GRNN model without EEMD, a multiple linear regression (MLR) model, a PCR model, and a traditional autoregressive integrated moving average (ARIMA) model. The hybrid model with fast and accurate results can be used to develop rapid air quality warning systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Does the IMF vary with galaxy mass? The X-ray binary population of a key galaxy, NGC7457

    NASA Astrophysics Data System (ADS)

    Peacock, Mark

    2014-09-01

    We propose a 100ksec observation of NGC7457. The primary goal of this observation is to test for variations in the initial mass function (IMF). Many recent studies have proposed that the IMF varies systematically as a function of early-type galaxy mass. This has potentially dramatic consequences and must to be confirmed. The number of LMXBs in a galaxy (per stellar luminosity) can be used to provide an independent test of this hypothesis (see Peacock et al. 2014). Unfortunately, only galaxies with intermediate to high masses currently have the data needed to perform this test. The proposed observation of the elliptical galaxy NGC7457 will detect an order of magnitude more LMXBs in a low mass galaxy - hence providing the crucial constraint needed to significantly test for a variable IMF.

  17. Solar wind controls on Mercury's magnetospheric cusp

    NASA Astrophysics Data System (ADS)

    He, Maosheng; Vogt, Joachim; Heyner, Daniel; Zhong, Jun

    2017-06-01

    This study assesses the response of the cusp to solar wind changes comprehensively, using 2848 orbits of MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) observation. The assessment entails four steps: (1) propose and validate an approach to estimate the solar wind magnetic field (interplanetary magnetic field (IMF)) for MESSENGER's cusp transit; (2) define an index σ measuring the intensity of the magnetic disturbance which significantly peaks within the cusp and serves as an indicator of the cusp activity level; (3) construct an empirical model of σ as a function of IMF and Mercury's heliocentric distance rsun, through linear regression; and (4) use the model to estimate and compare the polar distribution of the disturbance σ under different conditions for a systematic comparison. The comparison illustrates that the disturbance peak over the cusp is strongest and widest extending in local time for negative IMF Bx and negative IMF Bz, and when Mercury is around the perihelion. Azimuthal shifts are associated with both IMF By and rsun: the cusp moves toward dawn when IMF By or rsun decrease. These dependences are explained in terms of the IMF Bx-controlled dayside magnetospheric topology, the component reconnection model applied to IMF By and Bz, and the variability of solar wind ram pressure associated with heliocentric distance rsun. The applicability of the component reconnection model on IMF By indicates that at Mercury reconnection occurs at lower shear angles than at Earth.Plain Language SummaryMercury's magnetosphere was suggested to be particularly sensitive to solar wind conditions. This study investigates the response of the magnetospheric cusp to solar wind conditions systematically. For this purpose, we analyze the statistical predictability of interplanetary magnetic field (IMF) at Mercury, develop an approach for estimating the solar wind magnetic field (IMF) for MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER's) cusp transit, construct an indicator for the activity level of the cusp, build an empirical model for the indicator as a function of solar wind variables from 3 years of the MESSENGER measurements, and compare the cusp activity under different conditions. Results demonstrate that the azimuthal location, horizontal extension, and the internal magnetic disturbance are dependent on all IMF components as well as on Mercury's heliocentric distance. These results provide evidence and clues to fundamental processes of solar wind and magnetosphere interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10599E..1RZ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10599E..1RZ"><span>International Roughness Index (IRI) measurement using Hilbert-Huang transform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Wenjin; Wang, Ming L.</p> <p>2018-03-01</p> <p>International Roughness Index (IRI) is an important metric to measure condition of roadways. This index is usually used to justify the maintenance priority and scheduling for roadways. Various inspection methods and algorithms are used to assess this index through the use of road profiles. This study proposes to calculate IRI values using Hilbert-Huang Transform (HHT) algorithm. In particular, road profile data is provided using surface radar attached to a vehicle driving at highway speed. Hilbert-Huang transform (HHT) is used in this study because of its superior properties for nonstationary and nonlinear data. Empirical mode decomposition (EMD) processes the raw data into a set of intrinsic mode functions (IMFs), representing various dominating frequencies. These various frequencies represent noises from the body of the vehicle, sensor location, and the excitation induced by nature frequency of the vehicle, etc. IRI calculation can be achieved by eliminating noises that are not associated with the road profile including vehicle inertia effect. The resulting IRI values are compared favorably to the field IRI values, where the filtered IMFs captures the most characteristics of road profile while eliminating noises from the vehicle and the vehicle inertia effect. Therefore, HHT is an effect method for road profile analysis and for IRI measurement. Furthermore, the application of HHT method has the potential to eliminate the use of accelerometers attached to the vehicle as part of the displacement measurement used to offset the inertia effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997hst..prop.8003G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997hst..prop.8003G"><span>Wavelength Dependent Luminosity Functions for Super Star Clusters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garmany, Catharine</p> <p>1997-07-01</p> <p>Starburst galaxies, considered to exhibit enhanced star formation on a galaxy-wide scale, have now been found with HST to contain very intense knots of star formation, referred to as ``super star clusters'', or SSCs. A steepening of the luminosity function with increasing wavelength for young burst populations, such as SSCs, has recently been predicted by Hogg & Phinney {1997}. This prediction, not previously addressed in the literature, is straightforward to test with multi- wavelength photometry. Using the colors of the SSCs in a galaxy in combination with the difference in slopes of the luminosity functions derived from different wavelength bands and applying population synthesis models, we can also constrain the high mass stellar initial mass function {IMF}. Recent work has suggested that the slope of the IMF is roughly constant in a variety of local environments, from galactic OB associations to the closest analog of a super star cluster, R136 in the LMC. This investigation will allow us to compare the IMFs in the extreme environments of SSCs in starburst galaxies to IMFs found locally in the Galaxy, LMC, and SMC. Archival imaging data in both the UV and optical bands is available for about 10 young starburst systems. These data will allow us to test the predictions of Hogg & Phinney, as well as constrain the IMF for environments not found in the nearby universe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ApJ...792L..37M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ApJ...792L..37M"><span>Connection between Dynamically Derived Initial Mass Function Normalization and Stellar Population Parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McDermid, Richard M.; Cappellari, Michele; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.</p> <p>2014-09-01</p> <p>We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS3D project. We study trends between our dynamically derived IMF normalization αdyn ≡ (M/L)stars/(M/L)Salp and absorption line strengths, and interpret these via single stellar population-equivalent ages, abundance ratios (measured as [α/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalization of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of αdyn at a given population parameter. As a result, we find weak αdyn-[α/Fe] and αdyn -Age correlations and no significant αdyn -[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalization via the low-mass star demographics inferred through stellar spectral analysis.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...845..157N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...845..157N"><span>The Initial Mass Function in the Nearest Strong Lenses from SNELLS: Assessing the Consistency of Lensing, Dynamical, and Spectroscopic Constraints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Newman, Andrew B.; Smith, Russell J.; Conroy, Charlie; Villaume, Alexa; van Dokkum, Pieter</p> <p>2017-08-01</p> <p>We present new observations of the three nearest early-type galaxy (ETG) strong lenses discovered in the SINFONI Nearby Elliptical Lens Locator Survey (SNELLS). Based on their lensing masses, these ETGs were inferred to have a stellar initial mass function (IMF) consistent with that of the Milky Way, not the bottom-heavy IMF that has been reported as typical for high-σ ETGs based on lensing, dynamical, and stellar population synthesis techniques. We use these unique systems to test the consistency of IMF estimates derived from different methods. We first estimate the stellar M */L using lensing and stellar dynamics. We then fit high-quality optical spectra of the lenses using an updated version of the stellar population synthesis models developed by Conroy & van Dokkum. When examined individually, we find good agreement among these methods for one galaxy. The other two galaxies show 2-3σ tension with lensing estimates, depending on the dark matter contribution, when considering IMFs that extend to 0.08 M ⊙. Allowing a variable low-mass cutoff or a nonparametric form of the IMF reduces the tension among the IMF estimates to <2σ. There is moderate evidence for a reduced number of low-mass stars in the SNELLS spectra, but no such evidence in a composite spectrum of matched-σ ETGs drawn from the SDSS. Such variation in the form of the IMF at low stellar masses (m ≲ 0.3 M ⊙), if present, could reconcile lensing/dynamical and spectroscopic IMF estimates for the SNELLS lenses and account for their lighter M */L relative to the mean matched-σ ETG. We provide the spectra used in this study to facilitate future comparisons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663208-initial-mass-function-nearest-strong-lenses-from-snells-assessing-consistency-lensing-dynamical-spectroscopic-constraints','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663208-initial-mass-function-nearest-strong-lenses-from-snells-assessing-consistency-lensing-dynamical-spectroscopic-constraints"><span>The Initial Mass Function in the Nearest Strong Lenses from SNELLS: Assessing the Consistency of Lensing, Dynamical, and Spectroscopic Constraints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Newman, Andrew B.; Smith, Russell J.; Conroy, Charlie</p> <p>2017-08-20</p> <p>We present new observations of the three nearest early-type galaxy (ETG) strong lenses discovered in the SINFONI Nearby Elliptical Lens Locator Survey (SNELLS). Based on their lensing masses, these ETGs were inferred to have a stellar initial mass function (IMF) consistent with that of the Milky Way, not the bottom-heavy IMF that has been reported as typical for high- σ ETGs based on lensing, dynamical, and stellar population synthesis techniques. We use these unique systems to test the consistency of IMF estimates derived from different methods. We first estimate the stellar M {sub *}/ L using lensing and stellar dynamics.more » We then fit high-quality optical spectra of the lenses using an updated version of the stellar population synthesis models developed by Conroy and van Dokkum. When examined individually, we find good agreement among these methods for one galaxy. The other two galaxies show 2–3 σ tension with lensing estimates, depending on the dark matter contribution, when considering IMFs that extend to 0.08 M {sub ⊙}. Allowing a variable low-mass cutoff or a nonparametric form of the IMF reduces the tension among the IMF estimates to <2 σ . There is moderate evidence for a reduced number of low-mass stars in the SNELLS spectra, but no such evidence in a composite spectrum of matched- σ ETGs drawn from the SDSS. Such variation in the form of the IMF at low stellar masses ( m ≲ 0.3 M {sub ⊙}), if present, could reconcile lensing/dynamical and spectroscopic IMF estimates for the SNELLS lenses and account for their lighter M {sub *}/ L relative to the mean matched- σ ETG. We provide the spectra used in this study to facilitate future comparisons.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.476.5233R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.476.5233R"><span>The influence of galaxy environment on the stellar initial mass function of early-type galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosani, Giulio; Pasquali, Anna; La Barbera, Francesco; Ferreras, Ignacio; Vazdekis, Alexandre</p> <p>2018-06-01</p> <p>In this paper, we investigate whether the stellar initial mass function (IMF) of early-type galaxies depends on their host environment. To this purpose, we have selected a sample of early-type galaxies from the SPIDER catalogue, characterized their environment through the group catalogue of Wang et al., and used their optical Sloan Digital Sky Survey (SDSS) spectra to constrain the IMF slope, through the analysis of IMF-sensitive spectral indices. To reach a high enough signal-to-noise ratio, we have stacked spectra in velocity dispersion (σ0) bins, on top of separating the sample by galaxy hierarchy and host halo mass, as proxies for galaxy environment. In order to constrain the IMF, we have compared observed line strengths and predictions of MIUSCAT/EMILES synthetic stellar population models, with varying age, metallicity, and `bimodal' (low-mass tapered) IMF slope (Γ _b). Consistent with previous studies, we find that Γ _b increases with σ0, becoming bottom-heavy (i.e. an excess of low-mass stars with respect to the Milky Way like IMF) at high σ0. We find that this result is robust against the set of isochrones used in the stellar population models, as well as the way the effect of elemental abundance ratios is taken into account. We thus conclude that it is possible to use currently state-of-the-art stellar population models and intermediate resolution spectra to consistently probe IMF variations. For the first time, we show that there is no dependence of Γb on environment or galaxy hierarchy, as measured within the 3 arcsec SDSS fibre, thus leaving the IMF as an intrinsic galaxy property, possibly set already at high redshift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012MNRAS.422.2246M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012MNRAS.422.2246M"><span>Evidence for top-heavy stellar initial mass functions with increasing density and decreasing metallicity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marks, Michael; Kroupa, Pavel; Dabringhausen, Jörg; Pawlowski, Marcel S.</p> <p>2012-05-01</p> <p>Residual-gas expulsion after cluster formation has recently been shown to leave an imprint in the low-mass present-day stellar mass function (PDMF) which allowed the estimation of birth conditions of some Galactic globular clusters (GCs) such as mass, radius and star formation efficiency. We show that in order to explain their characteristics (masses, radii, metallicity and PDMF) their stellar initial mass function (IMF) must have been top heavy. It is found that the IMF is required to become more top heavy the lower the cluster metallicity and the larger the pre-GC cloud-core density are. The deduced trends are in qualitative agreement with theoretical expectation. The results are consistent with estimates of the shape of the high-mass end of the IMF in the Arches cluster, Westerlund 1, R136 and NGC 3603, as well as with the IMF independently constrained for ultra-compact dwarf galaxies (UCDs). The latter suggests that GCs and UCDs might have formed along the same channel or that UCDs formed via mergers of GCs. A Fundamental Plane is found which describes the variation of the IMF with density and metallicity of the pre-GC cloud cores. The implications for the evolution of galaxies and chemical enrichment over cosmological times are expected to be major.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MSSP...85...56A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MSSP...85...56A"><span>Diagnosis of combined faults in Rotary Machinery by Non-Naive Bayesian approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Asr, Mahsa Yazdanian; Ettefagh, Mir Mohammad; Hassannejad, Reza; Razavi, Seyed Naser</p> <p>2017-02-01</p> <p>When combined faults happen in different parts of the rotating machines, their features are profoundly dependent. Experts are completely familiar with individuals faults characteristics and enough data are available from single faults but the problem arises, when the faults combined and the separation of characteristics becomes complex. Therefore, the experts cannot declare exact information about the symptoms of combined fault and its quality. In this paper to overcome this drawback, a novel method is proposed. The core idea of the method is about declaring combined fault without using combined fault features as training data set and just individual fault features are applied in training step. For this purpose, after data acquisition and resampling the obtained vibration signals, Empirical Mode Decomposition (EMD) is utilized to decompose multi component signals to Intrinsic Mode Functions (IMFs). With the use of correlation coefficient, proper IMFs for feature extraction are selected. In feature extraction step, Shannon energy entropy of IMFs was extracted as well as statistical features. It is obvious that most of extracted features are strongly dependent. To consider this matter, Non-Naive Bayesian Classifier (NNBC) is appointed, which release the fundamental assumption of Naive Bayesian, i.e., the independence among features. To demonstrate the superiority of NNBC, other counterpart methods, include Normal Naive Bayesian classifier, Kernel Naive Bayesian classifier and Back Propagation Neural Networks were applied and the classification results are compared. An experimental vibration signals, collected from automobile gearbox, were used to verify the effectiveness of the proposed method. During the classification process, only the features, related individually to healthy state, bearing failure and gear failures, were assigned for training the classifier. But, combined fault features (combined gear and bearing failures) were examined as test data. The achieved probabilities for the test data show that the combined fault can be identified with high success rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22140220-stellar-initial-mass-function-ultra-faint-dwarf-galaxies-evidence-imf-variations-galactic-environment','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22140220-stellar-initial-mass-function-ultra-faint-dwarf-galaxies-evidence-imf-variations-galactic-environment"><span>THE STELLAR INITIAL MASS FUNCTION OF ULTRA-FAINT DWARF GALAXIES: EVIDENCE FOR IMF VARIATIONS WITH GALACTIC ENVIRONMENT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Geha, Marla; Brown, Thomas M.; Tumlinson, Jason</p> <p>2013-07-01</p> <p>We present constraints on the stellar initial mass function (IMF) in two ultra-faint dwarf (UFD) galaxies, Hercules and Leo IV, based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. The Hercules and Leo IV galaxies are extremely low luminosity (M{sub V} = -6.2, -5.5), metal-poor (([Fe/H]) = -2.4, -2.5) systems that have old stellar populations (>11 Gyr). Because they have long relaxation times, we can directly measure the low-mass stellar IMF by counting stars below the main-sequence turnoff without correcting for dynamical evolution. Over the stellar mass range probed by our data, 0.52-0.77 M{sub Sun }, the IMFmore » is best fit by a power-law slope of {alpha}= 1.2{sub -0.5}{sup +0.4} for Hercules and {alpha} = 1.3 {+-} 0.8 for Leo IV. For Hercules, the IMF slope is more shallow than a Salpeter ({alpha} = 2.35) IMF at the 5.8{sigma} level, and a Kroupa ({alpha} = 2.3 above 0.5 M{sub Sun }) IMF slope at 5.4{sigma} level. We simultaneously fit for the binary fraction, f{sub binary}, finding f{sub binary}= 0.47{sup +0.16}{sub -0.14} for Hercules, and 0.47{sup +0.37}{sub -0.17} for Leo IV. The UFD binary fractions are consistent with that inferred for Milky Way stars in the same mass range, despite very different metallicities. In contrast, the IMF slopes in the UFDs are shallower than other galactic environments. In the mass range 0.5-0.8 M{sub Sun }, we see a trend across the handful of galaxies with directly measured IMFs such that the power-law slopes become shallower (more bottom-light) with decreasing galactic velocity dispersion and metallicity. This trend is qualitatively consistent with results in elliptical galaxies inferred via indirect methods and is direct evidence for IMF variations with galactic environment.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21560538-evolving-stellar-initial-mass-function-gamma-ray-burst-redshift-distribution','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21560538-evolving-stellar-initial-mass-function-gamma-ray-burst-redshift-distribution"><span>AN EVOLVING STELLAR INITIAL MASS FUNCTION AND THE GAMMA-RAY BURST REDSHIFT DISTRIBUTION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, F. Y.; Dai, Z. G.</p> <p>2011-02-01</p> <p>Recent studies suggest that Swift gamma-ray bursts (GRBs) may not trace an ordinary star formation history (SFH). Here, we show that the GRB rate turns out to be consistent with the SFH with an evolving stellar initial mass function (IMF). We first show that the latest Swift sample of GRBs reveals an increasing evolution in the GRB rate relative to the ordinary star formation rate at high redshifts. We then assume only massive stars with masses greater than the critical value to produce GRBs and use an evolving stellar IMF suggested by Dave to fit the latest GRB redshift distribution.more » This evolving IMF would increase the relative number of massive stars, which could lead to more GRB explosions at high redshifts. We find that the evolving IMF can well reproduce the observed redshift distribution of Swift GRBs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.469.2464A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.469.2464A"><span>Exploring the IMF of star clusters: a joint SLUG and LEGUS effort</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ashworth, G.; Fumagalli, M.; Krumholz, M. R.; Adamo, A.; Calzetti, D.; Chandar, R.; Cignoni, M.; Dale, D.; Elmegreen, B. G.; Gallagher, J. S., III; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Johnson, K. E.; Lee, J.; Tosi, M.; Wofford, A.</p> <p>2017-08-01</p> <p>We present the implementation of a Bayesian formalism within the Stochastically Lighting Up Galaxies (slug) stellar population synthesis code, which is designed to investigate variations in the initial mass function (IMF) of star clusters. By comparing observed cluster photometry to large libraries of clusters simulated with a continuously varying IMF, our formalism yields the posterior probability distribution function (PDF) of the cluster mass, age and extinction, jointly with the parameters describing the IMF. We apply this formalism to a sample of star clusters from the nearby galaxy NGC 628, for which broad-band photometry in five filters is available as part of the Legacy ExtraGalactic UV Survey (LEGUS). After allowing the upper-end slope of the IMF (α3) to vary, we recover PDFs for the mass, age and extinction that are broadly consistent with what is found when assuming an invariant Kroupa IMF. However, the posterior PDF for α3 is very broad due to a strong degeneracy with the cluster mass, and it is found to be sensitive to the choice of priors, particularly on the cluster mass. We find only a modest improvement in the constraining power of α3 when adding Hα photometry from the companion Hα-LEGUS survey. Conversely, Hα photometry significantly improves the age determination, reducing the frequency of multi-modal PDFs. With the aid of mock clusters, we quantify the degeneracy between physical parameters, showing how constraints on the cluster mass that are independent of photometry can be used to pin down the IMF properties of star clusters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22522122-imf-triggered-star-formation-context','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22522122-imf-triggered-star-formation-context"><span>ON THE IMF IN A TRIGGERED STAR FORMATION CONTEXT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhou, Tingtao; Huang, Chelsea X.; Lin, D. N. C.</p> <p>2015-07-20</p> <p>The origin of the stellar initial mass function (IMF) is a fundamental issue in the theory of star formation. It is generally fit with a composite power law. Some clues on the progenitors can be found in dense starless cores that have a core mass function (CMF) with a similar shape. In the low-mass end, these mass functions increase with mass, albeit the sample may be somewhat incomplete; in the high-mass end, the mass functions decrease with mass. There is an offset in the turn-over mass between the two mass distributions. The stellar mass for the IMF peak is lowermore » than the corresponding core mass for the CMF peak in the Pipe Nebula by about a factor of three. Smaller offsets are found between the IMF and the CMFs in other nebulae. We suggest that the offset is likely induced during a starburst episode of global star formation which is triggered by the formation of a few O/B stars in the multi-phase media, which naturally emerged through the onset of thermal instability in the cloud-core formation process. We consider the scenario that the ignition of a few massive stars photoionizes the warm medium between the cores, increases the external pressure, reduces their Bonnor–Ebert mass, and triggers the collapse of some previously stable cores. We quantitatively reproduce the IMF in the low-mass end with the assumption of additional rotational fragmentation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23376303','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23376303"><span>A two-stage mixed-integer fuzzy programming with interval-valued membership functions approach for flood-diversion planning.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, S; Huang, G H</p> <p>2013-03-15</p> <p>Flood disasters have been extremely severe in recent decades, and they account for about one third of all natural catastrophes throughout the world. In this study, a two-stage mixed-integer fuzzy programming with interval-valued membership functions (TMFP-IMF) approach is developed for flood-diversion planning under uncertainty. TMFP-IMF integrates the fuzzy flexible programming, two-stage stochastic programming, and integer programming within a general framework. A concept of interval-valued fuzzy membership function is introduced to address complexities of system uncertainties. TMFP-IMF can not only deal with uncertainties expressed as fuzzy sets and probability distributions, but also incorporate pre-regulated water-diversion policies directly into its optimization process. TMFP-IMF is applied to a hypothetical case study of flood-diversion planning for demonstrating its applicability. Results indicate that reasonable solutions can be generated for binary and continuous variables. A variety of flood-diversion and capacity-expansion schemes can be obtained under four scenarios, which enable decision makers (DMs) to identify the most desired one based on their perceptions and attitudes towards the objective-function value and constraints. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999ApJ...515..603F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999ApJ...515..603F"><span>Testing the Relation between the Local and Cosmic Star Formation Histories</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fields, Brian D.</p> <p>1999-04-01</p> <p>Recently, there has been great progress toward observationally determining the mean star formation history of the universe. When accurately known, the cosmic star formation rate could provide much information about Galactic evolution, if the Milky Way's star formation rate is representative of the average cosmic star formation history. A simple hypothesis is that our local star formation rate is proportional to the cosmic mean. In addition, to specify a star formation history, one must also adopt an initial mass function (IMF) typically it is assumed that the IMF is a smooth function, which is constant in time. We show how to test directly the compatibility of all these assumptions by making use of the local (solar neighborhood) star formation record encoded in the present-day stellar mass function. Present data suggest that at least one of the following is false: (1) the local IMF is constant in time; (2) the local IMF is a smooth (unimodal) function; and/or (3) star formation in the Galactic disk was representative of the cosmic mean. We briefly discuss how to determine which of these assumptions fail and also improvements in observations, which will sharpen this test.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5924536','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5924536"><span>A Key Gene, PLIN1, Can Affect Porcine Intramuscular Fat Content Based on Transcriptome Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Bojiang; Weng, Qiannan; Dong, Chao; Zhang, Zengkai; Li, Rongyang; Liu, Jingge; Jiang, Aiwen; Li, Qifa; Jia, Chao; Wu, Wangjun; Liu, Honglin</p> <p>2018-01-01</p> <p>Intramuscular fat (IMF) content is an important indicator for meat quality evaluation. However, the key genes and molecular regulatory mechanisms affecting IMF deposition remain unclear. In the present study, we identified 75 differentially expressed genes (DEGs) between the higher (H) and lower (L) IMF content of pigs using transcriptome analysis, of which 27 were upregulated and 48 were downregulated. Notably, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the DEG perilipin-1 (PLIN1) was significantly enriched in the fat metabolism-related peroxisome proliferator-activated receptor (PPAR) signaling pathway. Furthermore, we determined the expression patterns and functional role of porcine PLIN1. Our results indicate that PLIN1 was highly expressed in porcine adipose tissue, and its expression level was significantly higher in the H IMF content group when compared with the L IMF content group, and expression was increased during adipocyte differentiation. Additionally, our results confirm that PLIN1 knockdown decreases the triglyceride (TG) level and lipid droplet (LD) size in porcine adipocytes. Overall, our data identify novel candidate genes affecting IMF content and provide new insight into PLIN1 in porcine IMF deposition and adipocyte differentiation. PMID:29617344</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29617344','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29617344"><span>A Key Gene, PLIN1, Can Affect Porcine Intramuscular Fat Content Based on Transcriptome Analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Bojiang; Weng, Qiannan; Dong, Chao; Zhang, Zengkai; Li, Rongyang; Liu, Jingge; Jiang, Aiwen; Li, Qifa; Jia, Chao; Wu, Wangjun; Liu, Honglin</p> <p>2018-04-04</p> <p>Intramuscular fat (IMF) content is an important indicator for meat quality evaluation. However, the key genes and molecular regulatory mechanisms affecting IMF deposition remain unclear. In the present study, we identified 75 differentially expressed genes (DEGs) between the higher (H) and lower (L) IMF content of pigs using transcriptome analysis, of which 27 were upregulated and 48 were downregulated. Notably, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the DEG perilipin-1 ( PLIN1 ) was significantly enriched in the fat metabolism-related peroxisome proliferator-activated receptor (PPAR) signaling pathway. Furthermore, we determined the expression patterns and functional role of porcine PLIN1. Our results indicate that PLIN1 was highly expressed in porcine adipose tissue, and its expression level was significantly higher in the H IMF content group when compared with the L IMF content group, and expression was increased during adipocyte differentiation. Additionally, our results confirm that PLIN1 knockdown decreases the triglyceride (TG) level and lipid droplet (LD) size in porcine adipocytes. Overall, our data identify novel candidate genes affecting IMF content and provide new insight into PLIN1 in porcine IMF deposition and adipocyte differentiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27834902','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27834902"><span>Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Variational Mode Decomposition and Multi-Layer Classifier.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Nantian; Chen, Huaijin; Cai, Guowei; Fang, Lihua; Wang, Yuqiang</p> <p>2016-11-10</p> <p>Mechanical fault diagnosis of high-voltage circuit breakers (HVCBs) based on vibration signal analysis is one of the most significant issues in improving the reliability and reducing the outage cost for power systems. The limitation of training samples and types of machine faults in HVCBs causes the existing mechanical fault diagnostic methods to recognize new types of machine faults easily without training samples as either a normal condition or a wrong fault type. A new mechanical fault diagnosis method for HVCBs based on variational mode decomposition (VMD) and multi-layer classifier (MLC) is proposed to improve the accuracy of fault diagnosis. First, HVCB vibration signals during operation are measured using an acceleration sensor. Second, a VMD algorithm is used to decompose the vibration signals into several intrinsic mode functions (IMFs). The IMF matrix is divided into submatrices to compute the local singular values (LSV). The maximum singular values of each submatrix are selected as the feature vectors for fault diagnosis. Finally, a MLC composed of two one-class support vector machines (OCSVMs) and a support vector machine (SVM) is constructed to identify the fault type. Two layers of independent OCSVM are adopted to distinguish normal or fault conditions with known or unknown fault types, respectively. On this basis, SVM recognizes the specific fault type. Real diagnostic experiments are conducted with a real SF₆ HVCB with normal and fault states. Three different faults (i.e., jam fault of the iron core, looseness of the base screw, and poor lubrication of the connecting lever) are simulated in a field experiment on a real HVCB to test the feasibility of the proposed method. Results show that the classification accuracy of the new method is superior to other traditional methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5134546','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5134546"><span>Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Variational Mode Decomposition and Multi-Layer Classifier</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Huang, Nantian; Chen, Huaijin; Cai, Guowei; Fang, Lihua; Wang, Yuqiang</p> <p>2016-01-01</p> <p>Mechanical fault diagnosis of high-voltage circuit breakers (HVCBs) based on vibration signal analysis is one of the most significant issues in improving the reliability and reducing the outage cost for power systems. The limitation of training samples and types of machine faults in HVCBs causes the existing mechanical fault diagnostic methods to recognize new types of machine faults easily without training samples as either a normal condition or a wrong fault type. A new mechanical fault diagnosis method for HVCBs based on variational mode decomposition (VMD) and multi-layer classifier (MLC) is proposed to improve the accuracy of fault diagnosis. First, HVCB vibration signals during operation are measured using an acceleration sensor. Second, a VMD algorithm is used to decompose the vibration signals into several intrinsic mode functions (IMFs). The IMF matrix is divided into submatrices to compute the local singular values (LSV). The maximum singular values of each submatrix are selected as the feature vectors for fault diagnosis. Finally, a MLC composed of two one-class support vector machines (OCSVMs) and a support vector machine (SVM) is constructed to identify the fault type. Two layers of independent OCSVM are adopted to distinguish normal or fault conditions with known or unknown fault types, respectively. On this basis, SVM recognizes the specific fault type. Real diagnostic experiments are conducted with a real SF6 HVCB with normal and fault states. Three different faults (i.e., jam fault of the iron core, looseness of the base screw, and poor lubrication of the connecting lever) are simulated in a field experiment on a real HVCB to test the feasibility of the proposed method. Results show that the classification accuracy of the new method is superior to other traditional methods. PMID:27834902</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5909914','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5909914"><span>Empirical mode decomposition processing to improve multifocal-visual-evoked-potential signal analysis in multiple sclerosis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2018-01-01</p> <p>Objective To study the performance of multifocal-visual-evoked-potential (mfVEP) signals filtered using empirical mode decomposition (EMD) in discriminating, based on amplitude, between control and multiple sclerosis (MS) patient groups, and to reduce variability in interocular latency in control subjects. Methods MfVEP signals were obtained from controls, clinically definitive MS and MS-risk progression patients (radiologically isolated syndrome (RIS) and clinically isolated syndrome (CIS)). The conventional method of processing mfVEPs consists of using a 1–35 Hz bandpass frequency filter (XDFT). The EMD algorithm was used to decompose the XDFT signals into several intrinsic mode functions (IMFs). This signal processing was assessed by computing the amplitudes and latencies of the XDFT and IMF signals (XEMD). The amplitudes from the full visual field and from ring 5 (9.8–15° eccentricity) were studied. The discrimination index was calculated between controls and patients. Interocular latency values were computed from the XDFT and XEMD signals in a control database to study variability. Results Using the amplitude of the mfVEP signals filtered with EMD (XEMD) obtains higher discrimination index values than the conventional method when control, MS-risk progression (RIS and CIS) and MS subjects are studied. The lowest variability in interocular latency computations from the control patient database was obtained by comparing the XEMD signals with the XDFT signals. Even better results (amplitude discrimination and latency variability) were obtained in ring 5 (9.8–15° eccentricity of the visual field). Conclusions Filtering mfVEP signals using the EMD algorithm will result in better identification of subjects at risk of developing MS and better accuracy in latency studies. This could be applied to assess visual cortex activity in MS diagnosis and evolution studies. PMID:29677200</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22086485','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22086485"><span>Automatic motion and noise artifact detection in Holter ECG data using empirical mode decomposition and statistical approaches.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Jinseok; McManus, David D; Merchant, Sneh; Chon, Ki H</p> <p>2012-06-01</p> <p>We present a real-time method for the detection of motion and noise (MN) artifacts, which frequently interferes with accurate rhythm assessment when ECG signals are collected from Holter monitors. Our MN artifact detection approach involves two stages. The first stage involves the use of the first-order intrinsic mode function (F-IMF) from the empirical mode decomposition to isolate the artifacts' dynamics as they are largely concentrated in the higher frequencies. The second stage of our approach uses three statistical measures on the F-IMF time series to look for characteristics of randomness and variability, which are hallmark signatures of MN artifacts: the Shannon entropy, mean, and variance. We then use the receiver-operator characteristics curve on Holter data from 15 healthy subjects to derive threshold values associated with these statistical measures to separate between the clean and MN artifacts' data segments. With threshold values derived from 15 training data sets, we tested our algorithms on 30 additional healthy subjects. Our results show that our algorithms are able to detect the presence of MN artifacts with sensitivity and specificity of 96.63% and 94.73%, respectively. In addition, when we applied our previously developed algorithm for atrial fibrillation (AF) detection on those segments that have been labeled to be free from MN artifacts, the specificity increased from 73.66% to 85.04% without loss of sensitivity (74.48%-74.62%) on six subjects diagnosed with AF. Finally, the computation time was less than 0.2 s using a MATLAB code, indicating that real-time application of the algorithms is possible for Holter monitoring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5713071','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5713071"><span>Fault Detection of Bearing Systems through EEMD and Optimization Algorithm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lee, Dong-Han; Ahn, Jong-Hyo; Koh, Bong-Hwan</p> <p>2017-01-01</p> <p>This study proposes a fault detection and diagnosis method for bearing systems using ensemble empirical mode decomposition (EEMD) based feature extraction, in conjunction with particle swarm optimization (PSO), principal component analysis (PCA), and Isomap. First, a mathematical model is assumed to generate vibration signals from damaged bearing components, such as the inner-race, outer-race, and rolling elements. The process of decomposing vibration signals into intrinsic mode functions (IMFs) and extracting statistical features is introduced to develop a damage-sensitive parameter vector. Finally, PCA and Isomap algorithm are used to classify and visualize this parameter vector, to separate damage characteristics from healthy bearing components. Moreover, the PSO-based optimization algorithm improves the classification performance by selecting proper weightings for the parameter vector, to maximize the visualization effect of separating and grouping of parameter vectors in three-dimensional space. PMID:29143772</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...835..183C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...835..183C"><span>Testing the Universality of the Stellar IMF with Chandra and HST</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coulter, D. A.; Lehmer, B. D.; Eufrasio, R. T.; Kundu, A.; Maccarone, T.; Peacock, M.; Hornschemeier, A. E.; Basu-Zych, A.; Gonzalez, A. H.; Maraston, C.; Zepf, S. E.</p> <p>2017-02-01</p> <p>The stellar initial mass function (IMF), which is often assumed to be universal across unresolved stellar populations, has recently been suggested to be “bottom-heavy” for massive ellipticals. In these galaxies, the prevalence of gravity-sensitive absorption lines (e.g., Na I and Ca II) in their near-IR spectra implies an excess of low-mass (m≲ 0.5 {M}⊙ ) stars over that expected from a canonical IMF observed in low-mass ellipticals. A direct extrapolation of such a bottom-heavy IMF to high stellar masses (m≳ 8 {M}⊙ ) would lead to a corresponding deficit of neutron stars and black holes, and therefore of low-mass X-ray binaries (LMXBs), per unit near-IR luminosity in these galaxies. Peacock et al. searched for evidence of this trend and found that the observed number of LMXBs per unit K-band luminosity (N/{L}K) was nearly constant. We extend this work using new and archival Chandra X-ray Observatory and Hubble Space Telescope observations of seven low-mass ellipticals where N/{L}K is expected to be the largest and compare these data with a variety of IMF models to test which are consistent with the observed N/{L}K. We reproduce the result of Peacock et al., strengthening the constraint that the slope of the IMF at m≳ 8 {M}⊙ must be consistent with a Kroupa-like IMF. We construct an IMF model that is a linear combination of a Milky Way-like IMF and a broken power-law IMF, with a steep slope ({α }1=3.84) for stars <0.5 {M}⊙ (as suggested by near-IR indices), and that flattens out ({α }2=2.14) for stars >0.5 {M}⊙ , and discuss its wider ramifications and limitations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170007933&hterms=stellar+black+holes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dstellar%2Bblack%2Bholes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170007933&hterms=stellar+black+holes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dstellar%2Bblack%2Bholes"><span>Testing the Universality of the Stellar IMF with Chandra and HST</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coulter, D. A.; Lehmer, B. D.; Eufrasio, R. T.; Kundu, A.; Maccarone, T.; Peacock, M.; Hornschemeier, A. E.; Basu-Zych, A.; Gonzalez, A. H.; Maraston, C.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170007933'); toggleEditAbsImage('author_20170007933_show'); toggleEditAbsImage('author_20170007933_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170007933_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170007933_hide"></p> <p>2017-01-01</p> <p>The stellar initial mass function (IMF), which is often assumed to be universal across unresolved stellar populations, has recently been suggested to be bottom-heavy for massive ellipticals. In these galaxies, the prevalence of gravity-sensitive absorption lines (e.g., Na I and Ca II) in their near-IR spectra implies an excess of low-mass (m < or approx. = 0.5 Stellar Mass) stars over that expected from a canonical IMF observed in low-mass ellipticals. A direct extrapolation of such a bottom-heavy IMF to high stellar masses (m > or approx. = 8 Stellar Mass) would lead to a corresponding deficit of neutron stars and black holes, and therefore of low-mass X-ray binaries (LMXBs), per unit near-IR luminosity in these galaxies. Peacock et al. searched for evidence of this trend and found that the observed number of LMXBs per unit K-band luminosity (N/LK) was nearly constant. We extend this work using new and archival Chandra X-ray Observatory and Hubble Space Telescope observations of seven low-mass ellipticals where N/LK is expected to be the largest and compare these data with a variety of IMF models to test which are consistent with the observed N/LK. We reproduce the result of Peacock et al., strengthening the constraint that the slope of the IMF at m > or approx. = 8 Stellar Mass must be consistent with a Kroupa-like IMF. We construct an IMF model that is a linear combination of a Milky Way-like IMF and a broken power-law IMF, with a steep slope (alpha1 = 3.84) for stars < 0.5 Stellar Mass (as suggested by near-IR indices), and that flattens out (alpha2 = 2.14) for stars > 0.5 Stellar Mass, and discuss its wider ramifications and limitations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...841...68V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...841...68V"><span>The Stellar Initial Mass Function in Early-type Galaxies from Absorption Line Spectroscopy. III. Radial Gradients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Dokkum, Pieter; Conroy, Charlie; Villaume, Alexa; Brodie, Jean; Romanowsky, Aaron J.</p> <p>2017-06-01</p> <p>There is good evidence that the centers of massive early-type galaxies have a bottom-heavy stellar initial mass function (IMF) compared to that of the Milky Way. Here we study the radial variation of the IMF within such galaxies, using a combination of high-quality Keck spectroscopy and a new suite of stellar population synthesis models that cover a wide range in metallicity. As in the previous studies in this series, the models are fitted directly to the spectra and treat all elemental abundance ratios as free parameters. Using newly obtained spectroscopy for six galaxies, including deep data extending to ˜ 1{R}{{e}} for the galaxies NGC 1407, NGC 1600, and NGC 2695, we find that the IMF varies strongly with galactocentric radius. For all six galaxies the IMF is bottom-heavy in the central regions, with average mass-to-light ratio “mismatch” parameter α \\equiv {({\\text{}}M/L)/({\\text{}}M/L)}{MW}≈ 2.5 at R = 0. The IMF rapidly becomes more bottom-light with increasing radius, flattening off near the Milky Way value (α ≈ 1.1) at R> 0.4{R}{{e}}. A consequence is that the luminosity-weighted average IMF depends on the measurement aperture: within R={R}{{e}} we find < α {> }L=1.3{--}1.5, consistent with recent lensing and dynamical results from SLACS and {{ATLAS}}3{{D}}. Our results are also consistent with several earlier studies that were based on analyses of radial gradients of line indices. The observed IMF gradients support galaxy formation models in which the central regions of massive galaxies had a different formation history than their outer parts. Finally, we make use of the high signal-to-noise central spectra of NGC 1407 and NGC 2695 to demonstrate how we can disentangle IMF effects and abundance effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.468.3071N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.468.3071N"><span>ZFIRE: using Hα equivalent widths to investigate the in situ initial mass function at z ˜ 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nanayakkara, Themiya; Glazebrook, Karl; Kacprzak, Glenn G.; Yuan, Tiantian; Fisher, David; Tran, Kim-Vy; Kewley, Lisa J.; Spitler, Lee; Alcorn, Leo; Cowley, Michael; Labbe, Ivo; Straatman, Caroline; Tomczak, Adam</p> <p>2017-07-01</p> <p>We use the ZFIRE (http://zfire.swinburne.edu.au) survey to investigate the high-mass slope of the initial mass function (IMF) for a mass-complete (log_{10({M}_*/M_{⊙})˜ 9.3}) sample of 102 star-forming galaxies at z ˜ 2 using their Hα equivalent widths (Hα EWs) and rest-frame optical colours. We compare dust-corrected Hα EW distributions with predictions of star formation histories (SFHs) from pegase.2 and starburst synthetic stellar population models. We find an excess of high Hα EW galaxies that are up to 0.3-0.5 dex above the model-predicted Salpeter IMF locus and the Hα EW distribution is much broader (10-500 Å) than can easily be explained by a simple monotonic SFH with a standard Salpeter-slope IMF. Though this discrepancy is somewhat alleviated when it is assumed that there is no relative attenuation difference between stars and nebular lines, the result is robust against observational biases, and no single IMF (I.e. non-Salpeter slope) can reproduce the data. We show using both spectral stacking and Monte Carlo simulations that starbursts cannot explain the EW distribution. We investigate other physical mechanisms including models with variations in stellar rotation, binary star evolution, metallicity and the IMF upper-mass cut-off. IMF variations and/or highly rotating extreme metal-poor stars (Z ˜ 0.1 Z⊙) with binary interactions are the most plausible explanations for our data. If the IMF varies, then the highest Hα EWs would require very shallow slopes (Γ > -1.0) with no one slope able to reproduce the data. Thus, the IMF would have to vary stochastically. We conclude that the stellar populations at z ≳ 2 show distinct differences from local populations and there is no simple physical model to explain the large variation in Hα EWs at z ˜ 2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JSV...377..302M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JSV...377..302M"><span>Bond graph modeling and experimental verification of a novel scheme for fault diagnosis of rolling element bearings in special operating conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mishra, C.; Samantaray, A. K.; Chakraborty, G.</p> <p>2016-09-01</p> <p>Vibration analysis for diagnosis of faults in rolling element bearings is complicated when the rotor speed is variable or slow. In the former case, the time interval between the fault-induced impact responses in the vibration signal are non-uniform and the signal strength is variable. In the latter case, the fault-induced impact response strength is weak and generally gets buried in the noise, i.e. noise dominates the signal. This article proposes a diagnosis scheme based on a combination of a few signal processing techniques. The proposed scheme initially represents the vibration signal in terms of uniformly resampled angular position of the rotor shaft by using the interpolated instantaneous angular position measurements. Thereafter, intrinsic mode functions (IMFs) are generated through empirical mode decomposition (EMD) of resampled vibration signal which is followed by thresholding of IMFs and signal reconstruction to de-noise the signal and envelope order tracking to diagnose the faults. Data for validating the proposed diagnosis scheme are initially generated from a multi-body simulation model of rolling element bearing which is developed using bond graph approach. This bond graph model includes the ball and cage dynamics, localized fault geometry, contact mechanics, rotor unbalance, and friction and slip effects. The diagnosis scheme is finally validated with experiments performed with the help of a machine fault simulator (MFS) system. Some fault scenarios which could not be experimentally recreated are then generated through simulations and analyzed through the developed diagnosis scheme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1090S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1090S"><span>MUSE observations of M87: radial gradients for the stellar initial-mass function and the abundance of Sodium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarzi, Marc; Spiniello, Chiara; Barbera, Francesco La; Krajnović, Davor; Bosch, Remco van den</p> <p>2018-05-01</p> <p>Based on MUSE integral-field data we present evidence for a radial variation at the low-mass end of the stellar initial-mass function (IMF) in the central regions of the giant early-type galaxy NGC 4486 (M87). We used state-of-the-art stellar population models and the observed strength of various IMF-sensitive absorption-line features to solve for the best low-mass tapered "bimodal" form of the IMF, while accounting also for variations in stellar metallicity, the overall α-elements abundance and the abundance of individual elements such as Ti, O, Na and Ca. Our analysis reveals a strong negative IMF gradient corresponding to an exceeding fraction of low-mass stars compared to the case of the Milky Way toward the center of M87, which drops to nearly Milky-way levels by 0.4 Re. Such IMF variations correspond to over a factor two increase in stellar mass-to-light M/L ratio compared to the case of a Milky-way IMF, consistent with independent constraints on M/L radial variations in M87 from dynamical models. We also looked into the abundance of Sodium in M87, which turned up to be super-Solar over the entire radial range of our MUSE observations and to exhibit a considerable negative gradient. These findings suggest an additional role of metallicity in boosting the Na-yields in the central, metal-rich regions of M87 during its early and brief star-formation history. Our work adds M87 to the few objects that presently have radial constraints on their IMF or [Na/Fe] abundance, while also illustrating the accuracy that MUSE could bring to this kind of investigations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PASP..115..763C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PASP..115..763C"><span>Galactic Stellar and Substellar Initial Mass Function</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chabrier, Gilles</p> <p>2003-07-01</p> <p>We review recent determinations of the present-day mass function (PDMF) and initial mass function (IMF) in various components of the Galaxy-disk, spheroid, young, and globular clusters-and in conditions characteristic of early star formation. As a general feature, the IMF is found to depend weakly on the environment and to be well described by a power-law form for m>~1 Msolar and a lognormal form below, except possibly for early star formation conditions. The disk IMF for single objects has a characteristic mass around mc~0.08 Msolar and a variance in logarithmic mass σ~0.7, whereas the IMF for multiple systems has mc~0.2 Msolar and σ~0.6. The extension of the single MF into the brown dwarf regime is in good agreement with present estimates of L- and T-dwarf densities and yields a disk brown dwarf number density comparable to the stellar one, nBD~n*~0.1 pc-3. The IMF of young clusters is found to be consistent with the disk field IMF, providing the same correction for unresolved binaries, confirming the fact that young star clusters and disk field stars represent the same stellar population. Dynamical effects, yielding depletion of the lowest mass objects, are found to become consequential for ages >~130 Myr. The spheroid IMF relies on much less robust grounds. The large metallicity spread in the local subdwarf photometric sample, in particular, remains puzzling. Recent observations suggest that there is a continuous kinematic shear between the thick-disk population, present in local samples, and the genuine spheroid one. This enables us to derive only an upper limit for the spheroid mass density and IMF. Within all the uncertainties, the latter is found to be similar to the one derived for globular clusters and is well represented also by a lognormal form with a characteristic mass slightly larger than for the disk, mc~0.2-0.3 Msolar, excluding a significant population of brown dwarfs in globular clusters and in the spheroid. The IMF characteristic of early star formation at large redshift remains undetermined, but different observational constraints suggest that it does not extend below ~1 Msolar. These results suggest a characteristic mass for star formation that decreases with time, from conditions prevailing at large redshift to conditions characteristic of the spheroid (or thick disk) to present-day conditions. These conclusions, however, remain speculative, given the large uncertainties in the spheroid and early star IMF determinations. These IMFs allow a reasonably robust determination of the Galactic present-day and initial stellar and brown dwarf contents. They also have important galactic implications beyond the Milky Way in yielding more accurate mass-to-light ratio determinations. The mass-to-light ratios obtained with the disk and the spheroid IMF yield values 1.8-1.4 times smaller than for a Salpeter IMF, respectively, in agreement with various recent dynamical determinations. This general IMF determination is examined in the context of star formation theory. None of the theories based on a Jeans-type mechanism, where fragmentation is due only to gravity, can fulfill all the observational constraints on star formation and predict a large number of substellar objects. On the other hand, recent numerical simulations of compressible turbulence, in particular in super-Alfvénic conditions, seem to reproduce both qualitatively and quantitatively the stellar and substellar IMF and thus provide an appealing theoretical foundation. In this picture, star formation is induced by the dissipation of large-scale turbulence to smaller scales through radiative MHD shocks, producing filamentary structures. These shocks produce local nonequilibrium structures with large density contrasts, which collapse eventually in gravitationally bound objects under the combined influence of turbulence and gravity. The concept of a single Jeans mass is replaced by a distribution of local Jeans masses, representative of the lognormal probability density function of the turbulent gas. Objects below the mean thermal Jeans mass still have a possibility to collapse, although with a decreasing probability. The page charges for this Review were partially covered by a generous gift from a PASP supporter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PIAHS.366..172C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PIAHS.366..172C"><span>Prediction of mean monthly river discharges in Colombia through Empirical Mode Decomposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carmona, A. M.; Poveda, G.</p> <p>2015-04-01</p> <p>The hydro-climatology of Colombia exhibits strong natural variability at a broad range of time scales including: inter-decadal, decadal, inter-annual, annual, intra-annual, intra-seasonal, and diurnal. Diverse applied sectors rely on quantitative predictions of river discharges for operational purposes including hydropower generation, agriculture, human health, fluvial navigation, territorial planning and management, risk preparedness and mitigation, among others. Various methodologies have been used to predict monthly mean river discharges that are based on "Predictive Analytics", an area of statistical analysis that studies the extraction of information from historical data to infer future trends and patterns. Our study couples the Empirical Mode Decomposition (EMD) with traditional methods, e.g. Autoregressive Model of Order 1 (AR1) and Neural Networks (NN), to predict mean monthly river discharges in Colombia, South America. The EMD allows us to decompose the historical time series of river discharges into a finite number of intrinsic mode functions (IMF) that capture the different oscillatory modes of different frequencies associated with the inherent time scales coexisting simultaneously in the signal (Huang et al. 1998, Huang and Wu 2008, Rao and Hsu, 2008). Our predictive method states that it is easier and simpler to predict each IMF at a time and then add them up together to obtain the predicted river discharge for a certain month, than predicting the full signal. This method is applied to 10 series of monthly mean river discharges in Colombia, using calibration periods of more than 25 years, and validation periods of about 12 years. Predictions are performed for time horizons spanning from 1 to 12 months. Our results show that predictions obtained through the traditional methods improve when the EMD is used as a previous step, since errors decrease by up to 13% when the AR1 model is used, and by up to 18% when using Neural Networks is combined with the EMD.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930033847&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D50%26Ntt%3Dlazarus','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930033847&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D50%26Ntt%3Dlazarus"><span>Pc3 activity at low geomagnetic latitudes - A comparison with solar wind observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Villante, U.; Lepidi, S.; Vellante, M.; Lazarus, A. J.; Lepping, R. P.</p> <p>1992-01-01</p> <p>On an hourly time-scale the different roles of the solar wind and interplanetary magnetic field (IMF) parameters on ground micropulsation activity can be better investigated than at longer time-scales. A long-term comparison between ground measurements made at L'Aquila and IMP 8 observations confirms the solar wind speed as the key parameter for the onset of pulsations even at low latitudes, although additional control of the energy transfer from the interplanetary medium to the earth's magnetosphere is clearly exerted by the cone angle. Above about 20 mHz the frequency of pulsations is confirmed to be closely related to the IMF magnitude while, in agreement with model predictions, the IMF magnitude is related to the amplitude of the local fundamental resonant mode. We provide an interesting example in which high resolution measurements simultaneously obtained in the foreshock region and on the ground show that external transversal fluctuations do not penetrate deep into the low latitude magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp..765P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp..765P"><span>SDSS-IV MaNGA: The Spatially Resolved Stellar Initial Mass Function in ˜400 Early-Type Galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parikh, Taniya; Thomas, Daniel; Maraston, Claudia; Westfall, Kyle B.; Goddard, Daniel; Lian, Jianhui; Meneses-Goytia, Sofia; Jones, Amy; Vaughan, Sam; Andrews, Brett H.; Bershady, Matthew; Bizyaev, Dmitry; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Emsellem, Eric; Law, David R.; Newman, Jeffrey A.; Roman-Lopes, Alexandre; Wake, David; Yan, Renbin; Zheng, Zheng</p> <p>2018-03-01</p> <p>MaNGA provides the opportunity to make precise spatially resolved measurements of the IMF slope in galaxies owing to its unique combination of spatial resolution, wavelength coverage and sample size. We derive radial gradients in age, element abundances and IMF slope analysing optical and near-infrared absorption features from stacked spectra out to the half-light radius of 366 early-type galaxies with masses 9.9 - 10.8 log M/M⊙. We find flat gradients in age and [α/Fe] ratio, as well as negative gradients in metallicity, consistent with the literature. We further derive significant negative gradients in the [Na/Fe] ratio with galaxy centres being well enhanced in Na abundance by up to 0.5 dex. Finally, we find a gradient in IMF slope with a bottom-heavy IMF in the centre (typical mass excess factor of 1.5) and a Milky Way-type IMF at the half-light radius. This pattern is mass-dependent with the lowest mass galaxies in our sample featuring only a shallow gradient around a Milky Way IMF. Our results imply the local IMF-σ relation within galaxies to be even steeper than the global relation and hint towards the local metallicity being the dominating factor behind the IMF variations. We also employ different stellar population models in our analysis and show that a radial IMF gradient is found independently of the stellar population model used. A similar analysis of the Wing-Ford band provides inconsistent results and further evidence of the difficulty in measuring and modelling this particular feature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JSV...333.3321J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JSV...333.3321J"><span>Fault identification of rotor-bearing system based on ensemble empirical mode decomposition and self-zero space projection analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Fan; Zhu, Zhencai; Li, Wei; Zhou, Gongbo; Chen, Guoan</p> <p>2014-07-01</p> <p>Accurately identifying faults in rotor-bearing systems by analyzing vibration signals, which are nonlinear and nonstationary, is challenging. To address this issue, a new approach based on ensemble empirical mode decomposition (EEMD) and self-zero space projection analysis is proposed in this paper. This method seeks to identify faults appearing in a rotor-bearing system using simple algebraic calculations and projection analyses. First, EEMD is applied to decompose the collected vibration signals into a set of intrinsic mode functions (IMFs) for features. Second, these extracted features under various mechanical health conditions are used to design a self-zero space matrix according to space projection analysis. Finally, the so-called projection indicators are calculated to identify the rotor-bearing system's faults with simple decision logic. Experiments are implemented to test the reliability and effectiveness of the proposed approach. The results show that this approach can accurately identify faults in rotor-bearing systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1372V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1372V"><span>The stellar population and initial mass function of NGC 1399 with MUSE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vaughan, Sam P.; Davies, Roger L.; Zieleniewski, Simon; Houghton, Ryan C. W.</p> <p>2018-06-01</p> <p>We present spatially resolved measurements of the stellar initial mass function (IMF) in NGC 1399, the largest elliptical galaxy in the Fornax Cluster. Using data from the Multi Unit Spectroscopic Explorer (MUSE) and updated state-of-the-art stellar population synthesis models from Conroy et al. (2018), we use full spectral fitting to measure the low-mass IMF, as well as a number of individual elemental abundances, as a function of radius in this object. We find that the IMF in NGC 1399 is heavier than the Milky Way in its centre and remains radially constant at a super-salpeter slope out to 0.7 Re. At radii larger than this, the IMF slope decreases to become marginally consistent with a Milky Way IMF just beyond Re. The inferred central V-band M/L ratio is in excellent agreement with the previously reported dynamical M/L measurement from Houghton et al. (2006). The measured radial form of the M/L ratio may be evidence for a two-phase formation in this object, with the central regions forming differently to the outskirts. We also report measurements of a spatially resolved filament of ionised gas extending 4"(404 pc at DL = 21.1 Mpc) from the centre of NGC 1399, with very narrow equivalent width and low velocity dispersion (65 ± 14 kms-1). The location of the emission, combined with an analysis of the emission line ratios, leads us to conclude that NGC 1399's AGN is the source of ionising radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AAS...23121405H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AAS...23121405H"><span>The Initial Mass Function of the Arches Cluster</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hosek, Matthew; Lu, Jessica; Anderson, Jay; Ghez, Andrea; Morris, Mark; Do, Tuan; Clarkson, William; Albers, Saundra; Weisz, Daniel</p> <p>2018-01-01</p> <p>The Arches star cluster is only 26 pc (in projection) from Sgr A*, the supermassive black hole at the Galactic Center. This young massive cluster allows us to examine the impact of the extreme Galactic Center environment on the stellar Initial Mass Function (IMF). However, measuring the IMF of the Arches is challenging due to the highly variable extinction along the line of sight, which makes it difficult to separate cluster members from the field stars. We use high-precision proper motion and photometric measurements obtained with the Hubble Space Telescope to calculate cluster membership probabilities for stars down to ~2 M_sun out to the outskirts of the cluster (3 pc). In addition, we measure the effective temperatures of a small sample of cluster members in order to calibrate the mass-luminosity relationship using using Keck OSIRS K-band spectroscopy. We forward model these observations to simultaneously constrain the cluster IMF, age, distance, and extinction. We obtain an IMF that is shallower than what is observed locally, with a higher fraction of high-mass stars to low mass stars (i.e., “top-heavy”). We will compare the IMF of the Arches to similar clusters in the Galactic disk and quantify the effect of the GC environment on the star formation process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002ApJ...579..275S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002ApJ...579..275S"><span>The Low End of the Initial Mass Function in Young Clusters. II. Evidence for Primordial Mass Segregation in NGC 330 in the Small Magellanic Cloud</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sirianni, Marco; Nota, Antonella; De Marchi, Guido; Leitherer, Claus; Clampin, Mark</p> <p>2002-11-01</p> <p>As part of a larger program aimed at investigating the universality of the initial mass function (IMF) at low masses in a number of young clusters in the LMC and SMC, we present a new study of the low end of the stellar IMF of NGC 330, the richest young star cluster in the SMC, from deep broadband V and I images obtained with HST/WFPC2. We detect stars down to a limiting magnitude of m555=24.9, which corresponds to stellar masses of ~0.8Msolar at the distance of the SMC. A comparison of the cluster color-magnitude diagram with theoretical evolutionary tracks indicates an age of ~30 Myr for NGC 330, in agreement with previous published results. We derive the cluster luminosity function, which we correct for background contamination using an adjacent SMC field, and construct the mass function in the 1-7Msolar mass range. Given the young cluster age, the MF can well approximate the IMF. We find that the IMF in the central cluster regions (within 30") is well reproduced by a power law with a slope consistent with Salpeter's. In addition, the richness of the cluster allows us to investigate the IMF as a function of radial distance from the center. We find that the IMF becomes steeper at increasing distances from the cluster center (between 30" and 90"), with the number of massive stars (>5Msolar) decreasing from the core to the outskirts of the cluster 5 times more rapidly than the less-massive objects (~=1Msolar). We believe the observed mass segregation to be of a primordial nature rather than dynamical since the age of NGC 330 is 10 times shorter than the expected relaxation time of the cluster. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by AURA for NASA under contract NAS5-26555.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005xmm..prop..195B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005xmm..prop..195B"><span>The Lambda Orionis Star Forming Region: a Test for the Universality of the IMF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barrado Y Navascues, David</p> <p>2005-10-01</p> <p>We propose observations with XMM-EPIC/MOS in five distinct sibling associations belonging to the Lambda Orionis Star Forming Region (2--5 Myr, 340 pc). We have already optical, near-IR, and Spitzer photometry, and spectroscopy for objects down to 0.015 M(sun). The goals are: i) Assess the membership of our candidates and detect new members. ii) Derive accurate IMFs for each association, checking the universality of the IMF. iii) Study the properties and evolution of the X-ray Luminosity Functions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyA..494..389N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyA..494..389N"><span>Analysis of crude oil markets with improved multiscale weighted permutation entropy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niu, Hongli; Wang, Jun; Liu, Cheng</p> <p>2018-03-01</p> <p>Entropy measures are recently extensively used to study the complexity property in nonlinear systems. Weighted permutation entropy (WPE) can overcome the ignorance of the amplitude information of time series compared with PE and shows a distinctive ability to extract complexity information from data having abrupt changes in magnitude. Improved (or sometimes called composite) multi-scale (MS) method possesses the advantage of reducing errors and improving the accuracy when applied to evaluate multiscale entropy values of not enough long time series. In this paper, we combine the merits of WPE and improved MS to propose the improved multiscale weighted permutation entropy (IMWPE) method for complexity investigation of a time series. Then it is validated effective through artificial data: white noise and 1 / f noise, and real market data of Brent and Daqing crude oil. Meanwhile, the complexity properties of crude oil markets are explored respectively of return series, volatility series with multiple exponents and EEMD-produced intrinsic mode functions (IMFs) which represent different frequency components of return series. Moreover, the instantaneous amplitude and frequency of Brent and Daqing crude oil are analyzed by the Hilbert transform utilized to each IMF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.468.1594A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.468.1594A"><span>KINETyS: constraining spatial variations of the stellar initial mass function in early-type galaxies★</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alton, Padraig D.; Smith, Russell J.; Lucey, John R.</p> <p>2017-06-01</p> <p>The heavyweight stellar initial mass function (IMF) observed in the cores of massive early-type galaxies (ETGs) has been linked to formation of their cores in an initial swiftly quenched rapid starburst. However, the outskirts of ETGs are thought to be assembled via the slow accumulation of smaller systems in which the star formation is less extreme; this suggests that the form of the IMF should exhibit a radial trend in ETGs. Here, we report radial stellar population gradients out to the half-light radii of a sample of eight nearby ETGs. Spatially resolved spectroscopy at 0.8-1.35 μm from the Very Large Telescope's K-band Multi-Object Spectrograph instrument was used to measure radial trends in the strengths of a variety of IMF-sensitive absorption features (including some which are previously unexplored). We find weak or no radial variation in some of these which, given a radial IMF trend, ought to vary measurably, e.g. for the Wing-Ford band, we measure a gradient of +0.06 ± 0.04 per decade in radius. Using stellar population models to fit stacked and individual spectra, we infer that the measured radial changes in absorption feature strengths are primarily accounted for by abundance gradients, which are fairly consistent across our sample (e.g. we derive an average [Na/H] gradient of -0.53 ± 0.07). The inferred contribution of dwarf stars to the total light typically corresponds to a bottom-heavy IMF, but we find no evidence for radial IMF variations in the majority of our sample galaxies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870027452&hterms=XD&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DXD','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870027452&hterms=XD&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DXD"><span>Self-regulated cooling flows in elliptical galaxies and in cluster cores - Is exclusively low mass star formation really necessary?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Silk, J.; Djorgovski, S.; Wyse, R. F. G.; Bruzual A., G.