Science.gov

Sample records for mode ii fatigue

  1. Mode II fatigue crack propagation.

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Kibler, J. J.

    1971-01-01

    Fatigue crack propagation rates were obtained for 2024-T3 bare aluminum plates subjected to in-plane, mode I, extensional loads and transverse, mode II, bending loads. These results were compared to the results of Iida and Kobayashi for in-plane mode I-mode II extensional loads. The engineering significance of mode I-mode II fatigue crack growth is considered in view of the present results. A fatigue crack growth equation for handling mode I-mode II fatigue crack growth rates from existing mode I data is also discussed.

  2. Comparison of Mode II and III Monotonic and Fatigue Delamination Onset Behavior for Carbon/Toughened Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Li, Jian; OBrien, T. Kevin; Lee, Shaw Ming

    1997-01-01

    Monotonic and fatigue tests were performed to compare the Mode II and III interlaminar fracture toughness and fatigue delamination onset for Tenax-HTA/R6376 carbon/toughened epoxy composites. The Mode II interlaminar fracture toughness and fatigue delamination onset were characterized using the end-notched flexure (ENF) test while the Mode III interlaminar fracture toughness and fatigue delamination onset were characterized by using the edge crack torsion (ECT) test. Monotonic tests show that the Mode III fracture toughness is higher than the Mode II fracture toughness. Both Mode II and III cyclic loading greatly increases the tendency for a delamination to grow relative to a single monotonically increasing load. Under fatigue loading, the Mode III specimen also has a longer life than the Mode II specimen.

  3. Influence of Mixed Mode I-Mode II Loading on Fatigue Delamination Growth Characteristics of a Graphite Epoxy Tape Laminate

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.; Johnston, William M., Jr.

    2014-01-01

    Mixed mode I-mode II interlaminar tests were conducted on IM7/8552 tape laminates using the mixed-mode bending test. Three mixed mode ratios, G(sub II)/G(sub T) = 0.2, 0.5, and 0.8, were considered. Tests were performed at all three mixed-mode ratios under quasi-static and cyclic loading conditions, where the former static tests were used to determine initial loading levels for the latter fatigue tests. Fatigue tests at each mixed-mode ratio were performed at four loading levels, Gmax, equal to 0.5G(sub c), 0.4G(sub c), 0.3G(sub c), and 0.2G(sub c), where G(sub c) is the interlaminar fracture toughness of the corresponding mixed-mode ratio at which a test was performed. All fatigue tests were performed using constant-amplitude load control and delamination growth was automatically documented using compliance solutions obtained from the corresponding quasi-static tests. Static fracture toughness data yielded a mixed-mode delamination criterion that exhibited monotonic increase in Gc with mixed-mode ratio, G(sub II)/G(sub T). Fatigue delamination onset parameters varied monotonically with G(sub II)/G(sub T), which was expected based on the fracture toughness data. Analysis of non-normalized data yielded a monotonic change in Paris law exponent with mode ratio. This was not the case when normalized data were analyzed. Fatigue data normalized by the static R-curve were most affected in specimens tested at G(sub II)/G(sub T)=0.2 (this process has little influence on the other data). In this case, the normalized data yielded a higher delamination growth rate compared to the raw data for a given loading level. Overall, fiber bridging appeared to be the dominant mechanism, affecting delamination growth rates in specimens tested at different load levels and differing mixed-mode ratios.

  4. Mode II Interlaminar Fracture Toughness and Fatigue Characterization of a Graphite Epoxy Composite Material

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin; Johnston, William M.; Toland, Gregory J.

    2010-01-01

    Mode II interlaminar fracture toughness and delamination onset and growth characterization data were generated for IM7/8552 graphite epoxy composite materials from two suppliers for use in fracture mechanics analyses. Both the fracture toughness testing and the fatigue testing were conducted using the End-notched Flexure (ENF) test. The ENF test for mode II fracture toughness is currently under review by ASTM as a potential standard test method. This current draft ASTM protocol was used as a guide to conduct the tests on the IM7/8552 material. This report summarizes the test approach, methods, procedures and results of this characterization effort.

  5. Characterization of debond growth mechanism in adhesively bonded composites under mode II static and fatigue loadings

    NASA Technical Reports Server (NTRS)

    Mall, S.; Kochhar, N. K.

    1988-01-01

    An experimental investigation of adhesively bonded composite joint was conducted to characterize the debond growth mechanism under mode II static and fatigue loadings. For this purpose, end-notched flexure specimens of graphite/epoxy (T300/5208) adherends bonded with EC 3445 adhesive were tested. In all specimen tested, the fatigue failure occurred in the form of cyclic debonding. The present study confirmed the result of previous studies that total strain-energy-release rate is the driving parameter for cyclic debonding. Further, the debond growth resistance under cyclic loading with full shear reversal (i.e., stress ratio, R = -1) is drastically reduced in comparison to the case when subjected to cyclic shear loading with no shear reversal (i.e., R = 0.1).

  6. Development and Application of Benchmark Examples for Mode II Static Delamination Propagation and Fatigue Growth Predictions

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2011-01-01

    The development of benchmark examples for static delamination propagation and cyclic delamination onset and growth prediction is presented and demonstrated for a commercial code. The example is based on a finite element model of an End-Notched Flexure (ENF) specimen. The example is independent of the analysis software used and allows the assessment of the automated delamination propagation, onset and growth prediction capabilities in commercial finite element codes based on the virtual crack closure technique (VCCT). First, static benchmark examples were created for the specimen. Second, based on the static results, benchmark examples for cyclic delamination growth were created. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. Fourth, starting from an initially straight front, the delamination was allowed to grow under cyclic loading. The number of cycles to delamination onset and the number of cycles during delamination growth for each growth increment were obtained from the automated analysis and compared to the benchmark examples. Again, good agreement between the results obtained from the growth analysis and the benchmark results could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Overall the results are encouraging, but further assessment for mixed-mode delamination is required.

  7. Experimental and simulation predicted crack paths for al-2024-t351 under mixed-mode i/ii fatigue loading using an arcan fixture

    NASA Astrophysics Data System (ADS)

    Miller, Eileen

    Mixed mode I/II fatigue experiments and simulations are performed for an Arcan fixture and a 6.35mm thick Al-2024-T351 specimen. Experiments were performed for Arcan loading angles that gave rise to a range of Mode I/II crack tip conditions from 0 ¡U ¦¤KII/¦¤KI ¡U ¡TH. Measurements include the crack paths, loading cycles and maximum and minimum loads for each loading angle. Simulations were performed using three-dimensional finite element analysis (3D-FEA) with 10-noded tetrahedral elements via CRACK3D. While modeling the entire fixture-specimen geometry, a modified version of VCCT with automatic crack tip re-meshing and a maximum normal stress criterion were used to predict the direction of crack growth. Results indicate excellent agreement between experiments and simulations for the measured crack paths during the first several millimeters of crack extension.

  8. A la Mode II.

    ERIC Educational Resources Information Center

    Stowe, Richard A.

    This paper describes two modes of educational decision-making: Mode I, in which the instructor makes such decisions as what to teach, to whom, when, in what order, at what pace, and at what complexity level; and Mode II, in which the learner makes the decisions. While Mode I comprises most of what is regarded as formal education, the learner in…

  9. Designing of a Testing Machine for Shear-Mode Fatigue Crack Growth

    NASA Astrophysics Data System (ADS)

    Kusaba, A.; Okazaki, S.; Endo, M.; Yanase, K.

    As recognized, flaking-type failure is one of the serious problems for railroad tracks and bearings. In essence, flaking-type failure is closely related to the growth of the shear-mode (Mode-II and Mode-III) fatigue crack. In our research group, it is demonstrated that a shear-mode fatigue crack can be reproduced for cylindrical specimens by applying the cyclic torsion in the presence of the static axial compressive stress. However, a biaxial servo-hydraulic fatigue testing machine is quite expensive to purchase and costly to maintain. The low testing speed (about 10Hz) of the testing machine further aggravates the situation. As a result, study on shear-mode fatigue crack growth is still in the nascent stage. To overcome the difficulties mentioned above, in this research activity, we developed a high-performance and cost-effective testing machine to reproduce the shear-mode fatigue crack growth by improving the available resonance-type torsion fatigue testing machine. The primary advantage of using the resonance-type torsion fatigue testing machine is cost-efficiency. In addition, the testing speed effectively can be improved, in comparison with that of a biaxial servo-hydraulic fatigue testing machine. By utilizing the newly-designed testing machine, we have demonstrated that we can successfully reproduce the shear-mode fatigue crack.

  10. Mode and mechanism of fatigue fracture of a pearlitic steel in hydrogen

    NASA Technical Reports Server (NTRS)

    Lo, S. H.; Johnson, H. H.

    1986-01-01

    It is presently suggested that there are two mechanisms that cause fatigue crack initiation in a specimen subjected to a hydrogen environment: either a critical concentration of hydrogen is attained within the specimen, causing Mode I crack initiation, or the presence of some hydrogen (below critical concentration) promotes the early onset of plastic instability at the sites of maximum strain. It is further suggested that in the static loading condition, a high hydrogen concentration may be attained by way of mechanical factors, causing Mode I crack initiation. While cyclic fatigue specimens exhibited Mode II crack initiation in air, only Mode I crack initiation emerged in a hydrogen environment.

  11. Experimental compliance calibration of the NASA Lewis Research Center Mode 2 fatigue specimen

    NASA Technical Reports Server (NTRS)

    Buzzard, R. J.

    1985-01-01

    Calibration of the mode II aluminum fatigue specimen was performed experimentally to provide displacement and stress intensity coefficients over crack length to specimen width ratios (a/W) of 0.5 to 0.9. Displacements were measured both at the specimen notch mouth and at the intersection of the notch with the centerline of the loading pin holes.

  12. Thermoelastic stress analysis techniques for mixed mode fracture and stochastic fatigue of composite materials

    NASA Astrophysics Data System (ADS)

    Wei, Bo-Siou

    This study develops new quantitative thermoelastic stress analysis (TSA) techniques for fracture and fatigue damage analysis of composite materials. The first part deals with the thermo-mechanical derivation of two quantitative TSA techniques applied to orthotropic composites with and without a transversely-isotropic surface coating layer. The new TSA test procedures are derived in order to relate the thermal infrared (IR) images with the sum of in-plane strains multiplied by two newly defined material constants that can be experimentally pre-calibrated. Experiments are performed to verify the TSA methods with finite element (FE) numerical results along with available anisotropic elasticity solution. The second part of this study applies the quantitative TSA techniques together with the Lekhnitskii's general anisotropic elasticity solution to calculate mixed-mode stress intensity factors (SIFs) in cracked composite materials. The cracked composite coupons are subjected to off-axis loadings with respect to four different material angles in order to generate mixed-mode SIFs. A least-squares method is used to correlate the sum of in-plane strains from the elasticity solution with the measured TSA test results. The mode-I and mode-II SIFs are determined from eccentrically loaded single-edge-notch tension (ESE(T)) composite specimens. The FE models and virtual crack closure technique (VCCT) are utilized for comparisons. In the third part, a new stochastic model is proposed to generate S-N curves accounting for the variability of the fatigue process. This cumulative damage Markov chain model (MCM) requires a limited number of fatigue tests for calibrating the probability transition matrix (PTM) in the Markov chain model and mean fatigue cycles to failure from experiments. In order to construct the MCM stochastic S-N curve, an iterative procedure is required to predict the mean cycles to failure. Fatigue tests are conducted in this study to demonstrate the MCM method

  13. Combined mode I and mode II fracture of monolithic ceramics

    NASA Technical Reports Server (NTRS)

    Tikare, Veena; Choi, Sung R.

    1993-01-01

    The mode I, mode II, and combined mode I-mode II fracture behaviors of a coarse-grained silicon nitride, a fine-grained silicon nitride, and an alumina were investigated. These ceramics were fractured from two types of fracture initiating flaws: small surface flaws and large single edge precracks. The small surface flaws were introduced by Knoop indentation in flexural samples at various angles to the tensile stress direction and fractured in four-point bending. The samples with large precracks were fractured in the asymmetric four-point-bend geometry. The mixed-mode fracture toughness values obtained from the two flaw configurations were in good agreement with each other. All three ceramics displayed very similar mixed-mode fracture behavior, although their microstructures were not similar. Comparison of experimental data to mixed-mode fracture theories revealed that the minimum strain energy density theory best described the mixed-mode fracture behavior of all three ceramics.

  14. Crack path determination for non-proportional mixed-mode fatigue

    NASA Astrophysics Data System (ADS)

    Highsmith, Shelby, Jr.

    Turbine engine components such as fan and compressor blades experience complex combinations of steady and vibratory loads that lead to in-service cracking in directions that cannot be predicted by current fracture criteria. Accurate crack path predictions are required in order to characterize the risk and extent of damage resulting from liberation of a fractured ligament from rotating components. Under proportional in-phase mixed Mode I/Mode II loading conditions, crack growth direction has been observed in some materials to shift from tensile-dominated Mode I to shear-dominated Mode II or mixed-mode crack growth at higher proportions of initial Mode II loading, but non-proportional loads are not well-characterized. An extensive database of crack growth direction under non-proportional 2-D mixed-mode loading conditions is required to expand crack path prediction models, which are likely to vary between alloys. An approach based on linear elastic fracture mechanics (LEFM) is desired in order to implement the model in crack growth software such as the boundary element-based fracture analysis package FRANC3D. A novel specimen configuration has been designed and analyzed for generation of wide ranges of mixed-mode loading conditions in a single test. This specimen and a more conventional thin-walled tubular specimen have been used to test polycrystalline nickel-base superalloy Inconel 718 under proportional in-phase and 3 kinds of non-proportional fatigue loading. Stress intensity factors for the various configurations have been analyzed with FRANC3D. Modal transition from Mode I (tensile) to Mode II (shear) crack branching has been observed in several load cases. Qualitative microscopy of fracture surfaces was used to characterize the crack growth behavior. An LEFM approach based on an effective stress intensity factor range, which incorporates the maximum value and range of each appropriate stress intensity (Mode I or Mode II), has been used to successfully predict

  15. Effects of friction and high torque on fatigue crack propagation in Mode III

    NASA Astrophysics Data System (ADS)

    Nayeb-Hashemi, H.; McClintock, F. A.; Ritchie, R. O.

    1982-12-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (RB88, 590 MN/m2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) IIIcan be related to the alternating stress intensity factor ΔKIII for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (˜10-6 to 10-2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) III and ΔKIII is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity Γ III, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces. The latter effect is found to be dependent upon the mode of applied loading (i.e., the presence of superimposed axial loads) and the crack length and torque level. Mechanistically, high-torque surfaces were transverse, macroscopically flat, and smeared. Lower torques showed additional axial cracks (longitudinal shear cracking) perpendicular to the main transverse surface. A micro-mechanical model for the main radi l Mode III growth, based on the premise that crack advance results from Mode II coalescence of microcracks initiated at inclusions ahead of the main crack front, is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔΓIII if local Mode II growth rates are

  16. A combined mode fatigue model for glass reinforced nylon as applied to molded engine cooling fans

    SciTech Connect

    Smith, J.D.; Bennet, M.L.

    1985-01-01

    The use of glass reinforced nylon in fatigue inducing environments calls for a new method of stress analysis. With an engine cooling fan, both mean and vibratory stresses need to be examined. Speed cycling can cause tensile fatigue, while vibration can cause flexural fatigue. Since tensile and flexural stresses exist in the fan simultaneously, a combined mode fatigue model is needed. The proposed model is based on high cycle flexural and tensile fatigue strengths, and tensile strength. It relates measurable strain to stress using temperature dependent flexural and tensile moduli, and treats underhood temperature and desired product life as variables.

  17. Characterization of Mode I fatigue crack growth in GFRP woven laminates at low temperatures

    SciTech Connect

    Shindo, Yasuhide . E-mail: shindo@material.tohoku.ac.jp; Inamoto, Akihiro; Narita, Fumio

    2005-03-01

    This paper describes an experimental and analytical study on the cryogenic fatigue behavior of glass fiber reinforced polymer woven laminates under Mode I loading. Fatigue crack growth rate tests were performed using compact tension specimens at room temperature, liquid nitrogen temperature (77 K), and liquid helium temperature (4 K). The fracture surfaces were also examined by scanning electron microscopy to correlate with the fatigue properties. A finite element method coupled with fatigue damage was adopted for the extensional analysis. The effects of temperature and loading condition on the fatigue crack growth rates are examined.

  18. JAEA Fatigue Analysis of EBR-II Duplex Tubing

    SciTech Connect

    J. H. Jackson; D. L. Porter; W. R. Lloyd; N. Kisohara

    2011-03-01

    Small, notched three-point bend specimens machined from duplex tubes, which were extracted from an EBR-II superheater, were fatigued through the nickel interlayer to determine propensity for crack arrest within this interlayer. Several of these specimens were fatigued in the near threshold, and steady state regimes of Paris Law behavior. Additionally, two specimens were fatigued to the edge of the nickel interlayer and then monotonically loaded. Micro-hardness profiles of the nickel interlayer were also measured. Fatigue behavior was found to be similar to previous studies in that arrest was only noted in the near threshold Paris regime (attributed to the presence of voids) and in the steady state regime exhibited an acceleration of crack growth rate through the nickel interlayer followed by a slight retardation. Monotonic loading resulted in crack branching or delamination along the interlayer. Although archival material was not available for this study, the hardness of the nickel interlayer was determined to have been lowered slightly during service by comparison to the expected hardness of a similar nickel braze prepared as specified for fabrication of these tubes.

  19. Tensile and compressive failure modes of laminated composites loaded by fatigue with different mean stress

    NASA Technical Reports Server (NTRS)

    Rotem, Assa

    1990-01-01

    Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.

  20. Acoustic fatigue life prediction for nonlinear structures with multiple resonant modes

    NASA Technical Reports Server (NTRS)

    Miles, R. N.

    1992-01-01

    This report documents an effort to develop practical and accurate methods for estimating the fatigue lives of complex aerospace structures subjected to intense random excitations. The emphasis of the current program is to construct analytical schemes for performing fatigue life estimates for structures that exhibit nonlinear vibration behavior and that have numerous resonant modes contributing to the response.

  1. Acoustic fatigue life prediction for nonlinear structures with multiple resonant modes

    NASA Astrophysics Data System (ADS)

    Miles, R. N.

    1992-03-01

    This report documents an effort to develop practical and accurate methods for estimating the fatigue lives of complex aerospace structures subjected to intense random excitations. The emphasis of the current program is to construct analytical schemes for performing fatigue life estimates for structures that exhibit nonlinear vibration behavior and that have numerous resonant modes contributing to the response.

  2. The Harvard Fatigue Laboratory: contributions to World War II.

    PubMed

    Folk, G Edgar

    2010-09-01

    The war contributions of the Harvard Fatigue Laboratory in Cambridge, MA, were recorded in 169 Technical Reports, most of which were sent to the Office of the Quartermaster General. Earlier reports were sent to the National Research Council and the Office of Scientific Research and Development. Many of the reports from 1941 and later dealt with either physical fitness of soldiers or the energetic cost of military tasks in extreme heat and cold. New military emergency rations to be manufactured in large quantities were analyzed in the Fatigue Laboratory and then tested in the field. Newly designed cold weather clothing was tested in the cold chamber at -40 degrees F, and desired improvements were made and tested in the field by staff and soldiers in tents and sleeping bags. Electrically heated clothing was designed for high-altitude flight crews and tested both in laboratory chambers and field tests before being issued. This eye witness account of the Harvard Fatigue Laboratory during World War II was recorded by Dr. G. Edgar Folk, who is likely the sole surviving member of that famous laboratory.

  3. Fatigue

    MedlinePlus

    ... to help you find out what's causing your fatigue and recommend ways to relieve it. Fatigue itself is not a disease. Medical problems, treatments, and personal habits can add to fatigue. These include Taking certain medicines, such as antidepressants, ...

  4. Multi-Mode Excitation and Data Reduction for Fatigue Crack Characterization in Conducting Plates

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Namkung, M.; Fulton, J. P.; Clendenin, C. G.

    1992-01-01

    Advances in the technique of fatigue crack characterization by resonant modal analysis have been achieved through a new excitation mechanism and data reduction of multiple resonance modes. A non-contacting electromagnetic device is used to apply a time varying Lorentz force to thin conducting sheets. The frequency and direction of the Lorentz force are such that resonance modes are generated in the test sample. By comparing the change in frequency between distinct resonant modes of a sample, detecting and sizing of fatigue cracks are achieved and frequency shifts caused by boundary condition changes can be discriminated against. Finite element modeling has been performed to verify experimental results.

  5. Effects of friction and high torque on fatigue crack propagation in mode III. [AISI 4140 and 4340

    SciTech Connect

    Nayeb-Hashemi, H.; McClintock, F.A.; Ritchie, R.O.

    1982-12-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (R /SUB B/ 88, 590 MN/m/sup 2/ tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) /SUB III/ can be related to the alternating stress intensity factor ..delta..K /SUB III/ for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (about 10/sup -6/ to 10/sup -2/ mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) /SUB III/ and ..delta..K /SUB III/ is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity GAMMA /SUB III/, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces A micro-mechanical model for the main radial Mode III growth is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (..delta..GAMMA /SUB III/) if local Mode II growth rates are proportional to the displacements. Such predictions are shown to be in agreement with measured growth rates in AISI 4140 steel from 10/sup -6/ to 10/sup -2/ mm per cycle.

  6. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied

  7. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied

  8. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied

  9. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied

  10. Effect of Buckling Modes on the Fatigue Life and Damage Tolerance of Stiffened Structures

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Bisagni, Chiara; Rose, Cheryl A.

    2015-01-01

    The postbuckling response and the collapse of composite specimens with a co-cured hat stringer are investigated experimentally and numerically. These specimens are designed to evaluate the postbuckling response and the effect of an embedded defect on the collapse load and the mode of failure. Tests performed using controlled conditions and detailed instrumentation demonstrate that the damage tolerance, fatigue life, and collapse loads are closely tied with the mode of the postbuckling deformation, which can be different between two nominally identical specimens. Modes that tend to open skin/stringer defects are the most damaging to the structure. However, skin/stringer bond defects can also propagate under shearing modes. In the proposed paper, the effects of initial shape imperfections on the postbuckling modes and the interaction between different postbuckling deformations and the propagation of skin/stringer bond defects under quasi-static or fatigue loads will be examined.

  11. Fatigue properties on the failure mode of a dental implant in a simulated body environment

    NASA Astrophysics Data System (ADS)

    Kim, Min Gun

    2011-10-01

    This study undertook a fatigue test in a simulated body environment that has reflected the conditions (such as the body fluid conditions, the micro-current of cell membranes, and the chewing force) within a living body. First, the study sought to evaluate the fatigue limit under normal conditions and in a simulated body environment, looking into the governing factors of implant fatigue strength through an observation of the fracture mode. In addition, the crack initiation behavior of a tungsten-carbide-coated abutment screw was examined. The fatigue limit of an implant within the simulated body environment decreased by 19 % compared to the limit noted under normal conditions. Several corrosion pits were observed on the abutment screw after the fatigue test in the simulated body environment. For the model used in this study, the implant fracture was mostly governed by the fatigue failure of the abutment screw; accordingly, the influence by the fixture on the fatigue strength of the implant was noted to be low. For the abutment screw coated with tungsten carbide, several times the normal amount of stress was found to be concentrated on the contact part due to the elastic interaction between the coating material and the base material.

  12. Elastic-Plastic Finite Element Analysis of Fatigue Crack Growth in Mode 1 and Mode 2 Conditions

    NASA Technical Reports Server (NTRS)

    Nakagaki, M.; Atluri, S. N.

    1978-01-01

    Presented is an alternate cost-efficient and accurate elastic-plastic finite element procedure to analyze fatigue crack closure and its effects under general spectrum loading. Both Modes 1 and 2 type cycling loadings are considered. Also presented are the results of an investigation, using the newly developed procedure, of various factors that cause crack growth acceleration or retardation and delay effects under high-to-low, low-to-high, single overload, and constant amplitude type cyclic loading in a Mode 1 situation. Further, the results of an investigation of a centercracked panel under external pure shear (Mode 2) cyclic loading, of constant amplitude, are reported.

  13. Fracture toughness of polycrystalline ceramics in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Singh, Dileep; Shetty, Dinesh K.

    1989-01-01

    The present investigation of the fracture of alumina and zirconia polycrystalline ceramic specimens of precracked-disk type, in diametral compression, evaluated fracture toughness in pure mode I, combined mode I/mode II, and pure mode II, depending on the alignment of the center crack relative to the loading diameter. The mixed-mode fracture-toughness envelope thus obtained exhibits significant deviation to higher fracture toughness in mode II, relative to the predictions of linear elastic fracture mechanics theory. Crack-surface resistance due to grain-interlocking and abrasion are identified as the primary sources of increased fracture resistance in mode II loading of the polycrystalline ceramics.

  14. Visualization of non-propagating Lamb wave modes for fatigue crack evaluation

    NASA Astrophysics Data System (ADS)

    An, Yun-Kyu; Sohn, Hoon

    2015-03-01

    This article develops a non-propagating Lamb wave mode (NPL) imaging technique for fatigue crack visualization. NPL has a great potential for crack evaluation in that it significantly contributes local mode amplitudes in the vicinity of a crack without spatial propagation. Such unique physical phenomenon is theoretically proven and experimentally measured through laser scanning. Although its measurement is a quite challenging work due to the fact that it is quite localized and coexists with complex propagating Lamb wave modes, a NPL filter proposed in this article overcomes the technical challenge by eliminating all propagating Lamb modes from laser scanned full Lamb wavefields. Through the NPL filtering process, only fatigue crack-induced NPLs can be measured and retained. To verify such physical observation and the corresponding NPL filter, a real micro fatigue crack is created by applying repeated tensile loading, and its detectability is tested using a surface-mounted piezoelectric transducer for generating Lamb waves and a laser Doppler vibrometer for measuring the corresponding responses. The experimental results confirm that even an invisible fatigue crack can be instantaneously visualized and effectively evaluated through the proposed NPL measurement and filtering processes.

  15. Small Fatigue Crack Growth and Failure Mode Transitions in a Ni-Base Superalloy at Elevated Temperature (Preprint)

    DTIC Science & Technology

    2010-02-01

    AFRL-RX-WP-TP-2010-4070 SMALL FATIGUE CRACK GROWTH AND FAILURE MODE TRANSITIONS IN A Ni-BASE SUPERALLOY AT ELEVATED TEMPERATURE (Preprint...CRACK GROWTH AND FAILURE MODE TRANSITIONS IN A Ni-BASE SUPERALLOY AT ELEVATED TEMPERATURE (Preprint) 5a. CONTRACT NUMBER IN HOUSE 5b. GRANT...by ANSI Std. Z39-18 Page 1 of 28 Small Fatigue Crack Growth and Failure Mode Transitions in a Ni-Base Superalloy at Elevated Temperature M. J

  16. Thermomechanical fatigue, oxidation, and Creep: Part II. Life prediction

    NASA Astrophysics Data System (ADS)

    Neu, R. W.; Sehitoglu, Huseyin

    1989-09-01

    A life prediction model is developed for crack nucleation and early crack growth based on fatigue, environment (oxidation), and creep damage. The model handles different strain-temperature phasings (i.e., in-phase and out-of-phase thermomechanical fatigue, isothermal fatigue, and others, including nonproportional phasings). Fatigue life predictions compare favorably with experiments in 1070 steel for a wide range of test conditions and strain-temperature phasings. An oxide growth (oxide damage) model is based on the repeated microrupture process of oxide observed from microscopic measurements. A creep damage expression, which is stress-based, is coupled with a unified constitutive equation. A set of interrupted tests was performed to provide valuable damage progression information. Tests were performed in air and in helium atmospheres to isolate creep damage from oxidation damage.

  17. JAEA Fatigue Analysis of EBR-II Duplex Tubing

    SciTech Connect

    J. H. Jackson; D. L. Porter; W. R. Lloyd

    2009-07-01

    This work addresses questions brought up concerning the mechanisms associated with fatigue crack growth retardation and/or arrest within the nickel bond layer in duplex 2¼ Cr-1Mo steel superheater tubes. Previous work performed at the Idaho National Laboratory (INL) indicated that the nickel bond layer did not function as a crack arrestor during fatigue crack propagation with the exception of one, isolated case involving an exceptionally low fatigue load and a high temperature (400 0C) environment. Since it is atypical for a fatigue crack to propagate from a relatively soft material (the nickel bond layer) to a harder material (the 2¼ Cr-1Mo steel) there has been speculation that the nickel bond layer was hardened in service. Additionally, there are questions surrounding the nature of the fatigue crack propagation within the nickel bond layer; specifically with regard to the presence of voids seen on micrographs of the bond layer and oxidation within the steel along the edge of the nickel bond layer. There is uncertainty as to the effect of these voids and/or oxide barriers with respect to potential fatigue crack arrest.

  18. A new testing method for investigating the shear-mode fatigue crack growth behavior in hydrogen environment

    NASA Astrophysics Data System (ADS)

    Akaki, Y.; Matsuo, T.; Nishimura, Y.; Miyakawa, S.; Endo, M.

    2017-05-01

    Ball bearing is widely used in a variety of machines including the transportation equipments of the automobiles and airplanes. Flaking failure is a common problem for ball bearing and it is caused by shear-mode fatigue crack growth under cyclic shear stress. Further, it is known that the premature flaking is attributed to the combined effect of hydrogen penetration into the material and cyclic shear stress during the operation. Therefore, in order to ensure the integrity of ball bearing, it is necessary to clarify the effect of hydrogen on shear-mode fatigue crack growth behavior, in particular, the threshold behavior. The evaluation of the shear-mode crack growth behavior is not easy because mode I crack branching occurs easily. Our previous studies revealed that it is required to apply static compression in the direction of specimen axis to attain a stable shear-mode fatigue crack growth. In addition, successive hydrogen supply to the specimen is essential for the evaluation of hydrogen effect on the fatigue threshold because hydrogen emits from the specimen during the fatigue test. In other words, the hydrogen-precharging method, commonly used for the research on hydrogen embrittlement, is not appropriate for the evaluation of fatigue threshold. In this study, to solve these problems, we have developed a novel, easy-to-use experimental method to evaluate the threshold behavior of shear-mode fatigue crack in the presence of hydrogen. The fundamental principle of the method is introduced in this paper.

  19. Assessment of Crack Path Prediction in Non-Proportional Mixed-Mode Fatigue

    NASA Technical Reports Server (NTRS)

    Highsmith, Shelby, Jr.; Johnson, Steve; Swanson, Gregory; Sayyah, Tarek; Pettit, Richard

    2008-01-01

    Non-proportional mixed-mode loading is present in many systems and a growing crack can experience any manner of mixed-mode loading. Prediction of the resulting crack path is important when assessing potential failure modes or when performing a failure investigation. Current crack path selection criteria are presented along with data for Inconel 718 under non-proportional mixed-mode loading. Mixed-mode crack growth can transition between path deflection mechanisms with very different orientations. Non-proportional fatigue loadings lack a single parameter for input to current crack path criteria. Crack growth transitions were observed in proportional and non-proportional FCG tests. Different paths displayed distinct fracture surface morphologies. New crack path drivers & transition criteria must be developed.

  20. Relationship between fatigue of generation II image intensifier and input illumination

    NASA Astrophysics Data System (ADS)

    Chen, Qingyou

    1995-09-01

    If there is fatigue for an image intesifier, then it has an effect on the imaging property of the night vision system. In this paper, using the principle of Joule Heat, we derive a mathematical formula for the generated heat of semiconductor photocathode. We describe the relationship among the various parameters in the formula. We also discuss reasons for the fatigue of Generation II image intensifier caused by bigger input illumination.

  1. Subcritical crack growth in soda-lime glass in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Singh, Dileep; Shetty, Dinesh K.

    1990-01-01

    Subcritical crack growth under mixed-mode loading was studied in soda-lime glass. Pure mode I, combined mode I and mode II, and pure mode II loadings were achieved in precracked disk specimens by loading in diametral compression at selected angles with respect to the symmetric radial crack. Crack growth was monitored by measuring the resistance changes in a microcircuit grid consisting of parallel, electrically conducting grid lines deposited on the surface of the disk specimens by photolithography. Subcritical crack growth rates in pure mode I, pure mode II, and combined mode I and mode II loading could be described by an exponential relationship between crack growth rate and an effective crack driving force derived from a mode I-mode II fracture toughness envelope. The effective crack driving force was based on an empirical representation of the noncoplanar strain energy release rate. Stress intensities for kinked cracks were assessed using the method of caustics and an initial decrease and a subsequent increase in the subcritical crack growth rates of kinked cracks were shown to correlate with the variations of the mode I and the mode II stress intensities.

  2. Subcritical crack growth in soda-lime glass in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Singh, Dileep; Shetty, Dinesh K.

    1990-01-01

    Subcritical crack growth under mixed-mode loading was studied in soda-lime glass. Pure mode I, combined mode I and mode II, and pure mode II loadings were achieved in precracked disk specimens by loading in diametral compression at selected angles with respect to the symmetric radial crack. Crack growth was monitored by measuring the resistance changes in a microcircuit grid consisting of parallel, electrically conducting grid lines deposited on the surface of the disk specimens by photolithography. Subcritical crack growth rates in pure mode I, pure mode II, and combined mode I and mode II loading could be described by an exponential relationship between crack growth rate and an effective crack driving force derived from a mode I-mode II fracture toughness envelope. The effective crack driving force was based on an empirical representation of the noncoplanar strain energy release rate. Stress intensities for kinked cracks were assessed using the method of caustics and an initial decrease and a subsequent increase in the subcritical crack growth rates of kinked cracks were shown to correlate with the variations of the mode I and the mode II stress intensities.

  3. Microstructural effects on fracture toughness of polycrystalline ceramics in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Singh, D.; Shetty, D. K.

    1988-01-01

    Fracture toughness of polycrystalline alumina and ceria partially-stabilized tetragonal zirconia (CeO2-TZP) ceramics were assessed in combined mode I and mode II loading using precracked disk specimens in diametral compression. Stress states ranging from pure mode I, combined mode I and mode II, and pure mode II were obtained by aligning the center crack at specific angles relative to the loading diameter. The resulting mixed-mode fracture toughness envelope showed significant deviation to higher fracture toughness in mode II relative to the predictions of the linear elastic fracture mechanics theory. Critical comparison with corresponding results on soda-lime glass and fracture surface observations showed that crack surface resistance arising from grain interlocking and abrasion was the main source of the increased fracture toughness in mode II loading of the polycrystalline ceramics. The normalized fracture toughness for pure mode II loading, (KII/KIc), increased with increasing grain size for the CeO2-TZP ceramics. Quantitative fractography confirmed an increased percentage of transgranular fracture of the grains in mode II loading.

  4. Microstructural effects on fracture toughness of polycrystalline ceramics in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Singh, D.; Shetty, D. K.

    1988-01-01

    Fracture toughness of polycrystalline alumina and ceria partially-stabilized tetragonal zirconia (CeO2-TZP) ceramics were assessed in combined mode I and mode II loading using precracked disk specimens in diametral compression. Stress states ranging from pure mode I, combined mode I and mode II, and pure mode II were obtained by aligning the center crack at specific angles relative to the loading diameter. The resulting mixed-mode fracture toughness envelope showed significant deviation to higher fracture toughness in mode II relative to the predictions of the linear elastic fracture mechanics theory. Critical comparison with corresponding results on soda-lime glass and fracture surface observations showed that crack surface resistance arising from grain interlocking and abrasion was the main source of the increased fracture toughness in mode II loading of the polycrystalline ceramics. The normalized fracture toughness for pure mode II loading, (KII/KIc), increased with increasing grain size for the CeO2-TZP ceramics. Quantitative fractography confirmed an increased percentage of transgranular fracture of the grains in mode II loading.

  5. The Harvard Fatigue Laboratory: Contributions to World War II

    ERIC Educational Resources Information Center

    Folk, G. Edgar

    2010-01-01

    The war contributions of the Harvard Fatigue Laboratory in Cambridge, MA, were recorded in 169 Technical Reports, most of which were sent to the Office of the Quartermaster General. Earlier reports were sent to the National Research Council and the Office of Scientific Research and Development. Many of the reports from 1941 and later dealt with…

  6. Fatigue Behavior of Adhesively Bonded Joints. Volume II. Appendices.

    DTIC Science & Technology

    1980-04-01

    StressoAnayiFnt lmns tic, andc argh th eeemntinar violastrick3 - modelO foAGoES ne 1D 4. MONTOIN A EDITC O *AWL’ NO ADPO~IfSiftfl OBSOLETE lla Offce 1...and Ultra- sonic Holography", Vol. I, Nondestructive Inspection and Control, Eighth Edition, 1976, pp . 198-233. "Fatigue Behavior of Adhesively Bonded

  7. The Harvard Fatigue Laboratory: Contributions to World War II

    ERIC Educational Resources Information Center

    Folk, G. Edgar

    2010-01-01

    The war contributions of the Harvard Fatigue Laboratory in Cambridge, MA, were recorded in 169 Technical Reports, most of which were sent to the Office of the Quartermaster General. Earlier reports were sent to the National Research Council and the Office of Scientific Research and Development. Many of the reports from 1941 and later dealt with…

  8. Exercise muscle fatigue detection system implementation via wireless surface electromyography and empirical mode decomposition.

    PubMed

    Chang, Kang-Ming; Liu, Shing-Hong; Wang, Jia-Jung; Cheng, Da-Chuan

    2013-01-01

    Surface electromyography (sEMG) is an important measurement for monitoring exercise and fitness. A wireless Bluetooth transmission sEMG measurement system with a sampling frequency of 2 KHz is developed. Traditional muscle fatigue is detected from the median frequency of the sEMG power spectrum. The regression slope of the linear regression of median frequency is an important muscle fatigue index. As fatigue increases, the power spectrum of the sEMG shifts toward lower frequencies. The goal of this study is to evaluate the sensitivity of empirical mode decomposition (EMD) quantifying the electrical manifestations of the local muscle fatigue during exercising in health people. We also compared this method with the raw data and discrete wavelet transform (DWT). Five male and five female volunteers participated. Each subject was asked to run on a multifunctional pedaled elliptical trainer for about 30 minutes, twice a week, and there were a total of six recording times for each subject with a wireless EMG recording system. The results show that sensitivity of the highest frequency component of EMD is better than the highest frequency component of DWT, and raw data.

  9. Fatigue Failure Modes of the Grain Size Transition Zone in a Dual Microstructure Disk

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Kantzos, Pete T.; Palsa, Bonnie; Telesman, Jack; Gayda, John; Sudbrack, Chantal K.

    2012-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. In order to maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored grain microstructures. In this study, fatigue failure modes of a grain size transition zone in a dual microstructure disk were evaluated. A specialized heat treatment method was applied to produce varying grain microstructure in the bore to rim portions of a powder metallurgy processed nickel-based superalloy disk. The transition in grain size was concentrated in a zone of the disk web, between the bore and rim. Specimens were extracted parallel and transversely across this transition zone, and multiple fatigue tests were performed at 427 C and 704 C. Grain size distributions were characterized in the specimens, and related to operative failure initiation modes. Mean fatigue life decreased with increasing maximum grain size, going out through the transition zone. The scatter in limited tests of replicates was comparable for failures of uniform gage specimens in all transition zone locations examined.

  10. Extending non-fatigue Mode I subcritical crack growth data to subcritical fatigue crack growth: Demonstration of the equivalence of the Charles' law and Paris law exponents

    NASA Astrophysics Data System (ADS)

    Keanini, Russell; Eppes, Martha-Cary

    2016-04-01

    Paris's law connects fatigue-induced subcritical crack growth and fatigue loading. Environmentally-driven subcritical crack growth, while a random process, can be decomposed into a spectrum of cyclic processes, where each spectral component is governed by Paris's law. Unfortunately, almost no data exists concerning the Paris law exponent, m; rather, the great majority of existing sub-critical crack growth measurements on rock have been carried out via Mode I tensile tests, where corresponding data are generally correlated using Charles' law, and where the latter, similar to Paris's law, exposes a power law relationship between crack growth rate and stress intensity. In this study, a statistical argument is used to derive a simple, rigorous relationship between the all-important Paris law and Charles law exponents, m and n. This result has a significant practical implication: subcritical fatigue crack growth in rock, driven by various random environmental weathering processes can now be predicted using available Mode I stress corrosion indices, n.

  11. Mixed-mode static and fatigue crack growth in central notched and compact tension shear specimens

    SciTech Connect

    Shlyannikov, V.N.

    1999-07-01

    Elastic-plastic crack growth under mixed Mode I and 2 in six types of aluminum alloys and three types of steel were investigated. The experimental study of fatigue crack growth in six types of the aluminum alloys and one type of the steel is performed on biaxially loaded eight-petal specimens (EPS). All specimens for biaxial loading contained inclined through thickness central cracks. Mixed Mode I/2 static and fatigue crack growth experiments on the three types of steels and one type of the aluminum alloy used compact tension shear (CTS) specimens. Two approaches are developed for geometrical modeling of crack growth trajectories for the central notched and compact tension shear specimens respectively. The principal feature of such modeling is the determination of crack growth direction and the definition of crack length increment in this direction. On the basis of the analysis of the experimental data for the aluminum alloys and the steels an empirical crack reorientation criterion is suggested for both brittle and ductile materials. The damage process zone size concept is used for calculations and mixed-mode crack path. The influence of specimen geometry, biaxial loading and properties of the aluminum alloys and the steels on both crack growth direction and crack path at the macroscopic scale is discussed.

  12. Fatigue cracks in Eurofer 97 steel: Part II. Comparison of small and long fatigue crack growth

    NASA Astrophysics Data System (ADS)

    Kruml, T.; Hutař, P.; Náhlík, L.; Seitl, S.; Polák, J.

    2011-05-01

    The fatigue crack growth rate in the Eurofer 97 steel at room temperature was measured by two different methodologies. Small crack growth data were obtained using cylindrical specimens with a shallow notch and no artificial crack starters. The growth of semicircular cracks of length between 10-2000 μm was followed in symmetrical cycling with constant strain amplitude ( R ɛ = -1). Long crack data were measured using standard CT specimen and ASTM methodology, i.e. R = 0.1. The growth of cracks having the length in the range of 10-30 mm was measured. It is shown that the crack growth rates of both types of cracks are in a very good agreement if J-integral representation is used and usual assumptions of the crack closure effects are taken into account.

  13. Slow crack growth in glass in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Shetty, D. K.; Rosenfield, A. R.

    1991-01-01

    Slow crack growth in soda-lime glass under combined mode I and mode II loading was investigated in precracked disk specimens in which pure mode I, pure mode II, and various combinations of mode I and mode II were achieved by loading in diametral compression at selected angles with respect to symmetric radial cracks. It is shown that slow crack growth under these conditions can be described by a simple exponential relationship with elastic strain energy release rate as the effective crack-driving force parameter. It is possible to interpret this equation in terms of theoretical models that treat subcritical crack growth as a thermally activated bond-rupture process with an activation energy dependent on the environment, and the elastic energy release rate as the crack-driving force parameter.

  14. Slow crack growth in glass in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Shetty, D. K.; Rosenfield, A. R.

    1991-01-01

    Slow crack growth in soda-lime glass under combined mode I and mode II loading was investigated in precracked disk specimens in which pure mode I, pure mode II, and various combinations of mode I and mode II were achieved by loading in diametral compression at selected angles with respect to symmetric radial cracks. It is shown that slow crack growth under these conditions can be described by a simple exponential relationship with elastic strain energy release rate as the effective crack-driving force parameter. It is possible to interpret this equation in terms of theoretical models that treat subcritical crack growth as a thermally activated bond-rupture process with an activation energy dependent on the environment, and the elastic energy release rate as the crack-driving force parameter.

  15. Standard solar model. II - g-modes

    NASA Technical Reports Server (NTRS)

    Guenther, D. B.; Demarque, P.; Pinsonneault, M. H.; Kim, Y.-C.

    1992-01-01

    The paper presents the g-mode oscillation for a set of modern solar models. Each solar model is based on a single modification or improvement to the physics of a reference solar model. Improvements were made to the nuclear reaction rates, the equation of state, the opacities, and the treatment of the atmosphere. The error in the predicted g-mode periods associated with the uncertainties in the model physics is predicted and the specific sensitivities of the g-mode periods and their period spacings to the different model structures are described. In addition, these models are compared to a sample of published observations. A remarkably good agreement is found between the 'best' solar model and the observations of Hill and Gu (1990).

  16. Recovery of time on limits of stability from functional fatigue in Division II collegiate athletes.

    PubMed

    Ishizuka, Toshimitsu; Hess, Rebecca A; Reuter, Ben; Federico, Marc S; Yamada, Yosuke

    2011-07-01

    Health and fitness professionals working with athletes could establish effective and safe practice and training programs if recovery time on dynamic balance from exertion was available. Research investigating the time needed to recover dynamic limits of stability (LOS) from exertion has not been reported. The purpose of this study was to determine the recovery timeline on LOS from functional fatigue in collegiate athletes. Eighteen athletes (11 men, 7 women) from Division II collegiate soccer team who passed prescreening tests to identify their fitness levels were randomly tested on 2 different days by condition (fatigue or nonfatigue). Functional fatigue was determined by using the Borg 15-point rating of perceived exertion (RPE) scale. Subjects were tested on LOS on the Biodex Balance System pre, post, 10, 15, and 20 minutes for each condition. The main effect for condition was not significant (F() = 0.004, p = 0.948), whereas the main effect for time was significant (F(4,64) = 6.167, p < 0.001). The RPE scoring revealed the significant main effect in FATIGUE (F(2.69, 45.73) = 234.8, p < 0.001). In conclusion, 20 minutes of functional activity will likely have a negative influence on dynamic balance, with balance recovery occurring within 10 minutes after the cessation of exercise in Division II collegiate soccer athletes. Moreover, the level of exertion measured by RPE would correspond to athletes' ability to control their center of mass.

  17. Rogue Mode Shileding in NSLS-II Multipole Vacuum Chambers

    SciTech Connect

    Ferreira, M.; Blednykh, A.; Bacha, B.; Borrelli, A.; Hseuh, H.-C.; Kosciuk, B.; Krinsky, S.; Singh, O.; Vetter, K.

    2011-03-28

    Modes with transverse electric field (TE-modes) in the NSLS-II multipole vacuum chamber can be generated at frequencies above 450MHz due to its geometric dimensions. Since the NSLS-II BPM system monitors signals within 10 MHz band at RF frequency of 500 MHz, frequencies of higher-order modes (HOM) can be generated within the transmission band of the band pass filter. In order to avoid systematic errors in the NSLS-II BPM system, we introduced frequency shift of HOMs by using RF metal shielding located in the antechamber slot. We demonstrated numerical modeling and experimental studies of the spurious TE modes in the NSLS-II vacuum chambers with antechamber slot. Calculated frequencies of TE-modes in considered chambers with and without RF shielding were verified experimentally. Flexible BeCu RF shielding inside each chamber at proper location shifts frequencies of H{sub 10p}-modes above {approx}900MHz, except chambers S6 odd and even. These chambers need special attention because of synchrotron radiation from downstream magnets. S6 odd multipole vacuum chamber needs to be measured and the RF shielding length has to be optimized. RF shielding looks adequate for baseline design. Fifty percent of open space provides adequate pumping speed.

  18. Alternate Operating Modes For NDCX-II

    NASA Astrophysics Data System (ADS)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Cohen, R. H.; Lund, S. M.; Vay, J.-L.; Waldron, W. L.

    2012-10-01

    NDCX-II is a newly completed accelerator facility at LBNL, built to study ion-heated warm dense matter and aspects of ion-driven targets for inertial-fusion energy. The baseline design calls for using twelve induction cells to accelerate 40 nC of Li+ ions to 1.2 MeV. During commissioning, though, we plan to extend the source lifetime by extracting less total charge. For operational flexibility, the option of using a helium plasma source is also being investigated. Over time, we expect that NDCX-II will be upgraded to substantially higher energies, necessitating the use of heavier ions to keep a suitable deposition range in targets. Each of these options requires development of an alternate acceleration schedule and the associated transverse focusing. The schedules here are first worked out with a fast-running 1-D particle-in-cell code ASP, then 2-D and 3-D Warp simulations are used to verify the 1-D results and to design transverse focusing.

  19. Damage type and strain mode associations in human compact bone bending fatigue.

    PubMed

    Boyce, T M; Fyhrie, D P; Glotkowski, M C; Radin, E L; Schaffler, M B

    1998-05-01

    When compact bone is subjected to fatigue loading, it develops matrix microdamage, which reduces the tissue's ability to resist fracture. The relative influence of different strain modes on damage and strength in compact bone has not been characterized, to our knowledge. In this study, the nonuniform strain field produced by four-point bending was used to introduce fatigue damage into tibial bending beam specimens from men 40-49 years old. The specimens were then bulk-stained with basic fuchsin to mark damage surfaces and were examined histologically and with confocal microscopy to describe damage morphologies and position relative to tension and compression-strained regions of the specimen. Histomorphometric methods were used to quantify the amounts of different types of bone microdamage. Three major types were observed. In regions subjected to tensile strains, the bone had focal regions of diffusely increased basic fuchsin staining (i.e., diffuse microdamage). Confocal microscopy of these regions showed them to be composed of extensive networks of fine, ultrastructural-level cracks. In compressive strain regions, the tissue developed linear microcracks in interstitial areas similar to those originally described by Frost. Fine, tearing-type (wispy-appearing) cracks were observed near and in the plane of the neutral axis. The paths of these fine cracks were not influenced by microstructural boundaries. Other minor damage morphologies (sector-stained osteons, delamination of regions of lamellae, and intraosteonal cracking) were observed, but their distribution was unrelated to local strain field. Thus. in fatigue of human compact bone, the principal mechanisms of matrix failure (i.e., linear microcrack, diffuse damage foci, and tearing-type damage) are strongly dependent on local strain type.

  20. Effect of Oxygen Inhibition Layer of Universal Adhesives on Enamel Bond Fatigue Durability and Interfacial Characteristics With Different Etching Modes.

    PubMed

    Ouchi, H; Tsujimoto, A; Nojiri, K; Hirai, K; Takamizawa, T; Barkmeier, W W; Latta, M A; Miyazaki, M

    2017-10-04

    The purpose of this study was to evaluate the effect of the oxygen inhibition layer of universal adhesive on enamel bond fatigue durability and interfacial characteristics with different etching modes. The three universal adhesives used were Scotchbond Universal Adhesive (3M ESPE, St Paul, MN, USA), Adhese Universal (Ivoclar Vivadent, Schaan, Lichtenstein), and G-Premio Bond (GC, Tokyo, Japan). The initial shear bond strength and shear fatigue strength to enamel was determined in the presence and absence of the oxygen inhibition layer, with and without phosphoric acid pre-etching. The water contact angle was also measured in all groups using the sessile drop method. The enamel bonding specimens with an oxygen inhibition layer showed significantly higher (p<0.05) initial shear bond strengths and shear fatigue strengths than those without, regardless of the adhesive type and etching mode. Moreover, the water contact angles on the specimens with an oxygen inhibition layer were significantly lower (p<0.05) than on those without, regardless of etching mode. The results of this study suggest that the oxygen inhibition layer of universal adhesives significantly increases the enamel bond fatigue durability and greatly changes interfacial characteristics, suggesting that the bond fatigue durability and interfacial characteristics of these adhesives strongly rely on its presence.

  1. Surface integrity evolution and fatigue evaluation after milling mode, shot-peening and polishing mode for TB6 titanium alloy

    NASA Astrophysics Data System (ADS)

    Yao, Changfeng; Wu, Daoxia; Ma, Lufei; Tan, Liang; Zhou, Zheng; Zhang, Jiyin

    2016-11-01

    Surface integrity is closely related to the service life of parts and components. Effects of four kinds of integration processes on surface integrity and fatigue life are studied. These four integration processes are M (milling), MP (milling and polishing), MPS (milling, polishing and shot-peening), and MPSP (milling, polishing, shot-peening and polishing). When roughness, micro-hardness, residual stress, micro-structure and fatigue were considered after the four integration processes, research results show that MPSP process can obtain the best surface topography and roughness, micro-hardness, and residual stress field distribution; MPSP process has the longest fatigue life, and the fatigue life of MPSP process is about 68 times of M process, 56 times of MP process, and 48 times of MPS process; The fatigue fracture of the specimen after MPSP process is flat, and the depth of the crack initiation site for MPSP specimen is approximately 150 μm below the surface.

  2. Ren Shen Yangrong Tang for Fatigue in Cancer Survivors: A Phase I/II Open-Label Study

    PubMed Central

    Xu, Yichen; Chen, Yanzhi

    2015-01-01

    Abstract Objectives: This open-label, prospective, phase I/II trial was performed to establish the safety and efficacy of Traditional Chinese Medicine (TCM) herbal products for treating non–anemia-related fatigue in patients with cancer. Although this practice is widespread in China, it has not been confirmed in a prospective clinical study. Design: Thirty-three patients who had completed cancer treatment, had stable disease and no anemia, and reported moderate to severe fatigue (rated ≥4 on a 0–10 scale) were enrolled in a TCM outpatient clinic. Patients took Ren Shen Yangrong Tang (RSYRT) decoction, a soup containing 12 TCM herbs, twice a day for 6 weeks. RSYRT aims to correct qi deficiency. Fatigue was assessed before and after RSYRT therapy, which all patients completed. Results: No discomfort or toxicity was observed. Before the study, all patients had had fatigue for at least 4 months. Fatigue severity decreased significantly from before therapy to 6 weeks after therapy: from 7.06 to 3.30 on a 0–10 scale (p<0.001). Fatigue category (mild, moderate, severe) shifted significantly (p=0.024): Of 22 patients with severe fatigue (rated ≥7) before therapy, 11 had mild fatigue and 11 had moderate fatigue after TCM treatment. The time-to-fatigue-alleviation was 2–3 weeks. Conclusion: RSYRT therapy was safe and was associated with fatigue improvement in nonanemic cancer survivors, consistent with historical TCM clinical practice experience. Because of a possible placebo effect in this open-label study, decoction RSYRT warrants further study in randomized clinical trials to confirm its effectiveness for managing moderate to severe fatigue. PMID:25918996

  3. Comparison of Two Different Modes of Active Recovery on Muscles Performance after Fatiguing Exercise in Mountain Canoeist and Football Players

    PubMed Central

    Mika, Anna; Oleksy, Łukasz; Kielnar, Renata; Wodka-Natkaniec, Ewa; Twardowska, Magdalena; Kamiński, Kamil; Małek, Zbigniew

    2016-01-01

    Background The aim of this study is to assess if the application of different methods of active recovery (working the same or different muscle groups from those which were active during fatiguing exercise) results in significant differences in muscle performance and if the efficiency of the active recovery method is dependent upon the specific sport activity (training loads). Design A parallel group non-blinded trial with repeated measurements. Methods Thirteen mountain canoeists and twelve football players participated in this study. Measurements of the bioelectrical activity, torque, work and power of the vastus lateralis oblique, vastus medialis oblique, and rectus femoris muscles were performed during isokinetic tests at a velocity of 90°/s. Results Active legs recovery in both groups was effective in reducing fatigue from evaluated muscles, where a significant decrease in fatigue index was observed. The muscles peak torque, work and power parameters did not change significantly after both modes of active recovery, but in both groups significant decrease was seen after passive recovery. Conclusions We suggest that 20 minutes of post-exercise active recovery involving the same muscles that were active during the fatiguing exercise is more effective in fatigue recovery than active exercise using the muscles that were not involved in the exercise. Active arm exercises were less effective in both groups which indicates a lack of a relationship between the different training regimens and the part of the body which is principally used during training. PMID:27706260

  4. Comparison of Two Different Modes of Active Recovery on Muscles Performance after Fatiguing Exercise in Mountain Canoeist and Football Players.

    PubMed

    Mika, Anna; Oleksy, Łukasz; Kielnar, Renata; Wodka-Natkaniec, Ewa; Twardowska, Magdalena; Kamiński, Kamil; Małek, Zbigniew

    2016-01-01

    The aim of this study is to assess if the application of different methods of active recovery (working the same or different muscle groups from those which were active during fatiguing exercise) results in significant differences in muscle performance and if the efficiency of the active recovery method is dependent upon the specific sport activity (training loads). A parallel group non-blinded trial with repeated measurements. Thirteen mountain canoeists and twelve football players participated in this study. Measurements of the bioelectrical activity, torque, work and power of the vastus lateralis oblique, vastus medialis oblique, and rectus femoris muscles were performed during isokinetic tests at a velocity of 90°/s. Active legs recovery in both groups was effective in reducing fatigue from evaluated muscles, where a significant decrease in fatigue index was observed. The muscles peak torque, work and power parameters did not change significantly after both modes of active recovery, but in both groups significant decrease was seen after passive recovery. We suggest that 20 minutes of post-exercise active recovery involving the same muscles that were active during the fatiguing exercise is more effective in fatigue recovery than active exercise using the muscles that were not involved in the exercise. Active arm exercises were less effective in both groups which indicates a lack of a relationship between the different training regimens and the part of the body which is principally used during training.

  5. Fatigue resistance and failure mode of novel-design anterior single-tooth implant restorations: influence of material selection for type III veneers bonded to zirconia abutments.

    PubMed

    Magne, Pascal; Paranhos, Maria Paula Gandolfi; Burnett, Luiz Henrique; Magne, Michel; Belser, Urs Christoph

    2011-02-01

    This study assessed the fatigue resistance and failure mode of type III porcelain and composite resin veneers bonded to custom zirconia implant abutments. Twenty-four standardized zirconia implant abutments were fabricated. Using the CEREC 3 machine, type III veneers of standardized shape were milled in ceramic Vita Mark II or in composite resin Paradigm MZ100. The intaglio surfaces of the restorations were hydrofluoric acid etched and silanated (Mark II) or airborne-particle abraded and silanated (MZ100). The fitting surface of the abutments was airborne-particle abraded, cleaned, and inserted into a bone level implant (BLI RC SLActive 10 mm). All veneers (n=24) were adhesively luted with a zirconia primer (Z-Prime Plus), adhesive resin (Optibond FL) and a pre-heated light-curing composite resin (Filtek Z100). Cyclic isometric chewing (5 Hz) was simulated, starting with a load of 40 N, followed by stages of 80, 120, 160, 200, 240, and 280 N (20,000 cycles each). Samples were loaded until fracture or to a maximum of 140,000 cycles. Groups were compared using the life table survival analysis (Logrank test at P=.05). Mark II and MZ100 specimens fractured at an average load of 216 N and 229 N (survival rate of 17% and 8%), respectively, with no difference in survival probability (P=.18). Among the fractured samples, 40% of the failures were at the abutment level for Mark II and 27% were at the abutment level for MZ100. No exclusive adhesive failures were observed. Type III Mark II and Paradigm MZ100 veneers showed similar fatigue resistance when bonded to custom non-retentive zirconia implant abutments. The bond was strong enough to induce abutment fractures. MZ100 presented a higher percentage of "friendly" failures, i.e. maintaining the restoration-abutment adhesive interface and the abutment itself intact. © 2010 John Wiley & Sons A/S.

  6. Phase II double-blind placebo-controlled randomized study of armodafinil for brain radiation-induced fatigue

    PubMed Central

    Page, Brandi R.; Shaw, Edward G.; Lu, Lingyi; Bryant, David; Grisell, David; Lesser, Glenn J.; Monitto, Drew C.; Naughton, Michelle J.; Rapp, Stephen R.; Savona, Steven R.; Shah, Sunjay; Case, Doug; Chan, Michael D.

    2015-01-01

    Background Common acute-term side effects of brain radiotherapy (RT) include fatigue, drowsiness, decreased physical functioning, and decreased quality of life (QOL). We hypothesized that armodafinil (a wakefulness-promoting drug known to reduce fatigue and increase cognitive function in breast cancer patients receiving chemotherapy) would result in reduced fatigue and sleepiness for patients receiving brain RT. Methods A phase II, multi-institutional, placebo-controlled randomized trial assessed feasibility of armodafinil 150 mg/day in participants receiving brain RT, from whom we obtained estimates of variability for fatigue, sleepiness, QOL, cognitive function, and treatment effect. Results From September 20, 2010, to October 20, 2012, 54 participants enrolled with 80% retention and 94% self-reported compliance. There were no grade 4–5 toxicities, and the incidence of grade 2–3 toxicities was similar between treatment arms, the most common of which were anxiety and nausea (15%), headaches (19%), and insomnia (20%). There were no statistically significant differences in end-RT or 4 week post-RT outcomes between armodafinil and placebo in any outcomes (Functional Assessment of Chronic Illness Therapy [FACIT]-Fatigue, Brief Fatigue Inventory, Epworth Sleepiness Scale, FACT-Brain, and FACIT-cognitive function). However, in participants with more baseline fatigue, those treated with armodafinil did better than those who received the placebo on the end-RT assessments for several outcomes. Conclusion Armodafinil 150 mg/day was well tolerated in primary brain tumor patients undergoing RT with good compliance. While there was no overall significant effect on fatigue, those with greater baseline fatigue experienced improved QOL and reduced fatigue when using armodafinil. These data suggest that a prospective, phase III randomized trial is warranted for patients with greater baseline fatigue. PMID:25972454

  7. Reliability and fatigue failure modes of implant-supported aluminum-oxide fixed dental prostheses

    PubMed Central

    Stappert, Christian F. J.; Baldassarri, Marta; Zhang, Yu; Hänssler, Felix; Rekow, Elizabeth D.; Thompson, Van P.

    2012-01-01

    Objectives To investigate failure modes and reliability of implant-supported aluminum-oxide three-unit fixed-dental-prostheses (FDPs) using two different veneering porcelains. Material and methods Thirty-six aluminum-oxide FDP-frameworks were CAD/CAM fabricated and either hand-veneered(n=18) or over-pressed(n=18). All FDPs were adhesively luted to custom-made zirconium-oxide-abutments attached to dental implant fixtures (RP-4×13mm). Specimens were stored in water prior to mechanical testing. A Step-Stress-Accelerated-Life-Test (SSALT) with three load/cycles varying profiles was developed based on initial single-load-to-failure testing. Failure was defined by veneer chipping or chipping in combination with framework fracture. SSALT was performed on each FDP inclined 30° with respect to the applied load direction. For all specimens, failure modes were analyzed using polarized-reflected-light-microscopy and scanning-electron-microscopy (SEM). Reliability was computed using Weibull analysis software (Reliasoft). Results The dominant failure mode for the over-pressed FDPs was buccal chipping of the porcelain in the loading area of the pontic, while hand-veneered specimens failed mainly by combined failure modes in the veneering porcelain, framework and abutments. Chipping of the porcelain occurred earlier in the over-pressed specimens (350 N/85k, load/cycles) than in the hand-veneered (600 N/110k)(profile I). Given a mission at 300 N load and 100k or 200 K cycles the computed Weibull reliability (2-sided at 90.0 % confidence bounds) was 0.99(1/0.98) and 0.99(1/0.98) for hand-veneered FDPs, and 0.45(0.76/0.10) and 0.05(0.63/0) for over-pressed FDPs, respectively. Conclusions In the range of average clinical loads (300–700 N), hand-veneered aluminum-oxide FDPs showed significantly less failure by chipping of the veneer than the over-pressed. Hand-veneered FDPs under fatigue loading failed at loads ≥ 600N. PMID:22093019

  8. Effect of initial delamination on Mode 1 and Mode 2 interlaminar fracture toughness and fatigue fracture threshold

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen Bostaph; Martin, Roderick H.

    1991-01-01

    Static and fatigue double-cantilever beam (DCB) and end-notch flexure (ENF) tests were conducted to determine the effect of the simulated initial delamination in interlaminar fracture toughness, G(sub c), and fatigue fracture threshold, G(sub th). Unidirectional, 24-ply specimens of S2/SP250 glass/epoxy were tested using Kapton inserts of four different thickness - 13, 25, 75, and 130 microns, at the midplane at one end, or with tension or shear precracks, to simulate an initial delamination. To determine G(sub c), the fatigue fracture threshold below which no delamination growth would occur in less than 1 x 10(exp 6) cycles, fatigue tests were conducted by cyclically loading specimens until delamination growth was detected. Consistent values of model 1 fracture toughness, G(sub Ic), were measured from DCB specimens with inserts of thickness 75 microns or thinner, or with shear precracks. The fatigue DCB tests gave similar values of G(sub Ith) for the 13, 25, and 75 microns specimens. Results for the shear precracked specimens were significantly lower that for specimens without precracks. Results for both the static and fatigue ENF tests showed that measured G(IIc) and G(IIth) values decreased with decreasing insert thickness, so that no limiting thickness could be determined. Results for specimens with inserts of 75 microns or thicker were significantly higher than the results for precracked specimens or specimens with 13 or 25 microns inserts.

  9. NSLS-II BPM System Protection from Rogue Mode Coupling

    SciTech Connect

    Blednykh, A.; Bach, B.; Borrelli, A.; Ferreira, M.; Hseuh, H.-C.; Hetzel, C.; Kosciuk, B.; Krinsky, S.; Singh, O.; Vetter, K.

    2011-03-28

    Rogue mode RF shielding has been successfully designed and implemented into the production multipole vacuum chambers. In order to avoid systematic errors in the NSLS-II BPM system we introduced frequency shift of HOM's by using RF metal shielding located in the antechamber slot of each multipole vacuum chamber. To satisfy the pumping requirement the face of the shielding has been perforated with roughly 50 percent transparency. It stays clear of synchrotron radiation in each chamber.

  10. Characterization of Mode I and Mode II delamination growth and thresholds in AS4/PEEK composites

    NASA Technical Reports Server (NTRS)

    Martin, Roderick H.; Murri, Gretchen Bostaph

    1990-01-01

    Composite materials often fail by delamination. The onset and growth of delamination in AS4/PEEK, a tough thermoplastic matrix composite, was characterized for mode 1 and mode 2 loadings, using the Double Cantilever Beam (DCB) and the End Notched Flexure (ENF) test specimens. Delamination growth per fatigue cycle, da/dN, was related to strain energy release rate, G, by means of a power law. However, the exponents of these power laws were too large for them to be adequately used as a life prediction tool. A small error in the estimated applied loads could lead to large errors in the delamination growth rates. Hence strain energy release rate thresholds, G sub th, below which no delamination would occur were also measured. Mode 1 and 2 threshold G values for no delamination growth were found by monitoring the number of cycles to delamination onset in the DCB and ENF specimens. The maximum applied G for which no delamination growth had occurred until at least 1,000,000 cycles was considered the threshold strain energy release rate. Comments are given on how testing effects, facial interference or delamination front damage, may invalidate the experimental determination of the constants in the expression.