</p> <p>1986-01-01</p> <p>A self-consistent treatment of the heating by supernovae associated with star formation in a spherically symmetric cooling flow in a cluster core or elliptical galaxy is presented. An initial stellar mass function similar to that in the solar neighborhood is adopted. Inferred star-formation rates, within the cooling region - typically the inner 100 kpc around dominant galaxies at the centers of cooling flows in XD clusters - are reduced by about a factor of 2, relative to rates inferred when the heat input from star formation is ignored. Truncated initial mass functions (IMFs) are also considered, in which massive star formation is suppressed in accordance with previous treatments, and colors are predicted for star formation in cooling flows associated with central dominant elliptical galaxies and with isolated elliptical galaxies surrounded by gaseous coronae. The low inferred cooling-flow rates around isolated elliptical galaxies are found to be insensitive to the upper mass cutoff in the IMF, provided that the upper mass cutoff exceeds 2 M solar mass. Comparison with observed colors favors a cutoff in the IMF above 1 M solar mass in at least two well-studied cluster cooling flows, but a normal IMF cannot be excluded definitively. Models for NGC 1275 support a young (less than about 3 Gyr) cooling flow. As for the isolated elliptical galaxies, the spread in colors is consistent with a normal IMF. A definitive test of the IMF arising via star formation in cooling flows requires either UV spectral data or supernova searches in the cooling-flow-centered galaxies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140013335','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140013335"><span>Analyzing Tropical Waves Using the Parallel Ensemble Empirical Model Decomposition Method: Preliminary Results from Hurricane Sandy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shen, Bo-Wen; Cheung, Samson; Li, Jui-Lin F.; Wu, Yu-ling</p> <p>2013-01-01</p> <p>In this study, we discuss the performance of the parallel ensemble empirical mode decomposition (EMD) in the analysis of tropical waves that are associated with tropical cyclone (TC) formation. To efficiently analyze high-resolution, global, multiple-dimensional data sets, we first implement multilevel parallelism into the ensemble EMD (EEMD) and obtain a parallel speedup of 720 using 200 eight-core processors. We then apply the parallel EEMD (PEEMD) to extract the intrinsic mode functions (IMFs) from preselected data sets that represent (1) idealized tropical waves and (2) large-scale environmental flows associated with Hurricane Sandy (2012). Results indicate that the PEEMD is efficient and effective in revealing the major wave characteristics of the data, such as wavelengths and periods, by sifting out the dominant (wave) components. This approach has a potential for hurricane climate study by examining the statistical relationship between tropical waves and TC formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.468..319E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.468..319E"><span>The statistical challenge of constraining the low-mass IMF in Local Group dwarf galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>El-Badry, Kareem; Weisz, Daniel R.; Quataert, Eliot</p> <p>2017-06-01</p> <p>We use Monte Carlo simulations to explore the statistical challenges of constraining the characteristic mass (mc) and width (σ) of a lognormal sub-solar initial mass function (IMF) in Local Group dwarf galaxies using direct star counts. For a typical Milky Way (MW) satellite (MV = -8), jointly constraining mc and σ to a precision of ≲ 20 per cent requires that observations be complete to ≲ 0.2 M⊙, if the IMF is similar to the MW IMF. A similar statistical precision can be obtained if observations are only complete down to 0.4 M⊙, but this requires measurement of nearly 100× more stars, and thus, a significantly more massive satellite (MV ˜ -12). In the absence of sufficiently deep data to constrain the low-mass turnover, it is common practice to fit a single-sloped power law to the low-mass IMF, or to fit mc for a lognormal while holding σ fixed. We show that the former approximation leads to best-fitting power-law slopes that vary with the mass range observed and can largely explain existing claims of low-mass IMF variations in MW satellites, even if satellite galaxies have the same IMF as the MW. In addition, fixing σ during fitting leads to substantially underestimated uncertainties in the recovered value of mc (by a factor of ˜4 for typical observations). If the IMFs of nearby dwarf galaxies are lognormal and do vary, observations must reach down to ˜mc in order to robustly detect these variations. The high-sensitivity, near-infrared capabilities of the James Webb Space Telescope and Wide-Field Infrared Survey Telescope have the potential to dramatically improve constraints on the low-mass IMF. We present an efficient observational strategy for using these facilities to measure the IMFs of Local Group dwarf galaxies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002IAUS..207..157L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002IAUS..207..157L"><span>HST-WFPC2 Observations of the Star Clusters in the Giant H II Regions of M33</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Myung Gyoon; Park, Hong Soo; Kim, Sang Chul; Waller, William H.; Parker, Joel Wm.; Malumuth, Eliot M.; Hodge, Paul W.</p> <p></p> <p>We present a photometric study of the stars in ionizing star clusters embedded in several giant H II regions of M33 (CC93, IC 142, NGC 595, MA2, NGC 604 and NGC 588). Our photometry is based on the HST-WFPC2 images of these clusters. Color-magnitude diagrams and color-color diagrams of these clusters are obtained and are used for estimating the reddenings and ages of the clusters. The luminosity functions (LFs) and initial mass functions (IMFs) of the massive stars in these clusters are also derived. The slopes of the IMFs range from Γ = -0.5 to -2.1. Interestingly, it is found that the IMFs get steeper with increasing galactocentric distance and with decreasing [O/H] abundance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...854...35H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...854...35H"><span>The Stellar IMF from Isothermal MHD Turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haugbølle, Troels; Padoan, Paolo; Nordlund, Åke</p> <p>2018-02-01</p> <p>We address the turbulent fragmentation scenario for the origin of the stellar initial mass function (IMF), using a large set of numerical simulations of randomly driven supersonic MHD turbulence. The turbulent fragmentation model successfully predicts the main features of the observed stellar IMF assuming an isothermal equation of state without any stellar feedback. As a test of the model, we focus on the case of a magnetized isothermal gas, neglecting stellar feedback, while pursuing a large dynamic range in both space and timescales covering the full spectrum of stellar masses from brown dwarfs to massive stars. Our simulations represent a generic 4 pc region within a typical Galactic molecular cloud, with a mass of 3000 M ⊙ and an rms velocity 10 times the isothermal sound speed and 5 times the average Alfvén velocity, in agreement with observations. We achieve a maximum resolution of 50 au and a maximum duration of star formation of 4.0 Myr, forming up to a thousand sink particles whose mass distribution closely matches the observed stellar IMF. A large set of medium-size simulations is used to test the sink particle algorithm, while larger simulations are used to test the numerical convergence of the IMF and the dependence of the IMF turnover on physical parameters predicted by the turbulent fragmentation model. We find a clear trend toward numerical convergence and strong support for the model predictions, including the initial time evolution of the IMF. We conclude that the physics of isothermal MHD turbulence is sufficient to explain the origin of the IMF.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017sfcc.confE..18D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017sfcc.confE..18D"><span>Update on ONC's Substellar IMF: A Second Peak in the Brown Dwarf Regime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Drass, Holger; Bayo, A.; Chini, R.; Haas, M.</p> <p>2017-06-01</p> <p>The Orion Nebular Cluster (ONC) has become the prototype cluster for studying the Initial Mass Function (IMF). In a deep JHK survey of the ONC with HAWK-I we detected a large population of 900 Brown Dwarfs and Planetary Mass Object candidates presenting a pronounced second peak in the substellar IMF. One of the most obvious issues of this result is the verification of cluster membership. The analysis so far was mainly based on statistical consideration. In this presentation I will show the results from using different high-resolution extinction map to determine the ONC membership.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22518951-imfmetallicity-tight-local-relation-revealed-califa-survey','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22518951-imfmetallicity-tight-local-relation-revealed-califa-survey"><span>IMF–METALLICITY: A TIGHT LOCAL RELATION REVEALED BY THE CALIFA SURVEY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Martín-Navarro, Ignacio; Vazdekis, Alexandre; Falcón-Barroso, Jesús</p> <p>2015-06-20</p> <p>Variations in the stellar initial mass function (IMF) have been invoked to explain the spectroscopic and dynamical properties of early-type galaxies (ETGs). However, no observations have yet been able to disentangle the physical driver. We analyze here a sample of 24 ETGs drawn from the CALIFA survey, deriving in a homogeneous way their stellar population and kinematic properties. We find that the local IMF is tightly related to the local metallicity, becoming more bottom-heavy toward metal-rich populations. Our result, combined with the galaxy mass–metallicity relation, naturally explains previous claims of a galaxy mass–IMF relation, derived from non-IFU spectra. If wemore » assume that—within the star formation environment of ETGs—metallicity is the main driver of IMF variations, a significant revision of the interpretation of galaxy evolution observables is necessary.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100014186&hterms=convection&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dconvection','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100014186&hterms=convection&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dconvection"><span>Impact of Magnetic Draping, Convection, and Field Line Tying on Magnetopause Reconnection Under Northward IMF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wendel, Deirdre E.; Reiff, Patricia H.; Goldstein, Melvyn L.</p> <p>2010-01-01</p> <p>We simulate a northward IMF cusp reconnection event at the magnetopause using the OpenGGCM resistive MHD code. The ACE input data, solar wind parameters, and dipole tilt belong to a 2002 reconnection event observed by IMAGE and Cluster. Based on a fully three-dimensional skeleton separators, nulls, and parallel electric fields, we show magnetic draping, convection, ionospheric field line tying play a role in producing a series of locally reconnecting nulls with flux ropes. The flux ropes in the cusp along the global separator line of symmetry. In 2D projection, the flux ropes the appearance of a tearing mode with a series of 'x's' and 'o's' but bearing a kind of 'guide field' that exists only within the magnetopause. The reconnecting field lines in the string of ropes involve IMF and both open and closed Earth magnetic field lines. The observed magnetic geometry reproduces the findings of a superposed epoch impact parameter study derived from the Cluster magnetometer data for the same event. The observed geometry has repercussions for spacecraft observations of cusp reconnection and for the imposed boundary conditions reconnection simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...846..166L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...846..166L"><span>Evidence of a Bottom-heavy Initial Mass Function in Massive Early-type Galaxies from Near-infrared Metal Lines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lagattuta, David J.; Mould, Jeremy R.; Forbes, Duncan A.; Monson, Andrew J.; Pastorello, Nicola; Persson, S. Eric</p> <p>2017-09-01</p> <p>We present new evidence for a variable stellar initial mass function (IMF) in massive early-type galaxies, using high-resolution, near-infrared spectroscopy from the Folded-port InfraRed Echellette spectrograph (FIRE) on the Magellan Baade Telescope at Las Campanas Observatory. In this pilot study, we observe several gravity-sensitive metal lines between 1.1 and 1.3 μm in eight highly luminous (L˜ 10{L}* ) nearby galaxies. Thanks to the broad wavelength coverage of FIRE, we are also able to observe the Ca II triplet feature, which helps with our analysis. After measuring the equivalent widths (EWs) of these lines, we notice mild to moderate trends between EW and central velocity dispersion (σ), with some species (K I, Na I, Mn I) showing a positive EW-σ correlation and others (Mg I, Ca II, Fe I) a negative one. To minimize the effects of metallicity, we measure the ratio R = [EW(K I)/EW(Mg I)], finding a significant systematic increase in this ratio with respect to σ. We then probe for variations in the IMF by comparing the measured line ratios to the values expected in several IMF models. Overall, we find that low-mass galaxies (σ ˜ 100 km s-1) favor a Chabrier IMF, while high-mass galaxies (σ ˜ 350 km s-1) are better described with a steeper (dwarf-rich) IMF slope. While we note that our galaxy sample is small and may suffer from selection effects, these initial results are still promising. A larger sample of galaxies will therefore provide an even clearer picture of IMF trends in this regime. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp..958W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp..958W"><span>Star formation in the outskirts of DDO 154: A top-light IMF in a nearly dormant disc</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watts, Adam B.; Meurer, Gerhardt R.; Lagos, Claudia D. P.; Bruzzese, Sarah M.; Kroupa, Pavel; Jerabkova, Tereza</p> <p>2018-04-01</p> <p>We present optical photometry of Hubble Space Telescope (HST) ACS/WFC data of the resolved stellar populations in the outer disc of the dwarf irregular galaxy DDO 154. The photometry reveals that young main sequence stars are almost absent from the outermost HI disc. Instead, most are clustered near the main stellar component of the galaxy. We constrain the stellar initial mass function (IMF) by comparing the luminosity function of the main sequence stars to simulated stellar populations assuming a constant star formation rate over the dynamical timescale. The best-fitting IMF is deficient in high mass stars compared to a canonical Kroupa IMF, with a best-fit slope α = -2.45 and upper mass limit MU = 16 M⊙. This top-light IMF is consistent with predictions of the Integrated Galaxy-wide IMF theory. Combining the HST images with HI data from The HI Nearby Galaxy Survey Treasury (THINGS) we determine the star formation law (SFL) in the outer disc. The fit has a power law exponent N = 2.92 ± 0.22 and zero point A = 4.47 ± 0.65 × 10-7 M⊙ yr-1 kpc-2. This is depressed compared to the Kennicutt-Schmidt Star Formation Law, but consistent with weak star formation observed in diffuse HI environments. Extrapolating the SFL over the outer disc implies that there could be significant star formation occurring that is not detectable in Hα. Last, we determine the Toomre stability parameter Q of the outer disc of DDO 154 using the THINGS HI rotation curve and velocity dispersion map. 72% of the HI in our field has Q ≤ 4 and this incorporates 96% of the observed MS stars. Hence 28% of the HI in the field is largely dormant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSV...418...55Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSV...418...55Z"><span>An optimized time varying filtering based empirical mode decomposition method with grey wolf optimizer for machinery fault diagnosis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Xin; Liu, Zhiwen; Miao, Qiang; Wang, Lei</p> <p>2018-03-01</p> <p>A time varying filtering based empirical mode decomposition (EMD) (TVF-EMD) method was proposed recently to solve the mode mixing problem of EMD method. Compared with the classical EMD, TVF-EMD was proven to improve the frequency separation performance and be robust to noise interference. However, the decomposition parameters (i.e., bandwidth threshold and B-spline order) significantly affect the decomposition results of this method. In original TVF-EMD method, the parameter values are assigned in advance, which makes it difficult to achieve satisfactory analysis results. To solve this problem, this paper develops an optimized TVF-EMD method based on grey wolf optimizer (GWO) algorithm for fault diagnosis of rotating machinery. Firstly, a measurement index termed weighted kurtosis index is constructed by using kurtosis index and correlation coefficient. Subsequently, the optimal TVF-EMD parameters that match with the input signal can be obtained by GWO algorithm using the maximum weighted kurtosis index as objective function. Finally, fault features can be extracted by analyzing the sensitive intrinsic mode function (IMF) owning the maximum weighted kurtosis index. Simulations and comparisons highlight the performance of TVF-EMD method for signal decomposition, and meanwhile verify the fact that bandwidth threshold and B-spline order are critical to the decomposition results. Two case studies on rotating machinery fault diagnosis demonstrate the effectiveness and advantages of the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.475..757B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.475..757B"><span>Stellar mass functions and implications for a variable IMF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bernardi, M.; Sheth, R. K.; Fischer, J.-L.; Meert, A.; Chae, K.-H.; Dominguez-Sanchez, H.; Huertas-Company, M.; Shankar, F.; Vikram, V.</p> <p>2018-03-01</p> <p>Spatially resolved kinematics of nearby galaxies has shown that the ratio of dynamical to stellar population-based estimates of the mass of a galaxy (M_{*}^JAM/M_{*}) correlates with σe, the light-weighted velocity dispersion within its half-light radius, if M* is estimated using the same initial mass function (IMF) for all galaxies and the stellar mass-to-light ratio within each galaxy is constant. This correlation may indicate that, in fact, the IMF is more bottom-heavy or dwarf-rich for galaxies with large σ. We use this correlation to estimate a dynamical or IMF-corrected stellar mass, M_{*}^{α _{JAM}}, from M* and σe for a sample of 6 × 105 Sloan Digital Sky Survey (SDSS) galaxies for which spatially resolved kinematics is not available. We also compute the `virial' mass estimate k(n,R) R_e σ _R^2/G, where n is the Sérsic index, in the SDSS and ATLAS3D samples. We show that an n-dependent correction must be applied to the k(n, R) values provided by Prugniel & Simien. Our analysis also shows that the shape of the velocity dispersion profile in the ATLAS3D sample varies weakly with n: (σR/σe) = (R/Re)-γ(n). The resulting stellar mass functions, based on M_*^{α _{JAM}} and the recalibrated virial mass, are in good agreement. Using a Fundamental Plane-based observational proxy for σe produces comparable results. The use of direct measurements for estimating the IMF-dependent stellar mass is prohibitively expensive for a large sample of galaxies. By demonstrating that cheaper proxies are sufficiently accurate, our analysis should enable a more reliable census of the mass in stars, especially at high redshift, at a fraction of the cost. Our results are provided in tabular form.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Sci...359...69S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Sci...359...69S"><span>An excess of massive stars in the local 30 Doradus starburst</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, F. R. N.; Sana, H.; Evans, C. J.; Bestenlehner, J. M.; Castro, N.; Fossati, L.; Gräfener, G.; Langer, N.; Ramírez-Agudelo, O. H.; Sabín-Sanjulián, C.; Simón-Díaz, S.; Tramper, F.; Crowther, P. A.; de Koter, A.; de Mink, S. E.; Dufton, P. L.; Garcia, M.; Gieles, M.; Hénault-Brunet, V.; Herrero, A.; Izzard, R. G.; Kalari, V.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Najarro, F.; Podsiadlowski, Ph.; Puls, J.; Taylor, W. D.; van Loon, J. Th.; Vink, J. S.; Norman, C.</p> <p>2018-01-01</p> <p>The 30 Doradus star-forming region in the Large Magellanic Cloud is a nearby analog of large star-formation events in the distant universe. We determined the recent formation history and the initial mass function (IMF) of massive stars in 30 Doradus on the basis of spectroscopic observations of 247 stars more massive than 15 solar masses (M☉). The main episode of massive star formation began about 8 million years (My) ago, and the star-formation rate seems to have declined in the last 1 My. The IMF is densely sampled up to 200 M☉ and contains 32 ± 12% more stars above 30 M☉ than predicted by a standard Salpeter IMF. In the mass range of 15 to 200 M☉, the IMF power-law exponent is 1.90‑0.26+0.37, shallower than the Salpeter value of 2.35.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29302009','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29302009"><span>An excess of massive stars in the local 30 Doradus starburst.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schneider, F R N; Sana, H; Evans, C J; Bestenlehner, J M; Castro, N; Fossati, L; Gräfener, G; Langer, N; Ramírez-Agudelo, O H; Sabín-Sanjulián, C; Simón-Díaz, S; Tramper, F; Crowther, P A; de Koter, A; de Mink, S E; Dufton, P L; Garcia, M; Gieles, M; Hénault-Brunet, V; Herrero, A; Izzard, R G; Kalari, V; Lennon, D J; Maíz Apellániz, J; Markova, N; Najarro, F; Podsiadlowski, Ph; Puls, J; Taylor, W D; van Loon, J Th; Vink, J S; Norman, C</p> <p>2018-01-05</p> <p>The 30 Doradus star-forming region in the Large Magellanic Cloud is a nearby analog of large star-formation events in the distant universe. We determined the recent formation history and the initial mass function (IMF) of massive stars in 30 Doradus on the basis of spectroscopic observations of 247 stars more massive than 15 solar masses ([Formula: see text]). The main episode of massive star formation began about 8 million years (My) ago, and the star-formation rate seems to have declined in the last 1 My. The IMF is densely sampled up to 200 [Formula: see text] and contains 32 ± 12% more stars above 30 [Formula: see text] than predicted by a standard Salpeter IMF. In the mass range of 15 to 200 [Formula: see text], the IMF power-law exponent is [Formula: see text], shallower than the Salpeter value of 2.35. Copyright © 2018, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JASTP.164..192K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JASTP.164..192K"><span>Investigation of Kelvin wave periods during Hai-Tang typhoon using Empirical Mode Decomposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kishore, P.; Jayalakshmi, J.; Lin, Pay-Liam; Velicogna, Isabella; Sutterley, Tyler C.; Ciracì, Enrico; Mohajerani, Yara; Kumar, S. Balaji</p> <p>2017-11-01</p> <p>Equatorial Kelvin waves (KWs) are fundamental components of the tropical climate system. In this study, we investigate Kelvin waves (KWs) during the Hai-Tang typhoon of 2005 using Empirical Mode Decomposition (EMD) of regional precipitation, zonal and meridional winds. For the analysis, we use daily precipitation datasets from the Global Precipitation Climatology Project (GPCP) and wind datasets from the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-analysis (ERA-Interim). As an additional measurement, we use in-situ precipitation datasets from rain-gauges over the Taiwan region. The maximum accumulated precipitation was approximately 2400 mm during the period July 17-21, 2005 over the southwestern region of Taiwan. The spectral analysis using the wind speed at 950 hPa found in the 2nd, 3rd, and 4th intrinsic mode functions (IMFs) reveals prevailing Kelvin wave periods of ∼3 days, ∼4-6 days, and ∼6-10 days, respectively. From our analysis of precipitation datasets, we found the Kelvin waves oscillated with periods between ∼8 and 20 days.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApSS..433..680L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApSS..433..680L"><span>Investigation of KDP crystal surface based on an improved bidimensional empirical mode decomposition method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, Lei; Yan, Jihong; Chen, Wanqun; An, Shi</p> <p>2018-03-01</p> <p>This paper proposed a novel spatial frequency analysis method for the investigation of potassium dihydrogen phosphate (KDP) crystal surface based on an improved bidimensional empirical mode decomposition (BEMD) method. Aiming to eliminate end effects of the BEMD method and improve the intrinsic mode functions (IMFs) for the efficient identification of texture features, a denoising process was embedded in the sifting iteration of BEMD method. With removing redundant information in decomposed sub-components of KDP crystal surface, middle spatial frequencies of the cutting and feeding processes were identified. Comparative study with the power spectral density method, two-dimensional wavelet transform (2D-WT), as well as the traditional BEMD method, demonstrated that the method developed in this paper can efficiently extract texture features and reveal gradient development of KDP crystal surface. Furthermore, the proposed method was a self-adaptive data driven technique without prior knowledge, which overcame shortcomings of the 2D-WT model such as the parameters selection. Additionally, the proposed method was a promising tool for the application of online monitoring and optimal control of precision machining process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.467..674T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.467..674T"><span>Optical spectroscopy and initial mass function of z = 0.4 red galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, Baitian; Worthey, Guy</p> <p>2017-05-01</p> <p>Spectral absorption features can be used to constrain the stellar initial mass function (IMF) in the integrated light of galaxies. Spectral indices used at low redshift are in the far red, and therefore increasingly hard to detect at higher and higher redshifts as they pass out of atmospheric transmission and CCD detector wavelength windows. We employ IMF-sensitive indices at bluer wavelengths. We stack spectra of red, quiescent galaxies around z = 0.4 from the DEEP2 Galaxy Redshift Survey. The z = 0.4 red galaxies have 2 Gyr average ages so that they cannot be passively evolving precursors of nearby galaxies. They are slightly enhanced in C and Na, and slightly depressed in Ti. Split by luminosity, the fainter half appears to be older, a result that should be checked with larger samples in the future. We uncover no evidence for IMF evolution between z = 0.4 and now, but we highlight the importance of sample selection, finding that an SDSS sample culled to select archetypal elliptical galaxies at z ˜ 0 is offset towards a more bottom-heavy IMF. Other samples, including our DEEP2 sample, show an offset towards a more spiral galaxy-like IMF. All samples confirm that the reddest galaxies look bottom-heavy compared with bluer ones. Sample selection also influences age-colour trends: red, luminous galaxies always look old and metal rich, but the bluer ones can be more metal poor, the same abundance or more metal rich, depending on how they are selected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SMaS...19e5016R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SMaS...19e5016R"><span>Health monitoring of pipeline girth weld using empirical mode decomposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rezaei, Davood; Taheri, Farid</p> <p>2010-05-01</p> <p>In the present paper the Hilbert-Huang transform (HHT), as a time-series analysis technique, has been combined with a local diagnostic approach in an effort to identify flaws in pipeline girth welds. This method is based on monitoring the free vibration signals of the pipe at its healthy and flawed states, and processing the signals through the HHT and its associated signal decomposition technique, known as empirical mode decomposition (EMD). The EMD method decomposes the vibration signals into a collection of intrinsic mode functions (IMFs). The deviations in structural integrity, measured from a healthy-state baseline, are subsequently evaluated by two damage sensitive parameters. The first is a damage index, referred to as the EM-EDI, which is established based on an energy comparison of the first or second IMF of the vibration signals, before and after occurrence of damage. The second parameter is the evaluation of the lag in instantaneous phase, a quantity derived from the HHT. In the developed methodologies, the pipe's free vibration is monitored by piezoceramic sensors and a laser Doppler vibrometer. The effectiveness of the proposed techniques is demonstrated through a set of numerical and experimental studies on a steel pipe with a mid-span girth weld, for both pressurized and nonpressurized conditions. To simulate a crack, a narrow notch is cut on one side of the girth weld. Several damage scenarios, including notches of different depths and at various locations on the pipe, are investigated. Results from both numerical and experimental studies reveal that in all damage cases the sensor located at the notch vicinity could successfully detect the notch and qualitatively predict its severity. The effect of internal pressure on the damage identification method is also monitored. Overall, the results are encouraging and promise the effectiveness of the proposed approaches as inexpensive systems for structural health monitoring purposes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.5192R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.5192R"><span>Dependence of the location of the Martian magnetic lobes on the interplanetary magnetic field direction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Romanelli, Norberto; Mazelle, Christian; Bertucci, Cesar; Gomez, Daniel</p> <p>2016-04-01</p> <p>The magnetic field topology surrounding the Martian atmosphere is mainly the result of gradients in the velocity of the solar wind (SW). Such variations in the SW velocity are in turn the result of a massloading process and forces associated with electric currents flowing around the ionosphere of Mars [Nagy et al 2004, Mazelle et al 2004, Brain et al 2015]. In particular, in the regions where the collisionless regime holds, the interplanetary magnetic field (IMF) frozen into the SW piles up in front of the stagnation region of the flow. At the same time, the magnetic field lines are stretched in the direction of the unperturbed SW as this stream moves away from Mars, giving rise to a magnetotail [Alfvén, 1957]. As a result and in contrast with an obstacle with and intrinsic global magnetic field, the structure and organization of the magnetic field around Mars depends on the direction of the IMF and its variabilities [Yeroshenko et al., 1990; Crider et al., 2004; Bertucci et al., 2003; Romanelli et al 2015]. In this study we use magnetometer data from the Mars Global Surveyor (MGS) spacecraft during portions of the premapping orbits of the mission to study the variability of the Martian-induced magnetotail as a function of the orientation of the IMF. The time spent by MGS in the magnetotail lobes during periods with positive solar wind flow-aligned IMF component B∥IMF suggests that their location as well as the position of the central polarity reversal layer (PRL) are displaced in the direction antiparallel to the IMF cross-flow component B⊥IMF . Analogously, in the cases where B∥IMF is negative, the lobes are displaced in the direction of B⊥IMF. We find this behavior to be compatible with a previously published B⊥IMF analytical model of the IMF draping, where for the first time, the displacement of a complementary reversal layer (denoted as IPRL for inverse polarity reversal layer) is deduced from first principles [Romanelli et al 2014]. We also analyzed these results in the context of recent observations provided by the Mars Atmospheric and Volatile Evolution spacecraft [e.g. DiBraccio et al 2015].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MSSP...85..278S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MSSP...85..278S"><span>Frequency domain averaging based experimental evaluation of gear fault without tachometer for fluctuating speed conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharma, Vikas; Parey, Anand</p> <p>2017-02-01</p> <p>In the purview of fluctuating speeds, gear fault diagnosis is challenging due to dynamic behavior of forces. Various industrial applications employing gearbox which operate under fluctuating speed conditions. For diagnostics of a gearbox, various vibrations based signal processing techniques viz FFT, time synchronous averaging and time-frequency based wavelet transform, etc. are majorly employed. Most of the time, theories about data or computational complexity limits the use of these methods. In order to perform fault diagnosis of a gearbox for fluctuating speeds, frequency domain averaging (FDA) of intrinsic mode functions (IMFs) after their dynamic time warping (DTW) has been done in this paper. This will not only attenuate the effect of fluctuating speeds but will also extract the weak fault feature those masked in vibration signal. Experimentally signals were acquired from Drivetrain Diagnostic Simulator for different gear health conditions i.e., healthy pinion, pinion with tooth crack, chipped tooth and missing tooth and were analyzed for the different fluctuating profiles of speed. Kurtosis was calculated for warped IMFs before DTW and after DTW of the acquired vibration signals. Later on, the application of FDA highlights the fault frequencies present in the FFT of faulty gears. The result suggests that proposed approach is more effective towards the fault diagnosing with fluctuating speed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013MNRAS.436.3309W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013MNRAS.436.3309W"><span>The galaxy-wide initial mass function of dwarf late-type to massive early-type galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weidner, C.; Kroupa, P.; Pflamm-Altenburg, J.; Vazdekis, A.</p> <p>2013-12-01</p> <p>Observational studies are showing that the galaxy-wide stellar initial mass function (IMF) is top-heavy in galaxies with high star formation rates (SFRs). Calculating the integrated galactic stellar initial mass function (IGIMF) as a function of the SFR of a galaxy, it follows that galaxies which have or which formed with SFRs >10 M⊙ yr-1 would have a top-heavy IGIMF in excellent consistency with the observations. Consequently and in agreement with observations, elliptical galaxies would have higher mass-to-light ratios as a result of the overabundance of stellar remnants compared to a stellar population that formed with an invariant canonical stellar IMF. For the Milky Way, the IGIMF yields very good agreement with the disc- and the bulge IMF determinations. Our conclusions are that purely stochastic descriptions of star formation on the scales of a parsec and above are falsified. Instead, star formation follows the laws, stated here as axioms, which define the IGIMF theory. We also find evidence that the power-law index β of the embedded cluster mass function decreases with increasing SFR. We propose further tests of the IGIMF theory through counting massive stars in dwarf galaxies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22311016','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22311016"><span>Investigation of four porcine candidate genes (H-FABP, MYOD1, UCP3 and MASTR) for meat quality traits in Large White pigs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Han, Xuelei; Jiang, Tengfei; Yang, Huawei; Zhang, Qingde; Wang, Weimin; Fan, Bin; Liu, Bang</p> <p>2012-06-01</p> <p>Meat quality traits are economically important traits of swine, and are controlled by multiple genes as complex quantitative traits. In the present study four genes, H-FABP (heart fatty acid-binding protein), MASTR (MEF2 activating motif and SAP domain containing transcriptional regulator), UCP3 (uncoupling protein 3) and MYOD1 (myogenic differentiation 1) were researched in Large White pigs. The polymorphisms H-FABP T/C of 5'UTR, MYOD1 g.257 A>C, UCP3 g.1406 G>A in exon 3 and MASTR c.187 C>T have been reported to be associated with meat quality traits in pigs. The aim of this study was to analyze the effect of single and multiple markers for single traits in Large White pigs. The single marker association analysis showed that the H-FABP and MASTR genes were associated with IMF (intramuscular fat content) (P < 0.05), and that the g.257 A>C of MYOD1 gene was most significantly related to muscle pH value (P < 0.01). The multiple markers for IMF were analyzed by combining the markers and quantitative trait modes into the linear regression. The results revealed that H-FABP and MASTR integrate gene networks for IMF. Thus, our study results suggested that H-FABP and MASTR polymorphisms could be used as genetic markers in the marker-assisted selection towards the improvement of IMF in Large White pigs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhyA..477..161Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhyA..477..161Z"><span>Multidimensional k-nearest neighbor model based on EEMD for financial time series forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Ningning; Lin, Aijing; Shang, Pengjian</p> <p>2017-07-01</p> <p>In this paper, we propose a new two-stage methodology that combines the ensemble empirical mode decomposition (EEMD) with multidimensional k-nearest neighbor model (MKNN) in order to forecast the closing price and high price of the stocks simultaneously. The modified algorithm of k-nearest neighbors (KNN) has an increasingly wide application in the prediction of all fields. Empirical mode decomposition (EMD) decomposes a nonlinear and non-stationary signal into a series of intrinsic mode functions (IMFs), however, it cannot reveal characteristic information of the signal with much accuracy as a result of mode mixing. So ensemble empirical mode decomposition (EEMD), an improved method of EMD, is presented to resolve the weaknesses of EMD by adding white noise to the original data. With EEMD, the components with true physical meaning can be extracted from the time series. Utilizing the advantage of EEMD and MKNN, the new proposed ensemble empirical mode decomposition combined with multidimensional k-nearest neighbor model (EEMD-MKNN) has high predictive precision for short-term forecasting. Moreover, we extend this methodology to the case of two-dimensions to forecast the closing price and high price of the four stocks (NAS, S&P500, DJI and STI stock indices) at the same time. The results indicate that the proposed EEMD-MKNN model has a higher forecast precision than EMD-KNN, KNN method and ARIMA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21582944-binary-formation-mechanisms-constraints-from-companion-mass-ratio-distribution','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21582944-binary-formation-mechanisms-constraints-from-companion-mass-ratio-distribution"><span>BINARY FORMATION MECHANISMS: CONSTRAINTS FROM THE COMPANION MASS RATIO DISTRIBUTION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Reggiani, Maddalena M.; Meyer, Michael R., E-mail: reggiani@phys.ethz.ch</p> <p>2011-09-01</p> <p>We present a statistical comparison of the mass ratio distribution of companions, as observed in different multiplicity surveys, to the most recent estimate of the single-object mass function. The main goal of our analysis is to test whether or not the observed companion mass ratio distribution (CMRD) as a function of primary star mass and star formation environment is consistent with having been drawn from the field star initial mass function (IMF). We consider samples of companions for M dwarfs, solar-type stars, and intermediate-mass stars, both in the field as well as clusters or associations, and compare them with populationsmore » of binaries generated by random pairing from the assumed IMF for a fixed primary mass. With regard to the field we can reject the hypothesis that the CMRD was drawn from the IMF for different primary mass ranges: the observed CMRDs show a larger number of equal-mass systems than predicted by the IMF. This is in agreement with fragmentation theories of binary formation. For the open clusters {alpha} Persei and the Pleiades we also reject the IMF random-pairing hypothesis. Concerning young star-forming regions, currently we can rule out a connection between the CMRD and the field IMF in Taurus but not in Chamaeleon I. Larger and different samples are needed to better constrain the result as a function of the environment. We also consider other companion mass functions and we compare them with observations. Moreover the CMRD both in the field and clusters or associations appears to be independent of separation in the range covered by the observations. Combining therefore the CMRDs of M (1-2400 AU) and G (28-1590 AU) primaries in the field and intermediate-mass primary binaries in Sco OB2 (29-1612 AU) for mass ratios, q = M{sub 2}/M{sub 1}, from 0.2 to 1, we find that the best chi-square fit follows a power law dN/dq{proportional_to}q {sup {beta}}, with {beta} = -0.50 {+-} 0.29, consistent with previous results. Finally, we note that the Kolmogorov-Smirnov test gives a {approx}1% probability of the observed CMRD in the Pleiades and Taurus being consistent with that observed for solar-type primaries in the field over comparable primary mass range. This highlights the value of using CMRDs to understand which star formation events contribute most to the field.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3934768','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3934768"><span>EEMD-MUSIC-Based Analysis for Natural Frequencies Identification of Structures Using Artificial and Natural Excitations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Amezquita-Sanchez, Juan P.; Romero-Troncoso, Rene J.; Osornio-Rios, Roque A.; Garcia-Perez, Arturo</p> <p>2014-01-01</p> <p>This paper presents a new EEMD-MUSIC- (ensemble empirical mode decomposition-multiple signal classification-) based methodology to identify modal frequencies in structures ranging from free and ambient vibration signals produced by artificial and natural excitations and also considering several factors as nonstationary effects, close modal frequencies, and noisy environments, which are common situations where several techniques reported in literature fail. The EEMD and MUSIC methods are used to decompose the vibration signal into a set of IMFs (intrinsic mode functions) and to identify the natural frequencies of a structure, respectively. The effectiveness of the proposed methodology has been validated and tested with synthetic signals and under real operating conditions. The experiments are focused on extracting the natural frequencies of a truss-type scaled structure and of a bridge used for both highway traffic and pedestrians. Results show the proposed methodology as a suitable solution for natural frequencies identification of structures from free and ambient vibration signals. PMID:24683346</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24683346','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24683346"><span>EEMD-MUSIC-based analysis for natural frequencies identification of structures using artificial and natural excitations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Camarena-Martinez, David; Amezquita-Sanchez, Juan P; Valtierra-Rodriguez, Martin; Romero-Troncoso, Rene J; Osornio-Rios, Roque A; Garcia-Perez, Arturo</p> <p>2014-01-01</p> <p>This paper presents a new EEMD-MUSIC- (ensemble empirical mode decomposition-multiple signal classification-) based methodology to identify modal frequencies in structures ranging from free and ambient vibration signals produced by artificial and natural excitations and also considering several factors as nonstationary effects, close modal frequencies, and noisy environments, which are common situations where several techniques reported in literature fail. The EEMD and MUSIC methods are used to decompose the vibration signal into a set of IMFs (intrinsic mode functions) and to identify the natural frequencies of a structure, respectively. The effectiveness of the proposed methodology has been validated and tested with synthetic signals and under real operating conditions. The experiments are focused on extracting the natural frequencies of a truss-type scaled structure and of a bridge used for both highway traffic and pedestrians. Results show the proposed methodology as a suitable solution for natural frequencies identification of structures from free and ambient vibration signals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26580620','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26580620"><span>Multi-Sensor Data Fusion Identification for Shearer Cutting Conditions Based on Parallel Quasi-Newton Neural Networks and the Dempster-Shafer Theory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Si, Lei; Wang, Zhongbin; Liu, Xinhua; Tan, Chao; Xu, Jing; Zheng, Kehong</p> <p>2015-11-13</p> <p>In order to efficiently and accurately identify the cutting condition of a shearer, this paper proposed an intelligent multi-sensor data fusion identification method using the parallel quasi-Newton neural network (PQN-NN) and the Dempster-Shafer (DS) theory. The vibration acceleration signals and current signal of six cutting conditions were collected from a self-designed experimental system and some special state features were extracted from the intrinsic mode functions (IMFs) based on the ensemble empirical mode decomposition (EEMD). In the experiment, three classifiers were trained and tested by the selected features of the measured data, and the DS theory was used to combine the identification results of three single classifiers. Furthermore, some comparisons with other methods were carried out. The experimental results indicate that the proposed method performs with higher detection accuracy and credibility than the competing algorithms. Finally, an industrial application example in the fully mechanized coal mining face was demonstrated to specify the effect of the proposed system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.472.2462S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.472.2462S"><span>Is a top-heavy initial mass function needed to reproduce the submillimetre galaxy number counts?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Safarzadeh, Mohammadtaher; Lu, Yu; Hayward, Christopher C.</p> <p>2017-12-01</p> <p>Matching the number counts and redshift distribution of submillimetre galaxies (SMGs) without invoking modifications to the initial mass ffunction (IMF) has proved challenging for semi-analytic models (SAMs) of galaxy formation. We adopt a previously developed SAM that is constrained to match the z = 0 galaxy stellar mass function and makes various predictions which agree well with observational constraints; we do not recalibrate the SAM for this work. We implement three prescriptions to predict the submillimetre flux densities of the model galaxies; two depend solely on star formation rate, whereas the other also depends on the dust mass. By comparing the predictions of the models, we find that taking into account the dust mass, which affects the dust temperature and thus influences the far-infrared spectral energy distribution, is crucial for matching the number counts and redshift distribution of SMGs. Moreover, despite using a standard IMF, our model can match the observed SMG number counts and redshift distribution reasonably well, which contradicts the conclusions of some previous studies that a top-heavy IMF, in addition to taking into account the effect of dust mass, is needed to match these observations. Although we have not identified the key ingredient that is responsible for our model matching the observed SMG number counts and redshift distribution without IMF variation - which is challenging given the different prescriptions for physical processes employed in the SAMs of interest - our results demonstrate that in SAMs, IMF variation is degenerate with other physical processes, such as stellar feedback.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA12A..01L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA12A..01L"><span>Magnetosphere-Ionosphere-Thermosphere Response to Quasi-periodic Oscillations in Solar Wind Driving Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, J.; Wang, W.; Zhang, B.; Huang, C.</p> <p>2017-12-01</p> <p>Periodical oscillations with periods of several tens of minutes to several hours are commonly seen in the Alfven wave embedded in the solar wind. It is yet to be known how the solar wind oscillation frequency modulates the solar wind-magnetosphere-ionosphere coupled system. Utilizing the Coupled Magnetosphere-Ionosphere-Thermosphere Model (CMIT), we analyzed the magnetosphere-ionosphere-thermosphere system response to IMF Bz oscillation with periods of 10, 30, and 60 minutes from the perspective of energy budget and electrodynamic coupling processes. Our results indicate that solar wind energy coupling efficiency depends on IMF Bz oscillation frequency; energy coupling efficiency, represented by the ratio between globally integrated Joule heating and Epsilon function, is higher for lower frequency IMF Bz oscillation. Ionospheric Joule heating dissipation not only depends on the direct solar wind driven process but also is affected by the intrinsic nature of magnetosphere (i.e. loading-unloading process). In addition, ionosphere acts as a low-pass filter and tends to filter out very high-frequency solar wind oscillation (i.e. shorter than 10 minutes). Ionosphere vertical ion drift is most sensitive to IMF Bz oscillation compared to hmF2, and NmF2, while NmF2 is less sensitive. This can account for not synchronized NmF2 and hmF2 response to penetration electric fields in association with fast solar wind changes. This research highlights the critical role of IMF Bz oscillation frequency in constructing energy coupling function and understanding electrodynamic processes in the coupled solar wind-magnetosphere-ionosphere system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MNRAS.463.2819M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MNRAS.463.2819M"><span>Abundance ratios and IMF slopes in the dwarf elliptical galaxy NGC 1396 with MUSE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mentz, J. J.; La Barbera, F.; Peletier, R. F.; Falcón-Barroso, J.; Lisker, T.; van de Ven, G.; Loubser, S. I.; Hilker, M.; Sánchez-Janssen, R.; Napolitano, N.; Cantiello, M.; Capaccioli, M.; Norris, M.; Paolillo, M.; Smith, R.; Beasley, M. A.; Lyubenova, M.; Munoz, R.; Puzia, T.</p> <p>2016-12-01</p> <p>Deep observations of the dwarf elliptical (dE) galaxy NGC 1396 (MV = -16.60, Mass ˜4 × 108 M⊙), located in the Fornax cluster, have been performed with the Very Large Telescope/Multi Unit Spectroscopic Explorer spectrograph in the wavelength region from 4750 to 9350 Å. In this paper, we present a stellar population analysis studying chemical abundances, the star formation history (SFH) and the stellar initial mass function (IMF) as a function of galactocentric distance. Different, independent ways to analyse the stellar populations result in a luminosity-weighted age of ˜6 Gyr and a metallicity [Fe/H]˜ -0.4, similar to other dEs of similar mass. We find unusually overabundant values of [Ca/Fe] ˜+ 0.1, and underabundant Sodium, with [Na/Fe] values around -0.1, while [Mg/Fe] is overabundant at all radii, increasing from ˜+ 0.1 in the centre to ˜+ 0.2 dex. We notice a significant metallicity and age gradient within this dwarf galaxy. To constrain the stellar IMF of NGC 1396, we find that the IMF of NGC 1396 is consistent with either a Kroupa-like or a top-heavy distribution, while a bottom-heavy IMF is firmly ruled out. An analysis of the abundance ratios, and a comparison with galaxies in the Local Group, shows that the chemical enrichment history of NGC 1396 is similar to the Galactic disc, with an extended SFH. This would be the case if the galaxy originated from a Large Magellanic Cloud-sized dwarf galaxy progenitor, which would lose its gas while falling into the Fornax cluster.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010A%26A...518L.106K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010A%26A...518L.106K"><span>The Aquila prestellar core population revealed by Herschel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Könyves, V.; André, Ph.; Men'shchikov, A.; Schneider, N.; Arzoumanian, D.; Bontemps, S.; Attard, M.; Motte, F.; Didelon, P.; Maury, A.; Abergel, A.; Ali, B.; Baluteau, J.-P.; Bernard, J.-Ph.; Cambrésy, L.; Cox, P.; di Francesco, J.; di Giorgio, A. M.; Griffin, M. J.; Hargrave, P.; Huang, M.; Kirk, J.; Li, J. Z.; Martin, P.; Minier, V.; Molinari, S.; Olofsson, G.; Pezzuto, S.; Russeil, D.; Roussel, H.; Saraceno, P.; Sauvage, M.; Sibthorpe, B.; Spinoglio, L.; Testi, L.; Ward-Thompson, D.; White, G.; Wilson, C. D.; Woodcraft, A.; Zavagno, A.</p> <p>2010-07-01</p> <p>The origin and possible universality of the stellar initial mass function (IMF) is a major issue in astrophysics. One of the main objectives of the Herschel Gould Belt Survey is to clarify the link between the prestellar core mass function (CMF) and the IMF. We present and discuss the core mass function derived from Herschel data for the large population of prestellar cores discovered with SPIRE and PACS in the Aquila rift cloud complex at d ~ 260 pc. We detect a total of 541 starless cores in the entire ~11 deg2 area of the field imaged at 70-500 μm with SPIRE/PACS. Most of these cores appear to be gravitationally bound, and thus prestellar in nature. Our Herschel results confirm that the shape of the prestellar CMF resembles the stellar IMF, with much higher quality statistics than earlier submillimeter continuum ground-based surveys. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from ASA.Figures 3-6 are only available in electronic format at http://www.aanda.org</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6765718-time-series-analysis-energetic-electron-fluxes-mev-geosynchronous-altitude-master-thesis','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6765718-time-series-analysis-energetic-electron-fluxes-mev-geosynchronous-altitude-master-thesis"><span>Time-series analysis of energetic electron fluxes (1. 2 - 16 MeV) at geosynchronous altitude. Master's thesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Halpin, M.P.</p> <p></p> <p>This project used a Box and Jenkins time-series analysis of energetic electron fluxes measured at geosynchronous orbit in an effort to derive prediction models for the flux in each of five energy channels. In addition, the technique of transfer function modeling described by Box and Jenkins was used in an attempt to derive input-output relationships between the flux channels (viewed as the output) and the solar-wind speed or interplanetary magnetic field (IMF) north-south component, Bz, (viewed as the input). The transfer function modeling was done in order to investigate the theoretical dynamic relationship which is believed to exist between themore » solar wind, the IMF Bz, and the energetic electron flux in the magnetosphere. The models derived from the transfer-function techniques employed were also intended to be used in the prediction of flux values. The results from this study indicate that the energetic electron flux changes in the various channels are dependent on more than simply the solar-wind speed or the IMF Bz.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.477.5554W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.477.5554W"><span>Star formation in the outskirts of DDO 154: a top-light IMF in a nearly dormant disc</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watts, Adam B.; Meurer, Gerhardt R.; Lagos, Claudia D. P.; Bruzzese, Sarah M.; Kroupa, Pavel; Jerabkova, Tereza</p> <p>2018-07-01</p> <p>We present optical photometry of Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS)/Wide Field Camera (WFC) data of the resolved stellar populations in the outer disc of the dwarf irregular galaxy DDO 154. The photometry reveals that young main sequence (MS) stars are almost absent from the outermost H I disc. Instead, most are clustered near the main stellar component of the galaxy. We constrain the stellar initial mass function (IMF) by comparing the luminosity function of the MS stars to simulated stellar populations, assuming a constant star formation rate over the dynamical time-scale. The best-fitting IMF is deficient in high-mass stars compared to a canonical Kroupa IMF, with a best-fitting slope α = -2.45 and upper mass limit MU = 16 M⊙. This top-light IMF is consistent with predictions of the integrated galactic IMF theory. Combining the HST images with H I data from The H I Nearby Galaxy Survey (THINGS), we determine the star formation law (SFL) in the outer disc. The fit has a power-law exponent N = 2.92 ± 0.22 and zero-point A = 4.47 ± 0.65 × 10-7 M⊙ yr-1 kpc-2. This is depressed compared to the Kennicutt-Schmidt SFL, but consistent with weak star formation observed in diffuse H I environments. Extrapolating the SFL over the outer disc implies that there could be significant star formation occurring that is not detectable in H α. Last, we determine the Toomre stability parameter Q of the outer disc of DDO 154 using the THINGS H I rotation curve and velocity dispersion map. 72 per cent of the H I in our field has Q ≤ 4 and this incorporates 96 per cent of the observed MS stars. Hence, 28 per cent of the H I in the field is largely dormant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27508388','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27508388"><span>Protein Profiles for Muscle Development and Intramuscular Fat Accumulation at Different Post-Hatching Ages in Chickens.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Jie; Fu, Ruiqi; Liu, Ranran; Zhao, Guiping; Zheng, Maiqing; Cui, Huanxian; Li, Qinghe; Song, Jiao; Wang, Jie; Wen, Jie</p> <p>2016-01-01</p> <p>Muscle development and growth influences the efficiency of poultry meat production, and is closely related to deposition of intramuscular fat (IMF), which is crucial in meat quality. To clarify the molecular mechanisms underlying muscle development and IMF deposition in chickens, protein expression profiles were examined in the breast muscle of Beijing-You chickens at ages 1, 56, 98 and 140 days, using isobaric tags for relative and absolute quantification (iTRAQ). Two hundred and four of 494 proteins were expressed differentially. The expression profile at day 1 differed greatly from those at day 56, 98 and 140. KEGG pathway analysis of differential protein expression from pair-wise comparisons (day 1 vs. 56; 56 vs. 98; 98 vs. 140), showed that the fatty acid degradation pathway was more active during the stage from day 1 to 56 than at other periods. This was consistent with the change in IMF content, which was highest at day 1 and declined dramatically thereafter. When muscle growth was most rapid (days 56-98), pathways involved in muscle development were dominant, including hypertrophic cardiomyopathy, dilated cardiomyopathy, cardiac muscle contraction, tight junctions and focal adhesion. In contrast with hatchlings, the fatty acid degradation pathway was downregulated from day 98 to 140, which was consistent with the period for IMF deposition following rapid muscle growth. Changes in some key specific proteins, including fast skeletal muscle troponin T isoform, aldehyde dehydrogenase 1A1 and apolipoprotein A1, were verified by Western blotting, and could be potential biomarkers for IMF deposition in chickens. Protein-protein interaction networks showed that ribosome-related functional modules were clustered in all three stages. However, the functional module involved in the metabolic pathway was only clustered in the first stage (day 1 vs. 56). This study improves our understanding of the molecular mechanisms underlying muscle development and IMF deposition in chickens.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012suba.prop...66K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012suba.prop...66K"><span>Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koda, Jin</p> <p>2012-01-01</p> <p>"The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. extended UV disk, or XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (˜1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot S-Cam study of M83’s XUV disk led to support for the universal IMF at least in M83 (Koda et al. 2012). We propose an expansion of the pilot study, observing 6 XUV disks in NA656(Hα), B, I, and R-band with S-Cam. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Hα; NA656-R) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. The multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). The proposed observations will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass clusters (10^{2+3} M_sun) - the regime about which there is much ongoing debate."</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.475.1073V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.475.1073V"><span>Radial measurements of IMF-sensitive absorption features in two massive ETGs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vaughan, Sam P.; Davies, Roger L.; Zieleniewski, Simon; Houghton, Ryan C. W.</p> <p>2018-03-01</p> <p>We make radial measurements of stellar initial mass function (IMF) sensitive absorption features in the two massive early-type galaxies NGC 1277 and IC 843. Using the Oxford Short Wavelength Integral Field specTrogaph (SWIFT), we obtain resolved measurements of the Na I 0.82 and FeH 0.99 indices, amongst others, finding both galaxies show strong gradients in Na I absorption combined with flat FeH profiles at ˜0.4 Å. We find these measurements may be explained by radial gradients in the IMF, appropriate abundance gradients in [Na/Fe] and [Fe/H], or a combination of the two, and our data are unable to break this degeneracy. We also use full spectral fitting to infer global properties from an integrated spectrum of each object, deriving a unimodal IMF slope consistent with Salpeter in IC 843 (x = 2.27 ± 0.17) but steeper than Salpeter in NGC 1277 (x = 2.69 ± 0.11), despite their similar FeH equivalent widths. Independently, we fit the strength of the FeH feature and compare to the E-MILES and CvD12 stellar population libraries, finding agreement between the models. The IMF values derived in this way are in close agreement with those from spectral fitting in NGC 1277 (x_{CvD}=2.59^{+0.25}_{-0.48}, x_{E-MILES}=2.77± 0.31), but are less consistent in IC 843, with the IMF derived from FeH alone leading to steeper slopes than when fitting the full spectrum (x_{CvD}=2.57^{+0.30}_{-0.41}, x_{E-MILES}=2.72± 0.25). This work highlights the importance of a large wavelength coverage for breaking the degeneracy between abundance and IMF variations, and may bring into doubt the use of the Wing-Ford band as an IMF index if used without other spectral information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26981388','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26981388"><span>Gene expression profile of Musculus longissimus dorsi in bulls of a Charolais × Holstein F2-cross with divergent intramuscular fat content.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Komolka, Katrin; Ponsuksili, Siriluck; Albrecht, Elke; Kühn, Christa; Wimmers, Klaus; Maak, Steffen</p> <p>2016-03-01</p> <p>Transcriptomes of Musculus longissimus dorsi (MLD) were compared between bulls from a F2-cross derived from Charolais and Holstein Friesian. Two groups of 10 bulls were selected which differed significantly in intramuscular fat (IMF) deposition despite standardized husbandry and feeding conditions and identical sires in both groups. Consequently, genetic factors underlying the different capability of IMF deposition should be identified. A total of 32 differentially expressed genes (DEGs) were found of which 11 were up-regulated and 21 were down-regulated in the high IMF group. Ingenuity Pathway Analysis (IPA) identified a gene network comprising DEGs with functions in carbohydrate metabolism, lipid metabolism and molecular transport. The data from this study were deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE75347. We provide here a dataset which is of potential value to dissect molecular pathways influencing differences in IMF deposition in crossbred cattle with standardized genetic background.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017hst..prop15334D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017hst..prop15334D"><span>Towards high accuracy tests on the substellar IMF in young clusters. A survey in NGC 2024.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Da Rio, Nicola</p> <p>2017-08-01</p> <p>Measuring the Initial Mass Function in young clusters, and testing its universality, is a fundamental benchmark to constrain the physical processes and theoretical models of star formation. The shape and universality of the stellar IMF are well known. Our observational characterization of the substellar IMF, on the other hand, remains more uncertain, along with its possible environmental variations. Because of this, the physical processes that play a role in the formation of brown dwarfs are not fully constrained. In Cycle 22 we were awarded HST time to carry out the deepest spectro-photometric census of BDs in a young cluster: the Orion Nebula Cluster. Through deep WFC3/IR narrow band imaging, we are able to obtain Teff and A_V down to 15Mjup. Preliminary analysis limited to a portion of the total field of view allows us to classify several hundreds BDs, place them in the HRD and obtain, for an extinction limited sample, the complete and consistent IMF down to planetary masses. The substellar slope is consistent with the Galactic IMF but a rapid drop is found at the H-burning limit. We propose to carry out a nearly identical survey with HST in a younger, less massive nearby cluster: NGC2024 in the Flame Nebula. This will allow us to derive the complete census of the young population down to planetary masses, derive the IMF, enabling a consistent comparison with the results in the ONC. We will specifically look for statistically significant IMF variations with environmental properties (cluster mass, density) and investigate primordial mass segregation in the substellar regime. These results will significantly help to constrain the mechanisms involved in BD formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990078588&hterms=monographs&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmonographs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990078588&hterms=monographs&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmonographs"><span>Magnetotail Structure and its Internal Particle Dynamics During Northward IMF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ashour-Abdalla, M.; Raeder, J.; El-Alaoui, M.; Peroomian, V.</p> <p>1998-01-01</p> <p>This study uses Global magnetohydrodynamic (MHD) simulations driven by solar wind data along with Geotail observations of the magnetotail to investigate the magnetotail's response to changes in the interplanetary magnetic field (IMF); observed events used in the study occurred on March 29, 1993 and February 9, 1995. For events from February 9, 1995, we also use the time-dependent MHD magnetic and electric fields and the large-scale kinetic (LSK) technique to examine changes in the Geotail ion velocity distributions. Our MHD simulation shows that on March 29, 1993, during a long period of steady northward IMF, the tail was strongly squeezed and twisted around the Sun-Earth axis in response to variations in the IMF B(sub y) component. The mixed (magnetotail and magnetosheath) plasma observed by Geotail results from the spacecraft's close proximity to the magnetopause and its frequent crossings of this boundary. In our second example (February 9, 1995) the IMF was also steady and northward, and in addition had a significant B(sub y) component. Again the magnetotail was twisted, but not as strongly as on March 29, 1993. The Geotail spacecraft, located approximately 30 R(sub E) downtail, observed highly structured ion distribution functions. Using the time-dependent LSK technique, we investigate the ion sources and acceleration mechanisms affecting the Geotail distribution functions during this interval. At 1325 UT most ions are found to enter the magnetosphere on the dusk side earthward of Geotail with a secondary source on the dawn side in the low latitude boundary layer (LLBL). A small percentage come from the ionosphere. By 1347 UT the majority of the ions come from the dawn side LLBL. The distribution functions measured during the later time interval are much warmer, mainly because particles reaching the spacecraft from the dawn side are affected by nonadiabatic scattering and acceleration in the neutral sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990027598&hterms=monographs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmonographs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990027598&hterms=monographs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmonographs"><span>Magnetotail Structure and its Internal Particle Dynamics During Northward IMF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ashour-Abdalia, M.; El-Alaoui, M.; Peroomian, V.</p> <p>1998-01-01</p> <p>This study uses Global magnetohydrodynamic (MHD) simulations driven by solar wind data along with Geotail observations of the magnetotail to investigate the magnetotail's response to changes in the interplanetary magnetic field (IMF); observed events used in the study occurred on March 29, 1993 and February 9, 1995. For events from February 9, 1995, we also use the time-dependent MHD magnetic and electric fields and the large-scale kinetic (LSK) technique to examine changes in the Geotail ion velocity distributions. Our MHD simulation shows that on March 29, 1993, during a long period of steady northward IMF, the tail was strongly squeezed and twisted around the Sun-Earth axis in response to variations in the IMF B(sub y) component. The mixed (magnetotail and magnetosheath) plasma observed by Geotail results from the spacecraft's close proximity to the magnetopause and its frequent crossings of this boundary. In our second example (February 9, 1995) the IMF was also steady and northward, and in addition had a significant B(sub y) component. Again the magnetotail was twisted, but not as strongly as on March 29, 1993. The Geotail spacecraft, located approximately 30 R(sub E) downtail, observed highly structured ion distribution functions. Using the time-dependent LSK technique, we investigate the ion sources and acceleration mechanisms affecting the Geotail distribution functions during this interval. At 1325 UT most ions are found to enter the magnetosphere on the dusk side earthward of Geotail with a secondary source on the dawn side in the low latitude boundary layer (LLBL). A small percentage come from the ionosphere. By 1347 UT the majority of the ions come from the dawn side LLBL. The distribution functions measured during the later time interval are much warmer, mainly because particles reaching the spacecraft from the dawnside are affected by nonadiabatic scattering and acceleration in the neutral sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26829797','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26829797"><span>Quantifying Spasticity With Limited Swinging Cycles Using Pendulum Test Based on Phase Amplitude Coupling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yeh, Chien Hung; Young, Hsu Wen Vincent; Wang, Cheng Yen; Wang, Yung Hung; Lee, Po Lei; Kang, Jiunn Horng; Lo, Men Tzung</p> <p>2016-10-01</p> <p>Parameters derived from the goniometer measures in the Pendulum test are insufficient in describing the function of abnormal muscle activity in the spasticity. To explore a quantitative evaluation of muscle activation-movement interaction, we propose a novel index based on phase amplitude coupling (PAC) analysis with the consideration of the relations between movement and surface electromyography (SEMG) activity among 22 hemiplegic stroke patients. To take off trend and noise, we use the empirical mode decomposition (EMD) to obtain intrinsic mode functions (IMFs) of the angular velocity due to its superior decomposing ability in nonlinear oscillations. Shannon entropy based on angular velocity (phase)-envelope of EMG (amplitude) distribution was calculated to demonstrate characteristics of the coupling between SEMG activity and joint movement. We also compare our results with those from traditional methods such as the normalized relaxation index derived from the Pendulum test and the mean root mean square (RMS) of the SEMG signals in the study. Our results show effective discrimination ability between spastic and nonaffected limbs using our method . This study indicates the feasibility of using the novel indices based on the PAC in evaluation the spasticity among the hemiplegic stroke patients with less than three swinging cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014mysc.conf...47J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014mysc.conf...47J"><span>Stellar Content and Star Formation in Young Clusters Influenced by Massive Stars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jose, J.</p> <p>2014-09-01</p> <p>Star Formation (SF) in extreme environment is always challenging and can be significantly different from that in quiet environments. This study presents the comprehensive multi-wavelength (optical, NIR, MIR and radio) observational analysis of three Galactic starforming regions associated with H II regions/young clusters and located at > 2 kpc, which are found to be evolving under the influence of massive stars within their vicinity. The candidate massive stars, young stellar objects, their mass, age, age spread, the form of K-band Luminosity Function (KLF), Initial Mass Function (IMF) and a possible formation history of each region are studied. The major results on Sh2-252, an extended H II region that appears to be undergoing multiple episodes of SF, are highlighted. Our analysis shows that all the regions are undergoing complex SF activity and the new generation of stars in each region seem to be an outcome of the influence by the presence of massive stars within them. SF process in these regions are likely to be multi-fold and the results suggest that multiple modes of triggering mechanism and hierarchial modes of SF are a common phenomena within young clusters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017A%26A...608A..53J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017A%26A...608A..53J"><span>The formation of ultra compact dwarf galaxies and massive globular clusters. Quasar-like objects to test for a variable stellar initial mass function</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeřábková, T.; Kroupa, P.; Dabringhausen, J.; Hilker, M.; Bekki, K.</p> <p>2017-12-01</p> <p>The stellar initial mass function (IMF) has been described as being invariant, bottom-heavy, or top-heavy in extremely dense star-burst conditions. To provide usable observable diagnostics, we calculate redshift dependent spectral energy distributions of stellar populations in extreme star-burst clusters, which are likely to have been the precursors of present day massive globular clusters (GCs) and of ultra compact dwarf galaxies (UCDs). The retention fraction of stellar remnants is taken into account to assess the mass to light ratios of the ageing star-burst. Their redshift dependent photometric properties are calculated as predictions for James Webb Space Telescope (JWST) observations. While the present day GCs and UCDs are largely degenerate concerning bottom-heavy or top-heavy IMFs, a metallicity- and density-dependent top-heavy IMF implies the most massive UCDs, at ages < 100 Myr, to appear as objects with quasar-like luminosities with a 0.1-10% variability on a monthly timescale due to core collapse supernovae.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29684840','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29684840"><span>Predicting pork loin intramuscular fat using computer vision system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, J-H; Sun, X; Young, J M; Bachmeier, L A; Newman, D J</p> <p>2018-09-01</p> <p>The objective of this study was to investigate the ability of computer vision system to predict pork intramuscular fat percentage (IMF%). Center-cut loin samples (n = 85) were trimmed of subcutaneous fat and connective tissue. Images were acquired and pixels were segregated to estimate image IMF% and 18 image color features for each image. Subjective IMF% was determined by a trained grader. Ether extract IMF% was calculated using ether extract method. Image color features and image IMF% were used as predictors for stepwise regression and support vector machine models. Results showed that subjective IMF% had a correlation of 0.81 with ether extract IMF% while the image IMF% had a 0.66 correlation with ether extract IMF%. Accuracy rates for regression models were 0.63 for stepwise and 0.75 for support vector machine. Although subjective IMF% has shown to have better prediction, results from computer vision system demonstrates the potential of being used as a tool in predicting pork IMF% in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MNRAS.447..618B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MNRAS.447..618B"><span>The initial mass function and star formation law in the outer disc of NGC 2915</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bruzzese, S. M.; Meurer, G. R.; Lagos, C. D. P.; Elson, E. C.; Werk, J. K.; Blakeslee, John P.; Ford, H.</p> <p>2015-02-01</p> <p>Using Hubble Space Telescope (HST) Advanced Camera for Surveys/Wide Field Camera data we present the photometry and spatial distribution of resolved stellar populations in the outskirts of NGC 2915, a blue compact dwarf with an extended H I disc. These observations reveal an elliptical distribution of red giant branch stars, and a clumpy distribution of main-sequence stars that correlate with the H I gas distribution. We constrain the upper-end initial mass function (IMF) and determine the star formation law (SFL) in this field, using the observed main-sequence stars and an assumed constant star formation rate. Previously published Hα observations of the field, which show one faint H II region, are used to provide further constraints on the IMF. We find that the main-sequence luminosity function analysis alone results in a best-fitting IMF with a power-law slope α = -2.85 and upper-mass limit M_u = 60 M_{⊙}. However, if we assume that all Hα emission is confined to H II regions then the upper-mass limit is restricted to M_u ≲ 20 M_{⊙}. For the luminosity function fit to be correct, we have to discount the Hα observations implying significant diffuse ionized gas or escaping ionizing photons. Combining the HST photometry with H I imaging, we find the SFL has a power-law index N = 1.53 ± 0.21. Applying these results to the entire outer H I disc indicates that it contributes 11-28 per cent of the total recent star formation in NGC 2915, depending on whether the IMF is constant within the disc or varies from the centre to the outer region.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005IAUS..227..285A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005IAUS..227..285A"><span>The IMF in extreme star-forming environments: Searching for variations vs. initial conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andersen, Morten; Meyer, M. R.; Greissl, J.; Oppenheimer, B. D.; Kenworthy, M. A.; McCarthy, D. W.; Zinnecker, H.</p> <p></p> <p>Any predictive theory of star formation must explain observed variations (or lack thereof) in the initial mass function. Recent work suggests that we might expect quantitative variations in the IMF as a function of metallicity (Larson 2005) or magnetic field strength (Shu et al. 2004). We summarize results from several on-going studies attempting to constrain the ratio of high to low mass stars, as well as stars to sub- stellar objects, in a variety of different environments, all containing high mass stars.First, we examine the ratio of stars to sub-stellar objects in the nearby Mon R2 region utilizing NICMOS/HST data. We compare our results to the IMF by Kroupa (2002) and to the observed ratios for IC 348 and Orion. Second, we present preliminary results for the ratio of high to low mass stars in W51, the most luminous HII region in the galaxy. Based on ground-based multi-colour images of the cluster obtained with the MMT adaptive optics system, we derive a lower limit to the ratio of high-mass to low-mass stars and compare it to the ratios for nearby clusters. Finally, we present the derived IMF for the R136 region in the LMC where the metallicity is 1/4 solar using HST/NICMOS data. We find that the IMF is consistent with that characterizing the field (Chabrier 2003), as well as nearby star-forming regions, down to 1.0 M_⊙ outside 2 pc. Whereas the results for both Mon R2 and R136 are consistent with the nearby clusters, the ratio of high to low mass stars in W51 tentatively indicates a lack of low-mass objects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1180A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1180A"><span>KINETyS II: Constraints on spatial variations of the stellar initial mass function from K-band spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alton, P. D.; Smith, R. J.; Lucey, J. R.</p> <p>2018-05-01</p> <p>We investigate the spatially resolved stellar populations of a sample of seven nearby massive Early-type galaxies (ETGs), using optical and near infrared data, including K-band spectroscopy. This data offers good prospects for mitigating the uncertainties inherent in stellar population modelling by making a wide variety of strong spectroscopic features available. We report new VLT-KMOS measurements of the average empirical radial gradients out to the effective radius in the strengths of the Ca I 1.98 μm and 2.26 μm features, the Na I 2.21 μm line, and the CO 2.30 μm bandhead. Following previous work, which has indicated an excess of dwarf stars in the cores of massive ETGs, we pay specific attention to radial variations in the stellar initial mass function (IMF) as well as modelling the chemical abundance patterns and stellar population ages in our sample. Using state-of-the-art stellar population models we infer an [Fe/H] gradient of -0.16±0.05 per dex in fractional radius and an average [Na/Fe] gradient of -0.35±0.09. We find a large but radially-constant enhancement to [Mg/Fe] of ˜ 0.4 and a much lower [Ca/Fe] enhancement of ˜ 0.1. Finally, we find no significant IMF radial gradient in our sample on average and find that most galaxies in our sample are consistent with having a Milky Way-like IMF, or at most a modestly bottom heavy IMF (e.g. less dwarf enriched than a single power law IMF with the Salpeter slope).