  11. Characterization of Mode I and Mode II delamination growth and thresholds in AS4/PEEK composites

    NASA Technical Reports Server (NTRS)

    Martin, Roderick H.; Murri, Gretchen Bostaph

    1990-01-01

    Composite materials often fail by delamination. The onset and growth of delamination in AS4/PEEK, a tough thermoplastic matrix composite, was characterized for mode 1 and mode 2 loadings, using the Double Cantilever Beam (DCB) and the End Notched Flexure (ENF) test specimens. Delamination growth per fatigue cycle, da/dN, was related to strain energy release rate, G, by means of a power law. However, the exponents of these power laws were too large for them to be adequately used as a life prediction tool. A small error in the estimated applied loads could lead to large errors in the delamination growth rates. Hence strain energy release rate thresholds, G sub th, below which no delamination would occur were also measured. Mode 1 and 2 threshold G values for no delamination growth were found by monitoring the number of cycles to delamination onset in the DCB and ENF specimens. The maximum applied G for which no delamination growth had occurred until at least 1,000,000 cycles was considered the threshold strain energy release rate. Comments are given on how testing effects, facial interference or delamination front damage, may invalidate the experimental determination of the constants in the expression.

  12. Mode of action of lipid II-targeting lantibiotics.

    PubMed

    Bauer, R; Dicks, L M T

    2005-05-25

    The antimicrobial action of bacteriocins from Gram-positive bacteria is based on interaction with the cytoplasmic membrane of sensitive bacteria. Models based on studies with artificial membrane systems propose that nisin forms wedge-like poration complexes in the membrane by electrostatic interaction between the positively charged C terminus of the peptide and anionic membrane phospholipids. Nisin can also permeabilise membranes via a targeted mechanism by using lipid II, the bactoprenol-bound precursor of the bacterial cell wall, as a docking molecule. Another consequence of binding with lipid II is the inhibition of peptidoglycan biosynthesis. Mersacidine and actagardine also form a complex with lipid II, but binding only blocks the incorporation of lipid II into peptidoglycan, resulting in slow cell lysis rather than pore formation. Both peptides share a conserved sequence motif with plantaricin C and pediocin PD-1, which is most probably involved in the binding of these bacteriocins to lipid II. Although pediocin PD-1 and plantaricin C may inhibit peptidoglycan biosynthesis, pore formation is rather due to electrostatic interaction between the positively charged unbridged N-terminus and anionic phospholipids in the cytoplasmic membrane of sensitive cells. In the light of increased antibiotic resistance, this review focuses on the mode of action of lantibiotics that involve lipid II, possible candidates for the development of new-generation novel antibiotic drugs.

  13. Fatigue resistance and failure mode of adhesively restored custom metal-composite resin premolar implant abutments.

    PubMed

    Boff, Luís Leonildo; Oderich, Elisa; Cardoso, Antônio Carlos; Magne, Pascal

    2014-01-01

    To evaluate the fatigue resistance and failure mode of composite resin and porcelain onlays and crowns bonded to premolar custom metal-composite resin premolar implant abutments. Sixty composite resin mesostructures were fabricated with computer assistance with two preparation designs (crown vs onlay) and bonded to a metal implant abutment. Following insertion into an implant with a tapered abutment interface (Titamax CM), each metal-composite resin abutment was restored with either composite resin (Paradigm MZ100) or ceramic (Paradigm C) (n = 15) and attached with adhesive resin (Optibond FL) and a preheated light-curing composite resin (Filtek Z100). Cyclic isometric chewing (5 Hz) was then simulated, starting with 5,000 cycles at a load of 50 N, followed by stages of 200, 400, 600, 800, 1,000, 1,200, and 1,400 N (25,000 cycles each). Samples were loaded until fracture or to a maximum of 180,000 cycles. The four groups were compared using life table survival analysis (log-rank test). Previously published data using zirconia abutments of the same design were included for comparison. Paradigm C and MZ100 specimens fractured at average loads of 1,133 N and 1,266 N, respectively. Survival rates ranged from 20% to 33.3% (ceramic crowns and onlays) to 60% (composite resin crowns and onlays) and were significantly different (pooled data for restorative material). There were no restoration failures, but there were adhesive failures at the connection between the abutment and the mesostructure. The survival of the metal-composite resin premolar abutments was inferior to that of identical zirconia abutments from a previous study (pooled data for abutment material). Composite resin onlays/crowns bonded to metal-composite resin premolar implant abutments presented higher survival rates than comparable ceramic onlays/crowns. Zirconia abutments outperformed the metal-composite resin premolar abutments.

  14. Development of a numerical procedure for mixed mode K-solutions and fatigue crack growth in FCC single crystal superalloys

    NASA Astrophysics Data System (ADS)

    Ranjan, Srikant

    2005-11-01

    Fatigue-induced failures in aircraft gas turbine and rocket engine turbopump blades and vanes are a pervasive problem. Turbine blades and vanes represent perhaps the most demanding structural applications due to the combination of high operating temperature, corrosive environment, high monotonic and cyclic stresses, long expected component lifetimes and the enormous consequence of structural failure. Single crystal nickel-base superalloy turbine blades are being utilized in rocket engine turbopumps and jet engines because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. These materials have orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Computation of stress intensity factors (SIFs) and the ability to model fatigue crack growth rate at single crystal cracks subject to mixed-mode loading conditions are important parts of developing a mechanistically based life prediction for these complex alloys. A general numerical procedure has been developed to calculate SIFs for a crack in a general anisotropic linear elastic material subject to mixed-mode loading conditions, using three-dimensional finite element analysis (FEA). The procedure does not require an a priori assumption of plane stress or plane strain conditions. The SIFs KI, KII, and KIII are shown to be a complex function of the coupled 3D crack tip displacement field. A comprehensive study of variation of SIFs as a function of crystallographic orientation, crack length, and mode-mixity ratios is presented, based on the 3D elastic orthotropic finite element modeling of tensile and Brazilian Disc (BD) specimens in specific crystal orientations. Variation of SIF through the thickness of the specimens is also analyzed. The resolved shear stress intensity coefficient or effective SIF, Krss, can be computed as a function of crack tip SIFs and the

  15. Influence of the number of cycles on shear fatigue strength of resin composite bonded to enamel and dentin using dental adhesives in self-etching mode.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Erickson, Robert L; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2017-09-28

    The influence of the number of cycles on shear fatigue strength to enamel and dentin using dental adhesives in self-etch mode was investigated. A two-step self-etch adhesive and two universal adhesives were used to bond to enamel and dentin in self-etch mode. Initial shear bond strength and shear fatigue strength to enamel and dentin using the adhesive in self-etch mode were determined. Fatigue testing was used with 20 Hz frequency and cycling periods of 50,000, 100,000 and 1,000,000 cycles, or until failure occurred. For each of the cycling periods, there was no significant difference in shear fatigue strength across the cycling periods for the individual adhesives. Differences in shear fatigue strength were found between the adhesives within the cycling periods. Regardless of the adhesive used in self-etch mode for bonding to enamel or dentin, shear fatigue strength was not influenced by the number of cycles used for shear fatigue strength testing.

  16. On-line detection of fatigue cracks using an automatic mode tracking technique

    NASA Astrophysics Data System (ADS)

    Vanlanduit, S.; Verboven, P.; Guillaume, P.

    2003-09-01

    Experimental fatigue tests usually require large testing times. In addition to the resulting increased time-to-market, the large fatigue test time also implies that any structural health monitoring technique that is used should be automatic. When using the modal parameters as damage indicators, an important amount of user interaction is still needed to separate physical poles from computational ones. In this paper, an experimental framework will be developed to automatically track the health of the structure on-line with the performance of fatigue tests. The modal parameters are tracked using a combination of the maximum likelihood estimator and an auto-regressive model. Since confidence levels on the modal parameter are available it is possible to detect if damage is present. In addition, the quasi-static stiffness with computed confidence levels is also used as a damage indicator. The proposed techniques are demonstrated on a steel beam with a propagating fatigue crack.

  17. Effects of Control Mode and R-Ratio on the Fatigue Behavior of a Metal Matrix Composite

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Composite Because of their high specific stiffness and strength at elevated temperatures, continuously reinforced metal matrix composites (MMC's) are under consideration for a future generation of aeropropulsion systems. Since components in aeropropulsion systems experience substantial cyclic thermal and mechanical loads, the fatigue behavior of MMC's is of great interest. Almost without exception, previous investigations of the fatigue behavior of MMC's have been conducted in a tension-tension, load-controlled mode. This has been due to the fact that available material is typically less than 2.5-mm thick and, therefore, unable to withstand high compressive loads without buckling. Since one possible use of MMC's is in aircraft skins, this type of testing mode may be appropriate. However, unlike aircraft skins, most engine components are thick. In addition, the transient thermal gradients experienced in an aircraft engine will impose tension-compression loading on engine components, requiring designers to understand how the MMC will behave under fully reversed loading conditions. The increased thickness of the MMC may also affect the fatigue life. Traditionally, low-cycle fatigue (LCF) tests on MMC's have been performed in load control. For monolithic alloys, low-cycle fatigue tests are more typically performed in strain control. Two reasons justify this choice: (1) the critical volume from which cracks initiate and grow is generally small and elastically constrained by the larger surrounding volume of material, and (2) load-controlled, low-cycle fatigue tests of monolithics invariably lead to unconstrained ratcheting and localized necking--an undesired material response because the failure mechanism is far more severe than, and unrelated to, the fatigue mechanism being studied. It is unknown if this is the proper approach to composite testing. However, there is a lack of strain-controlled data on which to base any decisions. Consequently, this study addresses the

  18. A path-dependent fatigue crack propagation model under non-proportional modes I and III loading conditions

    DOE PAGES

    Mei, J.; Dong, P.; Kalnaus, S.; ...

    2017-07-21

    It has been well established that fatigue damage process is load-path dependent under non-proportional multi-axial loading conditions. Most of studies to date have been focusing on interpretation of S-N based test data by constructing a path-dependent fatigue damage model. Our paper presents a two-parameter mixed-mode fatigue crack growth model which takes into account of crack growth dependency on both load path traversed and a maximum effective stress intensity attained in a stress intensity factor plane (e.g.,KI-KIII plane). Furthermore, by taking advantage of a path-dependent maximum range (PDMR) cycle definition (Dong et al., 2010; Wei and Dong, 2010), the two parametersmore » are formulated by introducing a moment of load path (MLP) based equivalent stress intensity factor range (ΔKNP) and a maximum effective stress intensity parameter KMax incorporating an interaction term KI·KIII. To examine the effectiveness of the proposed model, two sets of crack growth rate test data are considered. The first set is obtained as a part of this study using 304 stainless steel disk specimens subjected to three combined non-proportional modes I and III loading conditions (i.e., with a phase angle of 0°, 90°, and 180°). The second set was obtained by Feng et al. (2007) using 1070 steel disk specimens subjected to similar types of non-proportional mixed-mode conditions. Once the proposed two-parameter non-proportional mixed-mode crack growth model is used, it is shown that a good correlation can be achieved for both sets of the crack growth rate test data.« less

  19. Combined Mode I and Mode II Fracture of Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The mode I, mode II, and combined mode I-mode II fracture behavior of ZrO2- 8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. Precracks were introduced in test specimens using the single-edge-v-notched beam (SEVNB) method incorporated with final diamond polishing to achieve sharp crack tips. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of K(sub I)/K(sub II) were also determined. The mixed-mode fracture behaviors of the coating material were compared with those of monolithic advanced ceramics determined previously. The mixed-mode fracture behavior of the plasma-sprayed thermal barrier coating material was predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.

  20. Combined Mode I and Mode II Fracture of Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The mode I, mode II, and combined mode I-mode II fracture behavior of ZrO2- 8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. Precracks were introduced in test specimens using the single-edge-v-notched beam (SEVNB) method incorporated with final diamond polishing to achieve sharp crack tips. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of K(sub I)/K(sub II) were also determined. The mixed-mode fracture behaviors of the coating material were compared with those of monolithic advanced ceramics determined previously. The mixed-mode fracture behavior of the plasma-sprayed thermal barrier coating material was predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.

  1. Effets de l'humidite sur la propagation du delaminage dans un composite carbone/epoxy sollicite en mode mixte I/II

    NASA Astrophysics Data System (ADS)

    LeBlanc, Luc R.

    In industries such as aerospace, motorsports, and even sporting equipment, composite materials are used more than ever, primarily due to their high stiffness and strength to weight ratios. Studies have shown that moisture exposure on carbon/epoxy composite materials can affect their delamination toughness, initiation and growth rate. Of these studies, only a few demonstrated the effects of moisture on delamination toughness and initiation with mixed mode I/II loadings, while none have investigated the effects of moisture exposure of composites on delamination growth rate with mixed mode I/II loadings. The first part of this thesis studies the effects of moisture exposure on delamination growth in a carbon/epoxy composite using mixed mode I/II loadings. Coupons were cut from plates of unidirectional carbon/epoxy (040-800/5276-1) and were submerged in a 70°C distilled water bath until they reached saturation. Quasi -static experimental tests were performed using a range of mode mixities (0%, 25%, 50%, 75% and 1 00%) on dry and conditioned coupons to determine the effects of humidity on delamination toughness. Fatigue tests with the same mode mixities were performed to determine the effects of moisture on delamination initiation and growth rate. Results from tests with quasi-static loadings demonstrated that delamination toughness decreased for all loading modes studied except for mode I after composites are exposed to moisture. When a conditioned composite is subject to mode I loadings, its delamination toughness increases compared to non-conditioned composites. Composites exposed to moisture showed accelerated delamination initiation and growth rates for all mixed mode I/II fatigue loadings. Experimental data was used to determine which fracture criterion and growth rate model for mixed mode I/II delamination better represented the studied composite. A regression curve and regression surface was used to fit the experimental data to the delamination fracture

  2. Association of chronic fatigue syndrome with human leucocyte antigen class II alleles

    PubMed Central

    Smith, J; Fritz, E L; Kerr, J R; Cleare, A J; Wessely, S; Mattey, D L

    2005-01-01

    Background: A genetic component to the development of chronic fatigue syndrome (CFS) has been proposed, and a possible association between human leucocyte antigen (HLA) class II antigens and chronic fatigue immune dysfunction has been shown in some, but not all, studies. Aims: To investigate the role of HLA class II antigens in CFS. Methods: Forty nine patients with CFS were genotyped for the HLA-DRB1, HLA-DQA1, and HLA-DQB1 alleles and the frequency of these alleles was compared with a control group comprising 102 normal individuals from the UK. All patients and controls were from the same region of England and, apart from two patients, were white. Results: Analysis by 2 × 2 contingency tables revealed an increased frequency of HLA-DQA1*01 alleles in patients with CFS (51.0% v 35%; odds ratio (OR), 1.93; p  =  0.008). HLA-DQB1*06 was also increased in the patients with CFS (30.2% v 20.0%; OR, 1.73, p  =  0.052). Only the association between HLA-DQA1*01 and CFS was significant in logistic regression models containing HLA-DQA1*01 and HLA-DRQB1*06, and this was independent of HLA-DRB1 alleles. There was a decreased expression of HLA-DRB1*11 in CFS, although this association disappeared after correction for multiple comparisons. Conclusions: CFS may be associated with HLA-DQA1*01, although a role for other genes in linkage disequilibrium cannot be ruled out. PMID:16049290

  3. Evaluation of Delamination Onset and Growth Characterization Methods under Mode I Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.

    2013-01-01

    Double-cantilevered beam specimens of IM7/8552 graphite/epoxy from two different manufacturers were tested in static and fatigue to compare the material characterization data and to evaluate a proposed ASTM standard for generating Paris Law equations for delamination growth. Static results were used to generate compliance calibration constants for reducing the fatigue data, and a delamination resistance curve, GIR, for each material. Specimens were tested in fatigue at different initial cyclic GImax levels to determine a delamination onset curve and the delamination growth rate. The delamination onset curve equations were similar for the two sources. Delamination growth rate was calculated by plotting da/dN versus GImax on a log-log scale and fitting a Paris Law. Two different data reduction methods were used to calculate da/dN. To determine the effects of fiber-bridging, growth results were normalized by the delamination resistance curves. Paris Law exponents decreased by 31% to 37% after normalizing the data. Visual data records from the fatigue tests were used to calculate individual compliance constants from the fatigue data. The resulting da/dN versus GImax plots showed improved repeatability for each source, compared to using averaged static data. The Paris Law expressions for the two sources showed the closest agreement using the individually fit compliance data.

  4. Acoustic fatigue life prediction for nonlinear structures with multiple resonant modes

    NASA Technical Reports Server (NTRS)

    Sun, J. Q.; Miles, R. N.

    1990-01-01

    An efficient method is presented for estimating the high-cycle fatigue lives of complex nonlinear structures. The procedure is based on an application of the method of equivalent linearization to construct a time-domain representation of the stress or strain response of a nonlinear structure. Fatigue estimates are obtained by processing the time-domain signal, and it is a simple matter to incorporate any damage accumulation model desired in the procedure. The method may also be applied to a wide range of complex nonlinear systems. Comparisons are presented of estimated fatigue lives for a nonlinear beam with random excitation obtained using the approximate method and using a conventional numerical simulation. The two techniques are found to give nearly identical results regardless of the level of nonlinearity. The number of calculations required in the approximate method is nearly the same as in a linear system and is not significantly affected by the type and level of nonlinearity in the structure.

  5. Accelerated fatigue crack growth behavior of PWA 1480 single crystal alloy and its dependence on the deformation mode

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Ghosn, Louis J.

    1988-01-01

    An investigation of the fatigue crack growth (FCG) behavior of PWA 1480 single crystal nickel base superalloy was conducted. Typical Paris region behavior was observed above a delta K of 8 MPa sq rt of m. However, below that stress intensity range, the alloy exhibited highly unusual behavior. This behavior consisted of a region where the crack growth rate became essentially independent of the applied stress intensity. The transition in the FCG behavior was related to a change in the observed crack growth mechanisms. In the Paris region, fatigue failure occurred along (111) facets; however, at the lower stress intensities, (001) fatigue failure was observed. A mechanism was proposed, based on barriers to dislocation motion, to explain the changes in the observed FCG behavior. The FCG data were also evaluated in terms of a recently proposed stress intensity parameter, K sub rss. This parameter, based on the resolved shear stresses on the slip planes, quantified the crack driving force as well as the mode I delta K, and at the same time was also able to predict the microscopic crack path under different stress states.

  6. Retroviral sequences related to human T-lymphotropic virus type II in patients with chronic fatigue immune dysfunction syndrome

    SciTech Connect

    DeFreitas, E.; Hilliard, B.; Cheney, P.R.; Bell, D.S.; Kiggundu, E.; Sankey, D.; Wroblewska, Z.; Palladino, M.; Woodward, J.P.; Koprowski, H. )

    1991-04-01

    Chronic fatigue immune dysfunction syndrome (CFIDS) is a recently recognized illness characterized by debilitating fatigue as well as immunological and neurological abnormalities. Once thought to be caused by Epstein-Barr virus, it is now thought to have a different but unknown etiology. The authors evaluted 30 adult and pediatric CFIDS patients from six eastern states for the presence of human T-lymphotropic virus (HTLV) types I and II by Western immunoblotting, polymerase chain reaction, and in situ hybridization of blood samples. The majority of patients were positive for HTLV antibodies by Western blotting and for HTLV-II gag sequences by polymerase chain reaction and in situ hybridization. Twenty nonexposure healthy controls were negative in all assays. These data support an association between an HTLV-II-like virus and CFIDS.

  7. Initiation and growth of mode II delamination in toughened composites

    NASA Astrophysics Data System (ADS)

    Russell, Alan J.

    The origins of nonlinearity in the mode-II delamination fracture of three organic-matrix carbon-fiber composite materials was investigated. This was accomplished by testing specimens with different types of starter cracks and by loading and unloading these specimens several times so that the change in nonlinearity as the delaminations grew could be measured. The load at which crack growth initiated was determined by acoustic emission. Slow crack growth as found to be the principal cause of nonlinearity in the materials tested. The crack velocity obeyed the same power law dependence on GII as is observed for slow crack growth in viscoelastic polymers. For the first loading from the end of the starter cracks, plastic deformation at the crack tip also contributed to the nonlinearity. Other sources of nonlinearity included an increasing fracture resistance in one of the materials as well as problems associated with producing a clean starter notch with a straight crack front.

  8. Synergistic Effects of Temperature, Oxidation and Multicracking Modes on Damage Evolution and Life Prediction of 2D Woven Ceramic-Matrix Composites under Tension-Tension Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2017-08-01

    In this paper, the synergistic effects of temperature, oxidation and multicracking modes on damage evolution and life prediction in 2D woven ceramic-matrix composites (CMCs) have been investigated. The damage parameter of fatigue hysteresis dissipated energy and the interface shear stress were used to monitor the damage evolution inside of CMCs. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface/fiber oxidation model, interface wear model and fibers statistical failure model at elevated temperature, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfy the Global Load Sharing (GLS) criterion. When the broken fibers fraction approaches to the critical value, the composite fatigue fractures. The evolution of fatigue hysteresis dissipated energy, the interface shear stress and broken fibers fraction versus cycle number, and the fatigue life S-N curves of SiC/SiC at 1000, 1200 and 1300 °C in air and steam condition have been predicted. The synergistic effects of temperature, oxidation, fatigue peak stress, and multicracking modes on the evolution of interface shear stress and fatigue hysteresis dissipated energy versus cycle numbers curves have been analyzed.

  9. Synergistic Effects of Temperature, Oxidation and Multicracking Modes on Damage Evolution and Life Prediction of 2D Woven Ceramic-Matrix Composites under Tension-Tension Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2016-11-01

    In this paper, the synergistic effects of temperature, oxidation and multicracking modes on damage evolution and life prediction in 2D woven ceramic-matrix composites (CMCs) have been investigated. The damage parameter of fatigue hysteresis dissipated energy and the interface shear stress were used to monitor the damage evolution inside of CMCs. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface/fiber oxidation model, interface wear model and fibers statistical failure model at elevated temperature, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfy the Global Load Sharing (GLS) criterion. When the broken fibers fraction approaches to the critical value, the composite fatigue fractures. The evolution of fatigue hysteresis dissipated energy, the interface shear stress and broken fibers fraction versus cycle number, and the fatigue life S-N curves of SiC/SiC at 1000, 1200 and 1300 °C in air and steam condition have been predicted. The synergistic effects of temperature, oxidation, fatigue peak stress, and multicracking modes on the evolution of interface shear stress and fatigue hysteresis dissipated energy versus cycle numbers curves have been analyzed.

  10. Combined Mode I and Mode II Fracture of Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The mode I, mode II, and combined mode I-mode II fracture behavior of ZrO2 - 8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. Precracks were introduced in test specimens using the single-edge-v-notched beam (SEVNB) method incorporated with final diamond polishing to achieve sharp crack tips. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of KI/KII were also determined. The mixed-mode fracture behaviors of the coating material were compared with those of monolithic advanced ceramics determined previously. The mixed-mode fracture behavior of the plasma- sprayed thermal barrier coating material was predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.

  11. Combined Mode I and Mode II Fracture of Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The mode I, mode II, and combined mode I-mode II fracture behavior of ZrO2 - 8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. Precracks were introduced in test specimens using the single-edge-v-notched beam (SEVNB) method incorporated with final diamond polishing to achieve sharp crack tips. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of KI/KII were also determined. The mixed-mode fracture behaviors of the coating material were compared with those of monolithic advanced ceramics determined previously. The mixed-mode fracture behavior of the plasma- sprayed thermal barrier coating material was predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.

  12. Fatigue Testing of Metallurgically-Bonded EBR-II Superheater Tubes

    SciTech Connect

    Terry C. Totemeier

    2006-12-01

    Fatigue crack growth tests were performed on 2¼Cr-1Mo steel specimens machined from ex-service Experimental Breeder Reactor – II (EBR-II) superheater duplex tubes. The tubes had been metallurgically bonded with a 100 µm thick Ni interlayer; the specimens incorporated this bond layer. Tests were performed at room temperature in air and at 400°C in air and humid Ar; cracks were grown at varied levels of constant ?K. Crack growth tests at a range of ?K were also performed on specimens machined from the shell of the superheater. In all conditions the presence of the Ni interlayer was found to result in a net retardation of growth as the crack passed through the interlayer. The mechanism of retardation was identified as a disruption of crack planarity and uniformity after passing through the porous interlayer. Full crack arrest was only observed in a single test performed at near-threshold ?K level (12 MPa?m) at 400°C. In this case the crack tip was blunted by oxidation of the base steel at the steel-interlayer interface.

  13. Treatment of division II malocclusion in young adult with Forsus fatigue-resistant device.

    PubMed

    Krishna Nayak, U S; Goyal, Varun

    2012-01-01

    The traditional technique for correcting class II malocclusion - involving the use of class II elastics and headgear - has been problematic due to its dependence on patient compliance. Functional orthopedic treatment seeks to correct malocclusions and harmonize the shape of the dental arch and orofacial functions. Removable functional appliances are normally very large in size, have unstable fixation, cause discomfort, exert pressure on the mucosa, reduce space for the tongue, cause difficulties in deglutition and speech, and very often affect esthetic appearance. With a fixed appliance like the Forsus fatigue-resistant device (FRD), as the appliance is fixed, there is less dependence on patient compliance and the remaining growth after the pubertal growth spurt can be harbored effectively. The Forsus FRD is not as rigid as the previous fixed functional appliances and hence is comfortable for the patients. In this case report we describe a patient at the end of the growth stage who had mandibular retrognathia and was successfully treated with the Forsus FRD.

  14. Evaluation of Delamination Growth Characterization Methods Under Mode I Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.

    2012-01-01

    Reliable delamination characterization data for laminated composites are needed for input to analytical models of structures to predict delamination. The double-cantilevered beam (DCB) specimen is used with laminated composites to measure fracture toughness, G(sub Ic), delamination onset strain energy release rate, and growth rate data under cyclic loading. In the current study, DCB specimens of IM7/8552 graphite/epoxy supplied by two different manufacturers were tested in static and fatigue to compare the measured characterization data from the two sources, and to evaluate a proposed ASTM standard for generating Paris Law equations. Static results were used to generate compliance calibration constants for the fatigue data, and a delamination resistance curve, G(sub IR), which was used to determine the effects of fiber-bridging on delamination growth. Specimens were tested in fatigue at a cyclic G(sub Imax) level equal to 50, 40 or 30% of G(sub Ic), to determine a delamination onset curve and delamination growth rate. The delamination onset curve equations had similar exponents and the same trends. Delamination growth rate was calculated by fitting a Paris Law to the da/dN versus G(sub Imax) data. Both a 2-point and a 7-point data reduction method were used and the Paris Law equations were compared. To determine the effects of fiber-bridging, growth rate results were normalized by the delamination resistance curve for each material and compared to the non-normalized results. Paris Law exponents were found to decrease by 31% to 37% due to normalizing the growth data. Normalizing the data also greatly reduced the amount of scatter between the different specimens. Visual data records from the fatigue testing were used to calculate individual compliance calibration constants from the fatigue data for some of the specimens. The resulting da/dN versus G(sub Imax) plots showed much improved repeatability between specimens. Gretchen

  15. Effets de l'humidite sur la propagation du delaminage dans un composite carbone/epoxy sollicite en mode mixte I/II

    NASA Astrophysics Data System (ADS)

    LeBlanc, Luc R.

    Les materiaux composites sont de plus en plus utilises dans des domaines tels que l'aerospatiale, les voitures a hautes performances et les equipements sportifs, pour en nommer quelques-uns. Des etudes ont demontre qu'une exposition a l'humidite nuit a la resistance des composites en favorisant l'initiation et la propagation du delaminage. De ces etudes, tres peu traitent de l'effet de l'humidite sur l'initiation du delaminage en mode mixte I/II et aucune ne traite des effets de l'humidite sur le taux de propagation du delaminage en mode mixte I/II dans un composite. La premiere partie de cette these consiste a determiner les effets de l'humidite sur la propagation du delaminage lors d'une sollicitation en mode mixte I/II. Des eprouvettes d'un composite unidirectionnel de carbone/epoxy (G40-800/5276-1) ont ete immergees dans un bain d'eau distillee a 70°C jusqu'a leur saturation. Des essais experimentaux quasi-statiques avec des chargements d'une gamme de mixites des modes I/II (0%, 25%, 50%, 75% et 100%) ont ete executes pour determiner les effets de l'humidite sur la resistance au delaminage du composite. Des essais de fatigue ont ete realises, avec la meme gamme de mixite des modes I/II, pour determiner 1'effet de 1'humidite sur l'initiation et sur le taux de propagation du delaminage. Les resultats des essais en chargement quasi-statique ont demontre que l'humidite reduit la resistance au delaminage d'un composite carbone/epoxy pour toute la gamme des mixites des modes I/II, sauf pour le mode I ou la resistance au delaminage augmente apres une exposition a l'humidite. Pour les chargements en fatigue, l'humidite a pour effet d'accelerer l'initiation du delaminage et d'augmenter le taux de propagation pour toutes les mixites des modes I/II. Les donnees experimentales recueillies ont ete utilisees pour determiner lesquels des criteres de delaminage en statique et des modeles de taux de propagation du delaminage en fatigue en mode mixte I/II proposes dans la

  16. Adaptations to isolated shoulder fatigue during simulated repetitive work. Part II: Recovery.

    PubMed

    McDonald, Alison C; Tse, Calvin T F; Keir, Peter J

    2016-08-01

    The shoulder allows kinematic and muscular changes to facilitate continued task performance during prolonged repetitive work. The purpose of this work was to examine changes during simulated repetitive work in response to a fatigue protocol. Participants performed 20 one-minute work cycles comprised of 4 shoulder centric tasks, a fatigue protocol, followed by 60 additional cycles. The fatigue protocol targeted the anterior deltoid and cycled between static and dynamic actions. EMG was collected from 14 upper extremity and back muscles and three-dimensional motion was captured during each work cycle. Participants completed post-fatigue work despite EMG manifestations of muscle fatigue, reduced flexion strength (by 28%), and increased perceived exertion (∼3 times). Throughout the post-fatigue work cycles, participants maintained performance via kinematic and muscular adaptations, such as reduced glenohumeral flexion and scapular rotation which were task specific and varied throughout the hour of simulated work. By the end of 60 post-fatigue work cycles, signs of fatigue persisted in the anterior deltoid and developed in the middle deltoid, yet perceived exertion and strength returned to pre-fatigue levels. Recovery from fatigue elicits changes in muscle activity and movement patterns that may not be perceived by the worker which has important implications for injury risk.

  17. Effect of Embedded Piezoelectric Sensors on Fracture Toughness and Fatigue Resistance of Composite Laminates Under Mode I Loading

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.

    2006-01-01

    Double-cantilevered beam (DCB) specimens of a glass/epoxy composite material with embedded piezoelectric sensors were tested both statically and under fatigue loading to determine the effect of the embedded material on the Mode I fracture toughness and fatigue resistance compared to baseline data without the embedded elements. A material known as LaRC-Macrofiber Composite (LaRC-MFC (TradeMark)), or MFC, was embedded at the midplane of the specimen during the layup. Specimens were manufactured with the embedded MFC material either at the loaded end of the specimen to simulate an initial delamination; or with the MFC material located at the delaminating interface, with a Teflon film at the loaded end to simulate an initial delamination. There were three types of specimens with the embedded material at the delaminating interface: co-cured with no added adhesive; cured with a paste adhesive applied to the embedded element; or cured with a film adhesive added to the embedded material. Tests were conducted with the sensors in both the passive and active states. Results were compared to baseline data for the same material without embedded elements. Interlaminar fracture toughness values (G(sub Ic)) for the passive condition showed little change when the MFC was at the insert end. Passive results varied when the MFC was at the delaminating interface. For the co-cured case and with the paste adhesive, G(sub Ic) decreased compared to the baseline toughness, whereas, for the film adhesive case, G(sub Ic) was significantly greater than the baseline toughness, but the failure was always catastrophic. When the MFC was in the active state, G(sub Ic) was generally lower compared to the passive results. Fatigue tests showed little effect of the embedded material whether it was active or passive compared to baseline values.

  18. Development and Application of Benchmark Examples for Mixed-Mode I/II Quasi-Static Delamination Propagation Predictions

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2012-01-01

    The development of benchmark examples for quasi-static delamination propagation prediction is presented and demonstrated for a commercial code. The examples are based on finite element models of the Mixed-Mode Bending (MMB) specimen. The examples are independent of the analysis software used and allow the assessment of the automated delamination propagation prediction capability in commercial finite element codes based on the virtual crack closure technique (VCCT). First, quasi-static benchmark examples were created for the specimen. Second, starting from an initially straight front, the delamination was allowed to propagate under quasi-static loading. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. Good agreement between the results obtained from the automated propagation analysis and the benchmark results could be achieved by selecting input parameters that had previously been determined during analyses of mode I Double Cantilever Beam and mode II End Notched Flexure specimens. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Overall the results are encouraging, but further assessment for mixed-mode delamination fatigue onset and growth is required.

  19. Are there mode-specific and fatigue-related electromechanical delay responses for maximal isokinetic and isometric muscle actions?

    PubMed

    Smith, Cory M; Housh, Terry J; Hill, Ethan C; Keller, Joshua L; Johnson, Glen O; Schmidt, Richard J

    2017-08-23

    This study used a combined electromyographic, mechanomyographic, and force approach to identify electromechanical delay (EMD) from the onsets of the electromyographic to force signals (EMDE-F), onsets of the electromyographic to mechanomyogrpahic signals (EMDE-M), and onsets of mechanomyographic to force signals (EMDM-F). The purposes of the current study were to examine: (1) differences in EMDE-M, EMDM-F, and EMDE-F from the vastus lateralis between maximal isokinetic and maximal concentric isometric leg extensions; and (2) the effects of fatigue and recovery on EMDE-M, EMDM-F, and EMDE-F. These EMD measures were obtained from twelve men during maximal concentric isokinetic and isometric leg extensions pretest, posttest, and after 3-min and 5-min of recovery from 25 maximal isokinetic leg extensions at 60°s(-1). The results indicated no differences between maximal isokinetic and isometric muscle actions for EMDE-M, EMDM-F, or EMDE-F during the pretest, posttest, 3-min recovery, and 5-min recovery measurements. These findings support the comparison of voluntary EMD measures between studies with different modes of exercise as long as the methodology for the determination of EMD are consistent. There were, however, fatigue-induced pretest to posttest increases in EMDE-M, EMDM-F, and EMDE-F which remained elongated after 3-min of recovery, but returned to pretest values after 5-min of recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Composite materials: Fatigue and fracture. Vol. 3

    NASA Technical Reports Server (NTRS)

    O'Brien, T. K. (Editor)

    1991-01-01

    The present volume discusses topics in the fields of matrix cracking and delamination, interlaminar fracture toughness, delamination analysis, strength and impact characteristics, and fatigue and fracture behavior. Attention is given to cooling rate effects in carbon-reinforced PEEK, the effect of porosity on flange-web corner strength, mode II delamination in toughened composites, the combined effect of matrix cracking and free edge delamination, and a 3D stress analysis of plain weave composites. Also discussed are the compression behavior of composites, damage-based notched-strength modeling, fatigue failure processes in aligned carbon-epoxy laminates, and the thermomechanical fatigue of a quasi-isotropic metal-matrix composite.

  1. Composite materials: Fatigue and fracture. Vol. 3

    NASA Technical Reports Server (NTRS)

    O'Brien, T. K. (Editor)

    1991-01-01

    The present volume discusses topics in the fields of matrix cracking and delamination, interlaminar fracture toughness, delamination analysis, strength and impact characteristics, and fatigue and fracture behavior. Attention is given to cooling rate effects in carbon-reinforced PEEK, the effect of porosity on flange-web corner strength, mode II delamination in toughened composites, the combined effect of matrix cracking and free edge delamination, and a 3D stress analysis of plain weave composites. Also discussed are the compression behavior of composites, damage-based notched-strength modeling, fatigue failure processes in aligned carbon-epoxy laminates, and the thermomechanical fatigue of a quasi-isotropic metal-matrix composite.

  2. Comparison between universal adhesives and two-step self-etch adhesives in terms of dentin bond fatigue durability in self-etch mode.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2017-06-01

    This aim of this study was to compare universal adhesives and two-step self-etch adhesives in terms of dentin bond fatigue durability in self-etch mode. Three universal adhesives - Clearfil Universal, G-Premio Bond, and Scotchbond Universal Adhesive - and three-two-step self-etch adhesives - Clearfil SE Bond, Clearfil SE Bond 2, and OptiBond XTR - were used. The initial shear bond strength and shear fatigue strength of resin composite bonded to adhesive on dentin in self-etch mode were determined. Scanning electron microscopy observations of fracture surfaces after bond strength tests were also made. The initial shear bond strength of universal adhesives was material dependent, unlike that of two-step self-etch adhesives. The shear fatigue strength of Scotchbond Universal Adhesive was not significantly different from that of two-step self-etch adhesives, unlike the other universal adhesives. The shear fatigue strength of universal adhesives differed depending on the type of adhesive, unlike those of two-step self-etch adhesives. The results of this study encourage the continued use of two-step self-etch adhesive over some universal adhesives but suggest that changes to the composition of universal adhesives may lead to a dentin bond fatigue durability similar to that of two-step self-etch adhesives. © 2017 Eur J Oral Sci.

  3. Analysis of Mode I and Mode II Crack Growth Arrest Mechanism with Z-Fibre Pins in Composite Laminated Joint

    NASA Astrophysics Data System (ADS)

    Jeevan Kumar, N.; Ramesh Babu, P.

    2017-08-01

    This paper presents the numerical study of the mode I and mode II interlaminar crack growth arrest in hybrid laminated curved composite stiffened joint with Z-fibre reinforcement. A FE model of hybrid laminated skin-stiffener joint reinforced with Z-pins is developed to investigate the effect of Z- fibre pins on mode I and mode II crack growth where the delamination is embedded inbetween the skin and stiffener interface. A finite element model was developed using S4R element of a 4-node doubly curved thick shell elements to model the composite laminates and non linear interface elements to simulate the reinforcements. The numerical analyses revealed that Z-fibre pinning were effective in suppressing the delamination growth when propagated due to applied loads. Therefore, the Z-fibre technique effectively improves the crack growth resistance and hence arrests or delays crack growth extension.

  4. A MODEL STUDY OF TRANSVERSE MODE COUPLING INSTABILITY AT NATIONAL SYNCHROTRON LIGHT SOURCE-II (NSLS-II).

    SciTech Connect

    BLEDNYKH, A.; WANG, J.M.

    2005-05-15

    The vertical impedances of the preliminary designs of National Synchrotron Light Source II (NSLS-II) Mini Gap Undulators (MGU) are calculated by means of GdfidL code. The Transverse Mode Coupling Instability (TMCI) thresholds corresponding to these impedances are estimated using an analytically solvable model.

  5. Development and Application of Benchmark Examples for Mixed-Mode I/II Quasi-Static Delamination Propagation Predictions

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2012-01-01

    The development of benchmark examples for quasi-static delamination propagation prediction is presented. The example is based on a finite element model of the Mixed-Mode Bending (MMB) specimen for 50% mode II. The benchmarking is demonstrated for Abaqus/Standard, however, the example is independent of the analysis software used and allows the assessment of the automated delamination propagation prediction capability in commercial finite element codes based on the virtual crack closure technique (VCCT). First, a quasi-static benchmark example was created for the specimen. Second, starting from an initially straight front, the delamination was allowed to propagate under quasi-static loading. Third, the load-displacement as well as delamination length versus applied load/displacement relationships from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Overall, the results are encouraging, but further assessment for mixed-mode delamination fatigue onset and growth is required.

  6. Suppression of fatigue inducing cavity acoustic modes on turbo fan engines

    NASA Astrophysics Data System (ADS)

    Benner, R. H.

    1990-10-01

    This paper discusses several methods of suppressing shear layer excitation of cavity acoustic modes on turbofan engines. The methods include the use of a Helmholtz resonator, reducing the cavity impingement length with vane-like dividers, and drawing the shear layer into the cavity. Empirical data and closed-form solutions were used to design baseline structures employed in each method. Full scale turbofan engine tests were used to measure their effectiveness. Each method significantly reduced the level to which cavity acoustic modes were excited by shear layer flow.

  7. Influence of fatigue testing and cementation mode on the load-bearing capability of bovine incisors restored with crowns and FRC posts.

    PubMed

    Nothdurft, Frank P; Schmitt, Thomas; Rupf, Stefan; Pospiech, Peter R

    2011-01-01

    The aim of the study was to evaluate the influence of fatigue and cementation mode on the fracture behaviour of endodontically treated bovine incisors restored with fiber-reinforced-composite (FRC) posts and crowns. Forty-eight endodontically treated incisors were restored with FRC posts, composite build-ups, and cast crowns. In 16 teeth, each of the posts were cemented conventionally with KetacCem (3M Espe) or adhesively with Panavia F (Kuraray) or RelyXUniCem (3M Espe). One-half of the specimens in each group were subjected to thermal cycling with 10,000 cycles at 5-55°C and mechanical aging, loading the specimens in 1,200,000 cycles with 50 N. Fracture resistance was determined by loading the specimens until fracture at an angle of 45°. The loading test showed that cementation mode and fatigue testing had an influence on the load bearing capability. Before fatigue testing no statistically significant differences between the different cementation modes could be detected. After fatigue testing, conventionally cemented FRC posts lead to statistically significant higher fracture loads compared to adhesively luted posts. Most specimens fractured in a favourable way, independent from the type of cementation.

  8. Shear fatigue crack growth - A literature survey

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1985-01-01

    Recent studies of shear crack growth are reviewed, emphasizing test methods and data analyses. The combined mode I and mode II elastic crack tip stress fields are considered. The development and design of the compact shear specimen are described, and the results of fatigue crack growth tests using compact shear specimens are reviewed. The fatigue crack growth tests are discussed and the results of inclined cracks in tensile panels, center cracks in plates under biaxial loading, cracked beam specimens with combined bending and shear loading, center-cracked panels and double edge-cracked plates under cyclic shear loading are examined and analyzed in detail.

  9. Fatigue crack growth in an aluminum alloy-fractographic study

    NASA Astrophysics Data System (ADS)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  10. Treatment of Class II Division 2 Malocclusion Using the Forsus Fatigue Resistance Device and 5-Year Follow-Up

    PubMed Central

    Atik, Ezgi; Kocadereli, Ilken

    2016-01-01

    This case report presents the treatment of a 14-year-and-8-month-old boy with Class II division 2 mandibular retrusion, severe deep bite, and concave profile. The Forsus fatigue resistance device (FRD) was effective in correcting both skeletal and dental parameters. At 5-year posttreatment follow-up, the teeth were well aligned and the occlusion was stable. FRD application with appropriate treatment time can result with prominent changes in the facial profile and dentition, and the outcomes can be maintained at the long-term follow-up periods. PMID:27034855

  11. An Acoustic Plate Mode Sensor for Biowarfare Toxins, Phase II

    DTIC Science & Technology

    1997-10-01

    Biological agents -- such as bacteria , bacterial toxins and viruses -- must be detected rapidly to allow their neutralization or the quick treatment of...Mode Sensor for Biowarfare Toxins PRINCIPAL INVESTIGATOR: Douglas J. McAllister, Ph.D. CONTRACTING ORGANIZATION: Biode, Incorporated Bangor, Maine...OF PAGES Acoustic Plate Mode, Biowarfare Toxins 54 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

  12. Mixed-Mode Fracture and Fatigue Analysis of Cracked 3D Complex Structures using a 3D SGBEM-FEM Alternating Method

    NASA Astrophysics Data System (ADS)

    Bhavanam, Sharada

    The aim of this thesis is to numerically evaluate the mixed-mode Stress Intensity Factors (SIFs) of complex 3D structural geometries with arbitrary 3D cracks using the Symmetric Galerkin Boundary Element Method-Finite Element Method (SGBEM-FEM) Alternating Method. Various structural geometries with different loading scenarios and crack configurations were examined in this thesis to understand the behavior and trends of the mixed-mode SIFs as well as the fatigue life for these complex structural geometries. Although some 3D structures have empirical and numerical solutions that are readily available in the open literature, some do not; therefore this thesis presents the results of fracture and fatigue analyses of these 3D complex structures using the SGBEM-FEM Alternating Method to serve as reference for future studies. Furthermore, there are advantages of using the SGBEM-FEM Alternating Method compared to traditional FEM methods. For example, the fatigue-crack-growth and fatigue life can be better estimated for a structure because different fatigue models (i.e. Walker, Paris, and NASGRO) can be used within the same framework of the SGBEM-FEM Alternating Method. The FEM (un-cracked structure)/BEM(crack model) meshes are modeled independently, which speeds up the computation process and reduces the cost of human labor. A simple coarse mesh can be used for all fracture and fatigue analyses of complex structures. In this thesis, simple coarse meshes were used for 3D complex structures, which were below 5000 elements as compared to traditional FEM, which require meshes where the elements range on the order of ˜250,000 to ˜106 and sometimes even more than that.

  13. An analytical and experimental stress analysis of a practical mode II fracture-test specimen

    NASA Technical Reports Server (NTRS)

    Chisholm, D. B.; Jones, D. L.

    1975-01-01

    A boundary collocation method has been employed to determine the Mode II stress intensity factors for a pair of through-the-thickness edge cracks in a finite isotropic plate. An elastostatic analysis has been carried out in terms of the complete Williams stress function employing both even and odd components. The results of the numerical analysis were verified by a two-step procedure whereby the symmetric and antisymmetric portions of the solution were independently compared with existing solutions. The complete solution was verified by comparison with a photoelastic analysis. A compact shear specimen (CSS) of Hysol epoxy resin was loaded in a photoelastic experiment designed to study the isochromatic fringe patterns resulting from the Mode II crack tip stress distribution. The experiment verified that a pure Mode II stress distribution existed in the neighborhood of the crack tips and confirmed the accuracy of the boundary collocation solution for the Mode II stress intensity factors.

  14. Experimental investigations of the influence of material and thickness on fracture under pure mode II loading

    NASA Astrophysics Data System (ADS)

    Dong, H.

    2010-06-01

    Experimental investigation to the effects of thickness and material on mode II fracture were performed. Tension-shear specimens made of aluminium alloy LC4CS and 7050-T7452 with thicknesses of 2, 4, 8 and 14 mm were used. All crack tip appearances and fracture profiles of the specimens were observed. Mode II fracture toughness were calculated. It is shown that material and thickness play an important role in mode II fracture. The fracture of LC4CS appears shear fracture under all kinds of thicknesses, however the fracture of 7050-T7452 is tensile fracture when thickness is larger or equal to 8mm, and shear initiation along the original crack plane, then turnaround and tensile failure when thickness is smaller than 8mm. Mode II fracture toughness is independent of thickness.

  15. An analytical and experimental stress analysis of a practical mode II fracture-test specimen

    NASA Technical Reports Server (NTRS)

    Chisholm, D. B.; Jones, D. L.

    1975-01-01

    A boundary collocation method has been employed to determine the Mode II stress intensity factors for a pair of through-the-thickness edge cracks in a finite isotropic plate. An elastostatic analysis has been carried out in terms of the complete Williams stress function employing both even and odd components. The results of the numerical analysis were verified by a two-step procedure whereby the symmetric and antisymmetric portions of the solution were independently compared with existing solutions. The complete solution was verified by comparison with a photoelastic analysis. A compact shear specimen (CSS) of Hysol epoxy resin was loaded in a photoelastic experiment designed to study the isochromatic fringe patterns resulting from the Mode II crack tip stress distribution. The experiment verified that a pure Mode II stress distribution existed in the neighborhood of the crack tips and confirmed the accuracy of the boundary collocation solution for the Mode II stress intensity factors.

  16. Magnetic antenna excitation of whistler modes. II. Antenna arrays

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.

    2014-12-01

    The excitation of whistler modes from magnetic loop antennas has been investigated experimentally. The field topology of the excited wave driven by a single loop antenna has been measured for different loop orientations with respect to the uniform background field. The fields from two or more antennas at different locations are then created by superposition of the single-loop data. It is shown that an antenna array can produce nearly plane waves which cannot be achieved with single antennas. By applying a phase shift along the array, oblique wave propagation is obtained. This allows a meaningful comparison with plane wave theory. The Gendrin mode and oblique cyclotron resonance are demonstrated. Wave helicity and polarization in space and time are demonstrated and distinguished from the magnetic helicity of the wave field. The superposition of two oblique plane whistler modes produces in a "whistler waveguide" mode whose polarization and helicity properties are explained. The results show that single point measurements cannot properly establish the wave character of wave packets. The laboratory observations are relevant for excitation and detection of whistler modes in space plasmas.

  17. Magnetic antenna excitation of whistler modes. II. Antenna arrays

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.

    2014-12-15

    The excitation of whistler modes from magnetic loop antennas has been investigated experimentally. The field topology of the excited wave driven by a single loop antenna has been measured for different loop orientations with respect to the uniform background field. The fields from two or more antennas at different locations are then created by superposition of the single-loop data. It is shown that an antenna array can produce nearly plane waves which cannot be achieved with single antennas. By applying a phase shift along the array, oblique wave propagation is obtained. This allows a meaningful comparison with plane wave theory. The Gendrin mode and oblique cyclotron resonance are demonstrated. Wave helicity and polarization in space and time are demonstrated and distinguished from the magnetic helicity of the wave field. The superposition of two oblique plane whistler modes produces in a “whistler waveguide” mode whose polarization and helicity properties are explained. The results show that single point measurements cannot properly establish the wave character of wave packets. The laboratory observations are relevant for excitation and detection of whistler modes in space plasmas.

  18. Resistive wall modes in the Reversatron II RFP

    SciTech Connect

    Barrick, G.; Greene, P.; Robertson, S.

    1990-01-01

    The Reversatron 2 RFP (R/a=50cm/8cm) has been operated with interchangeable shells to investigate resistive wall modes. Shell penetration times are 610, 100, and 4 {mu}sec (no shell). With the 610 {mu}sec shell, the plasma current is {le} 65 kA and the duration {le} 550 {mu}sec. With no shell, helium discharges are more resistive and hydrogen discharges cannot be sustained. An m=1, n=-6 mode resonant on axis grows to a relative amplitude of 20% during the setting-up phase. With the 100{mu}sec shell, deuterium discharges can be sustained but are degraded due to a broad spectrum of modes. The increased plasma resistance can be correlated with the flux intersecting the wall. 21 refs., 12 figs.

  19. A Novel Method for Characterizing Fatigue Delamination Growth Under Mode I Using the Double Cantilever Beam Specimen

    NASA Technical Reports Server (NTRS)

    Carvalho, Nelson; Murri, G.

    2014-01-01

    A novel method is proposed to obtain Mode I delamination growth rate from a Double Cantilever Beam (DCB) specimen. In the proposed method, Unidirectional (UD) DCB specimens are tested in fatigue at different initial maximum energy release rates levels. The growth rate data obtained in the first increments of crack growth at each maximum energy release rate level are used to generate a Paris Law equation, which characterizes delamination growth rate without fiber-bridging, and can also be used to determine a delamination onset curve. The remaining delamination growth rate data from each test are used to determine a modified Paris law, which characterizes the delamination growth rate in a DCB specimen, explicitly accounting for fiber-bridging. The proposed expression captures well the scatter in experimental data obtained using the DCB specimens, suggesting its adequacy. The Paris Law characterizing delamination growth rate without fiber-bridging predicts higher delamination growth rates for the same maximum energy release rate applied, leading to a conservative estimate for delamination growth. This is particularly relevant, since in generic ply interfaces, fiber-bridging is less predominant than in UD DCB specimens. Failing to account for fiber-bridging in UD DCB specimens may underestimate the delamination growth rate, yielding non-conservative predictions.

  20. Mission Crew Fatigue during RIVET JOINT Block II Demonstration/Evaluation.

    DTIC Science & Technology

    1980-11-01

    you feel RIGHT NOW. STATEMENT SETTER THAN SAME AS WORSE THAN 1. VERY LIVELY 2. EXTREMELY TIRED & QUITE FRESH & SLIGHTLY POOPED 0 S, EXTREMELY PEPPV 6...SOMEWHAT PRISMJ 7. PETERED OUT •Z L. VERY REFRESHED 9. FAIL.Y WELL POOPED Re IEADY TO DROP WE SAM roy’" 136 SUBJECTIVE FATIGUE CNECKCARDGaip 74 aa

  1. Ductile fracture in HY100 steel under mixed mode I/mode II loading

    SciTech Connect

    Bhattacharjee, D. . Dept. of Materials Science and Metallurgy); Knott, J.F. . School of Metallurgy and Materials)

    1994-05-01

    A number of criteria have been proposed which predict the direction of cracking under mixed Mode 1/Mode 2 loading. All have been evaluated for brittle materials, in which a crack subjected to tension and shear propagates normal to the maximum tensile stress (i.e. fracture is of the Mode 1 type). In a ductile material, however, a notch subjected to mixed Mode 1/Mode 2 loading may initiate a crack in the direction of maximum shear. This paper shows that the profile of the notch tip changes with increasing mixed mode load in such a way that one side of the tip blunts while the other sharpens. Various specimens, subjected to the same mixed mode ratio, were unloaded from different points on the load-displacement curves to study the change in notch-tip profile. Studies under the Scanning Electron Microscope (SEM) have shown that cracks initiate at the sharpened end, along a microscopic shear band. Using a dislocation pile-up model for decohesion of the carbide-matrix interface, a micromechanical model has been proposed for crack initiation in the shear band. It is shown that a theoretical prediction of the shear strain required for decohesion gives a result that is, of magnitude, similar to that of the shear strain at crack initiation measured in the experiments.

  2. Vibrational relaxation pathways of amide I and amide II modes in N-methylacetamide.

    PubMed

    Piatkowski, L; Bakker, H J

    2012-04-28

    We studied the vibrational energy relaxation mechanisms of the amide I and amide II modes of N-methylacetamide (NMA) monomers dissolved in bromoform using polarization-resolved femtosecond two-color vibrational spectroscopy. The results show that the excited amide I vibration transfers its excitation energy to the amide II vibration with a time constant of 8.3 ± 1 ps. In addition to this energy exchange process, we observe that the excited amide I and amide II vibrations both relax to a final thermal state. For the amide I mode this latter process dominates the vibrational relaxation of this mode. We find that the vibrational relaxation of the amide I mode depends on frequency which can be well explained from the presence of two subbands with different vibrational lifetimes (~1.1 ps on the low frequency side and ~2.7 ps on the high frequency side) in the amide I absorption spectrum.

  3. Creep, Plasticity, and Fatigue of Single Crystal Superalloy. (Preprint)

    DTIC Science & Technology

    2011-07-01

    control mode ( 1R ) using servo- hydraulic machines. The test specimen was heated using a low frequency (10 kHz) induction generator. Tests were...1989), Thermomechanical Fatigue , Oxidation, and Creep. Part II. Life Prediction, Metallurgical Transactions A: Physical Metallurgy and Materials...AFRL-RX-WP-TP-2011-4223 CREEP, PLASTICITY, AND FATIGUE OF SINGLE CRYSTAL SUPERALLOY Alexander Staroselsky United Technologies

  4. The influence of load misalignment during uniaxial low-cycle fatigue testing. I - Modeling. II - Applications

    NASA Astrophysics Data System (ADS)

    Kandil, F. A.; Dyson, B. F.

    1993-05-01

    A quantitative model for predicting the extent of lifetime scatter in low-cycle fatigue due to the bending effect caused by load misalignment is proposed. The model is based on the bending mechanism and the type of extensometer used to control strain and the fatigue characteristics of the material. A consequence of a lateral offset in the center-lines of the load-train with respect to either a machine's frame or ram is found to be the most damaging bending mechanism. Two types of scatter under consideration include repeatability scatter due to testing practice within a single laboratory and reproducibility scatter among laboratories. The model is applied to four alloys, including AISI 316L, Nimonic 101, 9 Cr-1 Mo, and IN 718. Results show that in all four materials a major fraction of the data scatter could be attributed to bending. At the lowest strain range the predicted bending component represents the highest proportion of the experimental interlaboratory scatter.

  5. Fractionalization of optical beams: II. Elegant Laguerre Gaussian modes

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Vega, Julio C.

    2007-05-01

    We apply the tools of fractional calculus to introduce new fractional-order solutions of the paraxial wave equation that smoothly connect the elegant Laguerre-Gaussian beams of integral-order. The solutions are characterized in general by two fractional indices and are obtained by fractionalizing the creation operators used to create elegant Laguerre-Gauss beams from the fundamental Gaussian beam. The physical and mathematical properties of the circular fractional beams are discussed in detail. The orbital angular momentum carried by the fractional beam is a continuous function of the angular mode index and it is not restricted to take only discrete values.

  6. Mixed-mode fatigue fracture of adhesive joints in harsh environments and nonlinear viscoelastic modeling of the adhesive

    NASA Astrophysics Data System (ADS)

    Arzoumanidis, Alexis Gerasimos

    A four point bend, mixed-mode, reinforced, cracked lap shear specimen experimentally simulated adhesive joints between load bearing composite parts in automotive components. The experiments accounted for fatigue, solvent and temperature effects on a swirled glass fiber composite adherend/urethane adhesive system. Crack length measurements based on compliance facilitated determination of da/dN curves. A digital image processing technique was also utilized to monitor crack growth from in situ images of the side of the specimen. Linear elastic fracture mechanics and finite elements were used to determine energy release rate and mode-mix as a function of crack length for this specimen. Experiments were conducted in air and in a salt water bath at 10, 26 and 90°C. Joints tested in the solvent were fully saturated. In air, both increasing and decreasing temperature relative to 26°C accelerated crack growth rates. In salt water, crack growth rates increased with increasing temperature. Threshold energy release rate is shown to be the most appropriate design criteria for joints of this system. In addition, path of the crack is discussed and fracture surfaces are examined on three length scales. Three linear viscoelastic properties were measured for the neat urethane adhesive. Dynamic tensile compliance (D*) was found using a novel extensometer and results were considerably more accurate and precise than standard DMTA testing. Dynamic shear compliance (J*) was determined using an Arcan specimen. Dynamic Poisson's ratio (nu*) was extracted from strain gage data analyzed to include gage reinforcement. Experiments spanned three frequency decades and isothermal data was shifted by time-temperature superposition to create master curves spanning thirty decades. Master curves were fit to time domain Prony series. Shear compliance inferred from D* and nu* compared well with measured J*, forming a basis for finding the complete time dependent material property matrix for this

  7. Cooperative binding modes of Cu(II) in prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Chisnell, Robin; Lu, Wenchang; Bernholc, Jerry

    2007-03-01

    The misfolding of the prion protein, PrP, is responsible for a group of neurodegenerative diseases including mad cow disease and Creutzfeldt-Jakob disease. It is known that the PrP can efficiently bind copper ions; four high-affinity binding sites located in the octarepeat region of PrP are now well known. Recent experiments suggest that at low copper concentrations new binding modes, in which one copper ion is shared between two or more binding sites, are possible. Using our hybrid Thomas-Fermi/DFT computational scheme, which is well suited for simulations of biomolecules in solution, we investigate the geometries and energetics of two, three and four binding sites cooperatively binding one copper ion. These geometries are then used as inputs for classical molecular dynamics simulations. We find that copper binding affects the secondary structure of the PrP and that it stabilizes the unstructured (unfolded) part of the protein.

  8. Full-scale fatigue tests of CX-100 wind turbine blades. Part II: analysis

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart G.; Jeong, Hyomi; Jang, Jae Kyeong; Park, Gyuhae; Farinholt, Kevin M.; Todd, Michael D.; Ammerman, Curtt M.

    2012-04-01

    This paper presents the initial analysis results of several structural health monitoring (SHM) methods applied to two 9- meter CX-100 wind turbine blades subjected to fatigue loading at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC). The first blade was a pristine blade, manufactured to standard CX-100 design specifications. The second blade was manufactured for the University of Massachusetts, Lowell (UMass), with intentional simulated defects within the fabric layup. Each blade was instrumented with a variety of sensors on its surface. The blades were subject to harmonic excitation at their first natural frequency with steadily increasing loading until ultimately reaching failure. Data from the sensors were collected between and during fatigue loading sessions. The data were measured at multi-scale frequency ranges using a variety of data acquisition equipment, including off-the-shelf systems and prototype data acquisition hardware. The data were analyzed to identify fatigue damage initiation and to assess damage progression. Modal response, diffuse wave-field transfer functions in time and frequency domains, and wave propagation methods were applied to assess the condition of the turbine blade. The analysis methods implemented were evaluated in conjunction with hardware-specific performance for their efficacy in enabling the assessment of damage progression in the blade. The results of this assessment will inform the selection of specific data to be collected and analysis methods to be implemented for a CX-100 flight test to be conducted in collaboration with Sandia National Laboratory at the U.S. Department of Agriculture's (USDA) Conservation and Production Research Laboratory (CPRL) in Bushland, Texas.

  9. A compendium of sources of fracture toughness and fatigue crack growth data for metallic alloys. II

    NASA Technical Reports Server (NTRS)

    Hudson, C. M.; Seward, S. K.

    1982-01-01

    A compendium is presented of sources for metallic alloy fracture toughness and fatigue crack growth data, which concentrates on technical reports as the primary source of references and updates the previous Hudson and Seward (1978) compendium references on technical journals. Where available, the accession numbers which are used as code numbers for the ordering of the reports from their publishers are given. The sources of these reports include the AIAA Technical Information Service, the Defense Technical Information Center, the National Technical Information Service, and NASA.

  10. Pulsatile Support Mode of BJUT-II Ventricular Assist Device (VAD) has Better Hemodynamic Effects on the Aorta than Constant Speed Mode: A Primary Numerical Study

    PubMed Central

    Gu, Kaiyun; Gao, Bin; Chang, Yu; Zeng, Yi

    2016-01-01

    Background BJUT-II VAD is a novel left ventricular assist device (LVADs), directly implanted into the ascending aorta. The pulsatile support mode is proposed to achieve better unloading performance than constant speed mode. However, the hemodynamic effects of this support mode on the aorta are still unclear. The aim of this study was to clarify the hemodynamic effects BJUT-II VAD under pulsatile support mode on the aorta. Material/Methods Computational fluid dynamics (CFD) studies, based on a patient-specific aortic geometric model, were conducted. Wall shear stress (WSS), averaged WSS (avWSS), oscillatory shear index (OSI), and averaged helicity density (Ha) were calculated to compare the differences in hemodynamic effects between pulsatile support mode and constant speed mode. Results The results show that avWSS under pulsatile support mode is significantly higher than that under constant speed mode (0.955Pa vs. 0.675Pa). Similarly, the OSI value under pulsatile mode is higher than that under constant speed mode (0.104 vs. 0.057). In addition, Ha under pulsatile mode for all selected cross-sections is larger than that under constant mode. Conclusions BJUT-II VAD, under pulsatile control mode, may prevent atherosclerosis lesions and aortic remodeling. The precise effects of pulsatile support mode on atherosclerosis and aortic remodeling need to be further studied in animal experiments. PMID:27363758

  11. Pulsatile Support Mode of BJUT-II Ventricular Assist Device (VAD) has Better Hemodynamic Effects on the Aorta than Constant Speed Mode: A Primary Numerical Study.

    PubMed

    Gu, Kaiyun; Gao, Bin; Chang, Yu; Zeng, Yi

    2016-07-01

    BACKGROUND BJUT-II VAD is a novel left ventricular assist device (LVADs), directly implanted into the ascending aorta. The pulsatile support mode is proposed to achieve better unloading performance than constant speed mode. However, the hemodynamic effects of this support mode on the aorta are still unclear. The aim of this study was to clarify the hemodynamic effects BJUT-II VAD under pulsatile support mode on the aorta. MATERIAL AND METHODS Computational fluid dynamics (CFD) studies, based on a patient-specific aortic geometric model, were conducted. Wall shear stress (WSS), averaged WSS (avWSS), oscillatory shear index (OSI), and averaged helicity density (Ha) were calculated to compare the differences in hemodynamic effects between pulsatile support mode and constant speed mode. RESULTS The results show that avWSS under pulsatile support mode is significantly higher than that under constant speed mode (0.955Pa vs. 0.675Pa). Similarly, the OSI value under pulsatile mode is higher than that under constant speed mode (0.104 vs. 0.057). In addition, Ha under pulsatile mode for all selected cross-sections is larger than that under constant mode. CONCLUSIONS BJUT-II VAD, under pulsatile control mode, may prevent atherosclerosis lesions and aortic remodeling. The precise effects of pulsatile support mode on atherosclerosis and aortic remodeling need to be further studied in animal experiments.

  12. Combined orthodontic-orthopedic treatment of an adolescent Class II Division 2 patient with extreme deepbite using the Forsus Fatigue Resistant Device.

    PubMed

    Bayram, Mehmet

    2017-09-01

    Class II Division 2 malocclusion is often characterized by severe, traumatic deepbite with lingually inclined and overerupted incisors. Combined orthodontic-orthopedic treatment of this malocclusion is a challenging issue for orthodontists. This case report describes the combined orthodontic-orthopedic treatment of an adolescent Class II Division 2 patient with an extreme deepbite and a retrognathic mandible using the Forsus Fatigue Resistant Device. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  13. Investigation of fatigue assessments accuracy for beam weldments considering material data input and FE-mode type

    NASA Astrophysics Data System (ADS)

    Gorash, Yevgen; Comlekci, Tugrul; MacKenzie, Donald

    2017-05-01

    This study investigates the effects of fatigue material data and finite element types on accuracy of residual life assessments under high cycle fatigue. The bending of cross-beam connections is simulated in ANSYS Workbench for different combinations of structural member shapes made of a typical structural steel. The stress analysis of weldments with specific dimensions and loading applied is implemented using solid and shell elements. The stress results are transferred to the fatigue code nCode DesignLife for the residual life prediction. Considering the effects of mean stress using FKM approach, bending and thickness according to BS 7608:2014, fatigue life is predicted using the Volvo method and stress integration rules from ASME Boiler & Pressure Vessel Code. Three different pairs of S-N curves are considered in this work including generic seam weld curves and curves for the equivalent Japanese steel JIS G3106-SM490B. The S-N curve parameters for the steel are identified using the experimental data available from NIMS fatigue data sheets employing least square method and considering thickness and mean stress corrections. The numerical predictions are compared to the available experimental results indicating the most preferable fatigue data input, range of applicability and FE-model formulation to achieve the best accuracy.

  14. Acoustic mode driven by fast electrons in TJ-II Electron Cyclotron Resonance plasmas

    NASA Astrophysics Data System (ADS)

    Sun, B. J.; Ochando, M. A.; López-Bruna, D.

    2016-08-01

    Intense harmonic oscillations in radiation signals (δ I/I∼ 5{%}) are commonly observed during Electron Cyclotron Resonance (ECR) heating in TJ-II stellarator plasmas at low line-averaged electron density, 0.15 < \\bar{n}e < 0.6 ×1019 \\text{m}-3 . The frequency agrees with acoustic modes. The poloidal modal structure is compatible with Geodesic Acoustic Modes (GAM) but an n \

  15. A Mixed-Mode I/II Fracture Criterion and Its Application in Crack Growth Predictions

    NASA Technical Reports Server (NTRS)

    Sutton, Michael A.; Deng, Xiaomin; Ma, Fashang; Newman, James S., Jr.

    1999-01-01

    A crack tip opening displacement (CTOD)-based, mixed mode fracture criterion is developed for predicting the onset and direction of crack growth. The criterion postulates that crack growth occurs in either the Mode I or Mode II direction, depending on whether the maximum in either the opening or the shear component of CTOD, measured at a specified distance behind the crack tip, attains a critical value. For crack growth direction prediction, the proposed CTOD criterion is shown to be equivalent to seven commonly used crack growth criteria under linearly elastic and asymptotic conditions. Under elastic-plastic conditions the CTOD criterion's prediction of the dependence of the crack growth direction on the crack-up mode mixity is in excellent agreement with the Arcan test results. Furthermore, the CTOD criterion correctly predicts the existence of a crack growth transition from mode I to mode II as the mode mixity approaches the mode II loading condition. The proposed CTOD criterion has been implemented in finite element crack growth simulation codes Z1P2DL and FRANC2DL to predict the crack growth paths in (a) a modified Arcan test specimen and fixture made of AL 2024-T34 and (b) a double cantilever beam (DCB) specimen made of AL 7050. A series of crack growth simulations have been carried out for the crack growth tests in the Arcan and DCB specimens and the results further demonstrate the applicability of the mixed mode CTOD fracture criterion crack growth predictions and residual strength analyses for airframe materials.

  16. Mode-specific vibrational energy relaxation of amide I' and II' modes in N-methylacetamide/water clusters: intra- and intermolecular energy transfer mechanisms.

    PubMed

    Zhang, Yong; Fujisaki, Hiroshi; Straub, John E

    2009-04-02

    The mode-specific vibrational energy relaxation of the amide I' and amide II' modes in NMA-d(1)/(D(2)O)(n) (n = 0-3) clusters were studied using the time-dependent perturbation theory at the B3LYP/aug-cc-pvdz level. The amide modes were identified for each cluster based on the potential energy distribution of each mode. The vibrational population relaxation time constants were derived for the amide I' and II' modes. Results for the amide I' mode relaxation of NMA-d(1)/(D(2)O)(3) agree well with previous experimental results. The energy relaxation pathways were identified, and both intra- and intermolecular mechanisms were found to be important. The amide II' mode was identified in the energy transfer pathways from the excited amide I' mode of NMA-d(1)/(D(2)O)(n) (n = 1-3) clusters. The modes associated with methyl group deformation were found to play a role in the mechanism of energy transfer from both excited amide I' and II' modes. The kinetics of energy flow in the cluster were examined by solving a master equation describing the vibrational energy relaxation process from excited system mode as a multistep reaction with the third order Fermi resonance parameters as the reaction rate constants. The intramolecular energy transfer mechanism was found to dominate the short time energy flow dynamics, whereas the intermolecular mechanism was found to be dominant at longer times.

  17. Higher order mode damping studies on the PEP-II B-Factory RF cavity

    SciTech Connect

    Rimmer, R.; Goldberg, D.; Lambertson, G.; Voelker, F. ); Ko, K.; Kroll, N.; Pendleton, R.; Schwarz, H. ); Adams, F.; De Jong, M. )

    1992-03-01

    We describe studies of the higher-order-mode (HOM) properties of the prototype 476 MHz RF cavity for the proposed PEP-II B-Factory and a waveguide damping scheme to reduce possible HOM-driven coupled-bunch beam instability growth. Numerical studies include modelling of the HOM spectrum using MAFIA and ARGUS, and calculation of the loaded Q's of the damped modes using data from these codes and the Kroll-Yu method. We discuss briefly the experimental investigations of the modes, which will be made in a full-size low-power test cavity, using probes, wire excitation and bead perturbation methods.

  18. Higher order mode damping studies on the PEP-II B-Factory RF cavity

    SciTech Connect

    Rimmer, R.; Goldberg, D.; Lambertson, G.; Voelker, F.; Ko, K.; Kroll, N.; Pendleton, R.; Schwarz, H.; Adams, F.; De Jong, M.

    1992-03-01

    We describe studies of the higher-order-mode (HOM) properties of the prototype 476 MHz RF cavity for the proposed PEP-II B-Factory and a waveguide damping scheme to reduce possible HOM-driven coupled-bunch beam instability growth. Numerical studies include modelling of the HOM spectrum using MAFIA and ARGUS, and calculation of the loaded Q`s of the damped modes using data from these codes and the Kroll-Yu method. We discuss briefly the experimental investigations of the modes, which will be made in a full-size low-power test cavity, using probes, wire excitation and bead perturbation methods.

  19. Observations of a new SAGE II aerosol extinction mode following the eruption of Mt. Pinatubo

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.

    1992-01-01

    In the aftermath of the eruption of Mt. Pinatubo, multiwavelength stratospheric aerosol extinction measurements by the satellite-borne Stratospheric Aerosol and Gas Experiment (SAGE II) revealed the presence of a previously unobserved mode of aerosol that exhibited high extinction but a small inferred particle size. This mode may represent a transitional phase between the very small aerosol created by gas-to-particle conversion and a quasi-steady state, post-volcanic aerosol that exhibits both large extinction and large particle size. The presence of a transitional small aerosol mode may have a significant impact on chemical and radiative processes in the stratosphere.

  20. A pentanuclear lead(II) complex based on a strapped porphyrin with three different coordination modes.

    PubMed

    Le Gac, Stéphane; Furet, Eric; Roisnel, Thierry; Hijazi, Ismail; Halet, Jean-François; Boitrel, Bernard

    2014-10-06

    We have previously described Pb(II) and Bi(III) bimetallic complexes with overhanging carboxylic acid strapped porphyrins in which one metal ion is bound to the N-core ("out-of-plane", OOP), whereas the second one is bound to the strap ("hanging-atop", HAT). In such complexes, the hemidirected coordination sphere of a HAT Pb(II) cation provides sufficient space for an additional binding of a neutral ligand (e.g., DMSO). Interestingly, investigations of the HAT metal coordination mode in a single strap porphyrin show that a HAT Pb(II) can also interact via intermolecular coordination bonds, allowing the self-assembly of two bimetallic complexes. In the pentanuclear Pb(II) complex we are describing in this Article, three different coordination modes were found. The OOP Pb(II) remains inert toward the supramolecular assembling process, whereas the HAT Pb(II) cation, in addition to its intramolecular carboxylate and regular exogenous acetate groups, coordinates an additional exogenous acetate. These two acetates are shared with a third lead(II) cation featuring a holo-directed coordination sphere, from which a centro-symmetric complex is assembled. Density functional theory calculations show some electron-density pockets in the vicinity of the hemidirected HAT Pb(II) atoms, which are associated with the presence of a stereochemically active lone pair of electrons. On the basis of the comparison with other HAT Pb(II) and Bi(III) systems, the "volume" of this lone pair correlates well with the bond distance distributions and the number of the proximal oxygen atoms tethered to the post-transition metal cation. It thus follows the order 6-coordinate Bi(III) > 6-coordinate Pb(II) > 5-coordinate Pb(II).

  1. Selection of stirling engine parameter and modes of joint operation with the Topaz II

    SciTech Connect

    Kirillov, E.Y.; Ogloblin, B.G.; Shalaev, A.I.

    1996-03-01

    In addition to a high-temperature thermionic conversion cycle, application of a low-temperature machine cycle, such as the Stirling engine, is being considered. To select the optimum mode for joint operation of the Topaz II system and Stirling engine, output electric parameters are obtained as a function of thermal power released in the TFE fuel cores. The hydraulic diagram used for joint operation of the Topaz II and the Stirling engine is considered. Requirements to hydraulic characteristics of the Stirling engine heat exchanges are formulated. Scope of necessary modifications to mount the Stirling Engine on the Topaz II is estimated. {copyright} {ital 1996 American Institute of Physics.}

  2. Active-treatment effects of the Forsus fatigue resistant device during comprehensive Class II correction in growing patients

    PubMed Central

    Cacciatore, Giorgio; Alvetro, Lisa; Defraia, Efisio; Ghislanzoni, Luis Tomas Huanc

    2014-01-01

    Objective To evaluate the active-treatment effects of the Forsus fatigue resistant device (Forsus) during comprehensive correction of Class II malocclusion in growing patients. Methods Fifty-four patients (mean age, 12.5 ± 1.2 years) with Class II division 1 malocclusion were consecutively treated with fixed app-liances in combination with Forsus. Lateral cephalograms were analyzed at the beginning of the fixed treatment (T1), Forsus insertion (T2), its removal (T3), and end of the comprehensive therapy (T4). Statistical comparisons were carried out by repeated-measures ANOVA with Tukey's post-hoc test (p < 0.05). Results The overall therapeutic effects were mainly dentoalveolar and occurred mostly during the active treatment with Forsus (T2-T3, mean duration = 0.5 ± 0.1 years). The overjet and overbite decreased significantly (-3.5 and -1.5 mm, respectively) and the molar relationship improved by 4.3 mm. These changes were associated with significant retroclination of the maxillary incisors (-3.1°), proclination and intrusion of the mandibular incisors (+5.0° and -1.5 mm, respectively), and mesialization of the mandibular molars (+2.0 mm). Conclusions Forsus had mainly dentoalveolar effects and contributed largely to the overall therapeutic outcome. PMID:24892027

  3. Active-treatment effects of the Forsus fatigue resistant device during comprehensive Class II correction in growing patients.

    PubMed

    Cacciatore, Giorgio; Alvetro, Lisa; Defraia, Efisio; Ghislanzoni, Luis Tomas Huanc; Franchi, Lorenzo

    2014-05-01

    To evaluate the active-treatment effects of the Forsus fatigue resistant device (Forsus) during comprehensive correction of Class II malocclusion in growing patients. Fifty-four patients (mean age, 12.5 ± 1.2 years) with Class II division 1 malocclusion were consecutively treated with fixed app-liances in combination with Forsus. Lateral cephalograms were analyzed at the beginning of the fixed treatment (T1), Forsus insertion (T2), its removal (T3), and end of the comprehensive therapy (T4). Statistical comparisons were carried out by repeated-measures ANOVA with Tukey's post-hoc test (p < 0.05). The overall therapeutic effects were mainly dentoalveolar and occurred mostly during the active treatment with Forsus (T2-T3, mean duration = 0.5 ± 0.1 years). The overjet and overbite decreased significantly (-3.5 and -1.5 mm, respectively) and the molar relationship improved by 4.3 mm. These changes were associated with significant retroclination of the maxillary incisors (-3.1°), proclination and intrusion of the mandibular incisors (+5.0° and -1.5 mm, respectively), and mesialization of the mandibular molars (+2.0 mm). Forsus had mainly dentoalveolar effects and contributed largely to the overall therapeutic outcome.

  4. Mode I, Mode II, and Mixed-Mode Fracture of Plasma-sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The mixed-mode fracture behavior of plasma-sprayed ZrO2-8 wt% Y2O3 thermal barrier coatings was determined in air at 25 and 1316 C in asymmetric four-point flexure with single edge v-notched beam (SEVNB) test specimens. The mode I fracture toughness was found to be K(sub Ic) = 1.15 plus or minus 0.07 and 0.98 plus or minus 0.13 MPa the square root of m, respectively, at 25 and 1316 C. The respective mode II fracture toughness values were K(sub IIc) = 0.73 plus or minus 0.10 and 0.65 plus or minus 0.04 MPa the square root of m. Hence, there was an insignificant difference in either K(sub Ic or K(sub IIc) between 25 and 1316 C for the coating material, whereas there was a noticeable distinction between K(sub Ic) and K(sub IIc), resulting in K(sub IIc) per K(sub Ic) = 0.65 at both temperatures. The empirical mixed-mode fracture criterion best described the coatings' mixed-mode fracture behavior among the four mixed-mode fracture theories considered. The angle of crack propagation was in reasonable agreement with the minimum strain energy density criterion. The effect of the directionality of the coating material in on K(sub Ic) was observed to be insignificant, while its sintering effect at 1316 C on K(sub Ic) was significant.

  5. Characterisation of the fatigue life, dynamic creep and modes of damage accumulation within mitral valve chordae tendineae.

    PubMed

    Gunning, Gillian M; Murphy, Bruce P

    2015-09-01

    Mitral valve prolapse is often caused by either elongated or ruptured chordae tendineae (CT). In many cases, rupture is spontaneous, meaning there is no underlying cause. We hypothesised that spontaneous rupture may be due to mechanical fatigue. To investigate this hypothesis, we tested porcine marginal CT: in uniaxial tension, and in fatigue at a range of peak stresses (n=12 at 15, 10 and 7.5MPa respectively, n=6 at 5MPa). The rupture surfaces of failed CT were observed histologically, under polarised light microscopy, and SEM. The cycles to failure for 15, 10, 7.5 and 5 MPa peak stresses were: (average±SD): 5077±4366, 49513±56414, 99927±108908, 197099±69103. A Weibull plot was constructed and from this, the number of cycles at 50% probability of failure was established in order to approximate the fatigue life, which was found to be 2.43MPa at 10 million cycles. The rate of creep increases exponentially with increasing peak stress. Under histological examination it was observed that CT which have been fatigued at low stress partially lose their organised collagen structure and can sustain micro-cracks that can be linked to increases in the creep rate. Furthermore our SEM images closely matched descriptions from the literature of spontaneous in vivo rupture. In conclusion, we believe that the mechanical test results we present strongly suggest that spontaneous chordal rupture and chordal elongation in vivo can be caused by mechanical fatigue. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Influence of fatigue testing and cementation mode on the load-bearing capability of bovine incisors restored with crowns and zirconium dioxide posts.

    PubMed

    Nothdurft, F P; Schmitt, T; Motter, P J; Pospiech, P R

    2008-12-01

    The aim of the study was to evaluate the influence of fatigue and cementation mode on the fracture behavior of endodontically treated bovine incisors restored with zirconium dioxide posts and crowns. Forty-eight endodontically treated bovine primary incisors were restored with zirconium dioxide posts (Cerapost, Brasseler), composite build-ups, and crowns cast from a chromium cobalt alloy. In 16 teeth, each of the posts was cemented conventionally with KetacCem (3M ESPE) or adhesively with Panavia F (Kuraray) or RelyX UniCem (3M ESPE). One-half of the specimens in each group were subjected to thermocycling with 10,000 cycles at 5-55 degrees C and mechanical aging, loading the specimens at an angle of 45 degrees in 1,200,000 cycles with 50 N. Fracture resistance was determined by loading the specimens until fracture at an angle of 45 degrees to the long axis of the teeth. The loading test showed that neither cementation mode nor fatigue testing had an influence on the load bearing capability. Most specimens fractured in a favorable way, independent from the type of cementation.

  7. Microscopic defect induced slow-mode degradation in II VI based blue green laser diodes

    NASA Astrophysics Data System (ADS)

    Adachi, Masahiro; Min Aung, Zaw; Minami, Kouichirou; Koizumi, Keiichi; Watanabe, Masashi; Kawamoto, Seiji; Yamaguchi, Tsutomu; Kasada, Hirofumi; Abe, Tomoki; Ando, Koshi; Nakano, Kazushi; Ishibashi, Akira; Itoh, Satoshi

    2000-06-01

    We have studied the microdefect induced degradation mode in long-lifetime blue-green laser diodes (LDs) and light emitting diodes (LEDs) based on II-VI wide bandgap semiconductors. Microscopic deep defect centers in the LDs and LEDs are detected using mainly DLTS technique, coupled with ICTS methods. It is evidenced that a slow-mode degradation, commonly observed in dislocation-free LD devices, is caused by the generation and enhancement of microscopic deep centers during the device aging process. One possible degradation mechanism with a "carrier removal effect" is presented.

  8. [6-endo-trig mode cyclization to a hydrindanone using samarium (II) iodide].

    PubMed

    Sono, Masakazu

    2003-08-01

    Samarium (II) iodide has been employed to promote the vinylogous pinacol coupling reaction of aldehyde to alpha, beta-unsaturated ketones. The diastereoselectivity of 6-endo-trig mode products was changed by the addition of a proton source and/or HMPA and by the reaction temperature. The stereochemistry of the hydrindanone was controlled by the coordinated samarium species, resulting in the cis-orientation in respect of the hydroxyl group at C-4 and the juncture proton at C-3a under mild reaction conditions. Coronafacic acid has been synthesized from a hydrindanone prepared by the cyclization reaction of the enone-aldehyde with samarium (II) iodide.

  9. Low Cycle Fatigue Behavior of 316LN Stainless Steel Alloyed with Varying Nitrogen Content. Part II: Fatigue Life and Fracture Behavior

    NASA Astrophysics Data System (ADS)

    Prasad Reddy, G. V.; Sandhya, R.; Sankaran, S.; Mathew, M. D.

    2014-10-01

    Influence of nitrogen content on low cycle fatigue life and fracture behavior of 316LN stainless steel (SS) alloyed with 0.07 to 0.22 wt pct nitrogen is presented in this paper over a range of total strain amplitudes ( ±0.25 to 1.0 pct) in the temperature range from 773 K to 873 K (500 °C to 600 °C). The combined effect of nitrogen and strain amplitude on fatigue life is observed to be complex i.e., fatigue life either decreases/increases with increase in nitrogen content or saturates/peaks at 0.14 wt pct N depending on strain amplitude and temperature. Coffin-Manson plots (CMPs) revealed both single-slope and dual-slope strain-life curves depending on the test temperature and nitrogen content. 316LN SS containing 0.07 and 0.22 wt pct N showed nearly single-slope CMP at all test temperatures, while 316LN SS with 0.11 and 0.14 wt pct N exhibited marked dual-slope behavior at 773 K (500 °C) that changes to single-slope behavior at 873 K (600 °C). The changes in slope of CMP are found to be in good correlation with deformation substructural changes.

  10. Damping Higher Order Modes in the PEP-II B-Factory Vertex Bellows

    SciTech Connect

    Weathersby, S.; Langton, J.; Novokhatski, A.; Seeman, J.; /SLAC

    2005-06-30

    Higher stored currents and shorter bunch lengths are requirements for increasing luminosity in colliding storage rings. As a result, more HOM power is generated in the IP region. This HOM power propagates to sensitive components causing undesirable heating, thus becoming a limiting issue for the PEP-II B-factory. HOM field penetration through RF shielding fingers has been shown to cause heating in bellows structures. To overcome these limitations, a proposal to incorporate ceramic absorbers within the bellows cavity to damp these modes is presented. Results show that the majority of modes of interest are damped, the effectiveness depending on geometrical considerations. An optimal configuration is presented for the PEP-II B-factory IR bellows component utilizing commercial grade ceramics with consideration for heat transfer requirements.

  11. Sliding mode control of the space nuclear reactor system TOPAZ II

    SciTech Connect

    Shtessel, Y.B.; Wyant, F.J.

    1996-03-01

    The Automatic Control System (ACS) of the space nuclear reactor power system TOPAZ II that generates electricity from nuclear heat using in-core thermionic converters is considered. Sliding Mode Control Technique was applied to the reactor system controller design in order to provide the robust high accuracy following of a neutron (thermal) power reference profile in a start up regime and a payload electric power (current) reference profile following in an operation regime. Extensive simulations of the TOPAZ II reactor system with the designed sliding mode controllers showed improved accuracy and robustness of the reactor system performances in a start up regime and in an electric power supply regime as well. {copyright} {ital 1996 American Institute of Physics.}

  12. Mode-II Crack Problem for a Long Rectangular Slab of Superconductor under an Electromagnetic Force

    NASA Astrophysics Data System (ADS)

    Gao, Zhi-Wen; Zhou, You-He

    2009-02-01

    We present a theoretical analysis to the fracture parameters of the large single domain YBCO superconductor with a tangential line crack under electromagnetic force. The mode-II fracture parameters are obtained due to coupled finite element and infinite element method, and the numerical results are conducted for two activation processes. For a zero-field cooling (ZFC) magnetization process, in the process of magnetic field descent, the larger the applied field is, the larger the stress intensity factors. In the case of field cooling (FC) magnetization process, the stress intensity factors have obvious differences between the two cases of bfc > 1 and bfc >= 1. Additionally, J-integral characteristic is obtained, and according to these results, the mode-II crack growth trend is predicted. These results are benefit for us to understand the fracture mechanism of superconductor both in theory and application.

  13. Mode II interlaminar fracture toughness of carbon fabric composite laminates with carbon nanotube oriented by magnet

    NASA Astrophysics Data System (ADS)

    Xu, Xinguang; Zhou, Zhenggang

    2017-03-01

    Inspired by the residual iron nanoparticles wrapped in the CNTs tips, we developed a method to induce efficient orientation of multiwalled CNTs bundles by relatively low magnetic fields. Laminates were fabricated to investigate the effect of magnet oriented CNTs on GIIC properties. Microstructure anisotropy of nanotube bundles demonstrated the orientation of CNT bundles by magnet. Furthermore, the application of magnet increased mode II interlaminar fracture toughness by 29% compared to plain laminates.

  14. Measurements and Analysis of Longitudinal HOM Driven Coupled Bunch Modes in PEP-II Rings

    SciTech Connect

    Mastorides, T; Rivetta, C.; Fox, J.D.; Winkle, D.Van; /SLAC

    2008-07-07

    The growth rates of the longitudinal higher-order impedance-driven beam modes have greatly increased since the initial PEP-II design and commissioning. This increase is attributed to the addition of 6 1.2MW RF stations with 8 accelerating cavities in the HER and 2 1.2MW RF stations with 4 accelerating cavities in the LER, which allowed operations at twice the design current and almost four times the luminosity. As a result, the damping requirements for the longitudinal feedback have greatly increased since the design, and the feedback filters and control schemes have evolved during PEP-II operations. In this paper, growth and damping rate data for the higher-order mode (HOM) driven coupled-bunch modes are presented from various PEP-II runs and are compared with historical estimates during commissioning. The effect of noise in the feedback processing channel is also studied. Both the stability and performance limits of the system are analyzed.

  15. Effective representation of amide III, II, I, and A modes on local vibrational modes: Analysis of ab initio quantum calculation results

    NASA Astrophysics Data System (ADS)

    Hahn, Seungsoo

    2016-10-01

    The Hamiltonian matrix for the first excited vibrational states of a protein can be effectively represented by local vibrational modes constituting amide III, II, I, and A modes to simulate various vibrational spectra. Methods for obtaining the Hamiltonian matrix from ab initio quantum calculation results are discussed, where the methods consist of three steps: selection of local vibrational mode coordinates, calculation of a reduced Hessian matrix, and extraction of the Hamiltonian matrix from the Hessian matrix. We introduce several methods for each step. The methods were assessed based on the density functional theory calculation results of 24 oligopeptides with four different peptide lengths and six different secondary structures. The completeness of a Hamiltonian matrix represented in the reduced local mode space is improved by adopting a specific atom group for each amide mode and reducing the effect of ignored local modes. The calculation results are also compared to previous models using C=O stretching vibration and transition dipole couplings. We found that local electric transition dipole moments of the amide modes are mainly bound on the local peptide planes. Their direction and magnitude are well conserved except amide A modes, which show large variation. Contrary to amide I modes, the vibrational coupling constants of amide III, II, and A modes obtained by analysis of a dipeptide are not transferable to oligopeptides with the same secondary conformation because coupling constants are affected by the surrounding atomic environment.

  16. Effective representation of amide III, II, I, and A modes on local vibrational modes: Analysis of ab initio quantum calculation results.

    PubMed

    Hahn, Seungsoo

    2016-10-28

    The Hamiltonian matrix for the first excited vibrational states of a protein can be effectively represented by local vibrational modes constituting amide III, II, I, and A modes to simulate various vibrational spectra. Methods for obtaining the Hamiltonian matrix from ab initio quantum calculation results are discussed, where the methods consist of three steps: selection of local vibrational mode coordinates, calculation of a reduced Hessian matrix, and extraction of the Hamiltonian matrix from the Hessian matrix. We introduce several methods for each step. The methods were assessed based on the density functional theory calculation results of 24 oligopeptides with four different peptide lengths and six different secondary structures. The completeness of a Hamiltonian matrix represented in the reduced local mode space is improved by adopting a specific atom group for each amide mode and reducing the effect of ignored local modes. The calculation results are also compared to previous models using C=O stretching vibration and transition dipole couplings. We found that local electric transition dipole moments of the amide modes are mainly bound on the local peptide planes. Their direction and magnitude are well conserved except amide A modes, which show large variation. Contrary to amide I modes, the vibrational coupling constants of amide III, II, and A modes obtained by analysis of a dipeptide are not transferable to oligopeptides with the same secondary conformation because coupling constants are affected by the surrounding atomic environment.

  17. Bearing fatigue investigation 3

    NASA Technical Reports Server (NTRS)

    Nahm, A. H.; Bamberger, E. N.; Signer, H. R.

    1982-01-01

    The operating characteristics of large diameter rolling-element bearings in the ultra high speed regimes expected in advanced turbine engines for high performance aircraft were investigated. A high temperature lubricant, DuPont Krytox 143 AC, was evaluated at bearing speeds to 3 million DN. Compared to the results of earlier, similar tests using a MIL-L-23699 (Type II) lubricant, bearings lubricated with the high density Krytox fluid showed significantly higher power requirements. Additionally, short bearing lives were observed when this fluid was used with AISI M50 bearings in an air atmosphere. The primary mode of failure was corrosion initiated surface distress (fatigue) on the raceways. The potential of a case-carburized bearing to sustain a combination of high-tangential and hertzian stresses without experiencing race fracture was also investigated. Limited full scale bearing tests of a 120 mm bore ball bearing at a speed of 25,000 rpm (3 million DN) indicated that a carburized material could sustain spalling fatigue without subsequent propagation to fracture. Planned life tests of the carburized material had to be aborted, however, because of apparent processing-induced material defects.

  18. A kinetic model for type I and II IP3R accounting for mode changes.

    PubMed

    Siekmann, Ivo; Wagner, Larry E; Yule, David; Crampin, Edmund J; Sneyd, James

    2012-08-22

    Based upon an extensive single-channel data set, a Markov model for types I and II inositol trisphosphate receptors (IP(3)R) is developed. The model aims to represent accurately the kinetics of both receptor types of IP(3)R depending on the concentrations of inositol trisphosphate (IP(3)), adenosine trisphosphate (ATP), and intracellular calcium (Ca(2+)). In particular, the model takes into account that for some combinations of ligands the IP(3)R switches between extended periods of inactivity alternating with intervals of bursting activity (mode changes). In a first step, the inactive and active modes are modeled separately. It is found that, within modes, both receptor types are ligand-independent. In a second step, the submodels are connected by transition rates. Ligand-dependent regulation of the channel activity is achieved by modulating these transitions between active and inactive modes. As a result, a compact representation of the IP(3)R is obtained that accurately captures stochastic single-channel dynamics including mode changes in a model with six states and 10 rate constants, only two of which are ligand-dependent.

  19. A Mixed-Mode (I-II) Fracture Criterion for AS4/8552 Carbon/Epoxy Composite Laminate

    NASA Astrophysics Data System (ADS)

    Karnati, Sidharth Reddy

    A majority of aerospace structures are subjected to bending and stretching loads that introduce peel and shear stresses between the plies of a composite laminate. These two stress components cause a combination of mode I and II fracture modes in the matrix layer of the composite laminate. The most common failure mode in laminated composites is delamination that affects the structural integrity of composite structures. Damage tolerant designs of structures require two types of materials data: mixed-mode (I-II) delamination fracture toughness that predicts failure and delamination growth rate that predicts the life of the structural component. This research focuses determining mixed-mode (I-II) fracture toughness under a combination of mode I and mode II stress states and then a fracture criterion for AS4/8552 composite laminate, which is widely used in general aviation. The AS4/8552 prepreg was supplied by Hexcel Corporation and autoclave fabricated into a 20-ply unidirectional laminate with an artificial delamination by a Fluorinated Ethylene Propylene (FEP) film at the mid-plane. Standard split beam specimens were prepared and tested in double cantilever beam (DCB) and end notched flexure modes to determine mode I (GIC) and II (GIIC) fracture toughnesses, respectively. The DCB specimens were also tested in a modified mixed-mode bending apparatus at GIIm /GT ratios of 0.18, 0.37, 0.57 and 0.78, where GT is total and GIIm is the mode II component of energy release rates. The measured fracture toughness, GC, was found to follow the locus a power law equation. The equation was validated for the present and literature experimental data.

  20. Different modes of synergistic toxicities between metam/copper (II) and metam/zinc (II) in HepG2 cells: apoptosis vs. necrosis.

    PubMed

    Fan, Rui-Mei; Zhu, Ben-Zhan; Huang, Chin-Pao; Sheng, Zhi-Guo; Mao, Li; Li, Ming-Xin

    2016-12-01

    Both metam sodium and copper/zinc-containing compounds are widely used as fungicides. They therefore may co-occur in the biosphere. Despite certain studies of individual toxicity for either metam or copper (II)/zinc (II), their synergistic toxicity has not been examined. In this paper, a remarkable synergistic toxicity was observed in HepG2 cells when metam and copper (II)/zinc (II) at non-toxic and sub-toxic levels were combined. Unexpectedly, cell death modes between metam/copper (II) and metam/zinc (II) were different: For metam/copper (II), apoptosis was evident from morphological characteristics including cytoplasm-chromatin condensation, phosphatidylserine (PS) exposure, SubG0 /G1 DNA fragmentation, mitochondrial membrane potential decrease, pro/anti-apoptotic protein activation, and cytochrome c release; for metam/zinc (II), necrosis was evident from organelle swelling and uncontrolled collapse. To our knowledge, this work first not only demonstrates the synergistic toxicities of metam and both copper (II)/zinc (II), but also verifies the different modes of apoptosis/necrosis between metam/copper (II) and metam/zinc (II). © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1964-1973, 2016. © 2015 Wiley Periodicals, Inc.

  1. Trapped modes in the PEP-II B-Factory Interaction Region

    SciTech Connect

    Henestroza, E.; Heifets, S.; Zolotorev, M.

    1995-04-01

    The design of the PEP-II B-Factory Interaction Region is based primarily on beam-stay-clear requirements and on synchrotron radiation background considerations (masks are required to shield the detector beam pipe from all sources of synchrotron radiation). A complicated 3-dimensional structure results from these requirements. A high intensity beam traversing this structure will generate wake fields that lead to energy deposition on the beam pipe, as well as to decelerating and deflecting forces acting back on the beam. Computation of wake fields and impedances in frequency-domain and time-domain using 2-D and 3-D electromagnetic codes revealed the existence of trapped modes in the interaction region, which if not controlled could enhance the higher order model heating of the beam pipe. We will present the simulation results and the design strategy to avoid resonant conditions between these trapped modes and the bunch train frequency.

  2. Subcritical crack growth under mode I, II, and III loading for Coconino sandstone

    NASA Astrophysics Data System (ADS)

    Ko, Tae Young

    In systems subjected to long-term loading, subcritical crack growth is the principal mechanism causing the time-dependent deformation and failure of rocks. Subcritical crack growth is environmentally-assisted crack growth, which can allow cracks to grow over a long period of time at stresses far smaller than their failure strength and at tectonic strain rates. The characteristics of subcritical crack growth can be described by a relationship between the stress intensity factor and the crack velocity. This study presents the results of studies conducted to validate the constant stress-rate test for determining subcritical crack growth parameters in Coconino sandstone, compared with the conventional testing method, the double torsion test. The results of the constant stress-rate test are in good agreement with the results of double torsion test. More importantly, the stress-rate tests can determine the parameter A with a much smaller standard deviation than the double torsion test. Thus the constant stress-rate test seems to be both a valid and preferred test method for determining the subcritical crack growth parameters in rocks. We investigated statistical aspects of the constant stress-rate test. The effects of the number of tests conducted on the subcritical crack growth parameters were examined and minimum specimen numbers were determined. The mean and standard deviation of the subcritical crack growth parameters were obtained by randomly selecting subsets from the original strength data. In addition, the distribution form of the subcritical crack growth parameters and the relation between the parameter n and A were determined. We extended the constant stress-rate test technique to modes II and III subcritical crack growth in rocks. The experimental results of the modes I, II and III tests show that the values of the subcritical crack growth parameters are similar to each other. The subcritical crack growth parameter n value for Coconino sandstone has the range

  3. Elevated temperature biaxial fatigue

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1984-01-01

    A three year experimental program for studying elevated temperature biaxial fatigue of a nickel based alloy Hastelloy-X has been completed. A new high temperature fatigue test facility with unique capabilities has been developed. Effort was directed toward understanding multiaxial fatigue and correlating the experimental data to the existing theories of fatigue failure. The difficult task of predicting fatigue lives for non-proportional loading was used as an ultimate test for various life prediction methods being considered. The primary means of reaching improved undertanding were through several critical non-proportional loading experiments. It was discovered that the cracking mode switched from primarily cracking on the maximum shear planes at room temperature to cracking on the maximum normal strain planes at 649 C.

  4. Normal Modes for Dynamic Motions of a Topoisomerase II enzyme upon DNA-Binding and Bending

    NASA Astrophysics Data System (ADS)

    Mentes, Ahmet

    We have used Molecular Dynamics (MD) simulation methods and two analytical approaches (the Gaussian Network Model (GNM) and Anisotropic Network Model (ANM)) to investigate the internal dynamic motions of the S. cerevisiae Topoisomerase (TopoII) during the first step of its catalytic cycle. At the initial state of the first step of its catalytic cycle, the protein and a 34 bp straight-DNA structure have no interaction. At the final state of the cycle, we have the bended-DNA/TopoII complex where the protein binds to DNA and, at this stage, the protein binds and bends the DNA, just before the DNA cleavage by TopoII. Normal mode analysis is used to characterize the functional flexibility of the protein, especially the C-gate domain closing/opening during the DNA binding/bending process and before DNA cleavage. Because of its clinical importance, our study might be helpful to better understand the next steps of its catalytic cycle and may provide new insight into the dynamics and structure of other TopoII-DNA complexes.

  5. Isothermal fatigue of an aluminide-coated single-crystal superalloy: Part II. effects of brittle precracking

    NASA Astrophysics Data System (ADS)

    Totemeier, T. C.; Gale, W. F.; King, J. E.

    1996-02-01

    The effect of brittle coating precracking on the fatigue behavior of a high-activity aluminide-coated single-crystal nickel-base superalloy has been studied using hollow cylindrical specimens at test temperatures of 600 °, 800 °, and 1000 °. Three types of precrack were studied: narrow precracks formed at room temperature, wide precracks formed at room temperature, and narrow precracks formed at elevated temperature. The effect of precracking on fatigue life at 600 ° was found to depend strongly on the type of precrack. No failure was observed for specimens with narrow room-temperature precracks because of crack arrest via an oxidation-induced crack closure mechanism, while the behavior of wide precracks and precracks formed at elevated temperature mirrored the non-precracked behavior. Crack retardation also occurred for narrow room-temperature precracks tested at 800 °—in this case, fatigue cracks leading to failure initiated in a layer of recrystallized grains on the inside surface of the specimen. A significant reduction in fatigue life at 800 ° relative to non-precracked specimens was observed for wide precracks and elevated temperature precracks. The presence of precracks bypassed the initiation and growth of coating fatigue cracks necessary for failure in non-precracked material. No effect of precracking was observed at 1000 °.

  6. Effect of heat treatment upon the fatigue-crack growth behavior of Alloy 718 weldments. Part II. Microscopic behavior

    SciTech Connect

    Mills, W J; James, L A

    1981-05-01

    The microstructural features that influenced the room and elevated temperature fatigue-crack growth behavior of as-welded, conventional heat-treated, and modified heat-treated Alloy 718 GTA weldments were studied. Electron fractographic examination of fatigue fracture surfaces revealed that operative fatigue mechanisms were dependent on microstructure, temperature and stress intensity factor. All specimens exhibited three basic fracture surface appearances at temperatures up to 838{sup 0}C: crystallographic faceting at low stress intensity range ({Delta}K) levels, striation formation at intermediate values, and dimples coupled with striations in the highest {Delta}K regime. At 649{sup 0}C, the heat-treated welds exhibited extensive intergranular cracking. Laves and {delta}particles in the conventional heat-treated material nucleated microvoids ahead of the advancing crack front and caused an overall acceleration in crack growth rates at intermediate and high {Delta}K levels. The modified heat treatment removed many of these particles from the weld zone, thereby improving its fatigue resistance. The dramatically improved fatigue properties exhibited by the as-welded material was attributed to compressive residual stresses introduced by the welding process. 16 figures.

  7. Characterization of Mode I and mixed-mode delamination growth in T300/5208 graphite/epoxy

    NASA Technical Reports Server (NTRS)

    Ramkumar, R. L.; Whitcomb, J. D.

    1985-01-01

    The roles played by Mode I and Mode II strain-energy release rates (G-I and G-II, respectively) in inducing delamination growth under static and fatigue loading were investigated, using T300/5208 graphite/epoxy specimens. Double cantilever beam (DCB) specimens and cracked lap shear (CLS) specimens were used for pure Mode I and mixed-mode tests, respectively. Fatigue-induced delamination growth was characterized by constant-amplitude fatigue tests at a minimum to maximum cyclic load ratio of 0.05 and a frequency of 10 Hz. During the tests, the maximum and minimum strain-energy release rates (Gmax, Gmin) and the delamination growth rate (da/dN) were monitored. Static tests on mixed-mode CLS specimens measured the total strain-energy release rate, which was broken into G-I and G-II components using finite-element analysis. A power-law relationship between da/dN and G-Imax, and da/dN and Gmax were obtained from fatigue test results on DCB and CLS specimens, respectively. The power law for a pure Mode II delamination was derived from CLS results by subtracting the contribution due to G-I.

  8. Effects of Temperature on Mode II Fracture Toughness of Multidirectional CFRP Laminates

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung Soo; Wang, Wen Xue; Takao, Yoshihiro; Ben, Goichi

    End notched flexure (ENF) tests were performed to investigate the effects of temperature and fiber orientation on Mode II interlaminar fracture behavior, GIIC (GII at the crack initiation), of carbon fiber-reinforced epoxy composites, T800H/#3631. The values of GIIC for three kinds of laminates, [012//012], [22.5/-22.5/08/-22.5/22.5//-22.5/22.5/08/22.5/-22.5] and [45/-45/08/-45/45//-45/45/08/45/-45], with a pre-cracked interface, that is // in each laminate, were obtained at three temperatures, i.e. -100°C, 25°C and 150°C. It is shown that GIIC is obviously affected by the temperature and fiber orientation. The scanning electron microscope (SEM) observation was also carried out to investigate the fracture surface. SEM analysis suggested that the decreased Mode II interlaminar fracture toughness for all kinds of specimens at high temperature could be attributed to temperature-induced matrix property change or fiber-matrix interfacial weakening.

  9. Linear growth rates of types I and II convective modes within the rotating-cone boundary layer

    NASA Astrophysics Data System (ADS)

    Garrett, S. J.

    2010-04-01

    Experimental observations have shown that the transition characteristics of the boundary-layer flow over rotating cones depends on the cone half-angle. In particular, pairs of counter-rotating Görtler-type vortices are observed over cones with slender half-angles and co-rotating vortices are observed over broad cones. Garrett et al (2009 J. Fluid Mech. 622 209-32) have hypothesized the existence of a centrifugal instability mode over slender cones that is more dangerous than the types I (crossflow) and II (streamline curvature) modes which dominate over rotating disks and broad cones. Work is currently underway to clarify this alternative mode; however, a clear understanding of the growth rates of types I and II modes is crucial to the ultimate understanding of how the dominant mode changes with half-angle. In this paper, we demonstrate that the maximum growth rate for types I and II modes decreases with reduced half-angle, which clears the way for the dominance of the alternative instability mode. Furthermore, it is suggested that vortices travelling at 75% of the cone surface speed will be selected over smooth, clean rotating cones with half-angle such that the type I mode is dominant. Interestingly, this vortex speed has been experimentally observed by Kobayashi and Arai within the rotating-sphere boundary layer.

  10. Fatigue Behavior of a Cross-Ply Metal Matrix Composite at Elevated Temperature Under Strain Controlled Mode.

    DTIC Science & Technology

    1994-12-01

    the higher strains, matrix plasticity was predicted, but could not be experimentally confirmed. A large scatter in the elastic moduli for the 0/90...1991. 114 22. Nimmer, R. P. et al. "Fiber Array Geometry Effects Upon Composite Transverse Tensile Behavior," Titanium Aluminide Composites. February... Titanium , Silicon Carbide, Strain Control Mode 17. SECURITY CLASSIFICATION I18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFIKATION 20. LIMITATION OF

  11. Damage mechanisms and failure modes of cortical bone under components of physiological loading.

    PubMed

    George, W T; Vashishth, D

    2005-09-01

    Fatigue damage development in cortical bone was investigated in vitro under different mechanical components of physiological loading including tension, compression, and torsion. During each test, stress and strain data were collected continuously to monitor and statistically determine the occurrence of the primary, secondary, and tertiary stages associated with fatigue and/or creep failure of bone. The resultant microdamage and failure modes were identified by histological and fractographic analysis, respectively. The tensile group demonstrated Mode I cracking and the three classic stages of fatigue and creep suggesting a low crack initiation threshold, steady crack propagation and final failure by coalescence of microcracks. In contrast, the compressive group displayed Mode II cracking and a two-stage fatigue behavior with limited creep suggesting a high crack initiation threshold followed by a sudden fracture. The torsion group also displayed a two-stage fatigue profile but demonstrated extensive damage from mixed mode (Modes II and III) microcracking and predominant time-dependent damage. Thus, fatigue behavior of bone was found to be uniquely related to the individual mechanical components of physiological loading and the latter determined the specific damage mechanisms associated with fatigue fracture.

  12. Effect of TE Mode Power on the PEP II LER BPM System

    SciTech Connect

    Ng, Cho-K

    2011-08-26

    The beam chamber of the PEP-II B-Factory Low Energy Ring (LER) arc sections is connected to an antechamber for the absorption of synchrotron radiation on discrete photon stops. The presence of the antechamber substantially reduces the cutoff frequency of the vacuum chamber and, in particular, allows the propagation of higher-order-mode (HOM) TE power generated by beamline components at the BPM signal processing frequency. Calculations of the transmission properties of the TE mode in different sections of the vacuum chamber show that the power is trapped between widely separated bellows in the arc sections. Because of the narrow signal bandwidth and weak coupling of the TE mode to the BPM buttons, the noise contributed by the HOM TE power will not produce a noticeable effect on the BPM position signal voltage. The LER arc vacuum chamber employs an antechamber with a discrete photon stop for absorption of synchrotron radiation and with pumps for maintaining pressure below 10 nTorr [1]. The horizontal dimensions of the antechambers at the pumping chamber section and the magnet chamber section are larger or comparable to that of the beam chamber. Because of the increase in the horizontal dimension, the cutoff frequency of the TE10-like mode (in rectangular coordinates) of the vacuum chamber is considerably reduced and, in particular, is less than the BPM signal processing frequency at 952 MHz. TE power propagating in the vacuum chamber will penetrate through the BPM buttons and will affect the pickup signal if its magnitude is not properly controlled. It is the purpose of this note to clarify various issues pertaining to this problem. TE power is generated when the beam passes a noncylindrically symmetric beamline component such as the RF cavity, the injection region, the IR crotch and the IP region. The beampipes connected to these components have TE cutoff frequencies greater than 952 MHz (for example, the TE cutoff frequency of the RF cavity beampipe is 1.8 GHz

  13. Electron radiation effects on Mode II interlaminar fracture toughness of GFRP and CFRP composites

    SciTech Connect

    Takeda, N.; Tohdoh, M.; Takahashi, K.

    1989-01-01

    The degradation properties of epoxy-based fiber-reinforced-plastics (FRP) composites irradiated by high-energy electrons were studied using the Mode II interlaminar fracture toughness G/sub IIc/, measured by end-notched flexure tests. The radiation-induced degradation mechanisms were investigated through G/sub IIc/ and the scanning electron micrographs of fracture surfaces. For GFRP, the significant decrease in G/sub IIc/ was found. Debonding of glass fibers and epoxy matrix (or degradation of silane coupling agents) plays an important role in degradation in addition to resin degradation. Thus, the improvement of the radiation resistance of fiber-resin interfaces as well as matrix itself is of supreme importance in order to increase the radiation resistance of GFRP. For CFRP, on the other hand, no degradation in fiber-resin interfaces was found and the slight decrease in G/sub IIc/ seems to be due to the resin degradation. 18 references, 6 figures.

  14. Fatigue and thermal fatigue of Pb-Sn solder joints

    SciTech Connect

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55/sup 0/C and 125/sup 0/C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb.

  15. Reassessment of the Unique Mode of Binding between Angiotensin II Type 1 Receptor and Their Blockers

    PubMed Central

    Matsuo, Yoshino; Saku, Keijiro; Karnik, Sadashiva S.

    2013-01-01

    While the molecular structures of angiotensin II (Ang II) type 1 (AT1) receptor blockers (ARBs) are very similar, they are also slightly different. Although each ARB has been shown to exhibit a unique mode of binding to AT1 receptor, different positions of the AT1 receptor have been analyzed and computational modeling has been performed using different crystal structures for the receptor as a template and different kinds of software. Therefore, we systematically analyzed the critical positions of the AT1 receptor, Tyr113, Tyr184, Lys199, His256 and Gln257 using a mutagenesis study, and subsequently performed computational modeling of the binding of ARBs to AT1 receptor using CXCR4 receptor as a new template and a single version of software. The interactions between Tyr113 in the AT1 receptor and the hydroxyl group of olmesartan, between Lys199 and carboxyl or tetrazole groups, and between His256 or Gln257 and the tetrazole group were studied. The common structure, a tetrazole group, of most ARBs similarly bind to Lys199, His256 and Gln257 of AT1 receptor. Lys199 in the AT1 receptor binds to the carboxyl group of EXP3174, candesartan and azilsartan, whereas oxygen in the amidecarbonyl group of valsartan may bind to Lys199. The benzimidazole portion of telmisartan may bind to a lipophilic pocket that includes Tyr113. On the other hand, the n-butyl group of irbesartan may bind to Tyr113. In conclusion, we confirmed that the slightly different structures of ARBs may be critical for binding to AT1 receptor and for the formation of unique modes of binding. PMID:24260317

  16. In-plane response and mode II fracture response of Z-pin woven laminates

    NASA Astrophysics Data System (ADS)

    Huang, Hseng-Ji

    Textile composites are proven to be an attractive choice over traditional pre-preg based composites because of reduced manufacturing costs and improved transverse mechanical properties. However, similar to traditional pre-preg composites, 2D laminates consisting of multiple layers of laminae still suffer from delamination under impact or transverse loads. Z-pin (carbon fiber of small diameter inserted in the thickness direction-z) composites are a means to provide higher through-thethickness stiffness and strength that 2D woven composites lack. In this thesis, The influences of Z-pin density and Z-pin diameter on the response of Z-pin under in-plane loads (compression) and transverse loads (mode II fracture) are examined. Both experiments and numerical simulations were performed to address the problems. Compression tests were conducted first and failure mechanism in each loading scenario was identified, through optical and mechanical measurements, during and after the tests. This was followed by the development of different numerical models of varying degree of sophistication, which include in-plane 2D models, (used to study fiber distortion and damage due to Z-pin insertion), multi-layer 2D models, (used to provide an inexpensive multi-layer model to study the effect of phase difference due to stacking consolidation), and multi-layer-multi-cell models (used to provide a full 3D multi-layer and multi-representative unit cell description). The second part of this thesis investigates the mode II fracture response under static and dynamic loading. Discrete Cohesive Zone Model (DCZM) was adopted to obtain the fracture toughness in conjunction with experimental data. In dynamic test, a crack advance gage (CAG) was designed to capture the exact time when the crack begins to propagate. By use of these CAGs, the corresponding crack propagation speed between different CAGs can be computed accordingly. These observations are supplemented through high speed optical images

  17. Analysis of the Numerical and Geometrical Parameters Influencing the Simulation of Mode I and Mode II Delamination Growth in Unidirectional and Textile Composites

    NASA Astrophysics Data System (ADS)

    Jacques, S.; De Baere, I.; Van Paepegem, W.

    2015-12-01

    The reliability of composite structures depends, among other damage mechanisms, on their ability to withstand delaminations. In order to have a better understanding of the cohesive zone method technique for delamination simulations, a complete analysis of the multiple parameters influencing the results is necessary. In this paper the work is concentrated on the cohesive zone method using cohesive elements. First a summary of the theory of the cohesive zone method is given. A numerical investigation on the multiple parameters influencing the numerical simulation of the mode I and mode II delamination tests has been performed. The parameters such as the stabilization method, the output frequency, the friction and the computational efficiency have been taken into account. The results will be compared to an analytical solution obtained by linear elastic fracture mechanics. Additionally the numerical simulation results will be compared to the experimental results of a glass-fibre reinforced composite material for the mode I Double Cantilever Beam (DCB) and to a carbon fibre 5-harness satin weave reinforced polyphenylene sulphide composite for the mode I DCB and mode II End Notched Flexure (ENF).

  18. Damping higher order modes in the PEP-II B-Factory storage ring collider

    NASA Astrophysics Data System (ADS)

    Weathersby, Stephen

    2007-05-01

    The PEP-II B-Factory storage ring collider at SLAC provides crucial experimental evidence for the physics of CP violation. To investigate rare B-meson decays requires high luminosity which comes mainly from increasing bunch currents and reducing bunch sizes. Electromagnetic effects of intense bunch fields in the form of wake fields couple into accelerator components, inducing Joule heating at levels detrimental to vacuum chamber components. Additionally, wake fields contribute to beam instability, decreasing luminosity. These effects are limiting B-factory performance. Computer simulations and experimental evidence indicate that beam collimators produce wake fields in the form of dipole and quadrupole waveguide modes which can propagate tens of meters from their source before depositing energy at remote locations. Simulations confirm that coupling through narrow slots into bellows cavities occurs for beam pipe modes. Two proposals are set forth to mitigate wake field effects. The first proposal is to reduce the quality factor of resonant structures with a water cooled dielectric lossy material. Electromagnetic energy coupling into resonant structures can be isolated and safely dissipated. Prototype devices have been built and have been shown to reduce resistive heating in large pumping chambers coupled to the beam chamber. Designs and simulations which incorporate such techiques into bellows devices are presented. The second proposal incorporates novel devices introduced in the accelerator vacuum chamber which selectively traps dipole and quadrupole propagating wake fields before they can couple into sensitive beam line components without introducing impedance to the beam. Scattering parameter analysis is used to tailor device response to specific modes. Dangerous modes are extracted from the beam chamber, trapped and dissipated in a water cooled lossy material. Modes which represent an impedance to the beam are not affected. After design optimization, production

  19. Fatigue resistance and failure mode of CAD/CAM composite resin implant abutments restored with type III composite resin and porcelain veneers.

    PubMed

    Magne, Pascal; Oderich, Elisa; Boff, Luís Leonildo; Cardoso, Antônio Carlos; Belser, Urs Christoph

    2011-11-01

    This study assessed the fatigue resistance and failure mode of type III porcelain and composite resin veneers bonded to custom composite resin implant abutments. Using the CEREC 3 machine, 28 composite resin implant abutments (Paradigm MZ100) were fabricated along with non-retentive type III veneers, milled either in ceramic Paradigm C (n=14) or in composite resin Paradigm MZ100 (n=14). The intaglio surfaces of the veneers were hydrofluoric acid etched and silanated (Paradigm C) or airborne-particle abraded and silanated (MZ100). The fitting surface of the abutments was airborne-particle abraded, cleaned, silanated and inserted into a bone level implant (10 mm, BLI RC). All veneers were luted with adhesive resin (Optibond FL) and a preheated light curing composite resin (Filtek Z100). Cyclic isometric chewing (5 Hz, 30° angle) was simulated, starting with a load of 40 N, followed by stages of 80, 120, 160, 200, 240 and 280 N (20,000 cycles each). Samples were loaded until fracture or to a maximum of 140,000 cycles. Groups were compared using the life table survival analysis (Log rank test at P=0.05). Previously published data using same-design zirconia abutments were included for comparison. Paradigm C and MZ100 specimens fractured at an average load of 243 and 206 N (survival rate of 21% and 0%), respectively, with a significant difference in survival probability (P=0.02). Fractured specimens presented mixed failure modes and solely adhesive failures were not observed. The survival of composite resin abutments was similar to that of identical zirconia abutments from a previous study (P=0.76). Non-retentive porcelain veneers bonded to custom composite resin implant abutments presented a higher survival rate when compared with composite resin veneers. Survival of composite resin abutment did not differ from zirconia ones. © 2011 John Wiley & Sons A/S.

  20. Mixed-mode I+II fracture characterization of human cortical bone using the Single Leg Bending test.

    PubMed

    Silva, F G A; de Moura, M F S F; Dourado, N; Xavier, J; Pereira, F A M; Morais, J J L; Dias, M I R

    2016-02-01

    Mixed-mode I+II fracture characterization of human cortical bone was analyzed in this work. A miniaturized version of the Single Leg Bending test (SLB) was used owing to its simplicity. A power law criterion was verified to accurately describe the material fracture envelop under mixed-mode I+II loading. The crack tip opening displacements measured by digital image correlation were used in a direct method to determine the cohesive law mimicking fracture behavior of cortical bone. Cohesive zone modeling was used for the sake of validation. Several fracture quantities were compared with the experimental results and the good agreement observed proves the appropriateness of the proposed procedure for fracture characterization of human bone under mixed-mode I+II loading.

  1. Elevated temperature biaxial fatigue

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1985-01-01

    A 3 year experimental program for studying elevated temperature biaxial fatigue of a nickel based alloy Hastelloy-X has been completed. A new high temperature fatigue test facility with unique capabilities has been developed. Effort was directed toward understanding multiaxial fatigue and correlating the experimental data to the existing theories of fatigue failure. The difficult task of predicting fatigue lives for nonproportional loading was used as an ultimate test for various life prediction methods being considered. The primary means of reaching improved understanding were through several critical nonproportional loading experiments. The direction of cracking observed on failed specimens was also recorded and used to guide the development of the theory. Cyclic deformation responses were permanently recorded digitally during each test. It was discovered that the cracking mode switched from primarily cracking on the maximum shear planes at room temperature to cracking on the maximum normal strain planes at 649 C. In contrast to some other metals, loading path in nonproportional loading had little effect on fatigue lives. Strain rate had a small effect on fatigue lives at 649 C. Of the various correlating parameters the modified plastic work and octahedral shear stress were the most successful.

  2. Pseudo-type-II tuning behavior and mode identification in whispering gallery optical parametric oscillators.

    PubMed

    Meisenheimer, Sarah-Katharina; Fürst, Josef Urban; Schiller, Annelie; Holderied, Florian; Buse, Karsten; Breunig, Ingo

    2016-06-27

    Wavelength tuning of conventional mirror-based optical parametric oscillators (OPOs) exhibits parabolically-shaped tuning curves (type-0 and type-I phase matching) or tuning branches that cross each other with a finite slope (type-II phase matching). We predict and experimentally prove that whispering gallery OPOs based on type-0 phase matching show both tuning behaviors, depending on whether the mode numbers of the generated waves coincide or differ. We investigate the wavelength tuning of optical parametric oscillation in a millimeter-sized radially-poled lithium niobate disk pumped at 1 μm wavelength generating signal and idler waves between 1.7 and 2.6 μm wavelength. Our experimental findings excellently coincide with the theoretical predictions. The investigated whispering gallery optical parametric oscillator combines the employment of the highest nonlinear-optical coefficient of the material with a controlled type-II-like wavelength tuning and with the possibility of self-phase locking.

  3. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part II. Fatigue crack growth rate

    NASA Astrophysics Data System (ADS)

    Margolin, B.; Minkin, A.; Smirnov, V.; Sorokin, A.; Shvetsova, V.; Potapova, V.

    2016-11-01

    The experimental data on the fatigue crack growth rate (FCGR) have been obtained for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various radiation swelling. The performed study of the fracture mechanisms for cracked specimens under cyclic loading has explained why radiation swelling affects weakly FCGR unlike its effect on fracture toughness. Mechanical modeling of fatigue crack growth has been carried out and the dependencies for prediction of FCGR in irradiated austenitic steel with and with no swelling are proposed and verified with the obtained experimental results. As input data for these dependencies, FCGR for unirradiated steel and the tensile mechanical properties for unirradiated and irradiated steels are used.

  4. Fatigue load of teeth restored with bonded direct composite and indirect ceramic inlays in MOD class II cavity preparations.

    PubMed

    Shor, Alexander; Nicholls, Jack I; Phillips, Keith M; Libman, Warren J

    2003-01-01

    This study compared the fatigue life of human maxillary premolars restored with direct composites and indirect ceramic inlays in mesio-occlusodistal (MOD) cavities. Ten human maxillary premolars were divided into two groups of five and restored with (1) direct composite restorations, or (2) pressed ceramic restorations. Standardized MOD cavities were prepared for both groups. Teeth in the direct composite group were restored with Z250 composite and Single Bond adhesive, and those in the ceramic group were restored with IPS Empress ceramic inlays. The ceramic inlays were luted with Single Bond and RelyX ARC cement. Under the applied test load of 11.17 kg, strain measurements were recorded from an electric resistance stain gauge bonded to the buccal surface. These strains were recorded for the (1) intact tooth, (2) cavity preparation, and (3) restored tooth. These strain measurements were used to calculate the relative tooth compliance values for each tooth. The fatigue loading was applied until reinforcement loss was registered by the strain gauge. A one-way ANOVA showed no significant compliance difference between the intact and restored tooth conditions, and no significant difference in fatigue cycles to failure between the two groups. There were both adhesive and cohesive failures in both restoration groups, indicating that the adhesive joint is not the only weak link in these restorations.

  5. Materials characterization of silicon carbide reinforced titanium (Ti/SCS-6) metal matrix composites: Part I. Tensile and fatigue behavior

    NASA Astrophysics Data System (ADS)

    Liaw, P. K.; Diaz, E. S.; Chiang, K. T.; Loh, D. H.

    1995-12-01

    Flexural fatigue behavior was investigated on titanium (Ti-15V-3Cr) metal matrix composites reinforced with cross-ply, continuous silicon carbide (SiC) fibers. The titanium composites had an eightply (0, 90, +45, -45 deg) symmetric layup. Fatigue life was found to be sensitive to fiber layup sequence. Increasing the test temperature from 24 °C to 427 °C decreased fatigue life. Interface debonding and matrix and fiber fracture were characteristic of tensile behavior regardless of test temperature. In the tensile fracture process, interface debonding between SiC and the graphite coating and between the graphite coating and the carbon core could occur. A greater amount of coating degradation at 427 °C than at 24 °C reduced the Ti/SiC interface bonding integrity, which resulted in lower tensile properties at 427 °C. During tensile testing, a crack could initiate from the debonded Ti/SiC interface and extend to the debonded interface of the neighboring fiber. The crack tended to propagate through the matrix and the interface. Dimpled fracture was the prime mode of matrix fracture. During fatigue testing, four stages of flexural deflection behavior were observed. The deflection at stage I increased slightly with fatigue cycling, while that at stage II increased significantly with cycling. Interestingly, the deflection at stage III increased negligibly with fatigue cycling. Stage IV was associated with final failure, and the deflection increased abruptly. Interface debonding, matrix cracking, and fiber bridging were identified as the prime modes of fatigue mechanisms. To a lesser extent, fiber fracture was observed during fatigue. However, fiber fracture was believed to occur near the final stage of fatigue failure. In fatigued specimens, facet-type fracture appearance was characteristic of matrix fracture morphology. Theoretical modeling of the fatigue behavior of Ti/SCS-6 composites is presented in Part II of this series of articles.

  6. Near-threshold fatigue behaviors of small shear cracks in bearing steel

    NASA Astrophysics Data System (ADS)

    Koyanagi, D.; Shomura, N.; Endo, M.; Matsunaga, H.; Moriyama, S.

    2009-12-01

    Failures of engineering components caused by rolling contact fatigue, such as flaking in bearings, are closely related to the initiation and growth of share-mode, i.e. Modes II and III, fatigue cracks. In order to evaluate quantitatively the fatigue strength of those components, it is necessary to elucidate the propagation and threshold behaviors of share-mode cracks, particularly for small cracks, on the basis of fracture mechanics. In this study, fatigue tests of fully-reversed cyclic torsion superposed upon static compression were carried out using SAE52100 bearing steel shafts into which semi-elliptical cracks smaller than 1 mm in size were initially introduced in the axial direction. Propagation and nonpropagation of shear-mode fatigue cracks were controlled by changing the torsional stress amplitude. The threshold stress intensity factor (SIF) range for a share-mode crack was defined at the minimum stress required for crack propagation. Crack face interference was responsible for the reduction in crack driving force. An intrinsic value of threshold SIF range that does not include the effect of crack face interference was obtained to be approximately 13 MPa+m0.5.

  7. Near-threshold fatigue behaviors of small shear cracks in bearing steel

    NASA Astrophysics Data System (ADS)

    Koyanagi, D.; Shomura, N.; Endo, M.; Matsunaga, H.; Moriyama, S.

    2010-03-01

    Failures of engineering components caused by rolling contact fatigue, such as flaking in bearings, are closely related to the initiation and growth of share-mode, i.e. Modes II and III, fatigue cracks. In order to evaluate quantitatively the fatigue strength of those components, it is necessary to elucidate the propagation and threshold behaviors of share-mode cracks, particularly for small cracks, on the basis of fracture mechanics. In this study, fatigue tests of fully-reversed cyclic torsion superposed upon static compression were carried out using SAE52100 bearing steel shafts into which semi-elliptical cracks smaller than 1 mm in size were initially introduced in the axial direction. Propagation and nonpropagation of shear-mode fatigue cracks were controlled by changing the torsional stress amplitude. The threshold stress intensity factor (SIF) range for a share-mode crack was defined at the minimum stress required for crack propagation. Crack face interference was responsible for the reduction in crack driving force. An intrinsic value of threshold SIF range that does not include the effect of crack face interference was obtained to be approximately 13 MPa+m0.5.

  8. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Rene N4. II - Low cycle fatigue behavior

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Gayda, J.; Miner, R. V.

    1986-01-01

    The low cycle fatigue (LCF) properties of a single-crystal nickel-base superalloy Rene N4, have been examined at 760 and 980 C in air. Specimens having crystallographic orientations near the 001, 011, -111, 023, -236, and -145 lines were tested in fully reversed, total-strain-controlled LCF tests at a frequency of 0.1 Hz. At 760 C, this alloy exhibited orientation dependent tension-compression anisotropies of yielding which continued to failure. Also at 760 C, orientations exhibiting predominately single slip exhibited serrated yielding for many cycles. At 980 C, orientation dependencies of yielding behavior were smaller. In spite of the tension-compression anisotropies, cyclic stress range-strain range behavior was not strongly orientation dependent for either test temperature. Fatigue life on a total strain range basis was highly orientation dependent at 760 and 980 C and was related chiefly to elastic modulus, low modulus orientations having longer lives. Stage I crack growth on 111 planes was dominant at 760 C, while Stage II crack growth occurred at 980 C. Crack initiation generally occurred at near-surface micropores, but occasionally at oxidation spikes in the 980 C tests.

  9. Quantifying fatigue risk in model-based fatigue risk management.

    PubMed

    Rangan, Suresh; Van Dongen, Hans P A

    2013-02-01

    The question of what is a maximally acceptable level of fatigue risk is hotly debated in model-based fatigue risk management in commercial aviation and other transportation modes. A quantitative approach to addressing this issue, referred to by the Federal Aviation Administration with regard to its final rule for commercial aviation "Flightcrew Member Duty and Rest Requirements," is to compare predictions from a mathematical fatigue model against a fatigue threshold. While this accounts for duty time spent at elevated fatigue risk, it does not account for the degree of fatigue risk and may, therefore, result in misleading schedule assessments. We propose an alternative approach based on the first-order approximation that fatigue risk is proportional to both the duty time spent below the fatigue threshold and the distance of the fatigue predictions to the threshold--that is, the area under the curve (AUC). The AUC approach is straightforward to implement for schedule assessments in commercial aviation and also provides a useful fatigue metric for evaluating thousands of scheduling options in industrial schedule optimization tools.

  10. FATIGUE OF DENTAL CERAMICS

    PubMed Central

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-01-01

    Objectives Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. Data/sources The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Conclusions Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically-assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Clinical significance Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. PMID:24135295

  11. Fatigue of dental ceramics.

    PubMed

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-12-01

    Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Fracture characterization of human cortical bone under mode II loading using the end-notched flexure test.

    PubMed

    Silva, F G A; de Moura, M F S F; Dourado, N; Xavier, J; Pereira, F A M; Morais, J J L; Dias, M I R; Lourenço, P J; Judas, F M

    2016-10-25

    Fracture characterization of human cortical bone under mode II loading was analyzed using a miniaturized version of the end-notched flexure test. A data reduction scheme based on crack equivalent concept was employed to overcome uncertainties on crack length monitoring during the test. The crack tip shear displacement was experimentally measured using digital image correlation technique to determine the cohesive law that mimics bone fracture behavior under mode II loading. The developed procedure was validated by finite element analysis using cohesive zone modeling considering a trapezoidal with bilinear softening relationship. Experimental load-displacement curves, resistance curves and crack tip shear displacement versus applied displacement were used to validate the numerical procedure. The excellent agreement observed between the numerical and experimental results reveals the appropriateness of the proposed test and procedure to characterize human cortical bone fracture under mode II loading. The proposed methodology can be viewed as a novel valuable tool to be used in parametric and methodical clinical studies regarding features (e.g., age, diseases, drugs) influencing bone shear fracture under mode II loading.