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25911121','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25911121"><span>Conservative treatment of a mandibular condyle fracture: Comparing intermaxillary fixation with screws or arch bar. A randomised clinical trial.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>van den Bergh, B; Blankestijn, J; van der Ploeg, T; Tuinzing, D B; Forouzanfar, T</p> <p>2015-06-01</p> <p>A mandibular condyle fracture can be treated conservatively by intermaxillary fixation (IMF) or by open reposition and internal fixation (ORIF). Many IMF-modalities can be chosen, including IMF-screws (IMFS). This prospective multi-centre randomised clinical trial compared the use of IMFS with the use of arch bars in the treatment of mandibular condyle fractures. The study population consisted of 50 patients (mean age: 31.8 years). Twenty-four (48%) patients were allocated in the IMFS group. Twenty-six (52%) patients were assigned to the arch bars group. In total 188 IMF-screws were used (5-12 screws per patient, mean 7.83 screws per patient). All pain scores were lower in the IMFS group. Three patients developed a malocclusion (IFMS-group: one patient, arch bars-group: two patients). Mean surgical time was significantly shorter in the IMFS group (59 vs. 126 min; p<0.001). There were no needlestick injuries (0%) in the IMFS group and eight (30.7%) in the arch bars group (p=0.003). One IMF-screw fractured on insertion (0.53%), one (0.53%) screw was inserted into a root. Six (3.2%) screws loosened spontaneously in four patients. Mucosal disturbances were seen in 22 patients, equally divided over both groups. Considering the advantages and the disadvantages of IMFS, and observing the results of this study, the authors conclude that IMFS provide a superior method for IMF. IMFS are safer for the patients and surgeons. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004xmm..prop....3B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004xmm..prop....3B"><span>XMM-Newton Proposal 03001001</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barrado Y Navascues, David</p> <p>2004-10-01</p> <p>We propose observations with XMM-EPIC/MOS in five distinct sibling associations belonging to the Lambda Orionis Star Forming Region (2-5 Myr, 340 pc). We have already optical and IR photometry and spectroscopy for objects down to 0.015 M(sun). The goals are: i) Assess the membership of our candidates and detect new members. ii) Derive accurate IMFs for each association, checking the universality of the IMF. iii) Study the properties and evolution of the X-ray Luminosity Functions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013suba.prop...10K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013suba.prop...10K"><span>Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koda, Jin</p> <p>2013-01-01</p> <p>"The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. extended UV disk, or XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (˜1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot S-Cam study of M83’s XUV disk led to support for the universal IMF at least in M83 (Koda et al. 2012). We propose an expansion of the pilot study by an order of magnitude, by observing additional 6 XUV disks in NA656(Hα), B, I, and R-band with S-Cam in S13A. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Hα; NA656-R) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. These multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). The proposed observations will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass - clusters (10^(2+3) M_sun) - the regime about which there is much ongoing debate."</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013suba.prop....8K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013suba.prop....8K"><span>Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koda, Jin</p> <p>2013-01-01</p> <p>"The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. extended UV disk, or XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (˜1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot S-Cam study of M83’s XUV disk led to support for the universal IMF at least in M83 (Koda et al. 2012). We propose an expansion of the pilot study by about an order of magnitude, by observing 6 XUV disks in NA656(Hα), B, I, and R-band with S-Cam in S13B. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Hα) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. These multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). The proposed observations will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass - clusters (10^{2+3} M_sun) - the regime of ongoing debate. Previously allocated 1+2 nights were cancelled (telescope failures)."</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014suba.prop...11K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014suba.prop...11K"><span>Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koda, Jin</p> <p>2014-01-01</p> <p>The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (~1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot study led to support for the universal IMF at least in M83’s XUV disk (Koda et al. 2012). We propose an expansion of the pilot study by about an order of magnitude, by observing total ~ 10 XUV disks (6 disks in S14A) in NA656(Halpha), B, I, and R-band with S-Cam. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Halpha) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. These multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). This project will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass clusters (102-3 Msun) - the regime of ongoing debate. This proposal will complete this on-going project with S-Cam.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........16O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........16O"><span>The relationship between recollection, knowledge transfer, and student attitudes towards chemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Odeleye, Oluwatobi Omobonike</p> <p></p> <p>Certain foundational concepts, including acid-base theory, chemical bonding and intermolecular forces (IMFs), appear throughout the undergraduate chemistry curriculum. The level of understanding of these foundational concepts influences the ability of students to recognize the relationships between sub-disciplines in chemistry. The purpose of this study was to investigate the relationship between student attitudes towards chemistry and their abilities to recollect and transfer knowledge of IMFs, a foundational concept, to their daily lives as well as to other classes. Data were collected using surveys, interviews and classroom observations, and analyzed using qualitative methods. The data show that while most students were able to function at lower levels of thinking by providing a definition of IMFs, majority were unable to function at higher levels of thinking as evidenced by their inability to apply their knowledge of IMFs to their daily lives and other classes. The results of this study suggest a positive relationship between students' abilities to recollect knowledge and their abilities to transfer that knowledge. The results also suggest positive relationships between recollection abilities of students and their attitudes towards chemistry as well as their transfer abilities and attitudes towards chemistry. Recommendations from this study include modifications of pedagogical techniques in ways that facilitate higher-level thinking and emphasize how chemistry applies not only to daily life, but also to other courses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29029131','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29029131"><span>Plasma Amino Acids Stimulate Uncoupled Respiration of Muscle Subsarcolemmal Mitochondria in Lean but Not Obese Humans.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kras, Katon A; Hoffman, Nyssa; Roust, Lori R; Patel, Shivam H; Carroll, Chad C; Katsanos, Christos S</p> <p>2017-12-01</p> <p>Obesity is associated with mitochondrial dysfunction in skeletal muscle. Increasing the plasma amino acid (AA) concentrations stimulates mitochondrial adenosine triphosphate (ATP) production in lean individuals. To determine whether acute elevation in plasma AAs enhances muscle mitochondrial respiration and ATP production in subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria in obese adults. Assessment of SS and IMF mitochondrial function during saline (i.e., control) and AA infusions. Eligible participants were healthy lean (body mass index, <25 kg/m2; age, 37 ± 3 years; n = 10) and obese (body mass index >30 kg/m2; age 35 ± 3 years; n = 11) subjects. Single trial of saline infusion followed by AA infusion. SS and IMF mitochondria were isolated from muscle biopsies collected at the end of the saline and AA infusions. Mitochondrial respiration and ATP production. AA infusion increased adenosine 5'-diphosphate (ADP)-stimulated respiration and ATP production rates of SS mitochondria in the lean (P < 0.05), but not obese, subjects. Furthermore, AA infusion increased the uncoupled (i.e., non-ADP-stimulated) respiration of SS mitochondria in the lean subjects only (P < 0.05). AA infusion had no effect on any of these parameters in IMF mitochondria in either lean or obese subjects (P > 0.05). Increasing the plasma AA concentrations enhances the capacity for respiration and ATP production of muscle SS, but not IMF, mitochondria in lean individuals, in parallel with increases in uncoupled respiration. However, neither of these parameters increases in muscle SS or IMF mitochondria in obese individuals. Copyright © 2017 Endocrine Society</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080013312&hterms=ionosphere&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dionosphere','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080013312&hterms=ionosphere&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dionosphere"><span>Prediction of Geomagnetic Activity and Key Parameters in High-latitude Ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Khazanov, George V.; Lyatsky, Wladislaw; Tan, Arjun; Ridley, Aaron</p> <p>2007-01-01</p> <p>Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere are important tasks of US Space Weather Program. Prediction reliability is dependent on the prediction method, and elements included in the prediction scheme. Two of the main elements of such prediction scheme are: an appropriate geomagnetic activity index, and an appropriate coupling function (the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity). We have developed a new index of geomagnetic activity, the Polar Magnetic (PM) index and an improved version of solar wind coupling function. PM index is similar to the existing polar cap PC index but it shows much better correlation with upstream solar wind/IMF data and other events in the magnetosphere and ionosphere. We investigate the correlation of PM index with upstream solar wind/IMF data for 10 years (1995-2004) that include both low and high solar activity. We also have introduced a new prediction function for the predicting of cross-polar-cap voltage and Joule heating based on using both PM index and upstream solar wind/IMF data. As we show such prediction function significantly increase the reliability of prediction of these important parameters. The correlation coefficients between the actual and predicted values of these parameters are approx. 0.9 and higher.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26653760','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26653760"><span>Intermittent Fasting Promotes Fat Loss With Lean Mass Retention, Increased Hypothalamic Norepinephrine Content, and Increased Neuropeptide Y Gene Expression in Diet-Induced Obese Male Mice.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gotthardt, Juliet D; Verpeut, Jessica L; Yeomans, Bryn L; Yang, Jennifer A; Yasrebi, Ali; Roepke, Troy A; Bello, Nicholas T</p> <p>2016-02-01</p> <p>Clinical studies indicate alternate-day, intermittent fasting (IMF) protocols result in meaningful weight loss in obese individuals. To further understand the mechanisms sustaining weight loss by IMF, we investigated the metabolic and neural alterations of IMF in obese mice. Male C57/BL6 mice were fed a high-fat diet (HFD; 45% fat) ad libitum for 8 weeks to promote an obese phenotype. Mice were divided into four groups and either maintained on ad libitum HFD, received alternate-day access to HFD (IMF-HFD), and switched to ad libitum low-fat diet (LFD; 10% fat) or received IMF of LFD (IMF-LFD). After 4 weeks, IMF-HFD (∼13%) and IMF-LFD (∼18%) had significantly lower body weights than the HFD. Body fat was also lower (∼40%-52%) in all diet interventions. Lean mass was increased in the IMF-LFD (∼12%-13%) compared with the HFD and IMF-HFD groups. Oral glucose tolerance area under the curve was lower in the IMF-HFD (∼50%), whereas the insulin tolerance area under the curve was reduced in all diet interventions (∼22%-42%). HPLC measurements of hypothalamic tissue homogenates indicated higher (∼55%-60%) norepinephrine (NE) content in the anterior regions of the medial hypothalamus of IMF compared with the ad libitum-fed groups, whereas NE content was higher (∼19%-32%) in posterior regions in the IMF-LFD group only. Relative gene expression of Npy in the arcuate nucleus was increased (∼65%-75%) in IMF groups. Our novel findings indicate that intermittent fasting produces alterations in hypothalamic NE and neuropeptide Y, suggesting the counterregulatory processes of short-term weight loss are associated with an IMF dietary strategy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018APExp..11e1202H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018APExp..11e1202H"><span>Entirely relaxed lattice-mismatched GaSb/GaAs/Si(001) heterostructure grown via metalorganic chemical vapor deposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ha, Minh Thien Huu; Hoang Huynh, Sa; Binh Do, Huy; Nguyen, Tuan Anh; Luc, Quang Ho; Lee, Ching Ting; Chang, Edward Yi</p> <p>2018-05-01</p> <p>A GaSb epilayer is grown on a GaAs/Si(001) epitaxial substrate via metalorganic chemical vapor deposition. High-resolution transmission electron microscopy micrographs and high-resolution X-ray reciprocal space mapping indicate an entirely relaxed interfacial misfit (IMF) array GaSb epilayer. The valence-band offset and conduction-band offset of the Al2O3/GaSb/GaAs/Si structure are estimated to be 2.39 and 3.65 eV, respectively. The fabricated Al2O3/p-GaSb/GaAs/Si MOS capacitors exhibited good capacitance–voltage characteristics with a small accumulation frequency dispersion of approximately 1.05% per decade. These results imply that the GaSb epilayer grown on the GaAs/Si platform in the IMF mode can be used for future complementary metal–oxide semiconductor applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.477.2560B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.477.2560B"><span>M*/L gradients driven by IMF variation: large impact on dynamical stellar mass estimates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bernardi, M.; Sheth, R. K.; Dominguez-Sanchez, H.; Fischer, J.-L.; Chae, K.-H.; Huertas-Company, M.; Shankar, F.</p> <p>2018-06-01</p> <p>Within a galaxy the stellar mass-to-light ratio ϒ* is not constant. Recent studies of spatially resolved kinematics of nearby early-type galaxies suggest that allowing for a variable initial mass function (IMF) returns significantly larger ϒ* gradients than if the IMF is held fixed. We show that ignoring such IMF-driven ϒ* gradients can have dramatic effect on dynamical (M_*^dyn), though stellar population (M_*^SP) based estimates of early-type galaxy stellar masses are also affected. This is because M_*^dyn is usually calibrated using the velocity dispersion measured in the central regions (e.g. Re/8) where stars are expected to dominate the mass (i.e. the dark matter fraction is small). On the other hand, M_*^SP is often computed from larger apertures (e.g. using a mean ϒ* estimated from colours). If ϒ* is greater in the central regions, then ignoring the gradient can overestimate M_*^dyn by as much as a factor of two for the most massive galaxies. Large ϒ*-gradients have four main consequences: First, M_*^dyn cannot be estimated independently of stellar population synthesis models. Secondly, if there is a lower limit to ϒ* and gradients are unknown, then requiring M_*^dyn=M_*^SP constrains them. Thirdly, if gradients are stronger in more massive galaxies, then accounting for this reduces the slope of the correlation between M_*^dyn/M_*^SP of a galaxy with its velocity dispersion. In particular, IMF-driven gradients bring M_*^dyn and M_*^SP into agreement, not by shifting M_*^SP upwards by invoking constant bottom-heavy IMFs, as advocated by a number of recent studies, but by revising M_*^dyn estimates in the literature downwards. Fourthly, accounting for ϒ* gradients changes the high-mass slope of the stellar mass function φ (M_*^dyn), and reduces the associated stellar mass density. These conclusions potentially impact estimates of the need for feedback and adiabatic contraction, so our results highlight the importance of measuring ϒ* gradients in larger samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MNRAS.446..493P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MNRAS.446..493P"><span>The stellar initial mass function of early-type galaxies from low to high stellar velocity dispersion: homogeneous analysis of ATLAS3D and Sloan Lens ACS galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Posacki, Silvia; Cappellari, Michele; Treu, Tommaso; Pellegrini, Silvia; Ciotti, Luca</p> <p>2015-01-01</p> <p>We present an investigation about the shape of the initial mass function (IMF) of early-type galaxies (ETGs), based on a joint lensing and dynamical analysis, and on stellar population synthesis models, for a sample of 55 lens ETGs identified by the Sloan Lens Advanced Camera for Surveys (SLACS). We construct axisymmetric dynamical models based on the Jeans equations which allow for orbital anisotropy and include a dark matter halo. The models reproduce in detail the observed Hubble Space Telescope photometry and are constrained by the total projected mass within the Einstein radius and the stellar velocity dispersion (σ) within the Sloan Digital Sky Survey fibres. Comparing the dynamically-derived stellar mass-to-light ratios (M*/L)dyn, obtained for an assumed halo slope ρh ∝ r-1, to the stellar population ones (M*/L)Salp, derived from full-spectrum fitting and assuming a Salpeter IMF, we infer the mass normalization of the IMF. Our results confirm the previous analysis by the SLACS team that the mass normalization of the IMF of high-σ galaxies is consistent on average with a Salpeter slope. Our study allows for a fully consistent study of the trend between IMF and σ for both the SLACS and atlas3D samples, which explore quite different σ ranges. The two samples are highly complementary, the first being essentially σ selected, and the latter volume-limited and nearly mass selected. We find that the two samples merge smoothly into a single trend of the form log α = (0.38 ± 0.04) × log (σe/200 km s-1) + ( - 0.06 ± 0.01), where α = (M*/L)dyn/(M*/L)Salp and σe is the luminosity averaged σ within one effective radius Re. This is consistent with a systematic variation of the IMF normalization from Kroupa to Salpeter in the interval σe ≈ 90-270 km s-1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012MNRAS.423.3601N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012MNRAS.423.3601N"><span>Cosmological implications of a stellar initial mass function that varies with the Jeans mass in galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Narayanan, Desika; Davé, Romeel</p> <p>2012-07-01</p> <p>Observations of star-forming galaxies at high z have suggested discrepancies in the inferred star formation rates (SFRs) either between data and models or between complementary measures of the SFR. These putative discrepancies could all be alleviated if the stellar initial mass function (IMF) is systematically weighted towards more high-mass star formation in rapidly star-forming galaxies. Here, we explore how the IMF might vary under the central assumption that the turnover mass in the IMF, ?, scales with the Jeans mass in giant molecular clouds (GMCs), ?. We employ hydrodynamic simulations of galaxies coupled with radiative transfer models to predict how the typical GMC Jeans mass, and hence the IMF, varies with galaxy properties. We then study the impact of such an IMF on the star formation law, the SFR-M* relation, sub-millimetre galaxies (SMGs) and the cosmic SFR density. Our main results are: the H2 mass-weighted Jeans mass in a galaxy scales well with the SFR when the SFR is greater than a few M⊙ yr-1. Stellar population synthesis modelling shows that this results in a non-linear relation between SFR and Lbol, such that SFR ?. Using this model relation, the inferred SFR of local ultraluminous infrared galaxies decreases by a factor of ˜2, and that of high-z SMGs decreases by a factor of ˜3-5. At z˜ 2, this results in a lowered normalization of the SFR-M* relation in better agreement with models, a reduced discrepancy between the observed cosmic SFR density and stellar mass density evolution, and SMG SFRs that are easier to accommodate in current hierarchical structure formation models. It further results in a Kennicutt-Schmidt star formation law with a slope of ˜1.6 when utilizing a physically motivated form for the CO-H2 conversion factor that varies with galaxy physical property. While each of the discrepancies considered here could be alleviated without appealing to a varying IMF, the modest variation implied by assuming ? is a plausible solution that simultaneously addresses numerous thorny issues regarding the SFRs of high-z galaxies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DPS....4950502D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DPS....4950502D"><span>The complex magnetic field configuration of the Martian magnetotail as observed by MAVEN</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DiBraccio, Gina A.; Luhmann, Janet; Curry, Shannon; Espley, Jared R.; Gruesbeck, Jacob; Xu, Shaosui; Mitchell, David; Soobiah, Yasir; Connerney, John E. P.; Dong, Chuanfei; Harada, Yuki; Ruhunusiri, Suranga; Halekas, Jasper; Hara, Takuya; Ma, Yingjuan; Brain, David; Jakosky, Bruce</p> <p>2017-10-01</p> <p>The Martian magnetosphere forms as the solar wind directly interacts with the planet’s upper atmosphere. During this interaction, the Sun’s interplanetary magnetic field (IMF) drapes around the planet and local crustal magnetic fields, creating a magnetosphere configuration that has attributes of both an induced magnetosphere like that of Venus, and a complex, small-scale magnetosphere like the Moon. In addition to the closed crustal fields and draped IMF at Mars, open magnetic fields are created when magnetic reconnection occurs between the planetary fields and the IMF. These various field topologies present a complex magnetotail structure that we are now able to explore using a combination of MAVEN observations and magnetohydrodynamic (MHD) simulations. Preliminary MHD results have suggested that the Martian magnetotail includes a dual-lobe component, composed of open crustal fields, enveloped by an induced comet-like tail. These simulated open-field lobes are twisted by roughly 45°, either clockwise or counterclockwise, from the ecliptic plane. This rotation depends on the east-west component of the IMF. We utilize MAVEN Magnetometer and Solar Wind Ion Analyzer (SWIA) measurements collected over two Earth years to analyze the tail magnetic field configuration as a function of IMF direction. Cross-tail views of the average measured magnetic field components directed toward and away from the planet are compared for a variety of solar wind parameters. We find that, in agreement with simulation results, the east-west IMF component strongly affects the magnetotail structure, twisting its sunward-antisunward polarity patterns in response to changing IMF orientation. Through a data-model comparison we are able to infer that regions of open magnetic fields in the tail are likely reconnected crustal fields. Futhermore, these open fields in the tail may contribute to atmospheric escape to space. From this investigation we are able to confirm that the Martian magnetotail is a hybrid configuration between intrinsic and induced magnetospheres, shifting the paradigm of Mars’ magnetosphere as we have understood it thus far.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22522097-sl2s-galaxy-scale-lens-sample-dark-matter-halos-stellar-imf-massive-early-type-galaxies-out-redshift','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22522097-sl2s-galaxy-scale-lens-sample-dark-matter-halos-stellar-imf-massive-early-type-galaxies-out-redshift"><span>THE SL2S GALAXY-SCALE LENS SAMPLE. V. DARK MATTER HALOS AND STELLAR IMF OF MASSIVE EARLY-TYPE GALAXIES OUT TO REDSHIFT 0.8</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.</p> <p>2015-02-20</p> <p>We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increasesmore » for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M {sub *} = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1336371-sl2s-galaxy-scale-lens-sample-dark-matter-halos-stellar-imf-massive-early-type-galaxies-out-redshift','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1336371-sl2s-galaxy-scale-lens-sample-dark-matter-halos-stellar-imf-massive-early-type-galaxies-out-redshift"><span>The SL2S galaxy-scale lens sample. V. dark matter halos and stellar IMF of massive early-type galaxies out to redshift 0.8</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.; ...</p> <p>2015-02-17</p> <p>Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the innermore » 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFMSM51C..07R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFMSM51C..07R"><span>Unraveling the Nature of Steady Magnetopause Reconnection Versus Flux Transfer Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raeder, J.</p> <p>2002-12-01</p> <p>Magnetic reconnection is a fundamental mode of energy and momentum transfer from the solar wind to the magnetosphere. It is known to occur in different forms depending on solar wind and magnetospheric conditions. In particular, steady reconnection can be distinguished from pulse-like reconnection events which are also known as Flux Transfer Events (FTEs). The formation mechanism of FTEs and their contolling factors remain controversial. We use global MHD simulations of Earth's magnetosphere to show that for southward IMF conditions: a) steady reconnection preferentially occurs without FTEs when the stagnation flow line nearly coincides with the X-line location, which requires small dipole tilt and nearly due southward IMF, b) FTEs occur when the flow/field symmetry is broken, which requires either a large dipole tilt and/or a substantial east-west component of the IMF, c) the predicted spacecraft signature and the repetition frequency of FTEs in the simulations agrees very well with typical observations, lending credibility to the the model, d) the fundamental process that leads to FTE formation is multiple X-line formation caused by the flow and field patterns in the magnetosheath and requires no intrinsic plasma property variations like variable resistivity, e) if the dipole tilt breaks the symmetry FTEs occur only in the winter hemisphere whereas the reconnection signatures in the summer hemisphere are steady with no bipolar FTE-like signatures, f) if the IMF east-west field component breaks the symmetry FTEs occur in both hemispheres, and g) FTE formation depends on sufficient resolution and low diffusion in the model -- coarse resolution and/or high diffusivity lead to flow-through reconnection signatures that appear unphysical given the frequent observation of FTEs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....3293R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....3293R"><span>Global modeling of flux transfer events: generation mechanism and spacecraft signatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raeder, J.</p> <p>2003-04-01</p> <p>Magnetic reconnection is a fundamental mode of energy and momentum transfer from the solar wind to the magnetosphere. It is known to occur in different forms depending on solar wind and magnetospheric conditions. In particular, steady reconnection can be distinguished from pulse-like reconnection events which are also known as Flux Transfer Events (FTEs). The formation mechanism of FTEs and their contolling factors remain controversial. We use global MHD simulations of Earth's magnetosphere to show that for southward IMF conditions: a) steady reconnection preferentially occurs without FTEs when the stagnation flow line nearly coincides with the X-line location, which requires small dipole tilt and nearly due southward IMF, b) FTEs occur when the flow/field symmetry is broken, which requires either a large dipole tilt and/or a substantial east-west component of the IMF, c) the predicted spacecraft signature and the repetition frequency of FTEs in the simulations agrees very well with typical observations, lending credibility to the the model, d) the fundamental process that leads to FTE formation is multiple X-line formation caused by the flow and field patterns in the magnetosheath and requires no intrinsic plasma property variations like variable resistivity, e) if the dipole tilt breaks the symmetry FTEs occur only in the winter hemisphere whereas the reconnection signatures in the summer hemisphere are steady with no bipolar FTE-like signatures, f) if the IMF east-west field component breaks the symmetry FTEs occur in both hemispheres, and g) FTE formation depends on sufficient resolution and low diffusion in the model -- coarse resolution and/or high diffusivity lead to flow-through reconnection signatures that appear unphysical given the frequent observation of FTEs.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001A%26A...371..952D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001A%26A...371..952D"><span>A two-step initial mass function:. Consequences of clustered star formation for binary properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Durisen, R. H.; Sterzik, M. F.; Pickett, B. K.</p> <p>2001-06-01</p> <p>If stars originate in transient bound clusters of moderate size, these clusters will decay due to dynamic interactions in which a hard binary forms and ejects most or all the other stars. When the cluster members are chosen at random from a reasonable initial mass function (IMF), the resulting binary characteristics do not match current observations. We find a significant improvement in the trends of binary properties from this scenario when an additional constraint is taken into account, namely that there is a distribution of total cluster masses set by the masses of the cloud cores from which the clusters form. Two distinct steps then determine final stellar masses - the choice of a cluster mass and the formation of the individual stars. We refer to this as a ``two-step'' IMF. Simple statistical arguments are used in this paper to show that a two-step IMF, combined with typical results from dynamic few-body system decay, tends to give better agreement between computed binary characteristics and observations than a one-step mass selection process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ami..confE..11F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ami..confE..11F"><span>A Study of THT Cold Cores Population in the Star-Forming Region in Serpens</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fiorellino, Eleonora</p> <p>2017-11-01</p> <p>The purpose of this work is to produce the Core Mass Function (CMF) of the Serpens star-forming region and confront it with the Initial Mass Function (IMF), the statistical distribution of initial star mass. As Testi & Sergent (1998) discovered, the power-law index of the slope of the CMF is very close to the one of the Salpeter's IMF (Salpeter, 1955): dN/dM / M2.35. This strongly suggests that the stellar IMF results from the fragmentation process in turbulent cloud cores rather than from stellar accretion mechanisms and gives a huge contribute to undestanding the star formation. For this work, we started from the data delivered by the European satellite Herschel and produced the maps of the Serpens with Unimap code (Piazzo et al, 2015). Hence we obtained a core catalogue with two different softwares getsources (Men'shchikov et al, 2012) and CuTEx (Molinari et al, 2011) and we eliminated from it any source that is not a core. A full discussion of the cores physical propreties as well as the whole region is under preparation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4733124','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4733124"><span>Intermittent Fasting Promotes Fat Loss With Lean Mass Retention, Increased Hypothalamic Norepinephrine Content, and Increased Neuropeptide Y Gene Expression in Diet-Induced Obese Male Mice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gotthardt, Juliet D.; Verpeut, Jessica L.; Yeomans, Bryn L.; Yang, Jennifer A.; Yasrebi, Ali; Bello, Nicholas T.</p> <p>2016-01-01</p> <p>Clinical studies indicate alternate-day, intermittent fasting (IMF) protocols result in meaningful weight loss in obese individuals. To further understand the mechanisms sustaining weight loss by IMF, we investigated the metabolic and neural alterations of IMF in obese mice. Male C57/BL6 mice were fed a high-fat diet (HFD; 45% fat) ad libitum for 8 weeks to promote an obese phenotype. Mice were divided into four groups and either maintained on ad libitum HFD, received alternate-day access to HFD (IMF-HFD), and switched to ad libitum low-fat diet (LFD; 10% fat) or received IMF of LFD (IMF-LFD). After 4 weeks, IMF-HFD (∼13%) and IMF-LFD (∼18%) had significantly lower body weights than the HFD. Body fat was also lower (∼40%–52%) in all diet interventions. Lean mass was increased in the IMF-LFD (∼12%–13%) compared with the HFD and IMF-HFD groups. Oral glucose tolerance area under the curve was lower in the IMF-HFD (∼50%), whereas the insulin tolerance area under the curve was reduced in all diet interventions (∼22%–42%). HPLC measurements of hypothalamic tissue homogenates indicated higher (∼55%–60%) norepinephrine (NE) content in the anterior regions of the medial hypothalamus of IMF compared with the ad libitum-fed groups, whereas NE content was higher (∼19%–32%) in posterior regions in the IMF-LFD group only. Relative gene expression of Npy in the arcuate nucleus was increased (∼65%–75%) in IMF groups. Our novel findings indicate that intermittent fasting produces alterations in hypothalamic NE and neuropeptide Y, suggesting the counterregulatory processes of short-term weight loss are associated with an IMF dietary strategy. PMID:26653760</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JNEng..14a6011G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JNEng..14a6011G"><span>A combined cICA-EEMD analysis of EEG recordings from depressed or schizophrenic patients during olfactory stimulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Götz, Th; Stadler, L.; Fraunhofer, G.; Tomé, A. M.; Hausner, H.; Lang, E. W.</p> <p>2017-02-01</p> <p>Objective. We propose a combination of a constrained independent component analysis (cICA) with an ensemble empirical mode decomposition (EEMD) to analyze electroencephalographic recordings from depressed or schizophrenic subjects during olfactory stimulation. Approach. EEMD serves to extract intrinsic modes (IMFs) underlying the recorded EEG time. The latter then serve as reference signals to extract the most similar underlying independent component within a constrained ICA. The extracted modes are further analyzed considering their power spectra. Main results. The analysis of the extracted modes reveals clear differences in the related power spectra between the disease characteristics of depressed and schizophrenic patients. Such differences appear in the high frequency γ-band in the intrinsic modes, but also in much more detail in the low frequency range in the α-, θ- and δ-bands. Significance. The proposed method provides various means to discriminate both disease pictures in a clinical environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.2588C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.2588C"><span>Influence of the IMF Cone Angle on Invariant Latitudes of Polar Region Footprints of FACs in the Magnetotail: Cluster Observation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, Z. W.; Shi, J. K.; Zhang, J. C.; Torkar, K.; Kistler, L. M.; Dunlop, M.; Carr, C.; Rème, H.; Dandouras, I.; Fazakerley, A.</p> <p>2018-04-01</p> <p>The influence of the interplanetary magnetic field (IMF) cone angle θ (the angle between the IMF direction and the Sun-Earth line) on the invariant latitudes of the footprints of the field-aligned currents (FACs) in the magnetotail has been investigated. We performed a statistical study of 542 FAC cases observed by the four Cluster spacecraft in the Northern Hemisphere. The results show that there are almost no FACs when the IMF cone angle is less than 10°, and there are indications of the FACs in the plasma sheet boundary layers being weak under the radial IMF conditions. The footprints of the large FAC (>10 nA/m2) cases are within invariant latitudes <71° and mainly within IMF cone angles θ > 60°, which implies that the footprints of the large FACs mainly expand equatorward with large IMF cone angle. The equatorward boundary of the FAC footprints in the polar region decreases with increasing IMF cone angle (and has a better correlation for northward IMF), which shows that the IMF cone angle plays an important controlling role in FAC distributions in the magnetosphere-ionosphere coupling system. There is almost no correlation between the poleward boundary and the IMF cone angle for both northward and southward IMF. This is because the poleward boundary movement is limited by an enhanced lobe magnetic flux. This is the first time a correlation between FAC footprints in the polar region and IMF cone angles has been determined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM11B2319C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM11B2319C"><span>The influence of IMF cone angle on invariant latitudes of polar region footprints of FACs in the magnetotail: Cluster observatio</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, Z.; Shi, J.; Zhang, J.; Kistler, L. M.</p> <p>2017-12-01</p> <p>The influence of the interplanetary magnetic field (IMF) cone angle θ (the angle between the IMF direction and the Sun-Earth line) on the invariant latitudes (ILATs) of the footprints of the field-aligned currents (FACs) in the magnetotail has been investigated. We performed a statistic study of 542 FAC cases observed by the four Cluster spacecraft in the northern hemisphere. The results show that the large FAC (>10 nA/m2) cases occur at the low ILATs (<71 º) and mainly occur when the IMF cone angle θ>60º, which implies the footprints of the large FACs mainly expand equatorward with large IMF cone angle. The equatorward boundary of the FAC footprints in the polar region decreases with the IMF cone angle especially when IMF Bz is positive. There is almost no correlation or a weak positive correlation of the poleward boundary and IMF cone angle no matter IMF is northward or southward. The equatorward boundary is more responsive to the IMF cone angle. Compared to the equatorward boundary, the center of the FAC projected location changes very little. This is the first time a correlation between FAC projected location and IMF cone angle has been determined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4701307','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4701307"><span>Multi-Sensor Data Fusion Identification for Shearer Cutting Conditions Based on Parallel Quasi-Newton Neural Networks and the Dempster-Shafer Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Si, Lei; Wang, Zhongbin; Liu, Xinhua; Tan, Chao; Xu, Jing; Zheng, Kehong</p> <p>2015-01-01</p> <p>In order to efficiently and accurately identify the cutting condition of a shearer, this paper proposed an intelligent multi-sensor data fusion identification method using the parallel quasi-Newton neural network (PQN-NN) and the Dempster-Shafer (DS) theory. The vibration acceleration signals and current signal of six cutting conditions were collected from a self-designed experimental system and some special state features were extracted from the intrinsic mode functions (IMFs) based on the ensemble empirical mode decomposition (EEMD). In the experiment, three classifiers were trained and tested by the selected features of the measured data, and the DS theory was used to combine the identification results of three single classifiers. Furthermore, some comparisons with other methods were carried out. The experimental results indicate that the proposed method performs with higher detection accuracy and credibility than the competing algorithms. Finally, an industrial application example in the fully mechanized coal mining face was demonstrated to specify the effect of the proposed system. PMID:26580620</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MNRAS.458..673G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MNRAS.458..673G"><span>The necessity of feedback physics in setting the peak of the initial mass function</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guszejnov, Dávid; Krumholz, Mark R.; Hopkins, Philip F.</p> <p>2016-05-01</p> <p>A popular theory of star formation is gravito-turbulent fragmentation, in which self-gravitating structures are created by turbulence-driven density fluctuations. Simple theories of isothermal fragmentation successfully reproduce the core mass function (CMF) which has a very similar shape to the initial mass function (IMF) of stars. However, numerical simulations of isothermal turbulent fragmentation thus far have not succeeded in identifying a fragment mass scale that is independent of the simulation resolution. Moreover, the fluid equations for magnetized, self-gravitating, isothermal turbulence are scale-free, and do not predict any characteristic mass. In this paper we show that, although an isothermal self-gravitating flow does produce a CMF with a mass scale imposed by the initial conditions, this scale changes as the parent cloud evolves. In addition, the cores that form undergo further fragmentation and after sufficient time forget about their initial conditions, yielding a scale-free pure power-law distribution dN/dM ∝ M-2 for the stellar IMF. We show that this problem can be alleviated by introducing additional physics that provides a termination scale for the cascade. Our candidate for such physics is a simple model for stellar radiation feedback. Radiative heating, powered by accretion on to forming stars, arrests the fragmentation cascade and imposes a characteristic mass scale that is nearly independent of the time-evolution or initial conditions in the star-forming cloud, and that agrees well with the peak of the observed IMF. In contrast, models that introduce a stiff equation of state for denser clouds but that do not explicitly include the effects of feedback do not yield an invariant IMF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27835792','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27835792"><span>Intermittent fasting reduces body fat but exacerbates hepatic insulin resistance in young rats regardless of high protein and fat diets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Park, Sunmin; Yoo, Kyung Min; Hyun, Joo Suk; Kang, Suna</p> <p>2017-02-01</p> <p>Intermittent fasting (IMF) is a relatively new dietary approach to weight management, although the efficacy and adverse effects have not been full elucidated and the optimal diets for IMF are unknown. We tested the hypothesis that a one-meal-per-day intermittent fasting with high fat (HF) or protein (HP) diets can modify energy, lipid, and glucose metabolism in normal young male Sprague-Dawley rats with diet-induced obesity or overweight. Male rats aged 5 weeks received either HF (40% fat) or HP (26% protein) diets ad libitum (AL) or for 3 h at the beginning of the dark cycle (IMF) for 5 weeks. Epidydimal fat pads and fat deposits in the leg and abdomen were lower with HP and IMF. Energy expenditure at the beginning of the dark cycle, especially from fat oxidation, was higher with IMF than AL, possibly due to greater activity levels. Brown fat content was higher with IMF. Serum ghrelin levels were higher in HP-IMF than other groups, and accordingly, cumulative food intake was also higher in HP-IMF than HF-IMF. HF-IMF exhibited higher area under the curve (AUC) of serum glucose at the first part (0-40 min) during oral glucose tolerance test, whereas AUC of serum insulin levels in both parts were higher in IMF and HF. During intraperitoneal insulin tolerance test, serum glucose levels were higher with IMF than AL. Consistently, hepatic insulin signaling (GLUT2, pAkt) was attenuated and PEPCK expression was higher with IMF and HF than other groups, and HOMA-IR revealed significantly impaired attenuated insulin sensitivity in the IMF groups. However, surprisingly, hepatic and skeletal muscle glycogen storage was higher in IMF groups than AL. The higher glycogen storage in the IMF groups was associated with the lower expression of glycogen phosphorylase than the AL groups. In conclusion, IMF especially with HF increased insulin resistance, possibly by attenuating hepatic insulin signaling, and lowered glycogen phosphorylase expression despite decreased fat mass in young male rats. These results suggest that caution may be warranted when recommending intermittent fasting, especially one-meal-per-day fasting, for people with compromised glucose metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28046172','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28046172"><span>Effect of divergent selection for intramuscular fat on sensory traits and instrumental texture in rabbit meat.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martínez-Álvaroi, M; Penalba, V; Blasco, A; Hernández, P</p> <p>2016-12-01</p> <p>Intramuscular fat (IMF) is one of the main parameters affecting meat quality. This work analyzes the effect of selection for IMF on sensory attributes and instrumental texture parameters in rabbit meat. A total of 115 rabbits after 6 generations of divergent selection for IMF were slaughtered at 9 or 13 wk (57 and 58 animals, respectively). For each animal, the left longissimus dorsi muscle (LD) was analyzed by near-infrared spectroscopy to measure IMF whereas the right LD was used for the sensory or instrumental texture analysis. Sensory attributes measured were rabbit odor, liver odor, rabbit flavor, liver flavor, aniseed flavor, hardness, juiciness, and fibrousness. The instrumental texture parameters maximum shear force, shear firmness, and total work to cut the sample were measured by a Warner-Bratzler shear test. The line selected for high IMF showed 58% greater IMF than the line selected for low IMF. This divergence affected firmness that was 9.9% greater in the low-IMF line, although no effect was found for the other instrumental texture traits. No effect of selection was observed in any odor or flavor, except for aniseed flavor, which was greater in the high-IMF line than in the low-IMF line. Age had an effect on IMF, instrumental texture parameters, and sensory attributes. Rabbits at 13 wk showed greater IMF and instrumental and sensory hardness and more intense odor and flavor and lower juiciness than rabbits at 9 wk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25828587','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25828587"><span>A new method for inframammary fold recreation using a barbed suture.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Terao, Yasunobu; Taniguchi, Koichiro; Tomita, Shoichi</p> <p>2015-06-01</p> <p>There are inherent limitations with previously reported inframammary fold (IMF) recreation methods. The IMF is firmly fixed to the chest wall, but not physiologically, and it is difficult to determine the correct IMF position in the supine position and in the absence of an implant. With our new IMF reconstruction method (i.e., drawstring method), the IMF is recreated by drawing a barbed suture, penetrating the dermis, along the IMF. The barbed suture is fixed to the costal cartilage at the medial IMF, and the head is drawn and cut externally at the lateral IMF. The IMF level and depth can be finely adjusted by the tension, in a seated position after implant insertion. Furthermore, the approach can be from a small incision, and a smooth IMF curve is reconstructed. Our drawstring method was performed in 102 patients who underwent reconstruction using a breast implant (n = 95) or flap (n = 7). The mean patient age was 52.0 years (range 33-77 years) and the follow-up period was 12 months (range 3-18 months). Suture or implant infection or exposure did not occur. Suture slack occurred in ten patients with implant-based reconstruction; their IMF became shallow. Insufficient skin expansion (P < 0.005) and strong traction of the barbed suture from the caudal side (P < 0.05) were related to IMF slack. The total revision rate was 2.9 %. With sufficient skin expansion, the drawstring method using a barbed suture enables smooth and symmetrical IMF reconstruction. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MSSP...76..353L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MSSP...76..353L"><span>Degradation trend estimation of slewing bearing based on LSSVM model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, Chao; Chen, Jie; Hong, Rongjing; Feng, Yang; Li, Yuanyuan</p> <p>2016-08-01</p> <p>A novel prediction method is proposed based on least squares support vector machine (LSSVM) to estimate the slewing bearing's degradation trend with small sample data. This method chooses the vibration signal which contains rich state information as the object of the study. Principal component analysis (PCA) was applied to fuse multi-feature vectors which could reflect the health state of slewing bearing, such as root mean square, kurtosis, wavelet energy entropy, and intrinsic mode function (IMF) energy. The degradation indicator fused by PCA can reflect the degradation more comprehensively and effectively. Then the degradation trend of slewing bearing was predicted by using the LSSVM model optimized by particle swarm optimization (PSO). The proposed method was demonstrated to be more accurate and effective by the whole life experiment of slewing bearing. Therefore, it can be applied in engineering practice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyA..492..824X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyA..492..824X"><span>Nonlinear complexity behaviors of agent-based 3D Potts financial dynamics with random environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xing, Yani; Wang, Jun</p> <p>2018-02-01</p> <p>A new microscopic 3D Potts interaction financial price model is established in this work, to investigate the nonlinear complexity behaviors of stock markets. 3D Potts model, which extends the 2D Potts model to three-dimensional, is a cubic lattice model to explain the interaction behavior among the agents. In order to explore the complexity of real financial markets and the 3D Potts financial model, a new random coarse-grained Lempel-Ziv complexity is proposed to certain series, such as the price returns, the price volatilities, and the random time d-returns. Then the composite multiscale entropy (CMSE) method is applied to the intrinsic mode functions (IMFs) and the corresponding shuffled data to study the complexity behaviors. The empirical results indicate that the 3D financial model is feasible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1336371','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1336371"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.</p> <p></p> <p>Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the innermore » 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28263771','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28263771"><span>Meal pattern alterations associated with intermittent fasting for weight loss are normalized after high-fat diet re-feeding.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gotthardt, Juliet D; Bello, Nicholas T</p> <p>2017-05-15</p> <p>Alternate day, intermittent fasting (IMF) can be an effective weight loss strategy. However, the effects of IMF on eating behaviors are not well characterized. We investigated the acute and residual effects of IMF for weight loss on meal patterns in adult obese male C57BL/6 mice. After 8weeks of ad libitum high-fat diet to induce diet-induced obesity (DIO), mice were either continued on ad libitum high-fat diet (HFD) or placed on one of 5 diet strategies for weight loss: IMF of high-fat diet (IMF-HFD), pair-fed to IMF-HFD group (PF-HFD), ad libitum low-fat diet (LFD), IMF of low-fat diet (IMF-LFD), or pair-fed to IMF-LFD group (PF-LFD). After the 4-week diet period, all groups were refed the high-fat diet for 6weeks. By the end of the diet period, all 5 groups had lost weight compared with HFD group, but after 6weeks of HFD re-feeding all groups had similar body weights. On (Day 2) of the diet period, IMF-HFD had greater first meal size and faster eating rate compared with HFD. Also, first meal duration was greater in LFD and IMF-LFD compared with HFD. At the end of the diet period (Day 28), the intermittent fasting groups (IMF-HFD and IMF-LFD) had greater first meal sizes and faster first meal eating rate compared with their respective ad libitum fed groups on similar diets (HFD and LFD). Also, average meal duration was longer on Day 28 in the low-fat diet groups (LFD and IMF-LFD) compared with high-fat diet groups (HFD and IMF-HFD). After 6weeks of HFD re-feeding (Day 70), there were no differences in meal patterns in groups that had previously experienced intermittent fasting compared with ad libitum fed groups. These findings suggest that meal patterns are only transiently altered during alternate day intermittent fasting for weight loss in obese male mice. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4099020','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4099020"><span>A gene expression estimator of intramuscular fat percentage for use in both cattle and sheep</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2014-01-01</p> <p>Background The expression of genes encoding proteins involved in triacyglyceride and fatty acid synthesis and storage in cattle muscle are correlated with intramuscular fat (IMF)%. Are the same genes also correlated with IMF% in sheep muscle, and can the same set of genes be used to estimate IMF% in both species? Results The correlation between gene expression (microarray) and IMF% in the longissimus muscle (LM) of twenty sheep was calculated. An integrated analysis of this dataset with an equivalent cattle correlation dataset and a cattle differential expression dataset was undertaken. A total of 30 genes were identified to be strongly correlated with IMF% in both cattle and sheep. The overlap of genes was highly significant, 8 of the 13 genes in the TAG gene set and 8 of the 13 genes in the FA gene set were in the top 100 and 500 genes respectively most correlated with IMF% in sheep, P-value = 0. Of the 30 genes, CIDEA, THRSP, ACSM1, DGAT2 and FABP4 had the highest average rank in both species. Using the data from two small groups of Brahman cattle (control and Hormone growth promotant-treated [known to decrease IMF% in muscle]) and 22 animals in total, the utility of a direct measure and different estimators of IMF% (ultrasound and gene expression) to differentiate between the two groups were examined. Directly measured IMF% and IMF% estimated from ultrasound scanning could not discriminate between the two groups. However, using gene expression to estimate IMF% discriminated between the two groups. Increasing the number of genes used to estimate IMF% from one to five significantly increased the discrimination power; but increasing the number of genes to 15 resulted in little further improvement. Conclusion We have demonstrated the utility of a comparative approach to identify robust estimators of IMF% in the LM in cattle and sheep. We have also demonstrated a number of approaches (potentially applicable to much smaller groups of animals than conventional methods) to using gene expression to rank animals for IMF% within a single farm/treatment, or to estimate differences in IMF% between two farms/treatments. PMID:25028604</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...855...20G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...855...20G"><span>Evidence of a Non-universal Stellar Initial Mass Function. Insights from HST Optical Imaging of Six Ultra-faint Dwarf Milky Way Satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gennaro, Mario; Tchernyshyov, Kirill; Brown, Thomas M.; Geha, Marla; Avila, Roberto J.; Guhathakurta, Puragra; Kalirai, Jason S.; Kirby, Evan N.; Renzini, Alvio; Simon, Joshua D.; Tumlinson, Jason; Vargas, Luis C.</p> <p>2018-03-01</p> <p>Using deep observations obtained with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST), we demonstrate that the sub-solar stellar initial mass function (IMF) of six ultra-faint dwarf Milky Way satellites (UFDs) is more bottom light than the IMF of the Milky Way disk. Our data have a lower-mass limit of ∼0.45 M ⊙, while the upper limit is ∼0.8 M ⊙, set by the turnoff mass of these old, metal-poor systems. If formulated as a single power law, we obtain a shallower IMF slope than the Salpeter value of ‑2.3, ranging from ‑1.01 for Leo IV to ‑1.87 for Boötes I. The significance of these deviations depends on the galaxy and is typically 95% or more. When modeled as a log-normal, the IMF fit results in a higher peak mass than in the Milky Way disk, but a Milky Way disk value for the characteristic system mass (∼0.22 M ⊙) is excluded at only 68% significance, and only for some UFDs in the sample. We find that the IMF slope correlates well with the galaxy mean metallicity, and to a lesser degree, with the velocity dispersion and the total mass. The strength of the observed correlations is limited by shot noise in the number of observed stars, but future space-based missions like the James Webb Space Telescope (JWST) and the Wide-Field Infrared Survey Telescope ( WFIRST) will enhance both the number of dwarf Milky Way satellites that can be studied in such detail and the observation depth for individual galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-12549.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017A%26A...607A.126Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017A%26A...607A.126Y"><span>The optimally sampled galaxy-wide stellar initial mass function. Observational tests and the publicly available GalIMF code</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan, Zhiqiang; Jerabkova, Tereza; Kroupa, Pavel</p> <p>2017-11-01</p> <p>Here we present a full description of the integrated galaxy-wide initial mass function (IGIMF) theory in terms of the optimal sampling and compare it with available observations. Optimal sampling is the method we use to discretize the IMF deterministically into stellar masses. Evidence indicates that nature may be closer to deterministic sampling as observations suggest a smaller scatter of various relevant observables than random sampling would give, which may result from a high level of self-regulation during the star formation process. We document the variation of IGIMFs under various assumptions. The results of the IGIMF theory are consistent with the empirical relation between the total mass of a star cluster and the mass of its most massive star, and the empirical relation between the star formation rate (SFR) of a galaxy and the mass of its most massive cluster. Particularly, we note a natural agreement with the empirical relation between the IMF power-law index and the SFR of a galaxy. The IGIMF also results in a relation between the SFR of a galaxy and the mass of its most massive star such that, if there were no binaries, galaxies with SFR < 10-4M⊙/yr should host no Type II supernova events. In addition, a specific list of initial stellar masses can be useful in numerical simulations of stellar systems. For the first time, we show optimally sampled galaxy-wide IMFs (OSGIMF) that mimic the IGIMF with an additional serrated feature. Finally, a Python module, GalIMF, is provided allowing the calculation of the IGIMF and OSGIMF dependent on the galaxy-wide SFR and metallicity. A copy of the python code model is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A126</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26552089','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26552089"><span>An EEMD-ICA Approach to Enhancing Artifact Rejection for Noisy Multivariate Neural Data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zeng, Ke; Chen, Dan; Ouyang, Gaoxiang; Wang, Lizhe; Liu, Xianzeng; Li, Xiaoli</p> <p>2016-06-01</p> <p>As neural data are generally noisy, artifact rejection is crucial for data preprocessing. It has long been a grand research challenge for an approach which is able: 1) to remove the artifacts and 2) to avoid loss or disruption of the structural information at the same time, thus the risk of introducing bias to data interpretation may be minimized. In this study, an approach (namely EEMD-ICA) was proposed to first decompose multivariate neural data that are possibly noisy into intrinsic mode functions (IMFs) using ensemble empirical mode decomposition (EEMD). Independent component analysis (ICA) was then applied to the IMFs to separate the artifactual components. The approach was tested against the classical ICA and the automatic wavelet ICA (AWICA) methods, which were dominant methods for artifact rejection. In order to evaluate the effectiveness of the proposed approach in handling neural data possibly with intensive noises, experiments on artifact removal were performed using semi-simulated data mixed with a variety of noises. Experimental results indicate that the proposed approach continuously outperforms the counterparts in terms of both normalized mean square error (NMSE) and Structure SIMilarity (SSIM). The superiority becomes even greater with the decrease of SNR in all cases, e.g., SSIM of the EEMD-ICA can almost double that of AWICA and triple that of ICA. To further examine the potentials of the approach in sophisticated applications, the approach together with the counterparts were used to preprocess a real-life epileptic EEG with absence seizure. Experiments were carried out with the focus on characterizing the dynamics of the data after artifact rejection, i.e., distinguishing seizure-free, pre-seizure and seizure states. Using multi-scale permutation entropy to extract feature and linear discriminant analysis for classification, the EEMD-ICA performed the best for classifying the states (87.4%, about 4.1% and 8.7% higher than that of AWICA and ICA respectively), which was closest to the results of the manually selected dataset (89.7%).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10170E..2VB','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10170E..2VB"><span>Experimental validation of a structural damage detection method based on marginal Hilbert spectrum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Banerji, Srishti; Roy, Timir B.; Sabamehr, Ardalan; Bagchi, Ashutosh</p> <p>2017-04-01</p> <p>Structural Health Monitoring (SHM) using dynamic characteristics of structures is crucial for early damage detection. Damage detection can be performed by capturing and assessing structural responses. Instrumented structures are monitored by analyzing the responses recorded by deployed sensors in the form of signals. Signal processing is an important tool for the processing of the collected data to diagnose anomalies in structural behavior. The vibration signature of the structure varies with damage. In order to attain effective damage detection, preservation of non-linear and non-stationary features of real structural responses is important. Decomposition of the signals into Intrinsic Mode Functions (IMF) by Empirical Mode Decomposition (EMD) and application of Hilbert-Huang Transform (HHT) addresses the time-varying instantaneous properties of the structural response. The energy distribution among different vibration modes of the intact and damaged structure depicted by Marginal Hilbert Spectrum (MHS) detects location and severity of the damage. The present work investigates damage detection analytically and experimentally by employing MHS. The testing of this methodology for different damage scenarios of a frame structure resulted in its accurate damage identification. The sensitivity of Hilbert Spectral Analysis (HSA) is assessed with varying frequencies and damage locations by means of calculating Damage Indices (DI) from the Hilbert spectrum curves of the undamaged and damaged structures.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1814549B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1814549B"><span>Hilbert-Huang spectral analysis for characterizing the intrinsic time-scales of variability in decennial time-series of surface solar radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bengulescu, Marc; Blanc, Philippe; Wald, Lucien</p> <p>2016-04-01</p> <p>An analysis of the variability of the surface solar irradiance (SSI) at different local time-scales is presented in this study. Since geophysical signals, such as long-term measurements of the SSI, are often produced by the non-linear interaction of deterministic physical processes that may also be under the influence of non-stationary external forcings, the Hilbert-Huang transform (HHT), an adaptive, noise-assisted, data-driven technique, is employed to extract locally - in time and in space - the embedded intrinsic scales at which a signal oscillates. The transform consists of two distinct steps. First, by means of the Empirical Mode Decomposition (EMD), the time-series is "de-constructed" into a finite number - often small - of zero-mean components that have distinct temporal scales of variability, termed hereinafter the Intrinsic Mode Functions (IMFs). The signal model of the components is an amplitude modulation - frequency modulation (AM - FM) one, and can also be thought of as an extension of a Fourier series having both time varying amplitude and frequency. Following the decomposition, Hilbert spectral analysis is then employed on the IMFs, yielding a time-frequency-energy representation that portrays changes in the spectral contents of the original data, with respect to time. As measurements of surface solar irradiance may possibly be contaminated by the manifestation of different type of stochastic processes (i.e. noise), the identification of real, physical processes from this background of random fluctuations is of interest. To this end, an adaptive background noise null hypothesis is assumed, based on the robust statistical properties of the EMD when applied to time-series of different classes of noise (e.g. white, red or fractional Gaussian). Since the algorithm acts as an efficient constant-Q dyadic, "wavelet-like", filter bank, the different noise inputs are decomposed into components having the same spectral shape, but that are translated to the next lower octave in the spectral domain. Thus, when the sampling step is increased, the spectral shape of IMFs cannot remain at its original position, due to the new lower Nyquist frequency, and is instead pushed toward the lower scaled frequency. Based on these features, the identification of potential signals within the data should become possible without any prior knowledge of the background noises. When applying the above outlined procedure to decennial time-series of surface solar irradiance, only the component that has an annual time-scale of variability is shown to have statistical properties that diverge from those of noise. Nevertheless, the noise-like components are not completely devoid of information, as it is found that their AM components have a non-null rank correlation coefficient with the annual mode, i.e. the background noise intensity seems to be modulated by the seasonal cycle. The findings have possible implications on the modelling and forecast of the surface solar irradiance, by discriminating its deterministic from its quasi-stochastic constituents, at distinct local time-scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28726981','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28726981"><span>TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Factors influencing bovine intramuscular adipose tissue development and cellularity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Albrecht, E; Schering, L; Liu, Y; Komolka, K; Kühn, C; Wimmers, K; Gotoh, T; Maak, S</p> <p>2017-05-01</p> <p>Appearance, distribution, and amount of intramuscular fat (IMF), often referred to as marbling, are highly variable and depend on environmental and genetic factors. On the molecular level, the concerted action of several drivers, including hormones, receptors, transcription factors, etc., determines where clusters of adipocytes arise. Therefore, the aim of future studies remains to identify such factors as biological markers of IMF to increase the ability to identify animals that deposit IMF early in age to increase efficiency of high-quality meat production. In an attempt to unravel the cellular development of marbling, we investigated the abundance of markers for adipogenic differentiation during fattening of cattle and the transcriptome of muscle and dissected IMF. Markers of different stages of adipogenic differentiation are well known from cell culture experiments. They are usually transiently expressed, such as delta-like homolog 1 (DLK1) that is abundant in preadipocytes and absent during differentiation to mature adipocytes. It is even a greater challenge to detect those markers in live animals. Within skeletal muscles, hyperplasia and hypertrophy of adipocytes can be observed throughout life. Therefore, development of marbling requires, on the cellular level, recruitment, proliferation, and differentiation of adipogenic cells to store excess energy in the form of lipids in new cells. In a recent study, we investigated the localization and abundance of early markers of adipogenic differentiation, such as DLK1, in bovine muscle tissue. An inverse relationship between IMF content and number of DLK1-positive cells in bovine muscle was demonstrated. Considering the cellular environment of differentiating adipocytes in muscle and the secretory action of adipocytes and myocytes, it becomes obvious that cross talk between cells via adipokines and myokines may be important for IMF development. Secreted proteins can act on other cells, inhibiting or stimulating their function via autocrine and paracrine actions. Such factors with potential influence on IMF, among them, agouti signaling protein and thrombospondin 4, were identified in transcriptome analyses and further investigated. Furthermore, results from transcriptome analysis indicate involvement of genes that are not directly related to adipogenesis and lipid metabolism, providing new candidates for future research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2488179','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2488179"><span>International Monetary Fund Programs and Tuberculosis Outcomes in Post-Communist Countries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Stuckler, David; King, Lawrence P; Basu, Sanjay</p> <p>2008-01-01</p> <p>Background Previous studies have indicated that International Monetary Fund (IMF) economic programs have influenced health-care infrastructure in recipient countries. The post-communist Eastern European and former Soviet Union countries experienced relatively similar political and economic changes over the past two decades, and participated in IMF programs of varying size and duration. We empirically examine how IMF programs related to changes in tuberculosis incidence, prevalence, and mortality rates among these countries. Methods and Findings We performed multivariate regression of two decades of tuberculosis incidence, prevalence, and mortality data against variables potentially influencing tuberculosis program outcomes in 21 post-communist countries for which comparative data are available. After correcting for confounding variables, as well as potential detection, selection, and ecological biases, we observed that participating in an IMF program was associated with increased tuberculosis incidence, prevalence, and mortality rates by 13.9%, 13.2%, and 16.6%, respectively. Each additional year of participation in an IMF program was associated with increased tuberculosis mortality rates by 4.1%, and each 1% increase in IMF lending was associated with increased tuberculosis mortality rates by 0.9%. On the other hand, we estimated a decrease in tuberculosis mortality rates of 30.7% (95% confidence interval, 18.3% to 49.5%) associated with exiting the IMF programs. IMF lending did not appear to be a response to worsened health outcomes; rather, it appeared to be a precipitant of such outcomes (Granger- and Sims-causality tests), even after controlling for potential political, socioeconomic, demographic, and health-related confounders. In contrast, non-IMF lending programs were connected with decreased tuberculosis mortality rates (−7.6%, 95% confidence interval, −1.0% to −14.1%). The associations observed between tuberculosis mortality and IMF programs were similar to those observed when evaluating the impact of IMF programs on tuberculosis incidence and prevalence. While IMF programs were connected with large reductions in generalized government expenditures, tuberculosis program coverage, and the number of physicians per capita, non-IMF lending programs were not significantly associated with these variables. Conclusions IMF economic reform programs are associated with significantly worsened tuberculosis incidence, prevalence, and mortality rates in post-communist Eastern European and former Soviet countries, independent of other political, socioeconomic, demographic, and health changes in these countries. Future research should attempt to examine how IMF programs may have related to other non-tuberculosis–related health outcomes. PMID:18651786</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014MNRAS.438.3594D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014MNRAS.438.3594D"><span>The bulge-halo conspiracy in massive elliptical galaxies: implications for the stellar initial mass function and halo response to baryonic processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dutton, Aaron A.; Treu, Tommaso</p> <p>2014-03-01</p> <p>Recent studies have shown that massive elliptical galaxies have total mass density profiles within an effective radius that can be approximated as ρ_tot∝ r^{-γ^', with mean slope <γ'> = 2.08 ± 0.03 and scatter σ _{γ ^' } }=0.16± 0.02. The small scatter of the slope (known as the bulge-halo conspiracy) is not generic in Λ cold dark matter (ΛCDM) based models and therefore contains information about the galaxy formation process. We compute the distribution of γ' for ΛCDM-based models that reproduce the observed correlations between stellar mass, velocity dispersion, and effective radius of early-type galaxies in the Sloan Digital Sky Survey. The models have a range of stellar initial mass functions (IMFs) and dark halo responses to galaxy formation. The observed distribution of γ' is well reproduced by a model with cosmologically motivated but uncontracted dark matter haloes, and a Salpeter-type IMF. Other models are on average ruled out by the data, even though they may happen in individual cases. Models with adiabatic halo contraction (and lighter IMFs) predict too small values of γ'. Models with halo expansion, or mass-follows-light predict too high values of γ'. Our study shows that the non-homologous structure of massive early-type galaxies can be precisely reproduced by ΛCDM models if the IMF is not universal and if mechanisms, such as feedback from active galactic nuclei, or dynamical friction, effectively on average counterbalance the contraction of the halo expected as a result of baryonic cooling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAG...150..325S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAG...150..325S"><span>Enhancing micro-seismic P-phase arrival picking: EMD-cosine function-based denoising with an application to the AIC picker</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shang, Xueyi; Li, Xibing; Morales-Esteban, A.; Dong, Longjun</p> <p>2018-03-01</p> <p>Micro-seismic P-phase arrival picking is an elementary step into seismic event location, source mechanism analysis, and seismic tomography. However, a micro-seismic signal is often mixed with high frequency noises and power frequency noises (50 Hz), which could considerably reduce P-phase picking accuracy. To solve this problem, an Empirical Mode Decomposition (EMD)-cosine function denoising-based Akaike Information Criterion (AIC) picker (ECD-AIC picker) is proposed for picking the P-phase arrival time. Unlike traditional low pass filters which are ineffective when seismic data and noise bandwidths overlap, the EMD adaptively separates the seismic data and the noise into different Intrinsic Mode Functions (IMFs). Furthermore, the EMD-cosine function-based denoising retains the P-phase arrival amplitude and phase spectrum more reliably than any traditional low pass filter. The ECD-AIC picker was tested on 1938 sets of micro-seismic waveforms randomly selected from the Institute of Mine Seismology (IMS) database of the Chinese Yongshaba mine. The results have shown that the EMD-cosine function denoising can effectively estimate high frequency and power frequency noises and can be easily adapted to perform on signals with different shapes and forms. Qualitative and quantitative comparisons show that the combined ECD-AIC picker provides better picking results than both the ED-AIC picker and the AIC picker, and the comparisons also show more reliable source localization results when the ECD-AIC picker is applied, thus showing the potential of this combined P-phase picking technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/935485','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/935485"><span>Galaxy Evolution Insights from Spectral Modeling of Large Data Sets from the Sloan Digital Sky Survey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hoversten, Erik A.</p> <p></p> <p>This thesis centers on the use of spectral modeling techniques on data from the Sloan Digital Sky Survey (SDSS) to gain new insights into current questions in galaxy evolution. The SDSS provides a large, uniform, high quality data set which can be exploited in a number of ways. One avenue pursued here is to use the large sample size to measure precisely the mean properties of galaxies of increasingly narrow parameter ranges. The other route taken is to look for rare objects which open up for exploration new areas in galaxy parameter space. The crux of this thesis is revisitingmore » the classical Kennicutt method for inferring the stellar initial mass function (IMF) from the integrated light properties of galaxies. A large data set (~ 10 5 galaxies) from the SDSS DR4 is combined with more in-depth modeling and quantitative statistical analysis to search for systematic IMF variations as a function of galaxy luminosity. Galaxy Hα equivalent widths are compared to a broadband color index to constrain the IMF. It is found that for the sample as a whole the best fitting IMF power law slope above 0.5 M ⊙ is Γ = 1.5 ± 0.1 with the error dominated by systematics. Galaxies brighter than around M r,0.1 = -20 (including galaxies like the Milky Way which has M r,0.1 ~ -21) are well fit by a universal Γ ~ 1.4 IMF, similar to the classical Salpeter slope, and smooth, exponential star formation histories (SFH). Fainter galaxies prefer steeper IMFs and the quality of the fits reveal that for these galaxies a universal IMF with smooth SFHs is actually a poor assumption. Related projects are also pursued. A targeted photometric search is conducted for strongly lensed Lyman break galaxies (LBG) similar to MS1512-cB58. The evolution of the photometric selection technique is described as are the results of spectroscopic follow-up of the best targets. The serendipitous discovery of two interesting blue compact dwarf galaxies is reported. These galaxies were identified by their extremely weak (< 150) [N π] Γ6584 to Hα emission line ratios. Abundance analysis from emission line fluxes reveals that these galaxies have gas phase oxygen abundances 12 + log(O/H) ~ 7.7 to 7.9, not remarkably low, and near infrared imaging detects an old stellar population. However, the measured nitrogen to oxygen ratios log(N/O) < 1.7 are anomalously low for blue compact dwarf galaxies. These objects may be useful for understanding the chemical evolution of nitrogen.