  13. On waves in gases. Part II: Interaction of sound with magnetic and internal modes

    NASA Astrophysics Data System (ADS)

    Campos, L. M. B. C.

    1987-04-01

    This work completes a two-part review on waves in gases, of which the first part

    [Rev. Mod. Phys. 58, 117 (1986)]
    dealt with the modern aspects of acoustics of jets, turbulence, and ducts; this second part extends the range of topics from sound to magnetic, internal, and (to a lesser extent) inertial waves, thus considering all four restoring forces (pressure, gravity, and Lorentz and Coriolis forces). The motivations for the study of these waves were outlined in the introduction to Part I. Part II reviews the coupling of acoustic, magnetic, and internal waves, in four stages: in Sec. I dispersion relations are used to study the propagation and radiation of magneto-acoustic-gravity-inertial waves in media for which the wave speeds and scattering scales are constant; in Sec. II the case of linear waves in stratified media, with nonuniform propagation velocity, is then discussed by means of special functions, appearing as exact solutions of second-order problems; in Sec. III the study of linear waves with variable propagation speeds is extended to certain classes of higher-order problems including a discussion of cutoff frequencies, critical levels, partition of energy, mode coupling and conversion, etc; in Sec. IV the preceding studies are extended to damped and nonlinear waves, to include dissipation with variable damping scales and large disturbances in media under nonuniform external forces, such as magnetic flux tubes. The conclusion (Sec. V) sums up both parts of the review, in the sense that it deals with all types of waves in fluids; it mentions a few currently controversial topics, points out some directions for future research, and indicates methods available to address these issues.

  14. Creep-Fatigue Interaction Testing

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2001-01-01

    Fatigue fives in metals are nominally time independent below 0.5 T(sub Melt). At higher temperatures, fatigue lives are altered due to time-dependent, thermally activated creep. Conversely, creep rates are altered by super. imposed fatigue loading. Creep and fatigue generally interact synergistically to reduce material lifetime. Their interaction, therefore, is of importance to structural durability of high-temperature structures such as nuclear reactors, reusable rocket engines, gas turbine engines, terrestrial steam turbines, pressure vessel and piping components, casting dies, molds for plastics, and pollution control devices. Safety and lifecycle costs force designers to quantify these interactions. Analytical and experimental approaches to creep-fatigue began in the era following World War II. In this article experimental and life prediction approaches are reviewed for assessing creep-fatigue interactions of metallic materials. Mechanistic models are also discussed briefly.

  15. Fatigue Experiences Among OCD Outpatients.

    PubMed

    Pasquini, Massimo; Piacentino, Daria; Berardelli, Isabella; Roselli, Valentina; Maraone, Annalisa; Tarsitani, Lorenzo; Biondi, Massimo

    2015-12-01

    Patients with OCD are impaired in multiple domains of functioning and quality of life. While associated psychopathology complaints and neuropsychological deficits were reported, the subjective experience of general fatigue and mental fatigue was scarcely investigated. In this single-center case-control study we compared 50 non-depressed OCD outpatients consecutively recruited and 50 panic disorder (PD) outpatients, to determine whether they experienced fatigue differently. Assessment consisted of structured clinical interview for DSM-IV criteria by using the SCID-I and the SCID-II. Symptom severity was assessed using the Yale-Brown Obsessive-Compulsive Scale, the Hamilton Anxiety Rating Scale, the Hamilton Depression Rating Scale, the Clinical Global Impressions Scale, severity and the Global Assessment of Functioning Scale. Fatigue was assessed by using the Multidimensional Fatigue Inventory (MFI). Regarding MFI physical fatigue, an OR of 0.196 (95 % CI 0.080-0.478) was found, suggesting that its presence is associated with lower odds of OCD compared to PD. The same can be said for MFI mental fatigue, as an OR of 0.138 (95 % CI 0.049-0.326) was found, suggesting that its presence is associated with lower odds of OCD. Notably, OCD patients with OCDP co-morbidity reported higher scores of mental fatigue. In this study fatigue, including mental fatigue, seems not to be a prominent experience among adult non-depressed OCD patients.

  16. Postdialysis fatigue.

    PubMed

    Sklar, A H; Riesenberg, L A; Silber, A K; Ahmed, W; Ali, A

    1996-11-01

    To clarify the demographic and clinicolaboratory features of postdialysis fatigue (PDF), we enrolled 85 patients on maintenance hemodialysis in a cross-sectional study using validated questionnaires and chart review. Forty-three patients complained of fatigue after dialysis. On formal testing using the Kidney Disease Questionnaire, the PDF group had statistically greater severity of fatigue and somatic complaints than the group of patients without subjective fatigue (P = 0.03 and 0.04, respectively). On a scale measuring intensity of fatigue (1 = least to 5 = worst), the PDF group average was 3.4 +/- 1.2. PDF subjects reported that 80% +/- 25% of dialysis treatments were followed by fatigue symptoms. In 28 (65%) of patients, the symptoms started with the first dialysis treatment. They reported needing an average of 4.8 hours of rest or sleep to overcome the fatigue symptoms (range, 0 to 24 hours). There were no significant differences between patients with and without PDF in the following parameters: age; sex; type of renal disease; presence of diabetes mellitus, heart disease (congestive, ischemic), or chronic obstructive lung disease; blood pressure response to dialysis; type or adequacy of dialysis regimen; hematocrit; electrolytes; blood urea nitrogen; creatinine; cholesterol; albumin; parathyroid hormone; ejection fraction; and use of antihistamines, benzodiazepines, and narcotics. In the fatigue group, there was significantly greater use of antihypertensive medications known to have fatigue as a side effect (P = 0.007). Depression was more common in the fatigue group by Beck Depression score (11.6 +/- 8.0 v 7.8 +/- 6.3; P = 0.02). We conclude that (1) postdialysis fatigue is a common, often incapacitating symptom in patients on chronic extracorporeal dialysis; (2) no routinely measured parameter of clinical or dialytic function appears to predict postdialysis fatigue; and (3) depression is highly associated with postdialysis fatigue, but the cause

  17. Particle simulation of radio frequency stabilization of the flute mode in a tandem mirror. II. Perpendicular antenna

    SciTech Connect

    Abe, H.; Kadoya, Y.

    1988-10-01

    A two-and-a-half-dimensional electromagnetic particle code PS2M (J. Phys. Soc. Jpn. 56, 3899 (1987)) is used to study how an electric field applied perpendicularly to the magnetic field affects the radio frequency stabilization of flute modes in a tandem mirror plasma. The electric field perpendicular to the magnetic field stabilizes or destabilizes the flute mode through the mechanism of the ponderomotive force acting on electrons and ions and through the mechanism of sideband coupling. In the simulations two typical examples have been shown: (i) when the sideband coupling effects (in which the electron terms are dominant) stabilize the flute modes and (ii) when the perpendicular ponderomotive force acting on the electrons destabilizes the flute modes.

  18. A study of spectrum fatigue crack propagation in two aluminum alloys. I - Spectrum simplification. II - Influence of microstructures

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Antolovich, S. D.

    1986-01-01

    An investigation of the fatigue crack propagation FCP behavior of two aluminum alloys is performed to simulate spectrum loading conditions found at critical locations in high performance fighter aircraft. Negative loads are shown to be eliminated for the tension-compression spectrum for low to intermediate maximum stress intensities, and load interactions are found to be more significant at higher stress intensities and with more plasticity at the crack tip. In the second part, the influence of microstructural features including grain size, inclusions, and dispersoids on constant amplitude and spectrum crack growth behavior in aluminum alloys is studied. At low stress intensities the I/M alloy demonstrated better FCP resistance than the P/M 7091 alloy for both constant amplitude and spectrum testing, and the inhomogeneous planar slip and large grain size of 7050 limit dislocation interactions, thereby improving FCP performance.

  19. A study of spectrum fatigue crack propagation in two aluminum alloys. I - Spectrum simplification. II - Influence of microstructures

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Antolovich, S. D.

    1986-01-01

    An investigation of the fatigue crack propagation FCP behavior of two aluminum alloys is performed to simulate spectrum loading conditions found at critical locations in high performance fighter aircraft. Negative loads are shown to be eliminated for the tension-compression spectrum for low to intermediate maximum stress intensities, and load interactions are found to be more significant at higher stress intensities and with more plasticity at the crack tip. In the second part, the influence of microstructural features including grain size, inclusions, and dispersoids on constant amplitude and spectrum crack growth behavior in aluminum alloys is studied. At low stress intensities the I/M alloy demonstrated better FCP resistance than the P/M 7091 alloy for both constant amplitude and spectrum testing, and the inhomogeneous planar slip and large grain size of 7050 limit dislocation interactions, thereby improving FCP performance.

  20. Spectral estimation of plasma fluctuations. II. Nonstationary analysis of edge localized mode spectra

    SciTech Connect

    Riedel, K.S.; Sidorenko, A. ); Bretz, N. ); Thomson, D.J. )

    1994-03-01

    Several analysis methods for nonstationary fluctuations are described and applied to the edge localized mode (ELM) instabilities of limiter H-mode plasmas. The microwave scattering diagnostic observes poloidal [ital k][sub [theta

  1. Effect of magnetic configuration on frequency of NBI-driven Alfvén modes in TJ-II

    NASA Astrophysics Data System (ADS)

    Melnikov, A. V.; Ochando, M.; Ascasibar, E.; Castejon, F.; Cappa, A.; Eliseev, L. G.; Hidalgo, C.; Krupnik, L. I.; Lopez-Fraguas, A.; Liniers, M.; Lysenko, S. E.; de Pablos, J. L.; Perfilov, S. V.; Sharapov, S. E.; Spong, D. A.; Jimenez, J. A.; Ufimtsev, M. V.; Breizman, B. N.; HIBP Group; the TJ-II Team

    2014-12-01

    Excitation of modes in the Alfvénic frequency range, 30 kHz < fAE < 300 kHz, was observed in hydrogen plasma heated by hydrogen neutral beam injection (NBI) in the TJ-II heliac. Co-field and counter-field NBI were injected, and the components of the poloidal magnetic field were varied one by one and in combinations, in order to investigate the beam-driven modes over an extended range of the rotational transform values, 1.51<\\unicode{7548} (0)<1.67 . Taking advantage of the unique TJ-II capabilities, a dynamic magnetic configuration experiment with \\unicode{7548} (ρ , t) variation during discharges has shown strong effects on the mode frequency via both vacuum \\unicode{7548} changes and induced net plasma current. A drastic frequency increase from ˜50 to ˜250 kHz was observed for some modes when plasma current as low as ±2 kA was induced by small (10%) changes in the vertical field. A comprehensive set of diagnostics including a heavy ion beam probe, magnetic probes and a multi-chord bolometer made it possible to identify the spatial spread of the modes and deduce the internal amplitudes of their plasma density and magnetic field perturbations. A simple analytical model for fAE, based on the local Alfvén eigenmode (AE) dispersion relation, was proposed to characterize the observation. It was shown that all the observations, including vacuum iota and plasma current variations, may be fitted by the model, so the linear mode frequency dependence on \\unicode{7548} (plasma current) and one over square root density dependence present the major features of the NBI-induced AEs in TJ-II, and provide the framework for further experiment-to-theory comparison.

  2. Strength, Fracture Toughness, Fatigue, and Standardization Issues of Free-standing Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dong-Ming; Miller, Robert A.

    2003-01-01

    Strength, fracture toughness and fatigue behavior of free-standing thick thermal barrier coatings of plasma-sprayed ZrO2-8wt % Y2O3 were determined at ambient and elevated temperatures in an attempt to establish a database for design. Strength, in conjunction with deformation (stress-strain behavior), was evaluated in tension (uniaxial and trans-thickness), compression, and uniaxial and biaxial flexure; fracture toughness was determined in various load conditions including mode I, mode II, and mixed modes I and II; fatigue or slow crack growth behavior was estimated in cyclic tension and dynamic flexure loading. Effect of sintering was quantified through approaches using strength, fracture toughness, and modulus (constitutive relations) measurements. Standardization issues on test methodology also was presented with a special regard to material's unique constitutive relations.

  3. Off-fault heterogeneities promote supershear transition of dynamic mode II cracks

    NASA Astrophysics Data System (ADS)

    Albertini, Gabriele; Kammer, David S.

    2017-08-01

    The transition from sub-Rayleigh to supershear propagation of mode II cracks is a fundamental problem of fracture mechanics. It has extensively been studied in homogeneous uniform setups. When the applied shear load exceeds a critical value, transition occurs through the Burridge-Andrews mechanism at a well-defined crack length. However, velocity structures in geophysical conditions can be complex and affect the transition. Damage induced by previous earthquakes causes low-velocity zones surrounding mature faults and inclusions with contrasting material properties can be present at seismogenic depth. We relax the assumption of homogeneous media and investigate dynamic shear fracture in heterogeneous media using two-dimensional finite element simulations and a linear slip-weakening law. We analyze the role of heterogeneities in the elastic media, while keeping the frictional interface properties uniform. We show that supershear transition is possible due to the sole presence of favorable off-fault heterogeneities. Subcritical shear loads, for which propagation would remain permanently sub-Rayleigh in an equivalent homogeneous setup, will transition to supershear as a result of reflected waves. P wave reflected as S waves, followed by further reflections, affect the amplitude of the shear stress peak in front of the propagating crack, leading to supershear transition. A wave reflection model allows to uniquely describe the effect of off-fault inclusions on the shear stress peak. A competing mechanism of modified released potential energy affects transition and becomes predominant with decreasing distance between fault and inclusions. For inclusions at far distances, the wave reflection is the predominant mechanism.

  4. ELECTROMAGNETIC FIELD MEASUREMENT OF FUNDAMENTAL AND HIGHER-ORDER MODES FOR 7-CELL CAVITY OF PETRA-II

    SciTech Connect

    Kawashima, Y.; Blednykh, A.; Cupolo, J.; Davidsaver, M.; Holub, B.; Ma, H.; Oliva, J.; Rose, J.; Sikora, R.; Yeddulla, M.

    2011-03-28

    The booster synchrotron for NSLS-II will include a 7-cell PETRA cavity, which was manufactured for the PETRA-II project at DESY. The cavity fundamental frequency operates at 500 MHz. In order to verify the impedances of the fundamental and higher-order modes (HOM), which were calculated by computer code, we measured the magnitude of the electromagnetic field of the fundamental acceleration mode and HOM using the bead-pull method. To keep the cavity body temperature constant, we used a chiller system to supply cooling water at 20 degrees C. The bead-pull measurement was automated with a computer. We encountered some issues during the measurement process due to the difficulty in measuring the electromagnetic field magnitude in a multi-cell cavity. We describe the method and apparatus for the field measurement, and the obtained results.

  5. Effect of fast electrons on the stability of resistive interchange modes in the TJ-II stellarator

    NASA Astrophysics Data System (ADS)

    García, L.; Ochando, M. A.; Carreras, B. A.; Carralero, D.; Hidalgo, C.; van Milligen, B. Ph.

    2016-06-01

    In this paper, we report on electromagnetic phenomena in low-β plasmas at the TJ-II stellarator, controlled by external heating. To understand the observations qualitatively, we introduce a simple modification of the standard resistive MHD equations, to include the potential impact of fast electrons on instabilities. The dominant instabilities of the modeling regime are resistive interchange modes, and calculations are performed in a configuration with similar characteristics as the TJ-II stellarator. The main effect of the trapping of fast electrons by magnetic islands induced by MHD instabilities is to increase the magnetic component of the fluctuations, changing the character of the instability to tearing-like and modifying the frequency of the modes. These effects seem to be consistent with some of the experimental observations.

  6. A new quantitative indicator of visual fatigue

    NASA Technical Reports Server (NTRS)

    Goussard, Yves; Martin, Bernard; Stark, Lawrence

    1987-01-01

    Ocular-motor correlates of visual fatigue have remained elusive. Performance of ocular-motor tracking with a wide-band white noise input and the response of the dual-mode, smooth pursuit-saccadic eye movement system as output was used to test visual fatigue. A new visual fatigue indicator, VFI, was defined as the nonlinear remnant after subtracting an identified impulse response contribution to the output. Subjects were required to perform very fatiguing CRT screen reading tasks, and the VFI correlated well with the subjective reports of visual fatigue.

  7. Asteroseismology of the nearby SN II Progenitor Rigel. II. epsilon-mechanism Triggering Gravity-mode Pulsations?

    NASA Astrophysics Data System (ADS)

    Moravveji, Ehsan; Moya, Andres; Guinan, Edward F.

    2012-04-01

    The cores of luminous B- and A-type (BA) supergiant stars are the seeds of later core-collapse supernovae. Thus, constraining the near-core conditions in this class of stars can place tighter constraints on the size, mass, and chemical composition of supernova remnants. Asteroseismology of these massive stars is one possible approach into such investigations. Recently, Moravveji et al. in 2012 (hereafter Paper I) extracted 19 significant frequencies from a 6-year radial velocity monitoring of Rigel (β Ori, B8 Ia). The periods they determined broadly range from 1.22 to 74.74 days. Based on our differentially rotating stellar structure and evolution model, Rigel, at its current evolutionary state, is undergoing core He burning and shell H burning. Linear fully non-adiabatic non-radial stability analyses result in the excitation of a dense spectrum of non-radial gravity-dominated mixed modes. The fundamental radial mode (l = 0) and its overtones are all stable. When the hydrogen-burning shell is located even partially in the radiative zone, a favorable condition for destabilization of g-modes through the so-called epsilon-mechanism becomes viable. Only those g-modes that have high relative amplitudes in the hydrogen-burning (radiative) zone can survive the strong radiative damping. From the entire observed range of variability periods of Rigel (found in Paper I), and based on our model, only those modes with periods ranging between 21 and 127 days can be theoretically explained by the epsilon-mechanism. The origin of the short-period variations (found in Paper I) still remains unexplained. Because Rigel is similar to other massive BA supergiants, we believe that the epsilon-mechanism may be able to explain the long-period variations in α Cygni class of pulsating stars.

  8. Interlaminar shear fracture toughness and fatigue thresholds for composite materials

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin; Murri, Gretchen B.; Salpekar, Satish A.

    1987-01-01

    Static and cyclic end notched flexure tests were conducted on a graphite epoxy, a glass epoxy, and graphite thermoplastic to determine their interlaminar shear fracture toughness and fatigue thresholds for delamination in terms of limiting values of the mode II strain energy release rate, G-II, for delamination growth. The influence of precracking and data reduction schemes are discussed. Finite element analysis indicated that the beam theory calculation for G-II with the transverse shear contribution included was reasonably accurate over the entire range of crack lengths. Cyclic loading significantly reduced the critical G-II for delamination. A threshold value of the maximum cyclic G-II below which no delamination occurred after one million cycles was identified for each material. Also, residual static toughness tests were conducted on glass epoxy specimens that had undergone one million cycles without delamination. A linear mixed-mode delamination criteria was used to characterize the static toughness of several composite materials; however, a total G threshold criterion appears to characterize the fatigue delamination durability of composite materials with a wide range of static toughness.

  9. Interlaminar shear fracture toughness and fatigue thresholds for composite materials

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin; Murri, Gretchen B.; Salpekar, Satish A.

    1989-01-01

    Static and cyclic end notched flexure tests were conducted on a graphite epoxy, a glass epoxy, and graphite thermoplastic to determine their interlaminar shear fracture toughness and fatigue thresholds for delamination in terms of limiting values of the mode II strain energy release rate, G-II, for delamination growth. The influence of precracking and data reduction schemes are discussed. Finite element analysis indicated that the beam theory calculation for G-II with the transverse shear contribution included was reasonably accurate over the entire range of crack lengths. Cyclic loading significantly reduced the critical G-II for delamination. A threshold value of the maximum cyclic G-II below which no delamination occurred after one million cycles was identified for each material. Also, residual static toughness tests were conducted on glass epoxy specimens that had undergone one million cycles without delamination. A linear mixed-mode delamination criteria was used to characterize the static toughness of several composite materials; however, a total G threshold criterion appears to characterize the fatigue delamination durability of composite materials with a wide range of static toughness.

  10. Solar seismology. II - The stochastic excitation of the solar p-modes by turbulent convection

    NASA Technical Reports Server (NTRS)

    Goldreich, P.; Keeley, D. A.

    1977-01-01

    We test the hypothesis that the solar p-modes are stabilized by damping due to turbulent viscosity in the convective zone. Starting from the assumption that the modes are stable, we calculate expectation values for the modal energies. We find that the interaction between a p-mode and the turbulent convection is such that the modal energy tends toward equipartition with the kinetic energy of turbulent eddies whose lifetimes are comparable to the modal period. From the calculated values of the modal energies, we compute rms surface velocity amplitudes. Our predicted rms surface velocities range from 0.01 cm/sec for the fundamental radial mode to 0.6 cm/sec for the radial mode whose period is approximately 5 minutes. The predicted surface velocities for the low order p-modes are much smaller than the velocities inferred from recent observations.

  11. Solar seismology. II - The stochastic excitation of the solar p-modes by turbulent convection

    NASA Technical Reports Server (NTRS)

    Goldreich, P.; Keeley, D. A.

    1977-01-01

    We test the hypothesis that the solar p-modes are stabilized by damping due to turbulent viscosity in the convective zone. Starting from the assumption that the modes are stable, we calculate expectation values for the modal energies. We find that the interaction between a p-mode and the turbulent convection is such that the modal energy tends toward equipartition with the kinetic energy of turbulent eddies whose lifetimes are comparable to the modal period. From the calculated values of the modal energies, we compute rms surface velocity amplitudes. Our predicted rms surface velocities range from 0.01 cm/sec for the fundamental radial mode to 0.6 cm/sec for the radial mode whose period is approximately 5 minutes. The predicted surface velocities for the low order p-modes are much smaller than the velocities inferred from recent observations.

  12. Oscillations of a vertically stratified dissipative atmosphere. II. Low frequency trapped modes

    NASA Astrophysics Data System (ADS)

    Rudenko, G. V.; Dmitrienko, I. S.

    2016-05-01

    Trapped atmosphere waves, such as IGW waveguide modes and Lamb modes, are described using dissipative solution above source (DSAS) (Dmitrienko and Rudenko, 2016). According to this description, the modes are disturbances penetrating without limit in the upper atmosphere and dissipating their energy throughout the atmosphere; leakage from a trapping region to the upper atmosphere is taken into consideration. The DSAS results are compared to those based on both accurate and WKB approximated dissipationless equations. It is shown that the spatial and frequency characteristics of modes in the upper atmosphere calculated by any of the methods are close to each other and are in good agreement with the observed characteristics of traveling ionospheric disturbances.

  13. VCD Robustness of the Amide-I and Amide-II Vibrational Modes of Small Peptide Models.

    PubMed

    Góbi, Sándor; Magyarfalvi, Gábor; Tarczay, György

    2015-09-01

    The rotational strengths and the robustness values of amide-I and amide-II vibrational modes of For(AA)n NHMe (where AA is Val, Asn, Asp, or Cys, n = 1-5 for Val and Asn; n = 1 for Asp and Cys) model peptides with α-helix and β-sheet backbone conformations were computed by density functional methods. The robustness results verify empirical rules drawn from experiments and from computed rotational strengths linking amide-I and amide-II patterns in the vibrational circular dichroism (VCD) spectra of peptides with their backbone structures. For peptides with at least three residues (n ≥ 3) these characteristic patterns from coupled amide vibrational modes have robust signatures. For shorter peptide models many vibrational modes are nonrobust, and the robust modes can be dependent on the residues or on their side chain conformations in addition to backbone conformations. These robust VCD bands, however, provide information for the detailed structural analysis of these smaller systems.

  14. B-Lymphocyte Depletion in Myalgic Encephalopathy/ Chronic Fatigue Syndrome. An Open-Label Phase II Study with Rituximab Maintenance Treatment

    PubMed Central

    Fluge, Øystein; Risa, Kristin; Lunde, Sigrid; Alme, Kine; Rekeland, Ingrid Gurvin; Sapkota, Dipak; Kristoffersen, Einar Kleboe; Sørland, Kari; Bruland, Ove; Dahl, Olav; Mella, Olav

    2015-01-01

    Background Myalgic Encephalopathy/Chronic Fatigue Syndrome (ME/CFS) is a disease of unknown etiology. We previously reported a pilot case series followed by a small, randomized, placebo-controlled phase II study, suggesting that B-cell depletion using the monoclonal anti-CD20 antibody rituximab can yield clinical benefit in ME/CFS. Methods In this single-center, open-label, one-armed phase II study (NCT01156909), 29 patients were included for treatment with rituximab (500 mg/m2) two infusions two weeks apart, followed by maintenance rituximab infusions after 3, 6, 10 and 15 months, and with follow-up for 36 months. Findings Major or moderate responses, predefined as lasting improvements in self-reported Fatigue score, were detected in 18 out of 29 patients (intention to treat). Clinically significant responses were seen in 18 out of 28 patients (64%) receiving rituximab maintenance treatment. For these 18 patients, the mean response durations within the 156 weeks study period were 105 weeks in 14 major responders, and 69 weeks in four moderate responders. At end of follow-up (36 months), 11 out of 18 responding patients were still in ongoing clinical remission. For major responders, the mean lag time from first rituximab infusion until start of clinical response was 23 weeks (range 8–66). Among the nine patients from the placebo group in the previous randomized study with no significant improvement during 12 months follow-up after saline infusions, six achieved a clinical response before 12 months after rituximab maintenance infusions in the present study. Two patients had an allergic reaction to rituximab and two had an episode of uncomplicated late-onset neutropenia. Eight patients experienced one or more transient symptom flares after rituximab infusions. There was no unexpected toxicity. Conclusion In a subgroup of ME/CFS patients, prolonged B-cell depletion with rituximab maintenance infusions was associated with sustained clinical responses. The observed

  15. B-Lymphocyte Depletion in Myalgic Encephalopathy/ Chronic Fatigue Syndrome. An Open-Label Phase II Study with Rituximab Maintenance Treatment.

    PubMed

    Fluge, Øystein; Risa, Kristin; Lunde, Sigrid; Alme, Kine; Rekeland, Ingrid Gurvin; Sapkota, Dipak; Kristoffersen, Einar Kleboe; Sørland, Kari; Bruland, Ove; Dahl, Olav; Mella, Olav

    2015-01-01

    Myalgic Encephalopathy/Chronic Fatigue Syndrome (ME/CFS) is a disease of unknown etiology. We previously reported a pilot case series followed by a small, randomized, placebo-controlled phase II study, suggesting that B-cell depletion using the monoclonal anti-CD20 antibody rituximab can yield clinical benefit in ME/CFS. In this single-center, open-label, one-armed phase II study (NCT01156909), 29 patients were included for treatment with rituximab (500 mg/m2) two infusions two weeks apart, followed by maintenance rituximab infusions after 3, 6, 10 and 15 months, and with follow-up for 36 months. Major or moderate responses, predefined as lasting improvements in self-reported Fatigue score, were detected in 18 out of 29 patients (intention to treat). Clinically significant responses were seen in 18 out of 28 patients (64%) receiving rituximab maintenance treatment. For these 18 patients, the mean response durations within the 156 weeks study period were 105 weeks in 14 major responders, and 69 weeks in four moderate responders. At end of follow-up (36 months), 11 out of 18 responding patients were still in ongoing clinical remission. For major responders, the mean lag time from first rituximab infusion until start of clinical response was 23 weeks (range 8-66). Among the nine patients from the placebo group in the previous randomized study with no significant improvement during 12 months follow-up after saline infusions, six achieved a clinical response before 12 months after rituximab maintenance infusions in the present study. Two patients had an allergic reaction to rituximab and two had an episode of uncomplicated late-onset neutropenia. Eight patients experienced one or more transient symptom flares after rituximab infusions. There was no unexpected toxicity. In a subgroup of ME/CFS patients, prolonged B-cell depletion with rituximab maintenance infusions was associated with sustained clinical responses. The observed patterns of delayed responses and relapse

  16. Fatigue of insect cuticle.

    PubMed

    Dirks, Jan-Henning; Parle, Eoin; Taylor, David

    2013-05-15

    Many parts of the insect exoskeleton experience repeated cyclic loading. Although the cuticle of insects and other arthropods is the second most common natural composite material in the world, so far nothing is known about its fatigue properties, despite the fact that fatigue undoubtedly limits the durability of body parts in vivo. For the first time, we here present experimental fatigue data of insect cuticle. Using force-controlled cyclic loading, we determined the number of cycles to failure for hind legs (tibiae) and hind wings of the locust Schistocerca gregaria, as a function of the applied cyclic stress. Our results show that, although both are made from cuticle, these two body parts behave very differently. Wing samples showed a large fatigue range, failing after 100,000 cycles when we applied 46% of the stress needed for instantaneous failure [the ultimate tensile strength (UTS)]. Legs, in contrast, were able to sustain a stress of 76% of the UTS for the same number of cycles to failure. This can be explained by the difference in the composition and structure of the material, two factors that, amongst others, also affect the well-known behaviour of engineering composites. Final failure of the tibiae occurred via one of two different failure modes--propagation in tension or buckling in compression--indicating that the tibia is 'optimized' by evolution to resist both failure modes equally. These results are further discussed in relation to the evolution and normal use of these two body parts.

  17. An engineering treatise on the CARE II dual mode and coverage models

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A mathematical model used to calculate the reliability of any dual-mode, spare-switching computer system was described, and some illustrative examples were presented. The possibility of extending the resultant computer program further was also examined, enabling it, in particular, to accommodate computer configurations involving more than two modes of operation.

  18. Rossby normal modes in nonuniform background configurations. I Simple fields. II - Equinox and solstice conditions

    NASA Technical Reports Server (NTRS)

    Salby, M. L.

    1981-01-01

    An investigation is conducted regarding the influence of mean field variations on the realization of planetary normal modes, taking into account the mode response and structure in the presence of simple background nonuniformities. It is found that mean field variations have the combined effect of depressing, shifting, and broadening the characteristic response of Rossby normal modes. While nonuniformities in both the mean wind and temperature fields contribute to the reduction in peak response, the former are primarily responsible for translation and spectral broadening. An investigation is conducted to determine which modes may be realized in actual atmospheric configurations and which may be identified. For both the equinox and solstice configurations, response peaks corresponding to all of the first four modes of wavenumbers 1, 2, and 3 are readily visible above the noise.

  19. Physiological state, growth mode, and oxidative stress play a role in Cd(II)-mediated inhibition of Nitrosomonas europaea 19718.

    PubMed

    Chandran, Kartik; Love, Nancy G

    2008-04-01

    The goal of this study was to determine the impact of physiological growth states (batch exponential and batch stationary growth) and growth modes (substrate-limited chemostat, substrate-sufficient exponential batch, and substrate-depleted stationary batch growth) on several measures of growth and responses to Cd(II)-mediated inhibition of Nitrosomonas europaea strain 19718. The specific oxygen uptake rate (sOUR) was the most sensitive indicator of inhibition among the different responses analyzed, including total cell abundance, membrane integrity, intracellular 16S rRNA/DNA ratio, and amoA expression. This observation remained true irrespective of the physiological state, the growth mode, or the mode of Cd(II) exposure. Based on the sOUR, a strong time-dependent exacerbation of inhibition (in terms of an inhibition coefficient [K(i)]) in exponential batch cultures was observed. Long-term inhibition levels (based on K(i) estimates) in metabolically active chemostat and exponential batch cultures were also especially severe and comparable. In contrast, the inhibition level in stationary-phase cultures was 10-fold lower and invariable with exposure time. Different strategies for surviving substrate limitation (a 10-fold increase in amoA expression) and starvation (the retention of 16S rRNA levels) in N. europaea cultures were observed. amoA expression was most negatively impacted by Cd(II) exposure in the chemostat cultures, was less impacted in exponential batch cultures, and was least impacted in stationary batch cultures. Although the amoA response was consistent with that of the sOUR, the amoA response was not as strong. The intracellular 16S rRNA/DNA ratio, as determined by fluorescence in situ hybridization, also did not uniformly correlate with the sOUR under conditions of inhibition or no inhibition. Finally, Cd(II)-mediated inhibition of N. europaea was attributed partially to oxidative stress.

  20. Two-mode squeezed light source for quantum illumination and quantum imaging II

    NASA Astrophysics Data System (ADS)

    Masada, Genta

    2016-09-01

    Two-mode squeezed light is a macroscopic quantum entangled state of electro-magnetic fields and shows non-classical correlation between quadrature phase amplitudes in each optical mode. In this work the author is developing a high-quality two-mode squeezed light source for exploring the possibility of a quantum radar system based on a quantum illumination method and also expecting to apply it to quantum imaging. Two-mode squeezed light can be generated by combining two independent single-mode squeezed light beams using a beam splitter with a relative optical phase of 90 degrees between them. In current experimental progress the author developed two sub-threshold optical parametric oscillators to generate single-mode squeezed light beams. In the actual quantum radar or quantum imaging system, a turbulent atmosphere degrades quantum entanglement of a light source and affects performance of target detection. An optical loss is one of the simplest and most probable examples of environmental factors. In this work an evaluation method for quantum entanglement of two-mode squeezed light source is developed with consideration for the optical loss based on Duan's inseparability criteria.

  1. Experiments on fracture toughness of thick-wall cylinder for modes I, II, III

    SciTech Connect

    Saegusa, T.; Urabe, N.; Ito, C.; Shirai, K.; Kosaki, A.

    1999-07-01

    There have been few data on fracture toughness for Mode 2 and 3 as compared with those for Mode 1. Experimental data on fracture toughness of plates made of ductile cast iron (ASTM A874-89) and forged steel (ASME SA350 LF5 C1.1) were obtained at a temperature range from 77K to 293K for Mode 1, 2 and 3. The results showed: J{sub IC} < J{sub IIC} < J{sub IIIC}, and K{sub IC} < K{sub IIC} K{sub IIIC}. Integrity of a thick-wall cylinder with artificial flaw was demonstrated against brittle fracture at 233K for Mode 1, 2 and 3, which is one of the design requirements of containers shipping radioactive materials.

  2. Tidal interactions of a Maclaurin spheroid - II. Resonant excitation of modes by a close, misaligned orbit

    NASA Astrophysics Data System (ADS)

    Braviner, Harry J.; Ogilvie, Gordon I.

    2015-02-01

    We model a tidally forced star or giant planet as a Maclaurin spheroid, decomposing the motion into the normal modes found by Bryan. We first describe the general prescription for this decomposition and the computation of the tidal power. Although this formalism is very general, forcing due to a companion on a misaligned, circular orbit is used to illustrate the theory. The tidal power is plotted for a variety of orbital radii, misalignment angles, and spheroid rotation rates. Our calculations are carried out including all modes of degree l ≤ 4, and the same degree of gravitational forcing. Remarkably, we find that for close orbits (a/R* ≈ 3) and rotational deformations that are typical of giant planets (e ≈ 0.4) the l = 4 component of the gravitational potential may significantly enhance the dissipation through resonance with surface gravity modes. There are also a large number of resonances with inertial modes, with the tidal power being locally enhanced by up to three orders of magnitude. For very close orbits (a/R* ≈ 3), the contribution to the power from the l = 4 modes is roughly the same magnitude as that due to the l = 3 modes.

  3. Investigations of the Binding of [Pt2(DTBPA)Cl2](II) and [Pt2(TPXA)Cl2](II) to DNA via Various Cross-Linking Modes

    PubMed Central

    Yue, Hongwei; Yang, Bo; Wang, Yan; Chen, Guangju

    2013-01-01

    We have constructed models for a series of platinum-DNA adducts that represent the binding of two agents, [Pt2(DTBPA)Cl2](II) and [Pt2(TPXA)Cl2](II), to DNA via inter- and intra-strand cross-linking, and carried out molecular dynamics simulations and DNA conformational dynamics calculations. The effects of trans- and cis-configurations of the centers of these di-nuclear platinum agents, and of different bridging linkers, have been investigated on the conformational distortions of platinum-DNA adducts formed via inter- and intra-strand cross-links. The results demonstrate that the DNA conformational distortions for the various platinum-DNA adducts with differing cross-linking modes are greatly influenced by the difference between the platinum-platinum distance for the platinum agent and the platinum-bound N7–N7 distance for the DNA molecule, and by the flexibility of the bridging linkers in the platinum agent. However, the effects of trans/cis-configurations of the platinum-centers on the DNA conformational distortions in the platinum-DNA adducts depend on the inter- and intra-strand cross-linking modes. In addition, we discuss the relevance of DNA base motions, including opening, shift and roll, to the changes in the parameters of the DNA major and minor grooves caused by binding of the platinum agent. PMID:24077126

  4. Structure and mode of action of cyclic lipopeptide pseudofactin II with divalent metal ions.

    PubMed

    Janek, Tomasz; Rodrigues, Lígia R; Gudiña, Eduardo J; Czyżnikowska, Żaneta

    2016-10-01

    The interaction of natural lipopeptide pseudofactin II with a series of doubly charged metal cations was examined by matrix-assisted laser-desorption ionization-time of flight (MALDI-TOF) mass spectrometry and molecular modelling. The molecular modelling for metal-pseudofactin II provides information on the metal-peptide binding sites. Overall, Mg(2+), Ca(2+) and Zn(2+) favor the association with oxygen atoms spanning the peptide backbone, whereas Cu(2+) is coordinated by three nitrogens. Circular dichroism (CD) results confirmed that Zn(2+) and Cu(2+) can disrupt the secondary structure of pseudofactin II at high concentrations, while Ca(2+) and Mg(2+) did not essentially affect the structure of the lipopeptide. Interestingly, our results showed that the addition of Zn(2+) and Cu(2+) helped smaller micelles to form larger micellar aggregates. Since pseudofactin II binds metals, we tested whether this phenomena was somehow related to its antimicrobial activity against Staphylococcus epidermidis and Proteus mirabilis. We found that the antimicrobial effect of pseudofactin II was increased by supplementation of culture media with all tested divalent metal ions. Finally, by using Gram-positive and Gram-negative bacteria we showed that the higher antimicrobial activity of metal complexes of pseudofactin II is attributed to the disruption of the cytoplasmic membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effect of Variation in the Burst Mode and Carrier Frequency of High Intensity Electrical Stimulation on Muscle Fatigue and Pain Perception of Healthy Subjects

    DTIC Science & Technology

    1988-10-22

    analgesic effect of high voltage gaivonic stimulation combined with ultrasound in the treatment of low back pain : A one-group pre-test/post-test study...ON MUSCLE FATIGUE AND PAIN PERCEP’TION OF HEALTHY SUBJECTS This study determined the effects that electrically stimulating human skeletal muscle at...drawback to this treatment technique. Kots’ reports of stimulating subjects to 120% of their maximum voluntary contraction (MVC) level without pain

  6. Seismic transmission operator reciprocity - II: impedance-operator symmetry via elastic lateral modes

    NASA Astrophysics Data System (ADS)

    Thomson, C. J.

    2015-08-01

    The properties of the overburden transmission response are of particular interest for the analysis of reflectivity illumination or blurring in seismic depth imaging. The first step to showing a transmission-operator reciprocity property is to identify the symmetry of the so-called displacement-to-traction operators. The latter are analogous to Dirichlet-to-Neumann operators and they may also be called impedance operators. Their symmetry is deduced here after development of a formal spectral or modal theory of lateral wavefunctions in a laterally heterogeneous generally anisotropic elastic medium. The elastic lateral modes are displacement-traction 6-vectors and they are built from two auxiliary 3-vector lateral-mode bases. These auxiliary modes arise from Hermitian and anti-Hermitian operators, so they have familiar properties such as orthogonality. There is no assumption of down/up symmetry of the elasticity tensor, but basic assumptions are made about the existence and completeness of the elastic modes. A point-symmetry property appears and plays a central role. The 6-vector elastic modes have a symplectic orthogonality property, which facilitates the development of modal expansions for 6-vector functions of the lateral coordinates when completeness is assumed. While the elastic modal theory is consistent with the laterally homogeneous case, numerical work would provide confidence that it is correct in general. An appendix contains an introductory overview of acoustic lateral modes that were studied by other authors, given from the perspective of this new work. A distinction is drawn between unit normalization of scalar auxiliary modes and a separate energy-flux normalization of 2-vector acoustic modes. Neither is crucial to the form of acoustic pressure-to-velocity or impedance operators. This statement carries over to the elastic case for the 3-vector auxiliary- and 6-vector elastic-mode normalizations. The modal theory is used to construct the kernel of the

  7. Effect of inclusion size on the high cycle fatigue strength and failure mode of a high V alloyed powder metallurgy tool steel

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Qu, Xuan-hui; He, Xin-bo; Zhang, Lin

    2012-07-01

    The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was shown that brittle inclusions with large sizes above 30 μm prompted the occurrence of subsurface crack initiation and the reduction in fatigue strength. The fracture toughness and the stress amplitude both exerted a significant influence on the fish-eye size. A larger fish-eye area would form in the sample with a higher fracture toughness subjected to a lower stress amplitude. The stress intensity factor of the inclusion was found to lie above a typical value of the threshold stress intensity factor of 4 MPa·m1/2. The fracture toughness of the sample with a hardness above HRC 56 could be estimated by the mean value of the stress intensity factor of the fish-eye. According to fractographic evaluation, the critical inclusion size can be calculated by linear fracture mechanics.

  8. Structure of the Human Angiotensin II Type 1 (AT1) Receptor Bound to Angiotensin II from Multiple Chemoselective Photoprobe Contacts Reveals a Unique Peptide Binding Mode*

    PubMed Central

    Fillion, Dany; Cabana, Jérôme; Guillemette, Gaétan; Leduc, Richard; Lavigne, Pierre; Escher, Emanuel

    2013-01-01

    Breakthroughs in G protein-coupled receptor structure determination based on crystallography have been mainly obtained from receptors occupied in their transmembrane domain core by low molecular weight ligands, and we have only recently begun to elucidate how the extracellular surface of G protein-coupled receptors (GPCRs) allows for the binding of larger peptide molecules. In the present study, we used a unique chemoselective photoaffinity labeling strategy, the methionine proximity assay, to directly identify at physiological conditions a total of 38 discrete ligand/receptor contact residues that form the extracellular peptide-binding site of an activated GPCR, the angiotensin II type 1 receptor. This experimental data set was used in homology modeling to guide the positioning of the angiotensin II (AngII) peptide within several GPCR crystal structure templates. We found that the CXC chemokine receptor type 4 accommodated the results better than the other templates evaluated; ligand/receptor contact residues were spatially grouped into defined interaction clusters with AngII. In the resulting receptor structure, a β-hairpin fold in extracellular loop 2 in conjunction with two extracellular disulfide bridges appeared to open and shape the entrance of the ligand-binding site. The bound AngII adopted a somewhat vertical binding mode, allowing concomitant contacts across the extracellular surface and deep within the transmembrane domain core of the receptor. We propose that such a dualistic nature of GPCR interaction could be well suited for diffusible linear peptide ligands and a common feature of other peptidergic class A GPCRs. PMID:23386604

  9. Structure of the human angiotensin II type 1 (AT1) receptor bound to angiotensin II from multiple chemoselective photoprobe contacts reveals a unique peptide binding mode.

    PubMed

    Fillion, Dany; Cabana, Jérôme; Guillemette, Gaétan; Leduc, Richard; Lavigne, Pierre; Escher, Emanuel

    2013-03-22

    Breakthroughs in G protein-coupled receptor structure determination based on crystallography have been mainly obtained from receptors occupied in their transmembrane domain core by low molecular weight ligands, and we have only recently begun to elucidate how the extracellular surface of G protein-coupled receptors (GPCRs) allows for the binding of larger peptide molecules. In the present study, we used a unique chemoselective photoaffinity labeling strategy, the methionine proximity assay, to directly identify at physiological conditions a total of 38 discrete ligand/receptor contact residues that form the extracellular peptide-binding site of an activated GPCR, the angiotensin II type 1 receptor. This experimental data set was used in homology modeling to guide the positioning of the angiotensin II (AngII) peptide within several GPCR crystal structure templates. We found that the CXC chemokine receptor type 4 accommodated the results better than the other templates evaluated; ligand/receptor contact residues were spatially grouped into defined interaction clusters with AngII. In the resulting receptor structure, a β-hairpin fold in extracellular loop 2 in conjunction with two extracellular disulfide bridges appeared to open and shape the entrance of the ligand-binding site. The bound AngII adopted a somewhat vertical binding mode, allowing concomitant contacts across the extracellular surface and deep within the transmembrane domain core of the receptor. We propose that such a dualistic nature of GPCR interaction could be well suited for diffusible linear peptide ligands and a common feature of other peptidergic class A GPCRs.

  10. [Auditory fatigue].

    PubMed

    Sanjuán Juaristi, Julio; Sanjuán Martínez-Conde, Mar

    2015-01-01

    Given the relevance of possible hearing losses due to sound overloads and the short list of references of objective procedures for their study, we provide a technique that gives precise data about the audiometric profile and recruitment factor. Our objectives were to determine peripheral fatigue, through the cochlear microphonic response to sound pressure overload stimuli, as well as to measure recovery time, establishing parameters for differentiation with regard to current psychoacoustic and clinical studies. We used specific instruments for the study of cochlear microphonic response, plus a function generator that provided us with stimuli of different intensities and harmonic components. In Wistar rats, we first measured the normal microphonic response and then the effect of auditory fatigue on it. Using a 60dB pure tone acoustic stimulation, we obtained a microphonic response at 20dB. We then caused fatigue with 100dB of the same frequency, reaching a loss of approximately 11dB after 15minutes; after that, the deterioration slowed and did not exceed 15dB. By means of complex random tone maskers or white noise, no fatigue was caused to the sensory receptors, not even at levels of 100dB and over an hour of overstimulation. No fatigue was observed in terms of sensory receptors. Deterioration of peripheral perception through intense overstimulation may be due to biochemical changes of desensitisation due to exhaustion. Auditory fatigue in subjective clinical trials presumably affects supracochlear sections. The auditory fatigue tests found are not in line with those obtained subjectively in clinical and psychoacoustic trials. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  11. Chronic Fatigue Syndrome

    MedlinePlus

    Chronic fatigue syndrome (CFS) is a disorder that causes extreme fatigue. This fatigue is not the kind of tired feeling that ... activities. The main symptom of CFS is severe fatigue that lasts for 6 months or more. You ...

  12. Fracture Behavior Investigation of a Typical Sandstone Under Mixed-Mode I/II Loading Using the Notched Deep Beam Bending Method

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Ren, L.; Xie, L. Z.; Ai, T.; He, B.

    2017-08-01

    The brittle fracture behavior of rocks under mixed-mode loading is important in rock engineering. First, a new configuration called the notched deep beam (NDB) specimen was introduced for the fracture testing of rock materials under mixed-mode I/II loading, and a series of finite element analyses were performed to calibrate the dimensionless fracture parameters (i.e., Y I, Y II and T^{*}). The results showed that an NDB specimen subjected to three-point bending is able to generate pure mode I loading, pure mode II loading, and any mixed-mode loading in between. Then, several NDB specimens made of sandstone were used to investigate the brittle fracture behavior of rock under mixed-mode I/II loading. The fracture surfaces were theoretically described using a statistical method, and the results indicated that all the fracture surfaces generated under different mixed-mode loading were statistically identical; to some extent, these results experimentally showed that only tensile fracture occurs under mixed-mode I/II loading. The obtained fracture strengths were then analyzed using several brittle fracture criteria. The empirical criterion, maximum energy release rate criterion, generalized maximum tangential stress (GMTS) criterion, and improved R-criterion accurately predicted the fracture strength envelope of the sandstone. Finally, based on the concepts of point stress and mean stress, the micro-crack zones (MCZs) under different mixed-mode loading were theoretically estimated based on the MTS and GMTS criteria. The critical radius of MCZ in the crack propagation direction was not a constant for all mixed-mode loading conditions regardless of whether the T-stress was considered. This result suggests that the size of the core region used to predict the crack initiation direction and fracture strength based on the GMTS criterion should be chosen more carefully.

  13. Single-mode tapered optical fiber loop immunosensor II: assay of anti-cholera toxin immunoglobulins

    NASA Astrophysics Data System (ADS)

    Marks, Robert S.; Hale, Zoe M.; Levine, Myron M.; Lowe, C. R.; Payne, Frank P.

    1994-07-01

    An evanescent wave immunoassay for cholera antitoxin immunoglobulins was performed using a single mode tapered optical fiber loop sensor. The transducer was silanized with 3- glycidoxypropyltrimethoxysilane and chemically modified to link covalently either cholera toxin B subunit or a synthetic peptide derived from it, CTP3. The sensor was exposed to seral fluids, obtained from human volunteers having been exposed to live virulent Vibrio cholerae 01 and shown to produce rice-water stools. Other toxins of interest, such as Clostridium botulinum toxin A, have been tested on similar systems. The bound unlabelled immunoglobulins were then exposed to a mixture of FITC-anti-IgG and TRITC-anti-IgA, without requirement for a separation step. The emanating fluorescent emissions of fluorescein and rhodamine, excited by the input laser light, were coupled back into the guided mode of the tapered fiber, and used to determine the concentrations of the complementary antigens.

  14. Phase II, randomised, double-blind, placebo-controlled trial of methylphenidate for reduction of fatigue levels in patients with prostate cancer receiving LHRH-agonist therapy.

    PubMed

    Richard, Patrick O; Fleshner, Neil E; Bhatt, Jaimin R; Hersey, Karen M; Chahin, Rehab; Alibhai, Shabbir M H

    2015-11-01

    To investigate whether methylphenidate can alleviate fatigue, as measured by the Functional Assessment of Cancer Therapy: Fatigue subscale, in men with prostate cancer (PCa) treated with a luteinizing hormone-releasing hormone (LHRH) for a minimum of 6 months, and to assess changes in global fatigue and quality of life (QoL) as measured by the Bruera Global Fatigue Severity Scale (BFS) and the Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36), respectively. We performed a single-centre, randomised, double-blind, placebo-controlled trial with the aim of recruiting 128 participants. Men treated with a LHRH agonist for PCa were screened between February 2008 and June 2012 for fatigue at our outpatient clinics using the BFS. Participants were randomised to receive either 10 mg daily of methylphenidate or placebo. Change in fatigue levels and in SF-36 scores between both groups were compared using linear regression, adjusted for baseline scores. The study was closed prematurely because of poor accrual. Of the 790 subjects screened, 24 men were randomised to methylphenidate or placebo (12 per group). After 10 weeks, the improvement in mean [sd] fatigue score was greater in the methylphenidate than in the placebo arm (+7.7 [7.7] vs +1.4 [7.6]; P = 0.022). The within-group analysis showed a significant improvement in fatigue scores in the methylphenidate arm (P = 0.008) but not in the placebo arm (P = 0.82). The use of methylphenidate also resulted in a significantly greater improvement in QoL as measured by the physical and mental component summary scores than did the use of placebo (P = 0.04 for both component scores). Our findings support the beneficial effect of methylphenidate on fatigue and QoL among men with LHRH-induced fatigue. Clinicians should be aware of these benefits and should consider discussing these findings with patients who have high levels of fatigue. © 2014 The Authors BJU International © 2014 BJU International Published by John

  15. Measurements of higher-order mode damping in the PEP-II low-power test cavity

    SciTech Connect

    Rimmer, R.A.; Goldberg, D.A.

    1993-05-01

    The paper describes the results of measurements of the Higher-Order Mode (HOM) spectrum of the low-power test model of the PEP-II RF cavity and the reduction in the Q`s of the modes achieved by the addition of dedicated damping waveguides. All the longitudinal (monopole) and deflecting (dipole) modes below the beam pipe cut-off are identified by comparing their measured frequencies and field distributions with calculations using the URMEL code. Field configurations were determined using a perturbation method with an automated bead positioning system. The loaded Q`s agree well with the calculated values reported previously, and the strongest HOMs are damped by more than three orders of magnitude. This is sufficient to reduce the coupled-bunch growth rates to within the capability of a reasonable feedback system. A high power test cavity will now be built to validate the thermal design at the 150 kW nominal operating level, as described elsewhere at this conference.

  16. Nucleosynthesis Modes in the High-Entropy-Wind Scenario of Type II Supernovae

    SciTech Connect

    Farouqi, K.; Kratz, K.-L.; Cowan, J. J.; Mashonkina, L. I.; Pfeiffer, B.; Sneden, C.; Thielemann, F.-K.; Truran, J. W.

    2008-03-11

    In an attempt to constrain the astrophysical conditions for the nucleosynthesis of the classical r-process elements beyond Fe, we have performed large-scale dynamical network calculations within the model of an adiabatically expanding high- entropy wind (HEW) of type II supernovae (SN II). A superposition of several entropy-components (S) with model-inherent weightings results in an excellent reproduction of the overall Solar System (SS) isotopic r-process residuals (N{sub r,{center_dot}}), as well as the more recent observations of elemental abundances of metal-poor, r-process rich halo stars in the early Galaxy. For the heavy r-process elements beyond Sn, our HEW model predicts a robust abundance pattern up to the Th, U r-chronometer region. For the lighter neutron-capture region, an S-dependent superposition of (i) a normal {alpha}-component directly producing stable nuclei, including s-only isotopes, and (ii) a component from a neutron-rich {alpha}-freezeout followed by the rapid recapture of {beta}-delayed neutrons ({beta}dnrpar; emitted from the far-unstable seed nuclei is indicated. In agreement with several recent halo-star observations in the 60

  17. Near-threshold fatigue crack growth behavior of 2195 aluminum-lithium-alloy—prediction of crack propagation direction and influence of stress ratio

    NASA Astrophysics Data System (ADS)

    Chen, D. L.; Chaturvedi, M. C.

    2000-06-01

    Tensile properties and fatigue crack propagation behavior of a 2195-T8 Al-Li alloy were investigated at different stress ratios, with particular emphasis on their dependence on specimen orientation. Specimens with orientations of 0, 15, 30, 45, and 90 deg to the rolling direction were tested. The alloy contained a strong brass-type texture and a profuse distribution of platelike precipitates of T 1 (Al2CuLi) phase on {111} matrix planes. Both tensile strength and fatigue thresholds were found to be strongly dependent on the specimen orientation, with the lowest values observed along the direction at 45 deg to the rolling direction. The effect of stress ratio on fatigue threshold could generally be explained by a modified crack closure concept. The growth of fatigue crack in this alloy was found to exhibit a significant crystallographic cracking and especially macroscopic crack deflection. The specimens oriented in the L-T + 45 deg had the smallest deflection angle, while the specimens in the L-T and T-L orientations exhibited a large deflection angle. The dependence of the fatigue threshold on the specimen orientation could be rationalized by considering an equivalent fatigue threshold calculated from both mode I and mode II values due to the crack deflection. A four-step approach on the basis of Schmid’s law combined with specific crystallographic textures is proposed to predict the fatigue crack deflection angle. Good agreement between the theoretical prediction and experimental results was observed.

  18. Methane clathrate hydrate infrared spectrum. II. Near-infrared overtones, combination modes and cages assignments

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Deboffle, D.; Bouzit, M.

    2010-05-01

    Context. Recently, we recorded the infrared spectrum of the methane clathrate hydrate stretching mode at low temperature, a caged compound of possible interest for solar system studies as well as interstellar ice mantles. Aims: We provide a practical infrared spectroscopic identification for methane clathrate hydrate to examine its astrophysical presence or absence. We investigate the crystal field induced shifts, and assign the different transitions to the different encaged molecules environments in this clathrate hydrate. Methods: A methane clathrate crystal is produced in an infrared transmitting moderate-pressure closed cell. Using Fourier transform infrared (FTIR) spectroscopy, the overtones (3ν4, 2ν3) and combination modes (ν2+2ν4, ν1+ν4, ν3+ν4, ν2+ν3, ν3+2ν4, 2ν2+2ν4, ν2+ν3+ν4) falling in the 6000-3000 cm-1 (~1.65-3.4 μm) and their temperature behaviour are investigated. In addition, non-astrophysical CH4/CF4 gas mixtures are used to build clathrates with different methane large and small cage occupancies to help in assignments. Results: Combination modes show the two distinct cages and the quasi-free rotor low temperature ro-vibrational structure expected for methane clathrate hydrates. A comparison with the pure phase I is performed. Implications for methane clathrate hydrate detection are clearly identified. Conclusions: Solid methane actual remote observations of solar system objects surfaces do not display the clathrate hydrates' specific shift and occupancy signatures. Observationnally, a search for their infrared spectroscopic specific signatures should be performed, focusing on thermodynamically favourable objects like trans- neptunian objects (TNOs) or recently exposed (e.g. fresh impact) planet (or their satellites) surfaces. On the modeling side, efforts must be undertaken to progressively implement clathrate formation kinetics.

  19. Collisional damping of the geodesic acoustic mode with toroidal rotation. II. Gyrokinetic formulation

    SciTech Connect

    Xie, Baoyi; Yu, Jun; Chen, You; Gong, Xueyu; Guo, Wenfeng

    2016-03-15

    The collisional damping of the geodesic acoustic mode (GAM) is analytically investigated in toroidally rotating tokamaks by using the gyrokinetic equation. It is found that the toroidal rotation could decrease the collisional damping of the GAM in the small safety factor region and increase the collisional damping of the GAM in the large safety factor region at low ion collision rate; while at high ion collision rate, the toroidal rotation will increase the collisional damping of the GAM with arbitrary safety factor. Furthermore, the change quantity of collisional damping rate of the GAM due to the toroidal rotation at high collision rate is larger than that at low collision rate.

  20. Phase effects in guided mode resonances II: measuring the angular phase of a surface plasmon polariton

    NASA Astrophysics Data System (ADS)

    Theisen, M. J.; Brown, T. G.

    2015-02-01

    We show how the phase of a resonant interaction between a focused beam and a guided mode can be directly observed in a pupil imaging experiment, in which the irradiance leaving the pupil of a standard microscope is relayed to an image sensor through a combination Wollaston prism, calcite beam splitter and polarizer. We apply the method to the observation of a surface plasmon polariton resonance excited in a corrugated silver film fabricated using electron beam lithography. We discuss how this particular imaging configuration could be adapted for applications in plasmonic optical sensing.

  1. Fatigue damage prognosis of internal delamination in composite plates under cyclic compression loadings using affine arithmetic as uncertainty propagation tool

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey J.-M.

    Structural health monitoring (SHM) has become indispensable for reducing maintenance costs and increasing the in-service capacity of a structure. The increased use of lightweight composite materials in aircraft structures drastically increased the effects of fatigue induced damage on their critical structural components and thus the necessity to predict the remaining life of those components. Damage prognosis, one of the least investigated fields in SHM, uses the current damage state of the system to forecast its future performance by estimating the expected loading environments. A successful damage prediction model requires the integration of technologies in areas like measurements, materials science, mechanics of materials, and probability theories, but most importantly the quantification of uncertainty in all these areas. In this study, Affine Arithmetic is used as a method for incorporating the uncertainties due to the material properties into the fatigue life prognosis of composite plates subjected to cyclic compressive loadings. When loadings are compressive in nature, the composite plates undergo repeated buckling-unloading of the delaminated layer which induces mixed modes I and II states of stress at the tip of the delamination in the plates. The Kardomateas model-based prediction law is used to predict the growth of the delamination, while the integration of the effects of the uncertainties for modes I and II coefficients in the fatigue life prediction model is handled using Affine arithmetic. The Mode I and Mode II interlaminar fracture toughness and fatigue characterization of the composite plates are first experimentally studied to obtain the material coefficients and fracture toughness, respectively. Next, these obtained coefficients are used in the Kardomateas law to predict the delamination lengths in the composite plates while using Affine Arithmetic to handle their uncertainties. At last, the fatigue characterization of the composite plates during

  2. Fatigue crack growth reliability by probabilistic finite elements

    NASA Technical Reports Server (NTRS)

    Besterfield, Glen H.; Liu, Wing K.; Lawrence, Mark A.; Belytschko, Ted

    1991-01-01

    Fusion of the probabilistic finite-element method and reliability analysis for probabilistic fatigue-crack growth is presented. A comprehensive method for determining the probability of fatigue failure for mixed-mode cyclic loading is also presented. The loading is mixed-mode with randomness in the initial and final crack lengths, initial crack angle and position, material properties, crack-growth law, crack-direction law, and loading. The methodology consists of calculating the reliability index via an optimization procedure which is used to calculate the probability of fatigue failure. Performance of the methodology presented is demonstrated on a classical mode-I fatigue problem.

  3. Majorana modes in InSb nanowires (II): resolving the topological phase diagram

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Gül, Önder; de Moor, Michiel; de Vries, Fokko; van Veen, Jasper; van Woerkom, David; Zuo, Kun; Mourik, Vincent; Cassidy, Maja; Geresdi, Attila; Car, Diana; Bakkers, Erik; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo

    Majorana modes in hybrid superconductor-semiconductor nanowire devices can be probed via tunnelling spectroscopy which shows a zero bias peak (ZBP) in differential conductance (1). Majoranas are formed when the Zeeman energy EZ and the chemical potential μ satisfy the condition EZ >√{Δ2 +μ2 } , with Δ the superconducting gap. This Majorana condition outlines the topologically non-trivial phase and predicts a particular dependence of ZBPs on the gate voltage and the external magnetic field. In this talk we show that the magnetic field range of ZBPs can be tuned by gate voltage and vice versa, consistent with these Majorana predictions. Supported by measurements in different external magnetic field orientations, these observations pave the way for exploring the topological phase diagram of spin-orbit coupled semiconductor nanowires with induced superconductivity.

  4. A revisit to high-rate mode-II fracture characterization of composites with Kolsky bar techniques.

    SciTech Connect

    Lu, Wei-Yang; Song, Bo; Jin, Huiqing

    2010-03-01

    Nowadays composite materials have been extensively utilized in many military and industrial applications. For example, the newest Boeing 787 uses 50% composite (mostly carbon fiber reinforced plastic) in production. However, the weak delamination strength of fiber reinforced composites, when subjected to external impact such as ballistic impact, has been always potential serious threats to the safety of passengers. Dynamic fracture toughness is a critical indicator of the performance from delamination in such impact events. Quasi-static experimental techniques for fracture toughness have been well developed. For example, end notched flexure (ENF) technique, which is illustrated in Fig. 1, has become a typical method to determined mode-II fracture toughness for composites under quasi-static loading conditions. However, dynamic fracture characterization of composites has been challenging. This has resulted in conflictive and confusing conclusions in regard to strain rate effects on fracture toughness of composites.

  5. Corrosion on Fatigue and Fatigue Crack Growth in Aircraft Structural Materials

    DTIC Science & Technology

    1979-06-01

    fatigue initiated by stress corrosion cracking and thus is not directly relevant o this work except that conceptually iL has similarities. The other paper...34 Corrosion Fatigue Initiated by Stress Corrosion Cracking ", personal coi’iuni cation. 12. II. Kitagaw,.:a, T. Fugita, K. Miyazawa, "Sniall Randomly...a result, extensive research on corrosion fatigue has led to the traditional model which superimposes the stress corrosion cracking phenomenon upon

  6. Measurement of higher-order mode losses in SPEAR II by shift in synchrotron phase and increase in net cavity power

    SciTech Connect

    Not Available

    1988-01-01

    It has been estimated that the loss to higher-order cavity modes in SPEAR II will be 135 keV per cavity at 100 mA for a 10-cm bunch (sigma/sub z/ = 5 cm). This corresponds to a loss of 10 MeV for a 50-m PEP structure. The power lost to higher modes in each SPEAR II cavity at 100 mA would be 13.5 kW. A loss of this order can be measured by calorimetry. This loss is also large enough to cause a significant increase in the net rf power input into the cavities over the power input with no higher-mode excitation. In addition, the higher-mode loss can also produce a measurable shift in the synchronous phase angle. Numbers for these effects are computed in this paper.

  7. Corrosion Fatigue

    DTIC Science & Technology

    1981-10-01

    their scientific and technical potential; - Recommending effective ways for the member nations to use their research and development capabilities for the...be major considerations In aircraft design. Environmental effects are known to infloij- ence both the initiation and the propagation of fatigue cracks...for the assessment of the effectiveness of sharing between different laboratories an investigation of a size prohibit- Ive for its execution at a

  8. Effects of ammonium sulfate aerosols on vegetation—II. Mode of entry and responses of vegetation

    NASA Astrophysics Data System (ADS)

    Gmur, Nicholas F.; Evans, Lance S.; Cunningham, Elizabeth A.

    These experiments were designed to provide information on the rates of aerosol deposition, mode of entry, and effects of deposition of submicrometer ammonium sulfate aerosols on foliage of Phaseolus vulgaris L. A deposition velocity of 3.2 × 10 3cms-1 was constant during 3-week exposures of plants to aerosol concentrations of 26mg m -3 (i.e. about two orders of magnitude above ambient episode concentrations). Mean deposition rate on foliage was 4.1 × 10 -11 μg cm -2s -1. Visible injury symptoms included leaf chlorosis, necrosis and loss of turgor. Chlorosis was most frequent near leaf margins causing epinasty and near major veins. Internal injury occurred initially in spongy mesophyll cells. Eventually abaxial epidermal and palisade parenchyma cells were injured. These results suggest that submicrometer aerosols enter abaxial stomata and affect more internal cells before affecting leaf surface cells. Exposure to aerosols decreased both abaxial and adaxial leaf resistances markedly. Although visible injury to foliage occurred, no changes in dry mass of roots and shoots or leaf area occurred. These results suggest that for the plant developmental stage studied, while leaf resistances decreased and cellular injury occurred in foliage, these factors were not significantly related to plant growth and development.

  9. Transit time instabilities in an inverted fireball. II. Mode jumping and nonlinearities

    SciTech Connect

    Stenzel, R. L.; Gruenwald, J.; Fonda, B.; Ionita, C.; Schrittwieser, R.

    2011-01-15

    A fireball is formed inside a highly transparent spherical grid immersed in a dc discharge plasma. The ambient plasma acts as a cathode and the positively biased grid as an anode. A strong nearly current-free double layer separates the two plasmas. Electrons are accelerated into the fireball, ionize, and establish a discharge plasma with plasma potential near the grid potential. Ions are ejected from the fireball. Since electrons are lost at the same rate as ions, most electrons accelerated into the fireball just pass through it. Thus, the electron distribution contains radially counterstreaming electrons. High-frequency oscillations are excited with rf period given by the electron transit time through the fireball. Since the frequency is well below the electron plasma frequency, no eigenmodes other than a beam space-charge wave exists. The instability is an inertial transit-time instability similar to the sheath-plasma instability or the reflex vircator instability. In contrast to vircators, there is no electron reflection from a space-charge layer but counterstreaming arises from spherical convergence and divergence of electrons. While the basic instability properties have been presented in a companion paper [R. L. Stenzel et al., Phys. Plasmas 18, 012104 (2011)], the present paper focuses on observed mode jumping and nonlinear effects. The former produce frequency jumps and different potential profiles, the latter produce harmonics associated with electron bunching at large amplitudes. In situ probe measurements are presented and interpreted.

  10. The ice nucleating ability of pollen:. Part II. Laboratory studies in immersion and contact freezing modes

    NASA Astrophysics Data System (ADS)

    Diehl, K.; Matthias-Maser, S.; Jaenicke, R.; Mitra, S. K.

    Laboratory tests were conducted of the ice nucleating ability of four kinds of pollen in the immersion and the contact freezing modes. The diameters of the selected pollen were between 25 and 70 μm. The experiments were carried out at the Mainz vertical wind tunnel with freely suspended supercooled droplets at temperatures down to -28 °C. The immersion freezing experiments were conducted with drops of radii between 250 and 375 μm formed from distilled water with a defined amount of pollen added. The drops were freely floated in the wind tunnel while being supercooled. For the contact freezing experiments, a short burst of pollen was allowed to collide with freely suspended, supercooled pure water drops of 360-μm radius. The results showed that particle-free water drops in particle-free air in the wind tunnel did not freeze at temperatures above -28 °C while water drops containing pollen froze at temperatures as high as -9 °C, and water drops colliding with pollen froze at temperatures -5 °C and lower. Combined with earlier results about the ice nucleating ability of some bacteria, marine plankton, and leaf litters, the present results confirm the importance of biological aerosol particles as potential ice nuclei at relatively warm temperatures.

  11. FORWARD MODELING OF STANDING KINK MODES IN CORONAL LOOPS. II. APPLICATIONS

    SciTech Connect

    Yuan, Ding; Doorsselaere, Tom Van

    2016-04-15

    Magnetohydrodynamic waves are believed to play a significant role in coronal heating, and could be used for remote diagnostics of solar plasma. Both the heating and diagnostic applications rely on a correct inversion (or backward modeling) of the observables into the thermal and magnetic structures of the plasma. However, due to the limited availability of observables, this is an ill-posed issue. Forward modeling is designed to establish a plausible mapping of plasma structuring into observables. In this study, we set up forward models of standing kink modes in coronal loops and simulate optically thin emissions in the extreme ultraviolet bandpasses, and then adjust plasma parameters and viewing angles to match three events of transverse loop oscillations observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly. We demonstrate that forward models could be effectively used to identify the oscillation overtone and polarization, to reproduce the general profile of oscillation amplitude and phase, and to predict multiple harmonic periodicities in the associated emission intensity and loop width variation.

  12. An assessment of BWR (boiling water reactor) Mark-II containment challenges, failure modes, and potential improvements in performance

    SciTech Connect

    Kelly, D.L.; Jones, K.R.; Dallman, R.J. ); Wagner, K.C. )

    1990-07-01

    This report assesses challenges to BWR Mark II containment integrity that could potentially arise from severe accidents. Also assessed are some potential improvements that could prevent core damage or containment failure, or could mitigate the consequences of such failure by reducing the release of fission products to the environment. These challenges and improvements are analyzed via a limited quantitative risk/benefit analysis of a generic BWR/4 reactor with Mark II containment. Point estimate frequencies of the dominant core damage sequences are obtained and simple containment event trees are constructed to evaluate the response of the containment to these severe accident sequences. The resulting containment release modes are then binned into source term release categories, which provide inputs to the consequence analysis. The output of the consequences analysis is used to construct an overall base case risk profile. Potential improvements and sensitivities are evaluated by modifying the event tree spilt fractions, thus generating a revised risk profile. Several important sensitivity cases are examined to evaluate the impact of phenomenological uncertainties on the final results. 75 refs., 25 figs., 65 tabs.

  13. Assessing fatigue.

    PubMed

    Foushee, H C

    1986-05-01

    Despite impressive advances in aircraft technology over the past several decades and an overall decline in the airline accident rate since the introduction of turbine-powered aircraft, flight crew performance problems continue to dominate air transport accident statistics. Researchers have offered many hypotheses to explain this finding, and interest in pilot fatigue has stimulated a large volume of laboratory research. Much of this work, however, is difficult to generalize and to apply to the real world of flight operations, and researchers disagree about the extent and operational significance of fatigue-related reductions in pilot performance. As a result, in 1980 Congress asked the National Aeronautics and Space Administration to undertake a comprehensive research program to assess whether fatigue-related problems are prevalent in long- and short-haul flying. The two major goals of this project are: (1) to assess the psychophysiological effects on pilot performance of flying various types of flight and duty cycles, and (2) to determine the operational significance to flight safety and efficiency of flying these flight and duty cycles.

  14. Concentration-dependent mode of interaction of angiotensin II receptor blockers with uric acid transporter.

    PubMed

    Iwanaga, Takashi; Sato, Masanobu; Maeda, Tomoji; Ogihara, Toshio; Tamai, Ikumi

    2007-01-01

    Serum uric acid (SUA) is currently recognized as a risk factor for cardiovascular disease. It has been reported that an angiotensin II receptor blocker (ARB), losartan, decreases SUA level, whereas other ARBs, such as candesartan, have no lowering effect. Because the renal uric acid transporter (URAT1) is an important factor controlling the SUA level, we examined the involvement of URAT1 in those differential effects of various ARBs on SUA level at clinically relevant concentrations. This study was done by using URAT1-expressing Xenopus oocytes. Losartan, pratosartan, and telmisartan exhibited cis-inhibitory effects on the uptake of uric acid by URAT1, whereas at higher concentrations, only telmisartan did, and these ARBs reduced the uptake in competitive inhibition kinetics. On the other hand, candesartan, EXP3174 [2-n-butyl-4-chloro-1-[(2'-(1H-tetrazol-5-yl)biphenyl-4-yI)methyl]imidazole-5-carboxylic acid] (a major metabolite of losartan), olmesartan, and valsartan were not inhibitory. Preloading of those ARBs in the oocytes enhanced the URAT1-mediated uric acid uptake, showing a trans-stimulatory effect. The present study is a first demonstration of the differential effects of ARBs on URAT1 that some ARBs are both cis-inhibitory and trans-stimulatory, depending on concentration, whereas others exhibit either a trans-stimulatory or cis-inhibitory effect alone, which could explain the clinically observed differential effects of ARBs on SUA level. Furthermore, it was found that such differential effects of ARBs on URAT1 could be predicted from the partial chemical structures of ARBs, which will be useful information for the appropriate use and development of ARBs without an increase of SUA.

  15. Side Effects: Fatigue

    Cancer.gov

    Fatigue is a common side effect of many cancer treatments such as chemotherapy, radiation therapy, immunotherapy, and surgery. Anemia and pain can also cause fatigue. Learn about symptoms and way to manage fatigue.

  16. Characterization of fatigue mechanisms in nickel-based superalloys

    NASA Astrophysics Data System (ADS)

    Yablinsky, Clarissa A.

    Ni-based superalloys are important for turbine engine airfoil applications. Historically, creep has been the main failure mode and thus creep mechanisms have been the subject of numerous studies. However, modern airfoil designs maintain cooler temperatures, and consequently creep is no longer the primary failure mode. Rather, in the cooled components, experience and experimental studies have shown that fatigue is the life-limiting factor. The changing cause of failure highlighted the need for a comprehensive study of fatigue deformation mechanisms. Information about crack propagation and the associated deformation mechanisms has allowed appropriate design changes based on fatigue as a life-limiting factor. The focus of the study will be on a monocrystalline Ni-based superalloy, Rene N5, which is currently used for airfoils. Compact tension specimens were tested under cyclic loading conditions to determine the influence of microstructure and material properties on crack propagation and fatigue failure. The crack growth rate as a function of temperature, environment, frequency, and crystallographic orientation was determined. High resolution scanning electron microscopy was used to examine the fracture surface on length scales from nano to macro. Deformation mechanisms in the plastic zone ahead of the crack tip and within the plastic wake of the crack were studied using TEM and FIB techniques. Environment and frequency seem to have a larger effect on fatigue crack growth rates and threshold stress intensity factor ranges, while temperature and orientation effects are present, but not as dramatic. In the normal blade orientation, (001)[100], mode I crack propagation was prevalent, with mode II crack propagation found at higher DeltaK values. Interdendritic particles appear to be slowing crack growth rates in the threshold region of specimens tested in air. Microstructural analysis showed no change in gamma' precipitate size or morphology with temperature or stress

  17. Multiple Modes of Calcium-Induced Calcium Release in Sympathetic Neurons II

    PubMed Central

    Hongpaisan, Jarin; Pivovarova, Natalia B.; Colegrove, Stephen L.; Leapman, Richard D.; Friel, David D.; Andrews, S. Brian

    2001-01-01

    CICR from an intracellular store, here directly characterized as the ER, usually refers to net Ca2+ release that amplifies evoked elevations in cytosolic free calcium ([Ca2+]i). However, the companion paper (Albrecht, M.A., S.L. Colegrove, J. Hongpaisan, N.B. Pivovarova, S.B. Andrews, and D.D. Friel. 2001. J. Gen. Physiol. 118:83–100) shows that in sympathetic neurons, small [Ca2+]i elevations evoked by weak depolarization stimulate ER Ca accumulation, but at a rate attenuated by activation of a ryanodine-sensitive CICR pathway. Here, we have measured depolarization-evoked changes in total ER Ca concentration ([Ca]ER) as a function of [Ca2+]i, and found that progressively larger [Ca2+]i elevations cause a graded transition from ER Ca accumulation to net release, consistent with the expression of multiple modes of CICR. [Ca]ER is relatively high at rest (12.8 ± 0.9 mmol/kg dry weight, mean ± SEM) and is reduced by thapsigargin or ryanodine (5.5 ± 0.7 and 4.7 ± 1.1 mmol/kg, respectively). [Ca]ER rises during weak depolarization (to 17.0 ± 1.6 mmol/kg over 120s, [Ca2+]i less than ∼350 nM), changes little in response to stronger depolarization (12.1 ± 1.1 mmol/kg, [Ca2+]i ∼700 nM), and declines (to 6.5 ± 1.0 mmol/kg) with larger [Ca2+]i elevations (>1 μM) evoked by the same depolarization when mitochondrial Ca2+ uptake is inhibited (FCCP). Thus, net ER Ca2+ transport exhibits a biphasic dependence on [Ca2+]i. With mitochondrial Ca2+ uptake enabled, [Ca]ER rises after repolarization (to 16.6 ± 1.8 mmol/kg at 15 min) as [Ca2+]i falls within the permissive range for ER Ca accumulation over a period lengthened by mitochondrial Ca2+ release. Finally, although spatially averaged [Ca]ER is unchanged during strong depolarization, net ER Ca2+ release still occurs, but only in the outermost ∼5-μm cytoplasmic shell where [Ca2+]i should reach its highest levels. Since mitochondrial Ca accumulation occurs preferentially in peripheral cytoplasm, as demonstrated

  18. Statistical analysis of fatigue tests

    NASA Astrophysics Data System (ADS)

    Olsson, Karl Erik

    1992-07-01

    The ultimate aim of fatigue design, the minimization of the life cycle cost of the product, is discussed. The key is the load-strength model. Load and strength are described by distribution functions. Here the strength distribution is dealt with. Because of the 'weakest link theory' the three parameter Weibull distribution is the proper choice. With test results from a current project, the power of the Weibull analysis is demonstrated and some comments made about the traditional 'standard deviation of log cycles' approach. A Weibull transformation of rare occurrence, with the capability of separating different failure modes, is presented. Low stress level spectrum test results influenced by the 'fatigue limit' are easily separated. The difference between constant and variable amplitude test results is negligible. In the plane of the two Weibull parameters, shape and standardized location, it is possible to give a general view of component strength variation, from roller bearing life and fatigue stength of welds to yield strength.

  19. Fatigue Damage in Composite Materials

    NASA Astrophysics Data System (ADS)

    Revuelta, D.; Miravete, A.

    2002-02-01

    The phenomenon of fatigue is critical for designing structures including elements made of composite materials. The accurate prediction of the life and fatigue resistance of laminated composites is one of the subjects of inquiry in materials science. The ability of predicting the life of laminates is important for designing, operation, and safety analysis of a composite structure under specific conditions. To predict reliably the life of structures, it is necessary to know the mechanisms of cyclic deformation and damage. It is also necessary to develop a qualitative theory of fatigue failure that should be based on the concepts of solids mechanics. Developing such a theory requires to evaluate the microscopic parameters and the macroscopic variables of the material at the level of a laminate and the structure and to determine exactly the load modes acting on the system.

  20. Failure of the human lumbar motion-segments resulting from anterior shear fatigue loading

    PubMed Central

    SKRZYPIEC, Daniel M.; NAGEL, Katrin; SELLENSCHLOH, Kay; KLEIN, Anke; PÜSCHEL, Klaus; MORLOCK, Michael M.; HUBER, Gerd

    2016-01-01

    An in-vitro experiment was designed to investigate the mode of failure following shear fatigue loading of lumbar motion-segments. Human male lumbar motion-segments (age 32–42 years, n=6) were immersed in Ringer solution at 37°C and repeatedly loaded, using a modified materials testing machine. Fatigue loading consisted of a sinusoidal shear load from 0 N to 1,500 N (750 N±750 N) applied to the upper vertebra of the motion-segment, at a frequency of 5 Hz. During fatigue experiments, several failure events were observed in the dynamic creep curves. Post-test x-ray, CT and dissection revealed that all specimens had delamination of the intervertebral disc. Anterior shear fatigue predominantly resulted in fracture of the apophyseal processes of the upper vertebrae (n=4). Exposure to the anterior shear fatigue loading caused motion-segment instability and resulted in vertebral slip corresponding to grade I and ‘mild’ grade II spondylolisthesis, as observed clinically. PMID:26829975

  1. Improvement of the mode II interface fracture toughness of glass fiber reinforced plastics/aluminum laminates through vapor grown carbon fiber interleaves.

    PubMed

    Ning, Huiming; Li, Yuan; Hu, Ning; Cao, Yanping; Yan, Cheng; Azuma, Takesi; Peng, Xianghe; Wu, Liangke; Li, Jinhua; Li, Leilei

    2014-06-01

    The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m(-2) VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%-73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.

  2. Improvement of the mode II interface fracture toughness of glass fiber reinforced plastics/aluminum laminates through vapor grown carbon fiber interleaves

    PubMed Central

    Ning, Huiming; Li, Yuan; Hu, Ning; Cao, Yanping; Yan, Cheng; Azuma, Takesi; Peng, Xianghe; Wu, Liangke; Li, Jinhua; Li, Leilei

    2014-01-01

    The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m−2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%–73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates. PMID:27877680

  3. Improvement of the mode II interface fracture toughness of glass fiber reinforced plastics/aluminum laminates through vapor grown carbon fiber interleaves

    NASA Astrophysics Data System (ADS)

    Ning, Huiming; Li, Yuan; Hu, Ning; Cao, Yanping; Yan, Cheng; Azuma, Takesi; Peng, Xianghe; Wu, Liangke; Li, Jinhua; Li, Leilei

    2014-06-01

    The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m-2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%-73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.

  4. Characterization of Solder Joint Reliability Using Cyclic Mechanical Fatigue Testing

    NASA Astrophysics Data System (ADS)

    Kim, Choong-Un; Bang, Woong-Ho; Xu, Huili; Lee, Tae-Kyu

    2013-10-01

    This article summarizes the mechanics of two mechanical fatigue methods, cyclic bending fatigue and shear fatigue, in inducing failure in solder joints in package assemblies, and it presents the characteristics of fatigue failures resulting from these methods using example cases of Sn-Pb eutectic and Sn-rich Pb-free solder alloys. Numerical simulation suggests that both testing configurations induce fatigue failure by the crack-opening mode. In the case of bending fatigue, the strain induced by the bending displacement is found to be sensitive to chip geometry, and it induces fatigue cracks mainly at the solder matrix adjacent to the printed circuit board interface. In case of shear fatigue, the failure location is firmly fixed at the solder neck, created by solder mask, where an abrupt change in the solder geometry occurs. Both methods conclude that the Coffin-Manson model is the most appropriate model for the isothermal mechanical fatigue of solder alloys. An analysis of fatigue characteristics using the frame of the Coffin-Manson model produces several insightful results, such as the reason why Pb-free alloys show higher fatigue resistance than Sn-Pb alloys even if they are generally more brittle. Our analysis suggests that it is related to higher work hardening. All these results indicate that mechanical fatigue can be an extremely useful method for fast screening of defective package structures and also in gaining a better understanding of fatigue failure mechanism and prediction of reliability in solder joints.

  5. Analytic modeling of instabilities driven by higher-order modes in the HLS II RF system with a higher-harmonic cavity

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Ning; Li, Wei-Min; Wu, Cong-Feng; Wang, Lin

    2013-08-01

    The utility of a passive fourth-harmonic cavity plays a key role in suppressing longitudinal beam instabilities in the electron storage ring and lengthens the bunch by a factor of 2.6 for the phase II project of the Hefei Light Source (HLS II). Meanwhile, instabilities driven by higher-order modes (HOM) may limit the performance of the higher-harmonic cavity. In this paper, the parasitic coupled-bunch instability, which is driven by narrow band parasitic modes, and the microwave instability, which is driven by broadband HOM, are both modeled analytically. The analytic modeling results are in good agreement with those of our previous simulation study and indicate that the passive fourth-harmonic cavity suppresses parasitic coupled-bunch instabilities and microwave instability. The modeling suggests that a fourth-harmonic cavity may be successfully used at the HLS II.

  6. Insights into the binding mode of sulphamates and sulphamides to hCA II: crystallographic studies and binding free energy calculations.

    PubMed

    De Simone, Giuseppina; Langella, Emma; Esposito, Davide; Supuran, Claudiu T; Monti, Simona Maria; Winum, Jean-Yves; Alterio, Vincenzo

    2017-12-01

    Sulphamate and sulphamide derivatives have been largely investigated as carbonic anhydrase inhibitors (CAIs) by means of different experimental techniques. However, the structural determinants responsible for their different binding mode to the enzyme active site were not clearly defined so far. In this paper, we report the X-ray crystal structure of hCA II in complex with a sulphamate inhibitor incorporating a nitroimidazole moiety. The comparison with the structure of hCA II in complex with its sulphamide analogue revealed that the two inhibitors adopt a completely different binding mode within the hCA II active site. Starting from these results, we performed a theoretical study on sulphamate and sulphamide derivatives, demonstrating that electrostatic interactions with residues within the enzyme active site play a key role in determining their binding conformation. These findings open new perspectives in the design of effective CAIs using the sulphamate and sulphamide zinc binding groups as lead compounds.

  7. The effect of aging and cold working on the high-temperature low-cycle fatigue behavior of alloy 800h: part ii: continuous cyclic loading

    NASA Astrophysics Data System (ADS)

    Villagrana, R. E.; Kaae, J. L.; Ellis, J. R.

    1981-11-01

    The individual and combined effects of cold working (5 and 10 pct) and aging (4000 and 8000 h in the temperature range 538 to 760 °C) on the high-temperature low-cycle fatigue behavior of alloy 800H have been investigated. The specimens were tested at the aging temperatures. Both the saturation stress range and the fatigue life were found to be history dependent. A history-independent hardening mechanism, dynamic strain aging, was found to operate over the temperature range ~450 to 650°C and to be maximized at ~55O °C. It is speculated that carbon is responsible for this dynamic strain aging. Finally, at temperatures above 538 °C the Coffin-Manson plots show a history-independent deviation from linearity.

  8. Interlaminar fracture reinforcement under mode-II loading: Post-cure through-thickness reinforcement of graphite epoxy, unidirectional laminates

    NASA Astrophysics Data System (ADS)

    Jacobson, Joel B.

    A novel through-thickness reinforcement method proposed by S. Kravchenko et al., has been static tested under mode II loading using end notched flexure (ENF), unidirectional laminate specimens to determine the impact on the apparent critical fracture toughness (GIIc) for the material tested. Both experimental and numerical methods have been employed in an attempt to characterize and model these effects. Testing and analysis were conducted on two different specimen thickness, 2.34 mm and 3.54 mm nominally. ASTM D7905/7905M -- 14 was followed during the experimental portion of the thick specimens. Multiple reinforcing configurations using the proposed technique were experimentally tested including single, double, and quadruple rows of orthogonal, pultruded carbon/epoxy pins located within the crack and ahead of the crack (pristine material) to determine the effect on the apparent critical fracture toughness for each configuration. Both pre-cracked and no pre-cracked specimens were evaluated. The results of this study indicate that specimens pinned in the crack experienced the highest supportable reaction force such that the crack was completely arrested and most of the specimens failed in flexure. Pre-cracked specimens that were pinned in the body exhibited stable crack growth as well as a shadowing phenomenon. Both pins and the crack surface topography due to this phenomenon are attributed to the increased apparent fracture toughness for these specimens. Similar outcomes were observed through numerical simulations for the models simulated in this study.

  9. Role of large-scale slip in mode II fracture of bimaterial interface produced by diffusion bonding

    NASA Astrophysics Data System (ADS)

    Fox, M. R.; Ghosh, A. K.

    2001-08-01

    Bimaterial interfaces present in diffusion-bonded (and in-situ) composites are often not flat interfaces. The unevenness of the interface can result not only from interface reaction products but also from long-range waviness associated with the surfaces of the component phases bonded together. Experimental studies aimed at determining interface mechanical properties generally ignore the departure in the local stress due to waviness and assume a theoretically flat interface. Furthermore, the commonly used testing methods involving superimposed tension often renders the interface so extremely brittle that if microplastic effects were present it becomes impossible to perceive them. This article examines the role of waviness of the interface and microplastic effects on crack initiation. To do this, a test was selected that provides significant stability against crack growth by superimposing compressive stresses. Mode II interface fracture was studied for NiAl/Mo model laminates using a recently developed asymmetrically loaded shear (ALS) interface shear test. The ALS test may be viewed as opposite of the laminate bend test. In the bend test, shear at the interface is created via tension on one surface of the bend, while in the ALS test, shear is created by compression on one side of the interface relative to the other. Normal to the interface, near the crack tip, an initially compressive state is replaced by slight tension due to Poisson’s expansion of the unbonded part of the compressed beam.

  10. Viscoelastic-damage interface model formulation with friction to simulate the delamination growth in mode II shear

    NASA Astrophysics Data System (ADS)

    Goodarzi, Mohammad Saeed; Hosseini-Toudeshky, Hossein

    2017-02-01

    In this paper a formulation of a viscoelastic-damage interface model with friction in mode-II is presented. The cohesive constitutive law contains elastic and damage regimes. It has been assumed that the shear stress in the elastic regime follows the viscoelastic properties of the matrix material. The three element Voigt model has been used for the formulation of relaxation modulus of the material. Damage evolution proceeds according to the bilinear cohesive constitutive law combined with friction stress consideration. Combination of damage and friction is based on the presumption that the damaged area, related to an integration point, can be dismembered into the un-cracked area with the cohesive damage and cracked area with friction. Samples of a one element model have been presented to see the effect of parameters on the cohesive constitutive law. A comparison between the predicted results with available results of end-notched flexure specimens in the literature is also presented to verify the model. Transverse crack tension specimens are also simulated for different applied displacement velocities.

  11. 3D-RISM-MP2 Approach to Hydration Structure of Pt(II) and Pd(II) Complexes: Unusual H-Ahead Mode vs Usual O-Ahead One.

    PubMed

    Aono, Shinji; Mori, Toshifumi; Sakaki, Shigeyoshi

    2016-03-08

    Solvation of transition metal complexes with water has been one of the fundamental topics in physical and coordination chemistry. In particular, Pt(II) complexes have recently attracted considerable interest for their relation to anticancer activity in cisplatin and its analogues, yet the interaction of the water molecule and the metal center has been obscured. The challenge from a theoretical perspective remains that both the microscopic solvation effect and the dynamical electron correlation (DEC) effect have to be treated simultaneously in a reasonable manner. In this work we derive the analytical gradient for the three-dimensional reference interaction site model Møller-Plesset second order (3D-RISM-MP2) free energy. On the basis of the three-regions 3D-RISM self-consistent field (SCF) method recently proposed by us, we apply a new layer of the Z-vector method to the CP-RISM equation as well as point-charge approximation to the derivatives with respect to the density matrix elements in the RISM-CPHF equation to remarkably reduce the computational cost. This method is applied to study the interaction of H2O with the d(8) square planar transition metal complexes in aqueous solution, trans-[Pt(II)Cl2(NH3)(glycine)] (1a), [Pt(II)(NH3)4](2+) (1b), [Pt(II)(CN)4](2-) (1c), and their Pd(II) analogues 2a, 2b, and 2c, respectively, to elucidate whether the usual H2O interaction through O atom (O-ahead mode) or unusual one through H atom (H-ahead mode) is stable in these complexes. We find that the interaction energy of the coordinating water and the transition metal complex changes little when switching from gas to aqueous phase, but the solvation free energy differs remarkably between the two interaction modes, thereby affecting the relative stability of the H-ahead and O-ahead modes. Particularly, in contrast to the expectation that the O-ahead mode is preferred due to the presence of positive charges in 1b, the H-ahead mode is also found to be more stable. The O

  12. Fatigue life extension

    NASA Technical Reports Server (NTRS)

    Matejczyk, D. E.; Lin, J.

    1985-01-01

    Potential fatigue rejuvenation processes were carried out on fatigue-damaged material both with and without observable surface-connected fatigue cracks. The fatigue life of fatigue-damaged MAR-M246(Hf)(DS), a directionally solidified nickel-base superalloy used in turbine airfoils, was extended by reheat treatment. The fatigue life of fatigue-cracked Inconel 718, a wrought nickel-base superalloy used in a wide variety of advanced rocket engine components, was extended by electron-beam welding to close off the surface-connected crack, followed by hot isostatic pressing and reheat treatment.

  13. Fatigue Behavior of Inconel 718 TIG Welds

    NASA Astrophysics Data System (ADS)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  14. Binding mode and thermodynamic studies on the interaction of the anticancer drug dacarbazine and dacarbazine-Cu(II) complex with single and double stranded DNA.

    PubMed

    Temerk, Yassien; Ibrahim, Hossieny

    2014-07-01

    The binding mode and thermodynamic characteristics of the anticancer drug dacarbazine (Dac) with double and single stranded DNA were investigated in the absence and presence of Cu(II) using cyclic voltammetry, square wave voltammetry and fluorescence spectroscopy. The interaction of Dac and Dac-Cu(II) complex with dsDNA indicated their intercalation into the base stacking domain of dsDNA double helix and the strength of interaction is independent on the ionic strength. The interaction of Dac with dsDNA in the presence of Cu(II) leads to a much stronger intercalation. The interaction mode of Dac molecules with ssDNA is electrostatic attraction via negative phosphate on the exterior of the ssDNA with Dac. The binding constants, stoichiometric coefficients and thermodynamic parameters of Dac and Dac-Cu(II) complex with dsDNA and ssDNA were evaluated. Comparison of the mode interaction of Dac with dsDNA and ssDNA was discussed. The decrease of peak current of Dac was proportional to DNA concentration, which was applied for determination of dsDNA and ssDNA concentration.

  15. Surface enhanced Raman scattering, natural bond orbitals and Mulliken atomic charge distribution in the normal modes of diethyldithiocarbamate cadmium (II) complex, [Cd(DDTC)₂].

    PubMed

    Soto, C A Téllez; Costa, A C; Versiane, O; Lemma, T; Machado, N C F; Mondragón, M A; Martin, A A

    2015-07-05

    Theoretical and experimental bands have been assigned to the Fourier Transform Infrared (FT-IR) and FT-Raman spectra of the bis(diethyldithiocarbamate)Cd(II) complex, abbreviated as ([Cd(DDTC)2]). The calculations and spectral interpretation have been based on the DFT/B3LYP method, infrared and Raman second derivative spectra, and band deconvolution analysis to assist in the assignment of observed fundamentals. This study validated the unusual pseudo tetrahedral molecular structure formed around the Cd(II) cation. Surface-enhanced Raman scattering (SERS) was used to determine the interactions of the normal-modes of the diethyldithiocarbamate cadmium (II) complex on nano-structured silver surfaces. Natural bond orbital (NBO) analysis was also carried out to study the Cd(II) hybridization causing the pseudo tetrahedral geometry of the framework of the [Cd(DDTC)2] complex, and to confirm the charge transfer mechanisms through second order perturbation theory analysis of the Fox Matrix. In order to find out the electronic dispersion of the Mulliken atomic charges (MAC) in the normal modes, we calculated the MAC for each normal mode and correlated these values with the SERS effect. Experimental UV-Vis spectra were obtained and charge transfer bands were assigned. Good agreement between the calculated and experimental values for the vibrational and UV-Vis spectra was obtained. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Surface enhanced Raman scattering, natural bond orbitals and Mulliken atomic charge distribution in the normal modes of diethyldithiocarbamate cadmium (II) complex, [Cd(DDTC)2

    NASA Astrophysics Data System (ADS)

    Téllez Soto, C. A.; Costa, A. C.; Versiane, O.; Lemma, T.; Machado, N. C. F.; Mondragón, M. A.; Martin, A. A.

    2015-07-01

    Theoretical and experimental bands have been assigned to the Fourier Transform Infrared (FT-IR) and FT-Raman spectra of the bis(diethyldithiocarbamate)Cd(II) complex, abbreviated as ([Cd(DDTC)2]). The calculations and spectral interpretation have been based on the DFT/B3LYP method, infrared and Raman second derivative spectra, and band deconvolution analysis to assist in the assignment of observed fundamentals. This study validated the unusual pseudo tetrahedral molecular structure formed around the Cd(II) cation. Surface-enhanced Raman scattering (SERS) was used to determine the interactions of the normal-modes of the diethyldithiocarbamate cadmium (II) complex on nano-structured silver surfaces. Natural bond orbital (NBO) analysis was also carried out to study the Cd(II) hybridization causing the pseudo tetrahedral geometry of the framework of the [Cd(DDTC)2] complex, and to confirm the charge transfer mechanisms through second order perturbation theory analysis of the Fox Matrix. In order to find out the electronic dispersion of the Mulliken atomic charges (MAC) in the normal modes, we calculated the MAC for each normal mode and correlated these values with the SERS effect. Experimental UV-Vis spectra were obtained and charge transfer bands were assigned. Good agreement between the calculated and experimental values for the vibrational and UV-Vis spectra was obtained.

  17. Analysis of fretting fatigue in aircraft structures: Stresses, stress intensity factors, and life predictions

    NASA Astrophysics Data System (ADS)

    McVeigh, Pamela Alison

    Clamped contacts subjected to cyclic loading are prone to fretting fatigue, a mechanism of crack nucleation and propagation. In aircraft, fretting fatigue occurs at the rivet/hole interface on the fuselage skin and at the dovetail joint in engine hardware where disk and blade meet. The ability to predict the lives of such components would be a great aid in preventing failures. Finite element models appropriate for the calculation of fretting fatigue stresses and stress intensity factors are developed for two different contact geometries. In addition, several less computationally expensive numerical methods are also studied. Agreement between the various solutions is good. A severe increase in the mode I stress intensity factor near the surface is discovered in both geometries. Mode II stress intensity factors are also detailed, illustrating the complex non-proportional loading of fretting-induced cracks. A comparison is made between results obtained from actual surface profiles and those generated from prescribed surface profiles; the differences are significant. Equivalent initial flaw sizes are calculated for two different metals using an approach which ignores the effect of mode II stress intensity factors. Life predictions based on the equivalent initial flaw size approach are found to agree reasonably well with those measured in the laboratory for contact geometries similar to the rivet/hole interface. More data is needed before a judgment can be made about life correlations for the dovetail joint contact geometry. The analysis methods described throughout can be easily implemented and integrated into a system aimed at designing against fretting fatigue.

  18. Angular momentum redistribution by mixed modes in evolved low-mass stars. II. Spin-down of the core of red giants induced by mixed modes

    NASA Astrophysics Data System (ADS)

    Belkacem, K.; Marques, J. P.; Goupil, M. J.; Mosser, B.; Sonoi, T.; Ouazzani, R. M.; Dupret, M. A.; Mathis, S.; Grosjean, M.

    2015-07-01

    The detection of mixed modes in subgiants and red giants by the CoRoT and Kepler space-borne missions allows us to investigate the internal structure of evolved low-mass stars, from the end of the main sequence to the central helium-burning phase. In particular, the measurement of the mean core rotation rate as a function of the evolution places stringent constraints on the physical mechanisms responsible for the angular momentum redistribution in stars. It showed that the current stellar evolution codes including the modelling of rotation fail to reproduce the observations. An additional physical process that efficiently extracts angular momentum from the core is thus necessary. Our aim is to assess the ability of mixed modes to do this. To this end, we developed a formalism that provides a modelling of the wave fluxes in both the mean angular momentum and the mean energy equations in a companion paper. In this article, mode amplitudes are modelled based on recent asteroseismic observations, and a quantitative estimate of the angular momentum transfer is obtained. This is performed for a benchmark model of 1.3 M⊙ at three evolutionary stages, representative of the evolved pulsating stars observed by CoRoT and Kepler. We show that mixed modes extract angular momentum from the innermost regions of subgiants and red giants. However, this transport of angular momentum from the core is unlikely to counterbalance the effect of the core contraction in subgiants and early red giants. In contrast, for more evolved red giants, mixed modes are found efficient enough to balance and exceed the effect of the core contraction, in particular in the hydrogen-burning shell. Our results thus indicate that mixed modes are a promising candidate to explain the observed spin-down of the core of evolved red giants, but that an other mechanism is to be invoked for subgiants and early red giants.

  19. ECCI observations of dislocation structures around fatigue cracks in ferritic stainless steel single crystals

    NASA Astrophysics Data System (ADS)

    Taniguchi, T.; Kaneko, Y.; Hashimoto, S.

    2009-07-01

    Dislocation structures around the crack tips of ferritic stainless steel single crystals were observed with electron channelling contrast imaging (ECCI) method. The ECCI method enables us to observe dislocations lying near surface using a scanning electron microscope. Fatigue crack growth tests were conducted on compact tension (CT) specimens having loading axes of [221] and [110] directions. In the specimen having the [110] loading axis at which the fatigue crack having Mode I and II component propagated, a thin band-like structure consisting of dislocation wall array was observed ahead of the crack tip. On the other hand, the dislocation structures around the crack having Mode I and III components could be divided into three regions in the specimen with the [221] loading axis: the cell structure, the dislocation wall structure and the vein structure were observed in order of ascending distance from crack tip. Difference between the dislocation structures near the fatigue cracks could be understood from the crack mode by which edge and screw dislocation emissions from the crack tips are strongly affected.

  20. Increased ventricular lactate in chronic fatigue syndrome measured by 1H MRS imaging at 3.0 T. II: comparison with major depressive disorder.

    PubMed

    Murrough, James W; Mao, Xiangling; Collins, Katherine A; Kelly, Chris; Andrade, Gizely; Nestadt, Paul; Levine, Susan M; Mathew, Sanjay J; Shungu, Dikoma C

    2010-07-01

    Chronic fatigue syndrome (CFS), a complex illness characterized by fatigue, impaired concentration, and musculoskeletal pain, is often misdiagnosed as a psychiatric illness due to the overlap of its symptoms with mood and anxiety disorders. Using proton magnetic resonance spectroscopic imaging ((1)H MRSI), we previously measured levels of the major brain metabolites in CFS, in generalized anxiety disorder (GAD), and in healthy control subjects, and found significantly higher levels of ventricular cerebrospinal fluid (CSF) lactate in CFS compared to the other two groups. In the present study, we sought to assess the specificity of this observation for CFS by comparing ventricular lactate levels in a new cohort of 17 CFS subjects with those in 19 healthy volunteers and in 21 subjects with major depressive disorder (MDD), which, like GAD, is a neuropsychiatric disorder that has significant symptom overlap with CFS. Ventricular CSF lactate was significantly elevated in CFS compared to healthy volunteers, replicating the major result of our previous study. Ventricular lactate measures in MDD did not differ from those in either CFS or healthy volunteers. We found a significant correlation between ventricular CSF lactate and severity of mental fatigue that was specific to the CFS group. In an exploratory analysis, we did not find evidence for altered levels of the amino acid neurotransmitters, gamma-aminobutyric acid (GABA) and glutamate + glutamine ('Glx'), in CFS compared to MDD or healthy controls. Future (1)H MRS studies with larger sample sizes and well-characterized populations will be necessary to further clarify the sensitivity and specificity of neurometabolic abnormalities in CFS and MDD.

  1. Mathematical and numerical analysis of non-planer static mode-II crack in a two-layered medium

    NASA Astrophysics Data System (ADS)

    Hirano, S.; Yamashita, T.

    2009-12-01

    A crack in an infinite homogeneous medium is widely assumed as a model for earthquake fault. It is, however, well known that the earth's crust is heterogeneous and its structure is approximated well by a layered medium. Hence, such structure should be taken into account to model earthquake fault reasonably. We mathematically analyze the behavior of a 2-D static mode-II non-planar crack in a two-layered elastic medium in order to understand the effect of layer boundary on earthquake faulting. Although Rani and Singh (1993) and Rivalta et al.(2002) studied similar problems, focuses of their studies were quite narrow probably because of inherent mathematical difficulty. Actually the former assumed a planar crack with uniform slip and the latter assumed a planar crack perpendicular to the layer boundary. While a serious difficulty of the analysis of mode-II crack lies in the derivation of stress distribution due to point source as a kernel function, we first overcome the difficulty by writing its expression in a sequence of complex functions in the real (not the Fourier) domain. A very important characteristic in the sequence is that it has recursive property, which makes possible to derive the kernel function explicitly and to integrate it by parts; the integration by parts is required before the boundary integral equation method (BIEM) is applied. Our kernel function is much easier to treat than the expression given by Rani and Singh (1993). This enables us to analyze arbitrarily oriented non-planar crack in a two-layered medium. Next, we calculate the spatial distribution of stress due to crack that does not intersect the layer boundary using the above derived kernel function. We find in the calculation that the existence of layer boundary amplifies or reduces the stress at the crack tip when the crack is located close to the boundary; the stress is amplified when the crack exists in the layer with lower rigidity. Our method of analysis can easily be applied to the

  2. Cast Aluminum Structures Technology (CAST) Structural Test and Evaluation (Phase V). Part II. Fatigue and Fracture Properties of Cast Aluminum Bulkheads

    DTIC Science & Technology

    1980-04-01

    Solution heat treatment: 1010 + 10OF for 24 to 25 hours Quench delay: 10 seconds maximum Quenchant: 106 + 150 F water Natural aging : Room temperature for...16 to 24 hours Precipitation heat treatment ( aging ): 325 + 100 F for 7 to 8 hours Constant-amplitude fatigue specimens were obtained from each of the...SURF. TREAT. AS MILLED--- ýAANUFACTUREA BOEING NEAT NUMBER NA -SPEC. CONFIG. D6.-4671-626I -TEST TEMP. 7 ETEST WUMIDITY 2PTA YIELD STRESS 39.6 KSI MAX

  3. DAMPING THE HIGH ORDER MODES IN THE PUMPING CHAMBER OF THE PEP-II LOW ENERGY RING

    SciTech Connect

    Novokhatski, A

    2004-06-30

    The Low Energy Ring of the PEP-II B-factory operates with extremely high currents of short positron bunches. Any discontinuity in the vacuum chamber can excite a broad-band spectrum of high order modes (HOM). A temperature rise has been found in the vacuum chamber elements in one junction of straight and arc chambers. The power in the wake fields was high enough to char beyond use the feed-through for the titanium sublimation pump (TSP). This pumping section is 5.5 m long and consists of the beam chamber and an ante-chamber. Electromagnetic fields, excited in the beam chamber penetrate to the ante-chamber and then through the heater feed-through come out. To be sure that these electromagnetic fields are present a small ceramic tile with a high loss tangent was placed near the TSP feed-through outside of the pumping chamber. A thermocouple that was attached to this tile showed a strong temperature rise. A short wire antenna was also placed there. The antenna was connected directly to a spectrum analyzer. Measurements show a wide frequency HOM spectrum with a maximum in the 2-3 GHz region. Based on these measurements a special water cooled HOM absorber was designed and installed in the vacuum chamber. As a result, the HOM power in the section decreased and the temperature rise went down. The power loss in the absorber reaches 1200 W for a positron beam current of 2.4 A. The absorber helped to find the source of HOM. Steering the beam on the vertical collimators upstream of the absorber resulted in the significant HOM power change in the absorber.

  4. Near infra-red emission from a mer-Ru(II) complex: consequences of strong σ-donation from a neutral, flexible ligand with dual binding modes.

    PubMed

    Pal, Amlan K; Zaccheroni, Nelsi; Campagna, Sebastiano; Hanan, Garry S

    2014-07-04

    A rare example of dual coordination modes by a novel tridentate ligand gives rise to unique fac-and mer-Ru((II/III)) complexes. The mer-Ru(II)-complex displays the farthest red-shift of a triplet metal-to-ligand charge transfer ((3)MLCT) emission with a tridentate ligand for a mononuclear complex. This observation is a consequence of large bite angle and strong σ-donation by the ligand, the combined effect of which helps to separate the energy of the (3)MLCT and (3)MC states.

  5. Advanced High Cycle Fatigue (HCF) Life Assurance Methodologies

    DTIC Science & Technology

    2004-07-01

    developed based on thermally activated slip in the crack-tip cyclic process zone that correlates fatigue crack growth morphologies to test parameters...K : 3.6 - 56 ksi / in Thermal Activation Model Fitted to PWA Data PWA Data Macroscopic (111) Mode I (TPNC) SwRI Data Figure 4.63. A fatigue ...somehow normalize the damage with regard to temperature, so that thermal fluctuations could be accommodated within the current fatigue event

  6. Fatigue in Rheumatoid Arthritis.

    PubMed

    Katz, Patricia

    2017-05-01

    The purpose of this study was to review the current information on fatigue in rheumatoid arthritis (RA). Severe fatigue is common among individuals with RA and has a significant impact on quality of life (QOL). RA-related factors (e.g., inflammation, pain) are associated with greater fatigue, but other factors, such as obesity, physical inactivity, sleep disturbance, and depression, explain the majority of variation in fatigue. Medications targeting RA have little effect on fatigue. Instead, the most effective interventions seem to address non-RA-specific factors such as physical inactivity or use cognitive behavioral approaches. No recommendations have been made for tools to measure fatigue in RA, leading to potential difficulty comparing studies. Although fatigue has great impact on patients' QOL, effective interventions that are feasible for broad dissemination remain elusive. Additional multi-faceted research is needed to identify modifiable sources of fatigue. Such research would be enhanced by harmonization of fatigue measurement across studies.

  7. Low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Solomon, H. D. (Editor); Kaisand, L. R. (Editor); Halford, G. R. (Editor); Leis, B. N. (Editor)

    1988-01-01

    The papers contained in this volume focus on various aspects of low cycle fatigue, including cyclic deformation, crack propagation, high-temperature low cycle fatigue, microstructural defects, multiaxial and variable amplitude loading, and life prediction. Papers are presented on the low cycle fatigue of some aluminum alloys, prediction of crack growth under creep-fatigue loading conditions, high-temperature low cycle fatigue behavior and lifetime prediction of a nickel-base ODS alloy, and an integrated approach to creep-fatigue life prediction. Other topics discussed include thermal fatigue testing of coated monocrystalline superalloys, low cycle fatigue of Al-Mg-Si alloys, and the effect of superimposed stresses at high frequency on low cycle fatigue.

  8. Low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Solomon, H. D. (Editor); Kaisand, L. R. (Editor); Halford, G. R. (Editor); Leis, B. N. (Editor)

    1988-01-01

    The papers contained in this volume focus on various aspects of low cycle fatigue, including cyclic deformation, crack propagation, high-temperature low cycle fatigue, microstructural defects, multiaxial and variable amplitude loading, and life prediction. Papers are presented on the low cycle fatigue of some aluminum alloys, prediction of crack growth under creep-fatigue loading conditions, high-temperature low cycle fatigue behavior and lifetime prediction of a nickel-base ODS alloy, and an integrated approach to creep-fatigue life prediction. Other topics discussed include thermal fatigue testing of coated monocrystalline superalloys, low cycle fatigue of Al-Mg-Si alloys, and the effect of superimposed stresses at high frequency on low cycle fatigue.

  9. Fatigue resistance of denture teeth.

    PubMed

    Heintze, Siegward D; Monreal, Dominik; Rousson, Valentin

    2016-01-01

    There is no standard test to determine the fatigue resistance of denture teeth. With the increasing number of patients with implant-retained dentures the mechanical strength of the denture teeth requires more attention and valid laboratory test set-ups. The purpose of the present study was to determine the fatigue resistance of various denture teeth using a dynamic load testing machine. Four denture teeth were used: Bonartic II (Candulor), Physiodens (Vita), SR Phonares II (Ivoclar Vivadent) and Trubyte (Dentsply). For dynamic load testing, first upper molars with a similar shape and cusp inclination were selected. The molar teeth were embedded in cylindrical steel molds with denture base material (ProBase, Ivoclar Vivadent). Dynamic fatigue loading was carried out on the mesio-buccal cusp at a 45° angle using dynamic testing machines and 2,000,000 cycles at 2Hz in water (37 °C). Three specimens per group and load were submitted to decreasing load levels (at least 4) until all the three specimens no longer showed any failures. All the specimens were evaluated under a stereo microscope (20× magnification). The number of cycles reached before observing a failure, and its dependence on the load and on the material, has been modeled using a parametric survival regression model with a lognormal distribution. This allowed to estimate the fatigue resistance for a given material as the maximal load for which one would observe less than 1% failure after 2,000,000 cycles. The failure pattern was similar for all denture teeth, showing a large chipping of the loaded mesio-buccal cusp. In our regression model, there were statistically significant differences among the different materials, with SR Phonares II and Bonartic II showing a higher resistance than Physiodens and Trubyte, the fatigue resistance being estimated at around 110 N for the former two, and at about 60 N for the latter two materials. The fatigue resistance may be a useful parameter to assess and to compare

  10. Molecular interactions of DNA-topoisomerase I and II inhibitor with DNA and topoisomerases and in ternary complexes: binding modes and biological effects for intoplicine derivatives.

    PubMed

    Nabiev, I; Chourpa, I; Riou, J F; Nguyen, C H; Lavelle, F; Manfait, M

    1994-08-02

    Molecular interactions of intoplicine, dual DNA-topoisomerases (Topo) I and II inhibitor, with topoisomerases, plasmid DNA, in ternary cleavable complexes with enzymes and plasmid DNA, and in the reversed cleavable complexes were examined by means of surface-enhanced Raman scattering (SERS) and CD spectroscopy and by biochemical techniques. Detailed spectral analysis of intoplicine derivatives allowed us to assign SERS vibrational modes of chromophores and to propose the models for these complexes. Intoplicine was found to be able to interact specifically with the Topo II alone, but with Topo I only when in the presence of DNA. It shows at least two modes of binding to the DNA: the first was found to be dominant for its derivative 1c (most potent Topo I inhibitor), and the second was dominant for derivative 2a (most potent Topo II inhibitor). The possibility of forming these two types of complexes simultaneously is suggested to be one of the main factors enabling the drug to be a dual Topo I and Topo II inhibitor. The "deep intercalation mode" of the drug from the DNA minor groove with the long axis of the chromophore oriented roughly parallel to the dyad axis has been suggested to be responsible for induction of distortions of the DNA structure by the intercalating drug. Being involved in the formation of Topo I-mediated cleavable ternary complex, the molecules participating in the deep intercalation mode within the DNA do not change their molecular interactions as compared with their complex with the DNA alone. The stabilization of the Topo I-mediated cleavable complex was shown to be followed by the local denaturation of DNA in the AT-rich regions of the helix. When the ternary cleavable complex was reversed, the drug was shown to be in the complex with the plasmid. The "outside binding mode" from the DNA major groove via the hydroxyl group of the A-ring of the chromophore has been suggested to be responsible for Topo II inhibition. These molecules did not

  11. Improving the accuracy of derivation of the Williams’ series parameters under mixed (I+II) mode loading by compensation of measurement bias in the stress field components data

    NASA Astrophysics Data System (ADS)

    Lychak, Oleh V.; Holyns'kiy, Ivan S.

    2016-12-01

    A new method for compensation of bias in the stress field components measurement data used for Williams’ series parameters derivation was presented. Essential increase of accuracy of derivation of SIF-related leading terms in series under mixed (I+II) mode loading was demonstrated. It was shown that a relatively low value of bias in the stress field components data error could result in the essential deviation of the values of derived Williams’ coefficients and the crack tip coordinates.

  12. German experiences in local fatigue monitoring

    SciTech Connect

    Abib, E.; Bergholz, S.; Rudolph, J.

    2012-07-01

    The ageing management of nuclear power plants (NPP) has gained an increasing importance in the last years. The reasons are mainly due to the international context of extending period of plants operation. Moreover, new scientific discoveries, such as the corrosive influence of the medium on the fatigue process (environmentally assisted fatigue - EAF) play an important role and influence the code development (ASME, EAF code cases). The fatigue damage process takes a central position in ageing mechanisms of components. It must be ensured through appropriate evidence that facilities are being operated under allowable boundary conditions. In the design phase of NPP, fatigue analyses are still based on theoretical considerations and empirical values, which are summarized in the design transient catalogue, necessary for licensing. These analyses aim at proving the admissibility of the loads in terms of stress and fatigue usage. These analyses will also provide the fatigue-relevant positions in the NPP and give a basis for future design improvements and optimization of operating modes. The design transients are in practice conservatively correlated with the real transients occurring during operation. Uncertainties reveal very conservative assumptions regarding forecast temperatures, temperature gradients and frequencies of events. During operation of the plant, it has to be recurrently proved, that the plant is being operated under designed boundary conditions. Moreover, operating signals are constantly acquired to enable a fatigue evaluation. For example, in Germany fatigue evaluation is based on decades of experience and regulatory requirements. The rule KTA 3201.4 [1] establishes the rules for qualified fatigue monitoring. The rule DIN 25475-3 [2] on fatigue monitoring systems is available in draft version. Experience shows that some significant differences occur between the design transients and the real occurred transients during plant operation. The reasons for it

  13. Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Paris, Isabelle L.; OBrien, T. Kevin; Minguet, Pierre J.

    2001-01-01

    A methodology is presented for determining the fatigue life of composite structures based on fatigue characterization data and geometric nonlinear finite element (FE) analyses. To demonstrate the approach, predicted results were compared to fatigue tests performed on specimens which represented a tapered composite flange bonded onto a composite skin. In a first step, tension tests were performed to evaluate the debonding mechanisms between the flange and the skin. In a second step, a 2D FE model was developed to analyze the tests. To predict matrix cracking onset, the relationship between the tension load and the maximum principal stresses transverse to the fiber direction was determined through FE analysis. Transverse tension fatigue life data were used to -enerate an onset fatigue life P-N curve for matrix cracking. The resulting prediction was in good agreement with data from the fatigue tests. In a third step, a fracture mechanics approach based on FE analysis was used to determine the relationship between the tension load and the critical energy release rate. Mixed mode energy release rate fatigue life data were used to create a fatigue life onset G-N curve for delamination. The resulting prediction was in good agreement with data from the fatigue tests. Further, the prediction curve for cumulative life to failure was generated from the previous onset fatigue life curves. The results showed that the methodology offers a significant potential to Predict cumulative fatigue life of composite structures.

  14. A theoretical analysis of the coordination modes of CuII with penicillins: activation of the beta-lactam C-N bond.

    PubMed

    Campomanes, Pablo; Menéndez, M Isabel; López, Ramón; Sordo, Tomás L

    2005-02-01

    The interaction of CuII with 6-formylamino-3alpha-carboxypenam and 6-acetylamino-3alpha-carboxypenam was investigated by means of DFT calculations with the UB3LYP functional. Nine different modes of complexation between CuII and 6-formylamino-3alpha-carboxypenam were located. When two water molecules directly bonded to CuII are included in the calculations on 6-acetylamino-3alpha-carboxypenam as penicillin model, only six CuII(H2O)2-6-acetylamino-3alpha-carboxypenam complexes (1S-6S) are found. In solution the four most stable complexes obtained from our calculations, 6S, 1S, 2S, and 3S, exhibit CuII in square-planar coordination with at least one bond to the carboxylate group, in agreement with experimental evidence. Complexes 6S, 1S, and 3S were previously suggested by available experimental evidence. In three of the most stable complexes (6S, 2S, and 3S) the beta-lactam C-N bond is remarkably activated and displays C-N bond lengths similar to those found in some tetrahedral intermediates located for the hydrolysis of 2-azetidinones. This suggests that these kinds of complexes belong to the reaction coordinate for the degradation of beta-lactam antibiotics in the presence of CuII.

  15. A Dual-Signaling Ferrocene-Pyrene Dyad: Triple-Mode Recognition of the Cu(II) Ions in Aqueous Medium.

    PubMed

    Wani, Manzoor Ahmad; Pandey, Mrituanjay D; Pandey, Rampal; Maurya, Sandeep Kumar; Goswami, Debabrata

    2017-08-24

    We report a structure of ferrocene-pyrene conjugate (1) comprising electro and photo-active dual-signaling units. In particular, 1 upon interaction with Cu(II), displays selectively one-photon fluorescence quenching, but it shows two-photon absorption (TPA) cross-section 1230 GM (at 780 nm). Further, 1 displayed two irreversible oxidative waves at 0.39 V and 0.80 V (vs Ag/AgCl), in the electrochemical analysis which upon addition of Cu(2+), led to the negative potential shift in both the oxidative waves to appear at 0.25 V and 0.68 V. The triple mode changes in presence of Cu(II) suggesting the possible application of 1 for the detection of Cu(II) in aqueous media. Graphical Abstract.

  16. New insulinomimetic zinc(II) complexes of alpha-amino acids and their derivatives with Zn(N2O2) coordination mode.

    PubMed

    Yoshikawa, Y; Ueda, E; Suzuki, Y; Yanagihara, N; Sakurai, H; Kojima, Y

    2001-05-01

    Zinc(II) complexes of alpha-amino acids and their derivatives with a Zn(N2O2) coordination mode were found to have in vitro insulinomimetic activity as estimated with the inhibition of free fatty acid release in isolated rat adipocytes treated with epinephrine. It was revealed that the insulinomimetic activities of zinc(II) complexes with over-all stability constants (log beta) less than 10.5 are higher than those of ZnSO4 and VOSO4. The high blood glucose level of KK-Ay mice with type 2 diabetes mellitus was lowered by daily intraperitoneal injections of a zinc(II) complex, cis-[Zn(L-Thr)2(H2O)2], for 14 d. The improvement of diabetes mellitus was confirmed with the oral glucose tolerance test.

  17. Study of an engineering method for fatigue life estimation and safety evaluation of well drilling string

    SciTech Connect

    Deng Zengjie; Zhang Yi; Li Helin; Li Zhonghua

    1995-12-31

    In this paper, an engineering method for calculating the loading capacity, predicting the residual life, making the safety evaluation of drilling pipe and connection joint based on fracture mechanics was presented. The stress intensity factors K{sub I}, K{sub II} and K{sub III} at the critical sections were calculated by means of 3D FEM, then the fracture toughness J{sub c} under mixed mode loading of drilling pipe steel 37Mn5 and 4340 was obtained. In addition, the tests of fatigue crack initiation under different stress concentration state and fatigue crack growth performance of the same steel were carried out, and corresponding expressive formulae were researched.

  18. Visual simulation of fatigue crack growth

    SciTech Connect

    Wang, S.; Margolin, H.; Lin, F.B.

    1998-07-01

    An attempt has been made to visually simulate fatigue crack propagation from a precrack. An integrated program was developed for this purpose. The crack-tip shape was determined at four load positions in the first load cycle. The final shape was a blunt front with an ear profile at the precrack tip. A more general model, schematically illustrating the mechanism of fatigue crack growth and striation formation in a ductile material, was proposed based on this simulation. According to the present model, fatigue crack growth is an intermittent process; cyclic plastic shear strain is the driving force applied to both state 1 and 2 crack growth. No fracture mode transition occurs between the two stages in the present study. The crack growth direction alternates, moving up and down successively, producing fatigue striations. A brief examination has been made of the crack growth path in a ductile two-phase material.

  19. Modeling axial compression fatigue in fiber ropes

    SciTech Connect

    Hearle, J.W.S.; Hobbs, R.E.; Overington, M.S.; Banfield, S.J.

    1995-12-31

    The modeling of long-term fatigue performance of twisted ropes has been extended to cover axial compression fatigue. This mode of failure has been observed in use and testing of ropes. It is characterized by sharp cooperative kinking of yarns, which leads to flex fatigue breakage of fibers. A model of pipeline buckling was modified to allow for plasticity in bending. An axial and lateral restraints, which influence the buckling, were derived from the existing rope mechanics model. Axial compression was introduced into the total computational model, in order to predict the form of buckling and the consequent fiber failure. An alternative use of the program is simply to detect conditions in which axial compression occurs as an indication of the occurrence of fatigue.

  20. 14 CFR 23.573 - Damage tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... (2) The growth rate or no-growth of damage that may occur from fatigue, corrosion, manufacturing... component, subcomponent, element, or coupon tests must be done to establish the fatigue scatter factor and... determination of the probable locations and modes of damage due to fatigue, corrosion, or accidental...

  1. 14 CFR 23.573 - Damage tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... (2) The growth rate or no-growth of damage that may occur from fatigue, corrosion, manufacturing... component, subcomponent, element, or coupon tests must be done to establish the fatigue scatter factor and... determination of the probable locations and modes of damage due to fatigue, corrosion, or accidental...

  2. 14 CFR 23.573 - Damage tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... (2) The growth rate or no-growth of damage that may occur from fatigue, corrosion, manufacturing... component, subcomponent, element, or coupon tests must be done to establish the fatigue scatter factor and... determination of the probable locations and modes of damage due to fatigue, corrosion, or accidental...

  3. 14 CFR 23.573 - Damage tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... (2) The growth rate or no-growth of damage that may occur from fatigue, corrosion, manufacturing... component, subcomponent, element, or coupon tests must be done to establish the fatigue scatter factor and... determination of the probable locations and modes of damage due to fatigue, corrosion, or accidental...

  4. 14 CFR 23.573 - Damage tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... (2) The growth rate or no-growth of damage that may occur from fatigue, corrosion, manufacturing... component, subcomponent, element, or coupon tests must be done to establish the fatigue scatter factor and... determination of the probable locations and modes of damage due to fatigue, corrosion, or accidental...

  5. Corrosion Fatigue Crack Growth Behavior at Notched Hole in 7075 T6 Under Different Biaxial Stress Ratios

    DTIC Science & Technology

    2016-08-18

    constant for Paris law (unit less) CF corrosion fatigue da/dN rate of crack growth per cycle (mm/cycle) DOD Department of Defense G...31]. When these different factors failure modes are combined, the failure occurs sooner. Corrosion fatigue ( CF ) occurs when the crack generated by...Intrusion and Extrusion of Fatigue Crack Initiation [30]. 2.2 Corrosion Fatigue Corrosion fatigue ( CF ) is one of the most complicated topics of

  6. Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure-Part II: Finite element applications

    NASA Astrophysics Data System (ADS)

    Máirtín, Éamonn Ó.; Parry, Guillaume; Beltz, Glenn E.; McGarry, J. Patrick

    2014-02-01

    This paper, the second of two parts, presents three novel finite element case studies to demonstrate the importance of normal-tangential coupling in cohesive zone models (CZMs) for the prediction of mixed-mode interface debonding. Specifically, four new CZMs proposed in Part I of this study are implemented, namely the potential-based MP model and the non-potential-based NP1, NP2 and SMC models. For comparison, simulations are also performed for the well established potential-based Xu-Needleman (XN) model and the non-potential-based model of van den Bosch, Schreurs and Geers (BSG model). Case study 1: Debonding and rebonding of a biological cell from a cyclically deforming silicone substrate is simulated when the mode II work of separation is higher than the mode I work of separation at the cell-substrate interface. An active formulation for the contractility and remodelling of the cell cytoskeleton is implemented. It is demonstrated that when the XN potential function is used at the cell-substrate interface repulsive normal tractions are computed, preventing rebonding of significant regions of the cell to the substrate. In contrast, the proposed MP potential function at the cell-substrate interface results in negligible repulsive normal tractions, allowing for the prediction of experimentally observed patterns of cell cytoskeletal remodelling. Case study 2: Buckling of a coating from the compressive surface of a stent is simulated. It is demonstrated that during expansion of the stent the coating is initially compressed into the stent surface, while simultaneously undergoing tangential (shear) tractions at the coating-stent interface. It is demonstrated that when either the proposed NP1 or NP2 model is implemented at the stent-coating interface mixed-mode over-closure is correctly penalised. Further expansion of the stent results in the prediction of significant buckling of the coating from the stent surface, as observed experimentally. In contrast, the BSG model

  7. 76 FR 75435 - Fatigue Tolerance Evaluation of Metallic Structures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ... with international standards. DATES: Effective January 31, 2012. ADDRESSES: For information on where to... fatigue substantiation technology. It will also harmonize this standard with international standards for... 2.9 11.2 56 9 25.4 2.9 22.5 100 03/16/2011 II. Background Rotorcraft fatigue strength reduction or...

  8. Fatigue of composites

    NASA Technical Reports Server (NTRS)

    Salkind, M. J.

    1972-01-01

    The failure mechanisms in the fatigue of composite materials are analyzed in terms of the requirements for designing fatigue-critical composite structures. Fiber reinforced polymers, fiber reinforced metals, fatigue of composite structures, and composite design considerations are discussed. It is concluded that composite materials offer the engineer the opportunity for tailoring stiffness in different directions for designing dynamic components.

  9. [Fatigue and depression].

    PubMed

    Hell, Daniel

    2015-04-22

    Fatigue is characterised in an overview of the literature as a specific phenomenon of depression. Its differential diagnosis is discussed. Distinctions and correspondences to burnout are elaborated. Fatigue is not an obligatory symptom of depressive episodes, although it can contribute to depressive developments. The importance of fatigue in depressive episodes and its therapy is shown with the help of a circular model of depression.

  10. Fatigue of notched fiber composite laminates - Analytical and experimental evaluation

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. V.; Rosen, B. W.; Mclaughlin, P. V., Jr.; Pipes, R. B.

    1977-01-01

    Axial cracking in the load direction and transverse cracking across notched boron/epoxy laminate specimens subjected to tension/tension fatigue loading are studied both theoretically and experimentally. The fatigue analysis, which allows for the computation of residual strength and the determination of the preferred mode of crack propagation, is reviewed; static and fatigue data for boron/epoxy lamina are investigated with the aim of characterizing fatigue growth and residual strength as a function of the number of load cycles. It is suggested that correlation between the theory and the experiment may be limited by lack of a capability to predict the growth of delaminations.

  11. Low-cycle corrosion fatigue of Zircaloy-2 in iodine atmospheres

    NASA Astrophysics Data System (ADS)

    Kubo, T.; Motomiya, T.; Wakashima, Y.

    1986-09-01

    Low-cycle fatigue tests have been performed on Zircaloy-2 by a reversed-bending method in inert and iodine atmospheres at 623 K. Fatigue lives in both atmospheres followed the Coffin-Manson law. Cracks propagated by a transgranular shear mode, and the propagation was the process controlling fatigue life in an inert atmosphere. Fatigue life in a high concentration of iodine vapour was significantly shorter than in an inert atmosphere. The iodine vapour caused brittle fracture of a specimen mainly by the transgranular cleavage mode, and an accelerated crack propagation rate. The minimum vapour pressure of iodine to cause brittle fracture under fatigue conditions was about 27 Pa.

  12. Fatigue behavior of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Mall, S.

    1983-01-01

    The fatigue damage mechanism of composite to composite adhesively bonded joints was characterized. The mechanics of the possible modes of fatigue damage propagation in these joints when subjected to constant amplitude cyclic mechanical loading were investigated. The possible failure modes in composite bonded joints may be cyclic debonding (i.e., progressive separation of the adhesive), interlaminar damage (delamination), adherend fatigue or a combination of these. Two composite systems - graphite/epoxy adhesively bonded to graphite/epoxy and Kevlar 49/epoxy adhesively bonded to Kevlar 49/epoxy were investigated. Both composite systems consisted of quasi-isotropic lay-ups, i.e., 0 deg/-45 deg/+45 deg/90 degs. The two adhesives, employed in the study were (1) EC 3445 with cure temperature of 250 F for secondary bonding and (2) FM 300 with cure temperature of 350 F for co-cure bonding.

  13. Different modes of anthracycline interaction with topoisomerase II. Separate structures critical for DNA-cleavage, and for overcoming topoisomerase II-related drug resistance.

    PubMed

    Jensen, P B; Sørensen, B S; Sehested, M; Demant, E J; Kjeldsen, E; Friche, E; Hansen, H H

    1993-05-25

    In contrast to the classic anthracyclines (doxorubicin and daunorubicin), aclarubicin (ACLA) does not stimulate topoisomerase II (topo II) mediated DNA-cleavage. This distinction may be important with respect to topo II-related drug resistance, and the aim of this study was to clarify drug-structures responsible for this difference. Various ACLA analogs were tested for: (a) interaction with purified topo II, (b) induction of DNA cleavage in cells, (c) cellular uptake and (d) cytotoxicity. A remarkable distinction was seen between analogs containing the chromophore aklavinone (AKV) (e.g. ACLA) which have a carboxymethyl group (COOCH3) at C-10 and drugs with a beta-rhodomycinone (RMN) chromophore with hydroxyl groups at C-10 and at C-11. Thus, RMN-containing analogs, including the aglycone RMN itself, effectively stimulated topo II-mediated DNA cleavage. In contrast, AKV-containing drugs inhibited DNA cleavage and antagonized cytotoxicity mediated by RMN-containing drugs. In OC-NYH/VM cells, exhibiting multidrug resistance due to an altered topo II phenotype (at-MDR), cross-resistance was only seen to the RMN-containing drugs whereas no cross-resistance was seen to the non-DNA cleaving AKV-containing compounds. Thus, our data show that one domain in the anthracycline is of particular importance for the interaction with topo II, namely the positions C-10 and C-11 in the chromophore, and further that at-MDR was circumvented by a COOCH3 substitution at position C-10. These findings may provide guidance for the synthesis and development of new analogs with activity in at-MDR cells.