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.464.3597L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.464.3597L"><span>IMF and [Na/Fe] abundance ratios from optical and NIR spectral features in early-type galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>La Barbera, F.; Vazdekis, A.; Ferreras, I.; Pasquali, A.; Allende Prieto, C.; Röck, B.; Aguado, D. S.; Peletier, R. F.</p> <p>2017-01-01</p> <p>We present a joint analysis of the four most prominent sodium-sensitive features (Na D, Na I λ8190Å, Na I λ1.14 μm, and Na I λ2.21 μm), in the optical and near-infrared spectral ranges, of two nearby, massive (σ ˜ 300 km s-1), early-type galaxies (named XSG1 and XSG2). Our analysis relies on deep Very Large Telescope/X-Shooter long-slit spectra, along with newly developed stellar population models, allowing for [Na/Fe] variations, up to ˜1.2 dex, over a wide range of age, total metallicity, and initial mass function (IMF) slope. The new models show that the response of the Na-dependent spectral indices to [Na/Fe] is stronger when the IMF is bottom heavier. For the first time, we are able to match all four Na features in the central regions of massive early-type galaxies finding an overabundance of [Na/Fe] in the range 0.5-0.7 dex and a bottom-heavy IMF. Therefore, individual abundance variations cannot be fully responsible for the trends of gravity-sensitive indices, strengthening the case towards a non-universal IMF. Given current limitations of theoretical atmosphere models, our [Na/Fe] estimates should be taken as upper limits. For XSG1, where line strengths are measured out to ˜0.8 Re, the radial trend of [Na/Fe] is similar to [α/Fe] and [C/Fe], being constant out to ˜0.5 Re, and decreasing by ˜0.2-0.3 dex at ˜0.8 Re, without any clear correlation with local metallicity. Such a result seems to be in contrast to the predicted increase of Na nucleosynthetic yields from asymptotic giant branch stars and Type II supernovae. For XSG1, the Na-inferred IMF radial profile is consistent, within the errors, with that derived from TiO features and the Wing-Ford band presented in a recent paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999IAUS..190..173M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999IAUS..190..173M"><span>Massive Stars in the MCs: What They Tell Us about the IMF, Stellar Evolution, and Upper Mass "Cutoffs"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Massey, P.</p> <p></p> <p>Massive stars in the Magellanic Clouds provide an instantaneous "snapshot" of star-formation. In this talk I will review what we have learned both about star formation, and stellar evolution. Studies over the past decade have shown that the initial mass function (IMF) is the same for massive stars born in OB associations in the LMC and SMC as in associations and clusters in the Milky Way; the slope of the IMF is essentially Salpeter (Gamma ~ -1.3), despite the factor of 10 difference in metallicity between these systems. Recent work on the R136 cluster (described in Hunter's review talk) suggest that there is no such thing as an upper mass cutoff to the IMF, at least not one that has been found observationally: for the youngest clusters (2 Myr and younger), the mass of the highest mass star present is simply dependent upon how populous the cluster is; i.e., the IMF is truncated by statistics, not physics. There does appear to be a significant population of massive stars that are born in the "field" (not part of a large OB association or cluster); the IMF of these stars is quite a bit steeper (Gamma ~ -4), although stars as massive as those found in associations are also found in the field. The mixed-age population of the MCs as a whole can be used to test stellar evolutionary models; the agreement with the work of the Geneva group is found to be excellent, for stars with masses >25 Mo, although the youngest stars may be missing in the HRD. The discovery that clusters born in associations are quite coeval (Delta tau <1-2 Myr) allows us to use the "turn-off masses" to determine what mass objects become Wolf-Rayet stars of various types, and new results will be reviewed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29070087','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29070087"><span>Liver metabolism traits in two rabbit lines divergently selected for intramuscular fat.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martínez-Álvaro, M; Paucar, Y; Satué, K; Blasco, A; Hernández, P</p> <p>2018-06-01</p> <p>Intramuscular fat (IMF) has a large effect in the sensory properties of meat because it affects tenderness, juiciness and flavour. A divergent selection experiment for IMF in longissimus dorsi (LD) muscle was performed in rabbits. Since liver is the major site of lipogenesis in rabbits, the objective of this work is to study the liver metabolism in the lines of the divergent selection experiment. Intramuscular fat content, perirenal fat weight, liver weight, liver lipogenic activities and plasma metabolites related to liver metabolism were measured in the eighth generation of selection. Direct response on IMF was 0.34 g/100 g of LD, which represented 2.7 SD of the trait, and selection showed a positive correlated response in the perirenal fat weight. High-IMF line showed greater liver size and greater liver lipogenic activities of enzymes glucose-6-phosphate dehydrogenase and malic enzyme. We did not find differences between lines for fatty acid synthase lipogenic activity. With regard to plasma metabolites, low-IMF line showed greater plasma concentration of triglycerides, cholesterol, bilirubin and alkaline phosphatase than high-IMF line, whereas high-IMF line showed greater albumin and alanine transaminase concentrations than low-IMF line. We did not observe differences between lines for glucose, total protein and plasma concentrations. Phenotypic correlations between fat (IMF and perirenal fat weight) and liver traits showed that liver lipogenesis affects fat deposition in both, muscle and carcass. However, the mechanisms whereby liver lipogenesis affected IMF content remain to be clarified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004MNRAS.349.1449P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004MNRAS.349.1449P"><span>On the determination of age and mass functions of stars in young open star clusters from the analysis of their luminosity functions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Piskunov, A. E.; Belikov, A. N.; Kharchenko, N. V.; Sagar, R.; Subramaniam, A.</p> <p>2004-04-01</p> <p>We construct the observed luminosity functions of the remote young open clusters NGC 2383, 2384, 4103, 4755, 7510 and Hogg 15 from CCD observations of them. The observed LFs are corrected for field star contamination determined with the help of a Galactic star count model. In the case of Hogg 15 and NGC 2383 we also consider the additional contamination from neighbouring clusters NGC 4609 and 2384, respectively. These corrections provide a realistic pattern of cluster LF in the vicinity of the main-sequence (MS) turn-on point and at fainter magnitudes reveal the so-called H-feature arising as a result of the transition of the pre-MS phase to the MS, which is dependent on the cluster age. The theoretical LFs are constructed representing a cluster population model with continuous star formation for a short time-scale and a power-law initial mass function (IMF), and these are fitted to the observed LF. As a result, we are able to determine for each cluster a set of parameters describing the cluster population (the age, duration of star formation, IMF slope and percentage of field star contamination). It is found that in spite of the non-monotonic behaviour of observed LFs, cluster IMFs can be described as power-law functions with slopes similar to Salpeter's value. The present main-sequence turn-on cluster ages are several times lower than those derived from the fitting of theoretical isochrones to the turn-off region of the upper main sequences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.468..418F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.468..418F"><span>The mass distribution of Population III stars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fraser, M.; Casey, A. R.; Gilmore, G.; Heger, A.; Chan, C.</p> <p>2017-06-01</p> <p>Extremely metal-poor (EMP) stars are uniquely informative on the nature of massive Population III stars. Modulo a few elements that vary with stellar evolution, the present-day photospheric abundances observed in EMP stars are representative of their natal gas cloud composition. For this reason, the chemistry of EMP stars closely reflects the nucleosynthetic yields of supernovae from massive Population III stars. Here we collate detailed abundances of 53 EMP stars from the literature and infer the masses of their Population III progenitors. We fit a simple initial mass function (IMF) to a subset of 29 of the inferred Population III star masses, and find that the mass distribution is well represented by a power-law IMF with exponent α = 2.35^{+0.29}_{-0.24}. The inferred maximum progenitor mass for supernovae from massive Population III stars is M_{max} = 87^{+13}_{-33} M⊙, and we find no evidence in our sample for a contribution from stars with masses above ˜120 M⊙. The minimum mass is strongly consistent with the theoretical lower mass limit for Population III supernovae. We conclude that the IMF for massive Population III stars is consistent with the IMF of present-day massive stars and there may well have formed stars much below the supernova mass limit that could have survived to the present day.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998PhRvC..57.1803R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998PhRvC..57.1803R"><span>Fragment emission from the mass-symmetric reactions 58Fe,58Ni +58Fe,58Ni at Ebeam=30 MeV/nucleon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramakrishnan, E.; Johnston, H.; Gimeno-Nogues, F.; Rowland, D. J.; Laforest, R.; Lui, Y.-W.; Ferro, S.; Vasal, S.; Yennello, S. J.</p> <p>1998-04-01</p> <p>The mass-symmetric reactions 58Fe,58Ni +58Fe,58Ni were studied at a beam energy of Ebeam=30 MeV/nucleon in order to investigate the isospin dependence of fragment emission. Ratios of inclusive yields of isotopic fragments from hydrogen through nitrogen were extracted as a function of laboratory angle. A moving source analysis of the data indicates that at laboratory angles around 40° the yield of intermediate mass fragments (IMF's) beyond Z=3 is predominantly from a midrapidity source. The angular dependence of the relative yields of isotopes beyond Z=3 indicates that the IMF's at more central angles originate from a source which is more neutron deficient than the source responsible for fragments emitted at forward angles. The charge distributions and kinetic energy spectra of the IMF's at various laboratory angles were well reproduced by calculations employing a quantum molecular-dynamics code followed by a statistical multifragmentation model for generating fragments. The calculations indicate that the measured IMF's originate mainly from a single source. The isotopic composition of the emitted fragments is, however, not reproduced by the same calculation. The measured isotopic and isobaric ratios indicate an emitting source that is more neutron rich in comparison to the source predicted by model calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28123083','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28123083"><span>Effects of balanced selection for intramuscular fat and abdominal fat percentage and estimates of genetic parameters.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, M; Fan, W L; Xing, S Y; Wang, J; Li, P; Liu, R R; Li, Q H; Zheng, M Q; Cui, H X; Wen, J; Zhao, G P</p> <p>2017-02-01</p> <p>Intramuscular fat (IMF) content contributes to meat flavor and improves meat quality. Excessive abdominal fat, however, leads to a waste of feed resources. Here, an independent up-selection for IMF was used as a control (Line C), and a balanced selection program, with up-selection for IMF and down-selection AFP (Line B), was studied in JingXing yellow chickens. The mean of IMF and AFP within a family was the phenotypic value upon which selection was based. The selective pressures of IMF in line B and line C were the same in each generation. At G5, the IMF was significantly higher (P < 0.05) than that at G0 in both lines. For AFP, Line C was significantly higher at G5 (P < 0.05) than at G0, but the difference in Line B was not significant (P > 0.05). IMF increased by 11.4% and AFP decreased by 1.5% in Line B compared with the G0 generation. In contrast, the IMF increased by 17.6%, but was accompanied by an 18.7% increase in AFP, in control Line C. Of 10 other traits measured, body weight at 56 d age (BW56) and the percentages of eviscerated weight (EWP) showed a significant difference between the 2 lines (P < 0.05). The heritabilities for IMF and AFP, estimated by the DMU package, were 0.16 and 0.32, respectively. A moderate positive correlation existed between IMF and AFP (0.35). A balanced selection program for increasing IMF while controlling AFP (Line B) is shown here to be effective in practical chicken breeding. © 2016 Poultry Science Association Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1000867','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1000867"><span>Antibody to intermediate filaments of the cytoskeleton.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Osung, O A; Chandra, M; Holborow, E J</p> <p>1982-01-01</p> <p>IgM antibodies against cultures of intermediate filaments (IMF) of the cytoskeleton were demonstrated by immunofluorescence in the sera of 94 (80%) of 118 patients with seropositive rheumatoid arthritis. These antibodies reacted with IMF in cultures of both human fetal fibroblasts and laryngeal carcinoma (HEp2) cells. Of 10 patients from whom paired synovial fluids were also available 8 had anti-IMF antibodies in both serum and fluid. In seronegative RA the incidence of anti-IMF was 40%, in ankylosing spondylitis 25%, in osteoarthrosis 16%, and in normal subjects 14%. Only a minority of RA sera positive for anti-IMF antibodies were also positive for smooth muscle antibody. Absorption experiments suggest that in RA anti-IMF is directed at the intermediate filament protein, vimentin. Images PMID:7039524</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSV...410..124F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSV...410..124F"><span>Spectral negentropy based sidebands and demodulation analysis for planet bearing fault diagnosis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.</p> <p>2017-12-01</p> <p>Planet bearing vibration signals are highly complex due to intricate kinematics (involving both revolution and spinning) and strong multiple modulations (including not only the fault induced amplitude modulation and frequency modulation, but also additional amplitude modulations due to load zone passing, time-varying vibration transfer path, and time-varying angle between the gear pair mesh lines of action and fault impact force vector), leading to difficulty in fault feature extraction. Rolling element bearing fault diagnosis essentially relies on detection of fault induced repetitive impulses carried by resonance vibration, but they are usually contaminated by noise and therefor are hard to be detected. This further adds complexity to planet bearing diagnostics. Spectral negentropy is able to reveal the frequency distribution of repetitive transients, thus providing an approach to identify the optimal frequency band of a filter for separating repetitive impulses. In this paper, we find the informative frequency band (including the center frequency and bandwidth) of bearing fault induced repetitive impulses using the spectral negentropy based infogram. In Fourier spectrum, we identify planet bearing faults according to sideband characteristics around the center frequency. For demodulation analysis, we filter out the sensitive component based on the informative frequency band revealed by the infogram. In amplitude demodulated spectrum (squared envelope spectrum) of the sensitive component, we diagnose planet bearing faults by matching the present peaks with the theoretical fault characteristic frequencies. We further decompose the sensitive component into mono-component intrinsic mode functions (IMFs) to estimate their instantaneous frequencies, and select a sensitive IMF with an instantaneous frequency fluctuating around the center frequency for frequency demodulation analysis. In the frequency demodulated spectrum (Fourier spectrum of instantaneous frequency) of selected IMF, we discern planet bearing fault reasons according to the present peaks. The proposed spectral negentropy infogram based spectrum and demodulation analysis method is illustrated via a numerical simulated signal analysis. Considering the unique load bearing feature of planet bearings, experimental validations under both no-load and loading conditions are done to verify the derived fault symptoms and the proposed method. The localized faults on outer race, rolling element and inner race are successfully diagnosed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25510326','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25510326"><span>Intramuscular fat in lamb muscle and the impact of selection for improved carcass lean meat yield.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Anderson, F; Pannier, L; Pethick, D W; Gardner, G E</p> <p>2015-06-01</p> <p>Intramuscular fat percentage (IMF%) has been shown to have a positive influence on the eating quality of red meat. Selection of Australian lambs for increased lean tissue and reduced carcass fatness using Australian Sheep Breeding Values has been shown to decrease IMF% of the Muscularis longissimus lumborum. The impact this selection has on the IMF% of other muscle depots is unknown. This study examined IMF% in five different muscles from 400 lambs (M. longissimus lumborum, Muscularis semimembranosus, Muscularis semitendinosus, Muscularis supraspinatus, Muscularis infraspinatus). The sires of these lambs had a broad range in carcass breeding values for post-weaning weight, eye muscle depth and fat depth over the 12th rib (c-site fat depth). Results showed IMF% to be highest in the M. supraspinatus (4.87 ± 0.1, P<0.01) and lowest in the M. semimembranosus (3.58 ± 0.1, P<0.01). Hot carcass weight was positively associated with IMF% of all muscles. Selection for decreasing c-site fat depth reduced IMF% in the M. longissimus lumborum, M. semimembranosus and M. semitendinosus. Higher breeding values for post-weaning weight and eye muscle depth increased and decreased IMF%, respectively, but only in the lambs born as multiples and raised as singles. For each per cent increase in lean meat yield percentage (LMY%), there was a reduction in IMF% of 0.16 in all five muscles examined. Given the drive within the lamb industry to improve LMY%, our results indicate the importance of continued monitoring of IMF% throughout the different carcass regions, given its importance for eating quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22504946','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22504946"><span>The financial crisis and global health: the International Monetary Fund's (IMF) policy response.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ruckert, Arne; Labonté, Ronald</p> <p>2013-09-01</p> <p>In this article, we interrogate the policy response of the International Monetary Fund (IMF) to the global financial crisis, and discuss the likely global health implications, especially in low-income countries. In doing so, we ask if the IMF has meaningfully loosened its fiscal deficit targets in light of the economic challenges posed by the financial crisis and adjusted its macro-economic policy advice to this new reality; or has the rhetoric of counter-cyclical spending failed to translate into additional fiscal space for IMF loan-recipient countries, with negative health consequences? To answer these questions, we assess several post-crisis IMF lending agreements with countries requiring financial assistance, and draw upon recent academic studies and civil society reports examining policy conditionalities still being prescribed by the IMF. We also reference recent studies examining the health impacts of these conditionalities. We demonstrate that while the IMF has been somewhat more flexible in its crisis response than in previous episodes of financial upheaval, there has been no meaningful rethinking in the application of dominant neoliberal macro-economic policies. After showing some flexibility in the initial crisis response, the IMF is pushing for excessive contraction in most low and middle-income countries. We conclude that there remains a wide gap between the rhetoric and the reality of the IMF's policy and programming advice, with negative implications for global health.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4481964','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4481964"><span>Faults Diagnostics of Railway Axle Bearings Based on IMF’s Confidence Index Algorithm for Ensemble EMD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yi, Cai; Lin, Jianhui; Zhang, Weihua; Ding, Jianming</p> <p>2015-01-01</p> <p>As train loads and travel speeds have increased over time, railway axle bearings have become critical elements which require more efficient non-destructive inspection and fault diagnostics methods. This paper presents a novel and adaptive procedure based on ensemble empirical mode decomposition (EEMD) and Hilbert marginal spectrum for multi-fault diagnostics of axle bearings. EEMD overcomes the limitations that often hypothesize about data and computational efforts that restrict the application of signal processing techniques. The outputs of this adaptive approach are the intrinsic mode functions that are treated with the Hilbert transform in order to obtain the Hilbert instantaneous frequency spectrum and marginal spectrum. Anyhow, not all the IMFs obtained by the decomposition should be considered into Hilbert marginal spectrum. The IMFs’ confidence index arithmetic proposed in this paper is fully autonomous, overcoming the major limit of selection by user with experience, and allows the development of on-line tools. The effectiveness of the improvement is proven by the successful diagnosis of an axle bearing with a single fault or multiple composite faults, e.g., outer ring fault, cage fault and pin roller fault. PMID:25970256</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1212886U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1212886U"><span>Determining temporal scales of the soil moisture variations by Empirical Mode Decompositions and wavelet methods and its use for validation of SMOS data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Usowicz, Jerzy, B.; Marczewski, Wojciech; Usowicz, Boguslaw; Lipiec, Jerzy; Lukowski, Mateusz I.</p> <p>2010-05-01</p> <p>This paper presents the results of the time series analysis of the soil moisture observed at two test sites Podlasie, Polesie, in the Cal/Val AO 3275 campaigns in Poland, during the interval 2006-2009. The test sites have been selected on a basis of their contrasted hydrological conditions. The region Podlasie (Trzebieszow) is essentially drier than the wetland region Polesie (Urszulin). It is worthwhile to note that the soil moisture variations can be represented as a non-stationary random process, and therefore appropriate analysis methods are required. The so-called Empirical Mode Decomposition (EMD) method has been chosen, since it is one of the best methods for the analysis of non-stationary and nonlinear time series. To confirm the results obtained by the EMD we have also used the wavelet methods. Firstly, we have used EMD (analyze step) to decompose the original time series into the so-called Intrinsic Mode Functions (IMFs) and then by grouping and addition similar IMFs (synthesize step) to obtain a few signal components with corresponding temporal scales. Such an adaptive procedure enables to decompose the original time series into diurnal, seasonal and trend components. Revealing of all temporal scales which operates in the original time series is our main objective and this approach may prove to be useful in other studies. Secondly, we have analyzed the soil moisture time series from both sites using the cross-wavelet and wavelet coherency. These methods allow us to study the degree of spatial coherence, which may vary in various intervals of time. We hope the obtained results provide some hints and guidelines for the validation of ESA SMOS data. References: B. Usowicz, J.B. Usowicz, Spatial and temporal variation of selected physical and chemical properties of soil, Institute of Agrophysics, Polish Academy of Sciences, Lublin 2004, ISBN 83-87385-96-4 Rao, A.R., Hsu, E.-C., Hilbert-Huang Transform Analysis of Hydrological and Environmental Time Series, Springer, 2008, ISBN: 978-1-4020-6453-1 Acknowledgements. This work was funded in part by the PECS - Programme for European Cooperating States, No. 98084 "SWEX/R - Soil Water and Energy Exchange/Research".</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870060943&hterms=LAYER+LIMIT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DLAYER%2BLIMIT','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870060943&hterms=LAYER+LIMIT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DLAYER%2BLIMIT"><span>An extended study of the low-latitude boundary layer on the dawn and dusk flanks of the magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mitchell, D. G.; Kutchko, F.; Williams, D. J.; Eastman, T. E.; Frank, L. A.</p> <p>1987-01-01</p> <p>The characteristics and structure of the low-latitude boundary layer (LLBL) have been studied for 66 ISEE 1 passes through the LLBL region. The dawn and dusk LLBL are on closed magnetic field lines for northward magnetosheath and/or IMF (M/IMF), and are on both closed and open field lines for southward M/IMF. For southward M/IMF, the regions of open LLBL field lines lie adjacent to the magnetopause and outside the closed LLBL. The LLBL is thicker (thinner) for northward (southward) M/IMF. With distance away from the subsolar magnetosphere, the LLBL becomes thicker for northward M/IMF and more variable in thickness for southward M/IMF. No dependence of LLBL thickness or electric field on geomagnetic activity is seen in these data. The LLBL electric field is a few millivolts per meter with a apparent upper limit of about 10 mV/m. The field captures magnetospherically drifting particles and propels them tailward.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28087084','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28087084"><span>The impact of IMF conditionality on government health expenditure: A cross-national analysis of 16 West African nations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stubbs, Thomas; Kentikelenis, Alexander; Stuckler, David; McKee, Martin; King, Lawrence</p> <p>2017-02-01</p> <p>How do International Monetary Fund (IMF) policy reforms-so-called 'conditionalities'-affect government health expenditures? We collected archival documents on IMF programmes from 1995 to 2014 to identify the pathways and impact of conditionality on government health spending in 16 West African countries. Based on a qualitative analysis of the data, we find that IMF policy reforms reduce fiscal space for investment in health, limit staff expansion of doctors and nurses, and lead to budget execution challenges in health systems. Further, we use cross-national fixed effects models to evaluate the relationship between IMF-mandated policy reforms and government health spending, adjusting for confounding economic and demographic factors and for selection bias. Each additional binding IMF policy reform reduces government health expenditure per capita by 0.248 percent (95% CI -0.435 to -0.060). Overall, our findings suggest that IMF conditionality impedes progress toward the attainment of universal health coverage. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.476.2731V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.476.2731V"><span>Evolution of the stellar mass function in multiple-population globular clusters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vesperini, Enrico; Hong, Jongsuk; Webb, Jeremy J.; D'Antona, Franca; D'Ercole, Annibale</p> <p>2018-05-01</p> <p>We present the results of a survey of N-body simulations aimed at studying the effects of the long-term dynamical evolution on the stellar mass function (MF) of multiple stellar populations in globular clusters. Our simulations show that if first-(1G) and second-generation (2G) stars have the same initial MF (IMF), the global MFs of the two populations are affected similarly by dynamical evolution and no significant differences between the 1G and 2G MFs arise during the cluster's evolution. If the two populations have different IMFs, dynamical effects do not completely erase memory of the initial differences. Should observations find differences between the global 1G and 2G MFs, these would reveal the fingerprints of differences in their IMFs. Irrespective of whether the 1G and 2G populations have the same global IMF or not, dynamical effects can produce differences between the local (measured at various distances from the cluster centre) 1G and 2G MFs; these differences are a manifestation of the process of mass segregation in populations with different initial structural properties. In dynamically old and spatially mixed clusters, however, differences between the local 1G and 2G MFs can reveal differences between the 1G and 2G global MFs. In general, for clusters with any dynamical age, large differences between the local 1G and 2G MFs are more likely to be associated with differences in the global MF. Our study also reveals a dependence of the spatial mixing rate on the stellar mass, another dynamical consequence of the multiscale nature of multiple-population clusters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21578316-extremely-metal-poor-stars-hierarchical-chemical-evolution-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21578316-extremely-metal-poor-stars-hierarchical-chemical-evolution-model"><span>EXTREMELY METAL-POOR STARS AND A HIERARCHICAL CHEMICAL EVOLUTION MODEL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Komiya, Yutaka</p> <p>2011-07-20</p> <p>Early phases of the chemical evolution of the Galaxy and formation history of extremely metal-poor (EMP) stars are investigated using hierarchical galaxy formation models. We build a merger tree of the Galaxy according to the extended Press-Schechter theory. We follow the chemical evolution along the tree and compare the model results to the metallicity distribution function and abundance ratio distribution of the Milky Way halo. We adopt three different initial mass functions (IMFs). In a previous study, we argued that the typical mass, M{sub md}, of EMP stars should be high, M{sub md} {approx} 10 M{sub sun}, based on studiesmore » of binary origin carbon-rich EMP stars. In this study, we show that only the high-mass IMF can explain an observed small number of EMP stars. For relative element abundances, the high-mass IMF and the Salpeter IMF predict similar distributions. We also investigate dependence on nucleosynthetic yields of supernovae (SNe). The theoretical SN yields by Kobayashi et al. and Chieffi and Limongi show reasonable agreement with observations for {alpha}-elements. Our model predicts a significant scatter of element abundances at [Fe/H] < -3. We adopted the stellar yields derived in the work of Francois et al., which produce the best agreement between the observational data and the one-zone chemical evolution model. Their yields well reproduce a trend of the averaged abundances of EMP stars but predict much larger scatter than do the observations. The model with hypernovae predicts Zn abundance, in agreement with the observations, but other models predict lower [Zn/Fe]. Ejecta from the hypernovae with large explosion energy is mixed in large mass and decreases the scatter of the element abundances.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008ApJ...677.1278M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008ApJ...677.1278M"><span>Biases on Initial Mass Function Determinations. II. Real Multiple Systems and Chance Superpositions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maíz Apellániz, J.</p> <p>2008-04-01</p> <p>When calculating stellar initial mass functions (IMFs) for young clusters, one has to take into account that (1) most massive stars are born in multiple systems, (2) most IMFs are derived from data that cannot resolve such systems, and (3) multiple chance superpositions between members are expected to happen if the cluster is too distant. In this article I use numerical experiments to model the consequences of those phenomena on the observed color-magnitude diagrams and the IMFs derived from them. Real multiple systems affect the observed or apparent massive-star MF slope little but can create a significant population of apparently ultramassive stars. Chance superpositions produce only small biases when the number of superimposed stars is low but, once a certain number threshold is reached, they can affect both the observed slope and the apparent stellar upper mass limit. I apply these experiments to two well known massive young clusters in the Local Group, NGC 3603 and R136. In both cases I show that the observed population of stars with masses above 120 M⊙ can be explained by the effects of unresolved objects, mostly real multiple systems for NGC 3603 and a combination of real and chance-alignment multiple systems for R136. Therefore, the case for the reality of a stellar upper mass limit at solar or near-solar metallicities is strengthened, with a possible value even lower than 150 M⊙. An IMF slope somewhat flatter than Salpeter or Kroupa with γ between -1.6 and -2.0 is derived for the central region of NGC 3603, with a significant contribution to the uncertainty arising from the imprecise knowledge of the distance to the cluster. The IMF at the very center of R136 cannot be measured with the currently available data but the situation could change with new HST observations. This article is partially based on observations made with the NASA/ESA Hubble Space Telescope (HST), some of them associated with GO program 10602 and the rest gathered from the archive, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22062934','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22062934"><span>Influence of intramuscular fat content on the quality of pig meat - 2. Consumer acceptability of m. longissimus lumborum.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fernandez, X; Monin, G; Talmant, A; Mourot, J; Lebret, B</p> <p>1999-09-01</p> <p>The present study is part of a project which aimed to examine the influence of intramuscular fat (IMF) content on sensory attributes and consumer acceptability of pork. Two experiments were conducted to evaluate consumer acceptability of pork chops with varying IMF level in muscle Longissimus lumborum (LL). Each experiment used 32 castrated male pigs selected after slaughter either from 125 Duroc × Landrace (Experiment 1) or 102 Tia Meslan × Landrace (Experiment 2) crossbred animals, and showing large variability in LL IMF content: from <1.5 to >3.5% in Experiment 1 and from 1.25 to 3.25% in Experiment 2. A group of 56 consumers evaluated various items on rib-eye (LL muscle trimmed of backfat) (Experiment 1) and on entire chops trimmed of backfat (Experiment 2). Data from Experiment 1 indicate that an increase in IMF level is associated with an increase in visual perception of fat and a corresponding decrease in the willingness to eat and purchase the meat, when expressed before tasting. The latter effect disappeared after the consumers had tasted the meat, probably due to a positive effect of increase IMF, up to 3.5%, on the perception of texture and taste. In Experiment 2, where entire chops were evaluated, the perception of visible fat was not affected by IMF level, probably due to the lack of variation in the level of intermuscular fat between the four IMF groups. The willingness to eat and purchase the meat were unaffected by IMF level, whereas the perception of texture and taste was enhanced with increased IMF levels up to 3.25%. The present data suggest that the acceptability of pork may be improved by increasing IMF level but: (1) this effect disappeared for IMF levels higher than 3.5%, which are associated with a high risk of meat rejection due to visible fat and (2) the positive effect of increased IMF probably holds true as long as it is not associated with an increase in the level of intermuscular fat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130013624','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130013624"><span>Perspectives on Intracluster Enrichment and the Stellar Initial Mass Function in Elliptical Galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lowenstein, Michael</p> <p>2013-01-01</p> <p>The amount of metals in the Intracluster Medium (ICM) in rich galaxy clusters exceeds that expected based on the observed stellar population by a large factor. We quantify this discrepancy--which we term the "cluster elemental abundance paradox"--and investigate the required properties of the ICM-enriching population. The necessary enhancement in metal enrichment may, in principle, originate in the observed stellar population if a larger fraction of stars in the supernova-progenitor mass range form from an initial mass function (IMF) that is either bottom-light or top-heavy, with the latter in some conflict with observed ICM abundance ratios. Other alternatives that imply more modest revisions to the IMF, mass return and remnant fractions, and primordial fraction, posit an increase in the fraction of 3-8 solar mass stars that explode as SNIa or assume that there are more stars than conventionally thought--although the latter implies a high star formation efficiency. We discuss the feasibility of these various solutions and the implications for the diversity of star formation, the process of elliptical galaxy formation, and the nature of this hidden source of ICM metal enrichment in light of recent evidence of an elliptical galaxy IMF that, because it is skewed to low masses, deepens the paradox.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.474.4169O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.474.4169O"><span>Galaxy structure from multiple tracers - III. Radial variations in M87's IMF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oldham, Lindsay; Auger, Matthew</p> <p>2018-03-01</p> <p>We present the first constraints on stellar mass-to-light ratio gradients in an early-type galaxy (ETG) using multiple dynamical tracer populations to model the dark and luminous mass structure simultaneously. We combine the kinematics of the central starlight, two globular cluster populations and satellite galaxies in a Jeans analysis to obtain new constraints on M87's mass structure, employing a flexible mass model which allows for radial gradients in the stellar-mass-to-light ratio. We find that, in the context of our model, a radially declining stellar-mass-to-light ratio is strongly favoured. Modelling the stellar-mass-to-light ratio as following a power law, ϒ⋆ ˜ R-μ, we infer a power-law slope μ = -0.54 ± 0.05; equally, parametrizing the stellar-mass-to-light ratio via a central mismatch parameter relative to a Salpeter initial mass function (IMF), α, and scale radius RM, we find α > 1.48 at 95% confidence and RM = 0.35 ± 0.04 kpc. We use stellar population modelling of high-resolution 11-band HST photometry to show that such a steep gradient cannot be achieved by variations in only the metallicity, age, dust extinction and star formation history if the stellar IMF remains spatially constant. On the other hand, the stellar-mass-to-light ratio gradient that we find is consistent with an IMF whose inner slope changes such that it is Salpeter-like in the central ˜0.5 kpc and becomes Chabrier-like within the stellar effective radius. This adds to recent evidence that the non-universality of the IMF in ETGs may be confined to their core regions, and points towards a picture in which the stars in these central regions may have formed in fundamentally different physical conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.470..401R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.470..401R"><span>The evolution of CNO isotopes: a new window on cosmic star formation history and the stellar IMF in the age of ALMA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Romano, D.; Matteucci, F.; Zhang, Z.-Y.; Papadopoulos, P. P.; Ivison, R. J.</p> <p>2017-09-01</p> <p>We use state-of-the-art chemical models to track the cosmic evolution of the CNO isotopes in the interstellar medium of galaxies, yielding powerful constraints on their stellar initial mass function (IMF). We re-assess the relative roles of massive stars, asymptotic giant branch (AGB) stars and novae in the production of rare isotopes such as 13C, 15N, 17O and 18O, along with 12C, 14N and 16O. The CNO isotope yields of super-AGB stars, novae and fast-rotating massive stars are included. Having reproduced the available isotope enrichment data in the solar neighbourhood, and across the Galaxy, and having assessed the sensitivity of our models to the remaining uncertainties, e.g. nova yields and star formation history, we show that we can meaningfully constrain the stellar IMF in galaxies using C, O and N isotope abundance ratios. In starburst galaxies, where data for multiple isotopologue lines are available, we find compelling new evidence for a top-heavy stellar IMF, with profound implications for their star formation rates and efficiencies, perhaps also their stellar masses. Neither chemical fractionation nor selective photodissociation can significantly perturb globally averaged isotopologue abundance ratios away from the corresponding isotope ones, as both these processes will typically affect only small mass fractions of molecular clouds in galaxies. Thus, the Atacama Large Millimeter Array now stands ready to probe the stellar IMF, and even the ages of specific starburst events in star-forming galaxies across cosmic time unaffected by the dust obscuration effects that plague optical/near-infrared studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM33B2658D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM33B2658D"><span>MAVEN observations of complex magnetic field configuration in the Martian magnetotail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DiBraccio, G. A.; Luhmann, J. G.; Curry, S.; Espley, J. R.; Gruesbeck, J.; Xu, S.; Mitchell, D. L.; Soobiah, Y. I. J.; Connerney, J. E. P.; Dong, C.; Harada, Y.; Ruhunusiri, S.; Halekas, J. S.; Hara, T.; Ma, Y.; Brain, D.; Jakosky, B. M.</p> <p>2017-12-01</p> <p>The magnetosphere of Mars has attributes of both induced and intrinsic magnetospheres, forming as a result of direct solar wind interaction with the planet's upper atmosphere and local crustal magnetic fields. Magnetic reconnection is able to occur between the draped interplanetary magnetic field (IMF) and closed crustal magnetic fields, creating an open field topology with one end attached to the planet and the other flowing in the solar wind. For this reason, the Martian magnetotail becomes a complex menagerie of various field topologies that may contribute to atmospheric escape to space. We explore these magnetic topologies in the Martian magnetotail using a combination of observations from the the Mars Atmosphere Volatile EvolutioN (MAVEN) spacecraft along with magnetohydrodynamic (MHD) simulations. Preliminary MHD results suggest that the central tail contains two lobes composed of open crustal fields, which are twisted by roughly 45°, either clockwise or counterclockwise from the ecliptic plane, in response to the east-west component of the IMF. These simulated open-field lobes are enveloped by an induced comet-like tail formed by the draped IMF. Using two Earth years of data, we analyze MAVEN Magnetometer and Solar Wind Ion Analyzer (SWIA) measurements to assess the tail magnetic field configuration as a function of IMF orientation. We infer, through data-model comparisons, that the open-field tail lobes are likely a result of reconnection between the crustal fields and the IMF. The open topology of these fields may in fact contribute to atmospheric loss to space. This investigation confirms that the Martian magnetotail is a hybrid configuration between intrinsic and induced magnetospheres, shifting the paradigm of Mars' magnetosphere as we have understood it thus far.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5620683','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5620683"><span>Short-Circuit Fault Detection and Classification Using Empirical Wavelet Transform and Local Energy for Electric Transmission Line</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Huang, Nantian; Qi, Jiajin; Li, Fuqing; Yang, Dongfeng; Cai, Guowei; Huang, Guilin; Zheng, Jian; Li, Zhenxin</p> <p>2017-01-01</p> <p>In order to improve the classification accuracy of recognizing short-circuit faults in electric transmission lines, a novel detection and diagnosis method based on empirical wavelet transform (EWT) and local energy (LE) is proposed. First, EWT is used to deal with the original short-circuit fault signals from photoelectric voltage transformers, before the amplitude modulated-frequency modulated (AM-FM) mode with a compactly supported Fourier spectrum is extracted. Subsequently, the fault occurrence time is detected according to the modulus maxima of intrinsic mode function (IMF2) from three-phase voltage signals processed by EWT. After this process, the feature vectors are constructed by calculating the LE of the fundamental frequency based on the three-phase voltage signals of one period after the fault occurred. Finally, the classifier based on support vector machine (SVM) which was constructed with the LE feature vectors is used to classify 10 types of short-circuit fault signals. Compared with complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and improved CEEMDAN methods, the new method using EWT has a better ability to present the frequency in time. The difference in the characteristics of the energy distribution in the time domain between different types of short-circuit faults can be presented by the feature vectors of LE. Together, simulation and real signals experiment demonstrate the validity and effectiveness of the new approach. PMID:28926953</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26116309','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26116309"><span>IMF-screws or arch bars as conservative treatment for mandibular condyle fractures: Quality of life aspects.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>van den Bergh, B; de Mol van Otterloo, J J; van der Ploeg, T; Tuinzing, D B; Forouzanfar, T</p> <p>2015-09-01</p> <p>Arch bars as treatment for a fractured mandibular condyle are inconvenient to patients and lead to lowered quality of life (QOL). To overcome these inconveniences, IMF-screws (IMFS) to facilitate intermaxillary fixation during surgery have been developed. The purpose of the present study is to investigate and compare QOL for patients treated for a fractured mandibular condyle with either IMFS or arch bars. This research trial was conducted from 2010 to 2014 as part of an earlier prospective, multicenter, randomized clinical trial in which the use of IMFS was compared to the use of arch bars in the treatment of mandibular condylar fractures. In total, 50 patients were included: 30 (60%) male patients and 20 (40%) female patients (mean age: 31.8 years, standard deviation [SD] = 13.9 years, range = 18-64 years). A total of 24 (48%) patients were allocated in the IMFS group, and 26 (52%) patients were assigned to the arch-bars control group. Significant results were observed in the subscales social isolation, possibility to eat and vary diet, influence on sleep, and satisfaction with the given treatment, all in favour of IMFS. In conclusion, using IMFS as a method for conservative treatment of condylar fractures led to a higher QOL during the 6-week period of fracture healing. In comparison to arch bars, patients treated with IMFS experienced less social isolation, had fewer problems with eating, and express the feeling they are able to continue their normal diet. Furthermore it seems that the use of IMFS has a lower negative impact on social and financial aspects of the patient. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140009617','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140009617"><span>Turbulence in a Global Magnetohydrodynamic Simulation of the Earth's Magnetosphere during Northward and Southward Interplanetary Magnetic Field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>El-Alaoui, M.; Richard, R. L.; Ashour-Abdalla, M.; Walker, R. J.; Goldstein, M. L.</p> <p>2012-01-01</p> <p>We report the results of MHD simulations of Earth's magnetosphere for idealized steady solar wind plasma and interplanetary magnetic field (IMF) conditions. The simulations feature purely northward and southward magnetic fields and were designed to study turbulence in the magnetotail plasma sheet. We found that the power spectral densities (PSDs) for both northward and southward IMF had the characteristics of turbulent flow. In both cases, the PSDs showed the three scale ranges expected from theory: the energy-containing scale, the inertial range, and the dissipative range. The results were generally consistent with in-situ observations and theoretical predictions. While the two cases studied, northward and southward IMF, had some similar characteristics, there were significant differences as well. For southward IMF, localized reconnection was the main energy source for the turbulence. For northward IMF, remnant reconnection contributed to driving the turbulence. Boundary waves may also have contributed. In both cases, the PSD slopes had spatial distributions in the dissipative range that reflected the pattern of resistive dissipation. For southward IMF there was a trend toward steeper slopes in the dissipative range with distance down the tail. For northward IMF there was a marked dusk-dawn asymmetry with steeper slopes on the dusk side of the tail. The inertial scale PSDs had a dusk-dawn symmetry during the northward IMF interval with steeper slopes on the dawn side. This asymmetry was not found in the distribution of inertial range slopes for southward IMF. The inertial range PSD slopes were clustered around values close to the theoretical expectation for both northward and southward IMF. In the dissipative range, however, the slopes were broadly distributed and the median values were significantly different, consistent with a different distribution of resistivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940032508','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940032508"><span>Dynamics explorer data analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reiff, Patricia H.</p> <p>1993-01-01</p> <p>Work in the following areas is discussed: plasma physics of the auroral acceleration region; electrodynamic coupling as a function of substorm phase and interplanetary magnetic field (IMF) direction; and particle injection in the magnetospheric cusp.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MNRAS.450.4137G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MNRAS.450.4137G"><span>Mapping the core mass function to the initial mass function</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guszejnov, Dávid; Hopkins, Philip F.</p> <p>2015-07-01</p> <p>It has been shown that fragmentation within self-gravitating, turbulent molecular clouds (`turbulent fragmentation') can naturally explain the observed properties of protostellar cores, including the core mass function (CMF). Here, we extend recently developed analytic models for turbulent fragmentation to follow the time-dependent hierarchical fragmentation of self-gravitating cores, until they reach effectively infinite density (and form stars). We show that turbulent fragmentation robustly predicts two key features of the initial mass function (IMF). First, a high-mass power-law scaling very close to the Salpeter slope, which is a generic consequence of the scale-free nature of turbulence and self-gravity. We predict the IMF slope (-2.3) is slightly steeper than the CMF slope (-2.1), owing to the slower collapse and easier fragmentation of large cores. Secondly, a turnover mass, which is set by a combination of the CMF turnover mass (a couple solar masses, determined by the `sonic scale' of galactic turbulence, and so weakly dependent on galaxy properties), and the equation of state (EOS). A `soft' EOS with polytropic index γ < 1.0 predicts that the IMF slope becomes `shallow' below the sonic scale, but fails to produce the full turnover observed. An EOS, which becomes `stiff' at sufficiently low surface densities Σgas ˜ 5000 M⊙ pc-2, and/or models, where each collapsing core is able to heat and effectively stiffen the EOS of a modest mass (˜0.02 M⊙) of surrounding gas, are able to reproduce the observed turnover. Such features are likely a consequence of more detailed chemistry and radiative feedback.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22364196-characterizing-brown-dwarf-formation-channels-from-initial-mass-function-binary-star-dynamics','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22364196-characterizing-brown-dwarf-formation-channels-from-initial-mass-function-binary-star-dynamics"><span>CHARACTERIZING THE BROWN DWARF FORMATION CHANNELS FROM THE INITIAL MASS FUNCTION AND BINARY-STAR DYNAMICS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Thies, Ingo; Pflamm-Altenburg, Jan; Kroupa, Pavel</p> <p>2015-02-10</p> <p>The stellar initial mass function (IMF) is a key property of stellar populations. There is growing evidence that the classical star-formation mechanism by the direct cloud fragmentation process has difficulties reproducing the observed abundance and binary properties of brown dwarfs and very-low-mass stars. In particular, recent analytical derivations of the stellar IMF exhibit a deficit of brown dwarfs compared to observational data. Here we derive the residual mass function of brown dwarfs as an empirical measure of the brown dwarf deficiency in recent star-formation models with respect to observations and show that it is compatible with the substellar part ofmore » the Thies-Kroupa IMF and the mass function obtained by numerical simulations. We conclude that the existing models may be further improved by including a substellar correction term that accounts for additional formation channels like disk or filament fragmentation. The term ''peripheral fragmentation'' is introduced here for such additional formation channels. In addition, we present an updated analytical model of stellar and substellar binarity. The resulting binary fraction and the dynamically evolved companion mass-ratio distribution are in good agreement with observational data on stellar and very-low-mass binaries in the Galactic field, in clusters, and in dynamically unprocessed groups of stars if all stars form as binaries with stellar companions. Cautionary notes are given on the proper analysis of mass functions and the companion mass-ratio distribution and the interpretation of the results. The existence of accretion disks around young brown dwarfs does not imply that these form just like stars in direct fragmentation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27688482','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27688482"><span>Impact of Aging on Proprioceptive Sensory Neurons and Intrafusal Muscle Fibers in Mice.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vaughan, Sydney K; Stanley, Olivia L; Valdez, Gregorio</p> <p>2017-06-01</p> <p>The impact of aging on proprioceptive sensory neurons and intrafusal muscle fibers (IMFs) remains largely unexplored despite the central function these cells play in modulating voluntary movements. Here, we show that proprioceptive sensory neurons undergo deleterious morphological changes in middle age (11- to 13-month-old) and old (15- to 21-month-old) mice. In the extensor digitorum longus and soleus muscles of middle age and old mice, there is a significant increase in the number of Ia afferents with large swellings that fail to properly wrap around IMFs compared with young adult (2- to 4-month-old) mice. Fewer II afferents were also found in the same muscles of middle age and old mice. Although these age-related changes in peripheral nerve endings were accompanied by degeneration of proprioceptive sensory neuron cell bodies in dorsal root ganglia (DRG), the morphology and number of IMFs remained unchanged. Our analysis also revealed normal levels of neurotrophin 3 (NT3) but dysregulated expression of the tyrosine kinase receptor C (TrkC) in aged muscles and DRGs, respectively. These results show that proprioceptive sensory neurons degenerate prior to atrophy of IMFs during aging, and in the presence of the NT3/TrkC signaling axis. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1197H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1197H"><span>A Dual Power Law Distribution for the Stellar Initial Mass Function</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoffmann, Karl Heinz; Essex, Christopher; Basu, Shantanu; Prehl, Janett</p> <p>2018-05-01</p> <p>We introduce a new dual power law (DPL) probability distribution function for the mass distribution of stellar and substellar objects at birth, otherwise known as the initial mass function (IMF). The model contains both deterministic and stochastic elements, and provides a unified framework within which to view the formation of brown dwarfs and stars resulting from an accretion process that starts from extremely low mass seeds. It does not depend upon a top down scenario of collapsing (Jeans) masses or an initial lognormal or otherwise IMF-like distribution of seed masses. Like the modified lognormal power law (MLP) distribution, the DPL distribution has a power law at the high mass end, as a result of exponential growth of mass coupled with equally likely stopping of accretion at any time interval. Unlike the MLP, a power law decay also appears at the low mass end of the IMF. This feature is closely connected to the accretion stopping probability rising from an initially low value up to a high value. This might be associated with physical effects of ejections sometimes (i.e., rarely) stopping accretion at early times followed by outflow driven accretion stopping at later times, with the transition happening at a critical time (therefore mass). Comparing the DPL to empirical data, the critical mass is close to the substellar mass limit, suggesting that the onset of nuclear fusion plays an important role in the subsequent accretion history of a young stellar object.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24769145','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24769145"><span>Impact of high pressure treatment and intramuscular fat content on colour changes and protein and lipid oxidation in sliced and vacuum-packaged Iberian dry-cured ham.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fuentes, Verónica; Utrera, Mariana; Estévez, Mario; Ventanas, Jesús; Ventanas, Sonia</p> <p>2014-08-01</p> <p>The effect of high hydrostatic pressure (HHP) (600MPa) and intramuscular fat content (IMF) on colour parameters and oxidative stability of lipids and proteins in sliced vacuum-packaged Iberian dry-cured ham during refrigerated storage (120 days at 2°C) was investigated. Several studies have investigated the influence of HHP on lipid oxidation of meat products. However, its effects on protein carbonylation, as also the influence of IMF content on this carbonylation are poorly understood. HHP treatment had a significant effect on lean lightness after 0 and 120 days of storage while IMF content increased lightness and yellowness over time. Regarding oxidative stability, the effect of HHP treatment depended on IMF content samples with a high IMF having greater lipid instability while samples with a low IMF underwent more protein carbonylation. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRA..12111943V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRA..12111943V"><span>Reconstruction of the IMF polarity using midlatitude geomagnetic observations in the nineteenth century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vokhmyanin, M. V.; Ponyavin, D. I.</p> <p>2016-12-01</p> <p>The interplanetary magnetic field (IMF) By component affects the configuration of field-aligned currents (FAC) whose geomagnetic response is observed from high to low latitudes. The ground magnetic perturbations induced by FACs are opposite on the dawnside and duskside and depend upon the IMF By polarity. Based on the multilinear regression analysis, we show that this effect is presented at the midlatitude observatories, Niemegk and Arti, in the X and Y components of the geomagnetic field. This allows us to infer the IMF sector structure from the old geomagnetic records made at Ekaterinburg and Potsdam since 1850 and 1890, respectively. Geomagnetic data from various stations provide proxies of the IMF polarity which coincide for the most part of the nineteenth and twentieth centuries. This supports their reliabilities and makes them suitable for studying the large-scale IMF sector structure in the past.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15753328','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15753328"><span>Comparison of three models to estimate breeding values for percentage of loin intramuscular fat in Duroc swine.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Newcom, D W; Baas, T J; Stalder, K J; Schwab, C R</p> <p>2005-04-01</p> <p>Three selection models were evaluated to compare selection candidate rankings based on EBV and to evaluate subsequent effects of model-derived EBV on the selection differential and expected genetic response in the population. Data were collected from carcass- and ultrasound-derived estimates of loin i.m. fat percent (IMF) in a population of Duroc swine under selection to increase IMF. The models compared were Model 1, a two-trait animal model used in the selection experiment that included ultrasound IMF from all pigs scanned and carcass IMF from pigs slaughtered to estimate breeding values for both carcass (C1) and ultrasound IMF (U1); Model 2, a single-trait animal model that included ultrasound IMF values on all pigs scanned to estimate breeding values for ultrasound IMF (U2); and Model 3, a multiple-trait animal model including carcass IMF from slaughtered pigs and the first three principal components from a total of 10 image parameters averaged across four longitudinal ultrasound images to estimate breeding values for carcass IMF (C3). Rank correlations between breeding value estimates for U1 and C1, U1 and U2, and C1 and C3 were 0.95, 0.97, and 0.92, respectively. Other rank correlations were 0.86 or less. In the selection experiment, approximately the top 10% of boars and 50% of gilts were selected. Selection differentials for pigs in Generation 3 were greatest when ranking pigs based on C1, followed by U1, U2, and C3. In addition, selection differential and estimated response were evaluated when simulating selection of the top 1, 5, and 10% of sires and 50% of dams. Results of this analysis indicated the greatest selection differential was for selection based on C1. The greatest loss in selection differential was found for selection based on C3 when selecting the top 10 and 1% of boars and 50% of gilts. The loss in estimated response when selecting varying percentages of boars and the top 50% of gilts was greatest when selection was based on C3 (16.0 to 25.8%) and least for selection based on U1 (1.3 to 10.9%). Estimated genetic change from selection based on carcass IMF was greater than selection based on ultrasound IMF. Results show that selection based on a combination of ultrasonically predicted IMF and sib carcass IMF produced the greatest selection differentials and should lead to the greatest genetic change.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..12212189H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..12212189H"><span>IMF Control of Alfvénic Energy Transport and Deposition at High Latitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hatch, Spencer M.; LaBelle, James; Lotko, William; Chaston, Christopher C.; Zhang, Binzheng</p> <p>2017-12-01</p> <p>We investigate the influence of the interplanetary magnetic field (IMF) clock angle ϕIMF on high-latitude inertial Alfvén wave (IAW) activity in the magnetosphere-ionosphere transition region using Fast Auroral SnapshoT (FAST) satellite observations. We find evidence that negative IMF Bz coincides with nightside IAW power generation and enhanced rates of IAW-associated electron energy deposition, while positive IMF Bz coincides with enhanced dayside wave and electron energy deposition. Large (≳ 5 nT) negative IMF By coincides with enhanced postnoon IAW power, while large positive IMF By coincides with enhanced but relatively weaker prenoon IAW power. For each ϕIMF orientation we compare IAW Poynting flux and IAW-associated electron energy flux distributions with previously published distributions of Alfvénic Poynting flux over ˜2-22 mHz, as well as corresponding wave-driven electron energy deposition derived from Lyon-Fedder-Mobarry global MHD simulations. We also compare IAW Poynting flux distributions with distributions of broad and diffuse electron number flux, categorized using an adaptation of the Newell et al. (2009) precipitation scheme for FAST. Under negative IMF Bz in the vicinity of the cusp (9.5-14.5 magnetic local time), regions of intense dayside IAW power correspond to enhanced diffuse electron number flux but relatively weaker broadband electron precipitation. Differences between cusp region IAW activity and broadband precipitation illustrate the need for additional information, such as fields or pitch angle measurements, to identify the physical mechanisms associated with electron precipitation in the vicinity of the cusp.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...611A..89L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...611A..89L"><span>Stellar mass spectrum within massive collapsing clumps. II. Thermodynamics and tidal forces of the first Larson core. A robust mechanism for the peak of the IMF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Yueh-Ning; Hennebelle, Patrick</p> <p>2018-04-01</p> <p>Context. Understanding the origin of the initial mass function (IMF) of stars is a major problem for the star formation process and beyond. Aim. We investigate the dependence of the peak of the IMF on the physics of the so-called first Larson core, which corresponds to the point where the dust becomes opaque to its own radiation. Methods: We performed numerical simulations of collapsing clouds of 1000 M⊙ for various gas equations of state (eos), paying great attention to the numerical resolution and convergence. The initial conditions of these numerical experiments are varied in the companion paper. We also develop analytical models that we compare to our numerical results. Results: When an isothermal eos is used, we show that the peak of the IMF shifts to lower masses with improved numerical resolution. When an adiabatic eos is employed, numerical convergence is obtained. The peak position varies with the eos, and using an analytical model to infer the mass of the first Larson core, we find that the peak position is about ten times its value. By analyzing the stability of nonlinear density fluctuations in the vicinity of a point mass and then summing over a reasonable density distribution, we find that tidal forces exert a strong stabilizing effect and likely lead to a preferential mass several times higher than that of the first Larson core. Conclusions: We propose that in a sufficiently massive and cold cloud, the peak of the IMF is determined by the thermodynamics of the high-density adiabatic gas as well as the stabilizing influence of tidal forces. The resulting characteristic mass is about ten times the mass of the first Larson core, which altogether leads to a few tenths of solar masses. Since these processes are not related to the large-scale physical conditions and to the environment, our results suggest a possible explanation for the apparent universality of the peak of the IMF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA43B2651Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA43B2651Z"><span>Occurrence rate of ion upflow and downflow observed by the Poker Flat Incoherent Scatter Radar (PFISR)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zou, S.; Lu, J.; Varney, R. H.</p> <p>2017-12-01</p> <p>This study aims to investigate the occurrence rate of ion upflow and downflow events in the auroral ionosphere, using a full 3-year (2011-2013) dataset collected by the Poker Flat Incoherent Scatter Radar (PFISR) at 65.5° magnetic latitude. Ion upflow and downflow events are defined if there are three consecutive data points larger/smaller than 100/-100 m/s in the ion field-aligned velocity altitude profile. Their occurrence rates have been evaluated as a function of magnetic local time (MLT), season, geomagnetic activity, solar wind and interplanetary magnetic field (IMF). We found that the ion upflows are twice more likely to occur on the nightside than the dayside, and have slightly higher occurrence rate near Fall equinox. In contrast, the ion downflow events are more likely to occur in the afternoon sector but also during Fall equinox. In addition, the occurrence rate of ion upflows on the nightside increases when the aurora electrojet index (AE) and planetary K index (Kp) increase, while the downflows measured on the dayside clearly increase as the AE and Kp increase. In general, the occurrence rate of ion upflows increases with enhanced solar wind and IMF drivers. This correlation is particularly strong between the upflows on the nightside and the solar wind dynamic pressure and IMF Bz. The lack of correlation of upflows on the dayside with these parameters is due to the location of PFISR, which is usually equatorward of the dayside auroral zone and within the nightside auroral zone under disturbed conditions. The occurrence rate of downflow at all MLTs does not show strong dependence on the solar wind and IMF conditions. However, it occurs much more frequently on the dayside when the IMF By is strongly positive, i.e., >10 nT and the IMF Bz is strongly negative, i.e., < -10 nT. We suggest that the increased occurrence rate of downflows on the dayside is associated with dayside storm-enhanced density and the plume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800042658&hterms=Rectifier&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DRectifier','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800042658&hterms=Rectifier&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DRectifier"><span>The half-wave rectifier response of the magnetosphere and antiparallel merging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crooker, N. U.</p> <p>1980-01-01</p> <p>In some ways the magnetosphere behaves as if merging occurs only when the interplanetary magnetic field (IMF) is southward, and in other ways it behaves as if merging occurs for all IMF orientations. An explanation of this duality is offered in terms of a geometrical antiparallel merging model which predicts merging for all IMF orientations but magnetic flux transfer to the tail only for southward IMF. This is in contrast to previous models of component merging, where merging and flux transfer occur together for nearly all IMF orientations. That the problematic duality can be explained by the model is compelling evidence that antiparallel merging should be seriously considered in constructing theories of the merging process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015A%26A...576A.110N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015A%26A...576A.110N"><span>Deep near-infrared adaptive-optics observations of a young embedded cluster at the edge of the RCW 41 H II region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neichel, B.; Samal, M. R.; Plana, H.; Zavagno, A.; Bernard, A.; Fusco, T.</p> <p>2015-04-01</p> <p>Aims: We investigate the star formation activity in a young star forming cluster embedded at the edge of the RCW 41 H ii region. As a complementary goal, we aim to demonstrate the gain provided by wide-field adaptive optics (WFAO) instruments to study young clusters. Methods: We used deep, JHKs images from the newly commissioned Gemini-GeMS/GSAOI instrument, complemented with Spitzer IRAC observations, in order to study the photometric properties of the young stellar cluster. GeMS is a WFAO instrument that delivers almost diffraction-limited images over a field of ~2' across. The exquisite angular resolution allows us to reach a limiting magnitude of J ~ 22 for 98% completeness. The combination of the IRAC photometry with our JHKs catalog is used to build color-color diagrams, and select young stellar object (YSO) candidates. The JHKs photometry is also used in conjunction with pre-main sequence evolutionary models to infer masses and ages. The K-band luminosity function is derived, and then used to build the initial mass function (IMF) of the cluster. Results: We detect the presence of 80 YSO candidates. Those YSOs are used to infer the cluster age, which is found to be in the range 1 to 5 Myr. More precisely, we find that 1/3 of the YSOs are in a range between 3 to 5 Myr, while 2/3 of the YSO are ≤3 Myr. When looking at the spatial distribution of these two populations, we find evidence of a potential age gradient across the field that suggests sequential star formation. We construct the IMF and show that we can sample the mass distribution well into the brown dwarf regime (down to ~0.01 M⊙). The logarithmic mass function rises to peak at ~0.3 M⊙, before turning over and declining into the brown dwarf regime. The total cluster mass derived is estimated to be 78 ± 18 M⊙, while the ratio derived of brown dwarfs to star is 18 ± 5%. When comparing it with other young clusters, we find that the IMF shape of the young cluster embedded within RCW 41 is consistent with those of Trapezium, IC 348, or Chamaeleon I, except for the IMF peak, which happens to be at higher mass. This characteristic is also seen in clusters like NGC 6611 or even Taurus. These results suggest that the medium-to-low mass end of the IMF possibly depends on environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990063685&hterms=monographs&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmonographs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990063685&hterms=monographs&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmonographs"><span>Modeling Magnetotail Ion Distributions with Global Magnetohydrodynamic and Ion Trajectory Calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>El-Alaoui, M.; Ashour-Abdalla, M.; Raeder, J.; Peroomian, V.; Frank, L. A.; Paterson, W. R.; Bosqued, J. M.</p> <p>1998-01-01</p> <p>On February 9, 1995, the Comprehensive Plasma Instrumentation (CPI) on the Geotail spacecraft observed a complex, structured ion distribution function near the magnetotail midplane at x approximately -30 R(sub E). On this same day the Wind spacecraft observed a quiet solar wind and an interplanetary magnetic field (IMF) that was northward for more than five hours, and an IMF B(sub y) component with a magnitude comparable to that of the RAF B(sub z) component. In this study, we determined the sources of the ions in this distribution function by following approximately 90,000 ion trajectories backward in time, using the time-dependent electric and magnetic fields obtained from a global MHD simulation. The Wind observations were used as input for the MHD model. The ion distribution function observed by Geotail at 1347 UT was found to consist primarily of particles from the dawn side low latitude boundary layer (LLBL) and from the dusk side LLBL; fewer than 2% of the particles originated in the ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912331T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912331T"><span>How the IMF By induces a By-component on closed field lines during northward IMF Bz</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tenfjord, Paul; Østgaard, Nikolai; Strangeway, Robert J.; Reistad, Jone; Magnus Laundal, Karl; Haaland, Stein; Hesse, Michael; Snekvik, Kristian; Milan, Stephen E.</p> <p>2017-04-01</p> <p>We describe how the IMF By-component induces a local By-component on closed field lines during northward IMF Bz. The mechanism is the result of high-latitude reconnection on the dayside when IMF By is non-zero. We describe the dynamical process, in which tension on newly reconnected field lines redistribute the open flux asymmetrically between the two hemispheres, which leads to asymmetric energy flow into the lobes. The resulting shear flows change the magnetic field, thereby inducing a By-component on closed field lines. We use a global magnetohydrodynamics model to illustrate the mechanism. The magnetosphere imposes asymmetric forces on the ionosphere, and the effects on the ionospheric flows are characterized by a departure from a symmetric two-cell configuration to the growth of one of the lobe cells, while the other will contract. We also present the associated timescales of the local By-component to a change in the IMF By, by both theoretical arguments and by a superposed epoch analysis between magnetic field measurements from GOES and a list of IMF By reversals. We find that the magnetosphere responds within 10 minutes and reconfigures within 40 minutes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27064846','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27064846"><span>Beef quality with different intramuscular fat content and proteomic analysis using isobaric tag for relative and absolute quantitation of differentially expressed proteins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mao, Yanwei; Hopkins, David L; Zhang, Yimin; Li, Peng; Zhu, Lixian; Dong, Pengcheng; Liang, Rongrong; Dai, Jin; Wang, Xiaoyun; Luo, Xin</p> <p>2016-08-01</p> <p>Intramuscular fat (IMF) is an important trait for beef eating quality. The mechanism of how IMF is deposited in beef cattle muscle is not clear at the molecular level. The muscle (M. longissimus lumborum: LL) of a group of Xiangxi yellow×Angus cattle with high fat levels (HF), was compared to the muscle of a low fat group (LF). The meat quality and the expressed protein patterns were compared. It was shown that LL from the HF animals had a greater fat content (P<0.05) and lower moisture content (P<0.05) than LL from LF animals. Forty seven sarcoplasmic proteins were differentially expressed and identified between the two groups. These proteins are involved in 6 molecular functions and 16 biological processes, and affect the Mitogen-activated protein kinases pathway, insulin pathway and c-Jun N-terminal kinases leading to greater IMF deposition. Cattle in the HF group had greater oxidative capacity and lower glycolytic levels suggesting a greater energetic efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19571459','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19571459"><span>Carbachol induces Ca(2+)-dependent contraction via muscarinic M2 and M3 receptors in rat intestinal subepithelial myofibroblasts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Iwanaga, Koichi; Murata, Takahisa; Okada, Muneyoshi; Hori, Masatoshi; Ozaki, Hiroshi</p> <p>2009-07-01</p> <p>Intestinal myofibroblasts (IMFs) that exist adjacent to the basement membrane of intestines have contractility and contribute to physical barriers of the intestine. Nerve endings distribute adjacent to IMFs, suggesting neurotransmitters may influence IMFs motility; however, there is no direct evidence showing the interaction. Here, we isolated IMFs from rat colon and investigated the effect of acetylcholine on IMFs contractility. In the collagen gel contraction assay, carbachol (1 - 10 microM) and the muscarinic receptor agonist bethanechol (30 - 300 microM) dose-dependently induced IMFs contraction. Pretreatment with the muscarinic receptor antagonist atropine (1 - 10 nM) inhibited carbachol-induced contraction. In RT-PCR, mRNA expression of all muscarinic receptor subtypes (M(1) - M(5)) was detected in IMFs. Subsequently we found pretreatment with the muscarinic M(2) receptor antagonist 11-([2-[(diethylamino)methyl]-1-piperdinyl]acetyl)-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one (AF-DX116) (10 and 30 nM) or the muscarinic M(3) receptor antagonist 4-diphenylacetoxy-N-methyl-piperidine (4-DAMP) (3 and 10 nM) dose-dependently inhibited carbachol-induced contraction. In Ca(2+) measurement, 1 - 10 microM carbachol and 30 - 300 microM bethanechol elevated the intracellular Ca(2+) concentration ([Ca(2+)](i)) in IMFs. Atropine (10 nM) eliminated carbachol-induced [Ca(2+)](i) elevation. The Ca(2+)-channel blocker LaCl(3) (3 microM) abolished carbachol-induced [Ca(2+)](i) elevation and contraction. Furthermore, AF-DX116 and 4-DAMP dose-dependently inhibited the carbachol-induced [Ca(2+)](i) elevation. These observations suggest that acetylcholine elicits Ca(2+)-dependent IMF contraction through muscarinic M(2) and M(3) receptors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRA..118..209Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRA..118..209Y"><span>Influence of interplanetary magnetic field and solar wind on auroral brightness in different regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Y. F.; Lu, J. Y.; Wang, J.-S.; Peng, Z.; Zhou, L.</p> <p>2013-01-01</p> <p><title type="main">Abstract<p label="1">By integrating and averaging the auroral brightness from Polar Ultraviolet Imager auroral images, which have the whole auroral ovals, and combining the observation data of interplanetary magnetic field (IMF) and solar wind from NASA Operating Missions as a Node on the Internet (OMNI), we investigate the influence of IMF and solar wind on auroral activities, and analyze the separate roles of the solar wind dynamic pressure, density, and velocity on aurora, respectively. We statistically analyze the relations between the interplanetary conditions and the auroral brightness in dawnside, dayside, duskside, and nightside. It is found that the three components of the IMF have different effects on the auroral brightness in the different regions. Different from the nightside auroral brightness, the dawnside, dayside, and duskside auroral brightness are affected by the IMF Bx, and By components more significantly. The IMF Bx and By components have different effects on these three regional auroral brightness under the opposite polarities of the IMF Bz. As expected, the nightside aurora is mainly affected by the IMF Bz, and under southward IMF, the larger the |Bz|, the brighter the nightside aurora. The IMF Bx and By components have no visible effects. On the other hand, it is also found that the aurora is not intensified singly with the increase of the solar wind dynamic pressure: when only the dynamic pressure is high, but the solar wind velocity is not very fast, the aurora will not necessarily be intensified significantly. These results can be used to qualitatively predict the auroral activities in different regions for various interplanetary conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5839089-interplanetary-magnetic-field-sub-dependent-field-aligned-current-dayside-polar-cap-under-quiet-conditions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5839089-interplanetary-magnetic-field-sub-dependent-field-aligned-current-dayside-polar-cap-under-quiet-conditions"><span>The interplanetary magnetic field B sub y -dependent field-aligned current in the dayside polar cap under quiet conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yamauchi, M.; Araki, T.</p> <p>1989-03-01</p> <p>Spatial distribution and temporal variation of the interplanetary magnetic field (IMF) B{sub y}-dependent cusp region field-aligned currents (FACs) during quiet periods were studied by use of magnetic data observed by Magsat. The analysis was made for 11 events (each event lasts more than one and a half days) when the IMF B{sub y} component was steadily large and B{sub x} was relatively small ({vert bar}B{sub z}{vert bar} < {vert bar}B{sub y}{vert bar}). Results of the analysis of total 62 half-day periods for the IMF B{sub y}-dependent cusp region FAC are summarized as follows: (1) the IMF B{sub y}-dependent cusp regionmore » FAC is located at around 86{degree}-87{degree} invariant latitude local noon, which is more poleward than the location of the IMF B{sub z}-dependent cusp region FAC; (2) the current density of this FAC is greater than previous studies ({ge} 4 {mu}A/m{sup 2} for IMF B{sub y} = 6 nT); (3) there are two time scales for the IMF B{sub y}-dependent cusp region FAC to appear: the initial rise of the current is on a short time scale, {approximately} 10 min, and it is followed by a gradual increase on a time scale of several hours to a half day; (4) the seasonal change of this FAC is greater than that of the nightside region 1 or region 2 FACs; (5) the IMF B{sub z}-dependent cusp region FAC is not well observed around the cusp when the IMF B{sub y}-dependent cusp region FAC is intense.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20024783','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20024783"><span>Associations of A-FABP and H-FABP markers with the content of intramuscular fat in Beijing-You chicken.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ye, M H; Chen, J L; Zhao, G P; Zheng, M Q; Wen, J</p> <p>2010-01-01</p> <p>This study has assessed the association of single nucleotide polymorphisms (SNP) identified in the adipocyte fatty acid binding protein (A-FABP) and heart-type fatty acid binding protein (H-FABP) genes with the content of intramuscular fat (IMF) in a population of male Beijing-You chickens. A previously described SNP in the chicken A-FABP gene had a significant (P < 0.05) effect on IMF content. Chickens inheriting the homozygous BB genotype at A-FABP had a significantly higher content of IMF in thigh muscles and breast muscles than did those inheriting the AA and AB genotypes. A novel SNP, identified here, in the H-FABP gene was also significantly (P < 0.05) associated with IMF content in thigh and breast muscle. Chickens inheriting the genotypes of DD and CD had much higher content of IMF than those inheriting the homozygous genotype of CC. Markers at the A-FABP and H-FABP genes were associated with IMF content in the studied population. Chickens inheriting the BB genotype at A-FABP, along with the CD genotype at H-FABP, produced muscles with a much higher content of IMF when compared with all other genotypes. A weak interaction between A-FABP and H-FABP was detected (P < 0.09) for IMF content in the tested population. The statistical significance of interaction is tentative because of the limited number of observations for some genotypic combinations. Markers identified within the A-FABP and H-FABP genes are suitable for future use in identifying chickens with the genetic potential to produce more desirable muscle with higher IMF content, at least in the population of Beijing-You male chickens.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM44A..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM44A..07S"><span>Science Objectives for a Soft X-ray Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sibeck, D. G.; Connor, H. K.; Collier, M. R.; Collado-Vega, Y. M.; Walsh, B.</p> <p>2016-12-01</p> <p>When high charge state solar wind ions exchange electrons with exospheric neutrals, soft X-rays are emitted. In conjunction with flight- proven wide field-of-view soft X-ray imagers employing lobster-eye optics, recent simulations demonstrate the feasibility of imaging magnetospheric density structures such as the bow shock, magnetopause, and cusps. This presentation examines the Heliospheric scientific objectives that such imagers can address. Principal amongst these is the nature of reconnection at the dayside magnetopause: steady or transient, widespread or localized, component or antiparallel as a function of solar wind conditions. However, amongst many other objectives, soft X-ray imagers can provide crucial information concerning the structure of the bow shock as a function of solar wind Mach number and IMF orientation, the presence or absence of a depletion layer, the occurrence of Kelvin-Helmholtz or pressure-pulse driven magnetopause boundary waves, and the effects of radial IMF orientations and the foreshock upon bow shock and magnetopause location.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007ApJ...661..972P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007ApJ...661..972P"><span>Two Regimes of Turbulent Fragmentation and the Stellar Initial Mass Function from Primordial to Present-Day Star Formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Padoan, Paolo; Nordlund, Åke; Kritsuk, Alexei G.; Norman, Michael L.; Li, Pak Shing</p> <p>2007-06-01</p> <p>The Padoan and Nordlund model of the stellar initial mass function (IMF) is derived from low-order statistics of supersonic turbulence, neglecting gravity (e.g., gravitational fragmentation, accretion, and merging). In this work, the predictions of that model are tested using the largest numerical experiments of supersonic hydrodynamic (HD) and magnetohydrodynamic (MHD) turbulence to date (~10003 computational zones) and three different codes (Enzo, Zeus, and the Stagger code). The model predicts a power-law distribution for large masses, related to the turbulence-energy power-spectrum slope and the shock-jump conditions. This power-law mass distribution is confirmed by the numerical experiments. The model also predicts a sharp difference between the HD and MHD regimes, which is recovered in the experiments as well, implying that the magnetic field, even below energy equipartition on the large scale, is a crucial component of the process of turbulent fragmentation. These results suggest that the stellar IMF of primordial stars may differ from that in later epochs of star formation, due to differences in both gas temperature and magnetic field strength. In particular, we find that the IMF of primordial stars born in turbulent clouds may be narrowly peaked around a mass of order 10 Msolar, as long as the column density of such clouds is not much in excess of 1022 cm-2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011MNRAS.417.3000S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011MNRAS.417.3000S"><span>The X-Shooter Lens Survey - I. Dark matter domination and a Salpeter-type initial mass function in a massive early-type galaxy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spiniello, C.; Koopmans, L. V. E.; Trager, S. C.; Czoske, O.; Treu, T.</p> <p>2011-11-01</p> <p>We present the first results from the X-Shooter Lens Survey: an analysis of the massive early-type galaxy SDSS J1148+1930 at redshift z= 0.444. We combine its extended kinematic profile - derived from spectra obtained with X-Shooter on the European Southern Observatory Very Large Telescope - with strong gravitational lensing and multicolour information derived from Sloan Digital Sky Survey (SDSS) images. Our main results are as follows. (i) The luminosity-weighted stellar velocity dispersion is <σ*>(≲Reff) = 352 ± 10 ± 16 km s-1, extracted from a rectangular aperture of 1.8 × 1.6 arcsec2 centred on the galaxy, more accurate and considerably lower than a previously published value of ˜450 km s-1. (ii) A single-component (stellar plus dark) mass model of the lens galaxy yields a logarithmic total-density slope of γ'= 1.72+0.05- 0.06 (68 per cent confidence level, CL; ?) within a projected radius of ˜2.16 arcsec. (iii) The projected stellar mass fraction, derived solely from the lensing and dynamical data, is f*(<RE) = 0.19+0.04- 0.09 (68 per cent CL) inside the Einstein radius for a Hernquist stellar profile and no anisotropy. The dark matter fraction inside the effective radius fDM(<Reff) = 0.60+0.15- 0.06± 0.1 (68 per cent CL), where the latter error is systematic. (iv) Based on the SDSS colours, we find f*, Salp(<RE) = 0.17 ± 0.06 for a Salpeter initial mass function (IMF) and f*, Chab(<RE) = 0.07 ± 0.02 for a Chabrier IMF. The lensing and dynamics constraints on the stellar mass fraction agree well with those independently derived from the SDSS colours for a Salpeter IMF, which is preferred over a Chabrier IMF at variance with standard results for lower mass galaxies. Dwarf-rich IMFs in the lower mass range of 0.1-0.7 M⊙, with α≥ 3 (with dN/dM∝M-α) - such as that recently suggested for massive early-type galaxies with α= 3 in the mass range 0.1-1 M⊙- are excluded at the >90 per cent CL and in some cases violate the total lensing-derived mass limit. We conclude that this very massive early-type galaxy is dark-matter-dominated inside one effective radius, consistent with the trend recently found from massive Sloan Lens ACS (SLACS) galaxies, with a total density slope shallower than isothermal and an IMF normalization consistent with Salpeter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996AJ....112.1073F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996AJ....112.1073F"><span>Star Formation in NGC 6531-Evidence From the age Spread and Initial Mass Function</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forbes, Douglas</p> <p>1996-09-01</p> <p>The results of a photometric UBV study of the young open cluster NGC 6531 are presented. The cluster is found to have a mean reddening E(B-V)=0.28±0.04 (s.d.) and distance modulus (V0-Mv)=10.70±0.13 (s.e.), and 105±11 likely cluster members have been identified within the cluster coronal radius of 9 arcmin. A comparison of the high-luminosity end of the cluster color-magnitude diagram to the evolutionary models by Maeder & Meynet [A&AS, 76, 411(1988)] suggests a nuclear age of (8±2) Myr. The very clear gap in the distribution of stars with 0≤(B-V)0≤0.20, corresponding to the "burn-off" of 3He in stars contracting to the main sequence [Ulrich, ApJ, 168, 57 (1971)], implies a contraction age of (8±3) Myr. There would seem to be no evidence of a spread in the ages of cluster stars, as has been observed in several other young open clusters [Herbst & Miller, AJ, 87, 1478 (1982)]. The initial mass function (IMF) constructed from the cluster luminosity function and the mass-luminosity relation given by Scab (1986) shows good agreement with the field star IMF, and with the IMFS of a number of clusters of similar age and richness. The relative deficiency of low-mass stars seen by Herbst and Miller in NGC 3293 (a cluster of quite similar age and reddening) is not evident in NGC 6531.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780032744&hterms=Orientation+basis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DOrientation%2Bbasis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780032744&hterms=Orientation+basis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DOrientation%2Bbasis"><span>A contribution to ULF activity in the Pc 3-4 range correlated with IMF radial orientation. [geomagnetic micropulsations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greenstadt, E. W.; Olson, J. V.</p> <p>1977-01-01</p> <p>The paper describes an experiment to determine whether the radial orientation of the interplanetary magnetic field (IMF) is associated with ULF activity in the Pc 3-4 range. Data are obtained from base levels, undisturbed intervals, IMF and disturbance selection, and trigonometric correlation. The results obtained are discussed, noting particularly that for low Kp, the probability of enhanced amplitude noise rises as IMF orientation with respect to the nominal solar wind flow decreases in both Pc 3 and Pc 4 channels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22063863','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22063863"><span>Development of a hybrid image processing algorithm for automatic evaluation of intramuscular fat content in beef M. longissimus dorsi.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Du, Cheng-Jin; Sun, Da-Wen; Jackman, Patrick; Allen, Paul</p> <p>2008-12-01</p> <p>An automatic method for estimating the content of intramuscular fat (IMF) in beef M. longissimus dorsi (LD) was developed using a sequence of image processing algorithm. To extract IMF particles within the LD muscle from structural features of intermuscular fat surrounding the muscle, three steps of image processing algorithm were developed, i.e. bilateral filter for noise removal, kernel fuzzy c-means clustering (KFCM) for segmentation, and vector confidence connected and flood fill for IMF extraction. The technique of bilateral filtering was firstly applied to reduce the noise and enhance the contrast of the beef image. KFCM was then used to segment the filtered beef image into lean, fat, and background. The IMF was finally extracted from the original beef image by using the techniques of vector confidence connected and flood filling. The performance of the algorithm developed was verified by correlation analysis between the IMF characteristics and the percentage of chemically extractable IMF content (P<0.05). Five IMF features are very significantly correlated with the fat content (P<0.001), including count densities of middle (CDMiddle) and large (CDLarge) fat particles, area densities of middle and large fat particles, and total fat area per unit LD area. The highest coefficient is 0.852 for CDLarge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJS..228...18G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJS..228...18G"><span>BANYAN. IX. The Initial Mass Function and Planetary-mass Object Space Density of the TW HYA Association</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gagné, Jonathan; Faherty, Jacqueline K.; Mamajek, Eric E.; Malo, Lison; Doyon, René; Filippazzo, Joseph C.; Weinberger, Alycia J.; Donaldson, Jessica K.; Lépine, Sébastien; Lafrenière, David; Artigau, Étienne; Burgasser, Adam J.; Looper, Dagny; Boucher, Anne; Beletsky, Yuri; Camnasio, Sara; Brunette, Charles; Arboit, Geneviève</p> <p>2017-02-01</p> <p>A determination of the initial mass function (IMF) of the current, incomplete census of the 10 Myr-old TW Hya association (TWA) is presented. This census is built from a literature compilation supplemented with new spectra and 17 new radial velocities from ongoing membership surveys, as well as a reanalysis of Hipparcos data that confirmed HR 4334 (A2 Vn) as a member. Although the dominant uncertainty in the IMF remains census incompleteness, a detailed statistical treatment is carried out to make the IMF determination independent of binning while accounting for small number statistics. The currently known high-likelihood members are fitted by a log-normal distribution with a central mass of {0.21}-0.06+0.11 M ⊙ and a characteristic width of {0.8}-0.1+0.2 dex in the 12 M Jup-2 M ⊙ range, whereas a Salpeter power law with α ={2.2}-0.5+1.1 best describes the IMF slope in the 0.1-2 M ⊙ range. This characteristic width is higher than other young associations, which may be due to incompleteness in the current census of low-mass TWA stars. A tentative overpopulation of isolated planetary-mass members similar to 2MASS J11472421-2040204 and 2MASS J11193254-1137466 is identified: this indicates that there might be as many as {10}-5+13 similar members of TWA with hot-start model-dependent masses estimated at ˜5-7 M Jup, most of which would be too faint to be detected in 2MASS. Our new radial velocity measurements corroborate the membership of 2MASS J11472421-2040204, and secure TWA 28 (M8.5 γ), TWA 29 (M9.5 γ), and TWA 33 (M4.5 e) as members. The discovery of 2MASS J09553336-0208403, a young L7-type interloper unrelated to TWA, is also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MSSP...83..568D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MSSP...83..568D"><span>Methodology for fault detection in induction motors via sound and vibration signals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delgado-Arredondo, Paulo Antonio; Morinigo-Sotelo, Daniel; Osornio-Rios, Roque Alfredo; Avina-Cervantes, Juan Gabriel; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene de Jesus</p> <p>2017-01-01</p> <p>Nowadays, timely maintenance of electric motors is vital to keep up the complex processes of industrial production. There are currently a variety of methodologies for fault diagnosis. Usually, the diagnosis is performed by analyzing current signals at a steady-state motor operation or during a start-up transient. This method is known as motor current signature analysis, which identifies frequencies associated with faults in the frequency domain or by the time-frequency decomposition of the current signals. Fault identification may also be possible by analyzing acoustic sound and vibration signals, which is useful because sometimes this information is the only available. The contribution of this work is a methodology for detecting faults in induction motors in steady-state operation based on the analysis of acoustic sound and vibration signals. This proposed approach uses the Complete Ensemble Empirical Mode Decomposition for decomposing the signal into several intrinsic mode functions. Subsequently, the frequency marginal of the Gabor representation is calculated to obtain the spectral content of the IMF in the frequency domain. This proposal provides good fault detectability results compared to other published works in addition to the identification of more frequencies associated with the faults. The faults diagnosed in this work are two broken rotor bars, mechanical unbalance and bearing defects.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26473882','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26473882"><span>The quasi-biennial vertical oscillations at global GPS stations: identification by ensemble empirical mode decomposition.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pan, Yuanjin; Shen, Wen-Bin; Ding, Hao; Hwang, Cheinway; Li, Jin; Zhang, Tengxu</p> <p>2015-10-14</p> <p>Modeling nonlinear vertical components of a GPS time series is critical to separating sources contributing to mass displacements. Improved vertical precision in GPS positioning at stations for velocity fields is key to resolving the mechanism of certain geophysical phenomena. In this paper, we use ensemble empirical mode decomposition (EEMD) to analyze the daily GPS time series at 89 continuous GPS stations, spanning from 2002 to 2013. EEMD decomposes a GPS time series into different intrinsic mode functions (IMFs), which are used to identify different kinds of signals and secular terms. Our study suggests that the GPS records contain not only the well-known signals (such as semi-annual and annual signals) but also the seldom-noted quasi-biennial oscillations (QBS). The quasi-biennial signals are explained by modeled loadings of atmosphere, non-tidal and hydrology that deform the surface around the GPS stations. In addition, the loadings derived from GRACE gravity changes are also consistent with the quasi-biennial deformations derived from the GPS observations. By removing the modeled components, the weighted root-mean-square (WRMS) variation of the GPS time series is reduced by 7.1% to 42.3%, and especially, after removing the seasonal and QBO signals, the average improvement percentages for seasonal and QBO signals are 25.6% and 7.5%, respectively, suggesting that it is significant to consider the QBS signals in the GPS records to improve the observed vertical deformations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28187883','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28187883"><span>Enhancement of lung sounds based on empirical mode decomposition and Fourier transform algorithm.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mondal, Ashok; Banerjee, Poulami; Somkuwar, Ajay</p> <p>2017-02-01</p> <p>There is always heart sound (HS) signal interfering during the recording of lung sound (LS) signals. This obscures the features of LS signals and creates confusion on pathological states, if any, of the lungs. In this work, a new method is proposed for reduction of heart sound interference which is based on empirical mode decomposition (EMD) technique and prediction algorithm. In this approach, first the mixed signal is split into several components in terms of intrinsic mode functions (IMFs). Thereafter, HS-included segments are localized and removed from them. The missing values of the gap thus produced, is predicted by a new Fast Fourier Transform (FFT) based prediction algorithm and the time domain LS signal is reconstructed by taking an inverse FFT of the estimated missing values. The experiments have been conducted on simulated and recorded HS corrupted LS signals at three different flow rates and various SNR levels. The performance of the proposed method is evaluated by qualitative and quantitative analysis of the results. It is found that the proposed method is superior to the baseline method in terms of quantitative and qualitative measurement. The developed method gives better results compared to baseline method for different SNR levels. Our method gives cross correlation index (CCI) of 0.9488, signal to deviation ratio (SDR) of 9.8262, and normalized maximum amplitude error (NMAE) of 26.94 for 0 dB SNR value. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4634412','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4634412"><span>The Quasi-Biennial Vertical Oscillations at Global GPS Stations: Identification by Ensemble Empirical Mode Decomposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pan, Yuanjin; Shen, Wen-Bin; Ding, Hao; Hwang, Cheinway; Li, Jin; Zhang, Tengxu</p> <p>2015-01-01</p> <p>Modeling nonlinear vertical components of a GPS time series is critical to separating sources contributing to mass displacements. Improved vertical precision in GPS positioning at stations for velocity fields is key to resolving the mechanism of certain geophysical phenomena. In this paper, we use ensemble empirical mode decomposition (EEMD) to analyze the daily GPS time series at 89 continuous GPS stations, spanning from 2002 to 2013. EEMD decomposes a GPS time series into different intrinsic mode functions (IMFs), which are used to identify different kinds of signals and secular terms. Our study suggests that the GPS records contain not only the well-known signals (such as semi-annual and annual signals) but also the seldom-noted quasi-biennial oscillations (QBS). The quasi-biennial signals are explained by modeled loadings of atmosphere, non-tidal and hydrology that deform the surface around the GPS stations. In addition, the loadings derived from GRACE gravity changes are also consistent with the quasi-biennial deformations derived from the GPS observations. By removing the modeled components, the weighted root-mean-square (WRMS) variation of the GPS time series is reduced by 7.1% to 42.3%, and especially, after removing the seasonal and QBO signals, the average improvement percentages for seasonal and QBO signals are 25.6% and 7.5%, respectively, suggesting that it is significant to consider the QBS signals in the GPS records to improve the observed vertical deformations. PMID:26473882</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E1678S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E1678S"><span>Structure of magnetopause layers formed by a radial interplanetary magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Safrankova, Jana; Simunek, Jiri; Nemecek, Zdenek; Prech, Lubomir; Grygorov, Kostiantyn; Shue, Jih-Hong; Samsonov, Andrey; Pi, Gilbert</p> <p>2016-07-01</p> <p>The magnetopause location is generally believed to be determined by the solar wind dynamic pressure and by the sign and value of the interplanetary magnetic field (IMF) vertical (Bz) component. A contribution of other parameters is usually assumed to be minor or negligible near the equatorial plane. However, recent papers have shown a magnetopause expansion during intervals of a nearly radial IMF (large IMF Bx component). Under such conditions, the total pressure exerted on the subsolar magnetopause is significantly lower than the solar wind dynamic pressure as demonstrate both MHD simulations and statistical investigations. During a long-duration radial IMF, all parameters - the IMF magnitude, solar wind speed, density, and especially the temperature are depressed in comparison with their yearly averages. Moreover, in this case, the structures of the LLBL change; the LLBL shows different profiles at both hemispheres for negative and positive IMF Bx polarities. This asymmetry changes over time and influences the LLBL structures due to magnetic reconnection. We present an overview of important physical quantities controlling the magnetopause compression and new results that deal with the structure of the magnetopause and adjacent layers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM11A2287Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM11A2287Q"><span>Reconnection During Periods of Large IMF By Producing Shear Instabilities at the Dayside Convection Reversal Boundary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qamar, S.; Clauer, C. R.; Hartinger, M.; Xu, Z.</p> <p>2017-12-01</p> <p>During periods of large interplanetary magnetic field (IMF) By component and small negative Bz (GSM Coordinates), the ionospheric polar electric potential system is distorted so as to produce large east-west convection shears across local noon. Past research has shown examples of ULF waves with periods of approximately 10 - 20 minutes observed at this convection shear by the Greenland west coast chain of magnetometers. Past work has shown examples of these waves and associated them with conditions in the solar wind and IMF, particularly periods of large IMF By component. Here we report the results of a search of several years of solar wind data to identify periods when the IMF By component is large and the magnetometer chains along the 40-degree magnetic meridian (Greenland west coast and conjugate Antarctic chains) are within a few hours of local noon. We test here the hypothesis that large IMF By reconnection leads to large convection shears across local noon that generate ULF waves through, presumably, a shear instability such as Kelvin-Helmholtz.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28644988','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28644988"><span>Effect of marbling on volatile generation, oral breakdown and in mouth flavor release of grilled beef.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Frank, Damian; Kaczmarska, Kornelia; Paterson, Janet; Piyasiri, Udayasika; Warner, Robyn</p> <p>2017-11-01</p> <p>While the positive effect of intramuscular fat (IMF) on beef tenderness is well-established, its role in flavor generation and flavor release is less defined. To increase understanding, real-time volatile generation was monitored during grilling of beefsteaks (grass and grain-fed Angus and grass-fed Wagyu) with different amounts of IMF by proton transfer reaction mass spectrometry. Volatile concentration increased significantly (p<0.001) when the IMF was >~10%, but did not differ (p>0.05) at lower IMF levels (5.2-10.2%). In vivo release of volatiles during consumption of grilled steaks was also measured using human subjects. Pre- and postswallow volatile release profiles varied according to marbling level and volatile fat solubility. In-mouth release of key hydrophilic volatiles was significantly greater (p<0.05) in high IMF grilled beef, consistent with more intense sensory flavor. Faster oral breakdown and higher peak saliva concentrations of non-volatile flavor compounds in high IMF grilled beef were consistent with higher tenderness and more intense flavor perception. Copyright © 2017. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26167441','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26167441"><span>Saturn's dayside ultraviolet auroras: Evidence for morphological dependence on the direction of the upstream interplanetary magnetic field.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Meredith, C J; Alexeev, I I; Badman, S V; Belenkaya, E S; Cowley, S W H; Dougherty, M K; Kalegaev, V V; Lewis, G R; Nichols, J D</p> <p>2014-03-01</p> <p>We examine a unique data set from seven Hubble Space Telescope (HST) "visits" that imaged Saturn's northern dayside ultraviolet emissions exhibiting usual circumpolar "auroral oval" morphologies, during which Cassini measured the interplanetary magnetic field (IMF) upstream of Saturn's bow shock over intervals of several hours. The auroras generally consist of a dawn arc extending toward noon centered near ∼15° colatitude, together with intermittent patchy forms at ∼10° colatitude and poleward thereof, located between noon and dusk. The dawn arc is a persistent feature, but exhibits variations in position, width, and intensity, which have no clear relationship with the concurrent IMF. However, the patchy postnoon auroras are found to relate to the (suitably lagged and averaged) IMF B z , being present during all four visits with positive B z and absent during all three visits with negative B z . The most continuous such forms occur in the case of strongest positive B z . These results suggest that the postnoon forms are associated with reconnection and open flux production at Saturn's magnetopause, related to the similarly interpreted bifurcated auroral arc structures previously observed in this local time sector in Cassini Ultraviolet Imaging Spectrograph data, whose details remain unresolved in these HST images. One of the intervals with negative IMF B z however exhibits a prenoon patch of very high latitude emission extending poleward of the dawn arc to the magnetic/spin pole, suggestive of the occurrence of lobe reconnection. Overall, these data provide evidence of significant IMF dependence in the morphology of Saturn's dayside auroras. We examine seven cases of joint HST Saturn auroral images and Cassini IMF dataThe persistent but variable dawn arc shows no obvious IMF dependencePatchy postnoon auroras are present for northward IMF but not for southward IMF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4497471','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4497471"><span>Saturn's dayside ultraviolet auroras: Evidence for morphological dependence on the direction of the upstream interplanetary magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Meredith, C J; Alexeev, I I; Badman, S V; Belenkaya, E S; Cowley, S W H; Dougherty, M K; Kalegaev, V V; Lewis, G R; Nichols, J D</p> <p>2014-01-01</p> <p>We examine a unique data set from seven Hubble Space Telescope (HST) “visits” that imaged Saturn's northern dayside ultraviolet emissions exhibiting usual circumpolar “auroral oval” morphologies, during which Cassini measured the interplanetary magnetic field (IMF) upstream of Saturn's bow shock over intervals of several hours. The auroras generally consist of a dawn arc extending toward noon centered near ∼15° colatitude, together with intermittent patchy forms at ∼10° colatitude and poleward thereof, located between noon and dusk. The dawn arc is a persistent feature, but exhibits variations in position, width, and intensity, which have no clear relationship with the concurrent IMF. However, the patchy postnoon auroras are found to relate to the (suitably lagged and averaged) IMF Bz, being present during all four visits with positive Bz and absent during all three visits with negative Bz. The most continuous such forms occur in the case of strongest positive Bz. These results suggest that the postnoon forms are associated with reconnection and open flux production at Saturn's magnetopause, related to the similarly interpreted bifurcated auroral arc structures previously observed in this local time sector in Cassini Ultraviolet Imaging Spectrograph data, whose details remain unresolved in these HST images. One of the intervals with negative IMF Bz however exhibits a prenoon patch of very high latitude emission extending poleward of the dawn arc to the magnetic/spin pole, suggestive of the occurrence of lobe reconnection. Overall, these data provide evidence of significant IMF dependence in the morphology of Saturn's dayside auroras. Key Points We examine seven cases of joint HST Saturn auroral images and Cassini IMF data The persistent but variable dawn arc shows no obvious IMF dependence Patchy postnoon auroras are present for northward IMF but not for southward IMF PMID:26167441</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880042162&hterms=convection+currents&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dconvection%2Bcurrents','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880042162&hterms=convection+currents&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dconvection%2Bcurrents"><span>Ionospheric convection inferred from interplanetary magnetic field-dependent Birkeland currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rasmussen, C. E.; Schunk, R. W.</p> <p>1988-01-01</p> <p>Computer simulations of ionospheric convection have been performed, combining empirical models of Birkeland currents with a model of ionospheric conductivity in order to investigate IMF-dependent convection characteristics. Birkeland currents representing conditions in the northern polar cap of the negative IMF By component are used. Two possibilities are considered: (1) the morning cell shifting into the polar cap as the IMF turns northward, and this cell and a distorted evening cell providing for sunward flow in the polar cap; and (2) the existence of a three-cell pattern when the IMF is strongly northward.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17..498A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17..498A"><span>Natural periodicities and Northern Hemisphere-Southern Hemisphere connection of temperature changes during the last glacial period: EPICA and NGRIP data sets revisited</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alberti, Tommaso; Lepreti, Fabio; Vecchio, Antonio; Bevacqua, Emanuele; Capparelli, Vincenzo; Carbone, Vincenzo</p> <p>2015-04-01</p> <p>We investigate both the European Project for Ice Coring in Antarctica Dronning Maud Land (EDML) and North Greenland Ice-Core Project (NGRIP) δ18O data sets to study both the time evolution of the so-called Dansgaard-Oeschger events and the dynamics at longer timescales during the last glacial period, considering the interval 20 - 120 kyr B.P., since this is the interval in which significant temperature changes, that are the focus of the present work, are observed. To identify the main periodicities and their amplitudes, we applied the Empirical Mode Decomposition (EMD), a technique designed to investigate non-stationary data, by which both the δ18O time series are decomposed into a finite number m of oscillating intrinsic mode functions (IMFs) as 18 mΣ-1 δ O = Cj(t)+ rm(t) j=0 (1) where Cj(t) are the IMFs and rm(t) is a residue which provides the mean trend. We extract the proper modes of both the data sets confirming that natural cycles of abrupt climate changes exist and their occurrence cannot be due to random fluctuations in time. It is shown that the time behavior at the typical timescales of Dansgaard-Oeschger events is captured through signal reconstructions obtained by summing five EMD modes for NGRIP and four EMD modes for EDML. The reconstructions obtained by summing the successive modes can be used to describe the climate evolution at longer timescales, characterized by intervals in which Dansgaard-Oeschger events happen and intervals when these are not observed. Using EMD signal reconstructions and a simple model based on the one-dimensional Langevin equation, it is argued that the occurrence of a Dansgaard-Oeschger event can be described as an excitation of the climate system within the same state, while the longer timescale behavior appears to be due to transitions between different climate states. Finally, on the basis of a cross correlation analysis performed to investigate the North-South asynchrony, it is found that the clearest correlation occurs between the long-scale reconstructions at a lag of ≃ 3.05 kyr, which supports the view according to which the Antarctic climate changes lead that of Greenland, but on a longer time-scale than previously reported. The novelty introduced by this work is represented by the fact that we use EMD reconstructions to investigate the climate dynamics at different timescales and to highlight the behaviour of the climate system in order to describe transitions between two different stable states. We also suggest that the results of correlation analysis could be explained in the framework of seesaw models but building up a model which take into account our EMD filtered long timescales series. The results presented could be also useful for theoretical modeling of the climate evolution in order to study which kind of mechanisms are involved and to clarify the role of the ocean into coupling mechanism between the two hemispheres.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4593A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4593A"><span>Natural periodicities and Northern Hemisphere-Southern Hemisphere connection of temperature changes during the last glacial period: EPICA and NGRIP data sets revisited</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alberti, Tommaso; Lepreti, Fabio; Vecchio, Antonio; Carbone, Vincenzo</p> <p>2016-04-01</p> <p>We investigate both the European Project for Ice Coring in Antarctica Dronning Maud Land (EDML) and North Greenland Ice-Core Project (NGRIP) δ18O data sets to study both the time evolution of the so-called Dansgaard-Oeschger events and the dynamics at longer timescales during the last glacial period, considering the interval 20 - 120 kyr B.P., since this is the interval in which significant temperature changes, that are the focus of the present work, are observed. To identify the main periodicities and their amplitudes, we applied the Empirical Mode Decomposition (EMD), a technique designed to investigate non-stationary data, by which both the δ18O time series are decomposed into a finite number m of oscillating intrinsic mode functions (IMFs) as 18 m∑-1 δ O = Cj(t)+ rm(t) j=0 (1) where Cj(t) are the IMFs and rm(t) is a residue which provides the mean trend. We extract the proper modes of both the data sets confirming that natural cycles of abrupt climate changes exist and their occurrence cannot be due to random fluctuations in time. It is shown that the time behavior at the typical timescales of Dansgaard-Oeschger events is captured through signal reconstructions obtained by summing five EMD modes for NGRIP and four EMD modes for EDML. The reconstructions obtained by summing the successive modes can be used to describe the climate evolution at longer timescales, characterized by intervals in which Dansgaard-Oeschger events happen and intervals when these are not observed. Using EMD signal reconstructions and a simple model based on the one-dimensional Langevin equation, it is argued that the occurrence of a Dansgaard-Oeschger event can be described as an excitation of the climate system within the same state, while the longer timescale behavior appears to be due to transitions between different climate states. Finally, on the basis of a cross correlation analysis performed to investigate the North-South asynchrony, it is found that the clearest correlation occurs between the long-scale reconstructions at a lag of ≃ 3.05 kyr, which supports the view according to which the Antarctic climate changes lead that of Greenland, but on a longer time-scale than previously reported. The novelty introduced by this work is represented by the fact that we use EMD reconstructions to investigate the climate dynamics at different timescales and to highlight the behaviour of the climate system in order to describe transitions between two different stable states. We also suggest that the results of correlation analysis could be explained in the framework of seesaw models but building up a model which take into account our EMD filtered long timescales series. The results presented could be also useful for theoretical modeling of the climate evolution in order to study which kind of mechanisms are involved and to clarify the role of the ocean into coupling mechanism between the two hemispheres.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19927414','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19927414"><span>The International Monetary Fund's effects on global health: before and after the 2008 financial crisis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stuckler, David; Basu, Sanjay</p> <p>2009-01-01</p> <p>In April 2009, the G20 countries committed US $750 billion to the International Monetary Fund (IMF), which has assumed a central role in global economic management. The IMF provides loans to financially ailing countries, but with strict conditions, typically involving a mix of privatization, liberalization, and fiscal austerity programs. These loan conditions have been extremely controversial. In principle, they are designed to help countries balance their books. In practice, they often translate into reductions in social spending, including spending on public health and health care delivery. As more countries are being exposed to IMF policies, there is a need to establish what we know and do not know about the IMF's effects on global health. This article introduces a series in which contributors review the evidence on the relationship between the IMF and public health and discuss potential ways to improve the Fund's effects on health. While more evidence is needed for some regions, there is sufficient evidence to indicate that IMF programs have been significantly associated with weakened health care systems, reduced effectiveness of health-focused development aid, and impeded efforts to control tobacco, infectious diseases, and child and maternal mortality. Reforms are urgently needed to prevent the current wave of IMF programs from further undermining public health in financially ailing countries and limiting progress toward the health Millennium Development Goals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...857..132K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...857..132K"><span>The Magellanic Bridge Cluster NGC 796: Deep Optical AO Imaging Reveals the Stellar Content and Initial Mass Function of a Massive Open Cluster</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kalari, Venu M.; Carraro, Giovanni; Evans, Christopher J.; Rubio, Monica</p> <p>2018-04-01</p> <p>NGC 796 is a massive young cluster located 59 kpc from us in the diffuse intergalactic medium of the 1/5–1/10 Z⊙ Magellanic Bridge, allowing us to probe variations in star formation and stellar evolution processes as a function of metallicity in a resolved fashion, and providing a link between resolved studies of nearby solar-metallicity and unresolved distant metal-poor clusters located in high-redshift galaxies. In this paper, we present adaptive optics griHα imaging of NGC 796 (at 0.″5, which is ∼0.14 pc at the cluster distance) along with optical spectroscopy of two bright members to quantify the cluster properties. Our aim is to explore whether star formation and stellar evolution vary as a function of metallicity by comparing the properties of NGC 796 to higher-metallicity clusters. We find an age of {20}-5+12 Myr from isochronal fitting of the cluster main sequence in the color–magnitude diagram. Based on the cluster luminosity function, we derive a top-heavy stellar initial mass function (IMF) with a slope α = 1.99 ± 0.2, hinting at a metallicity and/or environmental dependence of the IMF, which may lead to a top-heavy IMF in the early universe. Study of the Hα emission-line stars reveals that classical Be stars constitute a higher fraction of the total B-type stars when compared with similar clusters at greater metallicity, providing some support to the chemically homogeneous theory of stellar evolution. Overall, NGC 796 has a total estimated mass of 990 ± 200 M⊙, and a core radius of 1.4 ± 0.3 pc, which classifies it as a massive young open cluster, unique in the diffuse interstellar medium of the Magellanic Bridge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4075996','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4075996"><span>Management of Mediastinal Relapse after Treatment with Stereotactic Body Radiotherapy or Accelerated Hypofractionated Radiotherapy for Stage I/II Non–Small-Cell Lung Cancer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kilburn, Jeremy M.; Lester, Scott C.; Lucas, John T.; Soike, Michael H.; Blackstock, A. William; Kearns, William T.; Hinson, William H.; Miller, Antonius A.; Petty, William J.; Munley, Michael T.; Urbanic, James J.</p> <p>2014-01-01</p> <p>Purpose/Objective(s) Regional failures occur in up to 15% of patients treated with stereotactic body radiotherapy (SBRT) for stage I/II lung cancer. This report focuses on the management of the unique scenario of isolated regional failures. Methods Patients treated initially with SBRT or accelerated hypo-fractionated radiotherapy were screened for curative intent treatment of isolated mediastinal failures (IMFs). Local control, regional control, progression-free survival, and distant control were estimated from the date of salvage treatment using the Kaplan–Meier method. Results Among 160 patients treated from 2002 to 2012, 12 suffered IMF and were amenable to salvage treatment. The median interval between treatments was 16 months (2–57 mo). Median salvage dose was 66 Gy (60–70 Gy). With a median follow-up of 10 months, the median overall survival was 15 months (95% confidence interval, 5.8–37 mo). When estimated from original treatment, the median overall survival was 38 months (95% confidence interval, 17–71 mo). No subsequent regional failures occurred. Distant failure was the predominant mode of relapse following salvage for IMF with a 2-year distant control rate of 38%. At the time of this analysis, three patients have died without recurrence while four are alive and no evidence of disease. High-grade toxicity was uncommon. Conclusions To our knowledge, this is first analysis of salvage mediastinal radiation after SBRT or accelerated hypofractionated radiotherapy in lung cancer. Outcomes appear similar to stage III disease at presentation. Distant failures were common, suggesting a role for concurrent or sequential chemotherapy. A standard full course of external beam radiotherapy is advisable in this unique clinical scenario. PMID:24736084</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27040581','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27040581"><span>Milk fat globule membrane coating of large lipid droplets in the diet of young mice prevents body fat accumulation in adulthood.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baars, Annemarie; Oosting, Annemarie; Engels, Eefje; Kegler, Diane; Kodde, Andrea; Schipper, Lidewij; Verkade, Henkjan J; van der Beek, Eline M</p> <p>2016-06-01</p> <p>Epidemiological studies have demonstrated protective effects of breast-feeding on childhood obesity. Differences between human milk and infant milk formula (IMF) in dietary lipid structure may contribute to this effect. In our mouse model, feeding a diet containing large lipid droplets coated with phospholipids (PL) (Nuturis®; PL of milk fat globule membrane (MFGM) fraction origin) in early life protected against excessive body fat accumulation following a diet challenge in adult life. We now set out to determine the relevance of increased droplet size and/or MFGM lipid droplet coating to the observed anti-obesogenic effects in adult life. From day 16 to 42, male mouse pups were exposed to diets with small (S) or large (L) lipid droplets (0·3 v. 2·9 µm average mode diameter, respectively), either without MFGM or with MFGM coating around the lipid droplet, resulting in four groups: S (control diet), L, Scoating and Lcoating (Nuturis® IMF diet). Mice were subsequently challenged with a Western-style diet until dissection at postnatal day 98. A non-challenged group served as reference (REF). We repeatedly determined body composition between postnatal day 42 and 98. At day 98 plasma and gene expression measurements were performed. Only the Nuturis® IMF diet (Lcoating) in early life containing MFGM-coated large lipid droplets reduced body fat mass to a level comparable with the REF group. These data support the notion that the structural aspects of lipids in human milk, for example, both lipid droplet size as well as the MFGM coating, may contribute to its reported protective effect against obesity in later life.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21136965-where-breathing-mode-high-voltage-hall-effect-thruster-studies-emd-method','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21136965-where-breathing-mode-high-voltage-hall-effect-thruster-studies-emd-method"><span>Where is the breathing mode? High voltage Hall effect thruster studies with EMD method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kurzyna, J.; Makowski, K.; Mazouffre, S.</p> <p>2008-03-19</p> <p>Discharge current and local plasma oscillations are studied in a high voltage Hall effect thruster PPS registered -X000. Characteristic time scales that appear in different operating conditions are resolved with the use of Hilbert-Huang spectra (HHS) which display time dependenc of instantaneous frequency and power. Sets of intrinsic mode functions (imfs) that are used for HHS calculation result due to application of empirical mode decomposition method (EMD) to nonstationary multicomponent signals. In the experiment the signals are captured in the electric circuit of the thruster as well locally, in the vicinity of the thruster exhaust region. Classical electric probes spacedmore » along the azimuth and/or thruster axis let us study correlations of signals which were captured in different locations. In this way azimuthal and axial propagation of disturbances is inspected. The discharge voltage is varied in the range of 200 divide 900 V while xenon mas flow rate of 5 divide 9 mg/s. LF, MF, and HF characteristic bands that are known from previous studies of PPS registered -100 thruster have been also detected here. However, expanding discharge current onto a set of intrinsic modes we can resolve MF mode more reliably than before. Moreover, for higher discharge voltages, this irregular mode turns into more regular waveform and tends to dominate in the discharge current masking almost completely the breathing mode (LF oscillations of the discharge current). In such a case triggering of HF oscillations is correlated with the phase of MF mode while in the case of PPS registered -100 thruster it was correlated with the appropriate phase of the breathing mode (LF band). Regular HF emission that can be unambiguously interpreted as azimuthal electrostatic wave now is observed only in the specific operating conditions of the thruster. However, even if irregular HF emission is observed the time delay of cross-correlated signals which are captured in different azimuthal locations corresponds to the velocity of azimuthal electron drift in the field of magnetic barrier.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26647138','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26647138"><span>The Reliability of Anthropometric Measurements Used Preoperatively in Aesthetic Breast Surgery.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Isaac, Kathryn V; Murphy, Blake D; Beber, Brett; Brown, Mitchell</p> <p>2016-04-01</p> <p>Patient outcomes in aesthetic breast surgery are highly dependent on breast measurements used in preoperative planning. The purpose of this study is to determine the reliability of anthropometric breast measurements. Four raters measured 28 women using 7 measurements: sternal notch to nipple distance (Sn-N), nipple to midline (N-M), nipple to inframammary-fold distance under maximal stretch (N-IMF), breast base width (BW), soft tissue pinch thickness of the upper pole (STPT:UP), STPT at the inframammary fold (STPT:IMF), and anterior pull skin stretch (APSS). Reliability was assessed using intra-class correlation coefficients (ICCs). Inter-rater reliability was excellent for Sn-N, N-M, and BW (ICC = 0.94, 0.90, and 0.76, respectively) and was good for N-IMF (ICC = 0.70). The STPT:UP, STPT:IMF, and APSS measurements were not reliable between raters (ICC < 0.2). Intra-rater reliability was excellent for Sn-N, N-M, and BW for all raters (all ICC > 0.75). The N-IMF intra-rater reliability was excellent in senior raters (ICC > 0.75) and good in junior raters (ICC > 0.6). The STPT:UP, STPT:IMF, and APSS measurements showed fair or poor reliability for most raters (ICC < 0.6). The Sn-N, N-M, and BW measurements are very reliable. Dynamic measurements including APSS, STPT:UP, and STUP:IMF are unreliable. N-IMF is the only reliable dynamic measurement, and its reliability improves with increasing clinical experience. The variable reliability of preoperative measurements must be considered in the planning of aesthetic breast surgery. 4 Diagnostic. © 2015 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040055917','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040055917"><span>Structure of the Outer Cusp and Sources of the Cusp Precipitation during Intervals of a Horizontal IMF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Berchem, Jean; Nemecek, Z.; Safrankova, J.; Prech, L.; Simunek, J.; Sauvaud, J.-A.; Fedorov, A.; Stenuit, H.; Fuselier, S. A.; Savin, S.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20040055917'); toggleEditAbsImage('author_20040055917_show'); toggleEditAbsImage('author_20040055917_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20040055917_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20040055917_hide"></p> <p>2003-01-01</p> <p>The cusp represents a place where the magnetosheath plasma can directly penetrate into the magnetosphere. Since the main transport processes are connected with merging of the interplanetary and magnetospheric field lines: the interplanetary magnetic field (IMF) Orientation plays a decisive role in the formation of the high-altitude cusp. The importance of the sign of the IMF B(sub Z) component for this process was suggested about 40 years ago and later it was documented by many experimental investigations. However, situations when IMF Bz is the major IMF component are rather rare. The structure of the cusp during periods of a small IMF B(sub Z) is generally unknown, probably due to the fully 3-D nature of the interaction. The present case study reveals the importance of horizontal IMF components on the global magnetospheric configuration as well as on small-scale processes at the cusp-magnetosheath interface. We have used simultaneous measurements of several spacecraft (ISTP program) operating in different regions of interplanetary space and two closely spaced satellites (INTERBALL-1/MAGION-4) crossing the cusp-magnetosheath boundary to show the connection between the short- and large-scale phenomena. In the northern hemisphere, observations suggest a presence of two spots of cusp-like precipitation supplied by reconnection occurring simultaneously in both hemispheres. A source of this bifurcation is the positive IMF B(sub y) component further enhanced by the field draping in the magnetosheath. This magnetic field component shifts the entry point far away from the local noon but in opposite sense in either hemisphere. The cusp represents a place where the magnetosheath plasma can directly</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20440976','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20440976"><span>An evaluation of the International Monetary Fund's claims about public health.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stuckler, David; Basu, Sanjay; Gilmore, Anna; Batniji, Rajaie; Ooms, Gorik; Marphatia, Akanksha A; Hammonds, Rachel; McKee, Martin</p> <p>2010-01-01</p> <p>The International Monetary Fund's recent claims concerning its impact on public health are evaluated against available data. First, the IMF claims that health spending either does not change or increases with IMF-supported programs, but there is substantial evidence to the contrary. Second, the IMF claims to have relaxed strict spending requirements in response to the 2008-9 financial crisis, but there is no evidence supporting this claim, and some limited evidence from the Center for Economic Policy Research contradicting it. Third, the IMF states that wage ceilings on public health are no longer part of its explicit conditionalities to poor countries, as governments can choose how to achieve public spending targets; but in practice, ministers are left with few viable alternatives than to reduce health budgets to achieve specific IMF-mandated targets, so the result effectively preserves former policy. Fourth, the IMF's claim that it has increased aid to poor countries also seems to be contradicted by its policies of diverting aid to reserves, as well as evidence that a very small fraction of the Fund's new lending in response to the financial crisis has reached poor countries. Finally, the IMF's claim that it follows public health standards in tobacco control contrasts with its existing policies, which fail to follow the guidelines recommended by the World Bank and World Health Organization. The authors recommend that the IMF (1) become more transparent in its policies, practices, and data to allow improved independent evaluations of its impact on public health (including Health Impact Assessment) and (2) review considerable public health evidence indicating a negative association between its current policies and public health outcomes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.1915W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.1915W"><span>The Influence of IMF By on the Bow Shock: Observation Result</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, M.; Lu, J. Y.; Kabin, K.; Yuan, H. Z.; Liu, Z.-Q.; Zhao, J. S.; Li, G.</p> <p>2018-03-01</p> <p>In this study we use the bow shock crossings contained in the Space Physics Data Facility database, collected by four spacecraft (IMP 8, Geotail, Magion-4, and Cluster1) to analyze the effect of the interplanetary magnetic field (IMF) By component on the bow shock position and shape. Although the IMF Bz component is usually considered much more geoeffective than By, we find that the dayside bow shock is more responsive to the eastward component of the IMF than the north-south one. We believe that the explanation lies in the changes that the Bz component induces on the magnetopause location and shape, which largely compensate the corresponding changes in the dayside bow shock location. In the tail, we find that the bow shock cross section is elongated roughly in the direction perpendicular to the IMF direction, which agrees with earlier modeling studies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850029375&hterms=1082&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3D%2526%25231082','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850029375&hterms=1082&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3D%2526%25231082"><span>The relationship between the IMF B(y) and the distant tail (150-238 Re) lobe and plasmasheet B(y) fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tsurutani, B. T.; Smith, E. J.; Jones, D. E.; Lepping, R. P.; Sibeck, D. G.</p> <p>1984-01-01</p> <p>The relationships between the Solar Magnetospheric (SM) y-component of the interplanetary magnetic field (IMF) and the lobe and plasmasheet magnetic fields have been studied for the two ISEE-3 deep tail passes. It is found that for positive sector IMFs, 13 percent of the interplanetary magnetic field penetrates into the aberrated north-dawn and south-dusk lobe quadrants, and about the same amount in the north-dusk and south-dawn lobe quadrants for negative sector IMFs. For the above cases, field penetration is significantly less for opposite polarity IMFs. The former results are generally consistent with open magnetospheric models, but the latter (the lack of response in certain quadrants) are unexplained by theory at this time. If the magnitude of the plasmasheet B(y) fields are related to plasma pressure anisotropies, very small anisotropies of about 1.01 are expected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7376H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7376H"><span>Proton fire hose instabilities in the expanding solar wind: Role of oblique magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hellinger, Petr</p> <p>2016-04-01</p> <p>The double adiabatic (CGL) approximation for the ideal (Parker) interplanetary magnetic field (IMF) predicts generation of the parallel particle temperature anisotropy (T∥ > T⊥) for a nearly radial magnetic field whereas for a strongly oblique IMF generation of the opposite temperature anisotropy is expected. The transition between the two behaviours is expected at around 45o, i.e. around 1 AU in the solar wind in the ecliptic plane. We investigate properties of a proton-electron plasma system in the solar wind using hybrid expanding box simulations starting with an oblique IMF. The simulated system becomes unstable with respect to the parallel and oblique fire hose instabilities and is forced to stay around the corresponding marginal stability. Rotation of the IMF reduces the time system stays near the marginal stability regions and for a strongly transverse IMF the system moves away from the regions unstable with respect to the fire hose instabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..149a2009Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..149a2009Y"><span>Monthly variations of diurnal rainfall in north coast of West Java Indonesia during boreal winter periods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yulihastin, E.; Trismidianto</p> <p>2018-05-01</p> <p>Diurnal rainfall during the active monsoon period is usually associated with the highest convective activity that often triggers extreme rainfall. Investigating diurnal rainfall behavior in the north coast of West Java is important to recognize the behavioral trends of data leading to such extreme events in strategic West Java because the city of Jakarta is located in this region. Variability of diurnal rainfall during the period of active monsoon on December-January-February (DJF) composite during the 2000-2016 period was investigated using hourly rainfall data from Tropical Rainfall Measuring Mission (TRMM) 3B41RT dataset. Through the Empirical Mode Decomposition method was appears that the diurnal rain cycle during February has increased significantly in its amplitude and frequency. It is simultaneously shows that the indication of extreme rainfall events is related to diurnal rain divergences during February shown through phase shifts. The diurnal, semidiurnal, and terdiurnal cycles appear on the characteristics of the DJF composite rainfall data during the 2000-2016 period.The significant increases in amplitude occurred during February are the diurnal (IMF 3) and terdiurnal (IMF 1) of rainfall cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1133C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1133C"><span>A new strong-lensing galaxy at z=0.066: Another elliptical galaxy with a lightweight IMF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Collier, William P.; Smith, Russell J.; Lucey, John R.</p> <p>2018-05-01</p> <p>We report the discovery of a new low-redshift galaxy-scale gravitational lens, identified from a systematic search of publicly available MUSE observations. The lens galaxy, 2MASXJ04035024-0239275, is a giant elliptical at z = 0.06604 with a velocity dispersion of σ = 314 km s-1. The lensed source has a redshift of 0.19165 and forms a pair of bright images on either side of the lens centre. The Einstein radius is 1.5 arcsec, projecting to 1.8 kpc, which is just one quarter of the galaxy effective radius. After correcting for an estimated 19 per cent dark matter contribution, we find that the stellar mass-to-light ratio from lensing is consistent with that expected for a Milky Way initial mass function (IMF). Combining the new system with three previously-studied low-redshift lenses of similar σ, the derived mean mass excess factor (relative to a Kroupa IMF) is ⟨α⟩ = 1.09±0.08. With all four systems, the intrinsic scatter in α for massive elliptical galaxies can be limited to <0.32, at 90 per cent confidence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030014815','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030014815"><span>Interplanetary Magnetic Field Control of the Entry of Solar Energetic Particles into the Magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Richard, R. L.; El-Alaoui, M.; Ashour-Abdalla, M.; Walker, R. J.</p> <p>2002-01-01</p> <p>We have investigated the entry of energetic ions of solar origin into the magnetosphere as a function of the interplanetary magnetic field orientation. We have modeled this entry by following high energy particles (protons and 3 He ions) ranging from 0.1 to 50 MeV in electric and magnetic fields from a global magnetohydrodynamic (MHD) model of the magnetosphere and its interaction with the solar wind. For the most part these particles entered the magnetosphere on or near open field lines except for some above 10 MeV that could enter directly by crossing field lines due to their large gyroradii. The MHD simulation was driven by a series of idealized solar wind and interplanetary magnetic field (IMF) conditions. It was found that the flux of particles in the magnetosphere and transport into the inner magnetosphere varied widely according to the IMF orientation for a constant upstream particle source, with the most efficient entry occurring under southward IMF conditions. The flux inside the magnetosphere could approach that in the solar wind implying that SEPs can contribute significantly to the magnetospheric energetic particle population during typical SEP events depending on the state of the magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.476.3883L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.476.3883L"><span>SDSS-IV MaNGA: modelling the metallicity gradients of gas and stars - radially dependent metal outflow versus IMF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Parikh, Taniya; Fernández-Trincado, J. G.; Roman-Lopes, Alexandre; Rong, Yu; Tang, Baitian; Yan, Renbin</p> <p>2018-05-01</p> <p>In our previous work, we found that only two scenarios are capable of reproducing the observed integrated mass-metallicity relations for the gas and stellar components of local star-forming galaxies simultaneously. One scenario invokes a time-dependent metal outflow loading factor with stronger outflows at early times. The other scenario uses a time-dependent initial mass function (IMF) slope with a steeper IMF at early times. In this work, we extend our study to investigate the radial profile of gas and stellar metallicity in local star-forming galaxies using spatially resolved spectroscopic data from the SDSS-IV MaNGA survey. We find that most galaxies show negative gradients in both gas and stellar metallicity with steeper gradients in stellar metallicity. The stellar metallicity gradients tend to be mass dependent with steeper gradients in more massive galaxies while no clear mass dependence is found for the gas metallicity gradient. Then we compare the observations with the predictions from a chemical evolution model of the radial profiles of gas and stellar metallicities. We confirm that the two scenarios proposed in our previous work are also required to explain the metallicity gradients. Based on these two scenarios, we successfully reproduce the radial profiles of gas metallicity, stellar metallicity, stellar mass surface density, and star formation rate surface density simultaneously. The origin of the negative gradient in stellar metallicity turns out to be driven by either radially dependent metal outflow or IMF slope. In contrast, the radial dependence of the gas metallicity is less constrained because of the degeneracy in model parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.1176K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.1176K"><span>Climatology of the relationship of cusp-related density anomaly with zonal wind and large-scale FAC based on CHAMP observations: IMF By and solar cycle dependence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kervalishvili, Guram; Lühr, Hermann</p> <p>2014-05-01</p> <p>We present climatology of the relationship of cusp-related density enhancement with the neutral zonal wind velocity, large-scale field-aligned current (FAC), small-scale FAC, and electron temperature using the superposed epoch analysis (SEA) method. The dependence of these variables on the interplanetary magnetic field (IMF) By component orientation and solar cycle are of particular interest. In addition, the obtained results of relative density enhancement (ρrel), zonal wind, electron temperature and FAC are subdivided into three local seasons of 130 days each: local winter (1 January ±65 days), combined equinoxes (1 April ±32 days and 1 October ±32 days), and local summer (1 July ±65 days). Our investigation is based on CHAMP satellite observations and NASA/GSFC's OMNI online data set for solar maximum (Mar/2002-2007) and minimum (Mar/2004-2009) conditions in the Northern Hemisphere. The SEA technique uses the time and location of the thermospheric mass density anomaly peaks as reference parameters. The relative amplitude of cusp-related density enhancement does on average not depend on the IMF By orientation, solar cycle phase, and local season. Also, it is apparent that the IMF By amplitude does not have a big influence on the relative amplitude of the density anomaly. Conversely, there exists a good correlation between ρrel and the negative amplitude of IMF Bz prevailing about half an hour earlier. In the cusp region, both large-scale FAC distribution and thermospheric zonal wind velocity exhibit a clear dependence on the IMF By orientation. In the case of positive (negative) IMF By there is a systematic imbalance between downward (upward) and upward (downward) FACs peaks equatorward and poleward of the reference point, respectively. The zonal wind velocity is directed towards west i.e. towards dawn in a geomagnetic latitude-magnetic local time (MLat-MLT) frame. This is true for all local seasons and solar conditions. The thermospheric density enhancements appear half way between Region 1 (R1) and Region 0 (R0) field-aligned currents, in closer proximity to the upward FAC region. In our case R0 currents are systematically weaker than R1 ones. Also, around the cusp region we find no sign of Region 2 field-aligned currents. We can conclude that there is a close spatial relationship between FACs and cusp-related density enhancements, but we cannot offer any simple functional relation between field-aligned current strength and density anomaly amplitude. There seem to be other quantities (e.g. precipitating electrons) controlling this relation. All the conclusions drawn above are true for the Northern Hemisphere. There may be differences in the Southern Hemisphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860030368&hterms=Open+Field&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DOpen%2BField','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860030368&hterms=Open+Field&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DOpen%2BField"><span>High-latitude convection on open and closed field lines for large IMF B(y)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moses, J. J.; Crooker, N. U.; Gorney, D. J.; Siscoe, G. L.</p> <p>1985-01-01</p> <p>S3-3 electric field observations for August 23, 1976, show a single convection cell engulfing the northern polar cap. The flow direction is that for a positive IMF B(y) component. The particle data indicate that nearly half the duskside sunward flow occurs on closed field lines whereas the dawnside flow is entirely on open field lines. This is interpreted in terms of an IMF B(y)-induced deformation in the polar cap boundary, where the deformation moves with the convective flow. Thus, convection streamlines cross the deformed polar cap boundary, but no flow crosses the boundary because it is carried by the flow. Since southern hemisphere convection is expected to occur with the opposite sense of rotation, closed field lines that will be forced to tilt azimuthally are predicted. On the nightside the tilt produces a y component of the magnetic field in the same direction as the IMF for either sign of IMF B(y). This interpretation is consistent with observations of a greater y component in the plasma sheet than the tail lobes, which are difficult to understand in terms of the common explanation of IMF penetration. Alternatives to this interpretation are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.6315K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.6315K"><span>Analysis of the interplanetary magnetic field observations at different heliocentric distances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khabarova, Olga</p> <p>2013-04-01</p> <p>Multi-spacecraft measurements of the interplanetary magnetic field (IMF) from 0.29 AU to 5 AU along the ecliptic plane have demonstrated systematic deviations of the observed IMF strength from the values predicted on the basis of the Parker-like radial extension models (Khabarova, Obridko, 2012). In particular, it was found that the radial IMF component |Br| decreases with a heliocentric distance r with a slope of -5/3 (instead of r-2 expansion law). The current investigation of multi-point observations continues the analysis of the IMF (and, especially, Br) large-scale behaviour, including its latitudinal distribution. Additionally, examples of the mismatches between the expected IMF characteristics and observations at smaller scales are discussed. It is shown that the observed effects may be explained by not complete IMF freezing-in to the solar wind plasma. This research was supported by the Russian Fund of Basic Researches' grants Nos.11-02-00259-a, and 12-02-10008-K. Khabarova Olga, and Obridko Vladimir, Puzzles of the Interplanetary Magnetic Field in the Inner Heliosphere, 2012, Astrophysical Journal, 761, 2, 82, doi:10.1088/0004-637X/761/2/82, http://arxiv.org/pdf/1204.6672v2.pdf</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3760K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3760K"><span>Relations Between vz and Bx Components in Solar Wind and their Effect on Substorm Onset</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kubyshkina, Marina; Semenov, Vladimir; Erkaev, Nikolay; Gordeev, Evgeny; Dubyagin, Stepan; Ganushkina, Natalia; Shukhtina, Maria</p> <p>2018-05-01</p> <p>We analyze two substorm onset lists, produced by different methods, and show that the (Bx·vz) product of the solar wind (SW) velocity and interplanetary magnetic field (IMF) components for two thirds of all substorm onsets has the same sign as IMF Bz. The explanation we suggest is the efficient displacement of the magnetospheric plasma sheet due to IMF Bx and SW flow vz, which both force the plasma sheet moving in one direction if the sign of (Bx·vz) correlates with the sign Bz. The displacement of the current sheet, in its turn, increases the asymmetry of the magnetotail and can alter the threshold of substorm instabilities. We study the SW and IMF data for the 15-year period (which comprises two substorm lists periods and the whole solar cycle) and reveal the similar asymmetry in the SW, so that the sign of (Bx·vz) coincides with the sign of IMF Bz during about two thirds of all the time. This disproportion can be explained if we admit that about 66% of IMF Bz component is transported to the Earth's orbit by the Alfvén waves with antisunward velocities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AAS...23020901M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AAS...23020901M"><span>Probing Initial Conditions and Outcomes: Star and Planet Formation Programs within the NIRCam GTO Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meyer, Michael; NIRCam Star and Planet Formation Theme Team</p> <p>2017-06-01</p> <p>With its extraordinary sensitivity, wavelength coverage from < 1 to 5 microns, 2.2x4.4 arc minute field of view, and diversity of observing modes, NIRCam on JWST offers very powerful capabilities to explore the origins of stars and planets. Here we describe programs planned within the NIRCam GTO Program including: i) extinction mapping of pre-stellar cores; ii) massive star formation; iii) embedded clusters and the end of the IMF; iv) imaging and spectroscopy of young stellar objects; and v) excitation of PAH features. We will describe the scope of each program, selection of observing modes and rationale, as well as provide some explicit examples of program design. We will also review the expected outcomes, illustrating the power of NIRCam to answer questions fundamental to understanding the origins of stars and planets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AnGeo..35.1249H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AnGeo..35.1249H"><span>Global characteristics of auroral Hall currents derived from the Swarm constellation: dependences on season and IMF orientation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Tao; Lühr, Hermann; Wang, Hui</p> <p>2017-11-01</p> <p>On the basis of field-aligned currents (FACs) and Hall currents derived from high-resolution magnetic field data of the Swarm constellation, the average characteristics of these two current systems in the auroral regions are comprehensively investigated by statistical methods. This is the first study considering both current types determined simultaneously by the same spacecraft in both hemispheres. The FAC distribution, derived from the novel Swarm dual-spacecraft approach, reveals the well-known features of Region 1 (R1) and Region 2 (R2) FACs. At high latitudes, Region 0 (R0) FACs appear on the dayside. Their flow direction, up or down, depends on the orientation of the interplanetary magnetic field (IMF) By component. Of particular interest is the distribution of auroral Hall currents. The prominent auroral electrojets are found to be closely controlled by the solar wind input, but we find no dependence of their intensity on the IMF By orientation. The eastward electrojet is about 1.5 times stronger in local summer than in winter. Conversely, the westward electrojet shows less dependence on season. As to higher latitudes, part of the electrojet current is closed over the polar cap. Here the seasonal variation of conductivity mainly controls the current density. During local summer of the Northern Hemisphere, there is a clear channeling of return currents over the polar cap. For positive (negative) IMF By a dominant eastward (westward) Hall current circuit is formed from the afternoon (morning) electrojet towards the dawn side (dusk side) polar cap return current. The direction of polar cap Hall currents in the noon sector depends directly on the orientation of the IMF By. This is true for both signs of the IMF Bz component. Comparable Hall current distributions can be observed in the Southern Hemisphere but for opposite IMF By signs. Around the midnight sector the westward substorm electrojet is dominating. As expected, it is highly dependent on magnetic activity, but it shows only little response to season and IMF By polarity. An important finding is that all the IMF By dependences of FACs and Hall currents practically disappear in the dark winter hemisphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22597828-formation-periodic-interfacial-misfit-dislocation-array-insb-gaas-interface-via-surface-anion-exchange','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22597828-formation-periodic-interfacial-misfit-dislocation-array-insb-gaas-interface-via-surface-anion-exchange"><span>Formation of periodic interfacial misfit dislocation array at the InSb/GaAs interface via surface anion exchange</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai</p> <p></p> <p>The relationship between growth temperature and the formation of periodic interfacial misfit (IMF) dislocations via the anion exchange process in InSb/GaAs heteroepitaxy was systematically investigated. The microstructural and electrical properties of the epitaxial layer were characterized using atomic force microscope, high-resolution x-ray diffraction, transmission electron microscopy, and Hall resistance measurement. The formation of interfacial misfit (IMF) dislocation arrays depended on growth temperature. A uniformly distributed IMF array was found in a sample grown at 310 °C, which also exhibited the lowest threading dislocation density. The analysis suggested that an incomplete As-for-Sb anion exchange process impeded the formation of IMF on samplemore » grown above 310 °C. At growth temperature below 310 °C, island coalescence led to the formation of 60° dislocations and the disruption of periodic IMF array. All samples showed higher electron mobility at 300 K than at 77 K.