  14. Numerical investigations with a hybrid isentropic-sigma model. I - Normal-mode characteristics. II - The inclusion of moist processes

    NASA Technical Reports Server (NTRS)

    Pierce, R. B.; Johnson, Donald R.; Reames, Fred M.; Zapotocny, Tom H.; Wolf, Bart J.

    1991-01-01

    The normal-mode characteristics of baroclinically amplifying disturbances were numerically investigated in a series of adiabatic simulations by a hybrid isentropic-sigma model, demonstrating the effect of coupling an isentropic-coordinate free atmospheric domain with a sigma-coordinate PBL on the normal-mode characteristics. Next, the normal-mode model was modified by including a transport equation for water vapor and adiabatic heating by condensation. Simulations with and without a hydrological component showed that the overall effect of latent heat release is to markedly enhance cyclogenesis and frontogenesis.

  15. Mechanical fatigue of thin copper foil

    SciTech Connect

    Merchant, H.D.; Minor, M.G.; Liu, Y.L.

    1999-09-01

    The electrodeposited and the rolled 12 to 35 {micro}m thick copper foils are subjected to the bending/unbending strain-controlled flex fatigue over a wide range of strain amplitudes. The fatigue life is associated with an increase in electrical resistance of the specimen beyond a preassigned threshold. For each foil type, in the rolled or as-deposited as well as in the (recrystallization-like) annealed conditions, the inverse Coffin-Manson (C-M) relationship between strain amplitude ({Delta}{epsilon}/2) and fatigue life (N{sub f}) is established in the high {Delta}{epsilon}/2 (low N{sub f}) and the low {Delta}{epsilon}/2 (high N{sub f}) regimes. The N{sub f}, {Delta}{epsilon}/2, and C-M slopes (c,b) are utilized to calculate the cyclic strain hardening (n{prime}) and fatigue ductility (D{sub f}) parameters. It is shown that for a given foil thickness, an universal relationship exists between D{sub f} and the strength ({sigma}) normalized fatigue life (N{sub f}/{sigma}). The propagation of fatigue crack through the foil thickness and across the sample width is related to the unique fine grain structure for each foil type: pancaked grains for the rolled foil and equiaxed grains for the electrodeposited foil. The fatal failure corresponds to convergence of the through-thickness and the across-the-width fatigue cracks. The variations in (i) electrical resistance, (ii) mid-thickness microhardness and grain structure and (iii) dislocation configurations with fatigue are monitored. Except for a small but significant fatigue induced softening (or hardening), nonconvincing evidence of strain localization (and the associated dislocation configurations generally observed for the bulk samples) has been found.

  16. High temperature tension-compression fatigue behavior of a tungsten copper composite

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Gabb, Timothy P.

    1990-01-01

    The high temperature fatigue of a (O)12 tungsten fiber reinforced copper matrix composite was investigated. Specimens having fiber volume percentages of 10 and 36 were fatigued under fully-reversed, strain-controlled conditions at both 260 and 560 C. The fatigue life was found to be independent of fiber volume fraction because fatigue damage preferentially occurred in the matrix. Also, the composite fatigue lives were shorter at 560 C as compared to 260 C due to changes in mode of matrix failure. On a total strain basis, the fatigue life of the composite at 560 C was the same as the life of unreinforced copper, indicating that the presence of the fibers did not degrade the fatigue resistance of the copper matrix in this composite system. Comparison of strain-controlled fatigue data to previously-generated load-controlled data revealed that the strain-controlled fatigue lives were longer because of mean strain and mean stress effects.

  17. Study of NBI-driven chirping mode properties and radial location by the heavy ion beam probe in the TJ-II stellarator

    NASA Astrophysics Data System (ADS)

    Melnikov, A. V.; Eliseev, L. G.; Castejón, F.; Hidalgo, C.; Khabanov, P. O.; Kozachek, A. S.; Krupnik, L. I.; Liniers, M.; Lysenko, S. E.; de Pablos, J. L.; Sharapov, S. E.; Ufimtsev, M. V.; Zenin, V. N.; HIBP Group; TJ-II Team

    2016-11-01

    Alfvén eigenmodes (AEs) were studied in low magnetic shear flexible heliac TJ-II (B 0  =  0.95 T, R 0  =  1.5 m, < a>   =  0.22 m) neutral beam injection (NBI) heated plasmas (P NBI  ⩽  1.1 MW, E NBI  =  32 keV) using the heavy ion beam probe (HIBP). L-mode hydrogen plasmas heated with co-, counter- and balanced-NBI and electron cyclotron resonance heating (ECRH) were investigated in various magnetic configurations with rotational transform ι(a)/2π  =  1/q ~ 1.5-1.6. The HIBP diagnostic is capable of simultaneously measuring the oscillations of the plasma electric potential, density and poloidal magnetic field. In earlier studies chirping modes have been observed with 250 kHz  <  f AE  <  380 kHz in combined ECR and NBI heated plasmas at low density {{\\bar{n}}\\text{e}}   =  (0.3-1.5)  ×  1019 m-3. In this paper we report the observation of chirping modes obtained with NBI only in plasmas with densities similar to those of earlier studies and obtained after lithium evaporation in the vacuum vessel. The absence of ECRH in the discharges studied here shows that ECRH is not a necessary ingredient to obtain chirping modes in TJ-II but rather a tool for obtaining low-density discharges. Using the HIBP we deduce that the location of the AE chirping mode is  -0.8  <  ρ  <  0.8. Chirping modes have a specific spatial structure: electric potential perturbations have a ballooning character, while the density and B pol perturbations are nearly symmetric for both ECRH  +  NBI and NBI-only plasmas. On TJ-II, the dominant effect on the nonlinear evolution of the AE from the chirping state to the steady-frequency state is the magnetic configuration, determined by the vacuum ι and plasma current I pl.

  18. Cognitive and Physical Fatigue Tasks Enhance Pain, Cognitive Fatigue and Physical Fatigue in People with Fibromyalgia

    PubMed Central

    Dailey, Dana L; Keffala, Valerie J; Sluka, Kathleen A

    2014-01-01

    Objective Fibromyalgia is a condition characterized by chronic widespread muscle pain and fatigue. The primary objective of this study was to determine if pain, perceived cognitive fatigue, and perceived physical fatigue were enhanced in participants with fibromyalgia compared to healthy controls during a cognitive fatigue task, a physical fatigue task and a dual fatigue task. Methods Twenty four people with fibromyalgia and 33 healthy controls completed pain, fatigue and function measures. A cognitive fatigue task (Controlled Oral Word Association Test) and physical fatigue task (Valpar peg test) were done individually and combined for a dual fatigue task. Resting pain, perceived cognitive fatigue and perceived physical fatigue were assessed during each task using visual analogue scales. Function was assessed with shoulder range of motion and grip. Results People with fibromyalgia had significantly higher increases in pain, cognitive fatigue and physical fatigue when compared to healthy controls after completion of a cognitive fatigue task, a physical fatigue task, or a dual fatigue task (p<0.01). People with fibromyalgia performed equivalently on measures of physical performance and cognitive performance on the physical and cognitive fatigue tasks, respectively. Conclusions These data show that people with fibromyalgia show larger increases in pain, perceived cognitive fatigue and perceived physical fatigue to both cognitive and physical fatigue tasks compared to healthy controls. The increases in pain and fatigue during cognitive and physical fatigue tasks could influence subject participation in daily activities and rehabilitation. PMID:25074583

  19. Fatigue crack identification method based on strain amplitude changing

    NASA Astrophysics Data System (ADS)

    Guo, Tiancai; Gao, Jun; Wang, Yonghong; Xu, Youliang

    2017-09-01

    Aiming at the difficulties in identifying the location and time of crack initiation in the castings of helicopter transmission system during fatigue tests, by introducing the classification diagnostic criteria of similar failure mode to find out the similarity of fatigue crack initiation among castings, an engineering method and quantitative criterion for detecting fatigue cracks based on strain amplitude changing is proposed. This method is applied on the fatigue test of a gearbox housing, whose results indicates: during the fatigue test, the system alarms when SC strain meter reaches the quantitative criterion. The afterwards check shows that a fatigue crack less than 5mm is found at the corresponding location of SC strain meter. The test result proves that the method can provide accurate test data for strength life analysis.

  20. Physical Investigations of Small Particles: (I) Aerosol Particle Charging and Flux Enhancement and (II) Whispering Gallery Mode Sensing

    NASA Astrophysics Data System (ADS)

    Lopez-Yglesias, Xerxes

    of the molecule and the electromagnetic interaction between the molecule and particle, especially for the neutral particle case, are completely ignored, or, as is often the case for a permanent dipole vapor species, strongly underestimated. Comparing our model to these classical models we determine an "enhancement factor" to characterize how important the addition of these physical parameters and processes is to the understanding of particle nucleation and growth. Part II: Whispering gallery mode (WGM) optical biosensors are capable of extraordinarily sensitive specific and non-specific detection of species suspended in a gas or fluid. Recent experimental results suggest that these devices may attain single-molecule sensitivity to protein solutions in the form of stepwise shifts in their resonance wavelength, lambdaR, but present sensor models predict much smaller steps than were reported. This study examines the physical interaction between a WGM sensor and a molecule adsorbed to its surface, exploring assumptions made in previous efforts to model WGM sensor behavior, and describing computational schemes that model the experiments for which single protein sensitivity was reported. The resulting model is used to simulate sensor performance, within constraints imposed by the limited material property data. On this basis, we conclude that nonlinear optical effects would be needed to attain the reported sensitivity, and that, in the experiments for which extreme sensitivity was reported, a bound protein experiences optical energy fluxes too high for such effects to be ignored.

  1. Fatigue handbook: Offshore steel structures

    SciTech Connect

    Almarnaess, A.

    1985-01-01

    The contents of this book are: Overview of Offshore Steel Structures; Loads on Ocean Structures; Fracture Mechanics As a Tool in Fatigue Analysis; Basic Fatigue Properties of Welded Joints; Significance of Defects; Improving the Fatigue Strength of Welded Joints; Effects of Marine Environment and Cathodic Protection on Fatigue of Structural Steels Fatigue of Tubular Joints; Unstable Fracture; Fatigue Life Calculations; and Fatigue in Building Codes Background and Applications.

  2. Fatigue life prediction under service load considering strengthening effect of loads below fatigue limit

    NASA Astrophysics Data System (ADS)

    Zhao, Lihui; Zheng, Songlin; Feng, Jinzhi

    2014-11-01

    Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to a heavy structure. Because these methods are established on the basis that load cycles would only cause fatigue damage, ignore the strengthening effect of loads. Based on Palmgren-Miner Rule (PMR), this paper introduces a new method for fatigue life prediction under service loadings by taking into account the strengthening effect of loads below the fatigue limit. In this method, the service loadings are classified into three categories: damaging load, strengthening load and none-effect load, and the process for fatigue life prediction is divided into two stages: stage I and stage II, according to the best strengthening number of cycles. During stage I, fatigue damage is calculated considering both the strengthening and damaging effect of load cycles. While during stage II, only the damaging effect is considered. To validate this method, fatigue lives of automobile half shaft and torsion beam rear axle are calculated based on the new method and traditional methods, such as PMR and Modified Miner Rule (MMR), and fatigue tests of the two components are conducted under service loading histories. The tests results show that the percentage errors of the predicted life with the new method to mean life of tests for the two components are -3.78% and -1.76% separately, much lesser than that with PMR and MMR. By considering the strengthening effect of loads below the fatigue limit, the new method can significantly improve the accuracy for fatigue life prediction. Thus lightweight design can be fully realized in the design stage.

  3. The versatile binding mode of transition-state analogue inhibitors of tyrosinase towards dicopper(II) model complexes: experimental and theoretical investigations.

    PubMed

    Orio, Maylis; Bochot, Constance; Dubois, Carole; Gellon, Gisèle; Hardré, Renaud; Jamet, Hélène; Luneau, Dominique; Philouze, Christian; Réglier, Marius; Serratrice, Guy; Belle, Catherine

    2011-11-25

    We describe 2-mercaptopyridine-N-oxide (HSPNO) as a new and efficient competitive inhibitor of mushroom tyrosinase (K(IC) =3.7 μM). Binding studies of HSPNO and 2-hydroxypyridine-N-oxide (HOPNO) on dinuclear copper(II) complexes [Cu(2)(BPMP)(μ-OH)](ClO(4))(2) (1; HBPMP=2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methylphenol) and [Cu(2)(BPEP)(μ-OH)](ClO(4))(2)) (2; HBPEP=2,6-bis{bis[2-(2-pyridyl)ethyl]aminomethyl}-4-methylphenol), known to be functional models for the tyrosinase diphenolase activity, have been performed. A combination of structural data, spectroscopic studies, and DFT calculations evidenced the adaptable binding mode (bridging versus chelating) of HOPNO in relation to the geometry and chelate size of the dicopper center. For comparison, binding studies of HSPNO and kojic acid (5-hydroxy-2-(hydroxymethyl)-4-pyrone) on dinuclear complexes were performed. A theoretical approach has been developed and validated on HOPNO adducts to compare the binding mode on the model complexes. It has been applied for HSPNO and kojic acid. Although results for HSPNO were in line with those obtained with HOPNO, thus reflecting their chemical similarity, we showed that the bridging mode was the most preferential binding mode for kojic acid on both complexes.

  4. Strategies for Rapid Muscle Fatigue Reduction during FES Exercise in Individuals with Spinal Cord Injury: A Systematic Review

    PubMed Central

    Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Hasnan, Nazirah; Abdul Wahab, Ahmad Khairi; Davis, Glen M.

    2016-01-01

    Background Rapid muscle fatigue during functional electrical stimulation (FES)-evoked muscle contractions in individuals with spinal cord injury (SCI) is a significant limitation to attaining health benefits of FES-exercise. Delaying the onset of muscle fatigue is often cited as an important goal linked to FES clinical efficacy. Although the basic concept of fatigue-resistance has a long history, recent advances in biomedical engineering, physiotherapy and clinical exercise science have achieved improved clinical benefits, especially for reducing muscle fatigue during FES-exercise. This review evaluated the methodological quality of strategies underlying muscle fatigue-resistance that have been used to optimize FES therapeutic approaches. The review also sought to synthesize the effectiveness of these strategies for persons with SCI in order to establish their functional impacts and clinical relevance. Methods Published scientific literature pertaining to the reduction of FES-induced muscle fatigue was identified through searches of the following databases: Science Direct, Medline, IEEE Xplore, SpringerLink, PubMed and Nature, from the earliest returned record until June 2015. Titles and abstracts were screened to obtain 35 studies that met the inclusion criteria for this systematic review. Results Following the evaluation of methodological quality (mean (SD), 50 (6) %) of the reviewed studies using the Downs and Black scale, the largest treatment effects reported to reduce muscle fatigue mainly investigated isometric contractions of limited functional and clinical relevance (n = 28). Some investigations (n = 13) lacked randomisation, while others were characterised by small sample sizes with low statistical power. Nevertheless, the clinical significance of emerging trends to improve fatigue-resistance during FES included (i) optimizing electrode positioning, (ii) fine-tuning of stimulation patterns and other FES parameters, (iii) adjustments to the mode and

  5. Strategies for Rapid Muscle Fatigue Reduction during FES Exercise in Individuals with Spinal Cord Injury: A Systematic Review.

    PubMed

    Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Hasnan, Nazirah; Abdul Wahab, Ahmad Khairi; Davis, Glen M

    2016-01-01

    Rapid muscle fatigue during functional electrical stimulation (FES)-evoked muscle contractions in individuals with spinal cord injury (SCI) is a significant limitation to attaining health benefits of FES-exercise. Delaying the onset of muscle fatigue is often cited as an important goal linked to FES clinical efficacy. Although the basic concept of fatigue-resistance has a long history, recent advances in biomedical engineering, physiotherapy and clinical exercise science have achieved improved clinical benefits, especially for reducing muscle fatigue during FES-exercise. This review evaluated the methodological quality of strategies underlying muscle fatigue-resistance that have been used to optimize FES therapeutic approaches. The review also sought to synthesize the effectiveness of these strategies for persons with SCI in order to establish their functional impacts and clinical relevance. Published scientific literature pertaining to the reduction of FES-induced muscle fatigue was identified through searches of the following databases: Science Direct, Medline, IEEE Xplore, SpringerLink, PubMed and Nature, from the earliest returned record until June 2015. Titles and abstracts were screened to obtain 35 studies that met the inclusion criteria for this systematic review. Following the evaluation of methodological quality (mean (SD), 50 (6) %) of the reviewed studies using the Downs and Black scale, the largest treatment effects reported to reduce muscle fatigue mainly investigated isometric contractions of limited functional and clinical relevance (n = 28). Some investigations (n = 13) lacked randomisation, while others were characterised by small sample sizes with low statistical power. Nevertheless, the clinical significance of emerging trends to improve fatigue-resistance during FES included (i) optimizing electrode positioning, (ii) fine-tuning of stimulation patterns and other FES parameters, (iii) adjustments to the mode and frequency of exercise training

  6. Fatigue Characterization of Functionally Graded Metallic Alloys

    SciTech Connect

    Silva, F. S.

    2008-02-15

    Functionally graded components exhibit spatial variations of mechanical properties in contrast with, and as an alternative to, purely homogeneous components. A large class of graded materials, however, are in fact mostly homogeneous materials with property variations (chemical or mechanical) restricted to a specific area or layer produced by applying for example a coating or by introducing sub-surface residual stresses. However, it is also possible to obtain graded materials with a smooth transition of mechanical properties along the entire component, for example in a 40 mm component. This is possible, for example, by using centrifugal casting technique or incremental melting and solidification technique. In this paper we will study fully metallic functionally graded components with a smooth gradient, focusing on fatigue crack propagation. Fatigue propagation will be assessed in the direction parallel to the gradation (in different homogeneous layers of the functionally graded component) to assess what would be fatigue crack propagation on the direction perpendicular to the gradation. Fatigue crack growth rate (standard mode I fatigue crack growth) will be correlated to the mode I stress intensity factor range. Other mechanical properties of different layers of the component (Young's modulus) will also be considered in this analysis. The effect of residual stresses along the component gradation on crack propagation will also be taken into account. A qualitative analysis of the effects of some important features, present in functionally graded materials, will be made based on the obtained results.

  7. Fatigue Characterization of Functionally Graded Metallic Alloys

    NASA Astrophysics Data System (ADS)

    Silva, F. S.

    2008-02-01

    Functionally graded components exhibit spatial variations of mechanical properties in contrast with, and as an alternative to, purely homogeneous components. A large class of graded materials, however, are in fact mostly homogeneous materials with property variations (chemical or mechanical) restricted to a specific area or layer produced by applying for example a coating or by introducing sub-surface residual stresses. However, it is also possible to obtain graded materials with a smooth transition of mechanical properties along the entire component, for example in a 40 mm component. This is possible, for example, by using centrifugal casting technique or incremental melting and solidification technique. In this paper we will study fully metallic functionally graded components with a smooth gradient, focusing on fatigue crack propagation. Fatigue propagation will be assessed in the direction parallel to the gradation (in different homogeneous layers of the functionally graded component) to assess what would be fatigue crack propagation on the direction perpendicular to the gradation. Fatigue crack growth rate (standard mode I fatigue crack growth) will be correlated to the mode I stress intensity factor range. Other mechanical properties of different layers of the component (Young's modulus) will also be considered in this analysis. The effect of residual stresses along the component gradation on crack propagation will also be taken into account. A qualitative analysis of the effects of some important features, present in functionally graded materials, will be made based on the obtained results.

  8. Scalable High-Performance Algorithm for the Simulation of Exciton Dynamics. Application to the Light-Harvesting Complex II in the Presence of Resonant Vibrational Modes.

    PubMed

    Kreisbeck, Christoph; Kramer, Tobias; Aspuru-Guzik, Alán

    2014-09-09

    The accurate simulation of excitonic energy transfer in molecular complexes with coupled electronic and vibrational degrees of freedom is essential for comparing excitonic system parameters obtained from ab initio methods with measured time-resolved spectra. Several exact methods for computing the exciton dynamics within a density-matrix formalism are known but are restricted to small systems with less than 10 sites due to their computational complexity. To study the excitonic energy transfer in larger systems, we adapt and extend the exact hierarchical equation of motion (HEOM) method to various high-performance many-core platforms using the Open Compute Language (OpenCL). For the light-harvesting complex II (LHC II) found in spinach, the HEOM results deviate from predictions of approximate theories and clarify the time scale of the transfer process. We investigate the impact of resonantly coupled vibrations on the relaxation and show that the transfer does not rely on a fine-tuning of specific modes.

  9. Oxidation modes and thermodynamics of Fe II-III oxyhydroxycarbonate green rust: Dissolution-precipitation versus in situ deprotonation

    NASA Astrophysics Data System (ADS)

    Ruby, Christian; Abdelmoula, Mustapha; Naille, Sébastien; Renard, Aurélien; Khare, Varsha; Ona-Nguema, Georges; Morin, Guillaume; Génin, Jean-Marie R.

    2010-02-01

    Fe II-III hydroxycarbonate green rust GR(CO 32-), Fe II4 Fe III2 (OH) 12 CO 3·3H 2O, is oxidized in aqueous solutions with varying reaction kinetics. Rapid oxidation with either H 2O 2 or dissolved oxygen under neutral and alkaline conditions leads to the formation of ferric oxyhydroxycarbonate GR(CO 32-)∗, Fe III6 O 12 H 8 CO 3·3H 2O, via a solid-state reaction. By decreasing the flow of oxygen bubbled in the solution, goethite α-FeOOH forms by dissolution-precipitation mechanism whereas a mixture of non-stoichiometric magnetite Fe (3-x)O 4 and goethite is observed for lower oxidation rates. The intermediate Fe II-III oxyhydroxycarbonate of formula Fe II6(1-x) Fe III6x O 12 H 2(7-3x) CO 3·3H 2O, i.e. GR( x)∗ for which x ɛ [1/3, 1], is the synthetic compound that is homologous to the fougerite mineral present in hydromorphic gleysol; in situ oxidation accounts for the variation of ferric molar fraction x = [Fe III]/{[Fe II]+[Fe III]} observed in the field as a function of depth and season but limited to the range [1/3, 2/3]. The domain of stability for partially oxidized green rust is observed in the Eh-pH Pourbaix diagrams if thermodynamic properties of GR( x)∗ is compared with those of lepidocrocite, γ-FeOOH, and goethite, α-FeOOH. Electrochemical equilibrium between GR( x)∗ and Fe II in solution corresponds to Eh-pH conditions close to those measured in the field. Therefore, the reductive dissolution of GR( x)∗ can explain the relatively large concentration of Fe II measured in aqueous medium of hydromorphic soils containing fougerite.

  10. Comparative internal kinematics of the H II regions in interacting and isolated galaxies: implications for massive star formation modes

    NASA Astrophysics Data System (ADS)

    Zaragoza-Cardiel, Javier; Beckman, John E.; Font, Joan; García-Lorenzo, Begoña; Camps-Fariña, Artemi; Fathi, Kambiz; James, Philip A.; Erroz-Ferrer, Santiago; Barrera-Ballesteros, Jorge; Cisternas, Mauricio

    2015-08-01

    We have observed 12 interacting galaxy pairs using the Fabry-Perot interferometer GH αFaS (Galaxy H α Fabry-Perot system) on the 4.2-m William Herschel Telescope at the Observatorio del Roque de los Muchachos, La Palma. We present here the Hα surface brightness, velocity and velocity dispersion maps for the 10 systems we have not previously observed using this technique, as well as the physical properties (sizes, Hα luminosities and velocity dispersion) of 1259 H II regions from the full sample. We also derive the physical properties of 1054 H II regions in a sample of 28 isolated galaxies observed with the same instrument in order to compare the two populations of H II regions. We find a population of the brightest H II regions for which the scaling relations, for example the relation between the Hα luminosity and the radius, are clearly distinct from the relations for the regions of lower luminosity. The regions in this bright population are more frequent in the interacting galaxies. We find that the turbulence, and also the star formation rate (SFR), are enhanced in the H II regions in the interacting galaxies. We have also extracted the Hα equivalent widths for the H II regions of both samples, and we have found that the distribution of H II region ages coincides for the two samples of galaxies. We suggest that the SFR enhancement is brought about by gas flows induced by the interactions, which give rise to gravitationally bound gas clouds which grow further by accretion from the flowing gas, producing conditions favourable to star formation.

  11. Multiaxial fatigue low cycle fatigue testing

    NASA Technical Reports Server (NTRS)

    Zamrik, S. Y.

    1985-01-01

    Multiaxial testing methods are reviewed. Advantages and disadvantages of each type test is discussed. Significant multiaxial data available in the literature is analyzed. The yield theories are compared for multiaxial fatigue analysis.

  12. Assessment of fatigue in Parkinson's disease: Indian perspective

    PubMed Central

    Paul, Birinder Singh; Singh, Amandeep; Jain, Dinesh; Singh, Gagandeep; Kaushal, Sandeep; Paul, Gunchan; Kaura, Karan

    2016-01-01

    Context: Fatigue is one of the most frequent nonmotor manifestations in Parkinson's disease (PD), having a major effect on quality of life but is not reported in Indian patients. Aims: To evaluate the frequency of fatigue in a cohort of PD population and its correlation with disease. Settings and Design: Fatigue Severity Scale (FSS) was translated and validated in local vernacular language. All patients of PD visiting neurology outpatient department of a tertiary care hospital. Subjects and Methods: A total of 150 patients were screened, and 104 were included in this study. They were divided into – Group I with fatigue (score of >4 in each item) and Group II without fatigue. Statistical Analysis: Data were analyzed by SPSS software version 20.0. Spearman correlation was used to evaluate the convergent validity of the FSS-Ind score with PD-related variables. The principal components analysis was applied to detect the domain structure of the FSS. Results: Of the total 104 patients, 68 (65.3%) patients experienced fatigue. The duration of disease was significantly more (P = 0.021) in Group I (4.39 ± 3.8 years) than in the Group II (3.13 ± 1.6 years). The severity of disease also showed a positive correlation with fatigue with 50.9% patients in H and Y stage >3 experiencing fatigue. 69.1% patients of tremor phenotype experienced fatigue as compared to 32.3% of rigid phenotype. There was no relation of fatigue with age, gender, H and Y stage, levodopa equivalent dose and mean Unified PD Rating Scale motor III score. Conclusions: Translated version of the FSS, FSS-Ind has high internal consistency and validity which supports its application as an effective tool in detecting fatigue in patients with PD. Fatigue in PD was related to duration and phenotype of the disease. PMID:27994352

  13. Bulk filling of Class II cavities with a dual-cure composite: Effect of curing mode and enamel etching on marginal adaptation

    PubMed Central

    Bortolotto, Tissiana; Roig, Miguel; Krejci, Ivo

    2014-01-01

    Objectives: This study attempted to find a simple adhesive restorative technique for class I and II cavities on posterior teeth. Study Design: The tested materials were a self-etching adhesive (Parabond, Coltène/Whaledent) and a dual-cure composite (Paracore, Coltène/Whaledent) used in bulk to restore the cavities. Class II MO cavities were performed and assigned to 4 groups depending on the orthophosphoric acid (H3PO4) conditioning of enamel and polymerization method used (chemical or dual). Specimens were subjected to quantitative marginal analysis before and after thermo-mechanical loading. Results: Higher percentages of marginal adaptation at the total margin length, both before and after thermo-mechanical loading, were found in groups in which enamel was etched with phosphoric acid, without significant differences between the chemically and dual-cured modes. The restorations performance was similar on enamel and dentin, obtaining low results of adaptation on occlusal enamel in the groups without enamel etching, the lowest scores were on cervical dentin in the group with no ortophosphoric acid and self-cured. Conclusions: A dual-cure composite applied in bulk on acid etched enamel obtained acceptable marginal adaptation results, and may be an alternative technique for the restoration of class II cavities. Key words:Dual-cure composite, bulk technique, class II restoration, selective enamel etching, marginal adaptation. PMID:25674316

  14. Fracture and fatigue in osteocytes.

    PubMed

    Mulargia, Simone; Dooley, Clodagh; Cristofolini, Luca; Taylor, David

    2014-11-01

    Fatigue is a common mode of mechanical failure which occurs when a material is subjected to repeated cycles at a strain level less than that needed for monotonic fracture. Fatigue has been observed and measured in many different materials but, until recently, not in cells. We devised a novel experiment which allowed us to create both monotonic failure and fatigue in the cellular processes of osteocytes within samples of bone (Dooley et al., European Cells and Materials 2014). In the present paper, we describe the results of further experiments and a computer simulation, which has allowed us to estimate the strain history of each sample tested and thus present, for the first time, strain/life data for cells. Failure occurred during the first cycle at strains of 0.1-0.2; at lower strains failure occurred after a number of cycles which depended inversely on the applied strain range. Scatter in the strain/life data was reduced when we allowed for the effects of mean stress using the Smith-Watson-Topper parameter. We confirmed that aspects of our experimental method (the types of microcrack used and the testing of fresh versus frozen samples) did not affect the results. Such information is useful because many cell types, including the cellular processes of osteocytes, experience cyclic strain in vivo.

  15. High Frequency Fatigue of Turbine Blade Material.

    DTIC Science & Technology

    1982-10-01

    TESTS 83 APPENDIX II - S-N DATA FOR INCONEL - 718 99...amplitude tests were run on sheet Inconel - 718 at 650*C. The data is presented as da/dM vs AK o plots and in tabular maj or form. These tests are included in...Kip 98 APPENDIX II S-N DATA FOR INCONEL - 718 During the early stages of this program, several fatigue life tests , (S-N tests ), were run on Inconel - 718

  16. Influence of the electron-phonon interaction on the temperature dependence of the phonon mode frequency in the II-VI compound solid solutions

    SciTech Connect

    Woźny, M. Cebulski, J.; Sheregii, E. M.; Marcelli, A.; Piccinini, M.

    2015-01-14

    We present an experimental investigation of the temperature dependence of the TO-phonon mode frequencies for the HgTe-based II-VI semiconductor solid solutions. In the case of the ternary Hg{sub 0.9}Zn{sub 0.1}Te solid solution was shown a discontinuity in the temperature dependence of the HgTe-like T{sub 0}-mode and of the ZnTe-like T{sub 1}-mode, similar to the Hg{sub 0.85}Cd{sub 0.15}Te system [Sheregii et al., Phys. Rev. Lett. 102, 045504 (2009)]. A generalization of the theoretical temperature shift of the phonon mode frequency as analytic equation is derived that includes both the anharmonic contribution and the electron-phonon e-p interaction which in this case is returnable—the electron subsystem effect on the phonon one. Data show that our equation satisfactorily describes the temperature shift of both Hg{sub 0.85}Cd{sub 0.15}Te and Hg{sub 0.90}Zn{sub 0.10}Te containing Dirac point (E{sub g} ≡ Γ{sub 6} – Γ{sub 8} = 0) although one of the two constants describing the anharmonic shift of the HgTe-like mode should be positive what is abnormal too. In the case of the Hg{sub 0.80}Cd{sub 0.20}Te and Hg{sub 0.763}Zn{sub 0.237}Te solid solution, the role of the returnable e-p contribution is negligible but a positive temperature shift for the HgTe-like modes occurs. This result does not allow to explain the positive temperature shift of these modes merely by the contribution of the (e-p) interaction. Indeed, the relativistic contribution to the chemical bonds induces an abnormal temperature shift of the electron states in Hg-based semiconductors—the effect is expected since the Hg d spin-orbit split contribution to chemical bonds may lead to an abnormal temperature shift of the HgTe-like modes.

  17. An Evaluation of the Mode of Action Framework for MutagenicCarcinogens Case Study II: Chromium (VI).

    EPA Science Inventory

    In response to the 2005 revised U.S Environmental Protection Agency’s (EPA) Cancer Guidelines, a strategy is being developed to include all mutagenicity and other genotoxicity data with any additional information to determine whether a carcinogen operates through a mutagenic mode...

  18. An Evaluation of the Mode of Action Framework for MutagenicCarcinogens Case Study II: Chromium (VI).

    EPA Science Inventory

    In response to the 2005 revised U.S Environmental Protection Agency’s (EPA) Cancer Guidelines, a strategy is being developed to include all mutagenicity and other genotoxicity data with any additional information to determine whether a carcinogen operates through a mutagenic mode...

  19. Spectral density of H-bonds. II. Intrinsic anharmonicity of the fast mode within the strong anharmonic coupling theory

    NASA Astrophysics Data System (ADS)

    Rekik, Najeh; Velcescu, Adina; Blaise, Paul; Henri-Rousseau, Olivier

    2001-11-01

    A quantum theoretical 2-D approach of the IR νX-H spectral density (SD) for symmetric or asymmetric intermediate or strong H-bonds is proposed. The presented model is based on the linear response theory; the strong anharmonic coupling theory (SACT) beyond the adiabatic approximation is used. The fast mode potential is described by an asymmetric double-well potential, whereas the slow mode is assumed to be harmonic. The slow and fast modes are assumed to be anharmonically coupled as in the SACT. The intrinsic anharmonicity of the fast mode and the anharmonicity related to the coupling between the slow and the fast modes are taken in an equal foot within quantum mechanics, without any semiclassical assumption. The relaxation is supposed given by a direct damping mechanism. When the barrier of the double-well asymmetric fast mode potential is very high, i.e. when the H-bond becomes weak, the computed theoretical SD reduces, as required, to that obtained in one of our precedent more simple approaches, dealing with weak H-bonds and working beyond the adiabatic approximation [Chem. Phys. 243 (1999) 229]. It reduces, within the adiabatic approximation, to the Franck-Condon progression of Rösch-Ratner (RR) [J. Chem. Phys. 61 (1974) 3444], and, in turn, to that of Maréchal-Witkowski (MW) [J. Chem. Phys. 48 (1968) 2697] when in this adiabatic approximation the damping is missing. When the anharmonic coupling between the slow and fast mode is missing, the behavior of the SDs is in good agreement with that which may be waited for a situation involving a 1-D asymmetric double well and thus the possibility of tunnelling. When the barrier is low, and the asymmetry is missing or weak, the changes induced by the asymmetric potential in the features of the Franck-Condon progression of the RR and MW model are more important than those in which the Fermi resonances or the Davydov coupling are acting. The model reproduces satisfactorily the increase in low frequency shift when

  20. Clinical neurophysiology of fatigue.

    PubMed

    Zwarts, M J; Bleijenberg, G; van Engelen, B G M

    2008-01-01

    Fatigue is a multidimensional concept covering both physiological and psychological aspects. Chronic fatigue is a typical symptom of diseases such as cancer, multiple sclerosis (MS), Parkinson's disease (PD) and cerebrovascular disorders but is also presented by people in whom no defined somatic disease has been established. If certain criteria are met, chronic fatigue syndrome can be diagnosed. The 4-item Abbreviated Fatigue Questionnaire allows the extent of the experienced fatigue to be assessed with a high degree of reliability and validity. Physiological fatigue has been well defined and originates in both the peripheral and central nervous system. The condition can be assessed by combining force and surface-EMG measurements (including frequency analyses and muscle-fibre conduction estimations), twitch interpolation, magnetic stimulation of the motor cortex and analysis of changes in the readiness potential. Fatigue is a well-known phenomenon in both central and peripheral neurological disorders. Examples of the former conditions are multiple sclerosis, Parkinson's disease and stroke. Although it seems to be a universal symptom of many brain disorders, the unique characteristics of the concomitant fatigue also point to a specific relationship with several of these syndromes. As regards neuromuscular disorders, fatigue has been reported in patients with post-polio syndrome, myasthenia gravis, Guillain-Barré syndrome, facioscapulohumeral dystrophy, myotonic dystrophy and hereditary motor and sensory neuropathy type-I. More than 60% of all neuromuscular patients suffer from severe fatigue, a prevalence resembling that of patients with MS. Except for several rare myopathies with specific metabolic derangements leading to exercise-induced muscle fatigue, most studies have not identified a prominent peripheral cause for the fatigue in this population. In contrast, the central activation of the diseased neuromuscular system is generally found to be suboptimal. The

  1. Anticancer Activity and Modes of Action of (arene) ruthenium(II) Complexes Coordinated to C-, N-, and O-ligands.

    PubMed

    Biersack, Bernhard

    2016-01-01

    An overview of anticancer active (arene)ruthenium(II) complexes coordinated to period 2 element-based ligand systems, i.e., carbon-, nitrogen-, and oxygen-coordinated ligands, is provided in this mini-review. A bridge is forged from the large group of anticancer active ruthenium compounds with monodentate and chelating nitrogen ligands via complexes of O,O-chelating ligands to organometallic ruthenium derivatives coordinated to carbon. (Arene)ruthenium(II) complexes with reduced side-effects and enhanced efficacy against cancer are highlighted. Pertinent literature is covered up to 2014.

  2. Effects of muscle fatigue on multi-muscle synergies.

    PubMed

    Singh, Tarkeshwar; Latash, Mark L

    2011-10-01

    We studied the effects of fatigue of ankle dorsiflexors on multi-muscle synergies defined as co-varied adjustments of elemental variables (M-modes) that stabilize a task-related performance variable (trajectory of the center of pressure, COP). M-modes were defined as muscle groups with parallel changes in activation levels. Healthy participants performed voluntary body sway in the anterior-posterior direction while trying to minimize sway in the medio-lateral direction at 0.25, 0.5, and 0.75 Hz. The trials were repeated before and during fatigue induced with a timed voluntary contraction against a constant load. Factor extraction using the principal component method was used to identify four M-modes within the space of integrated indices of muscle activity. Variance in the M-mode space at different phases across sway cycles was partitioned into two components, one that did not affect the average value of COP shift and the other that did. There were no significant effects of fatigue on variability of performance of the explicit task and on the amplitude of the COP shift. Variance of muscle activation indices and M-mode magnitudes increased during fatigue for muscles (and M-modes) both involved and not involved in the fatiguing exercise. Most of the M-mode variance increase was within the sub-space compatible with the unchanged COP trajectory resulting in an increase of the index of the multi-M-mode synergy. We conclude that one of the adaptive mechanisms to fatigue within a redundant multi-muscle system involves an increase in the variance of activation of non-fatigued muscles with a simultaneous increase in co-variation among muscle activations. The findings can be interpreted within the referent configuration hypothesis on the control of whole-body actions.

  3. Fatigue of cellular materials

    SciTech Connect

    Huang, J.S.; Lin, J.Y.

    1996-01-01

    The fatigue of cellular materials is analyzed using dimensional arguments. When the first unbroken cell wall ahead of the macrocrack tip fails after some cycles of loading, the macrocrack advances one cell diameter, giving the macrocrack growth rate of cellular materials. Paris law for microcrack propagation, Basquin law for high cycle fatigue and Coffin-Manson law for low cycle fatigue are employed in calculating the number of cycles to failure of the first unbroken cell wall ahead of the macrocrack tip. It is found that fatigue of cellular materials depends on cyclic stress intensity range, cell size, relative density and the fatigue parameters of the solid from which they are made. Theoretical modelling of fatigue of foams is compared to data in polymer foams; agreement is good.

  4. Compassion fatigue in nurses.

    PubMed

    Yoder, Elizabeth A

    2010-11-01

    Compassion fatigue, trigger situations, and coping strategies were investigated in hospital and home care nurses. The Professional Quality of Life Scale measured compassion fatigue, compassion satisfaction, and burnout. Narrative questions elicited trigger situations and coping strategies. Compassion fatigue scores were significantly different between nurses who worked 8- or 12-hour shifts. Fifteen percent of the participants had scores indicating risk of the compassion fatigue. There were significant differences in compassion satisfaction, depending on the unit worked and time as a nurse. The most common category of trigger situations was caring for the patient. Work-related and personal coping strategies were identified. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Fatigue behaviour of composites

    NASA Astrophysics Data System (ADS)

    Hartwig, G.; Hübner, R.; Knaak, S.; Pannkoke, C.

    An important design parameter for cyclically loaded structures (e.g. transport vessels) is the fatigue endurance limit. The cryogenic fatigue behaviour with different types of fibres and matrices has been investigated. The main emphasis it put on the behaviour of fibre dominated properties. It is surprising that the fatigue strength even of unidirectional fibre composites is strongly influenced by the matrix type. This will be discussed for carbon fibre composites with thermoplastic and duroplastic matrices under tensile and shear loading. For crossplies (with non-woven fabrics) the interaction between laminates controls the fatigue behaviour. The interaction depends on the matrix type and is different for tensile and shear loading.

  6. Neurobiological studies of fatigue

    PubMed Central

    Harrington, Mary E.

    2012-01-01

    Fatigue is a symptom associated with many disorders, is especially common in women and in older adults, and can have a huge negative influence on quality of life. Although most past research on fatigue uses human subjects instead of animal models, the use of appropriate animal models has recently begun to advance our understanding of the neurobiology of fatigue. In this review, results from animal models using immunological, developmental, or physical approaches to study fatigue are described and compared. Common across these animal models is that fatigue arises when a stimulus induces activation of microglia and/or increased cytokines and chemokines in the brain. Neurobiological studies implicate structures in the ascending arousal system, sleep executive control areas, and areas important in reward. In addition, the suprachiasmatic nucleus clearly plays an important role in homeostatic regulation of the neural network mediating fatigue. This nucleus responds to cytokines, shows decreased amplitude firing rate output in models of fatigue, and responds to exercise, one of our few treatments for fatigue. This is a young field but very important as the symptom of fatigue is common across many disorders and we do not have effective treatments. PMID:22841649

  7. Shear-flow trapped-ion-mode interaction revisited. II. Intermittent transport associated with low-frequency zonal flow dynamics

    SciTech Connect

    Ghizzo, A.; Palermo, F.

    2015-08-15

    We address the mechanisms underlying low-frequency zonal flow generation in turbulent system and the associated intermittent regime of ion-temperature-gradient (ITG) turbulence. This model is in connection with the recent observation of quasi periodic zonal flow oscillation at a frequency close to 2 kHz, at the low-high transition, observed in the ASDEX Upgrade [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)] and EAST tokamak [Xu et al., Phys. Rev. Lett 107, 125001 (2011)]. Turbulent bursts caused by the coupling of Kelvin-Helmholtz (KH) driven shear flows with trapped ion modes (TIMs) were investigated by means of reduced gyrokinetic simulations. It was found that ITG turbulence can be regulated by low-frequency meso-scale zonal flows driven by resonant collisionless trapped ion modes (CTIMs), through parametric-type scattering, a process in competition with the usual KH instability.

  8. Vertical structure of internal wave induced velocity for mode I and II solitary waves in two- and three-layer fluid

    NASA Astrophysics Data System (ADS)

    Gigiyatullin, Ayrat; Kurkin, Andrey; Kurkina, Oxana; Rouvinskaya, Ekaterina; Rybin, Artem

    2017-04-01

    With the use of the Gardner equation, or its variable-coefficient forms, the velocity components of fluid particles in the vertical section induced by a passage of internal waves can be estimated in weakly nonlinear limit. The horizontal velocity gives the greatest contribution into the local current speed. This is a typical property of long waves. This feature of an internal wave field may greatly contribute to the local sediment transport and/or resuspension. The velocity field induced by mode I and II internal solitary waves are studied. The contribution from second-order terms in asymptotic expansion into the horizontal velocity is estimated for the models of two- and three-layer fluid density stratification for solitons of positive and negative polarity, as well as for breathers of different shapes and amplitudes. The influence of the nonlinear correction manifests itself firstly in the shape of the lines of zero horizontal velocity: they are curved and the shape depends on the soliton amplitude and polarity while for the leading-order wave field they are horizontal. Also the wavefield accounting for the nonlinear correction for mode I waves has smaller maximal absolute values of negative velocities (near-surface for the soliton of elevation, and near-bottom for the soliton of depression) and larger maximums of positive velocities. Thus for the solitary internal waves of positive polarity weakly nonlinear theory overestimates the near-bottom velocities and underestimates the near-surface current. For solitary waves of negative polarity, which are the most typical for hydrological conditions of low and middle latitudes, the situation is the opposite. Similar estimations are produced for mode II waves, which possess more complex structure. The presented results of research are obtained with the support of the Russian Foundation for Basic Research grant 16-35-00413.

  9. Applications of single-walled carbon nanotubes and type-II quantum dots in photovoltaics and passive mode-locking saturable absorbers

    NASA Astrophysics Data System (ADS)

    Tang, Jau; Wang, Yong-Gang; Cheng, Shin-Min; Yu, Pyng; Huang, Kuo-Yen; Yuan, Chi-Tsu

    2012-10-01

    Using single-molecule confocal imaging techniques combined with time-correlated single-photon counting we investigated the electron transfer (ET) rates to the single-walled carbon nanotubes from various types of semiconductor hetero-nanocrystals of type-I or type-II band alignment. We observed significantly larger ET rate for type-II ZnSe/CdS dot-in-rod nanostructures as compared to type-I spherical CdSe/ZnS core/shell quantum-dots, and to CdSe/CdS dot-in-rod structures. We demonstrated that such rapid ET dynamics can compete with both Auger and radiative recombination processes, leading to potentially more effective photovoltaic operation. In another work, we used aligned single-walled carbon nanotubes as saturable absorbers for ps laser pulse generation. Using the vertical evaporation technique we fabricated saturable absorbers by transferring the water-soluble single wall carbon nanotubes onto a hydrophilic quartz substrate. The fast recovery times of the absorber were measured to be 136 fs and 790 fs. The modulation depth of the absorber was about 1.5%. Passive mode-locked Nd: GdVO4 laser using such an absorber was demonstrated. The continuous wave mode-locked pulses with the pulse duration of 12.4 ps and the repetition of 120 MHz were achieved. The maximum average output power of the mode-locked laser is 2.4 W at the pump power of 13 W. Such a kind of absorbers has potential to be put into practical use.

  10. Self-force via m-mode regularization and 2+1D evolution. II. Scalar-field implementation on Kerr spacetime

    SciTech Connect

    Dolan, Sam R.; Barack, Leor; Wardell, Barry

    2011-10-15

    This is the second in a series of papers aimed at developing a practical time-domain method for self-force calculations in Kerr spacetime. The key elements of the method are (i) removal of a singular part of the perturbation field with a suitable analytic 'puncture' based on the Detweiler-Whiting decomposition, (ii) decomposition of the perturbation equations in azimuthal (m-)modes, taking advantage of the axial symmetry of the Kerr background, (iii) numerical evolution of the individual m-modes in 2+1 dimensions with a finite-difference scheme, and (iv) reconstruction of the physical self-force from the mode sum. Here we report an implementation of the method to compute the scalar-field self-force along circular equatorial geodesic orbits around a Kerr black hole. This constitutes a first time-domain computation of the self-force in Kerr geometry. Our time-domain code reproduces the results of a recent frequency-domain calculation by Warburton and Barack, but has the added advantage of being readily adaptable to include the backreaction from the self-force in a self-consistent manner. In a forthcoming paper--the third in the series--we apply our method to the gravitational self-force (in the Lorenz gauge).

  11. The monotonic and fatigue behavior of CFCCs

    SciTech Connect

    Miriyala, N.; Liaw, P.K.; McHargue, C.J.; Snead, L.L.

    1996-04-01

    Flexure tests were performed to study the fabric orientation effects on the monotonic and fatigue behavior of two commercially available continuous fiber reinforced ceramic composites (CFCCs), namely (i) Nicalon fiber fabric reinforced alumina (Al{sub 2}O{sub 3}) matrix composite fabricated by a direct molten metal oxidation (DIMOX) process and, (ii) Nicalon fiber fabric reinforced silicon carbide (SiC) matrix composite fabricated by an isothermal chemical vapor infiltration (ICVI) process. The fabric orientation effects on the monotonic and fatigue behavior were strong in the Nicalon/Al{sub 2}O{sub 3} composite, while they were relatively weak in the Nicalon/SiC composite.

  12. The Effects of Hot Corrosion Pits on the Fatigue Resistance of a Disk Superalloy

    NASA Astrophysics Data System (ADS)

    Gabb, Timothy P.; Telesman, Jack; Hazel, Brian; Mourer, David P.

    2010-02-01

    The effects of hot corrosion pits on low-cycle fatigue life and failure modes of the disk superalloy ME3 were investigated. Low-cycle fatigue specimens were subjected to hot corrosion exposures producing pits, then tested at low and high temperatures. Fatigue lives and failure initiation points were compared to those of specimens without corrosion pits. Several tests were interrupted to estimate the fraction of fatigue life that fatigue cracks initiated at pits. Corrosion pits significantly reduced fatigue life by 60 to 98%. Fatigue cracks initiated at a very small fraction of life for high-temperature tests, but initiated at higher fractions in tests at low temperature. Critical pit sizes required to promote fatigue cracking were estimated based on measurements of pits initiating cracks on fracture surfaces.

  13. The Effects of Hot Corrosion Pits on the Fatigue Resistance of a Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Hazel, Brian; Mourer, David P.

    2009-01-01

    The effects of hot corrosion pits on low cycle fatigue life and failure modes of the disk superalloy ME3 were investigated. Low cycle fatigue specimens were subjected to hot corrosion exposures producing pits, then tested at low and high temperatures. Fatigue lives and failure initiation points were compared to those of specimens without corrosion pits. Several tests were interrupted to estimate the fraction of fatigue life that fatigue cracks initiated at pits. Corrosion pits significantly reduced fatigue life by 60 to 98 percent. Fatigue cracks initiated at a very small fraction of life for high temperature tests, but initiated at higher fractions in tests at low temperature. Critical pit sizes required to promote fatigue cracking were estimated, based on measurements of pits initiating cracks on fracture surfaces.

  14. Computational micromechanics of fatigue of microstructures in the HCF–VHCF regimes

    SciTech Connect

    Castelluccio, Gustavo M.; Musinski, William D.; McDowell, David L.

    2016-05-19

    Advances in higher resolution experimental techniques have shown that metallic materials can develop fatigue cracks under cyclic loading levels significantly below the yield stress. Indeed, the traditional notion of a fatigue limit can be recast in terms of limits associated with nucleation and arrest of fatigue cracks at the microstructural scale. Though fatigue damage characteristically emerges from irreversible dislocation processes at sub-grain scales, the specific microstructure attributes, environment, and loading conditions can strongly affect the apparent failure mode and surface to subsurface transitions. This paper discusses multiple mechanisms that occur during fatigue loading in the high cycle fatigue (HCF) to very high cycle fatigue (VHCF) regimes. We compare these regimes, focusing on strategies to bridge experimental and modeling approaches exercised at multiple length scales and discussing particular challenges to modeling and simulation regarding microstructure-sensitive fatigue driving forces and thresholds. Finally, we discuss some of the challenges in predicting the transition of failure mechanisms at different stress and strain amplitudes.

  15. Computational micromechanics of fatigue of microstructures in the HCF–VHCF regimes

    SciTech Connect

    Castelluccio, Gustavo M.; Musinski, William D.; McDowell, David L.

    2016-05-19

    Advances in higher resolution experimental techniques have shown that metallic materials can develop fatigue cracks under cyclic loading levels significantly below the yield stress. Indeed, the traditional notion of a fatigue limit can be recast in terms of limits associated with nucleation and arrest of fatigue cracks at the microstructural scale. Though fatigue damage characteristically emerges from irreversible dislocation processes at sub-grain scales, the specific microstructure attributes, environment, and loading conditions can strongly affect the apparent failure mode and surface to subsurface transitions. This paper discusses multiple mechanisms that occur during fatigue loading in the high cycle fatigue (HCF) to very high cycle fatigue (VHCF) regimes. We compare these regimes, focusing on strategies to bridge experimental and modeling approaches exercised at multiple length scales and discussing particular challenges to modeling and simulation regarding microstructure-sensitive fatigue driving forces and thresholds. Finally, we discuss some of the challenges in predicting the transition of failure mechanisms at different stress and strain amplitudes.

  16. Vibrational investigation on the copper(II) binding mode of carcinine and its pH dependence

    NASA Astrophysics Data System (ADS)

    Torreggiani, Armida; Reggiani, Matteo; Manco, Immacolata; Tinti, Anna

    2007-05-01

    A comparative FT-Raman and FT-IR study of Carcinine (Carc), a natural imidazole dipeptide, and its complexes with Cu(II) ions was performed at different pH's. Both Raman and IR spectra present marker bands useful for the identification of the predominant complexes; in particular, Raman spectroscopy appears useful for identifying the metal-coordination site of the imidazole ring (N π or N τ atoms) of Carc. Free Carc shows a strong network of H-bonds and tautomer I (N τ-H) is the preferred form of the imidazolic ring (bands at 1578, 1292 and 988 cm -1). The presence of Cu(II) does not affect the tautomeric equilibrium at pH 7, whereas the deprotonation of both N-imidazolic nitrogens is strongly induced at higher pH. Under neutral and alkaline conditions the primary amino group takes part to the Cu(II) chelation, whereas all the peptidic moieties are involved in coordination only at pH 7. Thus, Carc acts as a tri-dentate ligand at neutral pH, mainly giving a monomeric complex, [CuLH -1], containing tautomer I, whereas an oligonuclear complex, probably [Cu 4L 4H -8], where metal-imidazolate ions connect different ligand molecules, predominates at alkaline pH.

  17. Structures of mammalian ER α-glucosidase II capture the binding modes of broad-spectrum iminosugar antivirals

    PubMed Central

    Alonzi, Dominic S.; Marti, Lucia; Reca, Ida-Barbara; Kiappes, J. L.; Struwe, Weston B.; Cross, Alice; Basu, Souradeep; Lowe, Edward D.; Darlot, Benoit; Santino, Angelo; Zitzmann, Nicole

    2016-01-01

    The biosynthesis of enveloped viruses depends heavily on the host cell endoplasmic reticulum (ER) glycoprotein quality control (QC) machinery. This dependency exceeds the dependency of host glycoproteins, offering a window for the targeting of ERQC for the development of broad-spectrum antivirals. We determined small-angle X-ray scattering (SAXS) and crystal structures of the main ERQC enzyme, ER α-glucosidase II (α-GluII; from mouse), alone and in complex with key ligands of its catalytic cycle and antiviral iminosugars, including two that are in clinical trials for the treatment of dengue fever. The SAXS data capture the enzyme’s quaternary structure and suggest a conformational rearrangement is needed for the simultaneous binding of a monoglucosylated glycan to both subunits. The X-ray structures with key catalytic cycle intermediates highlight that an insertion between the +1 and +2 subsites contributes to the enzyme’s activity and substrate specificity, and reveal that the presence of d-mannose at the +1 subsite renders the acid catalyst less efficient during the cleavage of the monoglucosylated substrate. The complexes with iminosugar antivirals suggest that inhibitors targeting a conserved ring of aromatic residues between the α-GluII +1 and +2 subsites would have increased potency and selectivity, thus providing a template for further rational drug design. PMID:27462106

  18. TOXIC SUBSTANCES FROM COAL COMBUSTION--A COMPREHENSIVE ASSESSMENT, PHASE II: ELEMENT MODES OF OCCURRENCE FOR THE OHIO 5/6/7, WYODAK AND NORTH DAKOTA COAL SAMPLES

    SciTech Connect

    Allan Kolker; Stanley J. Mroczkowski; Curtis A. Palmer; Kristen O. Dennen; Robert B. Finkelman; John H. Bullock Jr.

    2002-05-30

    This study reports on the second phase (Phase II) of USGS research activities in support of DOE contract DE-AC22-95PC95101 ''Toxic Substances From Coal Combustion--A Comprehensive Assessment'', funded under DOE Interagency Agreement DE-AI22-95PC95145. The purpose of the study was to provide a quantitative and semi-quantitative characterization of the modes of occurrence of trace elements in coal samples investigated under Phase II, including (1) Ohio 5/6/7, an Ohio bituminous coal sample blended from the No.5, No.6, and No.7 beds; (2) North Dakota, a lignite sample from the Falkirk Mine, Underwood, ND, and (3) Wyodak, a sub-bituminous coal sample from the Cordero Mine, Gillette, WY. Samples from these coal beds were selected for their range in rank and commercial applicability. Results of this research provide basic information on the distribution of elements in Phase II coal samples, information needed for development of a commercial predictive model for trace-element behavior during coal combustion.

  19. Biaxial fatigue loading of notched composites

    NASA Technical Reports Server (NTRS)

    Francis, P. H.; Walrath, D. E.; Sims, D. F.; Weed, D. N.

    1977-01-01

    Thin-walled, 2.54-cm diameter tubular specimens of graphite/epoxy were fatigue cycled in combinations of axial, torsional, and internal pressure loading. Two different four-ply layup configurations were tested: (0-90)s and (+ or- 45)s; each tube contained a 0.48-cm diameter circular hole penetrating one wall midway along the tube length. S-N curves were developed to characterize fatigue behavior under pure axial, torsional, or internal pressure loading, as well as combined loading fatigue. A theory was developed based on a plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for the uniaxial loading modes. Correlation of the theory with the experimental data proved to be remarkably good.

  20. Biaxial fatigue loading of notched composites

    NASA Technical Reports Server (NTRS)

    Francis, P. H.; Walrath, D. E.; Sims, D. F.; Weed, D. N.

    1977-01-01

    Thin walled, 2.54-cm (1-in.) diameter tubular specimens of T300/934 graphite/epoxy were fabricated and fatigue cycled in combinations of axial, torsional, and internal pressure loading. Two different four-ply layup configurations were tested: (0/90)S and (+ or - 45)S; all tubes contained a 0.48-cm (3/16-in.) diameter circular hole penetrating one wall midway along the tube length. S-N curves were developed to characterize fatigue behavior under pure axial, torsional, or internal pressure loading, as well as combined loading fatigue. A theory was developed based on the Hill plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for the uniaxial loading modes. Correlation of the theory with the experimental data proved to be remarkably good.

  1. Biaxial fatigue loading of notched composites

    NASA Technical Reports Server (NTRS)

    Francis, P. H.; Walrath, D. E.; Sims, D. F.; Weed, D. N.

    1977-01-01

    Thin-walled, 2.54-cm diameter tubular specimens of graphite/epoxy were fatigue cycled in combinations of axial, torsional, and internal pressure loading. Two different four-ply layup configurations were tested: (0-90)s and (+ or- 45)s; each tube contained a 0.48-cm diameter circular hole penetrating one wall midway along the tube length. S-N curves were developed to characterize fatigue behavior under pure axial, torsional, or internal pressure loading, as well as combined loading fatigue. A theory was developed based on a plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for the uniaxial loading modes. Correlation of the theory with the experimental data proved to be remarkably good.

  2. Coordination modes of a schiff base pentadentate derivative of 4-aminoantipyrine with cobalt(II), nickel(II) and copper(II) metal ions: synthesis, spectroscopic and antimicrobial studies.

    PubMed

    Chandra, Sulekh; Jain, Deepali; Sharma, Amit Kumar; Sharma, Pratibha

    2009-01-01

    Transition metal complexes of Co(II), Ni(II) and Cu(II) metal ions with general stoichiometry [M(L)X]X and [M(L)SO(4)], where M = Co(II), Ni(II) and Cu(II), L = 3,3'-thiodipropionic acid bis(4-amino-5-ethylimino-2,3-dimethyl-1-phenyl-3-pyrazoline) and X = NO(3)(-), Cl(-) and OAc(-), have been synthesized and structurally characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements and spectral techniques like IR, UV and EPR. The nickel(II) complexes were found to have octahedral geometry, whereas cobalt(II) and copper(II) complexes were of tetragonal geometry. The covalency factor (beta) and orbital reduction factor (k) suggest the covalent nature of the complexes. The ligand and its complexes have been screened for their antifungal and antibacterial activities against three fungi, i.e. Alternaria brassicae, Aspergillus niger and Fusarium oxysporum and two bacteria, i.e. Xanthomonas compestris and Pseudomonas aeruginosa.

  3. Fatigue in transportation: NTSB investigations and safety recommendations.

    PubMed

    Marcus, Jeffrey H; Rosekind, Mark R

    2017-08-01

    We aim to place into the scientific literature information on the prevalence of operator fatigue as a factor in causing transportation mishaps, and the categories of improvements identified to address fatigue in transportation. We analyzed the number of major National Transportation Safety Board (NTSB) investigations that identified fatigue as a probable cause, contributing factor, or a finding. We divided all NTSB recommendations addressing fatigue issued since the agency was founded into 7 subject categories, and placed each recommendation into the appropriate category. This information was then analyzed to determine the number of recommendations in each category, both overall and by transportation mode. Analysis was also performed regarding the types of organizations that received the recommendations, whether the recommended actions have been taken, and the NTSB's evaluation of whether the action taken satisfied a given recommendation. We reviewed 182 major NTSB investigations completed between 1 January 2001 and 31 December 2012 and found that 20% of these investigations identified fatigue as a probable cause, contributing factor, or a finding. The presence of fatigue varied between among the modes of transportation, ranging from 40% of highway investigations to 4% of marine investigations. The first NTSB recommendation to address the safety risks associated with human fatigue was issued over 40 years ago, in 1972. Since then, the NTSB has issued 205 separate fatigue-specific recommendations. Scheduling policies and practices was the most common subject category accounting for 40% of all recommendations issued. Federal agencies received 54% of all recommendations, with 22% to transportation operators, and 16% to associations. Of all NTSB fatigue recommendations, 24% were open ranging from a low of 9% in highway to 39% in aviation. Overall, only 3% of open recommendations were classified "unacceptable," whereas 16% of all closed recommendations were classified

  4. Wilsonville SRC-I pilot plant: I. Fractionation area corrosion studies; II. Hot vs. normal separation mode of operation

    SciTech Connect

    Lee, J.M.

    1981-04-01

    Extensive corrosion studies in solvent recovery columns have been done with different coals (mainly Kentucky number 9 Lafayette, Dotiki and Fies). Sodium carbonate (0.1 to 1.1% of coal) was added as neutralizer to control corrosion rate. Chloride balance runs were made for isolation of corrosive streams with high chlorine content. A caustic wash program of inlet streams has been developed for selective treatment of corrosive streams as an alternative means for possible replacement of sodium carbonate addition. High chlorine content coals such as Kentucky number 9 Lafayette and Dotiki (0.2 to 0.3%) were very corrosive, compared to low chlorine content coal, Kentucky number 9 Fies (< 0.1%). Sodium carbonate addition (0.6 to 0.7% of coal) reduced corrosion rate from 500 MPY to an insignificant level of less than 5 MPY. Caustic wash of solvents could reduce corrosion rate by 50%, removing most corrosive compounds present in the 440 to 480/sup 0/F boiling fraction. Extensive studies for the hot separator mode of operation have been done as a means of saving substantial energy by elimination of dissolver slurry cooling (0.3 MM Btu/hr) and reheating for solvent recovery (1 MM Btu/h). Impacts of the hot separator mode on plant operability, product quality and Kerr-McGee CSD Unit recovery have been studied. The hot separator mode of operation was carried out by controlling the V103 temperature to 740/sup 0/F. It was observed that preasphaltene contents increased in the SRC products such as V110 L/F SRC and CSD feed; CSD unit recovery was not affected significantly; solvent quality was not affected significantly.

  5. Motions in the interiors and atmospheres of Jupiter and Saturn. II - Barotropic instabilities and normal modes of an adiabatic planet

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.; Miller, R. L.

    1986-01-01

    A rotating and adiabatic inviscid fluid planet possesses low frequency motions that are barotropic, quasi-geostrophic and quasi-columnar. The limiting curvature at which flow becomes unstable upon projection onto the planetary surface is negative, with an amplitude that is 3-4 times that for thin atmospheres, in planets in which density linearly decreases to zero at the surface. This result is shown to hold for all quasi-columnar perturbations. Both the phase speed of the normal mode oscillations and the barotropic stability criterion have features in common with Saturn and Jupiter oscillations.

  6. Velocity-specific fatigue: quantifying fatigue during variable velocity cycling.

    PubMed

    Gardner, A Scott; Martin, David T; Jenkins, David G; Dyer, Iain; Van Eiden, Jan; Barras, Martin; Martin, James C

    2009-04-01

    Previous investigators have quantified fatigue during short maximal cycling trials ( approximately 30 s) by calculating a fatigue index. Other investigators have reported a curvilinear power-pedaling rate relationship during short fatigue-free maximal cycling trials (<6 s). During maximal trials, pedaling rates may change with fatigue. Quantification of fatigue using fatigue index is therefore complicated by the power-pedaling rate relationship. The purpose of this study was to quantify fatigue while accounting for the effects of pedaling rate on power. Power and pedaling rate were recorded during Union Cycliste Internationale sanctioned 200-m time trials by eight male (height = 181.5 +/- 4.3 cm, mass = 87.0 +/- 8.0 kg) world-class sprint cyclists with SRM power meters and fixed-gear track bicycles. Data from the initial portion of maximal acceleration were used to establish maximal power-pedaling rate relationships. Fatigue was quantified three ways: 1) traditional fatigue index, 2) fatigue index modified to account for the power-pedaling rate relationship (net fatigue index), and 3) work deficit, the difference between actual work done and work that might have been accomplished without fatigue. Fatigue index (55.4% +/- 6.4%) was significantly greater than net fatigue index (41.0% +/- 7.9%, P < 0.001), indicating that the power-pedaling rate relationship accounted for 14.3% +/- 7% of the traditional fatigue index value. Work deficit (23.3% +/- 6%) was significantly less than either measure of fatigue (P < 0.001). Net fatigue index and work deficit account for the power-pedaling rate relation and therefore more precisely quantify fatigue during variable velocity cycling. These measures can be used to compare fatigue during different fatigue protocols, including world-class sprint cycling competition. Precise quantification of fatigue during elite cycling competition may improve evaluation of training status, gear ratio selection, and fatigue resistance.

  7. Aerodynamic Heating and Fatigue

    NASA Technical Reports Server (NTRS)

    Kroll, Wilhelmina D.

    1959-01-01

    A review of the physical condition's under which future airplanes will operate has been made and the necessity for considering fatigue in the design has been established. A survey of the literature shows what phases of elevated-temperature fatigue have been investigated. Other studies that would yield data of particular interest to the designer of aircraft structures are indicated.