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23896150','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23896150"><span>Fatty acid profiles and adipogenic gene expression of various fat depots in Japanese Black and Holstein steers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shirouchi, Bungo; Albrecht, Elke; Nuernberg, Gerd; Maak, Steffen; Olavanh, Samadmanivong; Nakamura, Yoshinori; Sato, Masao; Gotoh, Takafumi; Nuernberg, Karin</p> <p>2014-01-01</p> <p>Objective of the study was to assess the breed effect on fatty acid (FA) composition of different adipose tissues and on mRNA expression of genes involved in adipogenesis and fat metabolism. Japanese Black (JB) and Holstein (HS) steers were kept under equivalent conditions with high energy intake resulting in large differences in intramuscular fat (IMF) accumulation in longissimus muscle (LM). The relative FA composition of muscle, intermuscular fat, visceral fat, and perirenal fat was comparable between JB and HS steers. Circulating fatty acids were also similar in both breeds. Most relevant breed effects were identified in IMF, underlining the uniqueness of this adipose tissue site. JB steers had more monounsaturated FA and less saturated FA. Perilipin 1 and adipose differentiation-related protein (ADFP) mRNA levels were higher in IMF of JB. The results suggest advanced maturity of IMF cells in JB and altered local conditions in muscle influencing IMF accumulation and composition. © 2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM51D2514H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM51D2514H"><span>Observation of a Unipolar Field-aligned Current System Associated With IMF By-triggered Theta Auroras</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hairston, M. R.; Watanabe, M.</p> <p>2016-12-01</p> <p>We investigate the existence of a specific field-aligned current (FAC) system predicted by numerical magnetohydrodynamic simulations in a past study. The FAC system is expected to occur when a drifting theta aurora is formed in response to a stepwise transition of interplanetary magnetic field (IMF) By during strongly northward IMF periods. When the IMF By changes from positive to negative, a crossbar forms in the Northern Hemisphere that moves dawnward, while in the Southern Hemisphere the crossbar moves in the opposite direction. The crossbar motion reverses when the IMF By changes from negative to positive. The FAC system appears on the trailing side of the drifting crossbar of the theta aurora as it moves either dawnward or duskward. When the theta aurora is drifting dawnward, the FACs flow into the ionosphere. The FAC polarity reverses when the theta aurora is drifting duskward. Using low-altitude satellite data, we confirmed the real existence of the above model-predicted FAC system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880043689&hterms=test+hypothesis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dtest%2Bhypothesis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880043689&hterms=test+hypothesis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dtest%2Bhypothesis"><span>Upstream energetic ions under radial IMF - A critical test of the Fermi model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sarris, E. T.; Krimigis, S. M.</p> <p>1988-01-01</p> <p>Eight years of interplanetary magnetic field (IMF) and energetic particle observations obtained by the IMP-8 spacecraft upstream from the bow shock have been surveyed, and 63 cases when the upstream IMF remained radial for extended periods of time (greater than 1 hour) have been accumulated. Of these, two cases have been selected during which measurable fluxes of ambient solar or corotating energetic particle events were absent. These conditions provide an excellent test to the theories of the origin of upstream energetic ions. It is shown that there are extended periods with radial IMF when no upstream energetic ions were detected. It is further shown that energetic ions in the range E of between 50 keV and 1 MeV, inclusive, are not continuously present but appear in bursts of intensities varying by more than an order of magnitude under persistently radial IMF. These measurements contradict a fundamental prediction of the Fermi mechanism for the origin of the upstream energetic ions, namely that such ions should always be present on radial IMF lines. The observations are consistent with the hypothesis that energetic (greater than about 50 keV) ions leak out from, and appear in the upstream medium sporadically, following the onset of magnetic activity within the magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17222772','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17222772"><span>Philadelphia chromosome-negative myeloproliferative disorders: biology and treatment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hoffman, Ronald; Prchal, Josef T; Samuelson, Scott; Ciurea, Stefan O; Rondelli, Damiano</p> <p>2007-01-01</p> <p>The Philadelphia chromosome (Ph)-negative myeloproliferative disorders (MPDs) include essential thrombocythemia (ET), idiopathic myelofibrosis (IMF), and polycythemia vera (PV). All of these disorders are clonal hematologic malignancies originating at the level of the pluripotent hematopoietic stem cell. Recently, activating mutations of the intracellular cytokine-signaling molecule JAK2 have been identified in > 90% of patients with PV and in 50% of those with IMF and ET. In addition, a mutation of the thrombopoietin receptor, MPLW515L, has been documented in some patients with IMF. Both mutations activate JAK-STAT signaling pathways and likely play a role in disease progression. Both ET and PV are associated with prolonged clinical courses associated with frequent thrombotic and hemorrhagic events, and progression to myelofibrosis and acute leukemia. IMF has a much poorer prognosis and is associated with cytopenias, splenomegaly, extramedullary hematopoiesis, and bone marrow fibrosis. Stratification of risk for the development of complications from Ph-negative MPDs has guided the identification of appropriate therapies for this population. Intermediate/high-risk IMF or myelofibrosis after ET or PV is associated with a sufficiently poor prognosis to justify the use of allogeneic stem cell transplantation, which is capable of curing such patients. Reduced-intensity conditioning in preparation for allogeneic stem cell transplantation has permitted older patients with IMF to undergo transplantation with increasing success.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3976829','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3976829"><span>Analysis of Differentially Expressed Genes and Signaling Pathways Related to Intramuscular Fat Deposition in Skeletal Muscle of Sex-Linked Dwarf Chickens</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ye, Yaqiong; Lin, Shumao; Mu, Heping; Tang, Xiaohong; Ou, Yangdan; Chen, Jian; Ma, Yongjiang; Li, Yugu</p> <p>2014-01-01</p> <p>Intramuscular fat (IMF) plays an important role in meat quality. However, the molecular mechanisms underlying IMF deposition in skeletal muscle have not been addressed for the sex-linked dwarf (SLD) chicken. In this study, potential candidate genes and signaling pathways related to IMF deposition in chicken leg muscle tissue were characterized using gene expression profiling of both 7-week-old SLD and normal chickens. A total of 173 differentially expressed genes (DEGs) were identified between the two breeds. Subsequently, 6 DEGs related to lipid metabolism or muscle development were verified in each breed based on gene ontology (GO) analysis. In addition, KEGG pathway analysis of DEGs indicated that some of them (GHR, SOCS3, and IGF2BP3) participate in adipocytokine and insulin signaling pathways. To investigate the role of the above signaling pathways in IMF deposition, the gene expression of pathway factors and other downstream genes were measured by using qRT-PCR and Western blot analyses. Collectively, the results identified potential candidate genes related to IMF deposition and suggested that IMF deposition in skeletal muscle of SLD chicken is regulated partially by pathways of adipocytokine and insulin and other downstream signaling pathways (TGF-β/SMAD3 and Wnt/catenin-β pathway). PMID:24757673</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5548575','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5548575"><span>The Supra-Inframammary Fold Approach to Breast Augmentation: Avoiding a Double Bubble</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2017-01-01</p> <p>Background: The inframammary incision for breast augmentation is commonly made at or below the existing inframammary fold (IMF) in an effort to keep the scar in the crease. In recent studies, surgeons inferiorly relocate the IMF, center the implant at nipple level, and attempt to secure the new IMF with sutures. The fascial attachments (also called ligaments) holding the IMF are released, risking a bottoming-out deformity or a double bubble. Methods: This retrospective study evaluated 160 consecutive women undergoing primary subpectoral breast augmentation. An incision was made 0.5–1.0 cm above the IMF. Dissection proceeded directly to the pectoralis margin, preserving IMF fascial attachments. The pectoralis origin was released from the lower sternum. Surveys were administered to obtain patient-reported outcome data. Ninety-eight patients (61%) participated. Results: Implants often appear high on the chest at early follow-up appointments but gradually settle. One patient (0.6%) developed a double bubble. No reoperations were needed for implant malposition. One patient had a mild animation deformity. There were no cases of symmastia. The mean result rating was 9.1/10. Four percent of surveyed patients found their implants too high; 8% found them too low. Ninety-two patients (94%) reported that their scars were well-hidden. Ninety-six women (98%) said that they would redo the surgery. Conclusions: A supra-IMF approach anticipates the normal descent of implants after augmentation. Scars remain hidden both in standing and supine positions. This method reduces the short-term risk of reoperation for implant malposition or a double bubble. PMID:28831352</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.2493M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.2493M"><span>Autocorrelation Study of Solar Wind Plasma and IMF Properties as Measured by the MAVEN Spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marquette, Melissa L.; Lillis, Robert J.; Halekas, J. S.; Luhmann, J. G.; Gruesbeck, J. R.; Espley, J. R.</p> <p>2018-04-01</p> <p>It has long been a goal of the heliophysics community to understand solar wind variability at heliocentric distances other than 1 AU, especially at ˜1.5 AU due to not only the steepening of solar wind stream interactions outside 1 AU but also the number of missions available there to measure it. In this study, we use 35 months of solar wind and interplanetary magnetic field (IMF) data taken at Mars by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft to conduct an autocorrelation analysis of the solar wind speed, density, and dynamic pressure, which is derived from the speed and density, as well as the IMF strength and orientation. We found that the solar wind speed is coherent, that is, has an autocorrelation coefficient above 1/e, over roughly 56 hr, while the density and pressure are coherent over smaller intervals of roughly 25 and 20 hr, respectively, and that the IMF strength is coherent over time intervals of approximately 20 hr, while the cone and clock angles are considerably less steady but still somewhat coherent up to time lags of roughly 16 hr. We also found that when the speed, density, pressure, or IMF strength is higher than average, the solar wind or IMF becomes uncorrelated more quickly, while when they are below average, it tends to be steadier. This analysis allows us to make estimates of the values of solar wind plasma and IMF parameters when they are not directly measured and provide an approximation of the error associated with that estimate.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21787160','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21787160"><span>Impact of immunofluorescence on the histological pattern of pediatric kidney biopsies from northern Pakistan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ali, Akhtar; Ali, Mohammad Usman; Ali, Mahrukh Ayesha</p> <p>2011-01-01</p> <p>Kidney biopsy is an investigation for diagnosis and prognosis of a variety of nephritides. It also influences therapeutic options. Immunofluorescence (IMF) greatly adds in identifying the pathologies which may not be obvious on light microscopy (L/M), such as IgM, IgA nephropathy, pauci-immune glomerulonephritis, and anti-glomerular basement membrane disease. We present here data of 170 pediatric kidney biopsies from July 2005 to December 2009 from Department of Nephrology and Hypertension, Lady Reading Hospital, Peshawar, Pakistan. The study was undertaken to see whether IMF would alter the histological pattern of pediatric kidney biopsies and to compare these data with an earlier data from our department of 415 pediatric kidney biopsies done over 7-year period from 1998 to 2005, which were analyzed with L/M alone. Out of 170 kidney biopsies using L/M and IMF, IgM turns out to be most common pattern (20%), followed by minimal change disease (MCD) (17.05%), focal and segmental glomerulosclerosis (FSGS) (15.88%), chronic sclerosing glomerulonephritis (Chr. sclerosing GN) (12.35%), mesangio proliferative glomerulonephritis (MPGN) (7.65%), mesangio capillary glomerulonephritis (MCGN) (6.47%), membranous glomerulonephritis (Mem. GN) (5.29%), IgA nephropathy (5.29%), cresentic glomerulonephritis (Cres. GN) (3.53%), lupus nephritis (2.96%), and others (3.53%). Comparing these results of 170 cases with 415 renal biopsies without IMF, IgM dominated the histological pattern in IMF group whereas MCD followed by FSGS and MPGN were prominent in group without IMF. Therefore, variation in the overall histological pattern with IMF technique proved statistically significant (p < 0.0001). Addition of IMF has altered the frequency of MCD, a change from 24% (100/415) to 17% (29/170), FSGS from 18.3% (76/415) to 15.88% (27/170), and MPGN from 17.35% (72/415) to 7.65% (13/170).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28727022','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28727022"><span>TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Genetics and breeding for intramuscular fat and oleic acid content in pigs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Estany, J; Ros-Freixedes, R; Tor, M; Pena, R N</p> <p>2017-05-01</p> <p>The intramuscular fat (IMF) and oleic acid (OL) content have been favorably related to pork quality and human health. This influences the purchasing behavior of consumers and, therefore, also shifts the attention of breeding companies toward whether these traits are included into the breeding goal of the lines producing for high-valued markets. Because IMF and OL are unfavorably associated with lean content, a key economic trait, the real challenge for the industry is not simply to increase IMF and OL, but rather to come up with the right trade-off between them and lean content. In this paper we review the efforts performed to genetically improve IMF and OL, with particular reference to the research we conducted in a Duroc line aimed at producing high quality fresh and dry-cured pork products. Based on this research, we conclude that there are selection strategies that lead to response scenarios where IMF, OL, and lean content can be simultaneously improved. Such scenarios involve regular recording of IMF and OL, so that developing a cost-efficient phenotyping system for these traits is paramount. With the economic benefits of genomic selection needing further assessment in pigs, selection on a combination of pedigree-connected phenotypes and genotypes from a panel of selected genetic markers is presented as a suitable alternative. Evidence is provided supporting that at least a polymorphism in the leptin receptor and another in the stearoyl-CoA desaturase genes should be in that panel. Selection for IMF and OL results in an opportunity cost on lean growth. The extent to which it is affordable relies on the consumers' willingness to pay for premium products and on the cost to benefit ratio of alternative management strategies, such as specific dietary manipulations. How the genotype can influence the effect of the diet on IMF and OL remains a topic for further research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030016695&hterms=FAC&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DFAC','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030016695&hterms=FAC&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DFAC"><span>Ionospheric Convection in the Postnoon Auroral Oval: SuperDARN and Polar UVI Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kozlovsky, A.; Koustov, A.; Lyatsky, W.; Kangas, J.; Parks, G.; Chua, D.</p> <p>2002-01-01</p> <p>Super Dual Auroral Radar Network (SuperDARN) observations, ultraviolet imaging from the Polar satellite (UVI), and particle precipitation data from DMSP satellites have been used to investigate the electrodynamics of the postnoon auroral oval in the Northern hemisphere. We show that: (1) For negative IMF By, the convection reversal (CR) was co-located with the maximum of auroral luminosity, but during positive IMF By the convection reversal was poleward of the auroral oval up to several degrees in latitude; (2) Postnoon auroral oval was associated with a large-scale upward field-aligned current (FAC) of the order of 6x10(exp -7). A m(exp -2) in magnitude (the FAC was inferred from the SuperDARN and UVI data). For negative IMF By, maximum of the auroral intensity coincides in latitude with the maximum of the upward field-aligned current. However, for positive IMF By. the maximum of the upward FAC was shifted to the poleward edge of the auroral oval; (3) In response to the IMF By turning from positive to negative, the maximum of the auroral luminosity did not change its position noticeably, but the position of the convection reversal changed considerably from 80-81 degs to about 76 degs MLAT, and the maximum of FAC moved from 77-78 degs to about 76 degs MLAT. Thus, after IMF By turns negative, both the FAC maximum and CR tend to coincide with the auroral maximum; (4) The IMF Bz positive deflection was followed by a decrease in both field-aligned current intensity and auroral luminosity. However, the decrease in the auroral luminosity lags behind the FAC decrease by about 12 min. Firstly, these observations allow us to suggest that the IMF By-related electric field can penetrate into the closed magnetosphere and produce convection and FAC changes in the region of the postnoon auroral oval. Secondly, we suggest that the interchange instability is a promising mechanism for the postnoon auroras.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23301040','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23301040"><span>Distinctive genes determine different intramuscular fat and muscle fiber ratios of the longissimus dorsi muscles in Jinhua and landrace pigs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Ting; Zhang, Zhenhai; Yuan, Zhangqin; Lo, Li Jan; Chen, Jun; Wang, Yizhen; Peng, Jinrong</p> <p>2013-01-01</p> <p>Meat quality is determined by properties such as carcass color, tenderness and drip loss. These properties are closely associated with meat composition, which includes the types of muscle fiber and content of intramuscular fat (IMF). Muscle fibers are the main contributors to meat mass, while IMF not only contributes to the sensory properties but also to the plethora of physical, chemical and technological properties of meat. However, little is known about the molecular mechanisms that determine meat composition in different pig breeds. In this report we show that Jinhua pigs, a Chinese breed, contains much higher levels of IMF than do Landrace pigs, a Danish breed. We analyzed global gene expression profiles in the longissimus dorsi muscles in Jinhua and Landrace breeds at the ages of 30, 90 and 150 days. Cross-comparison analysis revealed that genes that regulate fatty acid biosynthesis (e.g., fatty acid synthase and stearoyl-CoA desaturase) are expressed at higher levels in Jinhua pigs whereas those that regulate myogenesis (e.g., myogenic factor 6 and forkhead box O1) are expressed at higher levels in Landrace pigs. Among those genes which are highly expressed in Jinhua pigs at 90 days (d90), we identified a novel gene porcine FLJ36031 (pFLJ), which functions as a positive regulator of fat deposition in cultured intramuscular adipocytes. In summary, our data showed that the up-regulation of fatty acid biosynthesis regulatory genes such as pFLJ and myogenesis inhibitory genes such as myostatin in the longissimus dorsi muscles of Jinhua pigs could explain why this local breed produces meat with high levels of IMF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3536781','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3536781"><span>Distinctive Genes Determine Different Intramuscular Fat and Muscle Fiber Ratios of the longissimus dorsi Muscles in Jinhua and Landrace Pigs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yuan, Zhangqin; Lo, Li Jan; Chen, Jun; Wang, Yizhen; Peng, Jinrong</p> <p>2013-01-01</p> <p>Meat quality is determined by properties such as carcass color, tenderness and drip loss. These properties are closely associated with meat composition, which includes the types of muscle fiber and content of intramuscular fat (IMF). Muscle fibers are the main contributors to meat mass, while IMF not only contributes to the sensory properties but also to the plethora of physical, chemical and technological properties of meat. However, little is known about the molecular mechanisms that determine meat composition in different pig breeds. In this report we show that Jinhua pigs, a Chinese breed, contains much higher levels of IMF than do Landrace pigs, a Danish breed. We analyzed global gene expression profiles in the longissimus dorsi muscles in Jinhua and Landrace breeds at the ages of 30, 90 and 150 days. Cross-comparison analysis revealed that genes that regulate fatty acid biosynthesis (e.g., fatty acid synthase and stearoyl-CoA desaturase) are expressed at higher levels in Jinhua pigs whereas those that regulate myogenesis (e.g., myogenic factor 6 and forkhead box O1) are expressed at higher levels in Landrace pigs. Among those genes which are highly expressed in Jinhua pigs at 90 days (d90), we identified a novel gene porcine FLJ36031 (pFLJ), which functions as a positive regulator of fat deposition in cultured intramuscular adipocytes. In summary, our data showed that the up-regulation of fatty acid biosynthesis regulatory genes such as pFLJ and myogenesis inhibitory genes such as myostatin in the longissimus dorsi muscles of Jinhua pigs could explain why this local breed produces meat with high levels of IMF. PMID:23301040</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGP24E..04W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGP24E..04W"><span>Simulation of Theoretical Most-Extreme Geomagnetic Sudden Commencements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Welling, D. T.; Love, J. J.; Wiltberger, M. J.; Rigler, E. J.</p> <p>2016-12-01</p> <p>We report results from a numerical simulation of geomagnetic sudden commencements driven by solar wind conditions given by theoretical-limit extreme coronal-mass ejections (CMEs) estimated by Tsurutani and Lakhina [2014]. The CME characteristics at Earth are a step function that jumps from typical quiet values to 2700 km/s flow speed and a magnetic field magnitude of 127 nT. These values are used to drive three coupled models: a global magnetohydrodynamic (MHD) magnetospheric model (BATS-R-US), a ring current model (the Rice Convection Model, RCM), and a height-integrated ionospheric electrodynamics model (the Ridley Ionosphere Model, RIM), all coupled together using the Space Weather Modeling Framework (SWMF). Additionally, simulations from the Lyon-Fedder-Mobarry MHD model are performed for comparison. The commencement is simulated with both purely northward and southward IMF orientations. Low-latitude ground-level geomagnetic variations, both B and dB/dt, are estimated in response to the storm sudden commencement. For a northward interplanetary magnetic field (IMF) storm, the combined models predict a maximum sudden commencement response, Dst-equivalent of +200 nT and a maximum local dB/dt of 200nT/s. While this positive Dst response is driven mainly by magnetopause currents, complicated and dynamic Birkeland current patterns also develop, which drive the strong dB/dt responses at high latitude. For southward IMF conditions, erosion of dayside magnetic flux allows magnetopause currents to approach much closer to the Earth, leading to a stronger terrestrial response (Dst-equivalent of +250 nT). Further, high latitude signals from Region 1 Birkeland currents move to lower latitudes during the southward IMF case, increasing the risk to populated areas around the globe. Results inform fundamental understanding of solar-terrestrial interaction and benchmark estimates for induction hazards of interest to the electric-power grid industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016hst..prop14689G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016hst..prop14689G"><span>MYSST: Mapping Young Stars in Space and Time - The HII Complex N44 in the LMC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gouliermis, Dimitrios</p> <p>2016-10-01</p> <p>The stellar initial mass function (IMF), and the timescale and lengthscale of star formation (SF) are critical issues for our understanding of how stars form. Low-mass pre-main-sequence (PMS) stars, having typical contraction times on the order of a few 10 Myr, are the live chronometers of the SF process and primary informants on the low-mass IMF of their host clusters. Our studies show that young star clusters, embedded in star-forming regions of the Large Magellanic Cloud (LMC), encompass rich samples of PMS stars, sufficient to study clustered SF in low-metallicities with optical HST photometry. Yet, the lack of a complete comprehensive stellar sample retains important questions about the universality of the IMF, and the time- and length-scale of SF across a typical molecular cloud unanswered. We propose to address these issues by employing both ACS and WFC3 with their high sensitivity and spatial resolving power to obtain deep photometry (m_555 29 mag) of the LMC star-forming complex N44. We will accomplish a detailed mapping of PMS stars that will trace the whole hierarchy of star formation springing from one giant molecular cloud. Our analysis will provide an unbiased determination of the timescale for SF and the sub-solar IMF down to the hydrogen burning limit in a variety of clustering scales for the first time. Our findings will have a significant impact on our comprehensive understanding of SF in the low-metallicity environment of the LMC. We maximize the HST observing efficiency using both ACS/WFC and WFC3/UVIS in parallel for the simultaneous observations of N44, its ensemble of HII regions and their young stellar clusters in the same F555W and F814W filters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090033877&hterms=english+context&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Denglish%2Bcontext','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090033877&hterms=english+context&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Denglish%2Bcontext"><span>Facilitating Heliophysics Research by the Virtual Wave Observatory (VWO) Context Data Search Capability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fung, Shing F.; Shao, Xi; Garcia, Leonard N.; Galkin, Ivan A.; Benson, Robert F.</p> <p>2009-01-01</p> <p>Wave phenomena, ranging from freely propagating electromagnetic radiation (e.g., solar radio bursts, AKR) to plasma wave modes trapped in various plasma regimes (e.g., whistlers, Langmuir and ULF waves) and atmospheric gravity waves, are ubiquitous in the heliosphere. Because waves can propagate, wave data obtained at a given observing location may pertain to wave oscillations generated locally or from afar. While wave data analysis requires knowledge of wave characteristics specific to different wave modes, the search for appropriate data for heliophysics wave studies also requires knowledge of wave phenomena. In addition to deciding whether the interested wave activity is electrostatic (i.e., locally trapped) or electromagnetic (with propagation over distances), considerations must be given to the dependence of the wave activity on observer's location or viewing geometry, propagating frequency range and whether the wave data were acquired by passive or active observations. Occurances of natural wave emissions i the magnetosphere (e.g, auroral kilometric radiation) are often dependent also on the state (e.e., context) of the magnetosphere that varies with the changing solar wind, IMF and geomagnetic conditions. Fung and Shao [2008] showed recently that magnetospheric state can be specified by a set of suitably time-shifted solar wind, IMF and the multi-scale geomagnetic response parameters. These parameters form a magnetospheric state vector that provides the basis for searching magnetospheric wave data by their context conditions. Using the IMAGE Radio Plasma Imager (RPI) data and the NASA Magnetospheric State Query System (MSOS) [Fung, 2004], this presentation demonstrates the VWO context data search capability under development and solicits feedback from the Heliophysics research community for improvements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995PhDT........21W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995PhDT........21W"><span>The Low Mass IMF in Young Open Clusters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, Douglas M.</p> <p>1995-01-01</p> <p>We present the results of the investigation of the Initial Mass Function at the end of the Main Sequence in young open clusters. We find that over a large range in age and environment the IMFs are similar to each other, and to recent determinations of the field star IMF. We have obtained V, I, and K band photometry of fields in the three relatively unembedded open clusters. The photometry reaches down to various masses in each cluster: 0.08{cal M}_⊙ for Praesepe, 0.04{cal M}odot for the Pleiades, and 0.15{cal M}_⊙ for NGC 7160. We compare the methods for estimating the masses of young, embedded stars developed by Comeron et al. (1993 - CRBR) and by Strom, Kepner, & Strom (1995) and show them to be in good agreement. Spectra in the 2 mu m region of six low mass objects from CRBR are also in agreement with the mass estimates using these methods. The spectrum of a brown dwarf candidate is used to place an upper limit on its mass of 60% of the minimum required for hydrogen burning. The IMFs from these four clusters plus NGC 2024 are shown to be in agreement with each other. The composite MF can be fitted with a power law between 0.04 and 0.5 {cal M}_⊙ with a slope of -0.75 +/- 0.3. There is no evidence for a cutoff at the bottom of the main sequence (0.08{cal M}odot); brown dwarfs appear to be abundant in open clusters. However, the slope of the MF is well above the value of _sp {~}<-2 required for very low mass stars and brown dwarfs to contribute a significant portion of the mass of open clusters. The composite cluster MF also is in agreement with recent determinations of the field star IMF for stellar masses. The field star data do not extend into the brown dwarf range; however, if we extrapolate in accordance with the cluster MF, we conclude that brown dwarfs probably do not contribute significantly to the dark matter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150011084','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150011084"><span>On Hilbert-Huang Transform Based Synthesis of a Signal Contaminated by Radio Frequency Interference or Fringes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kizhner, Semion; Shiri, Ron S.; Vootukuru, Meg; Coletti, Alessandro</p> <p>2015-01-01</p> <p>Norden E. Huang et al. had proposed and published the Hilbert-Huang Transform (HHT) concept correspondently in 1996, 1998. The HHT is a novel method for adaptive spectral analysis of non-linear and non-stationary signals. The HHT comprises two components: - the Huang Empirical Mode Decomposition (EMD), resulting in an adaptive data-derived basis of Intrinsic Mode functions (IMFs), and the Hilbert Spectral Analysis (HSA1) based on the Hilbert Transform for 1-dimension (1D) applied to the EMD IMF's outcome. Although paper describes the HHT concept in great depth, it does not contain all needed methodology to implement the HHT computer code. In 2004, Semion Kizhner and Karin Blank implemented the reference digital HHT real-time data processing system for 1D (HHT-DPS Version 1.4). The case for 2-Dimension (2D) (HHT2) proved to be difficult due to the computational complexity of EMD for 2D (EMD2) and absence of a suitable Hilbert Transform for 2D spectral analysis (HSA2). The real-time EMD2 and HSA2 comprise the real-time HHT2. Kizhner completed the real-time EMD2 and the HSA2 reference digital implementations respectively in 2013 & 2014. Still, the HHT2 outcome synthesis remains an active research area. This paper presents the initial concepts and preliminary results of HHT2-based synthesis and its application to processing of signals contaminated by Radio-Frequency Interference (RFI), as well as optical systems' fringe detection and mitigation at design stage. The Soil Moisture Active Passive (SMAP mission (SMAP) carries a radiometer instrument that measures Earth soil moisture at L1 frequency (1.4 GHz polarimetric - H, V, 3rd and 4th Stokes parameters). There is abundant RFI at L1 and because soil moisture is a strategic parameter, it is important to be able to recover the RFI-contaminated measurement samples (15% of telemetry). State-of-the-art only allows RFI detection and removes RFI-contaminated measurements. The HHT-based analysis and synthesis facilitates recovery of measurements contaminated by all kinds of RFI, including jamming [7-8]. The fringes are inherent in optical systems and multi-layer complex contour expensive coatings are employed to remove the unwanted fringes. HHT2-based analysis allows test image decomposition to analyze and detect fringes, and HHT2-based synthesis of useful image.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990027453','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990027453"><span>Theoretical Investigation of the High-Altitude Cusp Region using Observations from Interball and ISTP Spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ashour-Abdalla, Maha</p> <p>1998-01-01</p> <p>A fundamental goal of magnetospheric physics is to understand the transport of plasma through the solar wind-magnetosphere-ionosphere system. To attain such an understanding, we must determine the sources of the plasma, the trajectories of the particles through the magnetospheric electric and magnetic fields to the point of observation, and the acceleration processes they undergo enroute. This study employed plasma distributions observed in the near-Earth plasma sheet by Interball and Geotail spacecraft together with theoretical techniques to investigate the ion sources and the transport of plasma. We used ion trajectory calculations in magnetic and electric fields from a global Magnetohydrodynamics (MHD) simulation to investigate the transport and to identify common ion sources for ions observed in the near-Earth magnetotail by the Interball and Geotail spacecraft. Our first step was to examine a number of distribution functions and identify distinct boundaries in both configuration and phase space that are indicative of different plasma sources and transport mechanisms. We examined events from October 26, 1995, November 29-30, 1996, and December 22, 1996. During the first event Interball and Geotail were separated by approximately 10 R(sub E) in z, and during the second event the spacecraft were separated by approximately 4(sub RE). Both of these events had a strong IMF By component pointing toward the dawnside. On October 26, 1995, the IMF B(sub Z) component was northward, and on November 1-9-30, 1996, the IMF B sub Z) component was near 0. During the first event, Geotail was located near the equator on the dawn flank, while Interball was for the most part in the lobe region. The distribution function from the Coral instrument on Interball showed less structure and resembled a drifting Maxwellian. The observed distribution on Geotail, on the other hand, included a great number of structures at both low and high energies. During the third event (December 22, 1996) both spacecraft were in the plasma sheet and were separated bY approximately 20 R(sub E) in the y direction. During this event the IMF was southward.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006MNRAS.369.1392F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006MNRAS.369.1392F"><span>On the mass of dense star clusters in starburst galaxies from spectrophotometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fleck, J.-J.; Boily, C. M.; Lançon, A.; Deiters, S.</p> <p>2006-07-01</p> <p>The mass of unresolved young star clusters derived from spectrophotometric data may well be off by a factor of 2 or more once the migration of massive stars driven by mass segregation is accounted for. We quantify this effect for a large set of cluster parameters, including variations in the stellar initial mass function (IMF), the intrinsic cluster mass, and mean mass density. Gas-dynamical models coupled with the Cambridge stellar evolution tracks allow us to derive a scheme to recover the real cluster mass given measured half-light radius, one-dimensional velocity dispersion and age. We monitor the evolution with time of the ratio of real to apparent mass through the parameter η. When we compute η for rich star clusters, we find non-monotonic evolution in time when the IMF stretches beyond a critical cut-off mass of 25.5Msolar. We also monitor the rise of colour gradients between the inner and outer volume of clusters: we find trends in time of the stellar IMF power indices overlapping well with those derived for the Large Magellanic Cloud cluster NGC 1818 at an age of 30Myr. We argue that the core region of massive Antennae clusters should have suffered from much segregation despite their low ages. We apply these results to a cluster mass function, and find that the peak of the mass distribution would appear to observers shifted to lower masses by as much as 0.2dex. The star formation rate derived for the cluster population is then underestimated by from 20 to 50 per cent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.842a2025C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.842a2025C"><span>Assessment of vocal cord nodules: a case study in speech processing by using Hilbert-Huang Transform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Civera, M.; Filosi, C. M.; Pugno, N. M.; Silvestrini, M.; Surace, C.; Worden, K.</p> <p>2017-05-01</p> <p>Vocal cord nodules represent a pathological condition for which the growth of unnatural masses on vocal folds affects the patients. Among other effects, changes in the vocal cords’ overall mass and stiffness alter their vibratory behaviour, thus changing the vocal emission generated by them. This causes dysphonia, i.e. abnormalities in the patients’ voice, which can be analysed and inspected via audio signals. However, the evaluation of voice condition through speech processing is not a trivial task, as standard methods based on the Fourier Transform, fail to fit the non-stationary nature of vocal signals. In this study, four audio tracks, provided by a volunteer patient, whose vocal fold nodules have been surgically removed, were analysed using a relatively new technique: the Hilbert-Huang Transform (HHT) via Empirical Mode Decomposition (EMD); specifically, by using the CEEMDAN (Complete Ensemble EMD with Adaptive Noise) algorithm. This method has been applied here to speech signals, which were recorded before removal surgery and during convalescence, to investigate specific trends. Possibilities offered by the HHT are exposed, but also some limitations of decomposing the signals into so-called intrinsic mode functions (IMFs) are highlighted. The results of these preliminary studies are intended to be a basis for the development of new viable alternatives to the softwares currently used for the analysis and evaluation of pathological voice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JGeod..81..409T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JGeod..81..409T"><span>Effect of different tropospheric mapping functions on the TRF, CRF and position time-series estimated from VLBI</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tesmer, Volker; Boehm, Johannes; Heinkelmann, Robert; Schuh, Harald</p> <p>2007-06-01</p> <p>This paper compares estimated terrestrial reference frames (TRF) and celestial reference frames (CRF) as well as position time-series in terms of systematic differences, scale, annual signals and station position repeatabilities using four different tropospheric mapping functions (MF): The NMF (Niell Mapping Function) and the recently developed GMF (Global Mapping Function) consist of easy-to-handle stand-alone formulae, whereas the IMF (Isobaric Mapping Function) and the VMF1 (Vienna Mapping Function 1) are determined from numerical weather models. All computations were performed at the Deutsches Geodätisches Forschungsinstitut (DGFI) using the OCCAM 6.1 and DOGS-CS software packages for Very Long Baseline Interferometry (VLBI) data from 1984 until 2005. While it turned out that CRF estimates only slightly depend on the MF used, showing small systematic effects up to 0.025 mas, some station heights of the computed TRF change by up to 13 mm. The best agreement was achieved for the VMF1 and GMF results concerning the TRFs, and for the VMF1 and IMF results concerning scale variations and position time-series. The amplitudes of the annual periodical signals in the time-series of estimated heights differ by up to 5 mm. The best precision in terms of station height repeatability is found for the VMF1, which is 5 7% better than for the other MFs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19783704','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19783704"><span>Results from six generations of selection for intramuscular fat in Duroc swine using real-time ultrasound. II. Genetic parameters and trends.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schwab, C R; Baas, T J; Stalder, K J</p> <p>2010-01-01</p> <p>Design of breeding programs requires knowledge of variance components that exist for traits included in specific breeding goals and the genetic relationships that exist among traits of economic importance. A study was conducted to evaluate direct and correlated genetic responses to selection for intramuscular fat (IMF) and to estimate genetic parameters for economically important traits in Duroc swine. Forty gilts were purchased from US breeders and randomly mated for 2 generations to boars available in regional boar studs to develop a base population of 56 litters. Littermate pairs of gilts from this population were randomly assigned to a select line (SL) or control line (CL) and mated to the same boar to establish genetic ties between lines. In the SL, the top 10 boars and 75 gilts were selected based on IMF EBV obtained from a bivariate animal model that included IMF evaluated on the carcass and IMF predicted via ultrasound. One boar from each sire family and 50 to 60 gilts representing all sire families were randomly selected to maintain the CL. Carcass and ultrasound IMF were both moderately heritable (0.31 and 0.38, respectively). Moderate to high genetic relationships were estimated among carcass backfat and meat quality measures of IMF, Instron tenderness, and objective loin muscle color. Based on estimates obtained in this study, more desirable genetic merit for pH is associated with greater genetic value for loin color, tenderness, and sensory characteristics. Intramuscular fat measures obtained on the carcass and predicted using ultrasound technology were highly correlated (r(g) = 0.86 from a 12-trait analysis; r(g) = 0.90 from a 5-trait analysis). Estimated genetic relationships among IMF measures and other traits evaluated were generally consistent. Intramuscular fat measures were also genetically associated with Instron tenderness and flavor score in a desirable direction. Direct genetic response in IMF measures observed in the SL corresponded to a significant decrease in EBV for carcass loin muscle area (-0.90 cm(2) per generation) and an increase in carcass backfat EBV (0.98 mm per generation). Selection for IMF has led to more desirable EBV for objective tenderness and has had an adverse effect on additive genetic merit for objective loin color.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19502499','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19502499"><span>Results from six generations of selection for intramuscular fat in Duroc swine using real-time ultrasound. I. Direct and correlated phenotypic responses to selection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schwab, C R; Baas, T J; Stalder, K J; Nettleton, D</p> <p>2009-09-01</p> <p>A study was conducted to evaluate the efficacy of selection for intramuscular fat (IMF) in a population of purebred Duroc swine using real-time ultrasound. Forty gilts were purchased from US breeders and randomly mated for 2 generations to boars available in regional boar studs, resulting in a base population of 56 litters. Littermate pairs of gilts from this population were randomly assigned to a select line (SL) or control line (CL) and mated to the same sire to establish genetic ties between lines. At an average BW of 114 kg, a minimum of 4 longitudinal ultrasound images were collected 7 cm off-midline across the 10th to 13th ribs of all pigs for the prediction of IMF (UIMF). At least 1 barrow or gilt was slaughtered from each litter, and carcass data were collected. A sample of the LM from the 10th to 11th rib interface was analyzed for carcass IMF (CIMF). Breeding values for IMF were estimated by fitting a 2-trait (UIMF and CIMF) animal model in MATVEC. In the SL, selection in each subsequent generation was based on EBV for IMF with the top 10 boars and top 75 gilts used to produce the next generation. One boar from each sire family and 50 to 60 gilts representing all sire families were randomly selected to maintain the CL. Through 6 generations of selection, an 88% improvement in IMF has been realized (4.53% in SL vs. 2.41% in CL). Results of this study revealed no significant correlated responses in measures of growth performance. However, 6 generations of selection for IMF have yielded correlated effects of decreased loin muscle area and increased backfat. Additionally, the SL obtained more desirable objective measures of tenderness and sensory evaluations of flavor and off-flavor. Meat quality characteristics of pH, water holding capacity, and percent cooking loss were not significantly affected by selection for IMF. Selection for IMF using real-time ultrasound is effective but may be associated with genetic ramifications for carcass composition traits. Intramuscular fat may be used in purebred Duroc swine breeding programs as an indicator trait for sensory traits that influence consumer acceptance; however, rapid improvement should not be expected when simultaneous improvement in other trait categories is also pursued.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E3391T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E3391T"><span>Magnetic substorms and northward IMF turning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Troshichev, Oleg; Podorozhkina, Nataly</p> <p></p> <p>To determine the relation of the northward IMF turnings to substorm sudden onsets, we separated all events with sharp northward IMF turnings observed in years of solar maximum (1999-2002) and solar minimum (2007-2008). The events (N=261) have been classified in 5 groups in accordance with average magnetic activity in auroral zone (low, moderate or high levels of AL index) at unchanged or slightly changed PC index and with dynamics of PC (steady distinct growth or distinct decline) at arbitrary values of AL index. Statistical analysis of relationships between the IMF turning and changes of PC and AL indices has been fulfilled separately for each of 5 classes. Results of the analysis showed that, irrespective of geophysical conditions and solar activity epoch, the magnetic activity in the polar caps and in the auroral zone demonstrate no response to the sudden northward IMF turning, if the moment of northward turning is taken as a key date. Sharp increases of magnetic disturbance in the auroral zone are observed only under conditions of the growing PC index and statistically they are related to moment of the PC index exceeding the threshold level (~1.5 mV/m), not to northward turnings timed, as a rule, after the moment of sudden onset. Magnetic disturbances observed in these cases in the auroral zone (magnetic substorms) are guided by behavior of the PC index, like to ordinary magnetic substorms or substorms developed under conditions of the prolonged northward IMF impact on the magnetosphere. The evident inconsistency between the sharp IMF changes measured outside of the magnetosphere and behavior of the ground-based PC index, the latter determining the substorm development, provides an additional argument in favor of the PC index as a ground-based proxy of the solar wind energy that entered into magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4723H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4723H"><span>Field-aligned current and auroral Hall current characteristics derived from the Swarm constellation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Tao; Wang, Hui; Hermann, Luehr</p> <p>2017-04-01</p> <p>On the basis of field-aligned currents (FACs) and Hall currents derived from high-resolution magnetic field data of the Swarm constellation the average characteristics of these two current systems in the auroral regions are comprehensively investigated by statistical methods. This is the first study considering both current types simultaneously and for both hemispheres. The FAC distribution, derived from the Swarm dual-spacecraft approach, reveals the well-known features of Region 1 (R1) and Region 2 (R2) FACs. At high latitudes, Region 0 (R0) FACs appear on the dayside. Their direction depends on the orientation of the interplanetary magnetic field (IMF) By component. Of particular interest is the distribution of auroral Hall currents. The most prominent auroral electrojets are found to be closely controlled by the solar wind input. But there is no dependence on the IMF By orientation. The eastward electrojet is about twice as strong in summer as in winter. Conversely, the westward electrojet shows less dependence on season. Part of the electrojet current is closed over the polar cap. Here the seasonal variation of conductivity mainly controls the current density. There is a clear channeling of return currents over the polar cap. Depending on IMF By orientation most of the current is flowing either on the dawn or dusk side. The direction of Hall currents in the noon sector depends directly on the orientation of the IMF By. This is true for both signs of the IMF Bz component. But largest differences between summer and winter seasons are found for northward IMF Bz. Around the midnight sector the westward substorm electrojet is dominating. As expected, it is highly dependent on magnetic activity, but shows only little response to the IMF By polarity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990027438&hterms=paper+planes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dpaper%2Bplanes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990027438&hterms=paper+planes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dpaper%2Bplanes"><span>The Distant Tail at 200 R(sub E): Comparison Between Geotail Observations and the Results from a Global Magnetohydrodynamic Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Berchem, J.; Raeder, J.; Ashour-Abdalla, M.; Frank, L. A.; Paterson, W. R.; Ackerson, K. L.; Kokubun, S.; Yamamoto, T.; Lepping, R. P.</p> <p>1998-01-01</p> <p>This paper reports a comparison between Geotail observations of plasmas and magnetic fields at 200 R(sub E) in the Earth's magnetotail with results from a time-dependent, global magnetohydrodynamic simulation of the interaction of the solar wind with the magnetosphere. The study focuses on observations from July 7, 1993, during which the Geotail spacecraft crossed the distant tail magnetospheric boundary several times while the interplanetary magnetic field (IMF) was predominantly northward and was marked by slow rotations of its clock angle. Simultaneous IMP 8 observations of solar wind ions and the IMF were used as driving input for the MHD simulation, and the resulting time series were compared directly with those from the Geotail spacecraft. The very good agreement found provided the basis for an investigation of the response of the distant tail associated with the clock angle of the IMF. Results from the simulation show that the stresses imposed by the draping of magnetosheath field lines and the asymmetric removal of magnetic flux tailward of the cusps altered considerably the shape of the distant tail as the solar wind discontinuities convected downstream of Earth. As a result, the cross section of the distant tail was considerably flattened along the direction perpendicular to the IMF clock angle, the direction of the neutral sheet following that of the IMF. The simulation also revealed that the combined action of magnetic reconnection and the slow rotation of the IMF clock angle led to a braiding of the distant tail's magnetic field lines along the axis of the tail, with the plane of the braid lying in the direction of the IMF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA517100','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA517100"><span>Annual Threat Assessment of the US Intelligence Community for the Senate Select Committee on Intelligence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-02-02</p> <p>flows are recovering, and the IMF has the resources to intervene when necessary. Nonetheless, the economies of several countries remain at risk...economic setbacks, particularly if they lose support from the IMF and other sources of finance. Bulgaria, Estonia, Greece, Hungary, Iceland, Ireland...export sector. China is likely to surpass Japan as the world’s second largest economy this year—a year earlier than the IMF had forecasted before the</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008EJASP2008...19A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008EJASP2008...19A"><span>Segmentation of Killer Whale Vocalizations Using the Hilbert-Huang Transform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adam, Olivier</p> <p>2008-12-01</p> <p>The study of cetacean vocalizations is usually based on spectrogram analysis. The feature extraction is obtained from 2D methods like the edge detection algorithm. Difficulties appear when signal-to-noise ratios are weak or when more than one vocalization is simultaneously emitted. This is the case for acoustic observations in a natural environment and especially for the killer whales which swim in groups. To resolve this problem, we propose the use of the Hilbert-Huang transform. First, we illustrate how few modes (5) are satisfactory for the analysis of these calls. Then, we detail our approach which consists of combining the modes for extracting the time-varying frequencies of the vocalizations. This combination takes advantage of one of the empirical mode decomposition properties which is that the successive IMFs represent the original data broken down into frequency components from highest to lowest frequency. To evaluate the performance, our method is first applied on the simulated chirp signals. This approach allows us to link one chirp to one mode. Then we apply it on real signals emitted by killer whales. The results confirm that this method is a favorable alternative for the automatic extraction of killer whale vocalizations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28669724','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28669724"><span>The comprehensive liver transcriptome of two cattle breeds with different intramuscular fat content.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Xi; Zhang, Yuanqing; Zhang, Xizhong; Wang, Dongcai; Jin, Guang; Li, Bo; Xu, Fang; Cheng, Jing; Zhang, Feng; Wu, Sujun; Rui, Su; He, Jiang; Zhang, Ronghua; Liu, Wenzhong</p> <p>2017-08-26</p> <p>Intramuscular fat (IMF) content is an important determinant factor of meat quality in cattle. There is significant difference in IMF content between Jinnan and Simmental cattle. Here, to identify candidate genes and networks associated with IMF deposition, we deeply explored the transcriptome architecture of liver in these two cattle breeds. We sequenced the liver transcriptome of five Jinnan and three Simmental cattle, yielding about 413.9 million sequencing reads. 124 differentially expressed genes (DEGs) were detected, of which 53 were up-regulated and 71 were down-regulated in Jinnan cattle. 1282 potentially novel genes were also identified. Gene ontology analysis revealed these DEGs (including CYP21A2, PC, ACACB, APOA1, and FADS2) were significantly enriched in lipid biosynthetic process, regulation of cholesterol esterification, reverse cholesterol transport, and regulation of lipoprotein lipase activity. Genes involved in pyruvate metabolism pathway were also significantly overrepresented. Moreover, we identified an interaction network which related to lipid metabolism, which might be contributed to the IMF deposition in cattle. We concluded that the DEGs involved in the regulation of lipid metabolism could play an important role in IMF deposition. Overall, we proposed a new panel of candidate genes and interaction networks that can be associated with IMF deposition and used as biomarkers in cattle breeding. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122..605T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122..605T"><span>On the occurrence of magnetic reconnection equatorward of the cusps at the Earth's magnetopause during northward IMF conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trattner, K. J.; Thresher, S.; Trenchi, L.; Fuselier, S. A.; Petrinec, S. M.; Peterson, W. K.; Marcucci, M. F.</p> <p>2017-01-01</p> <p>Magnetic reconnection changes the topology of magnetic field lines. This process is most readily observable with in situ instrumentation at the Earth's magnetopause as it creates open magnetic field lines to allow energy and momentum flux to flow from the solar wind to the magnetosphere. Most models use the direction of the interplanetary magnetic field (IMF) to determine the location of these magnetopause entry points, known as reconnection lines. Dayside locations of magnetic reconnection equatorward of the cusps are generally found during sustained intervals of southward IMF, while high-latitude region regions poleward of the cusps are observed for northward IMF conditions. In this study we discuss Double Star magnetopause crossings and a conjunction with a Polar cusp crossing during northward IMF conditions with a dominant IMF BY component. During all seven dayside magnetopause crossings, Double Star detected switching ion beams, a known signature for the presence of reconnection lines. In addition, Polar observed a cusp ion-energy dispersion profile typical for a dayside equatorial reconnection line. Using the cutoff velocities for the precipitating and mirrored ion beams in the cusp, the distance to the reconnection site is calculated, and this distance is traced back to the magnetopause, to the vicinity of the Double Star satellite locations. Our analysis shows that, for this case, the predicted line of maximum magnetic shear also coincides with that dayside reconnection location.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017P%26SS..148...28G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017P%26SS..148...28G"><span>Shape of the equatorial magnetopause affected by the radial interplanetary magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grygorov, K.; Šafránková, J.; Němeček, Z.; Pi, G.; Přech, L.; Urbář, J.</p> <p>2017-11-01</p> <p>The ability of a prediction of the magnetopause location under various upstream conditions can be considered as a test of our understanding of the solar wind-magnetosphere interaction. The present magnetopause models are parametrized with the solar wind dynamic pressure and usually with the north-south interplanetary magnetic field (IMF) component. However, several studies pointed out an importance of the radial IMF component, but results of these studies are controversial up to now. The present study compares magnetopause observations by five THEMIS spacecraft during long lasting intervals of the radial IMF with two empirical magnetopause models. A comparison reveals that the magnetopause location is highly variable and that the average difference between the observed and predicted positions is ≈ + 0.7 RE under this condition. The difference does not depend on the local times and other parameters, like the upstream pressure, IMF north-south component, or tilt angle of the Earth dipole. We conclude that our results strongly support the suggestion on a global expansion of the equatorial magnetopause during intervals of the radial IMF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123..464B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123..464B"><span>Spatial Distribution and Semiannual Variation of Cold-Dense Plasma Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bai, Shichen; Shi, Quanqi; Tian, Anmin; Nowada, Motoharu; Degeling, Alexander W.; Zhou, Xu-Zhi; Zong, Qiu-Gang; Rae, I. Jonathan; Fu, Suiyan; Zhang, Hui; Pu, Zuyin; Fazakerly, Andrew N.</p> <p>2018-01-01</p> <p>The cold-dense plasma sheet (CDPS) plays an important role in the entry process of the solar wind plasma into the magnetosphere. Investigating the seasonal variation of CDPS occurrences will help us better understand the long-term variation of plasma exchange between the solar wind and magnetosphere, but any seasonal variation of CDPS occurrences has not yet been reported in the literature. In this paper, we investigate the seasonal variation of the occurrence rate of CDPS using Geotail data from 1996 to 2015 and find a semiannual variation of the CDPS occurrences. Given the higher probability of solar wind entry under stronger northward interplanetary magnetic field (IMF) conditions, 20 years of IMF data (1996-2015) are used to investigate the seasonal variation of IMF <fi>B</fi><fi>z</fi> under northward IMF conditions. We find a semiannual variation of IMF <fi>B</fi><fi>z</fi>, which is consistent with the Russell-McPherron (R-M) effect. We therefore suggest that the semiannual variation of CDPS may be related to the R-M effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM51A2411S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM51A2411S"><span>Statistical study of cold-dense plasma sheet: spatial distribution and semi-annual variation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, Q.; Bai, S.; Tian, A.; Nowada, M.; Degeling, A. W.; Zhou, X. Z.; Zong, Q.; Rae, J.; Fu, S.; Zhang, H.; Pu, Z.; Fazakerley, A. N.</p> <p>2017-12-01</p> <p>The cold-dense plasma sheet (CDPS), which plays an important role in the solar wind-magnetosphere coupling during geomagnetic quiet times, is often observed in the magnetosphere, and also be considered as an important particle source for the ring current during geomagnetic storms. However, the long term variation of CDPS occurrences has not been investigated. Using 21 years of Geotail data (1996-2016), we found 677 CDPS events and investigated the long term variation of CDPS occurrence. The spatial distribution of CDPS is also investigated using the in situ observation of Geotail. Since the solar wind entry is easier to occur under stronger northward IMF conditions, we investigated the IMF conditions using 49 years of IMF data (1968-2016) from OMNI data set. We found that both the CDPS occurrence and positive IMF Bz have semi-annual variations, and the variation of positive IMF Bz is consistent with the Russell-McPherron (R-M) effect. Therefore we consider that the semi-annual variation of CDPS occurrence is related to the R-M effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AcAau..61..923O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AcAau..61..923O"><span>MHD simulation of the shock wave event on October 24, 2003</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ogino, T.; Kajiwara, Y.; Nakao, M.; Park, K. S.; Fukazawa, K.; Yi, Y.</p> <p>2007-11-01</p> <p>A three-dimensional global MHD simulation of the interaction between the solar wind and the Earth's magnetosphere has been executed to study the shock wave event on space weather problem on October 24, 2003, when an abnormal operation happened in a satellite for Environment Observation Technology, ADEOS-II (Midori-II). Characteristic features of the event are the long duration of southward IMF, arrival of a strong shock wave, then large variation of IMF By from negative to positive for about 15 min duration. In the simulation, the shock wave compresses the magnetosphere for southward IMF and a hot plasma was injected around the geosynchronous orbit from plasma sheet. During the interval when IMF By changes from negative to positive, the magnitude of IMF extremely decreases to bring attenuation of magnetic reconnection. The open-closed boundary shrinks in the polar cap and the transient expansion of the magnetic field lines occurs to imply enhancement of particle precipitation. The reconnection site moves from dawn to dusk in the dayside magnetopause and a narrow cockscomb closed field region is formed in the high latitude tail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750013117','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750013117"><span>Interplanetary magnetic field data book</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>King, J. H.</p> <p>1975-01-01</p> <p>An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020034466','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020034466"><span>Obtaining Reliable Predictions of Terrestrial Energy Coupling From Real-Time Solar Wind Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weimer, Daniel R.</p> <p>2002-01-01</p> <p>Measurements of the interplanetary magnetic field (IMF) from the ACE (Advanced Composition Explorer), Wind, IMP-8 (Interplanetary Monitoring Platform), and Geotail spacecraft have revealed that the IMF variations are contained in phase planes that are tilted with respect to the propagation direction, resulting in continuously variable changes in propagation times between spacecraft, and therefore, to the Earth. Techniques for using 'minimum variance analysis' have been developed in order to be able to measure the phase front tilt angles, and better predict the actual propagation times from the L1 orbit to the Earth, using only the real-time IMF measurements from one spacecraft. The use of empirical models with the IMF measurements at L1 from ACE (or future satellites) for predicting 'space weather' effects has also been demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM53C2234P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM53C2234P"><span>A global MHD simulation study of the vortices at the magnetosphere boundary under the southward IMF condition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, K.; Ogino, T.; Lee, D.; Walker, R. J.; Kim, K.</p> <p>2013-12-01</p> <p>One of the significant problems in magnetospheric physics concerns the nature and properties of the processes which occur at the magnetopause boundary; in particular how energy, momentum, and plasma the magnetosphere receives from the solar wind. Basic processes are magnetic reconnection [Dungey, 1961] and viscouslike interaction, such as Kelvin-Helmholtz instability [Dungey 1955, Miura, 1984] and pressure-pulse driven [Sibeck et al. 1989]. In generally, magnetic reconnection occurs efficiently when the IMF is southward and the rate is largest where the magnetosheath magnetic field is antiparallel to the geomagnetic field. [Sonnerup, 1974; Crooker, 1979; Luhmann et al., 1984; Park et al., 2006, 2009]. The Kelvin-Helmholtz instability is driven by the velocity shear at the boundary, which occur frequently when the IMF is northward. Also variation of the magnetic field and the plasma properties is reported to be quasi-periodic with 2-3min [Otto and Fairfield, 2000] and period of vortex train with 3 to 4 minutes by global MHD simulation [Ogino, 2011]. The pressure-pulse is driven by the solar wind. And the observations of the magnetospheric magnetic field response show quasi-periodic with a period of 8 minutes [Sibeck et al., 1989; Kivelson and Chen, 1995]. There have been few studies of the vortices in the magnetospheric boundary under southward IMF condition. However it is not easy to find the generation mechanism and characteristic for vortices in complicated 3-dimensional space. Thus we have performed global MHD simulation for the steady solar wind and southward IMF conditions. From the simulation results, we find that the vortex occurs at R= 11.7Re (IMF Bz = -2 nT) and R= 10.2Re (IMF Bz = -10 nT) in the dayside magnetopause boundary. Also the vortex rotates counterclockwise in duskside magnetopause (clockwise in dawnside) and propagates tailward. Across the vortex, magnetic field and plasma properties clearly show quasi-periodic fluctuations with a period of 8~10 minutes under the weak southward IMF and 4~8 minutes for strong southward IMF conditions. Magnetic reconnection favorably occurs in anti-parallel field region with slower shear velocity in the magnetosheath. The magnetic field lines are highly bent by parallel vorticity (Omega||) in the flanks of the magnetopause boundary. Also, similar vortices are formed in a grid spacing of 0.3Re and 0.2Re. A small structure vortices are generated in higher resolution (0.1Re) and two vortices are mixed after 1m30s We suggest that the reconnection is a mechanism of generating vortex with a periodicity in the dayside during the southward IMF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10836505','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10836505"><span>How Fo-ATPase generates rotary torque.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oster, G; Wang, H; Grabe, M</p> <p>2000-04-29</p> <p>The F-ATPases synthesize ATP using a transmembrane ionmotive force (IMF) established by the electron transport chain. This transduction involves first converting the IMF to a rotary torque in the transmembrane Fo portion. This torque is communicated from Fo to the F1 portion where the energy is used to release the newly synthesized ATP from the catalytic sites according to Boyer's binding change mechanism. Here we explain the principle by which an IMF generates this rotary torque in the Fo ion engine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMSM51C1412G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMSM51C1412G"><span>Statistical study of mirror mode events in the Earth magnetosheath</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Genot, V.; Budnik, E.; Jacquey, C.; Sauvaud, J.; Dandouras, I.; Lucek, E.</p> <p>2006-12-01</p> <p>Using a search and classification tool developed at CDPP (Centre de la Physique des Plasmas, http://cdpp.cesr.fr), we investigate the physics of the mirror instability. Indeed both analytical and observational recent studies have shown the paramount importance of this instability in the development of magnetosheath turbulence and its potential role in reconnection. 5 years of Cluster data have been mined by our tool which can be intuitively parametrized and set up with specific constraints on the actual data content. The strength of the method is illustrated by our results concerning the efficiency of different identification procedures. Beyond the presentation of the general mirror mode event distribution in the magnetosheath, some of the key questions we address include : evolution of the wave amplitude with the fractional distance to the boundaries (bow shock/magnetopause), mirror structure behaviour in relation with 1/ local parameters (plasma beta, temperature anisotropy) and 2/ conditioning parameters (solar wind Mach numbers, IMF orientation), tests of theoretical expressions obtained with different closure equations, ... The implications of these results for the mirror mode modelization is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM33A2168L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM33A2168L"><span>Adiabatic and nonadiabatic responses of the radiation belt relativistic electrons to the external changes in solar wind dynamic pressure and interplanetary magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, L.</p> <p>2013-12-01</p> <p>By removing the influences of 'magnetopause shadowing' (r0>6.6RE) and geomagnetic activities, we investigated statistically the responses of magnetic field and relativistic (>0.5MeV) electrons at geosynchronous orbit to 201 interplanetary perturbations during 6 years from 2003 (solar maximum) to 2008 (solar minimum). The statistical results indicate that during geomagnetically quiet times (HSYM ≥-30nT, and AE<200nT), ~47.3% changes in the geosynchronous magnetic field and relativistic electron fluxes are caused by the combined actions of the enhancement of solar wind dynamic pressure (Pd) and the southward turning of interplanetary magnetic field (IMF) (ΔPd>0.4 nPa, and IMF Bz<0 nT), and only ~18.4% changes are due to single dynamic pressure increase (ΔPd >0.4 nPa, but IMF Bz>0 nT), and ~34.3% changes are due to single southward turning of IMF (IMF Bz<0 nT, but |ΔPd|<0.4 nPa). Although the responses of magnetic field and relativistic electrons to the southward turning of IMF are weaker than their responses to the dynamic pressure increase, the southward turning of IMF can cause the dawn-dusk asymmetric perturbations that the magnetic field and the relativistic electrons tend to increase on the dawnside (LT~00:00-12:00) but decrease on the duskside (LT~13:00-23:00). Furthermore, the variation of relativistic electron fluxes is adiabatically controlled by the magnitude and elevation angle changes of magnetic field during the single IMF southward turnings. However, the variation of relativistic electron fluxes is independent of the change in magnetic field in some compression regions during the enhancement of solar wind dynamic pressure (including the single pressure increases and the combined external perturbations), indicating that nonadiabatic dynamic processes of relativistic electrons occur there. Acknowledgments. This work is supported by NSFC (grants 41074119 and 40604018). Liuyuan Li is grateful to the staffs working for the data from GOES 8-12 satellites and OMNI database in CDAWeb.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JASTP..83...70B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JASTP..83...70B"><span>Investigating the viscous interaction and its role in generating the ionospheric potential during the Whole Heliosphere Interval</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bruntz, R.; Lopez, R. E.; Bhattarai, S. K.; Pham, K. H.; Deng, Y.; Huang, Y.; Wiltberger, M.; Lyon, J. G.