  8. Characterization of failure processes in tungsten copper composites under fatigue loading conditions

    NASA Technical Reports Server (NTRS)

    Kim, Yong-Suk; Verrilli, Michael J.; Gabb, Timothy P.

    1989-01-01

    A fractographic and metallographic investigation was performed on specimens of a tungsten fiber reinforced copper matrix composite (9 vol percent), which had experienced fatigue failures at elevated temperatures. Major failure modes and possible failure mechanisms, with an emphasis placed on characterizing fatigue damage accumulation, were determined. Metallography of specimens fatigued under isothermal cyclic loading suggested that fatigue damage initiates in the matrix. Cracks nucleated within the copper matrix at grain boundaries, and they propagated through cavity coalescence. The growing cracks subsequently interacted with the reinforcing tungsten fibers, producing a localized ductile fiber failure. Examinations of interrupted tests before final failure confirmed the suggested fatigue damage processes.

  9. Observing Exoplanets with High-dispersion Coronagraphy. II. Demonstration of an Active Single-mode Fiber Injection Unit

    NASA Astrophysics Data System (ADS)

    Mawet, D.; Ruane, G.; Xuan, W.; Echeverri, D.; Klimovich, N.; Randolph, M.; Fucik, J.; Wallace, J. K.; Wang, J.; Vasisht, G.; Dekany, R.; Mennesson, B.; Choquet, E.; Delorme, J.-R.; Serabyn, E.

    2017-04-01

    High-dispersion coronagraphy (HDC) optimally combines high-contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway toward fully characterizing exoplanet atmospheres across a broad range of masses from giant gaseous planets down to Earth-like planets. In addition to determining the molecular composition of exoplanet atmospheres, HDC also enables Doppler mapping of atmosphere inhomogeneities (temperature, clouds, wind), as well as precise measurements of exoplanet rotational velocities. Here, we demonstrate an innovative concept for injecting the directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively corrected coronagraph to a high-resolution spectrograph (diffraction-limited or not). Our laboratory demonstration includes three key milestones: close-to-theoretical injection efficiency, accurate pointing and tracking, and on-fiber coherent modulation and speckle nulling of spurious starlight signal coupling into the fiber. Using the extreme modal selectivity of single-mode fibers, we also demonstrated speckle suppression gains that outperform conventional image-based speckle nulling by at least two orders of magnitude.

  10. Nonaxisymmetric Dynamic Instabilities of Rotating Polytropes. II. Torques, Bars, and Mode Saturation with Applications to Protostars and Fizzlers

    NASA Astrophysics Data System (ADS)

    Imamura, James N.; Durisen, Richard H.; Pickett, Brian K.

    2000-01-01

    Dynamic nonaxisymmetric instabilities in rapidly rotating stars and protostars have a range of potential applications in astrophysics, including implications for binary formation during protostellar cloud collapse and for the possibility of aborted collapse to neutron star densities at late stages of stellar evolution (``fizzlers''). We have recently presented detailed linear analyses for polytropes of the most dynamically unstable global modes, the barlike modes. These produce bar distortions in the regions near the rotation axis but have trailing spiral arms toward the equator. In this paper, we use our linear eigenfunctions to predict the early nonlinear behavior of the dynamic instability and compare these ``quasi-linear'' predictions with several fully nonlinear hydrodynamics simulations. The comparisons demonstrate that the nonlinear saturation of the barlike instability is due to the self-interaction gravitational torques between the growing central bar and the spiral arms, where angular momentum is transferred outward from bar to arms. We also find a previously unsuspected resonance condition that accurately predicts the mass of the bar regions in our own simulations and in those published by other researchers. The quasi-linear theory makes other accurate predictions about consequences of instability, including properties of possible end-state bars and increases in central density, which can be large under some conditions. We discuss in some detail the application of our results to binary formation during protostellar collapse and to the formation of massive rotating black holes.

  11. Atlas of fatigue curves

    SciTech Connect

    Boyer, H.E.

    1986-01-01

    This book contains more than 500 fatigue curves for industrial ferrous and nonferrous alloys. It also includes a thorough explanation of fatigue testing and interpretation of test results. Each curve is presented independently and includes an explanation of its particular importance. The curves are titled by standard industrial designations (AISI, CDA, AA, etc.) of the metals, and a complete reference is given to the original source to facilitate further research. The collection includes standard S-N curves, curves showing effect of surface hardening on fatigue strength, crack growth-rate curves, curves comparing the fatigue strengths of various alloys, effect of variables (i,e, temperature, humidity, frequency, aging, environment, etc.) and much, much more. This one volume consolidates the fatigue data in a single source.

  12. Fatigue countermeasures in aviation.

    PubMed

    Caldwell, John A; Mallis, Melissa M; Caldwell, J Lynn; Paul, Michel A; Miller, James C; Neri, David F

    2009-01-01

    Pilot fatigue is a significant problem in modern aviation operations, largely because of the unpredictable work hours, long duty periods, circadian disruptions, and insufficient sleep that are commonplace in both civilian and military flight operations. The full impact of fatigue is often underappreciated, but many of its deleterious effects have long been known. Compared to people who are well-rested, people who are sleep deprived think and move more slowly, make more mistakes, and have memory difficulties. These negative effects may and do lead to aviation errors and accidents. In the 1930s, flight time limitations, suggested layover durations, and aircrew sleep recommendations were developed in an attempt to mitigate aircrew fatigue. Unfortunately, there have been few changes to aircrew scheduling provisions and flight time limitations since the time they were first introduced, despite evidence that updates are needed. Although the scientific understanding of fatigue, sleep, shift work, and circadian physiology has advanced significantly over the past several decades, current regulations and industry practices have in large part failed to adequately incorporate the new knowledge. Thus, the problem of pilot fatigue has steadily increased along with fatigue-related concerns over air safety. Accident statistics, reports from pilots themselves, and operational flight studies all show that fatigue is a growing concern within aviation operations. This position paper reviews the relevant scientific literature, summarizes applicable U.S. civilian and military flight regulations, evaluates various in-flight and pre-/postflight fatigue countermeasures, and describes emerging technologies for detecting and countering fatigue. Following the discussion of each major issue, position statements address ways to deal with fatigue in specific contexts with the goal of using current scientific knowledge to update policy and provide tools and techniques for improving air safety.

  13. Unbound position II in MXCXXC metallochaperone model peptides impacts metal binding mode and reactivity: Distinct similarities to whole proteins.

    PubMed

    Shoshan, Michal S; Dekel, Noa; Goch, Wojciech; Shalev, Deborah E; Danieli, Tsafi; Lebendiker, Mario; Bal, Wojciech; Tshuva, Edit Y

    2016-06-01

    The effect of position II in the binding sequence of copper metallochaperones, which varies between Thr and His, was investigated through structural analysis and affinity and oxidation kinetic studies of model peptides. A first Cys-Cu(I)-Cys model obtained for the His peptide at acidic and neutral pH, correlated with higher affinity and more rapid oxidation of its complex; in contrast, the Thr peptide with the Cys-Cu(I)-Met coordination under neutral conditions demonstrated weaker and pH dependent binding. Studies with human antioxidant protein 1 (Atox1) and three of its mutants where S residues were replaced with Ala suggested that (a) the binding affinity is influenced more by the binding sequence than by the protein fold (b) pH may play a role in binding reactivity, and (c) mutating the Met impacted the affinity and oxidation rate more drastically than did mutating one of the Cys, supporting its important role in protein function. Position II thus plays a dominant role in metal binding and transport.

  14. Low Cycle Fatigue and Creep-Fatigue Behavior of Alloy 617 at High Temperature

    SciTech Connect

    Cabet, Celine; Carroll, Laura; Wright, Richard

    2013-10-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the Very High Temperature Nuclear Reactor (VHTR), expected to have an outlet temperature as high as 950 degrees C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanism/s and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 degrees C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens, although evidence of grain boundary cavitation was not observed. Despite the absence of grain boundary cavitation to accelerate crack propagation, the addition of a hold time at peak tensile strain was detrimental to cycle life. This suggests that creepfatigue interaction may occur by a different mechanism or that the environment may be partially responsible for accelerating failure.

  15. Experimental study of thermodynamics propagation fatigue crack in metals

    NASA Astrophysics Data System (ADS)

    Vshivkov, A.; Iziumova, A.; Plekhov, O.

    2015-10-01

    This work is devoted to the development of an experimental method for studying the energy balance during cyclic deformation and fracture. The studies were conducted on 304 stainless steel AISE samples. The investigation of the fatigue crack propagation was carried out on flat samples with stress concentrators. The stress concentrator was three central holes. The heat flux sensor was developed based on the Seebeck effect. This sensor was used for measuring the heat dissipation power in the examined samples during the fatigue tests. The measurements showed that the rate of fatigue crack growth depends on the heat flux at the crack tip and there are two propagation mode of fatigue crack with different link between the propagation mode and heat flux from crack tip.

  16. Experimental study of thermodynamics propagation fatigue crack in metals

    SciTech Connect

    Vshivkov, A. Iziumova, A. Plekhov, O.

    2015-10-27

    This work is devoted to the development of an experimental method for studying the energy balance during cyclic deformation and fracture. The studies were conducted on 304 stainless steel AISE samples. The investigation of the fatigue crack propagation was carried out on flat samples with stress concentrators. The stress concentrator was three central holes. The heat flux sensor was developed based on the Seebeck effect. This sensor was used for measuring the heat dissipation power in the examined samples during the fatigue tests. The measurements showed that the rate of fatigue crack growth depends on the heat flux at the crack tip and there are two propagation mode of fatigue crack with different link between the propagation mode and heat flux from crack tip.

  17. Some aspects of thermomechanical fatigue of AISI 304L stainless steel; Part 1: Creep-fatigue damage

    SciTech Connect

    Zauter, R. ); Christ, H.J. . Inst. of Materials Technology); Mughrabi, H. . Inst. for Materials Science)

    1994-02-01

    Thermomechanical fatigue (TMF) tests on the austenitic stainless steel AISI 304L have been conducted under true' plastic-strain control in vacuum. This report considers the damage occurring during TMF loading. It is shown how the temperature interval and the phasing (in phase, out-of-phase) determine the mechanical response and the lifetime of the specimens. If creep-fatigue interaction takes place during in-phase cycling, the damage occurs inside the material, leading creep-induced damage, and no lifetime reduction occurs, even if the material is exposed periodically to temperature in the creep regime. A formula is proposed which allows prediction of the failure mode, depending on whether creep-fatigue damage occurs or not. At a given strain rate, the formula is able to estimate the temperature of transition between pure fatigue and creep-fatigue damage.

  18. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection.

    PubMed

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-07-29

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world's attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg(2+) ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species.

  19. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection

    PubMed Central

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-01-01

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world’s attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg2+ ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species. PMID:27483277

  20. Fundamental parameters of RR Lyrae stars from multicolour photometry and Kurucz atmospheric models - II. Adaptation to double-mode stars

    NASA Astrophysics Data System (ADS)

    Barcza, S.; Benkő, J. M.

    2012-02-01

    Our photometric-hydrodynamic method is generalized to determine the fundamental parameters of multiperiodic radially pulsating stars. We report 302 UBV(RI)C Johnson-Kron-Cousins observations of GSC 4868-0831. Using these and the published photometric data of V372 Ser, we determine the metallicity, reddening, distance, mass, radius, equilibrium luminosity and effective temperature. The results underline the necessity of using multicolour photometry, including an ultraviolet band, to classify the subgroups of RR Lyrae stars properly. Our U observations might reveal that GSC 4868-0831 is a subgiant star pulsating in two radial modes and that V372 Ser is a giant star with the size and mass of an RRd star.

  1. Probabilistic fatigue life prediction of metallic and composite materials

    NASA Astrophysics Data System (ADS)

    Xiang, Yibing

    Fatigue is one of the most common failure modes for engineering structures, such as aircrafts, rotorcrafts and aviation transports. Both metallic materials and composite materials are widely used and affected by fatigue damage. Huge uncertainties arise from material properties, measurement noise, imperfect models, future anticipated loads and environmental conditions. These uncertainties are critical issues for accurate remaining useful life (RUL) prediction for engineering structures in service. Probabilistic fatigue prognosis considering various uncertainties is of great importance for structural safety. The objective of this study is to develop probabilistic fatigue life prediction models for metallic materials and composite materials. A fatigue model based on crack growth analysis and equivalent initial flaw size concept is proposed for metallic materials. Following this, the developed model is extended to include structural geometry effects (notch effect), environmental effects (corroded specimens) and manufacturing effects (shot peening effects). Due to the inhomogeneity and anisotropy, the fatigue model suitable for metallic materials cannot be directly applied to composite materials. A composite fatigue model life prediction is proposed based on a mixed-mode delamination growth model and a stiffness degradation law. After the development of deterministic fatigue models of metallic and composite materials, a general probabilistic life prediction methodology is developed. The proposed methodology combines an efficient Inverse First-Order Reliability Method (IFORM) for the uncertainty propogation in fatigue life prediction. An equivalent stresstransformation has been developed to enhance the computational efficiency under realistic random amplitude loading. A systematical reliability-based maintenance optimization framework is proposed for fatigue risk management and mitigation of engineering structures.

  2. Coronal loop seismology using damping of standing kink oscillations by mode coupling. II. additional physical effects and Bayesian analysis

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Anfinogentov, S.; Nisticò, G.; Goddard, C. R.; Nakariakov, V. M.

    2017-04-01

    Context. The strong damping of kink oscillations of coronal loops can be explained by mode coupling. The damping envelope depends on the transverse density profile of the loop. Observational measurements of the damping envelope have been used to determine the transverse loop structure which is important for understanding other physical processes such as heating. Aims: The general damping envelope describing the mode coupling of kink waves consists of a Gaussian damping regime followed by an exponential damping regime. Recent observational detection of these damping regimes has been employed as a seismological tool. We extend the description of the damping behaviour to account for additional physical effects, namely a time-dependent period of oscillation, the presence of additional longitudinal harmonics, and the decayless regime of standing kink oscillations. Methods: We examine four examples of standing kink oscillations observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). We use forward modelling of the loop position and investigate the dependence on the model parameters using Bayesian inference and Markov chain Monte Carlo (MCMC) sampling. Results: Our improvements to the physical model combined with the use of Bayesian inference and MCMC produce improved estimates of model parameters and their uncertainties. Calculation of the Bayes factor also allows us to compare the suitability of different physical models. We also use a new method based on spline interpolation of the zeroes of the oscillation to accurately describe the background trend of the oscillating loop. Conclusions: This powerful and robust method allows for accurate seismology of coronal loops, in particular the transverse density profile, and potentially reveals additional physical effects.

  3. DNA binding, DNA cleavage and cytotoxicity studies of a new water soluble copper(II) complex: The effect of ligand shape on the mode of binding

    NASA Astrophysics Data System (ADS)

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Roshanfekr, Hamideh; Shahabadi, Nahid; Mansouri, Ghobad

    2012-02-01

    The interaction of native calf thymus DNA (CT-DNA) with [Cu(ph 2phen)(phen-dione)Cl]Cl was studied at physiological pH by spectrophotometric, spectrofluorometric, circular dichroism, and viscometric techniques. Considerable hypochromicity and red shift are observed in the UV absorption band of the Cu complex. Binding constants ( Kb) of DNA with the complex were calculated at different temperatures. Thermodynamic parameters, enthalpy and entropy changes were calculated according to Van't Hoff equation, which indicated that reaction is predominantly enthalpically driven. All these results indicate that Cu(II) complex interacts with CT-DNA via intercalative mode. Also, this new complex induced cleavage in pUC18 plasmid DNA as indicated in gel electrophoresis and showed excellent antitumor activity against K562 (human chronic myeloid leukemia) and human T lymphocyte carcinoma-Jurkat cell lines.

  4. Unusual mode of protein binding by a cytotoxic π-arene ruthenium(ii) piano-stool compound containing an O,S-chelating ligand.

    PubMed

    Hildebrandt, Jana; Görls, Helmar; Häfner, Norman; Ferraro, Giarita; Dürst, Matthias; Runnebaum, Ingo B; Weigand, Wolfgang; Merlino, Antonello

    2016-08-02

    A new pseudo-octahedral π-arene ruthenium(ii) piano-stool compound, containing an O,S-bidentate ligand (compound 1) and showing significant cytotoxic activity in vitro, was synthesized and characterized. In solution stability and interaction with the model protein bovine pancreatic ribonuclease (RNase A) were investigated by using UV-Vis absorption spectroscopy. Its crystal structure and that of the adduct formed upon reaction with RNase A were obtained by X-ray crystallography. The comparison between the structure of purified compound 1 and that of the fragment bound to RNase A reveals an unusual mode of protein binding that includes ligand exchange and alteration of coordination sphere geometry.

  5. Altered resting brain connectivity in persistent cancer related fatigue

    PubMed Central

    Hampson, Johnson P.; Zick, Suzanna M.; Khabir, Tohfa; Wright, Benjamin D.; Harris, Richard E.

    2015-01-01

    There is an estimated 3 million women in the US living as breast cancer survivors and persistent cancer related fatigue (PCRF) disrupts the lives of an estimated 30% of these women. PCRF is associated with decreased quality of life, decreased sleep quality, impaired cognition and depression. The mechanisms of cancer related fatigue are not well understood; however, preliminary findings indicate dysfunctional activity in the brain as a potential factor. Here we investigate the relationship between PCRF on intrinsic resting state connectivity in this population. Twenty-three age matched breast cancer survivors (15 fatigued and 8 non-fatigued) who completed all cancer-related treatments at least 12 weeks prior to the study, were recruited to undergo functional connectivity magnetic resonance imaging (fcMRI). Intrinsic resting state networks were examined with both seed based and independent component analysis methods. Comparisons of brain connectivity patterns between groups as well as correlations with self-reported fatigue symptoms were performed. Fatigued patients displayed greater left inferior parietal lobule to superior frontal gyrus connectivity as compared to non-fatigued patients (P < 0.05 FDR corrected). This enhanced connectivity was associated with increased physical fatigue (P = 0.04, r = 0.52) and poor sleep quality (P = 0.04, r = 0.52) in the fatigued group. In contrast greater connectivity in the non-fatigued group was found between the right precuneus to the periaqueductal gray as well as the left IPL to subgenual cortex (P < 0.05 FDR corrected). Mental fatigue scores were associated with greater default mode network (DMN) connectivity to the superior frontal gyrus (P = 0.05 FDR corrected) among fatigued subjects (r = 0.82) and less connectivity in the non-fatigued group (r = −0.88). These findings indicate that there is enhanced intrinsic DMN connectivity to the frontal gyrus in breast cancer survivors with persistent fatigue. As

  6. Altered resting brain connectivity in persistent cancer related fatigue.

    PubMed

    Hampson, Johnson P; Zick, Suzanna M; Khabir, Tohfa; Wright, Benjamin D; Harris, Richard E

    2015-01-01

    There is an estimated 3 million women in the US living as breast cancer survivors and persistent cancer related fatigue (PCRF) disrupts the lives of an estimated 30% of these women. PCRF is associated with decreased quality of life, decreased sleep quality, impaired cognition and depression. The mechanisms of cancer related fatigue are not well understood; however, preliminary findings indicate dysfunctional activity in the brain as a potential factor. Here we investigate the relationship between PCRF on intrinsic resting state connectivity in this population. Twenty-three age matched breast cancer survivors (15 fatigued and 8 non-fatigued) who completed all cancer-related treatments at least 12 weeks prior to the study, were recruited to undergo functional connectivity magnetic resonance imaging (fcMRI). Intrinsic resting state networks were examined with both seed based and independent component analysis methods. Comparisons of brain connectivity patterns between groups as well as correlations with self-reported fatigue symptoms were performed. Fatigued patients displayed greater left inferior parietal lobule to superior frontal gyrus connectivity as compared to non-fatigued patients (P < 0.05 FDR corrected). This enhanced connectivity was associated with increased physical fatigue (P = 0.04, r = 0.52) and poor sleep quality (P = 0.04, r = 0.52) in the fatigued group. In contrast greater connectivity in the non-fatigued group was found between the right precuneus to the periaqueductal gray as well as the left IPL to subgenual cortex (P < 0.05 FDR corrected). Mental fatigue scores were associated with greater default mode network (DMN) connectivity to the superior frontal gyrus (P = 0.05 FDR corrected) among fatigued subjects (r = 0.82) and less connectivity in the non-fatigued group (r = -0.88). These findings indicate that there is enhanced intrinsic DMN connectivity to the frontal gyrus in breast cancer survivors with persistent fatigue. As

  7. Memory for Fatigue in Chronic Fatigue Syndrome: Relationships to Fatigue Variability, Catastrophizing, and Negative Affect

    PubMed Central

    Sohl, Stephanie J.; Friedberg, Fred

    2008-01-01

    Fatigue in chronic fatigue syndrome (CFS) is usually assessed with retrospective measures rather than real-time momentary symptom assessments. In this study, the authors hypothesized that in participants with CFS, discrepancies between recalled and momentary fatigue would be related to catastrophizing, anxiety, and depression and to variability of momentary fatigue. They also expected that catastrophizing, anxiety, and depression would be associated with momentary fatigue. The authors asked 53 adults with CFS to carry electronic diaries for 3 weeks and record their experiences of momentary fatigue. The authors assessed participants' fatigue recall with weekly ratings and administered questionnaires for catastrophizing, depression, and anxiety. Recall discrepancy was significantly related to the variability of momentary fatigue. In addition, catastrophizing, depression, and momentary fatigue were all significantly related to recall discrepancy. Catastrophizing, depression, anxiety, and momentary negative affect were all significantly associated with momentary fatigue. The findings suggest that momentary fatigue in patients with CFS is related to modifiable psychological factors. PMID:18400687

  8. Dramatic increase in fatigue life in hierarchical graphene composites.

    PubMed

    Yavari, F; Rafiee, M A; Rafiee, J; Yu, Z-Z; Koratkar, N

    2010-10-01

    We report the synthesis and fatigue characterization of fiberglass/epoxy composites with various weight fractions of graphene platelets infiltrated into the epoxy resin as well as directly spray-coated on to the glass microfibers. Remarkably only ∼0.2% (with respect to the epoxy resin weight and ∼0.02% with respect to the entire laminate weight) of graphene additives enhanced the fatigue life of the composite in the flexural bending mode by up to 1200-fold. By contrast, under uniaxial tensile fatigue conditions, the graphene fillers resulted in ∼3-5-fold increase in fatigue life. The fatigue life increase (in the flexural bending mode) with graphene additives was ∼1-2 orders of magnitude superior to those obtained using carbon nanotubes. In situ ultrasound analysis of the nanocomposite during the cyclic fatigue test suggests that the graphene network toughens the fiberglass/epoxy-matrix interface and prevents the delamination/buckling of the glass microfibers under compressive stress. Such fatigue-resistant hierarchical materials show potential to improve the safety, reliability, and cost effectiveness of fiber-reinforced composites that are increasingly the material of choice in the aerospace, automotive, marine, sports, biomedical, and wind energy industries.

  9. Flexural fatigue of short fiber reinforced high temperature thermoplastics

    SciTech Connect

    Yau, S.; Chou, T.W.

    1985-04-01

    Short fiber reinforced thermoplastics are gaining increasing importance in the development of composite technology. In this investigation, the studies focus on three types of short glass fiber reinforced thermoplastics: (1) polyetherimide (PEI), (2) polyethersulphone (PES), and (3) polyetheretherketone (PEEK). These matrices possess good resistance to aviation fluids and ability to withstand high temperatures up to 600/sup 0/F. Specimens were evaluated at room temperature and at elevated temperatures under both static and dynamic loads. Fatigue tests reported herein were performed on Krouse sheet bending fatigue machines, operating at 1750 cpm and a constant deflection mode. Fatigue data are presented in traditional S-N plots. 3 references, 5 figures.

  10. Damage mechanisms in bithermal and thermomechanical fatigue of Haynes 188

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Halford, Gary R.

    1992-01-01

    Post failure fractographic and metallographic studies were conducted on Haynes 188 specimens fatigued under bithermal and thermomechanical loading conditions between 316 and 760 C. Bithermal fatigue specimens examined included those tested under high strain rate in-phase and out-phase, tensile creep in-phase, and compressive creep out-of-phase loading conditions. Specimens tested under in-phase and out-of-phase thermomechanical fatigue were also examined. The nature of failure mode (transgrandular versus intergranular), the topography of the fracture surface, and the roles of oxidation and metallurgical changes were studied for each type of bithermal and thermomechanical test.

  11. Rethinking compassion fatigue.

    PubMed

    Gerard, Nathan

    2017-05-15

    Purpose The purpose of this paper is to argue for a revision of the concept of compassion fatigue in light of both its history and psychodynamics. Design/methodology/approach This paper calls into question conventional interpretations of compassion fatigue and the assumptions underlying them. As an alternative, a psychoanalytic interpretation is offered that sheds light on the phenomenon's unconscious and organizational dynamics. This interpretation also aligns with the concept's historical use in media and politics. Findings In contrast to the assumption that compassion fatigue arises from too much compassion, historical use of the term suggests just the opposite: compassion fatigue is the result of too little compassion. Healthcare literature on compassion fatigue has not only failed to account for this opposing view, but also the underlying psychodynamics at play. By attending to these neglected dimensions, healthcare scholars and practitioners can gain new insights into compassion fatigue and devise more sustainable interventions. Originality/value This paper reveals hidden dimensions to compassion fatigue that call into question conventional interpretations and offer novel perspectives on a core concern of healthcare work.

  12. Mechanisms of peripheral fatigue.

    PubMed

    Kirkendall, D T

    1990-08-01

    Fatigue can be defined as the failure to maintain an expected power output. This is often an antecedent to some sports-related injury. It is important for those involved in physical performance to be familiar with the variety of mechanisms which can lead to fatigue. All too often, a single factor is described as the cause of fatigue when actually fatigue may be a combination of factors that contribute to the sequence of events that results in decreased performance. It may be suggested that every step in the chain of events that leads to voluntary contraction of skeletal muscle could be a culprit in fatigue. Peripheral sites and processes include the motor neuron, neuromuscular junction, sarcolemmal membrane, excitation-contraction coupling, accumulation of metabolites, or depletion of fuels. Physical training is frequently designed to delay the onset of fatigue. The actual mechanism(s) add to the specificity concept, that is, a "specificity of fatigue". To the performer, the end result is the same, the inability to maintain his or her expected level of performance or power output.

  13. Crystallographic studies of metal ion-DNA interactions: different binding modes of cobalt(II), copper(II) and barium(II) to N7 of guanines in Z-DNA and a drug-DNA complex.

    PubMed Central

    Gao, Y G; Sriram, M; Wang, A H

    1993-01-01

    Metal ion coordination to nucleic acids is not only required for charge neutralization, it is also essential for the biological function of nucleic acids. The structural impact of different metal ion coordinations of DNA helices is an open question. We carried out X-ray diffraction analyses of the interactions of the two transition metal ions Co(II) and Cu(II) and an alkaline earth metal ion Ba(II), with DNA of different conformations. In crystals, Co(II) ion binds exclusively at the N7 position of guanine bases by direct coordination. The coordination geometry around Co(II) is octahedral, although some sites have an incomplete hydration shell. The averaged Co-N7 bond distance is 2.3 A. The averaged Co-N7-C8 angle is 121 degrees, significantly smaller than the value of 128 degrees if the Co-N7 vector were to bisect the C5-N7-C8 bond angle. Model building of Co(II) binding to guanine N7 in B-DNA indicates that the coordinated waters in the axial positions would have a van der Waals clash with the neighboring base on the 5' side. In contrast, the major groove of A-DNA does not have enough room to accommodate the entire hydration shell. This suggests that Co(II) binding to either B-DNA or A-DNA may induce significant conformational changes. The Z-DNA structure of Cu(II)-soaked CGCGTG crystal revealed that the Cu(II) ion is bis-coordinated to N7 position of G10 and #G12 (# denotes a symmetry-related position) bases with a trigonal bipyramid geometry, suggesting a possible N7-Cu-N7 crosslinking mechanism. A similar bis-coordination to two guanines has also been seen in the interaction of Cu(II) in m5CGUAm5CG Z-DNA crystal and of Ba(II) with two other Z-DNA crystals. PMID:8371984

  14. Effect of Stress Ratio on Fatigue Crack Growth Rate at Notched Hole in 7075-T6 Aluminum Alloy Under Biaxial Fatigue

    DTIC Science & Technology

    2016-08-18

    and corrosion. This approach has been used to delay crack in structure in aerospace field [26]. In addition, laterally many studies have described...loading conditions. And it is a link between previous studies and future studies in the field . II. Background 2.1 Fatigue Since fracture mechanics...steady, but other forms of stresses such as rotation, torsion , pending can lead to fatigue failure [5,34]. Fatigue crack start as invisible microcrack

  15. A Tropical Ocean Recharge Mechanism for Climate Variability. Part II: A Unified Theory for Decadal and ENSO Modes.

    NASA Astrophysics Data System (ADS)

    Wang, Xiaochun; Jin, Fei-Fei; Wang, Yuqing

    2003-11-01

    Decadal to interdecadal timescale variability in the Pacific region, commonly referred to as the Pacific decadal oscillation (PDO), is studied in this research using analytical and numerical models. A coupled analytical model is formulated to analyze the physical mechanism of both the PDO and ENSO. It has the equatorial β-plane dynamics of a reduced-gravity model coupled with the wind stress of fixed spatial patterns. The amplitude of the latter is proportional to the sea surface temperature (SST) anomaly in the eastern equatorial Pacific. The SST anomaly is governed by a simple thermal dynamic equation used for ENSO modeling. It is found that when a warm SST is coupled with cyclonic wind stress patterns in the eastern subtropical Pacific, an oscillation with a timescale of around 10 15 yr could be generated. In contrast, when a warm SST is coupled with only a westerly wind stress in the central equatorial Pacific, an ENSO-like oscillation could be generated with a timescale of around 3 5 yr. Thus the present research is potentially relevant to aspects of the PDO and the mechanism of the PDO may be understood as a weakly coupled decadal recharge oscillator similar to the recharge oscillator dynamics of ENSO. The sensitivity of these two kinds of coupled modes to different parameters is tested. Numerical integrations with the reduced-gravity shallow-water model in a rectangular basin and a similar coupled framework confirm the results of the analytical model.

  16. Effects of Different Modes of Hot Cross-Rolling in 7010 Aluminum Alloy: Part II. Mechanical Properties Anisotropy

    NASA Astrophysics Data System (ADS)

    Mondal, Chandan; Singh, A. K.; Mukhopadhyay, A. K.; Chattopadhyay, K.

    2013-06-01

    The influence of microstructure and texture developed by different modes of hot cross-rolling on in-plane anisotropy ( A IP) of yield strength, work hardening behavior, and anisotropy of Knoop hardness (KHN) yield locus has been investigated. The A IP and work hardening behavior are evaluated by tensile testing at 0 deg, 45 deg, and 90 deg to the rolling direction, while yield loci have been generated by directional KHN measurements. It has been observed that specimens especially in the peak-aged temper, in spite of having a strong, rotated Brass texture, show low A IP. The results are discussed on the basis of Schmid factor analyses in conjunction with microstructural features, namely grain morphology and precipitation effects. For the specimen having a single-component texture, the yield strength variation as a function of orientation can be rationalized by the Schmid factor analysis of a perfectly textured material behaving as a quasi-single crystal. The work hardening behavior is significantly affected by the presence of solute in the matrix and the state of precipitation rather than texture, while yield loci derived from KHN measurements reiterate the low anisotropy of the materials. Theoretic yield loci calculated from the texture data using the visco-plastic self-consistent model and Hill's anisotropic equation are compared with that obtained experimentally.

  17. A unifying mode-coupling theory for transport properties of electrolyte solutions. II. Results for equal-sized ions electrolytes.

    PubMed

    Aburto, Claudio Contreras; Nägele, Gerhard

    2013-10-07

    On the basis of a versatile mode-coupling theory (MCT) method developed in Paper I [C. Contreras Aburto and G. Nägele, J. Chem. Phys. 139, 134109 (2013)], we investigate the concentration dependence of conduction-diffusion linear transport properties for a symmetric binary electrolyte solution. The ions are treated in this method as charged Brownian spheres, and the solvent-mediated ion-ion hydrodynamic interactions are accounted for also in the ion atmosphere relaxation effect. By means of a simplified solution scheme, convenient semi-analytic MCT expressions are derived for the electrophoretic mobilities, and the molar conductivity, of an electrolyte mixture with equal-sized ions. These expressions reduce to the classical Debye-Falkenhagen-Onsager-Fuoss results in the limit of very low ion concentration. The MCT expressions are numerically evaluated for a binary electrolyte, and compared to experimental data and results by another theoretical method. Our analysis encloses, in addition, the electrolyte viscosity. To analyze the dynamic influence of the hydration shell, the significance of mixed slip-stick hydrodynamic surface boundary conditions, and the effect of solvent permeability are explored. For the stick boundary condition employed in the hydrodynamic diffusivity tensors, our theoretical results for the molar conductivity and viscosity of an aqueous 1:1 electrolyte are in good overall agreement with reported experimental data for aqueous NaCl solutions, for concentrations extending even up to two molar.

  18. CAD-II: the second version current-mode readout ASIC for high-resolution timing measurements

    NASA Astrophysics Data System (ADS)

    Yuan, Z. X.; Deng, Z.; Wang, Y.; Liu, Y. N.

    2016-07-01

    This paper presents the second version of a fully current-mode front-end ASIC, CAD (Current Amplifier and Discriminator), for MRPC detectors for TOF applications. Several upgrades have been made in this new version, including: 1). Using differential input stages with input impedance down to 30 Ω and LVDS compatible outputs; 2). Much higher current gain and bandwidth of 4.5 A/A and 380 MHz 3). Fabricated in 0.18 μ m CMOS process instead of 0.35 μ m CMOS technology used in CAD-I. The detailed design of the ASIC will be described as well as the measurement results. The single-ended input impedance could be as low as 32 Ω and the power consumption was measured to be 15 mW per channel. Input referred RMS noise current was about 0.56 μ A. The threshold could be set as low as 4.5 μ A referred to input, corresponding to 9 fC for the typical MRPC detector signal with 2 ns width. Sub-10 ps resolution has been measured for input signal above 200 μ A.

  19. DNA interaction studies of a copper (II) complex containing an antiviral drug, valacyclovir: the effect of metal center on the mode of binding.

    PubMed

    Shahabadi, Nahid; Fatahi, Parvin

    2012-07-01

    The water-soluble complex, [Cu(Val)(2)(NO(3))(2)]; in which Val = valacyclovir, an antiviral drug, has been synthesized and characterized by elemental analysis, furier transfer-infrared, hydrogen nuclear magnetic resonance (H NMR), and UV-Vis techniques. The binding of this Cu (II) complex to calf thymus DNA was investigated using fluorimetry, spectrophotometry, circular dichroism, and viscosimetry. In fluorimetric studies, the enthalpy and entropy of the reaction between the complex and calf-thymus DNA (CT-DNA) showed that the reaction is endothermic (ΔH = 208.22 kJ mol(-1); ΔS = 851.35 J mol(-1)K(-1)). The complex showed the absorption hyperchromism in its ultra violet-visible (UV-Vis) spectrum with DNA. The calculated binding constant, K(b), obtained from UV-Vis absorption studies was 2 × 10(5) M(-1). Moreover, the complex induced detectable changes in the circular dichroism spectrum of CT-DNA, as well as changes in its viscosity. The results suggest that this copper (II) complex interacts with CT-DNA via a groove-binding mode.

  20. Development of fatigue loading spectra

    SciTech Connect

    Potter, J.M.; Watanabe, R.T.

    1989-01-01

    The present work on fatigue-loading spectra encompasses the current status of standardized stress-time histories, European approaches to standard loading spectrum development, transport aircraft airframe fatigue test spectra, the TURBISTAN fatigue-loading standard for fighter-aircraft engine disks, an automated procedure for the creation of flight-by-flight spectra, and the development of a wave-action standard history for fatigue testing relevant to tubular structures in the North Sea. Also treated is the use of the TURBISTAN mission spectra to evaluate fatigue crack growth in a rotating disk, fatigue-spectra development for airborne stores, a simplified analysis of fatigue-loading spectra, variable-amplitude load models for fatigue-damage crack growth, the tracking time service histories for multiaxis fatigue problems, and the compilation of procedures for fatigue crack propagation testing under complex load sequences.

  1. A Nitroxide-Tagged Platinum(II) Complex Enables the Identification of DNA G-Quadruplex Binding Mode

    PubMed Central

    Zhou, Yi-Wei; Wang, Hanqiang; Cao, Qian; Shen, Yong; Ji, Liang-Nian; Mao, Zong-Wan; Qin, Peter Z.

    2016-01-01

    We reported a novel strategy for investigating small molecule binding to G-quadruplexes (GQs). A newly synthesized dinuclear platinum(II) complex (Pt2L) containing a nitroxide radical was shown to selectively bind a GQ-forming sequence derived from human telomere (hTel). Using the nitroxide moiety as a spin label, electron paramagnetic resonance (EPR) spectroscopy was carried out to investigate binding between Pt2L and hTel GQ. Measurements indicated that two molecules of Pt2L bind with one molecule of hTel GQ. The inter-spin distance measured between the two bound Pt2L, together with molecular docking analyses, revealed that Pt2L predominately binds to the neighboring narrow and wide grooves of the G-tetrads as hTel adopts the antiparallel conformation. The design and synthesis of nitroxide tagged GQ binders, and the use of spin-labeling/EPR to investigate their interactions with GQs, will aid the development of small molecules for manipulating GQs involved in crucial biological processes. PMID:26845489

  2. Nondestructive Evaluation of Metal Fatigue.

    DTIC Science & Technology

    1977-02-01

    Magnetic perturbation signatures and Barkhausen noise results have been obtained from an AISI 4340 steel fatigue specimen stress-cycled at 180ksi...vicinity of the fatigue crack. Barkhausen noise signals were obtained on a grid pattern in the vicinity of several fatigue cracks with a Barkhausen ...fatigue specimens are being fabricated for magnetic perturbation and Barkhausen noise analysis measurements. Fatigue cracks in Ti-6Al-4V specimens were investigated with the electric current injection technique.

  3. Reduction of RF accelerating voltage of Pohang Light Source-II superconducting RF cavity for stable top-up mode operation

    NASA Astrophysics Data System (ADS)

    Joo, Y.; Yu, I.; Park, I.; Chun, M. H.; Sohn, Y.

    2017-03-01

    The Pohang Light Source-II (PLS-II) is currently providing a top-up mode user-service operation with maximum available beam current of 400 mA and a beam emittance of below 10 nm-rad. The dimension of the beam bunch shortened to accomplish a low beam emittance of below 10 nm-rad from a high beam current of 400 mA increases the bunch charge density. As a result, the electron beam lifetime is significantly degraded and a high gradient of power is lost in the vacuum components of the storage ring. A study on how to reduce the bunch charge density without degrading beam emittance found that reducing the RF accelerating voltage (Vacc) can lower the bunch charge density by lengthening the bunch in the longitudinal direction. In addition, the Vacc required for stable operation with beam current of 400 mA can be reduced by lowering the external cavity quality factors (Qext values) of the superconducting cavities (SCs). To control the Qext values of SCs gradually without accessing the accelerator tunnel, a remote control motorized three-probe-tuner was installed in the transmission line of each SC. The optimum installation position of the three-probe-tuner was determined by using a finite-difference time-domain (FDTD) simulation and by experimenting on various installation positions of the three-probe-tuner. The Qext values of all the SCs were lowered to 1.40 × 105, and then, the Vacc required to store the beam current of 400 mA was decreased from 4.8 MV to 4.2 MV, which corresponds to 10% lengthening of the beam bunches. The stable operation with the reduced Vacc was confirmed during a 400 mA ten-day top-up mode user-service. Currently, the RF system of the PLS-II storage ring delivers the user-service operation with lowered Qext values to reduce the power loss at the vacuum components as well as the cryogenic heat load of SCs, and no significant problems have been found. This method of reducing the Vacc may also be applied in other synchrotron facilities.

  4. Mode-coupling approach to polymer diffusion in an unentangled melt. II. The effect of viscoelastic hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Farago, J.; Meyer, H.; Baschnagel, J.; Semenov, A. N.

    2012-05-01

    A mode-coupling theory (MCT) version (called hMCT thereafter) of a recently presented theory [Farago, Meyer, and Semenov, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.178301 107, 178301 (2011)] is developed to describe the diffusional properties of a tagged polymer in a melt. The hMCT accounts for the effect of viscoelastic hydrodynamic interactions (VHIs), that is, a physical mechanism distinct from the density-based MCT (dMCT) described in the first paper of this series. The two versions of the MCT yield two different contributions to the asymptotic behavior of the center-of-mass velocity autocorrelation function (c.m. VAF). We show that in most cases the VHI mechanism is dominant; for long chains and prediffusive times it yields a negative tail ∝-N-1/2t-3/2 for the c.m. VAF. The case of non-momentum-conserving dynamics (Langevin or Monte Carlo) is discussed as well. It generally displays a distinctive behavior with two successive relaxation stages: first -N-1t-5/4 (as in the dMCT approach), then -N-1/2t-3/2. Both the amplitude and the duration of the first t-5/4 stage crucially depend on the Langevin friction parameter γ. All results are also relevant for the early time regime of entangled melts. These slow relaxations of the c.m. VAF, thus account for the anomalous subdiffusive regime of the c.m. mean square displacement widely observed in numerical and experimental works.

  5. Deformation and damage mechanisms of zinc coatings on hot-dip galvanized steel sheets: Part II. Damage modes

    NASA Astrophysics Data System (ADS)

    Parisot, Rodolphe; Forest, Samuel; Pineau, André; Grillon, François; Demonet, Xavier; Mataigne, Jean-Michel

    2004-03-01

    Zinc-based coatings are widely used for protection against corrosion of steel-sheet products in the automotive industry. The objective of the present article is to investigate the damage modes at work in three different microstructures of a zinc coating on an interstitial-free steel substrate under tension, planestrain tension, and expansion loading. Plastic-deformation mechanisms are addressed in the companion article. Two main fracture mechanisms, namely, intergranular cracking and transgranular cleavage fracture, were identified in an untempered cold-rolled coating, a tempered cold-rolled coating, and a recrystallized coating. No fracture at the interface between the steel and zinc coating was observed that could lead to spalling, in the studied zinc alloy. A complex network of cleavage cracks and their interaction with deformation twinning is shown to develop in the material. An extensive quantitative analysis based on systematic image analysis provides the number and cumulative length of cleavage cracks at different strain levels for the three investigated microstructures and three loading conditions. Grain refinement by recrystallization is shown to lead to an improved cracking resistance of the coating. A model for crystallographic cleavage combining the stress component normal to the basal plane and the amount of plastic slip on the basal slip systems is proposed and identified from equibiaxial tension tests and electron backscattered diffraction (EBSD) analysis of the cracked grains. This analysis requires the computation of the nonlinear stress-strain response of each grain using a crystal-plasticity constitutive model. The model is then applied successfully to other loading conditions and is shown to account for the preferred orientations of damaged grains observed in the case of plane-strain tension.

  6. Electrostatic transport in L-mode scrape-off layer plasmas of Tore Supra tokamak. II. Transport by fluctuations

    SciTech Connect

    Fedorczak, N.; Tynan, G. R.; Gunn, J. P.; Pascal, J.-Y.; Ghendrih, Ph.; Monier-Garbet, P.; Oost, G. van

    2012-07-15

    The turbulent transport of particles is investigated using rake probes at the top of the scrape-off layer (SOL) of circular ohmically heated L-mode plasmas in the Tore Supra tokamak [G. Giruzzi et al., Nucl. Fusion 49, 104010 (2009)]. Both radial and poloidal non-linear fluxes are estimated by means of two reciprocating arrays separated toroidally by 120 Degree-Sign . The time average of the radial (poloidal) flux is positive (negative) through the whole SOL profile. The respective effective transport velocity are about {sub t} Almost-Equal-To 30m s{sup -1} and {sub t} Almost-Equal-To -60m s{sup -1} close to the last closed flux surface. Both components present a standard deviation about 10 times higher than their respective mean amplitude, and time-distributions highly skewed toward values of the same sign as their mean values. The existence of a nonlinear poloidal flux is associated with the local tilt of filament eddies due to electric and magnetic shear. At the last closed flux surface, where plasma filaments experience their early life, the orientation of the velocity field is consistent with structure dynamics which originate from the outboard midplane and spread along field lines toward the rest of the poloidal section. The localized tilt of the eddy structures corresponds to the effect of the magnetic shear. Further into the SOL, the orientation of the velocity field evolves along radius in agreement with a simple model of propagating filaments progressively tilted by an electric shear. The combined effects of electric and magnetic shear on the eddy tilting have potentially a crucial impact on the existence of a Reynolds stress {sub t} component, which is strongly poloidally asymmetric at the edge of tokamak plasmas.

  7. Brain Tumors and Fatigue

    MedlinePlus

    ... tiredness. You may experience a profound lack of energy that can come on suddenly and bring dramatic ... to manage the severity. Respect the Fatigue The energy you’re accustomed to having has been transferred ...

  8. Chronic Fatigue Syndrome

    MedlinePlus

    ... of fatigue. Think "alternative." Acupuncture, reiki, massage, stretching, yoga, and t'ai chi seem to help many ... not beginning therapy — and therapies like the stress-management techniques and graded exercise previously mentioned have been ...

  9. Collect Available Creep-Fatigue Data and Study Existing Creep-Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR

    SciTech Connect

    Tai Asayama; Yukio Tachibana

    2007-09-30

    This report describes the results of investigation on Task 5 of DOE/ASME Materials Project based on a contract between ASME Standards Technology, LLC (ASME ST-LLC) and Japan Atomic Energy Agency (JAEA). Task 5 is to collect available creep-fatigue data and study existing creep-fatigue evaluation procedures for Grade 91 steel and Hastelloy XR. Part I of this report is devoted to Grade 91 steel. Existing creep-fatigue data were collected (Appendix A) and analyzed from the viewpoints of establishing a creep-fatigue procedure for VHTR design. A fair amount of creep-fatigue data has been obtained and creep-fatigue phenomena have been clarified to develop design standards mainly for fast breeder reactors. Following this, existing creep-fatigue procedures were studied and it was clarified that the creep-fatigue evaluation procedure of the ASME-NH has a lot of conservatisms and they were analyzed in detail from the viewpoints of the evaluation of creep damage of material. Based on the above studies, suggestions to improve the ASME-NH procedure along with necessary research and development items were presented. Part II of this report is devoted to Hastelloy XR. Existing creep-fatigue data used for development of the high temperature structural design guideline for High Temperature Gas-cooled Reactor (HTGR) were collected. Creep-fatigue evaluation procedure in the design guideline and its application to design of the intermediate heat exchanger (IHX) for High Temperature Engineering Test Reactor (HTTR) was described. Finally, some necessary research and development items in relation to creep-fatigue evaluation for Gen IV and VHTR reactors were presented.

  10. Fatigue - Multiple Languages

    MedlinePlus

    ... हिन्दी) Japanese (日本語) Korean (한국어) Polish (polski) Russian (Русский) Somali (Af-Soomaali ) Spanish (español) Ukrainian (українська ) ... English Fatigue - polski (Polish) PDF American Cancer Society Russian (Русский) Expand Section Cancer Related Fatigue - Русский (Russian) ...

  11. Fracture and Fatigue

    DTIC Science & Technology

    1988-04-01

    fracture. The main additional categories of crack growth are elastic-plastic crack growth, fatigue crack growth, and crack growth as affected by...FRACTURE AND FATIGUE R. 0. RITCHIE W. W. GERBERICH J. H. UNDERWOOD DTIC AM ELECTE JUL 1 11988 APRIL 1988 FH US ARMY ARMAMENT RESEARCH, DEVELOPMENT AND...other authorized documents. N The use of trade name(s) and/or manufacturer (s) does not constitute an official indorsement or approval. DESTRUCTION NOTICE

  12. Micromechanics of Fatigue.

    DTIC Science & Technology

    1992-06-01

    recalled. Application of the derived tools to Apha-Two- Titanium Aluminide Aliov is made with a first series of strain controlled fatigue tests the locally...accumulation, and, multiaxial fatigue. In section 6, application is performed on the Alpha-Two- Titanium Alum:Aide Alloy.With a first serie of strain controlled ...tests needed for the identification of the model are described in the following figures. Test n’l is a classical tensile test strain controlled 1 = 0

  13. Illuminating heterogeneous anisotropic upper mantle: testing a new anisotropic teleseismic body-wave tomography code - part II: Inversion mode

    NASA Astrophysics Data System (ADS)

    Munzarova, Helena; Plomerova, Jaroslava; Kissling, Edi

    2015-04-01

    necessary step before AniTomo is applied to real datasets. We examine various aspects coming along with anisotropic tomography such as setting a starting anisotropic model and parameters controlling the inversion, and particularly influence of a ray coverage on resolvability of individual anisotropic parameters. Synthetic testing also allows investigation of the well-known trade-off between effects of P-wave anisotropy and isotropic heterogeneities. Therefore, the target synthetic models are designed to represent schematically different heterogeneous anisotropic structures of the upper mantle. Testing inversion mode of the AniTomo code, considering an azimuthally quasi-equal distribution of rays and teleseismic P-wave incidences, shows that a separation of seismic anisotropy and isotropic velocity heterogeneities is plausible and that the correct orientation of the symmetry axes in a model can be found within three iterations for well-tuned damping factors.

  14. Fatigue in aviation.

    PubMed

    Caldwell, John A

    2005-05-01

    Pilot fatigue is a significant, but often under-reported problem in both civilian and military aviation operations. Although estimates vary, official statistics indicate that fatigue is involved in at least 4-8% of aviation mishaps, and surveys of pilots and aircrew members reveal that fatigue is an important concern throughout today's 24/7 flight operations. Regulatory efforts aimed at limiting flight hours and ensuring at least minimal periods of crew rest have to some extent mitigated fatigue-related difficulties in the cockpit, but it is clear that much remains to be done about this insidious threat to air safety. Scheduling factors, sleep deprivation, circadian disruptions, and extended duty periods continue to challenge the alertness and performance levels of both short-haul and long-haul pilots and crews. Solutions for these problems are not straightforward, but they can be developed through the cooperative efforts of scientists, regulators, managers, and the pilots themselves. Over the past 20 years, scientific understanding of human sleep, fatigue, and circadian rhythms has expanded considerably. The thorough integration of this new knowledge into modern crew-resource management practices will facilitate the establishment of optimal crew scheduling routines and the implementation of valid aviation fatigue countermeasures.

  15. BIOMARKERS for CHRONIC FATIGUE

    PubMed Central

    Broderick, Gordon; Fletcher, Mary Ann

    2012-01-01

    Fatigue that persists for 6 months or more is termed chronic fatigue. Chronic fatigue (CF) in combination with a minimum of 4 of 8 symptoms and the absence of diseases that could explain these symptoms, constitute the case definition for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). Inflammation, immune system activation, autonomic dysfunction, impaired functioning in the hypothalamic-pituitary-adrenal axis, and neuroendocrine dysregulation have all been suggested as root causes of fatigue. The identification of objective markers consistently associated with CFS/ME is an important goal in relation to diagnosis and treatment, as the current case definitions are based entirely on physical signs and symptoms. This review is focused on the recent literature related to biomarkers for fatigue associated with CFS/ME and, for comparison, those associated with other diseases. These markers are distributed across several of the body’s core regulatory systems. A complex construct of symptoms emerges from alterations and/or dysfunctions in the nervous, endocrine and immune systems. We propose that new insight will depend on our ability to develop and deploy an integrative profiling of CFS/ME pathogenesis at the molecular level. Until such a molecular signature is obtained efforts to develop effective treatments will continue to be severely limited. PMID:22732129

  16. Fatigue and multiple sclerosis.

    PubMed

    Béthoux, F

    2006-07-01

    Even if the definition and pathophysiology of fatigue in multiple sclerosis (MS) are still debated, and despite the scarcity of objective markers correlated with the subjective sensation of fatigue, a review of the literature shows the importance of its detection and management, and allows one to propose therapeutic strategies. Fatigue is not only the most frequently reported symptom in MS, but also a frequent source of activity and participation limitations, psychological distress, and impairment of quality of life. Its management, which must be initiated early, is based on a comprehensive evaluation of its characteristics and consequences (sometimes with the use of scales such as the Fatigue Severity Scale and the Modified Fatigue Impact Scale), and on the identification of many potential contributing factors (psychological disorders, sleep disturbances, pain, infections and other comorbidities, medications, and deconditioning). Rehabilitative interventions are essential to the treatment of fatigue. Beyond the traditional energy conservation strategies and cooling techniques, several randomized controlled studies have demonstrated the positive impact of aerobic exercise. Medications are partially beneficial, and with the exception of amantadine, their efficacy has not been confirmed by randomized double-blind trials.

  17. Notch sensitivity jeopardizes titanium locking plate fatigue strength.

    PubMed

    Tseng, Wo-Jan; Chao, Ching-Kong; Wang, Chun-Chin; Lin, Jinn

    2016-12-01

    Notch sensitivity may compromise titanium-alloy plate fatigue strength. However, no studies providing head-to-head comparisons of stainless-steel or titanium-alloy locking plates exist. Custom-designed identically structured locking plates were made from stainless steel (F138 and F1314) or titanium alloy. Three screw-hole designs were compared: threaded screw-holes with angle edges (type I); threaded screw-holes with chamfered edges (type II); and non-threaded screw-holes with chamfered edges (type III). The plates' bending stiffness, bending strength, and fatigue life, were investigated. The stress concentration at the screw threads was assessed using finite element analyses (FEA). The titanium plates had higher bending strength than the F1314 and F138 plates (2.95:1.56:1) in static loading tests. For all metals, the type-III plate fatigue life was highest, followed by type-II and type-I. The type-III titanium plates had longer fatigue lives than their F138 counterparts, but the type-I and type-II titanium plates had significantly shorter fatigue lives. All F1314 plate types had longer fatigue lives than the type-III titanium plates. The FEA showed minimal stress difference (0.4%) between types II and III, but the stress for types II and III was lower (11.9% and 12.4%) than that for type I. The screw threads did not cause stress concentration in the locking plates in FEA, but may have jeopardized the fatigue strength, especially in the notch-sensitive titanium plates. Improvement to the locking plate design is necessary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Creep, fatigue and creep-fatigue interactions in modified 9% Chromium - 1% Molybdenum (P91) steels

    NASA Astrophysics Data System (ADS)

    Kalyanasundaram, Valliappa

    Grade P91 steel, from the class of advanced high-chrome ferritic steels, is one of the preferred materials for many elevated temperature structural components. Creep-fatigue (C-F) interactions, along with oxidation, can accelerate the kinetics of damage accumulation and consequently reduce such components' life. Hence, reliable C-F test data is required for meticulous consideration of C-F interactions and oxidation, which in turn is vital for sound design practices. It is also imperative to develop analytical constitutive models that can simulate and predict material response under various long-term in-service conditions using experimental data from short-term laboratory experiments. Consequently, the major objectives of the proposed research are to characterize the creep, fatigue and C-F behavior of grade P91 steels at 625 C and develop robust constitutive models for simulating/predicting their microstructural response under different loading conditions. This work will utilize experimental data from 16 laboratories worldwide that conducted tests (creep, fatigue and C-F) on grade P91 steel at 625°C in a round-robin (RR) program. Along with 7 creep deformation and rupture tests, 32 pure fatigue and 46 C-F tests from the RR are considered in this work. A phenomenological constitutive model formulated in this work needs just five fitting parameters to simulate/predict the monotonic, pure fatigue and C-F behavior of grade P91 at 625 C. A modified version of an existing constitutive model is also presented for particularly simulating its isothermal creep deformation and rupture behavior. Experimental results indicate that specimen C-F lives, as measured by the 2% load drop criterion, seem to decrease with increasing strain ranges and increasing hold times at 625°C. Metallographic assessment of the tested specimens shows that the damage mode in both pure fatigue and 600 seconds hold time cyclic tests is predominantly transgranular fatigue with some presence of

  19. Fatigue in frail elderly people.

    PubMed

    Toye, Christine; White, Kate; Rooksby, Karen

    2006-05-01

    Many frail older people are likely to suffer from fatigue, but tools to measure fatigue in this population are lacking. Stage one of this study explored and described the experiences of fatigue of 12 older people from Australian residential aged care facilities. Themes identified were pacing yourself, battling on, hitting rock bottom, feeling safe, and moving on. Findings indicated that, with support, frail elders may be able to manage fatigue effects themselves. A measure of fatigue was developed from stage one findings, with reference to the literature. In stage two of the study, the Frail Elder Fatigue Assessment Tool was subjected to panel review, piloting, and refinement. The refined tool comprises 20 items in three subscales: fatigue effects; fatigue resources; and adaptation to fatigue. Further work is required to establish the tool's psychometric properties, but it should then be useful for both research and clinical assessment purposes.

  20. Operational Risk Management of Fatigue Effects II

    DTIC Science & Technology

    2008-08-01

    promotes wakefulness, enhances vigilance performance and lessens feelings of weariness. The half- life for caffeine metabolism is typically 5-6 hours...excellent-quality sleep. Time of Day The period of concern is between midnight and 06:00 on the body clock. If mental work is to be performed during...10 In this case, the ability to perform such functions as logical reasoning and mental arithmetic. 41 Approved for public

  1. Isothermal fatigue of low tin lead based solder

    NASA Astrophysics Data System (ADS)

    Vayman, Semyon; Fine, Morris E.; Jeannotte, Dexter A.

    1988-04-01

    Low tin lead based solder fails by intergranular and/or transgranular modes depending upon experimental conditions. At low frequency and in tests with hold times separation of grains is the main mode of fracture. In the 5 to 100 °C temperature range at high frequency (> 10-2 Hz) and at high total strain range (0.75 pct) the failure mode is mixed transgranular-intergranular; at a low total strain range (0.3 pct) the mode of failure is intergranular. Change in failure mode leads to a bend in the Coffin-Manson plot. Tensile hold time and combined tensile and compressive hold times are found to reduce dramatically the fatigue cycles to failure of this solder. A simple mathematical relation between the fatigue life of the solder and ramp time, tensile, and compressive hold times is developed.

  2. Probabilistic Fatigue: Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2002-01-01

    Fatigue is a primary consideration in the design of aerospace structures for long term durability and reliability. There are several types of fatigue that must be considered in the design. These include low cycle, high cycle, combined for different cyclic loading conditions - for example, mechanical, thermal, erosion, etc. The traditional approach to evaluate fatigue has been to conduct many tests in the various service-environment conditions that the component will be subjected to in a specific design. This approach is reasonable and robust for that specific design. However, it is time consuming, costly and needs to be repeated for designs in different operating conditions in general. Recent research has demonstrated that fatigue of structural components/structures can be evaluated by computational simulation based on a novel paradigm. Main features in this novel paradigm are progressive telescoping scale mechanics, progressive scale substructuring and progressive structural fracture, encompassed with probabilistic simulation. These generic features of this approach are to probabilistically telescope scale local material point damage all the way up to the structural component and to probabilistically scale decompose structural loads and boundary conditions all the way down to material point. Additional features include a multifactor interaction model that probabilistically describes material properties evolution, any changes due to various cyclic load and other mutually interacting effects. The objective of the proposed paper is to describe this novel paradigm of computational simulation and present typical fatigue results for structural components. Additionally, advantages, versatility and inclusiveness of computational simulation versus testing are discussed. Guidelines for complementing simulated results with strategic testing are outlined. Typical results are shown for computational simulation of fatigue in metallic composite structures to demonstrate the

  3. Some aspects of thermomechanical fatigue of AISI 304L stainless steel: Part I. creep- fatigue damage

    NASA Astrophysics Data System (ADS)

    Zauter, R.; Christ, H. J.; Mughrabi, H.

    1994-02-01

    Thermomechanical fatigue (TMF) tests on the austenitic stainless steel AISI 304L have been conducted under “true≓ plastic-strain control in vacuum. This report considers the damage oc-curring during TMF loading. It is shown how the temperature interval and the phasing (in-phase, out-of-phase) determine the mechanical response and the lifetime of the specimens. If creep-fatigue interaction takes place during in-phase cycling, the damage occurs inside the ma-terial, leading to intergranular cracks which reduce the lifetime considerably. Out-of-phase cy-cling inhibits creep-induced damage, and no lifetime reduction occurs, even if the material is exposed periodically to temperatures in the creep regime. A formula is proposed which allows prediction of the failure mode, depending on whether creep-fatigue damage occurs or not. At a given strain rate, the formula is able to estimate the temperature of transition between pure fatigue and creep-fatigue damage.

  4. Fatigue properties of shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.; Cooper, P. A.

    1980-01-01

    Static and cyclic load tests were conducted to determine the static and fatigue strength of the RIS tile/SIP thermal protection system used on the orbiter of the space shuttle. The material systems investigated include the densified and undensified LI-900 tile system on the .40 cm thick SIP and the densified and undensified LI-2200 tile system on the .23 cm (.090 inch) thick SIP. The tests were conducted at room temperature with a fully reversed uniform cyclic loading at 1 Hertz. Cyclic loading causes a relatively large reduction in the stress level that each of the SIP/tile systems can withstand for a small number of cycles. For example, the average static strength of the .40 cm thick SIP/LI-900 tile system is reduced from 86 kPa to 62 kPa for a thousand cycles. Although the .23 cm thick SIP/LI-2200 tile system has a higher static strength, similar reductions in the fatigue strength are noted. Densifying the faying surface of the RSI tile changes the failure mode from the SIP/tile interface to the parent RSI or the SIP and thus greatly increases the static strength of the system. Fatigue failure for the densified tile system, however, occurs due to complete separation or excessive elongation of the SIP and the fatigue strength is only slightly greater than that for the undensified tile system.

  5. Fatigue crack growth in lithium hydride

    SciTech Connect

    Healy, T.E.

    1993-09-01

    Subcritical fatigue crack growth, from cyclic tensile loading, was demonstrated in warm pressed Polycrystalline lithium hydride. Experiments were performed with cyclic tension-tension crack opening (mode I) loads applied to a pre-cracked compact type specimen in an argon environment at a temperature of 21C (70F). The fatigue crack growth was found to occur between 7.56 {times} 10{sup {minus}ll} M/cycle (2.98 {times} l0{sup {minus}9} in/cycle) and 2.35 {times} l0{sup {minus}8} m/cycle (9.24{times}10{sup {minus}7} in/cycle) for a range of stress intensity factors between 1.04 MPa{center_dot}{radical}m (0.95 ksi{center_dot}{radical}in) and 1.49 MPa{center_dot}{radical}m (1.36 ksi{center_dot}{radical}in). The rate of fatigue crack growth from cyclic tensile loading was found to be in excess of crack growth from sustained loading at an equivalent stress intensity factor. Furthermore, a fatigue threshold was not evident from the acquired data.

  6. Ferrocene and (arene)ruthenium(II) complexes of the natural anticancer naphthoquinone plumbagin with enhanced efficacy against resistant cancer cells and a genuine mode of action.

    PubMed

    Spoerlein-Guettler, Cornelia; Mahal, Katharina; Schobert, Rainer; Biersack, Bernhard

    2014-09-01

    A series of ferrocene and (arene)ruthenium(II) complexes attached to the naturally occurring anticancer naphthoquinones plumbagin and juglone was tested for efficacy against various cancer cell lines and for alterations in the mode of action. The plumbagin ferrocene and (p-cymene)Ru(II) conjugates 1c and 2a overcame the multi-drug drug resistance of KB-V1/Vbl cervix carcinoma cells and showed IC50 (72 h) values around 1 μM in growth inhibition assays using 3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT). They were further investigated for their influence on the cell cycle of KB-V1/Vbl and HCT-116 colon carcinoma cells, on the generation of reactive oxygen species (ROS) by the latter cell line, for their substrate character for the P-glycoprotein drug eflux pump via the calcein-AM efflux assays, and for DNA affinity by the electrophoretic mobility shift assay (EMSA). The derivatives 1c and 2a increased the number of dead cancer cells (sub-G0/G1 fraction) in a dose- and time-dependent manner. ROS levels were significantly increased upon treatment with 1c and 2a. These compounds also showed a greater affinity to linear DNA than plumbagin. While plumbagin did not affect calcein-AM transport by P-glycoprotein the derivatives 1c and 2a exhibited a 50% or 80% inhibition of the P-glycoprotein-mediated calcein-AM efflux relative to the clinically established sensitizer verapamil. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The influence of mode of delivery, obstetric analgesia and anaesthesia on the response of isolated human chorionic plate arteries to angiotensin II.

    PubMed

    Odum, C U; Pipkins, F B

    1989-01-01

    A six point concentration: response curved of the contractile effect of angiotensin II (AII) on helically-cut strips of human chorionic plate artery strips were established at final concentrations of between 10(-14) to 10(-9) M. The tissues were obtained from the placentae of primigravid patients who had normal pregnancy, and also from those with pregnancy induced hypertension (PIH). The tissue response were then related to mode of delivery, obstetric analgesia, and anaesthesia. A total of 36 chorionic plate arteries from 12 primigravid patients were studied. i) The overall initial EC50s of the tissues ranged from 8.0 x 10(-13) M and 4.5 x 10(-13) M. The tissues from PIH patients were significantly more sensitive to AII, when compared with tissues from the normotensive subjects (P greater than or equal to 0.01 less than or equal to 0.05). ii) The tissues from epidural vaginal deliveries were also significantly more sensitive to AII, than those from both normal vaginal deliveries and caesarean deliveries respectively. The median gradients of the semi-log transformed concentration response curved were 2.4 +/- 0.18; 1.27 +/- 0.37, and 1.5 +/- 0.49, for epidural, Caeserean and normal vaginal deliveries respectively. iii) It is suggested that whilst Lumbar epidural analgesia may be of great value in pain relief in labour and in the control of intrapartum hypertension in pre-eclampsia, this procedure may be associated with hypersensitivity and perhaps vasospasm of the placental vasculature to vasoactive agents invivo.

  8. Abortive intermediates in transcription by wheat-germ RNA polymerase II. Dynamic aspects of enzyme/template interactions in selection of the enzyme synthetic mode.