</p> <p>2012-07-01</p> <p>The Whole Heliosphere Interval (WHI), comprising March 20-April 16, 2008 (DOY 80-107), is a single Carrington Rotation (2068) designated for intense study through observations and simulations. We used solar wind data from the WHI to run the Coupled Magnetosphere-Ionosphere-Thermosphere (CMIT) and stand-alone Lyon-Fedder-Mobarry (LFM) models. The LFM model was also run with the WHI solar wind plasma parameters but with zero interplanetary magnetic field (IMF). With no IMF, we expect that the cross-polar cap potential (CPCP) is due entirely to the viscous interaction. Comparing the LFM runs with and without the IMF, we found that during strong driving with southward IMF Bz, the viscous potential could be a significant fraction of the total CPCP. During times of northward IMF Bz, the CPCP was generally lower than the CPCP value from the IMF=0 run. LFM tends to produce high polar cap potentials, but by using the Bruntz et al. (2012) viscous potential formula (ΦV=μn0.439V1.33, where μ=0.00431) and the IMF=0 LFM run, we calculated a scaling factor γ=1.54, which can be used to scale the LFM CPCP during the WHI down to realistic values. The Newell et al. (2008) viscous merging term can similarly be used to predict the viscous potential using the formula: ΦV=νn1/2V2, where the value ν=6.39×10-5 was also found using the zero IMF run. Both formulas were found to perform better when V (solar wind)=Vx, rather than Vtotal, yielding similar, accurate predictions of the LFM viscous potential, with R2>0.91 for both formulas. The γ factor was also used to scale down the LFM CPCP from the full solar wind run, with most of the resultant values matching the CPCP from the Weimer05 model well, even though γ was derived independent of the Weimer05 model or the full LFM data. We interpret this to be an indication that the conductivity model in LFM is producing values that are too low, thus elevating the CPCP values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/991905','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/991905"><span>Sustained Recycle in Light Water and Sodium-Cooled Reactors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Steven J. Piet; Samuel E. Bays; Michael A. Pope</p> <p>2010-11-01</p> <p>From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in freshmore » fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999AJ....118.2245G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999AJ....118.2245G"><span>The Star Formation History of the Local Group Dwarf Galaxy Leo I</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gallart, Carme; Freedman, Wendy L.; Aparicio, Antonio; Bertelli, Giampaolo; Chiosi, Cesare</p> <p>1999-11-01</p> <p>We present a quantitative analysis of the star formation history (SFH) of the Local Group dSph galaxy Leo I, from the information in its Hubble Space Telescope [(V-I),I] color-magnitude diagram (CMD). It reaches the level of the oldest main-sequence turnoffs, and this allows us to retrieve the SFH in considerable detail. The method we use is based on comparing, via synthetic CMDs, the expected distribution of stars in the CMD for different evolutionary scenarios with the observed distribution. We consider the SFH to be composed by the SFR(t), the chemical enrichment law Z(t), the initial mass function (IMF), and a function β(f,q) controlling the fraction f and mass ratio distribution q of binary stars. We analyze a set of ~=50 combinations of four Z(t), three IMFs, and more than four β(f,q). For each of them, the best SFR(t) is searched for among ~=6x107 models. The comparison between the observed CMD and the model CMDs is done through χ2ν minimization of the differences in the number of stars in a set of regions of the CMD, chosen to sample stars of different ages or in specific stellar evolutionary phases. We empirically determine the range of χ2ν values that indicate acceptable models for our set of data using tests with models with known SFHs. Our solution for the SFH of Leo I defines a minimum of χ2ν in a well-defined position of the parameter space, and the derived SFR(t) is robust, in the sense that its main characteristics are unchanged for different combinations of the remaining parameters. However, only a narrow range of assumptions for Z(t), IMF, and β(f,q) result in a good agreement between the data and the models, namely, Z=0.0004, a IMF Kroupa et al. or slightly steeper, and a relatively large fraction of binary stars, with f=0.3-0.6, q>0.6, and an approximately flat IMF for the secondaries, or particular combinations of these parameters that would produce a like fraction of similar mass binaries. Most star formation activity (70% to 80%) occurred between 7 and 1 Gyr ago. At 1 Gyr ago, it abruptly dropped to a negligible value, but seems to have been active until at least ~=300 million years ago. Our results do not unambiguously answer the question of whether Leo I began forming stars around 15 Gyr ago, but it appears that the amount of this star formation, if it existed at all, would be small.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820047466&hterms=correlation+coefficient&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcorrelation%2Bcoefficient','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820047466&hterms=correlation+coefficient&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcorrelation%2Bcoefficient"><span>Factors controlling degree of correlation between ISEE 1 and ISEE 3 interplanetary magnetic field measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crooker, N. U.; Siscoe, G. L.; Russell, C. T.; Smith, E. J.</p> <p>1982-01-01</p> <p>Correlation variability between ISEE 1 and 3 IMF measurements is investigated, and factors governing the variability are discussed. About 200 two-hour periods when correlation was good, and 200 when correlation was poor, are examined, and both IMF variance and spacecraft separation distance in the plane perpendicular to the earth-sun line exert substantial control. The scale size of magnetic features is larger when variance is high, and abrupt changes in the correlation coefficient from poor to good or good to poor in adjacent two-hour intervals appear to be governed by the sense of change of IMF variance and vice versa. During periods of low variance, good correlations are most likely to occur when the distance between ISEE 1 and 3 perpendicular to the IMF is less than 20 earth radii.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM13B2382T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM13B2382T"><span>Anti-parallel versus Component Reconnection at the Earth Magnetopause</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trattner, K. J.; Burch, J. L.; Ergun, R.; Eriksson, S.; Fuselier, S. A.; Gomez, R. G.; Giles, B. L.; Steven, P. M.; Strangeway, R. J.; Wilder, F. D.</p> <p>2017-12-01</p> <p>Magnetic reconnection at the Earth's magnetopause is discussed and has been observed as anti-parallel and component reconnection. While anti-parallel reconnection occurs between magnetic field lines of (ideally) exactly opposite polarity, component reconnection (also known as the tilted X-line model) predicts the location of the reconnection line to be anchored at the sub-solar point and extend continuously along the dayside magnetopause, while the ratio of the IMF By/Bz component determines the tilt of the X-line relative to the equatorial plane.A reconnection location prediction model known as the Maximum Magnetic Shear Model combines these two scenarios. The model predicts that during dominant IMF By conditions, magnetic reconnection occurs along an extended line across the dayside magnetopause but generally not through the sub-solar point (as predicted in the original tilted X-line model). Rather, the line follows the ridge of maximum magnetic shear across the dayside magnetopause. In contrast, for dominant IMF Bz (155° < tan-1(By/Bz) < 205°) or dominant Bx (|Bx|/B > 0.7) conditions, the reconnection location bifurcates and traces to high-latitudes, in close agreement with the anti-parallel reconnection scenario, and does not cross the dayside magnetopause as a single tilted reconnection line. Using observations from the Magnetospheric MultiScale missions during a magnetopause crossing when the IMF rotated from an dominate IMF BZ to a dominant IMF BY field we will investigate when the transition between the anti-parallel and tilted X-line scenarios occurs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20440977','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20440977"><span>International Monetary Fund sacrifices higher growth, employment, spending, and public investment in health systems in order to keep inflation unnecessarily low.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rowden, Rick</p> <p>2010-01-01</p> <p>The International Monetary Fund's response to evidence on the impact of its programs on public health fails to address the fundamental criticisms about its policies. The IMF's demand for borrowers to achieve extremely low inflation targets is founded on very little empirical evidence in the peer-reviewed literature. The low-inflation policies privilege international creditors over domestic debtors and short-term priorities over long-term development goals, and contain high social costs, referred to by economists as a "sacrifice ratio." For example, governments' raising of interest rates to bring down inflation undermines the ability of domestic firms to expand production and employment and thus "sacrifices" higher economic growth and higher tax revenues and unnecessarily constrains domestic health spending. During financial crisis, most countries seek to lower interest rates to stimulate the economy, the opposite of the IMF's general advice. Perversely, compliance with IMF policies has become a prerequisite for receiving donor aid. Critiques of the IMF express significant concerns that IMF fiscal and monetary policies are unduly restrictive. Health advocates must weigh in on such matters and pressure their finance ministries, particularly in the G7, to take steps at the level of the IMF Executive Board to revisit and modify its policy framework on deficits and inflation. Such reforms are crucial to enable countries to generate more domestic resources while the global health community searches for ways to support strengthening health system capacity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM41D2461N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM41D2461N"><span>Diamagnetic effect in the foremoon solar wind observed by Kaguya</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nishino, M. N.; Saito, Y.; Tsunakawa, H.; Miyake, Y.; Harada, Y.; Yokota, S.; Takahashi, F.; Matsushima, M.; Shibuya, H.; Shimizu, H.</p> <p>2016-12-01</p> <p>Interaction between the lunar surface and incident solar wind is one of the crucial phenomena of the lunar plasma sciences. Recent observations by lunar orbiters revealed that strength of the interplanetary magnetic field (IMF) at spacecraft altitude increases over crustal magnetic fields on the dayside. In addition, variations of the IMF on the lunar night side have been reported in the viewpoint of diamagnetic effect around the lunar wake. However, few studies have been performed for the IMF over non-magnetized regions on the dayside. Here we show an event where strength of the IMF decreases at 100 km altitude on the lunar dayside (i.e. in the foremoon solar wind) when the IMF is almost parallel to the incident solar wind flow, comparing the upstream solar wind data from ACE and WIND with Kaguya magnetometer data. The lunar surface below the Kaguya orbit is not magnetized (or very weakly magnetized), and the sunward-travelling protons show signatures of those back-scattered at the lunar surface. We find that the decrease in the magnetic pressure is compensated by the thermal pressure of the back-scattered protons. In other words, the IMF strength in the foremoon solar wind decreases by diamagnetic effect of sunward-travelling protons back-scattered at the lunar dayside surface. Such diamagnetic effect would be prominent in the high-beta solar wind environment, and may be ubiquitous in the environment where planetary surface directly interacts with surrounding space plasma.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5995N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5995N"><span>Diamagnetic effect in the foremoon solar wind observed by Kaguya</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nishino, Masaki N.; Saito, Yoshifumi; Tsunakawa, Hideo; Miyake, Yohei; Harada, Yuki; Yokota, Shoichiro; Takahashi, Futoshi; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi</p> <p>2017-04-01</p> <p>Direct interaction between the lunar surface and incident solar wind is one of the crucial phenomena of the planetary plasma sciences. Recent observations by lunar orbiters revealed that strength of the interplanetary magnetic field (IMF) at spacecraft altitude often increases over crustal magnetic fields on the dayside. In addition, variations of the IMF on the lunar night side have been reported in the viewpoint of diamagnetic effect around the lunar wake. However, few studies have been performed for the IMF over non-magnetized regions on the dayside. Here we show an event where strength of the IMF decreases at 100 km altitude on the lunar dayside (i.e. in the foremoon solar wind) when the IMF is almost parallel to the incident solar wind flow, comparing the upstream solar wind data from ACE with Kaguya magnetometer data. The lunar surface below the Kaguya orbit is not magnetized (or very weakly magnetized), and the sunward-travelling protons show signatures of those back-scattered at the lunar surface. We find that the decrease in the magnetic pressure is compensated by the thermal pressure of the back-scattered protons. In other words, the IMF strength in the foremoon solar wind decreases by diamagnetic effect of sunward-travelling protons back-scattered at the lunar dayside surface. Such an effect would be prominent in the high-beta solar wind, and may be ubiquitous in the environment where planetary surface directly interacts with surrounding space plasma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26900465','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26900465"><span>Association of H-FABP gene polymorphisms with intramuscular fat content in Three-yellow chickens and Hetian-black chickens.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Yong; Hui, Xiaohong; Wang, Huie; Kurban, Tursunjan; Hang, Chao; Chen, Ying; Xing, Jinming; Wang, Jiufeng</p> <p>2016-01-01</p> <p>To explore the relationship between the heart-type fatty acid binding protein (H-FABP) gene and intramuscular fat (IMF), a polymorphism of the second exon of the H-FABP gene was investigated in 60 Three-yellow chickens (TYCs) and 60 Hetian-black chickens (HTBCs). The IMF contents of the cardiac, chest and leg muscles in HTBC were increased compared with TYC. Both TYC and HTBC populations exhibited Hardy-Weinberg Equilibrium (HWE) according to the χ(2) test. Three variations of the two birds were detected, namely, G939A, G982A and C1014T. HTBCs with the TT genotypes exhibit increased IMF content in the chest muscles compared with the TC genotype. Thus, the G982A site could be considered a genetic marker for selecting increased IMF content in the chest muscles of HTBC. The correlation coefficients revealed that H-FABP mRNA expression was negatively correlated with the IMF content in the cardiac, chest and leg muscles of HTBC and in the cardiac and chest muscles of TYC. The relative mRNA expression of H-FABP was reduced in the cardiac and leg muscles of HTBC compared with TYC, but this difference was not observed at the protein level, as assessed by Western blot analysis. These findings offer essential data that can be useful in the breeding program of HTBC and future research exploring the role of H-FABP in IMF deposition and regulation in chickens.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950033970&hterms=hodge&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dhodge','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950033970&hterms=hodge&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dhodge"><span>Initial mass functions from ultraviolet stellar photometry: A comparison of Lucke and Hodge OB associations near 30 Doradus with the nearby field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hill, Jesse K.; Isensee, Joan E.; Cornett, Robert H.; Bohlin, Ralph C.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.</p> <p>1994-01-01</p> <p>UV stellar photometry is presented for 1563 stars within a 40 minutes circular field in the Large Magellanic Cloud (LMC), excluding the 10 min x 10 min field centered on R136 investigated earlier by Hill et al. (1993). Magnitudes are computed from images obtained by the Ultraviolet Imaging Telescope (UIT) in bands centered at 1615 A and 2558 A. Stellar masses and extinctions are estimated for the stars in associations using the evolutionary models of Schaerer et al. (1993), assuming the age is 4 Myr and that the local LMC extinction follows the Fitzpatrick (1985) 30 Dor extinction curve. The estimated slope of the initial mass function (IMF) for massive stars (greater than 15 solar mass) within the Lucke and Hodge (LH) associations is Gamma = -1.08 +/- 0.2. Initial masses and extinctions for stars not within LH associations are estimated assuming that the stellar age is either 4 Myr or half the stellar lifetime, whichever is larger. The estimated slope of the IMF for massive stars not within LH associations is Gamma = -1.74 +/- 0.3 (assuming continuous star formation), compared with Gamma = -1.35, and Gamma = -1.7 +/- 0.5, obtained for the Galaxy by Salpeter (1955) and Scalo (1986), respectively, and Gamma = -1.6 obtained for massive stars in the Galaxy by Garmany, Conti, & Chiosi (1982). The shallower slope of the association IMF suggests that not only is the star formation rate higher in associations, but that the local conditions favor the formation of higher mass stars there. We make no corrections for binaries or incompleteness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM11B2309V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM11B2309V"><span>Tracking a Solar Wind Dynamic Pressure Pulses' Impact Through the Magnetosphere Using the Heliophysics System Observatory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vidal-Luengo, S.; Moldwin, M.</p> <p>2017-12-01</p> <p>During northward Interplanetary Magnetic Field (IMF) Bz conditions, the magnetosphere acts as a closed "cavity" and reacts to solar wind dynamic pressure pulses more simply than during southward IMF conditions. Effects of solar wind dynamic pressure have been observed as geomagnetic lobe compressions depending on the characteristics of the pressure pulse and the spacecraft location. One of the most important aspects of this study is the incorporation of simultaneous observations by different missions, such as WIND, CLUSTER, THEMIS, MMS, Van Allen Probes and GOES as well as magnetometer ground stations that allow us to map the magnetosphere response at different locations during the propagation of a pressure pulse. In this study we used the SYM-H as an indicator of dynamic pressure pulses occurrence from 2007 to 2016. The selection criteria for events are: (1) the increase in the index must be bigger than 10 [nT] and (2) the rise time must be in less than 5 minutes. Additionally, the events must occur under northward IMF and at the same time at least one spacecraft has to be located in the magnetosphere nightside. Using this methodology we found 66 pressure pulse events for analysis. Most of them can be classified as step function pressure pulses or as sudden impulses (increase followed immediately by a decrease of the dynamic pressure). Under these two categories the results show some systematic signatures depending of the location of the spacecraft. For both kind of pressure pulse signatures, compressions are observed on the dayside. However, on the nightside compressions and/or South-then-North magnetic signatures can be observed for step function like pressure pulses, meanwhile for the sudden impulse kind of pressure pulses the magnetospheric response seems to be less global and more dependent on the local conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JNuM..505...94M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JNuM..505...94M"><span>Dissolution behavior of MgO based inert matrix fuel for the transmutation of minor actinides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mühr-Ebert, E. L.; Lichte, E.; Bukaemskiy, A.; Finkeldei, S.; Klinkenberg, M.; Brandt, F.; Bosbach, D.; Modolo, G.</p> <p>2018-07-01</p> <p>This study explores the dissolution properties of magnesia-based inert matrix nuclear fuel (IMF) containing transuranium elements (TRU). Pure MgO pellets as well as MgO pellets containing CeO2, as surrogate for TRU oxides, and are considered as model systems for genuine magnesia based inert matrix fuel were fabricated. The aim of this study is to identify conditions at which the matrix material can be selectively dissolved during the head-end reprocessing step, allowing a separation of MgO from the actinides, whereas the actinides remain undissolved. The dissolution behavior was studied in macroscopic batch experiments as a function of nitric acid concentration, dissolution medium volume, temperature, stirring velocity, and pellet density (85, 90, 96, and 99%TD). To mimic pellets with various burn-ups the density of the here fabricated pellets was varied. MgO is soluble even under mild conditions (RT, 2.5 mol/L HNO3). The dissolution rates of MgO at different acid concentrations are rather similar, whereas the dissolution rate is strongly dependent on the temperature. Via a microscopic approach, a model was developed to describe the evolution of the pellet surface area during dissolution and determine a surface normalized dissolution rate. Moreover, dissolution rates of the inert matrix fuel containing CeO2 were determined as a function of the acid concentration and temperature. During the dissolution of MgO/CeO2 pellets the MgO dissolves completely, while CeO2 (>99%) remains undissolved. This study intends to provide a profound understanding of the chemical performance of magnesia based IMF containing fissile material. The feasibility of the dissolution of magnesia based IMF with nitric acid is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3756103','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3756103"><span>Bovine dedifferentiated adipose tissue (DFAT) cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wei, Shengjuan; Du, Min; Jiang, Zhihua; Duarte, Marcio S; Fernyhough-Culver, Melinda; Albrecht, Elke; Will, Katja; Zan, Linsen; Hausman, Gary J; Elabd, Elham M Youssef; Bergen, Werner G; Basu, Urmila; Dodson, Michael V</p> <p>2013-01-01</p> <p>Dedifferentiated fat cells (DFAT cells) are derived from lipid-containing (mature) adipocytes, which possess the ability to symmetrically or asymmetrically proliferate, replicate, and redifferentiate/transdifferentiate. Robust cell isolation and downstream culture methods are needed to isolate large numbers of DFAT cells from any (one) adipose depot in order to establish population dynamics and regulation of the cells within and across laboratories. In order to establish more consistent/repeatable methodology here we report on two different methods to establish viable DFAT cell cultures: both traditional cell culture flasks and non-traditional (flat) cell culture plates were used for ceiling culture establishment. Adipocytes (maternal cells of the DFAT cells) were easier to remove from flat culture plates than flasks and the flat plates also allowed cloning rings to be utilized for cell/cell population isolation. While additional aspects of usage of flat-bottomed cell culture plates may yet need to be optimized by definition of optimum bio-coating to enhance cell attachment, utilization of flat plate approaches will allow more efficient study of the dedifferentiation process or the DFAT progeny cells. To extend our preliminary observations, dedifferentiation of Wagyu intramuscular fat (IMF)-derived mature adipocytes and redifferentiation ability of DFAT cells utilizing the aforementioned isolation protocols were examined in traditional basal media/differentiation induction media (DMI) containing adipogenic inducement reagents. In the absence of treatment approximately 10% isolated Wagyu IMF-mature adipocytes dedifferentiated spontaneously and 70% DFAT cells displayed protracted adipogenesis 12 d after confluence in vitro. Lipid-free intracellular vesicles in the cytoplasm (vesicles possessing an intact membrane but with no any observable or stainable lipid inside) were observed during redifferentiation. One to 30% DFAT cells redifferentiated into lipid-assimilating adipocytes in the DMI media, with distinct lipid-droplets in the cytoplasm and with no observable lipid-free vesicles inside. Moreover, a high confluence level promoted the redifferentiation efficiency of DFAT cells. Wagyu IMF dedifferentiated DFAT cells exhibited unique adipogenesis modes in vitro, revealing a useful cell model for studying adipogenesis and lipid metabolism. PMID:23991361</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014A%26A...564A.106T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014A%26A...564A.106T"><span>Ionization compression impact on dense gas distribution and star formation. Probability density functions around H II regions as seen by Herschel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tremblin, P.; Schneider, N.; Minier, V.; Didelon, P.; Hill, T.; Anderson, L. D.; Motte, F.; Zavagno, A.; André, Ph.; Arzoumanian, D.; Audit, E.; Benedettini, M.; Bontemps, S.; Csengeri, T.; Di Francesco, J.; Giannini, T.; Hennemann, M.; Nguyen Luong, Q.; Marston, A. P.; Peretto, N.; Rivera-Ingraham, A.; Russeil, D.; Rygl, K. L. J.; Spinoglio, L.; White, G. J.</p> <p>2014-04-01</p> <p>Aims: Ionization feedback should impact the probability distribution function (PDF) of the column density of cold dust around the ionized gas. We aim to quantify this effect and discuss its potential link to the core and initial mass function (CMF/IMF). Methods: We used Herschel column density maps of several regions observed within the HOBYS key program in a systematic way: M 16, the Rosette and Vela C molecular clouds, and the RCW 120 H ii region. We computed the PDFs in concentric disks around the main ionizing sources, determined their properties, and discuss the effect of ionization pressure on the distribution of the column density. Results: We fitted the column density PDFs of all clouds with two lognormal distributions, since they present a "double-peak" or an enlarged shape in the PDF. Our interpretation is that the lowest part of the column density distribution describes the turbulent molecular gas, while the second peak corresponds to a compression zone induced by the expansion of the ionized gas into the turbulent molecular cloud. Such a double peak is not visible for all clouds associated with ionization fronts, but it depends on the relative importance of ionization pressure and turbulent ram pressure. A power-law tail is present for higher column densities, which are generally ascribed to the effect of gravity. The condensations at the edge of the ionized gas have a steep compressed radial profile, sometimes recognizable in the flattening of the power-law tail. This could lead to an unambiguous criterion that is able to disentangle triggered star formation from pre-existing star formation. Conclusions: In the context of the gravo-turbulent scenario for the origin of the CMF/IMF, the double-peaked or enlarged shape of the PDF may affect the formation of objects at both the low-mass and the high-mass ends of the CMF/IMF. In particular, a broader PDF is required by the gravo-turbulent scenario to fit the IMF properly with a reasonable initial Mach number for the molecular cloud. Since other physical processes (e.g., the equation of state and the variations among the core properties) have already been said to broaden the PDF, the relative importance of the different effects remains an open question. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010094894','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010094894"><span>Space Plasma Physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wu, S. T.</p> <p>2000-01-01</p> <p>Dr. James L. Horwitz and R. Hugh Comfort's studies with the high altitude TIDE data have been progressing well. We concluded a study on the relationship of polar cap ion properties observed by TIDE near apogee with solar wind and IMF conditions. We found that in general H+ did not correlate as well as O+ with solar wind and IMF parameters. O+ density correlated(sub IMF), and Kp. At lower solar wind speeds, O+ density decreased with increasing latitude, but this trend was not observed at higher solar wind speeds. By comparing these results with results from other studies of O+ in different parts of the magnetosphere, we concluded that O+ ions often leave the ionosphere near the foot point of the cusp/cleft region, pass through the high-altitude polar cap lobes, and eventually arrive in the plasma sheet. We found that H+ outflows are a persistent feature of the polar cap and are not as dependent on the geophysical conditions; even classical polar wind models show H+ ions readily escaping owing to their low mass. Minor correlations with solar wind drivers were found; specifically, H+ density correlated best with IMF By, V(sub sw)B(sub IMF), and ESW(sub sw).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26966019','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26966019"><span>Mozambique's Debt and the International Monetary Fund's Influence on Poverty, Education, and Health.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beste, Jason; Pfeiffer, James</p> <p>2016-01-01</p> <p>For nearly 30 years, Mozambique has been facing austerity measures regulated by the IMF. These austerity measures, grounded in macroeconomic policies, were supposed to lift Mozambique out of poverty, and improve its healthcare and education systems. By taking an in-depth look at the major etiologies of Mozambique's debt and the conditions which forced the country to accept austerity measures-despite their protests-prior to receiving IMF funding, this paper examines how IMF policies over the past 30 years have affected poverty, health, and the education system. The results of these policies have contributed to Mozambique's enduring classification as one of the poorest countries in the world. Aside from economic outcomes, Mozambique also has abysmal health and education systems, with one of the lowest life expectancies in Sub-Saharan Africa. It is time to re-evaluate how the current IMF macroeconomic policies negatively affect, health, education and the socioeconomic status of those who live in abject poverty. As short term macroeconomic policies of PARPA have been ineffective at reducing poverty, promoting education and improving health, the IMF should consider using longer term macroeconomic policies which invest in-rather than limit-public services such as health and education. © The Author(s) 2016.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27218138','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27218138"><span>Physicochemical Changes and Glycation Reaction in Intermediate-Moisture Protein-Sugar Foods with and without Addition of Resveratrol during Storage.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sheng, Zhanwu; Gu, Mantun; Hao, Wangjun; Shen, Yixiao; Zhang, Weimin; Zheng, Lili; Ai, Binling; Zheng, Xiaoyan; Xu, Zhimin</p> <p>2016-06-22</p> <p>An intermediate-moisture food (IMF) model consisting of whey protein isolate and glucose and an IMF model fortified with resveratrol were used to study the effect of resveratrol on physicochemical changes and glycation of protein-sugar-rich foods during storage. The water activity (aw) of the storage was controlled at 0.75 or 0.56. The browning rate or hardness of fortified IMFs was significantly lower than that of IMFs after 45-day storage. The rate of Maillard reaction in the samples stored at aw 0.56 was higher than that of samples stored at aw 0.75. The fortified IMFs had lower levels of AGEs (advanced glycation end products), CML (N(ε)-(carboxymethyl)-l-lysine), and insoluble protein during storage. The inhibition capability of resveratrol against glycation was also confirmed by using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), liquid chromatography mass spectrometry (LC-MS), and Fourier transform infrared spectroscopy (FTIR) analysis to monitor glycated proteins and protein aggregation in the samples. The results of this study suggested that resveratrol could be used as an inhibitor to reduce the formation of undesirable AGEs and other Maillard reaction products in foods during storage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920032835&hterms=physical+dependence&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dphysical%2Bdependence','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920032835&hterms=physical+dependence&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dphysical%2Bdependence"><span>Model and observation comparison of the universal time and IMF by dependence of the ionospheric polar hole</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sojka, J. J.; Schunk, R. W.; Hoegy, W. R.; Grebowsky, J. M.</p> <p>1991-01-01</p> <p>The polar ionospheric F-region often exhibits regions of marked density depletion. These depletions have been observed by a variety of polar orbiting ionospheric satellites over a full range of solar cycle, season, magnetic activity, and universal time (UT). An empirical model of these observations has recently been developed to describe the polar depletion dependence on these parameters. Specifically, the dependence has been defined as a function of F10.7 (solar), summer or winter, Kp (magnetic), and UT. Polar cap depletions have also been predicted /1, 2/ and are, hence, present in physical models of the high latitude ionosphere. Using the Utah State University Time Dependent Ionospheric Model (TDIM) the predicted polar depletion characteristics are compared with those described by the above empirical model. In addition, the TDIM is used to predict the IMF By dependence of the polar hole feature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22521889-merger-rates-double-neutron-stars-stellar-origin-black-holes-impact-initial-conditions-binary-evolution-predictions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22521889-merger-rates-double-neutron-stars-stellar-origin-black-holes-impact-initial-conditions-binary-evolution-predictions"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mink, S. E. de; Belczynski, K., E-mail: S.E.deMink@uva.nl, E-mail: kbelczyn@astrouw.edu.pl</p> <p></p> <p>The initial mass function (IMF), binary fraction, and distributions of binary parameters (mass ratios, separations, and eccentricities) are indispensable inputs for simulations of stellar populations. It is often claimed that these are poorly constrained, significantly affecting evolutionary predictions. Recently, dedicated observing campaigns have provided new constraints on the initial conditions for massive stars. Findings include a larger close binary fraction and a stronger preference for very tight systems. We investigate the impact on the predicted merger rates of neutron stars and black holes. Despite the changes with previous assumptions, we only find an increase of less than a factor ofmore » 2 (insignificant compared with evolutionary uncertainties of typically a factor of 10–100). We further show that the uncertainties in the new initial binary properties do not significantly affect (within a factor of 2) our predictions of double compact object merger rates. An exception is the uncertainty in IMF (variations by a factor of 6 up and down). No significant changes in the distributions of final component masses, mass ratios, chirp masses, and delay times are found. We conclude that the predictions are, for practical purposes, robust against uncertainties in the initial conditions concerning binary parameters, with the exception of the IMF. This eliminates an important layer of the many uncertain assumptions affecting the predictions of merger detection rates with the gravitational wave detectors aLIGO/aVirgo.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JGRA..107.1398H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JGRA..107.1398H"><span>An evaluation of the statistical significance of the association between northward turnings of the interplanetary magnetic field and substorm expansion onsets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsu, Tung-Shin; McPherron, R. L.</p> <p>2002-11-01</p> <p>An outstanding problem in magnetospheric physics is deciding whether substorms are always triggered by external changes in the interplanetary magnetic field (IMF) or solar wind plasma, or whether they sometimes occur spontaneously. Over the past decade, arguments have been made on both sides of this issue. In fact, there is considerable evidence that some substorms are triggered. However, equally persuasive examples of substorms with no obvious trigger have been found. Because of conflicting views on this subject, further work is required to determine whether there is a physical relation between IMF triggers and substorm onset. In the work reported here a list of substorm onsets was created using two independent substorm signatures: sudden changes in the slope of the AL index and the start of a Pi 2 pulsation burst. Possible IMF triggers were determined from ISEE-2 observations. With the ISEE spacecraft near local noon immediately upstream of the bow shock, there can be little question about propagation delay to the magnetopause or whether a particular IMF feature hits the subsolar magnetopause. Thus it eliminates the objections that the calculated arrival time is subject to a large error or that the solar wind monitor missed a potential trigger incident at the subsolar point. Using a less familiar technique, statistics of point process, we find that the time delay between substorm onsets and the propagated arrival time of IMF triggers are clustered around zero. We estimate for independent processes that the probability of this clustering by chance alone is about 10-11. If we take into account the requirement that the IMF must have been southward prior to the onset, then the probability of clustering is higher, ˜10-5, but still extremely unlikely. Thus it is not possible to ascribe the apparent relation between IMF northward turnings and substorm onset to coincidence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950046221&hterms=Open+Field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DOpen%2BField','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950046221&hterms=Open+Field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DOpen%2BField"><span>Interplanetary magnetic field control of mantle precipitation and associated field-aligned currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Xu, Dingan; Kivelson, Margaret G.; Walker, Ray J.; Newell, Patrick T.; Meng, C.-I.</p> <p>1995-01-01</p> <p>Dayside reconnection, which is particularly effective for a southward interplanetary magnetic field (IMF), allows magnetosheath particles to enter the magnetosphere where they form the plasma mantle. The motions of the reconnected flux tube produce convective flows in the ionosphere. It is known that the convection patterns in the polar cap are skewed to the dawnside for a positive IMF B(sub y) (or duskside for a negative IMF B(sub y)) in the northern polar cap. Correspondingly, one would expect to find asymmetric distributions of mantle particle precipitation, but previous results have been unclear. In this paper the correlation between B(sub y) and the distribution of mantle particle precipitation is studied for steady IMF conditions with southward IMF. Ion and electron data from the Defense Meteorological Satellite Program (DMSP) F6 and F7 satellites are used to identify the mantle region and IMP 8 is used as a solar wind monitor to characterize the IMF. We study the local time extension of mantle precipitation in the prenoon and postnoon regions. We find that, in accordance with theoretical expectations for a positive (negative) IMF B(sub y), mantle particle precipitation mainly appears in the prenoon region of the northern (southern) hemisphere. The mantle particle precipitation can extend to as early as 0600 magnetic local time (MLT) in the prenoon region but extends over a smaller local time region in the postnoon sector (we did not find mantle plasma beyond 1600 MLT in our data set although coverage is scant in this area). Magnetometer data from F7 are used to determine whether part of the region 1 current flows on open field lines. We find that at times part of the region 1 sense current extends into the region of mantle particle precipitation, and is therefore on open field lines. In other cases, region 1 currents are absent on open field lines. Most of the observed features can be readily interpreted in terms of the open magnetosphere model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA41C..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA41C..08H"><span>Global Pattern of The Evolutions of the Sub-Auroral Polarization Streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, F.; Zhang, X.; Wang, W.; Wan, W.</p> <p>2017-12-01</p> <p>Due to the spatial and temporal limitations of the in-situ measurements from the low altitude polar orbiting satellites or the ionospheric scan by incoherent scatter radars, the global configuration and evolution of SAPS are still not very clear. Here, we present multi-satellite observations of the evolution of subauroral polarization streams (SAPS) during the main phase of a server geomagnetic storm occurred on 31 March 2001. DMSP F12 to F15 observations indicate that the SAPS were first generated in the dusk sector at the beginning of the main phase. Then the SAPS channel expanded towards the midnight and moved to lower latitudes as the main phase went on. The peak velocity, latitudinal width, latitudinal alignment, and longitudinal span of the SAPS channels were highly dynamic during the storm main phase. The global evolution of the SAPS corresponds well with that of the region-2 field-aligned currents, which are mainly determined by the azimuthal pressure gradient of the ring current. Further studies on 37 storms and 30 isolated substorms indicate that the lifetime of the SAPS channel was proportional to the period of time for southward interplanetary magnetic field (IMF). The SAPS channel disappeared after northward turning of the IMF. During the recovery phase, if the IMF kept northward, no SAPS channel was generated, if the IMF turned to southward again, however, SAPS channel will be generated again with lifetime proportional to the duration of the southward IMF. During isolated substorms, the SAPS channel was also controlled by IMF. The SAPS channel was generated after substorm onset and the peak drift velocity of the SAPS channel achieved its maximum during the recovery phase of the substorm. It is suggested that, SAPS channel were mainly controlled by IMF, more works should be done with observations or simulations of investigate the global patterns of the SAPS and the magnetosphere-ionosphere couplings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930046826&hterms=fossils&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfossils','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930046826&hterms=fossils&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfossils"><span>Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.</p> <p>1993-01-01</p> <p>A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960017550','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960017550"><span>High-Latitude Ionospheric Dynamics During Conditions of Northward IMF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sharber, J. R.</p> <p>1996-01-01</p> <p>In order to better understand the physical processes operating during conditions of northward interplanetary magnetic field (IMF), in situ measurements from the Dynamics Explorer-2 (low altitude) polar satellite and simultaneous observations from the auroral imager on the Dynamics Explorer-1 (high altitude) satellite were used to investigate the relationships between optical emissions, particle precipitation, and convective flows in the high-latitude ionosphere. Field aligned current and convective flow patterns during IMF north include polar cap arcs, the theta aurora or transpolar arc, and the 'horse-collar' aurora. The initial part of the study concentrated on the electrodynamics of auroral features in the horse-collar aurora, a contracted but thickened emission region in which the dawn and dusk portions can spread to very high latitudes, while the latter part focused on the evolution of one type of IMF north auroral pattern to another, specifically the quiet-time horse-collar pattern to a theta aurora.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JNuM..352..372S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JNuM..352..372S"><span>Inert matrix fuel in dispersion type fuel elements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Savchenko, A. M.; Vatulin, A. V.; Morozov, A. V.; Sirotin, V. L.; Dobrikova, I. V.; Kulakov, G. V.; Ershov, S. A.; Kostomarov, V. P.; Stelyuk, Y. I.</p> <p>2006-06-01</p> <p>The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg-1 (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860056274&hterms=orbiting+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dorbiting%2Bwind','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860056274&hterms=orbiting+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dorbiting%2Bwind"><span>On the use of a sunward libration-point-orbiting spacecraft as an interplanetary magnetic field monitor for magnetospheric studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kelly, T. J.; Crooker, N. U.; Siscoe, G. L.; Russell, C. T.; Smith, E. J.</p> <p>1986-01-01</p> <p>In order to test the accuracy of using magnetometer data from a spacecraft orbiting the sunward libration point to determine the orientation of the interplanetary magnetic field (IMF), the angle between the IMF at ISEE 3, when it was positioned around the libration point, and at ISEE 1, orbiting the earth, has been calculated for a data set of 1-hour periods covering four months. For each period, a 10-minute average of ISEE 1 data is compared with 10-minute averages of ISEE 3 data at successively lagged intervals. It is concluded that the IMF orientation at a libration-point-orbiting spacecraft, lagged by the time required for the solar wind to convect to the earth, is a convenient predictor of IMF orientation near the earth, to within about 20-degree accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930062094&hterms=magnetic+particles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dmagnetic%2Bparticles','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930062094&hterms=magnetic+particles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dmagnetic%2Bparticles"><span>Structure and properties of the subsolar magnetopause for northward interplanetary magnetic field - Multiple-instrument particle observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Song, P.; Russell, C. T.; Fitzenreiter, R. J.; Gosling, J. T.; Thomsen, M. F.; Mitchell, D. G.; Fuselier, S. A.; Parks, G. K.; Anderson, R. R.; Hubert, D.</p> <p>1993-01-01</p> <p>The paper examines the structure and properties of the subsolar magnetopause for northward IMF on the basis of measurements from 10 different instrument for three ISEE crossings. It is shown that the overall structure and properties are similar for the three crossings, indicating that the magnetopause is relatively well determined in the subsolar region for strongly northward IMF. The combined data set suggests that the magnetopause region is best organized by defining a sheath transition layer and steplike boundary layers. The electron flux enhancements in the lowest energies in the boundary layers and magnetosphere are found to be ionospheric electrons and not photoelectrons from the spacecraft. For northward IMF, they are photoelectrons, but for southward IMF they may be secondary electrons. The density measurements from differential and integral techniques are similar, leaving no room for a significant 'invisible' population.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1334121-uncertainties-galactic-chemical-evolution-models','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1334121-uncertainties-galactic-chemical-evolution-models"><span>Uncertainties in Galactic Chemical Evolution Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Cote, Benoit; Ritter, Christian; Oshea, Brian W.; ...</p> <p>2016-06-15</p> <p>Here we use a simple one-zone galactic chemical evolution model to quantify the uncertainties generated by the input parameters in numerical predictions for a galaxy with properties similar to those of the Milky Way. We compiled several studies from the literature to gather the current constraints for our simulations regarding the typical value and uncertainty of the following seven basic parameters: the lower and upper mass limits of the stellar initial mass function (IMF), the slope of the high-mass end of the stellar IMF, the slope of the delay-time distribution function of Type Ia supernovae (SNe Ia), the number ofmore » SNe Ia per M ⊙ formed, the total stellar mass formed, and the final mass of gas. We derived a probability distribution function to express the range of likely values for every parameter, which were then included in a Monte Carlo code to run several hundred simulations with randomly selected input parameters. This approach enables us to analyze the predicted chemical evolution of 16 elements in a statistical manner by identifying the most probable solutions along with their 68% and 95% confidence levels. Our results show that the overall uncertainties are shaped by several input parameters that individually contribute at different metallicities, and thus at different galactic ages. The level of uncertainty then depends on the metallicity and is different from one element to another. Among the seven input parameters considered in this work, the slope of the IMF and the number of SNe Ia are currently the two main sources of uncertainty. The thicknesses of the uncertainty bands bounded by the 68% and 95% confidence levels are generally within 0.3 and 0.6 dex, respectively. When looking at the evolution of individual elements as a function of galactic age instead of metallicity, those same thicknesses range from 0.1 to 0.6 dex for the 68% confidence levels and from 0.3 to 1.0 dex for the 95% confidence levels. The uncertainty in our chemical evolution model does not include uncertainties relating to stellar yields, star formation and merger histories, and modeling assumptions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1334121','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1334121"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cote, Benoit; Ritter, Christian; Oshea, Brian W.</p> <p></p> <p>Here we use a simple one-zone galactic chemical evolution model to quantify the uncertainties generated by the input parameters in numerical predictions for a galaxy with properties similar to those of the Milky Way. We compiled several studies from the literature to gather the current constraints for our simulations regarding the typical value and uncertainty of the following seven basic parameters: the lower and upper mass limits of the stellar initial mass function (IMF), the slope of the high-mass end of the stellar IMF, the slope of the delay-time distribution function of Type Ia supernovae (SNe Ia), the number ofmore » SNe Ia per M ⊙ formed, the total stellar mass formed, and the final mass of gas. We derived a probability distribution function to express the range of likely values for every parameter, which were then included in a Monte Carlo code to run several hundred simulations with randomly selected input parameters. This approach enables us to analyze the predicted chemical evolution of 16 elements in a statistical manner by identifying the most probable solutions along with their 68% and 95% confidence levels. Our results show that the overall uncertainties are shaped by several input parameters that individually contribute at different metallicities, and thus at different galactic ages. The level of uncertainty then depends on the metallicity and is different from one element to another. Among the seven input parameters considered in this work, the slope of the IMF and the number of SNe Ia are currently the two main sources of uncertainty. The thicknesses of the uncertainty bands bounded by the 68% and 95% confidence levels are generally within 0.3 and 0.6 dex, respectively. When looking at the evolution of individual elements as a function of galactic age instead of metallicity, those same thicknesses range from 0.1 to 0.6 dex for the 68% confidence levels and from 0.3 to 1.0 dex for the 95% confidence levels. The uncertainty in our chemical evolution model does not include uncertainties relating to stellar yields, star formation and merger histories, and modeling assumptions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM11B2077E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM11B2077E"><span>Cluster Observations of Ion Dispersions near the Exterior Cusp</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Escoubet, C.; Grison, B.; Berchem, J.; Trattner, K. J.; Pitout, F.; Richard, R. L.; Taylor, M. G.; Laakso, H. E.; Masson, A.; Dunlop, M. W.; Dandouras, I. S.; Reme, H.; Fazakerley, A. N.; Daly, P. W.</p> <p>2013-12-01</p> <p>The cusps are the places where the Earth's magnetic field lines, connected to the inner side of the magnetopause, converge. It is therefore the place where signatures of processes occurring near the subsolar point, in the tail lobes, as well as near the dawn and dusk flanks are observed. The main process that injects solar wind plasma into the polar cusp is now generally accepted to be magnetic reconnection. Depending on the IMF direction, this process will take place equatorward (for IMF southward), poleward (for IMF northward) or on the side (for IMF azimuthal) of the cusp. We report a Cluster crossing on 5 January 2002 near the exterior cusp on the southern dusk side. The IMF was mainly azimuthal (IMF-By around -5 nT), the solar wind speed around 280 km/s and the density around 5 cm-3. The four Cluster spacecraft were still in the "magnetotail" configuration with two perfect tetrahedra of 2000 km around apogee and turning into an elongated configuration near the magnetopause. C4 was the first spacecraft to enter the cusp around 19:52:04 UT, followed by C2 at 19:52:35 UT, C1 at 19:54:24 UT and C3 at 20:13:15 UT. C4 and C1 observed two ion energy dispersions at 20:10 UT and 20:40 UT and C3 at 20:35 UT and 21:15 UT. We will investigate the origin of the injections forming the dispersions and if these can be explained by the reconnection between the interplanetary magnetic field and the Earth's magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SPIE.7676E..0WL','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SPIE.7676E..0WL"><span>On-line determination of pork color and intramuscular fat by computer vision</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liao, Yi-Tao; Fan, Yu-Xia; Wu, Xue-Qian; Xie, Li-juan; Cheng, Fang</p> <p>2010-04-01</p> <p>In this study, the application potential of computer vision in on-line determination of CIE L*a*b* and content of intramuscular fat (IMF) of pork was evaluated. Images of pork chop from 211 pig carcasses were captured while samples were on a conveyor belt at the speed of 0.25 m•s-1 to simulate the on-line environment. CIE L*a*b* and IMF content were measured with colorimeter and chemical extractor as reference. The KSW algorithm combined with region selection was employed in eliminating the surrounding fat of longissimus dorsi muscle (MLD). RGB values of the pork were counted and five methods were applied for transforming RGB values to CIE L*a*b* values. The region growing algorithm with multiple seed points was applied to mask out the IMF pixels within the intensity corrected images. The performances of the proposed algorithms were verified by comparing the measured reference values and the quality characteristics obtained by image processing. MLD region of six samples could not be identified using the KSW algorithm. Intensity nonuniformity of pork surface in the image can be eliminated efficiently, and IMF region of three corrected images failed to be extracted. Given considerable variety of color and complexity of the pork surface, CIE L*, a* and b* color of MLD could be predicted with correlation coefficients of 0.84, 0.54 and 0.47 respectively, and IMF content could be determined with a correlation coefficient more than 0.70. The study demonstrated that it is feasible to evaluate CIE L*a*b* values and IMF content on-line using computer vision.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023464','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023464"><span>Concerning the Motion and Orientation of Flux Transfer Events Produced by Component and Antiparallel Reconnection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sibeck, D. G.; Lin, R.-Q.</p> <p>2011-01-01</p> <p>We employ the Cooling et al. (2001) model to predict the location, orientation, motion, and signatures of flux transfer events (FTEs) generated at the solstices and equinoxes along extended subsolar component and high ]latitude antiparallel reconnection curves for typical solar wind plasma conditions and various interplanetary magnetic field (IMF) strengths and directions. In general, events generated by the two mechanisms maintain the strikingly different orientations they begin with as they move toward the terminator in opposite pairs of magnetopause quadrants. The curves along which events generated by component reconnection form bow toward the winter cusp. Events generated by antiparallel reconnection form on the equatorial magnetopause during intervals of strongly southward IMF orientation during the equinoxes, form in the winter hemisphere and only reach the dayside equatorial magnetopause during the solstices when the IMF strength is very large and the IMF points strongly southward, never reach the equatorial dayside magnetopause when the IMF has a substantial dawnward or duskward component, and never reach the equatorial flank magnetopause during intervals of northward and dawnward or duskward IMF orientation. Magnetosheath magnetic fields typically have strong components transverse to events generated by component reconnection but only weak components transverse to the axes of events generated by antiparallel reconnection. As a result, much stronger bipolar magnetic field signatures normal to the nominal magnetopause should accompany events generated by component reconnection. The results presented in this paper suggest that events generated by component reconnection predominate on the dayside equatorial and flank magnetopause for most solar wind conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930026441&hterms=br&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbr','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930026441&hterms=br&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbr"><span>The He I 2.06 microns/Br-gamma ratio in starburst galaxies - An objective constraint on the upper mass limit to the initial mass function</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Doyon, Rene; Puxley, P. J.; Joseph, R. D.</p> <p>1992-01-01</p> <p>The use of the He I 2.06 microns/Br-gamma ratio as a constraint on the massive stellar population in star-forming galaxies is developed. A theoretical relationship between the He I 2.06 microns/Br-gamma ratio and the effective temperature of the exciting star in H II regions is derived. The effects of collisional excitation and dust within the nebula on the ratio are also considered. It is shown that the He I 2.06 microns/Br-gamma ratio is a steep function of the effective temperature, a property which can be used to determine the upper mass limit of the initial mass function (IMF) in galaxies. This technique is reliable for upper mass limits less than about 40 solar masses. New near-infrared spectra of starburst galaxies are presented. The He I 2.06 microns/Br-gamma ratios observed imply a range of upper mass limits from 27 to over 40 solar masses. There is also evidence that the upper mass limit is spatially dependent within a given galaxy. These results suggest that the upper mass limit is not a uniquely defined parameter of the IMF and probably varies with local physical conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996ApJ...457..118S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996ApJ...457..118S"><span>On the Star Formation Rate, Initial Mass Function, and Hubble Type of Disk Galaxies and the Age of the Universe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sommer-Larsen, Jesper</p> <p>1996-01-01</p> <p>Evolutionary models for the disks of large disk galaxies, including effects of star formation, non-instantaneous gas recycling from stars, and infall of low-metallicity gas from the halo, have been calculated and compared with data for nearby, generally large disk galaxies on present disk star-formation rates (based on integrated Hα luminosities) as a function of disk gas fractions. The data were extracted from the work by Kennicutt, Tamblyn, & Congdon. The result of the comparison suggests that for disk galaxies the Hubble sequence is a disk age sequence, with early-type disks being the oldest and late types the youngest. Under the assumption of a minimum age of the Galactic disk of 10 Gyr, the mean age of Sa/Sab galaxies, and hence the age of the universe, is found to be at least 17±2 Gyr. It is furthermore found that the disk star-formation timescale is approximately independent of disk-galaxy type. Finally, it is found that the global initial mass function (IMF) in galactic disks is 2-3 times more weighted toward high-mass stars than the Scalo "best-fitting" model for the solar-neighborhood IMF. The more top-heavy model of Kennicutt provides a good fit to observation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvC..91a4602C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvC..91a4602C"><span>Noncompound nucleus decay contribution in the 12C+93Nb reaction using various formulations of nuclear proximity potential</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chopra, Sahila; Kaur, Arshdeep; Gupta, Raj K.</p> <p>2015-01-01</p> <p>The earlier study of excitation functions of *105Ag, formed in the 12C+93Nb reaction, based on the dynamical cluster-decay model (DCM), using the pocket formula for nuclear proximity potential is extended to the use of other nuclear interaction potentials derived from the Skyrme energy density functional (SEDF) based on the semiclassical extended Thomas Fermi (ETF) approach and to the use of the extended-Wong model of Gupta and collaborators. The Skyrme forces used are the old SIII and SIV and the new SSk, GSkI, and KDE0(v1) given for both normal and isospin-rich nuclei, with densities added in the frozen-density approximation. Taking advantage of the fact that different Skyrme forces provide different barrier characteristics, we look for the "barrier modification" effects in terms of choosing an appropriate force and hence for the existence or nonexistence of noncompound nucleus (nCN) effects in this reaction. Interestingly, independent of the choice of Skyrme or proximity force, the extended-Wong model fits the experimental data nicely, without any barrier modification and hence no nCN component in the measured fusion cross section, which consists of light-particle evaporation residue (ER) and intermediate-mass fragments (IMFs) up to mass 13, i.e., σfusionExpt .=σER+σIMFs . However, the predicted fusion cross section due to the extended-Wong model is much larger, possibly because of the so-far missing fusion-fission (ff) component in the data. On the other hand, in agreement with the earlier work using the pocket proximity potential, the DCM fits only some data (mainly IMFs) for only some Skyrme forces, and hence it presents the chosen reaction as a case of a large nCN component, whose empirically estimated content is fitted for use of the DCM with a fragment preformation factor taken equal to one, i.e., using DCM (P0=1 ), by introducing "barrier modification" through changing the neck-length parameter Δ R for a best fit to the empirical nCN data in each (ER and IMF) decay channel. Also, the ff component of the DCM is predicted to lie around the symmetric mass A /2 ±16 . All calculations are made for deformed and oriented coplanar nuclei.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1712398P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1712398P"><span>ULF foreshock under radial IMF: THEMIS observations and global kinetic simulation Vlasiator results compared</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Palmroth, Minna; Rami, Vainio; Archer, Martin; Hietala, Heli; Afanasiev, Alexandr; Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian</p> <p>2015-04-01</p> <p>For decades, a certain type of ultra low frequency waves with a period of about 30 seconds have been observed in the Earth's quasi-parallel foreshock. These waves, with a wavelength of about an Earth radius, are compressive and propagate with an average angle of 20 degrees with respect of the interplanetary magnetic field (IMF). The latter property has caused trouble to scientists as the growth rate for the instability causing the waves is maximized along the magnetic field. So far, these waves have been characterized by single or multi-spacecraft methods and 2-dimensional hybrid-PIC simulations, which have not fully reproduced the wave properties. Vlasiator is a newly developed, global hybrid-Vlasov simulation, which solves the six-dimensional phase space utilising the Vlasov equation for protons, while electrons are a charge-neutralising fluid. The outcome of the simulation is a global reproduction of ion-scale physics in a holistic manner where the generation of physical features can be followed in time and their consequences can be quantitatively characterised. Vlasiator produces the ion distribution functions and the related kinetic physics in unprecedented detail, in the global scale magnetospheric scale with a resolution of a couple of hundred kilometres in the ordinary space and 20 km/s in the velocity space. We run Vlasiator under a radial IMF in five dimensions consisting of the three-dimensional velocity space embedded in the ecliptic plane. We observe the generation of the 30-second ULF waves, and characterize their evolution and physical properties in time. We compare the results both to THEMIS observations and to the quasi-linear theory. We find that Vlasiator reproduces the foreshock ULF waves in all reported observational aspects, i.e., they are of the observed size in wavelength and period, they are compressive and propagate obliquely to the IMF. In particular, we discuss the issues related to the long-standing question of oblique propagation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860030345&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dconvection%2Bcurrents','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860030345&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dconvection%2Bcurrents"><span>An MHD simulation of By-dependent magnetospheric convection and field-aligned currents during northward IMF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ogino, T.; Walker, R. J.; Ashour-Abdalla, M.; Dawson, J. M.</p> <p>1985-01-01</p> <p>A three-dimensional MHD simulation code is used to model the magnetospheric configuration when the IMF has both a northward B(z) component and a B(y) component in the east-west direction. Projections of the plasma pressure, the field-aligned velocity, the field-aligned vorticity, and the field-aligned current along the magnetic field lines into the northern ionosphere are shown and discussed. Cross-sectional patterns of these parameters are shown. The results demonstrate that the B(y) component of the IMF strongly influences the plasma sheet configuration and the magnetospheric convection pattern.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123..315Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123..315Y"><span>Interhemispheric Asymmetry of the Sunward Plasma Flows for Strongly Dominant IMF BZ > 0</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yakymenko, K. N.; Koustov, A. V.; Fiori, R. A. D.</p> <p>2018-01-01</p> <p>Super Dual Auroral Radar Network (SuperDARN) convection maps obtained simultaneously in both hemispheres are averaged to infer polar cap ionospheric flow patterns under strongly dominant positive interplanetary magnetic field (IMF) <fi>B</fi><fi>z</fi> component. The data set consisted of winter observations in the Northern Hemisphere simultaneously with summer observations in the Southern Hemisphere. Long-lasting high-latitude dayside reverse convection cells are shown to have faster sunward flows at near-magnetic noon hours in the summer/Southern Hemisphere. Sunward flows typically deviate from the midnight-noon meridian toward 10-11 h of magnetic local time in the summer/Southern Hemisphere and are more aligned with the midnight-noon meridian in the winter/Northern Hemisphere. Flow deviations in the winter/Northern Hemisphere can be both toward prenoon and postnoon hours, and there is no clear relationship between flow deviation and the IMF <fi>B</fi><fi>y</fi> component. No strong preference for the sunward flow occurrence depending on the IMF <fi>B</fi><fi>x</fi> polarity was found. In addition, the rate of the sunward flow speed increase in response to an increase in driving conditions was found to be comparable for the IMF <fi>B</fi><fi>x</fi> > 0 and <fi>B</fi><fi>x</fi> < 0.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12289894','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12289894"><span>IMF, World Bank programs hinder AIDS prevention.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Denoon, D J</p> <p>1995-07-10</p> <p>International Monetary Fund (IMF) and World Bank structural adjustment programs (SAPs) imposed on developing nations in the 1980s inadvertently helped set the stage for the AIDS epidemic. These programs continue to hinder efforts to prevent HIV transmission. SAPs resulted in the following phenomena which place populations at risk of HIV infection: increased rural-urban migration of cheap labor sparked by a shift to an export-oriented economy, the development of transportation infrastructures in the 1980s to support the changed economy, increased migration and urbanization, and reduced government spending upon health and social services necessitated by the SAPs. For HIV transmission in developing countries to be substantially reduced, the SAP economic policies which may have promoted disease must be modified. An alternative development strategy must satisfy basic human needs such as food, housing, and transport; shift emphasis from the production of a small number of primary commodities for export to diversified agricultural production; support marginal producers and subsistence farmers; emphasize human resource development; end the top-down approach favored by the IMF and World Bank in favor of a truly cooperative development policy; alter the charters of the IMF and World Bank to permit the cancellation or restructuring of debt; and require AIDS Impact Reports of the IMF and World Bank.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...853..142L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...853..142L"><span>Generation of Kappa Distributions in Solar Wind at 1 au</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Livadiotis, G.; Desai, M. I.; Wilson, L. B., III</p> <p>2018-02-01</p> <p>We examine the generation of kappa distributions in the solar wind plasma near 1 au. Several mechanisms are mentioned in the literature, each characterized by a specific relationship between the solar wind plasma features, the interplanetary magnetic field (IMF), and the kappa index—the parameter that governs the kappa distributions. This relationship serves as a signature condition that helps the identification of the mechanism in the plasma. In general, a mechanism that generates kappa distributions involves a single or a series of stochastic or physical processes that induces local correlations among particles. We identify three fundamental solar wind plasma conditions that can generate kappa distributions, noted as (i) Debye shielding, (ii) frozen IMF, and (iii) temperature fluctuations, each one prevailing in different scales of solar wind plasma and magnetic field properties. Moreover, our findings show that the kappa distributions, and thus, their generating mechanisms, vary significantly with solar wind features: (i) the kappa index has different dependence on the solar wind speed for slow and fast modes, i.e., slow wind is characterized by a quasi-constant kappa index, κ ≈ 4.3 ± 0.7, while fast wind exhibits kappa indices that increase with bulk speed; (ii) the dispersion of magnetosonic waves is more effective for lower kappa indices (i.e., further from thermal equilibrium); and (iii) the kappa and polytropic indices are positively correlated, as it was anticipated by the theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28538762','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28538762"><span>Papillary Muscle Free Strain in Patients with Severe Degenerative and Functional Mitral Regurgitation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kılıcgedik, Alev; Kahveci, Gokhan; Gurbuz, Ahmet Seyfeddin; Karabay, Can Yucel; Guler, Ahmet; Efe, Suleyman Cagan; Aung, Soe Moe; Arslantas, Ugur; Demir, Serdar; Izgi, Ibrahim Akin; Kirma, Cevat</p> <p>2017-04-01</p> <p>The role of papillary muscle function in severe mitral regurgitation with preserved and reduced left ventricular ejection fraction and the method of choice to evaluate PM have still been the subjects of controversy. To evaluate and compare papillary muscle function in and between patients with severe degenerative and functional mitral regurgitation by using the free strain method. 64 patients with severe mitral regurgitation - 39 patients with degenerative mitral regurgitation (DMR group) and 25 patients with severe functional mitral regurgitation (FMR group) - and 30 control subjects (control group) were included in the study. Papillary muscle function was evaluated through the free strain method from apical four chamber images of the anterolateral papillary muscle (APM) and from apical three chamber images of the posteromedial papillary muscle (PPM). Global left ventricular longitudinal and circumferential strains were evaluated by applying 2D speckle tracking imaging. Global left ventricular longitudinal strain (DMR group, -17 [-14.2/-20]; FMR group, -9 [-7/-10.7]; control group, -20 [-18/-21] p < 0.001), global left ventricular circumferential strain (DMR group, -20 [-14.5/-22.7]; FMR group, -10 [-7/-12]; control group, -23 [-21/-27.5] p < 0.001) and papillary musle strains (PPMS; DMR group, -30.5 [-24/-46.7]; FMR group, -18 [-12/-30]; control group; -43 [-34.5/-39.5] p < 0.001; APMS; DMR group, (-35 [-23.5/-43]; FMR group, -20 [-13.5/-26]; control group, -40 [-32.5/-48] p < 0.001) were significantly different among all groups. APMS and PPMS were highly correlated with LVEF (p < 0.001, p < 0.001; respectively), GLS (p < 0.001, p < 0.001; respectively) and GCS (p < 0.001, p < 0.00; respectively) of LV among all groups. No correlation was found between papillary muscle strains and effective orifice area (EOA) in both groups of severe mitral regurgitation. Measuring papillary muscle longitudinal strain by the free strain method is practical and applicable. Papillary muscle dysfunction plays a small role in severe MR due to degenerative or functional causes and papillary muscle functions in general seems to follow left ventricular function. PPM is the most affected PM in severe mitral regurgitation in both groups of DMR and FMR. O papel da função do músculo papilar na regurgitação mitral grave com fração de ejeção do ventrículo esquerdo preservada e reduzida e o método de escolha para avaliar PM ainda são objetos de controvérsia. Avaliar e comparar a função dos músculos papilares entre pacientes com insuficiência mitral funcional e degenerativa pelo método free strain. 64 pacientes com insuficiência mitral grave - 39 pacientes com insuficiência mitral degenerativa grave (grupo IMD) e 25 com insuficiência mitral funcional grave (grupo IMF) - e 30 indivíduos controle (grupo controle) foram incluídos no estudo. A função dos músculos papilares foi avaliada pelo método free strain a partir de imagens apicais quatro-câmaras do músculo papilar anterolateral (MPA) e imagens apicais três-câmaras do músculo papilar posteromedial (MPP). Strains circunferenciais e longitudinais globais do ventrículo esquerdo foram avaliados por meio de imagens bidimensionais a partir do rastreamento de conjunto de pontos de cinza (speckle tracking). O strain longitudinal global do ventrículo esquerdo (grupo IMD, -17 [-14,2/-20]; grupo IMF, -9 [-7/-10,7]; grupo controle, -20 [-18/-21] p < 0,001); strain circunferencial global do ventrículo esquerdo (grupo IMD, -20 [-14,5/-22,7]; grupo IMF, -10 [-7/-12]; grupo controle, -23 [-21/-27,5] p < 0,001) e strains de músculos papilares (MPP; grupo IMD, -30,5 [-24/-46,7]; grupo IMF, -18 [-12/-30]; grupo controle; -43 [-34,5/-39,5] p < 0,001; MPA; grupo IMD, (-35 [-23,5/-43]; grupo IMF, -20 [-13,5/-26]; grupo controle, -40 [-32,5/-48] p < 0,001) mostraram-se significativamente diferentes nos grupos. MPA e MPP mostraram-se altamente correlacionados com a FEVE (p < 0,001, p < 0,00; respectivamente), SLG (p < 0,001, p < 0,001; respectivamente) e SCG (p < 0,001, p < 0,001; respectivamente) do VE entre todos os grupos. Não foi encontrada correlação entre os strains de músculos papilares e área eficaz do orifício (AEO) nos grupos de insuficiência mitral grave. A medição do strain longitudinal de músculos papilares pelo método free strain é prática e aplicável. A disfunção dos músculos papilares tem um papel pequeno em IM grave devido a causas degenerativas e funcionais, e a função dos músculos papilares, em general, parece seguir a função ventricular esquerda. O MPP é o MP mais afetado na insuficiência mitral em ambos os grupos, IMD e IMF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110011837','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110011837"><span>Extracting Independent Local Oscillatory Geophysical Signals by Geodetic Tropospheric Delay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Botai, O. J.; Combrinck, L.; Sivakumar, V.; Schuh, H.; Bohm, J.</p> <p>2010-01-01</p> <p>Zenith Tropospheric Delay (ZTD) due to water vapor derived from space geodetic techniques and numerical weather prediction simulated-reanalysis data exhibits non-linear and non-stationary properties akin to those in the crucial geophysical signals of interest to the research community. These time series, once decomposed into additive (and stochastic) components, have information about the long term global change (the trend) and other interpretable (quasi-) periodic components such as seasonal cycles and noise. Such stochastic component(s) could be a function that exhibits at most one extremum within a data span or a monotonic function within a certain temporal span. In this contribution, we examine the use of the combined Ensemble Empirical Mode Decomposition (EEMD) and Independent Component Analysis (ICA): the EEMD-ICA algorithm to extract the independent local oscillatory stochastic components in the tropospheric delay derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) over six geodetic sites (HartRAO, Hobart26, Wettzell, Gilcreek, Westford, and Tsukub32). The proposed methodology allows independent geophysical processes to be extracted and assessed. Analysis of the quality index of the Independent Components (ICs) derived for each cluster of local oscillatory components (also called the Intrinsic Mode Functions (IMFs)) for all the geodetic stations considered in the study demonstrate that they are strongly site dependent. Such strong dependency seems to suggest that the localized geophysical signals embedded in the ZTD over the geodetic sites are not correlated. Further, from the viewpoint of non-linear dynamical systems, four geophysical signals the Quasi-Biennial Oscillation (QBO) index derived from the NCEP/NCAR reanalysis, the Southern Oscillation Index (SOI) anomaly from NCEP, the SIDC monthly Sun Spot Number (SSN), and the Length of Day (LoD) are linked to the extracted signal components from ZTD. Results from the synchronization analysis show that ZTD and the geophysical signals exhibit (albeit subtle) site dependent phase synchronization index.