    PubMed Central

    de Mercoyrol, L; Soulié, J M; Job, C; Job, D; Dussert, C; Palmari, J; Rasigni, M; Rasigni, G

    1990-01-01

    At constant enzyme concentration and with the full set of nucleotide substrates dictated by template sequence, the chain-length distribution of polymeric product varies with template concentration in reactions catalysed by wheat-germ RNA polymerase II. Under the same conditions, but in the presence of a single ribonucleoside triphosphate, the rate of condensation of the triphosphate substrate to a dinucleotide primer also exhibits a complex dependence with the template concentration. This effect is observed using poly[d(A-T)] as a template. For both reactions there are two extreme types of behaviour in each of which transcription appears to involve a single enzyme synthetic mode, characterized by either a high (at low template concentration) or a low (at high template concentration) probability of releasing the transcripts. A strong correlation is found between these two pathways, such that conditions favouring the abortive release of trinucleotide products in the single-step addition reaction are associated with the synthesis of short-length RNA species in productive elongation, and reciprocally. A model previously developed by Papanicolaou, Lecomte & Ninio [(1986) J. Mol. Biol. 189, 435-448] to account for the kinetics of polymerization/excision ratios with Escherichia coli DNA polymerase I, and by Job, Soulié, Job & Shire [(1988) J. Theor. Biol. 134, 273-289] for kinetics of RNA-chain elongation by wheat-germ RNA polymerase II provides an explanation for the observed behaviour with the plant transcriptase. The basic requirement of this model is a slow equilibrium between two states of the polymerization complex with distinct probabilities of releasing the product. In the presence of Mn2+, and under conditions allowing the synthesis of poly[r(A-U)], one of these states is involved in the formation of oligonucleotides shorter than 15 bases, whereas the other catalyses the polymerization of chains longer than 40 bases. Images Fig. 1. Fig. 3. Fig. 4. Fig. 7. PMID

  9. Molecular recognition modes between adenine or adeniniun(1+) ion and binary M(II)(pdc) chelates (MCoZn; pdc=pyridine-2,6-dicarboxylate(2-) ion).

    PubMed

    Del Pilar Brandi-Blanco, María; Choquesillo-Lazarte, Duane; Domínguez-Martín, Alicia; Matilla-Hernández, Antonio; González-Pérez, Josefa María; Castiñeiras, Alfonso; Niclós-Gutiérrez, Juan

    2013-10-01

    Mixed ligand M(II)-complexes (MCoZn) with pyridine-2,6-dicarboxylate(2-) chelator (pdc) and adenine (Hade) have been synthesized and studied by X-ray diffraction and other spectral and thermal methods: [Cu(pdc)(H(N9)ade)(H2O)] (1), [Cu2(pdc)2(H2O)2(μ2-N3,N7-H(N9)ade)]·3H2O (2), trans-[M(pdc)(H(N9)ade)(H2O)2]·nH2O for MCo (3-L, 3-M, 3-H) or Zn (4-L, 4-H), where n is 0, 1 or 3 for the 'lowest' (L), 'medium' (M) and 'highest' (H) hydrated forms, and the salt trans-[Ni(pdc)(H2(N1,N9)ade)(H2O)2]Cl·2H2O (5). In all the nine compounds, both neutral and cationic adenine exist as their most stable tautomer and the molecular recognition pattern between the metal-pdc chelates and the adenine or adeninium(1+) ligands involves the MN7 bond in cooperation with an intra-molecular N6H⋯O(coordinated carboxylate) interligand interaction. In addition the dinuclear copper(II) compound (2) has the CuN3 bond and the N9H⋯O(coord. carboxylate) interaction. The structures of mononuclear ternary complexes proved that the molecular recognition pattern is the same irrespective of (a) the coordination geometry of the complex molecule, (b) the different hydrated forms of crystals with Co or Zn, and (c) the neutral of cationic form of the adenine ligand. These features are related to the mer-NO2 chelating ligand conformation (imposed by the planar rigidity of pdc) as a driving force for the observed metal binding mode.

  10. The influence of hold times on LCF and FCG behavior in a P/M Ni-base superalloy. [Low Cycle Fatigue/Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    Choe, S. J.; Golwalker, S. V.; Duquette, D. J.; Stoloff, N. S.

    1984-01-01

    The relative importance of creep and environmental interactions in high temperature fatigue behavior has been investigated for as-HIP Rene 95. Strain-controlled low cycle fatigue and load-controlled fatigue crack growth tests were performed at elevated temperatures in argon, followed by fractographic analyses of the fracture surfaces by scanning electron microscopy. Fatigue lives were drastically reduced and crack growth rates increased one hundred fold as a result of superposition of hold times on continuous cycling. A change in fracture mode with hold time also was noted. Chromium oxide was detected on the fracture surface by Auger electron spectroscopy. The drastic changes in fatigue resistance due to hold times were attributed primarily to environmental interactions with fatigue processes.

  11. The influence of hold times on LCF and FCG behavior in a P/M Ni-base superalloy. [Low Cycle Fatigue/Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    Choe, S. J.; Golwalker, S. V.; Duquette, D. J.; Stoloff, N. S.

    1984-01-01

    The relative importance of creep and environmental interactions in high temperature fatigue behavior has been investigated for as-HIP Rene 95. Strain-controlled low cycle fatigue and load-controlled fatigue crack growth tests were performed at elevated temperatures in argon, followed by fractographic analyses of the fracture surfaces by scanning electron microscopy. Fatigue lives were drastically reduced and crack growth rates increased one hundred fold as a result of superposition of hold times on continuous cycling. A change in fracture mode with hold time also was noted. Chromium oxide was detected on the fracture surface by Auger electron spectroscopy. The drastic changes in fatigue resistance due to hold times were attributed primarily to environmental interactions with fatigue processes.

  12. 14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., detail design, and fabrication must show that catastrophic failure due to fatigue, corrosion... locations and modes of damage due to fatigue, corrosion, or accidental damage. Repeated load and static... during 1 g level flight) multiplied by a factor of 1.15, omitting other loads. (6) For landing gear...

  13. Evaluation of Fatigue Performance of Asphalt Based on Constant Strain DSR Test

    NASA Astrophysics Data System (ADS)

    Zhu, H. Z.; Yan, E. H.; Lu, Z. T.

    2017-02-01

    Asphalt performance has important effect on the fatigue resistance performance of asphalt mixture. This research based on the DSR time scanning mode, investigated the constant strain performance of 70 # matrix asphalt and SBS modified asphalt. Based on 50% G* 0 to simulate the fatigue performance of two kinds of the asphalt.

  14. Fatigue With Systolic Heart Failure

    PubMed Central

    Fink, Anne M.; Sullivan, Shawna L.; Zerwic, Julie J.; Piano, Mariann R.

    2010-01-01

    Background and Research Objective Fatigue is one of the most prevalent symptoms in persons with systolic heart failure (HF). There remains insufficient information about the physiological and psychosocial underpinnings of fatigue in HF. The specific aims of this study were to (1) determine the psychometric properties of 2 fatigue questionnaires in patients with HF, (2) compare fatigue in patients with HF to published scores of healthy adults and patients with cancer undergoing treatment, and (3) identify the physiological (eg, hemoglobin, B-type natriuretic peptide, body mass index, and ejection fraction) and psychosocial (eg, depressed mood) correlates of fatigue in HF. Subjects and Methods A convenience sample of 87 HF outpatients was recruited from 2 urban medical centers. Patients completed the Fatigue Symptom Inventory, Profile of Mood States, and Short Form-36 Health Survey. Results and Conclusions Patients with HF and patients with cancer reported similar levels of fatigue, and both patient groups reported significantly more fatigue than did healthy adults. Physical functioning and hemoglobin categories explained 30% of the variance in Fatigue Symptom Inventory-Interference Scale scores, whereas depressed mood and physical functioning explained 47% of the variance in Profile of Mood States Fatigue subscale scores. Patients with HF experienced substantial fatigue that is comparable with cancer-related fatigue. Low physical functioning, depressed mood, and low hemoglobin level were associated with HF-related fatigue. PMID:19707101

  15. Criterion for mixed mode fracture in composite bonded joints

    NASA Technical Reports Server (NTRS)

    Mall, S.; Kochhar, N. K.

    1986-01-01

    A study was undertaken to characterize the debond growth mechanism of adhesively bonded composite joints under mode I, mixed mode I-II, and mode II static loadings. The bonded system consisted of graphite-epoxy composite adherends bonded with a toughened epoxy adhesive. The mode I, mode II and mixed mode I-II fracture energies of the tested adhesives were found to be equal to each other. The criterion for mixed mode fracture in composite bonded joints was found.

  16. Fatigue Assessment: Subjective Peer-to-Peer Fatigue Scoring (Reprint)

    DTIC Science & Technology

    2013-10-01

    impor- tant role of fatigue in aviation safety and fl ight perfor- mance, the compelling tasks of predicting dangerous fatigued states and quantifying...complex fl ight environment. Indeed, even a precise defi nition of fatigue has been somewhat recondite. It is often stratifi ed into acute versus...Medicine x Vol. 84, No. 10 x October 2013 PEER-TO-PEER FATIGUE SCORING — GAYDOS ET AL. broad and complex skill sets required for fl ight safety

  17. Thermal fatigue of beryllium

    SciTech Connect

    Deksnis, E.; Ciric, D.; Falter, H.

    1995-09-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m{sup 2} to 5 MW/m{sup 2} and under pulsed heat fluxes (10-20 MW/m{sup 2}) for which the time averaged heat flux is 5 MW/m{sup 2}. These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures {le} 600{degrees}C produced no visible fatigue cracks. In the second series of tests, with T{sub max} {le} 750{degrees}C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with {Phi} = 25 MW/m{sup 2} and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed.

  18. The impact of hygrothermal preconditioning on mode II interlaminar fracture toughness in unidirectional carbon fiber reinforced epoxy composites: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Hempowicz, Michael L.

    The correlation between the interlaminar Mode II fracture toughness (GIIC) of a carbon fiber reinforced epoxy and other material properties across different conditioning regimes was investigated. Specimens were preconditioned using select hygrothermal criteria to evaluate how changes in the material and mechanical properties in a carbon fiber/epoxy composite correlations with changes in GIIC for each regime. An increase in GIIC from baseline values was demonstrated across all conditions from end-notched flexure (ENF) testing. Dynamic mechanical analysis (DMA) and tensile tests had varying responses based on preconditioning environment. Since tensile and some DMA properties rely on fiber strength and show property loss with increased plasticization, fiber strength may not have a large impact on GIIC properties. Test data also implied that the GIIC increased when consolidation of the polymer chains occurred in the arid condition as well as when crosslink density increased in the moisture exposed conditions. From these results it is believed that the chemical and physical changes in matrix cohesion are more important to GIIC behavior prediction than fiber behavior.

  19. A suspending-droplet mode paper-based microfluidic platform for low-cost, rapid, and convenient detection of lead(II) ions in liquid solution.

    PubMed

    Sun, Han; Li, Wanbo; Dong, Zhen-Zhen; Hu, Chong; Leung, Chung-Hang; Ma, Dik-Lung; Ren, Kangning

    2018-01-15

    A paper-based microfluidic device based on unconventional principle was developed and used to detect lead ions through a two-step process including heated incubation and subsequent mixing. The device was made by generating a superhydrophobic pattern, which defines channel and reservoir barriers, on a water-impermeable paper substrate, followed by loading and drying the reagents in the defined reservoirs. Different from the conventional paper-based devices that are made of water-permeable paper, the as-prepared device holds water drops in discrete reservoirs, and the water drops will not move unless the device is titled along the direction of the predefined channels. In this way, the liquid samples applied onto the device are handled as individual drops and could be stored, transported, and mixed on demand. Different from the conventional paper-based devices that use capillary force to drive liquid, our new device uses wetting and gravity as driving force. We name this operation principle suspending-droplet mode paper-based device (SD-μPAD). The use of a Teflon contact-printing stamp makes the production of such devices rapid, cost efficient, and mass productive. Utilizing a G-quadruplex-based luminescence switch-on assay, we demonstrated rapid, convenient, highly sensitive, and low cost detection of lead(II) ions in water samples, using a custom made battery-powered portable device, and a smart phone as the detector. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Control over the Self-Assembly Modes of Pt(II) Complexes by Alkyl Chain Variation: From Slipped to Parallel π-Stacks.

    PubMed

    Allampally, Naveen Kumar; Mayoral, María José; Chansai, Sarayute; Lagunas, María Cristina; Hardacre, Christopher; Stepanenko, Vladimir; Albuquerque, Rodrigo Q; Fernández, Gustavo

    2016-06-01

    We report the self-assembly of a new family of hydrophobic, bis(pyridyl) Pt(II) complexes featuring an extended oligophenyleneethynylene-derived π-surface appended with six long (dodecyloxy (2)) or short (methoxy (3)) side groups. Complex 2, containing dodecyloxy chains, forms fibrous assemblies with a slipped arrangement of the monomer units (dPt⋅⋅⋅Pt ≈14 Å) in both nonpolar solvents and the solid state. Dispersion-corrected PM6 calculations suggest that this organization is driven by cooperative π-π, C-H⋅⋅⋅Cl and π-Pt interactions, which is supported by EXAFS and 2D NMR spectroscopic analysis. In contrast, nearly parallel π-stacks (dPt⋅⋅⋅Pt ≈4.4 Å) stabilized by multiple π-π and C-H⋅⋅⋅Cl contacts are obtained in the crystalline state for 3 lacking long side chains, as shown by X-ray analysis and PM6 calculations. Our results reveal not only the key role of alkyl chain length in controlling self-assembly modes but also show the relevance of Pt-bound chlorine ligands as new supramolecular synthons.

  1. Low-cycle thermal fatigue

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1986-01-01

    A state-of-the-art review is presented of the field of thermal fatigue. Following a brief historical review, the concept is developed that thermal fatigue can be viewed as processes of unbalanced deformation and cracking. The unbalances refer to dissimilar mechanisms occurring in opposing halves of thermal fatigue loading and unloading cycles. Extensive data summaries are presented and results are interpreted in terms of the unbalanced processes involved. Both crack initiation and crack propagation results are summarized. Testing techniques are reviewed, and considerable discussion is given to a technique for thermal fatigue simulation, known as the bithermal fatigue test. Attention is given to the use of isothermal life prediction methods for the prediction of thermal fatigue lives. Shortcomings of isothermally-based life prediction methods are pointed out. Several examples of analyses and thermal fatigue life predictions of high technology structural components are presented. Finally, numerous dos and don'ts relative to design against thermal fatigue are presented.

  2. An indentation fatigue strength law

    NASA Astrophysics Data System (ADS)

    Xu, Baoxing; Yonezu, Akio; Chen, Xi

    2010-05-01

    Indentation fatigue, where a cyclic load is applied on the sample via an indenter, emerges as an alternative approach for measuring the fatigue properties of materials. We have carried out indentation fatigue tests on a poly(vinyl chloride) (PVC) bulk material, as well as on TiN and NiP films/coatings deposited on SUS304 steel substrates, and demonstrate that a simple power-law relationship can be established between the indentation load amplitude and number of cycles to failure. Such a law is very similar to the conventional fatigue strength law obtained from uniaxial tests. The agreement between the fatigue stress exponents obtained by uniaxial and indentation fatigue tests suggests the potential applicability of the indentation fatigue technique for extracting the fatigue properties of materials.

  3. Relationship between fatigue and photosensitivity.

    PubMed

    Shigihara, Yoshihito; Tanaka, Masaaki; Watanabe, Yasuyoshi

    2010-01-01

    It is considered that photosensitivity is one of the most important factors to cause video-game epilepsy. Since photosensitivity is thought to cause various signs of hypersensitivity in the central nervous system and hypersensitivity is believed to be related to fatigue, whether fatigue is associated with photosensitivity was determined. The study group consisted of 68 healthy medical students attending Osaka City University Graduate School of Medicine. They completed questionnaires dealing with fatigue (Chalder Fatigue Scale) and photosensitivity. On simple regression analyses, fatigue score was positively associated with photosensitivity score. Similarly, on multiple regression analyses adjusted for age, gender, and sleeping hours, fatigue score was positively associated with photosensitivity score. Fatigue is associated with photosensitivity. Our findings provide new perspectives on fatigue.

  4. Chronic Fatigue Syndrome (CFS): Symptoms

    MedlinePlus

    ... please visit this page: About CDC.gov . Chronic Fatigue Syndrome (CFS) Share Compartir Symptoms On this Page ... Symptoms What's the Clinical Course of CFS? Chronic fatigue syndrome can be misdiagnosed or overlooked because its ...

  5. Fatigue and fracture overview

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    1986-01-01

    The accomplishments achieved under the isotropic creep-fatigue crack initiation life prediction program are summarized. A sizeable creep-fatigue crack initiation data base was generated on the nickel-base superalloy, B-1900. Companion constitutive modeling programs have also generated extensive data bases on the same heat of material. The crack initiation results have formed the basis of a new approach to creep-fatigue life prediction. The term Cyclic Damage Accumulation (CDA) was coined for the method, which was evaluated under isothermal, uniaxial conditions. Stringent laboratory verification experiments were used to test the accuracy of the method. Considering the quite limited material property data needed to evaluate the constants in the approach, the prediction accuracy is acceptable. At the expense of the larger data base required, Lewis developed total strain- strainrange partitioning method (TS-SRP) is capable of a higher degree of accuracy.

  6. Fatigue and Barkhausen effect

    NASA Astrophysics Data System (ADS)

    Tong, Wei

    Piezomagnetism designates a change in the magnetization of materials induced by mechanical actions such as tension or compression. The type of Barkhausen effect that occurs in this work consists of sudden, discontinuous jumps in a material's magnetization that appear in response to smooth (continuous) stress variations. A series of strain controlled fatigue tests with an alternating sinusoidal waveform were carried out to study the relationship between the endurance limit and the Barkhausen effect. Results of fatigue tests on steel specimens exhibiting Barkhausen pulses at various stages are reported and a threshold-crossing analysis is applied to the test results. These studies show that when the fatigue limit is approached, the Barkhausen pulses become, in general, more intense in amplitude and quantity than at other stress levels. A hypothetical mechanism is proposed that relates the intensity of the Barkhausen response to the inception of micro-cracking and rearrangements of the mechanical lattice at the microscopic level.

  7. High rates of fatigue and sleep disturbances in dystonia.

    PubMed

    Wagle Shukla, A; Brown, R; Heese, K; Jones, J; Rodriguez, R L; Malaty, I M; Okun, M S; Kluger, B M

    2016-10-01

    Nonmotor symptoms in dystonia are increasingly recognized to impair the quality of life. The primary objective of this study was to determine the prevalence of fatigue and sleep disturbances in dystonia and to ascertain their impact on quality of life using standardized questionnaires. Dystonia patients presenting to a Botulinum toxin clinic were prospectively administered Fatigue Severity Scale (FSS), Multidimensional Fatigue Inventory (MFI), Epworth Sleepiness Scale (ESS) and Parkinson's Disease Sleep Scale (PDSS) for assessment of fatigue and sleep disturbances. Health-related Quality of life (HRQOL) was determined using MOS SF-36 scale and depressive symptoms were assessed using the Beck Depression Inventory II. Ninety-one patients with dystonia participated (66 women, 25 men, mean age 60 ± 17 years). Nine subjects had generalized dystonia, 18 segmental dystonia and 64 had focal dystonia. Moderate to severe fatigue was present in 43% of the cohort (FSS), excessive daytime somnolence in 27% (ESS) and other sleep disturbances in 26% (PDSS). FSS and MFI scores correlated significantly with HRQOL even when controlled for depression and sleep disturbances. Excessive daytime somnolence and nocturnal sleep disturbances correlated significantly with the HRQOL; however, these effects were not seen for daytime somnolence when controlled for depression. Psychometric testing found adequate reliabilities and convergent validities for both fatigue and sleep scales. Fatigue and sleep disturbances revealed high prevalence rates in this large, first of its dystonia study. They negatively impacted the quality of life even when controlled for comorbid depression.

  8. Inspiratory muscles experience fatigue faster than the calf muscles during treadmill marching.

    PubMed

    Perlovitch, Renana; Gefen, Amit; Elad, David; Ratnovsky, Anat; Kramer, Mordechai R; Halpern, Pinchas

    2007-04-16

    The possibility that respiratory muscles may fatigue during extreme physical activity and thereby become a limiting factor leading to exhaustion is debated in the literature. The aim of this study was to determine whether treadmill marching exercise induces respiratory muscle fatigue, and to compare the extent and rate of respiratory muscle fatigue to those of the calf musculature. To identify muscle fatigue, surface electromyographic (EMG) signals of the inspiratory (sternomastoid, external intercostals), expiratory (rectus abdominis and external oblique) and calf (gastrocnemius lateralis) muscles were measured during a treadmill march of 2 km at a constant velocity of 8 km/h. The extent of fatigue was assessed by determining the increase in root-mean-square (RMS) of EMG over time, and the rate of fatigue was assessed from the slope of the EMG RMS versus time curve. Results indicated that (i) the inspiratory and calf muscles are the ones experiencing the most dominant fatigue during treadmill marching, (ii) the rate of fatigue of each muscle group was monotonic between the initial and terminal phases of exercise, and (iii) the inspiratory muscles fatigue significantly faster than the calf at the terminal phase of exercise, and are likely to fatigue faster during the initial exercise as well. Accordingly, this study supports the hypothesis that fatigue of the inspiratory muscles may be a limiting factor during exercise.

  9. Fatigue 󈨛. Volume 2,

    DTIC Science & Technology

    1987-06-01

    Sci.,12,1g78,64 (6) Antolovich ,S.D.,Rosa,E.and Pineau,A.,Mat.Sci.Eng.,47,1981,47 (7)Bricknell,R.H.and Woodford,D.A.,Metall.Trans.,A12,1981,425 (8...M. Rddhakrishnan, Trans. ASME, J. Engr. Matls. & Tech., 1983, vol. 105, p. 273. (16) J. P. Bailon and S. 0. Antolovich , in FATIGUE MECHANISMS...time t = time (min) th = hold-time period (min) Oc = creep fraction damage OF = fatigue fraction damage REFERENCES (1) Antolovich , S.D. and Zamrik, S

  10. The application of probabilistic design theory to high temperature low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.

    1981-01-01

    Metal fatigue under stress and thermal cycling is a principal mode of failure in gas turbine engine hot section components such as turbine blades and disks and combustor liners. Designing for fatigue is subject to considerable uncertainty, e.g., scatter in cycles to failure, available fatigue test data and operating environment data, uncertainties in the models used to predict stresses, etc. Methods of analyzing fatigue test data for probabilistic design purposes are summarized. The general strain life as well as homo- and hetero-scedastic models are considered. Modern probabilistic design theory is reviewed and examples are presented which illustrate application to reliability analysis of gas turbine engine components.

  11. In situ SEM thermal fatigue of Al/graphite metal matrix composites

    NASA Technical Reports Server (NTRS)

    Zong, G. S.; Rabenberg, L.; Marcus, H. L.

    1990-01-01

    Several thermal fatigue-induced failure mechanisms are deduced for unidirectional graphite-reinforced 6061 Al-alloy MMCs subjected to in situ thermal cycling. These thermal cycling conditions are representative of MMC service cycles in aerospace environments, where thermal fatigue is primarily associated with changes in the stress states near the interfaces due to coefficient of thermal expansion mismatch between fiber and matrix. This in situ SEM thermal-cycling study clarified such factors affecting MMCs' thermal fatigue as local fiber content and distribution, void volume, fiber stiffness, thermal excursion magnitude, and number of thermal cycles. MMC microfailure modes in thermal fatigue have been deduced.

  12. Surface EMG and muscle fatigue: multi-channel approaches to the study of myoelectric manifestations of muscle fatigue.

    PubMed

    Marco, Gazzoni; Alberto, Botter; Taian, Vieira

    2017-05-01

    In a broad view, fatigue is used to indicate a degree of weariness. On a muscular level, fatigue posits the reduced capacity of muscle fibres to produce force, even in the presence of motor neuron excitation via either spinal mechanisms or electric pulses applied externally. Prior to decreased force, when sustaining physically demanding tasks, alterations in the muscle electrical properties take place. These alterations, termed myoelectric manifestation of fatigue, can be assessed non-invasively with a pair of surface electrodes positioned appropriately on the target muscle; traditional approach. A relatively more recent approach consists of the use of multiple electrodes. This multi-channel approach provides access to a set of physiologically relevant variables on the global muscle level or on the level of single motor units, opening new fronts for the study of muscle fatigue; it allows for: (i) a more precise quantification of the propagation velocity, a physiological variable of marked interest to the study of fatigue; (ii) the assessment of regional, myoelectric manifestations of fatigue; (iii) the analysis of single motor units, with the possibility to obtain information about motor unit control and fibre membrane changes. This review provides a methodological account on the multi-channel approach for the study of myoelectric manifestation of fatigue and on the experimental conditions to which it applies, as well as examples of their current applications.

  13. [Chronic fatigue syndrome: more than fatigue].

    PubMed

    Royes, Badía; Alvarez, Carballo; Lalinde, Sevillano; Vidal, Llinas; Martín, Alegre

    2010-12-01

    Chronic fatigue syndrome (CFS) is a disease recognized by all international medical organizations and WHO, and is classified under the code G93.3 of the International Classification of Diseases. Its prevalence is estimated around 2.54% being more common in women than in men (8/2) aged between 20 and 40 Is defined as a chronic new description characterized by the presence of subjective feeling of fatigue and exhaustion long disabling of more than 6 months duration that is not relieved by rest. It is a multisystem disorder that often presents a significant number of comorbid phenomena. Not known until specific tests to confirm the diagnosis, nor is there a cure to solve this health problem definitively The strongest evidence is based on the multidisciplinary approach for the symptomatic treatment of pain, sleep disorders, neurocognitive dysfunction, autonomic and control of depression and anxiety. The specific contribution of nursing to care for the person who lives and live with the SFC should be developed primarily in the field of health education and supportive care, support and assistance to help the patient and their relatives are an adaptive response to changes in health.

  14. Fatigue of notched fiber composite laminates. Part 1: Analytical model

    NASA Technical Reports Server (NTRS)

    Mclaughlin, P. V., Jr.; Kulkarni, S. V.; Huang, S. N.; Rosen, B. W.

    1975-01-01

    A description is given of a semi-empirical, deterministic analysis for prediction and correlation of fatigue crack growth, residual strength, and fatigue lifetime for fiber composite laminates containing notches (holes). The failure model used for the analysis is based upon composite heterogeneous behavior and experimentally observed failure modes under both static and fatigue loading. The analysis is consistent with the wearout philosophy. Axial cracking and transverse cracking failure modes are treated together in the analysis. Cracking off-axis is handled by making a modification to the axial cracking analysis. The analysis predicts notched laminate failure from unidirectional material fatique properties using constant strain laminate analysis techniques. For multidirectional laminates, it is necessary to know lamina fatique behavior under axial normal stress, transverse normal stress and axial shear stress. Examples of the analysis method are given.

  15. The Nature of Fatigue in Chronic Fatigue Syndrome.

    PubMed

    Olson, Karin; Zimka, Oksana; Stein, Eleanor

    2015-10-01

    In this article, we report the findings of our study on the nature of fatigue in patients diagnosed with chronic fatigue syndrome. Using ethnoscience as a design, we conducted a series of unstructured interviews and card sorts to learn more about how people with chronic fatigue syndrome describe fatigue. Participants (N = 14) described three distinct domains: tiredness, fatigue, and exhaustion. Most participants experienced tiredness prior to diagnosis, fatigue during daily life, and exhaustion after overexertion. We also discuss participants' ability to adapt to a variety of stressors and prevent shifts to exhaustion, and relate our findings to stress theory and other current research. Primary strategies that promoted adaptation to stressors included pacing and extended rest periods. These findings can aid health care professionals in detecting impending shifts between tiredness, fatigue, and exhaustion and in improving adaptive strategies, thereby improving quality of life.

  16. Influence of microstructure on high-cycle fatigue of Ti-6Al-4V: Bimodal vs. lamellar structures

    NASA Astrophysics Data System (ADS)

    Nalla, R. K.; Ritchie, R. O.; Boyce, B. L.; Campbell, J. P.; Peters, J. O.

    2002-03-01

    The high-cycle fatigue (HCF) of titanium alloy turbine engine components remains a principal cause of failures in military aircraft engines. A recent initiative sponsored by the United States Air Force has focused on the major drivers for such failures in Ti-6Al-4V, a commonly used turbine blade alloy, specifically for fan and compressor blades. However, as most of this research has been directed toward a single processing/heat-treated condition, the bimodal (solution-treated and overaged (STOA)) microstructure, there have been few studies to examine the role of microstructure. Accordingly, the present work examines how the overall resistance to high-cycle fatigue in Ti-6Al-4V compares between the bimodal microstructure and a coarser lamellar ( β-annealed) microstructure. Several aspects of the HCF problem are examined. These include the question of fatigue thresholds for through-thickness large and short cracks; microstructurally small, semi-elliptical surface cracks; and cracks subjected to pure tensile (mode I) and mixed-mode (mode I+II) loading over a range of load ratios (ratio of minimum to maximum load) from 0.1 to 0.98, together with the role of prior damage due to sub-ballistic impacts (foreign-object damage (FOD)). Although differences are not large, it appears that the coarse lamellar microstructure has improved smooth-bar stress-life (S-N) properties in the HCF regime and superior resistance to fatigue-crack propagation (in pure mode I loading) in the presence of cracks that are large compared to the scale of the microstructure; however, this increased resistance to crack growth compared to the bimodal structure is eliminated at extremely high load ratios. Similarly, under mixed-mode loading, the lamellar microstructure is generally superior. In contrast, in the presence of microstructurally small cracks, there is little difference in the HCF properties of the two microstructures. Similarly, resistance to HCF failure following FOD is comparable in the

  17. Incompatibility and Mental Fatigue

    ERIC Educational Resources Information Center

    Herzog, Thomas R.; Hayes, Lauren J.; Applin, Rebecca C.; Weatherly, Anna M.

    2011-01-01

    A straightforward prediction from attention restoration theory is that the level of incompatibility in a person's life should be positively correlated with that person's level of mental (or directed attention) fatigue. The authors tested this prediction by developing a new self-report measure of incompatibility in which they attempted to isolate…

  18. Incompatibility and Mental Fatigue

    ERIC Educational Resources Information Center

    Herzog, Thomas R.; Hayes, Lauren J.; Applin, Rebecca C.; Weatherly, Anna M.

    2011-01-01

    A straightforward prediction from attention restoration theory is that the level of incompatibility in a person's life should be positively correlated with that person's level of mental (or directed attention) fatigue. The authors tested this prediction by developing a new self-report measure of incompatibility in which they attempted to isolate…

  19. Hysteresis and Fatigue

    NASA Astrophysics Data System (ADS)

    Erber, T.; Guralnick, S. A.; Michels, S. C.

    1993-06-01

    Fatigue in materials is the result of cumulative damage processes that are usually induced be repeated loading cycles. Since the energy dissipation associated with damage is irreversible, and the loading cycles are accompanied by the evolution of heat, the corresponding relation between stress and strain is not single-valued; but rather exhibits a memory dependence, or hysteresis. Conversely, sustained hysteresis is a necessary condition for fatigue and is related to the rate of damage accumulation. Engineering design and safety standards for estimating fatigue life are based in part on the Manson-Coffin relations between the width of stress-strain hysteresis loops and the number of loading cycles required to produce failure in test pieces. Experimental and theoretical results show that this relation can be extended into a simple phenomenological description of fatigue that directly links total hysteresis energy dissipation, the cumulation of material damage, and the average number of loading cycles leading to failure. Detailed features of the hysteresis can be understood with the help of analogies between the incremental collapse of structures and the inception and organization of damage in materials. In particular, scanning tunneling microscope measurements of the threshold of mechanical irreversibility and acoustic emission patterns may be used to check on the evolution of hysteresis at the microscopic level.

  20. Fatigue Characterization of Fire Resistant Syntactic Foam Core Material

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Mynul

    Eco-Core is a fire resistant material for sandwich structural application; it was developed at NC A&T State University. The Eco-Core is made of very small amount of phenolic resin and large volume of flyash by a syntactic process. The process development, static mechanical and fracture, fire and toxicity safety and water absorption properties and the design of sandwich structural panels with Eco-Core material was established and published in the literature. One of the important properties that is needed for application in transportation vehicles is the fatigue performance under different stress states. Fatigue data are not available even for general syntactic foams. The objective of this research is to investigate the fatigue performance of Eco-Core under three types of stress states, namely, cyclic compression, shear and flexure, then document failure modes, and develop empherical equations for predicting fatigue life of Eco-Core under three stress states. Compression-Compression fatigue was performed directly on Eco-Core cylindrical specimen, whereas shear and flexure fatigue tests were performed using sandwich beam made of E glass-Vinyl Ester face sheet and Eco-Core material. Compression-compression fatigue test study was conducted at two values of stress ratios (R=10 and 5), for the maximum compression stress (sigmamin) range of 60% to 90% of compression strength (sigmac = 19.6 +/- 0.25 MPa) for R=10 and 95% to 80% of compression strength for R=5. The failure modes were characterized by the material compliance change: On-set (2% compliance change), propagation (5%) and ultimate failure (7%). The number of load cycles correspond to each of these three damages were characterized as on-set, propagation and total lives. A similar approach was used in shear and flexure fatigue tests with stress ratio of R=0.1. The fatigue stress-number of load cycles data followed the standard power law equation for all three stress states. The constant of the equation were

  1. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  2. Issues related to SPR joints subjected to fatigue loads

    NASA Astrophysics Data System (ADS)

    De Luca, A.; Senatore, F.; Greco, A.

    2016-05-01

    SPR joints will represent an alternative solution to spot welding in automotive field. However, their fatigue behavior shows several critical issues. After a brief introduction of this new solution, different crack modes are described, emphasizing the parameters that characterize them, i.e. the applied loads, the geometry of the joint and other phenomenon as fretting, vibration and corrosion.

  3. Experimental Study on Fatigue Behaviour of Shot-Peened Open-Hole Steel Plates

    PubMed Central

    Wang, Zhi-Yu; Wang, Qing-Yuan; Cao, Mengqin

    2017-01-01

    This paper presents an experimental study on the fatigue behaviour of shot-peened open-hole plates with Q345 steel. The beneficial effects induced by shot peening on the fatigue life improvement are highlighted. The characteristic fatigue crack initiation and propagation modes of open-hole details under fatigue loading are revealed. The surface hardening effect brought by the shot peening is analyzed from the aspects of in-depth micro-hardness and compressive residual stress. The fatigue life results are evaluated and related design suggestions are made as a comparison with codified detail categories. In particular, a fracture mechanics theory-based method is proposed and demonstrated its validity in predicting the fatigue life of studied shot-peened open-hole details. PMID:28841160

  4. Fatigue Crack Growth of Age-Hardened Al Alloy Under Ultrasonic Loading

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Kawagoishi, N.; Kariya, K.; Nu, Y.; Goto, M.

    An age-hardened and extruded Al alloy 7075-T6 was fatigued under both ultrasonic loading (20kHz) and rotating bending (50Hz) in the environments of controlled humidity, distilled water and oxygen gas respectively, to investigate the availability of ultrasonic fatigue test as a time-saving tool for the reliability evaluation of materials subjected to conventional frequency loading. Although fatigue strength decreased slightly at relative humidity below 60-70%, it degraded significantly when the humidity was increased beyond that level, irrespective of the loading frequency. However, the mechanisms of strength degradation involved in high humidity are quite different. Under rotating bending, fatigue strength decreased because crack growth was accelerated due to brittle fracture, whileas the decrease in fatigue strength under ultrasonic loading was caused by crack propagation transition from tensile mode to shear mode cracking.

  5. Fatigue of notched fiber composite laminates. Part 2: Analytical and experimental evaluation

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. V.; Mclaughlin, P. V., Jr.; Pipes, R. B.

    1976-01-01

    The analytical/experimental correlation study was performed to develop an understanding of the behavior of notched Boron/epoxy laminates subjected to tension/tension fatigue loading. It is postulated that the fatigue induced property changes (stiffness as well as strength) of the laminate can be obtained from the lamina fatigue properties. To that end, the Boron/epoxy lamina static and fatigue data (lifetime, residual stiffness and strength) were obtained initially. The longitudinal and transverse tension data were determined from the (0) and (90) laminate tests while the in-plane shear data were obtained from the (+ or - 45) sub s laminates. The static tests obtained the notched strength and mode of failure while the fatigue tests determined lifetime, damage propagation and residual strength. The failure in static tension occurred in a transverse crack propagation mode.

  6. Defect-induced fatigue microcrack formation in cement mantle.

    PubMed

    Qi, Gang; Li, Jihui; Mouchon, W Paul; Lewis, Gladius

    2005-11-01

    Acoustic emission (AE) was used to monitor the progress of the fatigue damage process in the cement mantles of two cemented femur stem constructs that contained naturally occurring defects. After the fatigue tests, morphological features of the defects were investigated using an environmental scanning electron microscope. It showed that the regions with no visible defects were mainly microcrack free, whereas the defect regions were the main sources generating microcracks. Two types of microcracks were identified: type I and type II. Signal energies associated with type I microcracks were about an order of magnitude higher than that of type II. The microstructural investigations of the defects and the areas in the vicinity of the defects suggested their categorization into stable and unstable. The accumulative energy-time relationships revealed that stable and unstable microcrack curves had convex [formula: see text], and concave [formula: see text] shapes, respectively. The progress of fatigue microcrack formation occurred over three distinct phases: initiation, transition, and stableness.

  7. Fatigue Life Methodology for Tapered Hybrid Composite Flexbeams

    NASA Technical Reports Server (NTRS)

    urri, Gretchen B.; Schaff, Jeffery R.

    2006-01-01

    Nonlinear-tapered flexbeam specimens from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. Two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) associated with simulated delamination growth in the flexbeams are presented from both codes. These results compare well with each other and suggest that the initial delamination growth from the tip of the ply-drop toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves for comparison with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared well with the test results.

  8. Fatigue Life Analysis of Tapered Hybrid Composite Flexbeams

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; Schaff, Jeffery R.; Dobyns, Alan L.

    2002-01-01

    Nonlinear-tapered flexbeam laminates from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. The two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) obtained from the above codes using the virtual crack closure technique (VCCT) at a resin crack location in the flexbeams are presented for both hybrid material types. These results compare well with each other and suggest that the initial delamination growth from the resin crack toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves and compared with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared reasonably well with the test results.

  9. Fatigue Life Analysis of Tapered Hybrid Composite Flexbeams

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; Schaff, Jeffery R.; Dobyns, Alan L.

    2002-01-01

    Nonlinear-tapered flexbeam laminates from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. The two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) obtained from the above codes using the virtual crack closure technique (VCCT) at a resin crack location in the flexbeams are presented for both hybrid material types. These results compare well with each other and suggest that the initial delamination growth from the resin crack toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves and compared with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared reasonably well with the test results.

  10. Analysis of acoustic emission waveforms from fatigue cracks

    NASA Astrophysics Data System (ADS)

    Bhuiyan, Md. Yeasin; Bao, Jingjing; Poddar, Banibrata; Giurgiutiu, Victor

    2017-04-01

    Acoustic emission (AE) monitoring technique is a well-known approach in the field of NDE/SHM. AE monitoring from the defect formation and failure in the materials were well studied by the researchers. However, conventional AE monitoring techniques are predominantly based on statistical analysis. In this study we focus on understanding the AE waveforms from the fatigue crack growth using physics based approach. The growth of the fatigue crack causes the acoustic emission in the material that propagates in the structure. One of the main challenges of this approach is to develop the physics based understanding of the AE source itself. The acoustic emission happens not only from the crack growth but also from the interaction of the crack lips during fatigue loading of the materials. As the waveforms are generated from the AE event, they propagate and create local vibration modes along the crack faces. Fatigue experiments were performed to generate the fatigue cracks. Several test specimens were used in the fatigue experiments and corresponding AE waveforms were captured. The AE waveforms were analyzed and distinguished into different groups based on the similar nature on both time domain and frequency domain. The experimental results are explained based on the physical observation of the specimen.

  11. Monitoring of fatigue crack growth using guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Masserey, B.; Kostson, E.; Fromme, P.

    2010-04-01

    Varying loading conditions of aircraft structures result in stress concentration at fastener holes, where multi layer components are connected, possibly leading to the development of fatigue cracks. Guided ultrasonic waves propagating along a structure allow in principle for the efficient non-destructive testing of large plate-like structures, such as aircraft wings. This contribution presents a study of the detection and monitoring of fatigue crack growth using both low frequency and higher frequency guided ultrasonic wave modes. Two types of structures were used, single layer aluminum tensile specimens, and multi layer structures consisting of two adhesively bonded aluminum plate-strips. Fatigue experiments were carried out and it was shown that fatigue crack detection and growth monitoring at a fastener hole during cyclic loading using both guided wave types is possible. The sensitivity and repeatability of the measurements were ascertained, having the potential for fatigue crack detection at critical and difficult to access fastener locations. Good agreement was observed between the experimental results and predictions from full three-dimensional numerical simulations of the scattering of the low frequency guided ultrasonic wave at the fastener hole and crack. The robustness of the methodology for practical in-situ ultrasonic monitoring of fatigue crack growth is discussed.

  12. Chronic fatigue and chronic fatigue syndrome: shifting boundaries and attributions.

    PubMed

    Lloyd, A R

    1998-09-28

    The subjective symptom of "fatigue" is one of the most widespread in the general population and is a major source of healthcare utilization. Prolonged fatigue is often associated with neuropsychological and musculoskeletal symptoms that form the basis of several syndromal diagnoses including chronic fatigue syndrome, fibromyalgia, and neurasthenia, and is clearly not simply the result of a lack of force generation from the muscle. Current epidemiologic research in this area relies predominantly on self-report data to document the prevalence and associations of chronic fatigue. Of necessity, this subjective data source gives rise to uncertain diagnostic boundaries and consequent divergent epidemiologic, clinical, and pathophysiologic research findings. This review will highlight the impact of the case definition and ascertainment methods on the varying prevalence estimates of chronic fatigue syndrome and patterns of reported psychological comorbidty. It will also evaluate the evidence for a true postinfective fatigue syndrome.

  13. Fatigue failure load indicator

    NASA Technical Reports Server (NTRS)

    Imig, L. A.; Davis, W. T.; Davis, D. C. (Inventor)

    1979-01-01

    An indicator for recording the load at which a fatigue specimen breaks during the last cycle of a fatigue test is described. A load cell is attached to the specimen which is alternately subjected to tension and compression loads. The output of the load cell which is proportional to the load on the specimen is applied to the input of a peak detector. Each time the specimen is subjected to a compression load, means are provided for applying a positive voltage to the rest of the peak detector to reset it. During the last cycle of the tension load the peak detector measures the maximum load on the specimen. Means are provided for disconnecting the load cell from the peak detector when there is a failure in the specimen.

  14. [Childhood chronic fatigue syndrome].

    PubMed

    Miike, Teruhisa

    2007-06-01

    Chronic fatigue syndrome in childhood and adolescents(CCFS) is a complex and debilitation with severe morbidity and confusion. It is common condition with up to 3-5% of children and adolescents showing strange fatigue and confusion for more than 30 days. In this condition, four major symptoms are important: sleep disorders, easy fatigability, disturbed learning and memorization and immunological problems. Routine laboratory studies are similar to adult CFS, although abnormalities can be seen on serum pyruvic acid level, OGTT pattern, deep body temperature rhythm, hormonal secretion rhythm, and cerebral blood flow. For a diagnosis of CCFS, a research group supported by Japanese ministry of health, labor and welfare developed CCFS case definition on 2004. Treatment focused to correct disrupted circadian rhythms and supply of energy.

  15. Probabilistic Mesomechanical Fatigue Model

    NASA Technical Reports Server (NTRS)

    Tryon, Robert G.

    1997-01-01

    A probabilistic mesomechanical fatigue life model is proposed to link the microstructural material heterogeneities to the statistical scatter in the macrostructural response. The macrostructure is modeled as an ensemble of microelements. Cracks nucleation within the microelements and grow from the microelements to final fracture. Variations of the microelement properties are defined using statistical parameters. A micromechanical slip band decohesion model is used to determine the crack nucleation life and size. A crack tip opening displacement model is used to determine the small crack growth life and size. Paris law is used to determine the long crack growth life. The models are combined in a Monte Carlo simulation to determine the statistical distribution of total fatigue life for the macrostructure. The modeled response is compared to trends in experimental observations from the literature.

  16. Fatigue resistance of ultrathin CAD/CAM complete crowns with a simplified cementation process.

    PubMed

    Magne, Pascal; Carvalho, Adriana O; Bruzi, Greciana; Giannini, Marcelo

    2015-10-01

    Traditional tooth preparation for complete crowns requires a substantial amount of hard tissue reduction. This is in contrast with the principles of minimally invasive dentistry. An ultrathin complete crown preparation is proposed instead. The purpose of this in vitro study was to assess the fatigue resistance and failure mode of computer-aided design and computer-aided manufacturing (CAD/CAM) ultrathin complete molar crowns placed with self-adhesive cement. Different restorative materials (resin nanoceramic [RNC], feldspathic ceramic [FEL], and lithium disilicate [LD]) were compared. Forty-five extracted molars with a standardized crown preparation were restored with the Cerec 3 CAD/CAM system using FEL, LD, or RNC (n=15). FEL and LD restorations were etched with hydrofluoric acid and silanated. RNC restorations and all preparations were treated with airborne-particle abrasion. All restorations (thickness=0.7 mm) were cemented with RelyX Unicem II Automix cement and submitted to cyclic isometric loading, beginning with a load of 200 N (5000 cycles) and followed by stages of 400, 600, 800, 1000, 1200, and 1400 N at a maximum of 30 000 cycles each. The specimens were loaded until failure or for a maximum of 185 000 cycles. The failure mode was categorized as "catastrophic," "possibly reparable," or "reparable." The groups were compared using life table survival analysis (log rank test at α=.05). Previously published data from the same authors about traditional complete crowns (thickness 1.5 mm) using the same experimental design were included for comparison. All specimens survived the fatigue test until the 600 N step. RNC, LD, and FEL failed at an average load of 1014 N (1 survival), 1123 N (2 survivals), and 987 N (no survivals), and no difference in survival rate was found. No catastrophic failures were reported after the fatigue test. Comparison with previously published data showed that 1.5-mm thick complete crowns demonstrated higher survival rates than

  17. A Pilot Study of Proinflammatory Cytokines and Fatigue in Women With Breast Cancer During Chemotherapy.

    PubMed

    Raudonis, Barbara M; Kelley, Ingrid H; Rowe, Nancy; Ellis, Jenny

    Fatigue remains a prevalent, persistent, and debilitating side effect of chemotherapy for stage I and II breast cancer patients. Severity of fatigue varies among patients. Evidence suggests that proinflammatory cytokines contribute to the development of fatigue. The aim of this study is to investigate predictors of fatigue and cytokine levels in women undergoing chemotherapy for stage I or II breast cancer. Piper Fatigue Scales and blood samples for interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels were collected at baseline and days 7, 14, and 21 for each chemotherapy cycle. Descriptive statistics, general linear mixed models, and graphic analysis were used to analyze the data. The predominantly white convenience sample was composed of 11 women with stage I or II breast cancer who were 37 to 72 years old (mean, 52 years). Predictors of fatigue were type of chemotherapy drugs, time, and IL-6 levels. A predictor of IL-6 and TNF-α levels was whether chemotherapy was administered at the visit. Type of chemotherapy significantly predicted TNF-α levels. Fatigue patterns were characterized by chaotic pattern of peaks and troughs unique to each woman. Women with stage I and II breast cancer experienced variability in the severity of fatigue and levels of IL-6 and TNF-α throughout their treatment trajectories. The presence and role of genetic variants related to cancer-related fatigue may explain the individual variation and warrant further research. These findings highlight the importance of symptom assessments including fatigue at each clinic visit and individualized interventions throughout the cancer trajectory.

  18. Sites of Failure in Muscle Fatigue

    DTIC Science & Technology

    2001-10-25

    sites associated with muscle fatigue. Keywords - Fatigue, failure, site, muscle. I. INTRODUCTION Neuromuscular fatigue impairs the force...generating capacity of muscles and it is experienced commonly in normal everyday physical exercise and especially in neuromuscular diseases...Despite significant progress in research on muscle fatigue, “remarkably little is known of the mechanisms underlying neuromuscular fatigue during human

  19. The Relationship of Health Behaviors with Sleep and Fatigue in Transplant Caregivers

    PubMed Central

    Ross, Alyson; Yang, Li; Klagholz, Stephen D.; Wehrlen, Leslie; Bevans, Margaret F.

    2017-01-01

    Objective The burden and psychological impact of providing care to a loved one with cancer is significant and associated with a number of problems including sleep disturbance and fatigue. While engaging in healthy behaviors such as proper nutrition, exercise and stress reduction may improve sleep and fatigue, few studies have focused on this relationship. The objective of this study is to examine the relationship of health behaviors with sleep quality and fatigue in transplant caregivers. Methods Data were analyzed from a cross-sectional survey of 78 caregivers of patients undergoing allogeneic hematopoietic stem cell transplantation. Measures included: Health-Promoting Lifestyle Profile II (HPLP-II), Brief Symptom Inventory (Distress), Caregiver Reaction Assessment (Caregiver Burden), Pittsburgh Sleep Quality Index, and the Multidimensional Fatigue Symptom Inventory Short-Form. Results Controlling for age, gender, BMI, burden and distress, health behaviors predicted sleep quality (B=−.408, p=.021) and fatigue (B=−.966, p<.001). Stress management (B=−.450, p=.001), nutrition (B=−.249, p=.048), and interpersonal relationships (B=−.319, p=.049) were the HPLP-II subscales that significantly predicted sleep quality; nearly every HPLP-II subscale predicted fatigue. Conclusions Despite the burden and distress associated with caregiving, engaging in healthy behaviors may help to improve sleep and fatigue in transplant caregivers. PMID:26179453

  20. Recovery from Fatigue

    DTIC Science & Technology

    1973-06-30

    relative effectiveness of this kind of sleep activity on recovery from fatigue as opposed to cycling to deeper stages may prove to be of central 45...suggest that nappers do not interpret Stage I activity as sleep , while non-nappers do. Together with the results suggest- ing that nappers and non...Bette J. Newill, Deborah E. Seeley, and especially Cynthia Bendon who served as one of the scorers of the sleep staging , as well as Robert Hufgard who

  1. Flight Attendant Fatigue

    DTIC Science & Technology

    2007-07-01

    Rosenblatt, L.S., Hether- ington, N.W., Higgins, E.A., & DeRoshia, C.W. (1975). Quantitation of desynchronosis. Chrono- biologia , 2, 197-204. A1- 1 ...Page 1 . Report No. 2. Government Accession No. 3. Recipient’s Catalog No. DOT/FAA/AM-07/21 4. Title and Subtitle 5. Report Date...July 2007 Flight Attendant Fatigue 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Nesthus T, 1

  2. [Fatigue and anemia].

    PubMed

    Ivanova, K; Zeller, A

    2009-12-02

    We herein report on an 80-year old male patient with a history of muscle weakness, fatigue and weight loss since several months. Because of a pathologic synacthen test in combination with decreased levels of ACTH, we diagnosed a secondary chronic adrenal insufficiency. Because of a normochromic, normocytic, and hypo-proliferative anemia, bone marrow puncture was performed, showing an anemia of chronic disease. We initiated hydrocortisone and anemia and patients' symptoms were fully reconstituted.

  3. Fatigue 󈨛. Volume 3,

    DTIC Science & Technology

    1987-06-01

    assisted fat iue Crack grouth in lo~t-r stri-ngth steels, although little informat ion is available regarding this possibility. *Materials Physics and...structure’s resistance to fatigue cracking under specified service conditions. This means that the economic life- time, Including all inspections...and now approaching our common problems. For examples, (a) Economical and reliable analysis of K values (stress intensity factors). (b) Fracture

  4. Helicopter Fatigue Design Guide

    DTIC Science & Technology

    1983-11-01

    de nouveaux materiaux ou technologies accentue I’importance que presente pour les forces de I’O.T.A.N. ce probleme de la maitrise des phenomenes de...fatigue interessant les helicopteres. La commission Structures et Materiaux de I’AGARD a ete conduite a proposer et developper une serie de reflexions...service life for the suspension components due to their vulnerabihty to darnage at high speeds. Spectrum No. 2 led to limitations being applied to

  5. Fatigue 󈨛. Volume 1,

    DTIC Science & Technology

    1987-06-01

    2024 Aluminum 271 Alloy Sheet Tested at Several Stress Ratios - A. ANDRADE AND M. FREITAS 𔃼he Effect of Microstructure on the Surface 281 Crack Length...in a Powder Metallurgy Superalloy at Room and at High Temperature - F. SONIAK AND L. REMY Propagation of Small Fatigue Cracks in 2024 -T3 361 Aluminum ...strength aluminum alloys 2124 and 7150 (13,18) in Fig. 3 for the T-L orientation. Despite having 30% higher strength, growth rates in the aluminum

  6. Chronic Fatigue Syndrome

    PubMed Central

    Leyton, Edward; Pross, Hugh

    1992-01-01

    To determine the effect of certain herbal and homeopathic preparations on symptoms, lymphocyte markers, and cytotoxic function of the lymphocytes in patients with chronic fatigue syndrome, we studied six outpatients diagnosed with the disease by their family physicians. Patients were given herbal and homeopathic preparations after a 3-week symptom-recording period. After treatment, symptoms were again recorded. Blood samples were taken before and after treatment. None of the values showed any significant change after treatment. PMID:21221272

  7. Effects of R-ratio on fatigue crack growth in a Ti-24Al-11Nb alloy

    NASA Technical Reports Server (NTRS)

    Bae, K.; Nelson, H. G.

    1993-01-01

    The microscopic fatigue crack behavior in a Ti-24Al-11Nb alloy was investigated. Particular attention was given to the path of the fatigue crack through the microstructure, the fracture mode, and the effects of R-ratio and crack closure on the fatigue crack growth behavior. The FCGR of the alloy at R = 0.5 was an order of magnitude higher than that at R = 0.1.

  8. Fatigue syndrome in sarcoidosis.

    PubMed

    Górski, Witold; Piotrowski, Wojciech J

    2016-01-01

    Sarcoidosis is an inflammatory disease of unknown etiology. Most commonly it results in the formation of non-caseating granulomas in intrathoracic lymph nodes and lung parenchyma, but the clinical course and picture may be complicated by extrapulmonary involvement and many non-respiratory signs and symptoms which are directly related to the disease. In addition, sarcoidosis patients may suffer from a plethora of symptoms of uncertain or unknown origin. Fatigue is one of these symptoms, and according to some authors it is reported by the majority of patients with active sarcoidosis, but also by a smaller proportion of patients with inactive sarcoidosis, or even with complete clinical and radiological remission. Therefore the term fatigue syndrome is frequently used to name this clinical problem. The definition of fatigue syndrome in sarcoidosis is imprecise and the syndrome is usually recognized by use of validated questionnaires. In this review the uptodate knowledge in this field was presented and different challenges connected with this syndrome were described.

  9. Hysteresis and fatigue

    SciTech Connect

    Erber, T. ); Guralnick, S.A.; Michels, S.C. )

    1993-06-01

    Energy dissipation associated with damage of materials is irreversible and loading cycles are accompanied by the evolution of heat. The relation between energy dissipation and loading therefore exhibits a memory dependence or hysteresis. Conversely, sustained hysteresis is a necessary condition for fatigue and is related to the rate of damage accumulation. Standards for estimating fatigue life are partially based on the Manson-Coffin relations between the width of stress strain hysteresis loops and the number of loading cycles required to produce failure in test pieces. In the present study, experimental and theoretical results demonstrate that this relation can be extended into a simple phenomenological description of fatigue that directly links total hysteresis energy dissipation, the cumulation of material damage, and the average number of loading cycles leading to failure. Analogies between the incremental collapse of structures and the inception and organization of damage in materials are used to aid understanding of the detailed features of hysteresis. Scanning tunneling microscope measurements of the threshold of mechanical irreversibility and acoustic emission patterns are used to detect the evolution of hysteresis at the microscopic level. 61 refs., 14 figs., 1 tab.

  10. Fatigue Crack Growth Analysis Models for Functionally Graded Materials

    SciTech Connect

    Dag, Serkan; Yildirim, Bora; Sabuncuoglu, Baris

    2008-02-15

    The objective of this study is to develop crack growth analysis methods for functionally graded materials (FGMs) subjected to mode I cyclic loading. The study presents finite elements based computational procedures for both two and three dimensional problems to examine fatigue crack growth in functionally graded materials. Developed methods allow the computation of crack length and generation of crack front profile for a graded medium subjected to fluctuating stresses. The results presented for an elliptical crack embedded in a functionally graded medium, illustrate the competing effects of ellipse aspect ratio and material property gradation on the fatigue crack growth behavior.

  11. Fracture mechanics and corrosion fatigue.

    NASA Technical Reports Server (NTRS)

    Mcevily, A. J.; Wei, R. P.

    1972-01-01

    Review of the current state-of-the-art in fracture mechanics, particularly in relation to the study of problems in environment-enhanced fatigue crack growth. The usefulness of this approach in developing understanding of the mechanisms for environmental embrittlement and its engineering utility are discussed. After a brief review of the evolution of the fracture mechanics approach and the study of environmental effects on the fatigue behavior of materials, a study is made of the response of materials to fatigue and corrosion fatigue, the modeling of the mechanisms of the fatigue process is considered, and the application of knowledge of fatigue crack growth to the prediction of the high cycle life of unnotched specimens is illustrated.

  12. Compassion fatigue: a nurse's primer.

    PubMed

    Lombardo, Barbara; Eyre, Caryl

    2011-01-31

    Most nurses enter the field of nursing with the intent to help others and provide empathetic care for patients with critical physical, mental, emotional, and spiritual needs. Empathic and caring nurses, however, can become victims of the continuing stress of meeting the often overwhelming needs of patients and their families, resulting in compassion fatigue. Compassion fatigue affects not only the nurse in terms of job satisfaction and emotional and physical health, but also the workplace environment by decreasing productivity and increasing turnover. We begin this article with a case study of a reactive nurse who did not seek help for her continuing stress. This is followed by a review of Watson's theoretical perspective related to compassion fatigue. Next we delineate symptoms of, and describe interventions for addressing compassion fatigue. We conclude by presenting a case study of a proactive nurse who avoided developing compassion fatigue and a discussion of future research needed to better prevent and ameliorate compassion fatigue.

  13. Probabilistic Fatigue Damage Program (FATIG)

    NASA Technical Reports Server (NTRS)

    Michalopoulos, Constantine

    2012-01-01

    FATIG computes fatigue damage/fatigue life using the stress rms (root mean square) value, the total number of cycles, and S-N curve parameters. The damage is computed by the following methods: (a) traditional method using Miner s rule with stress cycles determined from a Rayleigh distribution up to 3*sigma; and (b) classical fatigue damage formula involving the Gamma function, which is derived from the integral version of Miner's rule. The integration is carried out over all stress amplitudes. This software solves the problem of probabilistic fatigue damage using the integral form of the Palmgren-Miner rule. The software computes fatigue life using an approach involving all stress amplitudes, up to N*sigma, as specified by the user. It can be used in the design of structural components subjected to random dynamic loading, or by any stress analyst with minimal training for fatigue life estimates of structural components.

  14. The relationships among health promotion behaviors, compassion fatigue, burnout, and compassion satisfaction in nurses practicing in a community medical center.

    PubMed

    Neville, Kathleen; Cole, Donna A

    2013-06-01

    The objective of this study was to examine the relationships among health promotion behaviors, compassion fatigue, burnout, and compassion satisfaction among nurses practicing in a community medical center. Compassion fatigue and burnout are significant nursing stressors. Programs are available to offset the negative consequence of compassion fatigue and burnout and enhance compassion satisfaction, yet there remains a paucity of literature examining the relationships between health promotion behaviors, compassion fatigue, burnout, and compassion satisfaction. A nonexperimental design using a convenience sample of nurses completed the Health Promoting Lifestyle Profile II, the Professional Quality of Life Scale, and a demographic data sheet. Statistically significant relationships among health promotional behaviors and compassion fatigue, compassion satisfaction, and burnout were identified. Compassion fatigue, burnout, and compassion satisfaction are outcomes associated with nursing practice. Support for engagement in health promotional behaviors may contribute to nurses' well-being in counteracting compassion fatigue and burnout and enhancing compassion satisfaction.

  15. Fatigue Reliability of Gas Turbine Engine Structures

    NASA Technical Reports Server (NTRS)

    Cruse, Thomas A.; Mahadevan, Sankaran; Tryon, Robert G.

    1997-01-01

    The results of an investigation are described for fatigue reliability in engine structures. The description consists of two parts. Part 1 is for method development. Part 2 is a specific case study. In Part 1, the essential concepts and practical approaches to damage tolerance design in the gas turbine industry are summarized. These have evolved over the years in response to flight safety certification requirements. The effect of Non-Destructive Evaluation (NDE) methods on these methods is also reviewed. Assessment methods based on probabilistic fracture mechanics, with regard to both crack initiation and crack growth, are outlined. Limit state modeling techniques from structural reliability theory are shown to be appropriate for application to this problem, for both individual failure mode and system-level assessment. In Part 2, the results of a case study for the high pressure turbine of a turboprop engine are described. The response surface approach is used to construct a fatigue performance function. This performance function is used with the First Order Reliability Method (FORM) to determine the probability of failure and the sensitivity of the fatigue life to the engine parameters for the first stage disk rim of the two stage turbine. A hybrid combination of regression and Monte Carlo simulation is to use incorporate time dependent random variables. System reliability is used to determine the system probability of failure, and the sensitivity of the system fatigue life to the engine parameters of the high pressure turbine. 'ne variation in the primary hot gas and secondary cooling air, the uncertainty of the complex mission loading, and the scatter in the material data are considered.

  16. Translating Fatigue to Human Performance.

    PubMed

    Enoka, Roger M; Duchateau, Jacques

    2016-11-01

    Despite flourishing interest in the topic of fatigue-as indicated by the many presentations on fatigue at the 2015 Annual Meeting of the American College of Sports Medicine-surprisingly little is known about its effect on human performance. There are two main reasons for this dilemma: 1) the inability of current terminology to accommodate the scope of the conditions ascribed to fatigue, and 2) a paucity of validated experimental models. In contrast to current practice, a case is made for a unified definition of fatigue to facilitate its management in health and disease. On the basis of the classic two-domain concept of Mosso, fatigue is defined as a disabling symptom in which physical and cognitive function is limited by interactions between performance fatigability and perceived fatigability. As a symptom, fatigue can only be measured by self-report, quantified as either a trait characteristic or a state variable. One consequence of such a definition is that the word fatigue should not be preceded by an adjective (e.g., central, mental, muscle, peripheral, and supraspinal) to suggest the locus of the changes responsible for an observed level of fatigue. Rather, mechanistic studies should be performed with validated experimental models to identify the changes responsible for the reported fatigue. As indicated by three examples (walking endurance in old adults, time trials by endurance athletes, and fatigue in persons with multiple sclerosis) discussed in the review, however, it has proven challenging to develop valid experimental models of fatigue. The proposed framework provides a foundation to address the many gaps in knowledge of how laboratory measures of fatigue and fatigability affect real-world performance.

  17. Gear Fatigue Diagnostics and Prognostics

    DTIC Science & Technology

    2013-01-01

    one for single gear tooth fatigue, and one for gear-on-gear dynamometer-based tester ) we have been collecting crack initiation and crack propagation...fatigue tester ); and torque, angular speed, vibration, temperature, and crack-propagation (gear-on-gear dynamometer-based tester ). The main outcome...Description The test consists of two set of tests on a dynamometer and one set of test on the fatigue tester and some additional activities. Fig

  18. Fatigue Performance under Multiaxial Loading

    DTIC Science & Technology

    1990-01-01

    pp. 204-208. 3-40.Feltner, C. and J. Morrow, " Microplastic Strain Hysteresis Energy as a Criterion for Fatigue Fracture", Journal of Basic Engineering...34 Symposium on Structural Fatigue in Aircraft, ASTM STP No. 404, Fifth Pacific Area Meeting Papers, pp. 176-189, November 1966. Ronay, M., "Conditions of...J. Morrow, " Microplastic Strain Hysteresis Energy as a Criterion for Fatigue Fracture," Journal of Basic Engineering, ASME, Vol. 83D, March 1961, pp

  19. Fatigue failure of metal components as a factor in civil aircraft accidents

    NASA Technical Reports Server (NTRS)

    Holshouser, W. L.; Mayner, R. D.

    1972-01-01

    A review of records maintained by the National Transportation Safety Board showed that 16,054 civil aviation accidents occurred in the United States during the 3-year period ending December 31, 1969. Material failure was an important factor in the cause of 942 of these accidents. Fatigue was identified as the mode of the material failures associated with the cause of 155 accidents and in many other accidents the records indicated that fatigue failures might have been involved. There were 27 fatal accidents and 157 fatalities in accidents in which fatigue failures of metal components were definitely identified. Fatigue failures associated with accidents occurred most frequently in landing-gear components, followed in order by powerplant, propeller, and structural components in fixed-wing aircraft and tail-rotor and main-rotor components in rotorcraft. In a study of 230 laboratory reports on failed components associated with the cause of accidents, fatigue was identified as the mode of failure in more than 60 percent of the failed components. The most frequently identified cause of fatigue, as well as most other types of material failures, was improper maintenance (including inadequate inspection). Fabrication defects, design deficiencies, defective material, and abnormal service damage also caused many fatigue failures. Four case histories of major accidents are included in the paper as illustrations of some of the factors invovled in fatigue failures of aircraft components.

  20. Fatigue Testing of Vampire Wings,

    DTIC Science & Technology

    1979-06-01

    AD-AOA9 402 AERONAUTICAL RESEARCH LABS MELBOURNE (AUSTRALIA) F/G 1/3 FATIGUE TESTING OF VAMPIRE WINGS.(U) JUN 79 R A BRUTON. C A PATCHING...378 FATIGUE TESTING OF VAMPIRE WINGS by R. A. BRUTON and C. A. PATCHING ~- u-~ .~ ~ EL m! s REPORT Approved for Public Release - C- C> LSJ.1...RESEARCH LABORATORIES S TR U C T ~ ~ ~ - 7 FATIGUE TESTING OF VAMPIRE WINGS by R. A. RUTON &W C. A. /PATCHING .i2 j >1 SUMMARY k < ,/ /.. The fatigue