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MSSP...88....9B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MSSP...88....9B"><span>Detection of the ice assertion on aircraft using empirical mode decomposition enhanced by multi-objective optimization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bagherzadeh, Seyed Amin; Asadi, Davood</p> <p>2017-05-01</p> <p>In search of a precise method for analyzing nonlinear and non-stationary flight data of an aircraft in the icing condition, an Empirical Mode Decomposition (EMD) algorithm enhanced by multi-objective optimization is introduced. In the proposed method, dissimilar IMF definitions are considered by the Genetic Algorithm (GA) in order to find the best decision parameters of the signal trend. To resolve disadvantages of the classical algorithm caused by the envelope concept, the signal trend is estimated directly in the proposed method. Furthermore, in order to simplify the performance and understanding of the EMD algorithm, the proposed method obviates the need for a repeated sifting process. The proposed enhanced EMD algorithm is verified by some benchmark signals. Afterwards, the enhanced algorithm is applied to simulated flight data in the icing condition in order to detect the ice assertion on the aircraft. The results demonstrate the effectiveness of the proposed EMD algorithm in aircraft ice detection by providing a figure of merit for the icing severity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950029365&hterms=function+museums&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dfunction%2Bmuseums','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950029365&hterms=function+museums&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dfunction%2Bmuseums"><span>A more direct measure of supernova rates in starburst galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Van Buren, Dave; Greenhouse, Matthew A.</p> <p>1994-01-01</p> <p>We determine ages for young supernova remnants in the starburst galaxies M82 and NGC 253 by applying Chevalier's model for radio emission from supernova blast waves expanding into the ejecta of their precursor stars. Absolute ages are determined by calibrating the model with radio observations of Cas A. We derive supernova rates of 0.10 and 0.08/yr for M82 and NGC 253, respectively. Assuming L (sub FIR) to be proportional to the supernova rate, we find r(sub SN) approximately equal 2 x 10(exp -12) x L(sub FIR), solar yr(exp -1) for these archetypal starburst galaxies. This approach is unique in that the supernova rate is derived from direct observation of supernova remnants rather than from star formation rates and an assumed initial mass function (IMF). We suggest that the approach presented here can be used to derive star-formation rates that are more directly related to observable quantities than those derived by other methods. We find that the supernova rate, far infrared (FIR) luminosity, and dynamical mass of the M82 starburst place few constraints on the initial mass function (IMF) slope and mass limits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1402608-role-imf-prompt-electric-field-disturbances-over-equatorial-ionosphere-during-space-weather-event','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1402608-role-imf-prompt-electric-field-disturbances-over-equatorial-ionosphere-during-space-weather-event"><span>Role of IMF B y in the prompt electric field disturbances over equatorial ionosphere during a space weather event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Chakrabarty, Dipu; Hui, Debrup; Rout, Diptiranjan; ...</p> <p>2017-02-04</p> <p>On 7 January 2005 (Ap=40) prompt penetration electric field perturbations of opposite polarities were observed over Thumba and Jicamarca on a few occasions during 13:45–16:30 UT. However, the electric field was found to be eastward during 14:45–15:30 UT over both Thumba and Jicamarca contrary to the general expectation wherein opposite polarities are expected at nearly antipodal points. On closer scrutiny, three important observational features are noticed during 14:10–15:15 UT. First, during 14:10–14:45 UT, despite increasing southward interplanetary magnetic field (IMF) B z condition, the already westward electric field over Thumba weakened (less westward) while the eastward electric field over Jicamarcamore » intensified (more eastward). Second, the electric field not only became anomalously eastward over Thumba but also got intensified further during 14:45–15:00 UT similar to Jicamarca. Third, during 15:00–15:15 UT, despite IMF B z remaining steadily southward, the eastward electric field continued to intensify over Thumba but weakened over Jicamarca. It is suggested that the changes in IMF B y component under southward IMF B z condition are responsible for skewing the ionospheric equipotential patterns over the dip equator in such a way that Thumba came into the same DP2 cell as that of Jicamarca leading to anomalous electric field variations. Magnetic field measurements along the Indian and Jicamarca longitude sectors and changes in high-latitude ionospheric convection patterns provide credence to this proposition. Therefore, in conclusion, the present investigation shows that the variations in IMF B y are fundamentally important to understand the prompt penetration effects over low latitudes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1402608','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1402608"><span>Role of IMF B y in the prompt electric field disturbances over equatorial ionosphere during a space weather event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chakrabarty, Dipu; Hui, Debrup; Rout, Diptiranjan</p> <p></p> <p>On 7 January 2005 (Ap=40) prompt penetration electric field perturbations of opposite polarities were observed over Thumba and Jicamarca on a few occasions during 13:45–16:30 UT. However, the electric field was found to be eastward during 14:45–15:30 UT over both Thumba and Jicamarca contrary to the general expectation wherein opposite polarities are expected at nearly antipodal points. On closer scrutiny, three important observational features are noticed during 14:10–15:15 UT. First, during 14:10–14:45 UT, despite increasing southward interplanetary magnetic field (IMF) B z condition, the already westward electric field over Thumba weakened (less westward) while the eastward electric field over Jicamarcamore » intensified (more eastward). Second, the electric field not only became anomalously eastward over Thumba but also got intensified further during 14:45–15:00 UT similar to Jicamarca. Third, during 15:00–15:15 UT, despite IMF B z remaining steadily southward, the eastward electric field continued to intensify over Thumba but weakened over Jicamarca. It is suggested that the changes in IMF B y component under southward IMF B z condition are responsible for skewing the ionospheric equipotential patterns over the dip equator in such a way that Thumba came into the same DP2 cell as that of Jicamarca leading to anomalous electric field variations. Magnetic field measurements along the Indian and Jicamarca longitude sectors and changes in high-latitude ionospheric convection patterns provide credence to this proposition. Therefore, in conclusion, the present investigation shows that the variations in IMF B y are fundamentally important to understand the prompt penetration effects over low latitudes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E.813E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E.813E"><span>Distinct sources of injections in the polar cusp observed by Cluster</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Escoubet, C. Philippe; Reme, Henri; Dunlop, Malcolm; Daly, Patrick; Laakso, Harri; Berchem, Jean; Richard, Robert; Taylor, Matthew; Trattner, Karlheinz; Grison, Benjamin; Dandouras, Iannis; Fazakerley, Andrew; Pitout, Frederic; Masson, Arnaud</p> <p></p> <p>The main process that injects solar wind plasma into the polar cusp is now generally accepted to be magnetic reconnection. Depending on the IMF direction, this process takes place equatorward (for IMF southward), poleward (for IMF northward) or on the dusk or dawn sides (for IMF azimuthal) of the cusp. We report a Cluster crossing on 5 January 2002 near the exterior cusp on the southern dusk side. The IMF was mainly azimuthal (IMF-By around -5 nT), the solar wind speed lower than usual around 280 km/s and the density around 5 cm-3. The four Cluster spacecraft had an elongated configuration near the magnetopause. C4 was the first spacecraft to enter the cusp around 19:52:04 UT, followed by C2 at 19:52:35 UT, C1 at 19:54:24 UT and C3 at 20:13:15 UT. C4 and C1 observed two ion energy dispersions at 20:10 UT and 20:40 UT and C3 at 20:35 UT and 21:15 UT. Using the time of flight technique on the upgoing and downgoing ions in the dispersions, we obtain an altitude of the sources of these ions between 14 and 20 RE. Using Tsyganenko model, these sources are located on the dusk flank, past the terminator. The first injection by C3 is seen at approximately the same time as the 2nd injection on C1 but their sources at the magnetopause were separated by more than 10 RE. This would imply that two distinct sources were active at the same time on the dusk flank of the magnetosphere.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMSM13B2356E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMSM13B2356E"><span>Double cusp encounter by Cluster: double cusp or motion of the cusp?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Escoubet, C. P.; Berchem, J.; Trattner, K. J.; Pitout, F.; Richard, R. L.; Taylor, M. G.; Soucek, J.; Grison, B.; Laakso, H. E.; Masson, A.; Dunlop, M. W.; Dandouras, I. S.; Reme, H.; Fazakerley, A. N.; Daly, P. W.</p> <p>2012-12-01</p> <p>Modeling plasma entry in the polar cusp has been successful in reproducing ion dispersions observed in the cusp at low and mid-altitudes. The use of a realistic convection pattern allowed Wing et al. [2001] to model double cusp signatures that were observed by the DMSP spacecraft when the Interplanetary Magnetic Field (IMF) is southward but has a dominant By component (|IMF-By|>|IMF-Bz|). Under these conditions, reconnection between the IMF and the geomagnetic field is predicted to occur both at high latitudes and around the equatorial plane (or subsolar region). This multiple reconnection topology subsequently produces two different injections of plasma into the cusp, hence the observation of the so-called double cusp. However, the two cusps can be very close to each other and a detailed analysis of the dispersion of the precipitating ions is very often required to clearly identify them. We will present a cusp crossing where two cusps are observed, separated by 1° ILAT. Cluster 1 and 2 observed these two cusps within a few minute interval and about 10 and 50 min later, respectively, Cluster 4 and 3 observed a single cusp only. A peculiarity of this event was the fact that the second cusp seen on C1 and C2 was observed at the same time as the first cusp on C4. This would tend to suggest that the two dispersions are spatial features similar to the double cusp. However more detailed analysis of the characteristics of the cusps (ion dispersion, boundaries) and the IMF abrupt changes clearly showed that the double cusp was in fact a single cusp that had moved toward dawn and then back toward dusk following the changes in the IMF direction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.2574C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.2574C"><span>Role of IMF By in the prompt electric field disturbances over equatorial ionosphere during a space weather event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chakrabarty, D.; Hui, Debrup; Rout, Diptiranjan; Sekar, R.; Bhattacharyya, Archana; Reeves, G. D.; Ruohoniemi, J. M.</p> <p>2017-02-01</p> <p>On 7 January 2005 (Ap=40) prompt penetration electric field perturbations of opposite polarities were observed over Thumba and Jicamarca on a few occasions during 13:45-16:30 UT. However, the electric field was found to be eastward during 14:45-15:30 UT over both Thumba and Jicamarca contrary to the general expectation wherein opposite polarities are expected at nearly antipodal points. On closer scrutiny, three important observational features are noticed during 14:10-15:15 UT. First, during 14:10-14:45 UT, despite increasing southward interplanetary magnetic field (IMF) Bz condition, the already westward electric field over Thumba weakened (less westward) while the eastward electric field over Jicamarca intensified (more eastward). Second, the electric field not only became anomalously eastward over Thumba but also got intensified further during 14:45-15:00 UT similar to Jicamarca. Third, during 15:00-15:15 UT, despite IMF Bz remaining steadily southward, the eastward electric field continued to intensify over Thumba but weakened over Jicamarca. It is suggested that the changes in IMF By component under southward IMF Bz condition are responsible for skewing the ionospheric equipotential patterns over the dip equator in such a way that Thumba came into the same DP2 cell as that of Jicamarca leading to anomalous electric field variations. Magnetic field measurements along the Indian and Jicamarca longitude sectors and changes in high-latitude ionospheric convection patterns provide credence to this proposition. Thus, the present investigation shows that the variations in IMF By are fundamentally important to understand the prompt penetration effects over low latitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020018821','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020018821"><span>Strong IMF By-Related Plasma Convection in the Ionosphere and Cusp Field-Aligned Currents Under Northward IMF Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Le, G.; Lu, G.; Strangeway, R. J.; Pfaff, R. F., Jr.; Vondrak, Richard R. (Technical Monitor)</p> <p>2001-01-01</p> <p>We present in this paper an investigation of IMF-By related plasma convection and cusp field-aligned currents using FAST data and AMIE model during a prolonged interval with large positive IMF By and northward Bz conditions (By/Bz much greater than 1). Using the FAST single trajectory observations to validate the global convection patterns at key times and key locations, we have demonstrated that the AMIE procedure provides a reasonably good description of plasma circulations in the ionosphere during this interval. Our results show that the plasma convection in the ionosphere is consistent with the anti-parallel merging model. When the IMF has a strongly positive By component under northward conditions, we find that the global plasma convection forms two cells oriented nearly along the Sun-earth line in the ionosphere. In the northern hemisphere, the dayside cell has clockwise convection mainly circulating within the polar cap on open field lines. A second cell with counterclockwise convection is located in the nightside circulating across the polar cap boundary, The observed two-cell convection pattern appears to be driven by the reconnection along the anti-parallel merging lines poleward of the cusp extending toward the dusk side when IMF By/Bz much greater than 1. The magnetic tension force on the newly reconnected field lines drives the plasma to move from dusk to dawn in the polar cusp region near the polar cap boundary. The field-aligned currents in the cusp region flow downward into the ionosphere. The return field-aligned currents extend into the polar cap in the center of the dayside convection cell. The field-aligned currents are closed through the Peterson currents in the ionosphere, which flow poleward from the polar cap boundary along the electric field direction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMSM14A..07E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMSM14A..07E"><span>Plasma jets and FTE Dayside Generation for Northward IMF on 8 June 2007: THEMIS Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eriksson, S.; Cully, C. M.; Ergun, R. E.; Gosling, J. T.; Angelopoulos, V.; Bonnell, J. W.; McFadden, J. P.; Glassmeier, K.; Roux, A.; Auster, H.; Le Contel, O.</p> <p>2007-12-01</p> <p>Five-spacecraft THEMIS (TH) observations are presented for a 15.5 MLT equatorial magnetopause crossing on 8 June 2007 when the upstream IMF was predominantly northward with a negative IMF By component at Wind. During the 0650-0855 UT period on this day TH-B was the most tailward probe while TH-A was the most sunward probe. TH-E was closest to TH-A with a maximum separation of only 0.71 RE. The maximum TH-A to TH-B GSM separation was 1.85 RE. TH-B showed a clean magnetopause crossing into the magnetosphere as the magnetopause expanded over the probes while TH-A spent this 2-hour period within a boundary layer inside the magnetopause with frequent transitions between a magnetosheath-like and a magnetosphere-like plasma as previously seen by Cluster at high-latitudes for southward IMF [Wild et al., 2003]. TH-E observed similar activity for a shorter period of time. Many of the sheath-like transitions showed evidence of plasma jets at TH-A with enhanced speed in the tailward and/or duskward direction suggesting a subsolar component merging region. Some jets were related to frequent bipolar FTE signatures in the normal BN component with enhanced total pressure observed at their centers. The more common ±BN sequence suggests that TH-A observed tailward propagating FTEs on the sheath side of the magnetopause. We compare TH-E ExB velocities with the enhanced jet velocities observed by TH-A and discuss whether the jets observed within this boundary layer were caused by subsolar magnetopause reconnection. We also compare these low-latitude northward IMF observations with prior Cluster FTE observations at high-latitude for southward IMF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4554844','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4554844"><span>Correlation between Heart-type Fatty Acid-binding Protein Gene Polymorphism and mRNA Expression with Intramuscular Fat in Baicheng-oil Chicken</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Yong; He, Jianzhong; Yang, Wenxuan; Muhantay, Gemenggul; Chen, Ying; Xing, Jinming; Liu, Jianzhu</p> <p>2015-01-01</p> <p>This study aims to determine the polymorphism and mRNA expression pattern of the heart-type fatty acid-binding protein (H-FABP) gene and their association with intramuscular fat (IMF) content in the breast and leg muscles of Baicheng oil chicken (BOC). A total of 720 chickens, including 240 black Baicheng oil chicken (BBOC), 240 silky Baicheng oil chicken (SBOC), and 240 white Baicheng oil chicken (WBOC) were raised. Three genotypes of H-FABP gene second extron following AA, AB, and BB were detected by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) strategy. The G939A site created AA genotype and G956A site created BB genotype. The content of IMF in AA genotype in breast muscle of BBOC was significantly higher than that of AB (p = 0.0176) and the genotype in leg muscle of WBOC was significantly higher than that of AB (p = 0.0145). The G939A site could be taken as genetic marker for higher IMF content selecting for breast muscle of BBOC and leg muscle of WBOC. The relative mRNA expression of H-FABP was measured by real-time PCR at 30, 60, 90, and 120 d. The IMF content significantly increased with age in both muscles. The mRNA expression level of H-FABP significantly decreased with age in both muscles of the three types of chickens. Moreover, a significant negative correlation between H-FABP abundance and IMF content in the leg muscles of WBOC (p = 0.035) was observed. The mRNA expression of H-FABP negatively correlated with the IMF content in both breast and leg muscles of BOC sat slaughter time. PMID:26323394</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3251718','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3251718"><span>Longitudinal Changes in Intermuscular Fat Volume and Quadriceps Muscle Volume in the Thighs of Female Osteoarthritis Initiative Participants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>MacIntyre, Norma J.; Ramadan, Khaled; Inglis, Dean; Maly, Monica R.</p> <p>2011-01-01</p> <p>Objectives To quantify rates of change in quadriceps muscle (QM) and intermuscular fat (IMF) volumes over 2-years in women in the Osteoarthritis Initiative (OAI) study and examine group differences between those with radiographic OA (ROA) and those without (non-ROA). Methods The OAI database was queried for women ≥50 years old in the incident and progression cohorts with and without ROA at baseline. Mid-thigh MRI scans (15 contiguous slices, 5 mm slice thickness) of eligible women were randomly selected and anonymized. Image pairs were registered. QM and IMF were segmented in the 12 most proximal matching slices with the segmenter blinded to image time point. Age-adjusted differences in QM and IMF volume changes between groups were tested using ANCOVA. Results 41 women without ROA (mean (SD) age 60.7 (7.6) yrs) and 45 with ROA (mean (SD) age 64.5 (6.7) yrs) were included. Mean QM and IMF volume changes in the non-ROA group were -4.1 (11.1) cm3 and 3.4 (7.1) cm3, respectively, and -5.4 (13.5) cm3 and 3.1 (7.4) cm3 in the ROA group, respectively. Age-adjusted between-group differences in QM and IMF changes were not significant (p>0.05). Conclusions Two-year changes in QM and IMF volume appear consistent with ageing and do not seem to be related to OA status. Direct comparison with a control cohort without OA risk factors could confirm this. Since group assignment was based on baseline data, there may have been women in the non-ROA group who developed radiographic OA over follow-up resulting in some overlap between groups. PMID:21905259</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018nova.pres.3568K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018nova.pres.3568K"><span>Sizes of Black Holes Throughout the Universe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kohler, Susanna</p> <p>2018-05-01</p> <p>What is the distribution of sizes of black holes in our universe? Can black holes of any mass exist, or are there gaps in their possible sizes? The shape of this black-hole mass function has been debated for decades and the dawn of gravitational-wave astronomy has only spurred further questions.Mind the GapsThe starting point for the black-hole mass function lies in the initial mass function (IMF) for stellar black holes the beginning size distribution of black holes after they are born from stars. Instead of allowing for the formation of stellar black holes of any mass, theoretical models propose two gaps in the black-hole IMF:An upper mass gap at 50130 solar masses, due to the fact that stellar progenitors of black holes in this mass range are destroyed by pair-instability supernovae.A lower mass gap below 5 solar masses, which is argued to arise naturally from the mechanics of supernova explosions.Missing black-hole (BH) formation channels due to the existence of the lower gap (LG) and the upper gap (UG) in the initial mass function. a) The number of BHs at all scales are lowered because no BH can merge with BHs in the LG to form a larger BH. b) The missing channel responsible for the break at 10 solar masses, resulting from the LG. c) The missing channel responsible for the break at 60 solar masses, due to the interaction between the LG and the UG. [Christian et al. 2018]We can estimate the IMF for black holes by scaling a typical IMF for stars and then adding in these theorized gaps. But is this initial distribution of black-hole masses the same as the distribution that we observe in the universe today?The Influence of MergersBased on recent events, the answer appears to be no! Since the first detections of gravitational waves in September 2015, we now know that black holes can merge to form bigger black holes. An initial distribution of black-hole masses must therefore evolve over time, as mergers cause the depletion of low-mass black holes and an increase in higher-mass black holes.A team of scientists led by Pierre Christian, an Einstein Fellow at Harvard University, has now looked into characterizing this shift. In particular, Christian and collaborators explore how black-hole mergers in the centers of dense star clustersultimately shape the black-hole mass function of the universe.Black Holes TodayChristian and collaborators use analytical models of coagulation mergers of particles to form larger particles to estimate the impact of mergers in star clusters on resulting black-hole sizes. They find that, over an evolution of 10 billion years, mergers can appreciably fill in the upper mass gap of the black-hole IMF.An example of the black-hole mass function that can result from evolving the initial mass function complete with gaps over time. Two breaks appear as a result of the initial gaps: one at 10 (LB) and one at 60 solar masses (UB). [Christian et al. 2018]The lower mass gap, on the other hand, leaves observable signatures in the final black-hole mass function: a break at 10 solar masses (since black holes below this mass cant be created by mergers) and one at 60 solar masses (caused by the interaction of the upper and lower gaps). As we build up black-hole statistics in the future (thanks, gravitational-wave detectors!), searching for these breaks will help us to test our models.Lastly, the authors find that their models can only be consistent with observations if ejection is efficient black holes must be regularly ousted from star clusters through interactions with other bodies or as a result of kicks when they merge. This idea is consistent with many recent studies supporting a large population of free-floating stellar-mass black holes.CitationPierre Christian et al 2018 ApJL 858 L8. doi:10.3847/2041-8213/aabf88</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMPP43B1694W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMPP43B1694W"><span>A Millennial-length Reconstruction of the Western Pacific Pattern with Associated Paleoclimate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wright, W. E.; Guan, B. T.; Wei, K.</p> <p>2010-12-01</p> <p>The Western Pacific Pattern (WP) is a lesser known 500 hPa pressure pattern similar to the NAO or PNA. As defined, the poles of the WP index are centered on 60°N over the Kamchatka peninsula and the neighboring Pacific and on 32.5°N over the western north Pacific. However, the area of influence for the southern half of the dipole includes a wide swath from East Asia, across Taiwan, through the Philippine Sea, to the western north Pacific. Tree rings of Taiwanese Chamaecyparis obtusa var. formosana in this extended region show significant correlation with the WP, and with local temperature. The WP is also significantly correlated with atmospheric temperatures over Taiwan, especially at 850hPa and 700 hPa, pressure levels that bracket the tree site. Spectral analysis indicates that variations in the WP occur at relatively high frequency, with most power at less than 5 years. Simple linear regression against high frequency variants of the tree-ring chronology yielded the most significant correlation coefficients. Two reconstructions are presented. The first uses a tree-ring time series produced as the first intrinsic mode function (IMF) from an Ensemble Empirical Mode Decomposition (EEMD), based on the Hilbert-Huang Transform. The significance of the regression using the EEMD-derived time series was much more significant than time series produced using traditional high pass filtering. The second also uses the first IMF of a tree-ring time series, but the dataset was first sorted and partitioned at a specified quantile prior to EEMD decomposition, with the mean of the partitioned data forming the input to the EEMD. The partitioning was done to filter out the less climatically sensitive tree rings, a common problem with shade tolerant trees. Time series statistics indicate that the first reconstruction is reliable to 1241 of the Common Era. Reliability of the second reconstruction is dependent on the development of statistics related to the quantile partitioning, and the consequent reduction in sample depth. However, the correlation coefficients from regressions over the instrumental period greatly exceed those from any other method of chronology generation, and so the technique holds promise. Additional atmospheric parameters having significant correlations against the WPO and tree ring time series with similar spatial patterns are also presented. These include vertical wind shear (850hPa-700hPa) over the northern Philippines and the Philippine Sea, surface Omega and 850hPa v-winds over the East China Sea, Japan and Taiwan. Possible links to changes in the subtropical jet stream will also be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........11N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........11N"><span>Mosfire Spectroscopy Of Galaxies In Cosmic Noon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nanayakkara, Themiya</p> <p>2017-07-01</p> <p>The recent development of sensitive, multiplexed near infra-red instruments has presented astronomers the unique opportunity to survey mass/magnitude complete samples of galaxies at Cosmic Noon, a time period where ˜ 80% of the observed baryonic mass is generated and galaxies are actively star-forming and evolving rapidly. This thesis takes advantage of the recently commissioned MOSFIRE spectrograph on Keck, to conduct a survey (ZFIRE) of galaxies at 1.5 < z < 2.5 to measure accurate spectroscopic redshifts and basic galaxy properties derived from multiple emission lines. The majority of the thesis work involved survey planning, observing, data reduction, and catalogue preparation of the ZFIRE survey and is described in detail in this thesis. Using the ZFIRE spectroscopic redshifts, I show why spectroscopy is instrumental to determine fundamental galaxy properties via SED fitting techniques and to probe gravitationally bound structures in the early universe. The thesis further presents basic properties of the ZFIRE data products publicly released for the benefit of the astronomy community. The high mass-completeness of the ZFIRE spectroscopic data at z ˜ 2 makes it ideal to study fundamental galaxy properties such as, star formation rates, metallicities, interstellar medium properties, galaxy kinematics, and the stellar initial mass functions in unbiased star-forming galaxies. This thesis focuses on one such aspect, the IMF. By using a mass-complete (log10(M∗/M) ˜ 9.3) sample of 102 galaxies at z = 2.1 in the COSMOS field from ZFIRE, I investigate the IMF of star-forming galaxies by revisiting the classical Kennicutt (1983) technique of using the Hα equivalent widths and rest-frame optical colours. I present a thorough analysis of stellar population properties of the ZFIRE sample via multiple synthetic stellar population models and stellar libraries. Due to an excess of high Hα-EW galaxies that are up to 0.3-0.5 dex above the Salpeter locus, the Hα-EW distribution is much broader (10-500˚A) than can be explained by a simple monotonic SFH with a standard Salpeter-slope IMF. This result is robust against uncertainties in dust correction and observational bias, and no single IMF (i.e. non-Salpeter slope) can explain the distribution. Starburst models cannot explain the Hα-EW distribution because: 1) spectral stacking still shows an excess Hα-EW in composite populations and 2) Monte Carlo burst models show that the timescale for high Hα-EW is too short to explain their abundance in the ZFIRE sample. Other possible physical mechanisms that could produce excess ionising photons for a given star-formation rate, and hence high equivalent widths, including models with variations in stellar rotation, binary star evolution, metallicity, and upper mass cutoff of the IMF are investigated and ruled out. IMF variation is one possible explanation for the high Hα-EWs. However, the highest Hα-EW values would require very shallow slopes (Γ > -1.0) and no single IMF change can explain the large variation in Hα-EWs. Instead the IMF would have to vary stochastically. Therefore, currently there is no simple physical model to explain the large variation in Hα-EWs at z ˜ 2, but the distinct differences of the z ˜ 2 sample with that of local galaxies are found to be intriguing. Further study is required to fully constrain the stellar population parameters of actively star-forming galaxies at the epoch of maximum star-formation. Probing multiple rest-frame UV and optical features of galaxies simultaneously along with galaxy dynamical studies via integral field spectroscopy will be vital to understand stellar and ionized gas properties of these galaxies. Furthermore, low-z analogues of galaxies at z ˜ 2 will provide vital clues to constrain galaxy evolution models aided by the ability to probe galaxies in high resolution to low surface brightness limits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA372649','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA372649"><span>Southeast Asia Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1986-08-19</p> <p>Economic Minister Seeks Li eralized Imports (Julie C. Nel Castillo; BUSINESS DAY, 30 Jul 86) 25 IMF Agreement Blocks Intervention in Forex Market...IMF AGREEMENT BLOCKS INTERVENTION IN FOREX MARKET HK310416 Quezon City BUSINESS DAY in English 30 Jul 86 p 3 [By Daniel C. Yu] [Text] The government</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950052986&hterms=background+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dbackground%2Bwind','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950052986&hterms=background+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dbackground%2Bwind"><span>Dynamic behavior of solar wind as revealed by a correlation study of magnetic fields observed at the Venus and Earth orbits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marubashi, K.</p> <p>1995-01-01</p> <p>Correlations between interplanetary magnetic fields (IMFs) at 0.72 AU and 1.0 AU have been examined using data sets obtained from the Pioneer Venus orbiter and Earth-orbiting spacecraft. While the two-sector structures are evident in long-term variations at these two heliocentric distances, the corresponding auto-correlation coefficients are consistently smaller at 1.0 AU than at 0.72 AU. This suggests that the IMF structures become less persistent at 1.0 AU due to the effects of changing solar wind dynamics between the Venus and Earth orbits. Short-term variations exhibit generally poor correlations between IMFs near Venus and those near Earth, though good correlations are sometimes obtained for well-defined structures when the Sun, Venus, and Earth are closely aligned. The rather poor correlations in the background streams indicate that the IMFs are still changing between the Venus and Earth orbits under the strong influence of solar wind dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760053286&hterms=formation+day+night&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dformation%2Bday%2Bnight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760053286&hterms=formation+day+night&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dformation%2Bday%2Bnight"><span>Influence of the interplanetary magnetic field on the occurrence and thickness of the plasma mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sckopke, N.; Paschmann, G.; Rosenbauer, H.; Fairfield, D. H.</p> <p>1976-01-01</p> <p>The response of the plasma mantle to the orientation of the interplanetary magnetic field (IMF) has been studied by correlating Heos 2 plasma and Imp 6 magnetic field data. The mantle is nearly always present when the IMF has a southward component and often also when the field has a weak northward component. In addition, the mantle appears increasingly thicker with greater southward components. On the other hand, the mantle is thin or missing (from the region where it is normally found) when the average IMF has a strong northward component. This result supports the idea that polar cap convection plays a dominant role in the formation of the plasma mantle: mantle plasma originates in the magnetosheath, enters the magnetosphere through the day side polar cusps, and is transported across the cusp to the night side by means of a convection electric field whose magnitude is controlled by the orientation of the IMF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28783307','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28783307"><span>Voltage Controlled Hot Carrier Injection Enables Ohmic Contacts Using Au Island Metal Films on Ge.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ganti, Srinivas; King, Peter J; Arac, Erhan; Dawson, Karl; Heikkilä, Mikko J; Quilter, John H; Murdoch, Billy; Cumpson, Peter; O'Neill, Anthony</p> <p>2017-08-23</p> <p>We introduce a new approach to creating low-resistance metal-semiconductor ohmic contacts, illustrated using high conductivity Au island metal films (IMFs) on Ge, with hot carrier injection initiated at low applied voltage. The same metallization process simultaneously allows ohmic contact to n-Ge and p-Ge, because hot carriers circumvent the Schottky barrier formed at metal/n-Ge interfaces. A 2.5× improvement in contact resistivity is reported over previous techniques to achieve ohmic contact to both n- and p- semiconductor. Ohmic contacts at 4.2 K confirm nonequilibrium current transport. Self-assembled Au IMFs are strongly orientated to Ge by annealing near the Au/Ge eutectic temperature. Au IMF nanostructures form, provided the Au layer is below a critical thickness. We anticipate that optimized IMF contacts may have applicability to many material systems. Optimizing this new paradigm for metal-semiconductor contacts offers the prospect of improved nanoelectronic systems and the study of voltage controlled hot holes and electrons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850019115','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850019115"><span>On the use of a sunward-libration-point orbiting spacecraft as an IMF monitor for magnetospheric studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kelly, T. J.; Crooker, N. U.; Siscoe, G. L.; Russell, C. T.; Smith, E. J.</p> <p>1984-01-01</p> <p>Magnetospheric studies often require knowledge of the orientation of the IMF. In order to test the accuracy of using magnetometer data from a spacecraft orbiting the sunward libration point for this purpose, the angle between the IMF at ISEE 3, when it was positioned around the libration point, and at ISEE 1, orbiting Earth, has been calculated for a data set of two-hour periods covering four months. For each period, a ten-minute average of ISEE 1 data is compared with ten-minute averages of ISEE 3 data at successively lagged intervals. At the lag time equal to the time required for the solar wind to convect from ISEE 3 to ISEE 1, the median angle between the IMF orientation at the two spacecraft is 20 deg, and 80% of the cases have angles less than 38 deg. The results for the angles projected on the y-z plane are essentially the same.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870027662&hterms=earth+magnetic+field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dearth%2Bmagnetic%2Bfield','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870027662&hterms=earth+magnetic+field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dearth%2Bmagnetic%2Bfield"><span>An MHD simulation of the effects of the interplanetary magnetic field By component on the interaction of the solar wind with the earth's magnetosphere during southward interplanetary magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ogino, T.; Walker, R. J.; Ashour-Abdalla, M.; Dawson, J. M.</p> <p>1986-01-01</p> <p>The interaction between the solar wind and the earth's magnetosphere has been studied by using a time-dependent three-dimensional MHD model in which the IMF pointed in several directions between dawnward and southward. When the IMF is dawnward, the dayside cusp and the tail lobes shift toward the morningside in the northern magnetosphere. The plasma sheet rotates toward the north on the dawnside of the tail and toward the south on the duskside. For an increasing southward IMF component, the plasma sheet becomes thinner and subsequently wavy because of patchy or localized tail reconnection. At the same time, the tail field-aligned currents have a filamentary layered structure. When projected onto the northern polar cap, the filamentary field-aligned currents are located in the same area as the region 1 currents, with a pattern similar to that associated with auroral surges. Magnetic reconnection also occurs on the dayside magnetopause for southward IMF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790041958&hterms=Orientation+basis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DOrientation%2Bbasis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790041958&hterms=Orientation+basis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DOrientation%2Bbasis"><span>IMF orientation, solar wind velocity, and Pc 3-4 signals - A joint distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greenstadt, E. W.; Singer, H. J.; Russell, C. T.; Olson, J. V.</p> <p>1979-01-01</p> <p>Separate studies using the same micropulsation data base in the period range 10-150 s have shown earlier that signal levels recorded during September, October, and November 1969 at Calgary correlated positively with both solar-wind alignment of the IMF and solar-wind speed, but each correlation contained enough scatter to allow for the influence of the other factor. In this report, joint correlations of velocity and field direction with parameters representing hourly distributions rather than minima of IMF orientation angle display the relative effect of the two agents on magnetic pulsation signal levels. The joint correlations reduce the overall scatter and show that solar-wind speeds above 200-300 km/s and angles between the IMF and the sun-earth line of less than 50-60 deg are associated with enlarged magnetic pulsation amplitudes. These threshold effects tend to support both the bow-shock origin and the Kelvin-Helmholtz amplification of daytime signal transients in the Pc 3, 4 period ranges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24973776','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24973776"><span>Prediction of intramuscular fat levels in Texel lamb loins using X-ray computed tomography scanning.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Clelland, N; Bunger, L; McLean, K A; Conington, J; Maltin, C; Knott, S; Lambe, N R</p> <p>2014-10-01</p> <p>For the consumer, tenderness, juiciness and flavour are often described as the most important factors for meat eating quality, all of which have a close association with intramuscular fat (IMF). X-ray computed tomography (CT) can measure fat, muscle and bone volumes and weights, in vivo in sheep and CT predictions of carcass composition have been used in UK sheep breeding programmes over the last few decades. This study aimed to determine the most accurate combination of CT variables to predict IMF percentage of M. longissimus lumborum in Texel lambs. As expected, predicted carcass fat alone accounted for a moderate amount of the variation (R(2)=0.51) in IMF. Prediction accuracies were significantly improved (Adj R(2)>0.65) using information on fat and muscle densities measured from three CT reference scans, showing that CT can provide an accurate prediction of IMF in the loin of purebred Texel sheep. Copyright © 2014. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH53A2555H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH53A2555H"><span>Dependence of the Interplanetary Magnetic Field on Heliocentric Distance between 0.3 and 1.7 AU from MESSENGER, ACE and MAVEN data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hanneson, C.; Johnson, C.; Al Asad, M.</p> <p>2017-12-01</p> <p>Magnetometer data from the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER), Advanced Composition Explorer (ACE) and Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft were used to characterize the variation of the interplanetary magnetic field (IMF) with heliocentric distance from 0.3 to 1.7 AU. MESSENGER and ACE data form a set of simultaneous observations that spans eight years, from March 2007 until April 2015, with ACE observations continuing until the present. MAVEN data have been collected since November 2014. Furthermore, for the period 2008-2015, MESSENGER and ACE observations were taken over the same range of heliocentric distances: 0.31-0.47 AU and 0.94-1.00 AU respectively. The IMF varies with the solar sunspot cycle, and so data taken simultaneously at different heliocentric distances allow solar-cycle effects to be decoupled from the radial evolution of the IMF. The data were averaged temporally by taking 1-hour means, and median values were then computed in 0.01-AU bins. For the time interval spanned by all observations, the median value of the magnitude of the IMF decreases steadily from 30.1 nT at 0.3 AU to 4.3 nT at 1.0 AU and 2.5 nT at 1.6 AU. The magnitude of the IMF was found to decay with heliocentric distance according to an inverse power law with an exponent equal to the adiabatic index for an ideal monatomic gas, 5/3, within 95% confidence limits. The magnitude of the radial component decays with distance as an inverse square law within 95% confidence limits. We also consider temporal variations of the heliocentric-dependence of the IMF over the current solar cycle by computing power law fits to the simultaneous MESSENGER and ACE observations using a moving window. Our study complements the recent study of Gruesbeck et al. (2017) that used Juno data to consider the variation in IMF properties over the heliocentric distance range 1 to 6 AU.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22646994','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22646994"><span>Identification of differentially expressed genes and pathways for intramuscular fat deposition in pectoralis major tissues of fast-and slow-growing chickens.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cui, Huan-Xian; Liu, Ran-Ran; Zhao, Gui-Ping; Zheng, Mai-Qing; Chen, Ji-Lan; Wen, Jie</p> <p>2012-05-30</p> <p>Intramuscular fat (IMF) is one of the important factors influencing meat quality, however, for chickens, the molecular regulatory mechanisms underlying this trait have not yet been determined. In this study, a systematic identification of candidate genes and new pathways related to IMF deposition in chicken breast tissue has been made using gene expression profiles of two distinct breeds: Beijing-you (BJY), a slow-growing Chinese breed possessing high meat quality and Arbor Acres (AA), a commercial fast-growing broiler line. Agilent cDNA microarray analyses were conducted to determine gene expression profiles of breast muscle sampled at different developmental stages of BJY and AA chickens. Relative to d 1 when there is no detectable IMF, breast muscle at d 21, d 42, d 90 and d 120 (only for BJY) contained 1310 differentially expressed genes (DEGs) in BJY and 1080 DEGs in AA. Of these, 34-70 DEGs related to lipid metabolism or muscle development processes were examined further in each breed based on Gene Ontology (GO) analysis. The expression of several DEGs was correlated, positively or negatively, with the changing patterns of lipid content or breast weight across the ages sampled, indicating that those genes may play key roles in these developmental processes. In addition, based on KEGG pathway analysis of DEGs in both BJY and AA chickens, it was found that in addition to pathways affecting lipid metabolism (pathways for MAPK & PPAR signaling), cell junction-related pathways (tight junction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton), which play a prominent role in maintaining the integrity of tissues, could contribute to the IMF deposition. The results of this study identified potential candidate genes associated with chicken IMF deposition and imply that IMF deposition in chicken breast muscle is regulated and mediated not only by genes and pathways related to lipid metabolism and muscle development, but also by others involved in cell junctions. These findings establish the groundwork and provide new clues for deciphering the molecular mechanisms underlying IMF deposition in poultry. Further studies at the translational and posttranslational level are now required to validate the genes and pathways identified here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870025955&hterms=NSS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DNSS','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870025955&hterms=NSS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DNSS"><span>The relationship of the large-scale solar field to the interplanetary magnetic field - What will Ulysses find?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hoeksema, J. T.</p> <p>1986-01-01</p> <p>Using photospheric magnetic field observations obtained at the Stanford Wilcox Solar Observatory, results from a potential field model for the present solar cycle are given, and qualitative predictions of the IMF that Ulysses may encounter are presented. Results indicate that the IMF consists of large regions of opposite polarity separated by a neutral sheet (NS) (extended to at least 50 deg) and a four-sector structure near solar minimum (produced by small quadripolar NS warps). The latitudinal extent of the NS increases following minimum and the structure near maximum includes multiple NSs, while a simplified IMF is found during the declining phase.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11347302','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11347302"><span>[Intermediate moisture food for elder people based on a legume: soybeans, mixture with calcium].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Del Castillo, V C; Armada de Roman, M; s Gotiffredi, J C</p> <p>2000-09-01</p> <p>An intermediate moisture food (IMF), has been developed in our laboratory for elder people, over 60 years. The IMF is based on a cereal: legume mixture with calcium and flavour, it supplies proteins, carbohydrates and vegetable oils; as well as, high energetic density (3.22 cal/g) and covers up to 51% of calcium needed. It can be easily consumed as a tasty and soft food. It has a water activity of 0.80, for it can be stored at room conditions. It is very likely that IMF becomes a good alternative to improve and vary elder peoples diet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AIPC.1524..252S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AIPC.1524..252S"><span>Intermediate mass fragment emission and iso-scaling in dissipative Ca+Sn reactions at 45 AMeV</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, H.; Quinlan, M. J.; Tõke, J.; Pawelczak, I.; Henry, E.; Schröder, W. U.; Amorini, F.; Anzalone, A.; Maiolino, C.; Auditore, L.; Loria, D.; Trifiro, A.; Trimarchi, M.; Cardella, G.; De Filippo, E.; Pagano, A.; Chatterjee, M. B.; Cavallaro, S.; Geraci, E.; Papa, M.; Pirrone, S.; Verde, G.; Grzeszczuk, A.; Guazzoni, P.; Zetta, L.; La Guidara, E.; Lanzalone, G.; Lo Nigro, S.; Politi, G.; Loria, D.; Porto, F.; Rizzo, F.; Russotto, P.; Vigilante, M.</p> <p>2013-04-01</p> <p>The production mechanism of intermediate-mass fragments (IMFs) with atomic numbers Z = 3 - 7 is explored in the intermediate energy regime, studying dissipative 48Ca+112Sn and 48Ca+124Sn reactions at E/A = 45MeV. Various aspects of IMF emission patterns point to an inelastic break-up type production mechanism involving excited projectile-like fragment from dissipative interactions. Isotopic yield ratios of identical IMFs from the above two dissipative reactions have been analysed using the "isoscaling" method. Observed trends are correlated with ground-state binding energy systematics and their relevance for an evaluation of the symmetry energy is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM21B2172L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM21B2172L"><span>Characteristics of Low-Frequency Waves at the Lunar Wake Boundary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leisner, J. S.; Glassmeier, K.; Constantinescu, D. O.; Halekas, J. S.; Fornacon, K.</p> <p>2013-12-01</p> <p>The Moon has generally been considered to be a simple absorbing body that does not have a complex interaction with the solar wind. Recent studies using Kaguya and Chandrayaan, however, how demonstrated that this is not the case. The ARTEMIS spacecraft (formerly THEMIS-B and -C) entered lunar orbit in July 2011 and now provide an opportunity to make robust, long-term observations of this plasma interaction. During a November 2012 wake crossing, when the IMF was steady and nearly radial, Halekas et al. [2013] documented a previously unseen feature of the Moon environment. As ARTEMIS P2 approached the wake, it observed low-amplitude fast magnetonic waves that were convected from upstream; inside the rarefaction region, the compressional strength of these waves intensified; and through the wake boundary, the waves changed from correlated to anti-correlated density and field fluctuations. Halekas et al. explained this structure as the superposition of the magnetosonic waves and lateral wake motion driven by the same. In this study, we use wake observations through the ARTEMIS mission to characterize the presence and behavior of these waves as a function of the solar wind and IMF conditions and of spacecraft location relative to the Moon. With this survey, we test the Halekas et al. predictions that these phenomena will be most common during radial IMF conditions, but will still be observable in oblique fields. Finally, we discuss what implications these results have for the more common situation where a bow shock is present.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED022110.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED022110.pdf"><span>International Study of Marketing Education.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Liander, Bertil, Ed.</p> <p></p> <p>The International Marketing Federation (IMF), supported by the Marketing Science Institute, has surveyed IMF member countries and a representative scattering of others to determine the current state and future trends in marketing education. This volume presents the findings of the survey of 21 countries--Argentina, Australia, Canada, Denmark,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080030344&hterms=gold+colorado&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgold%2Bcolorado','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080030344&hterms=gold+colorado&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgold%2Bcolorado"><span>MESSENGER Observation of Mercury's Magnetopause: Structure and Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Slavin, J. A.; Acuna, M. H.; Anderson, B. J.; Baker, D. N.; Benna, M.; Boardsen, S. A.; Gloeckler, G.; Gold, R. E.; Ho, G. C.; Korth, H.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20080030344'); toggleEditAbsImage('author_20080030344_show'); toggleEditAbsImage('author_20080030344_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20080030344_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20080030344_hide"></p> <p>2008-01-01</p> <p>MESSENGER'S 14 January 2008 encounter with Mercury has provided new observations of the magnetopause of this small magnetosphere, particularly concerning the effect of the direction of the interplanetary magnetic field (IMF) on the structure and dynamics of this boundary. The IMF was northward immediately prior to and following the passage of the MESSENGER spacecraft through Mercury's magnetosphere. However, several-minute episodes of southward IMF were observed in the magnetosheath during the inbound portion of the encounter. Evidence for reconnection at the dayside magnetopause in the form of well-developed flux transfer events (FTEs) was observed in the magnetosheath following some of these southward-B, intervals. The inbound magnetopause crossing seen in the magnetic field measurements is consistent with a transition from the magnetosheath into the plasma sheet. Immediately following MESSENGER'S entry into the magnetosphere, rotational perturbations in the magnetic field similar to those seen at the Earth in association with large-scale plasma sheet vortices driven by Kelvin-Helmholtz waves along the magnetotail boundary at the Earth were observed. The outbound magnetopause occurred during northward IMF B(sub z) and had the characteristics of a tangential discontinuity. These new observations by MESSENGER may be combined and compared with the magnetopause measurements collected by Mariner 10 to derive new understanding of the response of Mercury's magnetopause to IMF direction and its effect on the rate of solar wind energy and mass input to this small magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21319721','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21319721"><span>International Monetary Fund and aid displacement.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stuckler, David; Basu, Sanjay; McKee, Martin</p> <p>2011-01-01</p> <p>Several recent papers find evidence that global health aid is being diverted to reserves, education, military, or other sectors, and is displacing government spending. This is suggested to occur because ministers of finance have competing, possibly corrupt, priorities and deprive the health sector of resources. Studies have found that development assistance for health routed to governments has a negative impact on health spending and that similar assistance routed to private nongovernmental organizations has a positive impact. An alternative hypothesis is that World Bank and IMF macro-economic policies, which specifically advise governments to divert aid to reserves to cope with aid volatility and keep government spending low, could be causing the displacement of health aid. This article evaluates whether aid displacement was greater when countries undertook a new borrowing program from the IMF between 1996 and 2006. As found in existing studies, for each $1 of development assistance for health, about $0.37 is added to the health system. However, evaluating IMF-borrowing versus non-IMF-borrowing countries reveals that non-borrowers add about $0.45 whereas borrowers add less than $0.01 to the health system. On average, health system spending grew at about half the speed when countries were exposed to the IMF than when they were not. It is important to take account of the political economy of global health finance when interpreting data on financial flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20440979','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20440979"><span>The impact of the International Monetary Fund's macroeconomic policies on the AIDS pandemic.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baker, Brook K</p> <p>2010-01-01</p> <p>Expansion of funding for HIV/AIDS, especially treatment, is under attack over concerns about cost effectiveness and financial constraints. The International Monetary Fund is deeply implicated in the history of the AIDS pandemic, the underlying weakness of health systems, and the ideology of constrained resources that underlies most attacks on AIDS funding. The IMF imposed structural violence on developing countries in the 1980s and 1990s through neoliberal and macroeconomic reforms that intensified individual and communal vulnerability to infection and dismantled already weak health systems. This same macroeconomic fundamentalism has recently been repackaged and renamed. IMF fundamentalist policies continue to prioritize low inflation, constricted government spending, robust foreign currency reserves, and prompt repayment of debt at the expense of investments in health and more expansionary, pro-growth and job-creation policies. Several recent surveys have concluded that the IMF reluctantly relaxed overly restrictive policy prescriptions in response to the global economic crisis, but this relaxation was temporary at best and only extended to countries previously acceding to IMF orthodoxy. AIDS activists are campaigning for billions of dollars to fulfill the promise of universal access. If IMF pressures persist, developing countries will continue to undermine the additionality of donor health financing by substituting donor for domestic financing, refusing to invest in recurrent costs for medicines and health workers, and neglecting needed investments in health infrastructure and health system strengthening.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5640347','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5640347"><span>Breast Reduction: Decreasing Complications and Improving Long-Term Aesthetic Results with Parenchymal Sutures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Moodley, Sean</p> <p>2017-01-01</p> <p>Background: The inverted T/keyhole pattern is commonly used for large breast reductions. This technique relies on the breast skin to retain the shape. With the passage of time “fallout” (pseudoptosis) occurs impairing the cosmetic result. A technique is described that uses parenchymal sutures and inframammary fold (IMF) reinforcement sutures to maintain the intraoperative shape. Methods: A retrospective study of 25 consecutive patients (50 breasts) where the IMF was reinforced and parenchymal sutures were inserted. The patients were followed up and the nipple to notch and nipple to IMF distance was measured and compared with that marked preoperatively and set intraoperatively. Complications, especially T junction breakdown, were also recorded. Results: The mean age was 38 years (range, 16–62 years) with a mean follow-up of 12 months. The mean body mass index was 31 (range, 22–41). The mean mass of tissue excised was 925 g (range, 340–1,800 g) per side. The distance from the suprasternal notch to the nipple remained unchanged. The distance from the nipple to the IMF remained the same as that marked preoperatively except in 3 patients who developed pseudoptosis. Only 3 patients had wound dehiscence. Conclusion: Parenchymal and superficial fascial system sutures combined with IMF reinforcement contributes to maintaining the aesthetic result and decreasing complications, in weight stable patients. PMID:29062642</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA496294','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA496294"><span>Zimbabwe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-02-20</p> <p>arrears, and foreign currency for essential imports, particularly fuel, is in extremely short supply. The IMF suggests that the inflation rate will not... devalue the official exchange rate. Instead, in June 2006, Gono devalued the country’s currency , the Zimbabwe dollar, removing three zeros in an effort to...23 The IMF and the World Bank</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA487550','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA487550"><span>Zimbabwe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-12-06</p> <p>than six years due to nonpayment of arrears, and foreign currency for essential imports, particularly fuel, is in extremely short supply. The IMF ...the government has refused to devalue the official exchange rate. Instead, in June 2006, Gono devalued the country’s currency , the Zimbabwe dollar...24 The IMF and the World Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Attempts to Revive Agriculture</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=238998','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=238998"><span>Genetic evaluation of Angus cattle for carcass marbling using ultrasound and genomic indicators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Objectives were to estimate genetic parameters needed to elucidate the relationships of a molecular breeding value for marbling (MBV), intramuscular fat of yearling bulls measured with ultrasound (IMF) and marbling score of harvested steers (MRB), and to assess the utility of MBV and IMF in predicti...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.476.2493G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.476.2493G"><span>Massive, wide binaries as tracers of massive star formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Griffiths, Daniel W.; Goodwin, Simon P.; Caballero-Nieves, Saida M.</p> <p>2018-05-01</p> <p>Massive stars can be found in wide (hundreds to thousands au) binaries with other massive stars. We use N-body simulations to show that any bound cluster should always have approximately one massive wide binary: one will probably form if none are present initially, and probably only one will survive if more than one is present initially. Therefore, any region that contains many massive wide binaries must have been composed of many individual subregions. Observations of Cyg OB2 show that the massive wide binary fraction is at least a half (38/74), which suggests that Cyg OB2 had at least 30 distinct massive star formation sites. This is further evidence that Cyg OB2 has always been a large, low-density association. That Cyg OB2 has a normal high-mass initial mass function (IMF) for its total mass suggests that however massive stars form, they `randomly sample' the IMF (as the massive stars did not `know' about each other).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930050752&hterms=Wolves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DWolves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930050752&hterms=Wolves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DWolves"><span>A Hubble Space Telescope planetary camera view of giant H II regions - The Wolf-Rayet content of NGC 595 and NGC 604 in M33</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Drissen, Laurent; Moffat, Anthony F. J.; Shara, Michael M.</p> <p>1993-01-01</p> <p>We present images of NGC 595 and NGC 604, the most massive giant H II regions in M33, obtained with the Planetary Camera aboard the HST in order to study their WR population. Fourteen WR and/or Of candidates are detected in NGC 604, and eleven in NGC 595. All previously claimed 'superluminous' WR stars are found to be tight (diameter less than 3 pc) stellar aggregates containing one (or sometimes more) normal WR star. As suspected from ground-based data, the WR/O number ratio is significantly higher in NGC 595 (about 0.3) than in NGC 604 (about 0.1). The WR stars may be major contributors to the output of mechanical power and energy into the interstellar medium in both clusters. Over the observable initial mass range, the initial mass functions (IMFs) have similar slopes. These IMFs are somewhat flatter than those generally derived for massive stars in the Galaxy or the Magellanic Clouds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003140&hterms=energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Denergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003140&hterms=energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Denergy"><span>Electron Flux Models for Different Energies at Geostationary Orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boynton, R. J.; Balikhin, M. A.; Sibeck, D. G.; Walker, S. N.; Billings, S. A.; Ganushkina, N.</p> <p>2016-01-01</p> <p>Forecast models were derived for energetic electrons at all energy ranges sampled by the third-generation Geostationary Operational Environmental Satellites (GOES). These models were based on Multi-Input Single-Output Nonlinear Autoregressive Moving Average with Exogenous inputs methodologies. The model inputs include the solar wind velocity, density and pressure, the fraction of time that the interplanetary magnetic field (IMF) was southward, the IMF contribution of a solar wind-magnetosphere coupling function proposed by Boynton et al. (2011b), and the Dst index. As such, this study has deduced five new 1 h resolution models for the low-energy electrons measured by GOES (30-50 keV, 50-100 keV, 100-200 keV, 200-350 keV, and 350-600 keV) and extended the existing >800 keV and >2 MeV Geostationary Earth Orbit electron fluxes models to forecast at a 1 h resolution. All of these models were shown to provide accurate forecasts, with prediction efficiencies ranging between 66.9% and 82.3%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017A%26A...607A..99V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017A%26A...607A..99V"><span>White dwarfs in the building blocks of the Galactic spheroid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Oirschot, Pim; Nelemans, Gijs; Starkenburg, Else; Toonen, Silvia; Helmi, Amina; Zwart, Simon Portegies</p> <p>2017-11-01</p> <p>Aims: The Galactic halo likely grew over time in part by assembling smaller galaxies, the so-called building blocks (BBs). We investigate if the properties of these BBs are reflected in the halo white dwarf (WD) population in the solar neighbourhood. Furthermore, we compute the halo WD luminosity functions (WDLFs for four major BBs of five cosmologically motivated stellar haloes). We compare the sum of these to the observed WDLF of the Galactic halo, derived from selected halo WDs in the SuperCOSMOS Sky Survey, aiming to investigate if they match better than the WDLFs predicted by simpler models. Methods: We couple the SeBa binary population synthesis model to the Munich-Groningen semi-analytic galaxy formation model applied to the high-resolution Aquarius dark matter simulations. Although the semi-analytic model assumes an instantaneous recycling approximation, we model the evolution of zero-age main sequence stars to WDs, taking age and metallicity variations of the population into account. To be consistent with the observed stellar halo mass density in the solar neighbourhood (ρ0), we simulate the mass in WDs corresponding to this density, assuming a Chabrier initial mass function (IMF) and a binary fraction of 50%. We also normalize our WDLFs to ρ0. Results: Although the majority of halo stars are old and metal-poor and therefore the WDs in the different BBs have similar properties (including present-day luminosity), we find in our models that the WDs originating from BBs that have young and/or metal-rich stars can be distinguished from WDs that were born in other BBs. In practice, however, it will be hard to prove that these WDs really originate from different BBs, as the variations in the halo WD population due to binary WD mergers result in similar effects. The five joined stellar halo WD populations that we modelled result in WDLFs that are very similar to each other. We find that simple models with a Kroupa or Salpeter IMF fit the observed luminosity function slightly better, since the Chabrier IMF is more top-heavy, although this result is dependent on our choice of ρ0.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMSH34A..03H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMSH34A..03H"><span>Probability Density Functions of the Solar Wind Driver of the Magnetopshere-Ionosphere System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horton, W.; Mays, M. L.</p> <p>2007-12-01</p> <p>The solar-wind driven magnetosphere-ionosphere system is a complex dynamical system in that it exhibits (1) sensitivity to initial conditions; (2) multiple space-time scales; (3) bifurcation sequences with hysteresis in transitions between attractors; and (4) noncompositionality. This system is modeled by WINDMI--a network of eight coupled ordinary differential equations which describe the transfer of power from the solar wind through the geomagnetic tail, the ionosphere, and ring current in the system. The model captures both storm activity from the plasma ring current energy, which yields a model Dst index result, and substorm activity from the region 1 field aligned current, yielding model AL and AU results. The input to the model is the solar wind driving voltage calculated from ACE solar wind parameter data, which has a regular coherent component and broad-band turbulent component. Cross correlation functions of the input-output data time series are computed and the conditional probability density function for the occurrence of substorms given earlier IMF conditions are derived. The model shows a high probability of substorms for solar activity that contains a coherent, rotating IMF with magnetic cloud features. For a theoretical model of the imprint of solar convection on the solar wind we have used the Lorenz attractor (Horton et al., PoP, 1999, doi:10.10631.873683) as a solar wind driver. The work is supported by NSF grant ATM-0638480.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM31A2615K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM31A2615K"><span>Dependence of Substorm Evolution on Solar Wind Condition: Simulation Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kamiyoshikawa, N.; Ebihara, Y.; Tanaka, T.</p> <p>2017-12-01</p> <p>A substorm is one of the remarkable disturbances occurring in the magnetosphere. It is known that the substorm occurs frequently when IMF is southward and solar wind speed is high. However, the physical process to determine substorm scale is not well understood. We reproduced substorms by using global MHD simulation, calculated auroral electrojet (ionospheric Hall current) flowing in the ionosphere to investigate the dependence of substorm evolution on solar wind condition. Solar wind speed of 372.4 km/s and IMF Bz of 5.0 nT were imposed to, obtain the quasi-stationary state of the magnetosphere. Then the solar wind parameters were changed as a step function. For the solar wind speed, we assumed 300 km/s, 500 km/s and 700 km/s. For IMF, we assumed -1.0 nT, -3.0 nT, -5.0 nT, -7.0 nT and -9.0 nT. In total, 15 simulation runs were performed. In order to objectively evaluate the substorm, the onset was identified with the method based on the one proposed by Newell et al. (2011). This method uses the SME index that is an extension of the AE index. In this study, the geomagnetic variation induced by the ionospheric Hall current was obtained every 1 degree from the magnetic latitude 40 degrees to 80 degrees and in every 0.5 hours in the magnetic region direction. The upper and the lower envelopes of the geomagnetic variation are regarded as SMU index and SML index, respectively. The larger the solar wind speed, the larger the southward IMF, the more the onset tends to be faster. This tendency is consistent with the onset occurrence probability indicated by Newell et al. (2016). Moreover, the minimum value of the SML index within 30 minutes from the beginning of the onset tends to decrease with the solar wind speed and the magnitude of the southward IMF. A rapid decrease of the SML index can be explained by a rapid increase in the field-aligned currents flowing in and out of the nightside ionosphere. This means that electromagnetic energies flowing into the ionosphere increase abruptly. To the analogy with electric circuit, dynamo is necessary in the magnetosphere to supply electromagnetic energy to the ionosphere as a load. We will discuss the physical process that may determine the intensity of the electrojet as seen by the SML index in terms of energy flow from the solar wind to the ionosphere and the convection by analyzing the global MHD simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5982071','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5982071"><span>A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Xike; Zhang, Qiuwen; Zhang, Gui; Nie, Zhiping; Gui, Zifan; Que, Huafei</p> <p>2018-01-01</p> <p>Daily land surface temperature (LST) forecasting is of great significance for application in climate-related, agricultural, eco-environmental, or industrial studies. Hybrid data-driven prediction models using Ensemble Empirical Mode Composition (EEMD) coupled with Machine Learning (ML) algorithms are useful for achieving these purposes because they can reduce the difficulty of modeling, require less history data, are easy to develop, and are less complex than physical models. In this article, a computationally simple, less data-intensive, fast and efficient novel hybrid data-driven model called the EEMD Long Short-Term Memory (LSTM) neural network, namely EEMD-LSTM, is proposed to reduce the difficulty of modeling and to improve prediction accuracy. The daily LST data series from the Mapoling and Zhijiang stations in the Dongting Lake basin, central south China, from 1 January 2014 to 31 December 2016 is used as a case study. The EEMD is firstly employed to decompose the original daily LST data series into many Intrinsic Mode Functions (IMFs) and a single residue item. Then, the Partial Autocorrelation Function (PACF) is used to obtain the number of input data sample points for LSTM models. Next, the LSTM models are constructed to predict the decompositions. All the predicted results of the decompositions are aggregated as the final daily LST. Finally, the prediction performance of the hybrid EEMD-LSTM model is assessed in terms of the Mean Square Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), Pearson Correlation Coefficient (CC) and Nash-Sutcliffe Coefficient of Efficiency (NSCE). To validate the hybrid data-driven model, the hybrid EEMD-LSTM model is compared with the Recurrent Neural Network (RNN), LSTM and Empirical Mode Decomposition (EMD) coupled with RNN, EMD-LSTM and EEMD-RNN models, and their comparison results demonstrate that the hybrid EEMD-LSTM model performs better than the other five models. The scatterplots of the predicted results of the six models versus the original daily LST data series show that the hybrid EEMD-LSTM model is superior to the other five models. It is concluded that the proposed hybrid EEMD-LSTM model in this study is a suitable tool for temperature forecasting. PMID:29883381</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29883381','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29883381"><span>A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Xike; Zhang, Qiuwen; Zhang, Gui; Nie, Zhiping; Gui, Zifan; Que, Huafei</p> <p>2018-05-21</p> <p>Daily land surface temperature (LST) forecasting is of great significance for application in climate-related, agricultural, eco-environmental, or industrial studies. Hybrid data-driven prediction models using Ensemble Empirical Mode Composition (EEMD) coupled with Machine Learning (ML) algorithms are useful for achieving these purposes because they can reduce the difficulty of modeling, require less history data, are easy to develop, and are less complex than physical models. In this article, a computationally simple, less data-intensive, fast and efficient novel hybrid data-driven model called the EEMD Long Short-Term Memory (LSTM) neural network, namely EEMD-LSTM, is proposed to reduce the difficulty of modeling and to improve prediction accuracy. The daily LST data series from the Mapoling and Zhijaing stations in the Dongting Lake basin, central south China, from 1 January 2014 to 31 December 2016 is used as a case study. The EEMD is firstly employed to decompose the original daily LST data series into many Intrinsic Mode Functions (IMFs) and a single residue item. Then, the Partial Autocorrelation Function (PACF) is used to obtain the number of input data sample points for LSTM models. Next, the LSTM models are constructed to predict the decompositions. All the predicted results of the decompositions are aggregated as the final daily LST. Finally, the prediction performance of the hybrid EEMD-LSTM model is assessed in terms of the Mean Square Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), Pearson Correlation Coefficient (CC) and Nash-Sutcliffe Coefficient of Efficiency (NSCE). To validate the hybrid data-driven model, the hybrid EEMD-LSTM model is compared with the Recurrent Neural Network (RNN), LSTM and Empirical Mode Decomposition (EMD) coupled with RNN, EMD-LSTM and EEMD-RNN models, and their comparison results demonstrate that the hybrid EEMD-LSTM model performs better than the other five models. The scatterplots of the predicted results of the six models versus the original daily LST data series show that the hybrid EEMD-LSTM model is superior to the other five models. It is concluded that the proposed hybrid EEMD-LSTM model in this study is a suitable tool for temperature forecasting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910035038&hterms=mass+communication&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmass%2Bcommunication','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910035038&hterms=mass+communication&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmass%2Bcommunication"><span>The automation of an inlet mass flow control system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Supplee, Frank; Tcheng, Ping; Weisenborn, Michael</p> <p>1989-01-01</p> <p>The automation of a closed-loop computer controlled system for the inlet mass flow system (IMFS) developed for a wind tunnel facility at Langley Research Center is presented. This new PC based control system is intended to replace the manual control system presently in use in order to fully automate the plug positioning of the IMFS during wind tunnel testing. Provision is also made for communication between the PC and a host-computer in order to allow total animation of the plug positioning and data acquisition during the complete sequence of predetermined plug locations. As extensive running time is programmed for the IMFS, this new automated system will save both manpower and tunnel running time.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>